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Abstract 

This study aimed to optimize pulse protein processing by assessing the efficiency of protein 

extraction and evaluating the energy and other resources required for the milling and air 

classification unit processes. The data envelopment analysis (DEA) technique was used to 

determine the resource utilization efficiencies of the extraction process, and the results were 

integrated into a relative efficiency score using linear programming. The study found that the Pure 

technical efficiencies for milling and air-classification unit operations were 0.98 and 0.89, 

respectively, indicating that 2 and 11% of all input resources could be reduced while maintaining 

the same output. The benchmarking results showed that the ideal energy requirement for milling 

and air classification would be 3.24 Wh and 0.01 MJ, respectively. 

Milling is a critical step in optimizing protein extractability during plant protein extraction, and 

the selection of milling equipment depends on energy efficiency, feed choice, and desired flour 

properties. However, the decision-making on the mill type heavily relies on the energy required to 

reduce the particle size, which is determined by the Bond’s work index. This study evaluated the 

Bond’s work index for chickpeas, lentils, and peas through laboratory experiments and developed 

mathematical equations to predict the index and specific energy based on the pulse variety's 

characteristics. The study found good correlation coefficient values greater than 0.94, indicating 

that the proposed models, together with other product characteristics, could support decision-

making in exploring the sustainability of milling equipment for a desired size reduction. 

In conclusion, this study provides valuable insights into optimizing protein processing through 

efficient resource utilization and energy-efficient milling equipment selection. The proposed 

models for predicting the Bond’s work index and specific energy could be used to support 
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decision-making in exploring the sustainability of milling equipment, particularly for pulse 

varieties. 
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Résumé 

Cette étude avait pour objectif d'optimiser le traitement des protéines de légumineuses en 

évaluant l'efficacité de l'extraction de protéines et en évaluant l'énergie et les autres ressources 

requises pour les processus d'usinage et de classification par air. La technique d'analyse 

enveloppement des données (DEA) a été utilisée pour déterminer l'efficacité d'utilisation des 

ressources du processus d'extraction, et les résultats ont été intégrés dans un score d'efficacité 

relative en utilisant la programmation linéaire. L'étude a révélé que l'efficacité technique pure pour 

les opérations d'usinage et de classification par air était de 0,98 et 0,89, respectivement, indiquant 

que 2 et 11 % de toutes les ressources d'entrée pourraient être réduites tout en maintenant la même 

production. Les résultats de l'étalonnage ont montré que la demande d'énergie idéale pour l'usinage 

et la classification par air serait de 3,24 Wh et 0,01 MJ, respectivement.   

L'usinage est une étape critique pour optimiser l'extraction de protéines pendant l'extraction 

de protéines végétales, et la sélection de l'équipement d'usinage dépend de l'efficacité énergétique, 

du choix de l'alimentation et des propriétés de farine désirées. Cependant, la prise de décision sur 

le type de moulin dépend fortement de l'énergie requise pour réduire la taille des particules, qui est 

déterminée par l'indice de travail de Bond. Cette étude a évalué l'indice de travail de Bond pour 

les pois chiches, les lentilles et les pois par des expériences en laboratoire et a développé des 

équations mathématiques pour prédire l'indice et l'énergie spécifique en fonction des 

caractéristiques de la variété de légumineuses. L'étude a révélé de bonnes valeurs de coefficient de 

corrélation supérieures à 0,94, indiquant que les modèles proposés, avec d'autres caractéristiques 

du produit, pourraient soutenir la prise de décision en explorant la durabilité de l'équipement 

d'usinage pour une réduction de taille désirée.   
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En conclusion, cette étude fournit des informations précieuses pour optimiser le traitement 

des protéines par une utilisation efficace des ressources et une sélection d'équipement d'usinage 

économe en énergie. Les modèles proposés pour prédire l'indice de travail de Bond et l'énergie 

spécifique pourraient être utilisés pour soutenir la prise de décision en explorant la durabilité de 

l'équipement d'usinage, en particulier pour les variétés de légumineuses. 
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1 Introduction 
1.1 Background 
 

The world is constantly changing and evolving, and this has never been truer than with its 

population growth. According to recent projections, by 2050 the world's population is expected 

to exceed 9 billion (Compton et al., 2018), which is a staggering figure when considering the 

amount of resources that will be required to sustain this population. One of the biggest areas of 

concern is the food industry, which is expected to see a 60% increase in demand by 2050 

(Compton et al., 2018). With the world's population growing at such a rapid rate, it is easy to see 

why the demand for food will increase so dramatically. However, it is important to note that the 

food industry is one of the largest consumers of natural resources such as water and energy 

(Compton et al., 2018). This means that the projected increase in demand for food will have 

significant implications for the environment and the ability to manage these resources 

sustainably. 

Plant-based protein industries, such as pea protein extraction, are also expected to 

experience significant growth in response to the rising demand for sustainable protein products 

(Tassoni et al., 2020). However, as with all food industries, there is a crucial need to optimize the 

extraction processes used in these industries. Doing so it would be possible to minimize waste 

and reduce the amount of water, energy, and raw materials required to produce these products. 

The need for conservation measures is clear, as these resources are finite and must be used 

responsibly if sustainable growth is the goal. As such, it is imperative that pulse protein 

processing industries take a proactive approach to reduce their consumption of these resources. 
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Different extraction methods can be used to process pulse protein. Pulse protein 

extraction methods can be generally categorized into two groups namely dry and wet 

fractionation methods (Schutyser et al., 2015). Wet fractionation processes are extremely 

resource dependant and use considerable amount of water and energy while dry fractionation 

processes are more resource efficient (H.-G. Zhu et al., 2021). On the other hand, wet 

fractionation methods produce products of higher protein purity compared to dry fractionation 

(Schutyser et al., 2015). The concept of optimizing the processes, which was coined in the 1990s, 

includes objectives of reducing the consumption of resources while maintaining or enhancing the 

volume and quality of product (Maxime et al., 2006). Therefore, the goal of industries is to locate 

and quantify resource inefficiencies’ and select optimum design conditions in order to minimise 

the inefficiencies (Carrasquer et al., 2017).  

     Different tools have been developed for calculating the resources utilization efficiency during 

protein extraction processes such as Life cycle assessment (LCA), water/energy footprint and 

Data envelopment analysis (DEA). LCA is an analytical tool that captures the overall 

environmental impact of a product (Curran, 2013). However, LCA does not provide information 

on efficiency perspectives of a processing plant. Water/energy footprint packages also captures 

total amount of direct and indirect water/energy needed to produce certain amount of product 

while they do not give an insight on efficiency (Maltha, 2015). On the other hand, DEA has 

promising potential to calculate the resource utilization efficiency of food processing plants. DEA 

unlike old traditional methods such as regression analysis which compares each observation with 

the mean value of the sample, compares each observation with the best performing unit 
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(Mardani et al., 2017). This along with other advantages of DEA makes it the best option to 

analysis resource utilization efficiency in pulse processing industry. 

1.2 Rationale 
 

While there is an abundant number of scientific papers addressing the difference in 

resource utilization between dry and wet extraction methods, the resource utilization efficiency 

of such processes has been neglected, and research on improving these procedures is sparse. 

Previous research simply evaluated the present sustainability of food enterprises and did not give 

or evaluate prospective improvement options for these firms. 

It is vital to drive the sustainability of the food product or process by utilizing unique 

methodologies that include resource use management. One may readily evaluate all of the 

performances of various unit processes by doing so, and then select a method that delivers 

superior economic performance as well as resource utilization efficiency. 

Furthermore, there are few research studies addressing the resource utilization efficiency 

of pulse protein extraction by concentrating on each unit operation and its input/output 

correlation. 

Organizations should embrace a sustainability strategy that would help both the 

environment and the economy. As a result, driving both sustainability components necessitates 

a resource management strategy. Literature suggests that resource management has an 

underlying economic advantage. Thus, a study reporting on resources consumption efficiency of 

these extraction processes can greatly contribute to the body of knowledge. 
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1.3 Research objectives 

This research aims to assess resource utilization efficiencies during dry extraction of pulse 

protein to design an optimize strategy for legume protein processing. This objective comprises 

of the following sub-objectives:  

1. To study energy and raw material use efficiency during industrial pulse protein processing based 

on dry methods. 

2. To conduct a benchmark analysis for pulse protein dry fractionation processes and design the 

optimal process.  

3. To identify the grinding characteristics of dry peas, lentils, and chickpeas by computing Bond's 

work index constant and studying the particle size distribution of these pulses in response to 

different grinding times using the ImageJ software program. 
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2 Review of Literature 
2.1 General information 
2.1.1 History 
 

Pulses are considered ancient crops since they were initially domesticated 8000 years ago 

in parts of Iran and Turkey, and they were first grown by humans approximately 3000 years ago 

(Tiwari et al., 2020). The Leguminosae family is vast, with 650 genera and 18000 species, and it 

has a special place in the world's diet after cereal grains (Tiwari et al., 2020). "Pulse" and 

"Legumes" are two of the most commonly used terms to define this family, and they are 

interchangeable; however, it is important to know that all pulses are legumes but not all legumes 

are pulses (Tiwari et al., 2020).  

Because of evolving consumer attitudes toward dietary choices based on health and more 

environmentally sustainable options, the food industry has been exploring for protein components 

to replace those sourced from animals during the last decade (Karaca et al., 2011). Pea protein 

(Pisum sativum L.) is one such protein that has attracted much attention due to its excellent 

nutritional profile, availability, and affordability (Shevkani et al., 2015; Stone, Karalash, et al., 

2015).  

2.1.2 Main suppliers 

Dry and green peas are produced in varying amounts over the globe, with certain countries 

serving as the key suppliers of worldwide demand as shown in table 2.1. According to Food and 

Agriculture Organization (FAO), Canada was the leading provider of dry peas in 2020, with 

4594300 tonnes. In addition, China was one of the most important suppliers of green peas with 

11254738 tonnes. 
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Table 2.1: Dry and green pea production  

Domain Area Item Year Unit Value Flag Description 

Crops and livestock 
products Australia Peas, dry 2020 tonnes 210500 Official data 

Crops and livestock 
products Australia Peas, green 2020 tonnes 17499 FAO data based on 

imputation methodology 

Crops and livestock 
products Canada Peas, dry 2020 tonnes 4594300 Official data 

Crops and livestock 
products Canada Peas, green 2020 tonnes 50169 Official data 

Crops and livestock 
products China Peas, dry 2020 tonnes 1440627 

Aggregate, may include 
official, semi-official, 

estimated or calculated data 

Crops and livestock 
products China Peas, green 2020 tonnes 11254738 

Aggregate, may include 
official, semi-official, 

estimated or calculated data 

Crops and livestock 
products India Peas, dry 2020 tonnes 796735 FAO data based on 

imputation methodology 

Crops and livestock 
products India Peas, green 2020 tonnes 5703000 Official data 

Crops and livestock 
products 

Russian 
Federation Peas, dry 2020 tonnes 2740075 Official data 

Crops and livestock 
products 

Russian 
Federation Peas, green 2020 tonnes 116116 Official data 

Crops and livestock 
products 

United States of 
America Peas, dry 2020 tonnes 985790 Official data 

Crops and livestock 
products 

United States of 
America Peas, green 2020 tonnes 279336 Official data 

Table 2.2 contains statistics on the lentil and chickpea production yield of the leading producers. 

India and Canada were the main producers of chickpea and lentils with 11090000 and 2867800 

tonnes, respectively. 
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Table 2.2: Lentil and Chickpeas production  

Domain Area Item Year Unit Value Flag Description 

Crops and livestock 
products Australia Chickpeas 2020 tonnes 281200 Official data 

Crops and livestock 
products Australia Lentils 2020 tonnes 525848 Official data 

Crops and livestock 
products Canada Chickpeas 2020 tonnes 214400 Official data 

Crops and livestock 
products Canada Lentils 2020 tonnes 2867800 Official data 

Crops and livestock 
products China Chickpeas 2020 tonnes 16368 

Aggregate, may include 
official, semi-official, 

estimated or calculated data 

Crops and livestock 
products China Lentils 2020 tonnes 164381 

Aggregate, may include 
official, semi-official, 

estimated or calculated data 

Crops and livestock 
products India Chickpeas 2020 tonnes 11080000 Official data 

Crops and livestock 
products India Lentils 2020 tonnes 1180000 Official data 

Crops and livestock 
products 

Russian 
Federation Chickpeas 2020 tonnes 291133 Official data 

Crops and livestock 
products 

Russian 
Federation Lentils 2020 tonnes 115556 Official data 

Crops and livestock 
products 

United States of 
America Chickpeas 2020 tonnes 193820 Official data 

Crops and livestock 
products 

United States of 
America Lentils 2020 tonnes 336160 Official data 

 

2.2 Pea protein ingredients and characteristics 

Legumes are high in protein and carbohydrates, low in fat, and high in vitamins and minerals 

(Joyce Boye et al., 2010). Although the proteins are abundant in lysine, they are low in methionine 

and tryptophan (Mertens et al., 2012). Legume proteins can be divided into two categories; 

globulin proteins, which are salt soluble; and water-soluble albumin proteins, which are the second 



 8 

major class of proteins (Karaca et al., 2011). There are two types of globulin proteins: legumin 

(11S, 300–400 kDa) and vicilin (7S, 150–180 kDa) and due to their differing amino acid profiles, 

and structures, both have distinct functional characteristics. As a result, pea protein products' 

functionality should be determined by their legumin/vicilin ratios as well as the raw material's 

cultivar and growing environment (Mertens et al., 2012). 

2.2.1 Protein structure  

Field pea contains 23.1–30.9% protein, 1.5–2.06% fat, and trace elements such as vitamins, 

minerals, phytic acid, polyphenols, saponins, and oxalates, and all these constituents vary in 

proportion depending on the variety, harvest maturity, and growing environment (Gueguen, 1983). 

Pea carbohydrates range between 60 and 65%, and composed mostly of starch (35–40%; 24.0–

49.0% amylose) and dietary fiber (10–15% insoluble and 2–9% soluble) (Tiwari et al., 2020). It 

also contains non-starch carbohydrates such as sucrose, oligosaccharides, and cellulose (Hoover 

et al., 2010). Pea protein is dominated by two types of proteins, albumins and globulins, which 

account for 10%–20% and 70%–80% of the total protein, respectively (Duranti & Scarafoni, 1999; 

Karaca et al., 2011). Albumins are regarded as water-soluble metabolic proteins that have a greater 

quantity of the essential amino acids tryptophan, lysine, threonine, and methionine in pea than 

globulins do (Joyce Boye et al., 2010). Globulins are classified as salt-soluble storage proteins and 

are composed mostly of legumin and vicilin proteins, with trace quantities of a third kind known 

as convicilin.	Albumin proteins range in size from 5 to 80 kDa and include enzymes, protease 

inhibitors, amylase inhibitors, and lectins (Joyce Boye et al., 2010). Legumin is a hexameric 

protein with a sedimentation coefficient of 11S and a molecular mass ranging from 300 to 400 kDa 

(Kijowski, 2001; Mertens et al., 2012). 	
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Vicilin proteins are trimeric proteins with a molecular mass of 150–170 kDa and a 7S 

sedimentation coefficient and unlike legumin, which is bound together by covalent disulfide 

bonds, vicilin is held together by hydrophobic interactions (Kijowski, 2001). Convicilin has a 

molecular mass of 70 kDa and is the third storage protein found in peas and other pulses (Joyce 

Boye et al., 2010).  Convicin's amino acid profile differs from that of legumin and vicilin, and 

unlike vicilin, it consists of sulfur-containing amino acids (Boulter, 1983). According to the 

extraction procedure used to manufacture the protein component, the extrinsic elements (e.g., pH, 

temperature) might cause the protein structure to differ from the previously described structure. 

These may have an effect on protein functionality. 

2.2.2 Legumin/vicilin ratio  

Field peas' legumin/vicilin (Lg/Vn) ratios vary from 0.4 to 2.0 at maturity (Schroeder, 

1982). During seed development, the Lg/Vn ratio rises due to the different rates of synthesis of the 

11S and 7S. Vicilin production is dominant from early development until 17 days after flowering, 

but legumin is quickly produced in the latter phases of growth, beginning 20 days after flowering 

and continuing until maturity (Chandler et al., 1984). Wright and Boulter (1972) observed a nine-

fold rise in legumin in faba bean seed between days 40 and 50 of growth, compared to a two-fold 

increase in vicilin. Lg/Vn ratios ranged from 0.23 to 0.50 for wrinkled pea cultivars and from 0.31 

to 1.67 for smooth pea cultivars, according to JI Boye et al. (2010). Legumin and vicilin are the 

most ecologically conscious proteins in pea, and they are very sensitive to external variables such 

as agronomic practices and environmental conditions (Mertens et al., 2012). When grown under 

sulfur-deficient circumstances, vicilin production is sustained throughout growth, but synthesis of 

the more sulfur-rich legumin is severely hampered (Chandler et al., 1984). 
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2.2.3 Effect of cultivar and environment on protein content  

The key aims in field pea breeding projects for both food and feed are cultivars with high 

yield, early maturity, and resistance to lodging and illness (Vera et al., 1999). Potential cultivars 

should be evaluated at numerous locations over many years to assess the level of environmental 

impacts on genotypes due to variations in performance in response to environmental factors such 

as soil type, rainfall, and temperature (Acikgoz et al., 2009; Nikolopoulou et al., 2007).  

The impacts of specific environmental factors on genotype performance have been 

investigated. High temperatures and minimal rainfall have been linked to greater protein content 

(Nikolopoulou et al., 2007). Nikolopoulou et al. (2007) for example, discovered that between two 

sites with a rainfall differential of 209 mm, pea seed cultivated in the drier area was 7 percent 

richer in protein on average. A study by Reichert and MacKenzie (1982) examined dehulled peas 

(cultivar Trapper) cultivated at four different sites in Saskatchewan, Canada. They observed that 

protein level was strongly correlated with starch, fat, ash, soluble sugar, and neutral detergent fiber 

content (NDF).  

2.3 Protein isolate extraction methods  
2.3.1 Alkaline/isoelectric precipitation process 

Alkaline extraction followed by isoelectric precipitation (AE/IEP) makes use of legume 

proteins' strong solubility in alkaline environment and their limited solubility between pH 4 and 5 

(Joyce Boye et al., 2010). This is the most frequently documented technique of legume protein 

extraction in the literature (Gueguen, 1983; Hoang, 2012). In summary, de-fatted legume flour, 

with or without the seed coat, is dispersed in water, adjusted to an alkaline pH using sodium, 

potassium, or calcium hydroxide (Gueguen, 1983). This process might take up to 180 minutes to 

maximize the amount of protein soluble in the solution (Joyce Boye et al., 2010). To facilitate 
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solubilization, the temperature might be raised to 50–60 °C (Hall, 1996). It is then centrifuged, and 

the supernatant is collected, after which the pH is adjusted to its isoelectric value using 

hydrochloric or sulfuric acid, if necessary. Centrifugation is used to collect the precipitated protein, 

which is then washed, neutralized, and dried using a drum, spray, or freeze drying technique 

(Gueguen, 1983). Optimal processing conditions may result in isolation yields of 80–94%, 

although the parameters utilized in a specific procedure might alter isolate yield, purity, and 

functionality (Hoang, 2012). 

2.3.2 Ultrafiltration  

To separate proteins of interest from the supernatant fraction, ultrafiltration (UF) and/or 

diafiltration membranes with particular molecular weight cutoffs may be used instead of IEP 

(Joyce Boye et al., 2010). The use of UF often offers milder conditions for the extracted proteins, 

allowing their functionality to be increased, and delivers greater yields than those generated with 

IEP (Mondor et al., 2012).   

2.3.3 Salt extraction process 

Salt extraction (SE) is a technique that takes use of the salting-in and salting-out processes that 

occur in proteins, followed by a desalting procedure to reduce the ionic strength of the environment 

in which the proteins are found (Joyce Boye et al., 2010). In brief, flour is mixed for 10–60 minutes 

in a salt solution of required ionic strength at a 1:10 (weight-to-volume) ratio (Gueguen, 1983). 

Then the insoluble material should be removed by settling, decanting, screening, filtering, or 

centrifuging (Joyce Boye et al., 2010). Finally, the supernatant is desalted and dried. The 

concentration and type of salt or salt combination used are determined by the salting-in properties 

of the protein to be extracted (Ahmed, 2017). Salting-out characteristics of any unwanted proteins 
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are also crucial since proteins precipitate at various ionic strengths (Ahmed, 2017). SE has the 

benefit of not requiring excessive alkaline or acidic pH or high temperature. 

2.4 Functional properties 
2.4.1 Solubility  

Protein solubility in a solution is defined as the balance of protein–protein (hydrophobic) 

and protein–solvent (hydrophilic) interactions (Hall, 1996). In most cases, water or buffer is used 

as the solvent. To describe protein solubility in terms of "nitrogen solubility," one might refer to 

the extraction of nitrogen from protein and nonprotein sources, such as nucleic acid and free 

amino acids, in solubility experiments (Lam et al., 2018). 

Protein solubility is influenced by a number of parameters, including solvent pH, ionic 

strength, temperature, and the composition of organic solvent (Damodaran et al., 2007). Solubility 

is enhanced at pH levels above and below the Isoelectric point (IP) because of the electrostatic 

repulsion caused by the positive and negative net charges on the protein surface (Hall, 1996). At 

its isoelectric pH, a protein's solubility is the lowest since it has a no net charge. The lowest 

solubility of pea protein isolates is found between pH 4 and 6, regardless of the extraction method 

or the cultivar of pea plant studied (Taherian et al., 2011; Withana‐Gamage et al., 2011).  

Protein solubilization often increases as temperature rises from 0–50 °C to a point where 

non-covalent bonds (e.g., hydrogen bonds) get disrupted and secondary and tertiary structures are 

eliminated (Hall, 1996). 

2.4.2 Water-holding capacity  

Water-holding capacity (WHC) is described as the volume of water that can be absorbed 

per gram of protein material (Joyce Boye et al., 2010). The shape of the protein matrix, particularly 
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the size of the pores, has an impact on the association between water and protein (Hall, 1996). A 

higher electrostatic attraction toward water is seen by proteins that are greatly charged (Stone, 

Avarmenko, et al., 2015). Similarly, WHC has the smallest value at a protein's isoelectric pH due 

to the strong protein-protein bond. Salt ions bind water to proteins, hence WHC rises at low salt 

concentrations (Damodaran et al., 2007).  

2.4.3 Oil-holding capacity  

The quantity of oil that may be absorbed per gram of protein is characterized as the oil-

holding capacity (OHC) or oil absorption capacity (Lin & Zayas, 1987). The aliphatic chains of 

lipids attach to the nonpolar side chains of amino acids, allowing them to interact. As a result, 

proteins with increased hydrophobicity have a higher proclivity to store oils (Sanjeewa, 2008; 

Withana‐Gamage et al., 2011). The matrix structure of a protein, the kind of lipid contained, and 

the distribution and stability of lipids may all affect OHC levels (Hall, 1996).  

2.4.4 Emulsification properties and stability 

An emulsion is a dispersion or suspension of two immiscible liquids formed by mechanical 

agitation (Hall, 1996). Food emulsions are either oil-in-water (O/W) or water-in-oil (W/O) type, 

such as milk and butter, respectively (Alzagtat & Alli, 2002). The presence of electrostatic 

repulsive forces increases the stability of emulsions away from the protein's IP and at low ionic 

strength (Liu et al., 2010). It is possible to increase protein stability by using partly denatured 

proteins and more polar oils. This is because hydrophobic groups are exposed and less unraveling 

of proteins is required (Damodaran, 2005). 
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2.4.5 Foaming properties 

When gas bubbles are dispersed inside a liquid (typically water) or solid continuous phase, 

they are referred to as foams. Creating foams may be accomplished by a variety of methods, 

including sparging (pushing gas into the liquid phase through an aperture), whipping (beating 

ambient air into the liquid phase), shaking, or pouring (such as a glass of beer) (Hall, 1996). The 

amount of interfacial area that may be generated by a protein is referred to as its foaming capacity 

(FC) (Damodaran et al., 2007). It is proportional to the average hydrophobicity of proteins and 

may be boosted by partial denaturation to enhance surface activity (Damodaran, 2005; Kinsella, 

1981). At a protein's isoelectric pH, foams are the most stable due to their negligible electrostatic 

repulsion (JI Boye et al., 2010). 

2.4.6 Gelation and viscosity 

Gelation is among the most essential functional features of globular proteins since it is utilized 

to change the texture of food (Ikeda & Nishinari, 2001). One way to describe a protein gel is as a 

three-dimensional structure that is well defined, and it is constructed from protein molecules that 

are embedded in an aqueous solvent (Corredig, 2006). Heat treatment, pH, salts, pressure or 

shearing, and the presence of different solvents may all cause protein gelation (Culbertson, 2005). 

The vast majority of protein gels seen in food are produced with the use of heat treatment. Several 

studies have investigated heat-induced gelation of pea proteins, which has been shown to be 

influenced by a variety of variables such as cultivar, extraction technique, protein heterogeneity, 

solvent parameters, and heating procedure (O'Kane et al., 2004; Shand et al., 2007).  
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2.5 Protein Concentrate extraction method 

Wet fractionation methods provide highly pure protein isolate products. However, as 

previously stated, these methods are substantially resource-dependent, and due to the hostile acidic 

environment, proteins experience denaturation through the process. The dry fractionation method 

is considered more sustainable because of its energy efficiency and high yield (Schutyser et al., 

2015). The following section outlines the most widely utilized unit operations for running a dry 

fractionation process of pulse protein. 

2.5.1 Dehulling 

The process of dehulling pulses before milling and separating may have an effect on the 

fractions' physical qualities, chemical composition, and techno-functional properties (Fernando, 

2017). The removal of hulls is referred to as the dehulling procedure (seed coats). The process of 

dehulling some pulses (such as dry peas and lentils) is easy, while it might be difficult for other 

pulses (dry beans) (Fernando, 2021; Narasimha et al., 2003). Dehulling pulses with loose seed 

coverings is best done using an attrition type dehuller, such as a hammer mill, which works by the 

use of impact force (Wang, 2005). On the other hand, abrasive dehullers are appropriate for 

dehulling pulses with more securely adherent seed coverings (Wang, 2005). Dehulling aids in the 

decrease of antinutritional elements such as soluble phenolics, which are largely found in the seed 

coat (Fernando, 2020). Pre-treatments are used to free the seed coat from the cotyledon. Pre-

treatments such as soaking and tempering with water or oil are often used to facilitate dehulling 

during pulse milling (Fernando, 2021).  
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2.5.2 Milling 

Dry separation of protein-rich fractions necessitates the use of finely powdered material. 

The milling phase must be carefully selected to breakdown the cotyledon into pieces without 

significantly harming the starch granules (Joyce Boye et al., 2010). Impact mills are typically used 

to crush pulses when particle size reduction is the primary goal (Wood & Malcolmson, 2021). 

Impact mills include centrifugal mills, pin mills, and hammer mills. Impact mills grind seeds by 

'throwing' the seed against a screen with the blades, hammers, and pins (Fernando, 2020). Milling 

characteristics such as grinding force, rotor speed, sieve, and material's physical structure may 

affect the particle size distribution of the product (Fernando, 2020). The effectiveness of separating 

components such as carbohydrates and protein is strongly influenced by particle size (Pelgrom, 

Boom, et al., 2015b).  As shown in figure 2.1, starch granules are the bigger particle in the 

cotyledon, with a diameter of around 20 µm, while protein bodies are only 1-10 µm (Schutyser et 

al., 2015). 

 

Figure 2.1: Microscopic view of starch granules and Protein bodies. Adapted from (Schutyser et al., 2015). 
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2.5.3 Air Classification 

The most frequent method used for the production of flours that are rich in protein and 

starch from crops is air classification (Joyce Boye et al., 2010). Particles that have been ground 

are segregated according to the aerodynamic characteristics that have been derived from their 

density and particle size. In one phase of air classification, coarse and fine fractions are separated 

on the basis of an optimal set point of particle size. This point determines the foundation for 

separation. For most pulse protein-starch separations, the ideal setpoint is about 20 µm, which is 

slightly below the size of most starch granules (Schutyser & Van der Goot, 2011). Classifying with 

the help of air often requires the use of centrifugal air classifiers that are equipped with a rotor or 

wheel (Dijkink et al., 2007). 

There is a direct correlation between the milling parameters and the effectiveness of the air 

classification (Pelgrom et al., 2013). In order to properly fractionate the components of a cell using 

air classification, the flour particles must be sufficiently fine and disaggregated. A faster milling 

speed may effectively separate the protein bodies from the starch granules. However, over milling 

may result in particles that are excessively fine, resulting in high van der Waals interactions 

between particles and poor flow behavior (Dijkink et al., 2007). Poor particle flow may cause 

particles to stick to the machine walls, reducing milling and air classification output (Pelgrom et 

al., 2014).  

Another factor affecting air classifier separation efficiency is classifier speed (Pelgrom et 

al., 2014). Pelgrom et al. (2014) found that increasing classifier wheel speed decreased lupine flour 

particle size and boosted protein content in the fine fraction. 
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Air classification is an energy efficient process that does not need the use of any chemical reagents. 

However, one of the drawbacks of air classification is that certain particles, both fine and coarse, 

may be placed in the incorrect fraction (Lundgren, 2011). 

2.6 Resource utilization efficiency 

Resource utilization efficiency of food processing sectors is essential to achieve sustainable 

growth. To this end, scientists have devised a variety of methodologies, each with their own set of 

advantages and disadvantages. The following section discusses a number of commonly used 

methodologies and explains their benefits and slacks to conclude the most beneficial approach for 

this research.  

Life Cycle Assessment (LCA) is one of the strategies that is used the most often. The goal of 

Life Cycle Assessment (LCA) is to analyze the environmental effects of the food supply chain 

from a systems viewpoint, suggesting improvement options (Hellweg & Milà i Canals, 2014). 

LCA provides tremendous power in the early stages of product and process design, when 

significant adjustments may still be possible. Companies use LCA to map the primary impact 

drivers of their entire product ranges. A LCA evaluation may be conducted in four phases, 

regardless of the system boundaries (Hellweg & Milà i Canals, 2014). The first step is a description 

of the goal and scope, which involves identifying the study's objectives and establishing system 

boundaries (Sharma et al., 2011). The second step, inventory analysis, combines inputs and outputs 

for each process in the life cycle and aggregates them throughout the whole system (Sharma et al., 

2011). In the third step, life-cycle impact assessment (LCIA), emissions and resources are 

classified according to their effect categories and transformed to comparable impact units (Sharma 

et al., 2011). The last step involves interpreting the inventory and impact assessment data in order 
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to answer the study's objectives (Sharma et al., 2011). While LCA possesses various advantages, 

Because of the vast quantity of collected and simulated data and the simplified modeling of 

complicated environmental cause-effect chains, it has substantial uncertainty (Sharma et al., 2011). 

More crucially, LCA is commonly being used to examine the efficiency of food-producing 

processes in terms of environmental impacts rather than resource utilization efficiency. 

One of the most extensively used methods to assess resource utilization efficiency of the 

processes is Data envelopment analysis (DEA). M. J. Farrell published an article on The 

Measurement of Productive Efficiency  in the journal of the Royal Statistical Society in 1957 

(Mardani et al., 2017). This article served as the foundation for DEA. DEA arose from a research 

conducted by E. Rhodes under the guidance of A. Charnes and W. W. Cooper to assess the success 

of an educational program for underprivileged students in the United States (Mardani et al., 2017). 

The study compared the performance of school districts who participated in program follow 

through (PFT) to those that did not. Estimating the relative efficiency of schools with numerous 

outputs and inputs without pricing information led to the invention of the ratio variation of DEA, 

known by its authors' initials - CCR (Charnes, Cooper, and Rhodes). DEA is a technique for 

estimating the efficiency of homogenous organizational units, known as decision Making Units 

(DMUs), which employ the same inputs to achieve the same outputs (Mardani et al., 2017). The 

applications of DEA were used in a number of different ways in order to evaluate the activity of 

various objects, such as hospitals, universities, energy concerns, metropolitan regions, commercial 

businesses, and associated components of the activity of countries, places, and other such entities 

as can be seen in table 2.3. 
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Table 2:3: Summary of papers which utilized DEA methodology in non-food industries 

Article 

No 
Reference Study area Study objectives Key findings 

1 
Sueyoshi and 

Goto (2018) 

Environmental 

efficiency 

A unique application of DEA 

for environmental evaluation 

based on non-radial and 

radial data was discussed 

According to the findings of this research, the 

energy business had the best investment goal 

in terms of quantity of pollution reduction and 

ROA 

2 
Sueyoshi and 

Goto (2014) 

Environmental 

efficiency 

A novel use of the DEA 

radial technique to analyze 

business sustainability in 

Japan was presented 

The findings of this article demonstrated that 

energy enterprises in Japan lack corporate 

governance capacities; moreover, the findings 

suggest that technological innovation might 

enhance energy sector performance 

3 
Bi et al. 

(2014) 

Environmental 

efficiency 

Environmental performance 

was measured using the Non-

radial DEA framework 

The DEA-based clustering model was 

discovered to be appropriate for connecting 

with input-output production aspects in this 

work. According to this research, 2005 is the 

greatest year for energy efficiency 

4 
Kim et al. 

(2011) 

Environmental 

efficiency 

Research was conducted 

using the DEA to examine 

environmentally friendly 

logistics in railroad mode 

switching 

This study found that transportation costs were 

more important than other factors in the model 

5 
Giannoulis et 

al. (2014) 

Economic and eco-

efficiency 

DEA was used to study the 

effectiveness of switchgrass 

cultural parameters for the 

According to the findings of this study, the 

bale at 22 kg is the most expensive harvesting 
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manufacture of pellets from 

four different N-fertilizations 

procedure, and there was a decrease in 

efficiency scores as nitrogen levels rose 

6 

Robaina-

Alves et al. 

(2015) 

Economic and eco-

efficiency 

DEA was used to examine 

the resource efficiency 

problems in European 

nations 

Ireland, Hungary, Slovakia, and Portugal were 

most efficient, while Italy, Denmark, Bulgaria, 

and Romania were least efficient 

7 
Lahouel 

(2016) 

Economic and eco-

efficiency 

The DEA approach was used 

in French businesses as a 

benchmarking and 

monitoring tool for energy 

eco-efficiency 

According to the findings of this article, three 

organizations were eco-efficient, and this eco-

efficiency was more connected to 

environmental efficiency; also, the number of 

workers, company size, and turnover were 

negatively associated with eco-efficiency 

scores 

8 
Cui et al. 

(2014) 

energy efficiency 

problems 

Calculated energy efficiency 

in nine nations between 2008 

and 2012 using DEA and 

Malmquist index 

The findings of this article revealed that the 

most critical determinants of energy efficiency 

were management and technological indices 

9 
Apergis et al. 

(2015) 

energy efficiency 

problems 

DEA was used to assess the 

energy efficiency of OECD 

nations 

This research discovered that capital-intensive 

nations were more energy efficient than labor-

intensive one 

10 

Morfeldt and 

Silveira 

(2014) 

energy efficiency 

problems 

In the European 

Commission's steel and iron 

industry, DEA was used for 

calculating energy usage 

According to the study's findings, energy usage 

overestimates energy efficiency gains in 

European steel companies 
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11 
Wu et al. 

(2016) 

energy efficiency 

problems 

By giving a decomposition 

model for investigating 

energy inefficiency, DEA 

was used to assess energy 

efficiency 

According to the findings of this investigation, 

energy congestion was the key driving reason 

behind energy inefficiency 

12 
Sueyoshi and 

Yuan (2015) 
Sustainable energy 

China's new policy path was 

evaluated for its social 

sustainability using DEA 

According to the findings of this research, the 

Chinese government should endeavor to 

distribute economic resources in various cities 

in the northwest of China 

13 
Liu et al. 

(2015) 

Energy 

performance 

DEA was used to assess the 

performance of the wind 

power sector 

This study discovered that the pace of 

expansion in wind power capacity 

implementation has a substantial impact on 

wind turbine performance in the manufacturing 

business 

14 Chen (2015) 
Economic and eco-

efficiency 

Analyzed China's ecological 

and economic indicators 

According to the findings of this research, 

China's transition to an ecologically-based 

economic system is still fragile and in need of 

environmental rules that may provide long-

term stability to the process 

15 
Baležentis et 

al. (2014) 
 

Farms in Lithuania were 

analyzed using DEA to see 

how efficiency changes over 

time 

The results of the clustering analysis indicated 

that the efficiency change routes particular to 

the examined sample varied in both their 

average levels and ranges. 
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3 Resource utilization efficiency assessment of pulse protein dry 
extraction processes using Data Envelopment Analysis (DEA) 

 

Abstract 

This study employed data envelopment analysis (DEA) technique to assess resource utilization 

efficiencies of extraction of pulse protein to design an optimized strategy for protein processing. 

With the help of linear programming, multiple inputs and outputs of a decision-making unit 

(DMU) were integrated into a relative efficiency score. Based on various return to scale, the results 

demonstrate that the mean value of pure technical efficiency for milling and air-classification unit 

operations are 0.98 and 0.89, respectively, confirming the milling's reasonably strong performance 

despite the lack of appropriate air classification efficiency in utilizing the inputs. These numbers 

indicate that 2 and 11% of all the input resources into the process could be reduced while 

maintaining the same output. Moreover, benchmarking results revealed that the ideal energy 

requirement for milling and air classification would be 3.24 Wh and 0.01 MJ, respectively for 0.5 

Kg of mass input. 
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3.1 Introduction 

The world population would be over 9 Billion by 2050 (Compton et al., 2018). Consequently, 

the demand for food is expected to increase by 60% (Compton et al., 2018). Food-producing 

sectors, particularly protein industries, strongly correlate with environmental effects through their 

high energy consumption (Compton et al., 2018). Thus, more animal-derived protein means more 

environmental side effects. Plant-derived proteins such as peas and other pulses have shown a 

great potential to meet the growing protein demand (Ren et al., 2021). Peas are of great interest 

due to their rich and various nutritious profile with high protein, vitamin, and fiber content (Ren 

et al., 2021). Different researchers studied the protein content of pulses, and they all reported a 

considerable protein content. Protein contents of pea, lupine, lentil, faba, mung and black bean 

have been found to be 24, 39, 28, 30, 22, and 23% respectively. 

Protein extraction processes of pulses are generally categorized into two groups, wet and dry 

fractionation processes (Yang et al., 2021). Wet fractionation processes are extremely resource-

dependent and consume a considerable amount of water, organic solvent, and energy (Adenekan 

et al., 2018). Water and organic solvents are used to solve the pulse's protein, and the energy is 

used to dry the final product. On the other hand, dry fractionation processes are more eco-friendly 

since they do not require water for protein solving and energy for dehydrating the final product 

(Xing et al., 2020). Hence, dry fractionation processes are of more interest to exploit for future 

large-scale protein production. 

Researchers have developed various parametric and non-parametric methods to assess 

productive efficiency based on mathematical linear programming techniques. Data envelopment 

analysis (DEA), unlike parametric approaches, does not require assumptions to link inputs and 

outputs (Izadikhah, 2022; Seiford & Thrall, 1990). All data points are enveloped in the DEA 
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technique in such a way that they all fall on or below the efficient border (Coelli, 1995; Singh et 

al., 2021) . DEA has been extensively used in the resource utilization efficiency of different food 

sectors. Kyrgiakos et al. (2021) tried to assess the cotton production efficiency in Turkey with the 

help of DEA and found that 42 of the 107 evaluated cotton farms (39.3%) are working effectively, 

while the average achieved score is 0.91. In a similar study Işgın et al. (2020) evaluated the input 

resources of cotton farms, and the results indicated that small-scale farmers utilize their cotton 

farming resources more effectively than medium- and large-scale producers. Singh et al. (2019) 

investigated the energy input-output connection in wheat farming using the rice-wheat and cotton-

wheat cropping systems and findings demonstrated that energy input was much greater in wheat 

cultivated under a cotton-wheat cropping system due to irrigation water consumption. Masuda 

(2016) also evaluated the eco-efficiency of wheat growers in Japan with the joint methodology of 

Life cycle assessment and DEA. Adeyonu et al. (2019) and his colleagues examined sweet potato 

production efficiency in Nigeria and found that, access to credit enhanced farm technical efficiency 

by 3.5% while decreased farm scale efficiency by 1.9%. According to this study the three most 

important obstacles affecting output were labor scarcity, limited access to upgraded technology, 

and insect pest infestation. Grape production efficiency was investigated by Namdari et al. (2021) 

using both CCR and BCC models. It was discovered that the overall energy savings estimated to 

be 14.3% of total input energy. Yenihebit et al. (2020) evaluated the irrigated tomato production 

in Ghana's Upper East Region using an input-oriented DEA approach and observed that, on 

average, farmers operate at 97% of their maximum efficiency. Payandeh et al. (2021) employed a 

joint Data envelopment analysis and Life cycle assessment (LCA) to evaluate greenhouse gas 

emissions of farms and found 934 MJ could be saved per hectare. 
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DEA was also used by Li et al. (2021) to measure production efficiency of rice fields and found 

that most paddy fields might benefit from increased scale size. Energy utilization efficiency and 

environmental effects of poultry production in Isfahan, Iran, were investigated by Payandeh et al. 

(2017) and found that there is 10% excess energy use that could be saved. Jomthanachai et al. 

(2021) proposed a novel joint DEA and machine learning (ML) methodology for risk management 

where ML serves as a good approach for monitoring the impact of strategy adjustments on the 

expected variables. Even though researchers have covered the resource utilization efficiency of 

different food stocks, little attention has been given, to our knowledge, to pulses' protein, 

particularly the process of extracting protein from such legumes. 

In light of the paucity of research on the aforementioned food sector, this study, focusing on 

dry fractionation process unit operations (milling and air classification), attempts to evaluate their 

resource utilization efficiency and recommend optimum input levels. This research will 

considerably aid pulse protein companies in evaluating their energy and raw material consumption 

performance. 

3.2 Methodology 
 

A gate-to-gate system boundary was considered for dry extraction methods since the goal was 

to find resource-consuming hot spots. Gate-to-gate is a partial DEA examining the limited value-

added process in the entire production chain, which in the case of this research gate to gate is 

referred to as raw material and protein-rich products. Cradle-to-gate evaluations may also be 

constructed by linking gate-to-gate modules at a future stage in the production chain that is most 

relevant to each module. The dry fractionation procedures separate protein from starch and other 

elements by making use of the significantly smaller size of protein bodies in comparison to the 

size of starch granules. As can be seen in figure 3.1, the process of dry fractionation begins with a 
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milling unit operation, during which the raw material is crushed down to a certain diameter. Then 

the fine flour is fanned in an air classier to split into protein-rich and starch-rich fractions. 

 

Figure 3.1:  Dry fractionation unit operations and system boundary  
 

3.2.1 Data collection 
 

Data collection for the dry fractionation process was entirely literature-based. Two sets of 

scientific papers were used for this purpose—first, articles whose primary focus was on the yield 

and purity of the final product, and second, articles whose focus was on resource utilization of dry 

extraction methods.  Tables 3.1 and 3.2 summarize the articles used in this study to gather and 

extract the required data for analyzing the resource utilization efficiency of milling and air 

classification, respectively. 

 

 



 28 

Table 3.1: Dry fractionation data extraction resources (Milling) 

Pulse Milling specifications Inputs Outputs Reference 

Dry yellow pea ZPS50 Impact mill, milling speed: 8000 rpm, classifier wheel speed 4000 

rpm, air flow 40 m3/h 

Pea 0.5 kg  

Energy 70.3 Wh 

Yield 0.36 Kg  

PSD (D50)-1  0.05 

(Xie et al., 2022) 

Pea AFG100 Jet mill, milling speed: 8000 rpm, classifier wheel speed 2500 rpm, 

air flow 52 m3/h 

Pea 0.75 kg  

Energy 73.25 Wh 

Yield 0.56 Kg  

PSD (D50)-1  0.03 

(Pelgrom et al., 2013) 

Pea ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 4000 

rpm, air flow 52 m3/h 

Pea 0.75 kg  

Energy 57.54 Wh 

Yield 0.54 Kg  

PSD (D50)-1  0.04 

(Pelgrom et al., 2013) 

Pea ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 3400 

rpm, air flow 60 m3/h 

Pea 0.75 kg  

Energy 19.32 Wh 

Yield 0.57 Kg  

PSD (D50)-1  0.02 

(Pelgrom, Wang, et al., 

2015) 

Pea ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 6000 

rpm, air flow 80 m3/h 

Pea 0.5 kg  

Energy 9.98 Wh 

Yield 0.34 Kg  

PSD (D50)-1  0.05 

(Pelgrom et al., 2014) 

Lupine ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 2500 

rpm, air flow 80 m3/h 

Pea 0.5 kg  

Energy 6.09 Wh 

Yield 0.35 Kg  

PSD (D50)-1  0.01 

(Pelgrom et al., 2014) 

Pea ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 2500 

rpm, air flow 46 m3/h 

Pea 0.5 kg  

Energy 7.96 Wh 

Yield 0.44 Kg  

PSD (D50)-1  0.05 

(Pelgrom et al., 2014) 

Pea (Wrinkle) Pin mill, milling speed: 5000 rpm, classifier wheel speed not stated, air flow 

not stated 

Pea 0.75 kg  

Energy 260.7 Wh 

Yield 0.65 Kg  

PSD (D50)-1  0.04 

(Van der Poel et al., 1989) 

Pea (Wrinkle) Pallmann mill, milling speed: 5000 rpm, classifier wheel speed not stated, air 

flow not stated 

Pea 0.75 kg  

Energy 48.58 Wh 

Yield 0.64 Kg  

PSD (D50)-1  0.02 

(Van der Poel et al., 1989) 

Dry yellow pea ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 4000 

rpm, air flow not stated 

Pea 0.5 kg  

Energy 24.32 Wh 

Yield 0.12 Kg  

PSD (D50)-1  0.06 

(Geerts et al., 2017) 

Dry yellow pea impact mill, milling speed: 4000 rpm, classifier wheel speed not stated, air 

flow not stated 

Pea 0.5 kg  

Energy 88.30 Wh 

Yield 0.43 Kg  

PSD (D50)-1  0.05 

(Fernando, 2021) 

Faba bean ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 3500 

rpm, air flow not stated 

Pea 0.5 kg  

Energy 16.18 Wh 

Yield 0.39 Kg  

PSD (D50)-1  0.05 

(Dumoulin et al., 2021) 

Mungbean ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed not 

stated, air flow not stated 

Pea 5 kg  

Energy 139.1 Wh 

Yield 4.78 Kg  

PSD (D50)-1  0.03 

(Yang et al., 2022) 

Mungbean 

(Dehulled) 

ZPS50 impact mill, milling speed:4000 rpm, classifier wheel speed not 

stated, air flow not stated 

Pea 5 kg  

Energy 43.56 Wh 

Yield 4.78 Kg  

PSD (D50)-1  0.03 

(Yang et al., 2022) 

Lentils ZPS50 impact mill, milling speed: 8000 rpm, classifier wheel speed 2000 

rpm, air flow not stated 

Pea 0.7 kg  

Energy 10.72 Wh 

Yield 0.67 Kg  

PSD (D50)-1  0.02 

(Funke et al., 2022) 

Pea ZPS50 impact mill, milling speed:8000 rpm, classifier wheel speed 5000 

rpm, air flow not stated 

Pea 0.5 kg  

Energy 3.24 Wh 

Yield 0.44 Kg  

PSD (D50)-1  0.04 

(Möller et al., 2021) 

Faba bean 

(Dehulled 

Alpine 100 UPZ pin disc mill, milling speed:17800 rpm, classifier wheel 

speed 5000 rpm, air flow not stated 

Pea 0.6 kg  

Energy 35.22 Wh 

Yield 0.48 Kg  

PSD (D50)-1  0.03 

(do Carmo et al., 2020) 

Lupine ZPS50 impact mill, milling speed:8000 rpm, classifier wheel speed 4000 

rpm, air flow 80 m3/h 

Pea 0.5 kg  

Energy 37.25 Wh 

Yield 0.48 Kg  

PSD (D50)-1  0.03 

(Wang et al., 2016) 

Lupine ZPS50 impact mill, milling speed:8000 rpm, classifier wheel speed 8000 

rpm, air flow 80 m3/h 

Pea 0.5 kg  

Energy 13.76 Wh 

Yield 0.26  Kg  

PSD (D50)-1  0.08 

(Wang et al., 2016) 



 29 

Black Bean Hammer  mill, milling speed: 16800 rpm, classifier wheel speed not 

equipped, 800 um sieve, air flow not stated 

Pea 1 kg  

Energy 55.37 Wh 

Yield 0.91  Kg  

PSD (D50)-1  0.01 

(Fernando & Manthey, 

2021) 

 

Table 3.2: Dry fractionation data extraction resources (air classification) 

Pulse Air classification specifications Inputs Outputs Reference 

Pea ATP50 air-classifier, classifier speed: 8000, air flow 52 m3/h, 23 Celsius Pea Flour 0.5 Kg 

Energy 0.012 MJ 

Yield 0.12 Kg 

Purity 57.1 gP/100 g db 

(Schutyser et al., 

2015) 

Pea ATP50 air-classifier, classifier speed: 5000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.023 MJ 

Yield 0.78 Kg 

Purity 51.1 gP/100 g db 

(Pelgrom et al., 

2013) 

Pea ATP50 air-classifier, classifier speed: 6000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.024 MJ 

Yield 0.6 Kg 

Purity 53.7 gP/100 g db 

(Pelgrom et al., 

2013) 

Pea ATP50 air-classifier, classifier speed: 8000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.025 MJ 

Yield 0.42 Kg 

Purity 56.5 gP/100 g db 

(Pelgrom et al., 

2013) 

Lupine ATP50 air-classifier, classifier speed: 7000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.024 MJ 

Yield 0.12 Kg 

Purity 53.7 gP/100 g db 

(Pelgrom, Wang, 

et al., 2015) 

Lupine ATP50 air-classifier, classifier speed: 13000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.027 MJ 

Yield 0.06 Kg 

Purity 58.9 gP/100 g db 

(Pelgrom, Wang, 

et al., 2015) 

Pea ATP50 air-classifier, classifier speed: 10000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.026 MJ 

Yield 0.39 Kg 

Purity 55.6 gP/100 g db 

(Pelgrom, Boom, 

et al., 2015b) 

Pea Alpine A 100 MZR classifier, classifier speed: 13000, air flow not stated, 15 

Celsius 

Pea Flour 1 Kg 

Energy 0.027 MJ 

Yield 0.6 Kg 

Purity 65 gP/100 g db 

(Van der Poel et 

al., 1989) 

Pea Classifier model not stated, classifier speed: 5000, air flow not stated, 15 

Celsius 

Pea Flour 1 Kg 

Energy 0.023 MJ 

Yield 0.32 Kg 

Purity 43.9 gP/100 g db 

(Fernando, 2021) 

Lentil ATP50 classifier, classifier speed: 7750, air flow not stated, 15 Celsius Pea Flour 1 Kg 

Energy 0.050 MJ 

Yield 0.35 Kg 

Purity 53.6 gP/100 g db 

(Dumoulin et al., 

2021) 

Mungbean 

(Dehulled) 

ATP50 classifier, classifier speed: 8000, air flow 52 m3/h, 15 Celsius Pea Flour 7.5 Kg 

Energy 0.19 MJ 

Yield 2.4Kg 

Purity 45.7 gP/100 g db 

(Yang et al., 

2022) 

Lentil (Dehulled) ATP50 classifier, classifier speed: 6000, air flow 52 m3/h, 15 Celsius Pea Flour 2.5 Kg 

Energy 0.060 MJ 

Yield 0.83Kg 

Purity 42.83 gP/100 g db 

(Funke et al., 

2022) 

Lentil (Dehulled) ATP50 classifier, classifier speed: 12000, air flow 52 m3/h, 15 Celsius Pea Flour 2.5 Kg 

Energy 0.067 MJ 

Yield 0.54 Kg 

Purity 54  gP/100 g db 

(Funke et al., 

2022) 

Pea ATP50 classifier, classifier speed: 5000, air flow 52 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.023 MJ 

Yield 0.41 Kg 

Purity 57.2  gP/100 g db 

(Möller et al., 

2021) 

Pea Minisplit air classifier, classifier speed: 12500, air flow 220 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.027 MJ 

Yield 0.47 Kg 

Purity 38  gP/100 g db 

(do Carmo et al., 

2020) 

Faba bean 

(Dehulled) 

Minisplit air classifier, classifier speed: 15000, air flow 220 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.028 MJ 

Yield 0.52 Kg 

Purity 48  gP/100 g db 

(do Carmo et al., 

2020) 

Lupine ATP50 classifier, classifier speed: 10000, air flow 80 m3/h, 15 Celsius Pea Flour 1 Kg 

Energy 0.026 MJ 

Yield 0.33 Kg 

Purity 57.6  gP/100 g db 

(Lie-Piang et al., 

2021) 
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The energy requirements of the grinding process were calculated according to De Bakker (2014) 

and (Taylor et al., 2020): 

Bond’s law: E=0.3162Wi [ 
!
√#$

− !
√#! ]                  (3.1)                

where, E is the net energy required for crushing and Wi is the work index. L1 and L2 equate to 

average particle size in feed and end product, respectively. Work indexes were determined by 

assessing the size reduction ratio of each sample throughout the milling process. 

The energy required for the air-classification process was determined according to 

Eswaraiah et al. (2008) and Sun et al. (2021). To determine the energy requirements of air 

classifiers, a series of formulae must be used. To begin, the Flow Number (NQ) should be computed 

using the Reynolds number, k1, and the effective and maximum gap widths g(e)/g(max). Using the 

calculated value of the Flow number, the Power Number (Np) can be calculated. Finally, the actual 

energy consumption of the air classifier can be determined using the power number, N, D, and ρ. 

NQ=K1(φ) (NRe)0.85 ( %(')
%()*+)

)0.1                                   (3.2) 

Np=k2(NQ)-3.33                                                                  (3.3) 

P=Np N3D5ρ                                                                (3.4) 

Where K1(φ) =2.5*10-7, k2 =2.2*10-8, NRe=ND2 ρa/μa, N is the wheel speed in the revolution per 

second, D is the diameter of the fan blade, ρa and μa density and viscosity of air, NQ flow number, 

Np power number and P power consumption. 
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3.2.2 Data envelopment analysis 

Determination of productive efficiency may be done using a variety of parametric and non-

parametric methodologies. Parametric algorithms estimate function parameters statistically 

through assuming a certain functional structure between inputs and outputs and units are compared 

to an average producer in such approaches. Non-parametric methodologies such as DEA, which 

was introduced by Charnes et al. (1978) are currently the most prevalent methodology. This 

method is a data-driven frontier analysis methodology that constructs a piecewise linear surface 

on top of the data points, which is considered an efficient frontier (Zhou et al., 2008; Q. Zhu et al., 

2021). Unlike parametric approaches, DEA does not require a predetermined functional 

connection between inputs and outputs or prior knowledge of input and output weights (Bhunia et 

al., 2021; Mohammadi et al., 2011). Moreover, DEA allows using inputs in the form of different 

scales since the model adjusts with the weights (Bhunia et al., 2021; Zhou et al., 2008). 

In DEA, an inefficient DMU can be made efficient by lowering the input levels while keeping 

the outputs constant (input-oriented) or by increasing the output levels while keeping the inputs 

constant (output-oriented). In this study, the input-oriented approach was deemed more appropriate 

because there is better control over the inputs than the outputs. Moreover, as a suggestion, input 

conservation for given outputs seems to be a reasonable logic (Bhunia et al., 2021; Charnes et al., 

1978). 

3.2.2.1 Technical efficiency 

Technical efficiency (TE) is a measure of how well DMUs perform in comparison to other 

DMUs in a sample. There are multiple inputs/outputs associated with each DMU. TE of DMUs is 

determined by calculating the sum of weighted output values to the sum of weighted inputs and it 
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is defined using the Eq (3.5). This ratio, in the ideal case, could be equal to one where all inputs 

are entirely converted to outputs. However, this hardly happens in actual processes due to a lack 

of efficiency, as it is shown blow. 

TEj = ,!-!".	,#-#".⋯.	,$-$"
1!+!".	1#+#".⋯.	1%+%"

=
∑ ,&-&"$
&'!

∑ 1(+("%
('!

                     (3.5) 

s.t. 

∑ ,&-&"$
&'!

∑ 1(+("%
('!

 ≤ 1             ; "j                                                                                                          

u3, v4 ≥ 0		                ; "r "s 

where, TEj denotes the DMU's technical efficiency, x and y represent input and output, and v and 

u denote input and output weights, respectively. The number of inputs (s = 1, 2, …, m), the number 

of outputs (r= 1, 2,..., n), and the number of jth DMUs (j= 1, 2,..., k) are all represented by the 

letters s, r, and j. 

This fractional approach is simply convertible to a linear programming model (Bhunia et 

al., 2021; Charnes et al., 1978). Following model, Eq (3.6) is linear input-oriented format of Eq 

(3.5) which is also known as multiplier form.  If Eq (3.5) gets multiplied by ∑ v4x454  and all terms 

be drawn to the left side, the Eq (3.6) would be obtained. However, this linear programming model 

has an infinite number of solutions. To avoid this, one can impose the constrain  ∑ v4x45 = 14 .	It 

is worthy to mention that since ∑ v4x45 = 14  has a positive value of one, the less than sign does 

not change during this transition. 

q5= Max ∑ u3y353                                       (3.6) 
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         u3, v4 

s.t. 

∑ u3y35 −∑ v4x454 ≤ 03      ; "j                                                                                            

∑ v4x45 = 14    

u3, v4 ≥ 0                            ; "r "s 

where, q  is the technical efficiency. Model 3.6 is denoted as the input oriented CCR DEA model 

which assumes constant return to scale (CRS) (Avkiran, 2001). CRS assumes that large and small 

producers are equally efficient in converting inputs to output. 

3.2.2.2 Pure Technical efficiency 

The CCR model takes into account both technical and scale efficiency. Thus, the BCC model 

was established in DEA to determine the pure technical efficiency of DMUs, often known as local 

efficiency (Banker et al., 1984; Zhao et al., 2022). The BCC model is based on various return to 

scale (VRS) assumptions. The mathematical equation of the BCC model is similar to the CCR 

model with only one difference that the BCC model has a convexity constraint, N1¢l =1. The 

following is an input-oriented linear programming model version of the BCC model (Coelli, 1995; 

Zhao et al., 2022). 
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minq,l   q,                                  (3.7) 

s.t. (such that) 

-yi + Yl ≥ 0 , 

qxi - Xl ≥ 0 , 

N1¢l =1 

l ≥ 0, 

Where q is a scalar, N1’l is convexity constraint, N is N x 1 vector of constants, Y denotes 

output matrix, X denotes input matrix.  

The efficiency score for the i-th firm will be the value of q. This linear programming problem 

needs to be solved N times, one for each of the firms in the sample. q ranges from 0-1 with 1 

indicating that the firm is technically efficient according to (Farrell, 1957; Gao et al., 2022). 

3.2.2.3 Scale Efficiency 

Scale efficiency (SE) provides numerical data on scale characteristics. The ratio of the average 

product of a firm operating at a point to the average product of another firm operating at a 

technically ideal scale point can be understood as this scale efficiency metric. A scale efficiency 

score of one (1) indicates that the farm is scale efficient, whereas a value less than one (1) indicates 

that the farm is scale inefficient. To assess if DMUs are only "locally efficient" or "globally 

efficient," this research also analyzes scale efficiency by assessing the relationship between 
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technical and pure technical efficiency, as shown below (Bhunia et al., 2021; Nassiri & Singh, 

2009). 

Scale efficiency = 
!"#$%&#'(	"**&#&"%#+

,-."	/"#$%&#'(	"**&#&"%#+
                                                    (3.8) 

  

Figure 3.2: DEA demonstration of various efficiencies Figure 3.2, based on (Chauhan et al., 2006) and 

(Sueyoshi & Goto, 2018) results, is a simplified version of this research with only one input and 

one output giving visual information on three types of efficiency. In this figure, the envelope of 

the data set with constant returns to scale and various to scale is represented by the straight orange 

and blue lines, respectively. The DMU on orange line is efficient, with a technical efficiency of 

one. Likewise, the pure technical efficiency of all the DMUs on the piecewise blue line is one. 

Finally, the DMUs such as D2, which is on both orange and blue line, have a scale efficiency score 

of one.  

Using the CRS assumption and Figure 3.2, it can be shown that AB is the optimal input 

necessary to produce output B. However, under VRS circumstances, the input requirement could 
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be increased to AC to achieve B. The different efficiencies may now be defined as follows 

(Sueyoshi & Goto, 2018): 

Pure technical efficiency = AC/AD, 

Technical efficiency = AB/AD, 

Scale efficiency = AB/AC. 

3.2.2.4 Increasing return to scale and Decreasing return to scale 
 

DMUs perform under three return to scale variations known as constant return to scale (CRS), 

increasing return to scale (IRS), and decreasing return to scale (DRS). The SE score has a flaw in 

that it does not reveal if a DMU is functioning under IRS or DRS. This flaw may be readily avoided 

using an additional analysis model called Non-increasing return of scale (NIRS) by changing the 

convexity constraint l=1 of the VRS model with l≤1. (Scheel, 2000; Singh et al., 2021). 

Considering q!"#$ as the efficiency score of the ith DMU based on the NIRS model, DMUs' return 

to scale status may be assessed by comparing qNIRS with qVRS: 

1) If qVRS ≠ qNIRS, DMU is increasing return to scale.  

2) If qVRS = qNIRS, DMU is decreasing return to scale.  

This study considers all three variations of return to scales analyzing DMUs. CRS, IRS, and 

DRS imply that a proportionate increase in all inputs leads to exactly the same, the more and the 

less proportionate increases in output, respectively.   

3.2.2.5 DEA input/output analysis parameters 
 

DEA software requires inputs and outputs parameters for analyzing the DMUs. For the milling 

unit operation research, legumes’ mass, protein code, and energy were chosen as input metrics, 

while yield and (D50)-1 were chosen as output indicators. Air classifiers were also analyzed based 

on flour mass, protein code, and energy as input metrics and purity and yield as output factors. 
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This study considered pea, lupine, lentil, faba, and mung bean for protein dry extraction 

efficiency. These legumes have varying quantities of protein, hence a "Protein Code" metric was 

created to enable a fair comparison. With almost 24% protein, Pea was chosen as a baseline and 

was given the protein code of 1. The protein code of other legumes was simply computed by 

dividing their average protein amount by 24. 

The average particle size achieved after the milling process is a critical component in 

determining the milling process efficiency. In this study, D50, a particle size distribution 

parameter, was used to account for the diameter of the end product. The largest particle diameter 

below which 50% of the sample volume exists is known as D50, or  also known as the median 

particle size by volume (Irham et al., 2018). 

3.2.2.6 Super Efficiency 
 

When the number of DMUs is minimal compared to the entire number of variables in the study, 

DEA lacks the ability to differentiate between efficient DMUs (Angulo-Meza & Lins, 2002; Xie 

et al., 2022). A variety of techniques are used to improve DEA's discriminating ability. In this 

study, the benchmark ranking approach is employed to rate DMUs. Efficient DMUs are ranked 

based on the number of times they appear in the reference set of inefficient DMUs. Those efficient 

DMUs that appear more frequently in the reference set are considered super-efficient for two 

reasons; First because they are efficient and that they are also close to input–output levels of 

inefficient DMUs in the group. 

To estimate the resource utilisation efficiency of plant protein extraction processes, an input-

oriented multi-stage data envelopment analysis technique was employed using DEAP software 

provided by the University of Queensland.  
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3.3 Results and discussion 
3.3.1 Dry fractionation unit operations’ analysis data points 
 

Table 3.3 provides detailed information on every 45 DMUs' input/outputs. As previously 

stated, each DMU represents one milling process where the size reduction of the feed occurs. Each 

DMU has five different parameters that show the input/outputs values. Protein Code, mass input, 

and Energy are input parameters, while yield and D50 values are output parameters. 

Each parameter has a specific unit. Mass input and Energy are based on Kg and Wh, respectively. 

Protein code scores do not have a unit since they are all a division of two numbers. In terms of 

outputs, the Yield is measured in kilograms. D50 is the particle size below which 50% of sample 

volume exists, and thus, (D50)-1 also does not have a unit.  Based on table 3.3, one can conclude 

that the input pea and the final desired diameter significantly affect the milling energy required. 

 

Table 3.3: Milling DMUs' data points 

DMU Yield D50 score Mass input Milling energy Protein code 

1 0.56 0.037 0.75 73.25 1 

2 0.55 0.043 0.75 111.98 1 

3 0.30 0.111 0.75 1142.06 1 

4 0.65 0.038 0.75 51.01 1 

5 0.55 0.043 0.75 57.54 1 

6 0.12 0.100 0.75 415.37 1 

7 0.58 0.023 0.75 19.32 1 

8 0.48 0.002 0.5 1.28 1 

9 0.36 0.018 0.5 6.27 1 
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10 0.33 0.033 0.5 8.98 1 

11 0.34 0.050 0.5 9.98 1 

12 0.48 0.002 0.5 1.28 1.67 

13 0.36 0.017 0.5 6.09 1.67 

14 0.33 0.025 0.5 9.10 1.67 

15 0.35 0.050 0.5 10.03 1.67 

16 0.44 0.052 0.5 7.96 1 

17 0.36 0.056 0.5 8.42 1 

18 0.33 0.125 0.5 14.94 1 

19 0.65 0.040 0.75 260.70 1 

20 0.65 0.040 0.75 50.07 1 

21 0.65 0.040 0.75 48.58 1 

22 0.65 0.025 0.75 48.58 1 

23 0.65 0.025 0.75 51.69 1 

24 0.12 0.067 0.5 24.32 1 

25 0.43 0.058 0.5 88.30 1 

26 0.37 0.058 0.5 141.37 1 

27 0.40 0.050 0.5 16.18 1.29 

28 4.78 0.033 5 139.10 0.96 

29 4.78 0.033 5 43.56 0.96 

30 0.67 0.029 0.7 10.72 1.21 

31 0.45 0.040 0.5 3.24 1 

32 0.52 0.033 0.6 33.33 1 
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33 0.53 0.036 0.6 34.24 1 

34 0.48 0.033 0.6 35.22 1.29 

35 0.50 0.026 0.6 37.25 1.2 

36 0.45 0.017 0.5 3.52 1.67 

37 0.36 0.025 0.5 6.51 1.67 

38 0.34 0.050 0.5 11.96 1.67 

39 0.26 0.083 0.5 13.76 1.67 

40 0.91 0.016 1 55.37 0.96 

41 0.91 0.016 1 41.12 0.96 

42 0.91 0.017 1 41.12 0.96 

43 0.94 0.014 1 144.19 0.96 

44 0.92 0.017 1 44.95 0.96 

45 0.94 0.014 1 92.51 0.96 

 

Table 3.4 contains extensive information on each of the 32 DMUs' input/outputs. As in the 

case of air classification, each DMU is referred to as one fractionation process where fine flour is 

separated into one fine and one coarse fraction. Air classification, like milling, has five separate 

parameters that demonstrate the input/outputs values. The input parameters are Pea flour, Protein 

Code, and Energy, while Yield and Purity are the output parameters. Each parameter has its own 

unit. Pea flour and Energy are measured in Kg and MJ, respectively. Yield and purity are also 

calculated in Kg and g Protein/100 g dry basis. 
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Table 3.4: Air Classification DMUs' data points 

DMU Yield Purity Protein Code Pea flour  Energy (10-2) 
1 0.122 57.1 1 0.5 1.26 
2 0.78 51.1 1 1 2.342 
3 0.6 53.7 1 1 2.41 
4 0.42 56.5 1 1 2.53 
5 0.3 57.3 1 1 2.63 
6 0.21 58.2 1 1 2.71 
7 0.325 43.9 1 1 2.34 
8 0.128 53.7 1.66 1 2.48 
9 0.101 58.7 1.66 1 2.63 

10 0.061 58.9 1.66 1 2.75 
11 0.13 54 1.66 1 2.48 
12 0.11 58.7 1.66 1 2.63 
13 0.06 60 1.66 1 2.75 
14 0.394 55.6 1 1 2.63 
15 0.06 65 1 1 2.75 
16 0.129 62.4 1 1 2.48 
17 0.157 55.9 1 1 2.41 
18 0.198 55.4 1 1 2.53 
19 0.194 55.7 1 1 2.53 
20 0.325 43.9 1 1 2.34 
21 0.126 55.9 1 1 2.63 
22 0.35 53.6 1.20 1 5.04 
23 2.4 45.7 0.95 7.5 19.02 
24 0.835 42.83 1.20 2.5 6.04 
25 0.542 54 1.20 2.5 6.79 
26 0.419 57.2 1 1 2.34 
27 0.47 38 1 1 2.73 
28 0.53 35 1 1 2.82 
29 0.54 55 1.20 1 2.82 
30 0.52 48 1.20 1 2.82 
31 0.228 42.9 1 1 2.3 
32 0.33 57.6 1.66 1 2.63 
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3.3.2 Dry fractionation DEA efficiency overview 
 

The findings of the multi-stage input-oriented BCC and CCR DEA models are presented in 

this section. As shown in table 3.5, the average PTE score for milling unit operation is 0.98, 

indicating that the majority of DMUs are performing well, if not flawlessly. The minimal PTE 

value, on the other hand, was discovered to be 0.87, indicating that a DMU wastes significantly 

13% of all inputs. DMUs were found to have a scale efficiency of 0.89 on average, indicating that 

they are working at 89% of their optimal scale and there is a great potential for improvement. 

Because TE had the largest standard deviation (SD) among the other efficiency scores, and PTE 

had the least SD value, it can be deduced that TE’s SD is mostly made up of SE’s standard 

deviation. (Maganga et al., 2018) calculated the technical efficiency of pigeon pea farms in Malawi 

and found that the range of technical efficiency was 22 to 84%, with a mean value of 53 percent. 

(Ekawati, 2019) also discovered that rice milling processes in Indonesia have an efficiency level 

of 90%.  

In the same way, analysing table 3.5 might lead to inferences regarding to air classification 

unit operation. Average TE, PTE, and SE scores were found to be 0.81, 0.89, and 0.91, 

respectively. Unlike milling, TE’s standard deviation is primarily composed of PTE’s SD. The 

average PTE score was found to be 0.89, indicating that air classification unit operations are 

significantly inefficient and up to 11% of all the inputs could be saved while maintaining the same 

output. Furthermore, the lowest score determined for PTE was 0.6, meaning that a substantial 

fraction of DMUs squander up to 40% of input material. The average scale efficiency of DMUs 

was determined to be 0.91, meaning that they work on 91% of their optimum scale, or that they 

are 9% scale inefficient.  
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Table 3.5: Milling and Air classification efficiency performance summary 

 Milling Air classification 

Particular Average SD Min Max Average SD Min Max 

Technical efficiency 0.88 0.1 0.53 1 0.81 0.15 0.55 1 

Pure Technical efficiency 0.98 0.02 0.87 1 0.89 0.15 0.6 1 

Scale efficiency 0.89 0.1 0.53 1 0.91 0.09 0.68 1 

 

Figure 3.3 portrays the efficiency score distribution for milling and air classification, 

respectively. As illustrated, the VRS, orange bar, had the highest score in the last bin, implying 

good performance of milling equipment which is also in line with the calculated average PTE score 

provided in table 3.5. The PTE score was likewise in the 0.9-1.0 range, indicating that there is a 

decent room for improvement and reduction of inputs. In the 0.9-1.0 and 0.5-0.6 categories, scale 

efficiency had the greatest and lowest frequency values, respectively. This means that, despite the 

fact that a large number of DMUs are running at a scale that is relatively acceptable, there are still 

DMUs that are considerably scale inefficient, working at 60% of their optimal scale. 

Unlike milling, PTE, or varied return to scale, had the largest frequency in the 0.9-1 

category, indicating that the majority of the DMUs in this study were not fully efficient and could 

save up to 10% while providing the same output. PTE also had a considerable frequency value in 

the 0.6-0.7 and 0.8-0.9 groups, showing the extreme need to improve input resource utilization 

efficiency of air classifications. The 0.9-1 group had the highest scale efficiency score, indicating 

that air classification DMUs have a good scale performance. On the other hand, SE revealed a high 

frequency in the 0.7-0.8 group, demonstrating that certain DMUs are only operating at 80% of 

their ideal capacity. 



 44 

 

(a) 

 

(b) 

 

Figure 3.3: CRS, VRS, and scale efficiency score distribution. (a): milling, (b): air classification 

 
3.3.3 Dry fractionation TE, PTE, SE scores 

The performance of each milling DMU is documented in Table 3.6. Out of 45 processes (PRS), 

8 (17%) and 29 (65%) of the DMUs were deemed efficient in terms of CRS and VRS, respectively. 

Out of 29 efficient DMUs, only 8 of them had a scale efficiency of unity, implying that they were 

globally efficient and operated at the most productive scale size, but the remainder of 21 efficient 

DMUs were only locally efficient due to their scale size disadvantage. The return to scale status 

of DMUs has also been included in table 3.6. Out of 45 DMUs, only 8 had a constant return to 

scale status, implying that a proportionate increase in all inputs leads to an exact proportionate 

increase in output. However,  

rest of the DMUs were following increasing return to scale scheme, implying that a proportionate 

increase in all inputs leads to more than the proportionate increase in output. 

Table 3.7 summarises the performance of each air classification DMU. The average technical 

efficiency scores, assuming CRS and VRS, were calculated to be 0.81 and 0.89, respectively, 

implying a lack of acceptable performance of air classification DMUs. Only 5 (15%) and 6 (18%) 
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of the DMUs were identified to be efficient out of 32, assuming CRS and VRS, respectively. The 

status of DMUs’ return to scale has also been provided in table 3.7. Unlike milling unit operation, 

air classification DMUs displayed all three kinds of returning to scale. DMUs number 1, 2, 15, 23, 

and 26 were constant return to scale, while DMUS 9, 10, 12, 13, 29, and 32 were decreasing return 

to scale implying that a proportionate increase in all inputs leads to a less proportionate increase 

in output and the rest of the DMUs were increasing return to scale.  

Table 3.6: Milling efficiency assessment results 

DMU 
Technical efficiency Scale efficiency 

Return to scale 
CRS VRS (CRS/VRS) 

PRS01 0.813 0.981 0.829 Irs 
PRS02 0.811 0.981 0.827 Irs 
PRS03 0.889 0.995 0.894 Irs 
PRS04 0.935 0.981 0.0.953 Irs 
PRS05 0.811 0.981 0.827 Irs 
PRS06 0.8 0.991 0.808 Irs 
PRS07 0.814 0.983 0.828 Irs 
PRS08 1 1 1 Crs 
PRS09 0.762 1 0.762 Irs 
PRS10 0.735 1 0.735 Irs 
PRS11 0.801 1 0.801 Irs 
PRS12 1 1 1 Crs 
PRS13 0.761 1 0.761 Irs 
PRS14 0.716 1 0.716 Irs 
PRS15 0.821 1 0.821 Irs 
PRS16 1 1 1 Crs 
PRS17 0.86 1 0.86 Irs 
PRS18 1 1 1 Crs 
PRS19 0.939 0.981 0.957 Irs 
PRS20 0.939 0.981 0.957 Irs 
PRS21 0.939 0.981 0.957 Irs 
PRS22 0.911 0.981 0.929 Irs 
PRS23 0.911 0.981 0.929 Irs 
PRS24 0.536 1 0.536 Irs 
PRS25 0.998 1 0.998 Irs 
PRS26 0.882 1 0.882 Irs 
PRS27 0.917 1 0.917 Irs 
PRS28 1 1 1 Crs 
PRS29 1 1 1 Crs 
PRS30 1 1 1 Crs 
PRS31 1 1 1 Crs 
PRS32 0.931 0.002 0.938 Irs 
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PRS33 0.954 0.992 0.962 Irs 
PRS34 0.861 0.872 0.987 Irs 
PRS35 0.88 0.895 0.983 Irs 
PRS36 0.955 1 0.955 Irs 
PRS37 0.77 1 0.77 Irs 
PRS38 0.801 1 0.801 Irs 
PRS39 0.743 1 0.743 Irs 
PRS40 0.951 1 0.951 Irs 
PRS41 0.951 1 0.951 Irs 
PRS42 0.951 1 0.951 Irs 
PRS43 0.982 1 0.982 Irs 
PRS44 0.961 1 0.982 Irs 
PRS45 0.982 1 0.982 Irs 
Mean 0.888 0.990   

 

Table 3.7: Air Classification efficiency assessment results 

DMU 
Technical Efficiency Scale Efficiency 

Return to scale 
CRS VRS (CRS/VRS) 

PRS01 1 1 1 Crs 
PRS02 1 1 1 Crs 
PRS03 0.998 0.999 0.989 Irs 
PRS04 0.977 0.999 0.978 Irs 
PRS05 0.954 0.998 0.956 Irs 
PRS06 0.941 0.998 0.943 Irs 
PRS07 0.768 0.998 0.77 Irs 
PRS08 0.557 0.6 0.928 Irs 
PRS09 0.6 0.601 0.998 Drs 
PRS10 0.602 0.614 0.98 Drs 
PRS11 0.56 0.6 0.933 Irs 
PRS12 0.6 0.601 0.998 Drs 
PRS13 0.613 0.684 0.896 Drs 
PRS14 0.955 0.998 0.957 Irs 
PRS15 1 1 1 Crs 
PRS16 0.997 1 0.997 Irs 
PRS17 0.908 0.997 0.911 Irs 
PRS18 0.903 0.997 0.906 Irs 
PRS19 0.906 0.997 0.909 Irs 
PRS20 0.768 0.998 0.77 Irs 
PRS21 0.886 0.997 0.889 Irs 
PRS22 0.782 0.827 0.946 Irs 
PRS23 1 1 1 Crs 
PRS24 0.691 0.821 0.842 Irs 
PRS25 0.753 0.82 0.918 Irs 
PRS26 1 1 1 Crs 
PRS27 0.712 0.998 0.713 Irs 
PRS28 0.684 0.999 0.685 Irs 
PRS29 0.848 0.945 0.897 Drs 
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PRS30 0.764 0.827 0.924 Irs 
PRS31 0.73 0.998 0.731 Irs 
PRS32 0.675 0.837 0.806 Drs 
Mean 0.817 0.899 0.912  

 

3.3.4 Super efficiency and benchmarking 
 

In order to develop the best dry fractionation practice for pea protein extraction, it is vital to 

identify the amount of the ideal input. The super-efficiency method explained in methodology has 

been equipped to determine the best practices, and the results are provided in table 3.8. DMU 

number 31 had the greatest frequency of milling unit operations at 30 times, followed by DMU 

number 18 at 17 times. Similarly, air classification PRS01 and PRS23 stood out among other 

efficient DMUs by being used 28 and 22 times as inefficient nearby DMUs, respectively. 

Considering highly frequent DMUs for both milling and air classification, one may determine 

appropriate input quantities for both processes. Thus, ideal inputs and outputs for milling and air 

classification are presented in table 3.9. Möller et al. (2021), utilizing a ZPS50 impact mill set at 

8000 rpm and a classifier wheel set at 5000, outperformed alternative processes with the same 

function in terms of energy, raw material utilization, and added value, as established by referencing 

the publication from which these statistics were extracted. Similarly, tracing back to the efficient 

air classifier Berghout et al. (2015) using an ATP50 air-classifier set at 8000 with an air flow of 

52 (m3/h) produced the most significant results in energy, pulse flour utilization, and purity, among 

other experiments. 

Table 3.8: Super Efficiency result 

Milling Air classification 
DMU No. Frequency Benchmark Rank DMU No. Frequency Benchmark Rank 
PRS31 30 1 PRS01 28 1 
PRS18 17 2 PRS23 22 2 
PRS42 17 3 PRS02 15 3 
PRS08 14 4 PRS15 12 4 
- - - PRS26 3 5 
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Table 3.9: Milling and Air Classification ideal input values 

 Output Input 

Milling 
Yield Unit D50 Mass input Unit Energy Unit 
0.45 Kg 25 0.5 Kg 3.24 Wh 

Air Classification 
Yield Unit Purity Unit Pea Flour Unit Energy Unit 
0.123 Kg 57.1 g/100g db 0.5 Kg 0.013 MJ 

 

Figure 3.4 illustrates the correlation of the energy input and D50 score to the Constant 

return to scale technical efficiency of the milling processes. The X, Y, and Z axes represent energy, 

D50, and TE scores, respectively. Because the majority of the numbers are in the 0.95-1 range, it 

is concluded that the combined impact of energy and D50 score had a favorable influence on the 

TE score. This association is also observed when the single influence of energy on the TE score is 

considered, which is not the case when the solo effect of the D50 score is considered. 

Figure 3.5 illustrates the correlation of the energy input and retained mass to the Constant 

return to scale technical efficiency of the air classification processes. The X, Y, and Z axes 

represent energy, retained mass, and TE scores, respectively. Poor retained mass was shown to be 

related with low TE scores. Green areas of the plot, which represent the 0.9-1 efficiency score, 

have spread throughout the graph. It is concluded that, although low mass retention may have a 

negative impact on CRS TE, greater values have no significant impact. 
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Figure 3.4: Milling energy and D50 correlation to efficiency score 

 

Figure 3.5: Air classification energy and retained mass correlation to efficiency score 
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3.4 Conclusion 
 

A multi-stage input-oriented data envelopment analysis method was used to study the resource 

utilization efficiency of plant-protein dry fractionation processes. Various models have been 

equipped to determine Technical efficiency, Pure Technical Efficiency, and Scale efficiency. The 

results show that the milling consumes significantly more energy than the air classification unit. 

However, considering VRS analysis model for calculating Pure Technical Efficiency, air 

classification unit operation could benefit more from better energy utilization. The average PTE 

score for milling and air classification was 0.98 and 0.89, respectively, justifying the lack of 

acceptable efficiency in air classification and relatively good performance of milling. Milling scale 

efficiency values varied from 0.53 to 1, while air classification scale efficiency scores ranged from 

0.68 to 1. Using super efficiency method, efficient DMUs were ranked based on number of times 

they were considered as peers for inefficient DMUs. The results indicated that DMUs number 31 

and 1 with energy consumption values of 3.24 Wh and 0.013 MJ were the best practice for milling 

and air classification in terms of energy consumption, respectively. 
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Bridging Text 
 

The previous study aimed to investigate the resource utilization efficiency of two primary pulse 

protein dry fractionation unit operations: milling and air classification. After thorough research 

and analysis, it was determined that air classification unit operation could benefit more from the 

optimization of consumed resources compared to milling.  

It was also noticed that milling energy measurements, which were done by utilizing Bond's 

equation, are heavily reliant on knowing the work index range of that food commodity. By doing 

a comprehensive literature review, it was noticed that although there was some study on the work 

index of some agricultural materials, pulses were completely neglected. Thus, the next chapter was 

designed to address this gap and to build a framework for future studies investigating the work 

indexes of other food materials. 
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4 Parametric Modeling and Prediction of Energy Requirements 
for Pulse Milling  

 

 

Abstract 

Milling is a critical unit operation required in optimizing protein extraction from pulses. Selection 

of appropriate milling equipment depends on the energy required to reduce the particle sizes. The 

present study aimed to obtain data that will help address these research gaps for chickpeas, lentils, 

and peas and presents a pathway for future studies in evaluating the work index of pulses. All 

pulses' grinding properties were assessed by means of evaluating the energy consumed and work 

index with respect to different grinding times and mean particle size. The work index range for 

chickpeas, lentils, and peas was investigated through laboratory experiments to be 9.33 - 53.94 

kWh/kg, 11.82 – 55.66 kWh/kg and 11.9 – 58.01 kWh/kg, respectively. The laboratory scale 

results were analyzed using linear and multivariable regression analysis. From here, mathematical 

equations were developed to predict the Bond’s index and specific energy based on the 

characteristics of the pulse variety using regression analysis, which yielded good correlation 

coefficient values greater than 0.94. The proposed models, together with other product 

characteristics, could support decision-making, especially when exploring the sustainability of 

milling equipment for a desired size reduction. 

 

4.1 Introduction 
 
There has been an increase in demand for plant-derived protein due to increasing consumer 

concerns about the environmental damage associated with alternative animal-based products 

(Allotey et al., 2022; Detzel et al., 2022; Westhoek et al., 2014). The Food and Agricultural 
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Organization's support for sustainable diets as well as dietary recommendations in developed 

countries that advocate consumption of whole grains, pulses, fruits, and vegetable-based diets also 

encouraged the rising consumption of plant based proteins (Organization, 2019). Although many 

different plant-based protein sources such as cereals, nuts and fruits exist (Hurrell, 2003), legumes 

are the most frequent source because of their affordability, high protein content, and nutritional 

profile (Pelgrom, Boom, et al., 2015a). Pulses also have advantageous functional qualities for food 

preparations, including desirable solubility, emulsifying, foaming, gelling, and water/fat binding 

capabilities (Melendrez-Ruiz et al., 2019).  

Pulses comprise carbohydrate components entwined in a protein framework and other 

biological components such as fats and fibres (Rajendran et al., 2018; Vogelsang-O’Dwyer et al., 

2021). As a result the proteins are acquired through extraction processes that release the protein 

components, followed by protein separation (or recovery) and centrifugation stages (Schutyser et 

al., 2015). Protein isolation from pulses is often accomplished using dry and wet extraction 

(Fernando, 2021). Milling is an important unit operation required for the protein extraction. The 

protein can be separated from starch and other components by taking advantage of its smaller 

dimensions compared to starch granules' size (3-12 µm) (Assatory et al., 2019; Fernando, 2021). 

Since grinding is energy-intensive, measuring energy consumption and determining alternative 

energy-saving routes are required. (Goswami & Singh, 2003). It is challenging to identify the 

minimum energy necessary for a specific size reduction technique. Previous studies have 

highlighted factors that influence energy consumption during grinding of plant products. These 

factors include the ratio of pre-milling to post-milling particle size distribution (Ghorbani et al., 

2010), moisture content (Jha & Sharma, 2010), hardness (Dziki, 2008), pre-treatment before 

grinding (Ngamnikom & Songsermpong, 2011), machine type, speed (Garg et al., 2010), and 
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screen size (Garg et al., 2010). Energy requirement for grinding can be determined by considering 

work index and applying Bond's law. Chakkaravarthi et al. (1993) investigated grinding of carrot 

grits into powder using a hammer mill. The authors reported a work index in the range between 80 

and 1610 kWht-1. In a follow-up study, Walde et al. (2002) estimated the work index of bulk wheat 

samples to be between 40 and 80 kWht-1. Similarly, Walde et al. (1997) estimated the Bond's work 

index for gum karaya samples to be between 478 - 757 kWht-1. For grinding of pepper, work index 

was estimated as 4610 – 42220 kWht-1 Murthy (2001) whereas for maize it was from 81 to 283 

kWht-1  during hammer millings. These studies indicate that the required work index for grinding 

operations depends on the material to be grinded. There is scare data on energy requirements for 

pulses. Given that plant-based protein is anticipated to contribute more than $4.5 billion to 

Canada’s GDP growth (Mehra), there is a need to investigate the potential energy requirements 

and opportunities to minimize energy consumption and improve efficiency of pulse  milling 

operations.  The goal of this study was seeking to identify the characteristics of dry peas, lentils 

and chickpeas during grinding by estimating the Bond’s work index. Additionally, this study 

investigates the particle size distribution of these pulses in response to varying grinding times and 

particle size distribution. Finally, we extended the conventional data collection and reporting from 

the laboratory experiment to include linear and multivariate models to predict the specific energy 

required and work index for grinding a variety of pulses. The remaining part of the paper proceeds 

as follows: section 4.2 presents the experimental, mathematical, and statistical approach employed 

in the study.  Section 4.3 analyzes the data gathered and presents the results, statistical significance, 

and performance of the developed models. The final section draws together the various finding 

and implications of the study. 
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4.2 Experimented study 

4.2.1 Method Approach  

Figure 4.1 presents the method framework used in the study. A total of 45 samples of 

different varieties of pulses were obtained and milled for different times using a digital grinder. 

Particle size distributions of the milled samples were assessed using a scanning electron 

microscope (SEM). The samples were analyzed in triplicates. Based on the results from step two, 

theoretical milling models were used to estimate the milling characteristics such as Bond’s index, 

Kick’s constant, and size reduction ratios. The milling characteristics, pulse characteristics, and 

time were considered distinct parameters and state variables for projected predictions. The 

projected prediction was achieved with the help of linear and multivariate models, which were 

further compared with the experimental results. Once the model parameters were obtained, test 

statistics such as the R-Squared, Adjusted R-Squared and Sum of Squared Error (SSE) were 

applied to determine the reliability and predictive quality of the model. In addition to the 

quantitative tools other graphical tools were employed to validate the reliability of the regression 

models developed. 
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Figure 4.1: Theoretical framework applied to the milling and modelling of the milling process 

4.2.2  Sample preparation  
 

Three pulse varieties namely peas, lentils and chickpeas, were purchased from a nearby 

local store. The pulses were cleaned and the physical characteristics of each grain namely length, 

and diameters were measured using a Vernier Caliper with accuracy of ± 0.022 mm. For each pulse 

category, 20 seeds were randomly selected and measured. Sizes were recorded as average values 

± standard deviations (SD). Milling was done using a digital laboratory grinder 

(CGOLDENWALL Commercial Electric Grain Grinder, Canada) with a capacity of 2.5 kg and a 

power rating of 3600 W. The pulse flours were prepared by grinding 450 g of a pulse at different 

grinding durations (15, 30, 60, 90, and 120 s). Each grinding flour preparation was done in 

triplicate. A clamp meter (KAIWEETS Digital Clamp Meter T-RMS 6000, USA) was used to 

measure the electrical current drawn during the milling operations. The electrical power for a 
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single phase was estimated using the data collected by the clamp meter and the following Equation 

4.1. 

 

𝑃 = 7×9×:;
!<<<

					         (4.1) 

where P is the power (kW), I is the current (A), V is the voltage (V), and pf is the dimensionless 

power factor derived from the clamp meter. The ratio of the actual power flowing to the load to 

the apparent power in the circuit is known as the power factor of an electrical power system. The 

electrical energy consumed during the pulse milling was calculated as per Equation 4.2.    

𝐸 = 𝑃	 × 𝑡           (4.2) 

where t is the milling time (s), and E is the energy (kWh). 

 

4.2.3 SEM analysis and sample preparation   
 

The milled samples were examined with an electron microscope (SEM TM3000 Hitachi 

High Technologies Corporation, Tokyo, Japan). Samples for imaging were prepared using a stub 

covered with a conductive copper tab where each tab was split in half so that 2 samples could be 

examined in one run.  The height of the stub was maintained at 1 mm to provide the greatest image 

quality. The samples were applied to the tab and smeared to ensure particles adhered to the tab and 

shaken to remove non-immobilized flour. Images were taken at 500x magnification. Image 

analysis was conducted following the standard ISO 13322–1 (De Temmerman et al., 2014; Richter 

et al., 2012).  

4.2.4 Seed hardness and particle size analysis  

The seed hardness of all legume seeds was determined according to (Pelgrom, Wang, et 

al., 2015). Twenty cotyledons per legume were, flat-side down, compressed by a 57 mm cylindrical 
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probe attached to a Texture Analyser (Instron 4502 universal testing machine, Canton, USA) 

equipped with a 500 N load cell at a crosshead speed of 25 mm/min for peas and chickpeas and 3 

mm/min for lentil. 

Image analysis method were developed to quantify particle sizes and distributions for 

starch and protein granules. The open source ImageJ software (Gomez‐Perez et al., 2020) from the 

National Institute of Health (NIH) was used to process the SEM images. The image analysis was 

done following the recommendations of  Stolze et al. (2019). Firstly, SEM images of the flour 

samples were uploaded to the ImageJ software. In the case of this study, in the Set Scale window 

was entered 200 into the “Known Distance” box and the “Unit of Measurement” box was set to 

μm and checked “Global”. It was found that automated thresholding could not adequately 

differentiate particle size distributions for starch and proteins. This was partly due to the 

agglomeration of protein particles, starch granules and insufficient size reductions of protein-

starch matrixes. Hence, 2 separate analyses were conducted on each image by setting the threshold 

at 170 and 130 to delineate protein and starch particles, respectively. Then the 2 datasets were 

combined to obtain a comprehensive particle size distribution dataset for each milling condition. 

The data was analysed using Python 3.10.10. The average final particle size (L2) for each sample 

was estimated from the particle size distribution profile. L2 represents the average diameter of the 

pulse flour post-milling. The initial particle size (L1) was measured before the milling operation. 

The energy requirements and Kick’s constants of each milling process were estimated using 

Equations 4.3 and 4.4 

𝐸 = 0.3612𝑊= :
!
>?#

− !
>?!
		;         (4.3) 

𝐸 = 𝐾= ln >
?!
?#
?           (4.4) 
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where 𝑊= is the Bond’s work index and 𝐾= is  Kick’s constant. Equation 4.3 was transformed into 

Equation 4.5 to estimate the work index of pulses.  

 

𝑊= =
@)

<.BC!$∗E
: !
>?#

− !
>?!
		;

F!
         (4.5) 

 

Where 𝑊G is the power consumed, and m is the weight of the samples. 

 

4.2.5 Statistical analysis  
4.2.5.1 Typical statistical analysis  
 

The Statistical Package for Social Science 13.0 (SPSS Version 13, IBM, Statistics Corp., IL 

USA) software was applied to calculate descriptive statistics measures such as the mean, median 

and standard deviation of the different samples. The data obtained from the SPSS analysis were 

reported as mean ± standard deviation.  Pearson correlation analysis and the test-statistic (t) for the 

paired T-test (p<0.05) were also conducted to investigate the difference between the means of the 

various milled pulse characteristics. The comparison of means of the different characteristics was 

achieved by applying the paired-sample t-test with a 0.05 significance level.  

 

4.2.5.2 Model variable and least square estimation 
 

The pulse and milling characteristics included in the ordinary and multivariate linear 

regression include the variety, milling time, pulse diameter and size reduction ratio. The response 

variables considered are the specific energy and work index. Equation 4.6 presents the general 

form of the multivariate model employed in this study.  

𝐸= =	𝛼< +	𝛼!𝑥=,! +⋯+ 𝛼H𝑥=,H + 	𝜀				(4.6) 

Equation 4.6 was simplified to derive Equation 4.7. Equations 4.6 and 4.7 predicted the specific 

energy and work indexes, respectively. 
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𝐸= = 	𝑋𝛼 + 	𝜀				(4.7) 

Where the variables E, α and ε can be expanded in the equation below:  

𝐸 = J
𝐸!
𝐸$
⋮

𝐸J
K 				𝑥 = JL

𝑥!,! ⋯ 𝑥!,H
⋮ ⋱ ⋮
𝑥J,! ⋯ 𝑥J,H

OK 					𝐸 = J
𝛼!
𝛼$
⋮

𝛼J
K 			𝜀 = J

𝜀!
𝜀$
⋮
𝜀J
K						(4.8)		 

From Equation 4.8, the ordinary least squares error for each model parameter, thus α, can be 

estimated by calculating the residual vector, then consequently the squared length of this vector. 

This was achieved by employing the relations in Equations 4.9 (residual model) and 4.10 (sum of 

squared error model). 

𝑒 = 	𝐸 − 𝑥𝜶				(4.9)			 

𝑆𝑆𝐸 = 	U𝑒=$ = 𝑒K𝑒 = 	 ‖𝑒‖$ = (𝐸 − 𝑥𝜶		)K(𝐸 − 𝑥𝜶)				(4.10)
J

=L!

 

However, since the α values estimated from Equation 4.9 through the squared length of the residual 

is zero, Equation 4.10 reduces to Equation 4.11 and 4.12, respectively. 

 

𝑑𝑆𝑆𝐸
𝑑𝛼 = 0		(4.11) 

𝛼X = (𝑥K𝑥)F!(𝑥K𝐸)		(4.12) 

4.2.5.3 Model diagnostics 

After estimating the parameters of the models, three commonly used statistical indices were 

used to assess the different models’ estimation of the specific energy and work index. These 

include R-Squared (Equation 4.13), Adjusted R-Squared (Equation 4.14) and Sum of Squared error 

(Equation 4.12).  

𝑅$ =	
[∑ (𝑋= − 𝑋[	)(𝑌= − 𝑌[	)J

=L! ]$

∑ (𝑋= − 𝑋[	)$J
=L! 	∑ (𝑌= − 𝑌[	)$J

=L!
						(4.13)		 
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𝐴𝑑𝑗𝑅$ = 1 −	`
(1 − 𝑅$)(𝑛 − 1)

𝑛 − 𝑘 − 1 c						(4.14)		 

Where 𝑋= and	𝑌= are the observations and estimation values at the ith time step, respectively. 𝑋[ and 

𝑌[  are the average value of simulations and estimations, n is the number of samples, and k is the 

number of independent regressors. Aside from the quantitative tools, other graphical tools, such as 

the kernel density of the residuals, were employed to evaluate the predictive quality and reliability 

of the models. 

4.3 Results and discussion 

4.3.1 Particle Size Image results 

Figure 4.2 shows the SEM micrographs of the pulse samples ground for 15 sec and 2 minutes. 

Starch granules can be seen as larger particles compared to smaller protein particles. Chickpea and 

pea flours have more starch to the protein matrix than lentil flour. Located around the larger 

irregular shaped starch particles are discernible micro-spherical structures, representing protein 

matrix disrupted during milling. Smaller particles seen around the spherical structures might be 

minerals and fibre components of the different pulses. The results corroborate the work of Tyler 

et al. (1981), who reported on the effect of seed harness on high starch-protein agglomerates in 

legumes. Also, Ma et al. (2011) reported a high concentration of carbohydrates in chickpeas and 

peas as opposed to lentils. Again, Figures 4.2 (e) and (f) show high concentrations of spherical 

structures of protein matrix in lentils compared to chickpeas and peas. This supports previous work 

by JI Boye et al. (2010), who reported higher protein content in Lentils (25.78 w/dw%) than 

chickpeas (22.62 w/dw%)  and peas (19.00 w/dw%) after milling. The SEM profile provides a 

more reliable approach to visualize the protein-starch distribution of each sample. 

. 
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Figure 4.1: SEM images for pulses after grinding for 15 sec and 2 min for starch protein clusters (a) peas flour 
after 15 sec, (b) peas flour after 2 min, (c) Chickpeas flour after 15 sec, (d) Chickpeas flour after 2 min, (e) 
Lentils flour after 15 sec, (f) Lentils flour after 2min.  
 

 

 

(a) (b)  

(c) (d)  

(e) 
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4.3.2 Grinding data for selected pulses 
 

Table 4.1 presents the Bond’s work index and Kicks constant range calculated for each 

pulse variety using Equations 4.1 to 4.3. The data shows that a decrease in final product diameter 

corresponded with an increase in energy requirement. Additionally, increasing grinding time 

yielded finer particles and a greater bond index. The average flour diameter ranged from 

10.21±0.14 µm to 41.88±1.53 µm, 11.08±1.06 µm to 42.00±4.04 µm and 9.45±1.0 µm to 

40.52±2.26 µm for Peas, Lentils and Chickpeas samples respectively. Interestingly, all flour 

diameters ranged between 10.2 to 42.00 µm, with lentils and peas having similar average particle 

sizes of 21.32 µm. Again, it can be observed that the first 15 sec of grinding corresponded to a 

lower specific energy requirement for each flour sample and a smaller particle size. Table 4.1 

shows a reduction of 62.23% (15 to 30 s) and 60.48% (30 sec to 1 min) for lentil flour samples. 

Similar observations were made for Peas samples with a reduced rate of 60.76% (15 to 30 s) and 

62.76% (30 s to 1 min) recorded.   However, 65.5% (15 to 30 s) and 91.62% (30 s to 1 min) particle 

reduction rate was observed for Chickpeas. The maximum reduction size occurred in the first 30 

sec, while the contrary was observed between 1.50 to 2 min of grinding. Thus, the size reduction 

rate gradually decreased beyond 1 min of grinding. Overall, an average reduction rate of 43.42% 

was observed for pulse samples as the particle diameter decreased, higher specific energy was 

required.  Perhaps the most interesting aspect of Table 4.1 is that chickpeas samples had a larger 

feed diameter than peas and lentils; however, this resulted in a finer particle size across all time 

intervals during milling. 
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Specific energy requirements between 15 s to 2 min increased by a factor of 8.05, 7.7 and 

10.2 for peas, lentils and chickpea samples, respectively. The observed energy trend in samples 

could be due to the energy required for granular breakage within the first minute of grinding. 

Again, as particle size reduced, their surface area increased, hence, the higher specific energy 

required for size reduction. The results suggest that higher specific energy is required during 

chickpea milling. This is probably due to the initial pulse diameter, which was observed to be 9.31 

mm as opposed to 6.78 mm and 6.67 mm for lentil and pea samples, respectively. This observation 

from this study corroborates the work of  Dziki (2008), who reported an increase in specific energy 

for granular breakage wheat kernels. Indira and Bhattacharya (2006) reported lentils having the 

highest surface area and the number of particles compared to cowpea, black gram, green gram and 

Bengal gram pulses upon grinding. In the same study, coarse and fine ground particles ranged 

between 860 to 75 µm and 210 to 45 µm.  

The results regarding the hardness of all three pulses is also presented in table 4.1. 

Chickpeas were found to be the hardest, with 326.65 (N), followed by peas, with 190.92 (N). 

Lentils had the least hardness with 129.49 (N), which explains why lentils had the lowest specific 

energy as compared to peas and chickpeas. Pelgrom, Boom, et al. (2015b) also investigated the 

hardness of these three pulses which found to be 210, 197, 31 (N) for peas, chickpeas, and lentils, 

respectively. The difference in hardness values found in this study and Pelgrom, Boom, et al. 

(2015b) can be explained by the differences in cultivars grown in Canada compared to ones 

cultivated in Netherlands.   

 

Table 4.1: Grinding data for Peas, Lentils and Chickpeas  

Pulse 
sample 

Initial 
product 
diameter 

Grinding 
time, 
min 

Specific 
Energy, E 
(kWh/kg) 

Final 
particle 
size (µm)   

Kick’s 
constant  
(kWh/kg) 

Bond’s 
work index  
(kWh/kg) 

Hardness  
(N) 
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(mm)  
Pea 6.67 0.25 18.29±0.85 41.88±1.53 3.61 11.90-

58.00 
190.92 ± 

6.67 0.5 41.73±0.62 25.89±1.99 7.52 72.38 
6.67 1 81.93±4.95 16.14±1.28 13.60  
6.67 1.5 120.47±4.95 12.50±1.15 19.19  
6.67 2 165.79±9.23 10.21±0.14 25.58  

        
Lentil  6.78 0.25 17.86±0.58 42.00±4.04 3.51 11.82-

55.66 
129.47 ± 

6.78 0.5 36.98±1.29 25.38±0.63 6.62 16.41 
6.78 1 77.75±5.08 17.54±1.29 13.05  
6.78 1.5 119.85±3.12 13.24±0.44 19.21  
6.78 2 155.50±12.38 11.08±1.06 24.23  

        
Chickpea  9.31 0.25 14.48±1.22 40.52±2.26 2.66 9.33-

53.949 
326.65 ±  

9.31 0.5 37.98±0.64 25.21±0.86 6.43   58.74 
9.31 1 81.19±6.40 15.49±1.62 12.69  
9.31 1.5 122.62±4.50 12.35±1.56 18.51  
9.31 2 163.27±3.47 9.45±1.0 23.69  

 

 
4.3.3 Particle size distribution 
 

Figure 4.3 presents the density plots obtained from the SEM images for the pulse varieties.  

In Figures 4.3 (a), (b) and (c), we observe that in each time interval, flour samples exhibit varying 

particle size distribution. Again, sharp peaks were observed at 1.5 min for all samples and at 2 min 

for chickpeas and peas. This corresponded to high volumes of particles within the range of 12-14 

µm for all samples at 1.5 min of grinding (Figure 4.3 (d)). Also, at 2 min, high particle volumes 

were observed within the 8-11 µm for chickpeas and peas (Figure 4.3 (e)). Again, we observe that 

the curves for reduction streams for all samples overlap after 1 minute of grinding. This is clearly 

seen around 13 µm for peas and lentils and 11 µm for chickpeas. This is probably due to the similar 

feed particle size between peas (6.67 µm) and lentils (6.78 µm). Moreover, it is clear from Figure 

4.3 that the density plots for all samples during the milling process were skewed to the right, thus 

demonstrating a more significant number of particle distributions within varying particle size 

intervals for all samples.  For example, in the context of peas, a greater number of particles were 
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distributed between 7-10.5 µm, 10-12.5 µm, 13.5-17.5 µm, 22-28 µm and 37 – 45 µm for milling 

at 0.25 min to 2 min, respectively.  

 

Figure 4.3: Density plot across the flour streams derived from the SEM (a) chickpea, (b)lentil and (c) peas.  
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4.3.4 Statistical significance analysis 
 
Tables 4.2 to 4.4 present the paired t-Test, which compares the means of product diameter with 

the work index, specific energy, and size reduction ratio for peas, chickpeas, and lentils. Table 4.2 

shows a strong negative correlation between product diameter and specific energy requirements  

(corr =-0.891, p=0.001), size reduction ratio (corr =-0.930, p-value<0.001), and work index (corr 

=-0.047, p=0.047). Again, the relationship between size reduction ratio, work index and specific 

energy demonstrates a positive correlation with (corr>0.900 and p-value<0.001) for all instances. 

This implies a high statistical significance between the milling characteristics at a 95% confidence 

interval.  

Table 4.2: Paired sample t-test of the effect of product diameter on work index, specific energy, and size reduction 
ratio at 95% confidence interval for milling of peas samples. 

Pair  Corr.  

 
Means 
difference  t df 

Significance 

One-Sided p Two-Sided p 
𝐷:MNOPQR	 − 𝐸S:TQ=;=Q	 -0.891 -64.32 -3.768 14 0.001 .002 

𝐷:MNOPQR	 − 𝑅𝑅S=UT	 -0.930 -383.2 -7.485 14 <0.001 <.001 
𝐷:MNOPQR	 −𝑊=JOTV	 -0.921 -12.62 -1.798 14 0.047 0.094 

𝐷;TTO	 − 𝐸S:TQ=;=Q	  -78.97 -5.546 14 <0.001 <0.001 

𝐷;TTO	 − 𝑅𝑅S=UT	  -397.86 -8.239 14 <0.001 <0.001 
𝐷;TTO −𝑊=JOTV	  -27.27 -6.737 14 <0.001 <0.001 

𝑅𝑅S=UT	 − 𝐸S:TQ=;=Q	 0.985 318.88 9.283 14 <0.001 <0.001 

𝑊=JOTV	 − 𝑅𝑅S=UT	 0.977 -370.58 -8.357 14 <0.001 <0.001 

𝐸S:TQ=;=Q	 −𝑊=JOTV	 0.993 -51.7 5.053 14 <0.001 <0.001 
**where 𝐷:MNOPQR	 is the diameter of the product; 𝐷;TTO	 is the diameter of the feed; 𝐸S:TQ=;=Q	 is the 
specific energy; 𝑅𝑅S=UT	 is the size reduction ratio; and 𝑊=JOTV	is the work index.  
 
 



 68 

The sample means for the different characteristics differ by 64.32 and 383.2 for the diameter of 

product-specific energy and size reduction ratio, respectively. The smaller p-value obtained 

implies that the effect of product diameter on size reduction ratio and specific energy is statistically 

significant. On the contrary, the two-sided for the product diameter and work index (p-value of 

0.094> 0.05) relationship between product diameter and work index indicates statistical 

insignificance between the two flour and milling characteristics.  Again, it can be inferred that the 

observed absolute difference of means of 12.62 indicates the probability of overlap at a 95% 

confidence interval. 

Table 4.3: Paired sample t-test of the effect of product diameter on work index, specific energy, and size reduction 

ratio at 95% confidence interval for milling of Lentils samples. 

Pair  Corr.  

 
Means 
difference  t df 

Significance 
One-Sided 
p Two-Sided p 

𝐷:MNOPQR	 − 𝐸S:TQ=;=Q	 -0.883 -59.74 -3.638 14 0.001 0.003 

𝐷:MNOPQR	 − 𝑅𝑅S=UT	 -0.922 -367.83 -7.831 14 <0.001 <0.001 
𝐷:MNOPQR	 −𝑊=JOTV	 -0.902 -11.36 -1.626 14 0.063 0.126 

𝐷;TTO	 − 𝐸S:TQ=;=Q	  -74.80 -5.465 14 <0.001 <0.001 

𝐷;TTO	 − 𝑅𝑅S=UT	  -382.37 -8.670 14 <0.001 <0.001 
𝐷;TTO −𝑊=JOTV	  -26.43 -6.401 14 <0.001 <0.001 

𝑅𝑅S=UT	 − 𝐸S:TQ=;=Q	 0.990 307.562 10.051 14 <0.001 <0.001 
𝑊=JOTV	 − 𝑅𝑅S=UT	 0.983 -355.94 -8.887 14 <0.001 <0.001 

𝐸S:TQ=;=Q	 −𝑊=JOTV	 0.993 48.38 5.036 14 <0.001 <0.001 
**where 𝐷:MNOPQR	 is the diameter of the product; 𝐷;TTO	 is the diameter of the feed; 𝐸S:TQ=;=Q	 is the 
specific energy; 𝑅𝑅S=UT	 is the size reduction ratio; and 𝑊=JOTV	is the work index.  
 
Similar trends are observed for lentils and chickpeas, as presented in Tables 4.3 and 4.4. However, 

in this case, we observe a two-sided p-value 0.063 >0.05 and a p-value (0.065> 0.05) for the 

relationship between product diameter and size reduction ratio for lentil samples and chickpeas, 

respectively. Again, there is a lower probability of finding a statistical difference between the 
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means of product diameter and size reduction ratio, with an absolute means difference of 11.36 

and 11.33 for lentils and chickpeas, respectively.  

 
 

Table 4.4: Paired sample t-test of the effect of product diameter on work index, specific energy, and size reduction 
ratio at 95% confidence interval for milling of Chickpea samples 

Pair  Corr.  

Means 
difference  

t df 

Significance 
One-Sided 
p 

Two-Sided p 

𝐷:MNOPQR	 − 𝐸S:TQ=;=Q	 -0.903 63.31 -3.655 14 0.001 0.003 

𝐷:MNOPQR	 − 𝑅𝑅S=UT	 -0.913 11.33 -7.396 14 <0.001 <0.001 
𝐷:MNOPQR	 −𝑊=JOTV	 -0.932 571.64 -1.607 14 0.065 0.130 

𝐷;TTO	 − 𝐸S:TQ=;=Q	  74.6 -5.133 14 <0.001 <0.001 

𝐷;TTO	 − 𝑅𝑅S=UT	  22.62 -7.823 14 <0.001 <0.001 
𝐷;TTO −𝑊=JOTV	  582.93 -5.468 14 <0.001 <0.001 

𝑅𝑅S=UT	 − 𝐸S:TQ=;=Q	 0.976 51.98 8.415 14 <0.001 <0.01 

𝑊=JOTV	 − 𝑅𝑅S=UT	 0.942 560.31 -7.933 14 <0.001 <0.001 

𝐸S:TQ=;=Q	 −𝑊=JOTV	 0.985 508.33 4.958 14 <0.001 <0.001 

**where 𝐷:MNOPQR	 is the diameter of the product; 𝐷;TTO	 is the diameter of the feed; 𝐸S:TQ=;=Q	 is the 
specific energy; 𝑅𝑅S=UT	 is the size reduction ratio; and 𝑊=JOTV	is the work index.  
 

4.3.5 Model Analysis 

4.3.5.1 Relationship between work index and size reduction ratio 

A linear regression model was employed to derive a relationship between the work index 

and size reduction ratio for the different pulses. Figure 4.4 presents a linear relationship based on 

the ordinary least squares methods. The models in Figure 4.4 were derived from data in Table 4.1. 
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Figure 4.4: Linear regression model fitting of work index against size reduction ratio (a) chickpea, (b) peas and (c) 
lentil 

The model describes the relationship between the size reduction ratio and the work index with R-

squared values between 0.887 to 0.965 and an Adjusted R-squared ranging from 0.878 to 0.965. 

The following equations were fitted with the R-squared of 0.887, 0.967, 0.955 and adjusted R-

squared of 0.968, 0.965, 0.951 for chickpea, lentils and pea respective.  

 

(a)  
 

(b)  

(c)   
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𝑊= = 	39.83 + 	10.52𝛼WFW,*+,-.* ,			𝑝 < 0.05								(4.15) 

𝑊= =	−26.57 + 	3.46𝛼WFW,/0./12+3 ,					𝑝 < 0.05								(4.16) 

𝑊= = 	0.81 + 	0.08𝛼WFW,2+3					𝑝 < 0.05,					(4.17) 

The above equations help to estimate the work index of chickpeas, peas and lentils for a given size 

reduction ratio. The work index can then be employed to explore other characteristics of the milling 

processing. 

Table 4.5: Model parameters and statistical characteristics for predicting work index   
 Estimate Standard 

Error  
t-stat p-value  R-

squared  
Adj R2 F-stat 

Chickpeas      
102 Intercept  0.966 3.389 0.285 0.780 0.887 0.878 

𝑥GNMH	=JOTV 0.052 0.005 10.098 <0.001 
       
Lentil        
Intercept  -2.572 1.986 -1.295 0.218 0.967 0.965 383.1 
𝑥GNMH	=JOTV   0.092 0.005 15.572 <0.001  

        
Pea        

273.3 Intercept 0.807 2.195 0.368 0.719 0.955 
 

0.951 
𝑥GNMH	=JOTV 0.082 0.005 16.533 <0.001 

 

4.3.5.2 Relationship between work index, product diameter and time  

 

Again, to improve the linear models above to capture more state variables, a multivariate model 

was developed.  The multivariable linear regression method captures the relationship between each 

product's energy requirement, size reduction ratio and time. Equation 4.18 to 4.20 presents the 

multiple linear regression equations and show the regression coefficient 𝛼<, the intercept and 

quadratic coefficients of 𝑥! and 𝑥$ for the different pulse varieties. 
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𝐸QX=QH:TY =	−7.765 + 	77.043𝑥K=ET,/0./12+3 , 	+ 	0.018𝑥WFW,/0./12+3 ,									
(4.18) 

𝐸ZTJR=Z =	−16.266 + 	50.191𝑥K=ET,*+,-.* , + 	0.116𝑥WFW,*+,-.* ,										(4.19) 

𝐸:TYS =	−2.159 + 	81.165𝑥K=ET,2+3 , 	+ 	0.006𝑥WFW,2+3 ,								(4.20) 

Moving on, Table 4.6 presents the characteristics of Equations 4.18 to 4.20. From the table, 

it can be observed that an R-square and Adj R2 value of 0.997 was recorded for chickpea samples.  

Similarly, the R-square and Adj R2 of 0.993 and 0.992 were observed for lentil samples. 

Interestingly, the ANOVA results with p-values <0.05 for lentils and chickpeas indicate that the 

quadratic models are significant and the goodness of fit. However, conflicting p-values 

observations were made for samples of lentil pulse. Despite a good R-square and Adj R2, the p-

values observed for the Lentil characteristics were (<0.001, 0.886). The models developed in this 

section are useful in exploring the effect of characteristics such as milling time, pulse variety, and 

particle diameter on the specific energy requirement during milling. 

Table 4.6:  Significant levels of factors in determining. 
 Estimate Standard 

Error  
t-stat p-value  R-

squared  
Adj R2 F-stat 

Chickpeas      
Intercept  -7.765 2.747 -2.826 0.015 0.997 0.997  

𝑥R=ET 77.043 6.237 12.353 <0.001 
𝑥WFW 0.018 0.014 1.271 0.228 

        
Lentil        
Intercept  -16.266 4.979 -3.267 0.007 0.994 0.993 1054 

𝑥R=ET   50.191 9.406 5.336 <0.001 
𝑥WFW    0.116 0.036 3.179 0.008 

        
Peas        
Intercept -2.159 5.408 -0.399 0.697 0.994 

 
0.993 931 

𝑥R=ET 81.165 12.268 0.616 <0.001 
𝑥WFW 0.006 0.043 0.147 0.886 
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4.3.5.3 Model diagnostics for validity  

Although the model fittings presented in Figure 4.4, Tables 4.5 and 4.6 demonstrate a good 

prediction of the experimental data, it is not enough to make a complete decision on their 

application to forecasting the work index and energy requirement during the milling of pulses. 

Thus, the decision to apply the developed models was extended to include the residual distribution 

of the model outputs against the experimental data.  Figure 4.5 presents the plot of the residuals 

from the multivariate models in Section 4.3.5.2 as kernel density plots overlayed with the normal 

mean and standard deviation curve. From Figure 4.5 (a), (b) and (c), we observe that the residual 

plots for all three cases closely map the normal probability distribution plot. Furthermore, in 

Figures 4.5 (e), (f) and (g), we observe a reasonable distribution with the mean close to the median 

for each model, thus indicating a symmetric relationship. However, in Figure 4.5 (e) and (g), we 

observe two outliers that the adopted regression models do not explain. 
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Figure 4.5:  Distribution of residuals from multivariable modelling (a) chickpea, (b) peas and (c) lentil 

 
 
 
 

 

(a) (e) 

(b) 

(c) 

(f) 

(g) 



 75 

4.4 Implications and industrial relevance of the study  

With the rise in awareness and consumer desire to transition to high-quality plant protein, 

researchers and industries would explore advanced, efficient and sustainable pathways for protein 

extraction from pulses. In this regard, the current study complements earlier studies by providing 

a model-based approach to determine the work index and energy requirements during the milling 

of pulses. With estimates of the energy requirement and work index determined, researchers and 

industry partners can select the appropriate milling equipment needed to achieve the desired 

grinding results for a given pulse variety. Additionally, the energy requirement could be extended 

to explore the sustainability of milling equipment. It could also serve as a criterion along with 

protein content, yield and other external factors to support the selection of an optimal pulse for 

milling.  

4.5 Conclusion 

This study set out to augment the conventional data collection and reporting from the 

laboratory experiment with linear and multivariate models to predict the specific energy required 

and Bond’s work index for grinding various pulses. In addition, the study also examined the 

particle size distribution and the relationship between the means of flour characteristics. The 

Bond’s work index of the pulse samples was estimated to be within 11.90-58.00 kWh/kg, 244.94-

1118.99 kWh/kg and 156.87-604.28 kWh/kg for chickpeas, lentils and peas. The Bond’s Work 

Index correlated strongly with the particle size ratio and the specific energy requirement with a 

correlation coefficient < 0.940 and p<0.001. Thus, indicating a statistical significance between the 

results. The results of the investigation show that linear models could accurately characterize the 

relationship between the work index and specific energy requirements with an R-squared of 0.970, 

0.967, 0.955 and adjusted R-squared of 0.887, 0.965, 0.951 for chickpea, lentils, and pea 
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respective. Extending the model to include time, the multivariate models fitted with an R-squared 

value of 0.997, 0.944 and 0.944 for chickpeas, lentils, and peas. The present study adds to the 

growing body of research by laying the foundation for estimating the work index and energy 

requirements for a desired product diameter.  Further studies could explore the application of the 

model to the design of wet and dry fractionation configurations during protein extraction. 
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5 Summary, conclusions and suggestion for future studies 

5.1 Summary and conclusion 

Demand for plant-based protein has increased, owing primarily to the rise in vegetarianism. 

Because of their low cost, high protein concentration, and useful qualities in meal preparation, 

legumes are the most frequently used plant-based protein. To satisfy the growing demand for 

protein fragments, research is being done to discover more effective separation and utilization 

techniques. Thus, this research provided a commendable comprehensive evaluation approach 

that employed Data Envelopment Analysis to evaluate the resource utilization efficiency of 

commercial used dry extraction pulse protein processes and to suggest optimal input quantities.  

According to the findings, grinding uses considerably more energy than the air 

categorization device. However, when using the VRS analytical approach to calculate Pure 

Technical Efficiency, the functioning of an air classification machine may profit more from 

improved energy usage. The average PTE score for milling and air classification was 0.98 and 0.89, 

respectively, indicating a dearth of adequate efficiency in air classification and reasonably 

excellent milling performance. Milling scale efficiency levels differed from 0.53 to 1, while air 

classifying scale efficiency ratings spanned from 0.68 to 1. According to the findings, the DMUs 

number 31 (ZPS50 impact mill set at 8000 rpm and a classifier wheel set at 5000) and 1 (ATP50 

air-classifier set at 8000 with an air flow of 52) with energy consumption values of 3.24 wh and 

0.013 MJ were the best practices for grinding and air categorization, respectively, in terms of the 

amount of energy consumed. 

The purpose of this study was also to determine the grinding features of dry peas, lentils, 

and chickpeas by calculating Bond's work index constant and examining the particle size 
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distribution of these pulses in reaction to various grinding periods using the ImageJ software tool. 

The post-milling output width varied from 45 to 8 (µm) based on the milling time, and the specific 

energy rose from 13 to 175 as the grinding time increased, which was found to be compatible 

with other papers. To achieve a more reasonable number for future experiments, the work index 

was linked with the size reduction ratio, and the suggested formulae for peas, lentils, and 

chickpeas had R square factors of 0.95, 0.96, and 0.88, respectively. 

5.2 Suggestion for future studies 

1. The model created in this research is relevant to the small-scale food industry; perhaps 

a larger model with the same structure could be designed for the larger scale food 

industry incorporating a more complex procedure. 

2. Other variables, aside from resource utilization, could be used to promote sustainability 

in the food industry. This research only looked at resource management. Other research 

could find additional variables and develop a model that includes the processing 

component (s). 

3. A future research could be based on a model that includes an output-oriented strategy 

or a combined input and output focused approach. 

4. The predictive model for the work index can be further investigated by considering the 

intrinsic properties of pulses, including moisture content, cultivar, and hardness. 
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