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Abstract

This thesis concentrates on studying the threc-dimensional dynamics and control
of librational motion in the large for multi-body tethered satellite systems. Fasy

to-implement, reel rate control laws have been chosen for controlling the retricval
phase, the critical phase of the motion. The study is based on both numerical

and analytical approaches.

The Lagrangian approach is used to develop the equations of motion. In
this work, the vibrational motions of the tethers are ignored and the tethers are
considered massless. The tethered bodies arc modeclled as point masses. Since
the principles are the same for two-body and multi-body systems, for the sake
of simplicity, the analysis starts with two-body systems and is subscquently ex-
tended to multi-body systems. The method of formulation mahes this extension
quite easy. The set of second order nonlincar coupled equations is solved using

the Bulirsch-Stoer extrapolation method from M SL libraries.

The first analytical method that is used for the developrient of recl tate s
is the Liapunov’s seccond method. In this work it 15 shown that the Hamiltonian
can be used as a Liapunov function. A reel rate law is devised that stabihizes
the in-plane and out-of-planc librations at the same time, for two hody systerns
However, since the resulting motion has some deficienaes, this reel rate law s

not extended to multi-body systems.

For overcoming these deficiencies, two new reel rate laws are proposed and
their performances are examined through the encigy dissipation approach to
gether with the averaging method. The resulting motions with all the reel 1ate
laws, including the one from Liapunov approach, are limit cycle oscillations. The
reel rate laws obtained from the energy dissipation approach petfonm cflicient
retrievals with sufficiently small out-of-plane limit cyde amplitudes These recl
rate laws are extended to multi-body systems and lcad to acceptable results o
multi-body systems a station-keeping stage is added that biings the systemn to
a final desired configuration. An analysis on the effects of different parameters
and gains on the resulting motion has also been performed. Hencel one has the

general information for selecting the gains to obtain a desited motion



Scommaire

Dans cette thése, nous nous intéressons a la dynamique tridimensionnelle
des mouvements de grandes amplitudes et au controle de systémes a satellite
composés de plusieurs éléments reliés par des fils. Des lois de contréle par taux
de déroulement des fils —Facile a implanter- sont proposées, afin de contréle
I’étape de récupération qui correspond a la phase critique. L’étude est basée

sur une approche numérique et analytique.

L’approche Lagrangienne est utilisée pour dériver les équations du
mouvernent, Dans cette étude, les mouvements vibratoires des fils, considérés
sans masse, ne sont pas pris en compte. De plus, les mouvements de corps
rigides des éléments sont négligés. Puisque les principes sont les mémes dans
les deux cas, dans un but de simplification, I’analyse est appliquée tout d’abord
a des systémes a deux éléments puis étendue ensuite a des systémes a plusicurs
éléments. La formulation de la méthode permet facilement cette extension.
Le systeme de second ordre d’équations nonlinéaires couplées est résolu en
utilisant la méthode d’extrapolation de type Bulirsch-Stoer que 'on trouve

parmi les sous-programmes IMSL.

La premiere méthode analytique utilisée pour développer les lois du taux
de déroulement est la seconde méthode de Liapunov. Cette méthode est
particulierement intéressante puisqu’elle s’applique dans le cas de mouvements
larges, bien qu'il soit d’ordinaire difficile de construire une telle fonction de
Liapunov. Ici, on démontre que la fonction d’'Hamilton peut étre utilisée comme
fonction de Liapunov. Une loi du taux de déroulement a été déterminée,
stabilisant a la fois les mouvements dans le plan et hors-plan, dans le cas de
systémes a deux éléments. Mais, puisque le mouvement résultant exigeait des
améliorations, cette loi n’a pas été étendue aux cas de systémes a plusieuts

éléments.

i




T T

Pour surmonter les problémes sus-mentionnés, deux nouvelles lois du tau
de déroulement sont proposées et leurs performances examinées par une
approche de dissipation d’énergie et une méthode de type KB (Krylov-
Bogoliubov). Pour toutes les lois, incluant celle obtenue par approche de
Liapunov, les mouvements résultants ont été des oscillations de type cyde
limite. Les lois du taux de déroulement obtenue par 'approche de dissipation
d’énergie engendrent des récupérations efficaces avec des amplitudes de cyde
limite hors-plan suffisamment petites. Elles ont été appliquées aux systémes a
plusieurs éléments et conduisent a des résultats acceptables. Dans ce derme
cas, une étape supplémentaire (“station-keeping stage”) est ajoutée qui permet
de placer le systeme dans la configuration finale désirée. Unc analyse des eflets
des différents parameétres et des gains sur les mouvements résultants a ¢galement
été effectuée. Des informations générales permettant de sélectionner les valeurs
des gains pour obtenir un certain mouvement est ainsi mise a la disposition du

lecteur.

iv




.

gy

Acknowledgements

I would like Lo express my sincere gratitude to Prof. A.K. Misra for his constant
guidance, encouragement, kindness, and caring throughout the course of this
rescarch. His precise and critical reviews, patience and financial support during

the period of writing this dissertation are gratefully appreciated.

[ would like to thank Dr.Vinhson B. Nguyen fcr his great help in familiariz-
ing me with the document preparation software, Latex, and his genuine offering
of all the necessary files in this respect. His careful proofreading of some parts of
this thesis is also appreciated. [ am also grateful to Christian Semler for trans-
lating the abstract of this thesis. His efforts for finding French equivalents for

specialized technical terms used in this work are highly regarded.

All the staff of the Department of Mechanical Engineering have made my
stay at McGill a pleasant one. Among them I would like to make special mention
of Ms. Helga Symington and Prof. B.R. Baliga. Besides his kindness and caring,
I would like to thank Prof. Baliga for use of some of his equipment which has

been very helpful and valuable.

During my graduate studies, I have had the opportunity to familiarize my-
sclf with different cultures, especially because of the characteristics of Canada
and Montreal in this respect. [ have made numerous friends whose friendship
is a rcal honour for me. Among them I would like to express special thanks
to Nathalie Boudreault, Stéphane Cyr, Nabil Elkouh, Wadood Hamad, Josiane
Joannon, Christian Masson, Daniel Rousse, Simone Sebben and Victor Storm; in

brief, they were my family here during my Master’s studies.

Finally, I would like to express my best regards to people who are very
spedial to me my sister Mina, my brother Navid. my aunts, or better be said
my second and third mothers, Shamsi Nabati and Ghamar Monshi— for their

long distance moral support.




T

Table of Contents

Acknowledgements

............................

Table of Contents

............................

List of Figures

..............................

Nomenclature

........................

1 Introduction

1.1 OQutline of the Chapter

........................

1.2 Historical Background

.....................

1.3 Some Applications of the Multi-body Tethered Satellite Systems .

1.3.1 Upper atmosphere measurements . . .. . ... ...,
1.3.2 Gravity related applications . .. . . ..

1.3.3 Tether communications antenna . . . .. . . ... ...

1.1 Aims of the Study and the Related Literature

vi

Vi

Xiv

f




Sl D
> iy

1.5 Outlineof the Thesis . . . . . v v v i vt e e it e e e e e

Dynamical Formulation for N-body Tethered Systems
2.1 Introduction . . . . . . . . .. e e e

2.2 General Description of the System and Assumptions Made .

2.3 Kinematics of the System . . . .. ... ... ... ... .. ...

24 Governing Equations of Motion . . . . ... . ... . .......
2.4.1 Kineticenergy of thesystem . . . .. . ... ... ... ..
2.4.2 Potential energy of the system . .
2.4.3  Substitution of T and U into the Lagrange’s equations

2.5 The Computer Code . .. .. ... ... ... ... ...

The Liapunov Approach

3.1 Introduction

..............................

3.2 Comments on the Effects of Reel Rate on the Motion

-------

3.3 Liapunov’s Second Method

........

3.t Liapunov’s Approach for Tethered Satellite Systems

The Energy Dissipation Approach and Averaging Method

P11 Introdudtion .

..........................

14

17

21

23

oo
-1

33

35

35

36

39

41

47



..........................

4.3 Reel Rate Law with Quadratic Out-of-plane Feedback . . .
44 Reel Rate Law with Absolute Value Out-of-plane Feedback . . . .

4.5 Multi-body Systems

4.6 Effects of the Retrieval Constant and Control Gains on the Motion

Concluding Remarks

5.1 Review of the Thests and Its Conclusions . .

5.2 Recommendations for Future Work

............

Bibliography

Applications of Tethered Satellite Systems

A.1 Atmospheric and Aerodynamic Studies

.............

A.1.1 Shuttle connected hypersonic open wind tunnel
A.1.2 Upper atmospheric measurements . . . . .
A.2 Transportation Uses ... ... ... ....
A.2.1 Momentum exchange .
A 2.2 Tether assisted rendezvous .

A.3 Gravity Related Applications

...
9

<
o

66

I~
[$™




Praianii

A.3.1 Wide range variable gravity laboratory . .. .. ... ...
A.3.2 Microgravity laboratory™ . . . . . .. . ... . 0oL
A.3.3 Variable low-gravity laboratory™ . . . . ... .. ... ...
A.3.4 Gravity wave detector™ . . . . .. ... ... L.
A.4 Electrodynamic Applications . . .. . .. ... ... .. ......
A.4.1 Power and thrust generation . . . ... ... .. ......
A.4.2 Tether communications antenna”
A.5 Orbital Parameters Modification . . . . . ... ... .. ... ...
A.5.1 Changing the orbital inclination . . . . ... .. ... ...
A.5.2 Lowering the orbit of a planetary probe . . . . . ... ...

A.5.3 Altering the orbit eccentricity . . ... ... ... .....

B The Orbital Center of a Tethered Satellite System

X

124

125

125

125

125

. 126

126

126

127

127

128



List of Figures

2.1

3.1

3.2

3.3

3.4

Orientation and configuration of the system

-------------

Uncontrolled retrieval dynamics of a three-body system for the
case of: a =c¢ = 05 m = 1000 kg, my = 100000
kg, m3 = 2000 kg, 0,(0) = 0,(0) = 0.0, ,(0) = ¢2(0) =
0.1, £,(0) =10000.0 m, £,(0) = 5000.0 m, 0,(0) = 02(0) =
$1(0) =2(0) =00 . . . ...

Uncontrolled retrieval dynamics of a three-body system for the
caseof: ¢ =01, ¢ = 05, m; = 100000 kg, m, = 5000
kg, mgz = 10000 kg, 6,(0) = 02(0) = 0.0, ¢,(0) = ¢,(0) =
0.1, £;(0) = 10000.0 m, ¢5(0) = 100000.0 m, 0,(0) = 0,(0) =
$1(0)=62(0)=0.0. . . ... ...

Retrieval dynamics of a two-body system using the reel rate law
of Eq. 3.18 for the case of: ¢ =034, K =50, my = 150
kg, my > my, and 6(0) = 0.0, ¢(0) = 0.1, £(0) = 100.0 km,
0(0) = 0.0, $(0)=0.0, Cau=01lkm. ... ...........

Retrieval dynamics of a two-body system using the reel rate law of
Eq. 3.20. proposed by Vadali and Kim [47]. The system parameters

and initial conditions are the same as Fig. 3.3. . . . .

K7




4.1

4.2

4.3

4.4

4.6

1.7

Retrieval dynamics of a pure in-plane motion in the large (Eq. 4.37)
with a linear feedback for the case of: c = 05,= 0, =
19.1° K3 =0.5. . . . 0o e e e e e e e 91

Retrieval dynamics of a pure in-plane motion in the large (Eq. 4.37)
with a linear feedback for the case of: c =05, = 6, =
19.1° Kg=1.0. . . . . o o e e e e e 92

Retrievul dynamics of a pure in-plane motion in the large (Eq. 4.37)
with a linear feedback for the case of: ¢c = 05,= 0. =
19.1°2 Ko = 1.5, . . . . . o e e e e e e e e e e e 93

Retrieval dynamics of a pure in-plane motion in the large (Eq. 4.37)

with a linear feedback for the case of: ¢c = 05,= 0, =

19.1° Kg=9.0. . . .. . . . 0 e 94
Retrieval dynamics of a pure out-of-plane motion in the large

(Eq. 4.43) with a quadratic feedback for the caseof: ¢ = 0.5, K4 =

27.0. . e e 95

Retrieval dynamics of a two-body system using the reel rate law

of Eq. 4.25 for the case of: ¢ =10.5, Kp =20, K4 =9.0, and

other system parameters and initial conditions the same as Fig. 3.3. 96

Retrieval dynamics of a two-body system using the reel rate law
of Eq. 4.25 for the case of: ¢ =0.3, ky=1.0, Ky =27.0, and

other system parameters and initial conditions the same as Fig. 4.6. 98

Retrieval dynamics of a pure out-of-plane motion in the large
Eq. 1.39) with an absolute value feedback for the case of: ¢ =

(
05, Wo=06.0. .. ... . .. 100

xi

© o Ar&«m



4.9

4.10

4.11

4.12

4.13

4.14

4.15

+.16

Retrieval dynamics of a two-body system using the reel rate law
of Eq. 4.53 for the case of: ¢=0.5, Ky =20, K, =9.0, and

other system parameters and initial conditions the same as Fig. -1.6.101

Retrieval dynamics of a two-body system using the reel rate law
of Eq. 4.53 for the case of: ¢=10.3, Ky =1.0, Ky =27.0, and

other system parameters and initial conditions the same as Fig. 1.6.101

Retrieval dynamics of a two-body system using the reel rate law of
Eq. 4.25 for the case of: ¢ =0.5, Ky=2.13, K, =77.00, and

other system parameters and initial conditions the same as Fig. 4.6.106

Retrieval dynamics of a three-body system using the recl rate law
of Eq. 4.63 for the case of: Ky, = Ky, = 2.0, K4 = K, = 9.0,
and other system parameters and initial conditions the same as

Fig. 3.1, o et e e e e 108

Retrieval dynamics of a three-body system using the reel rate law
of Eq. 4.63 for: Ky, =10, K = 3.0, Ky, =20, K4 = 9.0,
and other system parameters and initial conditions the same as

Fig. 3.2. . . ... o 110

Retrieval dynamics of a three-body system using the recl rate law

of Eq. 4.64 and all system parameters and initial conditions the

sameas Fig. 4.12. . . . . . . ... oo o 112

Retrieval dynamics of a three-body system using the reel rate law
of Eq. 4.64 and all system parameters and initial conditions the

sameas Fig. 4.13. . . . .. . ... o o o 114

The effect of retrieval constant ¢ and control gains on the motion of

a two-body system for the reel rate with quadratic roll rate feedback.116

xil




4.17 The effect of retrieval constant ¢ and control gains on the motion
of a two-body system for the reel rate with absolute value roll rate

feedback. . . . .. . . . . ..

Xiii




Nomenclature

A A amplitude of quasi-harmonic response of the system
(in the averaging method) and its derivative with respect to 7

Al approximation for A’ based on the averaging method
A the value of limit cycle amplitude

Ap, Ay A associated with 0 and ¢ motions, re pectively

A, a mass parameter, defined in Eq. 2.10

c retrieval constant in a nominal exponential retrieval
c, the i** nominal exponential retrieval constant in a

multi-body system

C, Cy constant factors, used in Liapunov function

Dy, spherical domain

E the center of the Earth

Ey, Eg norm representing the energy related to # motion and
its time derivative

E,, E,,, norm representing the energy related to ¢ motion and
its time derivative

f the function that comprises the part of the recl rate law
that controls the motion

fi the function that comprises the LHS of the [** constraint
equation

I3 the nondimensional thruster force

F, the centrifugal force

F., the centrifugal force on the i** hody

F, the gravitational force

Xiv




.

-
r,

I'ok.a I"bk.’

"
m,

m,

the gravitational force on the :** body

functions comprising the main part of the equations
of motion, respectively; expressed in Eqs. 2.46-2.48

the function in the general representation of the
RHS of a nonlinear equation (in the averaging method)

the i** function of state variables in Eq. 3.7

universal gravitational constant

a mass parameter, defined in Eq. 2.45

radius of the spherical domain

Hamiltonian

nondimensional Hamiltonian

the unit vectors along the z,y, z axes

the inclination of the orbital plane

gains in reel rate control laws

retrieval constant in one of the reel rate control laws
thruster gain

gains of the reel rate control laws in a two-body system
gains of the reel rate control laws in a multi-body system

the length of the tether in a two-body system and
its time derivatives

the final value of ¢
the reference length
the initial value of ¢

the length of the :** tether in a multi-body system and
its time derivatives

derivatives of ¢, with respect to 7

initial values for ¢, and é,

the Lagrangian of the system

the total mass of the end bodies

example of a single point mass orbiting at a radius of R,
the mass of the :** body

XV




QK’ qf\’
Qr
QG* 3 Q¢k ’ Ql,‘

rj,r,r

L

Rc

Rc
Roc.

Rem.

a mass ratio for two-body systems (see Eq. 3.1)

mass of the Earth

number of constraint equations

number of end bodies

number of degrees of freedom

number of state variables = 2p

the K** generalized coordinate and its time derivative

the K** generalized force

the generalized force corresponding to 0y, ¢, fi, respectively

the position vector of the :** mass in the orbital
reference frame and its time derivatives

magnitude of the r; vector

the position vector of the origin of the reference
frame relative to the center of the Earth

magnitude of R¢g

radial distance of the orbital center from the
center of the Earth

radial distance of the center of mass from the
center of the Earth

unit step function
time

magnitude of the tether tension force in a
two-body system

nondimensional T

the vector representing the tension force in the
k" tether of a multi-body system

the magnitude of T,

kinetic energy

orbital kinetic energy
nondimensional kinetic energy

the zero order terms in 7'

XVi1




Ty the second order terms in T'

Uy, Uy, Wy velocity-like functions defining I, (see Egs. 2.31-2.33)

U potential energy

U nondimensional potential energy

Uy orbital potential energy

\A orbital velocity

Vv, the absolute velocity of the 3** body

V(x)or V Liapunov function

1% time derivative of V

W(x) representing a general form for a function of state
variables

x the state vector (only in Chapter 3)

Ly, Ty the ** element of the state vector and its time derivative

(only in Chapter 3)

z,y,z axes of the orbital reference frame

Ty, Uiy = Cartesian coordinates of the i** mass in the orbital reference
frame

AT the time derivatives of z,,y,, z, respectively

Greek Letters

a,a the phase angle in the quasi-harmonic response of
the system (in the averaging method)
a'),, approximation for o’ based on the averaging method
g, Oy a associated with 0 and ¢ motions, respectively
B the total angle in the quasi-harmonic response of the
system (in the averaging method)
8 virtual displacement
AR, the distance between O.C. and C.M.
¢ the coefficient in the general representation of the
RHS of a nonlinear equation (in the averaging method)
0.0.0 in-plane rotation of the tether in a two-body system and

its time derivatives

xvii




e

6(8), 6(0)
o,6"

9.

6

4,6, 6"
8,,0,,0,
6,6
6,(0),6.(0)
A

i

A

th

,

7

6, 9, ¢

¢, 0"

B

$(0)

b1, 1, b,

0 e
$.(0),6.(0)
¥
¥o

w

.41'0 . w’o

initial values for 8, ]

derivatives of # with respect to 7

the equilibrium value of 6

average value of § over a period

6 — 0. and its derivatives with respect to 7

in-plane rotation of the :** tether in a multi-body system
and its time derivatives

derivatives of 6, with respect to

initial values for 6, and 6,(0)
nondimensional length

nondimensional final length

the I** Lagrangian multiplier

mass ratio, defined in Eq. 2.5
nondimensional time

an arbitrary instant in the limit cycle phase

out-of-plane rotation of the tether in a two-body system
and its time derivatives

derivatives of ¢ with respect to 7
the equilibrium value of ¢
the initial value of ¢

out-of-plane rotation of the :** tether in a multi-hody
system and its derivatives

derivatives of ¢ with respect to 7
initial values for ¢, and q.S,(O)
true anomaly

argument of perigee

frequency in the quasi-harmonic response of the system
(in the averaging method)

w associated with 0 and ¢ motions. respectively
orbital angular velocity

time rate of orbital angular velocity

Xvili




Other Symbols

!

-

lvn

Abbreviations

C.M.
IMSL
KB

LHS
NASA
MTL
0.C.
RHS
SAO
SCOWT
STARFAC
TSS-2

differentiation with respect to time

differentiation with respect to nondimensional time, 7
absolute value

magnitude of a vector

denotes nondimensionality

denotes the average value over a period of oscillation
used only in 7 representing § — 0.

as a subscript, represents the approximate value
according to the averaging niethod

as a subscript, represents the value corresponding to the
limit cycle phase

as a superscript, denotes that the value of the angle
is in degrees

center of mass

International Mathematical and Statistical Libraries
Krylov-Bogoliubov (name of a method)

left-hand side

National Aeronautics and Space Administration
Materials Technology Lab

orbital center

right-hand side

Smithsonian Astrophysical Observatory

Shuttle Continuous Open Wind Tunnel

Shuttle Tethered Aerothermodynamics Research Facility

the second specific mission of NASA for Tethered
Satellites Systems

Xix




Chapter 1

Introduction

1.1 Outline of the Chapter

In this chapter we first briefly discuss the historical background of the tethered
satellite systems in general. The application of multi-body tethered systems,
whose dynamics and control are the main concerns of this thesis, is the subject
of the third section. The aims of the thesis comes next. The last section of this

chapter presents the outline of the thesis.

1.2 Historical Background

The initial idea of using tethers in space goes back to the previous century. In
1895 Tsiolkovsky suggested connecting large masses in space hy a long thin string
[1,2] to take advantage of weak gravity-gradient forces for stabilization purposes.
Gravity-gradient stabilization has been applied to satellites since the beginning
of the space program, but only with short rigid booms rather than long strings

As described by von Tiesenhausen [3], sixty-five years later in 1960, the Russian

1




engineer Artsutanov [4] conceived the futuristic idea of anchoring a geostationary
satellite to the Earth’s surface by a long cable (tetherj. A ballast would be
deployed from the satellite by another cable in the opposite direction. so the

center of gravity can be maintained in the geostationary orbit.

Two other ideas involving long tethers were also suggested in the past, but
they have not been given any scrious consideration by the succeeding researchers,
since they do not seem to be feasible at present. They are mentioned here only
because of the historical significance. The first was a low altitude geostationary
satellite proposed by Collar and Flower [5] in 1969. The second was a whecl

tether proposed by Artsutanov [6] in the same year.

Actual application of tethers was considered in the early sixties by Staily
and Adlhoch for finding a way of retrieving stranded astronauts [7,8]. Successful
experiments during Gemini X, X 11 in September and November of 1960, re-
spectively, established the feasibility of using tethered systems [9]. But in thesc
experiments only a short tether was used {or connecting an unmanned vehicle to
a manned space vehicle. Subsequently, some long-antenna-wire experiments werc

conducted, but only small end-masses were used.

In the early seventies, a proposal by Colombo et al. [10] to use the Shuttle-
based tethered systems with large subsatellites and very long tethers gave birth
to the modern era of tethered satellite systems. As a matter of fact, Bekey [1]
considers Colombo to be the father of space tethers. The details of the proposal
involved deploying a 500 kg subsatellite from the Space Shuttle into the atmo-
sphete using a 100 km long tether. Considerable research activities have been
conducted by NASA, Smithsonian Astrophysical Observatory (SAQ), and other
rescarchers on the dynamics, control, design and scientific applications of this
concept. Since the planning of the Space Station has been in progress for some
time, possible applications of tethered systems in conjunction with the Space Sta-
tion have also been studied. Some applications not involving either the Shuitle

9
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or the Space Station have also been suggested [11).

Sending scientific platforms or any research probe to different altitudes by
tethering them, as subsatellites, to the Shuttle Orbiter or Space Station has
many advantages. The subsatellites can be retrieved at the end of the mission
and instead of just being left in space, most of the parts may be re-used for
subsequent missions. Another advantage is that the subsatellite is always under
the control of the Shuttle or Space Station crew and in case any 1eparation is

necessary it can be pertormed by the crew. The tether can also be utilized as a

means of transferring data or power.

In some of the applications, there are more than two bodies that are con-
nected together by tethers. In this thesis, we have concentrated on the investiga-
tion of this kind of tethered systems. Generally we call these systems multi-body
or N-body tethered systems. Therefore in the next section we present the ap-
plications of multi-body tethered systems. Other applications of the tethered

systers are explained in Appendix A.

1.3 Some Applications of the Multi-body Teth-
ered Satellite Systems

The applications of the tethered satellite systems in general is the subject of

Appendix A. Here we only consider applications concerning multi-body systems.

1.3.1 Upper atmosphere measurements

An on-going study concerning the application of multi-body tethered sutellites

in upper atmospheric measurements is to lower a constellation of probes, which

3




}‘&'&4‘

4

are located at different altitudes, into the atmosphere. The first is tethered to
the Shuttle while the others are connected together by tethers (see page 36 of
Ref. [11]). In this way it will be possible to collect data at different locations

sumullaneously which is a valuable capability in atmospheric measurements.

1.3.2 Gravity related applications

Microgravity laboratory

For this application a laboratory facility on board the Space Station is situated
in the proximity of its vertical center of gravity. Two opposing tethers with end
masses are deployed vertically from the Space Station (one above and one below,
refer to the figure on page 76 of [11]). The length of the tethers is varied to
control the center of gravity of the system, placing it on the microgiavity mod-
ules to minimize their gravity gradient acceleration and set it in the miciogravity
level (107* g and less). The tethered end masses are also uscful for 1educing
the disturbances mainly caused by the crew activities, and enhancing overall sys-
tem attitude control. Some microgravity laboratories are currently under study,
one of them is MTL (Materials Technology Lab) and the other one a Biological
laboratory. Some biological processes to be studied would be animal and plant

growth, and human performance.

Variable low-gravity laboratory

In this application a tether with an end mass is deployed upward from the Space
Station and the laboratory can be positioned at different points along this tether
(page 88 of [11] demonstrates the arrangement). The gravity gradient between
the center of gravity of the system and the laboratory gives rise to an artificial

gravity at the laboratory. The laboratory gravity level is varied by chauging its
4




distance from the system center of gravity. Since the system gravity characteris-
tics change with orbital variations, the gravity level inside the laboratory varies
with time even if it is located at a constant distance relative to the Space Station.
Therefore, for maintaining a constant gravity level in the laboratory, its position
should be adjusted in accordance with the orbital variations. This configuration
allows performance of experiments under conditions of constant or variable low
gravity for extended periods of time. The laboratory can attain microgravity
levels if it can move to the center of gravity. In comparison with the previous
configuration for microgravity this has the disadvantage of reducing the human
access. On the other hand it has the advantages of isolating the labotatory lrom
the disturbances present in the Space Station itself, and minimizing the gravity
gradient inside the laboratorv. It can also attain higher gravity. It has been
calculated that the laboratory could attain g-levels of 107,101, 107%, and 107"
at the distances above the center of gravity of about (the accurate values depend

on the subsatellite mass) 2 m, 200 m, 20 km, 200 km, respectively.

Gravity wave detector

Because of the seismic noises, an Earth-based detector cannot detect gravitational
waves in the 10-100 MHz band. An orbiting gravity wave detector wounld solve
the problem. A tethcred system has been suggested for this purpose The svstern
would consist of a spring which is connected to two end masses by tethers (1efer
to the figure on page 39 of [11]). As this tethered systen orbits the Fath,
gravitational waves from supernovas, stars, pulsars or any other gravity sources
would make the masses to oscillate. The oscillations would be transnmtted to the

spring, which could be recorded by a sensing device.




1.3.3 Tether communications antenna

An insulated conducting tether, with plasma contactors at both ends, may be
connected to a spacecraft in the middle. Variations in the tether current can be
produced to generate ULF, ELF, or VLF waves for communications. Waves are
cmitted by a loop antenna composed of the tether, magnetic field lines, and the

ionosphere (page 61 of [11] presents a general view of this application).

Although there are many more proposed applications for the multi-body

tethered systems, the ones referred to in this section provides sufficient motivation

for undertaking this thesis.

1.4 Aims of the Study and the Related Liter-

ature

A wide range of potential applications, only some of which were presented in the
previous section and in Appendix A, has created quite a good interest in tethered
satellite systems in recent years. Hence, there is a rich literature available on
the dynamics and control of such systems, but most of the previous works have
been concentrated on two-body systems. Our main goal is to contribute to the
studies on the dynamics and control of mulli-body tethered systeins Therefoie. in
this section, the available literature on the dynamics and control of multi-body
tethered systems is reviewed. In the introductions of some of the ensuing chapters,

the literature related to the subject of the chapter will also be presented.

Liu [12], in 1985, formulated the dynamics of three-body tethered systems.
The tethers were assumed to be straight and massless. Even though he considered

only the in-plane motion of a cargo transportation, the equaticns of motion were
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very complicated. This was caused by his selection of coordinates which happened
to be subjected to constraints. Pointing out this complexity, he did not present

any numerical result for his set of combined algebraic and diffcrential equations.

For performing the microgravity experiments, Lorenzini [13] proposed the
idea of tethering the g-laboratory to the Space-Station. In 1987, the same autho
[14] discussed the control strategies for deployment of the system and damping
of the oscillations in station-keeping stage. The system is a three-body tethered
system consisting of the Space-Station, the micro-g/variable-g laboratory and
another scientific platform. The g-laboratory is in between the other two bodies
and crawls along a 10-km-long, 2-mm-diameter kevlar tether. The analysis was
concentrated on the in-plane motion. The tethers were assumed massless but thei
longitudinal vibrations have been included. The orbital motion is considered to
be circular and a spherical Earth is assumed. Two mathematical models were

used, one using the Lagrangian approach and the other one Newtonian.

In 1987, Misra, Amier and Modi [15] used the Lagrangian approach to
analyze the in-plane motion of the three-body systems for fixed-length as well
as variable-length tethers. The tethers were assumed to have negligible miass
The coordinates used were different from those of Lorenzini. In the case of fixed
length tethers, they investigated the stability of the equilibiium configurations.
The equilibrium along the local vertical was found to be the only stable one (fo
small motion). The variable-length cases included deployment of a constellation
as well as cargo transportation. Among the results the most significant one was

that large librations could occur in the cargo transportation case.

The 4-mass tethered system of the Space Station-based Elevator/Crawler
micro and variable-gravity facility, consisting of two platforms, Space Station,
and an elevator, was studied by Lorenzini et al. [16] and by Cosmo ¢t al. [17)]
The former study [16] mainly demonstrates the accelerations and the g-level of

the Space Station and the Elevator. The latter analysis [17] considered the dy
7




namics and control of two-dimensional motion of the system. The degrees of
freedom included lengths of the tethers, in-plane libration, longitudinal elastic
oscillations and in-plane lateral deflections (these are the lateral deflections of
the point masses not the lateral elastic vibrations of the tethers). They formu-
lated the problem with the Lagrangian approach and found the eigenvalues and
cigenvectors of the system. It was noticed that the longitudinal oscillations are
highly coupled to the in-plane librational and lateral motions. A tether length
control law was suggested for controlling the in-plane librational and lateral deflec-
tions. The longitudinal oscillations of the tether were damped out by longitudinal

dampers tuned to the longitudinal frequencies.

All the bodies were considered as point masses in all of the above studies. On
the other hand, Bachmann et al. [18] included the rigid-body rotational motion of
the Space Station in a three-body Space Station-based Tethered Elevator System;
they also considered the offset of the tether attachment point from the Station
center of mass. The equations of motion were derived using the Lagrangian
approach. Tethers were assumed massless and elastic in the formulation stage,
but rigid in numerical computations. An optimization was carried out on two

control schemes: thruster control and hybrid offset-thruster control.

Misra and Modi [19] formulated the general three-dimensional dynamics of
N-body tethered systems using a multiple-pendulum model. The tethers were
assumed massless and straight. The equations obtained are valid for large mo-
tion as well as for variable-length tethers and any arbitrary orbit. A study on
librational frequencies was carried out by considering small angle motion in the
neighbourhood of the local vertical equilibrium configuration for the special case
of a circular orbit. Based on the linearized equations of motion, a general dis-
cussion was presented on the acceptable range of control gains in a particular

reel rate control law for controlling the in-plane and out-of-plane librations at the

same time.
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The well-known control methods for tethered satellites are tension control
laws, length rate or reel rate control laws, thruster control laws and, offset contiol
laws. In the case of the tension control law one modulates the tension in the tether
using the feedback of appropriate generalized coordinates or their detivatives. The
tension control law is the first standard method that had been used for controlling
the motion of tethered satellite systems, therefore a rich literatuie is available for
this control method. Among them one can highlight the References [20] by Rupp,
(21} by Kulla, [22] by Bainum and Kumar, and [23] by Liangdong and Bainum.
In length rate or reel rate control laws the tether reel rate or the tether length is
fed back with app:.priate form. Asexamples of the earliest works on the reel 1ate
control laws, one can refer to Reference [24] by Kohler et al. Thiuster control
laws are implemented by firing thrusters at an appiropiiate point of the system
and modulating the magnitude of the thrust by suitable feedbacks, Thiuste
control laws have been used for obtaining a better performance in out-of-plane
motion; Reference [25] by Banerjee and Kane can be referred in this regard. As a
recent reference one can consider Reference [26] by Fleurisson ct al. Offset catrol
laws have been proposed recently as an alternative to thruster contioller. Offset
control law< function generally by changing the offsct of the point of attachiment of
the tether to the main satellite, which must be treated as a rigid body (Reference
[27] by Modi et al. can be mentioned as an example). The fust thiee, which
are compatible with our model, have been augmented to the simulation of the
motion in this thesis, but the offset control method does not fit with a maodel

that considers the bodies as point masses.

The thruster augmented and offset control schemes have some restrictions in
their implementation. For benefiting from the thruster forces one shiould include
some fuel in one or more elements of the system. The other problem with thrusters
is that they cannot be fired in the proximity of the Shuttle. On the other hand,
for the offset controllers, moving the point of attachment of the tether is not

always possible. However, the tension control Jaws and length or reel rate control
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laws are easy-to-implement.

Here, in this thesis, a simulation package is developed for studying both the
in-plane and out-of-plane motions of the multi-body systems. The formulation is
valid for motion in the large. Bodies are treated as point masses and the emphasis
is on the librational motion of the tethers; i.e. the elastic vibrations of the tethers
are assumed to be negligible. The formulation and simulation consider for the

general case of /N number of bodies.

The code developed in the thesis is used to study the three-dimensional mo-
tion of the system. There have been very few studies on three-dimensional motion
of multi-body systems. Besides analyzing the three-dimensional dynamics of the
multi-body tethered satellites, the purpose of the thesis is also to develop easy-
to-implement control schemes to stabilize the in-plane and out-of-plane motions
at the same time. Even for the two-body systems, in the available literature that
consider controlling the in-plane and out-of-plane motions simultaneously, the
suggested control systems are comprised, completely or partially, of the thruster
and/or offset control laws that have difficulty in implementation. The reel rate
and tension control laws have been used extensively in the past for controlling the
in-plane motion, but they could be very useful to control the out-of-plane motion
as well. One of the objectives of this thesis is to do this for multi-body systems
with reel rate control laws. There is no work available that offers a pl'xre reel rate

control law for stabilizing the in-plane and out-of-plane librations of multi-body

systems.

Xu et al. [28] and Xu [29], using the energy dissipation method, proposed
a reel rate control law for two-body tethered systems to control the in-plane
librations together with the out-of-plane librations. As a logical approach, here we

start with two-body systems and then extend the results to multi-body systems.

It should also be mentioned that it is well known that the deployment of the

10




oy

tethered systems can be performed even without a feedback control system but,
during the retrieval the presence of a feedback control system is indispensable.
This is due to the sign of #/¢ term which acts as a damping coefficient in the second
order equations for in-plane and out-of-plane librations. For the deployment, ¢/¢
is positive and we have positive damping. For the retrieval £/¢ is negative and we
have negative damping; i.e. it will add energy to the system. Dueto the criticality

of the retrieval phase, most of the attention in this thesis will be focused on that

phase.

1.5 Outline of the Thesis

The aims of the thesis were discussed in the previous section. In the following
chapters, the formulation of the problem, the proposal of the control laws by

analytical methods and the results of the simulation of motion are presented.

Chapter 2 contains the development of the equations of motion for N-body
tethered systems. The Lagrangian approach is used. The center of mass is
assummed to have a prescribed Keplerian orbit. The bodies are considered as
point masses and three-dimensional motion of straight tethers is considered. The
nonlinear terms are retained in the equations; hence, they hold for motion in the

large. Explanation of the developed computer code closes the chapter.

Chapter 3 deals with the development of a reel rate law by using Liapunov’s
second method. The method, which is also called Liapunov’s direct method is
described in detail first, and its advantages and disadvantages are pointed out.
Based on the Hamiltonian of the system, which is often a good candidate for the
Liapunov function of dynamical systems, a proper reel rate law for controlling
the retrieval phase is obtained. The resulting motion with this reel rate law is

presented at the end of the chapter.

11

-]




ﬂ}rt

Chapter 4 introduces an alternative analytical method, called the energy
dissipation approach. This approach is also applicable to the nonlinear equations
of motion, but the complexity of the mathematics behind 1t obliges us to apply
the method to linearized equations. However, the effectiveness of the control
laws developed is validated by simulation of the system dynamics with nonlinear
cquations. Two reel rate control laws for the retrieval motion are obtained, one
with quadratic roll rate feedback and another with absolute value roll rate feed-
back. The comparison of the performances of the system with different reel rate
laws is done next. Then the superior ree] rate laws are extended to multi-body
systems and the results of simulation of motion for some three-body cases are
presented. A discussion on the effects of different parameters and gains on the

resulting motion terminates the chapter.

Conclusions and comments are the contents of Chapter 5, the final chapter

of the thosis.

There are also two appendices to these chapters. Appendix A presents the
applications of tethered satellites. Appendix B is on the definition and exact

location of the orbital center.




1

Chapter 2

Dynamical Formulation for

N-body Tethered Systems

2.1 Introduction

This chapter contains the formulation of the problem for a general system con-
sisting of N bodies which will be treated as point masses, connected by N — 1
tethers. It starts with the description of the system and the assumptions made,
which as a matter of fact is an illustration of the model that is going to be used
in our study. The third section discusses the generalized coordinates and the
kinematics of the system. The Lagrangian approach is used next for developing

the equations of motion. A brief explanation of the computer code terminates

the chapter.

s
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2.2 General Description of the System and As-

sumptions Made

The entire system is orbiting around the Earth mainly under the action of the
gravitational attraction of the Earth, which is assumed to be spherical. There may
be some other external forces like aerodynamic forces, solar radiation pressure,
clectromagnetic forces, etc. acting as perturbations. Depending on :he situation
the significance of these different forces varies, for example acrodynamic forces

arc not important at higher altitudes.

The system, consisting of N bodies and N — 1 tethers is shown in Fig. 2.1,
wherem,,1 = 1,2,..., NV represent the mass the bodies. These bodies can include
the Space Station, the Shuttle, scientific platforms, and/or elevators, etc. The
center of mass of the system (C.M.) is assumed to have a prescribed Keplerian
orbit. As a matter of fact the best point for representing the orbital motion of
the system is the orbital center (O.C.) and not the center of mass. The o1bital
center is the point where the sum of the gravitational and centrifugal forces is
zero and is discussed in more detail in Appendix B. In this thesis it is assumed
that the O.C. coincides with C.M. and the degree of validity of this assumption
will be discussed shortly. The inclination of the orbital planc to tlie equatorial
plane is represented by the angle 1, the argument of petigee by +,. and the true
anomaly by ¢. The coordinate system used here is the rotating o1bital coordinate
system x,y,z shown in Fig.2.1, with its origin situated at the center of mass of the
system (C.M.). The center of the Earth is indicated by E, and R¢ represents the
instantancous radial distance of the C.M. with respect to the center of the Earth.
The r axis is along the local vertical pointing outwards, the z axis is normal to
the orbital plane, and y axis is perpendicular to both of them. completing the

triad.
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The orbital motion of the system is assumed to be unaffected by the Libra-
tions of the tethers and the attitude motion of the end bodies. If the masses ate
considered as rigid bodies, the attitude motion of these bodies will be coupled
with the librational (rotational) motion of the tethers. The effect of attitude
motion of the bodies is significant if either the size of the bodies is compatable to
the lengths of the tethers, or the acredynamic forces are considerable. Here we
study the cases where the lengths of the tethers are much larger than the sizes of
the bodies, and the altitude is high enough for not having any significant acio

dynamic eflect (200 km or more). Heunce, we may consider the bodies as point

IMasses.

Since the tethers are long, their mass as well as their transverse and longitu
dinal vibrations should be considered. But for the sake of simplicity the tethers
are considered massless and straight. As was discussed m Chapter 1 and Ap
pendix A, most of the applications of the fethered satellites are in conjundtion
with the Shuttle or the Space Station. In practice, the mass of the tethers is
of the order of 10 kg, while that of the Orbiter or the Space Station is of the
order of 10* — 10° kg. Therefore ignoring the mass of the tethers is not a severe
approximation. As will be later demonstrated, even alter these assnmptions, the
equations of motion are very complicated. In the later stages of rescarch on N
body systems these assumptions could be relaxed, as in the case of investigations
on two-body systems where the studies started with simplified maodels and were

later improved upon.

The eflect of the electrodynamic ficld of the Earth is ncgligible except for
the cases of electrodynamic applications which need a separate study. The other
source of perturbation is the solar radiation; it does affect the temperature of
the tethers. By being exposed to the solar radiation and heiug in the shadow of
the Earth periodically while orbiting around the Earth, the tethers have a time-

dependent temperature and consequently time-varying clongation. Kalaghan «t
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al. [30] have demonstrated that for a stainless steel tether there is a change in
clongation of 0.09 % for a temperature fluctuation of 60° K. We do not consider
this effect since we are not considering the longitudinal vibrations of the tethers.
In addition, we plan to control the motion solely by reel rate laws and without
the assistance of any thruster. Therefore no thrust will appear in the equations

cither.

As it was mentioned before, another assumption here is that the orbital
center coincides with the center of mass. The validity of this approximation is
very high, and for showing it we perform a comparison between the positions of
the O.C. and center of mass. Employing Eq. B.9 from Appendix B, the distance
between O.C. and C.M., relative to the radius of C.M., can be written as

N
). m,
R - 1=
ARoc. = ————'——‘C'A;'{C'MI-{O'C' =1- - ” 1 - 7 - (2.1)
[( E m,r,') ( E m./r?)}
1=1 =1

For the systems with short tethers, basically there is no sensible difference between
the positions of the two points. Even for the systems with moderately long
tethers, the two points are very close. In order to give an idea about this difference
we consider an example of a two-body system with a 100 km long tether. From
Eq. 2.1 one can show that for any tether length, the distance between the positions
of the C.M. and O.C. is maximum if the bodies have equal masses, therefore we
consider examples with equal masses for the two bodies. For a system with
characteristics of my = may, tether length=100 km, r1 = 6370
km, rp = 6970 km, the offset between C.M. and O.C. is about 0.005

percent radius of C.M.

For having a relatively significant difference in the positions of O.C. and

C.)M., the tether should be very long. For example in another system with
16
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m; = mao, tether length=1000 km, ry = 6870 km, r, = 7870 km,
this offset is about 0.46 percent. It can be seen that even in the case of such a
long tether the difference in positions of the two points is not much. Therefore, in
this thesis we neglect the difference in positions of C.M. and 0.C.; in Fig 2.1 the
point C, the origin of the orbital reference frame, represcats their assumed com-

mon position. Having the center of mass at the origin simplifies the kinematical

relations significantly.

In summary the assumptions made here are:

1. The gravitational field is assumed to be that of a spherical Earth and the
effects of the Sun and the Moon on this field are ignored.

™o

The bodies are treated as point masses.

3. The orbital motion is assumed to be based on the central force motion ,

and independent of the librational motion.
4. Longitudinal and transverse vibrations, and mass of the tethers are ignored.

5. The effects of the aerodynamic forces, electrodynamic field of the Earth and

solar radiations are negligible.

6. The center of mass is considered to be coincident with orbital center.

2.3 Kinematics of the System

Since the origin of the orbital coordinate system z,y, z coincides with the center

of mass, from the definition of the C.M. we get

1=l

N N N
Zm,x,=0, Zm,y,:O, Zm,z,:() . (2.2)
1=1 1=1
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Because of these three constraint equations, the N-body system which can po-
tentially have 3N degrees of freedom, will have only 3N — 3 degrees of freedom.
These 3N — 3 degrees of frecdom are relative to the orbital coordinate axes. In
order to have a complete representation of the motion, one should add the orbital
motion of the axes to these degrees of freedom. In this thesis, the orbital motion
is assumed to be prescribed, and can be described in terms of the radial distance
Rc and true anomaly 3. True anomaly is an indication of time and enters the

equations as the independent variable.

Let us now discuss the choice of the generalized coordinates. Of course, the
dynamics of the system can be described by the Cartesian coordinates, z., ¥, 2,.
1 =1,2,...,N. This set consists of 3N coordinates, but since the generalized
coordinates are supposed to be independent, their number should be equal to the
degrees of freedom of the system, i.e. 3N — 3. Hence for choosing the generalized
coordinates one should take out three coordinates from this set. say zn,yn, 2n.
However, the resulting set is not convenient and will not be used here. Instead,
another set of coordinates will be considered as generalized coordinates which is
comprised of the length of the tethers, {,, and two rotations for each tether, 0,
and ¢,,2 =1,2,...,N — 1. As is shown in Fig. 2.1(b), the angle 0, is measured
in the orbital plane, so it is called the in-plane rotation; it is also known as the
pitch angle. The angle ¢, indicates the amount of deviation of the tether from
this plane so it is called the out-of-plane rotation. This angle is also known with

another name, the roll angle.

Using Fig. 2.1 the Cartesian coordinates of the masses can be related to the

genceralized coordinates in the following manner
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2 = 21+ ¢, cosb, cos¢,

2
Tz = o+ ¢, cosly cos @, = ‘”1+E €, cos®, cos¢, ,
=]
=1
T, = &1+ cosb,_; cos¢,_, = +Z ¢, cosl, cos @,
=1
N-1
gy = ZN-1+En-y cosOn_) cosdny_y = x; + Z ¢, cosl, cos ¢,
=1
(2.3)
Now by substituting Eq. 2.3 into Eq. 2.2 one arrives at
N N
T [E m,] + ¢, cosfy cos¢y [Z m.} 4+ ..
=1 1=2
N
+ €,y cos(0,-1) cos(d;-1) |Y, m,| +--- (2.4)
1=)
+ €n-y cos(On-,) cos(dn_y)[mn] = O
Defining the mass ratio g, as
pi=my/m, 1=12,...,N (2.5)
where
N
m = Z m, = total mass of the end bodies (2.6)

1=1
Y

one can solve Eq. 2.4 to obtain z,
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2, cosb; cospy —---

¢,-y cos(6,_1) cos(¢,-;)

- o= [pn]ENn=a cos(On-1) cos(Pn-1) .

From the expression in Eq. 2.3 for z,, and using Eq. 2.7 for z, one gets

-1

=1

-3

1==2

|

-

+

[ N
D
[r=3+1

[un] €

Since ©N

r]—l

Yo om
_l:l

[ J
-1+
L 1=1

N-1

-—1+Z

=1

1=)

N
I—Z ey

= :1:1+Z {4, cos0, cos g,

u.] ¢, cosf, cospy +---

}8.1-1 cos(,-1) cos(¢,-1) (2.8)

ﬂ:] ¢, cos(f,) cos(¢,) ~---

N-1 cos(bn-1) cos(dn-1)

1 =1, Eq. 2.8 reduces to

(1) €1 cos by cosy + -

]f,_l cos(f,_1) cos(d,-;)

M:' €, cos(f,) cos(¢;)+ -

/‘tl] é‘N—l COS(0AV_1) cos(él\'—l)
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By defining the coefficients A,,’s as

A, = [E m] - St —3) , (2.10)
k=1

where S(a) represents the unit step function with the following properties:

S(a)=1 , for a>0 ,
(2.11)
=0 |, for a<0 ,
Eq. 2.9 can be represented in the compact form
N-1
T, = A, € cosl, cosd, . (2.12)
1=1
Similarly for y and z coordinates of the j** mass one obtains
N-1
y, = Z A, L, sinb,cosd, (2.14)
1=1
N-1
z, = Z AL sing, . (21
1=}

2.4 Governing Equations of Motion

For obtaining the equations of motion of tethered systems different approaches
have been used by different investigators, depending on the natnure of the system
and method of modelling. For the model that we have used, t.e. straight, massless
tethers, and specially for our system consisting of the N bodies, the best approach

seems to be the Lagrangian approach. The Lagrangian approachis a powerful and
21
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effective method when the number of internal elements of the system is relatively
high. As opposed to the Newtonian approach, which is a force approach, this is
an energy approach and is based on the energy expressions for the whole system.
In the Lagrangian approach the dynamics is governed by a set of scalar second

order partial differential equations as

d (0L oL
dt (a‘iz\-> a‘h{ Ok 2 ( )

where ¢, = Ok, éx,Ck, k =1,2,...,N — 1, are the generalized coordinates, L is
the system’s Lagrangian defined as the difference between the kinetic energy (7)

and potential energy (U) of the system, i.e.,

L=T-U , (2.16)

and Qg, K =1,2,...,3N — 3, are the generalized forces.

If the number of ¢,’s is more than the degrees of freedom they will not be
independent, and they cannot be considered as generalized coordinates anymore!.
In these cases there are some constraint equations, usually algebraic, which must
be solved simultaneously with Lagrange’s equations, and on the right-hand side

(RHS) of the Lagrange’s equations (Eq. 2.13) an extra term must be added as

follows:

d ( JaL > aL i afy

|7 ]—-5—=Qn+ A , K=12..,3N-3 , (2.17)
dt \dq, dq, g 09,

where n represents the number of constraints, and \;, [ = 1.2,...,n are extra un-

LAn example 1s the tethered clevator problem The lengths of the two tether elements on
two sides of the elevator add up to a constant value.
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known coefficients called Lagrange 's multipliers. The functions fi, 1=1,2.....n

in this case represent the left-hand side (LHS) of the constraint equations of the

form

filg1r g5 5q,,0) =0 l=12....,n . (2.18)

In the following two subsections we develop the expressions for kinetic and
potential energies of the tethered satellite systems. Substitution of these expres-

sions into Lagrange’s equations comes next.

2.4.1 Kinetic energy of the system

Since the tethers are assumed massless and the bodies are considered as point

masses the kinetic energy of the system is simply equal to:

N
T=-Y m(v, V) , (2 19)

=1

Do~

where m, is the mass of the j** body, and Vv, is the cotresponding absolute

velocity, and it can be expressed in the following manne

V,=V.+T, , j=12...,N (2.20)

Here V.. represents the velocity of the C.M. (or O.C.) which is known as the orbdal
velocily, and T, is the relative velocity of the j* body with respect to the o, y, 2
axes, i.e. I'; is the position vector of the j** mass relative to this reference frame,

Substituting Eq. 2.20 into Eq. 2.19 the kinetic energy becomes
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B +

N
Z m; (Ve +1,)- (Ve +T,)
=1 (2.21)

DO = t\Dl'-‘

m (Vg Vo) + Vg - L m, T, + = Z m,(T, - I))

=1 ]—1
The first term indicates the amount of the kinetic energy that all of the bodies
have because of the orbital motion and it is called orbital kinetic energy (T,.s).
The third term will be the non-orbital or librational kinetic energy. The second

term will be zero since the origin of the reference frame is at the center of mass;
N

ie., Z m,T, = 0, and in the second term we have
=1
N N d d
z L]r—zdt ,,:d—zm,r)_o . (2.22)
1=1 =1

Then the expression for the kinetic energy reduces to

1 X . :
7emw52m@»my (2.23)

=1

If 1,j, k indicate the unit vectors along the z,y, z axes respectively, I, can

be found by differentiating

r,=zi+yj+z k . (2.24)

Since r,y, = frame is not an inertial one but is rotating with the angular velocity

of 2, I, is equal to

I"J_—_(i')i+ylj+31k)+ﬂkx(.rji+y1j+:Jk) , (2.25)

or




\

L, =(3,-Qy)i+ (@ +0,)j+5 k . (2.26)

Differentiating Eqs. 2.12-2.14 one ohtains

N-1 . . .
t, = Z A,, (¢, cosl,cos ¢, — £,0,sin0, cos ¢, — {,, cos b, sin ¢,) , (2.27)

1=1
N-1 , ) ,
g, = Y. Ay (Lisind,cos ¢, + £, cos 0, cos ¢, — €,¢,sin0,sin ¢,) | (2.28)

=1
N-1 \ .
z, = Y. A, (bsing, +£4,,cos¢;) (2.29)

1=1

consequentiy I'; can be expressed in the following compact form

N-1
r,= Z Ay (ugi+v, J+w k) (2.30)

1=1

where

U, = é, cos @, cos ¢, — &(0.l + Q)sind, cos ¢, — l‘d;, cos 0, sin ¢,

, (2.31)
v, = é, sin 0, cos ¢, + f‘(é, + ) cos 0, cos ¢, — €,q3, sinf,sing, (2.32)
w, = é, sin ¢, + K,éﬁ, cos ¢, . (2.33)

Equations 2.30-2.33 can be substituted into Eq. 2.23 to determine the ki-

netic energy.



2.4.2 Potential energy of the system

For a tethered satellite system the major potential energy is the gravitational
potential energy. In case of a single particle with mass m,, orbiting around the
Earth with the distance from the center of the Earth equal to R, the gravitational

potential energy is equal to

U=—GM. mq/ |Ra| , (2.34)

where G is the universal gravitational constant and M, is the mass of the Earth.
For a system consisting of N bodies the gravitational potential energy will be

equal to

N
U=-GM. ¥ m,/[Rc+r,| , (2.35)
1=1

where R.¢ is the position vector of C.M. or O.C., and R¢+r, will be the position
vector of the jt* mass relative to the center of the Earth. This equation can be

re-written as

U = ~GM, 3 my/ [(Re+r,)- (Ro+1,)] "

=1

N
= —GM., Zm, [RC'RC -+-2Rc-l'_,+r]'l']] vz
J=1
Al 'Rc-r, r,-r,]™"*
= —(GM./Rc) d_m, [1-}- 1;"2 4 JR2 ]:| :
=1 C C

using the binomial expansion one gets




e o -

GM.m GM.\ ¥ Re-r, Ir, -1,
U”'( Rc )“(RJE}""[" RZ 2 R
R: -r)\?
+ g(____;% r,) (2.36)

The first term in RHS represents the potential energy of the system, if the mass
of the whole system was concentrated at the orbital center and it is called U/,,,.

Inside the square bracket the leading term can be rewritten as

GM N
( R3e Rc- 3 mr, |
c =1
Since the origin is assumed to be located at the center of mass, this term vanishes.
I,’s have the same order of magnitudes as the tether lengths, and they are much
smaller than the orbital radius Rc. Therefore we neglect the terms consisting of

the third and higher order of %—l and Eq. 2.36 changes to
C

U=Um+ (GM,/‘ZR%) im, [r, T, -3 (i . r1)2] , (2.37)

1=1

2.4.3 Substitution of T and U into the Lagrange’s equa-

tions

Now by utilizing Eqs. 2.23 and 2.37, equations of motion can he found from
Eq. 2.17. Our generalized coordinates consist of only the attitude dynamics

parameters; thus, T,,, and U,,, are independent of them. Morcover, the potential

oo OL AT L e e gt
energy, U, does not depend on ¢, s, i.c. D = g ['herefore one gets:
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N or, . d (& < )\2
—3-71—'::2 mJ -(-?—q—;’;rJ—-(GMeﬂR%) %;(sz [rj.r1_3(l'r.7) ]) L

J=1

d [ OL d (& or, . il [d (61‘-,) . OF, . ]
— | =] = = m, —— I;| = m, |=-|s—]'+-——-T
dt (0%«) dt (,ZT 7 94y ’) ,; ?ldt \0q) 7 0q,

The unit vector 1 is in the direction of local vertical at each instant, and it is

independent of ¢,'s which are all attitude dynamics parameters. Consequently

Eq. 2.17 reduces to

=1
] ar, nood
((GMC/R%) J; m, [r, -3(1-13)1] —;—';) = Qk +§ A'Ez% . (2.38)

where K =1,2,...,3N - 3.

Employing the following two mathematical relations [31]

SIILIN PRy ir)i - a2
Z'"’EE' i, + (GM./ 2) rJ—3(1-r,)1 = Qh-+§ A"g‘;’f’

K

K=12..3N-3 . (2.40)

Eqgs. 2.12-2.11 and 2.21 define r,, in addition. %—g’-'s can be obtained from
k
them. F, is equal to the total time derivative of Eq. 2.30
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Fo= Y An (= Q0) i+ (0 +Qu) j+u K] (2.41)

=1

u,, Uy, W, are presented in Egs. 2.31-2.33, and u,, v,, w, can be found by ditferen-
tiating them with respect to time. Using all the above-mentioned relations, after

some algebraic manipulations, equations of motion, Eq. 2.40, can be written as

N-1

0
Z th ekf, F9k. (on + Z AI fl ’ (212)
=1
0
Z G bl Fy,, = (@, + Z Alafl (2.13)
1=1 ¢k
N-1
0
Z G Flk. (Qe + Z A‘aeﬁ (2.44)
=1
k=12,...,N=1
where the parameters Gy,’s are given by
N
=3 p, Ap A, . (2.45)
=1

Ky, Ak, A, are the mass parameters as defined before in Eqs. 2.5 and 2.10,
respectively. Fy, , Fy,,, Fy,, are functions of the generalized coordinates and their

derivatives, given in the following expressions

Fy, = [{(0’, + Q) +2(4,/6) (0, + Q)} cos(B — 0,) + 3(CM,/R}) sinb cos0,
— {(GM./R%) + (£./6,) — (6, + Q)* — 6} sin (0, -a)] o8 By C0n

+2(0,/,)0,} sin(0, - 0,)

l-'1

~- 29, (0, + Q) cos(f ~ 0,)] cos ¢ sing, . (2.46)
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Fyp. = [513, +2(é./l")d'>,]
[cos b cos b, + sin bk sind, cos(0f — 0,)]
4+ 3 (GM./R) sin ¢y cos@, cosfy cosb,
+ [(GMC/R%) +(6./4) - ¢? ] (2.47)
{cos br sin s — cos gy sind cos(0k — 0,)]
- [406. + 9 + 24, /€)(6. + )} sin(0y — )
— (6, + Q)* cos(f —0,)] sin ¢ cos ¢;

+2(0, + Q) é, sin(6; — 0,) sindy sing, ,

F, = [e — ¢, (6, + Q) -e,<is?+(GMe/Rg)e,]
[cos bk cosd, cos(Bx —0,) + sin d sin ¢,]
+ ¢, (0, + Q)? sin ¢y sing, — 3 (GM,/RY) ¢,
cos ¢ cos @, cosy cosd, (2.48)
+{{ @40 +2(0/6)(0,+ )} sin(0-0,)
b cosdy cosgu + [6,+2(6/6) ]
[sin b1 o8 6, — c0S b sin by cos(Bx = 6,) ] ‘.

— 20,(6, + )¢, cos ¢y sin ¢, sin(fx — 0,)

These expressions reveal that even with the assumptions made here the equations
are quite complicated. Degree of complexity grows with a rate much higher than

proportional to the number of bodies.

We have not discussed about the RHS’s of the equations until now. Analyz-
30
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ing different terms of each equation from the point of view of the forees represented
by them, is helpful in having a clear understanding of the RIS s 10les. The LIS
include the effect of inertial forces, through the kinetic encigy, 7', as well as the
effect of the conservative active forces, thiough the potential cuergy, U, An ac-
tive or driving force is a force that performs work when the system undergoes a
virtual displacement compatible and in conformity with the constraints. In the
RHS’s the generalized forces, Qg,’s, Q¢,’s and @, 's account for the effect of all
the driving forces that are not considered in the LIIS’s, i.e. the nonconservative
driving forces. The second terms in the RIS’s are due to the constraint forees.
In summary we have divided the forces into three kinds; inertial, constiaint anid

driving. The driving forces could be conservative or nonconscivative,

The exact definition of the generalized force Qe corresponding to the gen-
eralized coordinate qx, K = 1,2,...,3N — 3, is that, it is a scalar quantity
such that for a virtual displacement in ¢ alonc (all other coordinates hekd flixed)
Q@ dqx is equal to the work done by all driving nonconservative forces* acting
on the system. As explained in the beginning of the chapter, in this study we
neglect the perturbing effect of the solar radiation. In addition we concentrate
on the cases where aerodynamic and electrodynamic perturbations are negligible,
and we do not plan to employ any thruster for controlling the motion. Therelore,
there are no external driving forces. However, there are internal driving forces,
tensions inside the tethers. The tension forces will petform worl when virtual
displacements occur in length degrees of fiecdom (644's), but they do not per-
form work when the system undergoes virtual displacements in angular degrees
of freedom (80,’s and é¢’s). Therefore the Qg ’s and (g, s are zero and we also
do not plan to impose any constraints on these degiees of freedom, e the RHS

of the 0,'s and ¢i’s equations, the Egs. 2.42 and 2.43, arc zc10

2or possibly driving conservative forces that are not taken into account i potential energy

at the LHS of the equation.
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For a virtual displacement in &, k¥ = 1,2,...,N — 1, the work performed
is equal to — T} 8¢,, where T, represents the magnitude of the tension force in
the k** tether (T:). The minus sign indicates that the tension force acts in the

opposite direction of a positive 6, (increase in length). Thus one obtains

Qu = -Tr , k=1,2,...,N—1 . (2.49)

One should notice a special case, where the lengths of some or all of the
tethers are given as specified functions of time, ¢x = £;(t) (this includes the case
of a constant length). The length corresponding to each of these tethers will
not be a generalized coordinate anymore and the equations ¢, = () will be
constraint equations. The tensions in these tethers will not be a driving force
anymore, but a constraint force [32]. @, will be zero, but tension will appear in
the RHS with the same form as before, —T;. This time the appearance of the
tension will be through the term Y, Algf: as the constraint force. Eq. 2.44
will not describe the motion of the system anymore, but will be used to find the
necessary constraint force, the tension force. Therefore, the equations of motion

for a multi-body tethered satellite system under consideration are

N-1

Y Gi bl Fp, =0 (2.50)
1=1
N-1
Yo Gu bl Fy, =0 k=1,2,...,N-1 (2.51)
=1
N-1
Y. Gu Fy, =-Ti/m . (2.52)
1=x]

Now after obtaining the equations of motion we will present a brief explana-

tion of the computer code that is used for numerical solution of these equations.
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2.5 The Computer Code

Based on the equations of motion presented in Egs. 2.50-2.52, together with
relations 2.5, 2.10 and 2.45-2.48, a simulation code is developed for the general
case with the possibility of having N number of bodies. The code is in FORTRAN
language. The equations are all of the second order; hence, each of them is
changed to two first order equations. Then with N —1 tethers and 3 second order
equations for each tether, there will be altogether 6(/V — 1) first order nonlinear,
coupled, ordinary differential equations. These are solved using the IMSL library.
Our problem is an initial-value problem, therefore we choose the subroutine that

uses the Bulirsch-Stoer extrapolation method3.

This method is efficient for nonstiff problems where the accuracy require-
ments are high and/or the derivative evaluations are inexpensive, which is our
case. The subroutine (DIVPBS, D indicates that the routine is double preci-
sion) keeps an estimated global error proportional to a user-specified tolerance.
It uses rational functional extrapolation and is based on the midpoint rule in
a slightly modified form [33]. The algorithm is described in detail by Bulirsch

and Stoer [34] and was translated into FORTRAN by Clark [35]; it was further
modified by Fox [36].

The program is debugged and its correctness is justified, by comparing its
outputs for the small angles with the results of approximate analytical solutions,
which are valid only for small angles. These test cases include the pure in-plane
and out-of-plane motions for the small, with a specified length rate, exponential
or linear, for two-body and three-body systems. For cach case the values for the
angles, the 1°* and 2™ derivatives of the angles and the tension in the tether (or

tethers) are compared. Naturally the initial values for the angles are chosen to

3See the “MATH/LIBRARY, FORTRAN Subroutines for Mathematical Applications ™ man-
ual from IMSL, Inc., Version 1 0, Apnl 1987.

33




be zero or very small, and they are allowed to increase up to a certain value that
keeps the smallness of the problem valid. In the final version of the program there
is good agreement between the numerical and approximate analytical results up to
angles of the order of 20° for two-body examples. This is a relatively large value
and gives us reasonable confidence in the code. In three-body systems, where
the accumulation of difference between the approximate analytical and numerical
solutions is much faster, this value is about 8.5, which is still in the upper limits
of what one usually considers as small angle. In addition, the program was run for
some cases available in the literature and comparison of the results was performed

and complete agreement was obtained.
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Chapter 3

The Liapunov Approach

3.1 Introduction

As we will see shortly, an uncontrolled retrieval motion is not stable. A control
scheme can be considered successful only if it can lead to a stable retrieval motion.
Because of the advantages of the reel rate control scheme, mentioned in Chapter 1,
here we concentrate on this method of control. Normally the first ideas of a control
law are obtained from an approximate analytical method, then the numerical
solution of the exact equations are carried out for verification and possible trial
and error type modifications. In this chapter the aim is to use Liapunov’s direct,
or second method for this purpose. The first method of Liapunov is based on the
linearization of the system. On the contrary the second method is applicable to
the stability in the large motion and it is a very powerful method, but as will be

discussed in this chapter, it is a rather difficult and tricky method to apply.

There are countless number of references available on the general theory
of the Liapunov’s direct method, among which Reference [37] is widely used.

The application of the method to the space systems has been extensive in the
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past. As far as spacecraft attitude cortrol is concerned, in 1968 Mortenson [38]
applied the method for attitude control of an arbitrary rigid body. Since then
many investigators have used this method for analyzing the control problems
associated with the spacecraft attitude maneuvers, among which we can mention
References [39]—[45]. Fujii and Ishijima [46] used the method for controlling the
deployment and retrieval of a Shuttle-based two-body tethered system. Recently,
Vadali and Kim [47] used a Liapunov function based on the integrals of motion
to perform a rather broader and more complete study on the control of two-
body tethered systems. They developed tension control laws as well as various
combinations of tension control, reel rate control and thruster control laws. As
will be seen in this chapter, the proposed reel rate law have certain weaknesses

to be employed unaided and these weaknesses must be removed.

One of the main objectives of this thesis is to develop a reel rate control
law for stabilizing the retrieval of a multi-body tethered satellite system. Since
the principles are the same for two-body and multi-body systems, normally the
primary developments should be done on the simpler case, i.e., two-body systems,
and the outcomes be extended to multi-body systems. The method of formulation
expressed in Chapter 2 makes this extension very easy. This is specially so because
of representing the equations of motion, Eqs. 2.50-2.52, in the form of summations

over the entire set of tethers (or bodies in the Gi,’s) of the system.

3.2 Comments on the Effects of Reel Rate on
the Motion

The general form of the equations of motion for a multi-body tethered system
was presented in Egs. 2.50-2.52 together with relations 2.5, 2.10 and 2.45-2.48.

These equations for two-body systems take the form of
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6 + 2 [([/(’) — ¢tan ¢3] (0 +9)+32%cos0 sinf =0 , (3.1)
¢ + 2£/0¢+ [(0 + Q)% + 307 cos? 0] cos @ sino =0 (42)

{ - @[432 + (0 +9)% cos? ¢ + 30% cos® ¢ cos?0 — Q"’] ==T/M | (3.3)

where M = m,; m,/(m; + m;) and it has been assumed that the orbit is circulan
with an orbital rate Q (2 is set to zero). It is convenient to define a nondimen-
sional time 7 = §¢. Since the orbit is circular, 7 is nothing but the tiue anomaly.

If prime denotes differentiation with respect to 7, then Egs. 3.1- 3.3 transform to

0" +2[{(€)€) - tan ) (0'+ 1) +3cos 0 sinl =0 (3.1
¢"+200/0) ¢ + {(0' +1)% + 3cos® 0] cos¢ sing =0 (3.5)
- [¢'2 + (0 +1)cos’ ¢+ 3 cos’ ¢ costl— 1| = -1 . (30

where T = T/ (M { 9?). Here £'/¢, is not exactly the nondimensional reel rate
since £ is varying with time, but it can be considered as some sort of an indicato

of the nondimensional ree] rate.

By examining these equations, one can get some genceral ideas. Among the
most relevant to our study is that the behaviour of both in-plane and out-of- plane
rotations depends to a great extent on {'/{. Normally 0' and &' are much sinaller
than 1, thus (1 + 0') is much larger than ¢’. This means that the effect of £/ on
the in-plane motion, 0, is considerably higher than its cffect on the ont-of- plane

motion, ¢.

One of the major eflects of the ¢/€ on the hbrational motion is 1ts differing

role during the deployment and retrieval. In the 0 and ¢ equations, ('€ appears
37




in the coefficients of @' and ¢', respectively. Consider the cases of uncontrolled de-
ployment and retrieval, i.e. having specific variations of length with time without
a feedback control system. The specified variation of length must be somehow
imposed by the reeling system, but the hardware design of the problem is not
of interest to this thesis. For deployment, ¢ /€ is positive, and it will act as a
damping factor; thus it damps out the motion of 8 and ¢ and stabilizes the mo-
tion. For retricval €' /¢ is negative, then it will not act as a damping factor; on

the contrary, it will add energy to the system and it has a destabilizing effect.

In other words, the deployment can be performed without a feedback control
system, but we do not expect a possible retrieval without a feedback control
system. Figs. 3.1 and 3.2 show the numerical simulation results for uncontiolled
exponential retrieval (/€ = —c) for two different values of e¢. They reveal that
in-plane angle grows dramatically fast. Hlowever, in this very short period of time
one can hardly feel any growth in the out-of-plane angle. ¢'/{ destabilizes the iu-
plane motion much faster; this is in accordance with the previously mentioned
fact that '/ affects the in-plane libration with a much higher degicee than out-

of-plane motion.

Therefore 1etrieval is the aitical phase of the motion and that 1s why we
concentrate in this thesis on controlling the retrieval phase. As was discussed
in the introductory Chapter, the thruster and offset contiol laws have difficulty
in implementation and among the tension and reel rate control laws we would
prefer reel rate laws for controlling the librational motion. The presence of a
recling system is inevitable in a tethered satellite system, thus by designing a
reel rate control law one do not add that much of the hardware to the system for

controlling librational motion.

Since £'/{ affects the in-plane motion with a much higher degree, it is ex-
pected that controlling the in-plane motion solely by a reel rate law (i.e., by
varying {'/() will be remarkably simpler than the out-of-plane motion. This is
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very evident in the previous works on recl late (or length rate) control laws [13,
14,16,17,29]. The in-plane motion has been controlled by these laws but not
the out-of-plane motion, except in [29] where a reel rate law that contiols the
in-plane and out-of-plane librations of a two-body system at the same time, has

been presented.

Another observation that can be made from these equations is that the
coupling between ¢ and ¢ motions is a nonlinear one. If the 1cel rate law is
supposed to control the out-of-plane motion along with the in-plane motion, it
seems logical to expect a nonlinear dependence on the out-ol-plane librational

motion, in the reel rate expression.

3.3 Liapunov’s Second Method

Before expressing the stability criteria according to this method we disenss some

related terms.

For a dynamical system, the state of the system is described in terms of a
set of state variables, represented here by; x(t), zo(1), ..., rp (1) (the components
of the state vector, x). The state variables are those which determine the future
behavior of a system when its present state and excitation signals are known |13,
49). Even though not the only possible one, the generalized coordinates and theh
derivatives comprise a good candidate for the set of state variables  In tenns of
the state variables, the equations of motion are usually expressed in the lorm of

first-order diflerential equations as

i't:gt(mhx?""3xP’leQ2s--'anat) ’ 2:1"_,___,/1 . ('57)

Here p is the system’s degrees of freedom, and P = 2p, Q's aic the generalized
39




Pt

forces, and the state variables will be equalized with the generalized coordinates

and their derivatives; ¢,,¢,,.- 14,1 G- 4,

Another term that must be defined is positive (negative) definiteness of a
function. Consider a real continuous function of state variables, W(x). possess-
ing continuous first partial derivatives with respect to state variables, z, ,i =
1,2,..., P, iuside a spherical domain Dy, where h represents the radius of the
sphere i.e. : |Ix|| < h. The following definitions can be expressed for this

function [37]:

1. The function W(x) is called positive (negative) definite in the domain D,
if W(x) > 0(< 0) for all x # 0 and 1¥(0) = 0.

2. The function W (x) is called positive (negative) semudefinite in the domain
Dy if W(x) > 0(< 0). i.e. it can vanish for some x # 0 in D,. The
positive (negative) definite and semidefinite functions are also referied to

as sign-constant.

3. The function W(x) is called indefinite if it can assume both positive and

negative values in the in the domain Dy, no matter how small is the value

of h.

Now the Stability Criterion according to Liapunov’s second method is:

“If there exists a positive definite scalar function of the state variables, V(x),
whose total time derivative V(x) is negative definite or semidefinite along every
system's trajectory Eq. 3.7, then the trivial solution x = 0 1s stable. i.e. the

system is stable at the origin of the state space.”

The function V7(x) mentioned in this theorem is called Liapunor function.
This method is very powerful and has two main features: 1. The method can

examine the stability of the nonlinear systems for motion in the large. 2. It
40




can reveal the stability of the system only by utilizing the differential equations
of the system without actually solving them. On the other hand, the main dis-
advantage of this method is its complexity of applying. It requires creating a
Liapunov function which may not be always possible. Since at present there are
no established criteria for the selection of Liapunov function except for hnear
autonomous systems, Liapunov’s direct method should be regarded as more of a
philosophy of approach than a method. The fact that for a given system a propet
Liapunov function cannot be found gives no indication of the system’s instability

or stability.

3.4 Liapunov’s Approach for Tethered Satel-

lite Systems

For mechanical systems the situation is not altogether that bad. In these systems
therc are some good candidates for the Liapunov functions motion integrals o
momentum integrals such as the Jacobi integral, the Hamiltoman, etc. Here,
for tethered satellite systems we investigate the possibility of a proper Liapunov
function from the Hamiltonian. The Hamiltonian of a dynamical system is defined

as

K aL)
H= ==L , (3.8
(§ * 94, )

where K is the number of degrees of freedom, ¢,’s are the generalized coordinates,

oL
L is the system’s Lagrangian. — is called generalized momentum, and as ex-

dq,
plained in Chapter 2 it is equal to 3o where T represents the kinetic euergy of
'
the system. As discussed in the introduction of this chapter, we start with the

investigation on two-body systems.
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Eqgs. 2.23 and 2.37 represent the general expressions for the kinetic and
potential energies of multi-body tethered systems. In a two-body system they

take the form of [50]

— 1 2 ) 2 2 12 72
T = 5M{f [(6+9) cos? g+ %] +8} (3.9)
U = %A! ANk [1 — 3 cos?0 cos? (,‘)] , (3.10)

or in the nondimensional form

T 7' —_ 1 I 2 2 1?2 7 2 .

' = 5womg = 5{[(0 + 1) cos o+¢]+(l/f)} s (3.11)
: Y 1 2 2 .
U = m=§[1—3 cos“ 0 cos ¢] . (3.12)

Itom the expressions for T and U we can determine the nondimensional Hamil-

tonian, I/ = H/ (M Q2 ) as

-

l = l){ [¢'2 + 07 cos* ¢ + 3 sin’0 cos’¢é +4 sin’ o —3] + ([’/()2} . (3.13)

As was mentioned before, we believe that the Hamiltonian is a good candidate
for a Liapunov function. Therefore, we plan to use the part in the square bracket,

the part related to librational motion, in the Liapunov function.

The Liapunov function used by Vadali and Kim [47] for the case of combined

reel rate and thruster control laws was

s o
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V=0C [¢'2+0'2 cos’ ¢ + 3 sin? 0 cos® ¢ + 1 sin’ o] + -I})—‘- (A=A @3

Here ) is a nondimensional length equal to €/(,.s, whete Gy is 0 veference length
and Ay is the final value of A. As can be observed, this is intimately related
to the nondimensional Hamiltonian, but they obtained it from the integrals of
motion. It is clear that it could also be found from the Hamiltoman of the
system. For reasons to be discussed later, the reel rate law obtained from this
Liapunov function has certain weaknesses, and it must be accompanied by a

thruster controller,

Here we propose to modify the length dependence part in the Liapunov

function, to alogarithmic function in order to chminate the necessity of a thruster:

v==C_ [¢'2 + 07 cos? ¢+ 3 sin®0 cos® ¢ + 4 sin’ (,‘;] + In (/). (3 15)

It will be shown that a reel rate law which makes this function satisfy all of the
conditions for a proper Liapunov function, guaranteeing the system’s stabality,
will have a much better performance than the reel rate based on the Liapunov
function given by Eq. 3.14. Here ¢ is the final tether length and (" is a positive
constant. This function is clearly positive definite during the retnieval, since
during the retrieval stage of the motion € > £;, making the last tenm positive
with the final value of zero. Of course, the terms within the square hracket are
positive definite for all stages, with the exception of the equilibriurg value of zero

The derivative of this function with respect to the nondinnensional tine 7,0

V= C1200" cosd —20%¢ cosd si 5+ 60" sinl conl cos o

~ 6¢" sin?0 cos¢ sinp+ 2 ¢'¢” +8 ¢ sine (,o.sr,;] + (). (3 16)
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in this relation 6" and ¢" must be substituted from the equations of motion, i.e.
along the system’s trajectory. Using Eqgs. 3.4 and 3.5, after some simplification

one gets

V= —((”/2){ —144C[0 (14 0) cos? 6+ ¢ } . (3.17)

Now let us consider the following reel rate law for stabilizing the motion

["/(:c{——l-H\’ [0 +0) c052¢+¢'2]} , (3.18)

where ¢ is a positive constant and {’ /¢ = —c gives rise to an exponential retrieval.

If K is chosen as 4C, one gets

Vi= —¢ { -14K [0'(1 + 0') cos? ¢ + é'z] }2 . (3.19)

As one can see, the 1ecl rate law of the Eq. 3.18 makes V7 negative semi-definite
(since we can have V' = 0 while ¢, 0 # 0) and stabilizes the system in the sense
of Liapunov, but not asymptotically. Here I = 4C is the common constant gain

for both the pitch and roll motions.

The reel rate law proposed by Vadali and Kim [17] is

CfC=Ki(=1+4/0 + K [0 (1+0) cos? 6 + ¢7] (e /0O (3.20)

where K; is the retrieval constant, and K, is the control gain. The reference
length, €4, is chosen as the initial tether length by them. This reel rate law

must be accompaunied by an additional thruster contiol law
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F=—Ks({/lef) o (3.21)

The difficulty with the control law given by Eq. 3.20 is the presence of the factor
(£,e1/€)?, which increases to as high as 10® (for an example with beey = £(0) =
100.0 km and £; = 10.0 m) as retrieval progresses, i.c., as length € becomes
smaller. Hence, either the gain K3 must be chosen very small, implying that there
is hardly any control (especially on out-of-plane motion) or if K, is not small,
the retrieval process becomes very slow; in fact, there may not be any retuieval
after some time. Thus, there is a need for the additional thruster control in thei

control scheme.

On the other, hand in the Liapunov function used here, ie. Eq. 3.15, the
quadratic length dependence is replaced by a logarithmic oue. This has climinated
the necessity of having the length in the denominator in the veel 1ate law, in order
to make V' negative semi-definite. Then it can extract energy from the system
to stabilize the in-plane and out-of-plane motions without the help of any out-of-

plane thruster and at the same time perform a retrieval opcration.

For a certain set of initial conditions, we have numectically simulated the
resulting motion using the proposed reel rate law (Eq. 3.18) and that using Vadali
and Kim’s reel rate law of Eq. 3.20 without the presence of thrusters (£ = 0).
The analysis is performed for a wide range of ¢, K, K;, K, (¢ = K| varying
from 0.05 to 0.6; K from 0.05 to 20, K, cquivalent to ¢ K from 0.0025 to 12).
The results show that the reel rate law proposed here can control the retrieval
motion for a wide range of ¢ and K, but the reel rate law of Eq. 3.20, alone and
without the thruster, does not lead to any acceptable retiieval because after a
short while ¢ starts to oscillate. Only one example of cach case is presented in
Figs. 3.3 and 3.4 respectively. Fig. 3.3 shows the results for ¢ = 0.34 and K= 5.0
with reel rate law of Eq. 3.18, while Fig. 3.4 presents the resulting motion for the
corresponding values of the coeflicients (K; = 0.34 and K; = 0.31 x 5.0 = 1.7j
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with reel rate of Eq. 3.20. (Fig. 3.4 c) shows the oscillations in the magnitude of

the tether length while one employs the reel rate law of Eq. 3.20.

Comparing the resulting motion for the reel rate law given by Eq. 3.18
(Fig. 3.3) with thc uncontrolled exponential retrievals (Figs. 3.1 and 3.2), one can
notice the remarkable improvement. The reel rate law performs an acceptable
retrieval; however, it still has to be improved since the retrieval time is rather
high. The reel rate presented in Eq. 3.18 satisfies the presence of the nonlinear
dependence on the out-of-plane motion in the control law. However, there is
also a quadratic, nonlinear term from the in-plane motion. If a linear in-plane
feedback is suflicient for controlling the motion, it is definitely better to replace
the linear plus quadratic in-plane terms with just a linear one. This is becausc
a quadratic term is always positive and will decrease the average value of the
retrieving rate. Furthermore, the possibility of decreasing the out-of-plane limit
cycle amplitude should be examined. In the present reel ratc law, the in-plane aud
out-of-plane motions have a common control gain. The out-of-plane amplitude
can be decicased by assigning different control gains to the in-plane and out-of-

plane feedbacks, and choosing a higher value for out-of-planc gain

In the next chapter we will investigate the effectiveness of the two new 1ecl
rate laws which are in conformity with the above-mentioned corrective points.
For this purpose, we will use the energy dissipation approach together with the
averaging method. The reason we are choosing another approach for verifying the
effectiveness of the succeeding recl rate laws is the difficulty involved in finding
a proper Liapunov frnction. Since the reel rate laws for the two-body systems
presented in the next chapter are superior to the present one, only the former are

extended to multi-body systems.
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Chapter 4

The Energy Dissipation

Approach and Averaging
Method

4.1 Introduction

As mentioned in the previous chapter, it scems necessary to develop a 1eel rate law
for the retrieval phase superior to the one obtained from the Liapunov approach.
The averaging method and the so-called encigy dissipation approach are chosen in
this chapter for analyzing the performance of the alternate 1cel rate laws. Among
the available literature on tethered satellites, the energy dissipation approach has
been used by Xu [29] and Lorenzini [14]. The former was concentiated on two-
body systems while the latter studied the in-plane motion of three-hody systems.
Here we are after finding reel rate laws to stabilize the in-planc as well as out-of-

plane librations, for multi-body systems.

In contrast to the previous chapter where we considered the motion in the
it
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large through the powerful Liapunov’s direct method, in this chapter we perform
approximatc analyses based on the equations for small motion. The averaging
method hasically presents a linearized model to find an approximate response for
a nonlincar systern. On the other hand, even though the concept of the energy
dissipation approach holds for nonlinear equations as well, this approach will be
also applied to a linearized approximate model. The reason for not using the
nonlinear exact equations of motion with the energy dissipation approach is that
the mathematics involved in the analysis would be too complicated to give any
information about an appropriate reel rate law with a reasonable effort. It should
also be noticed that when the nonlinear equations are used, the analysis may get
more tedious and time consuming than for the Liapunov appioach. Then the

whole point of switching from the Liapunov approach to another one will be lost.

Therefore, the procedure which will be followed here is that the analytical
part will be based on the simplificu anearized equations, but the numerical sim-
ulation, which is the final verification of the control law, will be based an the
exact nonlincar equations. For the reasons already mentioned in this thesis, this
chapter starts with developing satisfactory control laws for two-body systems and
then they will be extended to multi-body systems. The averaging metliod is a
well established method and is discussed in any t <tbook concerning the dynam-
ical analysis of nonlinear systems. But the ideas behind the energy dissipation

approach must be explained here; this is the subject of the next section.

4.2 Energy Dissipation Approach for Two-body
Tethered Satellite Systems

The nondimensional equations for the motion in the large of a two-body tethered

system, with the assumptions made in this thesis, were presented in Egs. 3.4--3.6.
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With the usual approximation of the trigonometric functions for small angles, the

equations governing small in-plane and out-of-plane motions can be written as

@ 2(£'/6)(0'+1)+30 =0 (4.1)
¢ 200104 + 46 =0 . (1.2)

Because of the dependence of the final steady state of the retrieval process
on the nature of the reel rate law, one would have to specify first the nominal
form of the reel rate law that one is interested in. Here we concentrate on the

reel rate laws that have a nominal exponential variation, i.e.,

l/t=—c+f(6,0,4,9") , (4.3)

where ¢ is a positive constant so that /¢ = —c gives rise to an exponential
retrieval. The function f contains the necessary feedback for stabilizing the in-
plane and out-of-plane librations. If the control law is a successful one, it would
guide the system towards a stable configuration with constant in-plane and out-of-
plane equilibrium angles. For finding these constant values, which will be denoted
here by 8. and ¢., one should set #',60",4', " equal to zero in Egs. 4.1 and 4.2.
At this steady state, the feedback f normally vanishes, because it is a function

of the deviation from this state. Thus 8. and ¢, are given by

2A-c)+ 30, = 0 = 0.=2¢/3 or c¢c=(3/2)0. (4.4)

4 = 0 =>¢=0 . (4.5)

If nonlinearities are taken into account, then the terminal phase of the motion

consists of limit-cycle oscillations about 0, and ¢.. In this case, 0, and ¢, represent,
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approximations for the average value of the pitch and roll angles over a period of

oscillation.

Substitution of Eq. 4.3 into Eqgs. 4.1 and 4.2 yields

0" — 2c0' +2f(6' +1)+ (30 —2¢) =0 , (4.6)

¢" — 2cd' +2fd +46 =0 . (4.7)

These equations of motion can be re-written as

6"+ 3(0-0,) =20 —-2f(6' +1) , (4.8)
"+ 4d =2(c— f)¢' . (4.9)

The reason for this rearrangement lies in the role of each term according to energy
considerations. Each term in Egs. 4.8 and 4.9 represents a nondimensional force
acting on the system, including the inertial forces. Multiplication of Egs. 4.8
and 4.9 by ¢’ and ¢’ respectively and integration with respect to 7 give us an
indication of what happens to the total energy (kinetic and potential) of the

system due to retrieval and control actions, as discussed below. We have

/T[()"+3(0—0¢)]0'dr = /T[2c0'—2f(0’+1)]0’dr , (4.10)
/T[o"+-1o]o'dr - /T[‘Z(c—f)o']o'dr : (4.11)

Carrying out integrations of the left-hand sides results in
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[ +30-s018 ar =[50 - 307
'3 3

+ [50-002-50.-0.2] . (1.12)

[+ 4q8ar = [Z@r-360]+pe-26] . @)

We now define the following two energy norms for the in-plane and out-of-

plane librations

By=z [0 +3(0-0.)] , (4.14)

D]

E,=z[(8) +4¢%] . (4.15)

N | —

Then one can notice that the integrals of the LHS’s of the Eqgs. 4.10 and 4.11, car-
ried out in Egs. 4.12 and 4.13, represent the changes in these norms. These norms
may be interpreted as the total energy (strictly speaking, Hamiltonian) related
to small § and ¢ motions, respectively. This can be understood by examining
Egs. 3.11 and 3.12 from Chapter 3, expressions for the kinetic and gravitational
potential energy of a two-body tethered satellite system. For small angle motion,
cos? @ and cos® ¢ can be replaced by (1 — 6%) and (1 — ¢?), respectively. Then
neglecting the third and higher order terms, the expressions for nondimensional

kinetic and potential energies change to

T=o [P 420 +1- g +4%+2/07] (1.16)

U= -;- [-2+30 +3¢7] , (4.17)

while the total energy and Hamiltonian are equal to
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( T+0 = % [ 4302 420 + ¢* 28 14 (€/07] | (418)
H=T,-T,4+4U0 = :‘12— [0’2 +30% + ¢ + 44° - 3] + contribution of(¢'/£)*
(4.19)

It can be seen that the norms Ey and E4 do not quite represent the total energy
related to 0 and ¢. For § motion there is an extra 6’ term and instead of (6 - 0.)?
there is a 6 term. For ¢ motion instead of 4¢% in E,, there is a 24? term
in total energy. In addition, in the total energy there exists a ¢'/¢ term that
usually includes feedbacks from in-plane and out-of-plane librations. In case of
the Hamiltonian the situation is somewhat different. The deviation is only due to
the 0, and ¢'/¢ terms. But for a case where the length is constant (e.g. a station
keeping stage but not for the retrieval that is the case of our study) 6, is also

zero hence, Ey and Fy represent exactly the parts of the Hamiltonian related to

| ( 0 and ¢ motions.

As an outcome of the above discussions, one can state that the Ey and F
are two energy-like norms that are related to, but not equal to either the total
cnergy or the Hamiltonian of the system. Noticing Eqs. 4.12-4.15, Eqgs. 4.10

and 4.11 can be rewritten as

Ey—Ey = 2 / [e@) - 50 +0)] dr (4.20)
Bo—Es = 2 [0V = 00 ar=2 [ (-£/D)(#) dr . (421)

Considering these equations, we interpret the stability criterion for a retrieval

with a nominal exponential reel rate law, as follows.

The desired terminal state for a retrieval process is the quasi-equilibrium
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configuration. For a retrieval with a nominal exponential reel rate law, as dis-
cussed before, this configuration is when tether forms a straight line inside the
plane of motion with a constant inclination with respect to the local vertical'.
This is the condition where 6§ = 8, and ¢ = ¢ = ¢' = 0. Since Ey and E, are
positive semi-definite functions, if the control system ensures that they approach
zero, the two terms defining them in Eqs. 4.14 and 4.15 should go towards zero.
This brings the system to the desired terminal state for a retrieval with a nominal
exponential reel rate law. Hence, a reel rate control law will be a successful one
and will guaranty the stability of the in-plane and out-of-plane librations, only if
it makes the right-hand sides (RHS’s) of the Egs. 4.20 and 4.21 negative definite;

or zero, in the case of marginal stability.

Often one supposes that for having a retrieval, the reel rate should be
negative throughout the motion, i.e., £ should decrease monotonically; but this

is not an obligatory condition. In fact, if the RHS of the Eq. 4.21 is to be made

negative semi-definite, i.e.,

([ero@rar) <o, (4.22)

the reel rate must indispensably be positive in some intervals during the retrieval
process. In other words, some of the reel rate effort goes for controlling the libra-
tional motion. This effort is apparently from the second term in the square bracket
in Eq. 4.21, the function f, because the integral of the first term, [ c(¢')*dr, is
always positive and its effect is to increase the system’s energy. Obviously the

necessary condition for having retrieval is

IThis 1s true, for the cases like ours, in the absence of aerodynamic forces and other probable
disturbing forces hke solar radiation pressure. If the tethers are long and the system 1s inside
the atmosphertc altitudes then the aerodynamic drag on the tether and the bodies 15 sigmficant

Consequently the tether will not be completely straight.

53




‘,

X

(ATM7€)dT> <0 . (4.23)

The two inequalities 4.22 and 4.23 must be satisfied together and this is feasibleif
the time variation of f be chosen in a way that the intervals where {'/{ is positive

be coincident with the periods where the absolute value of ¢’ is relatively large.

On the other hand, in selecting the time variation of f, one should consider

making the RHS of Eq. 4.20 negative as well, or

/quyﬁfw0+wﬂdr < 0 . (4.24)

In the above expression also, the integrand is not always negative and depending
on the magnitudes and signs of ¢’ and f, it changes its sign. In other words, this
condition is not naturally satisfied and the function f should be so chosen as to

make tlos integral negative too, even though the integrand is not always negative.

If one compares this method with the one discussed in the last chapter, it
can be seen that the energy norms Ey and E, here are analogous to the Liapunoy
function V. The E’s and V' are all positive semi-definite functions; however,
E’s are not necessarily made to be negative semi-definite for stabilization, unlike
V. Although it is not a necessary condition for stability of the system, it is
possible to make E’s negative semi-definite too, by choosing a proper variation
of £ with time. In the following sections we first inttoduce two new recl rate
laws for two-body systems and we will verify their effectiveness by the stability
criterion explained in this section and by employing the averaging method. Their
performances will be compared with the reel rate law introduced in Chapter 3
based on the Liapunov method. Then the new reel rate laws will be extended to

multi-body systems.
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4.3 Reel Rate Law with Quadratic Out-of-plane
Feedback

At the end of Chapter 3 we made two remarks about the reel rate of Eq. 3.18
obtained from the Liapunov approach. First of all, there was a nonlinearity in-
volved in the in-plane part of the reel rate that does not scem essential. Secoudly
the in-plane and out-of-plane librations have a commen control gain. Siuce the
amplitude of only the out-of-plane motion was rather high, one expects that by
having separate control gains for in-plane and out-of-plane librations and choos
ing a larger out-of-plane control gain, one can overcome this problem. Using
approximate approaches, we would investigate the performance of any desitable
reel rate in this chapter analyticaly. The following simpler reel rate law is in

conformity with the two mentioned remarks

(/= c[ — 14 K0 + 1\},(:';"’] . (1.29)

that is, there is a linear feedback of the pitch rate and quadiatic feedback of the
roll rate. Each term has a distinct objective; as discussed before, the linst ternm
is for generating an exponential retrieval and ¢ represents the magnitude of this
exponent. The second term is for stabilizing the in-plane librations where Ky is
the in-plane gain, and the third term has the same role for out-of-plane hibrations
with Ky indicating the out-of-plane gain. Even though the equations for small
motion of § and ¢, Egs. 4.1 and 4.2, are explicitly independent, they are coupled
through the (€'/£) term. The feedback for each motion automatically alfects the
other degree of freedom. Consequently an exact knowledge of the performance
of the reel rate control law can be obtained only by numerical sumulation, which
would be done later. For being able to investigate analytically the effectiveness

of this reel rate law, one should consider the in-plane and out-of-plane motions

ot
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separately. So if we first consider only a purely in-plane motion the reel rate will

be

¢/e 4-1+Kw1 , (4.26)

or f = cKyt

As discussed before, one way of analyzing the performance of this in-plane
reel rate is by studying the sign of the integral of the RHS of Eq. 4.20 over
the entire motion. The stability criterion according to the energy dissipation
approach states that the in-plane motion is stable if this integral is negative

semi-definite. The RHS of 4.20 with the reel rate of Eq. 4.26 is
%[W-MW—mWMT. (4.27)

The integral here is over the retrieval time. The retrieval time will depend on
the values of ¢ and Kj. Since 8 is always positive, the integral of the first term
will be negative if we have Ky > 1. The second term is sign-indefinite, but one
expects a quasi-harmonic response (The existence of a quasi-harmonic response
will be confirmed shortly.) for the system. Hence, the integral of the second term
over a period of oscillation vanishes. In any case, it is a third order term and is

small. Consequently, the energy dissipation approach predicts that the in-plane

motion is stable for K3 > 1.

For confirming the prediction of this stability criterion we perform a direct
analysis by finding the response of the system through an approximate analytical

method. Replacing the (¢'/€) from Eq. 4.26 in the equation of the in-plane motion

for the small, Eq. 4.8, vields




0"+ 3(8 —0,) = 2c0' — 2(c Ks0')(0 +1) . (4.28)

By defining 6 = (8 — 6,), one can represent the equation of in-plane motion in

the alternate form

0" + 30 =20 - 2c K00 +1) . (4.29)

This is a nonlinear equation with a small nonlinearity if ¢ is small. It falls into

the class of equations whose general form is

'+ Wiy=¢€g(yy) - (4.30)

The solution to this equation can be written as

y = Acos(wr + @) = Acosf . (4.31)

Equation 4.30, with a small degree of nonlinearity, can be solved approximately
by finding a linear equivalent to it. The two well-known analytical methods for
nonlinear systems, variation of parameters and harmonic balance, reach to the
same first order approximation for these kinds of systems [51]. This first order

approximation is

A, = L /2" in 3 df (4.32)
av. Qrw o € g sin ) o

1 2
a'),, = —”muA/ € gcosfdf . (4.33)

Using relations 4.32 and 4.33 to find A and a in Eq. 4.31 is sometimes

7
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referred to as the averaging method, or an approximation of Krylov-Bogoliubov

(KB) type. Applying these equations to Eq. 4.29, one gets

y = 0= Acos(wr +a) , w=3 ,

2f — 2c Kol ) +1) = =20 [(Ky — 1) + Ko ]

¢y

Then
c 2” - . 9 .
A = — [(1\’0 — 1)(—Awsin 3) + 1\0(-—/1»'3111[3)‘] sin3d,3
w Jo
(4.31)
2
o) = = [ [(Ko = 1)(=Awsing) + Ko(=Awsin 8)?] cos 8 d3
W o
which give rise to
A’)au. = _CA(I\,G - 1) )
(4.35)
O’)av = 0

One can sce that the behaviour of a is like the lincar systems i.e. it is coustant.
Furthermote, if we consider A’),, as A’, we get an exponential variation for the

amplitude.

d A ,
o = —cA(Kg — 1)
or A = AjeKe-l)m (4.36)

This shows that the in-plane motion will be stable if Ky > 1.0 and the higher

the value of Ky, the more stable the & motion. Finding the system’s response
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through the averaging method confirmed the prediction of the stability criterion

and existence of the quasi-harmonic response.

These results are based on two approximations, firstly that the motion
is considered to be small and, secondly by applying an equivalent linearization
method which approximates our nonlinear system, a system with a small degree
of nonlinearity. Hence, these results have to be verified by numerical simulation
of the motion in the large. The equation of the pure in-plane motion in the large
can be obtained by eliminating out-of-plane motion from the # equation, Eq. 3.4

and employing the reel rate law of Eq. 4.26. The resulting equation of motion is

0" + 2¢c[-1+ Kp6')(6' +1) +3cosfd sind =0 . (4.37)

The results of the numerical solution to this equation, for four different sets of
parameters are shown in Figs. 4.1-4.4. As we can see the results are completely
in agreement with the prediction of the approximate analytical method. For
Ky < 1.0, the in-plane motion is unstable. It has neutral stability in case of
Ky = 1.0 and for Ky > 1.0 it is stable, approaching the equilibrium position
6. = 2¢/3 rad. It can be seen also that when we choose very high values for Kj,
the motion is overdamped i.e. the control system dissipate the system’s energy

with such a high rate that there is no oscillation about the equilibrium situation.

Now we concentrate on the out-of-plane part of this control law. This time

we consider a pure out-of-plane motion, then the control law would be

el = c[—1+1(¢¢'2] , (4.38)
or f = CK¢¢’2

1)

Again the stability criterion according to energy dissipation approach ex-
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presses that the out-of-plane motion is stable if the integral in RHS of Eq. 4.21 is
negative semi-definite, or zero in case of marginal stability. The RHS of Eq. 4.21
with the reel rate of Eq. 4.38 is

% / (1- K, ¢7) $2dr . (4.39)

A clear understanding of this integral is not possible without having the response
of the system. Therefore we first obtain the approximate response of the system

through the averaging method and then will study this integral.

Equation 4.9 with the reel rate of Eq. 4.38 becomes

' 46 = 2c¢' — 2 K4¢%¢' . (4.40)

We investigate the performance of the out-of-plane part with the same approxi-
mate analytical method used for the in-plane part, i.e., the method for a nonlinear
system with a smail degree of nonlinearity. Comparing this equation with Eq. 4.30

one gets; w = 2, € g =2c¢'(1 — K44?). Then Eqgs. 4.32 and 4.33 yield

A, cA(1-3AK,, ,

i

(4.41)

a), =0,
which show that, similar to the case of in-plane motion, the phase angle, a, is
constant. Examining the expression for A’) _ , one notices that with the quadratic

reel rate law, the out-of-plane motion can experience a limit cycle oscillation. This

is because the A’),, will be zero for a particular amplitude:
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/ 1
A’)w_=0 = A)hm.= m . (4.42)

This is an acceptable stable motion, even though it has neutral stability. Numeri-
cal simulation must verify the existence of the limit cycle oscillation. Similarly to
the in-plane motion, the numerical solution could be based on pure out-of-plane
motion in the large. This equation can be found by eliminating the 8 related

terms in the Eq. 3.5 and employing the reel rate law given by of Eq. 1.338:

@"-- 26[ -1+ K¢¢'2] ¢ +4cosg sing=0 . (4.43)

Numerical simulation of this equation for the case of ¢ =10.5and Ky = 27.0is
presented in the Fig. 4.5. The approximate analytical method predicts the value

of A)ym. = /5055 = 0.111rad. = 6.367° for the amplitude of the limit cycle
and the exact numerical solution yields 6.52° for this value. This is very good

agreement with a discrepancy of 2%.

Thus, according to the averaging method, the steady state of the out-of-

plane motion is a limit cycle oscillation with

¢ = —Awsin(wt +a) = —

3K sin(27) . (4.44)

v

Now we go back to the integral of Eq. 4.39 which shows the stability characteristics
of the out-of-plane motion according to the energy dissipation approach. For the
limit cycle oscillation phase with a constant amplitude, we expect this integral

to be zero over a period of ¢ oscillations. Carrying it out for ¢’ appearing in

Eq. 4.44 results in

87 " 8 64
61

8¢ T sindT] 473 sindt sin871y™*"
3K¢{[5‘" 8 ]“5[ + ]} =0 (4.45)
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here, 7, can be any instant in oscillatory phase of the motion and, since w is
equal to 2, the period is equal to 7. Since the integral vanishes over a period of

oscillation, the stability criterion also agree with the existence of neutral stability.

At this stage, the performance of the complete coupled reel rate law of
Eq. 4.25 with quadratic out-of-plane feedback will be compared with the reel rate
law of Eq. 3.18, obtained from the Liapunov approach in Chapter 3. We base our
final judgement on the numerical simulation of Eqs. 3.4-3.6, the coupled nonlinear
cquattons of motion. Figure 3.3 shows the resulting motion for the reel rate
obtained from the Liapunov approach and Fig. 4.6 represents the corresponding
graphs for the reel rate of Eq. 4.25, with the same initial conditions as for Fig. 3.3
and ¢ = 0.5, Ky = 2.0, K4 = 9.0. Comparing the two sets, one can observe the
improvermnent in the retrieval time and the amplitude of the out-of-plane limit
cycle oscillations. The variations of length and reel rate are basically similar for
the two cases, and only because of the difference in the retrieval time, the z-axis

scales are different.

It should be pointed out that the gains chosen for the two cases are not the
same. For each control law, the performance of the system depends on the values
of the control gains. The set of gains chosen for the reel rate law obtained from the
Liapunov approach gives essentially the most acceptable performance with this
reel rate law. Any effort to decrease retrieval time (or limit cycle amplitude) from
the case of Fig. 3.3, i.e. by changing the value of ¢ or K, results in an increase
in the limit cycle amplitude (or retrieval time). On the other hand, the set of
control gains used with the reel rate of Eq. 4.25 is just u typical one; nevertheless,
it gives a better performance than the best resulting motion with the reel rate
obtained from the Liapunov approach. Therefore, it is certain that tie reel rate
represented by Eq. 4.25 with quadratic out-of-plane feedback and linear in-plane

feedback is superior to the one obtained from the Liapunov approach.

Another point that can be emphasized about these results is about the in-
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plane motion. By comparing the variation of 6 obtained from the simulation of
nonlinear coupled equations of motion in Fig. 4.6 to the variation of 0 in case of
a pure in-plane motion, as in Figs. 4.3 and 4.4, one can see two major differences.
Firstly, there is a limit cycle oscillation for 4 that did not exist in pure in-plane

motion; secondly, instead of %c, 0 approaches a much smaller equilibriumn value.

These are the effects of out-of-plane libration on in-plane libration. For studying
the first effect, namely the induction of oscillations from ¢ to 0, we consider the

coupled nonlinear 8-equation, Eq. 3.4, with reel rate of Eq. 4.25

0" +2 [c(~1+ Ko’ + K4¢™) — ¢'tang] (9 + 1) +3cosf sind =0 . (4.46)

The out-of-plane motion is affecting the in-plane motion through the ¢’ tan ¢ and
K4¢'* terms. These terms should go to the RHS as forcing {unctions. The prod-
ucts of these terms with &' are of third orde: and negligible. If one approximates
tan ¢ by ¢, then the forcing terms are ¢’¢ and ¢?. Since the value of 8 is small
in the oscillatory phase of the motion, 3cos8 sin @ can be replacad by 36. Thus

Eq. 4.46 becomes

0" + 2[c(=1+ Kef)] (0 +1) +30 =2(¢'¢ — cIC40") . (4.47)

After a short transient period in the beginning, the ¢ motion is an oscillatory
one with constant amplitude that can be formulated as ¢ = Agsinwgr, and
its derivative will be ¢ = Ajwscoswyr . These relations reveal that the
forcing functions in Eq. 4.47 are oscillatory, in the form of sin2w,7 (for ¢’¢) and
cos 2wyt (for ¢%). As already seen in Fig. 4.6(a), Eq. 4.47 with these forcing

functions results a limit cycle oscillation in § that can be formulated as

6=29 + Ap sin(wgr + ao) . (448)
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Since, in an oscillatory motion with harmonic excitation, after a very short tran-
sient interval, the frequency of the forcing function is the dominant one, here the

frequency of the # limit cycle oscillations is equal to the forcing frequency

Wy = 2LU¢ . (449)

With the form of Eq. 4.48, one can also investigate the second main effect
of the ¢ motion on the @ motion. The second effect was the decrease of the final
approach value of 8. This approach value is the average of 8 in the final oscillatory
phase, called 0 in this formulation and shown in Fig. 4.6(a). For finding the value

of 0, we average Eq. 4.47 over a period of ¢

T+ 2c|~1+ (Ko~ 1) T + Ky 07) +30 = 2( 6 — cK, 67) . (4.50)

Since the derivatives of # and ¢ have as well as ¢ itself are harmonic, 6", & and

#'d are zero, thus

0= -g—c [1 - K, 07 - K, F} , (4.51)

i.e. the approach value of 8 is decreased from :?-,'c by two terms: Ky 87 and K, ¢7.
The later usually has larger values and is the direct coupling effect of the out-of-
plane motion on in-plane one. The former is the indirect effect of out-of-plane
motion, since it is the effect of f-oscillations on the average value of # and this
oscillatory motion is induced by the out-of-plane oscillations. The averages of 6

and ¢ over a period of # are

A

wi
2

-3 &)

7 =

=24j W} , =22 . (4.52)

64




e

the exact numerical values for the case of Fig. 4.6 are as follows:

c=05 =>3c=19.1" , Keg=20 , Ky =9.0,

we = 1.9 (approximate pure out-of-plane motion had predicted the value of 2.0)
9?7 =0.024 , K307 =0.048 7% =0.094 K46 = 0.846

then the predicted value for 8 from Eq. 4.51 is  19.1 [1 —0.048 — 0.816] =
2.02°, and the graph shows the value of 2.74 for 6. By comparing these values,

the improvement from the previous predicted value by the pure in-plane motion

analysis, 19.1°, is evident.

The resulting motion with the reel rate law of Eq. 4.25 for another set of
parameters, with a higher out-of-plane gain, Ky = 27.0, and a lower retrieval
constant, ¢ = 0.3, is shown in Fig. 4.7. In this figure, in addition to ¢ and
#, we present variations of the tether tension and the transferred mechanical
power, which is equal to the product of the absolute value of the reel rate and
tension. Checking the tension insures us that the tether does not go slack, and

concentrating on the variation of power is essential for the energy considerations.

In summary, it is concluded in this section that a reel rate with linear in-
plane feedback and different control gains for in-plane and out-of-plane librations
has overcome the deficiencies of the reel rate law obtained from the Liapunov
approach. A linear in-plane feedback is sufficient for controlling the in-plane
motion. Then the presence of nonlinear quadratic term of the in-plane libration
is not necessary; in fact, it has a negative effect. It increases the retrieval time,
since it is always positive and decreases the average reirieval rate. In the next

section, we introduce another reel rate law, a reel rate with absolute value out-

of-plane feedback.

65




4.4 Reel Rate Law with Absolute Value
Out-of-plane Feedback

As was discussed earlier, we need a nonlinear feedback for out-of-plane motion.
It was noticed that, using an absolute value ¢’ feedback instead of quadratic, one
can also stabilize the motion with a similar behaviour. Then the reel 1ate law of

Eq. 4.25 will change to

O/ = (-[- 1+ K0+ Koo'y . (4.53)

Similarly to the previous case, a pure out-of-plane motion should be considered.

i.e., using a reel rate of

()= c[— 1+ 1\’¢|o’|] . (1.51)

ol [ =ck,¢|

The integral, corresponding to the Eq. 4.39 which shows the stability character-

istics of the system according to the energy dissipation approach. will Le

Tv$rm
QC/T (1= K, |d]) ¢?dr . (4.53)

Again it will be evaluated after finding the approximate respouse of the system:
but duc to the similarity to the quadratic roll rate feedback case, we expect that
the respouse is a limit cycle oscillation and that this integral vanishes over a

period of oscillations.

We apply the same approximate analytical method, namely the averaging
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method, for finding the response of the system. Equation 4.9 with the reel rate

- of Eq. 4.54 yields

% 40 =2’ —2c K, |84 . (156)

Comparing this equation with Eq. 4.30 one gets: w = 2,

€g=2c¢(1 — K, |¢']) ; Eqs. 4.32 and 1 33 give

1
Ay, = -Cﬂi(n-w/u\;/:;) ,

(457)
a),, =0,

which show again that the phase angle, a, is constant. In addition, one can s
that similaily to the quadratic feedback case, there is a pussibility for esistence

of limit cycle oscillations. This can happen for the amplitude of

A), =0 = il

/ =
ay )l”n 1(; I\"“‘

(158

Numerical simulation of the equation of pme out-of-plane motion in the
large must be used to verify the existence of the limit cycle oscillation. This
equation can be obtained by changing the quadratic feedback to an absolute

value in Eq. 4.43, i.e.

! ¢"+ 26[ -1+ 1(¢]¢'|]¢,' +4cosdsing =0 . (1.59)

Numerical simulation of this equation for the casc of ¢ = 0.5 and K, = (.0

is presented in the Fig. 4.8. The approximate analytical mcthod predicts the
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value of A),,. = max’;;o = 0.098 rad. = 5.62° for the amplitude of the limit cycle

and the exact numerical solution gives 5.67° for this value. This is a very good

agreement with a difference of 0.9%.

Now we carry out the integration of Eq. 4.55. The expression for ¢’ is

sin(27) . (1.60)
The integral adds up to zero? again, indicating the existence of ncutral stability.

Finally, the performance of the complete coupled reel rate law of Eq. 4.53
will be compared with the other two reel rate laws discussed before. The numeri-
cal simulation is based on the coupled nonlinear equations of motion, Eqs. 3.1-3.6.
with this reel rate law. Shown in the Figs. 4.9 and 4.10 are the results for the
same sets of parameters as Figs. 4.6 and 4.7. Comparing these graphs with the
casc of quadratic reel rate i.e. Figs. 4.6 and 4.7 shows that, for the same sct of
parameters, using the reel rate with absolute value feedback results in a smaller
out-of-plane limit cycle amplitude, but a laiger retrieval time than the one with

quadiatic feedback.

In case of Fig. 4.10, like Fig. 4.7, we included the plots of 0, ¢, tension and
power. However, in Fig. 4.9, we have included all of the six outputs: 0, o. length,
reel rate, tension, power. For the sake of completeness, we have included all six
output curves for this figure, and because of similarity, we have not presented a

complete set of output curves in the other figures.

Instead of comparing the two reel rate laws for the same set of gains, an-
other comparison can be made that perhaps gives a better understanding of the

situation. By employing the two different reel rate laws, we find two different val-

2Regarding |¢'|, since ¢’ changes sign, it is more convenient to choose the initial time 7, as

2kw where k represents an integer number

(o]
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ues for each of the three important characteristics of the motion: retrieval time,
limit cycle amplitude of ¢ and the peak value of 8. By choosing proper gain sets
we can make two out of the three of these characteristics the same, e.g | retriceval
time and out-of-plane limit cycle amplitude. Then by comparing the values for
the third characteristic, each corresponding to one of the reel rate laws, we can
compare the performance of these laws. Here, we find a set of gains for the reel
rate with quadratic roll rate feedback that makes the amplitude of the limit cycle
of ¢ and the peak value of @ equal to those for the case of Fig. 1.9. The results
are shown in Fig. 4.11. The retrieval time is less for the case of reel rate with

quadratic out-of-plane feedback.

From the plots we can see that variations in length are very similar for all
of the cases considered. This is because we are using the same initial conditions,
nominal length change (exponential), and final retrieval lengths, for all of the cases
and only a small part of the reel rate effort in each case goes to controlling the
in-plane and out-of-plane librations. This part, namely the function [ in Eq. 4.3,
distinguishes different reel rate laws. For reel rate, tension, and power, although
the general trend is similar for most of the cases, the range of variation changes
from case to case. Since we normally have chosen 6(0) = 0 and #'(0) = 0 we
get £/(0) = c £, i.e. the initial value of the reel rate changes by choosing different
values for the retrieval constant ¢. Consequently, the initial values for tension

and power will change too.

By concentrating on the figures that contain both length change and tension
variation, one can see that after a short while from the beginning of the motion,
the general trends of variation of length and tension are the same. They will reach
very small values at almost the same time. This can be explained by looking at
Eq. 3.6. This equation shows that when the system is in steady conditions, for
the small motion, one gets T= 3M Q%¢. Here the librational angles are small and

after a short period of time the time variations are not zero, but very small. Then
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this relation holds approximately.

At this point after finding acceptable reel rate laws for two-body systems,

we will try to extend them to multi-body systems.

4.5 Multi-body Systems

For a system with N number of bodies, the reel rate laws of Egs. 4.25 and 4.53, i.e.

reel rate laws with quadratic and absolute value roll rate feedback, respectively,

will be

b/t =ci -1+ Ko+ Ko 97| (4.61)
or

b/t =cl-1+ Kb+ K | 611 ], (4.62)
for 1=1,2,...N—-1.

In this thesis, numerical results are obtained for three-body systems only. Then

the reel rate laws chosen are either

¢/ =c1[——1+K9,0’1+K¢, ;2], e/t =cz[—-1+K920'2+K¢2 2|,
(4.63)

or

G/t =~ 1+ Ko+ Ko 1611 ], 6/6 = eo =14 Kunby + Koy | 63

(4.64)
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Figures 4.12 and 4.13 show two examples for the case of quadratic roll rate feed-
back, with the same sets of initial conditions and retrieval constants as the un-
controlled cases and two sets of gains. Figures.4.14 and 1.15 are similar graphs
for absolute value roll rate feedback law. A station-keeping control stage follows

the retrieval for improving the terminal response; in the station-keeping phase

the reel rate laws are as follows:

/0 = 1 (Ko, 0y + Ky, 672) o/t = cz (Ko, 0y + Ko, ¢7) . (1.65)

or

6/t =c (K 0+ Ky, | 611]) 5 6/l =y (Ko, 0+ Ky, | 43 1)
(4.66)

This stage can bring the system to a final desired configuration which is normally
an equilibrium condition with zero in-plane and out-of-plane angles. The results

reveal that the proposed reel rate laws are as equally applicable to three-body

systems as they were to two-body systems.

Without presenting the graphs the results of investigating the effectiveness
of these laws for large initial values of ¢, will be explained. This study is done
for the case of ¢,(0) = 10° with other conditions being the same as in the case of
Fig.4.14, with gains Ky, = Ky, = 2.0, K;, = Ky, = 9.0. The value of retrieval
constant, ¢, has been changed over a wide range. In quadratic roll rate feedhack
case, good performance has been observed over a wide range of ¢, while in the case
of absolute value roll rate feedback ¢ can be increased only up to 0.43, beyond

which the tethers become slack.
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4.6 Effects of the Retrieval Constant and Con-

trol Gains on the Motion

Since, when we the introduced reel rate laws for multi-body systems, we observed
behaviour similar to that of two-body systems, we base this section on two-body

systems for the sake of simplicity.

Figure 4.16 shows the variation of retrieval time, amplitudes of out-of-plane
limit cycle oscillations, the initial sharp peak of 6, and amplitudes of in-plane
limit cycle oscillations, with ¢, Ky, K4 for quadratic roll rate law. Fig. 4.17
presents similar results for absolute value roll rate law. Most of the cases are

continued until ¢ = 0.5, because for ¢ > 0.6, the tethers become slack.

Regarding the out-of-plane amplitude, one expects that increasing Ky de-
creases this amplitude and it is so in the graphs. The approximate analyti-
cal solution based on the averaging method, as introduced before, predicted the
value of A), = ,/5—,‘(: for the reel rate with quadratic roll rate feedback, and

Ay, = lé‘}:.a for the absolute value roll rate feedback. With the values of 3, 9

and 27 for K, in case of quadratic roll rate feedback, the predicted values will
be 19.1°,11° and 6.4°, respectively; in case of absolute value feedback, the cor-
responding values are 11.25°,3.75° and 1.25°. These predicted values are shown
in the out-of-plane limit cycle amplitude graphs as straight lines. The exact nu-
merical results show relatively close agreement with these values, both in terms

of amplitude and the independence of the amplitude from ¢ and Kj.

Generally retrieval time decreases with increasing c¢. This was expected
since {'/€ = —c gives the main retrieving effect and increasing ¢ will make retrieval
faster. Increasing the gains Ky and K, generally increases retrieval time, since
the pitch and roll feedbacks modulate the reel rate, often decreasing the retrieval
rate and sometimes even making the reel rate positive instead of negative. This
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makes complete sense if one notices that these feedbacks are added to extract
some of the retrieving effort of the reel rate system to stabilize the in-plane and
out-of-plane librations. Of course the exact effect depends on the average value
of ' and ¢'; as we can see for quadratic roll rate feedback in one case, decreasing

Ky has increased retrieval time (compare cases 3, 6, 9 in Fig. 4.16).

The variation of the initial sharp peak of 8 with ¢, K and K is considered
next. Increasing c, increases this peak. The reason can be explained from Fig.4.3.
This was a plot for pure in-plane motion. It is an oscillatory motion about
the equilibrium value of 2c. Because of having the highest deviation from this
equilibrium in the beginning of the motion, the maximum value for 6 occurs at
that time. By choosing initial value for § equal to zero, the initial difference from
2¢ increases with increasing c and this pushes the peak in 6 to a higher value. It
should be m:ntioned that due to the coupling effect of out-of-plane limut cycle
oscillati(;ns on the in-plane motion, Eq. 4.51 gives § = %c [1 ~ K¢ 07 - K, 3’7] ,
instead of § = %c for the equilibrium position. However, the limit cycle oscillations
start after a while and in the beginning of the motinn this effect does not exist.

Then the above discussion about the peak of 8 in the beginning of the motion is

still valid.

Now we consider the effect of Ky and Ky on this peak. As of the effect
of K4, one can notice that, naturally, the out-of-plane motion does not have a
significant effect on this peak value of the in-plane motion. For quadratic fecedback
there is almost no change with K and for absolute value feedback the variation
of ihe peak with K is slightly more significant. The reason for this difference
between the cases with two different out-of-plane feedbacks is that the absolute
value of ¢’ is normally less than 1; i.e. ¢'2 < |¢']. Then considering the two out-
of-plane feedbacks, K4¢? and K4|¢'|, one can see that for the same value of K,
the effect of the absolute value feedback will be more. On the other hand i, has

a very significant effect on the value of this peak. The reason for having a very
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significant variation with Kj is that, in the ree! rate law, the in-plane feedback is

added to control the in-plane libration, #; naturally increasing Ky increases the

control effect and decreases this undesired peak.

The variation of in-plane limit cycle amplitudes are very similar for two
reel rate laws since the difference between the two reel rates is in out-of-plane
feedbacks. They vary significantly with in-plane gain, Kj, but not with out-of-
plane gain, Kj.
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Chapter 5

Concluding Remarks

5.1 Review of the Thesis and Its Conclusions

Most of the previous studies on tethered satellite systerns have investigated two-
body systems. This thesis, on the other hand, has concentrated on furthering
the knowledge on multi-body systems. Except for very few cases, the available
literature on multi-body systems is limited to the study of two-dimensional in-
plane motion. For the first time, a simulation code on the dynamics and control of
three-dimensional librational motion in the large for a tethered satellite system,
compused of N number of bodies, has been developed. A significant amount of
time and effort has been spent on writing , debugging, and testing the computer
program. The formulation used here is valid for any arbitrary orbit and variable-

length tethers, which are assumed massless and straight.

Similar to the early studies on two-body systems, our investigation which is
in early stages of research on the three-dimensional motion of multi-body systems,
has made some simplifications. Even with these, the equations of motion are

quite complicated. In the future stages of study on three-dimensional motion
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of multi-body systems, these assumptions might be relaxed. A complete list of

assumptions is given at the beginning of Chapter 2, a major one being that the

tethers are considered massless and straight.

There are four well-known control methods for tethered satellite systems:
tension control laws, length or reel rate control laws, thruster control laws and
offset control laws. Thruster augmented and offset control laws have some dif-
ficulties in their implementations. Tension control laws and reel rate laws are
easy to implement. They have been considered extensively in the past for con-
trolling the in-plane motion. The presence of a reeling system in a tethered
satellite systemn is indispensable. Thus, in this thesis we have chosen reel rate
control laws for controlling the out-of-plane and in-plane motions at the same
time. There has been no previous work that presents an unaided reel rate law to
control the three-dimensional librational motion of multi-body tethered satellite
systems. Regarding the necessity of a control system, the retrieval phase is the
critical phase of the motion; therefore, in the control part we have concentrated
on this phase of the motion. Naturally, the attempts for finding suitable reel rate
laws have started with a simpler case, two-body tethered systems; subsequently
the reel rates are extended to multi-body systems. This extension has been done

quite easily since the method of formulation is very appropriate for this purpose.

Among the in-plane and out-of-plane librations, the reel rate (¢'/¢) affects
the former with a much higher degree. Therefore, controlling the out-of-plane
rotation with an unaided reel rate law has been a more demanding task. Since the
coupling between the in-plane and out-of-plane motions is a nonlinear one, in the
reel rate law a nonlinear dependence on the out-of-plane motion is expected. Two
analytical methods have been used for developing the reel rate laws and verifying
the performance of the system with their presence. The first method is Liapunov’s
direct method, and the second one is the energy dissipation approach together

with the averaging method, an approximate method for finding the response of
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the system.

Liapunov’s direct method is a very powerful method, since it is applicable to
the motion in the large and it can reveal the stability of the system just by using
the equations of motion without actually solving them. However, constructing a
proper Liapunov function is very challenging and strenuous. Based on the Hamil-
tonian of the system a recl rate law has been found that stabilizes the in-plane
and out-of-plane librations in the sense of Liapunov. Although this reel rate law
performs an acccptable retrieval, the retrieval time and amplitude of out-of-plane
motion are rather high. The problem associated with the out-of-plane amplitude
can be resolved by scparating the in-plane and out-of-plane gains and choosing
a larger out-of-plane gain. Regarding the retrieval time, there is a linear plus
a quadratic term of the in-plane angular velocity in the 1eel rate. A quadratic
terin is always positive and reduces the average rate of retrieval. Since a linear
feedback of piteh rate is sufficient for controlling the motion, this quadratic feed-
back is redundant. For the ocut-of-planc motion, however, a nonlincar feedback is

necessaty.

A new reel rate law has been proposed next. This reel rate law which is
consistent with the above mentioned points; it possesses a linear in-plane feedback
and a quadratic out-of-plane feedback with separate gains. For analyzing the
behaviour of the system with this reel rate law we have not used the Liapunov
approach anymore. This is due to the complexity of finding a proper Liapunov
function. It should be noticed that if after spending a lot of time and effoit one
is confronted with lack of success in finding a suitable Liapunov function, one
cannot reach any conclusion about stability or instability of the system. The
cnergy dissipation approach together with the averaging method has been used
instcad. This approach revealed the effectiveness of the new reel rate law in
stabilizing the in-plane and out-of-plane motions at the same time, as well as

performing a retrieval sufficiently fast. Similar to this reel rate. another reel rate
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N with its nonlinear out-of-plane feedback composed of an absolute value term, has

also been proven efficient through the same approach.

The two new reel rate laws have been extended to multi-body systems
and have demonstrated completcly acceptable results. A station-keeping stage
has been added to the motion, in multi-body systems. After reaching the final
length, this phase brings the systemn to the final desired configuration. A study of
the effects of different parameters and gains of the reel rate laws on the resulting,
motion wraps up the thesis. The complete discussions can be found in Section 1.6
that will not be repeated here. These can be used for selectiug the values of the

gains and parameters in order to achieve a desired resulting motion.

5.2 Recommendations for Future Work

The following items are recommended for further studies in continuation of this

research project.

i. Preparing the facilities and performing the necessary experimients to verify
the results obtained in this thesis through analytical and mumetical analy-

Ses.

ii. Including the mass and three-dimensional vibrational motion of tethers for

multi-body systems simulation models.

iii. Adding the three-dimensional rigid-body motion of the end hodies and
investigating the effectiveness of the offsct control laws in multi-body teth-

ered systems.

iv. Studying the perturbing effects of aerodynamic forces, solar radiation pres-
~ sure and electrodynamic forces on the motion of the multi-body tethered

systems, for the applications in w%hich these effects are significant,
8
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v. Comparing the effectiveness of possible thruster or tension control laws for

i controlling the three-dimensional librational motion of multi-body tethered

systems with those of the reel rate laws presented in this thesis.

vi. Considering the possibility of decreasing the initial sharp peak in the in-
plane motion through modification of the present reel rate laws or adding

another control law to the system.

vii. Replacing the nominal exponential retrieval by a proportional one (¢ =2
constant) in some parts of the motion, in order to decrease the retrieval
time. This has been done previously for two-body systems; it has to be

extended to multi-body systems.
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a) Projection of the N-body system
in the orbital plane;

b) Definition of angles @ and 9,

~ Fig. 2.1: Orientation and configuration of the system.
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Fig. 3.1: Uncontrolled retrieval dynamics of a three-body system for the case
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Appendix A

Applications of Tethered
Satellite Systems

The applications of tethered satellites proposed by the early eighties have been
documented by Bekey [1], and von Tiesenhausen [3]. In the second edition of
the Tethers In Space Handbook [11], a rather recent and more complete up-date
of these applications is available. Here we present a brief description of the

important applications of the tethered satellites,!

A.1 Atmospheric and Aerodynamic Studies

The special advantage that can be mentioned for the applications of tethers in
atmospheric studies is that orbiting the whole satellite inside the Earth’s atmo-
sphere will cause large drag forces and subsequently fast decay in the satellite
altitude. But in the case of a tethered platform only the necessary parts will he

sent to the atmosphere and most of the parts will be out of the Earth’s atmo-

IThe detailed explanation of the cases marked with  in this appendix was stated already

in section 1.3 in the Introduction Chapter. They relate to multi-body tethered satellites.
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sphere.

Applications of these tethered subsatellites for atmospheric and aerody-

namic studies are listed below.

A.1.1 Shuttle connected hypersonic open wind tunnel

At an altitude of 250 km, the Shuttle orbits the Earth with the velocity of about
7755 m/sec . Consider a model tethered to the Shuttle and lowered to the altitude
of 100-120 km . Then assuming that the atmosphere is rotating at the same
angular velocity as the Earth, the relative velocity of the model to the atmosphere
will be of the order of 7100 m/sec . This will result in a very high-velocity
hypersonic flow around the model. The corresponding Mach number will be of
the order of 26 (with velocity of sound about 276 m/sec at that altitude). At
the same time very low Reynolds numbers are achievable, and this combination
will make a very unique wind tunnel. If the necessary instruments for measuring
different parameters like pressure, drag force, lift force, etc. be also deployed with
the model we will have the Shuttle Continuous Open Wind Tunnel (SCOWT).
In this way, the limitations that usually exist in ground-based wind tunnels will

be elirninated, for example there will be no effect of the wall boundary layers.

A.1.2 Upper atmospheric measurements

Presently, atmospheric measurements in the region between 90 to 125 km alti-
tudes can only be made with sounding rockets over small regions of area and
time. By deploying a subsatellite tethered to the Shuttle very valuable research
can be performed in this region. These subsatellites could also be tethered to the
Space Station, but since the operational altitude of the Space Station is likely

to be 500 km, the necessary tether will be rather lengthy. Thus, Shuttle-based
121



e

tethered systems are preferable for atmospheric studies.

Some of the projects which are being studied include TSS-2 (Tethered Satel-
lite Systems-2) and STARFAC (Shuttle Tethered Aerothermodynamic Research
Facility) [11]. The Figure on page 27 of [11] can be considered as a general scheme
for a Shuttle-based tethered system for atmospheric studies. Collecting data at

different locations simultaneously® is one the examples.

Gathering cosmic dust by sending a tethered subsatellite to the upper atmo-
sphere from the Shuttle is also under consideration. The surface of the subsatellite
contains numerous small collecting elements which would document the impact

of cosmic dust or actually retain the particles for analysis back on the Earth.

A.2 Transportation Uses

A.2.1 Momentum exchange

Some applications in this area are described below:

One of the interesting ideas in this regard is to benefit from the momentum
captured in a rocket spent stages. After one stage of a rocket reaches the end,
before the start of the next stage, its center of gravity will follow a central force
orbital motion (usually an elliptic orbit). If in this interval the spent stage be
separated and tethered to the rest of the rocket and deployed down toward the
Earth, since the center of gravity will maintain the same orbit as before, the rest
of the rocket will move outward from the Earth. In this manner, the spent stage
will lose some angular momentum and the rest of the rocket will gain it. When

the deployment terminates the tether will be under tension. At the proper time
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the tether is disconnected which causes a deboost in the spent stage and a boost
in the other parts of the rocket. This concept is practical only if the spent stage
has a mass comparable to the mass of the rest of the rocket. The same principle

can also be implemented to the Shuttle external tank.

The reverse situation is also considered in some cases. Boosting a satellite
or platform or payload (generally an end mass) from the Shuttle to orbits higher
than the orbit of the Orbiter iiself. An end mass is deployed along a tether
upward (away from the Earth) from the Shuttle. Librational motion begins and
momentum is transferred from the Shuttle to the end mass; as a result, the end
mass ascends and the Shuttle descends. Then the end mass will be released and
placed into a higher orbit which simultaneously will give a deboost to the Orbiter.
This process should be done at the end of the mission where the deboost in the
Orbiter actually will be useful for its deorbiting to the Earth. In this way less fuel
will be used both for the deployment of the satellite and deorbit of the Shuttle.

Now we concentrate on another application in the category of Transporta-

tion:

A.2.2 Tether assisted rendezvous

Maintenance of the previously deployed satellites from the Shuttle, can be men-
tioned in this category. A permanent tether attached to the Shuttle Orbiter is
used to rendezvous with a decaying or defective satellite. A decaying satellite
will be reboosted into a higher orbit and a defective satellite will be retrieved,
repaired by the Shuttle crewmen, and reboosted to its initial orbit. This would
eliminate the need to launch a replacement for defective or decaying satellite and
decrease some of the expenses, but the project itself seems costly and it is un-
der investigation. The Shuttle docking to and deorbit from the Space Station is

also another example. The main point that can be mentioned for this project is
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that instead of coming back to the Earth’s surface for the necessary services, the

Shuttle can dock to the Space Station.

A.3 Gravity Related Applications

With the help of tethers one can create all kinds of artificial gravity laboratories
and other gravity related facilities necessary for today’s scientific and commercial

studies. Some of the suggested designs are listed below

A.3.1 Wide range variable gravity laboratory

It is a tethered platform composed of two structures connected by a variable
length tether. One end includes the solar arrays, related subsystems, and tether
reel mechanism. The other includes two manned modules and a propellant mo-
tor. For generating the artificial gravity the tether will be extended, and then
the whole system will be rotated about its center of mass by firing the motor.
The solar panels should be de-spun. By changing the tether length one can get
different gravity levels: from low gravity levels e.g. 0.08 g through 0.16 g simu-
lating the gravity on the Moon, 0.38 g for Mars, g for Earth, and up to 2 g. The
manned module can be a habitation module, for studying the long term effects
of various artificial gravity levels on the human body and its feasibility for the
interplanetary missions, or it can be a laboratory for scientific experiments. The
coupling between the two structures could be done by a rigid linkage but the
tethered connection is superior: firstly because the distance can be changed for
getting different gravity levels; secondly, since we can set the length to very large
values, with a less rotational rate we can get the desired g level and then the

inconvenient side effects like Coriolis force would be less.
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There are two designs associated with the Space Station explained in the

following two subsections.

A.3.2 Microgravity laboratory*
A.3.3 Variable low-gravity laboratory*

A.3.4 Gravity wave detector’

A.4 Electrodynamic Applications

A.4.1 Power and thrust generation

DC electrical power can be generated at the expense of a spacecraft orbital energy.
An insulated conducting tether, terminated at the ends by plasma contactors, is
connected to the spacecraft (the Shuttle or any other spacecraft). The plasma
contactors are for collecting electrons from the surrounding environment at one
end and discharging them at the other end (for getting a better image, figure
on page 53 of [11] may be consulted). Motion through the geomagnetic field
induces a voltage in the tether. This voltage can be used to drive a DC electrical
current in the tether. A force of the magnitude (:¢B) will act as a drag force on
the system. In this relation, i is the tether current, £ is the tether length, and
B is the Earth’s magnetic field flux density. Electrical power is generated at a
rate equal to the loss in spacecraft orbital energy due to this induced drag. This
project can be used also with spacecraft that are travelling to the planets with

atmosphere and magnetic field such as Jupiter or Saturn.

If the process in the previous application is reversed, instead of the drag
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force we will have a thrust force which increases the orbital energy at the expense

of primary on-board electric power.

This system can be used with combination of the two applications as a
power storage. During the daytime the current from the on-board solar array
power system is fed into the tether to generate a propulsive force. This thrust
boosts the orbital altitude of the spacecraft. In the darkness periods, the system
will act as a generator and DC electrical power is generated by reduction in the
orbital altitude. This energy storage system has higher efficiency than a system
involving charging and discharging of batteries. It will also reduce the size of
arrays by 10% but the main reduction will be in the required batteries, which
will make the weight of this supplementary system about 40% of the weight of
conventional arrays and batteries system with similar performance. The heat

rejection produced in power processing would also be reduced by 60 %.

A.4.2 Tether communications antenna*

A.5 Orbital Parameters Modification

A.5.1 Changing the orbital inclination

The inclination of the Shuttle’s orbit (or of any other spacecraft’s orbit near the
Earth’s atmosphere) can be changed by tethering a hypersonic lifting body below
the Shuttle and sending it down to the atmosphere (tether length about 100 km).
By shifting the body from one orientation to another a side force is generated

which can be used to modify the inclination of the system’s orbit.
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A.5.2 Lowering the orbit of a planetary probe

Conventional planetary probes carry substantial propellant to establish low orbits
about a celestial body of interest. With the help of tethers, for the case when
the planet possesses an atmosphere, an alternate method reduces the necessary
propellant to the amount required only to achieve a highly elliptical capture orbit.
After achieving the elliptical orbit, a suspended body is deployed to the local ver-
tical from the probe, using a small diameter tether. At each successive periapsis
pass, the suspended body and the lower region of the tether experiences rarefied
flow which creates drag on the system including the probe and reduces gradually
the apoapsis until eventually the orbit is circularized. The suspended body could

contain an instrument package for gathering data during the atmospheric passes.

A.5.3 Altering the orbit eccentricity

The necessity of a propulsion system for changing the eccentricity of the Space
Station or a platform can be eliminated by applying a tethered system. An end
mass is tethered to the Space Station or the platform. The length of the tether
is changed in phase with the natural libration of the tether. If this sequential
retrieval and deployment of the tether, which is known as libration pumping, is

performed with proper timing, it can create the necessary change in eccentricity.




Appendix B

The Orbital Center of a
Tethered Satellite System

In this Appendix we try to develop an expression for the location of the orbital
center in tethered satellite systems. For the sake of simplicity we consider a cir-
cular orbit, but the same principle operates for non-circular orbits. As mentioned
in the beginning of Chapter 2, the orbital center is the point where the resultant
of the gravitational and centrifugal forces is zero. If the system consists only of
one satellite modeled as a point mass, the point mass itself is the orbital center.

For this orbiting body the amount of gravitational force is equal to

F, = -GM.m/r? | (B.1)

where GM., is the gravitational constant of the Earth, m the mass of the body,

and r its distance from the center of the Earth. The centrifugal force on the body

is

F.=mrQ? | (B.2)
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where Q0 is the orbital angular velocity. The total force in the z direction (refer

to definition of axes in Chapter 2) will be

F,=F,+F. . (B.3)

If the body’s orbit is a circle, this total force in the z direction should be

zero, i.e., [52]

mrQ? - GM.m/r* =0

or

Q? = GM,/r* . (B.4)

For a multi-body tethered system, all of the points have the same orbital
angular velocity. By noticing Eqs. B.1 and B.2 we can see that the masses which
are closer to the Earth are subjected to more downward gravitational force than
the outer masses, and the situation is reverse for the centrifugal forces. As a
result, for the lower masses there is a net force toward the Earth and for the
outer masses there will be an outward net force. These result in the tethers
being under tension. The magnitude of the angular velocity {2 which maintains a
circular orbit is such that the resultant of the total gravitational and centrifugal
forces acting on the system should be zero. Then ignoring the tethers masses we

should get

or
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GM.my + GM,.m; GM. ny
2

5 +.--+ 3 = m‘rlnz+m2r'znz+'"+";NTN92 . (B-G)
ri T3 ™™™

This yields

N

Z m./r?

0 =GM, | S—rr| . (B.7)

Z m,r,

=1

Now the orbital center is the point where, if the whole mass of the system
was concentrated, the resultant of the forces acting would be zero. Therefore

referring to Eq. B.4 if we call the Ro ¢, as the radius of orbital center, the orbital

angular velocity will be equal to

0= GMe/R%.C. . (B.8)

From Egs. B.7 and B.8 one gets

1/3

N
3 m.r,

Rog.= | F— : (B.9)

Y mifr?

=1

This equation expresses the location of the orbital center for a tethered satellite

system with N number of bodies.
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