
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

DATA MINING WITH RELATIONAL DATABASE
MANAGEMENT SYSTEMS

by

Beibei Zou

School of Computer Science

Mc Gill University, Montreal

Il th J aImaI'Y 2005

A THESIS SUBMITTED TO MCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2004 by Beibei Zou

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-12571-3
Our file Notre référence
ISBN: 0-494-12571-3

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

vVith the increasing demands of transforming raw data into information and knowl­

edge, data mining becomes an important field to the discovery of useful information

and hidden patterns in huge datasets. Both machine learning and database research

have made major contributions to the field of data mining. However, there is still

little effort made to improve the scalability of algorithms applied in data mining

tasks. Scalability is crucial for data mining algorithms, since they have to handle

large datasets quite often. In this thesis we take a step in this direction by extend­

ing a popular machine learning software, Weka3.4, to handle large datasets that can

not fit into main memory by relying on relation al database technology. Weka3.4-DB

is implemented to store the data into and access the data from DB2 with a loose

coupling approach in general. Additionally, a semi-tight coupling is applied to op­

timize the data manipulation methods by implementing core functionalities within

the database. Based on the DB2 storage implementation, Weka3.4-DB achieves bet­

ter scalability, but still provides a general interface for developers to irnplement new

algorithms without the need of database or SQL knowledge.

Résumé

La demande croissante de transformer des données brutes en une source de connais­

sances utiles, fait de l'exploration de données un outil indispensable à la découverte

d'information substancielle, dissimulée à l'intérieur d'immenses ensembles de données.

L'apprentissage automatique et la recherche en bases de données ont tous deux gran­

dement contribué à l'avancement de l'exploration de données. Toutefois, les effort

déployés pour améliorer l'extensibilité des algorithmes appliqués en exploration de

données restent limités. L'extensibilité de ces algorithmes est primordiale, puisque

ceux-ci doivent souvent manipuler dénormes quantités de données. Dans cette thèse,

nous faisons un pas dans cette direction en élargissant les fonctionnalités d'un logi­

ciel d'apprentissage automatique populaire, Weka3.4, afin qu'il puisse manipuler des

ensembles de données plus grands que la mémoire principale, au moyen de la tech­

nologie qu'offre les bases de données relationnelles. vVeka3.4-DB est implémenté pour

stocker et accéder les données via DB2 avec une approche en géénéral à couplage

faible. De plus, un couplage semi-fort est appliqué pour optimiser les méthodes de

manipulation de données en implémentant des fonctionnalités noyau à l'intérieur de

la base de données. Basé sur l'implémentation de stockage de DB2, vVeka3.4-DB at­

teint un plus haut niveau d'extensibilité tout en fournissant une interface générale

aux développeurs pour implémenter de nouveaux algorithmes, sans la nécessité de

connaître les bases de données ou le SQL.

11

Acknowledgments

This thesis could not have been accomplished without many people's support. It is

rny pleasure to thank those people who have made this thesis possible. First of aIl, l

would like to express my special and sin cere gratitude to my supervisors, Dr. Doina

Precup and Dr. Bettina Kemme. They have guided me and encouraged me with

their enthusiasm, inspiration and great efforts. During the work on my thesis, they

have provided sound advice, good teaching and a lot of ideas. l would have been lost

without them.

l would also like to thank my other supervisor, Glen Newton, from the Canada

Institute for Scientific and Technical Information (CISTI), of the National Research

Council Canada (NRC), who has helped to establish the collaboration between the

research work at the School of Computer Science of McGill University and the research

group at CISTI, NRC. He has contributed to the research work with his expertise

on relational database management systems and Java programming. Special thanks

go es to Greg Kresko from CISTI who has helped to set up the DB2 server, and the

l'est of the research group at CISTI.

l am grateful to the research environment provided by the Distributed Information

Systems Group at the School of Computer Science, which is a stimulating and fUll

place to learn and grow. l wish to thank Huigu Wu, Yi Lin, Chellliang Sun, Emmy

Merryman, Shuqing Wu, Brian Gabor, Qifang Zheng, and Xueli Li for their support

and inspiration. l also appreciated Jean-Sebastien Légare's help on translating the

abstract to the French version, and the system staff Andrew Bogecho for setting up

the DB2 server for the early phase of the research.

lU

l would like to thank my family rnembel's, my parents and my sister, who have

supported me aIl the time. This thesis is a special dedication to rny husband, Feng

Qian, who has shal'ed my happiness and sadness every day.

IV

Abstract

Résumé

Acknowledgement

Table des matières

Table des figures

Liste des tableaux

1 Introduction

2 Data Mining

2.1 Overview.

Contents

2.2 Data Mining and Machine Learning

2.3 Data Mining and Database Systems .

3 Classification

v

11

III

v

IX

X

1

4

cl

G

8

3.1 Overview.

3.2 Regression

3.2.1 Overview

3.2.2 Logistic Regression

0.0 Uata Freprocessing

4 Relational Database Management Systems

4.1 Overview.

4.2 SQL

4.2.1 Basic Structure

4.2.2 Aggregate Functions

4.2.3 .loin Operations.

4.2.4 Nested Queries

4.3 Indexing

4.4 JDBC .

5 Scalability

5.1 General Challenges Imposed by Massive Data Sets .

5.2 General Approaches to Achieve Scalability

5.3 Achievillg Scalability by usillg Relatiollal Database Systems

6 Weka3.4

6.1 Introduction

6.2 System Architecture and Data Structures.

VI

8

10

10

11

13

15

15

17

17

19

20

21

21

23

27

27

28

30

33

33

6.3 Data Flow

6.4 Performance Limitation

7 Weka 3.4-DB

7.1 Intuition and Goal

7.2 Data Structures . .

7.2.1 Main Memory Data Structure

7.2.2 Database Implementation ..

7.3 Basic Interaction between core and DB2

7.3.1 Storing Data ...

7.3.2 Basic Data Access

7.3.3 Basic Data Manipulation.

7.4 Moving Functionalities into DB2 .

7.5 Optimi~ations outside the core .

7.5.1 Data Preprocessing : Filters

7.5.2 Logistic Regression

7.6 Strategies for Performance Optimized JDBe Application

8 Performance Evaluation

8.1 Experiment Design ..

8.1.1 Goal and Setup

8.1.2 Datasets

8.1. 3 Logistic Regression

Vll

37

39

41

dl

43

44

46

51

52

60

61

62

65

68

68

68

69

70

8.2 Experimental Results

8.2.1 Experimental Results for Synthetic Datasets

8.2.2 Experimental Results for Real Datasets .

8.2.3 Analysis

9 Conclusion

A DB2 Server Configuration

B ARFF Example From Weka3.4

Bibliographie

Vlll

72

72

75

77

79

81

82

84

List of Figures

6.1 Architecture of Weka3.4 34

6.2 Instances and Instance . 37

7.1 Architecture of Weka3.4-DB 44

7.2 Weka3.4-DB: Instances and Instance 45

7.3 Weka3.4-DB tables 48

8.1 Synthetic Datasets : Main Memory vs V2 . 7')
.J

8.2 Synthetic Datasets : V2 vs V3 74

8.3 Synthetic Datasets : V2 vs V3 75

8.4 AVIRIS Datasets with 169 attributes : Main Memory vs V2 76

8.5 AVIRIS Datasets with 169 attributes : V2 vs V3 77

lX

List of Tables

6.1 Methods of Instances class .. 36

x

Cha~ter 1

1 ntrod uction

Data mining applies cornputational and statistical techuologies to discover use1'111 in­

formation and hidden patterns in large datasets. It has beell developecl by both the

.Machine Learning and Database cOIllmunities since 1990. Each of theses COlIlIlllluities

offers different approaches since they work from different perspectives. Machine 1eanl­

iug researchers In'ovide a solid theoretical fraIllework and develop machine learnillg

algorithms that are suitab1e for major data rnining 1,asks. Database experts facili­

tate the data mining pro cess by providing sophisticated and advaneed data storage

management technology. In Chapter 2, a short overview of data ruining is given, amI

contributions of the machine learning and database communities are reviewed.

Classification is an important probleru addressed in typical data ruiuiug 1,asks, sllell as

analyzing scientific experiments, rnedical ciiagnosis, t'raud detectiou, credit approva1

and target marketing. Many algorithms for classification have beeu developed iu the

machine learning corumunity, including e.g. 10gistic regressioll, decisiou trees <tuct

uaive Bayes. In Chapter 3, an overview of classification is presentecl, aud 1,ypieal

algorithms are clescribed. In orcier to improve the effectivelless of the data lllining

process, data preprocessing is llecessary. Chapter 3 a1so pro vides a brief disCllssiou of

data preprocessing techniques that are typically applied iu classificatioll rnetllOds.

NIost commercial database management systems (DBMS) are basee! ou the relatioual

1

model illtroduced in the 1970s. They provide efficient data storage, fast access struc­

tures and a wide variety of indexing rnethods to speed up data retrieval. SQL is the

standard que1'y language th al, is sllpported by most relation al DI3l'vISs. II, IJl'ovides

sophisticated que1'y functionality like nested queries and aggregate fUllctiollS. SQL

cau be ernbedded in a host language. Bence, it is possible 1,0 access relational DBNIS

-t1trough applicatioll pl OgI dms. In Chapter 4, r elcÜiollctl DBMS Ledmology dUel SQt

are discussed in more detail.

While scalability is an important issue for a11 algorithms, il, is especia11y cri tic al 1'01'

machine learning algo1'ithrns that are applied to data mining problems, because hau­

(Uing huge amounts of data becornes inevitable for 1'eal data milling tasks. Some

gelleral strategies have beell developed to deal with large datasets, snch as sampling

and data squashing. A potential problem of these strategies is that they illtroduce

iucredihle overhead and sometimes even decrease the accuracy of algorithms. Other

approaches fOClts on makillg specific algorithms, especia11y decision trees, more scal­

able. The alternative that lias been adopted in this thesis is to explore coruruonly llsed

and we11-developed relation al database systems as data storage and retrieval, whic11

can he easily applied 1,0 aU algorithrns without sac1'ificing the accuracy. In Chapter

5, existing approaches to handle the scalability issue in data mining are discussed.

\'Veka3.4 is an open source machine learning software package, which has implemented

many state-of-the-art machine learning algorithms. Since il, is implementecl using

memory-based data structures, Weka3.4 can only be used on datasets that cau fit

into memory. In Chapter 6, the system architecture and data structures of \Veka3.4

are discussed in detail. The scalability limitations of Weka3.4 make. il, a perfect target

for exploring solutions that can improve the scalability of existing algoritlllllS.

The goal of this thesis is 1,0 ex tend Weka3.4 1,0 Weka3.4-DI3. W'eka3.4-DI3 is able 1,0

handle large datasets by storing them in and accessing them through data resource

management systems, especia11y relational database systems. The ultirnate goal is to

enhance \Veka3.4 1,0 l)l'ovide scalahility for a11 algorithms implemented in the package.

lu order to achieve this goal, t11is thesis presents a new storage interface, put betweell

2

the data rnining algorithrns irnplemented in vVeka3.4 and the storage system that

represents the data. Furtherrnore, an implementation of this interface using the re­

lational OBMS OB2 is presented. With this, aIl algorithrns irnplernented ill Weka3.4

can nm in YVeka3.4-0B without changes. That is, the algorithrns use a OBMS when

accessing the data but do not need to be aware of this. Also, llew algorithrns can

be implernentedwithoutdevelopers being required-to know SQL In principle,-the

move to V/eka3.4-0B allows them to nm on larger datasets than possible in Weka3.4.

However, sorne algorithrns use internally large data structures, limiting their scal­

ability. We analyzed the logistic regression algorithm in more detail, and came 10

the conclusion that we have to additionally provide an abstraction for typical main

mernory data structures, like arrays, that are then irnplemented on OB2. vVe have

adjusted the logistic regression algorithm to use the new data structures in order

to further increase scalability. This leads to a higher integration with the database

system, however it is transparent to the algorithrn implementation.

Chapter 7 describes the interface, the OB2 irnplementation of the interface, and

different version of the logis tic regression algori thrn.

\i\Teka3.4-0B has been evaluated on both synthetic data and real data using the logistic

regression algorithm. The experiment results show significant improvemellt in regard

to scalability with reasonable execution tirne. The performance evaluation shows that

our approach of using a relational database system while providing developers with a

further data structure interface is a practical solution to provide scalability for data

rnining algorithms without the need to know SQL. In Chapter 8, the experiment

design and results are discussed in more detail.

In Chapter 9, conclusions are drawn and future work is discussed.

3

-Chapter2

Data Mining

2.1 Overview

The task of data mining is to extract useful information frolll huge datasets. WiLh

technological advances in data stm·age and data management, scielltists, business

and medical researchers are able to gatller, store and manage previous unirnaginable

quantities of data. The need of transforming raw data into information and kllowledge

has been increasing dramatically. Modern data mining is rnotivated by this change

in data collection and the need for data analysis. Since the early 1990's, research in

data mining has lèu·gely focused on computational and algorithmic issues rather thall

the traditional statistical aspects of data analysis. Normally, data lllining involves au

illtegration of techniques from multiple disciplines, s11ch as machine learning, database

technology, data pre-processing and data visualization.

For the past ten years, Machine Learning and Databasc research have been playing

major roles in the field of data rninillg.

4

2.2 Data Mining and Machine Learning

Machine learning involves the study of how machines and humans can learn from data

and has been an important component ofresearch in artificial intelligence (AI). It aims

to simulate human learning by progl'amming machines to learn tasks by experience

[25].

Early work in this field was strongly connected to theories in cognitive science, trying

to build algorithms and machines that could adapt to data in a manner thought to

be similar to human learning [35]. III recent years, much of the research in machine

learning has shifted from modeling how humans learn to the pragmatic aim of con­

structing algorithms that can learn and perform weIl on specifie tasks. This leads to

a Illucll greater overlap with applied statistics by adding a computational fiavor.

According to Mitchell [25], most often, machine learning pl'Oblems are formed III

terrns of a task, such as playing chess, a performance measure, snch as % of garnes

won against opponents, and experience, such as playing practice garnes. A machine

learning algorithm developed for a certain task is based on the type of training ex­

perience available and the target function to be leamed. The target function cau be

represented by the learning algorithm in terms of a tree, or a collection of l'Ules, or a

polynomial function, etc.

Machine learning algorithms prove to be valu able in the following application do­

mains:

• data mining: hidden information or knowledge are needed 1,0 be diseoverecl t'rOlll

large datasets automatieally in domains, suell as finaneial analysis and ruedicille

diagnosis.

• not well-known domains: domain knowledge is not fully understood, suell as

speech recognition and computer vision.

• frequently ehanging dornains: the clesired functions change frequently, suell as

l'Oboties and computer games.

o

Within machine learning (and supervised leal'lling in particular), decision trees [31],

artificial neural networks [5,4], llearest-neighbor [.3], naive Bayesian networks[13], ami

support-vector machines [38] are weIl known algorithmic approaches.

The significance of machine learning to data rnining lies in the fact that many of the

algorithms being used in data mining have solid foundations in machine learning.

2.3 Data Mining and Database Systems

Another strand of data rnining research emerged in the 1990's within the database

research community independently and in parallel with developments in machine

learning.

The introduction of relational database concepts [10] and high-level data models [9]

proved to be major conceptual breakthroughs in the database field, which provided

general and principled frameworks for data modeling and access. Issues [15] such as

updating the database in a systernatic rnaIlllel', answering structured queries about

the data and controlling access and security in the context of multiple users, becarue

the foundations of modern database management.

By early 1990's, relational database technology was successfully established in the

commercial sector. But those relational database systems were never designed to

support data analysis tasks. Instead, they are primarily designed for the purpose of

storing and querying data, and 1.0 offer transaction support.

When interest in data warehousing began 1.0 gl'OW in the early 1990's [22], database

researchers quickly realized that not only did their customers want to store, manage,

and access their data in a systematic fashion, but now they also wished to be able to

analyze it. Developing data analysis algorithms that can operate directly on relational

databases forms the main component of modern database-oriellted research in data

minillg.

6

The work by Agrawal et.al [2] on association rule mining is probably the very first ex­

ample that demonstrates how simple association rules can be mined ±"rom a relational

database in an efficient mannel'. Au example of an association mIe is "if a persou

buys beers, then he is more likely to also buy chips with probability 0.8". Most work

proposed by the database community ernphasizes havillg very efficient data struc­

tures and algorithms for operating on data that does not fit into main llleIll<Jl"y, and

searching in datasets for simple local patterns such as associatio11 rules. For example,

Gehrke et.al [16] describe substantial computational and memory optimizations in

their implementatioll of CART [7] by using special-purpose data structures, and they

apply their algorithm to datasets illvolving millions of points. Bradley et.al [6] de­

scribe a heuristic algorithm for an irnplementatioll of the Expectatioll-Maxirnization

(EM) algorithrn applied to Gaussian mixture modelillg on massive datasets, which

seeks to minimize the number of passes through the dataset.

The inHuence of databases on data milling has led to an emphasis 011 the data actess

aspects of analyzing large datasets.

7

Chapter 3

Classification

3.1 Overview

Classification is an important problern in machine learning that has been addressed

by many algorithms. The task is to predict categorie al class labels based on several

attributes or features. For instance, given the customer information described by

age, crediLrating and student (if he or she is a student), if the class label is vvhet her

the customer is going to buy a laptop, then the classification task is to classify the

customer information with binary values Yes and No. In order to label the new

customer information with the category, the classification algoritluIl, ill the follov\Oillg

called classifier, has to be trained from labeled customer records. The given customer

information is the training experience and the classifier is the target function as

introduced in the previous chapter. More precisely, a set of labeled data records

used for training the classifier is called the training dataset. The data records in

a training dataset are called training data or training data records. Each traillillg

record consists of the same number of attributejvalue pairs. Attributes can be, e.g.,

age and cTediLrating. They describe the training data. Among those attributes,

the one llsed as the target of a classification task is called cla.)s attrümte or class

label. The basic types of attributes are numenc and nominal. :'-Jumeric attributes

8

can have real or integer values. For instance, age is a numerie attribute and it tan

cOlltaill reaillumbers. Nominal attributes require discrete values. Usually, they have

a list of possible values. For instance, the crediLrating is a llomillal attribute amI the

possible values are good and bad. NOIllinal attributes are also referred tu as cateqcwical

attributes. Whell algorithrns need to weigh training data, additional wcight attributes

are used. \Veight attributes have a numeric type. In general, a training dataset is

described by its attributes and the number of data records it has. A set of labeled data

records used for testing the classifier is called the testing datas et. The data records

and attribut es in a testing dataset are sirnilar to those in the training dataset. A

testing dataset is also described by its attributes and the number of data records it

has.

The basic idea of classification is to train a classifier using labeled training data alld

then use the classifier to classify new data. Classification can be defined as a two-step

process.

• Train a classifier, such as decision trees, classification rules or rnathematical

funetions, based on labeled training data.

• Estimate accuracy of the classifier with testing data independent of training

data. The accuracy rate is the percentage of the testing data that are classified

conectly.

The major classification algorithms include decisioll trees, Bayesian networks, logis tic

regressioll, neural networks, support vector machines and k-nearest neighbor. Classi­

fiers are evaluated by the following criteria [18]:

• predictive accuracy: the ability of the classifier to correctly predict class labels

of new data

• speed: the time needed to train the classifier and the time needed to use the

classifier

• robustness: the ability of the classifier to hancHe noise and missing values

9

• scalability: the efficieney 1Il constructing the classifier glven a large training

dataset

• interpretability: the level of understanding and insight provided by the classifier

3.2 Regression

3.2.1 Overview

Regression [19] is a well-understood statistical technique fol' analyzillg data. Most

regression techniques are used to predict continuous labels, such as lillear and non­

linear regression. Using generalized linear regression, categorical data can also be

analyzed. The regression classifier is formed as a statistical function, which IIlodels

the relation between the class label and the attribute values of data records. In a

regression function, the class attribute is called response variable, and the remaiuing

attributes are called predictor variables.

The simplest form of regression is linear regression. In linear regression, the resp011se

variable Y is modeled as a linear function of one or more predictor variables. Linear

regression with one predictor variable Xl is called bivariate linear regression, Bueh

as y = u, + bXI . y is assumed to be nonnally distributed. For instance, suppose

the class attribute, the number of credits that a customer can earn, is the resp011se

variable Y, aud the attribute, t.he number of products the customer purchased, is

the predictor variable Xl. A lillear function can be built by solving the coefficie11ts

a and b based on the given customer data. Usiug this linear function, the value of

the response variable for new customers cau be computed based on values of the

predictor variable. Linear regression with more thau one predictor variable is callecl

multiple regression, such as Y = (1, + bXI + cX2 . Y is modelecl as a linear fuuction of a

multidimensional feature vector (Xl, X 2). The coefficients in linear regression can be

solved by least squares estimation, which minimizes the elTor between the true value

and the estimation of the fUllctioIl. In other words, the linear functic)ll that resul ts

10

from least squares estimation represents the best estimate of the true value.

A more complicated model is nonlinear regression where the response variable and

predictor variables are not linearly dependent. Instead, the model uses a polynomial

function. Most often, however, the nonlinear model can be transformed into the linear

one and solved by least squares estimation.

Generalized linear models are a broad set of models desiglled to gelleralize the lillear

model to target response variables of different types [23, 21]. The differences betweell

the generalized linear model and the linear model are the following:

• the response variable Y does not Ileed to be continuous and its distribution does

Ilot need to be normal.

• the response variable Y is a linear function of the predictor variables via a link

function, which is determined by the distribution of Y.

The coefficients in the generalized linear model are solved by maximum likelillOod

estimatioll, which requires iterative computational procedures.

3.2.2 logistic Regression

Logistic regressioIl [21] is a member of t.he class of generalized liuear Illodels. The

response variable of logistic regression is a binarT variable Y that can take the value

1 as suc cess with probability p and the value 0 as failure with probabilit.y 1 -]J. The

probability that Y = 1, given the value of X, is denoted by p(Y). In other words, t.he

binary variable Y has a binomial distribution with parallleter]J. Logistic regression

estimates the parame ter p as a fUllctioIl of the predictor variables X (the vector of

predictor variables). More precisely, assume that p(Y) is given as:

, (Y) _ é" X

P - l+c~lX

and fJ is a coefficient vector, then the logistic l'egression functioll is a logit transfor­

mation of p:

11

logit(p(Y)) = 1~~Y;~) = e(3X

The goal of logistic regression is to Hnd the best model to describe the relationship

between the binary response variable and predictor variables. In other words, its goal

is to find a good estimator /3 (estimated coefficient vector) of the coefficients /).

Logistic regression becomes unstable in some situations, e.g., if the ll1unbe1' of])1'C­

dictor variables is close to the si,,;e of the training dataset, or predictor variables are

highly correlated. Snch cases lead to overfitting, which can make the logistic regres­

sion model appear perfect on the training dataset, while it performs badly on the

testing dataset.

Logistic ridge regression is an extension of logistic regression, praviding more stable

functions. Ridge regression shrinks the regression coefficients by irnposing a penalty

on their size. The key idea behind ridge regression is to avoid overfitting by imposillg

a penalty on large fluctuations of the estirnated coefficients. A complexity (regulariza­

tion) parameter ,\ (,\ ~ 0), caUed ridge parameter, controls the amount of shrinkage of

the norm of (3. The regnlarization put forward by Hoerl and Kennard [20] is the sum

of squares of the regression coefficients. It is first introduced in the cOlltext of least

squares regression by Hoerl and Kennard [20] and is adapted to logistic regression by

Le Cessie and Van Houweligen [8].

Two similar approaches of deriving a ridge estimator (the estimator of regression

coefficients) are discnssed in [8]. One that was first introduced by [14] attempts to

maximize the log-likelihood function with a penalty on the norrn of (3: e'((3) = lCB)­

,\11/)112, where l((3) = 2:(Ylog(p(Y)) + (1 - Y)log(l- p(Y))) and 11/)11 = (2:(f)j)2)1 is

the norm of the coefficient vector (3. Maxirnization of [>, UJ) leads to /3. The ridge

parameter ,\ contraIs how rnuch the norm of /) shrinks. vVhen À = 0, the solution

is the ordinary maximum likelihood estimate (MLE). When À -+ 00, the j)j aU tend

to O. Therefore, the estimate ~À is expected to be closer to the real value of !) than

the unrestricted maximum likelihood estimate (MLE). Another method introduced

by [37] is to obtain /jÀ by the Newton-Raphson maximization procedure. For Illore

detail information, please refer to [37].

12

The way of choosing the ridge parameter À discussed in [14] is based on minimizing

an estimate of the prediction error of the model using one of three error rneasures:

classification or counting error (MCE), squared error (MSE) and minus log-likelihood

error (MML). With a Cross-Validation (CV) or Akaike Information Criterion (AIC),

the predictive value of the logistic model is compared for various values of À and an

optimal)is chosen suchthé\,t t]le_ meauerror ratels minimal.

For instance, given the custorner inforrnation in the previolls example, each data

record is denoted as (:ri, Yi), where :X;i is a vectol' representing the values of attributes

a(je, crediLrating, student of the ith record and Yi is the dass label buyJaptop of

the ith record. In the simplest case in which the ridge pararueter is givell, the ridge

algorithm would iterate through all customer records a number of times in order

to derive the ridge estimator that can satisfy the unrestricted maximum likelihood

fUllction.

3.3 Data Preprocessing

Data preprocessing [30] is an important step in the data mining process. Incomplete,

noisy and inconsistent data can affect the accuracy and efficiency of data mining meth­

ods, and sometimes even I)l'event data mining methods from being applied. Therefore,

a number of techniques have been developed to improve the quality of data and con­

sequent mining resllits. For classification, a number of general data preprocessing

techniques have been proposed .

• Data deaning: data cleanillg atternpts to fiIl missing values, where sorne data

records don't, have values for sorne of the attl'iblltes. Missing values are f111ed

with the rueall calculated based on aIl available attribute values, or the lllOSt

probable value based on statistics. Furthennore, data deaning atternpts t.o re­

Illove or reduce !loisy data. Data cleaning is often required wh en llsing regression

Ulethocls.

13

• Relevance analysis: whenever irrelevant attributes or redundant attributes ap­

pear in the data, relevance analysis can be performed 1,0 remove those attributes

from the learning pro cess. It is also called feature selection. Relevance analysis

tends to reeluee the dimension of the feature space, which results in short el'

learning tirne. Therefore, it illlproves the efficiency and scalability of the learn­

ing process. The general idea behind relevance analysis is 1,0 compute sorne

measure that can be used 1,0 quantify the relevance of an attribute. For exalll­

pIe, a simple rneasure used by sorne regressioll rnethods is based on the number

of distinct values of one attribute. The fewer distinct values an attribute has,

the less likely it is to be relevant .

• Data transformation: one type of data transformation is called generalizatioIl,

which transforms data t'rom lower-level concepts 1,0 higher-Ievel concepts. The

typical application of generalization is to transform continuolls-valued attributes

to nominal/ categorical attributes (e.g., instead of exact age, age ranges are

given), or transfonn nominal attributes 1,0 binary attributes (a binary attrilmte

is a special nominal attribute, which only lias two discrete values). Another

type of data transformation is called normalization, which involves scaling all

values of SOllle attributes such that the normalized values fall within a small

specified l'ange, e.g., 0.0-1.0. :'-Jonualization can prevent Olle attribute with a

large range from over-weighting allother with a smallrauge.

In order 1,0 perform data preprocessing, the data records have 1,0 be scanneel usually

one or more times.

14

Chapter 4

Relational Database Management Systems

4.1 Overview

A l'elatiollal database management system (RDBMS) [33, 40] is a system that stores

and manages data that follows the l'elatiollal data model. An RDBMS provides

functions to define data structures, integrity constraints, and to share and retrieve

data.

The general ide a behind relational databases is the Entity-Relationship (ER) model.

The basic structure of representing data in the relational database is a relation, which

is not the same as the relationship in the ER model. A relation represents data that

belongs to one application depelldellt entity type. For example, a11 information about

customers could be stored in one relation. A relation consists of a relation scherna

and relation instance. The relation instance is a set of tuples, each tuple describing

Olle entity (e.g. one customer). The schema provides the meaning behind the tuples

in the relation. It ln'ovides the name (e.g. Customers), the attributes which describe

the entity type (e.g. name, age, salaI"}') and the domain of each attribute (e.g. string,

integer). An example of a relation schema is :

Customers(id:string, name:string, age: integer, rank: integer)

15

where each attribute narne is followed by a domain narne. For instance, the attribute

name has domain string, wllich defines that the value associated with the attribute

name must be a character string. An instance of a relation is a set of tuples, where

each tuple has the same number of attributes with attribute values according to the

attribute domains. Often, a relation instance is referred to as a table, tuples are the

rows in the table, and attributes are the columns (attribute names are the COllllIlll

headers). Tuples are also called records, and attribut es are called fields. As such, a

relation is an ideal form to represent a dataset used for data mining as introduced in

Cllapter 3. Attributes have the same meaning, and data records are the tuples in the

relation.

A relational database is a structured way of storing information, and RDDMS prevent

entering incorrect data by allowing the definition of integrity cOllstraints. Au integrity

cOllstraint (lC) is a condition over a database schema that restricts the data to be

stored in a table of the database. Among many kinds of integrity constraints, the

most important one is the key constraint. A key constraint defines a certain millilllai

subset of attributes of a relation, called the primary key, that is a unique identifier

for a tuple. No two tuples can have the same values in the primary key attribute. For

instance, the primary key of Customers relation is id, which me ans no two custOl1lers

have the saIne id. Therefore, tuples or records in a table can be easily accessed by

referring 1,0 the primary key of the table. Another key constraiut is called Ioreign

key. A foreign key in a relation A refers to a prirnary key in relation B to enforœ

referential integrity among the tables. The foreign key in the referencing relation

must match the primary key of the referenced relation. For instance, in addition to

Cust omers, a second relation is:

GoldenMernberCard(cid:string, credit:int, id:string)

The primary key of the GoldenMemberCard relation is cid. Additionally, the relation

has the foreign key id, referring 1,0 relation Customers, and the id is primary key in

Customers. The foreign key constraint ensures that only custorners that exist in the

Customers relation (there is a tuple in Customer with this id) can have golden member

16

cards. That is, any value that appears in the id of a tuple of the GoldenMemberCard

relation must also appear in the id of sorne tuple in the Customers relation.

4.2 SQL

Data in a relational database is accessed via a database query. A database Cjllery is

an operation that either retrieves data from the database (again in form of a relation)

or modifies the data. A query language is a specialized language for writing Cjueries.

Structured Query Language (SQL) [33, 40] is the most widely used commercial rela­

tional database language. It was originally developed at IBM in the SEQUEL-XRlVI

and System-R projects in the early 1970s. The Sequel language Ims evolved sinee

then, and its name has changed to SQL. SQL statements can be divided into two cat­

egories: data definition language(DDL) and data manipulation language(DML). DDL

statemellts are used to bllild and modify the structure of tables and other ob.iects,

e.g. CREA TE, DROP statements. DML statements are used to worl< with the data

in tables, e.g. INSERT, SELECT, DELETE, UPDATE statements.

4.2.1 Basic Structure

The basic structure of an SQL SELECT statement consists of three clauses: select,

.tram and where.

• select clause: it contains a list of attribute names of tables appearing in the

from clause

• from clause: it contains a list of table names that are needed to be evaluated

in the query

• where clause: it contaills a Boolean combination of conditions on attributes of

tables appearing in the from clause

17

An example of a basic SQL query using the Customers relation is

select id, name

from Customers

where age > 30

It selects the values of the id and name attributes of aIl tuples in the relation

Customers where age values are over 30. The result is in the fonn of a table with two

attributes: id and name.

SQL I)l"ovides a special attribute value nul! to represent any unknown or inapplicable

attribute value. The comparison operator to test whether an attribute value is n'Ill! is

I8 NULL. The opposite comparison operator is I8 NOT NULL. For instance, the above

SQL query can be modified as :

select id, name

from Customers

where age > 30 and rank I8 NOT NULL

The query has an extra condition on attribute rank. It will select values of attributes

id and name of tuples from Customers table where age values are over 30 and rank

values are not null.

SQL allows to specify the orcier in which result tuples are displayed. The order by

clause makes the tupI es in the result of a query to be sorted in sorne order. Fol'

instance,

select id, name

from Customers

where age > 30 and rank I8 NOT NULL

order by name

It returns the sarne tuples as the previous query but tuples are displayed in ascendillg

order on the values of attribute name (i.e. alphabetically in this example). The default

18

sort order is ascending, but descending (order by name desc) is also possible.

4.2.2 Aggregate Functions

SQL supports a class of built-in aggregate functions for computing aggregate values

such as MIN and SUMo There are five aggregate functions: avg for average, min for

minimum, max for maximum, sum for total, and count. For instance,

select min(age), count(name)

from Customers

where rank > 2

The query returns the minimum age of cllstomers and the number of customers whose

rank is over 2.

Often, aggregate functions are applied to groups. SQL provides a group by clause to

group tuples of a table based on certain attribute values and having clause t.o specify

the group qualification. The attribute names that appear in the select clause Illust

also appear in the group by clause or must be aggregated. The group qualificatioll

in the having clause is applied to all groups before generating the final result groups.

For instance, consider the query:

select rank, count(rank), avg(age)

from Customers

group by rank

having count(*) > 10

The query returns a list of attribute rank values, the Humber of tuples that have

this rank value, and the average age for customers with this rallk. Only if there are

more than 10 tuples in the Customers relation that have this rank, a resuit tuple is

returned.

19

The group by clause can be used as an independent clause and without including

any aggregate function. An exarnple is:

select rank

from Customers

where rank > 2

group by rank

It is a normal select query with one extra group by clause. The query returns the

list of existing rank values that are over 2.

4.2.3 Joïn Operations

.loin operations take two relations and return as a result another relation. .loin

operations consist of a join type and a join condition. The join condition defines

which tuples in the two relations match, and what attributes are present in the result

of the join. The join type defilles how tuples in each relation that do Ilot match any

tuple in the other relation (based OH the join condition) are treated. The default type

is inner join. The illner join only retul'IlS the matched tuples frolll both relatious

and ignores those that tuples in each relation do not match any tuple in the other

relation. Another type is outer join. Unlike the inner join, the outer joill keeps both

matched tupI es and those tupI es that do not match any tuple in the other relation.

A simple example of inner join is:

select name

from Customers inner join GoldenMemberCard

on id

This query only returns those customers who have the golden mernber cards, since

only those tuples in the Customers relat.ion that caulnatch tuples in t.he GoldenMemberCard

with same id values, will be returned. In this case, aH the tuples in the GoldenMemberCard

20

relation will be returned, since aIl of thern have rnatched tuples in the Customers re­

lation due to the foreign key constraint.

4.2.4 Nested Queries

One powerful featme of SQL 1S nested queries. A nested query is a query Ilia!

has another query ernbedded inside it. The ernbedded query is called a subquery.

Whenever a query needs to express a condition that refers to the result of another

query, the subquery is used to compute the subsidiary result table and appears as

part of the rnain query. A subquery typically appears in the where clause of a query.

The most comrnon use of subqueries is to perforrn tests for set membership. SQL

allows testing tuples for rnernbership in a relation with the key word in ami testiug

the absence of set rnernbership with the key word not in. For exalIlple, the followillg

llested query finds aIl custorners who have the golden melIlber cards.

select name

from Customers

where id IN (select id

from GoldenMemberCard)

4.3 Indexing

When queries are executed over large relation instances, execution time can be very

slow, since the entire relation must be scanned and for each tuple the condition in

the where clause must be evaluated. lndexing [33, 40] is used ta speed up the query

proceSSillg time.

Let's first have a look aL equality in queries. The query below

select *
from Customers

21

where id = 100

selects exactly one tuple, namely the custorner with id = 100. Equality queries can

also retrieve several tuples, namely if the attribute in the where clause is not the

prirnary key or unique. Equality queries typica11y (not necessarily) pick up few tuples

of the relation. However, if no index is defined, the entire relation has to be scanlled to

find the rnatching tuples. An index is defined over one or more attributes, called the

search key of the index. It is an additional data structure, such that, given values for

the se arch key attributes (e.g. 100) it can efficiently de termine the physical location

of the mat ching tuples. There exist many different indexing methods (e.g. B+-Tree,

hashing). Sorne of thern can also be used for range queries. For exarnple, the range

query

select rank

from Customers

where age<20

selects the ranks of custorners younger than 20. The index IlOW deterrnines the phys­

icallocation of the corresponding tuples starting with the youllgest custoIller. If the

Humber of matching tuples is sma11, retrieving the matching tuples one by OIl(~ will

still be faster than scanning the entire relation. However, if there are many matching

tuples, which might be spread a11 over the physical storage of the relation, the direct

access 1,0 these tuples one by one might be slower than sirnply scarming the entire

relation and perforrning the attribute test « 20) on each tuple. There is the possi­

bility to create one clustered index per relation. A clustered index is, in principle, the

same as an unclustered index (defined over one or more search key attributes), Imt

the tuples in the physical st orage of the relation are actua11y sorted according to their

order of the search key attributes. For instance, if we create a clllstered index over

the age attribute, all tuples of the Customers relation will be physica11y ordered ac­

cording 1,0 their age on the physical storage. Hence, retrieving aIl customers yonuger

than 20 will start with the first custorner, and then sequentia11y retrieve aIl following

22

customers until the first customer with age = 20 is found. This is faster than scaIlllillg

and testing all tuples.

4.4 JDBe

SQL is a powerful declarative query language, but it do es not provide the full ex­

pressive power of a general-purpose language. Java Database Connectivity (JDBC)

[33, 40] enables the integration of SQL into a general-purpose programrning language

through an application programming interface (API). It allows application prograrns

to access different DBMSs without recompilation. Any direct interaction with a spe­

cifie DByIS is through a DBMS specifie driver, which can translate the JDBC calls

into DB.MS-specific caUs. Drivers are loaded dynarnieally on dernancL since only al

l'lm-time it is known which DBMSs the application is going to access. AU the existing

chi vers are registered wi th a driver manager.

There are four main components of the architecture of JDBC:

• application: the application (Java prograrn usmg JDBC API) initiates and

terminates the connection with the data source. It submits SQL statelllents

and retrieves the results through a well-defined interface as specified by JDBC

API.

• driver manager: the driver manager is used to load JDBC drivers and to pass

JDBC function calls from the application to the correct driver. Il, hancHes JDBC

initialization and information caUs t'rom the application and logs all functioll

calls. In addition, it may perform sorne euor checking.

• drivers: the driver establishes the connection with the data source. It SUbIllits

requests and returns resul ts by translating data, enor fonnats, and enor codes

from a fmm that is used by the data source into the ,lDBC stamlard.

• DBMS: the DBMS pro cesses commallds t'rom the driver and returns the results.

23

JOBC is a collection of Java classes and interfaces that enables database access from

programs written in the Java programming language. The classes and interface are

part of the java. sql package. The major steps of using ,lOBC is to load the .lOI3e

driver, connect to a data source, and execute SQL qlleries. An exalIlple of a slllall

application program is

import java.sql.*;

public class JDBCexample{

public static void main(String[] args) throws SQLException{

//Load the DB2 JDBC driver

DriverManager.registerDriver(new com.ibm.db2.jcc.DB2Driver);

//build a connection

Connection conn = DriverManager.getConnection(url, uid, passward);

//create statement

Statement stmt = conn.createStatement();

Resultset rs = stmt.executeQuery

("select age from customers where rank = 5");

while(rs.next()){

int age = rs.getlnt(l);

System.out.println("rank 5, age: "+age);

}

rs. close 0;

//create preparedStatement

PreparedStatement pstmt = conn.prepareStatement(

rs = pstrnt.executeQuery();

"select avg(age) from Customers "+

"where rank = 7");

24

}

for(int i=l; i<=10; i++){

pstmt.setlnt(i);

}

rs = pstmt.executeQuery();

while(rs.next()){

}

int age = rs.getlnt(l);

System.out.println("rank "+i+", age: "+age);

rs. close 0 ;

pstmt. close 0 ;

stmt. close 0 ;

conn. close 0 ;

In JDBC, DB MS drivers are managed by the DriverManager dass. As it is shown in

the example, the static method registerDri ver is called to register the DB2 driver.

A connection with the DBMS is started through the creation of a Connection object.

In the example, the getConnection method of the Dri verManager dass returns a

Connection object, which represellts a communication channel to the DB2 database.

getConnection has to indicate the location of the DB2 database in fonn of a url.

Furthermore, a user name and password must be given since only authorized users

can access the database.

The SQL query is submitted 1,0 the database through the Statement object. In the t'x­

ample, the createStatement rnethod of the Connection ob.iect retul'llS a Statement

object, and the executeQuery method of the Statement dass subrnits the query 1,0

DB2 and lets it gel, executed in the database. Once the SQL query is executed, a re­

sulting relation is returned through the Resul tSet dass. Since the Resul tSet object

of a select query represents a set of t.uples in the resulting relatioll, but the applicatioll

prograrn cau only hanclle one tuple or even one attribute al, a tillle, the Resul tSet

class provides methods 1,0 iterate through the returned tuples. After a query is ex­

eCllted, the Resul tSet is positiolled right before the first tuple. The lIlethod next

25

fetches the next tuple and enables reading of the attribute values through gettype

rnethods, where type is the type of the field. vVhen the Resul tSet reaches the lasl,

tuple, the next rnethod can't satisfy the condition of the while loop any more, siuce

calling the next rnethod makes the ResultSet to position right arter the last t.uple.

Potentially, a Resul tSet might contain millions of tuples. They might Hot fit aH

in the address space of the client .JDBC program. Rence, the Resul tSet is usually

stored as a temporary relation at the database, and tuples are transferred from DB2

to the program space one by one when next () is called. Depending on the .JDBC

driver, a slIlall set of tuples Illight be cached al, the client side. At end of the progralll,

the Connection, Statement and PreparedStatement objects are closed.

Besides the Statement, .JDBC allows the creation of another kind of statement, called

PreparedStaternent. PreparedStatement can refer to variables in the applicatioll

pro gram and is good for repeating one query many tirnes once it is compiled . .JDDC re­

places each pararneter with a ? and sets values for each paramel,er al, run-tÎme tluough

settype methods, where type is the type of the pararnel,er. In the exalIlple, the

prepareStatement method of the Connection class rel,uIIls a PreparedStatement

object. At this tirne point, the query exists in cOlIlpiled fonn at the database. It cau

be called and executed without compilation with different values for its input paralll­

eter rank. Once the query is compiled by the PreparedStatement object, the value

of the parameter in the PreparedStatement object is set by the setlnt method in

a loop and the query is executed repeatedly.

26

Chapter 5

Scalability

5.1 General Challenges Imposed by Massive Data Sets

One of the main challenges in dealing with massive datasets is the scaling effects that

often OCClU' as datasets grow in size. For a dataset with p attributes and N data

records, the time complexity [Il J of a data minillg algorithrn is typically expressed as

the worst running tirne as a function of N and]J, e.g. o (N]J). Algorit.hms wllOse Lime

complexity scales poorly as a function of N are often unacceptable for large datasets.

Therefore, data mining researchers interesteci in massive dataset applications often

focus on algorithms that scale in the "near-linear" range for N and usually no worse

than p2 for p.

The other relevant aspect of data analysis for large ciatasets concems the physical

storage location of the data relative 1.0 CPt;. The primary melllory consists of RA\I

(random-access memory) and has the bellefit of allowing relati vely fast randoll1 access

of any byte on the orcier of 10-7 t.o 10-8 seconds with CUITent teclmology. This is how

long il. takes the system 1.0 bring the data from rnernory t.o CPU 1.0 do a computation.

Secondary memory consist.s of disk storage. The access time here is on the order of

10-2 seconds. Even tllOUgh the storage tecllllology is consistently changing (cunently

27

allowing storage on the order of Gigabytesja RAM and Terabytesja hard disk), the

relative difference in access time between primary and secondary memory still remains

on the order of 104 to 105
.

Thus, the time complexity mentioned earlier will be affected dramatically by the phys­

icallocation of the data. If the algorithm requires one computation pel' data record,

and each data record is accessed randornly, then the time taken by the algorithm will

be proportional to eN, where N is the Ilumber of data records and c is the time it

takes to access the data record. It sim ply indicates that algorithms that frequently

access the disk will be much slower than algorithrns that operate on data entirely in

main memory. If the data is organized so that it can be aecessed sequentially t'rOIll

the disk, then the cost of disk access decreases, since sequential scanning cau be car­

ried out mu ch more efficiently than random access of the same amount of data. But.

many data mining algorithms either repeatedly access different subsets of the data

in an llIlpredictable way, e.g. classification trees, or require multiple passes t.hrollgh

the entire dataset. Even if such algorithrns scale reasonably in N and p, while they

may run in reasonable time on data in main memory, they will be infeasible for large

datasets that exceed main rnemory capacity.

5.2 General Approaches to Achieve Scalability

There are a Humber of general approaches for developing scalable data rnillillg al go­

rithms .

• Running a random sample of the whole dataset is often useel in practice, espe­

cially for data mining tasks involving iterative and interactive phases of model­

building. But generating a fairly random sam pIe t'rom a large database stored

on disk may itself be a time-consuming task from a computational point of view .

• Du j'vIouchel et.al. [27] proposed a statistically-motivated rnethod for data­

squashillg, which creates a set of j\1 weighted pseudo data poiuts, where Al IS

28

much smaller than the originalnumber N, and the pseudo data points are auto­

matically chosell by the algorithm to mimic as closely as possible the statistical

structure of the original large dataset. The method is ernpirically demonstrated

to provide one to two orders of magnitude reduction in prediction error ou a

logistic regression problem compared to simple ralldom sampling of a dataset.

Similar ideas by Moore and Lee [26], Bradley et.al. [6] and Pavlov et.al. [28]

propose to generate a sm aller approximate representation of the original large

dataset that matches the statistical characteristics of the original dataset as

closely as possible. One advantage of this general approach is that once the

reduced set is created, the original dataset can be thrown away and cornputa­

tionally intensive processes, such as visualization and model-building, cau take

place entirely on the reduced dataset in lllain memory .

• Pipelining is a quite effective online recursive approach. It processes the data

through the analysis system as it arrives and recursively updates model pa­

rameters in an online adaptive mannel'. Cortes and Pregibon [12] describe au

impressive system at AT&T, which adaptively updates estimates on whether

a telephone line is a business or a residence, for about 350 million customers

pel' night, based on about 30() million records of claily phone calls. Logistic

regression models are trained offiine and the probability of a number being Cl

business is modeled by a logis tic regressioll mudel with input variables based

on characteristics of calls, snch as time of day, length of calls, etc .

• Provost and Kolluri [29] describe a variety of other techniques for scaling up Lu

massive datasets. They categorize those techniques into three main approacltes.

The straightforward approach is to build fast algorithms by restricting the space

of models to be searched or developing powerful se arch heuristics. The idea of

the second approach is to partition the data iuto subsets tu process tltelll ill

parallel, and to compute the final result as a function of the result.s retrieved

from the parallel computations. The last approach is to use a relational repre­

sentatioll. A typical way of uSillg relatiollal dat.a directly is to illtegrate data

mining algorithms vvith database management system (DI3.\lSs). This is the

approach that we will take in this thesis.

More specialized approaches have been developed for particular algorithrns, e.g. de­

cision tress [24, 39, 17].

5.3 Achieving Scalability by using Relational Database

Systems

Since more and more massive datasets are stored in database systems, developing an

effective architecture for a data mining system on top of a database system becomes

an illteresting implementation issue. Database systems are designed 1,0 provide the

fiexibility and efficiency of sorting, organizing, accessing and processing data. Data in

database systems tends ta be well organized, illdexed, cleanecL and integratecl, whieh

rnakes many tasks, sueh as finding relevant data, rnueh easier than for data in fiat

files. Once data mining systems take advantage of database systems, more scalable

algorithms and data structures can be pxplored.

Han and Kamber [18] propose a Humber of architectural alternatives that couic! be

developed.

• No Coupling: A data mining system will not use any functiollality of the D13l\!lS.

It fetches the data from sorne file system, processes the data uSillg SOIlle data

mining algorithms, and then stores the rnining results in another file.

• Loose Coupling: A data mining system will use the basic functions of the DBMS

1,0 store and fetch data. But, it does not explore data structures and query

optimization methods provided by the DBMS. In this case, it is liard 1,0 achievp

high scalability and good performance for large datase1,s.

• Semitight Coupling: Beside the basic functionali1,y of DBJVISs, a few esseutial

data l1lining primiüves are implemen1,ed within the DBMS. The primitives cau

30

indu de sorting, indexing, aggregation, histograrn analysis, rnulti-way.ioin, and

precomputation of sorne essential statistical rneasures, snch as SUI1l, count, max,

min, standard deviation, etc. Even sorne frequently usecl illtennediate mining

results can be precomputed alld stored in the DBMS .

• Tight Coupling: A data rnining system is completely integrated with the DBMS.

The data mining system is one functional component of the integrated systelll.

Data mining queries and functions are optimized based on mining query anal­

ysis, data structures, indexing schemes, and query processillg methods of the

DBMS.

The very eady work conducted by Agrawal et.al. [32] compares the performance of

loose cOllpling and tight coupling alternatives for developing the well-lmowll data lllill­

ing algorithm Apriori et.al. [2] on a relational database system. The loosely-collpled

Apriori algorithrn is developed using a standard application prograrn with embed­

ded SQL statements (similar to .lava with JDBC) where the application program

runs on a different machine or at least in different access space. The tightly-coupled

Apriori algorithm is developed with user-defilled functions, which are defined by the

application programs, but executed vvithin the database engine. They daim the tight­

coupling gives more than two folcl performance aclvantage over loose-couplillg based

on experiments on six real-life custolller datasets.

Agrawal et.al. [36] have further worked on integrating associatio11 rule mining with

relational database systems. They attempt to understand the implications of various

architectural alternatives for couplillg data mining with relation al database systems.

The most important one is caUed Cache-Mine. The basic idea of Cache-Mine is Chat

after reading the data once from the DBMS, the data mining algorithm tempOl'arily

caches the relevant data in a look-side Imffer 011 a local disk. The cachecl data couIc!

be t.ransfol'Ined t.o a format that enables efficiellt future accesses. The cached data

is discarded when the execution complet.es. The advantage of Cache-:VIine is great

pl'Ograrnming ftexibility. The disadvantage is t.hat it l'equires additional disk space

for caching. Cache-Mine is reported to perforrn better than othel' alt.ernatives.

31

The work done in this thesis is inspired by aIl the previous work related to llsing rela­

tional databases to sc ale up existing machine learning algorithrns. It aims to scale up

a very popular open source package of machine learning algorithms, Wcka3.4, by tak­

ing advautage of the efficient storage and retrieval of relational represeutation. SinC(~

one of the goals is to not change (or rninirnally change) the algorithms implemented

in the software package, we ernploy generally a loose coupling approach. However,

for some special functions we provide a sernitight coupling. Furthennore, we looked

at the logistic regression algorithm in more detail and slightly adjust it to the Ilew

architecture to increase scalability even further. This adjustment cau still be consid­

pred (èS loose coupling. Overa11, we extend algorithms in the package to adjust to the

new storage system without modifying the results of algorithms.

32

Chapter 6

Weka3.4

6.1 Introduction

Weka3.4 [42] is a popular, open source, machine learning software package, which has

been developed at the Department of Computer Science, University of Waikato, New

Zealand. Weka3.4 implements many state-of-the-art machine learning algoritllIllS,

and is widely used in teaching and research by the machine learning COlIllIlllllity,

as weIl as outside users. vVeka3.4 contains tools for data preprocessing, regresslOll,

mining association rules, classification, clustering and visualization.

6.2 System Architecture and Data Structures

This thesis extends the stor'age system of vVeka3.4. Rence it is crucial to ullderstaml

Weka.3.4's system architecture and data structures.

The architecture of vVeka3.4 consis!'s of aGUI user iuterface, lllachiue leamiug al­

gorithms and one weIl-defilled data structure iuterface, core. As shown in Figure

7.1, aIl the algorithms in Weka3.4 are using data structures and Itlethods tha! cau

rnanipulate data through core.

33

GUI User Inlerface

t

classifiers cluslers associations lïllers

l
1 lnvoke

'1
Core

Main Memory

Figure 6.1: Architecture of Weka3.4

AH the data structures defined in core are rnemory-based data structures. The most

important are the Instances and Instance classes. Instances is implelllented to

store the dataset information, providing functionality to access attribute information

and to manipulate data records inside the dataset, such as delete and sort the data

records. Instance is implemented to store the information of any single data record,

providing functionality tü access weight, attribute and class values. Each data record

is stored as one Instance object, and a11 Instance objects are stored in a vector of

Instance objects, which is maintained in the Instances class. The Instances class

provides methods to allow algorithms to enumerate a11 the data records or access one

specifie data record by its position in the dataset. Important methods of Instances

are sUlnmari~ed in Table 6.1.

N onna11y, at the start of a data milling aigorithlll, the training data is loaded into

main memory and stored as an Instances ob.iect. During the cOlllputation, more

Instances objects are instantiated by creating a copy of an existillg Instances o\}­

.iect. If the data records of none of the Instances ob.iects are modified, they can be

34

Method Description

Instances (Instances dataset) Constructor copying aIl installces and ref-

erences to the header information frOlIl the

given set of instances

Instances(Instances dataset, int ca- Constructor creating an empty set of in-

pacity) stances

Instances(Instances source, int firs!', Constructor creating a new set of instances

int toCopy) by copying a subset of another set

Instances(Reader reader) Constructor reading an ARFF file t'rom a

header and assigning a weight (l. ()) to each

instance

Instances(Reader reader, int cap ac- Constructor reading the header of an

ity) ARFF file from a reader and reserving the

space for the given number of instances

Instances(String name, Fast VectOl' Constructor creating an elllpty set of ill-

attillfo, int capacity) stances

void add(Instance instance) adds one instance to the end of the dataset

void delete(int index) removes an instance at a givell positioll of

the dataset

void delete WithMissiug(Attribu te rernoves aU instances with missing values

att) for a particular attribute t'rom the dataset

Enurneration enurneratelnstances() returns an enumeration of aH instances in

the dataset

Instance firstInstanceO returns the first instance in the dataset

Instance instance(int index) returns the instance at the givell position

Instance lastInstance() returns the last instance in the dataset

double meanOrMode(Attribute returns the mean/mode for the IlU-

att) meric/nominal attrilmte as a iloating-point

value

3i)

Method Description

int numDistinct Values (Attribute returns the number of distinct values of a

att) given attribute

int numInstancesO returns the number of illstances III the

dataset

void randomize(Random random) shuffies the instances in the dataset so that

they are ordered randomly

void renameAttribute (Attribu te l'enames an attribute

att, String name)

void renameAt tribu te- renames a value of a llOIuinal attribute

Value (Attribute att, String narne, value

String val)

Instances resample(Random ran- creates a new dataset with the salIle size

dom) using random sampling with replacement

void sort(Attribute att) sorts the instances based on an attribute

void stratify(int numFolds) dynamically groups a set of instances ac-

cording to its class value if the class at-

tribute is llominal

double sumOfWeightsO computes the SUlU of all instances' weights

double variance(Attribute att) computes the variance of a llumenc a1.-

tribute

Table 6.1: Methods of Instances class

36

shared, i.e., a lazy update is deployed. \V"hen a new Instances ob.iect is created, il,

shares the same vector of Instance objects with the Instances ob.iect from which

it l'las copied. Once it wants to change an Instance object in the vector (i.e. a data

record), it creates its own copy of the vector of Instance ob.iect. Thell it creates

a copy of each Instance object it wants to update. Figure 6.2. shows in detail

how three Instances objects share the same data records or have their own copies.

For example, Instances object 1 and Instances object 2 share the saIlle vector of

Instance objects, but Instances ob.iect 3 has its own vector of Instance ob.iects.

Both vectors share some Instance ob.iects. But, for data record A, both vectors have

different copies.

vector of Instance veetor o!" Instance

(Instances object 1 r r--

_1 Instance object 1
~

1-- r---
Instance object 1

~ Instances objtcr -')

1--- r--
Instance objec! I_

I-- r---
Instance llbleu (Instanee objec! 2 ~

1-- r---

~ ~
Instanee objeet A Instance object A'

contains data recorel A contains data recorel A
with value a with value a

Main Melllllry

Figure 6.2: Instances and Instance

6.3 Data Flow

In this section, l'le will shortly discuss the important rnethods ill Table 6.l. The.\" are

grouped into the following categories:

37

1. Storing Data

Wheu an algorithm needs to load data into main memory, it creates an Instances

object to store a11 the attribute name and type information, convert each data

record into one Instance object, and call the add (Instance instance) method

to insert the Instance objects into the vector of Instance objeets, which is

maintained in the Instances object. Afterwords, Instances objeets are typi­

caUy created by copying an existing Instances object. The new object shares

the same vector of Instance objects with the original object or creates its own

vector but shares sorne Instance objects. Both cases are shown in Figure 6.2.

When an object of Instances caUs its own methods, executing those rnethods

caIl only affect its own copy of data, more precisely, the vector of Instance

objects.

2. Data Access

Wh en an algorithm needs to access aU the training data, it uses the correspond­

ing methods of the Instances class. It can either call enumerateInstance 0 1,0

get an enumeration of Instance objects or call instance (int position) in a

loop to iterate over the Instance objects. The enumerateInstance lllethod

implernents the Enumeration interface in the Java library. Il, accesses the

Instance object from the vector of Instance objects in the Instances object.

The instance (int position) method can access a specifie data record by 10-

cating the corresponding Instance object in the vector based on the giveu posi­

tion. firstInstanceO and lastInstanceO are two other lllethods tn access

data records, which are implemented by invoking the Instance (int index)

method with the corresponding indices. Information about the dataset cau be

returned by rnethods like numInstance 0 and numDistinctValues (Attribute

att) .

3. Data Manipulatiou

Au algorithm can manipulate data through methods, sueh as delete (int position)

38

and sort (). The delete (int position) rnethod deletes data records by re­

rnoving the corresponding Instance object from the vector of Instance ob­

jects (note that this does Ilot delete the Instance object itself, becallse sorne

other Instances may still point 1,0 it). The sort () method sorts the vector

of Instance objects based on one attribute value, by applying the quicksort

algori thm on the vector.

4. Computing Statistics

An algorithm can compute statistics about the data records through rnethocls,

such as surnofWeights and rneanOrMode. The surnofWeights rnethod surns the

weights of data records by looping through the vector of Instance objects and

accessing the weight value of each Instance object. The rneanOrMood method

computes the mean for a numerical attl'ibute and moocl for a nominal atlribute

over the Instance objects in the vector. Similar to the surnofWeights methocl,

it calculates the surn of weights and the sum of products of the weight with

the corresponding value al, the given attribute by looping through the veetor of

Instance objeets.

6.4 Performance Limitation

vVeka3.4 is a memory-based package and all the algorithms implemented in vVeka3.4

are typical machine learning algorithms, which do not address the scalabilitv isslle.

vVeka3.4 can aehieve a good performance in terrns of execution time, but it is hard 1,0

scale up with large datasets. Since it is implemented in Java, in order 1,0 save rnemory,

\Veka3.4 takes full advantage of the object-oriented language by shal'ing object.s as

much as possible. Except for a fevv incremental machine leanting algorithrns, IllOSt

algorithrns, especially the classificatioll algorithms implemented in \Veka.3...1, lleed

to train using all the training data, wlüch means the training dataset has tu Il(' ill

meIllory most of the time. Therefol'e, the size of the training data becomes crir,ic:al

and eventually, rnost algorithrns will nm out of memory with large training darasets.

39

This is especially true ifthey create several Instances objects that maintaill theil' OWll

Instance objects. But, unfortunately, dealing with large datasets is ([uiLe COlUlllOll

in most data mining tasks. Therefore, this kind of implementation prevellts vVeka3.4

from beillg applied to mally general data rninillg tasks of interest for applications.

40

Chapter 7

Weka 3.4-D8

7.1 Intuition and Goal

As we have discussed in Chapter 5, the scalability of algorithms is an important

performance issue. So far, either novel algorithms have been developed or special

strategies have been deployed to preprocess data in order to make it fit into main

memory. But the first approach is limited to a small number of algorithms and can't

resolve the problem in general. Although the second approach does apply to aIl the

algorithrns, it can add incredible overhead when preprocessing a huge amount of data

and sometimes will even reduce the accuracy of algorithms. In this thesis, we follow a

different approach to allow data mining algorithms to access arbitrarily large datasets.

vVe replace the lirnited main mernory as a main storage medium with the potelltially

unlimited secondary storage. However, secondary storage access is cornplex and very

time consuming. Hence, we take advantages of relational database systems, which

can provide sophisticated data storage and retrieval offering a povverful data access

API.

Despite aIl the previous work related to using relational databases to scale up existing

machine learning algorithms, there is still a lack of general approaches that can work

41

with a11 kinds of learning algorithms. Most existing work focuses on specifie kiuds

of algorithms, such as decision tree algorithms or association rule algorithms. The

most systematic work that has been done is the one by Agrawal et.al. [36], but it

is restricted to association mle mining. A further restriction of the approach is that

the developers of the association IUle rnining algorithm ItlUst be very familiar with

database technology, either irnpleruenting stored procedures withill the database or

accessing the database through SQL. However, SQL is quite difficult to understalld for

machine learning researchers not familiar with database teclmology. Hence, our ide a

is to give these researchers their familiar interface, in partieular, the core int.erface of

vVeka3.4 as described in the previous chapter. In contrast to the eurrent implemen­

tation of core, however, dat.a is not. necessarily st.ored in main mernory, but loaded

from and stored into a relatiollal database as needed. Idea11y, this approaeh allows a11

existing algorithms in \Veka3.4 to nm on datasets that do not fit into main lllelllUlO\'

without any change to the algorithms themselves. In principle, t.he cleveloper of the

algorithm do es not even have to be aware of ally main rnelllory restrictioIl. Hence,

the first goal of the thesis was a re-implementatioll of the core package of vVeka3.4

without any change to its interface. The goal is 1,0 have no meIllory restriction Oll

objects managed within core. The advanced functioIls of DB2 should be explored

whellever possible within the new implernentation.

However, this general approach might restrict performance in two ways:

• The data mining algorithms rnight create their own large main memory struc­

tures by not being aware of main memory limitations. ln this case, a simple

core is not enough to allow unlimited dataset sizes .

• The data minillg algorithms, not being aware of the frequent secondary stOI('lg~~

access, IIlight access the core data structure in a very in efficient way leading to

very large execution tirne.

As sueh, the second task of this thesis "vas to determine whether the existing algo­

rithms cau be made more efficient and scalable by (i) silllple changes t.o the core,

42

and/ or by (ii) providing additional interface methods that can help increase the efii­

ciency and scalability of the algorithms.

7.2 Data Structures

The basic idea of extending Weka3.4 to Weka3.4-DB is to create a general data struc­

ture interface that defines data structures and rnethods for manipulating data usecl by

aU algorithms. Such an interface is implemeuted trallsparently to the algorithms, and

different implementations can co-exist. One irnplementation is the existing \Veka3.4

main memory implernentation, which is efficient but not scalable. The second imple­

mentation, developed in this thesis, is based on the widely used relation al database

management system DB2 from IBM, and caUed vVeka3.4-DB. It uses DB2 as clata

storage, which can improve the scalability of aU algorithms in principle. In order to

provide the fiexibility of choosing different levels of scalability and efficiency, vVeka3.4-

DB keeps the main memory data storage implementation as an option.

The redesigned system architecture is shown in Figure 7.1. Based on the core inter­

face from Weka3.4, a general data structure interface has beell defined, aud auy data

source that implements this interface cau plug into vVeka3.4 as a data storage imple­

mentation. The basic idea of our DB2 storage implementation is 1,0 store the training

data in a DB2 database, and only load the training data from the DB2 database to

main memory when it is needed. Additionally, methods that require computation

on all the data records or a subset of the data records, e.g aggregate methods like

sumOfWeights 0, are implemented using DB2 funct.ionality if possible, without the

ueed to load al! the data into rne III or y. This is done by using SqL aggregate 1"unc­

tions as explained in Chapter 4. A fundaruental strategy employed in thE' enLirc DB2

storage implementation is that any rnethod that needs to do computation on aU the

data will be implemented in a way that avoids loading al! the data illto main lllelllory

at the same tirne.

Data is now split between a small amount of main memory data structures and a

43

0132 clatabase that the major part resides in. We willnow look at both parts in more

cletail.

GU liser lnterfaœ 1
.. ________ '1 _~~ __ ~ __

classifiers clusters 1 associations nlters

1

Abstract cure interface

1

Invnke 1
" ! lnVOkC

"

core for main memory core for relational databasc SystèlllS

Figure 7.1: Architecture of vVeka3.4-0I3

7.2.1 Main Memory Data Structure

Among aH the classes defined in the core package, Instances and Instance are the

two most important ones, since they are defined to represent the training dataset and

each individu al data record. All other classes are defined either based on Instances

and Instance data structures or are cOlnpletely indepemlellt.

Figure 7.2 shows specifically how Instances and Instance classes are extended III

\"leka3.4-0B. The basic ide a is to design a system that allows for easy storage of

data records in OB2 and fast retrieval of the data records from 0132. vVhenever an

Instances object needs to read data, it knows where to access the correspondillg

data records in OB2. Therefore, the important issue is how to rnaintain the training

data effectively so that any Instances object can access its OW11 copy of the data.

44

At the beginning of the algorithm, the training data is represented as an Instances

object in main memory, which contains the attribute information and an index vector.

However, the vector does not point to Instance objects representing data records.

Instead, the data records are stored in the database. The vector contains enough

information to retrieve the data records from the database. We will see later what

this means. As in the main memory implementation, we only want to create new data

records (maintained in the DB2) if different vectors of Instances objects require it.

However, now Instance objects do not an reside in main memory any more. Instead,

an Instance object is only created (and the data record is loaded to main memory),

when it is accessed by the data mining algorithms. For this, we had to slightly

redesign the internais of the class hierarchy.

:-'ldlll.\kIIlUI\

Figure 7.2: Weka3.4-DB: Instances and Instance

At the very top is the Instances interface with the same methods described ill

Chapter 6. The abstract class AbstractDataSet implements commonly used vari­

ables and methods for an the data storage implementations. MMDataSet is the original

Instances implementation in \rVeka3.4, and DBDataSet is the abstract class for our

relational database implementation. It implements cornrnonly used variables and

45

methods of the two classes: ImmutableDataSet and MutableDataSet. The diffel'cncc

between IrnrnutableDataSet class and MutableDataSet class is that MutableDataSet

supports aIl the functions that allow algorithms to change attribute (except weight

attribute) values at any point of the computation, while ImmutableDataSet does

not support those functions (only weight values are allowed to change). The sam(~

strategy is applied 1,0 the Instance class. MMInstance is the main memory imple­

mentation and is compilable with MMDataSet. For the DB2 implementation, there

are again an abstract class DBInstance, and then an ImmutableInstance and a

MutableInstance. The reason to have two different classes is that any class that

extends DBDataset has to read data records from the database. If no data record

can be modified, then aIl objects of the class can share the saIlle data records, which

means those data records can be stored in a read-only table. Using read-only tables

will simplify any kind of read operations and reduce the overhead of loading data

records from database. So, whenever the algorithms do not neecl to change initial

attribute values, they can use ImmutableDataSet and ImmutableInstance to refer

to clatasets and data records. If they want to change attribute values, they have 1,0

use MutableDataSet and MutableInstance. Furthermore, which type of Instances

and Instance class will be used in the data mining algorithms is denned at l"lmtimc,

as il, is shown in Chapter 8.

DBManager is the abstract class that clefines basic variables and functions that are

used to interact with relational database systems, such as DB2, Oracle and MySqL.

DB2Manager and DB2Helper are two classes that implement aIl the functions, which

can interact with DB2.

7.2.2 Database Implementation

DB2 contains aIl data records. Tables created in DB2 have to ensure that Instances

objects cau access their own copies of the training data efficiently. There are ct llUlllbel'

of alternatives for implementing those tables.

46

• N aive approach: The training data and their weights are tirst stored in one

dataset table, which is the copy of the data for the initial Instances objcct.

vVhenever a new Instances object is instantiated, a new table is created and

the training data and their weights are copied to the new table, which is the

copy of the data for the new object.

• Duplication approach: The training data is first stored in one dataseL table.

Each record in the table is marked with the same identitier. illdicating that

an records belong to the same initial Instances object. \Vhenevcr a new

Instances object is instantiated, each of the original records in the dataset

table is duplicated, and also stored in the dataset table. AlI duplicated records

receive one common new identifier indicating that they belong to the ncwly

instantiated Instances object.

• Lazy approach: The training data is tirst stored in a dataset table alld Cl CUllUllOll

identifier is used to mark those records as belonging to the initial Instances

object. Whenever a new Instances object is instantiated, it shares the data

records with the original object by sharing the same identifier in the dat8set

table. If the new object needs to change a record for computation purposes, a

copy of the original record is inserted in the dataset table with a new identifier.

This new record will be updated. If aIl the training data needs to be prepro­

cessed, a table similar to the dataset table is created containing aIl moditied

records with a new identifier. Since the attribllte vallles or t.lw trRinillg (Lü" ;Ul'

not updated by many algorithms, this seems to be the most elficient approach.

However, most algorithms do change the weight attributes assuciated with the

data records. Hence, in order for this approach to be more efficient than the

duplication approach, we generate two tables. One table contains aIl standard

attributes, one contains the weight attribute. The correspollding records in

both tables are correlated by the unique identitiers in both tables. Thercforc,

whenever a new Instances object is initiated, it shares the data records in the

clataset table with other Instances objects, but it receives a copy of the weights

in the weight table for each data record in the dataset table.

47

The naive appro<1ch is very costly, since it creates many ne,,, tables, which is one of

the most expensive operations of DB2 and should be avoided as much as possible.

Even though the duplication approach does not have ta create new tables, it still

needs to copy the whole training data every time a Ilew Instance abject is initiated.

which will hurt the performance when the training dataset is large. The lazy approach

captures the important feature of how most algorithms in \Veka3.4 manipulate data.

Most algorithms are more likely ta change weights but not the attribute values of

training data. By default, the training data is not modificcl at aIl, and making a

separate copy of the weights is enough ta distinguish the data records associated "vith

different Instances abjects. Once the abject has made any change on the attribute

values of sorne data records, the updates are ftashed back ta the dataset table by

creating new records with a new identifier, and the abject can track those changes

by those identifiers assignecl ta the data records. An extra table is introduced only

when cir'amatic changes have beell made on the whole training data, e.g., tluough

preprocessmg. Figure 7.3 shows how the tables are implementcd in DB2:

1 !lIqll~' 111.:1111111:1

llld\:,\ 1 r----l 1 l '1lhlclcd IlIllo.:\

oIlinhUlc-Ii ... [

Ilmquc idcnillicr

mde 1 ~ Il'lll ... lcn:dllldc'\

lm'llll' ide'IIII]""'1

1 1 l 1 lïlhlcrnlllllk\ 1 III cr'-''l--'-__ ,---'--.J.~ __ _

P'''IIIOIl

Figure 7.3: vVeka3.4-DB tables

48

• dataset table: The dataset table stores the training data, i.e the data records/Instance

objects. Each attribute of the training dataset corresponds to one colullm in

the dataset table. The relationid column contains identifiers assiglled to

each data record in the training dataset. The value of the relationid COIUlllll

determines which copy of the training data bclongs to which Instances ob-

ject. The position column contains positions of data records in the training

dataset. This is basically the identification of each data record in the training

dataset. It is equivalent ta the position of an Instance abject in the vector

of Instance abjects contained in the Instances class. Combining relationid

and po s i t i on can specifically locate a data record associated wi th a specifie

vector of Instance objects. Therefore, the relationid coluInn and position

column are combined as an unique identifier of the dataset table. The reason

for havillg an unique identifier implicitly not a primary key explicitly is that

a key constraint would slow down the pro cess of loading the data into OB2,

since the database has to check the key constraint on each data record bcfore

inserting it into the table.

The position is created for each data record when it is first loadcd into the

dataset table, and corresponds to the position of the data records in tlH'

training dataset. The relationid is associated with one or more theUl one

Instances objects (since Instances objects can share training data). Using

the ImmutableDataSet class, there is only one relationid, which is crcated

wh en the training data is loaded into the database. AlI objects share the same

relationid since the training data is shared by all objects and never cbanged.

In the MutableDataSet class, the first relationid is created when the training

data is loaded into the database, and objects share the sam(~ relationid llntil

SOlue data records are challged. Then the Instances object that bas chauged

a record will receive a Hew relationid. This Hew relationid It) u:-,cc! loI'

changed records. Each of these records will be inserted illto the dataset table,

having the same position values but the new relationid. The Instances ob­

ject can trad: both unchanged and changed data records by keepiug its UWll

49

relationids. That IS, an Instances abject can have data records \Vith dif­

ferent relationids. Changed records have the new relationid, llnchangcd

records have the same relationids as determined by the Instances abject (of

which the new abject is a copy).

The dataset table has tluee indices. One is on the unique identifier, one is an

unclustered index on relationid, and one is a c:lustered iudex on position.

The reason for having those indices is that most often relationid and posi tion

are the search conditions defined in the where clause of SQL qupries .

• fil tereddataset table: The filtereddataset table is cl'eated only when the

data preprocessing has made dramatic changes on the traiuing data. lt stores

attribute values of the training dataset aftel' the data records in the dataset

have been preprocessed. The f iltereddataset table in principle has the snnw

schema as the dataset except that it may have different attribute columns if

the attributes are altered by the data prepl'ocessing. The fil tereddataset

table has the same indices as the dataset table .

• weight table: The weight table stores the weights of data records of Instances

objects. The tableid column and position colllmn correspond to the relationid

column and position column in dataset table. Combining tableid and

posi t ion can specifically locate \veights of training data records associated with

a specifie Instances object. Therefore, the tableid colllmn and position col­

umn are combined as the unique identifier of the weight table. The tableid

is associated with one or more than Olle Instances object. Joiuiug dataset

table and weight table on tableid/relationid and position can match the

weights with the corresponding training data records. The weight table nlso

has three indexes. One is on the unique identifier, one is an unclustered index

on tableid, and one is a dustercc1 index on position. Tll<' l"(',\SOll for ll(\\'illg

those indices is that most oftcn tableid and position are the search conditions

defined in the where clause of SQL queries.

50

7.3 Basic Interaction between core and DB2

As it has been discussed in the previous chapters, the interaction between the ap­

plication program and DB2 is performed through .JDBC, and thcrc are a number of

implementation alternatives proposed by [36]. The alternative adopted by the core

of vVeka3.4-DB is a loose coupling approach, which has been discussed in Chapter O.

The basic idea is to access the data records in the database directly by execllting SqL

qlleries, where the DB2 server is running in a different address space from vVeka3.4-

DB. Tv'Iore precisely, through the .JDBC API, a connection to the DB2 servel' is built

by core, SQL queries are constructed in core, sent to the database and executed,

and the resulting relation is retllrned through ResultSet ob.iects. vVe have taken

this approach for two reasons. First, it is a simple approach with great flexibility.

Second, since we want to provide a generalized interface into which ncw data rnilling

algorithms can be plugged in by non-DB2 experts, this seems to be the most feasiblc

approach.

Here, we will outline the interaction between the core data structures and its meth­

ods, and the database system. As summarized in Chapter 7, the typical methods

of Instances in \Veka3.4 are responsible for storing data, data access, data Ina­

nipulation, and calculating statistics of data. Both the IrnrnutableDataSet class

and the MutableDataSet class are DB2 data storage implementations. Sincc the

IrnrnutableDataSet objects share the same copy of the training data, it makes the

underlying implementation of the IrnrnutableDataSet class simpler than the one of

the MutableDataSet class. Because most of the algorithms in vVeka3.4 only acccss

data records withollt modifying them and the training data will not be changed by

any ob.iect created during the computation, the IrnrnutableDataSet class becomes

ltlore suit able for most algol'ithms. III the following, we give an ovel'view of how stor­

age, data access, and data manipulation are implemented in the IrnrnutableDataSet

of vVeka3.4-DB.

51

7.3.1 Storing Data

vVhen an algorithm needs to load training data from an input file into main memory,

our core implementation creates sorne main memory information and stores the train­

ing data from the file into the database. First, a main memory ImmutableDataSet

abject is created to store aIl the attribute type information. The ImmutableDataSet

abject contains a vector of the size of the training dataset. However, in contrast to

YVeka3.4, this veetor does Ilot eontain entire data records. Instead the vector eutries

are aIl integers representing the positions of the data records. vVe rcfer to this vectOl"

as an index veetor. The data records themselves are storc~d in the dataset tallie

using the generated relationid and the appropriate positions. Aiso weight records

with the newly generated tableid and positions are added ta the weight table. All

database operations are performed using a special load interface.

The index vector is the only memory-based data structure used in the ImmutableDataSet

class that could grow linearly with the size of the training dataset. The reason for

having this index vector is that, in general, ImmutableDataSet objects created in the

algorithms can reorder the data records during the computation, for instance by sort

and re-sample. Having the index vector in memory can make sueh operations less

expensive, sinee only the positions of data records in the index veetor are adjusted

and there is no need 1,0 reorder the underlying data records in the database physically.

And most importantly, it is an efficient way to keep each ImmutableDataSet object

having its own copy of the training data ill orcler to guaralltee Lhe couecLlless of Lite

algorithrns. Therefore, the index vector represents the training data in the correct

order for a specific ImmutableDataSet object. Most often, any ImmutableDataSet

object created afterward either shares the same copy of training data wiLl] tlw orig­

inal object or has its own copy. In the first case, it shares the SUIne index vcctOl',

relationid and tableid (share all data records and weights). In the latter, it croates

its own index vector, calls the add method to add positions of the correspondillg data

records into the index vector, and inserts the corresponding weights and posi tiolls

into the weight table with a new tableid. But it still shares the same relationid

52

to refer to the training data, ::;ince the training data itself never changes. The Ilew

copy of the training data is represented by the new index vcctor, indicating which

data records in which arder are associated with the ImmutableInstance object.

7.3.2 Basic Data Access

vVhen an algorithm needs to access aIl the training data, it can either calI enumerateInstance ()

to get an enumeration of ImmutableInstance abjects or calI instance (int index)

in a loop to iterate over aIl ImmutableInstance abjects. The way of accessing data

records from DB2 using the data access methods of ImmutableDataSet is to rctl'ie\'l'

the position from the index veetor and access the corresponding data records in the

dataset table or weight table by specifying the relationid/tableid and the po-

sition. The following exarnple show::; the basic idea of how instance (int index) i::;

implemented in ImmutableDataSet class.

public final Instance instance(int index)

throws SQLException{

//get position from the index vector

int position = (Integer) (m_Positions.elementAt(index» .intValue();

//process the weight and attribute names to the Column array

Column cols = new Column[numAttributes()+lJ;

cols[OJ = WEIGHT;

System.arraycopy(processAtt(m_Attributes),O,cols,l,numAttributes(»;

String colnames = makeColumnNameSequence(cols);

String query = "SELECT "+colnames+" from weight, dataset"

+ Il WHERE tableid = II+tid+ Il AND relationid = II+rid

+ " AND dataset .position = II+position

+ " AND weight .position = II+position;

ResultSet rs = null;

double[J values = new double [numAttributesJ ;

double weight;

Ei3

rs = strnt.executeQuery(query);

while(rs.next()){

weight = rs.getDouble(O);

for(int i=O, n=nurnAttributes(); i<n; i++){

rs.getDouble(i+l) ;

}

}

}

if (!rs.wasNull()){

values[i] = rs.getDouble(i+l);

}else{

values[i] = Double.Nan;

}

rs . close () ;

IrnrnutableInstance instance = new Instance (weight, position, values);

instance.setDataSet(this) ;

return instance;

In this example, only one data record is in the resulting relation, since the position

value can uniquely identify the data record in one copy of the training dataset.

The enurnerateInstance () method first generates an enurnerate object. This allows

us, in principle, to execute the SQL statement just one time, when this object is

generated. A possible statement is:

SELECT *
FROM dataset OUTER JOIN weight

ON weight.position = dataset.position

WHERE weight.tid = DS

ORDER BY position

54

which retrieves aIl records in the order in which they were entered into the database.

Since the records are physica11y ordered this way, this should be Cl fast scan through the

dataset and weight tables. Bowever, since the records have to be obtained through

the enumerate interface, they have to be returned aeeording to the positions storecl

in the position veetor (whieh might be arbitrary). Bence, we must use a scrollable

.JDBC ResultSet with which we can jump arbitrarily to any position. When the

next entry of the veetor indieates a position p, we ean call Resul tSet. absolute Cp)

to retrieve the correct record (in order to retrieve the correct position with absolute

we have to use an outer join. This guarantees that even if not aH records are present

in the position vector and the weight table, they will nevertheless be selected. Hence

absolute Cp) guarantees to provide the data record with position p.). Altel'natively,

Vi'e can use for enumerateInstance 0 the same meehanism as for instance (index),

submitting one SQL statement for each record to be retrieved. Only the second

alternative is implemented in the ImmutableDataSet class.

It is not immediately clear which of the two alternatives is faster: submitting one SQL

statement for each record to be accessed or having a single SQL that retrieves aIl tuples

which are th en accessed in an arbitrary way through ResultSet primitives. So far,

we tested the case in which the order in the position vector is the same as the orcier

in which the records are stored in the Resul tSet. In this case, one SQL statement

for the entire data set outperforms by far individu al SQL statements for each record.

Vve are currently performing tests for the fo11owing two cases. (i) The position vcetor

performed some sorting and hence does not follow anymore the position order in the

clatabase. In this case, arbitrary access of records in the Resul tSet might be very

slow. (ii) The size of the position vector of the specifie ImmutableDataset ob.iect is

mnch sma11er than the size of the cntin~ data set. This can occur, c.g., in decision trœs,

where in later iterations of the decision tree construction only subsets of the entire

data set are analyzed. In this case, the number of retrieved records lllight actually

Le srnall, and hence the executioll of the few S(~L staternents couIc! Le faster. The

further investigation is underway.

55

7.3.3 Basic Data Manipulation

An algorithm can manipulate data through methods such as add (Instance instance)

and delete Cint index). Since the training data has been stored in the database by

the load() method and all the ImmutableDataSet ob.iects share the saIlle copy, tll(~

add (Instance instance) rnethods adds l'eferences to data records by adding the

corresponding position values to the index vector and inserting the weight records

into the weight table. No data record is added into the dataset table. Simi­

lar to the add(Instance instance) rnethod, deleteCint index) rnethod dcletes

the data records by removing the corresponding position values from the index vec­

tor and deleting the weight records from the weight table. No data record in the

dataset table is deleted. Updating any ehallge on the index veetor ami the weight

table can guarantee the index vcctOl" represcnts the data records associated with

the ImmutableDataSet object in the correct order and the weight table couLai us

an the data records associated with the ImmutableDataSet illstance. Whell the

ImmutableDataSet object eaUs its own methods, executing those methods can only

affect its own copy of the training data, more precisely, the index vector and the

weight table. Note that the data records in the weight table may not be ordered as

iIl the index vectors. Rowever, this does Ilot play any roll' since either they caIl bc

ordered upon retrieving them from DB2 or the order is not important.

7.4 Moving Functionalities into D 82

\Vhenever the training data is accessed, it must be loaded record by reeord into

main memory. This removes any memory eOllstraillt but increases response time

tremenclously. Renee, avoicling to load data records to memory whenever possible is

highly clesirable. One way 1,0 addrcss this is to push some functionaliti(~s into DB2.

This leacls to a tighter integration ,vith the llnclerlying da1"has0. \\'llieh illlJllïi\'('~

performance.

Depencling on how tightly a strategy couples Weka3.4-DB to the relational DBlVIS,

56

different strategies result in different efficiencies of the implcmentation of \Veka:3.4-

DB. 'vVe first look at sorne basic methods of the Instances interface.

Strategy I

This is the strategy described so far. The training data is loac1ed Olle record at a j i Ill('

AlI the attributes of one data record are retrieved from DB2 and the data record is rcp­

resented as an ImmutableInstance object. The idea is to store the data record as an

ImmutableInstance object in main memory to complete the CUITent step of the C0111-

putation, then let the Java garbage collector colle ct the unused ImmutableInstance

object, and continue to load the next data record into main memory for the next step

of the computation. Since only a few ImmutableInstance objects remain in the rnain

memory at any time (the garbage collector collects the unused objects periodically),

strategy I can provide high scalability. But the computation may be slow, since it

has to retrieve the data records one by one.

Strategy II

Strategy II employs the same approach as strategy I, but only retrieves the attribute

values that are involved in the computation. This saves space and leads to less com­

munication overhead between VVeka3.4-DB and the database. Using this approach,

however, the developer of the data rnining algorithms Imti to indicate which attributeti

are needed. Renee, this strategy requires an extension of the current Instances in­

terface, which is not done in the current core implementation.

Strategy III

Strategy III provides the best optimization. It employs th(~ same approach as the

semitight coupling proposed by Rand and and Kamber [18]. The idea is Lo use SOllle

standard functions within the database system, and to provide an interface to the

data mining algorithms ta calI them. Compared to the other strategies, this provides

the maximum scalability and efficiency for \;\1eka3.4-DB, and should be applied as

llluch as possible.

:tvlost often, the rnethodti that calculate tiOHle statistics of the training data wn be

:57

optimized by applying this strategy. The typical easy example is sumo When the main

memory implementation needs to sum weights of the training data, it iteratcs over

the whole vector of Instance objects in the Instances class. If ""ve used the same

implementation for ImmutableDataSet class, we would have to retrieve each data

record from DB2, load it in memory to retrievc the weight for summation. Inst(~a(L

we achieve the sum computation by applying the aggregate function sum of SQL on

DB2. For instance, the sumOfWeights method in ImmutableDataSet class is:

public final double sumOfWeights()

throws SQLException{

}

String query "SELECT sum(weight) FROM weight where tableid = "+tid;

ResultSet rs = null;

rs = stmt.executeQuery(query);

double sum=O;

while(rs.next()){

sum=rs.getDouble(l);

}

rs. close () ;

return sum;

A more complicated method is meanOrMode (Attribute att). Similar tü the sum,

instead of loading the data records from DB2, we achieve the meanOrMode (Attribute

att) method by using the following SQL statement to calculate the mean of a numeric

attribute.

public final double meanOrMode(Attribute att)

throws SQLException{

if (att.isNumeric()){

double result = 0;

String query = "SELECT sum (weight * "+att.nameO

58

}

+,,) FROM weight, dataset"

+" WHERE tableid = "+tid

+" AND relationid = lI+r id

+" AND weight. position = dataset . position"

+" AND "+att.nameO+ 1I IS NOT NULL"

ResultSet rs = null;

rs = stmt.executeQuery(query);

while(rs.next()){

result = rs.getDouble(1);

}

}else if (att.isNominal()){

}

Another typical function is sort. Wlwnever the method nceds 1,0 order the training

data based on some attribute value, instead of applying any main memory sor'ting

algorithm, which requires to retrieve records possibly multiple tirnes from DB2, we

implement sort by using a SQL statemcnt, selecting the position and using the order

by clause on DB2. For instance, the sort method in ImmutableDataSet class is shown

in the following.

public final void sort(Attribute att)

throws SQLException{

String query = "SELECT weight .position FROM weight INNER JOIN "

+"dataset ON weight . position = dataset . position "

+"WHERE tableid = lI+tid

+" AND relationid = "+rid

+11 ORDER BY lI+att. name 0 ;

ResultSet rs = null;

59

}

rs = stmt.executeQuery(query);

FastVector result = new FastVector;

while(rs.next()){

result.addElement(new Integer((Int)rs.getDouble(l)));

}

m Positions = result;

rs. close () ;

Note that only the weight table represents the data records associated with one par­

ticular ImmutableInstance object, so it needs to join the weight table with the

dataset table in order to get the correct order.

These optimizations, compared to strategy II, do not need a change OIl the core

interface, as long as they implement the methods of the Instances interface. vVe

have implemented them in the ImmutableDataSet dass.

7.5 Optimizations outside the core

So far, we have only described how vve have re-irnplernented the core. The imple­

rnentation is transparent to the existing algorithms. AU data mining algorithms and

filters, as described in Figure 6.2 build on top of core. Hence, they can now take

advantage of the new implemeIltation that is ulll'estricted in size. Howc\·cl', tlI0S('S

algorithms themselves can be implemented in a smarter way if they are awan) of

memory limitations. vVe will discuss our optimization of the filter algorithms and the

logistic regression algorithm.

60

7.5.1 Data Preprocessing: Filters

The general idea of data preprocessing has been discllssed in Chapter 3. In vVcka3A,

the data preprocessing classes, caIled filteTs, are implemented in the f ilters interface,

which is independent from the core interface. Those filters can be useci independently

to preprocess the training data befme running the algorithms or can be invokeci inside

the algorithms. We have looked at three filters in particular.

1. ReplaceM'iss'ing Values: replace aIl missing values of nominal and Ilumenc: at­

tribut es with the modes and means of the training data.

2. NorninalToB'inaTY: convert ail nominal attributes into binary numeric attributes,

such that an attribute with k values is transformed into k binary attributcs, and

binary attributes are left binary.

3. RemoveUsele8s: remove attributes that do not vary at aIl or that vary too much,

which applies to two kinds of attributes: constant attributes that cio Ilot vary at

aIl; attributes that exceed the maximum perccntage of the val"Îauce parametel".

In \iVeka3.4, filters are implemented 1,0 filter the training data records one by one. A

filter stores aIl the filtered training data in a queue. Applying the same implementa­

tion in Wcka3.4-DB would load ail the training data into main memory and write the

llew values back to DB2. This adds considerable overhead 1,0 the algorithm. And,

more importantly, it introduces a main memory constraint by using the queue data

structure. In order 1,0 make the data processing step feasible and efficient for large

datasets, extra methods are created to aIlow those filters to bc mn withollt loading

any data records into main memory. In other worcls, the strategy III for database­

oriented implementation is employecl to move the functionalities of those filters into

the clatabase. The basic ideas of how those filters are implemented are describcd in

the following:

• ReplaceMissing Val'uesPilteT: precomputc modes of nominal attributcs and IllC'.\llS

61

of numeric attributes with SQL aggregate functions and use update SQL state­

ments to replace missing values with modes and means .

• NominalToBinaryFilter: adding attributes means changing the table schema

by adding columns. Therefore, the heuristic is that if the number of new

columns does not exceed the thresholcl, new columns are added to the dataset

table and the corresponding values for new columns arc updated; otherwise,

the filtereddataset is created with unchanged columns and new columns,

unchanged values are copied from dataset to fil tereddataset, and the cor­

responding values for new columns are inserted. The heuristic helps rninimize

the cost of the operation, sin ce creating a table is a very expensive operation in

the database, and adding many columns to a table also costs a lot .

• RemoveUseless: removing attributes can be done on the attribute information

storecl in the ImmutableDataSet elass without touching the database, Sillce

the SQL statements used to load data records from DB2 look at the attribute

information in the ImmutableDataSet elass to determine which attribllte 1,0

retrieve. The criterion useel to eletermine which attribut es are useless is the

number of attribute values. For nominal attrilmtes, the IluUlber of values is

calculated using the attribute information stored in main memory. For numeric

attributes, the number of values is calculated by counting the distinct values

in the database. For those that either have a single attributc value 01' too

many attribute values that exceeds the threshold, they will be removed ±'rom

the attribute information stored in main memory.

As a result, none of the filters requires to l'ead data records into mam memory,

improving scalability and efficiellcy.

7.5.2 Logistic Regression

The general idea of logistic regressioll has been discussed in Chapter 3. T'he logistic

regression algorithm implemented in Welm3.4 is a penalized logistic l'egrcssion with

62

ct default ridge parameter I.GE - 8. It is based on the paper of le Cassie and van

Houwelingen [8], but without estimating the ridge parameter. The ridge parameter

can be specified as user input. If no user input is given, the default value is taken

for the computation. Since there is no need to apply any method to c:llOose the

ridge parameter, the only step left is to compute the coefficients for the attributes.

Therefore, the logis tic regression algorithm sim ply goes through the training data and

builds the logistic regressioll model by calculating the coefficiellt fol' each attribute at

each step.

Snppose there are k classes for n data records with m attributes and the coefficient

matrix B is an m * (k - l) matrix. The log-likelihood function applied in the logistic

regression algorithm is:

L=- L L (YU*ln(PjC,Yi)))+(I-(L Yij))*ln(l- L Pj(Xi))

i=l..nj=l..(k~l) j=l..(k~l) j=l..(k~l)

where the probability of class j except the last class is

and the last class has probability

The goal of the algorithm is to find the matrix B for which L is minimizcd. A

Quasi-Newton methocl is used to sem'ch for the optimi~ed values of the 'In * (k - 1)

variables. Before the optimization procedure is used, the matrix B is squeezee! illto

a 171 * (k - 1) vector. Once the matrix B is computed, the probability of any data

record that belongs to a certain class can be compllted by the probability fllnctions

as above. Although the original logis tic regression does not cleal \Vith weights for the

ctttributes, the irnplernentation is adjusted to handle the weights.

63

The basic steps of logistic regression implemented in vVcka3.4 arc shmvn in the fol­

lowing:

Logistic (training dataset, testing dataset)

Store training dataset into main memory as an Instances object

filter the training dataset using ReplaceMissingValues

filter the training dataset using RemoveUseless

filter the training dataset using NominalToBinary

Normalize the training dateset and store the

normalized training data in a 2-dimensional array

Compute the coefficients by minimizing the

log-likelihood function based on the 2-dimensional array

Evaluate the logistic regression model on the filtered

training dataset

Evaluate the logistic regression model on the filtered

testing dataset incrementally

The filters that are illvoked inside the algorithm have been re-implemented as dis­

cussed in the previous section, and hence do not impose any scalability restriction

any more.

However, the logistic regression algorithm creates a 2-dimensional main memorv struc­

ture that is, in fact, as large as the cntire dataset. Even though logistic regrcssion can

achieve good scalability using the optimized filters, it is limited by the 2-dimensional

array constraint. This shows that developers must be aware of space limitations.

However, we can help them in developing scalable implementations by providing ad­

equate support. In the above example, normalizing data and the computation of the

normalized data seem to be a standard approach 11sable in various algorithms. There­

fore, we offer an extra interface that allovvs norrnalizing data within the databasc. 1l

is implemented using DB2. That IS, the normalization uses SQL queries and the

64

result is stored in DB2. The developer can use it without knowing that a database

implementation is used.

The two alternatives lead to two variations of the implementatioll of computing the

logistic regression model. They diff"er in how they are implemented in the algoritlull.

• variation 1: load the training data from DB2 with strategy I, llOrIIlali:;;c the

training data and store the normalized training data in the 2-dimensional anay

(existing algori thm).

• variation 2: create extra normalization methods in the ImmutableDataSet class,

strategy III caUs these methods from the logistic regression algorithm: load the

normalized training data from DB2 with strategy 1.

7.6 Strategies for Performance Optimized JOBe Ap­

plication

There exist sever al ways to geuerally speed up JDBC applications. SOIlle of these

strategies have been applied in the DB2Manager and DB2Helper classes, and are de­

scribed in the foUowing.

• Connection: Connection management is important for application performallce.

Creating a connection to a database server is expensive and it is evcn more

expensive if the servel' is a remote server. A simple and casy strategy iB tu

open one connection and share it in a seriaI fashion among multiple statemcnt

objects. Bence, in the core implementation of vVeka3.4-DB, the cOIlllection

is opeued by a DB2Manager object, which is a static field in DBDataSet. AU

the objects of eithcr ImmutableDataSet or MutableDataSet share the same

DB2Manager object, and hence share the same connectioll. Since this strategy

only works with the single-user mocle, this DB2 storagc implcmcntatio11 0111y

GG

supports single-user rnode. If multiple-user mode is requested, the DB2Manager

object should maintain a connection pool.

• Transaction Atomicity: In general, a transaction represents Olle logical unit of

work or piece of code that either executes entirely and cornmits, or it does not

execute at aU, aborting aU the work do ne so far. Initializing a transaction and

terminating it (commit or abort) can be quite time consuming. Using .JDBC

default, each SQL statemellt cxecutes as a single transaction using autocommi t

on. In autocommi t off, the program decides which statements belong to a

transaction by setting explicit commit statements when a transaction should

terminate. Using autocommi t on gives poor performance when multiple state­

ments are to be executed one after another, because commit is issued after each

statement by default. This reduces performance by issuing unuecessary com­

mits. Therefore, in our core implementation, the autocoIllIllit is set to false

and the commit () method is caUed explicitly after a set of related statcments.

• Transaction Isolation Level: The isolation level represents how a database

maintains data integrity against problems like dirty reads, phantoIIl reads and

non-repeatable reads that can occur due to concurrent transactions. Differ­

ent isolation levels have different impacts on the performance. A stricter iso­

lation level has worse performance in terms of execlltion time. This is true

because the database uses locks ta prevent different transactiolls ta access the

same data records. The stricter the isolation level, the more locks I1mst be rc­

quested, hence the more overhead occurs due to locking. The default setting is

read_commi tted, which IlleaIlS a transaction can only read the data fram the

database when the data has been committed by other transactions. Any isola­

tion level that is lower than the clefault is likely to he faster, and the opposi Le

will probably he slower. In our core implementation, the isolation level can he

lowered to read_uncommi tted level, since therc are no concurrent transactions

and execlltion is sequential. Hence, there is never uncommitten nata. Thal. is,

although we set the isolatioll level to uIlcommitted, leadillg Lü extremely lm\'

locking overhead, we achieve the same effect as read_commi tted.

66

• Statement: There are three types of statement interfaces in JDBC to repre­

sent a SQL query and execute that query: Statement, PreparedStatement

and CallableStatement. Statement is used for static SQL statements \Vith no

input and output parameters. PreparedStatement is usecl for clynamic SQL

statements with input parameters and CallableStatement is uscd for dynamic

SQL statements with both input and output parameters. PreparedStatement

gives usually better performance compared to Statement because it is prc­

parsed and pre-compiled by the database once for the first time and thell

it reuses the parsed and compiled statement afterward. Because of this 1'ea­

ture, it can significantly improve the performance when a statement executes

repeatedly, SillCC it reducet:> the overload incurred by part:>ing am1 cornpilillg.

PreparedStatement has becn applied in our core implcmentation. For in­

stance, the insert query used for inserting the data records from the train­

ing dataset is executed as wally tiwes as the size of the traillillg datasct. A

PreparedStatement created for such a query helps save the overhead of pars­

ing the same statement multiple times. Hence, in the core implementation,

a PreparedStatement object with the batch update feature is created for ill­

serting the data records into the database. The attrilmte valuet:> of each data

record are added to the batch of the PreparedStatement object. vVhenever tbe

attribute values of a predefined number of data records have been adclcd into

the batch, the PreparedStatement is executed and all the attribute vètluet:> are

inserted into the database.

There exist further possibilities to use the PreparedStatement. For iustance,

a function that offers ta select certain attributes of aIl data records can be implc­

mentecl with the PreparedStatement in the following way. A PreparedStatement

object usecl for retrievillg the attributes of data records from the database is

created before the loop. During the loop the PreparedStatement object it:> cx­

ecuted repeatedly to retrieve the attribute vetIlle of each dettet n=~cord stf'p hy

step.

67

Chapter 8

Performance Evaluation

8.1 Experiment Design

8.1.1 Goal and Setup

The major goal of the experiment section is to show that applying a DB2 storage im­

plementation can improve the scalability of existing algorithms significantly without

modifying the results of the algorithms. We use logistic regression as a demonstration.

Furthermore, we compare the performance of different versions of logistic regressioll

to show the effectiveness of different strategies for improving the scalability.

The experiments are conducted on a Linux machine ,vith dual CPUs nt CISTI, ~H.C.

The kernel version of the Linux machine is 2.4.18-26.8.0, the CPU model is Intel

(R) XEON (TM) MP CPU 1.50GHLI, the CPU frequency is 1492.183 and the total

IlleIIlory is 3098684 KB. DB2 8.1.0 serve!", set up by Greg Kresko from CISTI, is

nmning on the same machine with a fixed configuration. Appendix A shows how the

DB2 server is configured.

68

8.1.2 Datasets

ARFF

The input dataset files are required to handle ARFF (Attribute-Rela,tion Format

File) format [41]. An ARFF cOllsists of a header section and a data sectioll. The

header section contains a relation name declared by token @relation and attribute

information declared by token @attribute. The attribute types supported by VVeka3.4-

DB are numeric and nominal. The numeric attributes can be defined as real or integer

numbers and the nominal attributes have a list of possible nominal values. The data

section contains aIl the data declared by token @data. Each data record residcs on

one hne of the file. Attribute values of each data record are separated by comma

and rnissing values are repl'esented by question marks. Appelldix B shows a sample

ARFF.

Synthetic Datasets

The first experiment is based on synthe tic clatasets, which are gellerated by a data

generator for classification tasks. The data g"enerator is originally from IBM Alulê1dcll

Research Center [1]. VVe slightly modified it to generate ARFF format dataset files.

The data generator only generates numeric type attributes and nominal type class

attributes. The numeric values are randomly generated integer values. The nominal

class values are binary nllmbers with llser-defined percentages. In the cxpcrimcnt,

ten training datasets between 10,000 to 100,000 data records and one testing dataset

with 5000 data records are used. Each dataset has 50 aLtrilmtes alld 1 class aLLriuuLe

without missing values.

Real Datasets

The second experiment is based on real datasets, which are derived from (me AVIRIS

(Airborne Visible/lnfrared Imaging SpectroIUcter) dataset. Tt is originally from JPL

(Jet Propulsion Laboratory, California Institute Tcchnology) and extcnsivdy COl"­

rected by CCRS (Canadian Center for Remote Sensing, N atural Resources Canada).

The AVIRIS data is hyperspectral data that was capturecl by N ASA/ JPL AVIRIS

69

sensor over Cuprite, Nevada on June 12, 1996 (19:31 CT). Paul Budkewit::;ch fwm

CCRS released the AVIRIS dataset with 300,0000 data records and 170 attributes.

For more background information about the dataset, please refer to [34].

In the experiment, four different AVIRIS datasets are generated by randomly sam pliug

the original AVIRIS. This sampling was done by Glen Newton from CISTI (Canada

Institute for Science and Technical Information) of NRC (National Research Conncil

of Canada). Each attribute value represents a reflectance at an interval of 0.12mn

wavelength in the range of 0.428 to 2.5 without 1.4 and 1.9nm. The class attribute

value represents if a certain mineral is present or not. There are three target mineraIs

associated with the original AVIRIS dataset, wlüch are alulliLe (AL), kaolilliLt: O\.A)

and buddingtonite (BU). In our experirnent, we will look at kaolinite. The class

labels of the generated four training datascts show if kaolinite (KA) is present or not

with a threshold of 25%. In the experirnent, four training datasets contain 12669,

19712, 35055 and 78592 data records respectively, and one testing dataset has 3224

data records. Each dataset has 168 numeric attributes and 1 nominal class attribllte

without missing values.

8.1.3 Logistic Regression

\Veka3.4-DB runs under the original main rnemory core irnplementation and our

DB2-basecl core implementation on the sarne machine as the DB2 server resides OIl,

"vhich is lightly loaded. In arder ta easily refer to different irnplementations, wc cali

the first one the memory storage implementation and the second one the DB2 storagc

implementation. The two implemeIltation arc starLed with tlw [ollO\vlllg cUllllllamb.

java -Xms64M -Xmx64M -Dds=mm weka.classifiers.functions.Logistic

-t data/syntheticl0k.arff -T data/synthetic.arff

java -Xms64M -Xmx64M -Dds=dbi weka.classifiers.functions.Logistic

-t data/syntheticl0k.arff -T data/synthetic.arff

70

In order to make a reasonable comparison between the two implementêttions without

having an extremely long running time, the memory size that can be used by both

Implementations is constrained to 64MB. The -Dds option is used to set up the

storage implementation: mm means memory storage implementaticlll and dbi Hwans

DB2 storagc implementation with ImmutableDataSet (sincc logistic rcgression will

not change any attribute values after the filter operations). The -t option is used to

set up the training dataset and the -T option is used to set up the testing clataset.

An oxperiments use the default values for the optionti for logititic regression.

Besides the implementation of logistic regression based on the memory storage, logis­

tic regression based on the DB2 storage has been implemented with three different

versions for the em pirical study. Each vertiion has adopted different strêttegies clis­

cussed in the last chapter to achieve a database-oriented implementation.

• version 1:

1. no modification on the implementation of logistic regression, i.e. only use

the basic interface of core to access and manipulate data, (variation 1 of

logistic regression describecl in Section 7.5.2)

2. filtors are not optimized and only use the basic core.

• version 2:

1. no modification on the irnplernentation of logistic regretision, (variation 1

of logistic regression)

2. use the modified filters

• version 3:

1. use the enhanced interface, and adjust logistic regressioll (variatioll 2 of

logistic regression described in Section 7.5.2),

2. apply the filters

71

Version 1 is a naive approach. It only uses the basic interface of core and does not

optimize the algorithm itself to improve scalability and efficiency. In contrast to the

other two versions, version 1 is supposed to be the worst.

Version 2 and version 3 move some of the computation of the algorithrn illto the

database, which makes them more efficient. Although, version 2 has a mcmory COl1-

straint, its use of an array makes the data access faster than loading data records

from the database.

Since version 3 removes aIl the memory constraints, it can achieve the highcst scala­

bility among aIl the versions. Hovvever, the performance of version 3 may sllffer from

the overhead caused by loacling the data records into main memory.

The different versions oflogistic regression in vVeka3.4-DB are rnaiutaincd by thc CYS

repository and will run under DB2 storage implementation with the sarne commando

In the experiment, we call the implementation of 10gistic regression based on the

memory storage as main memory version of logistic regression, aud the irnplelllen­

tations of three versions of logistic rcgression based on DB2 storage as version l of

logistic regression, version 2 of logistic regression and version 3 of logistic regression.

8.2 Experimental Results

8.2.1 Experimental Results for Synthetic Datasets

Results for version 1 were very bad, with long execution times even for swaIl datasets.

Heuce, wc do not discuss it further. The experirncntal results of ~version 1 arc not

shown in the foIlowing figures.

The results for synthetic datasets of running the main memory verSlOn of logistic

rcgression and version 2 of logistic regression are shown in Figure 8.1.

Both implementations produce the same classification results on aIl the datascts. The

figure shows that the main memory version of logistic regression l'uns out of memory

72

1600
fi'· ,

...--..- 1400
-0
c
0 1200 ()
<D

.!!2-
<D 1000
-0
0
E

800 -0

:::l
..0

0 600
C
<D

.:::s:; 400 co
<D
E 200

f.=

0

20 40 60 80 100 120
Number of instances (k)

Figure 8.1: Synthetic Datasets: Main Memory vs V2

on the training dataset with 50,000 data records, and the version 2 can run with the

training datasets up to 100,000 data records.

Version 2 c:an hand1e a bit more than twice the Humber of data records as the main

memory version. It can't increase any further since the 2-dimensional main mcrnory

data structure of 10gistic regression hinders fUl'ther sca1abi1ity. The execution time of

version 2 grows linearly with the size of the training dataset. It a1so increases lineal'ly

in the main memory verl-lion but with a l-lmaIl coefficient, which il-l ncarly ncgligible.

The reason is that version 2 retrieves each data record individuaIly t'rom the database

whi1e the main memory version 10ads aIl the data records in main memory and henc:e

has very fast ac:cess.

However, version 2 l'uns out of memory for a dataset "vith 110,000 data l'cconb. The

73

.---.
""0
C
o
u
Ci)
(J) --
Ci)

""0 o
E
""0

::J
..0
o
c
Ci)

..::.::
CCl
Ci)

E
F

20000

15000

10000

5000

{'l'

r Ji o ~ __________ ~ ____ ~ __ ~L-__ ~ ____ -L ____ -L ____ ~ __ ~_

10 20 30 40 50 60 70 80 90 100

Number of instances (k)

Figure 8.2: Synthetic Datasets: V2 vs V3

experimental results of running version 3 of logistic regression are shown in Figures

8.2 and 8.3 Version 3 is running slower than version 2, because version 2 uses the

2-dimensional array to store the normalized training data, while version :3 has to

load the normalized training data from DB2. However, scalability is much improved.

We ran the experiment up to a training dataset with 600,000 data records with

version 3 without memory problems. The response time increased with the size of

the training dataset for the entire experiment. Version.3 l'UIlS out of lll€lllOrV Oll

the training dataset with 700,O()(J data records, because the ind(~x vector bccomcs Cl

memory constraint, since it grows linearly with the size of the training dataset.

74

--"'0
C
0
ü
Q)

!!!.-
Q)
"'0
0
E
"'0 .-
:J
.0
0
c
Q)
~
co
Q)

E
f=

250000 ~--~--~--~----~--~--~--~----~~

200000

150000

100000

50000

o
1 00 200 300 400 500 600 700 800 900 1 000

Number of instances (k)

Figure 8.3: Synthetic Datasets: V2 vs V3

8.2.2 Experimental Results for Real Datasets

The experimcntai results of running the main memory version of Iogistic regression

and version 2 of logistic regression for the AVIRIS datasets are shmvn in Figure 8.4.

Both implementations produce the same classification results on aIl the datasets. The

figure shows that the main memory version of logistic regression l'uns out of mcmory

on the training dataset with 19712 data records, and version 2 of logis tic regl'<èssion

l'uns out of memory on the training dataset with 78592 data records. Sillc:e the

dataset has more attributes than the synthetic dataset, more melllory is uœded tu

store each dataset. Tt shows that the scalahility of version 2 of logistic regression c10es

suffer from the memory constraint caused hy the 2-climensional array. However it

can handle 4 times as many data records than the main memory version. Ilesponse

75

1800
f,

1600
-----"'0
c

1400 0
ü
Q)
Cf)

---- 1200
Q)

"'0
0 1000 E
"'0

:J 800
...0
0 - 600 c
Q)

..::.:::
CCl 400 -Q)

E 200 f=

0 •
10 20 30 40 50 60 70 80 90 100

Number of instances (k)

Figure 8.4: AVIRIS Datascts with 169 attributes: }/Iain Mcmory vs V2

times are higher for both versions compared to the synthetic dataset due to the highcr

number of attributes, which requires more computation.

The experimental results of running version 3 of logistic regressioll are shown in Figure

8.5. Version 3 of logistic regression can scale up to lm'ger datasets thau vcrsioll 2 as

expected, because version 3 has removed almost aIl the memory constraints from its

implementation. Note that the experiment stops only because we clic! not have ac:cess

to datasets with a larger number of data records.

76

-----"0
C
o
ü
Q)

~
Q)

"0
o
E
"0

:::l
.D
o -c
Q)

.Y
ctl -Q)

E
f=

120000

100000

80000

60000

40000

20000

o

10 20 30 40 50 60 70 80 90

Number of instances (k)

Figure 8.5: AVIRIS Datasets with 169 attributcs: V2 vs V3

8.2.3 Analysis

100

Even though there is lack of clear cxperimental results for version 1 of logis tic rc­

gression, our preliminary tests show that a simplistic DB2 storage implementation is

not enough and has even less scalability than the original main memory implemen­

tation. In version 2, filters have been re-implemented by moving functionality into

the database. A similar approach is applied when improving version 2 to version

3, where extra interfaces have been introeluced to provide methods that can get riel

of the 2-dimensional array. Thereforc, introducing extra interfaces that are irnple­

mented within the database does improve the scalability of the algorithm. If more

functionality is implemented within the database, more scalability can be achievecl.

The results show dearly that version 3 can acbieve higher scalability than versioll 2

77

bccause the normalization function is implemented within the database and there is

no need to apply it on the training data in main memory; therefore the 2-dimensional

array holding the normalized training data is removed. Since the strategy that is

used to irnprove scalability is similar to the sernitight coupling proposed by Han [18],

the performance results further prove that a tighter coupling approach can achicvc

better scalability.

Since improving the scalability is the major goal of this study, the effic:iency is not an

important concern \vhen running the logistic l"cgression on DB2 stol'age implclllcll­

tation. It is obvious that the logis tic regression on memory storage implementation

always has the best execution time. But, even though version 3 of logis tic regression

on DB2 storage implementation is slower than aIl the other implementatioIls, it still

has a reasonable response time with respect to the size of the training datasct.

There are a couple of special factors in this experiment that may affect the exeCll tiOIl

time of aIl the implementations when the experiment setting is different .

• datasets: training datasets do not have missing values and nominal attributes,

therefore, the effect of filtel's dose Ilot count much into the executioll tirnc.

Execution time will increase when filters really do some serious work .

• nctwork: vVeka3.4-DE is running on the same machine as the DB2 server.

Therefore, the effect of network traffic does not cou nt into the execution time.

Execution time will increase when vVeka3.4-DB is running 011 a clifferent ma­

chine.

78

Chapter 9

Conclusion

In this thesis, l'le extended \Veka3.4 successfully to handle large datasets that can't

fit into main memory. Weka3.4-DB is implemented to store the data into and access

the data from DB2 with a 100s8 coupling approach in general. Additionally, a smnit­

ight coupling is applied to optimize the data manipulation methods by implementing

core functionalities within the database. Based on the DB2 storage irnplelllentation,

Weka3.4-DB achieyes higher scalability, but still proyides a general interface for devcl­

opers to implement new algorithms without the need of database or SQL knowledge.

The experiment on logistic regression demonstrates that vVeka3.4 can he extended

to handle large datasets that do not fit into memory with a reasonahle executioll

time. This proyes that using relation al database systems is a strategie and praetical

solution for solving the problem of handling large datasets in data mining tasks.

Howeyer, there are still a Ilurnher of issues that neecl to he adclressed in future work

befon~ achieving the final goal, that is, to daim that vVekaJ.4-DB IS il mcmory­

eonstraint free paekage that ean handle arbitrary large datasets .

• The index vector can beeome a constraint when the size of the training dataset is

extremely large. The optimal solution ,vould be to resolve the proLJlem without

using mernory data structures but still achieve sirnilar performance.

79

• For more cornplicated algorithm~, tluch a~ decision treetl (which tlplit the training

dataset recursively), further specialized interfaces have to be providcd to achievc

good performance.

• Other implementation alternatives could be applièd in order to find the best

strategy to optimize the performance. For instance, a local disk cau be used to

cache frequently used data rccorck

• Furthermore, the interaction bet"veen vVeka3.4-DB and the database can be

adjusted, starting from furthcr JDBC related optimizations to using the ston~d

procedures technology of the database.

80

Appendix A

DB2 Server Configuration

The DB2 server is tuned with following parameters:

1. Application heap size (applheapsz) that defines the number of private memory

pages available to be used by the database manager on behalf of a specific agent

or subagent: 10,000 pages (41<B)

2. Query heap size (query Jleap_sz) that defines the maxirrnun amount of rnernory

that can be allocatcd for the query heap: 10,000 pages (41<B)

3. Application support layer heap oize (aolheapsz) that defineo the maximum alllount

of memory that can be allocated for the communication buffer between the local

application and its associated agent: 1000 (4KB)

4. Transaction log file size (logfilsiz) that defines the size of each pnmary and

secondary log file: 50,000(41<B)

5. Number of transaction files primary (logprimary) that defines the l1umber of

primary log files that can be used for recovery: 100

6. Number of transaction files secondary (logsecond) that deiines the number of

secondary log files that can be used for recovery: 100

81

Appendix B

ARFF Example From Weka3.4

©relation weather

©attribute outlook {sunny, overcast, rainy}

©attribute ternperature real

©attribute hurnidity real

©attribute windy {TRUE, FALSE}

©attribute play {yes, no}

©data

sunny,85,85,FALSE,no

sunny,80,90,?,no

overcast,?,86,FALSE,yes

rainy,70,96,FALSE,yes

rainy,68,80,?,yes

rainy,65,70,TRUE,no

overcast,?,65,TRUE,yes

sunny,72,95,FALSE,no

7,69,70,FALSE,yes

rainy,75,80,FALSE,yes

82

sunny,?,70,TRUE,yes

overcast,72,90,TRUE,yes

overcast,81,?,FALSE,yes

rainy,?,91,TRUE,no

83

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance

perspective. IEEE Transact'ions on Knowledge and Data EngieeTing, 5(G):914~

925, 1993.

[2] R. Agrawal, T. Imielinski, and A. Swami .. Mining associations bet'ween sets of

items in massive databases. Proceedings of the ACM SIGMOD International

Conference on the Management of Data, pages 207~216, 1993.

[3] C. G. Atkeson, S. Schaal, and A. 'yV. :v100re. Locally weighted learning. Artificùû

Intelligence Review, 1l(1-5):1l~73, 1997.

[4] D. H. Ballard. An Introd'uction ta Nat'uml Computation. MIT Press, 1997.

[5] C. Bishop. Neural NetwoTks fOT PatteTn Recognition. Clarendon Press, 1995.

[6] P. Bradley, U. M. Fayyad, and C. Reina. Scaling EM to large databases. Technical

report, ~'v1icrosoft Research, MSR-TR-98-35, 1998.

[7] L. Breimall, J. H. Friedman, R. A. Olshen, aIld C. J. StoIle. Classificatùnt and

Reg'tession T'tees. Wadsworth Statistieal Press, 1984.

[8] S. Le Cessie and J. C. Van Houweligen. Ridgc cstimators in logistic rcgl'C:->SiOll.

Applied Statistic, 41(1):191~201, 1992.

84

[9] P. Chen. The entity-relationship model - toward a unified view of data. A CM

Transactions on Databasc Systcms, 1(1):9-36, 1975.

[Hl] E. Codd. A relational modcl for large shared data banks. Communications of

the A CM, 13(6):377-387, 1971.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, 2001.

[12] C. Cortes and D. Pregibon. Giga-mining. Proceedings of the International COT!­

fen::nce on Machine LeaTning, pages 174-178, 1998.

[13] P. Domingos and M. Pazzalli. On the optimality of the simple bayesian classifier

under zero-one loss. Machine Leaming, 29(2-3):103-130, 1997.

[14] D. E. Duffy and T. J. Santner. On the small sample properties of norm-restrictecl

maximum likelihood estimators for logis tic regression modcls. Comr/7,uns Statist.

Theory Meth., 18:959-980, 1989.

[15] R. Elmasri and S. B. Navathe. Hmdamentals of Database Systems. Ben­

jaminjCummings, 1989.

[16] J. Gehrke, V. Ganti, R. Ramakrishnan, and \tV-Y. Loh. BOAT-Optimistic deci­

sion tree construction. PToceedings of the ACM SIGMOD International COT~/er­

cnce on the Management of Data, pages 169-180, 1999.

[17] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast

deeision tree construction of large datasets. Proceeding.s of the Intcrnational

Conference on Ver-:tJ Lar-ge Data Bases, pages 416-427, 1998.

[18] J. Han and M. Kamber. Data Mining: concepts and techniques. Morgan Kauf­

rnann Publishers, 2001.

[19] T. Hastie. The Elements of Statistical Learning: data Tninùl,(j, à~fé('cncc, (Lnri

prediction. Springer, 2001.

85

[20] A. E. Hoerl and R. 'yV. Keullard. Ridge regresSlOn: biased estirnates for

nonorthogonal problem8. Technomctric8 , 12:55-67, 1970.

[21] D. VV. Hosmer and S. Lemeshow. Applied Logistic Regression. VVilcy, 2000.

[22] VV. Inmon. B'uilding the Data Wœreho'use. vViley, 1996.

[23] P. McCullagh and J. A. Nelder. Generalizcd Linea'!" Models. Chapman aud HalL

1989.

[24] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for

data mining. Proceeding.s of the International Conference on E:r:tending Datalwse

Technology, pages 18-32, 1996.

[25] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[26] A. VV. Moore and M. Lee. Cached sufficient statistics for efiicient machine learn­

ing with large data sets. Journal of AT"tificial Intelligence ReseaTch, 8:67-91,

1998.

[27] VV. Du Mouchel, C. Volinsky, T. Johson, C. Cortes, and D. Pregiboll. Squashing

flat files flatter. Proceedings of the A CM International Confe'!"P/IU:e on f{ nowledge

Discovery and Data Mining, pages 6-15, 1999.

[28] D. Pavlov, H. Mannila, and P. Smyth. Prediction with local patterns using

cross-entropy. Proceed,tngs of the A CM Inter-nat'tonal Conféœnce on K'fI,o'Wledge

Di8covery and Data Mining, pages 357-361, 1999.

[29] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algo­

rithms. Journal of Data Mining and Knowledqe DiscoVCTJj, 3(2):1:n-lG9, ID99.

[30] D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishms,

1999.

[31] J. R. Quinlan. C4.5: Program.s fOT Machine Learning. Morgan Kaufmann Pub­

lisher, 199:3.

86

[32] Agrawal R. and Shirn. K. Developing tightly-coupled data rnining applications

on a relational database system. Proccedings of the Internat1:onal Conference on

Knowledge Discovery in Databases and Data Mining, 1996.

[33] R. Ramakrishnan and J. Oehrke. Database Management System. NIcOraw-HilL

2003.

[34] B. J. Ross, A. O. Oualtieri, F. Fueten, and P. Budkewitsch. Hyperspectral

image analysis using genetic programmming. The Genetic and EvolutiO'luLTy

Computation Conference, pages 1196-1203, 2002.

[35] S. Russell and P. Norvig. Artificial Intelligence: A Modem Approach. Prentice

Hall, 1995.

[~;6] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association mle mining

with relational database systems: alternatives and implications. PTOceedings of

the ACM SIGMOD Intenwt'ional Conference on Management of Daia, pages

343-354, 1998.

[37] R. L. Schaefer, L. D. Roi, and R. A. \Volfc. A ridge logistic estimate. Communs

Statist. TheoTy Meth., 13:99-113, 1984.

[38] C. Scholkopf, J. C. Burges, and A. J. Smola. Advances in Kernel Method8.]\111'

Press, 1999.

[39] J. Shafer, R. Agrawal, and IVI. Mehta. SPRINT: A scalable parallel classifier for

data mining. Proceedings of the InteTTwt'tonal Conférence O'fl, VeTy Large Data

Bases, pages 544-555, 1996.

[40] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts.

McOraw-Hill, 2002.

[41] 1. H. 'Witten and E. Frank. ARFF: attribute relation file format.

http://www.cs.waikato.ac.nz/ml/weka/arff.html.

87

[42] 1. H. \,yitten and E. Frank.

http:j jwww.cs.waikato.ac.nzjmljwekaj.

88

Data Il 11 Il lIlg soft,vcuc III .J ava.

