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s Orientation selection is defined as the detection in an i;nage of orientation structures.
' the components of curves or flows, and their representation in terms of tangent fields - the

" orientation at each point. Curves in images are one-dimensional orientation structures that

' : : - often correspond to boundi:\{ contours of objects; flow patterns are two—&imgnsional. and
they provide surface information within the contours. The local orientation of these struc-

> tures, }ecovered through orientation selection, provides an initial descrlptuon of the shape of

"""; \-/ objects and surfaces Dlscontmumes in ofientation often signal |mportant events, such as
\ surface creases or surface occlusions. This thesis demonstrates that human sensitivity to

S . ‘ such discontinuities also reﬂect,s on the kinds of mechamsms by which we might reconstruct
' " and represent curves and flow patterns. A computatlonal theory of onentatlon selection

Eoo - T s outlmed and predlctlons of -discontinuity sensntwoty that arise from this model are de-
veloped Psychophysucal expenments designed to test these predlctlons are presented and

- ) ‘ . ~ analysed. - The experimental results indicate that the human visual system uses curvature
Y . ipfqu\qlation to réconstruct orientation structurestand it uses at least change-in-curvature

information to locate discontinuities in them.
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o Résumé T

La sélection d'orientation se définit comt‘ne la.détection dans une image de.st(ructures
orier!tées, c’est-a-diré dés composantes des courbes ou des flux, et de leyr re;)résentation en
termes de champs de”vecteurs ~Torientation 3 chaque point. Les courbes dans une’ image
sont des structures orientées d une dimension qui souvent corre;j:ondent aux contours
délimxitatifs d'obets; les flux ont deux dimensions, et ils donnent de I'information sur
les “suifaces incluses dans les contours. L'orientation locale de ces structures, obtenues

par sélection d’orientation, permet une description initiale de la forme des objets et des

~ surfaces. Les discontinuités d’orientation signalent souvent des événements importants,

tels que les plis
démontre que la sensibilité chez I'humain 3 de telles discontinuités se refléte aussi sur

les genres de mécanismes par lesquels nous pouvans reconstruire et représenter courbes

et flux. Une théorie de la sélection d'orientation est esquissée, et des prédictions sur

/ o b . . . ~ ’ ! + * ’ - 1
la” sensibilité” aux discontinuités ‘sont élaborées a pirtir de ce modéle. Des expériences

psychophysiques concues’ pour tester ces pr'édii:tions sont présentées et analysées. Les
résultats expenmen;aux lndlquent que le sysléme de vns'on humain utilise |’ mformatlon‘ sur

la courbure pour reconstruire les structures orientées, et qu “il utilise au moins I’ mform:mon

sur le changement de courbure pour Iocahsqr leurs discontinuités.
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e surface ou l'occlusion d’une surface par une autre. Cette thése
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Chapter1 " | . | ’ ~ Introduction

A partie'uiarly ‘sirikt_ng feature of our visual: systems is how quickly and spontaneously

. weimpose three—dimensianalxinterpretations on images. Even when we are presented with

~

a pompletely homogeneous image that fills the entire visual field, we perceive a three-
dimensional space. When-mhomogeneltves (such” as dots, lines, or, reglons of dlﬂ'erent
colours) are introduced into- the image, this space is segmented into distinct surf?ces at
specific depths {Koffka 1935). How do we consgruct d\escnptlons of these surfaces, or
objei:ts? . ~
. ¥ D . '
Co‘rlsﬁder a sphere and a cube. One salient featyyg which allows us to differentiate
between them is the shape of their bol‘md.ing contm&e E'igure 1.1. The shape of a
contour is described byghe direction it takes across an image ~ its orientation — add by the .
way it changes directidn - its curvature. The ‘sphere's‘outline is smooth and has constant N

but nof-zero curvature, while the cube's has orientation discontinuities and zero.Curvature

] everywhere else. No,w, thiTk of putting the cube in front of the sphere so that only part

of the sphere £an be seen. The outline of the two objects together contains orientation
discontinuities both at the comers of the cube and at the points along the sphere'ﬁ—lwound-

ary where the cube occludes.it. We.can see. then- that while orientation is an essential

-

descnptor of local contour segments orientation, curvature, and thelr discontinuities are
essential in the full degcnptlon of contours In this thesis, | shall be concerned with human

sensitivity to orientation digcontinuities in contours and with how this sensitivity can be

»

explained within a computational model of curve reconstruction.

o ra ® . . °

-
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Figure 1.1 An example of the importance of orientation. curvature. and orientation °
discontinuities in shape description In {(a). the outlines of a cube and a sphere
are presented. They can be distinguished by the orientation discontinuities in the
cube's outline, and the constant non-zero curvature of the sphere's In (b). the
cube is placed in front of the sphere, creating new orientation digcontinuities ih the
outline at the points where the cube occludes the sphere In (c). flow patterns are
used to describe the cube (as if it were covered with fur. for example). Note how
thie shape is defined by the discontinuous changes in flow orientation at the edges

* between the two front faces and between the left and the top face

H

Now suppose that the cube is covered with fur. Locally. the individual hairs all lie -
in the about same direction. and the overall impression is of“a flow. or a two-dimensional
‘briqntation structure. While the flow arientation may or may not change within a single face,
one would expect it to change al;ruptly along tﬁe eagg {)etween two faces: see Figuqre 1.1c.

Therefore. it is also important to be able to detect orientation changes in flow patterns. and

o
‘ o

v » N
2 A

[4

2

T



~.

H " j‘ ‘ ’ . N
in particular to distinguish between smooth and abrupt changes in ‘the flow. The second
aspect of this thesis is to investigate human sensitivity. to orientation discontinuities in
flow patterns within the context of a model, similar to the one mentioned above. for flow
} ‘ ’

reconstruction. \ y

These examples demonstrate that both contour and flow reconstruction are important
first steps in the process of shape description. Their orientation structure — in;luding cur-
vature and discontinuities — provides an initial description of shape For this reason. the
description of curves and flows in terms of their local orientation structure is referred to
as orientation selection. The model of early orieryt%tion selection presented in Chapter 2
treats this local orientation structure as a tangent field ~ or set’ of unit-length line seg-
ments, approb?iately oriented, at each point of the curve or flow From this, the actual
curves or flows could be reconstructed. Discontinuities in the orientation struct:uem often
signal important events, such a; surface boundaries, and can be used to segment images
into distinct regions in the same way as discontinuities in image intensity, surface depth,
or surface orientation (Marr 1976. 1982: Witkin and Tenenbaum 1978). \Iﬁ addition, if °
curves and flows can be re'cbnstri)cted from the image and represented accurately. they will
provide a sej.of basis functions along which to integrate surface prqpettiés (Zicker 1984b,
1985) Contours provide accurate positional information, pamcularly about the boundaries
of objects. Flow patterns provide surface mformatton w:thm the boundanes destribed by
the contours. Since orientation discontinuities’ segment contours and ﬂow patterns into

piecewise smooth regions. locating them is intimately tied to orientation and curvature per-’

- ception. Our sénsitivity to them will therefore provide some insight into the mechanisms

T

by which we reconstruct curves and flows.

The purpose of this thesis is to evaiuate human Eensitivity to orientation discbntinuities‘
and to investigété its implications with respect to a model of early orientation‘seleczion that
was first proposed by Zucker (1982, 1985). 1 shall present the results of psychophysical
(;xpetiments’that were designed to test certain aspects this model, anq by analyzing the

results within the context of the model, | shall show that detection of orientation discon-

.
-



1.1 The Influence of Neurophysiology and Psychophysics on Computer Vision

tinuities requires curvature and change-in-curvature information. Hence. mechanisms for
estimating or representing this information must exist in the cortex. The following para-
graphs motivate the methodology used for developing computational vision models such
as the one | shall be investigating. and introduce the particular technique | have used to

evaluate human sensitivity to discontinuities.

1 1 The Influence of Neurophysiology and Psychophyslcs on
Computer Vision

Computer vision is aimed at developing systems which can analyse and interpret grey-
level or colour images of natural scenes. For better insight into the problem of vision ~
at the task specification level (what functions are needed) and at |mplementatlon levels.
{how these functions might be performed). computer visionists often draw on knowledge of
biological vision systems. Different kinds of information are supplied by the fields of neu-

rophysiology and psychology. Specific functions inspired by neurophysiological structures

_or p?»ychophysical phenomena would include. for example, edge detection (Marr and Hil-

dreth 1980). curve detection (Marr 1976). motion detection (Wallach and O'Connell 1953;
Uliman 1979). stereo depth processing (Marr and Poggio 1979), and orientation selection
(Glass 1982; Zucker 1985). Specific implementation schemes would include zero-crossings

of convolutions with Laplacian of Gaussian operators (Marr and Hildreth 1980). networks

~ of cells that perform Boolean algebra (Poggio and Torre 1978). gnd local' excitatory and

inhibitory networks of convolution operators (Zucker 1984a).

3 {

Once fully designed. a model of a specific task provudes predictions about the rela—
tlonshlps between stimuli and perceptions through the implemented meclﬁmsm These
prednctuons arise from assumptions made during the development of the model and the

design of the mechanism by which the model is implemented. Psychophysical experiments

 can be used to evaluate the relationships between stimuli and percepts' in human vvisién ’

Analysis of the results within the context of the’ model and |gs predlctlons leads to coh-

clusions about the validity of the model (as bejng representbtwe of human wsnon) and'
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12 The Use of Dotted Stimuli to Study Orientation Structures:
. ! . . . ’ .
constraints on model parameters. This, then, closes the loop between computer vision and

biological vision. as the psychophysical results are used to tune the model. causing it to

describe more closelythe performance of the human visual system.

The model of orientation selection for curve and flow reconstruction that | shall analyse_ _. .-

in this thesis was developed with particu!ér attention paid to the neurophysiology. The
analysrs that.| shall perform involves a psychophysical evaluation of the relationship between
dlfferent kinds of stimuli and our perception of drscontmurtres in orientation structures.’ It
is mterrded to validate and tunw‘model. and it leads to predictions about the human

visual system itself.

N
.
Y

1.2 The Use lof Dotted Stimuli to Study Orientati’on" Structures

To investigate the processeé of curve and flow reconstriction, | shall use dotted stimuli,

L

Under certain conditions, dotted stimuli can be considered equivalent to continuous stimuli.
Using them in the experiments allows the mampulataon of partrcular orientation cues by

€.
changing’ the dot posrtlons in the case of curves, this allows the ortentatlon structure

o

in the nerghbourhood of a drscontmurty to be changed In the case of flow patterns, rt,

Ilrnrts the number of curve derivatives that are made explrcrt within each curve segment
that acts as a flow cue. In both cases, it enables the use of mterpolation theory to explam.
the psychophysical results and to measure the differential properties- of the mechamsm
.described by the model In Chapter 3 { shall expand on the relévance of usmg dotted

stimuli to study each class of arientation structure and | shall show how | intend to use

A\

them, . ‘ : . ‘ ‘

1.3 Thesis Overview A . ﬁ; . : \

-
>

The model of early drientation selection that | sha]l'investigate through psychophysical
- experiments is presented in Chapter 2 To provide the reader with some background

the treatment of orientation selection in other computatlonal models of early wision is

1

,\ o , . ) , ' 5‘
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13 Thesis Over;/ieﬁ

briefly outlmed and it is shown to be deficient due to its Iao&of correspondence to the
neurophysiology and its, computatlonal properties. Following this, the neurophysmlogy and

psythophysics relating to orientation selection are reviewed. ‘A model of curve and flow

" reconstruction. first proposed by Zucker (1982. 1984b, 1985). is then describéd. - This
model is based in the \neurophysip‘logy. and it is not suoject to the same co:ﬁputationaf

problems; .as previous models. It is this mode! that my analysis of human sensitivity to ’

discontinuities is based on. _

T ) . '

Chapter 3 outlmes again the |mportance of detecting onentatlon dlscontmuntles and
develops the pfedlctlons for dlscontmulty sensitivity that arise out of the model. These

predictions are based on the fact that curves and flow pattems are discretely sampled by

~

the imaging process (for example by the retmal grid). and the model must therefore be

able to reconstruct curves and flows from dotted as well'as from * ‘continyous” stimuli.
Changes ‘in discontinujty sensitivity are sure.to arise, then when certain aspects of the
quantlsanon are changed. These issues are explored | in {hls chapter and put to use in the

development of dotted stimuli for the expenments

v
o

Expenments to evaluate-human sensutmty to onentatlon dlscontmmttt\.s in curves and

_in flow patterns. are presented and analysed in Chapters 4 and 5 respectwely The re-

-sults indicate that detection of onentatlon dlscontmultles is a non-local process and that

it requires mechanisms for estlmatmg curvature and hagher;order curve derivatives (for ex-

ample, change in curvatpre) at least over a local neighbourhood. In this way, experiments.

based on predic;ipns arising from a computational model of vision are used to enhance-our

. understanding of the psychology of human v‘ision.

v . .
~ - . . ¢ Y
4

"

The cont_ent of this thesis is based 03 two papers written in conjunction with the

. author’s thesis supervisor, Dr. S.W. Zucker (Link and Zucker 1985a. 1985b). As previously

stated, the model of curve :and flow-reconstruction presented in Chapter 2 was develooed by
Dr. Zucker.. The predictions arising from the model, the experimental design and execytion,
and the anaj'ysis of the psychophysicql resijlts, represent my contribution to this work.
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“Chapter 2 . Orientetion,Selection and Its ,Role in Early Vision

v

H . o
' ¢
. . -

- Viision involves the inference of t,‘hreeQdimension'al structures from twu-dime‘nsional im-‘ -
+ages. As a first step in constructing this inference. it is particularly useful to extract from
the rmage structures that are unlikely to have arisen randomly. but rather which stand
in oorrespondence with real—world physical structures and can be used to describe them
(Koffka 1935: Marr 1982: Witkin and Tenenbaum 1984; Zucker 1985). We have seen that
. two basi¢ types of orientation struetures are representatwe of such correspondence one-

'* drmensuqnal contours which arise, for example, from projections of ‘surface occlusions or
surface creases; and two-dimensional flow patterns which arise from pro;ectrons of. surface
covermgs such as fur. The mathematlcal properties of image projection guarantee that .

- certatn aspects of shape are preserved in the lmage so that the shape of these rmage\

orrentatuon structures is repr&entatwe of the shape of objects.
&

'
£

The shape of a contour is described not'only by the direction it takes aer'ose an image

oo-its orientation ~ but also by the way it changes direction - its curvature. Similarly, curva-

.

ture is useful in the descriptron of the “shape” of a flow pattern. Dlscontmumes - abrupt

changes in the orientation’ 'structure - often signal important eyents, such as the edge be-

~

tween tého objects. AThe dlswntmulty locations also constrain the particular reconstruction

of a curvg_ or flow pattern, In this chapter, a model for curvé and flow reconstruction'is
\l T ’

x .
3 ES

1 For example under orthographic projection and under perspectwe pro;ectron when the object is-at a
drstance. the component of orientation that is parallel to the image ptane is preserved

» Y

)

o
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. L ’ o . ‘
presented To begin the treatment of orientation selection processes in early computer

vrsron models is outlined and shown to be madequate The pertment neurophysro[ogy is

<then revrewed as background to the development of the model. In the remamder of the

thesis, the model is analysed with respect to the detection of discontinuities.

v . i
\

- .
21 The Reconstructlon of Curves and Flows in Early Computer ' .
‘Vision Models =~ = -

-
b

A major problem that models df curve and flow reconstruction must deal with is the

trade—off between computatronal complextty and sensitivity to noise. Since many curves

in rmages are formed by the bounding contours of objects. most early models of vision
have concentrated on the latter. The techniques used to find these contours fall into two
Igoups: those that find intensity 'edges:.‘ under the assumption 'that these often correspond

o object poundarieé; and those that segment an image directly into regions of interest, and

of contour representation include chain-coding (a sequential répreséntition'of the contour

points; see Freeman 1974), polygonal approximation ’(Ramer 1972j. and point-for-point -

representation in a bit-map (a binary «copy of the imaging grid with feature points recorded

-in it; see Marr 1981). While the detection of boimding contours is not exactly equivalent to

curve detection, these techniques are »typical of the way in which orientation structures have
been detected, re;onstructed and represented. They therefore serve to illustrate the trade-

off beIWeen comp!exrty and noise sensrtwrty and’ to demonstrate that orientation selectron

‘

must be treatgd as a complex problem.

»

.
X -

trace the boundaries of these regions to find the contours. The most common methods -

Among the earliest examples of (intensity) edge detectors are the Robert’s cross and the

Sobel operators-(Levine 1985). These oberators yield a measure of the intensity gradient,

" _including both the magnitude of the gradient and its orientation. Intensity step-edges are
asserted at local maxima in the gr’adient magnitude.- The problem with these operators is ’

that they are extremely local (the Robert’s cross is a 2 x 2 convolution operator,-and the

Sobel operator is 3>'<3). and hence they are highly susceptible to noige in the image: The two

» ‘
-t ¢
f -
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'21 The Reconstruction’ of Curves and,Flows in Early Computer Vision,ModeIs

»

most common methods of dealmg with this nolse have been to threshold the output of the

operator and to smooth either. the orientation information provuded by it or the image itself.

Unfortunately, thresholdmg completely i |gnores potentially’ valuable orientation mformatlon
Smoothmg blurs the operator output, so that the orientation is Iocally less accurate - thus

defeatmg the purpose of using a Iocal operator "o

i

. As an attempt to ‘resolve the problems of noise sehsitiv'rtyi, later operators used several
sizes of masks at varying orientations to detect edges (Rosenfeld and Thurston 1971; Marr
1976). However, thiese methods were coputationally very expensive, and it was not cle‘ar
either how to correlate the information from the ditferent mask sizes or how to use ‘the

A\

orientation information to advantage Smce ‘the orientation mformatnon was the pnmary

cause of complexity. Marr and. Hlldreth (1980) Iater developed a rotatnonally symmetrlc

"operator to detect points along step edges in intensity. The recovery of contours was then
treated as a “grouping” process that uses principles of similarity and proximity to link
together feature points detected by these edge operators (Marr, 1981; Stevens (1978) also
.used such grouping processes to reconstruct flow patterns). ' ‘

Other models segment the imaée into faiily'homogeneous regions using statistical

‘methods of reglon-merglng (Meurle and Allen 1968 Pavhdrs 1972: Gupta and Wintz 1975

. Levine and Shaheen 1981) or reglon segmentatlon (Levrne 1973; Schactér. Davis. and

Rosenfe’d 1976; Tomita and Tsuji 1977; Ohlander, Price. and Reddy 1978; Weszka 1978).
The contours fall out of such 4p,rooesses automatically by tracing the boundaries of the
regions. These methods ignore orientation information altogether.

’
?

- In early models of vision. then. the issues of local orientation and of smooth or abrupt
changes in curve oriéntation generally have not been addressed at the level of curve re-

construction. Several researchers have, however, considered how to detect orientation

:

discoritinuities.in curves at later levels.of processirig. In general. these methods find the

“average” onentatlon of a curve over nerghbourhoods, and they 'élassafy discontinuities as

+ changes in the average orientation that exceed some threshold and that are isolated (lo- -

[N b
< - . ~
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21 The Reconstruction of Curves and Flows in Early Computer Vision Models

calised to a point). The actual detection scheme has been implemented as an extension
to the chain-coding method of curve representation (Freeman and Davis 1977 Feng and

Pavlirjis 1973; Rosenfelﬂ and Johnston 1973; Rosenfeld dnd Weszka 1975).’ and also as a

match-filtering problem acting directly on_the image or on a bit-map of the curve (Kruse

! .
! - )

_and Rao - 1978)

The fallacy in these early approaches is that they implicitly assume a partrcular orlenta-

tron structure Rather than suppr’essmg orientation information. they impose on the image

. an orientation structure which may be rncorrect because they never test for violations of

-~

the assumption. This occurs in threé ways frrst the region segmentatron or edge-fmdmg ’

operations impose particular structure (such as planar surfaces) on the regions: second,
these same operations impose ah orientation structare on the region boundaries: and third.

the methods for curve representation, and especially for detecting discontinuities in the

\curves. assume a particular orientation structure around drscontmurtres and hence impose .

this structure over the entire curve. To illustrate the first two points, considér again the

drrectlon-mdependent edge detector mentroned above. The orientation structure of the in- ,

tensity edge is assumed to be a step dlscontmurty and the edge (or botmdrng contour)

.

is assumed to be straight within the spatral extent of ‘the operator (Marr and Hildreth

1980). When the underlying i |mage structure devrates from this assumptron the asserted N o

edge (or contaur) locatrons are drsplaced from their true locatlons. This usually results i in

an incorrect assrgnment of the contour’s or;entatjon and curvature To |llustrate the- thrrd

* point, consider the method of detectmg corners in cham-coded curves mtroduced by Free-

man and Davis (1977) Thls iethod first” averages orientation ayer nerghbourhoods and *

then rmposes a (relatlvely low) threshold on orlentatlon changes before considering them
as candrdate drscontmurtles. in -order to reduce noise and quantlsatron eﬂ‘ects However
'when the onentatron changes locally because the underlying curve changes direction, the
averagrng wrll reduce the curvature effect, possrbly smoothing out changes in curvature.

In addition, drscontmumes are defined as isolated above-threshold changes in onentatron

Smce the change in orientation is above—threshold wherever the curve bends, this defrmtlon

assumes that orientation drscontrnurtlés occur only between ‘straight segments of curves

' Lo

L : | . 10,
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- 2.1 The Reconstruction of Curves and Flows in Early Qomduter Vision Models

‘In fact, an orientation discontlnui,ty can occur between curved segments. Therefore, this

method results both in the detection of false discontinuities and in the failure to detect and

accurate|9 locate some true drscontmumes — thus providing an inaccurate representatlon
of the orientation structur& ! : S

» ’ -
.o~ . N

To produce an accurate representatron we must reconstruct cﬁrves and flow patterns

~ v

by frst determrhmg their drfferentral propemes including thelr local onentatlon curvature. ,

and dlscontmultles (Leclerc a(\d Zucker 1984). lgnormg or overly smoothing onentatron

mformatron is not, then, an adequate solutton to the conflict between complexity and noise

sensitivity. It may be. in fact. that to achieve robustness while strll deriving accurate

information, we will be forced to use more complex models. Furthermore. as was earlier

suggested, if curves and ﬂow patterns were recovered first, they could provide both valuable

early descriptions of shape and a set of basis functions to anchor such calculatlons as depth

_and surface orientation. Given théir usefulness orientation structures should be recovered ¢

B

and their properties computed as early as possible (Witkin and Tenenbaum 1984 Zucker -
1984b 1985) neurophyslologrcal research suggests that we may reconstruct curves dlrectly
from lmage—lrke structures (Hubel and Wresel 1962 1977 Schiller, Finlay, and Volman
1976). ) ¢ : S

¢

.

- )
~

' Some methods have been developed to extract lme and edge onentatlon dlrectly from
rmages (Rosenfeld Thomas, and Lee 1970 Hueckel 1973). However, these methods also”
generally assume a locally straight line structure. A relaxation labelling technique for
line and' curve enhancement (Zucker. Hummel, and Rosenfeld 1975) tries to use local
orientation structure to perform the dual functlons of frllmg in gaps and reducmg noise in

the i image. However this first attempt at curve enhancement by consideration of a shghtly

‘more global structure does not take into’ account curvature consistency. While' it does )

not rule out or suppress curved lines, it gives preference to low curvatures. (No attempt

is made to explicitiysdetect prientation discontiauities in curves, The algorithm simply

,asserts the presence of a curve and.its orientation -at each pomt by allowmg nelghbourlng “

e

onentatlon assertions to either support or lnhlblt each other. The mhrbmon increases as the

~



background in nedropﬁysiblogy an_d psychology follow.

2.2 Orientation Selection in Neurophysiology and Psychophysics

\
1)
.

di_ffe}ence‘ between neighbouring orientations incfeases, thereby favouring low curvatyres.)’

As the experiments presented in Cha[;ters 4 and 5 shall show. such curvature informatioh

#s certainly an important factor inl how we -perceive curves. In particular, it is required

to explain our perception of orientation discontinuities in curves. The model developed in

Section '2’.3’is based in differential geometry, and it determines the differential structure of

-

curves and flow pattérns before imposing any interpretations on the image. The relevant

- PR

2.2 Orientation Selection in Neurophysiology and Psychobhysics

a

. ' . ' ,
- How do biological vision systems reconstruct curves? Neurophysiologists have postu-

lated that so-called simple cells might be involved. Their spatially Iocalised’response and

orientation selectivity have led Hubel and Wiesel (1962) to ;uggest that, by selecting the.

strongest response at a position, simple cells can become line detectors. While this may be

true for lsolated straight lmes. the receptive field structure is insufficient to explaln curve

. - perception. "The optimal onentatlons for. stimulating simple cells appear to be Qiiscretely

distributed (Hubel and Wiesel 1962. 1977; Schiller. F‘inlay‘ and Volman 1976) in about 10°

steps. In addition. each cell actually reSponds to a range of orientations that is 10° to 20°

wide—Thus, each sumple cell actmg lndmdually as a llne detector could not e:p/hln either

our sensitivity to all onentatlons or to small changes in oneﬂtatlon To furthe compllcate

between optlmal stnmull Jone line possessing an onent.atlon sqmewhere in between would
stimulate two cells, although it would stimulate neither one optimally. It would seem that
orien'eation. and cyree. pe}ception is not as éimple as “detection” of oriented line or.contour
segments by individual simple cells. . ' S

» . * . ’
A}

This does not imply, hawev'ei, that simple cells are not involved i curve perception or
‘that the orientation information they provide is unimportant. ‘But the above description
oversimplifies the .neurophysiotogy in attempting to ascribe to it a particular function. |t

does not consider, for example, other pYoperties of simple cells.— that they vary in size,
1, N . . -

1
-4

.
- s * i -
.

12.-

. matters, since the average orlentatlon response for each cell is broader than the step- suze .



-,

and that some exhibit end-sropping"'inhibitiqn - or how they - are arranged in the cortex.

An particular, the missing element is the global.interactions — or'com'puta'tions ~ between

these lor:al operators that occur_before a percept i_s_' constructed. Such inreractions,are
negessary to sort out'poss;bly conflicting responses and to fill in gaps. and they have been )
shown to be an imponant factor irr generating respdhse p’atterns of simple cells (Bﬁkemore
and Tobin 1972 Sillito et al. 1980) lnteractrons betWeen nerghbourmg mrentatlons have
also been noted in human perceptron 'that are stnkmgly srmrlar to the broad overlapping
orientation tuning of simple cells (Movshon and Blakemore 1973; Carpenter.and Blakemore
1973). More recently, the poseible existence of “curvature detectors” has been investigated
(Timney and Macdonald 1978; Riggs 1973; Heggelund and Hohmann 1975; Crassrni and
Over 1975: Foster 1983), but this research is fraught with the same pitfalls discussed
above: \na"mely.ﬂ Ehat it does not take into account global interactiqns’ in the cortex.

14

- 1 a

Srmple cells and their lnteractrons are perhaps the earhest Ievel of orlentatron process-

ing. At a higher level, Attneave (1957; also Attneave and Arnoult 1956 asserted that

“shape"‘ can best be described by a set of line segrrients. ‘each possessidbg a position, ori-.

entation, and length, and the set further. descrrbed by. therr connectlons (or their relative

-- line segmerits appropriately placed to constfuct a récogmzable outline of a cat. However,

to construct and place the lme segments approprrately (r e, to determme length and orien-
tatign, as well as counectrvrty) a mechamsm is needed for calcuiatmg curvature changes .
in curvature. and curvature maxima. ) ) - ‘

-

“In thrs thesrs. I shall concentrate on the lower~level inferenice of contours rather tﬁamon
the hrgher Ievel representation of shape A new model of orlentatron selectron descnbed in
the following sectrorr shows that rnteractron between srmple—cell like operato’rs can provrde

the necessary mformation aboUt hlgher-order derrvatrves and’that curves-can. be fit in

: thrs way to strmull in the: d|5crete retinal array. Further consideration of how the model

detects drscontrnurtles wrll lead”in Chapter 3 to predrctrons surtable for psychophysrcal

experrment. The results presented i Cl_xapters 4 and 5. analysed within_ the context of

- 22 Orientation Selection in Neurophysiblog&r \'and Psycrrophysiés '

.positions). Consider Attneave's famous drawing of a cat (1954) in which he used strarght -

oF
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myself.
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2.3 The Reconstruction of Gurves and Flows from Orientalion. Cues

the model. also point ta the estimation of higher-order derivatives by the visual system.
Interestingly. for c?irnputational and geometric reasons, information about orientation and
turvature appears to be compiled everywhere, while derivatives higher than curvature need

be estimatd only over local-neighbourhoods. This neighbourhood information then permits

the precise identification of discontinuities.

‘

23 " The Reconstruction of Curves and Flovys]‘rom Orientation Cues

s b .
Y . .

'To build a computational model for the. reconetruction of curves, we first need to
consider the neurophysiology. But in order to avoid either oversimplifying its function or
simply bunldmg an imitation of it. we must then abstract ourselves from the level of neurons
and COncentrate more on the mathematics of the problem In this section, one such model is
preSented in sufficient detail to provide a context for making predictions about sensitivity to

drscontmmtles and for explaining the psychophysical findings presented in Chapters 4- and 5

To srmplffy the presentatton a model for curve. reconstruction is presented first, and it IS _

then extended to encompass flow reconstructlon This model 0f early orientation selectron

was ﬁrst developed by Zucker (1982) and was later refined by Dr. Zucker P. Parent and

! - ¢
- 4

! \ \\/' ‘ N ¢

2.3.1. A Model for Curve Reconstruction : : -

s

The computatronal scheme for curve reconstructlon consrsts of a two—stage procedure

(Zucker 1982, 1985)

I

Stage ] C’onstructaon of a tangent field correspondmg to the’curve orientation at each

posutlon.\*lug is accomplished in two steps: ‘e ' ' -

\

1. Convolution against simple-cell-like operators to produce initial orienta-

. - LY
- v

tion estimates; ~ - . ' C ) .
2. Interactions betyeen these convolutions to:

-

o (a) estimate curvature

\ .
\ . )
. o
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2.3 The Reconstruction of Curves and Flows from:grienta'tigq_ﬁtlle's

(b) eli}ninqte noise an;:! parar;weterisatit;n effeets.
' - SN
Stage 1l. Interpolation of the curve ffom the tangér\rt field.
f/ : ’ -

Stage | of this procedure r;'giuces to'a phySiological model .as layers of simple cells, or
networks of excitatory ;nii inhibitory connectiqns between simple cells to produce the
desired feedback effects. It is important to note that Stage | produces a tangent field. in
contrast to earlier- methods that simpiy detect lines. The tangent to a curve at a point is
the best linear approxlmatlon to the curve in a local neighbourhood around that point. and
it is also the first derivative (with respect to arc length) of the curve at that point. The
tangent field is a set of unit-length line segments having the same orieptation as the tangent
to the curve at each point on the curve. Curvature (change in orientation) information is

used in Stage | to recaver the tangent field, while in Stage Il information about change in

curvature becomes relevant.

2.3.1.1 The Relevance of Discrete input to the Model

_ Recall from the Introduction that the experiments will use dotted stimuli to evaluate
human -sensitivity to orientation discontinuities in curves and flow pattem's. At this point
in the _discussion. it is instructive to note that discrete inputs to the model are highly
relevant, and they can acsually be used to help develop the model. The input to our visual
system is a pointillist array given by discrete retinal receptors. In addition, simple cells
are quantised both spatially and in orientation. Alihough the visual system apparently
infers continuous curves and continuous objects from the image. it is never presented with
coniinuous'data In addmon noise in the optlcal system may degrade the dtscretlsed

|ma§e so that a continuous curve may not even stimulate adjacent/ receptors. Therefore. )

- any mechamsm for detecting and reconstructmg curves must infer the curve out of discrete

pomts i
@

The goal of Stage I, then, is to infer a continuous curve through discrete pofhts using

the orientation and curvature information provided by Stage |. Note that this is made.

o ‘ ST 15
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2.3 The Reconstruction of Curves and Flows from Onentation Cues

° -

possible initially by the fact that the convolution operators in Stage |. are linear. They can

therefore be stimulateQequally well by pairs ‘of dots having the appropriate orientation as

by short line segments of the same orientation. the only constraint being that the dots

must be close enough together to both fall within the excitatory range of the operator. The

model was developed with exactly this property in mind. enabling the approach to Stage Il
. . L . . z .

as an interpolation process between sample points in a discretised curve. This in turn leads

to an explicit definition of discontinuities and a method for detecting them.

The linearity of the convolution operators in Stage |, corresponding to the linear oper-

ating rapge of simple cells, also makes the use of dotted stimuli in the experiments both

valid and highly effective. Dotted stimuli. §s | shall show in Chapter 3, stretch the model
fo its limits and provide isolated and well-controlled orientatign and curvature cues as inpu‘t
to Stage | and, therefore, also to the interpolation process. This method thereby allows us
to infer which information is used by the orientation selection mechanism to reconstruct
curves and flow patterns and to detect discontinuities in them. To clarify the way in which
these predictions arise, the details of the model will be presented in the following sections
as a reconstruction process acting on sampled curves. The reademghould keep in mind
that the same process applies whether the sample point‘s are connected ”(as in continuous
Dcurves) or separated by small spaces (as in dotted curves). Of course, a significant amount
of processing precedes the convolutions, and the specific structure of the convolution op-
eratoré themselves will affect how the curve is reconstructed. However, th; analysis of the
model in this thesis does not rest on these details. and hence 1 shall also assume binary

images.

2.3.1.2 Obtaining the Tangent Field from Imprecise Orientation Cues

Stage | of the model involves the construction of a tangent field to the curve, or a
representation of the curve in terms of its orientation (the first derivative with respectto
arc length) at each point. Assuming that simple-cell-like operators provide local orientation

information everywhere along a curve, how can these localised responses be interpreted? In
a7
* ‘ 16



2.3 The Reconstruction of Curves and Flows from Orientation Cugs

i

other words, how can they interact to detect, recénstruct.’; and rep7resei’1t curves which pass

from one location to the next (out of one receptive field and into a neighbouring one) and

which. change orientation? How can hngher -order denvatwes IY calculated’/ This requires

a comparison of onentatlon estimates at several location’s, %ogether W|th assumpt:ons of

smoothness and of how quickly curves are expected to twist around. ¢

<

Such compansons can be performed and the assumptlons made explicit. wnthm a
locaf exc:tatory and mhlbltory network of cells {or operators) that continue to signal new
estimates until the network rehches ‘equilibrium (Zucker 1984a) However, rather than
operatmg on actual estimites of onentatlon such as rmght be obtained by selectmg the

aximum gesporse at a parthular location, the network can compare the overall pattern

of responses to an expected pattern of response for any particular curve structure (Zucker.

1984 5). In this way, not only arientation but local curvature information can be derived

from the responée pattern. Computationally, representing Curvature explicitly has several

advantages (Parent and chker 1985). In pa'rticular. it constrains the orientation estimates’

within a local neighbourﬁood,'permitting more accurate initidl guesses and reducing the

number of comparative iterations required to reach equilibrium: see Figure 2.1. It requires,
however. that the size of the operators vary so that the larger ones can accommodate
sections of curves that bend while the smaller ones provide more local‘information and help

to define the spatial resolution of the cbrvq. The larger operators, however. will respond

to straight stimuli (thin enough to stimulate smaller cells) lt:w‘er a slightly broader tanée of -

orientations than smaller operators. Thus. the broad orientatioh tuning of some simple cells
(Hubel and Wiesel 1977) may actually be an advantage when curved stimuli are considered.

as long as the ranges of orientation responded to by individual cells overlap to cover all

possibilities. T he hypercomplex. or end-stopping. properties of some of these cells also

9

result in response patterns that reflect the local curvature (Orban 1984).

2

~ Higher-order derivatives can be calculated implicitly with each comparisan. and the
more global we allow the comparisons to become. the more wé can confine the curve

to specific locations, orientations, and curvatures. The notion of arbitrarily many curve

<
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. ' 23 TheReconstruction of Curves and Flows from Orientation Cues

Expected variation of ¢
over [ A, B]

4 estnmate -

for region [A, B} ~over [A, B

§ estimate

Expected variation of ¢

R -
- - with onentatlon -estimates only
[4
) Expected variation of 4
\ with curvature estimates -

g estimate
for region [A, B

, , W

Figure 2.1 This example ilustrates the variability,of onentation estnmatesﬂ) when
. only orientation estimates are available and (b) when both orientation and curvature
«  estimates are available. The difference is shown in (c). The smaller variation when
clirvatures are kniown indicates how the criteria for locating orientation discontinu-
ities can be changed allowing discontinuities corresponding to smaMer.changes in

. onentahon to be'identified. .

AN v
»

« . Tangenttocircle XAB at' A
Expected variation of ¢

for region {4, B]

derivatives being calculated and rep'resented by the visual system has beén advanced by

Watt and Andrews (1982). However, Watt and Andrews postu]ate, several mechanisms,

erhaps working in paraliel, to calculate the various derivatives. The model presented here .

calculates the first two derivatives usmg a smgle mechamsm whose purpose is to construct

the tangent fi field of the curve and to ;yovude d|rect input to an interpolation process It

is i in this second stage that hlgher-order derivatives need to be represented, but only over

1

18
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‘

neighbourhoods rather than at every point.

2.3.1.3 Curve Intergolation and Discontinuity Detection

v -
v

-

Let us th Tow to Stage It of the rnodel., The proc‘eée of constructing a curve which is
constrained to pass th?ough certain given locations is kn'owr: as interpolation. Note that an
irrfinite m.rmber ef curves can be nr;de to pass through any discrete s:et of sample points.
lnterpolation processes, therefore, impose certain assumptions ebout the preperties of the
ini;qr_rer\i curve to constrain -it sufficiently so that it will always -be unlique‘.’ For example.

the derivatives of the curve may be constrained to lie within -a certain range. Usually.

" the number of times the curve can change drrectron (i.e.. that the sign of the curvature

can change) between adjacent sample points is limited. The previous sectlon showed that

networks of simple-cell-like operatars can construct and represent the tangent fields (or

first derivatives) of curves (Stage | of the model). The advantage of speaking of 'Stage n--

in-terms of interpolaiion is that interpolation theory provides a framework for defining and

detecting discontinuities in the curve. - .

[

lnterpblation theory states that if n positions are represented, then the underlying curve

can be approximated by a polynomial of degree n - 1. ‘and al} derivatives of the .curve of

order n or greater ‘must be assumed go’ be zero. In practice, however, the resolution of

~

Stage | is limijted - the system.can onl\y accommodate, say, m derivatives. Then even if the

.
- et g

number of sample points n is laiger than m, all derivatives of order higher ‘than m must be

- ésSumed to be zero. Disc'ontinuitie‘s must be asserted at’points where this assumption is

wolated in order to cause the mterpolated curve to pass through the dots. The order of the

) dlscontmurty refers to the Iowest-order curve. derivative which undergoes” an instantaneous

step change. The mathematical definition of a drscontmutty states that the limit of this
derivative, as predlcted by the mtegral of higher-order denvatwes depends on the direction
along the curve from whrch the limit was obtamed This thesis concentrates on orientation

discont’  ‘ties - ﬁrst-order drscontmurtres - that accuf. for example. at corners, when the

orientafion changes. sudden’ly and unpredrctably ata pomt “At this point, curvature and ’

)
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. 2.3 The Reconstruction of Curves and Flows from Orientation Cues

all ‘higher-order derivatives are infinite or undefined. and heénce we assert’an orientation

{

The assumption that higher-order derivatives must be zero can, however, be relaxed

durmg Stage II to effectively increase the degree of the representation. Recall that the

input to Stage II is a set of quantised orientation and posntion estimates. as well as coarse

curvature estimates. Dunng the mterpolation stage. the estimates can be allowed to vary

within a limited range that reflects both a' maximum expetted variability (exempliﬁed by
'how coarse the curvature estimates are) and the charactenstigs of other nelghbourlng
estimates. One way to achieve this is to represent higher-order derivatives of the curve,
not necessarily explicitly at every point, but at least as changes in the Stage | estimates

over some open neighbourhood. To illustrate. consider the first degree approximation in

" which each pair of points is joined by a efraight line. Unless the curve is perfectly straight

(that is. unless the change in orientation - or curvature - is' zero) the Mterpolated curve

. will have orientatio discontinuities introduced at each point during Stage I: see Figure 2. 2.

L

During Stage ll, the laxation of the assumption that the curve is Iocally straight mlght

permlt a smooth interprétation. Notice in particular that the orientation change at P is
»

the same for both curves. If relaxation of the ongmal assumptions were perrmtted by

: representing and comparing curvature over local open neighbourhoods, the angle 8 at point.

P in part (a) would most Ilkely be consistent with the other orientation changes in the

nelghbourhood that is, the diffeience between them would be neghgible and a smooth

interpretation would result. However, the same orientation change at P in part (b) would

" “most likely- differ significantly from the neighbourhood estimate for curvature resulting

m the assertion of a discontmmty at P. Unless a mechanism for comparing orientation
changes over a neighbourhood (to determine consistency) exlsts the orientation change at
P must receive the same interpretation for both curves — the discontinuity. i in part (b) of
the figure could not be distinguished from the smooth curve at P in part (a). ' ’

¢ - S
How, then, could higher-order derivatives actually be represented and used in ‘Stage 117

In principle. a curve can be assumed to be straight within 'some small neighbourhood.

. . . . N

. . ! f
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' 2.3 The Reconstruction”of Curves and Flows from Orientation Cues

) g (i)
Figure 2.2 Strarght-ime m!erpo|atzon of two piecewise smooth curves. In each part,"
(i) 1$ the original curve, and (ii} is the sampled and interpolated curve., Note that
" the orientation discontinuity introduced at each sample point in the interpolated
- curve is ambiguous. The angle # is the same in both part (a) and part (b). although
" in part (a) the curve is smooth at point P. while in part (b) P is the location of -
an orientation dlscontmurty This demonstrates that we must have estimates of ' /
* higher-order derivatives. or a knowledge of ‘several neighbouring estimatés and their '
relationships. in order to resolve such ambiguities and locate the discontinuities.

\ . N -
-

Thls pemits the tangent - or the best strarght-lme approxrmatron to the curve over the
neighbourhood - to be estimated at the neighbourhood centre. Over a sllghtly Iarger

nelghbourhood however, curvature cannot be assumed to be zero. lf itis assumed to be

" constant, then it can be estrmated by differencing two nerghbourmg orientation estrmates

and normalrsmg by the drstance between them. The curvature estimate obtained - -in this
way provides an approxlmatron to the osculatrng circle of the curve at the centre of the
nerghbourhood As thls nerghbourhood is moved along the curve the curvature can change

- but only gradually If too large'a change in curvature occurs between adjacent nergh-

bourhodds and especially if this change is rnconsrstent with the local changes between

‘nelghbourhoods to either side along the curve,, then an orrentatron drscontmurty can be

¥

asserted. S .

.’

In practice, however, both ttie spatial domain and the crientation domain are quantised. -
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y 2.3 The Reconstruction of Curves and Flows from Orientation Cues

-

{' v Problems withf' the quantisation and with ngise may even require several estimates to be

obtamed over neighbourhoods of ‘varying sizes (Parent and Zucker 1985). Therefore a
curvature estimate obtained by drﬁerencrng orlentatlon estrmates is not exact Rather.,
the' clirvature 'rs\ known to lie within some range of the estlmate The size of this® range
reflects an error tolerance that arises out of the particular quantisation. Consider again the . '
example when only orientation est‘imate’s are obtained in Stage |, and follow the first line in

- Table 2.1. The estimates of the tangent are obtained over pairs of points by assuming that

curvature is locally zero - the‘ orientation of the tangent is then equal to the orientation

,of the'dot pai‘r,~ Over a éli’ghtly laréer neighhourhood. the cur‘vature’can be. approximated

. a8 the difference between adjacent (or neatby) orientations.- This requires the assumption

that' curvature is constant within the neighbourhood However, since these estimates are

noisy (due to the spatial and orientation quantasatlon) we must relax this assumption so.
5

" that curvature is only ¢ constant to within: some error tolerance ¢. As this nerghbourhood is .

moved along the curve, then, the curvature would only be expected to change within thls .

) K o error. tolerance (that is, it should not jump by more than one curvature range). Note that

. when these constramts are imposed, the, orientation of the tangent at some pomtvcan be
prea/cted from the onentatlon at a nearby point and the curvature estimates. However

/ |f there is. an onentatlon discontinuity at some point P, the predicted onentatron at P

T_"'” will depend on whrch srde of -P (along the curVe) the predlctlon is made from. Thrs is

similar to the mat)mmatlcal definition of an onentatlon dlscontmulty The drscontlnulty WIll

eqmvalently affect the behaviour of the curvature representatlon the change in ‘curvature I, ,
. over the nelghbourhood contammg P will exceed the error. tolerance e. Thus, the local '
- . cohstraint is used to obtam the mltlal (onentatlon) estrmates .but the nelghbaurhood :

1

' constramt is rmposed to estlmate higher- order derrvatlves and to locate the discontinuities,

The remammg rows in Table 2 1 generalise these constralnts over several orders of Stage |

- L
\_ '

estimation. )
1 o N . .
) , . A i}
. 23.2 From Curves to Flows - -
-~ ( R N '\ ‘ . . - - , - - -
, ( . - . v, ..0 A .- . . v , , Lot -. A , . , \
~ ' Recavering flow in-images is more complex than recovering cucves because flows are
R . N ' B i ) - v,
2
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23 T!m Reconstruction of Cutves and Flows from Orientation Cues

N

. Tablé 2.1 Foreach level of resolution — the estimates that are obtained directly from
the image. the local neighbéurhood size used to produce the estimate: thé local as-
sumptions imposed in obtaining the estimates; and the constraints used to relate
riéighbouring estimates. Discontinuities are asserted at locations where the neigh-
haurhood constraints are violated: where a change in the highest-level estimate for -
neighbours is too high within a local neighbourhood (A N locally éxceeds ¢). Note
that since the neighbourhoods overlap, this is equivalent to saying that the change
Is unpredictable given the changes between other nelghbounng estimates. Orienta-
tion discontinuities are asserted where this change percolates back up “through the
derivatives to also produce an unpreductable change i the curvature estimates over
the neighbourhood N.

<

v

two—dlmensponal structures whose representatlon in images (as flow patterns) IS more

sparse than that of curves.

Informally, a flow pattern is defined as a dense covermg of

a surface with,a family of Gurves that are locally parallel almo'st everywhere.? think of this

as arlsmg from a limiting process: consider a surface covered by pin-strjpes. Now. lmaglne

addlng more and more pm stripes to the intermediate spaces while at the same time shrink-

ing the wudth of each pin-stripe. A mathematical idealisation of a flow pattern is achieved

v —

1

LY

‘2 For a more precise mathemahcal presentatlon see Zucker 1984b

23

.
Stage | Estimation- Local - | Constraints On
Estimates | NeigHbourhood Size* | Assumptions|  ‘An Open Neighbouthood (N)
N L \ i -
0 2 k=0 | = Kmec ANgn)lseo
b,k « 3 Yok =0 Jk = ¢ Ay(9x) < ¢
9,0k 4. 2k =0 M = ¢y AN(02k) < &
- t ! - ! L
*0,x, 5 Pk =0 P ey An(33k) < g
. bn,azm " '
0,K,0x,..., n M2l =0 | I kme, g AN(0"2K) <6, 2
"3k . | ’ ' oo ’
* namber of sample points used to proiiuce initial estimates . .
§ = Tangent ) o =" constant vaiue of /% derivative of curvature:
& .= Gurvature; ! AN(z) = magnitude of change in = over neighbourhood N:
ax = .19 derivatile of curvature, & =" small bounded. tolerance varidble based on the
™M= mth derivative of curvature. quantisatiop.
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* 2,3 The Reconstruction of Curves and Flows from Orientation Cues

,

when- the stnpes are ihfinitesimally thin and derisely packéd In 'practice‘ however, only

short segments of these stripes can be displayed. and each successwe piece of contour that
.is dlsplayed (m the dnrectton of the ﬂow) must be displaced from the last in. the dlrectuon

perpendicular to the ﬂow see Flgure 2.3. Informanon along any one flow contour i§ there—

£ ‘.fore extremely sparse; noise in the i image will degrade even further the initial orientation

>
.

,,t

estimates. There is not enough mformauon to recover the curves that locally represent the
flow transformatlon using exactly ‘the same process described in-Section 2.3.1. Additional -

constraints must be |mposed The moét promment one arises from the fact that flows are

locally barallef' in flow patterns, even though the representatno_n of the flow is sparse, this.

is approxumately true (Glass 1969; Stevens 1978). This can readily be incorporated into

Stage | of the model by requiring that the onentatlon esttmates be approximately equal in

_the perpendlcular durecuon - or. equivalently, by averagmg the tangents perpendlcularly

- L ‘§\: ] s
. N

))))///
w‘:"f}.ﬂ}\,
ll'“ '}v
4
,/;/:/%’/

A\AM! “
AR
0
',;hll,
. ',
/4
A7,
2

[

s @ (b)
Figure 2.3 Examples of (a) a pin-stripe pattern and (b) a flow pattern. When
. the stripes in part (a} are made infinitesimally thin and close-together, they define

. . a continuous flow. However, this flow is impossible to display. Therefore, flow
patterns are composed of short curve segments thiat “are displaced from one another

both in the direction of the flow aid perpendicular to:it, in order to represent o

the flow over both dimensions. Note that in a continuous fow, the pinstripes
are,, by definition. locally parallel. For (discrete) flow patterns. this can only be
. approxumately true — the parallelism breaks down as the flow changes direction.

~

b -
Imposing new constraints. however, will' affect later processing and, hence, the final

percept. In parncular when the constraints are violated locally, the perceived flow will differ

from the true one-in a predlctable way. One effect of averaging the orientation estlmates

" in a direction perpendlcular to the flow is that the exact positional information gssocuated

yeoo ' . . ) . \\" o 24

Ky




,.
»
« e e T R, -

¥

Figure24. R

24 'Discontinuit'y Sensitivity and Models of Qrientation S'election

0

mth the tues is lost — a property of- ﬂow patterns noted by Zucker (1982) Technlcally.
then, Stage It becomes an estlmataon process where flows-are involved, rathér than an

mterpolatlon proceSS' ' the resulting percept is of the best-fittmg flow transform, not an

+ exact ﬁt ThlS does not change the way in which discontinuities are defmed or detected by

’

Stage Il. It does however, also result in a smoothmg of onentatlon mformatton across the

image, Ieadling to a loss of sensltmty to changes i in orientation, or equnvalently a loss of

curvature ir;fogmation. Note that theassumption of local parallelism is by definition violated ~ .

in regions where the fiow changes orientation.. In these regions the modei will attempt to
equalise onentatIOn estimates that are mherently duﬂerent causing the apparent change
in orientatjon to decrease in magnitude. Therefore, changes in orientation are generally
detected only when they also line up and thereby provide support for a region of flow
change. The wudth of this region depends both on how local and how Iarge the change
in onentatlonwlls. Since duscontl_nultles are asserted only w\here\ this region is (ideally)

infinitesimally thin, it is to be expected that the orientation averaging that results from
the 'assumpt'ioh df local parallelism would decrease our sensitivity to discontinuities: see
)

lt is desifable. therefore. to mh|b|t the assumption of.local parallelism where we have

evidence that’it is vuolated Obtammg hlgher—order estimates from mdwndual flow cues

would proeide such evudence. For example, curvature estimates would tell us not only

" .- how orientation gstimates should change in the direction of the flow, but also how they
-should chaqge' in the direction perpendicular to the flow. This would allow tlie region over

which estimates are averaged perpendicularly to be reduced-and the assumption of-local ’

parallelis,m’ to bfe relaxed. We might expect then. that the effect on discontinuity sensitivity

.of obtalnmg wherever possible, various orders of approximation from the flow cues - see

Table 2, i - would be magpnified for ﬂow patterns.

2.4 Discontinuity SenEitivity_Snd Models of Orientation Selection
: . ‘ . ‘

- -
“

Since the detection of discontinuities is an important aspec{ of the model, we can

& o R - .
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' . Figure 2.4 The ambiguity introduced by the assumption of local parallelism at o
changes in orientation. In part (a), the lateral propagation of support for the ori-

entation cues results in conflicting orientation support inside the cormer. A gap
in orientation support outside the corner compounds these ambiguities. A flow
pattern with this, field orientation is shown in (b) and ‘is copied in (cJ with some

. lateral spreading of orientation cues marked to show.the conflicting information in
the central region. ,

(/

.

study human sénsitivity to them in order to constrain

-

the mechanism. In particular, as was

pointed out in relation ta early models of vision, ‘the complexity of the modél is directly -

connected to how discontinuities are smoothed. This complexity is determined by the size

of the neighbourhood over which information is integrated and by the number of _curye

derivatives that can be rebresented by the model. In the next chapter, | shall discuss in

more detail how and why we can expect sensitivity to orientation discontinuities in curves

gives rise to specific predictions about how discontinuity sensitivity changes when dotted -

s

-~ .

-
.

.

a

%

\

. and in flow patterns to vary, with particular reference to the order of the interpoléiion. This + _.
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curves.and flow patterns areused to mampulate the orientation-and curvature content of the

|mage. | shalj use these predictions to set.up paradrgms for' studying human sensmvrty\t‘o\
N

this mampulatron. The psychophysrcal experiments performed to test out the predictlons

are presented in Chapters’ 4 and 5.
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24 Discontin(iity Sen%itivity and Models of Orientation Selection
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Discontir\uitiés inAor'ientation structures mark possible bouhdaries bétween objects.
This is irh'portant both for the initial ‘segmenta‘tio‘n of an image into coherent surface regions
and for qualitarive shape deééription. Our sensitivity to them also provides a mieans for
ass;es;sing rhe model of'early\o'rientation 'sele'ction presented in Chéptér 2. -Specifically, it
wrll allow us to make inferences about the order of the estimation and interpolation in the

<

onentatlon selectlon process .
" . ~ . &
A 4

We have seen that any model for orientation selection must be able to recover curves and

flows from discrete stimuli. This does not mean, however, that the model is insensitive

to variations in the quantisation. The model will always prévid_e some reconstruction, -

“but it is not clear that this reconstruction will alv'lays be correct - this depends on how
well the assumptions (of smoothness and maximum curve: degree) déscrrbe the strmhlus*
This provides a basic paradigm far studymg discontinuity detectron we can use different

quantrsatr,ons of curves and flow patterns to control how well the assumptlons describe

"the und;rlying functions (in the case of curves) and whether or not the'quantisation itéelf

limits the way the mechamsm can function (in the case of flows). In this chapter I shall
discuss in more detail the effects of quantrsatron on the model wrth particular reference to
the detection of drscontlnumes first fog curve and ‘then for flow reconstructron I shall show

how the smdothness assumptlons and the ﬁnrte order of the system can be expected to

result in the mrsperceptron of dlscontmumes under certau;) cwcur‘nstances that are controlled)

by the actual quantrsatron The specrfic predrctlons that arise from this discussion have

| biscontirruity Sensitivity.
) in Curve and Flow Reconstruction -

x
-
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v 1.1 Discontinuity Detection in Curves

4

been tested psychophysically. and the results are presented in Chapters 4 and 5.

3.1 biscontinuity Detection in Curves

©

The detection of discontinuities by Stage Il of the orientation selection process (de-'
scribed in Section 2.3.1.3) depends on the structure of orientation cues in a neighbourhood
around the discontinuity. Using dotted - os sparsely sampled— curves allows us to manip-
ulate this structure in a controlled manner, and hence to study in some detail its effect on
drscontmurty sensitivity. The following paragraphs justify the use of dotted strmulr to study
the psychophysics of early curve perceptlbn@r\eir use in studying discontinuity sensitivity
is also motwated by a demonstratron of the effect of differential sampling on the perception
of orientation discontinuities. This leads to a paradigm for studying human sensitivity to
orientation discontinuities in curves as a function of the local orientation structure.

)

\
2

3.1.! From Dotted to Continuous Curves -

'Recail from the discussion in Secti“on 2.3.1.1 that the mechanism for detecting and
reconstructing curves must operite on a pointillist input array. such as that given by
the discrete retinal receptors. Because noise in the optical system degrades the discretised
image, a continuous curve may not e;ren stimulate adjacent receptors, and so the mechanism
must be able to infer'éurves out of discrete. non-connected points. From this, two related
obseryetior1\5> emerge. First, one can assume that it is legitimate to st’ir)dy curve perception
by Stugying the perception of sampled or dotted curves. as long as the sample points are

close together. Secondly. if the qudfitisation of the curve changes when it is imaged

. perhapé due to a slight change in position relative to the sampling grid. or due to noise

~ the arrangement of data points wrll change. This will affect the geometry of the curve:
If the quantlsed posrtrons of the curve change relative to each other, then the orientation
of nelghbourlng points W|II change. and so may the curvature. Since geometry varies with

drscrete inptit, we can take advantage of the first observation and use discrete stimuli to
.

29




: 31 Discontinuity Detection in Curves

-

study curve detection. The following paragraphs expand on these observations and show

how | will use them

3.1.1.1 Deosely Dotted Curves Are Equiyalent to Cogtin,uoﬁs Curves

Since continuous curves are presented to our visual §ystems in a quantised form,
how close iogether do the sample points have to be for us to perceive the curve as a ¥
unit? Is it possible that some dotted curves are processed equivalently to contint;ous
ones? Theoretically, the Nyquist criterion answers this question for us (Oppenheim and
Schafer 1975). but this line of reasoning begs the issue of what mechanisms are used tt;
reconstruct curves by the human visual system. From the point of view of perception. the

relevant questions are:

x

1. How does the curve percept vary as a function of the density of sample points?
?f How does the curve’percept vary as a function of the sampling phase (giver{ a regularly
sampled curve)? A

In answer to the first question, conmder Figure 3.1. In this figure, a smuso:d has been
sampled with a uniform dot suze but using three different sampling intervals. 3 In part (a),
the curve is essentially continuous. In part (b), although the curve is dotted. the peaks
are still smooth. In part (c). however, the dots are far enough apart that the peaks no
longer appear to be smooth - rather, they appear triangulated. Somewhere in between
(b) and (c) is a transition point where the equivalent ’curve percept actually breaks down
(dlsregardmg phase). This point is actually dependent on the size of the dots used to
represent the sample points, and | shall refer to it as the size/separation constraint after
Zucker and Davss (1985). Under the assumption that simple cells are involved in curve
perception, the stze/spparatuon constraint would relate directly fo the spatial distribution
of a simple cell’s respt;nse: one would expect that over the linear opérating range for simple

cells, two dots appropriately oriented are equivalent to asolid bar stimulus as long as they

",

\
3 all figures, the dots sizes and sampling intervals quoted were accurate before photocopying

3



o

,

3.1 Discontinuity Detection in Curves

are close enough together to both fall within fhe rec\eptivenﬁeld of the cell. (Thi;s is certainly
true of the convolution operators used in Stage | of the model p:esented in Section 2.3.1.)
The effect of dot size and separation has been fully demonstrated and measured by Zucker
and Davis (1985) with respect to the property of ”well-plac'ed endpoints of contihuous and
dotted lines. | shall be concerned only with curves that are sampled on the dense side of

[

this constraint.

. . o e
0.. ..' . o .
. . . .
% o ’ A . 0
. .' - : .o
.' . ‘o .. .. .
.
"b.' ..o‘. "o"
0 ?
- (a) : (b)
¥
. .
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'7 ° .t toe |
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Flgure 3. 1 The effect of different sampling mtervals on catve perception. In part (bi R

the sinusoid has been sampled on the dense side of the size/separation constraim
(Figure 10 in Zucker and Davis 1985). and it _fopks the same as the contmuous
.sinusoid in part (a). n part (c). however, the sinusoid has been sampied on the -
. sparse s side of the constraint, and the peaks appear to be tnangularted In all parts,”
the dot size'is 2.9 miputes of visual angle ( m.v.a.} when viewed from a distance.of
' 1, meter (before prmtmg] In' part (b) the dot to.space rat|o is 1-1.5;0n part (c) it
is 14,

. I . v -
B PR . . -
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\ 5 : \ - .
' N - .
v

The second guestion. how the curve percept varies with the sampling phase, projiljdeé
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3.1 Discontinuity Detection in Curves

a means for studying the sensitivity of the curve reconstruction mechanism to local orien-
tation structure. This sensitivity is the subject of this thesis. The following paragraphs
demonstrate how changing the sampling phase, and thereby changing the geometiy of

the dot pattern. changes the percept. This jeads to an experimental paradigm for study-

ing human sensitivity to orientation discontinuities as a function of the local orientation

structure. . -

/

3.1.1.2>~ Quantising a Curve 'Ditferent_ly Cfremgeb‘t«he Geometry of the Pattern

»

. [

To produce a discrete trace of a curve(ﬁre begin with some continuous curve, sample

it at regular intervals, and then dlsplay only the sample points. When a.curve has been

re
.\

sampled we must distinguish between:

1. the underlying continuous curve, or -virtual curve:

2. the discrete trace of the curve; and .

3 the apparent curve. - . s . .

/
-
'

i

Consider Figure 3. 2 Notlce that the curve. m part (a) of the ﬁgure has-an onentatron "

drscontrnmty at P. In- part (b) the curve appears to be smooth everywhere Although one’s

attention may be drawn to the part of the curve near P, perceptually there.is no break rn' A

the curve ‘such as in part (a). In fact, parts (a) and (b) were constructed from the same
underlying curve,-but theinquantisations - within the siie/ separation constraint —are phase
shifted: the sampling interval is the same, but the sampling points ‘a're different. Changing
the positipn of the dots along a virtual curve cha.nged the geometry of the dot pattern.

The portion of the modet presented in Section 2.3.1.3 makes explicit how the detection of

" discontinuities is dependent on the local orientation structure Specifically, the curvature

(or higher-arder derwatrvesj‘. approximated by differences of onentatlon estimates, must be

cohsistent across opén neighbourhoods for a smooth interpretation to result; othérwise a

;discontinuity must be asserted. Changing the geometry of the dot pattern is equivalent to

changing the structure (the local orientations and the spatial arrangement) of the oriéntation

/.32
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B . . ) 3.1 Discontinuity-Detection in Curves

 cues. As in the éxample, therefore, it further changes the appirent curve. Other sampling

- phaée\ shifts would -affect in varying degrees bur ability to see the discontinuity in the curve. '

(a) . ~ (b)

Figure 3.2 A curve which has been quantised at slightly varying positions (but at.
the same rate) relative to the_discontinuity at P (see part (a)). Note how the dis-
continuity appears sharp in (a) but smooth i m (b). The dot slze is 2.9 m.v.a. when
viewed from a distance of 1 meter. ]

- (a) no offset in quantisation from the dlscontmutty {seen at P),

(b) quantisation offset 0.7 dot diameters to the feft of P g

-

—

- »

F 4 . .
-3.1.2 A Corner and a Curve’ . . v .

«
1 i

By- takmg together the two observations discussed above. we know that we can use
dlfferently sampled curves to study how changes in the geometry affect ‘the apparent curve.

Specmcally we can use phase shifts in the sampling to affect the geometry of the | pattern

without changmg the sampling interval (and therefore without changing any other possvble :

characteristics of the inference). To obtain' stimuli for studying this effect, consuder two

straight lines approachmg a pomt and allow for tWo cases. In the first cas’e. let the lines

contintge along a straight path until they meet at the point, forming a sharp qrientation
discontinuity in the resulting curve: see Figure 3.3a; In the second case. let the Jines curve -

(say. following a Iow-frequency smusmd) to meet with the same onentatuon, formmg a

smooth curve; see Figure 3.3b. "These two examples prowde a means of assessmg whether
the orientation discontinuity - the corner — is detectable: it must not appear like the
smooth, or control, curve. Notice ‘that by éampling the test (discontinuous) curve with

different phase shifts. we can change the orientation cues in the neighbourhood of. the

e .

-
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32 Discontinuity Detection in Flow Patterns

corner, in a measurable way: see Figire 3.4. "This then provides a parédigm for studying
how neigllbouring orientation cues _iri"teract in_discontinuity detection. | sha'llxuse similar-
transformations and varying sampling phases in a psychophysical experiment. presented in .
'Ch}:pte'r 4 to [ﬁeasqrerhuman sensitivity to orientation discontifuities' as a function of the

local orientation structure

o @ | (5

14

Flgure 3.3 In (a). the curve is described by two straight !mes joining at a point,
where there is an ang'e created by the difference in onentatlon of the two lines. In
(b). the curve is described by the two straight lines, with the same angle as in (a)
between them, but this time the lines arc (with a low-frequency sinusoid) to join

* with no discontinuity in orientation. ;

Tt

.

In the following 'section, I{;hall,show:how we can \ys‘e dottgd stimuli to s;tudy the
- effect of the assumption of local parallelism on detecting c‘;rientation'discontinuities in flow °
patterns..” A new parameter of flows, the path-length of the flow cues. cap be used to
¢ontrol the amount of local information about the flow derivatives that. is present ir‘\.th‘e'r
‘ imaée. Our seﬁsitivity to thi§ parameter, therefore; will allow us to gség‘s(s the order of the .

flow interpolation ,fhect'\anis‘m. ) ) . - ‘

3.2 Discontinuity Detection in Flow Patterns

Recall that in flow reconstruction, amajor obstacle to accurate discontinuity detection
is the smoothing introduced by the assumption of local parallelism. Suppose, however, that
. the flow cues were long enough that the mechanism for detecting flows could extract not

only orientation, but also higher-order flow information from each cue. Then in areas where
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Figure 3.4 The effect of sampling Figure 3.3a with various phiase shifts:

% A . ’
3.2 Discontinuity Deteétion in Flow Patterns

@ .

a) top

dot offset = 00 sampling intervals; (b) offset = 0.2; (c) offset = 0.4; (d} offset
. = 0.5. Note the chahges in the »Onentatlon cues, represented by the dashed line,
brought about by the changing phase.

A}

the flow is changmg we could predlct how the assumptlon Iocal parallehsm will break down

Provnded that thls predmtmn was supported by both the onentanon and the curvature cues

in some nelghbourhood then onentatuon averaging could at least.be partially inhibited. We
can therefore see that sensitivity to discontinuities in flow patterns is dependent on twp

" - things:

\

1. the order of approximation that can be applied to each flow cue. as determined by

its length.

'

2. ‘thé capabilities (or order) of the mechanism reconstructing the flow.

’

¥

Dotted flow patterns allow us to explicitly restrict (under interpolation theory) the order of E
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+3.2.1 - Motivation: An Example from Art o . .

.- 3.2 Discontinuity Detection in Flow Patterns

*

approximation that can‘ be applied to each flow cue. Using dotteg stimuli to study human

sensrtwrty to onentatlon drseontmurtres in flow patterns as a function of this restriction .

wrll therefore allow us. to mfer the order of the mechanism for reconstructlng flows in the

human visual syslem - o |
The foll“owing baragraphs further motivate and elabor,ate on the eﬂ‘eét of path-length ‘
on dlscontmmty tietectlon The use of random dot Moiré patterns, 0}: dotted flow patterns.

to study this effect is then described. resulting in a paradigm for the psychophysical mea-

Surement ‘'of human sensrtmty to onentatlon dlscontmumes in flow patterns asa function

To ihtuitively rrrotivate the role of the .pa.th-lehgth of ihdividual flow cues in discontinuity
detection. consider how .artists convey three-dimensional shape using a two—dirrwensional
medium, the canvas. TheyI‘ofierr use ‘ﬂow-like patterns, covering ‘a region with several
short. roughly parallel strokes to locally highlight what are in fact' reiati\rely 'global shape
charactenstlcs Some of the clearest examples are the sketches by Leonardo da Vinci
presented in Figure 3.5. He has used this techmque to mdrcate both the roundness and
the angle of the man’s arm. The strokes fall along what mrght be folds in the cloth of the -
sleeve. which together take on the shape of the arm supporting the cloth. They are slightly

curved wfifh the roUndness of the arm and they either bend more sharply about the elbow.

) or create a- splayed pattern. Da Vinci has used the same techmque to |mpart a sense of

the flow of water around a post. , ‘

-

Note that the pen strokes' in these figures are ‘rarely exactly parallel. and even when
they are, they rarely line up side-by-side or end-to-end. Rather, they are spaced to cover
an entire two-dimensional region. The extent to which the strokes are oara\llel or do .line
up changes a guaﬁtative impression of the turbulence or l;exture of the flow. Despite this,

an impression of flow persists. Thé model for recoverir;g flow described in Section 2.3.2

N * ~
' o

C , . ’ T 36
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(C) I (b) . .
Figure 3.5 Details from “Studies of an Old Man Seated and of Swirling Water,"
pen and ink sketch by Leonardo da Vinci. Housed at the Royal Windsor Library. No
12,579 recto. Reprqduced from Popham (1945, no. 282). The full sketch contains
notes by da Vinci which were translated by Richter (1939, no. 389) as follows:
“Observe the motion of the surface of the water which resembles that of hair, which .
has two motiofs. of which one depends on the weight of the hair, the other on the
direction of the ciirls: thus the water forms eddying whirlpools. one part of which is
due to the impetus of the principal current and the other to the incidental motion
and return flow ™

P

takes into account this persistence of flow orientation over variable orientation cues and

imposes an assumption of local parallelism to fill in the empty $paces using information

from nearby orientatién cues. The imposition of the assumption also results in a local

averaging of orientation information so that small localised changes in orientation cues do

not affect the recovery of flow. Hewever, the assumption is by definition violated ‘wherever |

the flow actually changes direction. Locations of high curvature change are only perceived.

therefore, only when they also line up. Lines of orientation discontinuities that are detected

\

in this way are assigned a special significance in the innterpretation of the overall shape,
such as boundaries between distinct regions of flow or distinct surfaces. But the changes in
direction are often smoothed - they appear to occur over larger neighbourhoods (therefore
with smaller curvature and changes in chrvature) than is actually the ease. In order te '
detect changes in orilentzitién more accurately (more locally)., more information is needed

to allow’,\tﬁ‘e assumption of local parallelism to be relaxed.
*

|

Note that da Vinci has varied the Iength of the strokes to create different impressions.

For the small folds in thk ‘cloth and the wat%urbulence. he has used short strokes.
1

-"31
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32 Discontinuity Detection in Flow Patterns

f

While these short strokes give a well-defined impression of constant overall shape there

is a fluid impression that the small details may change randomly. The overall shape is

perceived as being basically smooth. The small details that are lost are small crevices,

* .or the places where: the ;‘;moothness is disturbed. That is. high-curvature information, or

more particularly high changes in curvature. are lost or made to appear iandom While high

curvatures can be percelved such as the small cnrcles m the turbulence, dlscontmuutles or’

high changes in curvature are not always conectly mterpreted (Note that a discontinuity

#£an be conSIdered to represent both infinite curvature and an infinite change in curvature.)

Around the bend of the man's elbow and in the smooth arcs of water, however, da Vinci has -

used mostly long, well-defined strokes. In these regions of longer strokes, theflow appears

to be less variable, and changes in the flow.orientation — particularly abrupt ones — are

more readily perceived. It would seem that the longer strokeg provide the extra information.

required to relax the local parallelism assumption. .
) &

In sutrnmafry. two points emerge: First, da Vinci and others have observed that locally
paralle! structure in the world often maps onto locally parallel structure in umages But
for natural flow patterns such as water, hair. or the folds of clothmg the structures are

only roughly locally parallel. If made precisely so, then the character of the flow changes:

N

see Figure 3.6. Second. ‘wjthin‘these roughly parallel fl_ow patterns. the length of the pen

strokes affects the perceived spatial (and orientation) precision. Longer ‘pen strokes fead

to more precision around bends and curves, while shorter strokes lead to:less.

3.2.2 Path-Length as a Parameter of Orientation lnformation

The Iength of the pen strokes in da Vinci's drawmgs is "analogous to the path- Iength of

*
orientation cues in real |mages Preliminary experiments indicate that the loss of curvature
change information observed at some path-lengths takes two forms First, corners which

correspond ,to small changés in orientation may be blurred to give the impression of a

smobt#tly bending flow. resulting in the possible loss of boundary inférmhtion; Second, -

a smooth flow with a.large and relatively local change in orientation that results in high

. ) : L 38
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liing up exactly end-to-end and (i) those with {the same number of) randomly
positioned oriertation cues. Part (a) is a linear flow (generated by pure translation),
and part {b} Is a section of a circular flow (generated by pure rotation). This thesis
is concerned with “random” flow patterns such as those in {ii). '
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—3.2 Discgptinuity Detection in Flow Patterns
- Al B

curvature change may be misinterpreted as having a discontinuity, resulting in ti)e possible

perception of a surface boundary whére there is in'fact gone. These situations are illustrated

‘in Figure 3.7. and the effect of path-length on these perceptions; is illustrated in Figure 3.8.

1

Note that increasing the péth»length has a greater effect on curvature pérception than

3

increasin:g the density of orien(ation cues; compare Figures 3.8 and 3.9. Attneave (1954;

1959) and Klemer and Frick (1953) have shown that the amount of information trans-.

_ ferred in a;:,,image, is dependent both on the number of informational parametérs and on

the amount of information carried within each parameter. S

3

‘ R
. R . (\
- >
.
.

y

pecifically: they conjecture that-
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‘" 3.2 Discontinuity Dgtection in Flow Patterns

J

information' mthm a parameter is in some sense additwe

\

In contrast, the information

across parameters is multupllcatwe because it is combinatorial. It is my assertion that in-

" “creasing the den5|ty of the orientatian cues adds orientation information within the existing

parameter set, while the path-length adds.a new parameter - the correlatlon of onentatlon

cues. The model described in Sectlon 2.3.2 reflects this parametensatgon.

4 B

As was explained in Sectlon 2.3.2, curvature mformatlon as long as it receives support

over a nelghbourhood ~ allows us to Iocally prednct the way in which the flow will chdnge

and the assumption of local paralle_llsm will break down. [t thus allows this assumption

to be relaxed, and the orientation information is no longer averaged over as large a neigh- . .

would increase when curvature information is available. Path-length is important because,

bourhood. Therefore, we would expect that our sensitivity to discontinuities in the flow

as the experimental results presented in Chapter 5 shall show, short path-length cues only

provide local information about orientation. while longer ones provide information about

vided by different path-lengths can be controlled with dotted stimuli. 'l"i’liS leads the way

" curvature as well. The following section demonstrates how the derivative information pro-
% 1 ¢

to a paradigm for investigating the loss of sensitivity to discontinuities ds a function of _

path-length when the assumption of local patallellsm is lmposed | shall concentrate on

0

the smoothmg of discontinuities corresponding to smail changes i in onentatlon

<
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Figure 37 in \(a) the flow pattern has a dlscontmulty running down the centre that -
is not visible without carelfjl inspection. In (b) the flow pattern has no discontinuity,

(b)

although at h’\rst glance it“appears to have one running down the centre.

-
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in Figure 3.7, but the path-length is twice as long. Note that the discontinuity in .
(a) is now visible at a glance, and there is no false discontinuity in (b). . .
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Figure 3. 9 The same flow functions were used to generate these figures as those , < -

\ in Figure 3.7, but the density of pen strokes is twice as bigh. Note that. although ' - ,
the true flow is more ‘easily recdnstructed, the effect of doubling the density is not .
. as pronounced as doubling the path-length; see Figure 3 8. . . S

. . \ 1
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3.23 Random Dot Moiré Patterns Mimic Natural Flows

e v ’y B - . N -

. . ' ! E

s : The flow pattems that | shall use to study path}length are called Glass patterns or

random dot Moiré patterns (Glass 1969: Glass and Pérez 1973) They are lllustrated in

Figure 3 10°and are constructed as follows. oo T ' ' .
A . . | . :
OVERLA¥ 1:" . _ . S -

o

( t - -Construct a field of. réndomly. distributed dots. ’ : . . .
. . . i . .
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4

'
\

OVERLAV noo- .

«

|) Make a copy of overlay n-1.

u) Move each dot in the copy according to a chosen flow transformatlon for

o example a rotation or a translation.

iii) Superimpose this overlay on the other overlays.

* S
- &

b
' N L]

-

Al

Only twd averlays (n = 2) are required to produce an impression of flow.

(h) _.;'3.": \-v'-'..-..

Figure 3.10 Sample random dot Moiré patterns: (a) was created by translating
each dot in the previdus overlay at an oblique angle: {b) was created by rotating
each dot in the previcus overlay about the centre of the figure Part (|) in each has
two overlays, part (ii) has three overlays. All parts have the same overall denslty
and in all parts the dots were moved. %,dmance of. three dot daameters (1 dot :

spaces). .

v
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.

Randorll dot Moiré patterns create flows rich in locally parallel structure as follows.
Each d<‘)t :n *t‘he original pattern <:ani be traced through each overlay. The resulting set
of corresponding dots — the original plus its transformed copies — can be considered as a
randomly distributed pen stroke along one of the curves described by the transformation
used in step (ii). Défine the number of overlays used. n. as the path-fength metr/c or path
metric of each stroke. The path metric times the dot separation gives the actual pa§h~length
of a stroke. The patterns used in thé experiment all have dot separations that are small

enough to guarantee that there is no functional difference between the solid pen strokes and

~ the dotted contours.? The path-length metric provides a direct and meaningful measure of

what orientation information is available locally and therefore allows us-to determine how

changes in orientation could ideally b&&rocessed at different pukh-lengths. It is for this

'reason that random dot Moiré patterns are used in this study.

L

3.2.4 Corners and Curves in Flow Patterns
. - v

Consider again the patadigm set up to study discontinuity sensitivity in curves. Stimuli
were constructed from two straight lines with some difference in orientation and joined with
either an abrupt or a smooth transition between the two orientations: see Figure 3.3. This
provided us with a means of assessing whether the "corner': is detectable: it must not
appear like the sr'nooth. or cuntrol, curve. By replicating these transformations along the
vertical axis, we can produce flow patterns that provide a similar paradigm for studying
sensitivity to ;iisconfinuities in flow patterns: see Figure 3.11. 'As was discussed prev'i'ously
one would expect the angle between "the fines to be significant, particularly when only

onentat&{n information is avallable for reconstructing the flow. | shall therefore use such

o
-

aQ

4 This functional equivaence between dotted and continuous contours refers to the size/separation con-
straint measured by Zucker and Davis (1985): see Section 3 1.1 1 for elaboration. Since a similar
mechanism has been proposed to extract orientation cues from random dot Moir€ patterns (note that
flow patterns with high path-length metrics are collections of one-dimensional contours), | shall assume
that staying on the dense side of this constraint ensures, that the consequences of changes in the path- ~

- fength correspond to the consequences of similar changes-in the path metric while the dot separation
remains constant.

43



32 Discontinuity Detection in Flow Patterns

transformations, varying the angle and path metric. to measure (psychophysically) human -

< sensitivity to orientation discontinuities in flow patterns as a function of the path-length

»

of flow cuss. The experiment and its results are pre'sented in Chapter 5.

-

0o 4

L

/

\
4

«

;
ZAS
(b) .-

Figure 3.11 The flow transformations described by these figures correspond to the
same transformations that were used to construct the curves in Figure 33, For
¥ examples of the actval flow patterns used in the experiment, see Figure 5 1
i !

The remainder of the thesis is devoted to the experiments that were set up in this
v cﬁapter to study human sensitivity to orientatgen discnontinuities in ‘curves and in flows.
Because the experimental paradiéms were derived from predictions that came directly frome
the orientation selection model and its a'ssumgtions. the resu|t§ will reflect propertigs of
the model. Specifically, they will provide an indication of the order of approximagio;l used
by the visual system for detecting orientation discontinuities during curve and flow recon-
structi;m. The experfme_nt relating to curve reconstruction is bresenied first, followed l;y

the experiment relating to flows.

\

E
v
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Chapter S Expenment Corner Sensmvuty vs. Samplmg Offset
s in Curvulmear Dot Grouping

N

&

b}

Y
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R ,
The purpose of this expenment was to deterrhine how the changes in orlentatrqn struc-

ture which result fram changes m the sampling of a curve affect the sensitivity of human
observers- to orientztién dlscontmumes in the curve. It was expected that this’ woqld shed

light on thr oider of the mechamsm used to detect and reconstruct these Ccurves:

u
T

- '

Subjects were shown several instances of dotted contours ‘resembling those in Fig-
ure 3. 3 These contours consist of two straaght lines approacbmg a pcmt Some .’ of the
‘contours were constructed with the lines meeting: dlscontmuously in oruentattbn at the~p01nt
(such asin Figure 3.3a), and some were constructed to meet with a smooth transntlon be-
tween. the two orientations (such as in Figure 3.3b). These two transformatlons’ were used
to assess the 5ubjects ability - to detect the discontinuity: a mscontlnuous curve must not

ook like.the smooth, or éonfrol curve. AII the contours were constructed usmg tﬁe same

sampling interval but with drﬂ’erent phase shifts. The phase was determmed by the oﬂset o?‘ K

the ~ top dot” (the one closest to the peak in curvature) from the drscontmurty or the peak

in cmvature of the underlylng curve and was measured in terms of the samplmg mtervaL s

.Note that for’ smooth underlymg curves.. the dot placement should not affect the percept

as Iong as the curvature is wlthm the sensitivity range of the process Other factors whtch

mlght affect the sensitivity to dnscontmusties such as dot size, dot separatlon and norse ) :

» Fd
[ .
were held constant.sv . .

5 The dot size aqd spaciné were within the size/separation constraint measured b9= Zucker and Davis

.

v . -
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41 "Method ~ ’

[ -

41.1  Subjects

. 3 . . s

)

There were five subjects, four male and one female, all with normal or corrected vision.
Three subjects were aware of the goals of the experiment. two having participated in
preliminary experiments. All subjects received training sets to become familiar with the

' task. and all subjects were presented with the full range of images.

e

41.2 Ab;)aratus ,

The stimulus imagés were generated usinga DEC VAX 11/780 computer and displayed

on an AED-767 colour graphiés monitor. The experiments were conducted in a dimly it
room. After the subjects had adapted to the illumination level for a few minutes. the
luminance of thie display screen was adjusted 'so that the dots did not q\;)pear to the subject

. tobe self-luminous. The subjects were seated 3.6 meters from the monitor (looking directly

at it), although they were permitted slight movement. .

v

-

- 1 !
b \
. S
o

\'\ 41.3 . Procedure

, \
i
)
\ . ’

v

The_experimént consisted of four sessions, during which the subject viewed 120 im-
_agés. These images were dotted contours as described above, with eight quantisations of

orieqtation change between the straight-line portions of the contours. During eéchisession.

- only four of these quantisations were used. A randomly mixed but equal number of smooth

N .and discontinuous curves were shown. For each undJ;rljing curve, every sampling offset

was used. (The “top dot” was offsét from the peak'curvqture position by 0.0. 0.1, 0.2,

*

<" .03,0.4, and 0.5 sampling intervals.) The images yyereudi;playéd for 1.5 seconds. and the

screen was blank during the inter-stimulus interval. which was not timed. Subjects were

‘o o <

. " (1985). )

>

-
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allowed to view the image for one additional 1.5-second interval if they were unable to\’focu§

; the first presentation. After this, the subject was required to indicate the nature of the

underlying curve with one of three choices: (1) a smooth change in orientation; (2) a single

_abrupt change in oriegtation: or (3) ambiguous. , .

'

. - N )
The subjects were shown sample imaies such as those in Figure 4.1 for each' of the

three possible choices at the beginning of each session. These definingimages were followed

by a short training set (eight images) selected from the images to be presented during the

session. Each training set image was first flashed for 1.5 seconds and, following" a brief

interval, was, displayed again for the subject to analyse. Thi? was the only reinforcement

- used during either the training set Ne formal experiment.

1.4 Stimuli . : , C

' - . ¢
- == ¢

The stimuli consisted of dotted one-dumensnonal contours that were constructed from

two st%ght lines wnth some difference in onentatlon and joined wnth either an abruptor a -

¢
smooth trans;tlon between the two onentatlons The Smooth' transition was accompllshed

by ° ‘capping” the stranght lines with a SanSOId of ghe same average slope - (Seg thp N

Appendix for the precise equations used to generate the curves.) Eight gmntisfﬁons of

) s / -
prientation changes were used, ranging from 2.3° to ﬁ.}"/.&ot/size and sampling ingerval

were constant acrosscall images. with doﬁiz/eﬁminutes of visual angle (m.v. a. ) and a
sampling interval of 10.3m.v.a. (a ratio of. dot size to mtervemng space of 1:3. 3). This size
and spacing were chosen to minimise_the quantisation error of the dnsplay while staymg
within the suze/separatlon constramt for early contour mferencmg processes (see” Zucker

and Davis 1985).7

\ ) - .
L

6 This method of construction for the smooth contours resulted in only one pattern of curvature change for
any one orientation change. ‘However, the subjects were not instructed that this was the cise. Rather,

might be present. as well §s other types of discontinuities. \ , ‘
[ , .‘, )

7 Although this combination of size and spacing appears to fall on the borderline of Zucker and Davis's

'- ’ . o .- 47

they were given, as much as possvble the impression that any pattern of smooth orientation changes ‘
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> Figure 4.1 ' Images that were shown to subjects before the experimient, as examples

4.1 Method

N

.
.
-

expected to fit into each of the three possible response categories. Part (a) is an
angular curve; part (b) is smooth, For part (c}. if the subject noticed that the .
dot directly to the left of the “top dot” appears to be displaced from the rest of -
the curve. he was instructed to clioose the ambiguous response. whether Qhe curve i
. otherwrse appeared to be smooth or agular. The subject was alsg mstructed to

choose the ambiguous response for part (d) if he saw the curve as bending smoothly _
from the left, but- then changing orientation dlscontrnuously at the top dot. The

A » angular response category was reserved. then, for cuives made, up of two straight .

4

lines with a2 single orientation_discontinuity at their jjuncture. The above images -

h have a dot size of 2.4 mv a and a sampling interval of 7.7 m.v.a. (a. dot to space

ratio of 1:2 2) when viewed from about 0.6 metérs.

’

Each of the resulting 16 curves (8 orlentatron changes, 2 patterns each) was sampled

six times, with the sample posmons rangmg from bemg symmetrrcally drstrrbuted about the

peak curvature pOSrtlon with a dot centred on the peak (a top dot” oﬂ‘set of 0 0 samplmg

¥

confirmed that it does lie within the constraint and is suitable for our purposes.

LY

“size[separation constraint (see their-Figure lO)._mdepe‘ndent expenments using exactly this combination

>

" ag
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4.2 Results. . ]

1

, :4.2 R'esults

intervals), to being symmetrically distributed about the peak with no dot on the' peaio(a

“top dot’ offset of 0.5 sampling intervals). Figures 4.2 and 4.3 show sample images for

" the angular and smooth curves respectively, with zero, intermedi,ate. and full offset of the:

top dot. Since the underlying curves were symmetrrc offset to the left or to the right was
expected to have no effect on the sensntrwty to the dlscontmultles. However, left and right
- offsets were alternated in an attempt to average out any preferences on the part of the

' subjects that could have affected the results. ' . D

To prevent the possibility of subjects "memorising” the discontinuity position and using ™
this as a cue for discontinuities, each of these 96 images (16 curves, 6 sampling patterns)
was dlsplayed with the peak randomty chosen to lie anywhere within 10m.v.a. of the centre

P
of the screen, Each image was then presented five times over two sessions (three ‘times in

one session and two in the other) totalling 480 images presented over four days.

The‘resnlts for angelar curves are tabulated for each offset in Figtr‘re 4.4. Shown for
each offset are the average percentage of discontinuities that were correctly reported as -
a function of the orientation change (As expected the curves having underlymg smooth‘
orientation changes were correctly percewed as being smooth over all presentatrons) For
offsets of 0 0 and 0.1 sampling mtervafs small orientation changes were séeen as smooth ,
while for Iarge onentatron changes. the discontinuity was usually detected. The results for '
offset 0, 2 follow the same pattern, but with higher variance in the responses and somewhat
less overall sensrtr\nty to drscontrnurtres At offset 0.3. this pattern of responses is broken.
and the results are fairly ambrguous, (In fact. most of the ° ambrguous responses were
given for discontinuous curves with offsets 0.2 and 0.3.) Finally, the curves with offsets

0.4 and 0.5 were predominantly seen as being smooth for all changes in orientation. -

The results for offset 0.0 can be exammed to determine an' “absolute threshold” for

accurately perceiving discontinuities; see Figure 4.4a, In this case, the subjects on average

' 0
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Figure 4.3 Sample images from the experiment for smooth curves. Shown are
all possible offsets for the curve with underlying orientation change of 24.8°, the

cr “corresponding curves to those shown in Figure 4.2. The dots in these images are 2.4

my.a.. (the same size as in the experiment) at a viewing distance of approximately
0.6 meters.
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, Figure 4.4 The results by offset phase shift (measured in units of the sampling

[

interval) of the experiment. filustrated are thé mean percentages across all subjects

(and one standard deviation) of sampled curves with discontinuities that were cor-
.. rectly identified. as a function of the magnitude of.the orientation change at the
corner, [All smooth patterns were correctly identified ) Notice that there are two
patterns of results. one for offsets 00. 0 1, and O 2. and the other for offsets 0 3.

04, and 0.5 T

.
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4.3 Theoretical Discussion: Discontinuity Sensitivity as a Function of Curvature

.

reported seemg the dlscontmurty wrth an accuracy greater than 50% for an onentatron
o . change of 11 4° *This is the same threshold that will be reported in Chapter 5 for sensmvrty

L .to dcscontmurtles in flow patterns when curvature mformatron is exphcrt in the image (Link

’

. A
. and Zucker 1985a) lt is also 'of the same order of magnitude as the quantrsatrons of

dommant orientations in srmple cells found by, Hubel. and’ Wiesel (1962, 19?7) and of
: onentatlon-selectwe channels found by ‘Movshoryand Blakemore (1973). However, for
offset 0. 5 when the underlymg angfe is 24:8°. or hrgher two adjacent angles each greater
than 11. 4 are formed by the dots surroundmg the drscontmurty In thn;\case (when two

such angles are adjacent), no discontinuity i was detected: see Figure 4.4f. -

~ -
» i i
(3 N N '

To dem,ons,trate that these results are not tied to the underlying symmetry.in' the

. , . images, see Figure 4.5 for a parallel example using a non-symmetric discontinuity.

L.

~

T A
[ ]

: Figure 4.5 An example of a curve with an asymmetrical orientation discohtinuity. . s
.o ) ‘that has been sampled with different phase shifts. The same change in percept. ‘
. from discontinuous to smooth. can be seen when the offset varies from 0.0. In

part (3). the offset is 0.0; in past (b) it is O'5: in part {c) it is 0 2. The dots are
approximately 3 m.v.a. when the figure is viewed from 2 meters, and the dot to

space ratio is'about 1:1.5 !

- - -
Dom .
et

‘e

'i"', 4.3 Theoretical Discussion: Dlscontmmty Sensitivity as a Functlon

©

. of Curvature ’

- (», . Recall that the model for curve reconstruction is comprised of two stages. The first

* v 1
B .
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4.3 Theoretical Discussion Discontinvuity Sensitivity as a Funmurvature

stage is the constructlon of a tangent fteld - or the fllst derwatwe with respect to arc

i -

length of the curve - through

1. convolution against simple-cell-like operators to obtain initial estimates of orientation:

2. interactions between the convolutions to estifhate curvature, fill in gaps, and to elim-

,

inate noise and parameterisation effects.

7 ¥

-

- The second stage is an interpolation, in which discontinuities are detected, and smooth

7

-cisrve from a discrete. quantised trace:

“one would expect that shifting one dot in the pair from the excitetory to the ihhibito_r.y region

curves are fit to the sample points in between the discontinuities, The discontinuities
are defmed expllmtly in terms of the curve's derivatives given the order of the process.

or the number of derivatives that can be represented. Dlscontmumes must be asserted at

)

~ locations where the curve has non-zero denvatwes of a hlgher order than can be represented

by the system, or where the derivatives that are represented in the nelghbourhood of a
point cannot be used to predlct the erientation estlmate derived during the flrst stage; see
Section 2.3.1.3. In this way. the segments in between the discontinuities can be mterpolated

by polynomials of a degree that can be represented by the system.

The model teduces to,a physnologncal one as networks of simple cells (for accomphshmg

: Stage I) and it provides the mechamstlc background to mterpret the expenmental results

a
4

In particular, it permits the following predlctuons with respecy to the reconst!uctyon ofa _

- -~

€

‘h \l

change in geometry ' =  change in simple cell convolutions

(by quantisation phase shift) - (Stage I. Step1)
. . ) ‘ ) i
change in percept -~ <« . change in simple cell interactions -
(Stage I and higher) 7 ' (Stage 1. Step 2)
s

How much change in geometry is necessary to change the resulting percept? Consider

a single receptive field and a pair of dots in its excitatory centre. To a first approximation, . -

3
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A.3 . Theoretical Discussion: lf)iscontinuﬁ:y Sensitivity as 4 Fur‘uction of C;:rvature

would produce a sngmfncant change in the overall pattern of responses: see Figure 4.6. Gwen
the relative dot separatlon used i in the experlment a rectangular-shaped receptlve field with
an aspect ratio of 3:t would requnre a change in onentatlon on the order of about 19°. For’
the same dot size and a covering receptwe field with aspect ratio of 5: 1 the requued change '
in orientation would be on the order of 14° Thus, dependmg on \specrfics a shlft of 10° to
20° is necessary to move a dot from the excitatory centre to the |nh|b|tory surround The '
results fr:r offset 0.0 show that this is not an unreasonable prediction. However. to analyse
the results for other offsets, we must replot them as a function of the angles formed by

the dots near the discontinufty.

-

(@ | S R

Figure 4.6 A ﬁrst approxumahon to the shift in onentatlon that would be required to
sigmﬁcantly change individual simple cell responses,thereby changing the percept.
\ “Shown are rectangular approximations to a.-simple cell's receptive field that will o
cover a dot pair with the dot:space ratio of 1:3.3. The thick solid fine outlines the .
- excitatory part of the receptive fields, and the dotted line outlines the inhibnory,
$ ,parts. Both fields have been constructed to cover a pair with the same size dots.
in part (a), the aspect ratio of the excitatory field is 3 1. and the rotation required -
to shift one dot into the mhnbltory part of the field is 19°- ln (b) the aspect ratio
is 5:1. and the angle of rotation is 14°. -

¢

FCON. LN

. ~ »~ ’
.

Two angles of interest emerge near the discontinuity when the sampling of the angular .
curves is phase’ shifted. 1 shall call these angles o and B see Figure-4.7. 8 +a is the
primary angle between the lines, where a is formed as a result of the offset. Note a = 0°,
and g is the primary angle, when the offset is 0.0 for Imes meeting at any angle. If
curyature esttmates are formed by differencing two nelghbourmg orientation estimates- (see
.Section 2.3.1. 3) then we mlght expe(;t the sensitivity to dlscontmultles in the experiment

;-

& g
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4.3  Theoretical Discussion: Discontinuity Sensitivity as a Function of Curvature
. . )

. N . °
. i»'( - to ,sﬁow some relation to these two angles. In Figure 4.8, the experimental results are
replotted as a function of § — «. for different values of 3. Note in” particular that for g
between 15° and 25° (just over the threshold for discaritinuity detection given 0.0 offset).
B < a must be at least 15° to 20° for discontinuities to be detected. That is. & must be
less tha}v 10° (note the initial qstiinate for producing a significant changé in the response
o ’ pattern) and § must-be above the absolute threshold (ie.. the threshold given a = 0°)

for diséontinuity detection. In fact. this result is verified by Chi-square tests which show

Co

both B and f — a to have significant input to the responses (at \the 0995 and 0.999
levels respectlvely) Fer ﬂ in the range 10° to 25°, however. ﬁ no |onger has a significant
"contribution (a; the 0.062 level). but the contribution of 3 — a remains hlgh. When the
results are structured in this way, the response variance acrosslx subjects was insigﬁiﬁl:ant
-(at the 0.0 lg'vel'overall, and at the 0.198 level for'ﬁ between 10° and 25°).

a*.;0° f=0

W
f

(a) - S . (b) o
- N Figure 4.7 The two angles a and 8. that are created when an angular curye from

‘ the expenment is sampled with an offset other that 0.0. Mlustrated in part (a) is

) the degenerate case when the offset-is 0.0, a = 0°, and 2 is équal to the primary

, . onentatlon change 6. IIlustrated in part (b) is an arbitrary ‘sampling offset to the'

_ right of the discontintity. causing'a to increase and g to dccrease in magnitude.

/ For offset 0.5 (not lllustrated hete}, o = §.' ’

. {

R - .

As a pr’;ctical ilfustration ;>f how a and G would éﬁéct'the de;éc'tion o\f discontinuities,
consider the cha|‘1ge in the résponse pattemé of thé *‘model's operators that- would oc‘cﬁr
- / as these angles are vaned l’n Figure 4 9, a close-up is shown of the corner of an angular
curve with ﬂ 24. 8° at oftset 0.0, and the resultpng curves ‘when the sampling is offset y
K - by 0.1 and 0.3. Overlay!ng the curves are' ope_rator r,egept'lve/ fields, quantu;ed by 10° i "
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Figure 4.8 The results of the experiment by § — a. Mustrated are the mean per-
centages across all subjects (and one standard deviation) of sampled curves with
a discontinuity that were correctly identified, as a function of § - a for each value
of B (each in 5° blocks) Notice that parts (c) and (d) in particular show a dlear
increase in seqsitivity to the df'scontinuity‘with increasing 8 — a .
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4.3  Theoretical Discusgion Discontinuity Sensitivity as a Function of Curvature

A orientation, that would be among those responding optimally to these dot patterns. Note
- L » .

that in parts (a) and (b) of the figure. these operatots maintain a constant orientation

except at one location, where a large ch,a‘f.lge in orientation occurs. By contrast. in part (<)
N e N 8

‘of the figure, there is a small and constant change in orientation over a larger section of

the curve.' Referring to the experimental results for these stimuli. parts (a) and (b) Were

reported as being discontinudus, while part (c} was reported as being smooth.

9
AN

i _In principle, since  and 3 represent change in orientation, or curvature estimatess, -
B — a must reflect change in t:_urvatur;.~ The experimental results therefore show that
simply differencing orientation cues and then thresholding this difference is insufficient for
detecting discontinuities. Rather, the curvature estifgate'resulting from the difference must
be compared with other curvature estimatesfin the neighbourhood. In fact. the situation in
this experiment is simplified beéagée all other‘angles are 0°, so by considering a. 3. and
B — a only we have implicitly taken into account other neighbousing curvature e.stimates.
o The visual system must tl;ereforg‘ be at least third order in its dv‘erall-_c.apabilities.. The‘
‘ o mechanisms employed at the lower levels can be composed of functions of orientation and
* curvature: note that comparing curvature and change in curvature over a ne'ighbourho.od is
§ not necessarily the same thmg as evaluating and representﬁg‘the derivative’ of curvature at
¥

each pomt But the detectlon of discontinuities, and curve recons(ﬁfuon in general, must

S .
be a non-local process ' -

¢ The arguments pfeseni:ed here have heen necessarily vague. To.actually compute theo:
retically what angles, or combination of éngles. would be required-to produce discontinuous

or émooth percepts. would be extremely difficult, since the inter;Ztions between the con-

volutions are c9mplgx and not entirely known. In addition, ;)r.ecis\e measurements of the

orientation and curvature resolution of the process would be required ~ but these mea-

surements in themsel\;es are difficult to sort out from other effects because of the many’

levels of processing involved in producing the final percept. Finally, the actual computatlon

o of cyrvature and of change in curvature must in general be more complex than the ﬁrst

i ,differences discussed above. Howéver, a version of the model has been- |mp[emented ‘and

. % ‘ )
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Figure 4.9 A close-up of three sampling phases for an angular curve with orientation
change 24.8° to show the angles a and 8 and the change in response pattern. In part

' -4.3 Theorglical Discussion Discontinuity Sen.qjvlty as a Function of‘Cun%;nre

tr

N

=17.4°

operator orientation ¢

(). the offset is 0 0 2*=°0.0° and 8 = 24.8°. in part (b). the offsetis 0.1 o =2.4°.,

and @ = 22.4°. in part {c). the offset is 0.3. a = 7.4° and § = 17.4° Subjects

<. reported (a) and (b) as angular and (c) as smooth. The receptive fields shown. with
- orientations quantised by 10°, are among those that would be responding optimally
to the patterns. Note the changes in response pattern that would result from the

as ellipses with aspect ratios of 3:1to reftect the Gaussian shape of the implemented
: : operators (Parent and Zucker 1985).

e ‘

»

! . ) different offsets The excitatory regions of the receptive fields have been modelied -
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run on the test pattems for the expenment The resultS, shown in Fugure 4.10, mducate

-

(. ‘ :

4 3 Theoretical Discussion Discontinuity Sepsitivity as a Function of Curvajfire

that the mtetpretatlon discussed here is in fact charactenstlc of the model.

patterns as a function o( the path-length of flow cues is presented The results will reﬂect

“

@) o | 0

b

Figure 4,10 The result of running_an impleméntation, of the mbdel‘prqsent_ed in

Chapter 2 on the test images from the experiment The implementation used eight
orientation quantisations (at regular intervals of 22.5°%). and seven rather coarse °

. curvature quaatisations Shown in part (a) is the test image. having an underlying
¢ {4 g

oriéntation change of 45°. The lower curve was constructed with a sampling offset = -

0$.0.0 sampling intervals. the middle with an offset of 0.3 sampling intervals. and
the upper with an offset of 0.5 The resulting tangent field is displayed in part
(b). The curvature values for the lower curve indicated two straight lines meeting
discontinuously at a point The upper two curves. however. bath received smooth
interpretations. with non-zero curvature over a broad range of the curve This result
was consistent with the psychophysical results reported earlier The only problems
with the simulation resulted from the regular sampling pattern of the image grid,
which implicitly favours orientations that are multiples of 45°. P Parent is gratefully

.acknowledged for implementing the model and running this simulation

£

{In the following chapter. an expenment to assess human sensitivity to corners in flow

the order of the flow reconstructlon mechanism.

Vi
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' Chapter 5 1 Expeﬂment' Corner Sensitivity vs. Path Metric
' | in Random Dot Molre Patterns

/ .
¥ 3

.The pﬁrpbse of trhis experiment was to determine how the path-length of a flow pattern
affects the sensitivity of human observers to changes in curvature of the unhderlying flow.
Specifically, we are interested in ht;w viell discontinuities. or corners,. representing small..
thinges in the flow orientation are detected, as a function of the path metric in.random dot
Motré patterns, The path metric makes explicit what information about the flow denvatlves
) ‘ ' is available in the image. How the sensitivity to distontinuity ;ensntwn_ty changes as a ,‘

function of the path metric will. therefore, reflect on the ogder of the mechzinismi used to

~ ' reconstruct flows. ' '
Subjects were shown several instances of random dot Moir'é patterns. These patterns
consisted of two translational flow regions me?tiqg in the centre of the image either at a

et discontinuity or with a smooth transitional ragioh of flow: see again Figures 3.3 and 3.11.

Several differences in orientation between the two translational flow regions were used. .
The indepen‘dent variable in the images was the path metric, or the number of overlays
used to produce the patterns. Subjects were given‘ three possible responses: (1) a single
abrupt change in orientation, (2) a smooth change in orientation, or (3) ambiguous. Other
factors which could affect -sensitivity to discontinuities. such as dot density. dot size, and’
& dot spacing, were held constant at a value within the range that permits these patterns
to'be clearly visible.3 Note also that by keeping the dot spalcing constant, eacﬁ increase

- . ’
1, -

8 The particular value of dot size and dot separation used were within the size/separation constraint for

'
o

-






v 5.1 Method

onentatron change five |mages with smooth and ten rmages with drscontlnuous flows were

1 presented. A different path metric was used for each session. (Path metrics,used were 2,

" 3,57, and 15) All subjects viewed the same set of images. although the presentatron ,

order was :random. The images' were dlsplayed for 1 5 seconds. and the screen was blank
durmg the inter-stimulus interval, which was not trmed Subjects were allowed to vrew
the unage for one addrtronal 1:5-second interval if they were unable to focus “the hrst
presentatlon After this, the subject was requrred to indicate the nature of the underlymg
curve with one of three choices: (1) a smooth chang@n orlentatron (2) a single abrupt
change in orientation: or (3) ambiguous. it was expected that images near-the threshold
for perceiving drscontmurtles would elicit the most ambrgudds responses Therefore if the
subject indicated an ambiguous response fie was presented with the same image one, more

time later in the session. At that trme. an ambiguous response was accepted as such. (The

instances of initial amblguous responses were also recorded.)

[

The subjects were shown sample curves such as thoke in Figure 3 3to descnbe the .

meanmg of the different responses. These defining i rmages were followed hy a short training

 set selected from the images to be presented durmg the sessron Each trammg set image

was first flashed for 1 5 seconds and. followmg a brief interval, was drsplayed again for the

subject to analyse _This was_the only remforcement used during either the trarnmg set or

'
° N

the formal experiment.. . S c. e
Images with a path metric of 3 dots were used:for the first session, and path met lc 2 for
the second. Preliminary experiments showed that the patterns were in general easier to see

in images )Vbiéh path metric 3 than with path metric 2, although there were still no individual

curves vrsrble Therefore. testing rmages with path metnc 3 ﬁrst allowed the s bject to

become famrhar with the task during the hrsf session, and acted as an addrtronal; training
set for the path metnc 2 session. For thrs»reason. any increase in curvature sensrtwrty
from path metric 2 images to path metric 3 irhag‘es could be attributed to properties of the
images and the grouprng process actmg on them, and not to familiarity with the task or

with the images. All other path metrics were, tested in mcreasmg order )

. ,
) , .
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51.4 Stimuli —
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The stimuli consisted of random dot Moiré patterns that were constructed using

o underlying function of two sgraighi lines with some difference in orientation and joined with
either a discontinuous ar a smooth transition bet\;veen the two origntations. The smooth '
transition was accompliéhe& by “capping” the’straight lines with a sinusoid of the same
average slope. in the same ‘way as for the aperihent reported in Chapter 4.9. (See the
Appendix for the precise equatlons used to generate the curves.) Fifteen duanti:ations
of orientation changes were used, rangmg from 2.3° to 33.4°. Dot size and spacing were
constant 'across all images, with dot size 2.4 mmutes of vusual angle {m.v.a.) and dot
separation 7.9m.v.a. (a ratio of dot size to mtervenmg space of 1:3. 3). This size and
spacing were chosen to minimise the quantlsatlon error of the display.10 The number of
dots used in the images was also constant at 604 dots, a dot dén§ity of approximately 3%.

~ The resulting’ 30 fdnctions (15 orientation'changeg. 2 patterns each) were used io\ S

“generate random dot Moiré patterns with 2. 3. 5. 7. and 15 overlays. For each pathtmem'c.: |

3

ten images were generated using the discontinuous transformation. and five images were

" generated using the smooth flow function. Several images were éenerated and used for

_each~instantiatioﬁ of path metric and underlying‘ function in an effort to overcome the.

random natlfre of the process used to gerferate the images. (The first ow\i'erlay was always ,

. * an instantiation from a uniform random nun‘1ber generator.) See Figure 5.1 for éample
images. ' )

Not all fifteen quantisations of orientation change were used for each path metric.

.

7

“
S

[

9 This method of construction for the smooth flows resulted in only one pattern of curvature change for
any one orientation change. However, the subjects were not instructed that this-was the case. Rather..
théy were given, as much as possible. the impression that any pattern of smooth orientation changes .

' ,mlgm be present. as well as discontinuous flows

*

10 Thus dot size and separauon were also chosen to be within the size/separation constraint for one-
. .dimensional contours; see note 7. ' . )
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o . Figure 5.1 Sample test images for the experiment: aJ path metric 2: b), path metric .
3 Part {i) of each is the discontinuous transformation: part (i} is the smtooth . -t
- . transfosmation for the same overall angle. All parts show the transformation with
an underlying angle of 13.69° The dots in these images arg 2.4 m v.a {the same
, size as in thexexperiment) at a vieweing distance of ‘approximately 0 6 meters. The
. underlying ﬁw transformations are illustrated in Figure 3.11. (Path metrics 5. 7. * -~
’ and' 15 shown on following page ) '
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. Rather. preliminary experimenf; were conducted toddetermine a narrower range of orien-

tatjon changes within which the threshold was expected to lie. YThis range usually en-

c’orhpassed eight quantisations of orientation change. or about 18° differefce between the

< ] : : ‘ 5.2 Results

v

smallest and the largest orientation change. The average session therefore involved having'

the subject view 120 images. The shortest session consisted of 90 images (six orientation

changes. fifteen images at each). and the longest of 150 images (ten orientation changes)

5.2 Result; , b
1 .

The results for di.scontinuous flow fields are tabulated fO( each path metric in Figure 5.2.
(All smooth flows were cprrectly reported.) A Chi-square test indicates that the magnitude
of the orientation’ changd provides input to the rt\esponse significant to the 0.999 level for
all path metrics and for 2 ubjects. This ir!dicates that we were successful ‘in predicting

the threshold and in structuring the stimuli to surround it for each path metric. Shown in

the figure are the average percentage of discontinuities that were correctly perceived, as

a function of the orientation change. The 50% threshold is plotted as a function of path‘

metric in Figure 5.3. Note that the most significant change in thresh'old occurs between

path metrics of 2 and 3 dots. where it decreases from 27.0° to 11.4°. Observe that the

threshold sensitivity for dotted one-dlmensmnal contours with the same dot size and dot'

!

spacingis also 11. 4° see Section 4.2 (Link and Zucker 1985b)

' Of interest is the variation in sensitivity between individual subjects as the path metric
.increases beyond 3 dots. and-most evidently beyond 5. For path metrics 2. 3. *and 5,
the change in threshold is verified by a Chi- 5quare test indicating the path metnc had a

' significant (beyond the 0.999 level) input to the response for those onentatlon changes

tested for alt path metrics (that is. between 13.69° and 18. 18°‘ ‘see Flgure 5.3 and note

 that these orientation chariges lie between the 50% thresholds for path metric 2 and all

other path metrics).. In this same region, the actual change in orientation had no effect on
the response: (significance less than 0.003). For all orientation changes tested, there was

no effect on the responses by subject for these path metrics. However, the responses varied

v

5
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. Figure 5.2 The results by path metric of the experiment. lllusirated ate the mean
{ percentages across all subjects (and one standard deviation) of flow patterns with
discontinuities that were comectly identified. as a function of the magnitude of
- ‘ *the orientation change. (All smooth patterns weré correctly identified ] Note the

- significant change in threshold betwe\en path metrics 2 and 3.
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Flgure 5.3 The mean threshold sensitivities (50% accuracy of detection) to ‘discon- N
tinuities in flow patterns, as a functron of path metm:

it o significantly across subjects (ai the 0.999 level) for path metrics 5. 7, and 15. Thus. while
. . the magrritude of the orientation change had a highly significant eﬂ‘ect at these path metrics
, and the path metric had some eﬂ‘ect on the responses, “the form of the contribution of the-
" path metrrc was ambrguous There Wﬁ variation of the responses across path metric, but
it was inconsistent across subjects Scatter plots of theé i responses confirm this resuit.

. <N
Subjects were mtervrewed to determine their strategles for :erformrng the task. Agaln
all subjects reported asing the same strategy at the Iower path metrics (2, 3. and 5 dots)
S " but dlscrepancres appeared at the higher path metrics. The images with lower path metncs
;. ' appeared to all subjects to have a significant random element and to require a kmd of
global focus of attention in order to see the pattern at all. At higher path metrics. some
o "subj'e;:/te- maintained a global focus ef attention, and these sﬂubjects showed a continued
increase in sensitivity to corners in the flow. However, some subjects focused their attention
on indivrdual curves in the region of the discontinuity at the rrigher path rnetriés, and

these. subjects showed a deécrease in sensitivity at these path metrics. In fact. one subject

consistently reported\'the discontinuous flows to be smooth at path metric 15.

‘ . N \
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5.3 Theoretical Discussion The Importance of Curvature and Curves Within Flow Patterns

5.3 Theoretlcal Piscussion: The lmponance of Curvature and
Curves Within Flow Patterns
A number of theoretical questions are ralsed by the psychophysical findings, Foremost
among these is why the most dramatic increase in sensmvnty occurs when the path metric
is increased from 2 to 3 dots. And. second why is it posSubIe for subjects to have multnpler
strategues for assessing the flow at hlgher path metrics, but not at the lower ones? | shall

deal wnth each™of these questions in turn wuthm the context of the model developed in

* Chapter 2. . l .

" Recall from Sections 2.3.2 and 3.2 that to reconstruct flows we were required to add
to the model for curve recdnstnﬁi’ion‘ the additional contraint that the tangent estimates
computed in Stage | be approxnmately equal (or $hould be averaged) in the dlgectuon per-
pendlcular to thair onientations. Thns averaging is required to fill in the gaps along any
particular flow: contour and to reduce the effects of noise. but it results in a Ioss of sen-
sitivity to changes in orientation. and in particular to discontinuities. The in'troduction of
high‘e'r,-order estimates — perhaps by usiﬁg longer curve segments to represent the. flow -
would permit this assumption of local parallelism to be relaxed since they ;ﬂould p}ovide
a prediction in both flow dimensions of the ch;nge in orientation. Under_these circum-
stances. therefore, discontinuity sensitivity would be increased. but only within the order

of tl)e estimation mechar;ism.

The two questions which opened this discussion can now be answered. The increase’

in sensitivity from path metric 2 to path metric 3 was large because it is anly with path

‘metrics of 3 dots or more that curvature information could be reliably estimated: see

Table 2.1. Therefore, the mechanism for reconstructing flows must éncompass second-
degree (curvature) éstimation. Further increases in sensitivity with increasing path metric
were much less whlch suggests that hlgher-order mformatuon is not used by this process.

Rather. the increases are more likely attributable to more accurate estimation of first- and_

second-degree information. At path metric 3 (that is, with curvature mformatlon). our

"

. ‘ . : 70
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5.3 Theoretical Discussion The Importance of Cur:rature and Curves Within Flow Patterns

sensitivity to discontinuities within flow patterns was the same as that found in contours

(Link and Zucker 1985b).

o

One possible confounding of these resalts could ari‘?é from the fact thaf there is more
otientation information available at path rnetric 3 than at path metric 2. since each triple
of dots can be viewed as two pairs. (With 600 dots in each image. 300 Qrientation cues
are present at path metric 2. and 400 are présent at ‘path metric 3). If this were tlre
case, the empirical argument in support ‘of curvature would be incorrect. But it is not the
case, as we have shown in Frgures 38 and 3.9. Even doubling the amount of onentatronﬂ ‘
information (by doubling the density but leaving the path metric at 2) is not the same
as add?éng\urvature informa;;ion. or the correlation bgtween neighbouring orientation cues

. L 0 . . "
(using the same overall dot density, but constructing the pattern with path metric 3).

&
<

The answer to the second question involves a mixture of curves and flows. As path
metric increases to 5 and beyond, it is possible to see the segments not only as part of a

flow but as distinct contours a§ well. If a subject were actually to do this, then a further

"~ higher-level question would arise regarding how to mix cues about discontinuities from

these two different kinds of processes. It is not surprising that this would cause some

.

‘confusi"o‘n. as the data showed for higher path metrics. In pariicular. it is highly probable

that few if any of the contours overlapping the discontinuity in the images with higher path

“metrics met the criteria established in Chapter 4 for detecting discontinuities.

In r:onclusion. then, the anticipation and detection of changes in orientation structure -
within flow patterns is essential to accurate recovery of the flow. On the surface. the theory
presented in Section 2.3.2 is srmrlar to others that have been proposed for ﬂow reconstruc-
tion (Glass 1969 and 1982: Glass and Switkes 1976' ‘Stevens 1978). These theories also
involve the two stages of extraction of onentatuon cues followed by an mterpretatron of

these cues. But it is in the interpretation stage that the theory presented here differs.

Both Glass and Stevens fail to makq provisionsfor changes in the flow. The assumption

v
Al -
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53 Theoretical Discussion. The Importance of Curvature and Curves Within Flow Patterns

of local parallelism is rigidly applied. so that as the assumption breaks down the methods -

will ultimately fail. One way in which the assumption ofalocal parallelism breaks down is

with the introduction of noise.y Another way is when systematic changes in orientation, or

.

changes in the flow itself. occur. Since neither method makes provision for the structure
of the flow to change locally, any curvatures or systematic changgs in the flow resiilting in

loss of Tocal parallelism are treated in the same way, as noise, and hence are_not detected.

- M ~
[4 ’ . v

The model presented here seeks to impose a structure in the direction of the How which

allows the assumption of local parallelism to be relaxed in regiong of ofientation change.

* The degree to which we can relax the avssqmption depends directly on the information we

have about the structure of the flow. The model can take advantage of curvature in\fer.mation

available at longer path-lengths only because it has a'mechanism for represeritiqg the"local

structure of the flow in two dimensions —in the direction perpendicular to the flow (the

notion of local parallelism) and in the Same direction as the flow. The bychophysical a

results demonstrate that the human visual system also takes both dimensions of the flow

cies provides an impdrtant information parameter.
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structure into account when it reconstructs the flow. and tiujé&hé path-len'gih of orientation-
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Summary and Conclusions

Contours are important because they separate objects from each other and from the

background. and their. description provides meamngful mformat.on about the shape of ob-

jects. Flow patterns are oriented surface covermgs that provrde mformatron about surfaces

.

within the boundaries defined by contours. It is therefore essential to produce an accurate

representation of, them early in the visual process. In the past. orientation - or the first

derivative with respect to arc length — has received the greatest attention in the research
’ ' &

an the perception of contours, flow patterns, and shape in general. However, the change

°

in orientation ~ or curvature — also plays an important role. In particular, orientation dis-

continuities are one of the most salient and useful properties of curyes and flows. 'They

often represerit boundaries between ObjeCtS or s(rrfaces. and locating them IS essential to

constructing an acturate representation of the orrentatron structure. But our perceptlon of

curvature and of orientation discontinuities has rarely been addressed. In this thesis. | have

attempted to confront discontinuities directly by measuring human sensitivity to them and

by analysing these measurements within a theoretical context for computing them.

S

The experiments | performed introduced a new class of stimuli - dotted curves and

dotted flow patterns (random “dot Moiré patterns) - for quantrtatWer evaluating this sen-

!

T sitivity. The use of these stimuli is valid as long as the dots are small and close together.

" The discrete nature of such images made it possible to control the local differential struc-

ture of orientation cues and hence to evaluate the performance of the model in' detecting

drscontmurtres as a function of this structure By concentrating on the detectron of changes

in oﬂentqtron - curvature in the contipuous case, and “corners” in the discontinuous one

/
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- | was able to sfzow that the estimation of higher-order derivatives is required for curve
and flow Berception and ft;r the construction of higherllevel shape representations. The
psycilophysical results. it;dicate that human sensitivity to discontinuities is. depeﬁdent on
a comparison at least of curvature, and perhaps of change in curvature, over a neighbour-
hood. There has been something of a_controversy concerning how curvature is used and
w‘fe'the? curvature detectors exist’in the cortex. The issue presente.d here, however, is not
whether curvature detectors exist, but is rather how curvature, change in curvature. and
discontinuities are computed. !
N A . ,

The research on discc;ntinuitny perception in curves 'w‘as motivated by the,bbsengation
that changing the sampling phase of a curve changes the geometry of its. disk:_rete trace!
In other words. if curves are represented by dots, the placement as weli‘ as the d;:nsity
of the dots will affect an interpolation of the curve, Psychophysiéal’ experiments were |
per{t;rmed to evaluate human sensitivity to orientation discontinuities for paifs of straight
l,it:es meeting at a point as a function of dot placement,. Ti}g results of these elgtperimerits; _
\‘nere examined for a two-stage computational model of orientation selehction.t' The first stage
is the‘construction of a tangent field to the curve using convolutions against simple-cell-like -
operators. Within this model. and to a first approximation, changes in the percept arise
when the sampling has been changed sufficiently to alter individual convolutions. In ihq
case of straight lines. this amounts to requiring. perhaps, that a dot be moved sufficiently
to leave the excitatory centre and enter the inhibitory surround. However, the simple cells .
(or their computational equivalent) must interact to eliminate conflicting responses and to
fill in gaps. It is here, in this interaction step, that the nee(i for curvature arises. and itis
only when these interactions are taken into account that the amount of dot displacement
(caused by changes in lsampling) required to change the percept can be evaluated. In the
secbnd stage of the model, when the curve s acti:ally interpolated, the change in curvature

over a neighbourhood is also needed. particularly for the detection of discontinuities.

The representation of flows in images is considerably sparser than that of %\t:rves.
The model for curve reconstruction can, however, be extended to reconstruct flows by -

imposing an assumption of locally parallel structure. This assumption permits averaging

L e
4

4 v
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of orientation information in the direction /perpéndicu'lar to the flow to fill in the large’
gaps along any one flow coritozir. It was noted. that this would result in a decreased
sensitivity to changes in orientation (and hence to orientation discontinuities), particularly
since the assumption of local parallelism is by definition violated in regions where the flow
orientation is changing. This decrease in sensitivity could be counter-acted. however. by
relaxing the assumption (and averag'ing. over smaller neighbourhoods) when information
about higher-order derivatives js available. The research on discontinuity perception in

flows was motivated by the observation of a new parameter of flows - the path-length of

" the flow cues — which could be used to accomplish this relaxation. Random dot Moiré

* patterns - fAlow patterns in which the curve segments acting as individual flow cues are

dotted ~ make explicit what order of information can ideally be extracted from the image.
This information is embodied in the path-length metric, §eﬁned as the number of dots used
to represent eaéh curve segment. The psychophysical experiment. was designed to assess
human sensitivity .'to discontinuities in random dot Moiré patterns with two regions of
straight flow meeting in a line at the centre of the image. as a function of titis metric. The
results, examined within tiie context of the model ofnorientation selection, showed that
curvature information is also used for flow reconstruction when this informiition can be
obtained directly from the image. Otherwise, the assumption of local parallelism is applied
everywhere. Therefore, and contrary to previous methods, the anticipation and detection
of changes in orientation structure within flow patterns is used to accurately recover flow.

and detect orientation discontinuities.

3

In summary. then. orientation structures such as curves and flow patterns can be
recovered dirgctly from image-like structures (with a iniiiimum of 'preprocessing"required).
ln‘th_is thesis. | have shown that the mechanisms which accomplish this task are not
local ~ they must determine the differential structure of the curve or flow pattern through
comparisons of orientation and curvature estimates over open neighbou'rhoods. | have
demonstrated this fact by showing that human sensitivity to orientation discontinuities
is a function of the curvature and changein-curvaiure information in a"feighbourhood

surrounding the djscontinuity.
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_Appendix

Kppend_ix

. [ £y H
. The equations used to generate stimuli for both e)h;eriments were as follows:

discontinuous: * ©  y =1zx tankO/é) ) - 0z X/2
= (X — z) x tan(0/2) - X/2<z<X
smooth: ‘ y = r x tan(0/2) R . 0<z<b .
Lo = X/4 x tan(0/2) x sin(rz/X)+d thb<z<X b
= (X — z) xtan(8/2) . X-b<z<X.

where X = screen width ‘
9 = orientation change across corner (0° < 8 < 35°)
. b= arccos(tan(0/2) x 4/X) x X/~.
= point of equal slope between line and sinusoid ' \
d = btan(8/2) — (X/4)tan(6/2) sin(rb/ X) ‘ Co

This method of construction for the smooth contours resulted in only one pattern of. .
curvature change for any one orientation change. However, the subjects were not instructgd
that this was the case. Rather, they were given, as much as possible, the impression that

‘any pattern of smooth orientation changes might be present, as well as other tYpes of ‘

discontinuities.
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