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Abstract 

vVith the increasing demands of transforming raw data into information and knowl­

edge, data mining becomes an important field to the discovery of useful information 

and hidden patterns in huge datasets. Both machine learning and database research 

have made major contributions to the field of data mining. However, there is still 

little effort made to improve the scalability of algorithms applied in data mining 

tasks. Scalability is crucial for data mining algorithms, since they have to handle 

large datasets quite often. In this thesis we take a step in this direction by extend­

ing a popular machine learning software, Weka3.4, to handle large datasets that can 

not fit into main memory by relying on relation al database technology. Weka3.4-DB 

is implemented to store the data into and access the data from DB2 with a loose 

coupling approach in general. Additionally, a semi-tight coupling is applied to op­

timize the data manipulation methods by implementing core functionalities within 

the database. Based on the DB2 storage implementation, Weka3.4-DB achieves bet­

ter scalability, but still provides a general interface for developers to irnplement new 

algorithms without the need of database or SQL knowledge. 



Résumé 

La demande croissante de transformer des données brutes en une source de connais­

sances utiles, fait de l'exploration de données un outil indispensable à la découverte 

d'information substancielle, dissimulée à l'intérieur d'immenses ensembles de données. 

L'apprentissage automatique et la recherche en bases de données ont tous deux gran­

dement contribué à l'avancement de l'exploration de données. Toutefois, les effort 

déployés pour améliorer l'extensibilité des algorithmes appliqués en exploration de 

données restent limités. L'extensibilité de ces algorithmes est primordiale, puisque 

ceux-ci doivent souvent manipuler dénormes quantités de données. Dans cette thèse, 

nous faisons un pas dans cette direction en élargissant les fonctionnalités d'un logi­

ciel d'apprentissage automatique populaire, Weka3.4, afin qu'il puisse manipuler des 

ensembles de données plus grands que la mémoire principale, au moyen de la tech­

nologie qu'offre les bases de données relationnelles. vVeka3.4-DB est implémenté pour 

stocker et accéder les données via DB2 avec une approche en géénéral à couplage 

faible. De plus, un couplage semi-fort est appliqué pour optimiser les méthodes de 

manipulation de données en implémentant des fonctionnalités noyau à l'intérieur de 

la base de données. Basé sur l'implémentation de stockage de DB2, vVeka3.4-DB at­

teint un plus haut niveau d'extensibilité tout en fournissant une interface générale 

aux développeurs pour implémenter de nouveaux algorithmes, sans la nécessité de 

connaître les bases de données ou le SQL. 
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Cha~ter 1 

1 ntrod uction 

Data mining applies cornputational and statistical techuologies to discover use1'111 in­

formation and hidden patterns in large datasets. It has beell developecl by both the 

.Machine Learning and Database cOIllmunities since 1990. Each of theses COlIlIlllluities 

offers different approaches since they work from different perspectives. Machine 1eanl­

iug researchers In'ovide a solid theoretical fraIllework and develop machine learnillg 

algorithms that are suitab1e for major data rnining 1,asks. Database experts facili­

tate the data mining pro cess by providing sophisticated and advaneed data storage 

management technology. In Chapter 2, a short overview of data ruining is given, amI 

contributions of the machine learning and database communities are reviewed. 

Classification is an important probleru addressed in typical data ruiuiug 1,asks, sllell as 

analyzing scientific experiments, rnedical ciiagnosis, t'raud detectiou, credit approva1 

and target marketing. Many algorithms for classification have beeu developed iu the 

machine learning corumunity, including e.g. 10gistic regressioll, decisiou trees <tuct 

uaive Bayes. In Chapter 3, an overview of classification is presentecl, aud 1,ypieal 

algorithms are clescribed. In orcier to improve the effectivelless of the data lllining 

process, data preprocessing is llecessary. Chapter 3 a1so pro vides a brief disCllssiou of 

data preprocessing techniques that are typically applied iu classificatioll rnetllOds. 

NIost commercial database management systems (DBMS) are basee! ou the relatioual 
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model illtroduced in the 1970s. They provide efficient data storage, fast access struc­

tures and a wide variety of indexing rnethods to speed up data retrieval. SQL is the 

standard que1'y language th al, is sllpported by most relation al DI3l'vISs. II, IJl'ovides 

sophisticated que1'y functionality like nested queries and aggregate fUllctiollS. SQL 

cau be ernbedded in a host language. Bence, it is possible 1,0 access relational DBNIS 

-t1trough applicatioll pl OgI dms. In Chapter 4, r elcÜiollctl DBMS Ledmology dUel SQt 

are discussed in more detail. 

While scalability is an important issue for a11 algorithms, il, is especia11y cri tic al 1'01' 

machine learning algo1'ithrns that are applied to data mining problems, because hau­

(Uing huge amounts of data becornes inevitable for 1'eal data milling tasks. Some 

gelleral strategies have beell developed to deal with large datasets, snch as sampling 

and data squashing. A potential problem of these strategies is that they illtroduce 

iucredihle overhead and sometimes even decrease the accuracy of algorithms. Other 

approaches fOClts on makillg specific algorithms, especia11y decision trees, more scal­

able. The alternative that lias been adopted in this thesis is to explore coruruonly llsed 

and we11-developed relation al database systems as data storage and retrieval, whic11 

can he easily applied 1,0 aU algorithrns without sac1'ificing the accuracy. In Chapter 

5, existing approaches to handle the scalability issue in data mining are discussed. 

\'Veka3.4 is an open source machine learning software package, which has implemented 

many state-of-the-art machine learning algorithms. Since il, is implementecl using 

memory-based data structures, Weka3.4 can only be used on datasets that cau fit 

into memory. In Chapter 6, the system architecture and data structures of \Veka3.4 

are discussed in detail. The scalability limitations of Weka3.4 make. il, a perfect target 

for exploring solutions that can improve the scalability of existing algoritlllllS. 

The goal of this thesis is 1,0 ex tend Weka3.4 1,0 Weka3.4-DI3. W'eka3.4-DI3 is able 1,0 

handle large datasets by storing them in and accessing them through data resource 

management systems, especia11y relational database systems. The ultirnate goal is to 

enhance \Veka3.4 1,0 l)l'ovide scalahility for a11 algorithms implemented in the package. 

lu order to achieve this goal, t11is thesis presents a new storage interface, put betweell 

2 



the data rnining algorithrns irnplemented in vVeka3.4 and the storage system that 

represents the data. Furtherrnore, an implementation of this interface using the re­

lational OBMS OB2 is presented. With this, aIl algorithrns irnplernented ill Weka3.4 

can nm in YVeka3.4-0B without changes. That is, the algorithrns use a OBMS when 

accessing the data but do not need to be aware of this. Also, llew algorithrns can 

be implernentedwithoutdevelopers being required-to know SQL In principle,-the 

move to V/eka3.4-0B allows them to nm on larger datasets than possible in Weka3.4. 

However, sorne algorithrns use internally large data structures, limiting their scal­

ability. We analyzed the logistic regression algorithm in more detail, and came 10 

the conclusion that we have to additionally provide an abstraction for typical main 

mernory data structures, like arrays, that are then irnplemented on OB2. vVe have 

adjusted the logistic regression algorithm to use the new data structures in order 

to further increase scalability. This leads to a higher integration with the database 

system, however it is transparent to the algorithrn implementation. 

Chapter 7 describes the interface, the OB2 irnplementation of the interface, and 

different version of the logis tic regression algori thrn. 

\i\Teka3.4-0B has been evaluated on both synthetic data and real data using the logistic 

regression algorithm. The experiment results show significant improvemellt in regard 

to scalability with reasonable execution tirne. The performance evaluation shows that 

our approach of using a relational database system while providing developers with a 

further data structure interface is a practical solution to provide scalability for data 

rnining algorithms without the need to know SQL. In Chapter 8, the experiment 

design and results are discussed in more detail. 

In Chapter 9, conclusions are drawn and future work is discussed. 
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-Chapter2 

Data Mining 

2.1 Overview 

The task of data mining is to extract useful information frolll huge datasets. WiLh 

technological advances in data stm·age and data management, scielltists, business 

and medical researchers are able to gatller, store and manage previous unirnaginable 

quantities of data. The need of transforming raw data into information and kllowledge 

has been increasing dramatically. Modern data mining is rnotivated by this change 

in data collection and the need for data analysis. Since the early 1990's, research in 

data mining has lèu·gely focused on computational and algorithmic issues rather thall 

the traditional statistical aspects of data analysis. Normally, data lllining involves au 

illtegration of techniques from multiple disciplines, s11ch as machine learning, database 

technology, data pre-processing and data visualization. 

For the past ten years, Machine Learning and Databasc research have been playing 

major roles in the field of data rninillg. 
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2.2 Data Mining and Machine Learning 

Machine learning involves the study of how machines and humans can learn from data 

and has been an important component ofresearch in artificial intelligence (AI). It aims 

to simulate human learning by progl'amming machines to learn tasks by experience 

[25]. 

Early work in this field was strongly connected to theories in cognitive science, trying 

to build algorithms and machines that could adapt to data in a manner thought to 

be similar to human learning [35]. III recent years, much of the research in machine 

learning has shifted from modeling how humans learn to the pragmatic aim of con­

structing algorithms that can learn and perform weIl on specifie tasks. This leads to 

a Illucll greater overlap with applied statistics by adding a computational fiavor. 

According to Mitchell [25], most often, machine learning pl'Oblems are formed III 

terrns of a task, such as playing chess, a performance measure, snch as % of garnes 

won against opponents, and experience, such as playing practice garnes. A machine 

learning algorithm developed for a certain task is based on the type of training ex­

perience available and the target function to be leamed. The target function cau be 

represented by the learning algorithm in terms of a tree, or a collection of l'Ules, or a 

polynomial function, etc. 

Machine learning algorithms prove to be valu able in the following application do­

mains: 

• data mining: hidden information or knowledge are needed 1,0 be diseoverecl t'rOlll 

large datasets automatieally in domains, suell as finaneial analysis and ruedicille 

diagnosis. 

• not well-known domains: domain knowledge is not fully understood, suell as 

speech recognition and computer vision. 

• frequently ehanging dornains: the clesired functions change frequently, suell as 

l'Oboties and computer games. 
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Within machine learning (and supervised leal'lling in particular), decision trees [31], 

artificial neural networks [5,4], llearest-neighbor [.3], naive Bayesian networks[13], ami 

support-vector machines [38] are weIl known algorithmic approaches. 

The significance of machine learning to data rnining lies in the fact that many of the 

algorithms being used in data mining have solid foundations in machine learning. 

2.3 Data Mining and Database Systems 

Another strand of data rnining research emerged in the 1990's within the database 

research community independently and in parallel with developments in machine 

learning. 

The introduction of relational database concepts [10] and high-level data models [9] 

proved to be major conceptual breakthroughs in the database field, which provided 

general and principled frameworks for data modeling and access. Issues [15] such as 

updating the database in a systernatic rnaIlllel', answering structured queries about 

the data and controlling access and security in the context of multiple users, becarue 

the foundations of modern database management. 

By early 1990's, relational database technology was successfully established in the 

commercial sector. But those relational database systems were never designed to 

support data analysis tasks. Instead, they are primarily designed for the purpose of 

storing and querying data, and 1.0 offer transaction support. 

When interest in data warehousing began 1.0 gl'OW in the early 1990's [22], database 

researchers quickly realized that not only did their customers want to store, manage, 

and access their data in a systematic fashion, but now they also wished to be able to 

analyze it. Developing data analysis algorithms that can operate directly on relational 

databases forms the main component of modern database-oriellted research in data 

minillg. 
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The work by Agrawal et.al [2] on association rule mining is probably the very first ex­

ample that demonstrates how simple association rules can be mined ±"rom a relational 

database in an efficient mannel'. Au example of an association mIe is "if a persou 

buys beers, then he is more likely to also buy chips with probability 0.8". Most work 

proposed by the database community ernphasizes havillg very efficient data struc­

tures and algorithms for operating on data that does not fit into main llleIll<Jl"y, and 

searching in datasets for simple local patterns such as associatio11 rules. For example, 

Gehrke et.al [16] describe substantial computational and memory optimizations in 

their implementatioll of CART [7] by using special-purpose data structures, and they 

apply their algorithm to datasets illvolving millions of points. Bradley et.al [6] de­

scribe a heuristic algorithm for an irnplementatioll of the Expectatioll-Maxirnization 

(EM) algorithrn applied to Gaussian mixture modelillg on massive datasets, which 

seeks to minimize the number of passes through the dataset. 

The inHuence of databases on data milling has led to an emphasis 011 the data actess 

aspects of analyzing large datasets. 
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Chapter 3 

Classification 

3.1 Overview 

Classification is an important problern in machine learning that has been addressed 

by many algorithms. The task is to predict categorie al class labels based on several 

attributes or features. For instance, given the customer information described by 

age, crediLrating and student (if he or she is a student), if the class label is vvhet her 

the customer is going to buy a laptop, then the classification task is to classify the 

customer information with binary values Yes and No. In order to label the new 

customer information with the category, the classification algoritluIl, ill the follov\Oillg 

called classifier, has to be trained from labeled customer records. The given customer 

information is the training experience and the classifier is the target function as 

introduced in the previous chapter. More precisely, a set of labeled data records 

used for training the classifier is called the training dataset. The data records in 

a training dataset are called training data or training data records. Each traillillg 

record consists of the same number of attributejvalue pairs. Attributes can be, e.g., 

age and cTediLrating. They describe the training data. Among those attributes, 

the one llsed as the target of a classification task is called cla.)s attrümte or class 

label. The basic types of attributes are numenc and nominal. :'-Jumeric attributes 
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can have real or integer values. For instance, age is a numerie attribute and it tan 

cOlltaill reaillumbers. Nominal attributes require discrete values. Usually, they have 

a list of possible values. For instance, the crediLrating is a llomillal attribute amI the 

possible values are good and bad. NOIllinal attributes are also referred tu as cateqcwical 

attributes. Whell algorithrns need to weigh training data, additional wcight attributes 

are used. \Veight attributes have a numeric type. In general, a training dataset is 

described by its attributes and the number of data records it has. A set of labeled data 

records used for testing the classifier is called the testing datas et. The data records 

and attribut es in a testing dataset are sirnilar to those in the training dataset. A 

testing dataset is also described by its attributes and the number of data records it 

has. 

The basic idea of classification is to train a classifier using labeled training data alld 

then use the classifier to classify new data. Classification can be defined as a two-step 

process. 

• Train a classifier, such as decision trees, classification rules or rnathematical 

funetions, based on labeled training data. 

• Estimate accuracy of the classifier with testing data independent of training 

data. The accuracy rate is the percentage of the testing data that are classified 

conectly. 

The major classification algorithms include decisioll trees, Bayesian networks, logis tic 

regressioll, neural networks, support vector machines and k-nearest neighbor. Classi­

fiers are evaluated by the following criteria [18]: 

• predictive accuracy: the ability of the classifier to correctly predict class labels 

of new data 

• speed: the time needed to train the classifier and the time needed to use the 

classifier 

• robustness: the ability of the classifier to hancHe noise and missing values 
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• scalability: the efficieney 1Il constructing the classifier glven a large training 

dataset 

• interpretability: the level of understanding and insight provided by the classifier 

3.2 Regression 

3.2.1 Overview 

Regression [19] is a well-understood statistical technique fol' analyzillg data. Most 

regression techniques are used to predict continuous labels, such as lillear and non­

linear regression. Using generalized linear regression, categorical data can also be 

analyzed. The regression classifier is formed as a statistical function, which IIlodels 

the relation between the class label and the attribute values of data records. In a 

regression function, the class attribute is called response variable, and the remaiuing 

attributes are called predictor variables. 

The simplest form of regression is linear regression. In linear regression, the resp011se 

variable Y is modeled as a linear function of one or more predictor variables. Linear 

regression with one predictor variable Xl is called bivariate linear regression, Bueh 

as y = u, + bXI . y is assumed to be nonnally distributed. For instance, suppose 

the class attribute, the number of credits that a customer can earn, is the resp011se 

variable Y, aud the attribute, t.he number of products the customer purchased, is 

the predictor variable Xl. A lillear function can be built by solving the coefficie11ts 

a and b based on the given customer data. Usiug this linear function, the value of 

the response variable for new customers cau be computed based on values of the 

predictor variable. Linear regression with more thau one predictor variable is callecl 

multiple regression, such as Y = (1, + bXI + cX2 . Y is modelecl as a linear fuuction of a 

multidimensional feature vector (Xl, X 2 ). The coefficients in linear regression can be 

solved by least squares estimation, which minimizes the elTor between the true value 

and the estimation of the fUllctioIl. In other words, the linear functic)ll that resul ts 
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from least squares estimation represents the best estimate of the true value. 

A more complicated model is nonlinear regression where the response variable and 

predictor variables are not linearly dependent. Instead, the model uses a polynomial 

function. Most often, however, the nonlinear model can be transformed into the linear 

one and solved by least squares estimation. 

Generalized linear models are a broad set of models desiglled to gelleralize the lillear 

model to target response variables of different types [23, 21]. The differences betweell 

the generalized linear model and the linear model are the following: 

• the response variable Y does not Ileed to be continuous and its distribution does 

Ilot need to be normal. 

• the response variable Y is a linear function of the predictor variables via a link 

function, which is determined by the distribution of Y. 

The coefficients in the generalized linear model are solved by maximum likelillOod 

estimatioll, which requires iterative computational procedures. 

3.2.2 logistic Regression 

Logistic regressioIl [21] is a member of t.he class of generalized liuear Illodels. The 

response variable of logistic regression is a binarT variable Y that can take the value 

1 as suc cess with probability p and the value 0 as failure with probabilit.y 1 -]J. The 

probability that Y = 1, given the value of X, is denoted by p(Y). In other words, t.he 

binary variable Y has a binomial distribution with parallleter]J. Logistic regression 

estimates the parame ter p as a fUllctioIl of the predictor variables X (the vector of 

predictor variables). More precisely, assume that p(Y) is given as: 

, (Y) _ é" X 

P - l+c~lX 

and fJ is a coefficient vector, then the logistic l'egression functioll is a logit transfor­

mation of p: 
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logit(p(Y)) = 1~~Y;~) = e(3X 

The goal of logistic regression is to Hnd the best model to describe the relationship 

between the binary response variable and predictor variables. In other words, its goal 

is to find a good estimator /3 (estimated coefficient vector) of the coefficients /). 

Logistic regression becomes unstable in some situations, e.g., if the ll1unbe1' of ])1'C­

dictor variables is close to the si,,;e of the training dataset, or predictor variables are 

highly correlated. Snch cases lead to overfitting, which can make the logistic regres­

sion model appear perfect on the training dataset, while it performs badly on the 

testing dataset. 

Logistic ridge regression is an extension of logistic regression, praviding more stable 

functions. Ridge regression shrinks the regression coefficients by irnposing a penalty 

on their size. The key idea behind ridge regression is to avoid overfitting by imposillg 

a penalty on large fluctuations of the estirnated coefficients. A complexity (regulariza­

tion) parameter ,\ (,\ ~ 0), caUed ridge parameter, controls the amount of shrinkage of 

the norm of (3. The regnlarization put forward by Hoerl and Kennard [20] is the sum 

of squares of the regression coefficients. It is first introduced in the cOlltext of least 

squares regression by Hoerl and Kennard [20] and is adapted to logistic regression by 

Le Cessie and Van Houweligen [8]. 

Two similar approaches of deriving a ridge estimator (the estimator of regression 

coefficients) are discnssed in [8]. One that was first introduced by [14] attempts to 

maximize the log-likelihood function with a penalty on the norrn of (3: e'((3) = lCB)­

,\11/)112, where l((3) = 2:(Ylog(p(Y)) + (1 - Y)log(l- p(Y))) and 11/)11 = (2:(f)j)2)1 is 

the norm of the coefficient vector (3. Maxirnization of [>, UJ) leads to /3. The ridge 

parameter ,\ contraIs how rnuch the norm of /) shrinks. vVhen À = 0, the solution 

is the ordinary maximum likelihood estimate (MLE). When À -+ 00, the j)j aU tend 

to O. Therefore, the estimate ~À is expected to be closer to the real value of !) than 

the unrestricted maximum likelihood estimate (MLE). Another method introduced 

by [37] is to obtain /jÀ by the Newton-Raphson maximization procedure. For Illore 

detail information, please refer to [37]. 
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The way of choosing the ridge parameter À discussed in [14] is based on minimizing 

an estimate of the prediction error of the model using one of three error rneasures: 

classification or counting error (MCE), squared error (MSE) and minus log-likelihood 

error (MML). With a Cross-Validation (CV) or Akaike Information Criterion (AIC), 

the predictive value of the logistic model is compared for various values of À and an 

optimal)is chosen suchthé\,t t]le_ meauerror ratels minimal. 

For instance, given the custorner inforrnation in the previolls example, each data 

record is denoted as (:ri, Yi), where :X;i is a vectol' representing the values of attributes 

a(je, crediLrating, student of the ith record and Yi is the dass label buyJaptop of 

the ith record. In the simplest case in which the ridge pararueter is givell, the ridge 

algorithm would iterate through all customer records a number of times in order 

to derive the ridge estimator that can satisfy the unrestricted maximum likelihood 

fUllction. 

3.3 Data Preprocessing 

Data preprocessing [30] is an important step in the data mining process. Incomplete, 

noisy and inconsistent data can affect the accuracy and efficiency of data mining meth­

ods, and sometimes even I)l'event data mining methods from being applied. Therefore, 

a number of techniques have been developed to improve the quality of data and con­

sequent mining resllits. For classification, a number of general data preprocessing 

techniques have been proposed . 

• Data deaning: data cleanillg atternpts to fiIl missing values, where sorne data 

records don't, have values for sorne of the attl'iblltes. Missing values are f111ed 

with the rueall calculated based on aIl available attribute values, or the lllOSt 

probable value based on statistics. Furthennore, data deaning atternpts t.o re­

Illove or reduce !loisy data. Data cleaning is often required wh en llsing regression 

Ulethocls. 
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• Relevance analysis: whenever irrelevant attributes or redundant attributes ap­

pear in the data, relevance analysis can be performed 1,0 remove those attributes 

from the learning pro cess. It is also called feature selection. Relevance analysis 

tends to reeluee the dimension of the feature space, which results in short el' 

learning tirne. Therefore, it illlproves the efficiency and scalability of the learn­

ing process. The general idea behind relevance analysis is 1,0 compute sorne 

measure that can be used 1,0 quantify the relevance of an attribute. For exalll­

pIe, a simple rneasure used by sorne regressioll rnethods is based on the number 

of distinct values of one attribute. The fewer distinct values an attribute has, 

the less likely it is to be relevant . 

• Data transformation: one type of data transformation is called generalizatioIl, 

which transforms data t'rom lower-level concepts 1,0 higher-Ievel concepts. The 

typical application of generalization is to transform continuolls-valued attributes 

to nominal/ categorical attributes (e.g., instead of exact age, age ranges are 

given), or transfonn nominal attributes 1,0 binary attributes (a binary attrilmte 

is a special nominal attribute, which only lias two discrete values). Another 

type of data transformation is called normalization, which involves scaling all 

values of SOllle attributes such that the normalized values fall within a small 

specified l'ange, e.g., 0.0-1.0. :'-Jonualization can prevent Olle attribute with a 

large range from over-weighting allother with a smallrauge. 

In order 1,0 perform data preprocessing, the data records have 1,0 be scanneel usually 

one or more times. 
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Chapter 4 

Relational Database Management Systems 

4.1 Overview 

A l'elatiollal database management system (RDBMS) [33, 40] is a system that stores 

and manages data that follows the l'elatiollal data model. An RDBMS provides 

functions to define data structures, integrity constraints, and to share and retrieve 

data. 

The general ide a behind relational databases is the Entity-Relationship (ER) model. 

The basic structure of representing data in the relational database is a relation, which 

is not the same as the relationship in the ER model. A relation represents data that 

belongs to one application depelldellt entity type. For example, a11 information about 

customers could be stored in one relation. A relation consists of a relation scherna 

and relation instance. The relation instance is a set of tuples, each tuple describing 

Olle entity (e.g. one customer). The schema provides the meaning behind the tuples 

in the relation. It ln'ovides the name (e.g. Customers), the attributes which describe 

the entity type (e.g. name, age, salaI"}') and the domain of each attribute (e.g. string, 

integer). An example of a relation schema is : 

Customers(id:string, name:string, age: integer, rank: integer) 
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where each attribute narne is followed by a domain narne. For instance, the attribute 

name has domain string, wllich defines that the value associated with the attribute 

name must be a character string. An instance of a relation is a set of tuples, where 

each tuple has the same number of attributes with attribute values according to the 

attribute domains. Often, a relation instance is referred to as a table, tuples are the 

rows in the table, and attributes are the columns (attribute names are the COllllIlll 

headers). Tuples are also called records, and attribut es are called fields. As such, a 

relation is an ideal form to represent a dataset used for data mining as introduced in 

Cllapter 3. Attributes have the same meaning, and data records are the tuples in the 

relation. 

A relational database is a structured way of storing information, and RDDMS prevent 

entering incorrect data by allowing the definition of integrity cOllstraints. Au integrity 

cOllstraint (lC) is a condition over a database schema that restricts the data to be 

stored in a table of the database. Among many kinds of integrity constraints, the 

most important one is the key constraint. A key constraint defines a certain millilllai 

subset of attributes of a relation, called the primary key, that is a unique identifier 

for a tuple. No two tuples can have the same values in the primary key attribute. For 

instance, the primary key of Customers relation is id, which me ans no two custOl1lers 

have the saIne id. Therefore, tuples or records in a table can be easily accessed by 

referring 1,0 the primary key of the table. Another key constraiut is called Ioreign 

key. A foreign key in a relation A refers to a prirnary key in relation B to enforœ 

referential integrity among the tables. The foreign key in the referencing relation 

must match the primary key of the referenced relation. For instance, in addition to 

Cust omers, a second relation is: 

GoldenMernberCard( cid:string, credit:int, id:string) 

The primary key of the GoldenMemberCard relation is cid. Additionally, the relation 

has the foreign key id, referring 1,0 relation Customers, and the id is primary key in 

Customers. The foreign key constraint ensures that only custorners that exist in the 

Customers relation (there is a tuple in Customer with this id) can have golden member 
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cards. That is, any value that appears in the id of a tuple of the GoldenMemberCard 

relation must also appear in the id of sorne tuple in the Customers relation. 

4.2 SQL 

Data in a relational database is accessed via a database query. A database Cjllery is 

an operation that either retrieves data from the database (again in form of a relation) 

or modifies the data. A query language is a specialized language for writing Cjueries. 

Structured Query Language (SQL) [33, 40] is the most widely used commercial rela­

tional database language. It was originally developed at IBM in the SEQUEL-XRlVI 

and System-R projects in the early 1970s. The Sequel language Ims evolved sinee 

then, and its name has changed to SQL. SQL statements can be divided into two cat­

egories: data definition language(DDL) and data manipulation language(DML). DDL 

statemellts are used to bllild and modify the structure of tables and other ob.iects, 

e.g. CREA TE, DROP statements. DML statements are used to worl< with the data 

in tables, e.g. INSERT, SELECT, DELETE, UPDATE statements. 

4.2.1 Basic Structure 

The basic structure of an SQL SELECT statement consists of three clauses: select, 

.tram and where. 

• select clause: it contains a list of attribute names of tables appearing in the 

from clause 

• from clause: it contains a list of table names that are needed to be evaluated 

in the query 

• where clause: it contaills a Boolean combination of conditions on attributes of 

tables appearing in the from clause 
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An example of a basic SQL query using the Customers relation is 

select id, name 

from Customers 

where age > 30 

It selects the values of the id and name attributes of aIl tuples in the relation 

Customers where age values are over 30. The result is in the fonn of a table with two 

attributes: id and name. 

SQL I)l"ovides a special attribute value nul! to represent any unknown or inapplicable 

attribute value. The comparison operator to test whether an attribute value is n'Ill! is 

I8 NULL. The opposite comparison operator is I8 NOT NULL. For instance, the above 

SQL query can be modified as : 

select id, name 

from Customers 

where age > 30 and rank I8 NOT NULL 

The query has an extra condition on attribute rank. It will select values of attributes 

id and name of tuples from Customers table where age values are over 30 and rank 

values are not null. 

SQL allows to specify the orcier in which result tuples are displayed. The order by 

clause makes the tupI es in the result of a query to be sorted in sorne order. Fol' 

instance, 

select id, name 

from Customers 

where age > 30 and rank I8 NOT NULL 

order by name 

It returns the sarne tuples as the previous query but tuples are displayed in ascendillg 

order on the values of attribute name (i.e. alphabetically in this example). The default 
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sort order is ascending, but descending (order by name desc) is also possible. 

4.2.2 Aggregate Functions 

SQL supports a class of built-in aggregate functions for computing aggregate values 

such as MIN and SUMo There are five aggregate functions: avg for average, min for 

minimum, max for maximum, sum for total, and count. For instance, 

select min(age), count(name) 

from Customers 

where rank > 2 

The query returns the minimum age of cllstomers and the number of customers whose 

rank is over 2. 

Often, aggregate functions are applied to groups. SQL provides a group by clause to 

group tuples of a table based on certain attribute values and having clause t.o specify 

the group qualification. The attribute names that appear in the select clause Illust 

also appear in the group by clause or must be aggregated. The group qualificatioll 

in the having clause is applied to all groups before generating the final result groups. 

For instance, consider the query: 

select rank, count(rank), avg(age) 

from Customers 

group by rank 

having count(*) > 10 

The query returns a list of attribute rank values, the Humber of tuples that have 

this rank value, and the average age for customers with this rallk. Only if there are 

more than 10 tuples in the Customers relation that have this rank, a resuit tuple is 

returned. 
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The group by clause can be used as an independent clause and without including 

any aggregate function. An exarnple is: 

select rank 

from Customers 

where rank > 2 

group by rank 

It is a normal select query with one extra group by clause. The query returns the 

list of existing rank values that are over 2. 

4.2.3 Joïn Operations 

.loin operations take two relations and return as a result another relation. .loin 

operations consist of a join type and a join condition. The join condition defines 

which tuples in the two relations match, and what attributes are present in the result 

of the join. The join type defilles how tuples in each relation that do Ilot match any 

tuple in the other relation (based OH the join condition) are treated. The default type 

is inner join. The illner join only retul'IlS the matched tuples frolll both relatious 

and ignores those that tuples in each relation do not match any tuple in the other 

relation. Another type is outer join. Unlike the inner join, the outer joill keeps both 

matched tupI es and those tupI es that do not match any tuple in the other relation. 

A simple example of inner join is: 

select name 

from Customers inner join GoldenMemberCard 

on id 

This query only returns those customers who have the golden mernber cards, since 

only those tuples in the Customers relat.ion that caulnatch tuples in t.he GoldenMemberCard 

with same id values, will be returned. In this case, aH the tuples in the GoldenMemberCard 
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relation will be returned, since aIl of thern have rnatched tuples in the Customers re­

lation due to the foreign key constraint. 

4.2.4 Nested Queries 

One powerful featme of SQL 1S nested queries. A nested query is a query Ilia! 

has another query ernbedded inside it. The ernbedded query is called a subquery. 

Whenever a query needs to express a condition that refers to the result of another 

query, the subquery is used to compute the subsidiary result table and appears as 

part of the rnain query. A subquery typically appears in the where clause of a query. 

The most comrnon use of subqueries is to perforrn tests for set membership. SQL 

allows testing tuples for rnernbership in a relation with the key word in ami testiug 

the absence of set rnernbership with the key word not in. For exalIlple, the followillg 

llested query finds aIl custorners who have the golden melIlber cards. 

select name 

from Customers 

where id IN (select id 

from GoldenMemberCard) 

4.3 Indexing 

When queries are executed over large relation instances, execution time can be very 

slow, since the entire relation must be scanned and for each tuple the condition in 

the where clause must be evaluated. lndexing [33, 40] is used ta speed up the query 

proceSSillg time. 

Let's first have a look aL equality in queries. The query below 

select * 
from Customers 
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where id = 100 

selects exactly one tuple, namely the custorner with id = 100. Equality queries can 

also retrieve several tuples, namely if the attribute in the where clause is not the 

prirnary key or unique. Equality queries typica11y (not necessarily) pick up few tuples 

of the relation. However, if no index is defined, the entire relation has to be scanlled to 

find the rnatching tuples. An index is defined over one or more attributes, called the 

search key of the index. It is an additional data structure, such that, given values for 

the se arch key attributes (e.g. 100) it can efficiently de termine the physical location 

of the mat ching tuples. There exist many different indexing methods (e.g. B+-Tree, 

hashing). Sorne of thern can also be used for range queries. For exarnple, the range 

query 

select rank 

from Customers 

where age<20 

selects the ranks of custorners younger than 20. The index IlOW deterrnines the phys­

icallocation of the corresponding tuples starting with the youllgest custoIller. If the 

Humber of matching tuples is sma11, retrieving the matching tuples one by OIl(~ will 

still be faster than scanning the entire relation. However, if there are many matching 

tuples, which might be spread a11 over the physical storage of the relation, the direct 

access 1,0 these tuples one by one might be slower than sirnply scarming the entire 

relation and perforrning the attribute test « 20) on each tuple. There is the possi­

bility to create one clustered index per relation. A clustered index is, in principle, the 

same as an unclustered index (defined over one or more search key attributes), Imt 

the tuples in the physical st orage of the relation are actua11y sorted according to their 

order of the search key attributes. For instance, if we create a clllstered index over 

the age attribute, all tuples of the Customers relation will be physica11y ordered ac­

cording 1,0 their age on the physical storage. Hence, retrieving aIl customers yonuger 

than 20 will start with the first custorner, and then sequentia11y retrieve aIl following 

22 



customers until the first customer with age = 20 is found. This is faster than scaIlllillg 

and testing all tuples. 

4.4 JDBe 

SQL is a powerful declarative query language, but it do es not provide the full ex­

pressive power of a general-purpose language. Java Database Connectivity (JDBC) 

[33, 40] enables the integration of SQL into a general-purpose programrning language 

through an application programming interface (API). It allows application prograrns 

to access different DBMSs without recompilation. Any direct interaction with a spe­

cifie DByIS is through a DBMS specifie driver, which can translate the JDBC calls 

into DB.MS-specific caUs. Drivers are loaded dynarnieally on dernancL since only al 

l'lm-time it is known which DBMSs the application is going to access. AU the existing 

chi vers are registered wi th a driver manager. 

There are four main components of the architecture of JDBC: 

• application: the application (Java prograrn usmg JDBC API) initiates and 

terminates the connection with the data source. It submits SQL statelllents 

and retrieves the results through a well-defined interface as specified by JDBC 

API. 

• driver manager: the driver manager is used to load JDBC drivers and to pass 

JDBC function calls from the application to the correct driver. Il, hancHes JDBC 

initialization and information caUs t'rom the application and logs all functioll 

calls. In addition, it may perform sorne euor checking. 

• drivers: the driver establishes the connection with the data source. It SUbIllits 

requests and returns resul ts by translating data, enor fonnats, and enor codes 

from a fmm that is used by the data source into the ,lDBC stamlard. 

• DBMS: the DBMS pro cesses commallds t'rom the driver and returns the results. 
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JOBC is a collection of Java classes and interfaces that enables database access from 

programs written in the Java programming language. The classes and interface are 

part of the java. sql package. The major steps of using ,lOBC is to load the .lOI3e 

driver, connect to a data source, and execute SQL qlleries. An exalIlple of a slllall 

application program is 

import java.sql.*; 

public class JDBCexample{ 

public static void main(String[] args) throws SQLException{ 

//Load the DB2 JDBC driver 

DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver); 

//build a connection 

Connection conn = DriverManager.getConnection(url, uid, passward); 

//create statement 

Statement stmt = conn.createStatement(); 

Resultset rs = stmt.executeQuery 

("select age from customers where rank = 5"); 

while(rs.next()){ 

int age = rs.getlnt(l); 

System.out.println("rank 5, age: "+age); 

} 

rs. close 0; 

//create preparedStatement 

PreparedStatement pstmt = conn.prepareStatement( 

rs = pstrnt.executeQuery(); 

"select avg(age) from Customers "+ 

"where rank = 7"); 
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} 

for(int i=l; i<=10; i++){ 

pstmt.setlnt(i); 

} 

rs = pstmt.executeQuery(); 

while(rs.next()){ 

} 

int age = rs.getlnt(l); 

System.out.println("rank "+i+", age: "+age); 

rs. close 0 ; 

pstmt. close 0 ; 

stmt. close 0 ; 

conn. close 0 ; 

In JDBC, DB MS drivers are managed by the DriverManager dass. As it is shown in 

the example, the static method registerDri ver is called to register the DB2 driver. 

A connection with the DBMS is started through the creation of a Connection object. 

In the example, the getConnection method of the Dri verManager dass returns a 

Connection object, which represellts a communication channel to the DB2 database. 

getConnection has to indicate the location of the DB2 database in fonn of a url. 

Furthermore, a user name and password must be given since only authorized users 

can access the database. 

The SQL query is submitted 1,0 the database through the Statement object. In the t'x­

ample, the createStatement rnethod of the Connection ob.iect retul'llS a Statement 

object, and the executeQuery method of the Statement dass subrnits the query 1,0 

DB2 and lets it gel, executed in the database. Once the SQL query is executed, a re­

sulting relation is returned through the Resul tSet dass. Since the Resul tSet object 

of a select query represents a set of t.uples in the resulting relatioll, but the applicatioll 

prograrn cau only hanclle one tuple or even one attribute al, a tillle, the Resul tSet 

class provides methods 1,0 iterate through the returned tuples. After a query is ex­

eCllted, the Resul tSet is positiolled right before the first tuple. The lIlethod next 
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fetches the next tuple and enables reading of the attribute values through gettype 

rnethods, where type is the type of the field. vVhen the Resul tSet reaches the lasl, 

tuple, the next rnethod can't satisfy the condition of the while loop any more, siuce 

calling the next rnethod makes the ResultSet to position right arter the last t.uple. 

Potentially, a Resul tSet might contain millions of tuples. They might Hot fit aH 

in the address space of the client .JDBC program. Rence, the Resul tSet is usually 

stored as a temporary relation at the database, and tuples are transferred from DB2 

to the program space one by one when next () is called. Depending on the .JDBC 

driver, a slIlall set of tuples Illight be cached al, the client side. At end of the progralll, 

the Connection, Statement and PreparedStatement objects are closed. 

Besides the Statement, .JDBC allows the creation of another kind of statement, called 

PreparedStaternent. PreparedStatement can refer to variables in the applicatioll 

pro gram and is good for repeating one query many tirnes once it is compiled . .JDDC re­

places each pararneter with a ? and sets values for each paramel,er al, run-tÎme tluough 

settype methods, where type is the type of the pararnel,er. In the exalIlple, the 

prepareStatement method of the Connection class rel,uIIls a PreparedStatement 

object. At this tirne point, the query exists in cOlIlpiled fonn at the database. It cau 

be called and executed without compilation with different values for its input paralll­

eter rank. Once the query is compiled by the PreparedStatement object, the value 

of the parameter in the PreparedStatement object is set by the setlnt method in 

a loop and the query is executed repeatedly. 
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Chapter 5 

Scalability 

5.1 General Challenges Imposed by Massive Data Sets 

One of the main challenges in dealing with massive datasets is the scaling effects that 

often OCClU' as datasets grow in size. For a dataset with p attributes and N data 

records, the time complexity [Il J of a data minillg algorithrn is typically expressed as 

the worst running tirne as a function of N and]J, e.g. o (N]J). Algorit.hms wllOse Lime 

complexity scales poorly as a function of N are often unacceptable for large datasets. 

Therefore, data mining researchers interesteci in massive dataset applications often 

focus on algorithms that scale in the "near-linear" range for N and usually no worse 

than p2 for p. 

The other relevant aspect of data analysis for large ciatasets concems the physical 

storage location of the data relative 1.0 CPt;. The primary melllory consists of RA\I 

(random-access memory) and has the bellefit of allowing relati vely fast randoll1 access 

of any byte on the orcier of 10-7 t.o 10-8 seconds with CUITent teclmology. This is how 

long il. takes the system 1.0 bring the data from rnernory t.o CPU 1.0 do a computation. 

Secondary memory consist.s of disk storage. The access time here is on the order of 

10-2 seconds. Even tllOUgh the storage tecllllology is consistently changing (cunently 
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allowing storage on the order of Gigabytesja RAM and Terabytesja hard disk), the 

relative difference in access time between primary and secondary memory still remains 

on the order of 104 to 105
. 

Thus, the time complexity mentioned earlier will be affected dramatically by the phys­

icallocation of the data. If the algorithm requires one computation pel' data record, 

and each data record is accessed randornly, then the time taken by the algorithm will 

be proportional to eN, where N is the Ilumber of data records and c is the time it 

takes to access the data record. It sim ply indicates that algorithms that frequently 

access the disk will be much slower than algorithrns that operate on data entirely in 

main memory. If the data is organized so that it can be aecessed sequentially t'rOIll 

the disk, then the cost of disk access decreases, since sequential scanning cau be car­

ried out mu ch more efficiently than random access of the same amount of data. But. 

many data mining algorithms either repeatedly access different subsets of the data 

in an llIlpredictable way, e.g. classification trees, or require multiple passes t.hrollgh 

the entire dataset. Even if such algorithrns scale reasonably in N and p, while they 

may run in reasonable time on data in main memory, they will be infeasible for large 

datasets that exceed main rnemory capacity. 

5.2 General Approaches to Achieve Scalability 

There are a Humber of general approaches for developing scalable data rnillillg al go­

rithms . 

• Running a random sample of the whole dataset is often useel in practice, espe­

cially for data mining tasks involving iterative and interactive phases of model­

building. But generating a fairly random sam pIe t'rom a large database stored 

on disk may itself be a time-consuming task from a computational point of view . 

• Du j'vIouchel et.al. [27] proposed a statistically-motivated rnethod for data­

squashillg, which creates a set of j\1 weighted pseudo data poiuts, where Al IS 
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much smaller than the originalnumber N, and the pseudo data points are auto­

matically chosell by the algorithm to mimic as closely as possible the statistical 

structure of the original large dataset. The method is ernpirically demonstrated 

to provide one to two orders of magnitude reduction in prediction error ou a 

logistic regression problem compared to simple ralldom sampling of a dataset. 

Similar ideas by Moore and Lee [26], Bradley et.al. [6] and Pavlov et.al. [28] 

propose to generate a sm aller approximate representation of the original large 

dataset that matches the statistical characteristics of the original dataset as 

closely as possible. One advantage of this general approach is that once the 

reduced set is created, the original dataset can be thrown away and cornputa­

tionally intensive processes, such as visualization and model-building, cau take 

place entirely on the reduced dataset in lllain memory . 

• Pipelining is a quite effective online recursive approach. It processes the data 

through the analysis system as it arrives and recursively updates model pa­

rameters in an online adaptive mannel'. Cortes and Pregibon [12] describe au 

impressive system at AT&T, which adaptively updates estimates on whether 

a telephone line is a business or a residence, for about 350 million customers 

pel' night, based on about 30() million records of claily phone calls. Logistic 

regression models are trained offiine and the probability of a number being Cl 

business is modeled by a logis tic regressioll mudel with input variables based 

on characteristics of calls, snch as time of day, length of calls, etc . 

• Provost and Kolluri [29] describe a variety of other techniques for scaling up Lu 

massive datasets. They categorize those techniques into three main approacltes. 

The straightforward approach is to build fast algorithms by restricting the space 

of models to be searched or developing powerful se arch heuristics. The idea of 

the second approach is to partition the data iuto subsets tu process tltelll ill 

parallel, and to compute the final result as a function of the result.s retrieved 

from the parallel computations. The last approach is to use a relational repre­

sentatioll. A typical way of uSillg relatiollal dat.a directly is to illtegrate data 

mining algorithms vvith database management system (DI3.\lSs). This is the 



approach that we will take in this thesis. 

More specialized approaches have been developed for particular algorithrns, e.g. de­

cision tress [24, 39, 17]. 

5.3 Achieving Scalability by using Relational Database 

Systems 

Since more and more massive datasets are stored in database systems, developing an 

effective architecture for a data mining system on top of a database system becomes 

an illteresting implementation issue. Database systems are designed 1,0 provide the 

fiexibility and efficiency of sorting, organizing, accessing and processing data. Data in 

database systems tends ta be well organized, illdexed, cleanecL and integratecl, whieh 

rnakes many tasks, sueh as finding relevant data, rnueh easier than for data in fiat 

files. Once data mining systems take advantage of database systems, more scalable 

algorithms and data structures can be pxplored. 

Han and Kamber [18] propose a Humber of architectural alternatives that couic! be 

developed. 

• No Coupling: A data mining system will not use any functiollality of the D13l\!lS. 

It fetches the data from sorne file system, processes the data uSillg SOIlle data 

mining algorithms, and then stores the rnining results in another file. 

• Loose Coupling: A data mining system will use the basic functions of the DBMS 

1,0 store and fetch data. But, it does not explore data structures and query 

optimization methods provided by the DBMS. In this case, it is liard 1,0 achievp 

high scalability and good performance for large datase1,s. 

• Semitight Coupling: Beside the basic functionali1,y of DBJVISs, a few esseutial 

data l1lining primiüves are implemen1,ed within the DBMS. The primitives cau 
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indu de sorting, indexing, aggregation, histograrn analysis, rnulti-way.ioin, and 

precomputation of sorne essential statistical rneasures, snch as SUI1l, count, max, 

min, standard deviation, etc. Even sorne frequently usecl illtennediate mining 

results can be precomputed alld stored in the DBMS . 

• Tight Coupling: A data rnining system is completely integrated with the DBMS. 

The data mining system is one functional component of the integrated systelll. 

Data mining queries and functions are optimized based on mining query anal­

ysis, data structures, indexing schemes, and query processillg methods of the 

DBMS. 

The very eady work conducted by Agrawal et.al. [32] compares the performance of 

loose cOllpling and tight coupling alternatives for developing the well-lmowll data lllill­

ing algorithm Apriori et.al. [2] on a relational database system. The loosely-collpled 

Apriori algorithrn is developed using a standard application prograrn with embed­

ded SQL statements (similar to .lava with JDBC) where the application program 

runs on a different machine or at least in different access space. The tightly-coupled 

Apriori algorithm is developed with user-defilled functions, which are defined by the 

application programs, but executed vvithin the database engine. They daim the tight­

coupling gives more than two folcl performance aclvantage over loose-couplillg based 

on experiments on six real-life custolller datasets. 

Agrawal et.al. [36] have further worked on integrating associatio11 rule mining with 

relational database systems. They attempt to understand the implications of various 

architectural alternatives for couplillg data mining with relation al database systems. 

The most important one is caUed Cache-Mine. The basic idea of Cache-Mine is Chat 

after reading the data once from the DBMS, the data mining algorithm tempOl'arily 

caches the relevant data in a look-side Imffer 011 a local disk. The cachecl data couIc! 

be t.ransfol'Ined t.o a format that enables efficiellt future accesses. The cached data 

is discarded when the execution complet.es. The advantage of Cache-:VIine is great 

pl'Ograrnming ftexibility. The disadvantage is t.hat it l'equires additional disk space 

for caching. Cache-Mine is reported to perforrn better than othel' alt.ernatives. 
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The work done in this thesis is inspired by aIl the previous work related to llsing rela­

tional databases to sc ale up existing machine learning algorithrns. It aims to scale up 

a very popular open source package of machine learning algorithms, Wcka3.4, by tak­

ing advautage of the efficient storage and retrieval of relational represeutation. SinC(~ 

one of the goals is to not change (or rninirnally change) the algorithms implemented 

in the software package, we ernploy generally a loose coupling approach. However, 

for some special functions we provide a sernitight coupling. Furthennore, we looked 

at the logistic regression algorithm in more detail and slightly adjust it to the Ilew 

architecture to increase scalability even further. This adjustment cau still be consid­

pred (èS loose coupling. Overa11, we extend algorithms in the package to adjust to the 

new storage system without modifying the results of algorithms. 
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Chapter 6 

Weka3.4 

6.1 Introduction 

Weka3.4 [42] is a popular, open source, machine learning software package, which has 

been developed at the Department of Computer Science, University of Waikato, New 

Zealand. Weka3.4 implements many state-of-the-art machine learning algoritllIllS, 

and is widely used in teaching and research by the machine learning COlIllIlllllity, 

as weIl as outside users. vVeka3.4 contains tools for data preprocessing, regresslOll, 

mining association rules, classification, clustering and visualization. 

6.2 System Architecture and Data Structures 

This thesis extends the stor'age system of vVeka3.4. Rence it is crucial to ullderstaml 

Weka.3.4's system architecture and data structures. 

The architecture of vVeka3.4 consis!'s of aGUI user iuterface, lllachiue leamiug al­

gorithms and one weIl-defilled data structure iuterface, core. As shown in Figure 

7.1, aIl the algorithms in Weka3.4 are using data structures and Itlethods tha! cau 

rnanipulate data through core. 
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'1 
Core 

Main Memory 

Figure 6.1: Architecture of Weka3.4 

AH the data structures defined in core are rnemory-based data structures. The most 

important are the Instances and Instance classes. Instances is implelllented to 

store the dataset information, providing functionality to access attribute information 

and to manipulate data records inside the dataset, such as delete and sort the data 

records. Instance is implemented to store the information of any single data record, 

providing functionality tü access weight, attribute and class values. Each data record 

is stored as one Instance object, and a11 Instance objects are stored in a vector of 

Instance objects, which is maintained in the Instances class. The Instances class 

provides methods to allow algorithms to enumerate a11 the data records or access one 

specifie data record by its position in the dataset. Important methods of Instances 

are sUlnmari~ed in Table 6.1. 

N onna11y, at the start of a data milling aigorithlll, the training data is loaded into 

main memory and stored as an Instances ob.iect. During the cOlllputation, more 

Instances objects are instantiated by creating a copy of an existillg Instances o\}­

.iect. If the data records of none of the Instances ob.iects are modified, they can be 
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Method Description 

Instances (Instances dataset) Constructor copying aIl installces and ref-

erences to the header information frOlIl the 

given set of instances 

Instances(Instances dataset, int ca- Constructor creating an empty set of in-

pacity) stances 

Instances(Instances source, int firs!', Constructor creating a new set of instances 

int toCopy) by copying a subset of another set 

Instances(Reader reader) Constructor reading an ARFF file t'rom a 

header and assigning a weight (l. ()) to each 

instance 

Instances(Reader reader, int cap ac- Constructor reading the header of an 

ity) ARFF file from a reader and reserving the 

space for the given number of instances 

Instances(String name, Fast VectOl' Constructor creating an elllpty set of ill-

attillfo, int capacity) stances 

void add(Instance instance) adds one instance to the end of the dataset 

void delete(int index) removes an instance at a givell positioll of 

the dataset 

void delete WithMissiug(Attribu te rernoves aU instances with missing values 

att) for a particular attribute t'rom the dataset 

Enurneration enurneratelnstances() returns an enumeration of aH instances in 

the dataset 

Instance firstInstanceO returns the first instance in the dataset 

Instance instance(int index) returns the instance at the givell position 

Instance lastInstance() returns the last instance in the dataset 

double meanOrMode(Attribute returns the mean/mode for the IlU-

att) meric/nominal attrilmte as a iloating-point 

value 

3i) 



Method Description 

int numDistinct Values (Attribute returns the number of distinct values of a 

att) given attribute 

int numInstancesO returns the number of illstances III the 

dataset 

void randomize(Random random) shuffies the instances in the dataset so that 

they are ordered randomly 

void renameAttribute (Attribu te l'enames an attribute 

att, String name) 

void renameAt tribu te- renames a value of a llOIuinal attribute 

Value (Attribute att, String narne, value 

String val) 

Instances resample(Random ran- creates a new dataset with the salIle size 

dom) using random sampling with replacement 

void sort(Attribute att) sorts the instances based on an attribute 

void stratify(int numFolds) dynamically groups a set of instances ac-

cording to its class value if the class at-

tribute is llominal 

double sumOfWeightsO computes the SUlU of all instances' weights 

double variance(Attribute att) computes the variance of a llumenc a1.-

tribute 

Table 6.1: Methods of Instances class 
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shared, i.e., a lazy update is deployed. \V"hen a new Instances ob.iect is created, il, 

shares the same vector of Instance objects with the Instances ob.iect from which 

it l'las copied. Once it wants to change an Instance object in the vector (i.e. a data 

record), it creates its own copy of the vector of Instance ob.iect. Thell it creates 

a copy of each Instance object it wants to update. Figure 6.2. shows in detail 

how three Instances objects share the same data records or have their own copies. 

For example, Instances object 1 and Instances object 2 share the saIlle vector of 

Instance objects, but Instances ob.iect 3 has its own vector of Instance ob.iects. 

Both vectors share some Instance ob.iects. But, for data record A, both vectors have 

different copies. 

vector of Instance veetor o!" Instance 

( Instances object 1 r r--

_1 Instance object 1 
~ 

1-- r---
Instance object 1 

~ Instances objtcr -' ) 

1--- r--
Instance objec! I_ 

I-- r---
Instance llbleu ( Instanee objec! 2 ~ 

1-- r---

~ ~ 
Instanee objeet A Instance object A' 

contains data recorel A contains data recorel A 
with value a with value a 

Main Melllllry 

Figure 6.2: Instances and Instance 

6.3 Data Flow 

In this section, l'le will shortly discuss the important rnethods ill Table 6.l. The.\" are 

grouped into the following categories: 
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1. Storing Data 

Wheu an algorithm needs to load data into main memory, it creates an Instances 

object to store a11 the attribute name and type information, convert each data 

record into one Instance object, and call the add (Instance instance) method 

to insert the Instance objects into the vector of Instance objeets, which is 

maintained in the Instances object. Afterwords, Instances objeets are typi­

caUy created by copying an existing Instances object. The new object shares 

the same vector of Instance objects with the original object or creates its own 

vector but shares sorne Instance objects. Both cases are shown in Figure 6.2. 

When an object of Instances caUs its own methods, executing those rnethods 

caIl only affect its own copy of data, more precisely, the vector of Instance 

objects. 

2. Data Access 

Wh en an algorithm needs to access aU the training data, it uses the correspond­

ing methods of the Instances class. It can either call enumerateInstance 0 1,0 

get an enumeration of Instance objects or call instance (int position) in a 

loop to iterate over the Instance objects. The enumerateInstance lllethod 

implernents the Enumeration interface in the Java library. Il, accesses the 

Instance object from the vector of Instance objects in the Instances object. 

The instance (int position) method can access a specifie data record by 10-

cating the corresponding Instance object in the vector based on the giveu posi­

tion. firstInstanceO and lastInstanceO are two other lllethods tn access 

data records, which are implemented by invoking the Instance (int index) 

method with the corresponding indices. Information about the dataset cau be 

returned by rnethods like numInstance 0 and numDistinctValues (Attribute 

att) . 

3. Data Manipulatiou 

Au algorithm can manipulate data through methods, sueh as delete (int position) 
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and sort (). The delete (int position) rnethod deletes data records by re­

rnoving the corresponding Instance object from the vector of Instance ob­

jects (note that this does Ilot delete the Instance object itself, becallse sorne 

other Instances may still point 1,0 it). The sort () method sorts the vector 

of Instance objects based on one attribute value, by applying the quicksort 

algori thm on the vector. 

4. Computing Statistics 

An algorithm can compute statistics about the data records through rnethocls, 

such as surnofWeights and rneanOrMode. The surnofWeights rnethod surns the 

weights of data records by looping through the vector of Instance objects and 

accessing the weight value of each Instance object. The rneanOrMood method 

computes the mean for a numerical attl'ibute and moocl for a nominal atlribute 

over the Instance objects in the vector. Similar to the surnofWeights methocl, 

it calculates the surn of weights and the sum of products of the weight with 

the corresponding value al, the given attribute by looping through the veetor of 

Instance objeets. 

6.4 Performance Limitation 

vVeka3.4 is a memory-based package and all the algorithms implemented in vVeka3.4 

are typical machine learning algorithms, which do not address the scalabilitv isslle. 

vVeka3.4 can aehieve a good performance in terrns of execution time, but it is hard 1,0 

scale up with large datasets. Since it is implemented in Java, in order 1,0 save rnemory, 

\Veka3.4 takes full advantage of the object-oriented language by shal'ing object.s as 

much as possible. Except for a fevv incremental machine leanting algorithrns, IllOSt 

algorithrns, especially the classificatioll algorithms implemented in \Veka.3...1, lleed 

to train using all the training data, wlüch means the training dataset has tu Il(' ill 

meIllory most of the time. Therefol'e, the size of the training data becomes crir,ic:al 

and eventually, rnost algorithrns will nm out of memory with large training darasets. 
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This is especially true ifthey create several Instances objects that maintaill theil' OWll 

Instance objects. But, unfortunately, dealing with large datasets is ([uiLe COlUlllOll 

in most data mining tasks. Therefore, this kind of implementation prevellts vVeka3.4 

from beillg applied to mally general data rninillg tasks of interest for applications. 
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Chapter 7 

Weka 3.4-D8 

7.1 Intuition and Goal 

As we have discussed in Chapter 5, the scalability of algorithms is an important 

performance issue. So far, either novel algorithms have been developed or special 

strategies have been deployed to preprocess data in order to make it fit into main 

memory. But the first approach is limited to a small number of algorithms and can't 

resolve the problem in general. Although the second approach does apply to aIl the 

algorithrns, it can add incredible overhead when preprocessing a huge amount of data 

and sometimes will even reduce the accuracy of algorithms. In this thesis, we follow a 

different approach to allow data mining algorithms to access arbitrarily large datasets. 

vVe replace the lirnited main mernory as a main storage medium with the potelltially 

unlimited secondary storage. However, secondary storage access is cornplex and very 

time consuming. Hence, we take advantages of relational database systems, which 

can provide sophisticated data storage and retrieval offering a povverful data access 

API. 

Despite aIl the previous work related to using relational databases to scale up existing 

machine learning algorithms, there is still a lack of general approaches that can work 
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with a11 kinds of learning algorithms. Most existing work focuses on specifie kiuds 

of algorithms, such as decision tree algorithms or association rule algorithms. The 

most systematic work that has been done is the one by Agrawal et.al. [36], but it 

is restricted to association mle mining. A further restriction of the approach is that 

the developers of the association IUle rnining algorithm ItlUst be very familiar with 

database technology, either irnpleruenting stored procedures withill the database or 

accessing the database through SQL. However, SQL is quite difficult to understalld for 

machine learning researchers not familiar with database teclmology. Hence, our ide a 

is to give these researchers their familiar interface, in partieular, the core int.erface of 

vVeka3.4 as described in the previous chapter. In contrast to the eurrent implemen­

tation of core, however, dat.a is not. necessarily st.ored in main mernory, but loaded 

from and stored into a relatiollal database as needed. Idea11y, this approaeh allows a11 

existing algorithms in \Veka3.4 to nm on datasets that do not fit into main lllelllUlO\' 

without any change to the algorithms themselves. In principle, t.he cleveloper of the 

algorithm do es not even have to be aware of ally main rnelllory restrictioIl. Hence, 

the first goal of the thesis was a re-implementatioll of the core package of vVeka3.4 

without any change to its interface. The goal is 1,0 have no meIllory restriction Oll 

objects managed within core. The advanced functioIls of DB2 should be explored 

whellever possible within the new implernentation. 

However, this general approach might restrict performance in two ways: 

• The data mining algorithms rnight create their own large main memory struc­

tures by not being aware of main memory limitations. ln this case, a simple 

core is not enough to allow unlimited dataset sizes . 

• The data minillg algorithms, not being aware of the frequent secondary stOI('lg~~ 

access, IIlight access the core data structure in a very in efficient way leading to 

very large execution tirne. 

As sueh, the second task of this thesis "vas to determine whether the existing algo­

rithms cau be made more efficient and scalable by (i) silllple changes t.o the core, 
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and/ or by (ii) providing additional interface methods that can help increase the efii­

ciency and scalability of the algorithms. 

7.2 Data Structures 

The basic idea of extending Weka3.4 to Weka3.4-DB is to create a general data struc­

ture interface that defines data structures and rnethods for manipulating data usecl by 

aU algorithms. Such an interface is implemeuted trallsparently to the algorithms, and 

different implementations can co-exist. One irnplementation is the existing \Veka3.4 

main memory implernentation, which is efficient but not scalable. The second imple­

mentation, developed in this thesis, is based on the widely used relation al database 

management system DB2 from IBM, and caUed vVeka3.4-DB. It uses DB2 as clata 

storage, which can improve the scalability of aU algorithms in principle. In order to 

provide the fiexibility of choosing different levels of scalability and efficiency, vVeka3.4-

DB keeps the main memory data storage implementation as an option. 

The redesigned system architecture is shown in Figure 7.1. Based on the core inter­

face from Weka3.4, a general data structure interface has beell defined, aud auy data 

source that implements this interface cau plug into vVeka3.4 as a data storage imple­

mentation. The basic idea of our DB2 storage implementation is 1,0 store the training 

data in a DB2 database, and only load the training data from the DB2 database to 

main memory when it is needed. Additionally, methods that require computation 

on all the data records or a subset of the data records, e.g aggregate methods like 

sumOfWeights 0, are implemented using DB2 funct.ionality if possible, without the 

ueed to load al! the data into rne III or y. This is done by using SqL aggregate 1"unc­

tions as explained in Chapter 4. A fundaruental strategy employed in thE' enLirc DB2 

storage implementation is that any rnethod that needs to do computation on aU the 

data will be implemented in a way that avoids loading al! the data illto main lllelllory 

at the same tirne. 

Data is now split between a small amount of main memory data structures and a 
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0132 clatabase that the major part resides in. We willnow look at both parts in more 

cletail. 

GU liser lnterfaœ 1 
.. ________ '1 _~~ __ ~ __ 

classifiers clusters 1 associations nlters 

1 

Abstract cure interface 

1 

Invnke 1 
" ! lnVOkC 

" 

core for main memory core for relational databasc SystèlllS 

Figure 7.1: Architecture of vVeka3.4-0I3 

7.2.1 Main Memory Data Structure 

Among aH the classes defined in the core package, Instances and Instance are the 

two most important ones, since they are defined to represent the training dataset and 

each individu al data record. All other classes are defined either based on Instances 

and Instance data structures or are cOlnpletely indepemlellt. 

Figure 7.2 shows specifically how Instances and Instance classes are extended III 

\"leka3.4-0B. The basic ide a is to design a system that allows for easy storage of 

data records in OB2 and fast retrieval of the data records from 0132. vVhenever an 

Instances object needs to read data, it knows where to access the correspondillg 

data records in OB2. Therefore, the important issue is how to rnaintain the training 

data effectively so that any Instances object can access its OW11 copy of the data. 
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At the beginning of the algorithm, the training data is represented as an Instances 

object in main memory, which contains the attribute information and an index vector. 

However, the vector does not point to Instance objects representing data records. 

Instead, the data records are stored in the database. The vector contains enough 

information to retrieve the data records from the database. We will see later what 

this means. As in the main memory implementation, we only want to create new data 

records (maintained in the DB2) if different vectors of Instances objects require it. 

However, now Instance objects do not an reside in main memory any more. Instead, 

an Instance object is only created (and the data record is loaded to main memory), 

when it is accessed by the data mining algorithms. For this, we had to slightly 

redesign the internais of the class hierarchy. 

:-'ldlll.\kIIlUI\ 

Figure 7.2: Weka3.4-DB: Instances and Instance 

At the very top is the Instances interface with the same methods described ill 

Chapter 6. The abstract class AbstractDataSet implements commonly used vari­

ables and methods for an the data storage implementations. MMDataSet is the original 

Instances implementation in \rVeka3.4, and DBDataSet is the abstract class for our 

relational database implementation. It implements cornrnonly used variables and 
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methods of the two classes: ImmutableDataSet and MutableDataSet. The diffel'cncc 

between IrnrnutableDataSet class and MutableDataSet class is that MutableDataSet 

supports aIl the functions that allow algorithms to change attribute (except weight 

attribute) values at any point of the computation, while ImmutableDataSet does 

not support those functions (only weight values are allowed to change). The sam(~ 

strategy is applied 1,0 the Instance class. MMInstance is the main memory imple­

mentation and is compilable with MMDataSet. For the DB2 implementation, there 

are again an abstract class DBInstance, and then an ImmutableInstance and a 

MutableInstance. The reason to have two different classes is that any class that 

extends DBDataset has to read data records from the database. If no data record 

can be modified, then aIl objects of the class can share the saIlle data records, which 

means those data records can be stored in a read-only table. Using read-only tables 

will simplify any kind of read operations and reduce the overhead of loading data 

records from database. So, whenever the algorithms do not neecl to change initial 

attribute values, they can use ImmutableDataSet and ImmutableInstance to refer 

to clatasets and data records. If they want to change attribute values, they have 1,0 

use MutableDataSet and MutableInstance. Furthermore, which type of Instances 

and Instance class will be used in the data mining algorithms is denned at l"lmtimc, 

as il, is shown in Chapter 8. 

DBManager is the abstract class that clefines basic variables and functions that are 

used to interact with relational database systems, such as DB2, Oracle and MySqL. 

DB2Manager and DB2Helper are two classes that implement aIl the functions, which 

can interact with DB2. 

7.2.2 Database Implementation 

DB2 contains aIl data records. Tables created in DB2 have to ensure that Instances 

objects cau access their own copies of the training data efficiently. There are ct llUlllbel' 

of alternatives for implementing those tables. 
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• N aive approach: The training data and their weights are tirst stored in one 

dataset table, which is the copy of the data for the initial Instances objcct. 

vVhenever a new Instances object is instantiated, a new table is created and 

the training data and their weights are copied to the new table, which is the 

copy of the data for the new object. 

• Duplication approach: The training data is first stored in one dataseL table. 

Each record in the table is marked with the same identitier. illdicating that 

an records belong to the same initial Instances object. \Vhenevcr a new 

Instances object is instantiated, each of the original records in the dataset 

table is duplicated, and also stored in the dataset table. AlI duplicated records 

receive one common new identifier indicating that they belong to the ncwly 

instantiated Instances object. 

• Lazy approach: The training data is tirst stored in a dataset table alld Cl CUllUllOll 

identifier is used to mark those records as belonging to the initial Instances 

object. Whenever a new Instances object is instantiated, it shares the data 

records with the original object by sharing the same identifier in the dat8set 

table. If the new object needs to change a record for computation purposes, a 

copy of the original record is inserted in the dataset table with a new identifier. 

This new record will be updated. If aIl the training data needs to be prepro­

cessed, a table similar to the dataset table is created containing aIl moditied 

records with a new identifier. Since the attribllte vallles or t.lw trRinillg (Lü" ;Ul' 

not updated by many algorithms, this seems to be the most elficient approach. 

However, most algorithms do change the weight attributes assuciated with the 

data records. Hence, in order for this approach to be more efficient than the 

duplication approach, we generate two tables. One table contains aIl standard 

attributes, one contains the weight attribute. The correspollding records in 

both tables are correlated by the unique identitiers in both tables. Thercforc, 

whenever a new Instances object is initiated, it shares the data records in the 

clataset table with other Instances objects, but it receives a copy of the weights 

in the weight table for each data record in the dataset table. 
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The naive appro<1ch is very costly, since it creates many ne,,, tables, which is one of 

the most expensive operations of DB2 and should be avoided as much as possible. 

Even though the duplication approach does not have ta create new tables, it still 

needs to copy the whole training data every time a Ilew Instance abject is initiated. 

which will hurt the performance when the training dataset is large. The lazy approach 

captures the important feature of how most algorithms in \Veka3.4 manipulate data. 

Most algorithms are more likely ta change weights but not the attribute values of 

training data. By default, the training data is not modificcl at aIl, and making a 

separate copy of the weights is enough ta distinguish the data records associated "vith 

different Instances abjects. Once the abject has made any change on the attribute 

values of sorne data records, the updates are ftashed back ta the dataset table by 

creating new records with a new identifier, and the abject can track those changes 

by those identifiers assignecl ta the data records. An extra table is introduced only 

when cir'amatic changes have beell made on the whole training data, e.g., tluough 

preprocessmg. Figure 7.3 shows how the tables are implementcd in DB2: 

1 !lIqll~' 111.:1111111:1 

llld\:,\ 1 r----l 1 l '1lhlclcd IlIllo.:\ 

oIlinhUlc-Ii ... [ 

Ilmquc idcnillicr 

mde .... 1 ~ Il'lll ... lcn:dllldc'\ 

lm'llll' ide'IIII]""'1 

1 1 l 1 lïlhlcrnlllllk\ 1 III cr'-''l--'-__ ,---'--.J.~ __ _ 

P'''IIIOIl 

Figure 7.3: vVeka3.4-DB tables 
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• dataset table: The dataset table stores the training data, i.e the data records/Instance 

objects. Each attribute of the training dataset corresponds to one colullm in 

the dataset table. The relationid column contains identifiers assiglled to 

each data record in the training dataset. The value of the relationid COIUlllll 

determines which copy of the training data bclongs to which Instances ob-

ject. The position column contains positions of data records in the training 

dataset. This is basically the identification of each data record in the training 

dataset. It is equivalent ta the position of an Instance abject in the vector 

of Instance abjects contained in the Instances class. Combining relationid 

and po s i t i on can specifically locate a data record associated wi th a specifie 

vector of Instance objects. Therefore, the relationid coluInn and position 

column are combined as an unique identifier of the dataset table. The reason 

for havillg an unique identifier implicitly not a primary key explicitly is that 

a key constraint would slow down the pro cess of loading the data into OB2, 

since the database has to check the key constraint on each data record bcfore 

inserting it into the table. 

The position is created for each data record when it is first loadcd into the 

dataset table, and corresponds to the position of the data records in tlH' 

training dataset. The relationid is associated with one or more theUl one 

Instances objects (since Instances objects can share training data). Using 

the ImmutableDataSet class, there is only one relationid, which is crcated 

wh en the training data is loaded into the database. AlI objects share the same 

relationid since the training data is shared by all objects and never cbanged. 

In the MutableDataSet class, the first relationid is created when the training 

data is loaded into the database, and objects share the sam(~ relationid llntil 

SOlue data records are challged. Then the Instances object that bas chauged 

a record will receive a Hew relationid. This Hew relationid It) u:-,cc! loI' 

changed records. Each of these records will be inserted illto the dataset table, 

having the same position values but the new relationid. The Instances ob­

ject can trad: both unchanged and changed data records by keepiug its UWll 
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relationids. That IS, an Instances abject can have data records \Vith dif­

ferent relationids. Changed records have the new relationid, llnchangcd 

records have the same relationids as determined by the Instances abject (of 

which the new abject is a copy). 

The dataset table has tluee indices. One is on the unique identifier, one is an 

unclustered index on relationid, and one is a c:lustered iudex on position. 

The reason for having those indices is that most often relationid and posi tion 

are the search conditions defined in the where clause of SQL qupries . 

• fil tereddataset table: The filtereddataset table is cl'eated only when the 

data preprocessing has made dramatic changes on the traiuing data. lt stores 

attribute values of the training dataset aftel' the data records in the dataset 

have been preprocessed. The f iltereddataset table in principle has the snnw 

schema as the dataset except that it may have different attribute columns if 

the attributes are altered by the data prepl'ocessing. The fil tereddataset 

table has the same indices as the dataset table . 

• weight table: The weight table stores the weights of data records of Instances 

objects. The tableid column and position colllmn correspond to the relationid 

column and position column in dataset table. Combining tableid and 

posi t ion can specifically locate \veights of training data records associated with 

a specifie Instances object. Therefore, the tableid colllmn and position col­

umn are combined as the unique identifier of the weight table. The tableid 

is associated with one or more than Olle Instances object. Joiuiug dataset 

table and weight table on tableid/relationid and position can match the 

weights with the corresponding training data records. The weight table nlso 

has three indexes. One is on the unique identifier, one is an unclustered index 

on tableid, and one is a dustercc1 index on position. Tll<' l"(',\SOll for ll(\\'illg 

those indices is that most oftcn tableid and position are the search conditions 

defined in the where clause of SQL queries. 
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7.3 Basic Interaction between core and DB2 

As it has been discussed in the previous chapters, the interaction between the ap­

plication program and DB2 is performed through .JDBC, and thcrc are a number of 

implementation alternatives proposed by [36]. The alternative adopted by the core 

of vVeka3.4-DB is a loose coupling approach, which has been discussed in Chapter O. 

The basic idea is to access the data records in the database directly by execllting SqL 

qlleries, where the DB2 server is running in a different address space from vVeka3.4-

DB. Tv'Iore precisely, through the .JDBC API, a connection to the DB2 servel' is built 

by core, SQL queries are constructed in core, sent to the database and executed, 

and the resulting relation is retllrned through ResultSet ob.iects. vVe have taken 

this approach for two reasons. First, it is a simple approach with great flexibility. 

Second, since we want to provide a generalized interface into which ncw data rnilling 

algorithms can be plugged in by non-DB2 experts, this seems to be the most feasiblc 

approach. 

Here, we will outline the interaction between the core data structures and its meth­

ods, and the database system. As summarized in Chapter 7, the typical methods 

of Instances in \Veka3.4 are responsible for storing data, data access, data Ina­

nipulation, and calculating statistics of data. Both the IrnrnutableDataSet class 

and the MutableDataSet class are DB2 data storage implementations. Sincc the 

IrnrnutableDataSet objects share the same copy of the training data, it makes the 

underlying implementation of the IrnrnutableDataSet class simpler than the one of 

the MutableDataSet class. Because most of the algorithms in vVeka3.4 only acccss 

data records withollt modifying them and the training data will not be changed by 

any ob.iect created during the computation, the IrnrnutableDataSet class becomes 

ltlore suit able for most algol'ithms. III the following, we give an ovel'view of how stor­

age, data access, and data manipulation are implemented in the IrnrnutableDataSet 

of vVeka3.4-DB. 
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7.3.1 Storing Data 

vVhen an algorithm needs to load training data from an input file into main memory, 

our core implementation creates sorne main memory information and stores the train­

ing data from the file into the database. First, a main memory ImmutableDataSet 

abject is created to store aIl the attribute type information. The ImmutableDataSet 

abject contains a vector of the size of the training dataset. However, in contrast to 

YVeka3.4, this veetor does Ilot eontain entire data records. Instead the vector eutries 

are aIl integers representing the positions of the data records. vVe rcfer to this vectOl" 

as an index veetor. The data records themselves are storc~d in the dataset tallie 

using the generated relationid and the appropriate positions. Aiso weight records 

with the newly generated tableid and positions are added ta the weight table. All 

database operations are performed using a special load interface. 

The index vector is the only memory-based data structure used in the ImmutableDataSet 

class that could grow linearly with the size of the training dataset. The reason for 

having this index vector is that, in general, ImmutableDataSet objects created in the 

algorithms can reorder the data records during the computation, for instance by sort 

and re-sample. Having the index vector in memory can make sueh operations less 

expensive, sinee only the positions of data records in the index veetor are adjusted 

and there is no need 1,0 reorder the underlying data records in the database physically. 

And most importantly, it is an efficient way to keep each ImmutableDataSet object 

having its own copy of the training data ill orcler to guaralltee Lhe couecLlless of Lite 

algorithrns. Therefore, the index vector represents the training data in the correct 

order for a specific ImmutableDataSet object. Most often, any ImmutableDataSet 

object created afterward either shares the same copy of training data wiLl] tlw orig­

inal object or has its own copy. In the first case, it shares the SUIne index vcctOl', 

relationid and tableid (share all data records and weights). In the latter, it croates 

its own index vector, calls the add method to add positions of the correspondillg data 

records into the index vector, and inserts the corresponding weights and posi tiolls 

into the weight table with a new tableid. But it still shares the same relationid 
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to refer to the training data, ::;ince the training data itself never changes. The Ilew 

copy of the training data is represented by the new index vcctor, indicating which 

data records in which arder are associated with the ImmutableInstance object. 

7.3.2 Basic Data Access 

vVhen an algorithm needs to access aIl the training data, it can either calI enumerateInstance () 

to get an enumeration of ImmutableInstance abjects or calI instance (int index) 

in a loop to iterate over aIl ImmutableInstance abjects. The way of accessing data 

records from DB2 using the data access methods of ImmutableDataSet is to rctl'ie\'l' 

the position from the index veetor and access the corresponding data records in the 

dataset table or weight table by specifying the relationid/tableid and the po-

sition. The following exarnple show::; the basic idea of how instance (int index) i::; 

implemented in ImmutableDataSet class. 

public final Instance instance(int index) 

throws SQLException{ 

//get position from the index vector 

int position = (Integer) (m_Positions.elementAt(index» .intValue(); 

//process the weight and attribute names to the Column array 

Column cols = new Column[numAttributes()+lJ; 

cols[OJ = WEIGHT; 

System.arraycopy(processAtt(m_Attributes),O,cols,l,numAttributes(»; 

String colnames = makeColumnNameSequence(cols); 

String query = "SELECT "+colnames+" from weight, dataset" 

+ Il WHERE tableid = II+tid+ Il AND relationid = II+rid 

+ " AND dataset .position = II+position 

+ " AND weight .position = II+position; 

ResultSet rs = null; 

double[J values = new double [numAttributesJ ; 

double weight; 
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rs = strnt.executeQuery(query); 

while(rs.next()){ 

weight = rs.getDouble(O); 

for(int i=O, n=nurnAttributes(); i<n; i++){ 

rs.getDouble(i+l) ; 

} 

} 

} 

if (!rs.wasNull()){ 

values[i] = rs.getDouble(i+l); 

}else{ 

values[i] = Double.Nan; 

} 

rs . close () ; 

IrnrnutableInstance instance = new Instance (weight, position, values); 

instance.setDataSet(this) ; 

return instance; 

In this example, only one data record is in the resulting relation, since the position 

value can uniquely identify the data record in one copy of the training dataset. 

The enurnerateInstance () method first generates an enurnerate object. This allows 

us, in principle, to execute the SQL statement just one time, when this object is 

generated. A possible statement is: 

SELECT * 
FROM dataset OUTER JOIN weight 

ON weight.position = dataset.position 

WHERE weight.tid = DS 

ORDER BY position 
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which retrieves aIl records in the order in which they were entered into the database. 

Since the records are physica11y ordered this way, this should be Cl fast scan through the 

dataset and weight tables. Bowever, since the records have to be obtained through 

the enumerate interface, they have to be returned aeeording to the positions storecl 

in the position veetor (whieh might be arbitrary). Bence, we must use a scrollable 

.JDBC ResultSet with which we can jump arbitrarily to any position. When the 

next entry of the veetor indieates a position p, we ean call Resul tSet. absolute Cp) 

to retrieve the correct record (in order to retrieve the correct position with absolute 

we have to use an outer join. This guarantees that even if not aH records are present 

in the position vector and the weight table, they will nevertheless be selected. Hence 

absolute Cp) guarantees to provide the data record with position p.). Altel'natively, 

Vi'e can use for enumerateInstance 0 the same meehanism as for instance (index), 

submitting one SQL statement for each record to be retrieved. Only the second 

alternative is implemented in the ImmutableDataSet class. 

It is not immediately clear which of the two alternatives is faster: submitting one SQL 

statement for each record to be accessed or having a single SQL that retrieves aIl tuples 

which are th en accessed in an arbitrary way through ResultSet primitives. So far, 

we tested the case in which the order in the position vector is the same as the orcier 

in which the records are stored in the Resul tSet. In this case, one SQL statement 

for the entire data set outperforms by far individu al SQL statements for each record. 

Vve are currently performing tests for the fo11owing two cases. (i) The position vcetor 

performed some sorting and hence does not follow anymore the position order in the 

clatabase. In this case, arbitrary access of records in the Resul tSet might be very 

slow. (ii) The size of the position vector of the specifie ImmutableDataset ob.iect is 

mnch sma11er than the size of the cntin~ data set. This can occur, c.g., in decision trœs, 

where in later iterations of the decision tree construction only subsets of the entire 

data set are analyzed. In this case, the number of retrieved records lllight actually 

Le srnall, and hence the executioll of the few S(~L staternents couIc! Le faster. The 

further investigation is underway. 
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7.3.3 Basic Data Manipulation 

An algorithm can manipulate data through methods such as add (Instance instance) 

and delete Cint index). Since the training data has been stored in the database by 

the load() method and all the ImmutableDataSet ob.iects share the saIlle copy, tll(~ 

add (Instance instance) rnethods adds l'eferences to data records by adding the 

corresponding position values to the index vector and inserting the weight records 

into the weight table. No data record is added into the dataset table. Simi­

lar to the add(Instance instance) rnethod, deleteCint index) rnethod dcletes 

the data records by removing the corresponding position values from the index vec­

tor and deleting the weight records from the weight table. No data record in the 

dataset table is deleted. Updating any ehallge on the index veetor ami the weight 

table can guarantee the index vcctOl" represcnts the data records associated with 

the ImmutableDataSet object in the correct order and the weight table couLai us 

an the data records associated with the ImmutableDataSet illstance. Whell the 

ImmutableDataSet object eaUs its own methods, executing those methods can only 

affect its own copy of the training data, more precisely, the index vector and the 

weight table. Note that the data records in the weight table may not be ordered as 

iIl the index vectors. Rowever, this does Ilot play any roll' since either they caIl bc 

ordered upon retrieving them from DB2 or the order is not important. 

7.4 Moving Functionalities into D 82 

\Vhenever the training data is accessed, it must be loaded record by reeord into 

main memory. This removes any memory eOllstraillt but increases response time 

tremenclously. Renee, avoicling to load data records to memory whenever possible is 

highly clesirable. One way 1,0 addrcss this is to push some functionaliti(~s into DB2. 

This leacls to a tighter integration ,vith the llnclerlying da1"has0. \\'llieh illlJllïi\'('~ 

performance. 

Depencling on how tightly a strategy couples Weka3.4-DB to the relational DBlVIS, 
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different strategies result in different efficiencies of the implcmentation of \Veka:3.4-

DB. 'vVe first look at sorne basic methods of the Instances interface. 

Strategy I 

This is the strategy described so far. The training data is loac1ed Olle record at a j i Ill(' 

AlI the attributes of one data record are retrieved from DB2 and the data record is rcp­

resented as an ImmutableInstance object. The idea is to store the data record as an 

ImmutableInstance object in main memory to complete the CUITent step of the C0111-

putation, then let the Java garbage collector colle ct the unused ImmutableInstance 

object, and continue to load the next data record into main memory for the next step 

of the computation. Since only a few ImmutableInstance objects remain in the rnain 

memory at any time (the garbage collector collects the unused objects periodically), 

strategy I can provide high scalability. But the computation may be slow, since it 

has to retrieve the data records one by one. 

Strategy II 

Strategy II employs the same approach as strategy I, but only retrieves the attribute 

values that are involved in the computation. This saves space and leads to less com­

munication overhead between VVeka3.4-DB and the database. Using this approach, 

however, the developer of the data rnining algorithms Imti to indicate which attributeti 

are needed. Renee, this strategy requires an extension of the current Instances in­

terface, which is not done in the current core implementation. 

Strategy III 

Strategy III provides the best optimization. It employs th(~ same approach as the 

semitight coupling proposed by Rand and and Kamber [18]. The idea is Lo use SOllle 

standard functions within the database system, and to provide an interface to the 

data mining algorithms ta calI them. Compared to the other strategies, this provides 

the maximum scalability and efficiency for \;\1eka3.4-DB, and should be applied as 

llluch as possible. 

:tvlost often, the rnethodti that calculate tiOHle statistics of the training data wn be 
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optimized by applying this strategy. The typical easy example is sumo When the main 

memory implementation needs to sum weights of the training data, it iteratcs over 

the whole vector of Instance objects in the Instances class. If ""ve used the same 

implementation for ImmutableDataSet class, we would have to retrieve each data 

record from DB2, load it in memory to retrievc the weight for summation. Inst(~a(L 

we achieve the sum computation by applying the aggregate function sum of SQL on 

DB2. For instance, the sumOfWeights method in ImmutableDataSet class is: 

public final double sumOfWeights() 

throws SQLException{ 

} 

String query "SELECT sum(weight) FROM weight where tableid = "+tid; 

ResultSet rs = null; 

rs = stmt.executeQuery(query); 

double sum=O; 

while(rs.next()){ 

sum=rs.getDouble(l); 

} 

rs. close () ; 

return sum; 

A more complicated method is meanOrMode (Attribute att). Similar tü the sum, 

instead of loading the data records from DB2, we achieve the meanOrMode (Attribute 

att) method by using the following SQL statement to calculate the mean of a numeric 

attribute. 

public final double meanOrMode(Attribute att) 

throws SQLException{ 

if (att.isNumeric()){ 

double result = 0; 

String query = "SELECT sum ( weight * "+att.nameO 
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} 

+,,) FROM weight, dataset" 

+" WHERE tableid = "+tid 

+" AND relationid = lI+r id 

+" AND weight. position = dataset . position" 

+" AND "+att.nameO+ 1I IS NOT NULL" 

ResultSet rs = null; 

rs = stmt.executeQuery(query); 

while(rs.next()){ 

result = rs.getDouble(1); 

} 

}else if (att.isNominal()){ 

} 

Another typical function is sort. Wlwnever the method nceds 1,0 order the training 

data based on some attribute value, instead of applying any main memory sor'ting 

algorithm, which requires to retrieve records possibly multiple tirnes from DB2, we 

implement sort by using a SQL statemcnt, selecting the position and using the order 

by clause on DB2. For instance, the sort method in ImmutableDataSet class is shown 

in the following. 

public final void sort(Attribute att) 

throws SQLException{ 

String query = "SELECT weight .position FROM weight INNER JOIN " 

+"dataset ON weight . position = dataset . position " 

+"WHERE tableid = lI+tid 

+" AND relationid = "+rid 

+11 ORDER BY lI+att. name 0 ; 

ResultSet rs = null; 
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} 

rs = stmt.executeQuery(query); 

FastVector result = new FastVector; 

while(rs.next()){ 

result.addElement(new Integer((Int)rs.getDouble(l))); 

} 

m Positions = result; 

rs. close () ; 

Note that only the weight table represents the data records associated with one par­

ticular ImmutableInstance object, so it needs to join the weight table with the 

dataset table in order to get the correct order. 

These optimizations, compared to strategy II, do not need a change OIl the core 

interface, as long as they implement the methods of the Instances interface. vVe 

have implemented them in the ImmutableDataSet dass. 

7.5 Optimizations outside the core 

So far, we have only described how vve have re-irnplernented the core. The imple­

rnentation is transparent to the existing algorithms. AU data mining algorithms and 

filters, as described in Figure 6.2 build on top of core. Hence, they can now take 

advantage of the new implemeIltation that is ulll'estricted in size. Howc\·cl', tlI0S('S 

algorithms themselves can be implemented in a smarter way if they are awan) of 

memory limitations. vVe will discuss our optimization of the filter algorithms and the 

logistic regression algorithm. 
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7.5.1 Data Preprocessing: Filters 

The general idea of data preprocessing has been discllssed in Chapter 3. In vVcka3A, 

the data preprocessing classes, caIled filteTs, are implemented in the f ilters interface, 

which is independent from the core interface. Those filters can be useci independently 

to preprocess the training data befme running the algorithms or can be invokeci inside 

the algorithms. We have looked at three filters in particular. 

1. ReplaceM'iss'ing Values: replace aIl missing values of nominal and Ilumenc: at­

tribut es with the modes and means of the training data. 

2. NorninalToB'inaTY: convert ail nominal attributes into binary numeric attributes, 

such that an attribute with k values is transformed into k binary attributcs, and 

binary attributes are left binary. 

3. RemoveUsele8s: remove attributes that do not vary at aIl or that vary too much, 

which applies to two kinds of attributes: constant attributes that cio Ilot vary at 

aIl; attributes that exceed the maximum perccntage of the val"Îauce parametel". 

In \iVeka3.4, filters are implemented 1,0 filter the training data records one by one. A 

filter stores aIl the filtered training data in a queue. Applying the same implementa­

tion in Wcka3.4-DB would load ail the training data into main memory and write the 

llew values back to DB2. This adds considerable overhead 1,0 the algorithm. And, 

more importantly, it introduces a main memory constraint by using the queue data 

structure. In order 1,0 make the data processing step feasible and efficient for large 

datasets, extra methods are created to aIlow those filters to bc mn withollt loading 

any data records into main memory. In other worcls, the strategy III for database­

oriented implementation is employecl to move the functionalities of those filters into 

the clatabase. The basic ideas of how those filters are implemented are describcd in 

the following: 

• ReplaceMissing Val'uesPilteT: precomputc modes of nominal attributcs and IllC'.\llS 
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of numeric attributes with SQL aggregate functions and use update SQL state­

ments to replace missing values with modes and means . 

• NominalToBinaryFilter: adding attributes means changing the table schema 

by adding columns. Therefore, the heuristic is that if the number of new 

columns does not exceed the thresholcl, new columns are added to the dataset 

table and the corresponding values for new columns arc updated; otherwise, 

the filtereddataset is created with unchanged columns and new columns, 

unchanged values are copied from dataset to fil tereddataset, and the cor­

responding values for new columns are inserted. The heuristic helps rninimize 

the cost of the operation, sin ce creating a table is a very expensive operation in 

the database, and adding many columns to a table also costs a lot . 

• RemoveUseless: removing attributes can be done on the attribute information 

storecl in the ImmutableDataSet elass without touching the database, Sillce 

the SQL statements used to load data records from DB2 look at the attribute 

information in the ImmutableDataSet elass to determine which attribllte 1,0 

retrieve. The criterion useel to eletermine which attribut es are useless is the 

number of attribute values. For nominal attrilmtes, the IluUlber of values is 

calculated using the attribute information stored in main memory. For numeric 

attributes, the number of values is calculated by counting the distinct values 

in the database. For those that either have a single attributc value 01' too 

many attribute values that exceeds the threshold, they will be removed ±'rom 

the attribute information stored in main memory. 

As a result, none of the filters requires to l'ead data records into mam memory, 

improving scalability and efficiellcy. 

7.5.2 Logistic Regression 

The general idea of logistic regressioll has been discussed in Chapter 3. T'he logistic 

regression algorithm implemented in Welm3.4 is a penalized logistic l'egrcssion with 
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ct default ridge parameter I.GE - 8. It is based on the paper of le Cassie and van 

Houwelingen [8], but without estimating the ridge parameter. The ridge parameter 

can be specified as user input. If no user input is given, the default value is taken 

for the computation. Since there is no need to apply any method to c:llOose the 

ridge parameter, the only step left is to compute the coefficients for the attributes. 

Therefore, the logis tic regression algorithm sim ply goes through the training data and 

builds the logistic regressioll model by calculating the coefficiellt fol' each attribute at 

each step. 

Snppose there are k classes for n data records with m attributes and the coefficient 

matrix B is an m * (k - l) matrix. The log-likelihood function applied in the logistic 

regression algorithm is: 

L=- L L (YU*ln(PjC,Yi)))+(I-( L Yij))*ln(l- L Pj(Xi )) 

i=l..nj=l..(k~l) j=l..(k~l) j=l..(k~l) 

where the probability of class j except the last class is 

and the last class has probability 

The goal of the algorithm is to find the matrix B for which L is minimizcd. A 

Quasi-Newton methocl is used to sem'ch for the optimi~ed values of the 'In * (k - 1) 

variables. Before the optimization procedure is used, the matrix B is squeezee! illto 

a 171 * (k - 1) vector. Once the matrix B is computed, the probability of any data 

record that belongs to a certain class can be compllted by the probability fllnctions 

as above. Although the original logis tic regression does not cleal \Vith weights for the 

ctttributes, the irnplernentation is adjusted to handle the weights. 
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The basic steps of logistic regression implemented in vVcka3.4 arc shmvn in the fol­

lowing: 

Logistic (training dataset, testing dataset) 

Store training dataset into main memory as an Instances object 

filter the training dataset using ReplaceMissingValues 

filter the training dataset using RemoveUseless 

filter the training dataset using NominalToBinary 

Normalize the training dateset and store the 

normalized training data in a 2-dimensional array 

Compute the coefficients by minimizing the 

log-likelihood function based on the 2-dimensional array 

Evaluate the logistic regression model on the filtered 

training dataset 

Evaluate the logistic regression model on the filtered 

testing dataset incrementally 

The filters that are illvoked inside the algorithm have been re-implemented as dis­

cussed in the previous section, and hence do not impose any scalability restriction 

any more. 

However, the logistic regression algorithm creates a 2-dimensional main memorv struc­

ture that is, in fact, as large as the cntire dataset. Even though logistic regrcssion can 

achieve good scalability using the optimized filters, it is limited by the 2-dimensional 

array constraint. This shows that developers must be aware of space limitations. 

However, we can help them in developing scalable implementations by providing ad­

equate support. In the above example, normalizing data and the computation of the 

normalized data seem to be a standard approach 11sable in various algorithms. There­

fore, we offer an extra interface that allovvs norrnalizing data within the databasc. 1l 

is implemented using DB2. That IS, the normalization uses SQL queries and the 
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result is stored in DB2. The developer can use it without knowing that a database 

implementation is used. 

The two alternatives lead to two variations of the implementatioll of computing the 

logistic regression model. They diff"er in how they are implemented in the algoritlull. 

• variation 1: load the training data from DB2 with strategy I, llOrIIlali:;;c the 

training data and store the normalized training data in the 2-dimensional anay 

(existing algori thm). 

• variation 2: create extra normalization methods in the ImmutableDataSet class, 

strategy III caUs these methods from the logistic regression algorithm: load the 

normalized training data from DB2 with strategy 1. 

7.6 Strategies for Performance Optimized JOBe Ap­

plication 

There exist sever al ways to geuerally speed up JDBC applications. SOIlle of these 

strategies have been applied in the DB2Manager and DB2Helper classes, and are de­

scribed in the foUowing. 

• Connection: Connection management is important for application performallce. 

Creating a connection to a database server is expensive and it is evcn more 

expensive if the servel' is a remote server. A simple and casy strategy iB tu 

open one connection and share it in a seriaI fashion among multiple statemcnt 

objects. Bence, in the core implementation of vVeka3.4-DB, the cOIlllection 

is opeued by a DB2Manager object, which is a static field in DBDataSet. AU 

the objects of eithcr ImmutableDataSet or MutableDataSet share the same 

DB2Manager object, and hence share the same connectioll. Since this strategy 

only works with the single-user mocle, this DB2 storagc implcmcntatio11 0111y 
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supports single-user rnode. If multiple-user mode is requested, the DB2Manager 

object should maintain a connection pool. 

• Transaction Atomicity: In general, a transaction represents Olle logical unit of 

work or piece of code that either executes entirely and cornmits, or it does not 

execute at aU, aborting aU the work do ne so far. Initializing a transaction and 

terminating it (commit or abort) can be quite time consuming. Using .JDBC 

default, each SQL statemellt cxecutes as a single transaction using autocommi t 

on. In autocommi t off, the program decides which statements belong to a 

transaction by setting explicit commit statements when a transaction should 

terminate. Using autocommi t on gives poor performance when multiple state­

ments are to be executed one after another, because commit is issued after each 

statement by default. This reduces performance by issuing unuecessary com­

mits. Therefore, in our core implementation, the autocoIllIllit is set to false 

and the commit () method is caUed explicitly after a set of related statcments. 

• Transaction Isolation Level: The isolation level represents how a database 

maintains data integrity against problems like dirty reads, phantoIIl reads and 

non-repeatable reads that can occur due to concurrent transactions. Differ­

ent isolation levels have different impacts on the performance. A stricter iso­

lation level has worse performance in terms of execlltion time. This is true 

because the database uses locks ta prevent different transactiolls ta access the 

same data records. The stricter the isolation level, the more locks I1mst be rc­

quested, hence the more overhead occurs due to locking. The default setting is 

read_commi tted, which IlleaIlS a transaction can only read the data fram the 

database when the data has been committed by other transactions. Any isola­

tion level that is lower than the clefault is likely to he faster, and the opposi Le 

will probably he slower. In our core implementation, the isolation level can he 

lowered to read_uncommi tted level, since therc are no concurrent transactions 

and execlltion is sequential. Hence, there is never uncommitten nata. Thal. is, 

although we set the isolatioll level to uIlcommitted, leadillg Lü extremely lm\' 

locking overhead, we achieve the same effect as read_commi tted. 
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• Statement: There are three types of statement interfaces in JDBC to repre­

sent a SQL query and execute that query: Statement, PreparedStatement 

and CallableStatement. Statement is used for static SQL statements \Vith no 

input and output parameters. PreparedStatement is usecl for clynamic SQL 

statements with input parameters and CallableStatement is uscd for dynamic 

SQL statements with both input and output parameters. PreparedStatement 

gives usually better performance compared to Statement because it is prc­

parsed and pre-compiled by the database once for the first time and thell 

it reuses the parsed and compiled statement afterward. Because of this 1'ea­

ture, it can significantly improve the performance when a statement executes 

repeatedly, SillCC it reducet:> the overload incurred by part:>ing am1 cornpilillg. 

PreparedStatement has becn applied in our core implcmentation. For in­

stance, the insert query used for inserting the data records from the train­

ing dataset is executed as wally tiwes as the size of the traillillg datasct. A 

PreparedStatement created for such a query helps save the overhead of pars­

ing the same statement multiple times. Hence, in the core implementation, 

a PreparedStatement object with the batch update feature is created for ill­

serting the data records into the database. The attrilmte valuet:> of each data 

record are added to the batch of the PreparedStatement object. vVhenever tbe 

attribute values of a predefined number of data records have been adclcd into 

the batch, the PreparedStatement is executed and all the attribute vètluet:> are 

inserted into the database. 

There exist further possibilities to use the PreparedStatement. For iustance, 

a function that offers ta select certain attributes of aIl data records can be implc­

mentecl with the PreparedStatement in the following way. A PreparedStatement 

object usecl for retrievillg the attributes of data records from the database is 

created before the loop. During the loop the PreparedStatement object it:> cx­

ecuted repeatedly to retrieve the attribute vetIlle of each dettet n=~cord stf'p hy 

step. 
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Chapter 8 

Performance Evaluation 

8.1 Experiment Design 

8.1.1 Goal and Setup 

The major goal of the experiment section is to show that applying a DB2 storage im­

plementation can improve the scalability of existing algorithms significantly without 

modifying the results of the algorithms. We use logistic regression as a demonstration. 

Furthermore, we compare the performance of different versions of logistic regressioll 

to show the effectiveness of different strategies for improving the scalability. 

The experiments are conducted on a Linux machine ,vith dual CPUs nt CISTI, ~H.C. 

The kernel version of the Linux machine is 2.4.18-26.8.0, the CPU model is Intel 

(R) XEON (TM) MP CPU 1.50GHLI, the CPU frequency is 1492.183 and the total 

IlleIIlory is 3098684 KB. DB2 8.1.0 serve!", set up by Greg Kresko from CISTI, is 

nmning on the same machine with a fixed configuration. Appendix A shows how the 

DB2 server is configured. 
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8.1.2 Datasets 

ARFF 

The input dataset files are required to handle ARFF (Attribute-Rela,tion Format 

File) format [41]. An ARFF cOllsists of a header section and a data sectioll. The 

header section contains a relation name declared by token @relation and attribute 

information declared by token @attribute. The attribute types supported by VVeka3.4-

DB are numeric and nominal. The numeric attributes can be defined as real or integer 

numbers and the nominal attributes have a list of possible nominal values. The data 

section contains aIl the data declared by token @data. Each data record residcs on 

one hne of the file. Attribute values of each data record are separated by comma 

and rnissing values are repl'esented by question marks. Appelldix B shows a sample 

ARFF. 

Synthetic Datasets 

The first experiment is based on synthe tic clatasets, which are gellerated by a data 

generator for classification tasks. The data g"enerator is originally from IBM Alulê1dcll 

Research Center [1]. VVe slightly modified it to generate ARFF format dataset files. 

The data generator only generates numeric type attributes and nominal type class 

attributes. The numeric values are randomly generated integer values. The nominal 

class values are binary nllmbers with llser-defined percentages. In the cxpcrimcnt, 

ten training datasets between 10,000 to 100,000 data records and one testing dataset 

with 5000 data records are used. Each dataset has 50 aLtrilmtes alld 1 class aLLriuuLe 

without missing values. 

Real Datasets 

The second experiment is based on real datasets, which are derived from (me AVIRIS 

(Airborne Visible/lnfrared Imaging SpectroIUcter) dataset. Tt is originally from JPL 

(Jet Propulsion Laboratory, California Institute Tcchnology) and extcnsivdy COl"­

rected by CCRS (Canadian Center for Remote Sensing, N atural Resources Canada). 

The AVIRIS data is hyperspectral data that was capturecl by N ASA/ JPL AVIRIS 
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sensor over Cuprite, Nevada on June 12, 1996 (19:31 CT). Paul Budkewit::;ch fwm 

CCRS released the AVIRIS dataset with 300,0000 data records and 170 attributes. 

For more background information about the dataset, please refer to [34]. 

In the experiment, four different AVIRIS datasets are generated by randomly sam pliug 

the original AVIRIS. This sampling was done by Glen Newton from CISTI (Canada 

Institute for Science and Technical Information) of NRC (National Research Conncil 

of Canada). Each attribute value represents a reflectance at an interval of 0.12mn 

wavelength in the range of 0.428 to 2.5 without 1.4 and 1.9nm. The class attribute 

value represents if a certain mineral is present or not. There are three target mineraIs 

associated with the original AVIRIS dataset, wlüch are alulliLe (AL), kaolilliLt: O\.A) 

and buddingtonite (BU). In our experirnent, we will look at kaolinite. The class 

labels of the generated four training datascts show if kaolinite (KA) is present or not 

with a threshold of 25%. In the experirnent, four training datasets contain 12669, 

19712, 35055 and 78592 data records respectively, and one testing dataset has 3224 

data records. Each dataset has 168 numeric attributes and 1 nominal class attribllte 

without missing values. 

8.1.3 Logistic Regression 

\Veka3.4-DB runs under the original main rnemory core irnplementation and our 

DB2-basecl core implementation on the sarne machine as the DB2 server resides OIl, 

"vhich is lightly loaded. In arder ta easily refer to different irnplementations, wc cali 

the first one the memory storage implementation and the second one the DB2 storagc 

implementation. The two implemeIltation arc starLed with tlw [ollO\vlllg cUllllllamb. 

java -Xms64M -Xmx64M -Dds=mm weka.classifiers.functions.Logistic 

-t data/syntheticl0k.arff -T data/synthetic.arff 

java -Xms64M -Xmx64M -Dds=dbi weka.classifiers.functions.Logistic 

-t data/syntheticl0k.arff -T data/synthetic.arff 
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In order to make a reasonable comparison between the two implementêttions without 

having an extremely long running time, the memory size that can be used by both 

Implementations is constrained to 64MB. The -Dds option is used to set up the 

storage implementation: mm means memory storage implementaticlll and dbi Hwans 

DB2 storagc implementation with ImmutableDataSet (sincc logistic rcgression will 

not change any attribute values after the filter operations). The -t option is used to 

set up the training dataset and the -T option is used to set up the testing clataset. 

An oxperiments use the default values for the optionti for logititic regression. 

Besides the implementation of logistic regression based on the memory storage, logis­

tic regression based on the DB2 storage has been implemented with three different 

versions for the em pirical study. Each vertiion has adopted different strêttegies clis­

cussed in the last chapter to achieve a database-oriented implementation. 

• version 1: 

1. no modification on the implementation of logistic regression, i.e. only use 

the basic interface of core to access and manipulate data, (variation 1 of 

logistic regression describecl in Section 7.5.2) 

2. filtors are not optimized and only use the basic core. 

• version 2: 

1. no modification on the irnplernentation of logistic regretision, (variation 1 

of logistic regression) 

2. use the modified filters 

• version 3: 

1. use the enhanced interface, and adjust logistic regressioll (variatioll 2 of 

logistic regression described in Section 7.5.2), 

2. apply the filters 
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Version 1 is a naive approach. It only uses the basic interface of core and does not 

optimize the algorithm itself to improve scalability and efficiency. In contrast to the 

other two versions, version 1 is supposed to be the worst. 

Version 2 and version 3 move some of the computation of the algorithrn illto the 

database, which makes them more efficient. Although, version 2 has a mcmory COl1-

straint, its use of an array makes the data access faster than loading data records 

from the database. 

Since version 3 removes aIl the memory constraints, it can achieve the highcst scala­

bility among aIl the versions. Hovvever, the performance of version 3 may sllffer from 

the overhead caused by loacling the data records into main memory. 

The different versions oflogistic regression in vVeka3.4-DB are rnaiutaincd by thc CYS 

repository and will run under DB2 storage implementation with the sarne commando 

In the experiment, we call the implementation of 10gistic regression based on the 

memory storage as main memory version of logistic regression, aud the irnplelllen­

tations of three versions of logistic rcgression based on DB2 storage as version l of 

logistic regression, version 2 of logistic regression and version 3 of logistic regression. 

8.2 Experimental Results 

8.2.1 Experimental Results for Synthetic Datasets 

Results for version 1 were very bad, with long execution times even for swaIl datasets. 

Heuce, wc do not discuss it further. The experirncntal results of ~version 1 arc not 

shown in the foIlowing figures. 

The results for synthetic datasets of running the main memory verSlOn of logistic 

rcgression and version 2 of logistic regression are shown in Figure 8.1. 

Both implementations produce the same classification results on aIl the datascts. The 

figure shows that the main memory version of logistic regression l'uns out of memory 
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Figure 8.1: Synthetic Datasets: Main Memory vs V2 

on the training dataset with 50,000 data records, and the version 2 can run with the 

training datasets up to 100,000 data records. 

Version 2 c:an hand1e a bit more than twice the Humber of data records as the main 

memory version. It can't increase any further since the 2-dimensional main mcrnory 

data structure of 10gistic regression hinders fUl'ther sca1abi1ity. The execution time of 

version 2 grows linearly with the size of the training dataset. It a1so increases lineal'ly 

in the main memory verl-lion but with a l-lmaIl coefficient, which il-l ncarly ncgligible. 

The reason is that version 2 retrieves each data record individuaIly t'rom the database 

whi1e the main memory version 10ads aIl the data records in main memory and henc:e 

has very fast ac:cess. 

However, version 2 l'uns out of memory for a dataset "vith 110,000 data l'cconb. The 
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Figure 8.2: Synthetic Datasets: V2 vs V3 

experimental results of running version 3 of logistic regression are shown in Figures 

8.2 and 8.3 Version 3 is running slower than version 2, because version 2 uses the 

2-dimensional array to store the normalized training data, while version :3 has to 

load the normalized training data from DB2. However, scalability is much improved. 

We ran the experiment up to a training dataset with 600,000 data records with 

version 3 without memory problems. The response time increased with the size of 

the training dataset for the entire experiment. Version.3 l'UIlS out of lll€lllOrV Oll 

the training dataset with 700,O()(J data records, because the ind(~x vector bccomcs Cl 

memory constraint, since it grows linearly with the size of the training dataset. 
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Figure 8.3: Synthetic Datasets: V2 vs V3 

8.2.2 Experimental Results for Real Datasets 

The experimcntai results of running the main memory version of Iogistic regression 

and version 2 of logistic regression for the AVIRIS datasets are shmvn in Figure 8.4. 

Both implementations produce the same classification results on aIl the datasets. The 

figure shows that the main memory version of logistic regression l'uns out of mcmory 

on the training dataset with 19712 data records, and version 2 of logis tic regl'<èssion 

l'uns out of memory on the training dataset with 78592 data records. Sillc:e the 

dataset has more attributes than the synthetic dataset, more melllory is uœded tu 

store each dataset. Tt shows that the scalahility of version 2 of logistic regression c10es 

suffer from the memory constraint caused hy the 2-climensional array. However it 

can handle 4 times as many data records than the main memory version. Ilesponse 
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Figure 8.4: AVIRIS Datascts with 169 attributes: }/Iain Mcmory vs V2 

times are higher for both versions compared to the synthetic dataset due to the highcr 

number of attributes, which requires more computation. 

The experimental results of running version 3 of logistic regressioll are shown in Figure 

8.5. Version 3 of logistic regression can scale up to lm'ger datasets thau vcrsioll 2 as 

expected, because version 3 has removed almost aIl the memory constraints from its 

implementation. Note that the experiment stops only because we clic! not have ac:cess 

to datasets with a larger number of data records. 
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Figure 8.5: AVIRIS Datasets with 169 attributcs: V2 vs V3 

8.2.3 Analysis 

100 

Even though there is lack of clear cxperimental results for version 1 of logis tic rc­

gression, our preliminary tests show that a simplistic DB2 storage implementation is 

not enough and has even less scalability than the original main memory implemen­

tation. In version 2, filters have been re-implemented by moving functionality into 

the database. A similar approach is applied when improving version 2 to version 

3, where extra interfaces have been introeluced to provide methods that can get riel 

of the 2-dimensional array. Thereforc, introducing extra interfaces that are irnple­

mented within the database does improve the scalability of the algorithm. If more 

functionality is implemented within the database, more scalability can be achievecl. 

The results show dearly that version 3 can acbieve higher scalability than versioll 2 
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bccause the normalization function is implemented within the database and there is 

no need to apply it on the training data in main memory; therefore the 2-dimensional 

array holding the normalized training data is removed. Since the strategy that is 

used to irnprove scalability is similar to the sernitight coupling proposed by Han [18], 

the performance results further prove that a tighter coupling approach can achicvc 

better scalability. 

Since improving the scalability is the major goal of this study, the effic:iency is not an 

important concern \vhen running the logistic l"cgression on DB2 stol'age implclllcll­

tation. It is obvious that the logis tic regression on memory storage implementation 

always has the best execution time. But, even though version 3 of logis tic regression 

on DB2 storage implementation is slower than aIl the other implementatioIls, it still 

has a reasonable response time with respect to the size of the training datasct. 

There are a couple of special factors in this experiment that may affect the exeCll tiOIl 

time of aIl the implementations when the experiment setting is different . 

• datasets: training datasets do not have missing values and nominal attributes, 

therefore, the effect of filtel's dose Ilot count much into the executioll tirnc. 

Execution time will increase when filters really do some serious work . 

• nctwork: vVeka3.4-DE is running on the same machine as the DB2 server. 

Therefore, the effect of network traffic does not cou nt into the execution time. 

Execution time will increase when vVeka3.4-DB is running 011 a clifferent ma­

chine. 
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Chapter 9 

Conclusion 

In this thesis, l'le extended \Veka3.4 successfully to handle large datasets that can't 

fit into main memory. Weka3.4-DB is implemented to store the data into and access 

the data from DB2 with a 100s8 coupling approach in general. Additionally, a smnit­

ight coupling is applied to optimize the data manipulation methods by implementing 

core functionalities within the database. Based on the DB2 storage irnplelllentation, 

Weka3.4-DB achieyes higher scalability, but still proyides a general interface for devcl­

opers to implement new algorithms without the need of database or SQL knowledge. 

The experiment on logistic regression demonstrates that vVeka3.4 can he extended 

to handle large datasets that do not fit into memory with a reasonahle executioll 

time. This proyes that using relation al database systems is a strategie and praetical 

solution for solving the problem of handling large datasets in data mining tasks. 

Howeyer, there are still a Ilurnher of issues that neecl to he adclressed in future work 

befon~ achieving the final goal, that is, to daim that vVekaJ.4-DB IS il mcmory­

eonstraint free paekage that ean handle arbitrary large datasets . 

• The index vector can beeome a constraint when the size of the training dataset is 

extremely large. The optimal solution ,vould be to resolve the proLJlem without 

using mernory data structures but still achieve sirnilar performance. 
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• For more cornplicated algorithm~, tluch a~ decision treetl (which tlplit the training 

dataset recursively), further specialized interfaces have to be providcd to achievc 

good performance. 

• Other implementation alternatives could be applièd in order to find the best 

strategy to optimize the performance. For instance, a local disk cau be used to 

cache frequently used data rccorck 

• Furthermore, the interaction bet"veen vVeka3.4-DB and the database can be 

adjusted, starting from furthcr JDBC related optimizations to using the ston~d 

procedures technology of the database. 
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Appendix A 

DB2 Server Configuration 

The DB2 server is tuned with following parameters: 

1. Application heap size (applheapsz) that defines the number of private memory 

pages available to be used by the database manager on behalf of a specific agent 

or subagent: 10,000 pages (41<B) 

2. Query heap size (query Jleap_sz) that defines the maxirrnun amount of rnernory 

that can be allocatcd for the query heap: 10,000 pages (41<B) 

3. Application support layer heap oize (aolheapsz) that defineo the maximum alllount 

of memory that can be allocated for the communication buffer between the local 

application and its associated agent: 1000 (4KB) 

4. Transaction log file size (logfilsiz) that defines the size of each pnmary and 

secondary log file: 50,000( 41<B) 

5. Number of transaction files primary (logprimary) that defines the l1umber of 

primary log files that can be used for recovery: 100 

6. Number of transaction files secondary (logsecond) that deiines the number of 

secondary log files that can be used for recovery: 100 
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Appendix B 

ARFF Example From Weka3.4 

©relation weather 

©attribute outlook {sunny, overcast, rainy} 

©attribute ternperature real 

©attribute hurnidity real 

©attribute windy {TRUE, FALSE} 

©attribute play {yes, no} 

©data 

sunny,85,85,FALSE,no 

sunny,80,90,?,no 

overcast,?,86,FALSE,yes 

rainy,70,96,FALSE,yes 

rainy,68,80,?,yes 

rainy,65,70,TRUE,no 

overcast,?,65,TRUE,yes 

sunny,72,95,FALSE,no 

7,69,70,FALSE,yes 

rainy,75,80,FALSE,yes 
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sunny,?,70,TRUE,yes 

overcast,72,90,TRUE,yes 

overcast,81,?,FALSE,yes 

rainy,?,91,TRUE,no 

83 



Bibliography 

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance 

perspective. IEEE Transact'ions on Knowledge and Data EngieeTing, 5(G):914~ 

925, 1993. 

[2] R. Agrawal, T. Imielinski, and A. Swami .. Mining associations bet'ween sets of 

items in massive databases. Proceedings of the ACM SIGMOD International 

Conference on the Management of Data, pages 207~216, 1993. 

[3] C. G. Atkeson, S. Schaal, and A. 'yV. :v100re. Locally weighted learning. Artificùû 

Intelligence Review, 1l(1-5):1l~73, 1997. 

[4] D. H. Ballard. An Introd'uction ta Nat'uml Computation. MIT Press, 1997. 

[5] C. Bishop. Neural NetwoTks fOT PatteTn Recognition. Clarendon Press, 1995. 

[6] P. Bradley, U. M. Fayyad, and C. Reina. Scaling EM to large databases. Technical 

report, ~'v1icrosoft Research, MSR-TR-98-35, 1998. 

[7] L. Breimall, J. H. Friedman, R. A. Olshen, aIld C. J. StoIle. Classificatùnt and 

Reg'tession T'tees. Wadsworth Statistieal Press, 1984. 

[8] S. Le Cessie and J. C. Van Houweligen. Ridgc cstimators in logistic rcgl'C:->SiOll. 

Applied Statistic, 41(1):191~201, 1992. 

84 



[9] P. Chen. The entity-relationship model - toward a unified view of data. A CM 

Transactions on Databasc Systcms, 1(1):9-36, 1975. 

[Hl] E. Codd. A relational modcl for large shared data banks. Communications of 

the A CM, 13(6):377-387, 1971. 

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to 

Algorithms. MIT Press, 2001. 

[12] C. Cortes and D. Pregibon. Giga-mining. Proceedings of the International COT!­

fen::nce on Machine LeaTning, pages 174-178, 1998. 

[13] P. Domingos and M. Pazzalli. On the optimality of the simple bayesian classifier 

under zero-one loss. Machine Leaming, 29(2-3):103-130, 1997. 

[14] D. E. Duffy and T. J. Santner. On the small sample properties of norm-restrictecl 

maximum likelihood estimators for logis tic regression modcls. Comr/7,uns Statist. 

Theory Meth., 18:959-980, 1989. 

[15] R. Elmasri and S. B. Navathe. Hmdamentals of Database Systems. Ben­

jaminjCummings, 1989. 

[16] J. Gehrke, V. Ganti, R. Ramakrishnan, and \tV-Y. Loh. BOAT-Optimistic deci­

sion tree construction. PToceedings of the ACM SIGMOD International COT~/er­

cnce on the Management of Data, pages 169-180, 1999. 

[17] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast 

deeision tree construction of large datasets. Proceeding.s of the Intcrnational 

Conference on Ver-:tJ Lar-ge Data Bases, pages 416-427, 1998. 

[18] J. Han and M. Kamber. Data Mining: concepts and techniques. Morgan Kauf­

rnann Publishers, 2001. 

[19] T. Hastie. The Elements of Statistical Learning: data Tninùl,(j, à~fé('cncc, (Lnri 

prediction. Springer, 2001. 

85 



[20] A. E. Hoerl and R. 'yV. Keullard. Ridge regresSlOn: biased estirnates for 

nonorthogonal problem8. Technomctric8 , 12:55-67, 1970. 

[21] D. VV. Hosmer and S. Lemeshow. Applied Logistic Regression. VVilcy, 2000. 

[22] VV. Inmon. B'uilding the Data Wœreho'use. vViley, 1996. 

[23] P. McCullagh and J. A. Nelder. Generalizcd Linea'!" Models. Chapman aud HalL 

1989. 

[24] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for 

data mining. Proceeding.s of the International Conference on E:r:tending Datalwse 

Technology, pages 18-32, 1996. 

[25] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997. 

[26] A. VV. Moore and M. Lee. Cached sufficient statistics for efiicient machine learn­

ing with large data sets. Journal of AT"tificial Intelligence ReseaTch, 8:67-91, 

1998. 

[27] VV. Du Mouchel, C. Volinsky, T. Johson, C. Cortes, and D. Pregiboll. Squashing 

flat files flatter. Proceedings of the A CM International Confe'!"P/IU:e on f{ nowledge 

Discovery and Data Mining, pages 6-15, 1999. 

[28] D. Pavlov, H. Mannila, and P. Smyth. Prediction with local patterns using 

cross-entropy. Proceed,tngs of the A CM Inter-nat'tonal Conféœnce on K'fI,o'Wledge 

Di8covery and Data Mining, pages 357-361, 1999. 

[29] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algo­

rithms. Journal of Data Mining and Knowledqe DiscoVCTJj, 3(2):1:n-lG9, ID99. 

[30] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishms, 

1999. 

[31] J. R. Quinlan. C4.5: Program.s fOT Machine Learning. Morgan Kaufmann Pub­

lisher, 199:3. 

86 



[32] Agrawal R. and Shirn. K. Developing tightly-coupled data rnining applications 

on a relational database system. Proccedings of the Internat1:onal Conference on 

Knowledge Discovery in Databases and Data Mining, 1996. 

[33] R. Ramakrishnan and J. Oehrke. Database Management System. NIcOraw-HilL 

2003. 

[34] B. J. Ross, A. O. Oualtieri, F. Fueten, and P. Budkewitsch. Hyperspectral 

image analysis using genetic programmming. The Genetic and EvolutiO'luLTy 

Computation Conference, pages 1196-1203, 2002. 

[35] S. Russell and P. Norvig. Artificial Intelligence: A Modem Approach. Prentice 

Hall, 1995. 

[~;6] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association mle mining 

with relational database systems: alternatives and implications. PTOceedings of 

the ACM SIGMOD Intenwt'ional Conference on Management of Daia, pages 

343-354, 1998. 

[37] R. L. Schaefer, L. D. Roi, and R. A. \Volfc. A ridge logistic estimate. Communs 

Statist. TheoTy Meth., 13:99-113, 1984. 

[38] C. Scholkopf, J. C. Burges, and A. J. Smola. Advances in Kernel Method8. ]\111' 

Press, 1999. 

[39] J. Shafer, R. Agrawal, and IVI. Mehta. SPRINT: A scalable parallel classifier for 

data mining. Proceedings of the InteTTwt'tonal Conférence O'fl, VeTy Large Data 

Bases, pages 544-555, 1996. 

[40] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. 

McOraw-Hill, 2002. 

[41] 1. H. 'Witten and E. Frank. ARFF: attribute relation file format. 

http://www.cs.waikato.ac.nz/ml/weka/arff.html. 

87 



[42] 1. H. \,yitten and E. Frank. 

http:j jwww.cs.waikato.ac.nzjmljwekaj. 

88 

Data Il 11 Il lIlg soft,vcuc III .J ava. 


