NOTE TO USERS

This reproduction is the best copy available.

®

UMI






DATA MINING WITH RELATIONAL DATABASE
MANAGEMENT SYSTEMS

by
Beiber Zou

School of Computer Science
McGill University, Montreal

11th January 2005

A THESIS SUBMITTED TO MCcGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright (© 2004 by Beibei Zou



Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-494-12571-3
Our file  Notre référence
ISBN: 0-494-12571-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



Abstract

With the increasing demands of transforming raw data into information and knowl-
edge, data mining becomes an important field to the discovery of useful information
and hidden patterns in huge datasets. Both machine learning and database research
have made major contributions to the field of data mining. However, there is still
little effort made to improve the scalability of algorithms applied in data mining
tasks. Scalability is crucial for data mining algorithms, since they have to handle
large datasets quite often. In this thesis we take a step in this direction by extend-
ing a popular machine learning software, Weka3.4, to handle large datasets that can
not fit into main memory by relying on relational database technology. Weka3.4-DB
is implemented to store the data into and access the data from DB2 with a loose
coupling approach in general. Additionally, a semi-tight coupling is applied to op-
timize the data manipulation methods by implementing core functionalities within
the database. Based on the DB2 storage implementation, Weka3.4-DB achieves bet-
ter scalability, but still provides a general interface for developers to implement new

algorithms without the need of database or SQL knowledge.



Résumé

La demande croissante de transformer des données brutes en une source de connais-
sances utiles, fait de I’exploration de données un outil indispensable & la découverte
d’information substancielle, dissimulée a 'intérieur d’immenses ensembles de données.
L’apprentissage automatique et la recherche en bases de données ont tous deux gran-
dement contribué a 'avancement de 'exploration de données. Toutefois, les effort
déployés pour améliorer l'extensibilité des algorithmes appliqués en exploration de
données restent limités. L’extensibilité de ces algorithmes est primordiale, puisque
ceux-ci doivent souvent manipuler dénormes quantités de données. Dans cette theése,
nous faisons un pas dans cette direction en élargissant les fonctionnalités d’un logi-
ciel d’apprentissage automatique populaire, Wekad.4, afin qu’il puisse manipuler des
ensembles de données plus grands que la mémoire principale, au moyen de la tech-
nologie qu’offre les bases de données relationnelles. Weka3.4-DB est implémenté pour
stocker et accéder les données via DB2 avec une approche en géénéral a couplage
faible. De plus, un couplage semi-fort est appliqué pour optimiser les méthodes de
manipulation de données en implémentant des fonctionnalités noyau a Iintérieur de
la base de données. Basé sur 'implémentation de stockage de DB2, Weka3.4-DB at-
teint un plus haut niveau d’extensibilité tout en fournissant une interface générale
aux développeurs pour implémenter de nouveaux algorithmes, sans la nécessité de

connaitre les bases de données ou le SQL.

11



Acknowledgments

This thesis could not have been accomplished without many people’s support. It is
my pleasure to thank those people who have made this thesis possible. First of all, 1
would like to express my special and sincere gratitude to my supervisors, Dr. Doina
Precup and Dr. Bettina Kemme. They have guided me and encouraged me with
their enthusiasm, inspiration and great efforts. During the work on my thesis, they
have provided sound advice, good teaching and a lot of ideas. I would have been lost.

without them.

I would also like to thank my other supervisor, Glen Newton, from the Canada
Institute for Scientific and Technical Information (CISTI), of the National Research
Council Canada (NRC), who has helped to establish the collaboration between the
research work at the School of Computer Science of McGill University and the research
group at CISTI, NRC. He has contributed to the research work with his expertise
on relational database management systems and Java programming. Special thanks
goes to Greg Kresko from CISTI who has helped to set up the DB2 server, and the

rest of the research group at CISTI.

I am grateful to the research environment provided by the Distributed Information
Systems Group at the School of Computer Science, which is a stimulating and fun
place to learn and grow. I wish to thank Huigu Wu, Yi Lin, Chenliang Sun, Emory
Merryman, Shuqing Wu, Brian Gabor, Qifang Zheng, and Xueli Li for their support
and inspiration. I also appreciated Jean-Sebastien Légare’s help on translating the
abstract to the Irench version, and the system staff Andrew Bogecho for setting up

the DB2 server for the early phase of the research.

iii



I would like to thank my family members, my parents and my sister, who have
supported me all the time. This thesis is a special dedication to my husband, Feng

Qian, who has shared my happiness and sadness every day.

v



Contents

Abstract

Résumé
Acknowledgement
Table des matieres
Table des figures
Liste des tableaux
1 Introduction

2 Data Mining
2.1 Overview. . . . . ..
2.2 Data Mining and Machine Learning . . . . . . .. .. .. .. ... ..

2.3 Data Mining and Database Systems . . . . . . . . .. ... ... ..

3 Classification

ii

iii

ix



3.1 Overview . . . . .o 8

3.2 Regression . . . . ... L 10
321 Overview . . . . ... 10
3.2.2 Logistic Regression . . . . .. .. .. ... ... ... .. ... 11

3.3 Data Preprocessing . . . . . . ..o o 13

Relational Database Management Systems 15

4.1 Overview . . . . . . ... 15

4.2 SQL ..o 17
4.2.1 Basic Structure . . . . . ... 17
4.2.2  Aggregate Functions . . . . . .. ... .. 19
4.2.3 Join Operations . . . . . . . . . . . ... ... 20
4.2.4 Nested Queries . . . . . . . . ... 21

4.3 Indexing . . . . . .. L 21

44 JDBC . ... 23

Scalability 27

5.1 General Challenges Imposed by Massive Data Sets . . . . . . . . . .. 27

5.2 General Approaches to Achieve Scalability . . . . ... ... .. ... 28

5.3 Achieving Scalability by using Relational Database Systems . . . . . 30

Weka3.4 33

6.1 Introduction . . . . . . . .. 33

6.2 System Architecture and Data Structures . . . . . . . ... ..., 33

V1



7

Weka 3.4-DB

7.1 Intuition and Goal . . . . . . . . .

7.2 Data Structures . . . . . . ..o
7.2.1  Main Memory Data Structure . . . . . . . . . . ... ...
7.2.2 Database Implementation . . .. ... ... ... ... . ...

7.3 DBasic Interaction between core and DB2 . . . . .. .. ...
7.3.1 Storing Data . . . .. ... ..
7.3.2 Basic Data Access . . . . . ...
7.3.3 Basic Data Manipulation . . . . . ... .. ... ... ...

7.4 Moving Functionalities into DB2 . . . . . . .. ... ...

7.5  Optimizations outside the core . . . . . . . . . .. ... ... . ...
7.5.1 Data Preprocessing : Filters . . . . ... .. ... ... ... .
7.5.2 Logistic Regression . . . . . ... ... .. ... ... ..

7.6 Strategies for Performance Optimized JDBC Application . . . . . . .

Performance Evaluation

8.1 Experiment Design . . . . . . . . . ...
81.1 Goaland Setup . . . . .. . ... ...
8.1.2 Datasets . . . . . . . .
8.1.3 Logistic Regression . . . . . ... .. .. ... ... ...

vil

41

41

43

44

46

ol

93

o0

o0

60

61



8.2 Experimental Results . . . . . ... ... ...

8.2.1 Experimental Results for Synthetic Datasets . . . . . . . . ..

8.2.2 Experimental Results for Real Datasets

8.2.3 Analysis . . . . ..

9 Conclusion

A DB2 Server Configuration

B ARFF Example From Weka3.4

Bibliographie

viil

81

82

84



6.1

6.2

7.1

7.3

8.1

8.3

8.4

8.5

List of Figures

Architecture of Wekad 4 . . . . .. ..o 34
Instances and Instance . . . . . . .. ... 37
Architecture of Weka3.4-DB . . . . ... . ... 44
Weka3.4-DB : Instances and Instance . . . . . . . ... ... ... 45
Weka3.4-DB tables . . . .. .. .. 48
Synthetic Datasets : Main Memory vs V2 . . . . . . . . . . .. .. .. 73
Synthetic Datasets : V2 vs V3 . . . . . . . ... 74
Synthetic Datasets : V2 vs V3 . . . . . . . ... 75
AVIRIS Datasets with 169 attributes : Main Memory vs V2 . . . . . 76
AVIRIS Datasets with 169 attributes : V2vs V3 . . . . . . . . . . .| 77

1x



List of Tables

6.1 Methods of Instances class . . . . . . . . . ...



Chapter 1

Introduction

Data mining applies computational and statistical technologies to discover useful in-
formation and hidden patterns in large datasets. It has been developed by both the
Machine Learning and Database communities since 1990. Each of theses communities
offers different approaches since they work from different perspectives. Machine learn-
ing researchers provide a solid theoretical framework and develop machine learning
algorithms that are suitable for major data mining tasks. Database experts facili-
tate the data mining process by providing sophisticated and advanced data storage
management technology. In Chapter 2, a short overview of data mining is given, and

contributions of the machine learning and database communities are reviewed.

Classification is an important problem addressed in typical data mining tasks, such as
analyzing scientific experiments, medical diagnosis, fraud detection, credit approval
and target marketing. Many algorithms for classification have been developed in the
machine learning community, including e.g. logistic regression, decision trees aid
naive Bayes. In Chapter 3, an overview of classification is presented, and typical
algorithms are described. In order to improve the effectiveness of the data mining
process, data preprocessing is necessary. Chapter 3 also provides a brief discussion of

data preprocessing techniques that are typically applied in classification methods.

Most commercial database management systems (DBMS) are based on the relational



model introduced in the 1970s. They provide efficient data storage, fast access struc-
tures and a wide variety of indexing methods to speed up data retrieval. SQL is the
standard query language that is supported by most relational DBMSs. It provides
sophisticated query functionality like nested queries and aggregate functions. SQL
can be embedded in a host language. Hence, it is possible to access relational DBMS
throt

are discussed in more detail.

While scalability is an important issue for all algorithms, it is especially critical for
machine learning algorithms that are applied to data mining problems, because han-
dling huge amounts of data becomes inevitable for real data mining tasks. Some
general strategies have been developed to deal with large datasets, such as sampling
and data squashing. A potential problem of these strategies is that they introduce
incredible overhead and sometimes even decrease the accuracy of algorithms. Other
approaches focus on making specific algorithins, especially decision trees, more scal-
able. The alternative that has been adopted in this thesis is to explore commonly used
and well-developed relational database systems as data storage and retrieval, which
can be easily applied to all algorithms without sacrificing the accuracy. In Chapter

5, existing approaches to handle the scalability issue in data mining are discussed.

Weka3.4 is an open source machine learning software package, which has implemented
many state-of-the-art machine learning algorithms. Since it is implemented using
memory-based data structures, Weka3.4 can only be used on datasets that can fit
into memory. In Chapter 6, the system architecture and data structures of Weka3.4
are discussed in detail. The scalability limitations of Weka3.4 make it a perfect target

for exploring solutions that can improve the scalability of existing algorithms.

The goal of this thesis is to extend Weka3.4 to Weka3.4-DB. Weka3.4-DB is able to
handle large datasets by storing them in and accessing them through data resource
management systems, especially relational database systems. The ultimate goal is to
enhance Weka3.4 to provide scalability for all algorithms implemented in the package.

In order to achieve this goal, this thesis presents a new storage interface, put between



the data mining algorithms implemented in Weka3.4 and the storage system that
represents the data. Furthermore, an implementation of this interface using the re-
lational DBMS DB2 is presented. With this, all algorithms implemented in Weka3.4
can run in Weka3.4-DB without changes. That is, the algorithms use a DBMS when
accessing the data but do not need to be aware of this. Also, new algorithms can
be implemented-without-developers being required—to know SQL.“In principle, the
move to Weka3.4-DB allows them to run on larger datasets than possible in Weka3.4.
However, some algorifhms use internally large data structures, limiting their scal-
ability. We analyzed the logistic regression algorithm in more detail, and came to
the conclusion that we have to additionally provide an abstraction for typical main
memory data structures, like arrays, that are then implemented on DB2. We have
adjusted the logistic regression algorithm to use the new data structures in order
to further increase scalability. This leads to a higher integration with the database

system, however it is transparent to the algorithm implementation.

Chapter 7 describes the interface, the DB2 implementation of the interface, and

different version of the logistic regression algorithm.

Weka3.4-DB has been evaluated on both synthetic data and real data using the logistic
regression algorithm. The experiment results show significant improvement in regard
to scalability with reasonable execution time. The performance evaluation shows that
our approach of using a relational database system while providing developers with a
further data structure interface is a practical solution to provide scalability for data
mining algorithms without the need to know SQL. In Chapter 8, the experiment

design and results are discussed in more detail.

In Chapter 9, conclusions are drawn and future work is discussed.



Chapter 2
Data Mining

2.1 Overview

The task of data mining is to extract useful information from huge datasets. With
technological advances in data storage and data management, scientists, business
and medical researchers are able to gather, store and manage previous unimaginable
quantities of data. The need of transforming raw data into information and knowledge
has been increasing dramatically. Modern data mining is motivated by this change
in data collection and the need for data analysis. Since the early 1990’s, research in
data mining has largely focused on computational and algorithmic issues rather than
the traditional statistical aspects of data analysis. Normally, data mining involves an
integration of techniques from multiple disciplines, such as machine learning, database

technology, data pre-processing and data visualization.

For the past ten years, Machine Learning and Database research have been playing

major roles in the field of data mining.



2.2 Data Mining and Machine Learning

Machine learning involves the study of how machines and humans can learn from data
and has been an important component of research in artificial intelligence (AI). It aims
to simulate human learning by programming machines to learn tasks by experience
25]..

Early work in this field was strongly connected to theories in cogunitive science, trying
to build algorithms and machines that could adapt to data in a manner thought to
be similar to human learning [35]. lu recent years, much of the research in machine
learning has shifted from modeling how humans learn to the pragmatic aim of con-
structing algorithms that can learn and perform well on specific tasks. This leads to

a much greater overlap with applied statistics by adding a computational flavor.

According to Mitchell [25], most often, machine learning problems are formed in
terms of a task, such as playing chess, a performance measure, such as % of games
won against opponents, and experience, such as playing practice games. A machine
learning algorithm developed for a certain task is based on the type of training ex-
perience available and the target function to be learned. The target function can be
represented by the learning algorithm in terms of a tree, or a collection of rules, or a

polynomial function, etc.

Machine learning algorithms prove to be valuable in the following application do-

mains:

e data mining: hidden information or knowledge are needed to be discovered from
large datasets automatically in domaiuns, such as financial analysis and mediciue

diagnosis.

e not well-known domains: domain knowledge is not fully understood, such as

speech recognition and computer vision.

e frequently changing domains: the desired functions change frequently, such as

robotics and computer games.



3

Within machine learning (and supervised learning in particular), decision trees [31]
artificial neural networks [5, 4], nearest-neighbor [3], naive Bayesian networks|13], and

support-vector machines [38] are well known algorithmic approaches.

The significance of machine learning to data mining lies in the fact that many of the

algorithms being used in data mining have solid foundations in machine learning.

2.3 Data Mining and Database Systems

Another strand of data mining research emerged in the 1990’s within the database
research community independently and in parallel with developments in machine

learning.

The introduction of relational database concepts [10] and high-level data models [9]
proved to be major conceptual breakthroughs in the database field, which provided
general and principled frameworks for data modeling and access. Issues [15] such as
updating the database in a systematic manner, answering structured queries about
the data and controlling access and security in the context of multiple users, became

the foundations of modern database management.

By early 1990’s, relational database technology was successfully established in the
commercial sector. But those relational database systems were never designed to
support data analysis tasks. Instead, they are primarily designed for the purpose of

storing and querying data, and to offer transaction support.

When interest in data warchousing began to grow in the early 1990°s [22], database
researchers quickly realized that not only did their customers want to store, manage,
and access their data in a systematic fashion, but now they also wished to be able to
analyze it. Developing data analysis algorithms that can operate directly on relational
databases forms the main component of modern database-oriented research in data

mining.



The work by Agrawal et.al [2] on association rule mining is probably the very first ex-
ample that demonstrates how simple association rules can be mined from a relational
database in an efficient manner. An example of an association rule is ”if a persou
buys beers, then he is more likely to also buy chips with probability 0.8”. Most work
proposed by the database community emphasizes having very efficient data struc-
tures and algorithms for operating on data that does not fit into main memory, and
searching in datasets for simple local patterns such as association rules. For example,
Gehrke et.al [16] describe substantial computational and memory optimizations in
their implementation of CART [7] by using special-purpose data structures, and they
apply their algorithm to datasets involving millions of points. Bradley et.al [6] de-
scribe a heuristic algorithm for an implementation of the Expectation-Maximization
(EM) algorithm applied to Gaussian mixture modeling on massive datasets, which

seeks to minimize the number of passes through the dataset.

The influence of databases on data mining has led to an emphasis on the data access

aspects of analyzing large datasets.



Chapter 3

Classification

3.1 Overview

Classification is an important problem in machine learning that has been addressed
by many algorithms. The task is to predict categorical class labels based on several
attributes or features. For instance, given the customer information described by
age, credit_rating and student (if he or she is a student), if the class label is whether
the customer is going to buy a laptop, then the classification task is to classify the
customer information with binary values Yes and No. In order to label the new
customer information with the category, the classification algorithm, in the following
called classifier, has to be trained from labeled customer records. The given customer
information is the training experience and the classifier is the target function as
introduced in the previous chapter. More precisely, a set of labeled data records
used for training the classifier is called the training dataset. The data records in
a training dataset are called training data or training data records. Each training
record consists of the same number of attribute/value pairs. Attributes can be, e.g.,
age and credit_rating. They describe the training data. Among those attributes,
the one used as the target of a classification task is called class attribute or class

label. The basic types of attributes are numeric and nominal. Numeric attributes



can have real or integer values. For instance, age is a numeric attribute and it can
contain real numbers. Nominal attributes require discrete values. Usually, they have
a list of possible values. For instance, the credit_rating is a nominal attribute and the
possible values are good and bad. Nominal attributes are also referred to as categorical
attributes. When algorithms need to weigh training data, additional weight attributes
are used. Weight attributes have a numeric type. In general, a training dataset is
described by its attributes and the number of data records it has. A set of labeled data
records used for testing the classifier is called the testing dataset. The data records
and attributes in a testing dataset are similar to those in the training dataset. A
testing dataset is also described by its attributes and the number of data records it

has.

The basic idea of classification is to train a classifier using labeled training data and
then use the classifier to classify new data. Classification can be defined as a two-step

process.

e Train a classifier, such as decision trees, classification rules or mathematical

functions, based on labeled training data.

e Estimate accuracy of the classifier with testing data independent of training
data. The accuracy rate is the percentage of the testing data that are classified

correctly.

The major classification algorithms include decision trees, Bayesian networks, logistic
regression, neural networks, support vector machines and k-nearest neighbor. Classi-

fiers are evaluated by the following criteria [18]:

e predictive accuracy: the ability of the classifier to correctly predict class labels

of new data

e speed: the time needed to train the classifier and the time needed to use the

classifier

e robustness: the ability of the classifier to handle noise and missing values



e scalability: the efficiency in constructing the classifier given a large training

dataset

e interpretability: the level of understanding and insight provided by the classifier

3.2 Regression

3.2.1 Overview

Regression [19] is a well-understood statistical technique for analyzing data. Most
regression techniques are used to predict continuous labels, such as linear and non-
linear regression. Using generalized linear regression, categorical data can also be
analyzed. The regression classifier is formed as a statistical function, which models
the relation between the class label and the attribute values of data records. In a
regression function, the class attribute is called response variable, and the remaining

attributes are called predictor variables.

The simplest form of regression is linear regression. In linear regression, the respouse
variable Y is modeled as a linear function of one or more predictor variables. Linear
regression with one predictor variable X, is called bivariate linear regression, such
as Y = o+ bX;. Y is assumed to be normally distributed. For instance, suppose
the class attribute, the number of credits that a customer can earn, is the response
variable Y, and the attribute, the number of products the customer purchased, is
the predictor variable Xj. A linear function can be built by solving the coefficients
a and b based on the given customer data. Using this linear function, the value of
the response variable for new customers can be computed based on values of the
predictor variable. Linear regression with more than one predictor variable is called
multiple regression, such as ¥ = a+0X; +¢X5. YV is modeled as a linear function of a
multidimensional feature vector (X, X3). The coefficients in linear regression can be
solved by least squares estimation, which minimizes the error between the true value

and the estimation of the function. In other words, the linear function that results

10



from least squares estimation represents the best estimate of the true value.

A more complicated model is nonlinear regression where the response variable and
predictor variables are not linearly dependent. Instead, the model uses a polynormial
function. Most often, however, the nonlinear model can be transformed into the linear

one and solved by least squares estimation.

Generalized linear models are a broad set of models designed to generalize the linear
model to target response variables of different types |23, 21]. The differences between

the generalized linear model and the linear model are the following:

e the response variable Y does not need to be continuous and its distribution does

not need to be normal.

e the response variable Y is a linear function of the predictor variables via a link

function, which is determined by the distribution of Y.

The coefficients in the generalized linear model are solved by maximum likelihood

estimation, which requires iterative computational procedures.

3.2.2 Logistic Regression

Logistic regression [21] is a member of the class of generalized linear models. The
respounse variable of logistic regression is a binary variable Y that can take the value
1 as success with probability p and the value 0 as failure with probability 1 — p. The
probability that Y = 1, given the value of X, is denoted by p(Y). In other words, the
binary variable Y has a binomial distribution with parameter p. Logistic regression
estimates the parameter p as a function of the predictor variables X (the vector of
predictor variables). More precisely, assume that p(Y') is given as:
X
p(Y) = 15
and f is a coefficient vector, then the logistic regression function is a logit transfor-

mation of p:

11



arofvYY o p(Y) o BX
logit(p(Y)) = i = €
The goal of logistic regression is to find the best model to describe the relationship
between the binary response variable and predictor variables. In other words, its goal
is to find a good estimator B (estimated coefficient vector) of the coefficients /.
Logistic regression becomes unstable in some situations, e.g., if the mumber of pre-
dictor variables is close to the size of the training dataset, or predictor variables are
highly correlated. Such cases lead to overfitting, which can make the logistic regres-
sion model appear perfect on the training dataset, while it performs badly on the

testing dataset.

Logistic ridge regression is an extension of logistic regression, providing more stable
functions. Ridge regression shrinks the regression coefficients by imposing a penalty
on their size. The key idea behind ridge regression is to avoid overfitting by imposing
a penalty on large fluctuations of the estimated coefficients. A complexity (regulariza-
tion) parameter A (A > 0), called ridge parameter, controls the amount of shrinkage of
the norm of 8. The regularization put forward by Hoerl and Kennard [20] is the sum
of squares of the regression coefficients. It is first introduced in the context of least
squares regression by Hoerl and Kennard [20] and is adapted to logistic regression by

Le Cessie and Van Houweligen [8].

Two similar approaches of deriving a ridge estimator (the estimator of regression
coefficients) are discussed in [8]. One that was first introduced by [14] attempts to
maximize the log-likelihood function with a penalty on the norm of 5: I*(8) = I(3) —
A8, where (8) = T(¥log(p(Y)) + (1 = ¥)log(L - p(¥))) and 8] = (£(8,)2)% is
the norm of the coefficient vector 8. Maximization of [*(8) leads to 3. The ridge
parameter A controls how much the norm of g shrinks. When A = 0, the solution
is the ordinary maximum likelihood estimate (MLE). When A — oo, the g; all tend
to 0. Therefore, the estimate [S”\ is expected to be closer to the real value of g than
the unrestricted maximum likelihood estimate (MLE). Another method introduced
by [37] is to obtain ,@A by the Newton-Raphson maximization procedure. For more

detail information, please refer to [37].

12



The way of choosing the ridge parameter A discussed in [14] is based on minimizing
an estimate of the prediction error of the model using one of three error measures:
classification or counting error (MCE), squared error (MSE) and minus log-likelihood
error (MML). With a Cross-Validation (CV) or Akaike Information Criterion (AIC)

the predictive value of the logistic model is compared for various values of A and an

optimal A is chosen such that the mean error rate is minimal. .

For instance, given the customer information in the previous example, each data
record is denoted as (x;,y;), where x; is a vector representing the values of attributes
age, credit rating, student of the ith record and y; is the class label buy_laptop of
the sth record. In the simplest case in which the ridge parameter is given, the ridge
algorithm would iterate through all customer records a number of times in order
to derive the ridge estimator that can satisfy the unrestricted maximum likelihood

function.

3.3 Data Preprocessing

Data preprocessing [30] is an important step in the data mining process. Incomplete,
noisy and inconsistent data can affect the accuracy and efficiency of data mining meth-
ods, and sometimes even prevent data mining methods from being applied. Therefore,
a number of techniques have been developed to improve the quality of data and con-
sequent mining results. For classification, a number of general data preprocessing

techniques have been proposed.

e Data cleaning: data cleaning attempts to fill missing values, where some data

records don’t have values for some of the attributes. Missing values are filled
with the mean calculated based on all available attribute values, or the most
probable value based on statistics. Furthermore, data cleaning attempts to re-
move or reduce noisy data. Data cleaning is often required when using regression

methods.

13



e Relevance analysis: whenever irrelevant attributes or redundant attributes ap-
pear in the data, relevance analysis can be performed to remove those attributes
from the learning process. It is also called feature selection. Relevance analysis
tends to reduce the dimension of the feature space, which results in shorter
learning time. Therefore, it improves the efficiency and scalability of the learn-
ing process. The general idea behind relevance analysis is to compute some
measure that can be used to quantify the relevance of an attribute. For exam-
ple, a simple measure used by some regression methods is based on the number
of distinct values of one attribute. The fewer distinct values an attribute has,

the less likely it is to be relevant.

e Data transformation: one type of data transformation is called generalization,
which transforms data from lower-level concepts to higher-level concepts. The
typical application of generalization is to transform continuous-valued attributes
to nominal/categorical attributes (e.g., instead of exact age, age ranges are
given), or transform nominal attributes to binary attributes (a binary attribute
is a special nominal attribute, which only has two discrete values). Another
type of data transformation is called normalization, which involves scaling all
values of some attributes such that the normalized values fall within a small
specified range, e.g., 0.0-1.0. Normalization can prevent one attribute with a

large range from over-weighting another with a small range.

In order to perform data preprocessing, the data records have to he scanned usually

one or more times.

14



Chapter 4

Relational Database Management Systems

4.1 Overview

A relational database management system (RDBMS) [33, 40] is a system that stores
and manages data that follows the relational data model. An RDBMS provides
functions to define data structures, integrity constraints, and to share and retrieve
data.

The general idea behind relational databases is the Entity-Relationship (ER) model.
The basic structure of representing data in the relational database is a relation, which
is not the same as the relationship in the ER model. A relation represents data that
belongs to one application dependent entity type. For example, all information about
customers could be stored in one relation. A relation consists of a relation schema
and relation instance. The relation instance is a set of tuples, each tuple describing
one entity (e.g. one customer). The schema provides the meaning behind the tuples
in the relation. It provides the name (e.g. Customers), the attributes which describe
the entity type (e.g. name, age, salary) and the domain of each attribute (e.g. string,

integer). An example of a relation schema is :

Customers(id:string, name:string, age: integer, rank: integer)



where each attribute name is followed by a domain name. For instance, the attribute
name has domain string, which defines that the value associated with the attribute
name must be a character string. An instance of a relation is a set of tuples, where
each tuple has the same number of attributes with attribute values according to the
attribute domains. Often, a relation instance is referred to as a table, tuples are the
rows in the table, and attributes are the columns (attribute names are the column
headers). Tuples are also called records, and attributes are called fields. As such, a
relation is an ideal form to represent a dataset used for data mining as introduced in
Chapter 3. Attributes have the same meaning, and data records are the tuples in the

relation.

A relational database is a structured way of storing information, and RDBMS prevent
entering incorrect data by allowing the definition of integrity constraints. An integrity
constraint (IC) is a condition over a database schema that restricts the data to be
stored in a table of the database. Among many kinds of integrity constraints, the
most important one is the key constraint. A key constraint defines a certain minimal
subset of attributes of a relation, called the primary key, that is a unique identifier
for a tuple. No two tuples can have the same values in the primary key attribute. For
instance, the primary key of Customers relation is id, which means no two customers
have the same id. Therefore, tuples or records in a table can be easily accessed by
referring to the primary key of the table. Another key constraint is called foreign
key. A foreign key in a relation A refers to a primary key in relation B to enforce
referential integrity among the tables. The foreign key in the referencing relation
must match the primary key of the referenced relation. For instance, in addition to

Customers, a second relation is:
GoldenMemberCard(cid:string, credit:int, id:string)

The primary key of the GoldenMemberCard relation is cid. Additionally, the relation
has the foreign key id, referring to relation Customers, and the id is primary key in
Customers. The foreign key constraint ensures that only customers that exist in the

Customers relation (there is a tuple in Customer with this id) can have golden member

16



cards. That is, any value that appears in the id of a tuple of the GoldenMemberCard

relation must also appear in the id of some tuple in the Customers relation.

4.2 SQL

Data in a relational database is accessed via a database query. A database query is
an operation that either retrieves data from the database (again in form of a relation)

or modifies the data. A query language is a specialized language for writing queries.

Structured Query Language (SQL) [33, 40] is the most widely used commercial rela-
tional database language. It was originally developed at IBM in the SEQUEL-XRM
and System-R projects in the early 1970s. The Sequel language has evolved since
then, and its name has changed to SQL. SQL statements can be divided into two cat-
egories: data definition language(DDL) and data manipulation language(DML). DDL
statements are used to build and modify the structure of tables and other objects,
e.g. CREATE, DROP statements. DML statements are used to work with the data
in tables, e.g. INSERT, SELECT, DELETE, UPDATE statements.

4.2.1 Basic Structure

The basic structure of an SQL SELECT statement consists of three clauses: select,

from and where.
e select clause: it contains a list of attribute names of tables appearing in the
from clause

e from clause: it contains a list of table names that are needed to be evaluated

in the query

e where clause: it contains a Boolean combination of conditions on attributes of

tables appearing in the from clause

17



An example of a basic SQL query using the Customers relation is

select id, name
from Customers

where age > 30

It selects the values of the id and name attributes of all tuples in the relation
Customers where age values are over 30. The result is in the form of a table with two

attributes: id and name.

SQL provides a special attribute value null to represent any unknown or inapplicable
attribute value. The comparison operator to test whether an attribute value is null is
IS NULL. The opposite comparison operator is IS NOT NULL. For instance, the above

SQL query can be modified as :

select id, name
from Customers

where age > 30 and rank IS NOT NULL

The query has an extra condition on attribute rank. It will select values of attributes
id and name of tuples from Customers table where age values are over 30 and rank

values are not null.

SQL allows to specify the order in which result tuples are displayed. The order by
clause makes the tuples in the result of a query to be sorted in some order. For

instance,

select id, name
from Customers
where age > 30 and rank IS NOT NULL

order by name

It returns the same tuples as the previous query but tuples are displayed in ascending

order on the values of attribute name (i.e. alphabetically in this example). The default

18



sort order is ascending, but descending (order by name desc) is also possible.

4.2.2 Aggregate Functions

SQL supports a class of built-in aggregate functions for computing aggregate values
such as MIN and SUM. There are five aggregate functions: avg for average, min for

minimum, max for maximum, sum for total, and count. For instance,

select min(age), count(name)
from Customers

where rank > 2

The query returns the minimum age of customers and the number of customers whose

rank is over 2.

Often, aggregate functions are applied to groups. SQL provides a group by clause to
group tuples of a table based on certain attribute values and having clause to specify
the group qualification. The attribute names that appear in the select clause must
also appear in the group by clause or must be aggregated. The group qualification
in the having clause is applied to all groups before generating the final result groups.

For instance, consider the query:

select rank, count(rank), avg(age)
from Customers
group by rank

having count (%) > 10

The query returns a list of attribute rank values, the number of tuples that have
this rank value, and the average age for customers with this rank. Only if there are
more than 10 tuples in the Customers relation that have this rank, a result tuple is

returned.

19



The group by clause can be used as an independent clause and without including

any aggregate function. An example is:

select rank
from Customers
where rank > 2

group by rank

It is a normal select query with one extra group by clause. The query returns the

list of existing rank values that are over 2.

4.2.3 Join Operations

Join operations take two relations and return as a result another relation. Join
operations consist of a join type and a join condition. The join condition defines
which tuples in the two relations match, and what attributes are present in the result
of the join. The join type defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated. The default type
is inner join. The inner join only returns the matched tuples from both relations
and ignores those that tuples in each relation do not match any tuple in the other
relation. Another type is outer join. Unlike the inner join, the outer join keeps both
matched tuples and those tuples that do not match any tuple in the other relation.

A simple example of inner join is:

select name
from Customers inner join GoldenMemberCard

on 1id

This query only returns those customers who have the golden member cards, since
only those tuples in the Customers relation that can match tuples in the GoldenMemberCard

with same id values, will be returned. In this case, all the tuples in the GoldenMemberCard

20



relation will be returned, since all of them have matched tuples in the Customers re-

lation due to the foreign key constraint.

4.2.4 Nested Queries

One powerful feature of SQL is nested queries. A nested query is a query that
has another query embedded inside it. The embedded query is called a subquery.
Whenever a query needs to express a condition that refers to the result of another
query, the subquery is used to compute the subsidiary result table and appears as
part of the main query. A subquery typically appears in the where clause of a query.
The most common use of subqueries is to perform tests for set membership. SQL
allows testing tuples for membership in a relation with the key word in and testing
the absence of set membership with the key word not in. For example, the following

nested query finds all customers who have the golden member cards.

select name
from Customers
where id IN (select id
from GoldenMemberCard)

4.3 Indexing

When queries are executed over large relation instances, execution time can be very
slow, since the entire relation must be scanned and for each tuple the condition in
the where clause must be evaluated. Indexing [33, 40] is used to speed up the query

processing time.

Let’s first have a look at equality in queries. The query bhelow

select *

from Customers



where id = 100

selects exactly one tuple, namely the customer with id = 100. Equality queries can
also retrieve several tuples, namely if the attribute in the where clause is not the
primary key or unique. Equality queries typically (not necessarily) pick up few tuples
of the relation. However, if no index is defined, the entire relation has to be scanned to
find the matching tuples. An index is defined over one or more attributes, called the
search key of the index. It is an additional data structure, such that, given values for
the search key attributes (e.g. 100) it can efficiently determine the physical location
of the matching tuples. There exist many different indexing methods (e.g. B+-Tree,
hashing). Some of them can also be used for range queries. For example, the rauge

query

select rank
from Customers

where age<20

selects the ranks of customers younger than 20. The index now determines the phys-
ical location of the corresponding tuples starting with the youngest customer. If the
number of matching tuples is small, retrieving the matching tuples one by one will
still be faster than scanning the entire relation. However, if there are many matching
tuples, which might be spread all over the physical storage of the relation, the direct
access to these tuples one by one might be slower than simply scanning the entire
relation and performing the attribute test (< 20) on each tuple. There is the possi-
bility to create one clustered index per relation. A clustered index is, in principle, the
same as an unclustered index (defined over one or more search key attributes), but
the tuples in the physical storage of the relation are actually sorted according to their
order of the search key attributes. For instance, if we create a clustered index over
the age attribute, all tuples of the Customers relation will be physically ordered ac-
cording to their age on the physical storage. Hence, retrieving all customers younger

than 20 will start with the first customer, and then sequentially retrieve all following

[A]
[N]



customers until the first customer with age = 20 is found. This is faster than scanning

and testing all tuples.

4.4 JDBC

SQL is a powerful declarative query language, but it does not provide the full ex-
pressive power of a general-purpose language. Java Database Connectivity (JDBC)
(33, 40] enables the integration of SQL into a general-purpose programming language
through an application programming interface (API). It allows application programns
to access different DBMSs without recompilation. Any direct interaction with a spe-
cific DBMS is through a DBMS specific driver, which can translate the JDBC calls
into DBMS-specific calls. Drivers are loaded dynamically on demand, since only at
run-time it is known which DBMSs the application is going to access. All the existing

drivers are registered with a driver manager.

There are four main components of the architecture of JDBC:

e application: the application (Java program using JDBC API) initiates and
terminates the connection with the data source. It submits SQL statements

and retrieves the results through a well-defined interface as specified by JDBC
APIL

e driver manager: the driver manager is used to load JDBC drivers and to pass
JDBC function calls from the application to the correct driver. It handles JDBC
initialization and information calls from the application and logs all function

calls. In addition, it may perform some error checking.

e drivers: the driver establishes the connection with the data source. It submits
requests and returns results by translating data, error formats, and error codes

fromn a form that is used by the data source into the JDBC standard.

e DBMS: the DBMS processes commands from the driver and returns the results.

23



JDBC is a collection of Java classes and interfaces that enables database access from
programs written in the Java programming language. The classes and interface are
part of the java.sql package. The major steps of using JDBC is to load the JDBC
driver, connect to a data source, and execute SQL queries. An example of a small

application program is

import java.sql.*;

public class JDBCexample{

public static void main(String[] args) throws SQLException{

//Load the DB2 JDBC driver
DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver) ;
//build a connection
Connection conn = DriverManager.getConnection(url, uid, passward);
//create statement
Statement stmt = conn.createStatement();
Resultset rs = stmt.executeluery
(?’select age from customers where rank = 5°’);

while(rs.next (0){

int age = rs.getInt(l);

System.out.println(’’rank 5, age: ’’+age);
}

rs.close();

//create preparedStatement

PreparedStatement pstmt = conn.prepareStatement(
>’select avg(age) from Customers ’’+
’’yhere rank = 7°7);

rs = pstmt.executeQuery();



for(int i=1; i<=10; i++){
pstmt.setInt(i);
rs = pstmt.executeQuery();
while(rs.next()){
int age = rs.getInt(1);

System.out.println(’’rank ’’+i+’’, age: ’’+age);

¥

rs.close();
pstmt.close();
stmt.close();

conn.close();

In JDBC, DBMS drivers are managed by the DriverManager class. As it is shown in
the example, the static method registerDriver is called to register the DB2 driver.
A connection with the DBMS is started through the creation of a Connection object.
In the example, the getConnection method of the DriverManager class returns a
Connection object, which represents a communication channel to the DB2 database.
getConnection has to indicate the location of the DB2 database in form of a url.
Furthermore, a user name and password must be given since only authorized users

can access the database.

The SQL query is submitted to the database through the Statement object. In the ex-
ample, the createStatement method of the Connection object returns a Statement
object, and the executeQuery method of the Statement class submits the query to
DB2 and lets it get executed in the database. Once the SQL query is executed, a re-
sulting relation is returned through the ResultSet class. Since the ResultSet object
of a select query represents a set of tuples in the resulting relation, but the application
program can only handle one tuple or even one attribute at a timne, the ResultSet
class provides methods to iterate through the returned tuples. After a query is ex-

ecuted, the ResultSet is positioned right before the first tuple. The method next

[\]
(&)



fetches the next tuple and enables reading of the attribute values through gettype
methods, where type is the type of the field. When the ResultSet reaches the last
tuple, the next method can’t satisty the condition of the while loop any more, since
calling the next method makes the ResultSet to position right after the last tuple.
Potentially, a ResultSet might contain millions of tuples. They might not fit all
in the address space of the client JDBC program. Hence, the ResultSet is usually
stored as a temporary relation at the database, and tuples are transferred from DB2
to the program space one by one when next() is called. Depending on the JDBC
driver, a small set of tuples might be caclied at the client side. At eud of the program,

the Connection, Statement and PreparedStatement objects are closed.

Besides the Statement, JDBC allows the creation of another kind of statement, called
PreparedStatement. PreparedStatement can refer to variables in the application
program and is good for repeating one query many times once it is compiled. JDBC re-
places each parameter with a ? and sets values for each parameter at run-time through
settype methods, where type is the type of the parameter. In the example, the
prepareStatement method of the Connection class returns a PreparedStatement
object. At this time point, the query exists in compiled form at the database. It can
be called and executed without compilation with different values for its input param-
eter rank. Once the query is compiled by the PreparedStatement object, the value
of the parameter in the PreparedStatement object is set by the setInt method in

a loop and the query is executed repeatedly.

26



Chapter b
Scalability

5.1 General Challenges Imposed by Massive Data Sets

One of the main challenges in dealing with massive datasets is the scaling effects that
often occur as datasets grow in size. For a dataset with p attributes and N data
records, the time complexity [11] of a data mining algorithm is typically expressed as
the worst running time as a function of NV and p, e.g. O(Np). Algorithmms whose time
complexity scales poorly as a function of IV are often unacceptable for large datasets.
Therefore, data mining researchers interested in massive dataset applications often
focus on algorithms that scale in the ”"near-linear” range for N and usually no worse

than p? for p.

The other relevant aspect of data analysis for large datasets concerns the physical
storage location of the data relative to CPU. The primary memory consists of RAM
(random-access memory) and has the benefit of allowing relatively fast random access
of any byte on the order of 1077 to 1078 seconds with current technology. This is how
long it takes the system to bring the data from memory to CPU to do a computation.
Secondary memory consists of disk storage. The access timne here is on the order of

1072 seconds. Even though the storage techuology is consistently changing (currently

27



allowing storage on the order of Gigabytes/a RAM and Terabytes/a hard disk), the
relative difference in access time between primary and secondary memory still remains
on the order of 10* to 10°.

Thus, the time complexity mentioned earlier will be affected dramatically by the phys-
ical location of the data. If the algorithm requires one computation per data record,
and each data record is accessed randomly, then the time taken by the algorithm will
be proportional to ¢N, where N is the number of data records and ¢ is the time it
takes to access the data record. It simply indicates that algorithms that frequently
access the disk will be much slower than algorithms that operate on data entirely in
main memory. If the data is organized so that it can be accessed sequentially from
the disk, then the cost of disk access decreases, since sequential scanning can be car-
ried out much more efficiently than random access of the same amount of data. But
many data mining algorithms either repeatedly access different subsets of the data
in an unpredictable way, e.g. classification trees, or require multiple passes through
the entire dataset. Even if such algorithms scale reasonably in N and p, while they
may run in reasonable time on data in main memory, they will be infeasible for large

datasets that exceed main memory capacity.

5.2 General Approaches to Achieve Scalability

There are a number of general approaches for developing scalable data mining algo-

rithms.

e Running a random sample of the whole dataset is often used in practice, espe-
cially for data mining tasks involving iterative and interactive phases of model-
building. But generating a fairly random sample from a large database stored

on disk may itself be a time-consuming task from a computational point of view.

e Du Mouchel et.al. [27] proposed a statistically-motivated method for data-

squashing, which creates a set of M weighted pseudo data points, where M 1is



much smaller than the original number N, and the pseudo data points are auto-
matically chosen by the algorithm to mimic as closely as possible the statistical
structure of the original large dataset. The method is empirically demonstrated
to provide one to two orders of magnitude reduction in prediction error on a
logistic regression problem compared to simple random sampling of a dataset.
Similar ideas by Moore and Lee [26], Bradley et.al. [6] and Pavlov et.al. [28]
propose to generate a smaller approximate representation of the original large
dataset that matches the statistical characteristics of the original dataset as
closely as possible. One advantage of this general approach is that once the
reduced set is created, the original dataset can be thrown away and computa-
tionally intensive processes, such as visualization and model-building, can take

place entirely on the reduced dataset in main memory.

Pipelining is a quite effective online recursive approach. It processes the data
through the analysis system as it arrives and recursively updates model pa-
rameters in an online adaptive manner. Cortes and Pregibon [12] describe an
impressive system at AT&T, which adaptively updates estimates on whether
a telephone line is a business or a residence, for about 350 million customers
per night, based on about 300 million records of daily phone calls. Logistic
regression models are trained offline and the probability of a number being a
business is modeled by a logistic regression model with input variables based

on characteristics of calls, such as time of day, length of calls, etc.

Provost and Kolluri [29] describe a variety of other techniques for scaling up to
massive datasets. They categorize those techniques into three main approaches.
The straightforward approach is to build fast algorithms by restricting the space
of models to be searched or developing powerful search heuristics. The idea of
the second approach is to partition the data into subsets to process them 1u
parallel, and to compute the final result as a function of the results retrieved
from the parallel computations. The last approach is to use a relational repre-
sentation. A typical way of using relational data directly is to integrate data

mining algorithms with database management systemn (DBMSs). This is the

()9



approach that we will take in this thesis.

More specialized approaches have been developed for particular algorithms, e.g. de-
cision tress [24, 39, 17].

5.3 Achieving Scalability by using Relational Database

Systems

Since more and more massive datasets are stored in database systems, developing an
effective architecture for a data mining system on top of a database system becomes
an interesting implementation issue. Database systems are designed to provide the
flexibility and efficiency of sorting, organizing, accessing and processing data. Data in
database systems tends to be well organized, indexed, cleaned, and integrated, which
makes many tasks, such as finding relevant data, much easier than for data in flat
files. Once data mining systems take advantage of database systems, more scalable

algorithms and data structures can be explored.

Han and Kamber [18] propose a number of architectural alternatives that could be

developed.

e No Coupling: A data mining system will not use any functionality of the DBMS.
It fetches the data from some file system, processes the data using some data

mining algorithms, and then stores the mining results in another file.

e Loose Coupling: A data mining system will use the basic functions of the DBMS
to store and fetch data. But, it does not explore data structures and query
optimization methods provided by the DBMS. In this case, it is hard to achieve

high scalability and good performance for large datasets.

e Semitight Coupling: Beside the basic functionality of DBMSs, a few esseutial

data mining primitives are implemented within the DBMS. The primitives cau

30



include sorting, indexing, aggregation, histogram analysis, multi-way join, and
precomputation of some essential statistical measures, such as sum, count, max,
min, standard deviation, etc. Even some frequently used intermediate mining

results can be precomputed and stored in the DBMS.

e Tight Coupling: A data mining system is completely integrated with the DBMS.
The data mining system is one functional component of the integrated system.
Data mining queries and functions are optimized based on mining query anal-
ysis, data structures, indexing schemes, and query processing methods of the
DBMS.

The very early work conducted by Agrawal et.al. [32] compares the performance of
loose coupling and tight coupling alternatives for developing the well-known data min-
ing algorithin Apriori et.al. [2] on a relational database system. The loosely-coupled
Apriori algorithm is developed using a standard application program with embed-
ded SQL statements (similar to Java with JDBC) where the application program
runs on a different machine or at least in different access space. The tightly-coupled
Apriori algorithm is developed with user-defined functions, which are defined by the
application programs, but executed within the database engine. They claim the tight-
coupling gives more than two fold performance advantage over loose-coupling based

on experiments on six real-life customer datasets.

Agrawal et.al. [36] have further worked on integrating association rule mining with
relational database systems. They attempt to understand the implications of various
architectural alternatives for coupling data mining with relational database systems.
The most important one is called Cache-Mine. The basic idea of Cache-Mine is that
after reading the data once from the DBMS, the data mining algorithmn temporarily
caches the relevant data in a look-side buffer on a local disk. The cached data could
be transformed to a format that enables efficient future accesses. The cached data
is discarded when the execution completes. The advantage of Cache-Mine is great
programming flexibility. The disadvantage is that it requires additional disk space

for caching. Cache-Mine is reported to perform better than other alternatives.

31



The work done in this thesis is inspired by all the previous work related to using rela-
tional databases to scale up existing machine learning algorithms. It aims to scale up
a very popular open source package of machine learning algorithms, Weka8.4, by tak-
ing advantage of the efficient storage and retrieval of relational representation. Since
one of the goals is to not change (or minimally change) the algorithms implemented
in the software package, we employ generally a loose coupling approach. However,
for some special functions we provide a semitight coupling. Furthermore, we looked
at the logistic regression algorithm in more detail and slightly adjust it to the new
architecture to increase scalability even further. This adjustment can still be consid-
ered as loose coupling. Overall, we extend algorithms in the package to adjust to the

new storage system without modifying the results of algorithms.



Chapter 6
Weka3.4

6.1 Introduction

Weka3.4 [42] is a popular, open source, machine learning software package, which has
been developed at the Department of Computer Science, University of Waikato, New
Zealand. Weka3.4 implements many state-of-the-art machine learning algorithins,
and is widely used in teaching and research by the machine learning community,
as well as outside users. Weka3.4 contains tools for data preprocessing, regressiou,

mining association rules, classification, clustering and visualization.

6.2 System Architecture and Data Structures

This thesis extends the storage system of Weka3.4. Hence it is crucial to understand

Weka3.4's system architecture and data structures.

The architecture of Weka3.4 consists of a GUI user interface, machine learning al-
gorithms and one well-defined data structure interface, core. As shown in Figure
7.1, all the algorithms in Weka3.4 are using data structures and methods that can

manipulate data through core.

33



GUI User Interface

classifiers clusters associations filters
Invoke
- N
Core
Main Memory

Figure 6.1: Architecture of Weka3.4

All the data structures defined in core are memory-based data structures. The most
important are the Instances and Instance classes. Instances is implemented to
store the dataset information, providing functionality to access attribute information
and to manipulate data records inside the dataset, such as delete and sort the data
records. Instance is implemented to store the information of any single data record,
providing functionality to access weight, attribute and class values. Each data record
is stored as one Instance object, and all Instance objects are stored in a vector of
Instance objects, which is maintained in the Instances class. The Instances class
provides methods to allow algorithms to enumerate all the data records or access one
specific data record by its position in the dataset. Important methods of Instances

are summarized in Table 6.1.

Normally, at the start of a data mining algorithm, the training data is loaded into
main memory and stored as an Instances object. During the computation, more
Instances objects are instantiated by creating a copy of an existing Instances ob-

ject. If the data records of none of the Instances objects are modified, they can he

34



Method

Description

Instances(Instances dataset)

Counstructor copying all instances and ref-
erences to the header information from the

given set of instances

Instances(Instances dataset, int ca-

pacity)

Constructor creating an empty set of in-

stances

Instances(Instances source, int first,

int toCopy)

Constructor creating a new set ol instances

by copying a subset of another set

Instances(Reader reader)

Constructor reading an ARFF file from a
header and assigning a weight (1.0) to each

instance

Instances(Reader reader, int capac-

ity)

Constructor reading the header of an
ARFTF file from a reader and reserving the

space for the given number of iustances

Instances(String name, FastVector

attinfo, int capacity)

Constructor creating an empty set of in-

stances

void add(Instance instance)

adds one instance to the end of the dataset

void delete(int index)

removes an instance at a given position of

the dataset

void deleteWithMissing(Attribute
att)

removes all instances with missing values

for a particular attribute from the dataset

Enumeration enumeratelnstances()

returns an enumeration of all instances in

the dataset

Instance firstInstance()

returns the first instance in the dataset

Instance instance(int index)

returns the instance at the given position

Instance lastInstance()

returns the last instance in the dataset

double

att)

meanOrMode(Attribute

returns the mean/mode for the wnu-

meric/nominal attribute as a floating-point

value




| Method

Description

nt

att)

numDistinct Values(Attribute

returns the number of distinct values of a

given attribute

int numlInstances()

returns the number of iustances in the

dataset

void randomize(Random random)

shuflles the instances in the dataset so that

they are ordered randomly

void  renameAttribute(Attribute

att, String name)

renames an attribute

void renameAttribute-
Value(Attribute att, String name,

String val)

renames a value of a nominal attribute

value

Instances resample(Random ran-
dom)

creates a new dataset with the same size

using random sampling with replacement

void sort(Attribute att)

sorts the instances based on an attribute

void stratify(int numFolds)

dynamically groups a set of instances ac-
cording to its class value if the class at-

tribute is nominal

double sumOfWeights()

computes the sum of all instances” weights

double variance( Attribute att)

computes the variance of a numeric at-

tribute

Table 6.1: Methods of Instances class

36




shared, i.e., a lazy update is deployed. When a new Instances object is created, it
shares the same vector of Instance objects with the Instances object from which
it was copied. Once it wants to change an Instance object in the vector (i.e. a data
record), it creates its own copy of the vector of Instance object. Then it creates
a copy of each Instance object it wants to update. Figure 6.2. shows in detail
how three Instances objects share the same data records or have their own copies.
For example, Instances object 1 and Instances object 2 share the same vector of
Instance objects, but Instances object 3 has its own vector of Instance objects.
Both vectors share some Instance objects. But, for data record A, both vectors have

different copies.

vector of Instance vector of Instance

( \ Instance objec
Instances object | J | nstance object | = L Instances object 3
Instance object | ]

> Instance object |«
APUNVN iect 2 .
Instance object 2 } Instance object "1 |

__/
Instance object A Instance object A
contains data record A contains data record A
with value a with value a°

Main Memory |

Figure 6.2: Instances and Instance

6.3 Data Flow

In this section, we will shortly discuss the important methods in Table 6.1. They are

grouped into the following categories:

w
-1



1. Storing Data

When an algorithm needs to load data into main memory, it creates an Instances
object to store all the attribute name and type information, convert each data
record into one Instance object, and call the add(Instance instance) method
to insert the Instance objects into the vector of Instance objects, which is
maintained in the Instances object. Afterwords, Instances objects are typi-
cally created by copying an existing Instances object. The new object shares
the same vector of Instance objects with the original object or creates its own
vector but shares some Instance objects. Both cases are shown in Figure 6.2.
When an object of Instances calls its own methods, executing those methods
can only affect its own copy of data, more precisely, the vector of Instance

objects.

2. Data Access

When an algorithm needs to access all the training data, it uses the correspond-
ing methods of the Instances class. It can either call enumerateInstance() to
get an enumeration of Instance objects or call instance(int position) in a
loop to iterate over the Instance objects. The enumerateInstance method
implements the Enumeration interface in the Java library. It accesses the
Instance object from the vector of Instance objects in the Instances object.
The instance(int position) method can access a specific data record by lo-
cating the corresponding Instance object in the vector based on the given posi-
tion. firstInstance() and lastInstance() are two other methods to access
data records, which are implemented by invoking the Instance(int index)
method with the corresponding indices. Information about the dataset can be
returned by methods like numInstance() and numDistinctValues (Attribute

att).

3. Data Manipulation

An algorithm can manipulate data through methods, such as delete(int position)

38



and sort(). The delete(int position) method deletes data records by re-
moving the corresponding Instance object from the vector of Instance ob-
jects (note that this does not delete the Instance object itself, because some
other Instances may still point to it). The sort() method sorts the vector
of Instance objects based on one attribute value, by applying the quicksort

algorithm on the vector.

4. Computing Statistics

An algorithm can compute statistics about the data records through methods,
such as sumofWeights and meanOrMode. The sumofWeights method sums the
weights of data records by looping through the vector of Instance objects and
accessing the weight value of each Instance object. The meanOrMood method
computes the mean for a numerical attribute and mood for a nominal attribute
over the Instance objects in the vector. Similar to the sumofWeights method,
it calculates the sum of weights and the sum of products of the weight with
the corresponding value at the given attribute by looping through the vector of

Instance objects.

6.4 Performance Limitation

Weka3.4 is a memory-based package and all the algorithms implemented in Weka3.4
are typical machine learning algorithms, which do not address the scalability issue.
Weka3.4 can achieve a good performance in terms of execution time, but it is hard to
scale up with large datasets. Since it is implemented in Java, in order to save memory,
Weka3.4 takes full advantage of the object-oriented language by sharing objects as
much as possible. Except for a few incremental machine learning algorithms, most
algorithms, especially the classification algorithms implemented in Weka3.4, need
to train using all the training data, which means the training dataset has to be in
memory most of the time. Therefore, the size of the training data becomes critical,

and eventually, most algorithms will run out of memory with large training datasets.

39



This is especially true if they create several Instances objects that maintain their own
Instance objects. But, unfortunately, dealing with large datasets is quite common
in most data mining tasks. Therefore, this kind of implementation prevents Weka3.4

from being applied to many general data mining tasks of interest for applications.

40



Chapter 7
Weka 3.4-DB

7.1 Intuition and Goal

As we have discussed in Chapter 5, the scalability of algorithms is an important
performance issue. So far, either novel algorithms have been developed or special
strategies have been deployed to preprocess data in order to make it fit into main
memory. But the first approach is limited to a small number of algorithms and can’t
resolve the problem in general. Although the second approach does apply to all the
algorithms, it can add incredible overhead when preprocessing a huge amount of data
and sometimes will even reduce the accuracy of algorithms. In this thesis, we follow a
different approach to allow data mining algorithms to access arbitrarily large datasets.
We replace the limited main memory as a main storage medium with the potentially
unlimited secondary storage. However, secondary storage access is complex and very
time consuming. Hence, we take advantages of relational database systems, which
can provide sophisticated data storage and retrieval offering a powerful data access
APL

Despite all the previous work related to using relational databases to scale up existing

machine learning algorithms, there is still a lack of general approaches that can work

41



with all kinds of learning algorithms. Most existing work focuses on specific kinds
of algorithms, such as decision tree algorithms or association rule algorithms. The
most systematic work that has been done is the one by Agrawal et.al. [36], but it
is restricted to association rule mining. A further restriction of the approach is that
the developers of the association rule mining algorithm must be very familiar with
database technology, either implementing stored procedures within the database or
accessing the database through SQL. However, SQL is quite difficult to understand for
machine learning researchers not familiar with database technology. Hence, our idea
is to give these researchers their familiar interface, in particular, the core interface of
Weka3.4 as described in the previous chapter. In contrast to the current implemen-
tation of core, however, data is not necessarily stored in main memory, but loaded
from and stored into a relational database as needed. Ideally, this approach allows all
existing algorithms in Weka3.4 to run on datasets that do not fit into main memory
without any change to the algorithms themselves. In principle, the developer of the
algorithm does not even have to be aware of any main memory restriction. Hence,
the first goal of the thesis was a re-implementation of the core package of Wekas3.4
without any change to its interface. The goal is to have no memory restriction ou
objects managed within core. The advanced functions of DB2 should be explored

whenever possible within the new implementation.

However, this general approach might restrict performance in two ways:

e The data mining algorithms might create their own large main memory struc-
tures by not being aware of main memory limitations. In this case, a simple

core is not enough to allow unlimited dataset sizes.

e The data mining algorithms, not being aware of the frequent secondary storage
access, might access the core data structure in a very inefficient way leading to

very large execution time.

As such, the second task of this thesis was to determine whether the existing algo-

rithms can be made more efficient and scalable by (1) simple changes to the core,



and/or by (ii) providing additional interface methods that can help increase the effi-

ciency and scalability of the algorithms.

7.2 Data Structures

The basic idea of extending Weka3.4 to Weka3.4-DDB is to create a general data struc-
ture interface that defines data structures and methods for manipulating data used by
all algorithms. Such an interface is implemented transparently to the algorithms, and
different implementations can co-exist. One lmplementation is the existing Weka3.4
main mermory implementation, which is efficient but not scalable. The second imple-
mentation, developed in this thesis, is based on the widely used relational database
management system DB2 from IBM, and called Weka3.4-DB. It uses DB2 as data
storage, which can improve the scalability of all algorithms in principle. In order to
provide the flexibility of choosing different levels of scalability and efficiency, Weka3.4-

DB keeps the main memory data storage implementation as an option.

The redesigned system architecture is shown in Figure 7.1. Based on the core iuter-
face from Weka3.4, a general data structure interface has been defined, and any data
source that implements this interface can plug into Weka3.4 as a data storage imple-
mentation. The basic idea of our DB2 storage implementation is to store the training
data in a DB2 database, and only load the training data from the DB2 database to
main memory when it is needed. Additionally, methods that require computation
ou all the data records or a subset of the data records, e.g aggregate methods like
sumOfWeights (), are implemented using DB2 functionality if possible, without the
need to load all the data into memory. This is done by using SQL aggregate func-
tions as explained in Chapter 4. A fundamental strategy employed in the entire DB2
storage implementation is that any method that needs to do computation on all the
data will be implemented in a way that avoids loading all the data into main memory

at the same time.

Data 1s now split between a small amount of main memory data structures and a

43



DDB2 database that the major part resides in. We will now look at both parts in more

detail.

GUI User Interface

i i
{ | \‘
\ classifiers clusters associations filters
|
1 | i
|
L Abstract core interface
Invoke Invoke
W W
{ core for main memory core for relational database systems |
‘; ) " J

Figure 7.1: Architecture of Weka3.4-DB

7.2.1 Main Memory Data Structure

Among all the classes defined in the core package, Instances and Instance are the
two most important ones, since they are defined to represent the training dataset and
each individual data record. All other classes are defined either based on Instances

and Instance data structures or are completely independent.

Figure 7.2 shows specifically how Instances and Instance classes are extended in
Weka3.4-DB. The basic idea is to design a system that allows for easy storage of
data records in DB2 and fast retrieval of the data records from DB2. Whenever an
Instances object needs to read data, it knows where to access the corresponding
data records in DB2. Therefore, the important issue is how to maintain the training

data effectively so that any Instances object can access its own copy of the data.

44



At the beginning of the algorithm, the training data is represented as an Instances
object in main memory, which contains the attribute information and an index vector.
However, the vector does not point to Instance objects representing data records.
Instead, the data records are stored in the database. The vector contains enough
information to retrieve the data records from the database. We will see later what
this means. As in the main memory implementation, we only want to create new data
records (maintained in the DB2) if different vectors of Instances objects require it.
However, now Instance objects do not all reside in main memory any more. Instead,
an Instance object is only created (and the data record is loaded to main memory),
when it is accessed by the data mining algorithms. For this, we had to slightly

redesign the internals of the class hierarchy.

Instances

Interfice

Jmptement

extend DBDataset

Abslr lss

P N
1{ TmuablelatiSer J ( Mutblobuataset ] LEEIN

NN PaSer N
(original Instances java 13B21 elper
extend
Instanee | o
Interiace . DIB2N Lngager
A

extend

Min Memory
]

DBInstanee

A nstinee

(o ginal lastance vy

extend | extend

k Abstract Class

exteid

Figure 7.2: Weka3.4-DB: Instances and Instance

At the very top is the Instances interface with the same methods described in
Chapter 6. The abstract class AbstractDataSet implements commonly used vari-
ables and methods for all the data storage implementations. MMDataSet is the original
Instances implementation in Weka3.4, and DBDataSet is the abstract class for our

relational database implementation. [t implements commonly used variables aud

45



methods of the two classes: ImmutableDataSet and MutableDataSet. The difference
between ImmutableDataSet class and MutableDataSet class is that MutableDataSet
supports all the functions that allow algorithms to change attribute (except weight
attribute) values at any point of the computation, while ImmutableDataSet does
not support those functions (only weight values are allowed to change). The same
strategy is applied to the Instance class. MMInstance is the main memory imple-
mentation and is compilable with MMDataSet. For the DB2 implementation, there
are again an abstract class DBInstance, and then an ImmutableInstance and a
MutableInstance. The reason to have two different classes is that any class that
extends DBDataset has to read data records from the database. If no data record
can be modified, then all objects of the class can share the same data records, which
means those data records can be stored in a read-only table. Using read-only tables
will simplify any kind of read operations and reduce the overhead of loading data
records from database. So, whenever the algorithms do not need to change initial
attribute values, they can use ImmutableDataSet and ImmutablelInstance to refer
to datasets and data records. If they want to change attribute values, they have to
use MutableDataSet and MutableInstance. Furthermore, which type of Instances
and Instance class will be used in the data mining algorithms is defined at runtime,
as it is shown in Chapter 8.

DBManager is the abstract class that defines basic variables and functions that are
used to interact with relational database systems, such as DB2, Oracle and MySQL.
DB2Manager and DB2Helper are two classes that implement all the functions, which

can interact with DB2.

7.2.2 Database Implementation
DB2 contains all data records. Tables created in DB2 have to ensure that Instances

objects can access their own copies of the training data efficiently. There are a number

of alternatives for implementing those tables.

46



e Naive approach: The training data and their weights are first stored in onc
dataset table, which is the copy of the data for the initial Instances objcct.
Whenever a new Instances object is instantiated, a new table is created and
the training data and their weights are copied to the new table, which is the

copy of the data for the new object.

e Duplication approach: The training data is first stored in one dataset table.
Each record in the table is marked with the same identifier. indicating that
all records belong to the same initial Instances object. Whenever a new
Instances object is instantiated, each of the original records in the dataset
table is duplicated, and also stored in the dataset table. All duplicated records
receive one common new identifier indicating that they belong to the newly

instantiated Instances object.

e Lazy approach: The training data is first stored in a dataset table and a common
identifier is used to mark those records as belonging to the initial Instances
object. Whenever a new Instances object is instantiated, it shares the data
records with the original object by sharing the same identifier in the dataset
table. If the new object needs to change a record for computation purposes, a
copy of the original record is inserted in the dataset table with a new identifier.
This new record will be updated. If all the training data needs to be prepro-
cessed, a table similar to the dataset table is created containing all modificd
records with a new identifier. Since the attribute values of the training data are
not updated by many algorithms, this seems to be the most efficient approach.
However, most algorithms do change the weight attributes associated with the
data records. Hence, in order for this approach to be morc efficient than the
duplication approach, we generate two tables. One table contains all standard
attributes, one contains the weight attribute. The corresponding records in
bhoth tables are correlated by the unique identifiers in both tables. Therctore,
whenever a new Instances object is initiated, it shares the data records in the
dataset table with other Instances objects, but it receives a copy of the weights

in the weight table for each data record in the dataset table.

47



The naive approach is very costly, since it creates many new tables, which is one of
the most expensive operations of DB2 and should be avoided as much as possible.
Even though the duplication approach does not have to create new tables, it still
needs to copy the whole training data every time a new Instance object is initiated,
which will hurt the performance when the training dataset is large. The lazy approach
captures the important feature of how most algorithms in Weka3.4 manipulate data.
Most algorithms are more likely to change weights but not the attribute values of
training data. By default, the training data is not modified at all, and making a
separate copy of the weights is enough to distinguish the data records associated with
different Instances objects. Once the object has made any change on the attribute
values of some data records, the updates are flashed back to the dataset table by
creating new records with a new identifier, and the object can track those changes
by those identifiers assigned to the data records. An extra table is introduced only
when dramatic changes have been made on the whole training data, e.g., through

preprocessing. Figure 7.3 shows how the tables are implemented in DB2:

Enique identitier

index| ] 1 l Clusiered index

relationid position atrthuie—list

—| | =

|
2

X . dutaset table
tnique identilice

e

relationid | position attrine—list

“lustered index

lilereddataser tble

Unique ideuifics

|.“m| [——— ‘ Clustercd indux

tableid pusition weiglt

3

1

i
3 > |

+ i !

welght tihle

Figure 7.3: Weka3.4-DB tables

48



e dataset table: The dataset table stores the training data, i.c the data records/Instance
objects. Each attribute of the training dataset corresponds to one column in
the dataset table. The relationid column contains identifiers assigned to
each data record in the training dataset. The value of the relationid column
determines which copy of the training data belongs to which Instances ob-
ject. The position column contains positions of data records in the training
dataset. This is basically the identification of each data record in the training
dataset. It is equivalent to the position of an Instance object in the vector
of Instance objects contained in the Instances class. Combining relationid
and position can specifically locate a data record associated with a specific
vector of Instance objects. Therefore, the relationid column and position
column are combined as an unique identifier of the dataset table. The reason
for having an unique identifier implicitly not a primary key explicitly is that
a key constraint would slow down the process of loading the data into DB2,
since the database has to check the key constraint on each data record hefore
inserting it into the table.

The position is created for each data record when it is first loaded into the
dataset table, and corresponds to the position of the data records in the
training dataset. The relationid is associated with one or more than one
Instances objects (since Instances objects can share training data). Using
the ImmutableDataSet class, there is only one relationid, which is created
when the training data is loaded into the database. All objects share the same
relationid since the training data is shared by all objects and never changed.
In the MutableDataSet class, the first relationid is created when the training
data is loaded into the database, and objects share the same relationid until
some data records are changed. Then the Instances object that has changed
a record will receive a new relationid. This new relationid is used lor
changed records. Each of these records will be inserted into the dataset table,
having the same position values but the new relationid. The Instances ob-

ject can track both unchanged and changed data records by keeping its own

49



relationids. That is, an Instances object can have data records with dif-
ferent relationids. Changed records have the new relationid, unchanged
records have the same relationids as determined by the Instances object (of

which the new object is a copy).

The dataset table has three indices. One is on the unique identifier, one is an
unclustered index on relationid, and one is a clustered index on position.
The reason for having those indices is that most often relationid and position

are the search conditions defined in the where clause of SQL queries.

filtereddataset table: The filtereddataset table is created only when the
data preprocessing has made dramatic changes on the training data. It stores
attribute values of the training dataset after the data records in the dataset
have been preprocessed. The filtereddataset table in principle has the same
schema as the dataset except that it may have different attribute columns if
the attributes are altered by the data preprocessing. The filtereddataset

table has the same indices as the dataset table.

weight table: The weight table stores the weights of data records of Instances
objects. The tableid column and position column correspond to the relationid
column and position column in dataset table. Combining tableid and
position can specifically locate weights of training data records associated with
a specific Instances object. Therefore, the tableid column and position col-
umn are combined as the unique identifier of the weight table. The tableid
is associated with one or more than one Instances object. Joining dataset
table and weight table on tableid/relationid and position can match the
weights with the corresponding training data records. The weight table also
has three indexes. One is on the unique identifier, one is an unclustered index
on tableid, and one is a clustered index on position. The reason for having
those indices is that most often tableid and position are the search conditions

defined in the where clause of SQL queries.

50



7.3 Basic Interaction between core and DB2

As it has been discussed in the previous chapters, the interaction between the ap-
plication program and DB2 is performed through JDBC, and there are a number of
implementation alternatives proposed by [36]. The alternative adopted by the core
of Weka3.4-DB is a loose coupling approach, which has been discussed in Chapter 5.
The basic idea is to access the data records in the database directly by executing SQL
queries, where the DB2 server is running in a different address space from Weka3.4-
DB. More precisely, through the JDBC API, a connection to the DB2 server is built
by core, SQL queries are constructed in core, sent to the database and executed,
and the resulting relation is returned through ResultSet objects. We have taken
this approach for two reasons. First, it is a simple approach with great flexibility.
Sccond, since we want to provide a generalized interface into which new data mining
algorithms can be plugged in by non-DB2 experts, this seems to be the most feasible

approach.

Here, we will outline the interaction between the core data structures and its meth-
ods, and the database system. As summarized in Chapter 7, the typical methods
of Instances in Weka3.4 are responsible for storing data, data access, data ma-
nipulation, and calculating statistics of data. Both the ImmutableDataSet class
and the MutableDataSet class are DB2 data storage implementations. Since the
ImmutableDataSet objects share the same copy of the training data, it makes the
underlying implementation of the ImmutableDataSet class simpler than the one of
the MutableDataSet class. Because most of the algorithms in Weka3.4 only access
data records without modifying them and the training data will not be changed by
any object created during the computation, the ImmutableDataSet class becomes
more suitable for most algorithins. In the following, we give an overview of how stor-
age, data access, and data manipulation are implemented in the ImmutableDataSet
of Weka3.4-DB.



7.3.1 Storing Data

When an algorithm needs to load training data from an input file into main memory,
our core implementation creates some main memory information and stores the train-
ing data from the file into the database. First, a main memory ImmutableDataSet
object is created to store all the attribute type information. The ImmutableDataSet
object contains a vector of the size of the training dataset. However, in contrast to
Weka3.4, this vector does not contain entire data records. Instead the vector entries
are all integers representing the positions of the data records. We refer to this vector
as an index vector. The data records themselves are stored in the dataset table
using the generated relationid and the appropriate positions. Also weight records
with the newly generated tableid and positions are added to the weight table. All

database operations are performed using a special load interface.

The index vector is the only memory-based data structure used in the ImmutableDataSet
class that could grow linearly with the size of the training dataset. The reason for
having this index vector is that, in general, ImmutableDataSet objects created in the
algorithms can reorder the data records during the computation, for instance by sort
and re-sample. Having the index vector in memory can make such operations less
expensive, since only the positions of data records in the index vector are adjusted
and there is no need to reorder the underlying data records in the database physically.
And most importantly, it is an efficient way to keep each ImmutableDataSet object
having its own copy of the training data in order to guarantee the correciness ol the
algorithms. Therefore, the index vector represents the training data in the correct
order for a specific ImmutableDataSet object. Most often, any ImmutableDataSet
object created afterward either shares the same copy of training data with the orig-
inal object or has its own copy. In the first case, it shares the same index vector,
relationid and tableid (share all data records and weights). In the latter, it creates
its own index vector, calls the add method to add positions of the corresponding data
records into the index vector, and inserts the corresponding weights and positions

into the weight table with a new tableid. But it still shares the same relationid

b
[\



to refer to the training data, since the training data itself never changes. The new
copy of the training data is represented by the new index vector, indicating which

data records in which order are associated with the ImmutableInstance object.

7.3.2 Basic Data Access

When an algorithm needs to access all the training data, it can either call enumerateInstance ()
to get an enumeration of ImmutableInstance objects or call instance(int index)
in a loop to iterate over all ImmutableInstance objects. The way of accessing data
records from DB2 using the data access methods of ImmutableDataSet is to retrieve
the position from the index vector and access the corresponding data records in the
dataset table or weight table by specifying the relationid/tableid and the po-
sition. The following example shows the basic idea of how instance(int index) is

implemented in ImmutableDataSet class.

public final Instance instance(int index)
throws SQLException{
//get position from the index vector
int position = (Integer)(m_Positions.elementAt(index)).intValue();
//process the weight and attribute names to the Column array
Column cols = new Column[numAttributes()+1];
cols[0] = WEIGHT;
System.arraycopy (processAtt (m_Attributes),0,cols,1,numAttributes());

String colnames = makeColumnNameSequence(cols);

i

String query "SELECT "+colnames+" from weight, dataset"

+ " WHERE tableid = "+tid+ " AND relationid = '"+rid
+ " AND dataset.position = '+position
+ " AND weight.position = '+position,

ResultSet rs = null;

double[] values = new double[numAttributes];

double weight;



rs = stmt.executeQuery(query);
while(rs.next ()){
weight = rs.getDouble(0);
for(int i=0, n=numAttributes(); i<m; i++){
rs.getDouble (i+1);
if (lrs.wasNull()){

values[i] = rs.getDouble(i+l);
telse{
values[i] = Double.Nan;

I

rs.close();

ImmutableInstance instance = new Instance(weight, position, values);
instance.setDataSet(this) ;

return instance;

In this example, only one data record is in the resulting relation, since the position

value can uniquely identify the data record in one copy of the training dataset.

The enumerateInstance () method first generates an enumerate object. This allows
us, in principle, to execute the SQL statement just one time, when this object is

generated. A possible statement is:

SELECT *

FROM dataset OUTER JOIN weight

ON weight.position = dataset.position
WHERE weight.tid = DS

ORDER BY position



which retrieves all records in the order in which they were entered into the database.
Since the records are physically ordered this way, thisshould be a fast scan through the
dataset and weight tables. However, since the records have to be obtained through
the enumerate interface, they have to be returned according to the positions stored
in the position vector (which might be arbitrary). Hence, we must use a scrollable
JDBC ResultSet with which we can jump arbitrarily to any position. When the
next entry of the vector indicates a position p, we can call ResultSet.absolute(p)
to retrieve the correct record (in order to retrieve the correct position with absolute
we have to use an outer join. This guarantees that even if not all records are present
in the position vector and the weight table, they will nevertheless be selected. Hence
absolute(p) guarantees to provide the data record with position p.). Alternatively,
we can use for enumeratelInstance() the same mechanism as for instance(index),
submitting one SQL statement for each record to be retrieved. Only the second

alternative is implemented in the ImmutableDataSet class.

It is not immediately clear which of the two alternatives is faster: submitting one SQL
statement for each record to be accessed or having a single SQL that retrieves all tuples
which are then accessed in an arbitrary way through ResultSet primitives. So far,
we tested the case in which the order in the position vector is the same as the order
in which the records are stored in the ResultSet. In this case, one SQL statement
for the entire data set outperforms by far individual SQL statements for each record.
We are currently performing tests for the following two cases. (i) The position vector
performed some sorting and hence does not follow anymore the position order in the
database. In this case, arbitrary access of records in the ResultSet might be very
slow. (ii) The size of the position vector of the specific ImmutableDataset object is
much smaller than the size of the entire data set. This can occur, ¢.g., in decision trees,
where in later iterations of the decision tree construction only subsets of the entire
data set are analyzed. In this case, the number of retrieved records might actually
be small, and hence the execution of the few SQL statements could be faster. The

further investigation is underway.

Ut
ot



7.3.3 Basic Data Manipulation

An algorithm can manipulate data through methods such as add(Instance instance)
and delete(int index). Since the training data has been stored in the database by
the load () method and all the ImmutableDataSet objects share the same copy, the
add(Instance instance) methods adds references to data records by adding the
corresponding position values to the index vector and inserting the weight records
into the weight table. No data record is added into the dataset table. Simi-
lar to the add(Instance instance) method, delete(int index) method deletes
the data records by removing the corresponding position values from the index vec-
tor and deleting the weight records from the weight table. No data record in the
dataset table is deleted. Updating any change on the index vector and the weight
table can guarantee the index vector represents the data records associated with
the ImmutableDataSet object in the correct order and the weight table contains
all the data records associated with the ImmutableDataSet instance. When the
ImmutableDataSet object calls its own methods, executing those methods can only
affect its own copy of the training data, more precisely, the index vector and the
weight table. Note that the data records in the weight table may not be ordered as
in the index vectors. However, this does not play any role since either they can be

ordered upon retrieving them from DB2 or the order is not important.

7.4 Moving Functionalities into DB2

Whenever the training data is accessed, it must be loaded record by record into
main memory. This removes any memory constraint but increases response time
tremendously. Hence, avoiding to load data records to memory whenever possible is
highly desirable. One way to address this is to push some functionalities into DI32.
This leads to a tighter integration with the underlying database. which improves

performance.

Depending on how tightly a strategy couples Weka3.4-DB to the relational DBMS,



different strategies result in different efficiencies of the implementation of Weka3.4-

DB. We first look at some basic methods of the Instances interface.
Strategy I

This is the strategy described so far. The training data is loaded one record at a tine.
All the attributes of one data record are retrieved from DB2 and the data record is rep-
resented as an ImmutableInstance object. The idea is to store the data record as an
ImmutableInstance object in main memory to complete the current step of the com-
putation, then let the Java garbage collector collect the unused ImmutableInstance
object, and continue to load the next data record into main memory for the next step
of the computation. Since only a few ImmutableInstance objects remain in the main
memory at any time (the garbage collector collects the unused objects periodically),
strategy I can provide high scalability. But the computation may be slow, since it

has to retrieve the data records one by one.
Strategy 11

Strategy IT employs the same approach as strategy I, but only retrieves the attribute
values that are involved in the computation. This saves space and leads to less com-
munication overhead between Weka3.4-DB and the database. Using this approach,
however, the developer of the data mining algorithms has to indicate which attributes
are needed. Hence, this strategy requires an extension of the current Instances in-

terface, which is not done in the current core implementation.
Strategy [II

Strategy III provides the best optimization. It employs the same approach as the
semitight coupling proposed by Hand and and Kamber [18]. The idea is to use some
standard functions within the database system, and to provide an interface to the
data mining algorithms to call them. Compared to the other strategies, this provides
the maximum scalability and efficiency for Weka3.4-DB, and should be applied as

much as possible.

Most often, the methods that calculate some statistics of the training data can be

57



optimized by applying this strategy. The typical easy example is sum. When the main
memory implementation needs to sum weights of the training data, it iterates over
the whole vector of Instance objects in the Instances class. If we used the same
implementation for ImmutableDataSet class, we would have to retrieve each data
record from DB2, load it in memory to retrieve the weight for summation. Instead,
we achieve the sum computation by applying the aggregate function sum of SQL on

DB2. For instance, the sumOfWeights method in ImmutableDataSet class is:

public final double sumOfWeights()
throws SQLException{
String query = "SELECT sum(weight) FROM weight where tableid = "+tid;

ResultSet rs null;

rs = stmt.executeQuery(query);

double sum=0;

while(rs.next()){
sum=rs.getDouble(1);

}

rs.close();

return sum;

A more complicated method is meanOrMode (Attribute att). Similar to the sum,
instead of loading the data records from DB2, we achieve the meanOrMode (Attribute
att) method by using the following SQL statement to calculate the mean of a numeric

attribute.

public final double meanOrMode(Attribute att)
throws SQLException{
if (att.isNumeric()){
double result = O;
String query = "SELECT sum ( weight * "+att.name()



+") FROM weight, dataset"
+'" WHERE tableid = "+tid
+" AND relationid = "+rid
+'" AND weight.position = dataset.position"
+" AND "+att.name()+" IS NOT NULL"
ResultSet rs = null;
rs = stmt.executeQuery(query) ;
while(rs.next ()){
result = rs.getDouble(1);

Another typical function is sort. Whenever the method nceds to order the training
data based on some attribute value, instead of applying any main memory sorting
algorithm, which requires to retrieve records possibly multiple times from DB2, we
implement sort by using a SQL statement, selecting the position and using the order
by clause on DB2. For instance, the sort method in ImmutableDataSet class is shown

in the following.

public final void sort(Attribute att)
throws SQLException{
String query = "SELECT weight.position FROM weight INNER JOIN "
+"dataset ON weight.position = dataset.position "
+"WHERE tableid = "+tid

+'" AND relationid = "+rid
+' ORDER BY "+att.name();
ResultSet rs = null;



rs = stmt.executeQuery(query);

FastVector result = new FastVector;
while(rs.next ()){
result.addElement (new Integer((Int)rs.getDouble(1)));
}
m_Positions = result;

rs.close();

Note that only the weight table represents the data records associated with one par-
ticular ImmutableInstance object, so it needs to join the weight table with the

dataset table in order to get the correct order.

These optimizations, compared to strategy II, do not need a change on the core
interface, as long as they implement the methods of the Instances interface. We

have implemented them in the ImmutableDataSet class.

7.5 Optimizations outside the core

So far, we have only described how we have re-implemented the core. The imple-
mentation is transparent to the existing algorithms. All data mining algorithms and
filters, as described in Figure 6.2 build on top of core. Hence, they can now take
advantage of the new implementation that is unrestricted in size. However, theses
algorithms themselves can be implemented in a smarter way if they are awarc of
memory limitations. We will discuss our optimization of the filter algorithms and the

logistic regression algorithm.

60



7.5.1 Data Preprocessing: Filters

The general idea of data preprocessing has been discussed in Chapter 3. In Weka3. 4,
the data preprocessing classes, called filters, are implemented in the filters interface,
which is independent from the core interface. Those filters can be used independently
to preprocess the training data before running the algorithms or can be invoked inside

the algorithms. We have looked at three filters in particular.

1. ReplaceMissing Values: replace all missing values of nominal and numeric at-

tributes with the modes and means of the training data.

2. NomuinalToBinary: convert all nominal attributes into binary numeric attributes,
such that an attribute with & values is transformed into & binary attributes, and

binary attributes are left binary.

3. RemoveUseless: remove attributes that do not vary at all or that vary too much,
which applies to two kinds of attributes: constant attributes that do not vary at

all; attributes that exceed the maximum percentage of the variance parameter.

In Weka3.4, filters are implemented to filter the training data records one by one. A
filter stores all the filtered training data in a queue. Applying the same implementa-
tion in Weka3.4-DB would load all the training data into main memory and write the
new values back to DB2. This adds considerable overhead to the algorithm. And,
more importantly, it introduces a main memory constraint by using the queue data
structure. In order to make the data processing step feasible and efficient for large
datasets, extra methods are created to allow those filters to be run without loading
any data records into main memory. In other words, the strategy III for database-
oriented implementation is employed to move the functionalities of those filters into
the database. The basic ideas of how those filters are implemented are described in

the following:

o ReplaceMissing ValuesFilter: precompute modes of nominal attributes and means

61



of numeric attributes with SQL aggregate functions and use update SQL state-

ments to replace missing values with modes and means.

o NominalToBinaryFilter: adding attributes means changing the table schema
by adding columns. Therefore, the heuristic is that if the number of new
columns does not exceed the threshold, new columns are added to the dataset
table and the corresponding values for new columns arc updated; otherwise,
the filtereddataset is created with unchanged columns and new columns,
unchanged values are copied from dataset to filtereddataset, and the cor-
responding values for new columns are inserted. The heuristic helps minimize
the cost of the operation, since creating a table is a very expensive operation in

the database, and adding many columns to a table also costs a lot.

e RemoveUseless: removing attributes can be done on the attribute information
stored in the ImmutableDataSet class without touching the database, since
the SQL statements used to load data records from DB2 look at the attribute
information in the ImmutableDataSet class to determine which attribute to
retrieve. The criterion used to determine which attributes are useless is the
number of attribute values. For nominal attributes, the number of values is
calculated using the attribute information stored in main memory. For numeric
attributes, the number of values is calculated by counting the distinct values
in the database. For those that either have a single attribute value or too
many attribute values that exceeds the threshold, they will be removed from

the attribute information stored in main memory.
As a result, none of the filters requires to read data records into main memory,
improving scalability and efficiency.
7.5.2 Logistic Regression

The general idea of logistic regression has been discussed in Chapter 3. The logistic

regression algorithm implemented in Weka3.4 is a penalized logistic regression with

62



a default ridge parameter 1.0F — 8. It is based on the paper of le Cassie and van
Houwelingen [8], but without estimating the ridge parameter. The ridge parameter
can be specified as user input. If no user input is given, the default value is taken
for the computation. Since there is no need to apply any method to choose the
ridge parameter, the only step left is to compute the coefficients for the attributes.
Therefore, the logistic regression algorithm simply goes through the training data and
builds the logistic regression model by calculating the coefficient for each attribute at

each step.

Suppose there are k& classes for n data records with m attributes and the coefficient
matrix B is an m* (k — 1) matrix. The log-likelihood function applied in the logistic

regression algorithm is:

L==3% 3 @gxnPX))+0-( > Yy)xn(l- > IiX)

i=l.nj=1..(k—1) j=1.(k—1) j=1.(k=1)

+ridge * (B?)

where the probability of class j except the last class is
Pj(X;) = exp(XiBy) [((Zpjor o1y €2p(Xi * By)) + 1)
and the last class has probability

L= (Zpj=1.ge-1) Di(X) = 1/ ((Z21. -1y ezp(Xi = Bj)) + 1)

The goal of the algorithm is to find the matrix B for which L is minimized. A
Quasi-Newton method is used to search for the optimized values of the m  (k — 1)
variables. Before the optimization procedure is used, the matrix B is squeezed into
amx (k—1) vector. Once the matrix B is computed, the probability of any data
record that belongs to a certain class can be computed by the probability functions
as above. Although the original logistic regression does not deal with weights for the

attributes, the implementation is adjusted to handle the weights.

63



The basic steps of logistic regression implemented in Weka3.4 are shown in the fol-

lowing:

Logistic (training dataset, testing dataset)

Store training dataset into main memory as an Instances object
filter the training dataset using ReplaceMissingValues

filter the training dataset using RemoveUseless

filter the training dataset using NominalToBinary

Normalize the training dateset and store the
normalized training data in a 2-dimensional array
Compute the coefficients by minimizing the

log-likelihood function based on the 2-dimensional array

Evaluate the logistic regression model on the filtered
training dataset
Evaluate the logistic regression model on the filtered

testing dataset incrementally

The filters that are invoked inside the algorithm have been re-implemented as dis-
cussed in the previous section, and hence do not impose any scalability restriction

any more.

However, the logistic regression algorithm creates a 2-dimensional main memory struc-
ture that is, in fact, as large as the cntire dataset. Even though logistic regression can
achieve good scalability using the optimized filters, it is limited by the 2-dimensional
array constraint. This shows that developers must be aware of space limitations.
However, we can help them in developing scalable implementations by providing ad-
equate support. In the above example, normalizing data and the computation of the
normalized data seem to be a standard approach usable in various algorithms. There-
fore, we offer an extra interface that allows normalizing data within the database. It

is implemented using DB2. That is, the normalization uses SQL queries and the

64



result is stored in DB2. The developer can use it without knowing that a database

implementation is used.

The two alternatives lead to two variations of the implementation of computing the

logistic regression model. They differ in how they are implemented in the algorithm.

e variation 1: load the training data fromn DB2 with strategy I, normalize the
training data and store the normalized training data in the 2-dimensional array

existing algorithm).
g aig

e variation 2: create extra normalization methods in the ImmutableDataSet class,
strategy III calls these methods from the logistic regression algorithm: load the

normalized training data from DB2 with strategy I.

7.6 Strategies for Performance Optimized JDBC Ap-

plication

There exist several ways to generally speed up JDBC applications. Some of these
strategies have been applied in the DB2Manager and DB2Helper classes, and are de-

scribed in the following.

e Connection: Connection management is important for application performance.
Creating a connection to a database server is expensive and it is even more
expensive if the server is a remote server. A simple and ecasy strategy is to
open one connection and share it in a serial fashion among multiple statement
objects. Hence, in the core implementation of Weka3.4-DB, the connection
is opened by a DB2Manager object, which is a static field in DBDataSet. All
the objects of either ImmutableDataSet or MutableDataSet share the same
DB2Manager object, and hence share the same connection. Since this strategy

only works with the single-user mode, this DB2 storage implementation only



supports single-user mode. If multiple-user mode is requested, the DB2Manager

object should maintain a connection pool.

Transaction Atomicity: In general, a transaction represents one logical unit of
work or piece of code that either executes entirely and commits, or it does not
execute at all, aborting all the work done so far. Initializing a transaction and
terminating it (commit or abort) can be quite time consuming. Using JDBC
default, each SQL statement executes as a single transaction using autocommit
on. In autocommit off, the program decides which statements belong to a
transaction by setting explicit commit statements when a transaction should
terminate. Using autocommit on gives poor performance when multiple state-
ments are to be executed one after another, because commit is issued after each
statement by default. This reduces performance by issuing unnecessary com-
mits. Therefore, in our core implementation, the autocomimit is set to false

and the commit () method is called explicitly after a set of related statements.

Transaction Isolation Level: The isolation level represents how a database
maintains data integrity against problems like dirty reads, phantom reads and
non-repeatable reads that can occur due to concurrent transactions. Differ-
ent isolation levels have different impacts on the performance. A stricter iso-
lation level has worse performance in terms of execution time. This is true
because the database uses locks to prevent different transactious to access the
same data records. The stricter the isolation level, the more locks must be re-
quested, hence the more overhead occurs due to locking. The default setting is
read_committed, which means a transaction can only read the data from the
database when the data has been committed by other transactions. Any isola-
tion level that is lower than the default is likely to be faster, and the opposite
will probably be slower. In our core implementation, the isolation level can be
lowered to read.uncommitted level, since there are no concurrent transactions
and execution is sequential. Hence, there is never uncommitted data. That is,
although we set the isolation level to uncommitted, leading to extremely low

locking overhead, we achieve the same effect as read_committed.

66



e Statement: There are three types of statement interfaces in JDBC to repre-
sent a SQL query and execute that query: Statement, PreparedStatement
and CallableStatement. Statement is used for static SQL statements with no
input and output parameters. PreparedStatement is used for dynamic SQL
statements with input parameters and CallableStatement is used for dynamic
SQL statements with both input and output parameters. PreparedStatement
gives usually better performance compared to Statement because it is pre-
parsed and pre-compiled by the database once for the first time and then
it reuses the parsed and compiled statement afterward. Because of this fea-
ture, it can significantly improve the performance when a statement executes
repeatedly, since it reduces the overload incurred by parsing and compiling.
PreparedStatement has becn applied in our core implementation. For in-
stance, the insert query used for inserting the data records from the train-
ing dataset is executed as many times as the size of the training dataset. A
PreparedStatement created for such a query helps save the overhead of pars-
ing the same statement multiple times. Hence, in the core implementation,
a PreparedStatement object with the batch update feature is created for in-
serting the data records into the database. The attribute values of each data
record are added to the batch of the PreparedStatement object. Whenever the
attribute values of a predefined number of data records have been added into
the batch, the PreparedStatement is executed and all the attribute values are

inserted into the database.

There exist further possibilities to use the PreparedStatement. For instance,
a function that offers to select certain attributes of all data records can be imple-
mented with the PreparedStatement in the following way. A PreparedStatement
object used for retrieving the attributes of data records from the database is
created before the loop. During the loop the PreparedStatement object is ex-
ecuted repeatedly to retrieve the attribute value of each data record step by

step.

67



Chapter 8

Performance Evaluation

8.1 Experiment Design

8.1.1 Goal and Setup

The major goal of the experiment section is to show that applying a DB2 storage im-
plementation can improve the scalability of existing algorithms significantly without
modifying the results of the algorithms. We use logistic regression as a demonstration.
Furthermore, we compare the performance of different versions of logistic regression

to show the effectiveness of different strategies for improving the scalability.

The experiments are conducted on a Linux machine with dual CPUs at CISTI, NRC.
The kernel version of the Linux machine is 2.4.18-26.8.0, the CPU model is Intel
(R) XEON (TM) MP CPU 1.50GHz, the CPU frequency is 1492.183 and the total
memory is 3098684 KB. DB2 8.1.0 server, set up by Greg Kresko from CISTI, is
running on the same machine with a fixed configuration. Appendix A shows how the

DB2 server is configured.

68



8.1.2 Datasets

ARFF

The input dataset files are required to handle ARFF (Attribute-Relation Format
File) format [41]. An ARFF cousists of a header section and a data section. The
header section contains a relation name declared by token @relation and attribute
information declared by token @attribute. The attribute types supported by Wekad.4-
DB are numeric and nominal. The numeric attributes can be defined as real or integer
numbers and the nominal attributes have a list of possible nominal values. The data
section contains all the data declared by token @data. Each data record resides on
one line of the file. Attribute values of each data record are separated by comma

and missing values are represented by question marks. Appendix B shows a sample
ARFF.

Synthetic Datasets

The first experiment is based on synthetic datasets, which are generated by a data
generator for classification tasks. The data generator is originally from IBM Almaden
Research Center [1]. We slightly modified it to generate ARFF format dataset files.
The data generator only generates numeric type attributes and nominal type class
attributes. The numeric values are randomly generated integer values. The nominal
class values are binary numbers with user-defined percentages. In the experiment,
ten training datasets between 10,000 to 100,000 data records and one testing dataset
with 5000 data records are used. Each dataset has 50 attributes and 1 class altribute
without missing values.

Real Datasets

The second experiment is based on real datasets, which are derived from one AVIRIS
(Airborne Visible/Infrared Imaging Spectrometer) dataset. It is originally from JPL
(Jet Propulsion Laboratory, California Institute Technology) and extensively cor-

rected by CCRS (Canadian Center for Remote Sensing, Natural Resources Canada).
The AVIRIS data is hyperspectral data that was captured by NASA/JPL AVIRIS

69



sensor over Cuprite, Nevada on June 12, 1996 (19:31UT). Paul Budkewitsch from
CCRS released the AVIRIS dataset with 300,0000 data records and 170 attributes.

For more background information about the dataset, please refer to [34].

In the experiment, four different AVIRIS datasets are generated by randomly sampling
the original AVIRIS. This sampling was done by Glen Newton from CISTI (Canada
Institute for Science and Technical Information) of NRC (National Research Council
of Canada). Each attribute value represents a reflectance at an interval of 0.12nm
wavelength in the range of 0.428 to 2.5 without 1.4 and 1.9nm. The class attribute
value represents if a certain mineral is present or not. There are three target minerals
associated with the original AVIRIS dataset, which are alunite (AL), kaolinite (KA
and buddingtonite (BU). In our experiment, we will look at kaolinite. The class
labels of the generated four training datasets show if kaolinite (KA) is present or not
with a threshold of 25%. In the experiment, four training datasets contain 12669,
19712, 350565 and 78592 data records respectively, and one testing dataset has 3224
data records. Each dataset has 168 numeric attributes and 1 nominal class attribute

without missing values.

8.1.3 Logistic Regression

Weka3.4-DB runs under the original main memory core implementation and our
DB2-based core implementation on the same machine as the DB2 server resides on,
which is lightly loaded. In order to easily refer to different implementations, we call
the first one the memory storage implementation and the second one the DI32 storage

implementation. The two implementation are started with the following conunands.

java -Xms64M -Xmx64M -Dds=mm weka.classifiers.functions.Logistic
-t data/syntheticl0Ok.arff -T data/synthetic.arff
java -Xms64M -Xmx64M -Dds=dbi weka.classifiers.functions.Logistic

-t data/synthetic10k.arff -T data/synthetic.arff

70



In order to make a reasonable comparison between the two implementations without
having an extremely long running time, the memory size that can be used by both
implementations is constrained to 64MB. The -Dds option is used to set up the
storage implementation: mm means memory storage implementation and dbi means
DB2 storage implementation with ImmutableDataSet (since logistic regression will
not change any attribute values after the filter operations). The -t option is used to
set up the training dataset and the -7 option is used to set up the testing dataset.

All experiments use the default values for the options for logistic regression.

Besides the implementation of logistic regression based on the memory storage, logis-
tic regression based on the DB2 storage has been implemented with three different
versions for the empirical study. Each version has adopted different strategies dis-

cussed in the last chapter to achieve a database-oriented implementation.

e version 1:

1. no modification on the implementation of logistic regression, i.e. only use
the basic interface of core to access and manipulate data, (variation 1 of

logistic regression described in Section 7.5.2)

2. filters are not optimized and ounly use the basic core.
e version 2:

1. no modification on the implementation of logistic regression, (variation 1

of logistic regression)

2. use the modified filters
e version 3:

1. use the enhanced interface, and adjust logistic regression (variation 2 of

logistic regression described in Section 7.5.2),

2. apply the filters



Version 1 is a naive approach. It only uses the basic interface of core and does not
optimize the algorithm itself to improve scalability and efficiency. In contrast to the

other two versions, version 1 is supposed to be the worst.

Version 2 and version 3 move some of the computation of the algorithm into the
database, which makes them more efficient. Although, version 2 has a memory con-
straint, its use of an array makes the data access faster than loading data records

from the database.

Since version 3 removes all the memory constraints, it can achieve the highest scala-
bility among all the versions. However, the performance of version 3 may suffer from

the overhead caused by loading the data records into main memory.

The different versions of logistic regression in Weka3.4-DB are maintained by the CVS
repository and will run under DB2 storage implementation with the same command.
In the experiment, we call the implementation of logistic regression based on the
memory storage as main memory version of logistic regression, and the implemen-
tations of three versions of logistic regression based on DB2 storage as version 1 of

logistic regression, version 2 of logistic regression and version 3 of logistic regression.

8.2 Experimental Results

8.2.1 Experimental Results for Synthetic Datasets

Results for version 1 were very bad, with long execution times even for small datasets.
Hence, we do not discuss it further. The experimental results of version 1 arc not
shown in the following figures.

The results for synthetic datasets of running the main memory version of logistic

regression and version 2 of logistic regression are shown in Figure 8.1.

Both implementations produce the same classification results on all the datasets. The

figure shows that the main memory version of logistic regression runs out of memory

72



1600 ——— -
1400 t |
ke
[en
§ 1200 | §
2
3 1000 | .
£
5 800 f )
5
Ko}
o 600 r .
T
= 400 +- .
[
£ 200 | .
I.._

oél 2 4 4

20 40 60 80 100 120
Number of instances (k)

Figure 8.1: Synthetic Datasets: Main Memory vs V2

on the training dataset with 50,000 data records, and the version 2 can run with the

training datasets up to 100,000 data records.

Version 2 can handle a bit more than twice the number of data records as the main
memory version. It can’t increase any further since the 2-dimensional main memory
data structure of logistic regression hinders further scalability. The execution time of
version 2 grows linearly with the size of the training dataset. It also increases linearly
in the main memory version but with a small coefficient, which is nearly negligible.
The reason is that version 2 retrieves each data record individually from the database
while the main memory version loads all the data records in main memory and hence
has very fast access.

However, version 2 runs out of memory for a dataset with 110,000 data records. The

73



Time taken to build model (second)

experimental results of running version 3 of logistic regression are shown in Figures
8.2 and 8.3 Version 3 is running slower than version 2, because version 2 uses the
2-dimensional array to store the normalized training data, while version 3 has to
load the normalized training data from DB2. However, scalability is much improved.
We ran the experiment up to a training dataset with 600,000 data records with
version 3 without memory problems. The response time increased with the size of
the training dataset for the entire experiment. Version 3 runs out of memory on

the training dataset with 700,000 data records, because the index vector becomes a

20000

T

15000

10000

5000

T
kN

i

O b ' ! i 1 L | L
10 20 30 40 50 60 70 80

Number of instances (k)

Figure 8.2: Synthetic Datasets: V2 vs V3

90

100

memory constraint, since it grows linearly with the size of the training dataset.

74



250000 ——
2
o ZOOOOO | —
(D w
i/)/ ;
E ;
E /
ge: 100000 r / _
0] )‘A
.é ./,/.,,,,.,,.v é}}g)t
@ 50000 - —
£ )
- g‘/

O (d 1 1 1 I | | | I |

100 200 300 400 500 600 700 800 900 1000
Number of instances (k)

Figure 8.3: Syuthetic Datascts: V2 vs V3
8.2.2 Experimental Results for Real Datasets

The experimental results of running the main memory version of logistic regression

and version 2 of logistic regression for the AVIRIS datasets are shown in Figure 8.4.

Both implementations produce the same classification results on all the datasets. The
figure shows that the main memory version of logistic regression runs out of memory
on the training dataset with 19712 data records, and version 2 of logistic regression
runs out of memory on the training dataset with 78592 data records. Since the
dataset has more attributes than the synthetic dataset, more memory is needed to
store each dataset. It shows that the scalability of version 2 of logistic regression does
suffer from the memory constraint caused by the 2-dimensional array. However it

can handle 4 times as many data records than the main memory version. Response

~I
(@2



1800 ' P S SV = e T
oo | ain Memory Version of Logist |
1400 t i
1200 1
1000 i
800 | 1
600 | 1
400 t -

200 - A

Time taken to build model (second)

1 1 I | L | 1 1

10 20 30 40 50 60 70 80 90 100
Number of instances (k)

Figure 8.4: AVIRIS Datasets with 169 attributes: Main Memory vs V2

times are higher for both versions compared to the synthetic dataset due to the higher

number of attributes, which requires more computation.

The experimental results of running version 3 of logistic regression are shown in Figure
8.5. Version 3 of logistic regression can scale up to larger datasets than version 2 as
expected, because version 3 has removed almost all the memory constraints from its
implementation. Note that the experiment stops only because we did not have access

to datasets with a larger number of data records.

76



Time taken to build model (second)

8.2.3

Even though there is lack of clear experimental results for version 1 of logistic re-
gression, our preliminary tests show that a simplistic DB2 storage implementation is
not enough and has even less scalability than the original main memory implemen-
tation. In version 2, filters have been re-implemented by moving functionality into
the database.
3, where extra interfaces have been introduced to provide methods that can get rid
of the 2-dimensional array. Therefore, introducing extra interfaces that are imple-
mented within the database does improve the scalability of the algorithm. If more
functionality is implemented within the database, more scalability can be achieved.

The results show clearly that version 3 can achieve higher scalability than version -

120000 . . T L F U f et D e e el

100000

80000

60000

40000

T

20000

T

10 20 30 40 50 60 70 80 90
Number of instances (k)

Figure 8.5: AVIRIS Datasets with 169 attributes: V2 vs V3

Analysis

7

100

A similar approach is applied when improving version 2 to version



because the normalization function is implemented within the database and there is
no need to apply it on the training data in main memory; therefore the 2-dimensional
array holding the normalized training data is removed. Since the strategy that is
used to improve scalability is similar to the semitight coupling proposed by Han [18],
the performance results further prove that a tighter coupling approach can achieve

better scalability.

Since improving the scalability is the major goal of this study, the efficiency is not an
important concern when running the logistic regression on DB2 storage implemen-
tation. It is obvious that the logistic regression on memory storage implementation
always has the best execution time. But, even though version 3 of logistic regression
on DB2 storage implementation is slower than all the other implementations, it still

has a reasonable response time with respect to the size of the training dataset.

There are a couple of special factors in this experiment that may affect the execution

time of all the implementations when the experiment setting is different.

e datasets: training datasets do not have missing values and nominal attributes,
therefore, the effect of filters dose not count much into the execution time.

Execution time will increase when filters really do some serious work.

e network: Weka3.4-DB is running on the same machine as the DB2 server.
Therefore, the effect of network traffic does not count into the execution time.
Execution time will increase when Weka3.4-DB is running on a different ma-

chine.

78



Chapter 9

Conclusion

In this thesis, we extended Weka3.4 successfully to handle large datasets that can’t
fit into main memory. Weka3.4-DB is implemented to store the data into and access
the data from DB2 with a loose coupling approach in general. Additionally, a semit-
ight coupling is applied to optimize the data manipulation methods by implementing
core functionalities within the database. Based on the DB2 storage implementation,
Weka3.4-DB achieves higher scalability, but still provides a general interface for devel-

opers to implement new algorithms without the need of database or SQL knowledge.

The experiment on logistic regression demonstrates that Weka3.4 can be extended
to handle large datasets that do not fit into memory with a reasonable execution
time. This proves that using relational database systems is a strategic and practical

solution for solving the problem of handling large datasets in data mining tasks.

However, there are still a number of issues that need to be addressed in future work
before achieving the final goal, that is, to claim that Weka3.4-DB is a memory-

constraint free package that can handle arbitrary large datasets.

e The index vector can become a constraint when the size of the training dataset is
extremely large. The optimal solution would be to resolve the problem without

using memory data structures but still achieve similar performance.

79



e For more complicated algorithms, such as decision trees (which split the training
dataset recursively), further specialized interfaces have to be provided to achieve

good performance.

e Other implementation alternatives could be applied in order to find the best
strategy to optimize the performance. For instance, a local disk can be used to

cache frequently used data rccords.

e [urthermore, the interaction between Weka3d.4-DB and the database can be
adjusted, starting from further JDBC related optimizations to using the stored

procedures technology of the database.

80



Appendix A

DB2 Server Configuration

The DB2 server is tuned with following parameters:

<

. Application heap size (applheapsz) that defines the number of private memory

pages available to be used by the database manager on behalf of a specific agent
or subagent: 10,000 pages (4KB)

Query heap size (query_heap_sz) that defines the maximum amount of memory

that can be allocated for the query heap: 10,000 pages (4KB)
Application support layer heap size (aslheapsz) that defines the maximum amount
of memory that can be allocated for the communication buffer between the local

application and its associated agent: 1000 (4KB)

. Transaction log file size (logfilsiz) that defines the size of each primary and

secondary log file: 50,000(4KB)

Number of transaction files primary (logprimary) that defines the number of

primary log files that can be used for recovery: 100

Number of transaction files secondary (logsecond) that defines the number of

secondary log files that can be used for recovery: 100

81



Appendix B
ARFF Example From Weka3.4

@relation weather

Qattribute outlook {sunny, overcast, rainy}
@attribute temperature real

©@attribute humidity real

@attribute windy {TRUE, FALSE}

Qattribute play {yes, no}

@data
sunny, 85,85 ,FALSE ,no
sunny,80,90,7,no0
overcast,?,86,FALSE, yes
rainy,70,96,FALSE,yes
rainy,68,80,7,yes
rainy,65,70,TRUE,no
overcast,?,65,TRUE, yes
sunny,72,95,FALSE ,no
7,69,70,FALSE, yes
rainy,75,80,FALSE,yes

82



sunny,?,70,TRUE,yes
overcast,72,90,TRUE, yes
overcast,81,7,FALSE, yes
rainy,?,91,TRUE,no

83



Bibliography

1

R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance
perspective. IEEE Transactions on Knowledge and Data Engieering, 5(6):914-
925, 1993.

R. Agrawal, T. Imielinski, and A. Swami.. Mining associations between sets of
items in massive databases. Proceedings of the ACM SIGMOD International
Conference on the Management of Data, pages 207-216, 1993.

C. G. Atkeson, S. Schaal, and A. W. Moore. Locally weighted learning. Artificial
Intelligence Review, 11(1-5):11-73, 1997.

D. H. Ballard. An Introduction to Natural Computation. MIT Press, 1997.
C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, 1995.

P. Bradley, U. M. Fayyad, and C. Reina. Scaling EM to large databases. Technical
report, Microsoft Research, MSR-TR-98-35, 1998.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth Statistical Press, 1984.

S. Le Cessie and J. C. Van Houweligen. Ridge estimators in logistic regression.
Applied Statistic, 41(1):191-201, 1992.

84



[9]

[12]

[13]

[14]

7]

P. Chen. The entity-relationship model — toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9-36, 1975.

E. Codd. A relational model for large shared data banks. Communications of
the ACM, 13(6):377-387, 1971.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2001.

C. Cortes and D. Pregibon. Giga-mining. Proceedings of the International Con-

ference on Machine Learning, pages 174-178, 1998.

P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Machine Learning, 29(2-3):103-130, 1997.

D. E. Duffy and T. J. Santner. On the small sample properties of norm-restricted
maximum likelihood estimators for logistic regression models. Communs Statist.
Theory Meth., 18:959-980, 19809.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. DBen-
jamin/Cummings, 1989.

J. Gehrke, V. Ganti, R. Ramakrishnan, and W-Y. Loh. BOAT-Optimistic deci-
sion tree construction. Proceedings of the ACM SIGMOD International Confer-
ence on the Management of Data, pages 169-180, 1999.

J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast
decision tree construction of large datasets. Proceedings of the International

Conference on Very Large Data Bases, pages 416-427, 1998.

J. Han and M. Kamber. Data Mining: concepts and techniques. Morgan Kauf-
mann Publishers, 2001.

T. Hastie. The Flements of Statistical Learning: data mining, inference, and

prediction. Springer, 2001.



20]

[21]
22]

23]

27]

28]

A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimates for

nonorthogonal problems. Technometrics, 12:55-67, 1970.
D. W. Hosmer and S. Lemeshow. Applied Logistic Regression. Wiley, 2000.
W. Inmon. Building the Data Warehouse. Wiley, 1996.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and Hall,
1989.

M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for
data mining. Proceedings of the International Conference on Ertending Database
Technology, pages 18-32, 1996.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

A. W. Moore and M. Lee. Cached sufficient statistics for efficient machine learn-
ing with large data sets. Journal of Artificial Intelligence Research, 8:67-91,
1998.

W. Du Mouchel, C. Volinsky, T. Johson, C. Cortes, and D. Pregibon. Squashing
flat files flatter. Proceedings of the ACM International Conference on Knowledge

Discovery and Data Mining, pages 6-15, 1999.

D. Pavlov, H. Mannila, and P. Smyth. Prediction with local patterns using
cross-entropy. Proceedings of the ACM International Conference on Knowledge

Discovery and Data Mining, pages 357-361, 1999.

F. Provost and V. Kolluri. A survey of methods for scaling up inductive algo-

rithms. Journal of Data Mining and Knowledge Discovery, 3(2):131-169, 1999.

D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers,
1999.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lisher, 1993.

86



[32]

[33]

[34]

38]

[39]

Agrawal R. and Shim. K. Developing tightly-coupled data mining applications
on a relational database system. Proceedings of the International Conference on

Knowledge Discovery in Databases and Data Mining, 1996.

R. Ramakrishnan and J. Gehrke. Database Management System. McGraw-Hill,
2003.

B. J. Ross, A. G. Gualtieri, F. Fueten, and P. Budkewitsch. Hyperspectral
image analysis using genetic programmming. The Genetic and Evolutionary
Computation Conference, pages 1196-1203, 2002.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1995.

S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: alternatives and implications. Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages
343-354, 1998.

R. L. Schaefer, L. D. Roi, and R. A. Wolfe. A ridge logistic estimate. Communs
Statist. Theory Meth., 13:99-113, 1984.

C. Scholkopf, J. C. Burges, and A. J. Smola. Advances in Kernel Methods. MIT
Press, 1999.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier {or
data mining. Proceedings of the International Conference on Very Large Data
Bases, pages 544-555, 1996.

A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill, 2002.

I. H Witten and E. FIrank. ARFE: attribute relation file format.

http://www.cs.waikato.ac.nz/ ml/weka/arfl.html.

87



[42] I. H. Witten and E. Frank Data mining software in Java.

http://www.cs.waikato.ac.nz/ml/weka/.

88



