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Abstract 

This thesis concentrates on studying the thrcc-dinl<-'mional dynalllics .\II11 (!lut roI 

of librational motion in the large for multi-body tcthered s.ltl'Ilite l'Iyl'ltt'I\I~, E.I!oo_\ 

to-implement, reel rate controllaws ha\'e bccn choscll for contwl1illg t ht' rd ri(·\-.tl 

phase, the critical phase of th(' motion, Thc study is bas(·d Oll hot 11 Il 1\ Il \('1 jc.l! 

and analytical approaches, 

The Lagrangian approach is uscd to dc\'elop the equatiolll'l of l1\ot iOll, 1 \1 

this work, the vibration al motions of the tcthcrs arc igllol'<,d alld tl\(, klllt'I'h cil (' 

considered massless, The tethered bodies arc modclled as poill\. lllal'lM'~, Sille(' 

the principles are the same for two-body and Illulti-body SyStl'III~, fol' tIlt' !o..d,(· 

of simplici ty, t.he analysis stal'ts with two- body systems amI iil sltI)l'Il'ql\('lIlly ex' 

tended to rnulti-body systems, The mcthoJ of fOl'lIlUlatioll llIakl'~ thil'l ('xt('II!ooiull 

quite easy_ The set of second order nonlincclf coupl('d t'quaI illlll'l il'l !o.uh'(·d 11~ll1g 

the Bulirsch-Stocr extrapolaI i011 mcthod frolll 1 M S L IiI)! ,l! il'l'I, 

The first analytical mcthod that is IIseJ for tll(' d('\'<'!0PI'I('lIl (JI Il'( ·II,d (' 1" \\ \ 

is the Liapuno\"s second method, In titis work it I!o. ilho\\'11 :1I.d tIlt' 1I.IIIIi!lt)Jlldll 

can be uscd as a Liapunov function. A rccl rate la\\' iil (h'vil'l('d t.h.1I l'Il.dl\lIz(·:, 

the in-plane and out-of-plane liLlatiow, dt thc hall\(' tillH', fUI I\\'() 1J(j(I) !>,\""I('III'" 

lIowc\'er, since the resulting motion hail 501llC dcfi( i('I1( It':-.. Uli:, I('('! l.tI(' 1.1\\ 10., 

not extended to multi-body systems, 

For overcorning these deficiencies, two Ile\\' rel'! la\.(' l<l\\'l'I ,11(' PIUIHJ,,(·d dit.! 

their performances arc examined through t1w enclgy dl!>!>ip,i\,iolJ ilPI'IUd( Il 1 () 

gether with the averaging mcthod. The rcsulting motioll:' wit.h (III tl((~ \('('! 1 ill,' 

laws, including the one from Liapunov approach, are limil cyc 1(· ol>cill,!I iUII", 'l'II!' 

reel rate laws obtained from the cnergy dlssipatioll apl'lOiI('b ))('1 f()1111 ('!lI( i('liI 

rdrievals with sufficiently small out-of-plane limit <-y<l(' fi Illplil lId(·.., TljI',>(' 1 (·t'! 

rate laws arc extcndcd to rnulti-body ~y~teTll!> and Icad 1(1 ,II 1 ('pl i111!" 1I·..,II!h hll 

multi-body systems a station-kcepillg stage iil addcd tbal blÎlIg ... 1111' l>,\'l>II'111 II! 

a final desired configuration, An analy!>is OT! the efr('!'!'> of dlfrl'wlIl l'il 1 <1111('1 "1 '> 

and gains on the resulting motion ha!> alil{J beelJ pCI f(}llJwd, 111'111 (', !J11" h'h 1 1 JI' 

general information for selecting the gain!> to oblaill i1 dl~<,il('d IIIUlltll1 
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Sommaire 

Dans cette thèse, nous nous intéressons à la dynamique tridimensionnelle 

des mouvements de grandes amplitudes et au contrôle de systèmes à satellIte 

composés de plusieurs élément.s reliés par des fils. Des lois de contrôle par taux 

de déroulement des fils -Facile à implanter- sont proposées, afin de contrôler 

l'étape de récupération qui correspond à la phase critique. L'étude est basée 

sur une approche numérique et analytique. 

L'approch(' Lagrangienne est utilisée pour dériver les équations du 

mouvement. Dans cette étude, les mouvements vibrat01re~ des fib, considéré~ 

sans mass(', ne sont pas pris en compte. De plus, les mouvement~ de <.orp:

rigides des éléments sont négligés. Puisque les principes sont les mêmes dans 

les deux cas, dans un but de simplification, l'analyse est appliquée tout d'abord 

à des systèmes à deux éléments puis étendue ensuite à des systèmes à plusieurf:> 

él~rnents. La formulation de la méthode permet facilement cette ('xtclltJioll. 

L(· système de second ordre d'équations non linéaires couplées e~t ré.,olu ell 

utilisant la mt,thoùt' d'extrapolation de type lluhrsch-Stocr qU{' 1'011 trou\(' 

parmi l('s sous-programmes IMSL. 

La première méthone analytique utilisée pour développer les lois du taux 

dt' déroul(,fficnt est. la seconde méthode de Liapuno\'. Cette méthode est 

particulièrement intéressante puisqu'elle s'applique dans le cas de mouvernent~ 

largl's, bien qu'il soit d'ordinaire difficile de construire une telle fonction d(' 

Liapunov. Ici, on démontre que la fonction d'Hamilton peut être utilisée comme 

fonction de Liapunov. Une loi du taux de déroulement a été déterminée, 

stabilisant à la fois les mouvements dans le plan et hors-plan, dans le cas de 

systèmes à deux éléments. Mais, puisque le mouvement résultant exigeait des 

<lméliorations, cette loi 11 'a pa~ été étendue aux cas de systèmps à plusieub 

(\I(\lIlcnt~. 
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Pour surmonter les problèmes sus-mentionnés, d('ux nO\l\'l'll('~ lois du tdU, 

de déroulement sont proposées et leurs performances cxalllin{'l'~ pM UIlI' 

approche de dissipation d'énergie et une méthode de type KIl (Krylo\'

Bogoliubov). Pour toutes les lois, incluant celle obtef1lll' par l'approdll' (Il

Liapunov, les mouvements résultants ont été des oscilldtions de tYPt' ryl ll

limite. Les lois du taux de déroulement obtpnue par l'approche dl' dis:sipatioll 

d'énergie engendrent des récupérations efficaces avec dcs alllplitudl'~ dl' (yl ll

limite hors-plan suffisamment petites. Elles ont été appliqll{>l'~ au, ~y~tt'J\l\'~ .'t 

plusieurs éléments et conduisent à des résultats acceptablcb. Dan!'> ("l' dl'IIIIl'1 

cas, unl~ étape supplémentaire ("station-kceping slagr") ('st ajou\(;(' qui I"'IIIII'I 

de placer le système dans la configuration finale d{~~ir('l'. UI\(' cll1.dy~l' dl''> l'III'!, 

de.) différents paramètres et des gains sur les tTIouveIrl('nt~ n;sult.ants <l l'g.dl'II11'111 

été effectuée. Des informations générales permettant d(' S{>\(l( t 101\1)('1 h',> V.dl'lIl', 

des gains pour obtenir un certain mouvement est ainsi mihl' ;\ la di,>pohlt iOIl dll 

lecteur. 
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the initial value of 4> 

out-of-plane rotation of the zth tcthcr in cl. multl-body 
system and its derivatives 

derivatives of li> with respect to T 

initial values for 4>, and 4>,(0) 

true anomaly 

argument of perigee 

frequency in the quasi- harmonie responsc of the sy~t(~fT\ 
(in the averaging mcthod) 

..,.,' a::.sociated with 0 and 0 rnoticJf)". re"'p,·(·t.ivdy 

orbital angular velocity 

time rate of orbital angular velor.it.y 
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Abbreviations 

differentiation with respect to time 

differentiation with respect to nondimensional time, T 

absolute value 

magnitude of a vcctor 

der lotes nondimensionality 

denotes the average value over a period of oscillation 

used only in () representing 0 - Be 

as a subscript, represents the approximate value 
according to the averaging method 

as a subscript, represents the value corresponding to the 
limit cycle phase 

as a superscript, denotes that the valu~ of the angle 
is in degrees 

C. M. center of mass 

IMSL 

KB 

LBS 

NASA 

MTL 

O.C. 

lUIS 

SAO 

SCO\VT 

ST.\HFAC 

TSS-~ 

International Mathematical and Statistical Libraries 

Krylov-Bogoliubov (name of a method) 

left- hand side 

National Aeronautics and Spaee Administration 

Materials Technology Lab 

orbital center 

right-hand sicle 

Smithsonian Astrophysical Observatory 

Shuttle Continuous Open Wind Tunnel 

Shuttle Tethered Aerothermodynamics Research Facility 

the second specifie mission of NASA for Tethered 
S,ltdlitt's Systems 
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Chapter 1 

Introduction 

1.1 Outline of the Chapter 

In this chapter we first briefly discuss the historical background of the tel.ht'I'i!d 

satellite systems in general. The application of multi-body tethered systems, 

whose dynamics and control are the main concerns of this thesis, is the subject. 

of the third section. The aims of the thesis cornes next.. The last section of t.his 

chapter presents the outline of the thesis. 

1.2 Historical Background 

The initial idea of using tethers in space goes back to the previol1s cent.ury. III 

1895 Tsiolkovsky suggested connecting large masse!> in spacc by a long t.hin 'itriu.l!; 

[1,2] to take advantage of weak gravit y-gradient forces for stabilizcüicHl plll'pr)!'II~~. 

Gravit y-gradient ~tabilization has becn applied to 'iat.ellite'i .,in('(! t.h" "(·.u;lnllill~ 

of the space program, but only with short ri~id buorm rather t.hilrJ 1(H1~ .,t.rJrJ~" 

As described by von Tiesenhausen [3], sixty-five years later in 1 !)fjO, th!! 1{11",,\i1lJ 
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engine('r Artsutanov [4] conceived the futuristic idea of anchoring a gcostationary 

~atellitc tü the Earth's surface by a long cable (tether). A ballast would Le 

dcploycd from the sateBitc by another cable in the opposite direction. 50 the 

center of gravit y can be maintained in the geostationary orbit. 

Two other ideas involving long tethers were also suggested in the past, but 

thcy havc not been given any scrious comideration by the succeeding resedrchers, 

sinec they do not seem to be feasible at present. They are mentioned here onl)' 

became of the historical significance. The first was a low altitude geostationary 

satellite proposed by Cailar and Flower [5] in 1969. The second was a wheel 

tdhcr proposed by Artsutanov [6] in the same year. 

Artual application of tethers was considered in the early sixties by Stal l~ 

alld Adlhoch for finding a way of retrieving stranded astronauts [ï,8]. Successful 

<'xperiments during Gemini X l, XII in Scptember and I\o\'ember of 1960, rc

spC'cti"c1y, estahlished the feasibility of using tethered systems [9]. But in thesc 

t'xperimcnts only a short tet.hcr was used for connecting an unmanIled \'ebicle to 

a manned space "chiclc. Subsequcntly, sorne long-antenna-wire experiments were 

collductcd, but. only sm aIl cnd-masses wcrc used. 

ln the carly se"entics, a proposaI by Colombo et al. [10J to use the Shuttle

based tcthered systems with large subsatcllites and very long tethers gave birth 

to the modern era of tethered satcllite systems. As a matter of fact, Bekey [IJ 

cOllsidel's Colombo to be the father of spacc tethers. The details of the proposal 

ill\'ol\'cd dt'ploying a 500 kg subsatellite from the Space Shuttlc into the atmo

~pl\l'll' usillg a 100 km 10llg tetbel. Considerable research élcti\"itie!:> bave beell 

nlllductcd Lay NASA, Smithsonian Astrophysieal Observatol'y (SAO), and other 

r('searchcrs on the dynamics, control, design and scientific applications of this 

collcept. Siue<' the planning of the Spacr Station has bccn in pIOgress fOl sorne 

t IIlle, possible applicatiolls of tcthercd systems in conjunction with the Space Sta

l iUll havl' al~ü bC(,ll st udied. SÙIllC applications Ilot invoh·ing either the SllUttle 
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or the Space Station have a1so been suggested [111. 

Sending scientific platforms or any research probe to different altitudes by 

tethering them, as subsatellites, to the Shuttlc Orbiter or Space Station hc\s 

many advantages. The subsatellites can be retrieved at the end of the mission 

and instead of just being left in spacc, rnost of tlle parts may he rC-Hsl'd fl)r 

subsequent missions. Another advantage is that the subsate\litc is always Il!\(!t-r 

the control of the Shuttle or Space Station crew dnr{ in case any leparatioll is 

necessary it can be pertormed by the crcw. The tether can also he IItilizcd as ,t 

means of transferring data or power. 

In sorne of the applications, there are more than two bodies that Me COII

nected together by tethers. In this thesis, we have concentrated 011 the invesl iga

tion of this kind of tethered systems. Generally we caB thcsc systems nmlti-hotly 

or N-body tethered systems. Therefore in the next section we present the ap

plications of multi-body tethered systems. Other applications of t.he let.hered 

systems are explained in Appendix A. 

1.3 Sorne Applications of the Multi-body Teth

ered Satellite Systems 

The applications of the tethered satellite systems in gcneral is the :-'llbjcct of 

Appendix A. Here we only consider applications concerning Hlulti-body systems. 

1.3.1 Upper atmosphere measurements 

An on-going study conccrning the application of rnultl-body tet.hered ~at(:llit.t:-. 

in upper atmospheric measurements is to lower a constellatioll (;[ prob(!s, willd, 
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.' arc locatcd at different altitudes, into the atmosphere. The first is tethered to 

the Shuttlc while the others are connected together by tethers (sec page 36 of 

Rer. [11 D. In this way it will be possible to collect data at dljJere71t locations 

sZ1fLu/taneous!y which is a valuable capability in atmospheric mea~uremellt~. 

1.3.2 Gravit y related applications 

Microgravity laboratory 

For this application a laboratory facility on board the Spacc Station is situdted 

in the proximity of its vertical center of gravity. Two opposing tethers \Vith end 

masses arc deployed vcrtically from the Space Station (one above and one below, 

rder to the figure on page 76 of [11]). The length of the tethers is varied to 

control the center of gravit)' of the system, placing it on the microgla\"ity mod

ules to millimize tlleir gravit y gradient acceleration and set it ill the miClogr ayity 

lc\'cl (10- 4 g and less). The tethered end masses are also u~cful f(JI Icduclllg, 

t.he disturbances mainly caused by the crew activities. and enhancing o\"era11 sys

telll al tit ude coIltrol. Some microgravity laboratories are currentl)' undcr study, 

olle of tllcl11 is MTL (Materials Tcchnology Lab) and the other one a Biological 

laborat.ory. 80mc biological pro cesses to be studied would be animal and plant 

growth, alld human performance. 

Variable low-gravity laboratory 

III this application a tether with an end mass is deployed upward from the Space 

Station and the laboratory can be positioned at different points along this tetllel 

(page 88 of [11] demonstrates the arrangement). The gravit y gradient between 

t he center of gra\'ity of the system and the laboratory gi\'es rise to an artiflcial 

gravit y at the laboratory. The laboratory grayity level i~ \'aricd by chauging its 
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distance from the system center of gravity. Since the system gwvity characll'I'i:-

tics change with orbital variations, the gravit y lcvcl illSidc thl' labor'lln!'y \·.lril·:

with time even if it is located at a constant distance relative to the Sp.ln' St dt iOIl. 

Therefore, for maintaining a constant gravit y level in the laboratury, its positiull 

should be adjusted in accordance with the orbital variations. This configuratioll 

allows performance of experiments undcr conditions of constant or vdriabh' Ill\\' 

gravit y for extended periods of time. The laboratory cali attain lIlinogra\'ity 

levels if it can move to the center of gravity. In comparisull ",it h the pll·\'ill\l~ 

config'lration for microgravity this has the disadvantage of H'dIlCillp, thl' hlllll,111 

access. On the other hand it has the advantagcs of i .. olatillg thl' \,d)Ulatuly 1111111 

the disturbances present in the Space Station itsclf, alld Illillilllizillg lhl' p,1 d\ II~ 

gradient inside the laboratory. It can also attain higher gra\'ity. Il hil" 1>l'('ll 

calculated that the laboratory could aHain g-lcvels of lO-G, 10"'1, 1O-~, ,llld lO-I 

at the distances above the center of gravit y of about (tlle (\CClllat(· \,,,hll'" ckp('lId 

on the subsatellite mass) 2 m, 200 m, 20 km, 200 km, rcspccti\'e1y. 

Gravit y wave detector 

Because of the seismic noises, an Earth-bascd dctcdor caulloi de'l e( t gl'a \' i t id i011 id 

waves in the 10-100 MHz band. An orbitiIlg gravit y wa\'l' dct(·( tul' wOlllcl ~u\\'l' 

the problem. A tethcred system has bccn suggcf:>tcd for t.ltis Ptl/'IJ{J~(' Tl/(' :-,\'~f<orll 

would consÎst of a spring which is connccted ta two elld TIla~~('~ by te·, 11('1:-' ()t'/"I 

ta the figure on page 39 of [11]). As this tcthercd ~y~tclIl {)"Jil~ 1,11(' Eilltlt, 

gravitational waves from supernovas, stars, pulsars or ally (JI 11(" gl'i1\'ily ~lJlI' ('( .... 

would make the masses tü oscillatc. The oscillations would 1JC traTl:-'lJlltt(·d to t)1<' 

spring, which could be recordcd by a scnsing dcviœ, 
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1.3.3 Tether communications antenna 

An insulatcd conducting tcther, with plasma contactors at both ends, may be 

connected to a spacecraft in the middlc. Variations in the tetber current can Le 

produccd to gcnerate ULF, ELF, or VLF waves for communications. \Vaves are 

crnittcd hy a loop antcIIIId composed of the tether, magnetic field lines, and tlIe 

ionospherc (page 61 of [11] presents a general view of this applicatioIl). 

Although there are many more proposcd applications for the multi-body 

tethcrcd systems, the on es rcfcrrcd to in this section providcs sufficient moti\'ation 

for undertaking this thesis. 

1.4 Aims of the Study and the Related Liter-

ature 

A wide range of potential applications, only sorne of wllich wcre presented in the 

prcvious section and in Appendix A, has created quite a gooJ iutercst in tetltcrcd 

satellite systems in reccnt years. Bence, therc is a riclt literature availablc on 

the dYllamics and control of su ch systems, but most of the previous works have 

bccII concclltrat.ed on hm-body systems. Our main goal is to contl'ibute to tilt 

sludlC$ on the dynamics and control of multi-body tcthered systems Therefolc. in 

this section, the available literature on the dynamics and control of multi-body 

t et h(,l'ed systems is rcvie,,"ed. In tbe introductions of SOIlle of the ensuing charters, 

the litcralurc rclatcd to the subjcct of the chapter will also be presentecl. 

Liu [12], in 1985, formulatcd the dynamics of three-body tcthered systems. 

The tcthers \Vere assumed to be straight and massless. Even though he considéred 

0111y the in-plane motion of a cargo transportation, the cquatiolls of motion were 
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very complicated. This was caused by his selection of coordinates which happL'lIl'd 

to be subjected to constraints. Pointing out this complexity, he did Ilot P!(,~l'llt 

any numerical result for his set of combined algebraic and dilrl'!elltial ('qtlatioll~. 

For performing the microgra\'ity experiments, Lorem:illi [1:JJ PIOJh)M'd tilt' 

idea of tethering the g-laboratory to the Space-Statioll. III 198ï, tilt, sali Il' allt Ihll 

[14] discussed the control strategies for deployment of the sy~\('lll alld t!il!\lpil\~ 

of the oscillations in station-kecping stage. The system is a thrcc-hody teth(,l't'd 

system consisting of the Space-Station, the micro-g/variable-g laho!",1 tory aud 

another scientific platform. The g-laboratory is in bet we,-~ll t h(' ot Ill'!' t Wo bot! il':' 

and crawls along a lO-km-long, 2-mm-diameter keYlar tether. 'l'hl' allaly~i:, \\",., 

concentrated on the in-plane mot ion. The tethers wcre assullIcd masl>lcl>s hut II )(.j) 

longitudinal vibrations have been included. The orbital motion is (,ollside!pd tl! 

be circular and a spherical Earth is assumcd. Two mathclllatical llIuliels \\'('Il' 

used, one using the Lagrangian approach and the other one t\ewtoni,llI. 

In 1987, Misra, Amier and 1\1odi [15J uscd the Lagrclllg,iall apl'!O(l( Il tu 

analyze the in-plane motion of the threc-body SystCIIll> fOI fixed-I(,II,!!,11J él!'> \\'1'11 

as variable-length tether". The tethers \Vere assullled tu ha\'(' Il('p,lip,illk Ilia:,:, 

The coordinates used were diffcrent from thosc of LOl'(,llzilli. III 1.11<' ca!'>(' uf fix(·d 

length tethers, they investigatcd the st ah iIit y of th<.' cqu i lib! i \1 III (Oll fip,ma 1. iOIl:'. 

The equilibrium along the local vertical wa~ found ta be tll(' ol11y ~tabl(· OIJ(' (fOI 

small motion). The variable-length cases included deploymclIt (JI' a l'ollstt'lla t iUII 

as weil as cargo transportation. Among the rcsults the rnost bigllificant Oll(' Wil~ 

that large librations could occur in the cargo transportation case. 

The 4-mc..ss tethered system of the Space Station-babcd Elev.il()I/Clétwl(·1 

micro and variable-gravit y facility, consisting of two platf()rms, SpcH,(' Stal iOIl, 

and an elevator, was studied by Lorenzini et al. [16] and by C()!o,rJ)o ('f al. [lï] 

The former study [16] mainly demol1btrates the accelcratiolJs and t!1<' g-l('V<'l (JI 

the Space Station and the Elevator. The latter analYbis [17] c(JlIsid('I(~d tjj(' dy 
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namjes and control of two-dimensional motion of the system. The degrees of 

frcedom included lengths of the tethers, in-plane libration, longitudinal elastie 

oscillations and in-plane lateral defiections (these are the lateral defiections of 

the point masses not the lateral elastic vibrations of the tethers). They formu

lated the problem with the Lagrangian approach and found the eigenvalues and 

clgcnvectors of the system. It was noticed that the longitudinal oscillations are 

highly COll pied tü the in-plane librational and lateral motions. A tether length 

controllaw was suggl.!sted for eontrolling the in-plane librational and laterai defiee

tions. The longitudinal oscillations of the tether were damped out by longitudinal 

dampers tuned to the longitudinal frequencies. 

AlI the bodies were considered as point masses in aU of the above studies. On 

the other hand, Baehmann et al. [18] included the rigid-body rotational motion of 

the Space Station in a three-hody Space Station-based Tethered Elevator System; 

they also considered the offset of the tether attachment point from the Station 

center of mass. The equations of motion were derived using the Lagrangian 

approach. Tethers were assumed massless and elastie in the formulation stage, 

but. rigid in numerical computations. An optimization was carried out on two 

control schemes: thruster cont.rol and hybrid offset-thruster control. 

Misra and Modi [19] formulated the general three-dimensional dynamics of 

N -body tethered systems using a multiple-pendulum model. The tethers were 

assumed massless and straight. The equations obtained are valid for large mo

tion as weil as for variable-Iength tethers and any arbitrary orbit. A study on 

librational frequencies was carried out by considering small angle motion in the 

ncighbourhood of the local vertical equilibrium configuration for the special case 

of d. circular orbit. Based on the linearized equations of motion, a general dis

cussion was presented on the acceptable range of control gains in a particular 

l'l'el rate cont roi 1<\\\' fol' controlling the in-plane and out-of-plane librations at the 

saille t i ml'. 
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The well-known control methods for tcthered satdlites are t(,lI~illll rontl\\1 

laws, length rate or reel rate controllaws, thrustcr coutn>llaws and, olr~l't nmt lOI 

laws. In the case of the tension controllaw one modulatcs the tension :11 tlll' h't hL'r 

using the feedback of appropriate generalized coordillates or thl'Ïr deli\'ati\"l'~. 'l'hl' 

tension controllaw is the first standard method that had becH used for cont rolling 

the motion of tethered satellite systems, therefore a rich literat Illl' i~ a\'.Iildbh- fur 

this control method. Amoug them one can highlight the lldl'l'l'lIl'l'S [:W] by Hupp. 

[21] by Kulla, [22] by Bainum and 1\umar, and [23] by Li<\.lIgdollg and Bdilllllll. 

In length rate or reel rate controllaws the tet her recl rate or the td hel kll,!!,1 li i:-. 

fcd back with app~'wpriate form. As examples of the ec\rli('!->t \VOl b 011 Ilu' Il'I'II.1I l' 

control laws, one can refer to Referenc(' [24] by 1\0111<.'1' ct. al. TIll 1 U .. !t-I 1 \Jllt Illl 

laws are implemented by firing thrustcrs at all appIOplÎat<' point of t II(' sy~t l'III 

and modulating the magnitude of the thrust by suitaLI(' fccdb(l('b. '1'11111:-.1<-1 

control laws have heen used for obtaining a better }>el formallc (' in Ollt -of- plane 

motion; Reference [25] by Banerjee and Kane can he rcfcrrcd ill thi!> rcgéu d. As il 

recent refcrence one can consider Reference [26] by Fleuris~on ct al. Ofrset (\HltIU! 

Iaws have been proposed recently as an alternative to thrustcr cOlltlOllt'r. Ofr~d 

controllaw" fUl1ction gellcrally Ly changing the offset of tilt' point uf é1u'.I( 1111H'Id lil 

the tether to the main satellite, wllich must he trcated a!-> a 1 i!!,id lllHly (Hl'fl'll'Itf c' 

[2i] by l\Jodi et al. can be mentioIlcd as an cXéllllple). The fil:-'!. t11Il'(', wIJidl 

are compatible with our mode1, have been augmellted 1.0 t he ~illllt!;t1,ilJn of tlll' 

motion in this thesis, but the offset control mctllOd does IlO!. fit \Vith il llIlidel 

that considers the bodies as point masses. 

The thruster augmented and offset control schcTr)(.!!-> hilvl' !->()IIl<' n'~l.l'i( t.ilJll~ ill 

their implementation. For henefiting from the thru~ter forC('~ (HIe ~h()ldd illC hlC!(' 

sorne fuel in one or more elements of the system. Thc other plobklll \Vit h t1l1lJ~t('r!-> 

is that they cannat be fired in the proxirruty of the Shuttle. On the ot}Wf hand, 

for the offset controllers, moving the point of attachrncllt of tll<! tctlJ(!J' i~ rwt 

aJways possible. However, the tension control laws and )cngth Of rcel rat e COIlt.I{)) 
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laws are easy-to-implement. 

Here, in this thesis, a simulation package is developed for studying both the 

in-pIa,ne and out-oC-plane motions of the multi-body systems. The formulation is 

valid foc motion in the large. Bodies are treated as point masses and the emphasis 

is on the librational motion of the tethersj Le. the elastic vibrations of the tethers 

are assumed to be negligibie. The formulation and simulation consider for the 

gcneral case of N number of bodies. 

The code developed in the thesis is used to study the three-dimensional mo

tion of the system. There have been very few studies on three-dimensional motion 

of multi-body systems. Besides analyzing the three-dimensional dynamics of the 

multi-body tethered satellites, the purpose of the thesis is also to develop easy

to-implemcnt control schemes to stabilize the in-plane and out-of-plane motions 

at the same time. Even for the two-body systems, in the available literature that 

consider controlling the in-plane and out-of-plane motions simultaneously, the 

suggested control systems are comprised, completely or partially, of the thruster 

and/or offset control laws that have difficulty in implementation. The reel rate 

and tension controllaws have been used extensively in the past for controlling the 

in-plane motion, but they could be very useful to control the out-of-plane motion 

as weIl. One of the objectives of this thesis is to do this for multi-body systems 

with reel rate controllaws. There is no work available that offers a pure reel rate 

control law for stabilizing the in-plane and out-of-plane librations of multi-body 

systems. 

Xu et al. [28] and Xu [29], using the energy dissipation method, proposed 

a reel rate control law for two-body tethered systems ta control the in-plane 

librations together with the out-of· plane librations. As a logical approach, here we 

slart \Vith two-body systems alld then extend the results to multi-body systems. 

It should aiso be mentioned that it is weIl known that the deployment of the 
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tethered systems can be performed even without a feedback control system but, 

during the retrieval the presence of a feedback control system is indispensable. 

This is due to the sign of il f term which acts as a damping coefficient in the second 

order equations for in-plane and out-of-plane librations. For the deployment, il f. 
is positive and we have positive darnping. For the retrieval el f is negative and wc 

have negative damping; i.e. it will add energy to the system. Due to the criticality 

of the retrieval phase, most of the attention in this thesis will be focused on that 

phase. 

1.5 Outline of the Thesis 

The aims of the thesis were discussed in the previous section. [n the following 

chapters, the formulation of the problem, the proposaI of the control laws by 

analytical methods and the results of the simulation of motion are presented. 

Chapter 2 contains the development of the equations of motion for N-body 

tethered systems. The Lagrangian approach is used. The center of maS8 i8 

assumed to have a prescribed Keplerian orbit. The bodies are considercd as 

point masses and three-dirnensional motion of straight tethers is considered. The 

nonlinear terms are retained in the equationsj hence, they hold for motion in the 

large. Explanation of the developed computer code closes the chapter. 

Chapter 3 deals with the development of a reel rate law by using Liapunov's 

second method. The method, which is also called Liapunov's direct method i5 

described in detail first, and its advantages and di1'iadvantagcs are pointcd out. 

Based on the Harniltonian of the system, which is often a good candidate for the 

Liapunov function of dynamical systems, a proper Tee! rate law for cont.rolling 

the retrieval phase is obtained. The resulting motion with this recl rate law IR 

presented at the end of the chapter. 
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Chapter 4 introducf's an alternative analytical method, called the energy 

dissipation approach. This approach is also applicable to the nonlincar equations 

of motion, but the complexity of the mathematics behind lt obliges us to apply 

the method to linearized equations. Ilov:ever, the effecti"cness of the control 

laws developed is validated by simulation of the system dynamics with nonlinear 

cqllations. Two reel rate controllaws for the retrieval motion are obtained, one 

witl! quadratic roll rate feedback and another with absolute value roll rate feed

back. The comparison of the performances of the system with different reel rate 

laws is donc next. Then the superior reel rate laws are extended to multi-body 

systems and the reslllts of simulation of motion for sorne t hree-body cases are 

presentcd. A discussion on the effects of diffcrcnt parameters and gains on the 

resulting motion terminales the charter. 

Conclusions and comments are the contents of Chapter 5, the final chapter 

of the thcsis. 

There are also two appendices to these chapters. Appendix A presents the 

applications of tethered satellites. Appendix B is on the defillition and exact 

location of the orbital center. 
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Chapter 2 

Dynamical Formulation for 

N-body Tethered Systems 

2.1 Introduction 

This chapter contains the formulation of the problem for a general system con

sisting of N bodies which will be treated as point masses, connected by N - 1 

tethers. It starts with the description of the system and the assumptions made, 

which as a matter of fact is an illustration of the model that is going ta be uscd 

in our study. The third section discusses the generalized coordinales and the 

kinematics of the system. The Lagrangian approach is used next for developing 

the equations of motion. A brie! explanation of the computer code terminales 

the chapter. 
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2.2 General Description of the System and As-

sumptions ]Vlade 

The entire system is orbiting around the Earth mainly under the a.ction of the 

gravitational attraction of the Earth, which is assumed to be spherical. There may 

be sorne other external forces likc aerodynamic forces, solar radiation pressure, 

c1ectromaglletic forces, etc. actiIlg as perturbations. Dcpending on .',he situation 

the significance of these differcnt forces varies, for example aerodynamic forces 

arc not important al highcr altitudes. 

The system, consisting of N bodies and N - 1 tethers is shown in Fig. 2.1, 

whcrc m" i = 1,2, ... , N rcpresent the mass the bodies. These bodies can include 

the Spacc Station, the Shuttle, scientific platforms, and/or elcvators, etc. The 

center of ITlélSS of the system (C.M.) is assumed to have a prescribed l\eplcliétll 

orhit. As a matter of fact the be5t poillt for representing the orbital motion of 

th(' syst.em is the orbital centcr (D.C.) and not the center of mélOS:,. The 01 bital 

center is the point where the sum of the gravitational and centrifugaI forces is 

zero alld b discussed in more detail in Appendix B. III this tltesis it is assumed 

tltat the O.C. coincides with C.~1. and the degree of \'alidity of tbis assumption 

will be discusscd shortly. The inclination of the orbital plane to the equatorÏal 

plane is replcsented by the angle 2, the argument of pCligee Ly ~'O. amI the true 

anomal)' Ly ~'. The coordinate system used here is the rotating 01 bitaI coordinate 

system x, y, z shown in Fig.2.l, with its origin situated at the center of mass of the 

system (C.M.). The center of the Earth is indicated by E, and Re represcnts the 

instanta1leolls radial distance of the C.M. with respect to the center of the Eal'th. 

'l'hl' J' axis is along the local vcrti('al pointing outwards, the: axis is normal to 

the orbital plane, and y axis is perpendicular to both of thcm. completing the 
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The orbital motion of the system is assUIl1t'd to bl' unalrl'ctl'd by t hl' li hl <1-

tions of the tethers and the attitude motion of the clld bùdic~. If tlll' lIIa~:-'l':-' .111' 

considered as rigid bodies, the attitude motion of thcse bodies will be COU l'kil 

with the librational (rotational) motion of the tethcr8. Thc cfrcd of at t it ulle 

motion of the bodIes is significant if either the sizc of the hodil'S is l:Olllpal,Il,11' 10 

the lengths of the tcthers, or the acrodynamic forCC's are Cllll-;idl'I'otbll', llel l' \\'1' 

study the cases where the lengths of the lethcrs aH' llIucl! I,llgl'r tilotll tlll' :-.ill'~ \lI 

the bodies, and the altitude is high ellough for 110t havillg HUy :-.iglliliré\lIt <ll'Iu 

dynamic e{fect (200 km or more). Helice, we may (,ollsidt'\' t I\(' "lJdil'~ <l'" puilt! 

masses. 

Since the tethers are long, their mass a~ \\'ell as tllt'il' lltlIlWt'J'!>I' iIIld IOllgil Il 

dînal vibrations should be considered. But for the salw of silllpli('ity the' tl'tlll'I~ 

are considered masslcss and straight. As was discuss('d III Cll<lpt(,1' 1 aile! Ap 

pendix A, most of the applicatiolls of the 1 etheied satellitl'!-> ,li l,in ltJIljl\1I1 t iU11 

with the Shuttle or the Space Station. In practicc, the I1\a!->S of till' t.cthl'I:-. i~ 

of the order of 102 kg, while that of the Orbiter or the Spa((' St at iOIl b uf tIlt' 

order of 104 - 105 kg. Therefore ignoring the mass of 1,11<, tl'l.ll<'1'5 i:-. JI lit il M'\'('ll' 

approxirnatioll. As will he lale!' dClllOlliltréll('d, ('\'(,/1 art ('1 1 I/{' ... I· (1 ...... 11111/11 iUII"', 1111' 

equations of motion are very complicated. III tIlt' 1;lIt'l ~t ,IW':-' (JI' 1 1'~I'dl 1 Il UII ,r...' 

body systems these assumptions could he rclaxed, a~ ill tlll' ('a ... !' of i 11\'1 ",t ig.tI iOIl" 

on two-body systems where the stlldic~ slart('d \Vith ~illlplifi('d \IIocld.., hile! \\'1'11' 

latcr irnproved upon. 

The e{fect of the electrodynarnic field of tIle Eartb i~ Il<'gligil,II' ('X< ('1'1. f(J1 

the cases of electrodynamic applicatioIls which need a ~('I)(II ,t! (' !->llldy, Tlw ullH'1 

source of perturbation is the solar radiation; it doc!' affect. t1H' 1.(·1I1J)(,1 ,11.111 l' IJI 

the tethers. By being exposed to the solar radiation alld beillg ill tlj(' ~had(Jw of 

the Earth periodically while orbiting around the Earth, t}JC tct}lCn, bave a tjlJJ('

dependent ternperature and consequently tirne-varying c\(JfIgati(JII. l\éJlaglran lot 
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al. [30} have demonstrated that for a stainless steel tether there is a change in 

elongation of 0.09 % for a temperature fluctuation of 60° K. We do not consider 

this effect since we are not considering the longitudinal vibrations of the tethers. 

In addition, we plan to control the motion solely by reel rate laws and without 

the assistance of any thruster. Therefore no thrust will appear in the equations 

either. 

As it was mentioned before, another assumption here is that the orbital 

center coincides with the center of mass. The validity of this approximation is 

very high, and for showing i t we perform a comparison between the positions of 

the D.C. and center of mass. Employing Eq. B.9 from Appendix B, the distance 

belween Q.C. and C.M., relative to the radius of C.M., can be written as 

(2.1) 

For the systems with short tethers, basically there is no sensible difference between 

the positions of the two points. Even for the systems with moderately long 

tcthers, the two points are very close. In order to give an idea about this difference 

we consider an example of a two-body system with a 100 km long tether. From 

Eq. 2.1 one can show that for any tether length, the distance betwecn the positions 

of the C.M. and D.C. is maximum if the bodies have equal masses, therefore we 

consider ex amples wüh equal masses for the two bodies. For a system with 

charactcristirs of tether length=100 km, rl = 6870 

km, r2 = 69ïO km, the offset between C.M. and O.C. is about 0.005 

percent radius of C.M. 

Fùr having a relatively significant difference in the positions of Q.C. and 

C.~1., the tether should be very long. For example in another system with 
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tether length= 1000 km, ri = 68ïO km, r! = ï8ïO km, 

this offset is about 0.46 percent. It can be seen that even in the case of such a 

long tether the difference in positions of the two points is not much. Therefore, in 

this thesis we neglect the difference in positions of C.M. and O.C.~ in Fig 2.1 the 

point C, the origin of the orbital reference frame, represt.llts their assumed COIn

mon position. Having the center of mass at the origin simplifies the kinematiral 

relations significantly. 

In summary the assumptions made here are: 

1. The gravitational field is assumed to be that of a spherical Earth and the 

effects of the Sun and the Moon on this field are ignored. 

2. The bodies are treated as point masses. 

3. The orbital motion is assumed to be based on the central force motion , 

and independent of the librational mot.ion. 

4. Longitudinal and transverse vibrations, and mass of the tethers arc ignored. 

5. The effects of the aerodynamic forces, electrodynamic field of the Earth and 

solar radiations are negligible. 

6. The center of mass is considered to be coincident with orbital center. 

2.3 Kinematics of the System 

Since the origin of the orbital coordinate system x, y, z coincides with the center 

of mass, from the definition of the C.M. we get 

N N 
2: m, y, = 0, 2:m,z, = 0 (2.2) 
,=1 ,=1 
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Becausc of thcse three constraint equations, the N -body system which can po

tentially have 3N degrecs of freedom, will have only 3N - 3 degrees of freedom. 

Thcse 3N - 3 degrees of frecdom are relative to the orbital coordinate axes. In 

order to have a complete representation of the motion, one should add the orbital 

motion of the axes to these degreps of freedom. In this thesis, the orbital motion 

is assumed to he prescribed, and can he descrihed in terms of the radial distance 

Re and truc anomaly 1jJ. Truc anomaly is an indication of time and enters the 

equations as the independent variable. 

Let us now discuss the choiœ of the generalized coordinates. Of course, the 

dynarnics of the system can he descrihed hy the Cartesian coordinates, Xl' Yt> Zl' 

i = 1,2, ... , N. This sct cOllsists of 3N caardinates, but since the generalized 

coordinates arc supposcd to he iudcpcndcllt, thcir numbcr should be equal to the 

degrecs of frccdom of the sy::.tem, i.e. 3N - 3. Hence for choosing the gClleralized 

coordillates one should take out threc coordinates from this set. say X/\"YN,ZN • 

lIowcver, the resulting set is not convcnient and will not be uscd here. lnstead, 

élnother !:let of coordinates will he considered as generalizcd coordinat es ",hich is 

cornpriscd of the length of the tethers, ft, and two rotations for cach tether, Ot 

alld <PH l = 1,2, ... ,N - 1. As is shown in Fig. 2.1(h), the angle Ot is measurcd 

in the orbital plane, so it is called the in-plane rotation; it is also known as the 

piich allgle. The angle tP, indicates the amount of deviation of the tether from 

this plane 50 it is callcd the out~of-plane rot.ation. This angle is also kno\\'11 ",itl! 

allot her Hame, the roll angle. 

Usillg Fig. 2.1 the Cartesian coordinates of the masses can be related to the 

gellcralized coordinat.es in the following manner 
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X2 = Xl + il cos(h cos 4>1 

2 

X3 - X2+ i 2 cos O2 COS 4>2 - Xl + L: e, COS 0, COS 4>, 
,=\ 

}-l 

= Xl + L: e, COS 0, COS 4>, , 
,=1 

N-I 

XN - XN-l + lN-l cos 0N-I cos 4>N-l = Xl + L: f, COS 0, COS 4>, 

,=1 

Now by substituting Eq. 2.3 into Eq. 2.2 one arrives at 

x, lt, mi] +R, cosO, cos~, l~ m.] + ". 

+ i,_1 COS( 0,_,) COs( ,p,-Il [È m.] +". 

+ f N - l cos(ON_d cos(4)N-d [mNl = 0 

Defining the mass ratio J.L. as 

where 

J.Li == m./m, i = 1,2, ... ,N , 

N 

m = I: ml = total rna~s of tbe end b(Jdie~ , 
\=1 

one can solve Eq. 2.4 to obtain XI 
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( x, = - ft, 1".] l, cos 0, cos <P' - ••. 

- ft, 1".] l,_, cos(O,_,) cos(<p,_d (2.7) 

- ... - [PN] iN-l cos(ON_d cOS(<pN-d 

From the expression in Eq. 2.3 for x}' and using Eq. 2.7 for Xl one gets 

}-1 

X; = Xl + L f, COS 0, cos 4>, 

= [1 - f: Jl.1] il cos 01 cos <Pl + ... 
1=2 

( 
+ [1 - t, P.] l,_, cos( O,-d cos( <p,-d 

[ t Jl.'] iJ cos( OJ) cos( <p)) - ... 
1=3+1 

(2.8) 

[PN]fN - 1 cos(lIN_d cos(4)N-d . 

Since L~l Jl., = 1, Bq. 2.8 reduces to 

X) - + [Jl.d il cos 01 cos <Pl + ... 

+ [~I".]l,_, cos(O,_d cos(<p,_d 

+ [-1 + t P.] l, cos(O,} cos(<p,} + ... 

( 
[-1 + .~l ] + ~ III (N-1 cos(O.v_tl cOS(<;?N_d 

1=1 

(2.9) 
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By defining the coefficients A;I 's as 

AJ' = [t J1~1- S( l - j) , 
k=1 

where S(a) represents the unit siep funclioll with the following propl'rtil's: 

S(a) = 1 for a ~ 0 , 

=0 for a < 0 , 

Eq. 2.9 can he representcd in the compact form 

N-l 

x) = L A), fi cos O. co!> 9. 
1=1 

Similarly for y and z coordinates of the ph mas-; 011(' Oht.êlill~ 

N-I 

y) - L AJI l. sill 0, CO'> <" , 
1=1 

N-l 

z) L AJ' l. sill 9, 
.=1 

2.4 Governing Equations of Motion 

(:!.\O) 

(2.1\ ) 

(:!.\ :1 ) 

('2 1,1) 

For obtaining the equations of motion of tethered sy!>t CIIIS diff('/{'lIt d l'pl Oil( /11"-, 

have heen used by differcnt investigator~, dCpCIlOillg (JII t III' Il,1I 111(' {Jf t IJ(' ~y"t('lrl 

and method of modclling. For the modcl that wc have m('d, i,('. !>t 1 tli~J.t, IIw.,.,I(,:.., 

tethers, and specially for our system con~i!>ttrlg (Jf tlte l'l,' !)(Jd i(':.. t /11' \){',>t "III" oit( il 

seems to be the Lagrangian approaclt. The Lagrangiélll app/lJ<lC il 1:-' il l'0W('I fil 1 (tIJll 
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effective method when the number of internaI elements of the system is relatively 

high. As opposed to the Newtonian approach, which is a force approach, this is 

an energy approach and is based on the energy expressions for the whole system. 

In the Lagrangian approach the dynamics is governed by a set of scalar second 

order partial differential equations as 

[( :::: l, 2, ... ,3N - 3 , (2.15) 

where qK = Ole, <Pie, fie, k :::: 1,2, ... , N - 1, are the generalized coordinates, L is 

the system's Lagrangian defined as the difference between the kinetic energy (T) 

and potcntial energy (U) of the system, i.e., 

L=T-U , (2.16) 

and Q K, f(:::: 1,2, ... ,3N - 3, are the generalized forces. 

If the nurnber of qK 's is more than the degrees of freedom they will not be 

independcnt, and they cannot be considered as generalized coordinates anymore l . 

In these cases there are sorne constraint equations, usually algebraic, which must 

be solved simultaneously with Lagrange's equations, and on the right-hand side 

(RUS) of the Lagrange's equations (Eq. 2.15) an extra term must be added as 

follows: 

f{ = 1,2, ... ,3N -3 , (2.1ï) 

\\ here 1/ represeBts the Bumber of constraints. and .\{, 1 = 1. 2, ... ,n are extra un-

1.\ 1\ t'X.lll\ple IS the tcthercJ clc\'ator prüblcm The lengths of the two tether elements on 

t Wll suies of the elcvator aJd up tü a constant value. 
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known coefficients called Lagrange 's multiphers. The funct iOBS fI. 1 = 1.:! ....• 11 

in this case represent the left-hand side (LHS) of the cOllstraillt equat illn~ uf till' 

form 

1=1,2 ....• 11 • t:!·l~) 

In the following two subsections wc dc\'clop the cxprcs~ions for kind il' and 

potential energies of the tethered satellite systems. Substitut.ion of lIH':-'c (':-.pn·:-,

sions into Lagrange's equations cornes ncxt. 

2.4.1 Kinetic energy of the system 

Since the tethers are assumed massless and the bodies arc cOll:-,iùcrcd as poillt 

masses the kinetic energy of the system is simply equal to: 

T = ~ f, rH) (v) . V J ) , 

)=1 

(1 I!)) 

where m) is the mass of the ph body, and v) is tltt· rOll (':-,pulldill,!!, all:-,ullll,l' 

velocity, and it can be expresscd in the follo\\'illg m<tllll('1 

J = 1,2, ... , N 

Here Vc represents the velocity of the C.M. (or O.C.) which i!> !W{JWII élS tlt(~ orblla! 

velocity, and rJ is the relative velocity of the ph body with rc!>pect tu t1l<' :r,]j,;; 

axes, Le. rj is the position vector of the ph mass relative to this IcfeIcllce fraIJl(~. 

Substituting Eq. 2.20 into Eq. 2.19 the kinctic encrgy bccolllc:-, 
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(2.21 ) 

The first term indicates the amount of the kinetic energy that aIl of the bodies 

have hecause of the orbital motion and it is called orbital kmetic energy (Torb ). 

The third term will be the non-orbital or librational kinetic energy. The second 

term will be zero since the origin of the reference frame is at the center of mass; 
N 

i.e., L: mJrJ = 0, and in the second term we have 
J=l 

Then the expression for the kinetic energy reduces to 

1 N 
T = Torb + 2 L: mJ (Ï"J) . (Î'J) 

J=l 

(2.22) 

(2.23) 

If i,j, k indicate the unit vectors along the x, y, z axes respectively, Ï"J can 

be round by differentiating 

(2.24) 

Since x, y, = frame is not an inertial one but is rotating with the angular velocity 

of H, Î"J is equal to 

(2.25 ) 
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(2.26) 

Differentiating Eqs. 2.12-2.14 one ohtains 

N-l 

x J - L A}, (il cos 01 cos cP, - eJ), sin 01 cos cPl - el ~I cos 01 sin cPl) (') ')o,) _owl 

1=1 
N-l 

YJ - L A}, (ii sin (J, cos 4>, + l,ÔI cos 01 cos 4>1 - ll~' sin 01 sin <p,) (2.28) 
1=1 
N-l 

ZJ -- z: AJI (i, sin cP, + f,~, cos <Pi) (2.2!)) 
1=1 

consequentiy rj can be expressed in the following compact forrn 

N-l 

rJ = I: AlI (u l i + v, j + wl k) , 
1=1 

where 

. . . 
U, - e,cosolcoscP,- e,(O, + fi)sinO.coscPl - i,1>.cosO,sin1>. (2.:n) 

v, - i, sin 0, cos 4>, + i,(O, + fi) cos 0, cos cP, - e,~, sin 0, sin 1>, (2.:l'.l) 

. . 
WI - l, sin 4>1 + l,4>1 cos 4>1 (2.:1:1 ) 

Equations 2.30-2.33 can be substituted into Eq. 2.2:! to dcterrnirw t.he ki

netic energy. 
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2.4.2 Potential energy of the system 

For a tethered satellite system the major potential energy is the gravitational 

potential energy. In case of a single particle with mass ma, orbiting around the 

Earth with the distance from the center of the Earth equal to Ra the gravitational 

potential energy is equal to 

(2.34) 

where G is the universal gravitational constant and Me is the mass of the Earth. 

For a system consisting of N bodies the gravitational potential energy will be 

cqual to 

N 

U = -GMe L mJ/ 1Re + r,1 (2.35) 
,=1 

where Re is the position vector of C.M. or a.c., and Re +rJ will be the position 

vcctor of thc ph mass relative to the center of the Earth. This equation can be 

rc-wri t ten as 

N [?R ]-1 /2 _ (G~l /R ) ~ 1 - e' r, r,' rJ 
1 e C L....J m J + R2 + R2 

)=1 e C 

\Ising the hi normal expansion one gcts 
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u = _ (GMem ) _ (GMe) tmJ[ _ 
Re Re ;=1 

(:LHi) 

+ °C~3)1 ' 
The first terrn in RHS represents the potential energy of the system, if t.he mass 

of the whole system was concentrated at the orbital centcr and it is called (T,lib. 

Inside the square hracket the leading term can be rewritten as 

(GR~e ) 

Since the origin is assurned to be located at the center of mass, this term vanishcs. 

rJ 's have the same order of magnitudes as the tether lengths, and they arc much 

smaller than the orbital radius Re. Therefore we neglect the t.enns coTlsisting of 

the third and higher order of ~ and Eq. 2.36 changes to 

u = U~. + (GM,j2R:,) ~m,[r, ,r, - 3 (i. r,)'] (2.:n) 

2.4.3 Substitution of T and U into the Lagrange's equa-

tions 

Now by utilizing Eqs. 2.23 and 2.37, equations of motion can be found freml 

Eq. 2.17. Our generalized coordinates consist of only the attitude dynltmic;~ 

parametcrs; thus, Torb and Uorb arc indcpcndcnt of thern. ~f()re()ver, t.lw pol.efll.l,d 

U cl t cl cl ".' f) L lJT '1'1 r t energy, , Des no epen on qK s, I.e. ~ = ~. lcrelorc one gc ,s: 
uqK vqK 
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The unit vector i is in the direction of local vertical at each instant, and it is 

independent of qK's which are aIl attitude dynamics parameters. Consequently 

Eq. 2.17 reduces to 

(2.38) 

where f{ = 1,2, ... ,3N - 3. 

Employing the following two mathematical relations [31] 

(2.39) 

Eq. 2.38 simplifies to 

[( = 1,2, ... , 3N - 3 

Eqs. :!.l:!--:!.ll and :!.21 define rJ' in addition. ?jfJ's can be obtained from 
q/c 

t hem. fJ is equal to the total time derivative of Eq. 2.30 
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Ï', = L AJ' [(ù, - nv,) i + (v, + nu,) j + tu, k1 (2..1 1) 
,=1 

u" V" w, are presented in Eqs. 2.31-2.33, and Ü" Vil tU, can be round by ditf~ren

tiating thern with respect to time. Using aU the above-rnentioned relations, aCter 

sorne algebraic manipulations, equations of motion, Eq. 2..l0, can be writtcIl ,tS 

k = 1,2,.,., N - l , 

where the parameters Gk,'S are given by 

N 

Gk , = L: JL, AJk AJ' 
]=1 

(2..12) 

(2 . .\.1) 

('2..1;) ) 

J1." A,k' A" are the rnass parameters as dcfined bcfore in Eqs, ~.;) and :U 0, 

respectively. FOk., F~k., Flk' are functions of the gcneralizcd coordinate'i and t.heir 

derivatives, given in the following expressions 

FOk. = [ {(O, + n) + 2 (i,/f,) (0, + O)} COS(Ok - 0,) + :3 (GMe/ R;/) sin tJ,. ws(). 

{(GMe/ R't;) + (i./f..) - (O. + 0)2 - ~n sin (Ok - O.) ] ('O'i (/JI. CO., f/l l 

+ [{ O. + :2 (è, / f,) ô,} 'iin( Ok - 0,) 

2~. (O. + n) COS(Ok - O.)] COSQk SUl','}. 
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F~~. = [~, + 2 (l,/i,)~, ] 

[cos <Pk COS<p, + sin <Pk sin<p, COS(Ok - 9,) ] 

+ 3 (GMe/ Rb) sin <Pk cos <P, cos Ok cos (J, 

+ [(GMe/ Rb) + (l,/f,) -~? ] 

[ COS <Pk sin <P, - cos <P, sin <Pk cos( Ok - 0,) ] 

- [{(O, + n) + 2(i,/f,)(O, +!l)} sin(Ok - Oi) 

- (8, + 0)2 COS(Ok - 01) ] sin <Pk cos <Pi 

+ 2 (8, + !l)~, sin(Ok - 0,) sin <Pk sin <P, , 

Ft •. = [ë,-l,(Ô,+0)2-1,~?+(GMe/Jfc)i,] 

[ cos <Pk cos <P, cos( Ok - ( 1 ) + sin <Pk sin <P, ] 

+ l,(8, +0)2 sin<Pk sin</>,-3(GMe/R&)l, 

cos <Pk cos </>, cos Ok cos 0, 

+ [{ (O,+O)+2(i,/l,)(O,+O)} sin(Ok-O,) ] 

i, cos <Pk cos 1J, + [~, + 2 (i, / i,) ~I ] 

[ sin cPk cos <P, - cos 4>k sin </>, cos( Ok .-. 0,) ] fI 

- 2f1 (Ô, + n )~I cos <Pk sin </>, sin( Ok - ( 1 ) 

(2.4 7) 

(2.48 ) 

These expressions reveal that c\'cn with the assumptions made here the equations 

,m' quitc complicated. Dcgree of complexity grows with a rate much higher than 

pl nport ion.\l t 0 t hl' lllllllbcr of bodies. 

Wc have Ilot discussed about the RHS's of the equations until now. Analyz-
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ing different terms of each equation from the point of vic\\' of thc forccs Il'PI'l'S{,lllPd 

by them, is helpful in having a clear understanding of the HIlS's \OlL-s. Tilt' LIlS':. 

inc1ude the effect of inertial forces, through the kinetic ellel gy, 7', as wdl as the 

effect of the conservative active forces, thlOugh the potL'lltial CllClgy, l·. '\ll .\\

ti ve or driving force is a force that performs work ",hen the system ulIdel'gol's a 

virtual displacement compatible and in cOllformity with the constraints. ln the 

RHS's the generalized forces, Qu" 's, Q,p" 's and Ql" 's accoullt for thl> e[cd. of ail 

the driving forces that are not considered in the LIIS's, i.e. the IlOIlCUllSCI \',11 iw 

driving forces. The second terms in the RIlS's arc duc tü the cüllstraillt fUI t'l' .... 

In summary we have divided the forces illto th1'ce killds; illl'i t i,,1, l'Oll:-.t 1 dillt clll,l 

driving. The driving forces could be COllSCn\lt ive or IlOIlco Il:''('1 \'dt i\'('. 

The exact definition of the generalized force Q/\" ~'Ol'l'csp()Jldillg tu tl1<' g('ll

eralized coordinate qJ\, 1\ = 1,2, ... , 3N - 3, i~ that., il. i:, il ~('alal qllallt it~· 

such that for a virtual displacement in q/\' ajonc (ail otIler cool'llill,dl':-' II('Jd fix(·d) 

QJ\bqK is equal to the work donc lJy ail dl'ivillg 110llCUIl:'('I\'cllin' fUll ( .... ·l dlllllP, 

on the system. As explained in the bcginIlillg of the chapt.('l, ill t hi-, :-.llId,\· \VI' 

neglect the perturbing effect of the solar radia tioll. III add i l i011 W(' (O!l ('('Ilt l ,d (' 

on the cases where aerodynamic and electroùynamic perturbatioll:" ail' Il('gligibll', 

and we do Ilot plan to employ any thruster for controllillg the mot iOll, TIH'I dOl (', 

there are no external driving forces. lIowever, thcre alc ill!.<'l'lléJ! dl ivill~ lOI CV:', 

tensions inside the tethers, The tension force:, will PPI [01'111 WUI k \\ 111'11 viII Il,d 

displacements occur in length dcgrccs of fleeùorn (M'I.':,), IJll1 t11l'j' do lIul Ill'I

form work when the system undcrgoes virtual di!-.plélcclIl<'lll ... ill élllJ.!,1dill dq!,I('(':' 

of freedom (bOk'S and b<Pk'S). Thcrcforc the Qo. 's éllld qtl>~ ':" al(' ,W!O <llJrI WC' ,d:-'<J 

do not plan to impose any constraints on the!>c deglec!> of fI c('r!UJ Il , i,e !.11l' [{liS'.., 

of the Ok'S and <Pk's equations, thc Eqs. 2.42 and 2.43, arc Z('IO 

20r possibly driving conservative forces that arc Ilot takclI IIlto accuulIl. III r,()t('lIt IiIl ('lIefJ!,y 

at the LBS of the equatlOn. 
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For a virtual displacement in i k , k = 1,2, ... , N - 1, the work performed 

is equal to - T k 8ik , where Tk represents the magnitude of the tension force in 

the kth tether (Tk ). The minus sign indicates that the tension force acts in the 

opposite direction of a positive 8ik (increase in length). Thus one obtains 

k = 1,2, ... , N - 1 . (2.49) 

One should notice a special case, where the lengths of sorne or all of the 

tethers are given as specified functions of time, ik = lk (t) (this includes the case 

of a constant length). The length corresponding to each of these tethers will 

not be a generalized coordinate anymore and the equations lk = i k (t) will be 

constraint equations. The tensions in these tethers will not be a driving force 

anymore, but a constraint force [32]. Qi" will be zero, but tension will appear in 

the RHS with the same form as before, -Tk • This time the appearance of the 

tension will be through the terrn LÎ=l Al Z!! as the constraint force. Eq. 2.44 

will not describe the motion of the system anymore, but will be used to find the 

necessary constraint force, the tension force. Therefore, the equations of motion 

for a multi-body tethered satellite system under consideration are 

N-I 

L Gk• iki• Fo/c, = 0 , (2.50) 
.=1 

N-l 

L Gk• iki. F",,,, = 0 , k = 1,2, ... ,N-1 (2.51 ) 
1=1 

N-I 

L Gkl Ftk' = -Tk/m . (2.52) 
1=1 

:\OW (lfter obt(lining the equdtions of motion we will present a brief explana

t ion of the computer code that is used for numerical solution of these equations. 
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2.5 The Computer Code 

Based on the equations of motion presented in Eqs. 2.50-2.52, togcther with 

relations 2.5, 2.10 and 2.45-2.48, a simulation code is developed for the gencral 

case with the possibility of having N nurnber of bodies. The code ts in FOHTRAN 

language. The equations are aIl of the second order; hencc, each of them is 

changed to two first order equations. Then with N - 1 tethers and :J second ortler 

equations for each tether, there will be altogether 6(N - 1) first ortler nonlinear, 

coupJed, ordinary differential equations. These are solved using the IMSL library. 

Our problem is an initial-value problem, therefore we choose the subroutine thal. 

uses the Bulirsch-Stoer extrapolation method3. 

This method is efficient for nonstiff problems where the accuracy rcquin-

ments are high and/or the derivative evaluations are inexpcnsivc, which is our 

case. The subroutine (DIVPBS, D indicates that the routinc is Jouble preci

sion) keeps an estimated global error proportional to a user-specificJ tolerancc. 

It uses rational functional extrapolation and is based on the rnidpoint rllie in 

a slightly modified form [33]. The algorithrn is described in Jetail by Bulirsch 

and Stoer [34] and was translated into FORTRAN by Clark [3.5]; it wa.s further 

modified by Fox [36]. 

The program is debugged and its correctness is justified, hy cornparing its 

outputs for the small angles with the results of approximate analytical solutions, 

which are valid only for small angles. These test cases include the pure in-plane 

and out-of-plane motions for the small, with a specified length rate, exponent.la.1 

or linear, for two-body and three-body systems. For each ca~e t.he values f()r the 

angles, the pt and 2nd derivatives of the angles and the tension in t.he tet.her (or 

tethers) are compared. Naturally the initial values for t.he a!l~le'J <if(' dl()~('f1 t(l 

3See the ·'~IATII/LmRARY. FOR.TRA~ Subroutllle'i for ~Ialhf'rnatlr:al Applll all',II!. H mall

uai from IMSL. Ine., VersIOn 10, April 1987. 
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be zero or very srnall, and they are allowed to increase up to a certain value that 

keeps the smallness of the problem valid. In the final version of the program there 

is good agreement between the numerical and approximate analytical results up to 

angles of the order of 20° for two-body exarnples. This is a relatively large value 

and gives us reasonable confidence in the code. In three-body systems, where 

the accumulation of difference between the approximate analytical and numerical 

solutions is much faster, this value is about B.5c , which is still in the upper limits 

of what one usually considers as small angle. In addition, the program was run for 

sorne cases available in the literature and comparison of the results was performed 

and complete agreement was obtained. 
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Chapter 3 

The Liapunov Approach 

3.1 Introduction 

As we will see shortly, an uncontrolled retrieval motion is not stable. A cont.rol 

scheme can be considered successful only if it can lead to a stable rctrieval motion. 

Because of the advantages of the reel rate control scheme, mentioned in Chapter l, 

here we concentrate on this method of control. Normally the first ideas of a control 

law are obtained from an approximate analytical method, then the numcrical 

solution of the exact equations are carried out for verification and possible trial 

and error type modifications. In this chapter the aim is to use Liapunov's direct 

or second method for this purpose. The first method of Liapunov is based on the 

linearization of the system. On the contrary the second method is applicable to 

the stability in the large motion and it is a very powerful method, but as will be 

discussed in this chapter, it is a rather difficult and tricky method to apply. 

There are countless number of references available on the general tbeory 

of the Liapunov's direct method, among which Reference [:n] is widely used. 

The application of the method to the space systems has been extensive in the 
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pasto As far as spacecraft attitude control is concerned, in 1968 Mortenson [38] 

applied the method for att.itude control of an arbitrary rigid body. Since then 

many investigators have used this method for analyzing the control problems 

3.Ssociated with the spacecraft attitude maneuvers, among which we can mention 

References [39]-[45]. Fujii and Ishijima [46] used the method for controlling the 

deployment and retrieval of a Shuttle-based two-body tethered system. Recently, 

Vadali and Kim [47] used a Liapunov function based on the integrals of motion 

to perform a rather broader and more complete study on the control of two

body tethered systems. They developed tension C'ontrollaws as weIl as various 

combinations of tension control, reel rate control and thruster controllaws. As 

will be seen in this chapter, the proposed reel rate law have certain weaknesses 

to be employed unaided and these weaknesses must be removed. 

One of the main objectives of this thesis is to develop a reel rate control 

law for stabilizing the retrieval of a multi-body tethered satellite system. Since 

the principles are the sarne for two-body and rnulti-body systems, normally the 

primary developments should be done on the simpler case, i.e., two-body systems, 

and the outcomes be extended to multi-body systems. The method of formulation 

expressed in Chapter 2 makes this extension very easy. This is specially 50 because 

of representing the equations of motion, Eqs. 2.50-2.52, in the form of summations 

over the entire set of tethers (or bodies in the Gk,'s) of the system. 

3.2 COlDments on the Effects of Reel Rate on 

the Motion 

The gcneral form of the equations of motion for a multi-body tethered system 

was prescnted in Eqs. 2.50-2.52 together with relations 2.5, 2.10 and 2.45-2,48. 

These equations for two-body systems take the form of 
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where AI = ml m2j(ml + m2) and it has bcen assulIIcd that the orbit is circulaI 

with an orbital rate 0 (il is set to zero). It is cOll\'cnicnt tu ddillL' a IlOlltlillll'll

sional time ; = nt. Since the orbit is circular, ; is nothing but t.he tille Hllolllaly. 

If prime denotes differentiation with respect to ;, thcll Eqs. 3.1- :La ll'all:.follll tu 

0" + 2 [( f' j €) - <!>' tan cP] (0' + 1) + a cos 0 sin 0 = 0 , 

<p" + 2(f'jC)<p' + [(0' + 1)2 + 3C08
2 0] cos <!> sill cP = U , 

where t = Tj (1\1 C 0 2 ). Herc ('jf, i:. IlOt. c;..adly tht' lIolldiIlWII:.ioll,d 11·(·1 I.dt· 

since f is varyin~ with time, but it can be cOIl"iidel'er! a:. SOI1I(' ~(Jl t of ail illdi( at.ol 

of the nondimensional reel rate. 

By examining these equations, one can get sOllle gCllel,d i(ka~. ÂIIIOII,l!, t.11f' 

most relevant to our study 1S that the behaviour of bath ill-plalle alllI out-of- pl.llll' 

rotations depends ta a great extent on l'jf. Norrnally 0' allt! ô' ,Ilt'JIIIICII ~1I1.dl(,1 

than 1, thus (1 +0') is much larger than ç/. Thi~ n}('clTI" tltat tl\(' l'ff(·(t ur 1'/1' UII 

the in-plane motion, 0, is comiderably higber tltau it~ cf!'(·( t (JJI tli<' UIlI -of- pldlll' 

motion, <p. 

One of the major effects of the l'jt urt tbe lllmlticJllalJlJoticlll i ... It~ <Iif[('Jing 

role during the deployment and retrieval. lu the 0 dllel 9 ('qu,lIium, l'jl i1jJl)(,dl~ 
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in the coefficients of 0' and <p', respectively. Consider the cases of uncontrolled de

ployment and retrieval, i.e. having specifie variations of length with time without 

a feedback control system. The specified variation of length must be somehow 

imposed by the feeling system, but the hardware design of the problem is not 

of interc1>t to this thesis. For deployment, fIl f is positivc, and il will act as a 

damping faclor; thus it clamps out the motion of 0 and <? and stabilizcs the mo

tiOll. For retrieval f' / f is negati ve, then it will not acl as a damping factor; aIl 

the contrar)', it will add ellergy ta the system and it has a destabilizillg effcct. 

In otlier words, the deployment can be performed without a feedback control 

system, hut wc do nol expecl a possible retrieval withoul a feedback control 

system. Figs. 3.1 and 3.2 show the numcl'ical simulation results fol' uncontlOllcd 

expoIlclIlial rclrieval (f' If = -cl for t\\'o different values of c. They reveal that 

ill-plallc angle grows dramatieally fast. lIowever, in this very short period of time 

one can hardly fccl any growth in the out-of-plane angle. fi le destabilizes the ill

plane motioll much faster; this is in accordance \Vith the previously mentioned 

fa ct. thal f'jC afrects th(' ill-planc libration with a mudJ higbcl deglL'e tltall out

of-plane' motioll. 

TIt('rdOl'c lctricval is the clÎtical phasc of the motioll amI that IS wh)' wc 

concenlralc ill this thesis on controlling the retrie\'al phase. As was discussed 

in li\(' in\.rod uctory Chapter. the tbruster and offset COIltI 01 le\\\'S ha \'c dl fficulty 

iIl implcllIcntalion and among the tension and l'Ccl rate control laws wc would 

prefcr rccl rate laws for controlling the librational motion. The presence of a 

reeliIlg system is inevitablc in a tethercd satellite system, thU5 by designing a 

l'cd ratc controllaw one do not add that mueh of the hardware to the system for 

controlling libration al motion. 

Sin cc flle affects the in-plane motion with a much higher degree, it is ex

pected that controlling the in-plane motion solely by a l'cel rate law (i.e., by 

varying (' I[) will be remarkably simpler thaIl the out-of-plallc motion. This is 
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very evident in the previous works on reellatc (or lcngth rak) contml lcl\\':; [l~l, 

14,16,17,29]. The in-plane motion ha~ Leen contrulled l.Jy t hl'sC laws but Ilot 

the out-of-plane motion, except in [29] wherc a rccl rate la\\' tllat contHlls tht' 

in-plane and out-of-plane librations of a two-body systt:'1ll at tlll' :-'<lllll' tillll', h.l:

been presented. 

Another observation that can be made from thesc cquatiolls is t.hal thl' 

coupling betwecn 0 and <p motions is a nonlinear olle. If the lee! r,lll' la\\' 1:

supposed to control the out-of-plane motion along \\'itlt tIlt' ill-pl<llll' lllUI iUII. il 

seems logical to expect a nonlinear dependcnce 011 tl\(' out-uf-pl,l\1l' lill\'atiull.d 

motion, in the reel rate expression. 

3.3 Liapunov's Second Method 

Before expressing the stabiJity criteria arcoldlll,!:; to t bi~ IIl1't hut! W(' dl"'('ll~~ :-'1)11'1' 

related terms. 

For a dynamical system, the state of the system is o(':-,criIH.:d ill t('rlll~ of il 

set of state variables, represented here by; Xdt),X2(t), ... ,J'I>(/) (III{' {(J\ll!,OIl('IlI:

of the state vector, x). The state variables are tlto!>e wllielt dd('llIlill(' t Ill' 1'111.111 (' 

behavior of a system vdlen its present !>tat.c aud eXCItatio/J ~igllétl.., .11(' k'llJ\\'1I [,IX, 

49). Even though not the only possible one, the gcnendiz(od ('(){)I dill,at 1':-' illld t1l!'il 

derivatives comprise a good candidate for the !>ct of !>tat(O v'llialll.,.., III 11-1111.., (,f 

the state variables, the equatiolls of motioll arc usu.t!ly ('X"I (:~~(,d III t1", lOI III (Jf 

first-order different.ial equations al> 

l=I,~,.",I) 

Here pis the system's degrees of freedom, alld P = 2p, (J'& lue UJ(' g('Il<:lalizcd 

39 



( 

( 

. 

forces, and the state variables will be equalized with the generalized coordinates 

and thcir derivativesj QpQ2" ··,Qp,qpq2,···,qp· 

Another term that must be defined is positive (negativc) defini/wess of a 

function. Consider a real continuous function of state variables, ~V(x). possess

ing continuous first partial derivatives with respect to state variables, XI ,i == 

1,2, .. " P, inside a sphcrical domain Dh' where h represents the radius of the 

spherc i.e. : !lxll < h. The following definitiol1s can be expressed for this 

functioll 137]: 

1. The function W(x) is called positive (negative) definiie in the domain Dh 

if W(x) > O( < 0) for aIl x i: 0 and lV(O) = O. 

2. Th(· fUllctioll tV'(x) is called poslllt'e (negatlt1c) serllldcJilll1f i/l the clomaill 

Dh if W(x) 2 0(:5 0), i.e. it can vanish for somc x =J 0 in DI.. The 

positive (negativc) dcfinite and semidefinite functions are abo rcfcned to 

a~ SI!JU-COllstant. 

3. Thc functiol1 lV(x) is callcd indefiniie if it can assumc both positive and 

lIcgative values iu the il! the domaiT! Dh' llO matter lJOW sllIélll i~ the ndue 

of Il. 

No\\' the Slability Crilerion according to Liapunov's second mcthod i5: 

"If t11crc cxists a positive definite scalar function of the state variables, V(x), 

whose total time derivative f/(x) is negative definite or semidefinite along every 

systl'Ill'S trajcctol'y Eq, 3.7, then the trivial solution x = 0 IS stable, i.e. tbe 

system is !>table at the origin of the state space," 

The functioll \ ·(x) mentioned in this theorcm is called Liap1l1/OL' funciioll. 

This mcthod is \'cry powerful and has t",o main fl'ature:,: 1. TliC metllûd caIl 

examine the staLility of the nonlincar systems for motioll ill the large. 2. It 
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can reveal the stability of the system only by utilizing the diffcrcllti.d ('qUc\tillll~ 

of the system without actually solving them. On the other hanù, the main ùb

advantage of this method is its cùmplexity of applying. It requin~s creat ing a 

Liapunov function which ma)' not be al\\'ays possibll'. SiuCL' al pH'~l'lIt tllt'I't' ail' 

no established criteria for the selection of Liapuno\' fUIlct ion t'xcept fOI Illll'.'1 

autonomous systems, Liapunov's direct mcthod shoulJ be regankd iI~ 1Il0l'l' tif a 

philosophy of approach than a method. The fact that for a giwlI systelll il )1I0)H'1 

Liapunov function cannot be found gi\'es no indicatioll of thl' ~y~tl'IlI'S ill'itability 

or stability. 

3.4 Liapunov's Approach for Tethered Satel-

lite Systems 

For mechanical systems the situation is not altoget.her that hacL III 1.11('!>(' !>y~t('III!> 

there are sorne good candidates for tbe Liapullov fllllCtiull' lIIutiull illtq.!,I,d.., \JI 

momentum integrals such as the Jacohi integral, the IIculliltolllltll, ('t(. HC'I('. 

for tethcred satellite systems we invcstigatc tbe possibility of .. PIOP('I Li"PIIII(J\, 

function from the Hamiltonian. Tbe lIamiltoliiali of il dyllélllli( ,d ~y!>f<olll i.., delillc'cl 

as 

( 

I{ DL) 
II = L ql ü' - L , 

.=1 ql 

where J{ is the number of degrees of frcedom, q.'s arc the gelll'lélli:œd c(Joldillilt('S, 

L is the system's Lagrangian. aa~ is callcd gcTtcmlzz(d lIW7Ill-lllulIl, alld (1,> ('x
q. 

plained in Chapter 2 it is equal to aa~, wherc 7' reprcsents OH! killctic elJcrgy (Jf 
q. 

the system. As discussed in the introductioll of t!Ji~ dJé1pt ('l, \VC' ~1 il1 t \Vit" t.1J(' 

investigation on two-body systems. 
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Eqs. 2.23 and 2.37 represent the general expression!> for the kinetJc and 

pùtential encrgies of multi-body tethcred system~. In a 1\\"0- boùy system they 

take the form of [50] 

(3.9) 

(3.1 0) 

ùI" iIl the lloIldirncnsiolla) form 

(3.i1) 

u U 1 [ 2 2] AI (2 fP = '2 1 - 3 cos 0 cos 9 (3.12) 

FIOm the expressions for l' and [r wc can determiIlc the I1ondimellsiollal Hamil

tonian, ÎI = II/ (M n2 (2) as 

A~ was lIIentlOlled before, wc Lelieye that the lIamiltoniélll is a good calldidate 

for a Liapullov funrtioIl. Thcrcfore, we plan to use the part in the square brackct. 

tl\l' part related tü librational motion, in the Liapunov functioll. 

The LiapuIlov function used by Vadali and Kim [4 i] for the case of comhined 

rL'l'1 rat(' and thruster controllaws was 
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Here À is a Ilondimensional length cqual to CI (r~J' \\'1Iell' (rtJ i:- il Il-fl'Il'IIlI' kng,111 

and ÀJ is the final value of À, As can be obscf\'eJ, titi:; is Îlltima!l'ly !'('I,lIet! 

to the nondimensional Hamiltonian, but they obtailled it flOIll t hl' illtt'!!.l'ab ur 
motion. It is clear that it could also he foulld fWIIl the Il,lIl1iltOllltlll ur t hl' 

system. For rcasons ta be discussed latcr, the reel ratt' la\\' ol,t.lil\l'd frlllll t hi~ 

Liapunov function has certain weaknesscs, and it must hL' aCl'UllIpolllil,d hy il 

thruster controller. 

Here we propose to modify the Icngth depenJpllce paIl in t ht> Li.lplllllJ\· 

function, to a logarithmic f unctioll in 01 cler to dlmi nol 1 (' t hl' 11('\ l·" ... i 1 Y III .1 1 Il 111 ... 11 '1 : 

It will be shown that a reel rate law wlJich makc), thi), [Il Il et iUII )'dl i:·.f.v ,dl or tilt' 

conditions for a propcr Liapunov functioll, guai éI1I1e'l'iIl)!, t I\(' ~.\'~I ('Ill"" ~t.t1lllil,\. 

will have a much better performance tlJall the l'cd l'dIe 1)(I,>('d 011 t Ill' l.i<tJ"llllJ\' 

function given by Eq. 3.14. Hcre fJ is thc fmal tcl.her Icllgt h éllld (' i~ il J)(,,>il i\'(' 

constant. This function is clearly positive dcfillite dUl'illg tll<' 1 ('1 111'\'.11, ~ill( (' 

during the retrieval stage of the motion f ~ iJ, makillg the la~1 tl'IIII l'{)~it iVI' 

with the final value of zero. Of course, the t.cnns witbill the ~qll'II(' IJI<l( kl'l .11(' 

positive dcfinite for ail stagC's, with tbe C'xcept.ioll of t}\(' ('qlliidnilllil \';.!I/(·U/I'(·IU 

The derivative of this function \vith rcsped tu tll<' lIolldlllH'II"llIlldl 11111(' T, 1'> 

6 ç/ sin 2 0 cos ç, sine;> + 2 ç/e;>" + 8 r,/ ~ill t;; <.<,~Çll + ('/1 
,n 
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in this relation 0" and <pli must be substituted from the equations of motion, i.e. 

along the system's trajectory. Using Eqs. 3.4 and 3.5, after sorne simplification 

one gets 

v' = - (f' If) { - 1 + 4C [0' (1 + 0') cos2 <p + qP]} . (3.li) 

Now let us consider the following l'l'el rate law for stabilizing the mot:on 

l" / f. = c { - 1 + K [0' (1 + 0') coo52 ç + <;&'2] } (3.18) 

where c is a positive constant and [' jf. = -c givcs risc to an exponcntial l'etrieval. 

If K is chosen as 4C, one gets 

(3.19) 

A~ olle call sec, tltc Iecl rate law of the EC}. :3.18 makcs \ '/ lIeg,ati\'e semi-ddinite 

(l.-oÎII({, we cali han' \ " = 0 ",hile 9, 0 =1 0) and ~tdbilizcs the' sy~tclll il! the SCllSC 

of Liapullo\', but Ilot as)'mpt otically. Here 1\ = 4C is the commoll constant gaill 

for hoth the pitclt and roll motiolls, 

'l'I.e l'l'cl rate la\\' proposcd by Vadali and Kim [-1 ïl is 

(3.20) 

where 1\1 is the rctricval cOllstant, and K2 is the control gaill. The refercnce 

lCIIgth, (re!, is chosell as the initial tether length by them. This l'cel rate la\\' 

must be accoI1lpallil'd by an addltiollal thrustL'r COllt 1ùllaw 



c 
The difficulty with the controllaw givcll by Eq. 3.20 is till' pl eSI'lIrl' of the iadul' 

(lreJ/i)2, which increases to as high as 108 (for an exa1llple \Vith (T'I~J = ((0) =-

100.0 km and if = 10.0 m) as retrieval progresses, i.e., as IClIgth ( bcroll\l'~ 

srnal1er. Hence, either the gain 1\2 must be choscn V(,l'Y snmll, implyillg t.hat. thl'l'l' 

is hardIy any control (especially on out-of-plane motioll) or if 1\2 is Ilot hlllall. 

the retrieval process becornes very slow; iIl faet, tl\('l'e Illa)" Ilot I,l' ally l'et 1 iC\ïd 

after sorne tirne. Thus, there is a nccd for the additicmal t.hl'lI!>tt'r wlllwl in Illt'il 

control scherne. 

On the other, hand in the Liapunov fUllctioll u~eù hel'l', i.e. Eq. :U5, t.11l' 

quadratic length dependencc is replaced by a logarithlllir OUt'. 'l'bis héls elilllina1.I'd 

the necessi ty of having the length in the dcnomi nator ill thL' 1'l'(·11 a te Id\\', i Il {JI dl '1 

to make V' negative semi-dcfinite. Then it can extract ellergy flOlI1 t.lw Sy:-.I.('1I1 

ta stabilize the in-plane and out-of-plane motions withoui tbe help of éllly olll.-\lf

plane thruster and at the same time perform a relricval opcl'atiol1. 

For a certain set of initial conditions, wc have numclically sillllda1.l'd LIli' 

resulting motion using the proposed l'ccl rate law (Eq. ;U~) and tlwt \l:-.illg V"dalt 

and Kim's reel rate law of Eq. 3.20 witltout the pn's('fl('(' of thl'lI~t.<,I':-' (j.' =:: 0). 

The analysis is perforrned for a wide rauge of c, 1\, l\J, 1\:.1 (c = KI val'yillg 

from 0.05 la 0.6; K from 0.05 tü 20, 1\2, cqui valent tlJ C 1\ fI UTIl O.O(JL,'j tu 1 L). 

The results show that the rcel rate law proposcd IJCIC cali UJll t. roI LI/(' lI·t rj(!vill 

motion for a wide range of c and K, but the rccl rate law ()f Eq. ;t:W, aloI\(' i1lld 

without the thruster, does not lead to any acceptahle l'et 1 icv;d !JC'Citl)'>(' clft.e·) ;t 

short while e starts ta oscillalc. Only one cxarnplc of each ca~e i~ fJJ('~eJJted i Il 

Figs. 3.3 and 3.4 respectively. Fig. 3.3 shows the results for c ::: 0.:11 éllld K= 0.0 

with reel rate law of Eq. 3.18, whilc Fig. 3.4 presents the re!-JultizJg llJ(JtiOIJ f(11' t}J(' 

corresponding values of the coefficients (KI = 0.3·1 and 1\2 ::: O.~H x 5.0 ::: 1.7) 
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with recl rate of Eq. 3.20. (Fig. 3.4 c) shows the oscillations in the magnitude of 

the tether length while one ernploys the reel rate law of Eq. 3.20. 

Cornparing the resulting motion for the reel rate law gi\'en by Eq. 3.18 

(Fig. 3.3) with the uncontrolled exponential retrievals (Figs. 3.1 and 3.2), one can 

notice thc rcrnarkable improvement. The recl rate law performs an acceptable 

f!·trieval; howevef, it still has to be improved since the retrieval time is ratller 

high. Thc recl rate presented in Eq. 3.18 satisfies the presence of the nonlinear 

dcpendencc on the out-of-plane motion in the control law. However, there is 

a/so a quadratic, nonlinear tCfm from the in-plane motion, If a linear in-plane 

feedback iR sufficicnt for controlling the motion, it is definitely better to replace 

tlle lillear plus qUéldratic in-plane tcrms with just a linear one. Tllis is bccausc 

a quadralic term i~ alwuys positivc and will decrease tbe average value of the 

retricvillg rate. Furthermore, the possibility of decreasing the out-of-pldne limit 

cycle amplit.ude sllould be examined. In the present reel ratc !aw, tlle in-plane alld 

out-of-plalle motions have a comrnon control gain. The out-of-plillle amplitude 

CéllI he dt'CIea~ed by assigllillg differellt control gaills to tlte ill-plalle and out-of

plane fcedbacb, and choosing a higher value for out-of-planc gain 

III nIe lIext charter wc will investigatc the effecti\'eJlc~s of the t\\'o ne\\' leel 

rate laws which are in conformity with the above-mentioned corrective points. 

For this purposc, we will use the energy dissipation approach togcther with the 

avcraging mcthod. The reason wc are choosing another approach for verifying the 

cffectivclless of the succeeding recl rate laws is the difficulty ill\'olved in finding 

a propcr Liapunov f\'nctioll. Since the recl rate laws for the two-body systems 

prl'sellteJ in the Bext chnptcr arc superior to the present one, only the formcr are 

cxtendcd to multi-body systems. 
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Chapter 4 

The Energy Dissipation 

Approach and A veraging 

Method 

4.1 Introduction 

As rnentioned in the previous chaptcr, it seems lIecc:,:,ary 1 () d(·\·(·lojJ a 1 ('('II il \t' lm\' 

for the retrieval phase superior to the one oLtaillcd from the Li,I(>II110\' clPPIUél(h. 

The averaging method and the so-called enelgy dishipiltioll applOél( il ail' (11<)~('11 ill 

this chapter for analyzing the performance of the alternale lcelrat.e Iélw,>. ÂIllUllp' 

the available literature on tethered satellites, the encrgy di:,:,ipatiol1 appl'Oill Il ba,> 

been used by Xu [29] and Lorenzini [14]. The former was cOllcel1ttated 011 two

body systems while the latter studied the in-plane motion of titree-body sySt<'lIIS. 

Here we are after finding recl rate laws to stabilizc the ill-plalle éL!'> well él'> 01lt-(Jf

plane librations, for multi-body systems. 

In contrast to the previous chapter w!tcI(! wc cOIl,>id(!I(,d t Il<' IIHil iOIl ill t Ill' 
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large through the powcrful Liapunov's direct method, in this chapter we perform 

approximate analyses based on the equations for sruall motion. The a\'cragiIlg 

rnethod bd.Sically presents a linearized model ta find an approximate response for 

a llonlinear system. On the other hand, even though the concept of the energy 

dissipation approach holds for nonlinear equations as weil, this approach will he 

also appli{'d to a linearized approximate model. The reason for not using the 

Ilonlinear exact equations of motion with the energy dissipation approach ib that 

the Illathcmatics involved in the analysis would be too complicated to give any 

information about an appropriate rcel rate law with a reasonable effort. 1t should 

a\so he Ilot iccd that whell the nonlillcar equations arc uscd, tbc allalysi~ ma}' get 

more tedious and time consuming than for the Liapullo\' applOélch. Theil the 

wllOlc point. of swit.ching from the Liapunov approach to another one will he 10s1. 

Thcrcforc, the procedure which will be followed here is that the analytical 

part will he bascd on the simplifi<::u !mearizcd equations, but the numerical sim

ulation, wlJich is the final verification of the control law, will be based 011 the 

exact nonlinear equations. For the l'easons aIready ruentioned in this thcsis, this 

chapter starts with devcloping satisfactory controllaws for two-body systems and 

thell thC'y will he extcuded ta multi-hody systems. The a\'eraging metlJOd 1S a 

well t'st.ablisbed mcthod and i5 discusscd iB aTl~' t .dhook conccrning tlle dyndm

ical analysis of nonlinear systems. But the ideas behind the energy dis!:iipatioll 

approach must be explained hel'e; this is the suhjcct of the next sectioll. 

4.2 Energy Dissipation Approach for Two-body 

Tethered Satellite Systems 

The lIondimensional equations for the motion in the large of a t,,"o- body tetllCred 

system, with the assumptions made in this thesis, were presented in Eqs. 3.4--3.6. 
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With the usual approximation of the trigonometric functions for small angles. the 

equations governing small in-plane and out-of-plane motions can be written as 

B'~ 2(l'll)(O' + 1) + 30 = 0 , (4.1 ) 

4>'~ 2( l' 1 l)</>' + 4</> = 0 • (-1.2) 

Because of the dependence of the final steady state of the retrieval process 

on the nature of the reel rate law, one would have to specify first the nominal 

form of the reel rate law that one is intere:;ted in. Here wc concentrale on the 

reel rate laws that have a nominal exponential variation, i.e., 

l'Ii = -c+f(B,B',</>,4>') , ( 4.3) 

where c is a positive constant so that l' 1 l = -c gives rise to an exponential 

retrieval. The function f contains the necessary feedback for stabilizing the in

plane and out-of-plane librations. If the controllaw is a successful one, it would 

guide the system towards a stable configuration with constant in-plane and out-of

plane equilibrium angles. For finding these constant values, which will he denoteu 

here by Be and <Pc, one should set 0',0", <1>',4>" equal to zero in Eqs. 4.1 and 4.2. 

At this steady state, the feedback f normally vanishes, because it is a function 

of the deviation from this state. Thus Oe and <Pc are given by 

2( -c) + 3(}e - 0 ==> Oe = 2c/3 or c = (3/2)Oe (4.1 ) 

4</>e - 0 ==> </>c = 0 • (4.5) 

If nonlinearities are taken into account, then the terminal phase of tbe mot.ion 

consists of limit-cycle oscillations about Oe and </>c. In this case, Oe and </>e reprcsent 
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approximations for the average value of the pitch and roll angles over a period of 

osei llation. 

Substitution of Eq. 4.3 into Eqs. 4.1 and 4.2 yields 

0" - 2cO' + 2J(O' + 1) + (30 - 2c) = 0 , (4.6) 

</>" - 2c</>' + 2/<1>' + 4<1> = 0 . (4.7) 

These equations of motion can be re-written as 

0" + 3(0 - Oe) = 2cO' - 2/(0' + 1) , (4.8) 

</>" + 4</> = 2( c - f)</>' . (4.9) 

The reason for this rearrangement lies in the role of each term according to energy 

considerations. Each term in Eqs. 4.8 and 4.9 represents a nondimensional force 

acting on the system, including the inertial forces. Multiplication of Eqs. 4.8 

and 4.9 by 0' and <1>' respectively and integration with respect to T give us an 

indication of what happens to the total energy (kinetic and potential) of the 

system due to retrieval and control actions, as discussed below. We have 

11' [0" + 3(0 - Oe)] O'dT - 11' [2cO' - 2f(O' + 1)] (J'dT 

IT[O''+.101e>'dr - I1'[~(c-f)e>'lo'dT . 

Carrying out intcgrations of the left-hand si des results in 
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'. [ [0" + 3(0 - Oe)] 0' dT = [~(tY? - i(0~)2] 

+ [~(O - 8e)2 - ~{8o - Oe)2] ( 4.12) 

L" [tP" + 4 tP] tP' dT = [~(tP')2 - ~(tP~)2] + [2tP2 - 2q)~] (4.13) 

We now define the following two energy norms for the in-plane and out-of

plane librations 

E6 = ~ [((1')2 + 3 ((J - 8e )2] 

E", = ~ [{<p'? + 4tP2
] 

(4.14) 

(4.15) 

Then one can notice that the integrals of the LHS's of the Eqs. 4.10 and 4.11, car

ried out in Eqs. 4.12 and 4.13, represent the changes in these norms. These norms 

may be interpreted as the total energy (strictly speaking, Hamiltonian) rclatcd 

to small 0 and 4> motions, respectively. This can he understood hy examining 

Eqs. 3.11 and 3.12 from Chapter 3, expressions for the kinetic and gravitational 

potential energy of a two-hody tethered satellite system. For small angle motion, 

cos2 () and cos2 <p can be replaced by (1 - (J2) and (1 - tP2), respcctively. Then 

neglecting the third and higher order terms, the expressions for nondimensional 

kinetic and potential energies change to 

t = ~ [0'2 + 2()' + 1 - tP2 + tP,2 + (i' Jp')2] 

Û = ~ [-2 + 302 + 34>2] 

while the total energy and Hamiltonian are equal to 
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(4.18) 

fI = T2 - To + Û - ~ [0 /2 + 302 + 4>,2 + 44>2 - 3] + contribution of(l'll)2 

(4.19) 

It can be seen that the norms Eu and E", do Ilot quite represent the total energy 

related to () and 1>. For 0 motion there is an extra (J' term and instead of (f) - Be)2 

there is a 02 term. For 1> motion instead of 44>2 in E"" there is a 2 4>2 term 

in total energy. In addition, in the total energy there exists a i' 1 f. term that 

usually includes feedbacks from in-plane and out-of-plane librations. In case of 

the Hamiltonian the situation is somewhat different. The deviation is only due to 

the Oe and f.' If. terms. But for a case where the length is constant (e.g. a station 

keeping stage but not for the retrieval that is the case of our study) Be is also 

zero hence, Eo and E", represent exactly the parts of the Hamiltonian related to 

o and 4> motions. 

As an outcome of the above discussions, one can state that the Eu and Et/> 

are two energy-like norms that are related to, but not equal to either the total 

cnergy or the Hamiltonian of the system. Noticing Eqs. 4.12-4.15, Eqs. 4.10 

and 4.11 can be rewritten as 

(4.20) 

Considering these equations, we interpret the stability criterion for a retrieval 

with a nominal exponcntial reel rate law, as follows. 

The desired terminal state for a retrieval pro cess is the quasi-equilibrium 
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configuration. For a retrieval with a nominal exponential reel rate law, as dis

cussed before, this configuration is when tether forms a straight line inside the 

plane of motion with a constant inclination with respect to the local vertical l . 

This is the condition where (J = (Je and t'Y = 4> == 4>' == O. Since Eu and E</I are 

positive semi-definite functions, if the control system ensures that they approach 

zero, the two ter ms defining them in Eqs. 4.14 and 4.15 should go towards zero. 

This brings the system to the desired terminal state for a rctrieval with a nominal 

exponential reel rate law. Renee, a reel rate control law will be a successful one 

and will guaranty the st ability of the in-plane and out-of-plane librations, only if 

it makes the right-hand sides (RHS's) of the Eqs. 4.20 and 4.21 negative definit(~; 

or zero, in the case of marginal stability. 

Often one supposes that for having a retrieval, the reel rate should be 

negative throughout the motion, i.e., e should decrease monotonically; but. this 

is not an obligatory condition. In fact, if the RHS of the Eq. 4.21 is to be made 

negative semi-definite, i.e., 

( 4.22) 

the reel rate must indispensahly he positive in sorne intervals during the retrieval 

process. In other words, sorne of the reel rate effort goes for controlling the libra

tional motion. This effort is apparently from the second term in the square bracket 

in Eq. 4.21, the function J, hecause the integral of the first term, J: c( 4>')'ldT, is 

always positive and its effect is to increase the system's energy. Obviously the 

neeessary condition for having retrieval is 

IThlS IS true, for the cases like ours, in the absence of aerodynamlc forcrs and other probable 

disturbing forces hke solar radiation pressure. If the tethers are long and the system 18 mSlde 

the atmosphenc altitudes then the aerodynamlc drag on the tether Ilnd thl! !Jodle:; IS o;lgnlfiranl 

Consequently the tether will not be completely stralght . 
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( 4.23) 

Th(· lwo inequalit.ics 4.22 and 4.23 must be satisficd togethcr and tbis is feasible if 

the lime variation of f be chosen in a way thatthe intervals where e Jf is positive 

be coincident with the periods where the absolute value of 4>' is rdativcly large. 

Oll the otller hand, in sclecting the time variation of J, one should comidel 

rnakillg the RHS of Eq. 4.20 negative as well, or 

(-1.2·1) 

Jill he a !)()\'t' cxpressioIl also, the int.egrand is not always Ilcgati \'c <llld dCpCIldillg, 

011 1 he' magllit udes and signs of 0' and J, il. changes its sign. III 01 lICI word<;, this 

cOlldition is Ilot lIaturally satistlcd and the fUllctioll f should be so cllo"clI ct~ to 

Illakl' tllls intcgral Jlcgative too, e\'en thougll the integralld is Tlot éI!\\'a~!oI negel! in'. 

If olle compares this method with the one discussed ill thl' la~t c!taptel, it 

cali 1)(' 51't'1I 1 hal. the' cncrgy 1I0rms Eo and E.p hCIC ale analogous tu tllC LiapUllO\ 

f\llldioll \'. The E's and \' are ail positive semi-definite functiolls; ho\\'cvcr, 

ks are nul ncccssarily made to be negative semi-definite for stabilization, unlike 

\'. Although it is not a neccssary condition for stability of tJ1C sy~tcm, it is 

p05sibl(, to make É's negative semi-definitc too, by choosing a proper variatioll 

of f with tillll'. In the followillg &cctions Wc first illtwducc t\\'u 11('\\ ree! rate 

laws for l\m-body systems and wc will \'crif)' thcir effccti\'cilcss by the stability 

crilerioll cxplaincd in this sectIOn and by cmploying the a\'cragillg mcthod. Theil' 

performilllces will be compared with the l'cel rate la\\' introduced ill Cbaptel 3 

hasl'd on the Liapunov m<.'thod. Then the ne\\' reel rate la\\'s will be extended to 

lIlulli-hody sy~t(,I1l!'>. 
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4.3 Reel Rate Law with Quadratic Out-or-plane 

Feedback 

At the end of Chapter 3 we made two remarks about the )"l'el r,\tl' llf Eq. ~Ll i\ 

obtained from the Liapunov approach. First of aH, thell' W(l~ a lIonlilll'.lI ity ill

volved in the in-plane part of the recl rate that does 1Iot sel'Ill (,S~l'Ilt ial. Sl'(,\)lldl~ 

the in-plane and out-of-plane librations have a C0l11111011 COllt roi g,lin. Sinll' t hl' 

amplitude of only the out-of-plane motioll was rather high, lJlIl' l'x)ll'('I~ tllat l,." 

having separate control gains for in-plane alld out-of-plalll' libl'at iom alld t hUlI" 

ing a larger out-of-plane control gain, one cali o\'el'COIII(, this J>l'ubll'lll. ll~i'l~ 

approximate approaches, we would illvestigate thc perfol"llltlncC' of ally dt':-.il .Iilk 

reel rate in this chapter analyticaly. The followillg simpler l't'd l'ait· la\\" i~ ill 

conformity with the two rnentioned rcmarks 

that is, there is a linear fecdback of the pitdl rate and qu,uil ,d i( f( ·(·dl'.1{ k ul 1 II\' 

roll rate. Each term has a distinct objecti\'('; as discu:-,:-.(·d bd()lt·, III<' 111 ... 1 1('1111 

is for generating an exponential retrieval alld c r<.'pre!>(·llb tilt' IIlclg,lIit.\Id,· ul 1 III" 

exponent. Thc second term is for stéihilizillg the ill-pldIH' lilJl'clliulI,> \\'11<'11' /\'11 i ... 

the in-plane gain, and thc third term ha~ the same Iole fOl ol1l-of-pl,III(' 1 Jill ,t! iOII" 

with KI/J indicating the out-of-plane gain. Even though the equati(JlI'> fOI ~lIlidl 

motion of 0 and ,p, Eqs. 4.1 and 4.2, arc explicitly indepcIllleut, tlwj' ,lit· «()upl"d 

through the (lf If) term. The fccdback for cach motioll aulo/llati< édl)' alr(·( t,:-. tllf' 

other dcgree of freedom. Conscqucntly an exact kllowledg(' uf tIlt' ))('1 /1 JI 111<1 li! (' 

of the reel rate controllaw cau he obtaincd ollly by 11I1IlH'1 ie ,al ~11I)ld.d ifJll, wlli! li 

would be donc later. For Lcing able lu in\'cl>tiga1<' allal)'1 i< é.lly tlll' (·fI(·( 1 J \,('111''>'" 

of this recl rate law, one should wlIl>idcr tllC ill-pléuJ(' illlrI olll -cJf-IJI.IIII' IllutllJII'> 
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separately. So if we first consider only a purely in-plane motion the reel rate will 

be 

or 

i' Ji - c[ - 1 + J(9(J'] 

f - c ](9(J' 

(4.26) 

As discussed before, one way of analyzing the performance of this in-plane 

reel rate is by studying the sign of the integral of the RHS of Eq. 4.20 over 

the entire motion. The stability criterion aecording to the energy dissipation 

approach states that the in-plane motion is stable if this integral is negative 

semi-definite. The RHS of 4.20 with the reel rate of Eq. 4.26 is 

(4.27) 

The integral here is over the retrieval time. The retrieval time will depend on 

the values of c and ](9. Since 0'2 is always positive, the integral of the first term 

will be negative if we have ](9 > 1. The second term is sign-indefinite, but one 

cxpects a quasi-harmonie response (The existence of a quasi-harmonie response 

will be confirmed shortly.) for the system. Hence, the integral of the second term 

over a period of oscillation vanishes. In any case, it is a. third order term and is 

smaU. Consequently, the energy dissipation approach predicts that the in-plane 

motion is stable for ](9 > 1. 

For confirming the prediction of this stability criterion we perform a direct 

analysis by finding the response of the system t.hrough an approximate analytical 

met hod. Hcplacing the (t' / t) from Eq. 4.26 in the equation of the in-plane motion 

for the small, Eq. 4.8, yields 
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0'4- 3(0 - Oe) = 2cO' - 2(cKsO')(0' + 1) . ( ·1.28) 

By defining n = (0 - Oe), one can represent the equation of in-plane motion in 

the alternate form 

n" + 30 = 2cO' - 2(c J(s8')(0' + 1) (·1.29 ) 

This is a nonlinear equation with a small nonlinearity if c is small. lt falls illto 

the class of equations whose general form is 

"2 (') y + W y = f 9 y, Y . (·1.30 ) 

The solution to this equation can be written as 

y = Acos(wT + 0) = Acos,8 . (4.:H) 

Equation 4.30, with a small degree of nonlinearity, can be solved approximatcly 

by finding a linear equivalent to it. The two well-known analytical rncthods for 

nonlinear systems, variation of parameters and harmonze balance, rcach to the 

same first order approximation for these kinds of systems [51]. This first ortler 

approximation is 

1 12
11' A')<1t1. = - 211"w 0 (; 9 sin,8 d,8 

1 12
11' 0')<1t1. = -;:;--A (; 9 cos (3 d,8 

_1I"W 0 

Using relations 4.32 and 4.33 to find A and ex in Eq. 1.:n is 'iornet.irncs 
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rcfcrrcd to as the averaging method, or an approximation of Krylov-Bogoliubo\· 

(KB) type. Applying these equations ta Eq. 4.29, one gets 

y - ô = A COS(WT + a) 

(g _ 2ciJ' - 2( c f{ of)')( {), + 1) = - 2cJJ' [(]{ 6 - 1) + f{ 0 {),] 

Then 

(4.31) 

which givc rise to 

A')av. = -cA(/{IJ - 1) , 

(4.3.5) 

o')Ut. = 0 . 

Ollt' cali see that the behaviüur of a b like the lincar systeIlls i.e. it is COllstallt. 

FurtherlllOll', if wc consider A')Ul" as A', wc gel an expollenlial variation for the 

cllllplit \l(le. 

or 

dA 

dT 
= -CA(1\6 - 1) 

(4.36) 

Thi~ shows that the in-plane motion will be stable if I\(} > 1.0 and the higher 

the value of /\6, the more stable the 0 motion. Finding the system's response 
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through the averaging method confirmed the prediction of the stahility eriterion 

and existence of the quasi-harmonie response. 

These results are based on two approximations, firstly that the motion 

is eonsidered to he small and, secondly by applying an equivalent linearization 

method which approximates our nonlinear system, a system with a small de grec 

of nonlinearity. Renee, these results have to he verified hy numerical simulat.ion 

of the motion in the large. The equation of the pure in-plane motion in the large 

can be obtained by eliminating out-of-plane motion from the 0 cquation, Eq. 3.4 

and employing the reel rate law of Eq. 4.26. The resulting equation of motion is 

0" + 2c [-1 + 1(00'](0' + 1) + 3 cos (} sin 0 = 0 . ( 4.37) 

The results of the numerical solution to this equation, for four different sets of 

parameters are shown in Figs. 4.1-4.4. As we can see the results are completely 

in agreement with the prediction of the approximate analytical method. For 

1(0 < 1.0, the in-plane motion is unstahle. It has neutral stability in case of 

1(0 - 1.0 and for 1(0 > 1.0 it is stable, approaching the equilibrium position 

Oe = 2cj3 rad. It can be seen also that when we choose very high values for [(0, 

the motion is overdamped Le. the control system dissipate the system's energy 

with sueh a high rate that there is no oscillation about the equilibrium situation. 

Now we concentrate on the out-of-plane part of this controllaw. This time 

we consider a pure out-of-plane motion, then the controllaw would he 

or 

(" .a8) 

f 

Again the stability criterion according to energy dissipation approach ex
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presses that the out-of-plane motion is stable if the integral in RHS of Eq. 4.21 is 

negative semi-definite, or zero in case of marginal stability. The RHS of Eq. 4.21 

with the reel rate of Eq. 4.38 is 

2c Lr 
(1 - [(~ qP) </J'2 dT . ( 4.39) 

A clear understanding of this integral is not possible without having the response 

of the system. Therefore we first obtain the approximate response of the system 

through the averaging method and then will study this integral. 

Equation 4.9 with the reel rate of Eq. 4.38 becomes 

(4.40) 

We investigate the performance of the out-of-plane part with the same approxi

mate analytical method used for the in-plane part, Le., the method for a nonlinear 

system with a small degree of nonlinearity. Cornparing this equation with Eq. 4.30 

one getsj W = 2, f 9 = 2c4>'(1 - J(~ 4>'2). Then Eqs. 4.32 and 4.33 yield 

(4.41 ) 

O')IlV. = 0 , 

which show that, similar ta the case of in-plane motion, the phase angle, a, is 

constant. Examining the expression for A')av.' one notices that with the quadratic 

l'cel rate law, t.he out-of-plane motion can experience a limit cycle oscillation. This 

is because the A')av will be zero for a particular amplitude: 
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(4.42) 

This is an acceptable stable motion, even though it has neutral stability. Numeri

cal simulation must verify the existence of the limit cycle oscillation. Similarly to 

the in-plane motion, the numerical solution couid be based on pure out-of-plane 

motion in the large. This equation can be found by eliminating the 0 relatcd 

terms in the Eq. 3.5 and employing the reel rate law given by of Eq. ·1.38: 

</J"+ 2C[ - 1 + KI/» 4>'2] 4>' + 4 cos 4> sin 4> = 0 . (4,43) 

Numerical simulation of this equation for the case of c = 0.5 and Kq, = 27.0 is 

present,ed in the Fig. 4.5. The approximate analytical method predicts the value 

of A)/im. = J3X~70 = 0.111 rad. = 6.367° for the amplitude of the lirnit cycle 

and the exact numerical solution yields 6.52 0 for this value. This is very good 

agreement with a discrepancy of 2%. 

Thus, according to the averaging method, the steady state of the out-of

plane motion is a limit cycle oscillation with 

4>' = - Aw sin(w T + al = -J 3 ~. sin(2 T) . (4. tH) 

Now we go back to the integral of Eq. 4.39 which shows the stability characteristics 

of the out-of-plane motion according ta the energy dissipation approach. For the 

limit cycle oscillation pha.se with a constant amplitude, we cxpect this intcgral 

to be zero over a period of 4> oscillations. Carrying it out for 4>' appcaring in 

Eq. 4.44 results in 

~ {[~ _ Sin4T] _ ~ [~T _ sin4T + Sin8T]}'T.+1r = 0 , 
3 KI/» 2 8 3 8 8 64 'T, 

( 4.45) 
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here, T, can be any instant in oscillatory phase of the motion and, since w is 

equal to 2, the period is equal to 11". Since the integral vanishes over a period of 

oscillation, the stability criterion aiso agree with the existence of neutral stabilîty. 

At this stage, the performance of the complete cou pIed reel rate law of 

Eq. 4.25 with quadratic out-of-plane feedback will be compared with the reel rate 

law of Eq. 3.18, obtained from the Liapunov approach in Chapter 3. We base our 

final judgement on the numerical simulation of Eqs. 3.4-3.6, the coupled nonlinear 

cquatwns of motion. Figure 3.3 shows the resulting motion for the reel rate 

obtained from the Liapunov approach and Fig. 4.6 represents t.he corresponding 

graphs for the reel rate of Eq. 4.25, with the same initial conditions as for Fig. 3.3 

and c = 0.5, /(0 = 2.0, /('" = 9.0. Comparing the two sets, one can observe the 

improvement in the retrieval time and the amplitude of the out-of-plane limit 

cycle oscillations. The variations of length and reel rate are basically similar for 

t.he two cases, and only because of the difference in the retrieval time, the x-axis 

scales are different. 

It should be pointed out that the gains chosen for the two cases are not the 

same. For each control Iaw, the performance of the system depends on the values 

of the control gains. The set of gains chosen for the reel rate law obtained from the 

Liapunov approach gives essentially the most acceptable performance with this 

reel rate law. Any effort to decrease retrieval time (or limit cycle amplitude) from 

the case of Fig. 3.3, i.e. by changing the value of c or J(, results in an increase 

in the limit cycle amplitude (or retrieval time). On the other hand, the set of 

control gains used with the reel rate of Eq. 4.25 is just .... typical one; nevertheless, 

it gives a better performance than the best resulting motion with the reel rate 

obtained from the Liapunov approach. Therefore, it is certain that tue reel rate 

represented by Eq. 4.25 with quadratic out-of-plane feedback and linear in-plane 

fcedback is supcrior to the one obtained from the Liapunov approach. 

Another point that can be emphasized about these results is about the in-
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plane motion. By comparing the variation of (J obtained from the simulation of 

nonlinear coupled equations of motion in Fig. 4.6 to the variation of 0 in case of 

a pure in-plane motion, as in Figs. 4.3 and 4.4. one can see two major differcnces. 

Firstly, there is a limit cycle oscillation for 0 that did not exist in pure in-plant.' 

motion; secondly, instead of 3c, 0 approaches a much smaller equilibrium valut.'. 

These are the effects of out-of-plane libratiùn on in-plane libration. For studying 

the first effect, namely the induction of oscillat ions [rom 1> ta 0, wc consider tht' 

coupled nonlinear O.equation, Eq. 3..1, with reel rate of Eq. 4.25 

()" + 2 [c( -1 + ](00' + K",qP) - 4>' tan 4>1 (0' + 1) + 3 cos 0 sin 0 = 0 . (4..16) 

The out-of-plane motion is affecting the in-plane motion through the 4>' tan 4> and 

J(~4>'2 terms. These terms should go to the RHS as forcing functions. The prod

ucts of these terms with (J'are of third orde. dond negligible. If one approxirnates 

tan<,6 by 4>, then the forcing terms are <,6'4> and 4>'2. Sinee the value of 0 is small 

in the oscillatory phase of the motion, 3 cos () sin 0 can be replaccd by 30. Thus 

Eq. 4.46 becomes 

(Jff + 2 [c( -1 + KoO')] (0' + 1) + 30 = 2(<,6'4> - C[(",4>,2) • (1.47) 

After a short transient period in the beginni ng, the <p motion is an oscillatory 

one with constant amplitude that can be formulated as 4> = A", sinw,pT, and 

its derivative will be <,6' = A",w,p cos W", T These relations reveal that the 

forcing functions in Eq. 4.47 are oscillatory, in the form of sin2w,pT (for rp'<,6) and 

cos 2W",T (for 4>'2). As already seen in Fig. 4.6( a), Eq. 4.47 with thcsc forcing 

functions results a limit cycle oscillation in () that can be formulatcd as 

() = 0 + Aosin{wuT + cru) 
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Sinee, in an oscillatory motion with harmonie excitation, after a very short tran

sient interval, the frequeney of the forcing funetion is the dominant one, here the 

frequency of the () limit cycle oscillations is equal to the forcing frequency 

W8 = 2wq, . (4.49) 

With the form of Eq. 4.48, one can also investigate the second main effect 

of the 4> motion on the () motion. The second effect was the decrease of the final 

approach value of O. This approach value is the average of 0 in the final oscillatory 

phase, called 0 in this formulation a~d shown in Fig. 4.6(a). For finding the value 

of 0, we average Eq. 4.47 over a period of 0 

(4.50) 

Sinee the derivatives of () and </> have as well as </> itself are harmonie, (}", 0' and 

4>'4> are zero, thus 

(4.51 ) 

i.e. the approach value of () is decreased from ~c by two terms: [(8 Ot2 and 1(4) </>'2. 

The later usually has larger values and is the direct coupling effect of the out-of

plane motion on in-plane one. The former is the indirect effeet of out-of-plane 

motion, sinee it is the effect of O-oscillations on the average value of () and this 

oscillatory motion is induced by the out-of-plane oscillations. The averages of 0'2 

and 4>'2 over a period of () are 

( 4.52) 
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the exact numerical values for the case of Fig. 4.6 are as follows: 

c = 0.5 ~ ~c = 19.P , /(0 = 2.0 • I\q, = 9.0, 

W,p = 1.9 (approximate pure out-of-plane motion had predictcd the value of ~.O) 

()f2 = 0.024 , J(O(J,2 = 0.048 , 4>'2 = 0.094 , 1" "":ï2 - 0 ~ l'! \.pCP - .n' U 

then the predicted value for {} from Eq. 4.51 is 19.1 [1 - 0.0,18 - (lS.Hi] = 

2.02°, and the graph shows the value of 2.74 for O. By comparing these V?.lucs, 

the improvement from the previous predicted value by the pure in-plane motion 

analysis, 19.1°, is evident. 

The resulting motion with the reel rate law of Eq. 4.25 for another set of 

parameters, with a higher out-of-plane gain, /(.p = 27.0, and a lower retrieval 

constant, c = 0.3, is shown in Fig. 4.7. In this figure, in addition tü 0 d,nd 

4>, we present variations of the tether tension and the transferrcd rncchanical 

power, which is equal to the product of the absolute value of the rcel rat.e and 

tension. Checking the tension insures us that the tether does not go slack, and 

concentrating on the variation of power is essential for the energy considerations. 

In summary, it is concluded in this section that a reel rate with linear in

plane feedback and different control gains for in-plane and out-or-plane librations 

has overcome the deficiencies of the reel rate law obtained from thc Liapunov 

approach. A linear in-plane feedback is suffieient for controlling the in-plane 

motion. Then the presence of nonlinear quadratic term of the in-plane libration 

is not necessary; in fact, it has a negative effect. It incrcases the rctrieval time, 

sinee it is always positive and decreases the average retrieval rate. In the next 

section, we introduee another reel rate law, a reel rate with absolute value out-

of-plane feedback. 
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4.4 Reel Rate Law with Absolute Value 

Out-of-plane Feedback 

As was di~cus~ed carlier, wc necd a nonlincar fecdùack for out-of-plane motiull. 

Il Wél.S lIoticed that, using an absûlute value~' feedback instead of quadratic, olle 

Ulli al~(} ~labilize the motion with a similar behaviour. Theil the rcellcite la\\' of 

Eq. 4.25 will challgc to 

(·1.5:~ ) 

Silllilarly tu tlw [H('vious ca,,<', a pure out-of-planl' l1\(}ti()11 sllUuld !w cOllsldelcd. 

i .('., w,illg il Il'l'l 1 dt (' of 

01 

('/' = c[ - 1 + 1\010'1] 

f = c 1\4>19'1 

(.1';11) 

The intcgral, corrcsponding to the Eq. 4.39 which shows the stability cl!ardctcl

i:.tics of the system according to the energy dissipation approach. will Le 

l
T'+7f 

2c (1 - ]{I/J 19'1) <;&'2 dT . 
T, 

(4.53) 

Again it will be e\'aluated after finding the approximatc respOllse of the system: 

but due to the similarity to the quadratic roll rate feedback case, we expect that 

the response is a limit cycle oscillation and that this integ1'al vanishes O\'e1' a 

J>eriod of oscillat ions. 

We apply the sarne approximate analytical method, namely the averaging 
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method, for finding the response of the system. EqUdt iOIl ·\.9 wit Il t Ill' n't'! l,III' 

of Eq. 4.54 yields 

Comparing this equation with Eq . .t.:JO 011(' gd~: .... = 2. 

f 9 = 2c ç;'( 1 - 1\01<//1) ; Eqs. 4.32 and ·1 :1:3 gin' 

which show agaill that tlte pha~(' allgle, 0, i~ ClJll!>talll. III ,Illdlt iUII. UIl(' (0111 "'('\' 

that similally to t}w quadratic fccdback ca~c, thel(' i~ él l'u~~ilJilily Illl 1'\\ ... 11'111 l' 

of limit cydc oscillatioil~, This cali llappclI fOI t11l' illllplit 11(1(, ul 

Numerical simulation of tllC cquatioll of pUJ(O out·of-pl.l!\(, IlluI,JulI III 11j!' 

large must be used to verify the existence of the lirnit cycle (I!>cillélt 1011, '1'111'-> 

equation can be obtained by changing the qualJratic fcedback tu ail ab"ulllt (, 

value in Eq. 4.43, i.e. 

~"+ 2C[-1+J(.f>Iç;'I]Ç;'+4cos</J5ill<P=O . (.1..~I)) 

Numerical simulation of this equation for tbe case (Jr (' = U,!j ulid J{tJ, = (d) 

is presented in the Fig. 4.8. The approximatc analytical IJll!tltud predit\." lIw 
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value (Jf A)I,m = 163)(~O = 0.098 rad. = 5.G2° for the amplitude of the lirnit cycle 

aud the exact nurnerical solution gives 5.67 0 for this value. This is a very good 

agreement with a difference of 0.9%. 

Now we carry out the integration of Eq. 4.55. The expression for 9' is 

,1.' 37r. (') ) 
'1' = - 8 1\.:, SIII :.. T (.t.60) 

The illtegral adds up to zcro2 agaiu, indicating the existencc of neutral stahility. 

Filléllly, the performauce of the complete cou pIed l'cel rate la\\' of Eq. 4 .. 5:3 

will be cornparcd with the (}ther t wo reel rate la\\'s di~cus~cd befurc. Thc nUIllCl i· 

c,lI simulatioll is ba.sed 011 the coup/cd nonlincar Equations of motion, Eq!>. 3.·1-3.G. 

\Vith thi~ reel rate law. Shown in the Figs. 4.9 and 4.10 are the results for the 

samc sets of pararncters as Figs. 4.6 and 4.7. Comparillg thesc graplts witl! the 

case of quadratic reel rate i.e. Figs. 4.6 and 4.7 shows that, for the saille set of 

pammeters, using the rccl rate with absolute value feedback rcsults in a slllaller 

out-of-plane limit cyclc amplitude, but a larger rctrie\'al time thall the olle witlt 

quadl at il' fccJback. 

ln case of Fig. 4.10, like Fig. 4.i, wc included the plot~ of 0,6, tension aud 

powcr. lIowc\'cr, ill Fig. 4.9, we have included aIl of the six outputs: 0, o. lellgth. 

l'('el rate, tension, power. For the sake of completeness, wc have included aIl six 

output curves for this figure, and because of similarity, we have not presented a 

complete set of output curves ill the other figures. 

lnstead of comparing the two rccl rate laws for the same set of gains, an

other comparison can be made that perhaps gives a better understanding of the 

situation. By employing the t'Wo different reel rate laws, we fil1d two different val-

2Regarding lifl'I, since ifl' changes sign, it is more convenient to chaose the initial time T, as 

2kïr wht're k rcprescllts an illteger number 
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ues for each of the three important characteristics of the motion: retricval tlme, 

limit cycle amplitude of 4> and the peak value of 9. By choosing proper gain sets 

we can make two out of the three of these characteristics the same, e.g , r('trit'val 

time and out-of-plane limit cycle amplitude. Then by comparing the v,\IUt's for 

the third characteristic, each corresponding to one of the recl rate laws. Wl' cali 

compare the performance of these laws. Berc, wc find a set of gains for the rel'l 

rate with quadratic roll rate feedback that makcs the amplit.ude of the limit cyclt' 

of 4> and the peak value of () equal to those for the case of Fig. ·1.9. The rl'sults 

are shown in Fig. 4.11. The retrieval time is less for the case of recl rate wi th 

quadratic out-of-plane feedback. 

From the plots we can see that variations in length are very similar for ,lH 

of the cases considered. This is hecause wc are using the same initial conditions, 

nominallength change (exponential), and final retrievallengths, for ail of the cases 

and only a small part of the reel rate effort in each case goes tù controlling the 

in-plane and out-of-plane librations. This part, namely the funelion f in Eq. 4.:1, 

distinguishes different reel rate laws. For reel rate, tension, and power, although 

the general trend is similar for most of the cases, the range of variation changes 

from case to case. Since we normally have chosen 0'(0) = 0 and 4>'(0) = 0 we 

get e'(O) = ce, i.e. the initial value of the reel rate changes by choosing difrerent 

values for the retrieval constant c. Consequently, the initial values for tension 

and power will change too. 

By concentrating on the figures that contain both length change and tension 

variation, one can see that after a short while from the heginning of the motion, 

the general trends of variation of length and tension are the same. They will rcach 

very small values at almost the same t.imc. This can he explained by looking al 

Eq. 3.6. This equation shows that when the system is in steady conditions, for 

the small motion, one gets T= :li\4n2e. Here the libration al anglet; arc small and 

after a short period of time the time variations are not zero, but very small. Then 
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this relation holds approximately. 

At this point after finding acceptable reel rate laws for two-body systems, 

wc will try to extend them to multi-body systems. 

4.5 Multi-body Systems 

For a system with N number of bodies, the reel rate laws of Eqs. 4.25 and 4.53, Le. 

rcel rate laws with quadratic and absolute value roll rate feedback, respectively, 

will be 

or 

for 

e:/l, = Ct [ -1 + f((},e: + K4>. 1 <I>~ 1 ] , 

i = 1,2, ... N - 1 . 

(4.61 ) 

(4.62) 

In this thesis, numerical results are obtained for three-body systems only. Then 

the reel rate laws chosen are either 

(4.63) 

or 

['l/Cl == Cl [- 1 + l\010~ + l\rtJl 14>~ 1 ] , C~/e2 = C2[ -1 + K(}2(); + [(4)2 1 <I>~ 1 ]. 

( 4.64) 
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Figures 4.12 and 4.13 show two ex amples for the case of quadratic roll rate fced

back, with the same sets of initial conditions and retrieval constants as the un

controlled cases and two sets of gains. Figures..!. H and ·Ll5 arc similar graphs 

for absolute value roll rate feedback law. A station-keeping control stage follows 

the retrieval for improving the terminal response; in the station-keeping phase 

the reel rate laws are as follows: 

or 

i~/ i2 = C2 {J( 02 O~ + [(tP2 1 <I>~ 1) . 

( 4.66) 

This stage can bring the system to a final desired configuration which is normally 

an equilibrium condition with zero in-plane and out-oC-plane angles. The rcsults 

reveal that the pLOposed reel rate laws are as equally applicable to thrce-body 

systems as they were to two-body systems. 

Without presenting the graphs the results of investigating the effectiveness 

of these laws for large initial values of <P, will be explained. This study is done 

for the case of <p,(0) = 10° with other conditions being the same as in the case of 

FigA.14, with gains [(el = /(02 = 2.0, [(tPl = [(tP2 = 9.0. The value of retrieval 

constant, c, has been changed over a wide range. In quadratic roll rate feedback 

case, good performance has been observed over a wide range of c, while in the case 

of absolute value roll rate feedback c can be increascd only up ta OA:l, beyond 

which the tethers become slack. 

71 



( 

( 

( 

4.6 Effects of the Retrieval Constant and Con-

trol Gains on the Motion 

Since, when we the introduced reel rate laws for multi-body systems, we observed 

behaviour similar to that of two-body systems, we base this section on two-body 

systems for th~ sake of simplicity. 

Figure 4.16 shows the variation of retrieval time, amplitudes of out-of-plane 

limit cycle oscillations, the initial sharp peak of 0, and amplitudes of in-plane 

limit cycle oscillations, with c, Ko, J(l/J for quadratic roll rate law. Fig. 4.17 

presents similar results for absolute value roll rate law. Most of the cases are 

continued until c = 0.5, because for c ~ 0.6, the tethers become slack. 

Regarding the out-of-plane amplitude, one expects that increasing Kl/J de

creases this amplitude and it is sa in the graphs. The approximate analyti

cal solution based on the averaging method, as introduced before, predicted the 

value of A)/lm. = J 3'K~ for the reel rate with quadratic roll rate feedback, and 

A)hm. = 1~;';4J for the absolu te value roll rate feedback. \Vith the values of 3,9 

and 27 for [(r/I, in case of quadratic roll rate feedback, the predicted values will 

be 19.1 0 ,11 0 and 6.40
, respectively; in case of absolute value feedback, the cor

responding values are 11.250 ,3.750 and 1.250
• These predicted values are shown 

in the out-oC-plane limit cycle amplitude graphs as straight Hnes. The exact nu

merical results show relatively close agreement with these values, both in terms 

of amplitude and the independence of the amplitude from c and K9' 

Generally retrieval time decreases with increasing c. This was expected 

since C' / f. = -c gives the main retrieving effect and increasing c will make retrieval 

faster. lncreasing the gains K9 and [(4) generally increases retrieval time, sinee 

the pitch and roll feedbacks modulate the reel rate, often decreasing the retrieval 

rate and sometimes even making the reel rate positive instead of negative. This 
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makes complete sense if one notices that these feedbacks are added to extract 

sorne of the retrieving effort of the reel rate system to stabilize the in-plane and 

out-of-plane librations. Of course the exact effect depends on the average value 

of ()' and 4>'; as we can see for quadratic roll rate feedback in one case, decreasing 

J{o has increased retrieval time (compare cases 3, 6,9 in Fig. 4.16). 

The variation of the initial sharp peak of () with c, [(0 and [(<1> is considcrcd 

next. Increasing c, increases this peak. The rcason can be explained From FigA.3. 

This was a plot for pure in-plane motion. It is an oscillatory motion about 

the equilibrium value of ~c. Because of having the highest deviation from this 

equilibrium in the beginning of the motion, the maximum value for 0 occurs at 

that. time. By choosing jnitial value for () equal to zero, the initial difference from 

~c increases with increasing c and this pushes the peak in 0 to cl, higher value. It 

should be m.mtioned that due to the coupling effect of out-of-plane lirmt cycle 

oscillati~ns on the in-plane motion, Eq. 4.51 gives jj = 3c [1 - [(0 0'2 - [(</> .p12], 

instead of jj = ~c for the equilibrium ?osition. However, the limit cycle oscillations 

start after a while and in the beginning of the mot;"u this effect does not exist. 

Then the above discussion about the peak of () in the beginning of the motion is 

still valid. 

Now we consider the effect of [(0 and [(4) on this peak. As of the effcct 

of l(p, one can notice that, naturally, the out-of-plane motion does not. have a 

significant effect on this peak value of the in-plane motion. For quadratic fccdback 

there is almost no change with K", and for absolute value feedback the variat.ion 

of Lhe peak with K", is slightly more significant. The reason for thlS differencc 

between the cases with two different out-or-plane feedbacks is that the absolute 

value of 4>' is normally less than 1; i.e. 4>'2 < 1<p'I- Then considcring the two out

of-plane feedbacks, J(,p</P and K,pI4>'I, one can see that for the sarne value of /(r/> 

the effect of the absolute value feedback will be more. On the othcr hand /(0 has 

a very significant effect on the value of this peak. The reason for having a very 
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significant variation with [(fi is that, in the reel rate law, the in-plane feedback is 

added to control the in-plane libration, 0; naturally increasing K9 increases the 

control effect and decreases this undesired peak. 

The variation of in-plane limit cycle amplitudes are very similar for two 

reel rate laws since the difference between the two reel rates is in out-of-plane 

feedbacks. They vary significantly with in-plane gain, J(fI, but not with out-of

plane gain, [(~. 
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Chapter 5 

Concluding Remarks 

5.1 Review of the Thesis and Its Conclusions 

Most of the previous studies on tethered satellite systems have investigated two

body systems. This thesis, on the other hand, has concentrated on furthering 

the knowledge on multi-body systems. Except for very few cases, the available 

literature on multi-body systems is limited to the study of two-dimensional in

plane motion. For the first i ime, a simulation code on the dynamics and control of 

three-dinlensional librational motion in the large for a tethered sûtellite system, 

compùsed of N number of bodies, has been developed. A significant amount of 

time and effort has been spent on writing , debugging, and testing the computer 

program. The formulation used here is vaUd for any arbitrary orbit and variable

length tethers, which are assumed massless and straight. 

Similar to the early studies on two-hody systems, our investigation which is 

in early stages of research on the three-dimensional motion of multi-body systems, 

has ma.de sorne simplifications. Even \Vith these, the equations of motion are 

quite complicated. In the future stages of study on three-dimensional motion 
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of multi-body systems, these assumptions might be relaxed. A complete list of 

assumptions is given at the beginning of Chapter 2, a major one being that the 

tethers are considered massless and straight. 

There are four well-known control methods for tethered satellite systems: 

tension control laws, length or reel rate control laws, thruster control laws and 

offset controllaws. Thruster augmented and offset control laws have sorne dif

ficulties in their implementations. Tension control laws and reel rate laws arc 

easy to implement. They have been considered extensively in the past for con

trolling the in-plane motion. The presence of a reeling system in a tethered 

satellite system is indispensable. Thus, in this thesis we have chosen reel rate 

control laws (or controlling the out-of-plane and in-plane motions at the same 

time. There has been no previous work that presents an unaided reel rate law to 

control the three-dimensionallibrational motion of multi-body tethered satellite 

systclIls. Regarding the necessity of a control system, the retrieval phase is the 

critical phase of the motion; therefore, in the control part we have concentrateù 

on this phase of the motion. Naturally, the attempts for finding suitable reel rate 

laws ha.ve started with a simpler case, two-body tethered systems; subsequently 

the reel rates are extended to multi-body systems. This extension has been do ne 

quite easily since the method of formulation is very appropriate for this purpose. 

Among the in-plane and out-of-plane librations, the reel rate (l'Ii) affects 

the former with a much higher degree. Therefore, controlling t.he out-oC-plane 

rotation with an unaided reel rate law has been a more demanding task. Sincc the 

toupling between the in-plane and out-or-plane motions is a nonlinear one, in the 

reel rate law a nonlinear dependence on the out-of-plane motion is expected. Two 

analytical methods have been used for developing the recl rate laws and vcrifying 

the performance ofthe system with their presence. The first method is Liapunov's 

direct method, and the second one is the energy dissipation approach together 

with the averaging method, an approximate method for finding the response of 
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the syiitem. 

Liapunov's direct method is a very powerful rnethod, sinee it is applicable to 

the motion in the large and it can reveal the stability of the system just by using 

the equations of motion without actually sùlving them. However, constructing a 

proper Liapunov function is very challenging and strenuous. Based on the Hamil

tonian of the system a rccl rate law has been found that stabilizes the in-plane 

and out-of-plane librations in the sense of Liapunov. Although this rccl rate la\\' 

performs an acceptable retricval, the retrieval time and amplitude of out-of-plane 

motion arc rather high. The problem associated with the out-of-plane amplitude 

can be rcsolvcd by scparating the in-plane and out-of-plane gains and choosing 

a largcr out-of-plane gain. Regarding the retrieval time, there is a linear plus 

a quadratic Lerm of the in-plane angular velocity in the leel rate. A quadratic 

term is always positive and reduccs the average rate of retrieval. Since a linear 

fcedback of pi lell rate is sufIicient for controlling thc motioll, this quadratic feed

hack is redulldant. For the out-of-plane motion, howevcr, a nonlincar feedback is 

ncccssary. 

A Ile\\' recl rat.e la\\' has bcen proposcd next. This reel rate la\\' which is 

cOllsistcnt with thc abo\'c mentioncd points; it possesses a linear in-plane feedback 

(lnd a quadratic out-of-plane fccdback \Vith scparate gains. For analyzing the 

hchaviour of the system with this reel rate 1 av,,' wc have flot used the Liapuno\' 

approach anymore. This is due to the complexity of finding a proper Liapuno\' 

function. It should be lIoticeJ that if aCter spending a lot of time and eIrOl t one 

is confronted with lack of success in finding a suitable Liapunov function, one 

Catlllot rcach any conclusion about stabilily or instability of the system. The 

(,Ilergy dissipation approach togcther with thc ayeraging rnethod has been uscd 

instead. This approach revcaled the effectivcness of the ne\\' rccl rate law In 

stabilizing tilt.' in-plane and out-of-planc motions at t.he same time, as well as 

pCl'formillg a rctl'ieval sufficiently fast. Similar ta this l'ccl rate. anothcr recll'ate 
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with its nonlinear out-or-plane feedback composed of an absolute \'alul' tenu, has 

also been proven efficient through the same approach. 

The two new reel rate laws have been extcndcd to lIIulti-body syl-lL'lIl~ 

and have demonstrated complctcly acceptable rcsults. A statioll-kt't'j>illg 1>tagl' 

has been added to the motion, in multi-body systems. Af1('J rt'arltillg till' lill,i\ 

length, this phase brings the system to the final desircd configurat.ioll. A st IIlIy of 

the effects of different parameters and gains of the rcel rate laws 011 t hl' l'l'suit i II~ 

motion wraps up the thesis. The complete discussiollS call bl' flHlIId ill S(·( lioll ·t .(i 

that will not be repeated herc. Thesc can be uscd for sc1cctill1!, 1,11(' \'a1\1('s of tIlt' 

gains and parameters in order tn achic\'e a dcsÎl'cd 1'('l>lIlt.illg IllotÎ()lJ. 

5.2 Recommendations for Future Work 

The following items are recommendcd for furthcr studics in cOlltilllliltioll of t,hi:

research project. 

). Preparing the facilitics and pcrformillg the Ilccc~~ary l'Xpl'rilll<'lltl> to \'(" if y 

the results obtaincd in this thesis through allalytical alld 1111111<'1 i< ,d <11I.tI)'-

ses. 

Il, lncluding the mass and threc-dimcnsional vi bratiollallllotioll {jf t(·t IWb f(J1' 

multi-body systems simulation modc1s. 

111, Adding the three-dirncllsional rigid- body motion of tlle clId }JUdie!'! <Ilid 

investigating the effectiveness of thc offset controllaws ill Ullllti-boc!y tetll· 

ered systems. 

IV. Studying the perturLing cffccts of acrodynamic forcc1>, 1>olar nuliatioll JJl('l>

sure and electrodynamic forces on the motion {Jf thc H1l1lti-IJ(Jdy tdlJ(!J(,d 

systems, for the applications in which thesc efrect~ élre significéluf.. 
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V. Comparing the effectiveness of possible tbruster or tension controllaws for 

controlling the three-dimensionallibrational motion of multi-body tethered 

sylStems with those of the reel rate la.ws presented in this thesis. 

VI. Considering the possibility of decreasing the initial sharp peak in the ln

plane motion through modification of the present reel rate law3 or adding 

another controllaw to the system. 

Vil. Replacing the nominal exponential retrieval by a proportional one (if =re 

constant) in sorne parts of the motion, in order to decrease the retrieval 

time. This has been done previously for two-hody systems; it bas to be 

extended to multi-body systems. 
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Appendix A 

Applications of Tethered 

Satellite Systems 

The applications of tethered satellites proposed by the carly eighties have been 

documented by Bekey [1], and von Tiesenhausen [3]. In the second edition of 

the Tethers In Space Handbook [11], a rather recent and more complete up-dat.e 

of these applications is available. Here we present a brier description of the 

important applications of the tethered satellites.! 

A.1 Atmospheric and Aerodynamic Studies 

The special advantage that can be mentioned for the applications of tethers in 

atmospheric studies is that orbiting the whole satellite inside the Earth's atmo

sphere will cause large drag forces and subsequently fast decay in the satellite 

altitude. But in the case of a tethered platform only the neccssary parts will he 

sent to the atmosphere and most of the parts will be out of the Earth's at.rno-

IThe detatled explanatlOn of the cases marked with • in thts appendix was l>tated already 

in section 1.3 in the Introduction Chapter. They relate to multt-body tcthcrcd !>atelhtes. 
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sphere. 

Applications of these tethered subsatellites for atmospheric and aerody

narnic studies are listed below. 

A.l.l Shuttle connected hypersonic open wind tunnel 

At an altitude of 250 km, the Shuttle orbits the Earth with the velocity of about 

7755 rn/sec. Consider a model tethered to the Shuttle and lowered to the altitude 

of 100-120 km. Then assuming that the atmosphere is rota,ting at the same 

angular velocity as the Earth, the relative velo city of the model to the atmosphere 

will be of the or der of 7100 rn/sec. This will result in a very high-velocity 

hypersonic flow around the model. The corresponding Mach number will be of 

the order of 26 (with velocity of sound about 276 rn/sec at that altitude). At 

the same time very low Reyn01ds numbers are achievable, and this combination 

will make a very unique wind tunnel. If the necessary instruments for measuring 

different parameters like pressure, drag force, lift force, etc. be also deployed with 

the model we will have the Shuttle Continuous Open Wind Tunnel (SCOWT). 

In this way, the limitations that usually exist in ground-based wind tunnels will 

be elirninated, for example there will be no effect of the wall boundary layers. 

A.l.2 Upper atmospheric measurements 

Presently, d.tmospheric measurements in the region between 90 to 125 km alti

tudes can only be made with sounding rockets over small regions of area and 

lime. By deploying a subsa.tellite tet.hered to the Shuttle very valuable research 

l'om he pl'rfontH.'d in this region. These subsatellites could also be tethered to the 

Spacc St,üion, but Binee the operational altitude of the Space Station is likely 

to be 500 km. the necessary tether will be rather lengthy. Thus, Shuttle-based 
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tethered systems are preferable for atmospheric studies. 

Sorne of the projects which are being studied include TSS-2 (Tethered Satel

lite Systems-2) and STARFAC (Shuttle Tethered Aerothermodynamlc Research 

Facility) [11]. The Figure on page '!7 of [Il] can be considered as a general scheme 

for a Shuttle-based tethered system for atmospheric studies. Colleding data (It 

different locations simultaneously· is one the examples. 

Gathering cosmic dust by sending a tethered subsatellite to the upper atmo

sphere from the Shuttle is also under consideration. The surface of the subsat.ellite 

contains numerous small collecting elements which wou Id document t.he impact 

of cosmic dust or actually retain the particles for analysis back on the Eart.h. 

A.2 Transportation Uses 

A.2.1 Momentum exchange 

Sorne applications in this area are des cri bed below: 

One of the interesting ideas in this regard is to benefit from the momenturn 

captured in a rocket spent stages. After one stage of a rocket. reaches the end, 

before the start of the next stage, its center of gravit y will follow a central force 

orbital motion (usually an elliptic orbit). If in this interval the spent stage be 

separated and tethered to the rest of the rocket and deployed down toward t.he 

Earth, since the center of gravit y will maintain the same orbit as hcfore, the rcst. 

of the rocket will move outward from the Earth. In this manner, the spent. stage 

williose sorne angular momentum and the rest of the rocket will gain il. Whf!n 

the deployment terminates the tether will be under tension. At the proper time 
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the tether is disconnected which causes a deboost in the spent stage and a boost 

in the other parts of the rocket. This concept is practical only if the spent stage 

has a mass comparable to the mass of the rest of the rocket. The same principle 

can aiso be implement.ed to the Shuttle external tank. 

The reverse situation is alqo considered in sorne cases. Boosting a satellite 

or platform or payload (generally an end mass) from the Shuttle to orbits higher 

than the orbit of the Orbiter itself. An end mass is deployed along a tether 

upward (away from the Earth) {rom the Shuttle. Librational motion begins and 

momentum is transferred from the Shuttle to the end masSj as a result, the end 

mass ascends and the Shuttle descends. Then the end mass will be released and 

placed into a higher orbit which simultaneously will give a deboost to the Orbiter. 

This pro cess should be done at the end of the mission where the deboost in the 

Orbiter actually will be useful for its deorbiting to the Earth. In this way less fuel 

will be used both for the deployment of the satellite and deorbit of the Shuttle. 

Now we concentrate on another application in the category of Transporta-

tion: 

A.2.2 Tether assisted rendezvous 

Maintenance of the previously deployed satellites from the Shuttle, can be men

tioned in this category. A permanent tether attached to the Shuttle Orbiter is 

used to rendez vous with a decaying or defective satellite. A decaying satellite 

will he reboosted into a higher orbit and a defective satellite will be retrieved, 

rcpaired by the Shuttle crewmen, and reboosted to its initial orhit. This wou Id 

eliminate the need to launch a replacement for defective or decaying satellite and 

dccrcasc sorne of the expenses, but the project itself seerns costIy and it is un

der investigation. The Shuttle docking to and deorbit from the Space Station is 

also anothcr example. The main point that can be mentioned for this project is 
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that instead of coming back to the Earth's surface for the necessary services, the 

Shuttle can dock to the Space Station. 

A.3 Gravit y Related Applications 

With the help of tethers one can create aIl kinds of artificial gravit y laboratories 

and other gravit y related facilities necessary for today's scientific and commercial 

studies. Sorne of the suggested designs are listed below 

A.3.1 Wide range variable gravit y laboratory 

It is a tethered platform composed of two structures connected by a variable 

length tether. One end includes the solar arrays, related subsystems, and tcther 

reel mechanism. The other includes two manned modules and a propellant mo

tor. For generating the artificial gravit y the tether will be extended, and then 

the whole system will be rotated about its center of mass by firing the motor. 

The solar panels should be de-spun. By changing the tether length one can get 

different gravit y levels: from low gravit y levels e.g. 0.08 g through 0.16 g sirnu

lating the gravit y on the Moon, 0.38 g for Mars, g for Earth, and up to 2 g. The 

manned module can be a habitation module, for studying the long term cffects 

of various artificial gravit y levels on the human body and its feasibility for the 

interplanetary missions, or it can be a laboratory for scientific experiments. The 

coupling between the two structures could be done by a rigid linkage but the 

tethered connection is superior: firstly because the distance can be changed for 

getting different gravit y levelsj secondly, since we can set the length to very large 

values, with a less rotational rate wc can get the desired g Icvcl and then the 

inconvenient side effects like Coriolis force would be less. 

124 



( 

( 

( 

There are two designs associated with the Spaee Station explained in the 

following two subseetions. 

A.3.2 Microgravity laboratory· 

A.3.3 Variable low-gravity laboratory* 

A.3.4 Gravit y wave detector* 

A.4 Electrodynamic Applications 

A.4.1 Power and thrust generation 

De electrical power can be generated at the expense of a spacecra{t orbital energy. 

An insulated conducting tether, terminated at the ends by plasma contactors, is 

eonneeted to the spacecraft (the Shuttle or any other spacecra{t). The plasma 

contactors are for collecting eleetrons from the surrounding environment at one 

end and diseharging them at the other end (for getting a better image, figure 

on page 53 of [11] may be consulted). Motion through the geomagnetic field 

induees a voltage in the tether. This voltage can be used to drive a De electrical 

current in the tether. A force of the magnitude (ilE) will aet as a drag force on 

the system. In this relation, i is the tether eurrent, l is the tether length, and 

B is the Earth '8 magnetie field flux density. Electrical power is generated at a 

rate equal ta the loss in spececraft orbital energy due to this induced drag. This 

project can be used also with spaeecraft that are travelling to the planets with 

atmosphcre and magnetic field such as Jupiter or Saturn. 

If the process in the previous application is reversed, instead of the drag 
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force we will have a thrust force which increases the orbital energy at the expense 

of primary on-board electric power. 

This system can be used with combination of the two applications as a 

power storage. During the daytime the current from the on-board solar array 

power system is fed into the tether to generate a propulsive force. This thrust 

boosts the orbital altitude of the spacecraft. In the darkness periods, the syst.em 

will act as a generator and De electrical power is generatcd by rcduction in the 

orbital altitude. This energy storage system has higher efficiency than a system 

involving charging and discharging of batteries. It will also reduce the size of 

arrays by 10% but the main reduction will be in the required batteries, which 

will make the weight of this supplementary system about 40% of the weight of 

conventional arrays and batteries system with similar performance. The heat 

rejection produced in power processing would also be reduced by 60 % . 

A.4.2 Tether communications antenna* 

A.5 Orbital Parameters Modification 

A.5.l Changing the orbital inclination 

The inclination of the Shuttle's orbit (or of any other spacecraft's orbit ncar the 

Earth's atmosphere) can be changed by tethering a hypersonic lifting body below 

the Shuttle and sending it down to the atmosphere (tether length about 100 km). 

By shifting the body from one orientation to another a side force is gcncrat.cd 

which can be used to modify the inclination of the systern's orbit. 
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A.5.2 Lowering the orbit of a planetary probe 

Conventional planetary probes carry substantial propellant to establish low orbits 

about a celestial body of interest. With the help of tethers, for the case when 

the planet possesses an atmosphere, an alternate method reduces the necessary 

propellant to the amount required only to achieve a highly elliptical capture orbit. 

ACter achieving the elliptical orbit, a suspended body is deployed to the local ver

tical from the probe, using a small diameter tether. At each successive periapsis 

pass, the suspended body and the lower region of the tether experiences rarefied 

flow which creates drag on the system including the probe and reduces graduaUy 

the apoapsis until eventually the orbit is circularized. The suspended body could 

contain an instrument package for gathering data during the atmospheric passes. 

A.5.3 Altering the orbit eccentricity 

The necessity of a propulsion system for changing the eccentricity of the Space 

Station or a platform can be eliminated by applying a tethered system. An end 

mass is tethered to the Space Station or the platform. The length of the tether 

is changed in phase with the natural libration of the tether. If this sequential 

retrieval and deployment of the tether, which is known as libration pumping, is 

performed with proper timing, it can create the necessary change in eccentricity. 
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Appendix B 

The Orbital Center of a 

Tethered Satellite System 

In this Appendix we try to develop an expression for the location of the orbital 

center in tethered satellite systems. For the sake of simplicity we consider a cir

cular orbit, but the same principle operates for non-circular orbits. As mentioned 

in the beginning of Chapter 2, the orbital center is the point where the resultant 

of the gravitational and centrifugaI forces is zero. If the system consists only of 

one satellite modeled as a point mass, the point mass itself is the orbital center. 

For this orbiting body the amount of gravitational force is equal to 

Fg = -GMem/r2 , (RI) 

where GMe is the gravitational constant of the Earth, m the mass of the body, 

and r its distance from the center of the Earth. The centrifugaI force on the body 

IS 

(B.2) 
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where n is the orbital angular velo city. The total force in the x direction (Tefer 

to definition of axes in Chapter 2) will be 

(B.3) 

If the body's orbit is a cirde, this total force in the x direction should be 

zero, i.e., [52] 

or 

(B.4) 

For a multi-body tethered system, aIl of the points have the same orbital 

angular velocity. ûy noticing Eqs. B.1 and B.2 we can see that the masses which 

are doser to the Earth are subjected to more downward gravitational force than 

the outer masses, and the situation is reverse for the centrifugaI forces. As a 

result, for the lower masses there is a net force toward the Earth and for the 

outer masses there will be an outward net force. These result in the tethers 

being under tension. The magnitude of the angular velo ci t y n which maintains a 

circular orbit is such that the resultant of the total gravitational and centrifugaI 

forces acting on the system should be zero. Then ignoring the tethers masses we 

should get 

N N 
L Fg.=L Fe. , (B.5) 
1=1 1=1 
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This yields 

N 

E m,/r~ 
1=1 (B.7) 

Now the orbital center is the point where, if the whole mass of the system 

was concentrated, the resultant of the forces acting would be zero. Therefore 

referring to Eq. BA if we caU the Ra.c. as the radius of orbital center, the orbital 

angular velocity will be equal to 

(B.8) 

From Eqs. B.7 and B.S one gets 

N 1/3 

L m,ri 

Ra.c.= i=1 (B.9) 

This equation expresses the location of the orbital center for a tethered satellite 

system with N number of bodies . 
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