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Abstract

Currently deployed Remedial Action Scheme (RAS) implementations are event based and

parameter based and rely on comparison with offline studies or violation of pre-determined

thresholds before initiating the control action. With the changing dynamics of the grid,

its operating nature becomes unpredictable and it becomes difficult to determine critical

contingencies for all possible operating conditions. Additionally, identification of a suitable

control action to address an identified contingency involves multiple iterations through of-

fline studies. Hence it is apparent that the conventional method of RAS is computationally

demanding and with an increasing number of scenarios the process becomes intensive and

requirements of computational resources also increase.

The thesis proposes to address this issue by establishing a response based multi-shot

RAS action that identifies an impending critical contingency and determines the appropri-

ate online response to stabilize the network. Execution of the proposed scheme involves an

aggregated knowledge of network wide generator dynamic states as well as the controller’s

states (Governor Torque and Exciter Field Voltage). An improved dynamic state estimator

(DSE) is presented that tacks the dynamic states with greater precision and also deals with

issues of communication interruption typically observed while transferring Phasor Measure-

ment Unit (PMU) data over in transmission network covers a vast geographic expanse. The

utility of applying the dynamic state information of the generators is that, unlike PMU, it

provides a more accurate representation of network dynamics.

Effective realization of the proposed RAS first involves identifying network instability

from indices evaluated from a combination of generator electro-mechanical states and the

rates of generator energy change. The second part of RAS is an energy function based

critical generator identification block that comes into effect when an impending instability

has been detected. The availability of dynamic state information makes it possible to com-

pute the individual generator energies. Also the proposed algorithm continuously monitors

the network and takes further actions if required. The proposed methodology is entirely

based on generator terminal phasor measurements and overcomes the stated problem of

conventional schemes.

Performance evaluation has been made on the IEEE 39 bus network and it has been

demonstrated that the proposed RAS is robust with regards to instability prediction and

can effectively identify critical generators and stabilize the network by tripping the same.
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Résumé

Les implémentations RAS (Remedial Action Scheme) actuellement déployées reposent sur

des événements et des paramètres et dépendent de la comparaison avec des études hors

ligne ou de la violation de seuils prédéterminés avant le lancement des actions de contrôle.

Avec la dynamique changeante du réseau, sa nature opérationnelle devient imprévisible

et il devient difficile de déterminer une contingence critique dans toutes les conditions

d’exploitation possibles. En outre, l’identification des mesures de contrôle appropriées

pour faire face à l’éventualité identifiée implique plusieurs itérations via des études hors

ligne. Il est donc évident que la méthode conventionnelle de RAS est très exigeante en

calcul et que, avec un nombre croissant de scénarios, le processus devient intensif et les

besoins en ressources de calcul augmentent également.

La thèse propose de résoudre ce problème en établissant une action RAS multi-plans

basée sur une réponse qui identifie une éventualité critique imminente et détermine la

réponse en ligne appropriée pour stabiliser le réseau. L’exécution du schéma proposé im-

plique une connaissance agrégée des états dynamiques du générateur sur l’ensemble du

réseau ainsi que des états du contrôleur (couple du régulateur et tension du champ de

l’excitateur). On présente un estimateur d’état dynamique amélioré (DSE) qui s’attaque

aux états dynamiques avec une plus grande précision et traite également les problèmes

d’interruption de communication généralement observés lors du transfert de données d’unité

de mesure de phasor (PMU) dans un réseau de transmission couvrant de vastes étendues

géographiques. L’utilité d’appliquer l’information d’état dynamique des générateurs est

qu’elle fournit une représentation plus précise de la dynamique du réseau que juste la

PMU.

La réalisation efficace de RAS proposé implique d’abord de déterminer l’instabilité

du réseau à partir d’indices évalués d’une combinaison d’états électromécaniques et de

taux de changement d’énergie des générateurs. La deuxième partie de RAS est un bloc

d’identification critique de générateur basé sur une fonction d’énergie qui prend effet lorsqu’une

instabilité imminente a été détectée. La disponibilité d’information d’état dynamique per-

met de calculer les énergies individuelles du générateur. De plus, l’algorithme proposé

surveille en permanence le réseau et prend d’autres mesures si nécessaire. La méthodologie

proposée est entièrement basée sur les mesures de phase du terminal du générateur et résout

le problème posé par les systèmes conventionnels.
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Les performances ont été évaluées sur le réseau de bus IEEE 39 et il a été démontré

que le RAS proposé est robuste en ce qui concerne la prévision de l’instabilité et qu’il peut

identifier efficacement les générateurs critiques et stabiliser le réseau en le déclenchant.
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Chapter 1

Introduction

1.1 Background

Traditional power systems, built on large-scale remote generation models are subjected to

increased stress as demand and supply technologies are continually evolving. Even though

the basic principle of power transmission remains the same, more constraints are imposed

by policies and regulations that aim to reduce carbon footprint [2].

The addition of renewable energy sources is changing the nature of the grid and its

operation. There is the rapid integration of new renewable resources to U.S. power grid,

e.g., in California to meet mandates in renewable energy portfolio [3] and also similar trends

can be witnessed in European networks, e.g., Denmark government strategy to ensure that

50% of the consumption is supplied by wind power in 2020 [4]. In a detailed congestion

study [5] on the U.S. grid, it has been found that the changes in demand pattern and

proliferation of renewable energy sources, particularly wind, have resulted in the operation

of lines at reduced constraint limits despite considerable investment and construction of

transmission lines [6].

Hence the existing grid operation and infrastructure need to be restructured to be more

flexible, agile, yet more robust and resilient to accommodate low-inertia generation sources

and volatile demands. Thus the first step would be to improve the monitoring of the grid

condition and then establish local and wide area control strategies [7–9]. Conventionally

power system network monitoring was performed by estimating voltage magnitudes and

angles, which were considered as states, at the buses of the network. Because of measure-

ment error and communication problems (delay, missing data), the state estimates have
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uncertainties, and a robust monitoring mechanism was needed. This requirement became

more apparent following the 2003 Northeast U.S. blackout, which occurred as a result of

limited understanding of the system, lack of visualization tools, and availability of real-time

data [10]. The United States-Canada Task Force recommended all utilities to use “time-

synchronized data recorders” for better situational awareness. With the improvement in

technology, computational power, and data transmission rates increased, which resulted in

synchrophasor devices capable of providing discretized voltage and current phasor infor-

mation (phase and magnitude) at 60 Hz with a timing accuracy of 0.2 µsec [11]. These

synchrophasor devices or PMUs (Phasor Measurement Units) have been deployed across

the entire North American grid, as shown in Fig. 1.1

Fig. 1.1 PMU location and data transmission in the North American Grid
[1]
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High resolution data from PMU makes it feasible to observe dynamics that were missed

out by the SCADA (Supervisory Control and Data Acquisition) system. which has led

to a network of PMUs spatially distributed across the grid. Data from these spatially

distributed PMU devices are sent to a central location, which is termed as Phasor Data

Concentrators (PDC). Real time monitoring of network conditions has now become possible

with a fast communication network with reasonable bandwidth, which is termed as Wide

Area Monitoring Systems (WAMS).

With an established improved monitoring system, the next step is to create a mecha-

nism to detect an outage event that can escalate into a significant system wide disturbance

and prevent it. Utilization of wide area information in designing a potential innovative

specialized protection scheme has been envisaged in [12]. The societal and financial im-

plications of a blackout are enormous for utilities, as is evident from the analysis of two

severe blackout cases in the U.S. [13] and India [14]. Hence efforts have been made to uti-

lize the spatiotemporal information provided by PMUs and develop instability detectors,

which would predict an impending instability before its onset. An initial concept of using

generator terminal phasor data and applying a decision tree for prediction is presented

in [15]. This is improved further by taking into consideration generator angle, speed, rate

of change of speed, and indices that combine the same and thereby applying decision trees

for instability detection in [16]. Subsequently there have been numerous publications on the

application of decision trees and other machine learning techniques in instability detection

or transient stability assessment of power systems [17–22]. A comparative analysis of the

decision tree with other variants of classifiers is presented in [23]. Application of state of

the art time adaptive Long Short Term Memory Network (LSTM) classifier used for real

time instability detection can be found in [24].

Once an impending instability has been detected following a contingency, an automatic

system wide mitigation action, without operator intervention, is used to maintain system

stability. This functionality is incorporated through Remedial Action Scheme (RAS) which

is defined by North American Electric Reliability Corporation (NERC) [25] as “an auto-

matic protection scheme that detects “abnormal or predetermined system conditions and

takes corrective actions other than and in addition to faulted component isolation in the

form of changes in generation and/or demand, system configuration to maintain system re-

liability”. Conventionally RAS is designed through offline simulation studies and executing

the pre-planned actions to prevent system collapse.
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1.2 Literature Review

One of the earliest formal works on RAS [26] presents an algorithm for automatically

identifying constraint violations and deploying mitigation actions while addressing compu-

tational constraints. In conventional RAS design, critical contingencies and control actions

for similar cases are identified through offline studies and stored in a database. The actions

are executed when an abnormal condition similar to that observed in studies is detected in

the system [27]. The RAS Control principles are categorized as:

• Event-based: It is an open-loop type of control action which detects outages and/or

fault events and executes generator/load trip as necessary to mitigate event impact.

• Parameter based: It performs an indirect event detection by measuring system vari-

ables, i.e., power, angles, and their derivatives as an occurrence of critical events

result in a significant change in them.

• Response based: This is a closed-loop process and, the control actions are imple-

mented in an incremental manner by monitoring the system conditions and response.

The literature reports several innovations as implemented by utilities in various grids.

In [28], a pattern matching technique to relate real time system conditions to existing ones

in the database before executing the predetermined control action is implemented in BC

Hydro. Also, a load shedding based RAS scheme in BC hydro that operates on sensitivity

analysis of load impact on voltage profile is reported in [29], and Bonneville Power Ad-

ministration’s experience of implementing a RAS in power flow that operates on the initial

condition and topology change is cited in [30]. A detailed design overview of implementing

RAS in the PG&E grid is depicted in [31] while in [32] PacificCorp’s Jim Bridger RAS expe-

rience on implementing and coordinating a dual, triple modular redundant Programmable

logic controller is presented. [33] provides a summary of worldwide industry experience

and design guidelines for the system integrity protection scheme, which includes RAS as

well. Simulation results demonstrating an increase of resiliency through RAS in a radially

configured and vulnerable Central American Power Grid is reported in [34]. Motivated

by a blackout incident in an ultra-mega-power project, Special Protection Scheme (SPS)

as a proposed solution has been explored in [35]. The design and development process of
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a unique protection scheme through a global and local control of compensator to main-

tain stability and security of the Hydro-Québec network is presented in [36]. Industrial

experience of the methodology adopted for solving an issue of coordination between under

frequency relay and implemented SPS in Kinmean Island, Taiwan, is reported in [37].

An analytical corrective control selection of an online remedial action scheme is de-

scribed in [38] that takes into consideration the possibility of cyber-attack. Even though

most of the mentioned RAS schmess are not optimized, a few work have been done that at-

tempts to implement optimized schemes, e.g. [39] minimize generation-shedding cost while

wind curtailment minimization is done in [40]. Also in [41], the optimal operation of RAS

considering wind farm grid code and unified power flow is tested on a benchmark sys-

tem. The performance of a robust special protection scheme considering the effects of the

communication network has been studied in a hybrid simulation setup by interfacing a

power system simulator with a network simulator in [42]. An innovative method of SPS

in which Transient Stability Emergency Control is modeled as a mixed-integer nonlinear

optimization problem and tested on an electric grid in China can be found in [43]. A study

considering centralized and decentralized system integrity protection depending on the ap-

plication and tested on a grid consisting of wind generation is presented in [44]. In a recent

publication [45], an adaptable system integrity protection scheme is presented to deal with

the challenging effects of intermittent renewable generation while the industrial experience

of RAS deployment in Southern California, while addressing this challenge is described

in [46]. [47] explores new capabilities of SPS to maximize the cost-effective integration of

solar power while addressing technical challenges of mitigation congestion and maintaining

appropriate dynamic response.

1.3 Problem Definition

The major problem with currently deployed RAS schemes mentioned in the previous

section is that the implementations are mostly event-based and parameter-based, which

relies on comparison with offline studies or violation of certain predetermined threshold of

network variables before initiating control action. However, it is evident that because of

the unpredictable nature of the modern grid, it is tough to determine impending critical

contingency at all possible operating conditions and identify possible control actions from

a previously stored lookup table created from offline studies for its mitigation.
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The implication of the operating scenario increase is that a system operator will need

to invest considerably in computational resources and extensive data management for the

conventional RAS scheme. Insufficiency of existing offline and computationally demanding

approaches and a need for real-time approaches has also been acknowledged in [38, 48].

Moreover, the control actions are typically determined by iterating over multiple post-

contingency scenarios, which is not ideal for real-time implementation as the execution

speed of control action is crucial [38, 40] for mitigating instability. Also, utilities face the

problem of the limited applicability of RAS due to lack of inter-communication amongst dif-

ferent RAS as faced by Southern California Edison [46], resulting in a need for a centralized

network-wide RAS.

Interestingly the authors in [46] accentuate that the problem of the rapid interconnec-

tion of renewable energy sources without siting new transmission lines can be mitigated

through the implementation of an effective RAS scheme as it allows the network to oper-

ate at reduced stress conditions. Thus, the problems associated with RAS in regards to

renewable energy source integration are interrelated and can be solved using a centralized

RAS architecture that detects and identifies control actions extemporaneously.

A centralized online RAS would evidently be based on the high fidelity spatio-temporal

information provided by PMUs, as has been proposed in [48, 49]. However, it has been

shown in [50], that the terminal phasor measurement units are not able to capture the

generator terminal dynamics accurately and it may affect the performance of a RAS that

utilize this data.

Finally even though RAS consists of two parts: –i) instability detection and ii) miti-

gation, most of the existing literature focuses on the latter while makes the assumption of

successful detection.

1.3.1 Thesis Statement

In order to address the problems stated in the previous subsection, the thesis primarily

focuses on establishing a response based RAS action that identifies and formulates control

actions online and stabilizes the network by its execution. The concept and its contrast to

the conventional RAS scheme are explained through block diagrams in Fig. 1.2,

In conventional RAS, as shown in Fig.1.2a if a predetermined topology change of the

post-disturbance power system occurs, then a predefined set of control action is selected



1.4 Research Objective and Methodology 7

(a) Block Diagram of Conventional RAS (b) Block Diagram of Proposed RAS

Fig. 1.2 Block Diagram Comparison

from Offline Decision Process List and executed. The proposed RAS shown in Fig.1.2b first

estimates the dynamic states of generators in the network using the PMU-based inputs of

the post-disturbance power system. Thereby an Instability Detector is proposed, which

operates on indices derived from dynamic state information rather than on raw PMU

data and predicts an imminent instability. Also, a methodology is presented to identify

critical generators in real-time, take corrective action in incremental steps, and monitor

the system for further actions if necessary. It is to be noted that although the initial

training of Instability Detector requires offline simulation for training a classifier, however,

the remedial action scheme does not require any offline analysis for its operation and take

decisions in real-time.

1.4 Research Objective and Methodology

1.4.1 Objectives

The objectives to address the research gaps mentioned in the previous section have been

divided into the following tasks:

1. Establish a decentralized dynamic state estimator (DSE) for full power plants while

keeping the model order low for ensuring scalability and minimizing the computa-

tional requirement for an extensive network.

2. Perform parametric variations and understand the effect of variations and dependency

of individual parameters on the state estimates.
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3. Implement a Centralized Dynamic State Estimator (CDSE) from the individual DSEs

while taking into consideration communication network problems of interruption and

delays and resulting synchronization issues.

4. Compute instability indices and develop an instability detector by training a classifier.

5. Develop a mutli-shot response based RAS that can detect critical generators and

stabilize the network.

1.4.2 Tools and Methodology

List of software tools used for research

1. Simulations : Time-domain Simulation and modelling of the test power system net-

work has been done using SimPowerSystems (MATLAB/Simulink). Dynamic State

Estimator has been coded in Matlab user-defined embedded function block. Testing

the performance of the proposed RAS has been done on Simulink as well.

2. Instability Detector : Training of instability detector has been done using the Clas-

sification Learner toolbox and also using Keras(Tensorflow), a python-based package

with the ability to run on GPU resulting in faster execution time.

3. HyperSim: For real-time hardware validation of the proposed methodology

1.4.3 Benchmark

The popular benchmark network IEEE 39 bus system [51] is used for demonstration and

validation of the effectiveness of the proposed RAS. It is based on the New England Power

System in the United States and consists of 10 generators and 46 lines and exhibits complex

dynamics that are typically observed in modern power systems. Each of the generators

is equipped with Automatic Voltage Regulator (AVR) and Governor. The system and

controller parameters are as specified in [51]. IEEE Taskforce on Benchmark Systems

for Stability Control [52] has also cited this network as a benchmark model for stability

analysis.
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1.5 Claims of Originality

The contributions of the work are outlined below :

1. An improved DSE model is proposed, which estimates the exciter field voltage and

governor torque along with internal generator states. The estimator uses a reduced-

order model and an improved variant of the Extended Kalman Filter (EKF), which

deals with communication interruption and delays that may happen during data

transmission.

2. An energy function based RAS is proposed, which is significantly different from any

active RAS in the existing research literature or industry practice. The proposed

algorithm consists of two parts an Instability Detector and a Critical Generator Iden-

tification block. The instability detector predicts an impending instability from the

aggregated network-wide generator states provided by DSEs while critical generator

identification block identifies the critical (run-away) generators from computed indi-

vidual generator energies and subsequently stabilizes the network through corrective

actions. The proposed formulation is a multi-shot scheme as once an action has

been instantiated, network stability is monitored continuously, and further actions

are taken if required.

1.6 Thesis Outline

1.6.1 Chapter 2: Centralized Dynamic State Estimation Using a Federation of

Extended Kalman Filters

In this chapter, the individual generator dynamic state estimator is modified to be able to

deal with probabilistic communication interruption and delays. Also the state estimation

accuracy of the DSE is improved compared to a previous implementation while keeping the

model order low compared to the actual system model. The performance of this new DSE

model is demonstrated on two generators of the IEEE 39 bus system under varying levels

of noise and communication interruption values.
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1.6.2 Chapter 3: Parameter Validation of Dynamic State Estimator

The effect of variation of generator parameters on the DSE model mentioned in Chapter

2 is studied by individually varying the parameters and observing the effect on dynamic

states. Additionally it has also been investigated if a selection of Kalman filter affects

parametric variation.

1.6.3 Chapter 4: Application Instability Detection

The availability of dynamic state information from DSE established in Chapter 2, offers the

possibility of computing the time derivative values of individual generator energy which is

used as an instability index for an instability predictor. The new instability indices, along

with conventional ones based on generator speed and angle, are used to train classifiers

to predict instability. The intricacy of the classification problem is demonstrated, and the

performance of two different types of classifiers are compared and contrasted here.

1.6.4 Chapter 5: Automated Remedial Action Scheme

An online remedial action scheme is proposed in this chapter that identifies by developing

on the ideas of Chapter 4 the critical generator in the network following a disturbance that

would lead to instability, takes appropriate action,and continues monitoring the network

for further action if required. The proposed algorithm is tested on an IEEE 39 bus network,

and multiple examples of network stabilization have been demonstrated.

1.6.5 Chapter 6: Summary and Conclusions

In this last chapter, the contributions of the thesis are summarized, the discussion provided

on the applicability of the algorithm, and prospective directions for this work is mentioned.
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Chapter 2

Centralized Dynamic State

Estimation Using a Federation of

Extended Kalman Filters

2.1 Introduction

In conventional static state estimation, the network states are estimated from present mea-

surement only without any due regard for past information and need to be recomputed at

every sample interval. Also, as the nature of the load is dynamic, the inherent assumption

that the network is always at steady state is not always valid. It is to be noted that fast

estimation of static states, namely, bus voltage magnitude and phase angle, at high PMU

sampling rate does not imply that these are dynamic states. As highlighted in many other

papers, synchronous generators rotor angle and speed are the relevant dynamic states for

all practical matters in wide-area control and stability monitoring [53].

A preferable alternative would be to monitor the network state variables indicating the

transient nature of the power system. This technique is termed a dynamic state estimation

(DSE). It has the advantage of making apriori estimate of the states from measured data,

which results in an accurate aposteriori estimate by appropriate gain computation from

the non-linear dynamical equation of model and measurement functions.

A considerable amount of work has been done on DSE with multiple variants of Kalman

Filtering and varying degree of dynamical model detail. Most of the early work used Kalman
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filtering either for bad data processing [54,55], tracking dynamic nature of load buses [54] ,

addressing non-linearity of measurement function [56] or anomaly detection [57]. All these

works consider bus voltage magnitude and angle as state estimates but do not consider

the dynamic model of synchronous generators. The first paper to consider a non-linear

dynamical model of a generator in a Single Machine Infinite Bus system appears in [58].

The model order of DSE is important as it is related to the computational complexity,

and availability of the input signals in practical scenarios will dictate the feasibility of

implementation of the proposed model. Although [59–62] present reduced-order DSE, their

consideration of the availability of exciter voltage, rotor angle, and input torque limits its

applicability. As stated in [63] availability of rotor speed and acceleration is difficult to

acquire with enough accuracy and so the installation of sensors around the rotor is difficult

and often rendered useless because of improper gapping of speed measurement probes or

failure of physical and electrical connections.

To address these challenges, the authors in [64] demonstrated a technique for estimating

the states as well as exciter field voltage(Efd) as an unknown input and using generator

terminal data from PMU and fourth-order model only. Proper estimation of Efd is crucial

as steep variations may occur with grid condition change, and it provides a generic way for

state estimation where Efd is not readily available as in brushless excitation [64]. The work

is further extended in [63] by considering mechanical input (Tm) as an unknown input and

thereby estimating it.

Although EKF is the most commonly used formulation for well-defined models, there

are other variants of Kalman filter, which has been found promising [65]. Since the Un-

scented Kalman filter (UKF) does not need an explicit model, there is no need for Jacobian

computation, and linearization becomes redundant. Some of the earliest work on using

UKF for DSE are presented in [66] and [67]. A decentralized UKF DSE considering a

6th order model for synchronous generator and detailed controller models (governors and

exciters) is presented in [68], making the assumptions that all parameters, as well as con-

troller models, are known. A comparative analysis of EKF with UKF based Kalman filter

on a single machine infinite bus model is presented in [69]. Another UKF based DSE for-

mulation is performed in [67]. In [70], UKF with Unknown Input (UKF-UI) formulation

has been proposed, and the paper also provides a comparison with other Unknown Input

based KF formulations.

Recently, the superiority of particle filter (PF) over UKF is shown in [71] by considering
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a detailed synchronous machine and parametric model of governor and exciter. However,

because a large number of particles were required for satisfactory accuracy, the computa-

tional burden was high compared to UKF and EKF. Besides, the PF appeared sensitive to

initial conditions, parametric variations and prone to divergence as well [71]. Several other

papers either proposing various modifications of the EKF algorithm [56,72] or considering

a different order model by assuming Efd and/or Tm as measurable or constant are the fol-

lowing: [61,73,74]. The authors in [74] perform a comparison of different types of Kalman

Filter based DSE of synchronous machines. Joint parameter and state estimation has been

studied in [75] while a practical case of model validation and parameter calibration is pre-

sented in [76]. Almost all of the mentioned papers assume uninterrupted data transmission

and no delays.

An improved DSE scheme is presented in this chapter that estimates the states of the

generator, as well as exciter field voltage and output mechanical torque from the governor,

using signals of PMUs connected to the nearest bus from generator, state variables of gen-

erators and controllers are estimated using EKF formulation. A Centralized Dynamic State

Estimator is established in subsequent sections by federating EKF of individual generators

in the network and also addressing the problem of communication channel interruption and

delays.

2.2 Modelling

The full system (generator with exciter and governor) is developed expanding on the model

specified in [63]. A fourth-order generator model is used to estimate the generator states

rotor angle (δ̂), rotor seed deviation (∆̂ω) and d-q axis transient EMFS (ê′q ê
′
q) while the

controller states Efd and Tm are estimated as unknown inputs using EKF-UI (EKF with

Unknown Input). The generator terminal PMU device takes in the instantaneous voltage

and current measurement of three phases (Vabc Iabc) and provides as output the phasor

values of voltage Vt, current It, frequency fr, active power Pt reactive power Qt.

In contrast, the proposed methodology estimates Êfd and T̂m as states by relating to

measured outputs using explicit relation in contrast to [63] alongwith the four generator

states. This is a significant improvement as most of the papers have assumed Efd and Tm

to be available or tried to estimate them as unknown inputs . As a result of this modifica-

tion, DSE requires an additional input Power Reference (Pref ) and Voltage Reference (Vref )



14
Centralized Dynamic State Estimation Using a Federation of Extended

Kalman Filters

which are decided by the control system operator and can be easily acquired. The esti-

mation results in subsequent sections will demonstrate the improvement in the estimation

accuracy of generator states and especially for Efd and Tm. The state estimator operates

based on PMU located on the generator terminal only and thus can be implemented in a

decentralized manner. An overview of the implementation is depicted in Fig. 2.1

Fig. 2.1 Overview of dynamic state estimator of a synchronous machine

2.2.1 Choice of Kalman Filter

Popularly used EKF has been used for estimation. Since our power system state estimation

model and measurement equations are non-linear, they need to be linearized about oper-

ating point to make it applicable for state estimation using EKF. It is well known that the

linearization assumption is valid only when the operating point of the linearization process

is the mean of the state variable [77]. Furthermore some techniques that do not require

linearization and use a non-linear transformation to approximate the probability density

function [78,79].

Despite these limitations, it has been established that because of implicit integration,

each sample for UKF and PF has the same computational complexity as that of full EKF.

The same has been validated by the computational requirement comparison in [80] which

makes EKF the obvious choice. For a 30-Bus network, EKF takes about 7 times less time

and for 118-Bus it is 34 times less when compared with Unscented Kalman Filter (UKF).

Besides, it has been observed in [77] that the nonlinearity of the equations affects EKF
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and UKF almost identically, and an increase in error with an increase in sampling time is

almost identical.

The computational requirement of the EKF algorithm is O(n3) where n is the number

of states [81]. Apart from this, due consideration have been given to keep the model com-

plexity of the full estimator as minimal as possible without sacrificing estimation accuracy

to alleviate the computational burden for large networks.

2.2.2 Simplified Exciter and Governor Model

A generic block diagram of the exciter model is shown in Fig. 2.2 which consists of regulator

and exciter that are usually of first-order transfer function each with derivative feedback.

Three differential equations would be needed for representing this model in full detail.

Fig. 2.2 Generic block diagram of an exciter

A simplified exciter model which has concatenated the second order dynamics of reg-

ulator and exciter into a single first order model and the effect of derivative feedback is

ignored is shown in Fig. 2.3.

Fig. 2.3 Block diagram of simplified exciter model considered in-state esti-
mator

The exciter equation for this simplified model can be represented by following first order

equation (2.1)

dEfd
dt

=
1

Ta
(Ka (Vref − Vt)− Efd) (2.1)
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where Ka and Ta are combined gain and overall time constant of exciter and voltage regu-

lator.

Fig. 2.4 Generic block diagram of the governor

Similarly a model order reduction is performed for the governor and turbine as well. A

generic model of governor and turbine is shown in Fig. 2.4 consisting of a speed governor,

valve, and turbine. The model of a speed sensor is usually a first-order transfer function

with a very small time constant which does not have too much implication and can be

ignored. Gates and valves being mechanical units may have considerably higher time

constants while turbines are multi-staged consisting of several cascaded units of the first-

order transfer function.

Fig. 2.5 Block diagram of the simplified governor and turbine model in state
estimator

In the simplified model as shown in Fig. 2.5, all these units are represented by a single

first-order transfer function while the speed governor has a droop gain Rp. Hence the

simplified turbine governor model equation considered in the state estimator is given by

eq. (2.2)

dTm
dt

=
1

Tg

(
∆ω

Rp

+ Pref − Tm
)

(2.2)

where Tm is governor output torque, Rp is permanent droop, Pref is mechanical power

reference, ∆ω is rotor speed deviation in per unit. Because of these two simplifications, it
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is expected that the state estimates may show some divergence from the actual response.

However, it will be shown in the simulation section that the extent of variation is acceptable.

Physical limits on excitation and prime-mover as shown in Fig. 2.4 is incorporated.

Efdmin ≤ Efd ≤ Efdmax (2.3)

Tmmin ≤ Tm ≤ Tmmax (2.4)

2.2.3 Generator Modelling

Separating the rotor angle evaluation from the set of dynamical equations in the Kalman

filter decreases the computational requirement as the number of states to be estimated

reduces. δo is the initial value of the rotor angle and can be obtained from the load flow of

the network.

δ = ω0

∫ t

δ0

∆ωdt (2.5)

Combining eqs. (2.1) and (2.2) with the fourth order transient model of generator, the

state-space model of the entire plant with generator and controllers is as shown below

state: x =
[
∆ω e′q e′d Efd Efd0 Tm

]T
= [x1 x2 x3 x4 x5 x6]

T (2.6)

output: y = [Pt Qt fr It]
T = [y1 y2 y3 y4]

T (2.7)

input: u = [Vref Pref Vt]
T = [u1 u2 u3]

T (2.8)



18
Centralized Dynamic State Estimation Using a Federation of Extended

Kalman Filters

ẋ1 =
dx1
dt

=
1

J
[x6 − Pt −Dx1] (2.9)

ẋ2 =
dx2
dt

=
1

T ′d0
[x5 − x2 − (xd − x′d) id] =

1

T ′d0
[x5 − x2 − (xd − x′d) It sin (φ+ δi)] (2.10)

ẋ3 =
dx3
dt

=
1

T ′q0

[
−x3 +

(
xq − x′q

)
iq
]

=
1

T ′q0

[
−x3 +

(
xq − x′q

)
It cos (φ+ δi)

]
(2.11)

ẋ4 =
dx4
dt

=
1

Ta
[Ka (Vref − Vt)− x4] (2.12)

ẋ5 =
dx5
dt

= 0 (2.13)

ẋ6 =
dx6
dt

=
1

Tg

[
∆ω

Rp

+ Pref − Tm
]

(2.14)

Active Power (Pt), Reactive Power(Qt), rotor frequency (fr) and Current (It) are four

measurable output signals given by

y1 = Pt = Vt sin (δi)

(
e′q − Vt cos (δi)

x′d

)
+ Vt cos (δi)

(
Vt sin (δi)− e′d

x′q

)
(2.15)

y2 = Qt = Vt cos (δi)

(
e′q − Vt cos (δi)

x′d

)
+ Vt sin (δi)

(
Vt sin (δi)− e′d

x′q

)
(2.16)

y3 = fr = f0 (∆ω + 1) (2.17)

y4 = It =

√(
Efd − e′q
xd − x′d

)2

+

(
Vt sin (δi)− e′d

x′q

)2

(2.18)

where fr is not a directly measured PMU signal but derived frequency of effective internal

voltage Ei as explained in [63]. It should be noted here that (2.18) is valid only in steady

state and has been incorporated to relate the state representing exciter field voltage to

stator current. Also equation (2.1) does not relate to the initial value of exciter Efd0.

Hence to obtain the initial value of Efd and separate the unwanted dynamics an extra

state variable x5 is considered. The resultant estimation of Efd will be thus a combination

of (2.12),(2.13) and Efd0 obtained for new state variables. While it may be argued that

Efd0 can be computed by equating ẋ5 = 0, proper indicators for identifying the steady

state value of system have to be defined which is particularly difficult in case of noisy data.

Instead, x5 is computed through Kalman filter formulation through equation (2.13) where

the current state variable at every time instant will be the sum of the state variable at

previous instant plus a random value sampled from a gaussian distribution. So x5 will
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take a path consisting of a succession of random steps before converging to its actual value

making it a random walk model. Moreover, as Vref is changed, the steady state value of

Efd varies and this is tracked automatically by estimator through Efd0.

In the model (2.9)-(2.14) generator parameters, (transient and steady state reactances,

time constants and inertia values) and controller parameters are required to be known to

a reasonable degree of accuracy. The resiliency of this model to parametric variation is

studied in detail in the next chapter. The novelty of the proposed estimator is that the

EKF input signal consists of exogenous variables Pref and Vref which are determined by

system operators and can be safely considered as known and the remaining signals Vt and It

obtained directly from PMU. It is also worthwhile mentioning that in sharp contrast to [63],

the excitation system and governors are explicitly modeled and their states incorporated

into the EKF dynamic state estimation. Of particular importance is (2.18) which relates

Efd to the output measurement It and this leads to better estimation as compared to [63]

as can be seen in the results section. Additionally because of the changes is modeling it

is possible to use the standard EKF formulation rather than the Extended Kalman Filter

with Unknown Input Formulation which involves more computational steps [82].

2.3 Centralized State Estimator Formulation

The concept of state estimator for a single generator elucidated in the previous section

is extended to that for a centralized one by considering that PMU devices are placed on

terminal buses of all generators in the networks under consideration. The Centralized State

Estimator can be implemented in two possible configurations and block diagram comparing

the two architectures is shown in Fig. 2.6

1. Case 1: State estimator is assumed to be at the location of the generator and trans-

mitted to a centralized location

2. Case 2: PMU data aggregated at a centralized location or at Phasor Data Concen-

trator (PDC) and state estimation is performed.

Since the state estimates from all generators ultimately need to be aggregated for per-

forming improved monitoring and control, so in case 1 state estimates have to be transferred

over a communication channel to a centralized location. Depending on the distance of the

generator from the centralized location, there will be varying delays involved because of
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Fig. 2.6 Centralized and Distributed Dynamic State Estimator Architecture

communication channel length and state estimates of all generators will not be received at

the same time. Thus for the methodology described in case 1, there is a need to timestamp

the state estimates before transmission. This becomes a repetition of the time-stamping

process already done by PMU. On the contrary for case 2, as PMU data is already time-

stamped, so once it arrives at PDC it is easier to synchronize them despite the delays. Once

the PMU data has been received and synchronized, state estimation can be performed with-

out any additional requirement for synchronization. Thus in this paper, we consider case 2

where PMU data is transferred to a centralized location to perform state estimation. In ad-

dition to delays, communication channels are subjected to failure resulting in interruption

of data transmission which is addressed in the next subsection.

2.3.1 EKF Formulation for Intermittent Observation

A Standard formulation for EKF operates in discrete time but the system equations are in

generic continuous form as:

ẋ =f(x, u, w) (2.19)

y =g(x, u, w) (2.20)

The PMU sends data at discrete time instants kTs (k = 0,1....n, Ts being sampling time).

Hence the continuous-time equations need to be discretized using the following formulation

ẋ =
x(k)− x(k − 1)

∆t
=⇒ x(k) = ẋ∆t+ x(k − 1) (2.21)

where ∆t is step time, k and k − 1 correspond to the time at t = k∆t and t = (k − 1)∆t

respectively. Substituting (2.21) in (2.19) it can be shown that
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x(k) = x(k − 1) + ∆t× f(x(k − 1)∆t, u(k − 1)∆t, w(k − 1)∆t) (2.22)

In subsequent sections the time instants is shown as subscripts.

xk = xk−1 + ∆t× f(xk−1, uk−1, wk−1) (2.23)

where f is n-dimensional state equation, xk and xk−1 are state vectors of system xkεRn, uk is

known input vector with ukεRp , wk is either n-dimensional process uncertainty or modelling

uncertainties in system model with wkεRn. Similarly discretizing output equation

yk = h(xk, uk, vk) (2.24)

where h is m-dimensional output equation, yk is m-dimensional measured output ykεRm

, vk is measurement noise ykεRm. The noise vectors wk and vk are assumed to be Gaus-

sian, white, and mutually independent with zero mean and covariance matrices Sk and

Rk respectively which are positive definite. EKF technique executes in a two-stage recur-

sive process of prediction and update and standard equations and derivation can be found

in [83,84].

In order to circumnavigate the problem of the unreliability of the communication net-

work, EKF formulation is modified based on [85]. The arrival of PMU data at centralized

location at kth time instant is considered a binary random variable γk. Successful data

transmission is indicated by γk = 1 while if unsuccessful then γk = 0. while the proba-

bility of successful transmission is represented by pγk (1) and unsuccessful transmission by

pγk (0). The probability distribution at the kth instant is pγk (1) = λk, and independent of

the probability distribution at any other nth time instant λn i.e. k 6= n. Based on this, the

output noise vk from standard KF is redefined as:

p(vk/γk) =
N(0, R) if γk = 1

N(0, σ2I) if γk = 0
(2.25)

This implies observation variance at time k is R when γk = 1 and σ2I otherwise. The

approach taken is to rederive EKF equations using a ”dummy” observation with a given

variance when the actual data does not arrive and limiting solution as σ → ∞. The

intuition behind that is that when the data arrives from PMU to PDC (γk = 1), then
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the standard Kalman filter operation holds and R is equal to the measurement covariance

value. When the data does not arrive (γk = 0) then the value of R is obtained from a

gaussian distribution with variance. With this the standard EKF equations becomes

Prediction Step :

x̂−k = f
(
x̂+k−1, uk−1, 0

)
(2.26)

C−k = Fk−1C
+
k−1F

T
k−1 + Lk−1Sk−1L

T
k−1 (2.27)

Update Step :

Kk = C−k H
T
k

(
HkC

−
k H

T
k + γkMkRM

T
k + (1− γk)σ2I

)−1
(2.28)

x̂+k = x̂−k +Kk

[
yk + hk

(
x̂−k , 0

)]
(2.29)

C+
k = (I −KkHk)C

−
k (2.30)

The important difference in this formulation compared to standard one is that state vector

x̂+k and aposterior covariance matrix C+
k are random variables being a function of γk.

2.3.2 Communication Delay Consideration

As specified in [86], the primary cause of communication delay is because of wireline latency

i.e. communication line length. For a 100 km line length, the delay incurred should be

500 µs and varies in direct proportion to distance. However practical experience has shown

that the delay per 100 km is 3 ms with maximum regional latency of 45 ms within North

America [87] As generators in a power system network have wide spatial distribution hence

there will be delays of the order of 10 ms. This implies that the PMU data of generator

located close to centralized state estimator will incur minimum delay compared to one

located far away. State estimation performed with PMU data without synchronization will

lead to out of sequence measurement problem [88]. Thanks to time stamping of PMU data,

it is possible to synchronize the state estimate measurements i.e. delay is known.

Apart from communication channel delays will be introduced by network switches, PDC

and PMUs. Depending on the manufacturer and model, network switch delays will range

from maximum of 250 µsec [89] to as low as 4 nsec [90].Based on the results presented

in [91], it can be noted that a Class M PMU has latency of 100 msec while that of Class P

PMU is 30 msec. PDC functionalities include data handling, processing, and storage and



2.3 Centralized State Estimator Formulation 23

forwarding it to next higher level operational centre. Information about PDC definition,

function, latencies are outlined [92]. In the paper [93], simulations emulating a PDC with

the latest functionalities and considering network delays with different PMU streams and

different network condition is performed to have an estimate of PDC delays. It has been

shown that PDC delays are typical of the order of 70 msec considering the normal operating

condition of the communication network.

It is to be noted that the state estimation formulation for each generator can be exe-

cuted separately as soon as the PMU data arrives. However to obtain full network state

information, it is required that the state estimators for all the generators of the network

have been executed. Thus the centralized state estimator will have latency equal to the

maximum time delay incurred by each of the communication channels from generators to

centralized estimator or PDC and the device latencies involved. A conceptual diagram

describing the same with four PMUs is shown in Fig.2.7.

Fig. 2.7 Conceptual diagram for state estimate fusion considering commu-
nication channel delay

Although all four PMUs measure and transmit data at the same time, because of

delay which is proportional to the length of the communication line, each of the state

estimators in a centralized state estimator operates at different time instants. Aggregated

state estimate for the entire network is obtained when PMU data is received and the state

estimator executed. This simplified methodology of dealing with communication delay

does not add any additional computational overhead and will cause a maximum delay of

45 ms for a generator located anywhere in North America from centralized state estimator.



24
Centralized Dynamic State Estimation Using a Federation of Extended

Kalman Filters

Acceptability of this delay depends on the applications which will utilize the state estimates.

For illustration, a 50-ms bound is considered a safe delay limit in most emergency WACS

applications [50].

2.4 Simulation Results

The proposed Dynamic State Estimator (DSE) has been implemented using embedded

function block in Simulink. DSE receives its signals from Simulink-based PMU models as

shown in [94, 95]. PMUs are of type class-M and have internal frequency estimator. They

provide DSE with input signal Vt and measured output signals Pt(y1), Qt(y2), fr(y3), and

It(y4) at discrete time samples. Both the PMU and DSE is running at 64 points / cycle

while the model runs at 256 points/cycle. The test system considered is the IEEE 39 bus

system benchmark Fig. 2.8 with parameters specified in [51] and also listed in appendix C.

All the synchronous generator models are full 8th order electromechanical model with

saturation, stator transients, and rotor transient and sub transient dynamics. Exciter model

is of 3rd order with the first order transfer function for regulator and exciter and involves

derivative feedback thus corresponding to the IEEET1 type model. The Governor model

is of second order while the steam turbine is represented by four stage model for different

stages of pressure variation. On the contrary, the DSE is rendered using a 6th order model

with mechanical torque and excitation voltage estimated as states. Two other signals that

the generator requires are Pref and Vref which are available both locally and at the control

center. The internal rotor angle (δi) is not estimated as a state unlike [63] but from the

states using algebraic relation.

Initial values for states is x0 = [δ0; 0; 0; 0; 0; 0] in which δ0 is the initial value for rotor

angle of each machine which can be obtained from load flow. Covariance matrix S0 is

initialized as 10 × I6×6 and state and output noise matrix initialized as wk ∼ N(0, Qk) =

N(0, 10−3 × I6×6) and vk ∼ N(0, Rk) = N(0, 10−3 × I4×4).
The Simulink model is run with fixed step time Ts = 1/(256× 60) = 6.51× 1e− 5 sec.

This ensures that the sampling time of PMU is an integral multiple of network simulation

time and any errors related to sampling interface error is avoided. Class-M PMUs are

assumed to be connected to the low voltage terminal of generators or if connected to

the high-voltage terminal, transformer and line reactance needs to be included in DSE as

external reactance. The probability of successful data transmission is being set at λk = 0.9
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Fig. 2.8 IEEE 39-bus system with PMU and EKF-UI blocks on all genera-
tors and Centralized State Estimator located near generator G39

(90 % reception) unless specified otherwise which is more than reasonable consideration

based on data in [87].

The Centralized State Estimator is assumed to be located near generator G39 and the

communication delay of PMU of each generator is assumed to be proportional to the least

length of the transmission line to G39. As the least transmission line length of G34 to G39

is 700 km so the delay in PMU signal received at CSE is considered to be approximately

21ms based on the reasoning in Section 2.3.2. Delays for other generators have been set

accordingly.

2.4.1 Close 3 Phase to Ground Fault

In this simulation, the fault is considered on Bus B2 initiating at t=2 s and terminating

after 10 cycles at t=2.1667 s. Comparison of estimation results of states x1 , Efd (from
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combined x4 and x5) , Tm (from x6) with actual ones are shown in Fig. 2.9. As there is

no access to internal transient stator voltages ( e′q e
′
d ) for SimScape Power System (SPS)

model, so it is not possible to show a comparison of state estimates with actual signals.

However estimates x2 and x3 show improvement in comparison to results in [63], marked

as EKF-UI in Fig. 2.9. It can be readily observed that estimated rotor speed (∆ω) and

rotor angle (δ) obtained by integrating (∆ω) readily follows the actual signal quite closely.

The dynamics of estimated Excitation Voltage obtained form states (x4 and x5) and actual

ones are quite similar. The resulting difference is because of the approximations made by

considering a simplified model of exciter in estimator while the actual exciter model in

simulation is of the third order.

Fig. 2.9 Result of State Estimation for Generator G34 in the IEEE 39 bus
system with a three phase to ground fault on bus B2 at t = 2sec for 10 cycles.
Actual and Estimated States (δ,∆ω,Efd, Tm, d and q-axis Transient emf from
states x2 and x3 respectively and estimated internal rotor angle - δi)

The actual and estimated output comparison for Active Power (Pt), Reactive Power
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(Qt), frequency (fr), and Current Magnitude (It) of generator G34 are shown in Fig.

2.10. The proposed estimated scheme is better than EKF-UI formulation in [63] as it is

less oscillatory, does not produce spikes and jitters during initialization as well as during

fault periods. Next, the estimated Torque (Tm) from the state tracks the actual one quite

well despite considerable modeling order difference between the governor turbine model

in estimator and Simulink. Once again in comparison with results from [63] it can be

noticed that the new estimate is less oscillatory, has faster convergence to actual value

after initialization, and result in less jittering signal responses to sudden disturbance.

Fig. 2.10 Actual and Estimated Outputs (P¬t, Qt, fr and It) for a three
phase to ground fault on bus B2 at t = 2sec for 10 cycles for Gen 34

Although internal rotor angle is not estimated as a state but computed algebraically

using the equation in [63] still, the estimate is similar to the actual one as shown in Fig. 2.9.

The d-Axis transient emf (e′d) from state x3 matches the estimate from EKF-UI. Because

of a different formulation for iq used in [63], the resulting estimate for state x4 differs from

the EKF-UI formulation. As a result of this consideration, state x4 converges to actual

value rapidly despite being initialized at zero value while the estimate in [63] takes nearly a
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full second. Comparisons of estimated outputs versus actual outputs are presented in Fig.

2.10, where there is no discrepancy in all the four cases.

2.4.2 Remote 3-Phase to Ground fault

Based on reasoning provided in [63], validation with remote fault ensures that the estimator

works properly when inter-area oscillations are dominant compared to local modes. Thus

in the simulation fault on Bus B2 is considered while a state estimator located on gener-

ator G34 far away from fault is monitored. To demonstrate the performance of the state

estimator for a remote fault, the DSE has been placed at Generator G34 while receiving

electrical signals from PMU assumed to be located at bus B34. The disturbance is the

same as mentioned in section A, three phase to ground fault on Bus B2 at t=2 sec and

cleared after 10 cycles i.e. at t=2.1667 sec.

Comparisons of the state estimates with actual signals are shown in Fig. 2.11. It can be

observed that even with the dominance of inter-area modes the estimator response readily

trails the actual signals. The estimated controller signals of the exciter and prime mover i.e.

Efd and Tm tracks actual ones with a reasonable degree of accuracy. Also in comparison to

estimates for Efd and Tm from EKF-UI, it can be noticed that the estimates have improved

as they are less oscillatory, with no spike during disturbance and have faster convergence

to actual values.

A closer inspection in Fig. 2.12 reveals that despite the signal interruption in the output

signal (10% of time for λk =0.9), the estimated output computed from state estimates can

recover these missing values accurately, even during a fault condition. This demonstrates

the robustness of the proposed estimator if used with low cost communication channels

where data disruption occurs frequently. Hence it can be concluded that the proposed

estimation scheme can track the actual signals despite the fact there is a significant modeling

gap in the simulation model and state estimator as well as with delays and probabilistic

data dropouts.

2.5 Sensitivity to Noise

The simulation results in previous sections have been performed with the assumption that

measurement and input signals are devoid of any noise. A study of the impact of the noisy

signal on the proposed state estimator has been performed in this section. An overview of
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Fig. 2.11 Result of State Estimation for Generator G30 in the IEEE 39 bus
system with a three phase to ground fault on bus B2 at t=2sec for 10 cycles.
Actual and Estimated States (δ,∆ω,Efd, Tm, d and q-axis Transient emf from
states x2 and x3 respectively and estimated internal rotor angle - δi)

the extent of variation expected in measurements resulting from instrument transformers

and PMUs are provided in [70]. The time synchronization accuracy is 0.2 µs according

to IEEE Standard C37.118.1-2011 and C37.118.1a- 2014. This corresponds to a phase

measurement error of ±0.08 mrad for 60 Hz system and a frequency error of 0.005 Hz.

Also, the current and voltage magnitude measurements are constrained by the accuracy of

instrument transformers and IEEE Standard C57.13-2008 specifies the instrument trans-

formers’ accuracy within a range of 0.1 and 0.3 %. Based on these values and making the

assumption of the presence of high level measurement noise, all the measurement signals

are assumed to have a standard deviation of 10−3. The noise simulation is performed by

adding an “Additive White Gaussian” block in Simulink to the three phase voltage and

current signals which means that PMU filtering characteristics are accounted for. No noise
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Fig. 2.12 Actual and Estimated Outputs (Pt, Qt, fr and It) for a three phase
to ground fault on bus B9 at t=2 s for 10 cycles for Gen G30 considering
communication delay and data transmission probability of λk =0.9

has been considered in the reference signals. As the internal states of the Simulink model

are not accessible it was not possible to add process noise (modeling discrepancies between

EKF and simulation amounts to process noise, although it is hard to characterize). Inno-

vation vector (i.e. difference between predicted and actual output) of generator G34 for

the same contingency as specified in section 2.4 is shown in Fig. 2.13.

The estimated output can track the actual output in the presence of expected noise

and communication interruption and delay with a reasonable degree of accuracy. To take

into consideration randomness of noise while testing the performance of the state estima-

tor, simulation is repeated through multiple Monte-Carlo trials. Estimation accuracy is

evaluated using the following metric [74].

MSE(x̂k) =
1

M

M∑
m=1

(x̂k,m − xk,True)2 (2.31)

where M corresponds to M th trial, k to kth time step and xk,True is actual state estimated

without any noise in the simulation model. Based on the results in [74] , M=50 has been

considered to be a sufficient number of trials.
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Fig. 2.13 Innovation vector of Gen G34 with noise standard deviation of
10−3 in input and measured output signals and data reception probability of
λk = 0.9

To further study the effect of noise with higher variance, simulations are also performed

with measurement noise standard deviation set at 0.01 and 0.1 which are 10 and 100 times

the standard noise values expected in the dynamic state estimator. In order to observe

the performance of the estimator across this broad range of noise variation, the above

mentioned metric is computed in dB using 10log10(MSE). Evaluation of the metric is

performed on IEEE 39 bus with the same disturbance as considered in Section 2.4 . A

comparison of the metrics for the three noise cases for generator G34 is shown in Fig. 2.14.

Although the metrics are plotted for only one generator in the interconnected network, the

results remain consistent for other generators as well as with disturbance variations.

2.6 Effect of increasing communication interruption

The effect on the performance of the state estimator with increasing probability of the

disruption of communication channel has been studied in this section by decreasing the

probability of data reception λk . The norm of innovation vector has been used as a figure
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Fig. 2.14 Comparison of MSE for 50 sets of Monte Carlo simulation under
varying noise levels of Gen 34

of metric for comparison and λk values of 0.9, 0.8 and 0.7 has been considered. Results

have been demonstrated for Generator G30 with the same contingency as considered in

Section 2.4. From Fig. 2.15, it can be observed that the norm value increases as the

probability of data reception at centralized state estimator decreases. This implies that for
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Fig. 2.15 Variation of norm of innovation vector with a variation of data
reception probability λk at centralized state estimator

the proposed scheme, the performance of state estimates will deteriorate with decreasing

capability of successful transmission of data. However, it highlights the robustness of the

proposed estimator if used with cheap communication channels subject to frequent PMU

data disruption.

2.7 Computation Times

The DSE blocks receive data at 24 points/cycle from PMU. Hence the computation time

of whole centralized state estimator completion should be completed before the reception

of data instant i.e. execution time for 60 Hz system should be less than 0.6944 ms. The

system specification on which the study has been conducted is Intel Core i7 CPU @ 3.4

GHz (4 core), 8GB Ram, and 64 bit Operating System. The average computational time

for each iteration is shown in Table 2.1. The average computational time of individual DSE

is 0.4102 ms per iteration. This makes it feasible to operate it in real time. In order to

evaluate the cumulative computational performance of the state estimator, using parallel
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pool feature of Matlab it was attempted to distribute the state estimator computation

among the 4 cores of the processor. However, since the test network consists of 10 DSE

so each processor will have to perform the computation of 2 ∼ 3 DSE. Thus testing was

done by considering 4 DSE together and the average time required for each iteration is

0.5954 ms. This once again reaffirms the feasibility of implementation of the proposed

scheme in real-time provided each DSE is executed on an individual processor. Execution

of all the ten DSE on four cores requires 1.63 ms which implies that the sampling rate at

which DSE receives data have to be reduced to 10 points/cycle. It has been observed that

the estimation performance is only affected to a minor extent as a result of sampling rate

reduction.

Table 2.1 Computational Times
Methodology Average Computational time for one iteration (in ms)

Single DSE single core 0.4102
Four DSE four core 0.5954
Ten DSE four core 1.6338

2.8 Conclusion

This chapter proposed an improved methodology for dynamic state estimation and its per-

formance evaluated by considering probabilistic communication interruption and delays.

Convergence to actual states occurs within a few cycles after zero state initialization. Also

despite the modeling differences between the state estimator and simulation model, the per-

formance of the estimator against actual signals has been validated to a reasonable degree

of accuracy. Minimizing the overall order of estimator resulted in a shorter computational

time of individual state estimator. Furthermore, satisfactory results have been attained

in te presence of reasonably high noisy signals the overall DSE performance was further

validated successfully on an interconnected network based on a real power system model.

The benefits of this state estimator are summarized below

1. The input to state estimator is Power Reference (Pref ) and Voltage reference (Vref )

which are decided by system operators and easily available with a time scale of 5 min

to a full season, depending on operation practices.
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2. Exciter output signal (Efd) and Governor output torque (Tm) estimation are improved

significantly compared to the results shown in [63].

3. No assumption has been made about the model of exciter and governor in simulation,

making the DSE generic.

4. The overall order of estimator has been kept to a minimum even though the actual

simulation models for generator, exciter, and governor have higher order.
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Chapter 3

Parameter Validation of Dynamic

State Estimator

3.1 Introduction

Chapter 2 established a robust mechanism for dynamic state estimation that can track the

states of the generator as well as of governor and exciter accurately despite communication

interruption. The system model parameters need to be known with a reasonable degree of

precision to estimate the states properly. The last chapter assumes that the parameters

of the model in dynamic state estimation block are the same as that of the actual model.

However, there is a possibility of mismatch of values and it would be interesting to note

the effect of parametric variability on dynamic states of synchronous generators.

In this chapter, the impact of individual parametric variation on the states has been

studied through Monte Carlo Simulations. Furthermore, the effect of the choice of the type

of Kalman filter with parametric variability has been investigated as well by considering an

Unscented Kalman filter along with the Extended Kalman filter. A conference publication

(C) has been made based on the findings in this chapter.

3.2 Methodology

A block diagram representation of the simulation process is shown in Fig. 3.1. The syn-

chronous generator corresponds to any one of the 10 generators in the IEEE 39 bus network

with PMUs located on the bus terminals. The phasor values are passed to the state esti-
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mator blocks which operate using the reduced order model elucidated in the last chapter.

Two state estimator blocks have been considered, one operates using Extended Kalman

Filter and the other using Unscented Kalman Filter formulation. The parameter values

provided to the state estimator blocks are varied based on Monte Carlo (MC) method [96].

By setting a different parameter value in DSE, a simulation is executed involving a contin-

gency and the state deviation is observed. Therefore each of the simulations is executed by

setting a different parameter value in DSE than the one in a generator which is considered

as true value and so the state estimates of DSE are expected to deviate from the actual

ones.

Fig. 3.1 Block diagram representation of parameter validation of simulation
model setup

The mathematical model considered in each DSE block is as mentioned in Section 2.2.3.

In a concise format, the equations can be represented as

ẋ = f (x, u, α) (3.1)

y = g (x, α) (3.2)

where α =
[
xd xq x

′
q x
′
d T
′
d0 T

′
q0 J Ka Ta Rp Tg

]
. Each of these 11 parameters is sampled

from a Gaussian distribution which involved creating a normal distribution with a standard

deviation of 30 % and then multiplying the distribution by the actual parameter value.

During sampling, very few of the parameter values assumed a negative value, and since this

is not practically possible so a greater number of sample values than what was required have
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been considered and the cases with negative values have been discarded. The deviations

of each state estimate from actual ones are evaluated for several parameter values sampled

from multivariate Gaussian distributions. To quantify the deviation of state estimates,

mean squared error is computed as

MSE (x̂k) =
1

M

M∑
n=1

(x̂k,n − xk,True)2 (3.3)

where M corresponds to the number of Monte Carlo simulations performed, x̂k,n is the

state estimate from DSE at kth time instant of nth Monte Carlo simulations performed and

xk,True is the true state at kth time instant from synchronous generators. For computing,

overall estimation errors following metric are used

MMSE (x̂) =
1

K

K∑
k=1

MSE (x̂k) (3.4)

where K is the number of Monte Carlo trials. The above figures of metrics are based

on formulation in [96]. The model considered in DSE is of lower order compared to that

used in the actual model. Because of the modeling difference between state estimator and

simulation model, there is a possibility of deviation between x̂k,n, and xk,True even if the

parameters values used in DSE and the simulation models are the same. This can be

evaluated through ek = x̂k,True − xk,True where x̂k,True is the state estimate with actual

parameters in DSE. However, since we are interested in only studying the effect of the

effect of parametric variation so the resulting difference arising from estimation accuracy

needs to be isolated. This is done by modifying equation (3.3) to

MSE (x̂k) =
1

M

M∑
n=1

(x̂k,n − x̂k,True)2 (3.5)

The metrics in equations (3.4) and (3.5) are computed both for EKF DSE and UKF

DSE to compare and observe the effect on the type of Kalman filter considered.

3.3 Simulation

The simulation model considered in the IEEE 39 bus network with the simulation time step

and model order as specified in section 2.4. A 3 phase line to ground fault is considered at
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t=2 sec on bus B19 for a duration of 10 cycles and then removed. The effect of parametric

variation on the dynamic states of Generator G34 which is located close to the fault location

is first considered. It is to be noted that noise has been considered in these models.

The parameters of the generators as specified in α are varied one at a time and the

simulation is repeated to observe the difference in the state estimates as a result of the

variation. Each parameter is sampled from the Gaussian distribution for 100 times and

a 10 sec simulation is executed for each of them with the rest of the parameters being at

their actual ones. The state deviation metric MSE for the individual parameter at each

time instant k is plotted in Fig. 3.2 and 3.3.

It can be noted that the variation of the d-axis steady state reactance xd affects the

steady state value of state corresponding to field exciter voltage Efd significantly although

the transient behaviour is not affected. This is because the steady state component is

determined by the state variable x5 and it appears in equation (2.10) which contains the

parameter xd. Similarly, the variation of the q-axis steady state reactance (xq) affects the

d axis transient emf (e′d) because it occurs in equation (2.11). Based on relation in [63]

internal rotor angle δi is affected by xq variation. It is also interesting to note that the

field exciter voltage Efd is affected by this variation although there are no algebraic or

dynamical relation indicating dependency on xq. However, it can be argued that since δi

appears in equations (2.3) and (2.18) and because of its dependency on xq, Efd is affected.

Variation of d axis transient reactance x′d affects the q-axis emf e′q while that of q axis

transient reactance x′q affects the d-axis emf e′d as shown in the third and fourth plots of

Fig. 3.2 which can be explained through equations (2.11) and (2.12) respectively. Negligible

state estimate deviation occurs due to variations of the d and q axis time constants T ′d0
and T ′q0.

The first plot in Fig. 3.3 shows that the effect of the inertia parameter on the state

estimate deviation is negligible. The exciter gain Ka and the time constant Ta affects the

transient behaviour of exciter field voltage Efd because of the dynamical equation (2.12).

Changes in droop constant parameter Rp affect the estimation of governor torque because

of equation (2.13) during transient condition while Tg variation does not affect any of the

states.

The effect of parametric variation on the states also can be noted from the MMSE plots

in Fig. 3.4 which shows the overall effect rather than depicting individual variations at

different time instants. Table 3.1 shows in detail the state deviation of individual parametric
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Fig. 3.2 Comparison of mean squared error (MSE) of generator (G34) states
with individual parametric variation of xd xq x

′
d x
′
q T

′
d0 T

′
q0 computed form

100 Monte Carlo Simulation with an EKF based DSE
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Fig. 3.3 Comparison of mean squared error (MSE) of generator (G34) states
with an individual parametric variation of H Ka Ta Rp Tg computed form 100
Monte Carlo Simulation with an EKF based DSE
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variation with different types of kalman type filter. In Fig 3.4, the effect of parametric

variation on the significantly affected states is shown and some of them are scaled by a

suitable factor for ease of visualization. From the top two plots of Fig 3.4, it can be noted

that parameter xd primarily affects the exciter field voltage Efd while xq variation affects

e′d mostly while also affecting δi and Efd to a minor extent. Also, the bottom two plots

show that state e′q is only affected by x′d variation while e′d is affected by x′q variation.

Fig. 3.4 Comparison of mMSE of dynamic states for individual parameter
variations of xd xq x

′
q x
′
d with two dynamic state estimators (EKF and UKF)

It can be noted that the state estimate deviation for UKF and EKF are similar which

corroborates the fact that impact on state estimate of parametric variation is independent

of the choice of Kalman filter. However, there are a few cases where there is some difference

observed. Effect on Efd due to variation of x′q and x′d is considerably more for UKF ( 10−4)

compared to EKF ( 10−11) but since the order of state deviation being small ( 10−4),

this can be ignored. Similar observation can be made about state deviation of Efd during
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variation of parameters T ′q0 and T ′d0. Governor torque Tm state deviation is also less for EKF

compared to UKF but the values being very small (order of 10−6), the effect of Kalman

filter choice is trivial.

Para-
met-
ers

Filter
type

δ ∆ω e′q e′d δi Efd Tm

xd EKF 3.53E-07 5.61E-12 1.65E-10 7.54E-10 2.53E-08 1.317 1.01E-13
xd UKF 1.48E-07 7.84E-13 1.64E-10 7.51E-10 2.50E-08 1.399 3.32E-06
xq EKF 3.53E-07 5.61E-12 2.19E-03 2.523E-02 1.16E-02 1.33E-02 2.57E-13
xq UKF 1.48E-07 7.84E-13 2.13E-03 2.48E-02 1.14E-02 1.42E-02 3.32E-06
x′d EKF 3.53E-07 5.61E-12 4.01E-02 7.55E-10 2.53E-08 1.04E-10 1.00E-13
x′d UKF 1.48E-07 7.84E-13 3.97E-02 7.51E-10 2.50E-08 2.22E-05 3.32E-06
x′q EKF 3.53E-07 5.61E-12 1.65E-10 6.22E-03 2.53E-08 5.78E-11 5.29E-14
x′q UKF 1.48E-07 7.84E-13 1.64E-10 5.82E-03 2.50E-08 8.25E-04 3.32E-06
T ′q0 EKF 3.53E-07 5.61E-12 1.65E-10 7.55E-10 2.53E-08 4.00E-10 1.00E-13
T ′q0 UKF 1.48E-07 7.84E-13 1.64E-10 7.51E-10 2.50E-08 2.37E-05 3.32E-06
T ′d0 EKF 3.53E-07 5.61E-12 1.65E-10 7.55E-10 2.53E-08 4.16E-10 1.01E-13
T ′d0 UKF 1.48E-07 7.84E-13 1.64E-10 7.51E-10 2.50E-08 2.37E-05 3.32E-06
H EKF 5.18E-07 5.61E-08 2.90E-09 1.23E-09 2.59E-08 4.75E-15 3.22E-07
H UKF 2.07E-07 7.89E-13 1.23E-09 1.02E-09 2.51E-08 1.55E-10 5.13E-05
Ka EKF 3.53E-07 5.61E-12 1.65E-10 7.55E-10 2.53E-08 2.80E-04 5.66E-17
Ka UKF 1.49E-07 7.92E-13 1.66E-10 7.58E-10 2.53E-08 2.68E-04 8.43E-08
Ta EKF 3.53E-07 5.61E-12 1.65E-10 7.55E-10 2.53E-08 1.81E-04 5.66E-17
Ta UKF 1.49E-07 7.92E-13 1.66E-10 7.58E-10 2.53E-08 1.26E-04 9.88E-07
Rp EKF 3.65E-07 5.62E-12 1.65E-10 7.55E-10 2.53E-08 1.19E-15 2.24E-04
Rp UKF 1.49E-07 7.92E-13 1.66E-10 7.58E-10 2.53E-08 1.91E-10 2.23E-04
Tg EKF 3.53E-07 5.61E-12 1.65E-10 7.55E-10 2.53E-08 1.18E-15 9.02E-08
Tg UKF 1.49E-07 7.92E-13 1.66E-10 7.58E-10 2.53E-08 1.00E-15 1.00E-08

Table 3.1 MMSE values of each dynamic state for individual parametric
variation with different Kalman filter type

The effect of parametric variation is studied on a separate generator G30 for the same

contingency as mentioned in the last paragraph are shown in Fig. 3.5 and Fig. 3.6. It

is found that the effect of variation of most of the parameters is consistent with the same

observations for the previous case of generator G34. Although for parameter variation of

xd we find that there is no steady state deviation for the field exciter voltage Efd as noted
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Fig. 3.5 Comparison of mean squared error (MSE) of generator (G30) states
with an individual parametric variation of xd xq x

′
d x
′
q T
′
d0 T

′
q0 computed form

100 Monte Carlo Simulation with an EKF based DSE
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Fig. 3.6 Comparison of mean squared error (MSE) of generator (G30) states
with an individual parametric variation of H Ka Ta Rp Tg computed form 100
Monte Carlo Simulation with an EKF based DSE
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for generator G34 in the first plot of Fig. 3.2. This may be because the xd value of G30

is relatively less compared to that of G34 and since the parameters have been sampled

from the Gaussian distribution, so the variation of this parameter is relatively less and its

effect on state deviation is also small. Variation of xq affects e′d, δi and Efd while x′d and

x′q variation affects e′q and e′d respectively. Change in values of time constants T ′d0 , T ′q0 ,

inertia J has negligible effect on the states. The parameters associated with the exciter

equation i.e. Ka and Ta affect the exciter field voltage Efd. However, variation of droop

constant Rp affects the governor torque state to a minor extent while Tg does not have any

significant effect on the other states. Generator G34 is closer to the source of disturbance

while G30 is further away. Since the effect of parametric variation on the state estimates

are similar so it can be inferred that the disturbance location does not have any impact on

the analysis.

3.4 Conclusion

This chapter studies how the variation of parameter values, choice of kalman filter affects

the state estimate of the 6th order dynamic state estimator model considered. The results

of the study assists in understanding which parameter affects which of the states primarily

and the crucial parameters whose values should be determined accurately so that the state

estimates are computed with a reasonable degree of precision to actual ones. The findings

of this chapter are summarized below:

1. The choice of the type of Kalman filter did not have any significant effect on para-

metric variation.

2. The type of disturbance considered did not affect how parametric variations affected

state estimates.

3. Variation of d axis reactance xd primarily affected Efd.

4. Variation of q axis reactance xq primarily affected. e′d, δi, Efd.

5. Variation of transient d axis reactance x′d primarily affected e′q.

6. Variation of transient q axis reactance x′q mostly affected e′d.
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7. Negligible effect on state estimates due to variation of time constants (T ′d0 , T ′q0, Ta,

Tg ) and inertia J.

8. Variation of exciter gain Ka affected Efd only during disturbance duration.

9. Variation of governor droop (Rp) affected Tm
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Chapter 4

Instability Detector

4.1 Introduction

The first step towards establishing an automated remedial action scheme is to have a ro-

bust mechanism to detect network instability. To achieve this objective there should be an

instability predictor that predicts the impending instability based on network variables or

some indices which are a combination of the same. With the advent of Phasor Measure-

ment Units in the early ’90s there have been numerous attempts at using bus angles and

frequency as indices for instability detector. Dynamics state estimators enable to compute

the generator internal states from terminal PMU data and can be potentially used for

instability detection.

The established centralized dynamic state estimator in Chapter 2 enables us to ob-

serve the d-q axis internal emfs of all the generators in the network as well as improved

estimation of the rotor and frequency dynamics compared to generator terminal angle and

frequency measurements. Instability detector trained on a subset of indices derived from

dynamic states is expected to make an accurate and robust assessment of network stability.

This chapter demonstrates the intricate nature of the problem of identifying network

instability from established indices and also discusses classifier selection and a comparative

analysis of two different types of classifiers.
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4.2 Instability Predictor

Initial attempts for transient stability prediction in real-time using terminal Phasor Mea-

surement signals only can be found in [15]. An immediate application for an established

Centralized State estimator would be to compute transient stability prediction indices.

There are numerous publications on instability detection using decision trees and other

machine learning techniques [17–21, 97, 98]. Most of them either involve using the data

from Phasor Measurement Units (PMUs) [15] or considering idealized generator angle,

speed, rate of change of speed, [16], and indices combining the same [18, 20] and thereby

applying decision tree for instability detection. Based on a recent paper [20], instability

indices γCOP , κCOP can be computed from state estimates rather than terminal PMU

measurements by approximating rotor angle and speed with bus angle and frequency:

γCOP =

NG∑
i=1

δi (ωi − ωCOP ) (4.1)

κCOP =

NG∑
i=1

ωi (δi − δCOP ) (4.2)

where ωCOP =
∑NG

k=1 ωkPek/
∑NG

k=1 Pek and δCOP =
∑NG

k=1 δkPek/
∑NG

k=1 Pek. It is to be noted

that in [50] a study has been performed that shows terminal bus angle and frequency do

not effectively capture the dynamics of the generator and is not a good approximation.

Also Section 4.2.1 shows the impact on these two indices when making this approximation.

The new indices are based on centre of power (COP) formulation rather than centre of in-

ertia (COI) ones which offers the advantage that it takes into consideration relative power

generation of various generators and the inertia values are not required. In addition if a

generator with large inertia contributes to relatively small power in the network then COI

unnecessarily provides significant weightage to the speed and angle variation of that gener-

ator. This is because it is unlikely that a system will become unstable if a generator with

considerable generation but small power injection fall out of synchronism with the network.

Hence it is more reliable to take into consideration generator power while computing γCOP ,

κCOP as a measure of instability.

It has been demonstrated in [50] that the frequency signal of PMU connected at terminal
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bus is not able to capture the oscillations effectively. Thus γCOP , κCOP computed from

internal state estimates will have more pronounced variations and crisp features that should

improve instability prediction.In addition time derivative of the energy function, Wdi [99]

is also an important index for instability detection.

W total
d =

NG∑
i=1

dWi

dt
= −

NG∑
i=1

[
T ′doi

(xd − x′d)

(
de′qi
dt

)2

+
T ′qoi(

xq − x′q
) (de′di

dt

)2
]

(4.3)

where NG is the total number of generators in the network. Other variables are defined

in nomenclature. Furthermore, the above equation needs time derivative of q and d axis

information of internal emf of generator, which is readily provided by centralized estimator.

Individual generator energy derivative index is give by

Wdi =
T ′doi

(xd − x′d)

(
de′qi
dt

)2

+
T ′qoi(

xq − x′q
) (de′di

dt

)2

(4.4)

Wdi index is computed from emf values while gamma and kappa are based on speed and

power signals. It is to be noted that although equations (4.1),(4.2),(4.4) are written in

continuous form, they operate based on discretized dynamic state estimate values. These

three indices γCOP , κCOP ,Wdi enabled by the centralized state estimator would result in a

robust detection of instability.

4.2.1 Visualization of Indicators

The behavior of instability indices studied by considering three phase fault on buses B20

(close to the generator) and B18 (close to load) in the benchmark IEEE 39 bus network.

For each of these cases, gamma and kappa indices as established in the previous section

has been plotted for a disturbance with a fault duration corresponding to the critical

clearing time of the mentioned bus. These indices have been computed from dynamic state

estimates as well as terminal bus measurements (PMU). For the gamma index, it can be

observed in Fig. 4.1 that the index computed from DSE (B18-DSE, B20-DSE) has more

pronounced variation compared to that computed from PMU data only (B18-PMU , B20-

PMU). This is because the state estimator can capture the true and magnified variation

in generator speed following initiation of disturbance rather than approximating it with

terminal frequency [50]. Improvement in kappa computed from DSE and PMU is not as
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noticeable as gamma however the deviation from zero steady state value is large for index

evaluated from DSE compared to PMU one. The third index Wdi can only be computed

using a centralized state as it needs time derivatives of e′q, e′d for all the generators in

network.

Fig. 4.1 Comparison of Instability Predictors computed from State Esti-
mates (DSE) and Terminal Measurement (PMU) for fault initiating at t=2
sec on buses B18 (close to the generator) and B20 (close to load) in IEEE 39
bus system

In Fig. 4.2 a comparison of the instability indices for a stable and unstable fault is

shown. Although there is a distinct difference between the stable and unstable cases for

each of the index, however the nature of the variation of the indices are complex and

it is difficult to classify between the cases. Therefore it is preferable to use a machine

learning algorithm to perform complex classification of these indices. It can be noted that

all the three indices follow the same trajectory until the instance of fault clearance. So



52 Instability Detector

the evolution of the indices post-fault clearance will be of significance for the classification

problem.

Fig. 4.2 Comparison of Instability Predictors for Stable and Unstable fault
computed from State Estimates (DSE) for fault initiating at t=2 sec on the
middle of line connecting buses B39 and B1 in IEEE 39 bus system

4.3 Classifier Design

4.3.1 Instability Detector

To perform instability prediction with the established indices, a classifier has to be trained

on indices computed from scenarios with contingencies at different locations in the net-

work and varying loading conditions. Hence in a network with a total of NG number of

generators, the total number of instability indices in the network would be NG number
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of Wdi as well as gamma and kappa, resulting in a total of NG + 2 number of instability

indicators for each scenario. An interesting feature of the indices used in classifiers is that

γCOP , κCOP are centralized while Wdi indices for individual generators are decentralized

which brings complementary features in the proposed predictor model. In addition, since

the combination of instability predictors are from electrical as well as electro-mechanical

quantities, it is expected to result in robust classification. Based on sample computed in-

dices in Fig. 4.2 it can be noted that they are not easily separable in terms of stable and

unstable scenarios and a complex classifier is needed for accurate prediction to attain the

desired “3 nines” reliability [18]. A comparative assessment of two instability detectors has

been made. One of them is the traditional ensemble decision tree classifier that operates

on spectral features extracted from the indices and the other is based on a multi-variate

long short term memory network that operates directly on the time series data.

4.3.2 Classifier Selection : Ensemble Decision Tree

Decision trees identify the critical attributes and corresponding thresholds from the feature

set and establish a secure operating boundary for instability prediction [19]. It thus of-

fers the advantage of being easily interpretable and performs well on a large dataset [100].

However a decision tree suffers from the limitations of not being robust to small changes in

training data, often creates complex trees that lead to overfitting and uses greedy algorithms

leading to locally optimized decisions [100]. To overcome the limitations of decision trees,

a superposition of basic algorithmic operations are needed [101]. This leads to the notion

of ensemble which includes boosting [102], bagging [103], Random Forest [104], Stochastic

gradient boosting [105], random subspace method [106]. A comparative assessment shows

that random forest and boosting algorithm attains better accuracy and performance rel-

ative to other ones [107], [101] in power systems dynamics applications. Nonetheless as

specified in [108], with increasing complexity in the model structure, the comprehensibility

offered by a simple decision tree is lost at the expense of increased accuracy. Therefore

Adaptive Boosting (AdaBoost) has been selected as the ensemble learning algorithm for

the individual ensemble decision tree. It creates a strong learner by iteratively adding weak

learners (i.e. decision trees here) in each round of training. Moreover, it has the added ad-

vantage of being resistant to overfitting and has been regarded as one of the best out-of-box

classifiers [109], although it is still susceptible to noisy data and outliers.
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Structure

The classifier Structure is shown in Fig. 4.3

Fig. 4.3 Ensemble Decision Tree Classifier Structure

Here a spectral method based feature extraction technique is used to extract out the

relevant features before training a classifier. The feature extraction process involves a

fourier transformation of the computed indices over a fixed window size, typically for the

duration of the disturbance under consideration. A detailed list of features alongwith a

short description of each computed is mentioned in Appendix A. Few of the features being

extracted consists of peak widths, number of peaks, power in the peaks, quantiles, moments,

autocorrelation, power in specific frequency bands etc. Features are normalized before

training a classifier. The formulation is based on the methodology specified in [110,111].

When the data arrives from the PMU, the DSE module computes the dynamic states

and the instability indicators are evaluated instantaneously. An example consisting of
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Fig. 4.4 Operation of Moving window classifier Ensemble Decision Tree

four instability indicators are shown in Fig. 4.4. An overlapping moving window data

frame over the computed instability indices sends the data to feature extraction blocks

which computes the feature vector FEi , the superscript corresponding to the ith instability

indicator number. The feature vectors are concatenated into a larger feature matrix FM =

[FE1 FE2 FE3 FE4]T which is provided as input to the ensemble decision tree classifier.

The output of the classifier consists of a prediction label and score that shows confidence

in the prediction. The process repeats itself over subsequent time instants as shown in Fig.

4.4 and we obtain the final prediction of proposed instability predictor at discrete time

intervals.

The function of the classifier block is to learn a mapping of the feature matrix FM to
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a classification label y ∈ {S, U} where ’S’ corresponds to Stable and ’U’ corresponds to

Unstable cases. In addition to the classification label, the classifier also indicates confidence

in the classifier performance.

4.3.3 Classifier Selection: Multivariate LSTM (MLSTM)

Although conventionally decision tree based classifiers have been used for instability detec-

tion, few recent works involved using artificial neural networks [112], energy based support

vector machine features [113], and fuzzy knowledge based system [108]. In [22] using an

ensemble of extreme learning machine early warning prediction of dynamic insecurity is

demonstrated while a time adaptive Long Short Term Memory Network (LSTM) is used

for real time instability detection in [24].

LSTM based classification model offers the following advantages compared to a decision

tree or traditional classifiers:

1. Feature engineering is not required and feature extraction is difficult because intrinsic

features of time series data are challenging to capture [114].

2. Considers temporal dependency within a channel and correlation across channels.

3. Generalizable on new data and incremental update possible i.e. no need to retrain

the whole model.

An LSTM network can learn temporal dependencies without the problem of vanishing

gradient as faced by a recurrent neural network [115]. Recently a paper has been published

[116] that incorporates Convolution blocks and attention mechanisms in the LSTM network

and has been shown to the outperform existing state of the art time series classification

model. The advantages offered by [116] with regards to a conventional LSTM block are

1. Convolution Layer: One-dimensional filters which convolve over the input data to

capture the evolution of the input signals over time

2. Attention Mechanism: Focuses on a targeted section of sequence that enables the

network to learn long-term dependencies not captured by LSTM
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3. Squeeze and Excite block: Squeeze operation exploits contextual information outside

the local receptive field by using a global average pool to generate channel wise

statistic. Excite block aggregates information from squeeze operation which captures

channel wise dependencies.

The performance of LSTM classifier is investigated in the current instability prediction

model and compared with that of the traditional model

Structure

An overview of the structure of the classifier is presented in Fig. 4.5. The difference in

classifier structure in contrast to that in Fig.4.4 is that the MLSTM operates directly on

the computed instability indices and does not need any feature extraction.

Fig. 4.5 Operation of Moving window classifier Ensemble Decision Tree

The operation is explained using Fig.4.6 by considering only four instability indices

for simplicity. An overlapping moving window extracts the data frames from individ-

ual indices and concatenates them into a matrix on which the moving window classifier

operates. Assuming a sliding window size of ’NW ’ sample each of the instability indica-

tors is concatenated into a matrix of X = [x̄ (t0) x̄ (t1) x̄ (t2) · · · x̄ (tNW
)] where

x̄ (ti) = [x1 (ti) x2 (ti) x3 (ti) · · · xk (ti)] and xk (ti) represent kth channel at ith time

instant.

Similar to the previous example, the MLSTM model provides us with a score that is

synonymous with the probability of belonging to a particular class i.e. Stable or Unstable.
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Fig. 4.6 Operation of Moving window classifier Ensemble Decision Tree

4.3.4 Training of model

Training of the prediction model involves performing some simulations by incorporating

possible contingency scenarios in the network at varied loading profile conditions and ex-

pected generation schedules through the day-ahead forecast. Assuming there are NOP

number of operating points and K number of contingency scenarios for each of these oper-

ating points detailed time domain simulations are performed for individual contingencies

resulting in a total of NOP ×K number of training cases. Each of the training cases is clas-

sified as ”Stable” (S) or ”Unstable” (U) based on pre-defined dynamic performance metrics
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(eg. transient stability, angle/frequency deviation, out-of-step, numerical divergence etc.)

As stated in [117] , mathematically this can be expressed as

yt =
1(Stable) if η > 0

0(Unstable) if η ≤ 0
(4.5)

where η = (360 − δmax)/(360 + δmax) and δmax is the maximum angle deviation of any

two generators in degree. Each case is allocated a label based on the value of η at the

end of the simulation. Contingency scenarios are indexed and represented by a vector

Cm = {p̄1, p̄2, ...p̄NG, ym} where Cm correspond to mth contingency scenario, p̄i depicts the

time domain data sent by ith terminal generator PMU and ym is the dynamic stability label

of the mth contingency scenario, ym ∈ {S, U} ascertained from stability criteria.

This method of generating training cases leads to an unbalanced dataset as there are

mostly stable cases compared to unstable ones. With the loading increase, as the grid

becomes more and more stressed, the probability of unstable cases increases but it does

not exceed that of the stable cases. Hence the methodology of dataset balancing as specified

in [18] is used. Based on the security criteria, contingency scenarios are limited to N-1 or

N-2 cases, while the fault duration is varied between 6 and 12 cycles.The operating times

of zone 1, zone 2 and zone 3 of distance protection relays are of the order of 0∼2 cycles,

18∼24 cycles, 0.8∼1 sec respectively [118,119].

System instability is indicated by the value of η which is negative when angular di-

vergence happens and positive in stable condition when all the generator angles are in

synchronism. Typically dataframes are identified as Stable and Unstable cases based on

the instantaneous values of η. However the value of η becomes negative only when the

maximum angular divergence between two generators exceed 360 degrees and is positive

before that happens even for an unstable case. Typically angular divergence happens a few

seconds after an unstable fault has initiated. So if we label the data frames based on the

instantaneous value of η then the data frames after fault initiation till angular divergence

happens will be incorrectly labelled as Stable. To avoid this, dataframes are labelled based

on the system state at end of simulation is determined based on the value of η. If at the end

of simulation time η > 0, all the data windows extracted from a Stable case, has the label

‘S’ while for the Unstable case, the data windows before fault inception has label of ‘S’ and

after has label of ‘U’ regardless of when the angular divergence happens or η ≤ 0 . This

way of labelling the dataset and training a classifier helps identifying features or trends in
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dataset before the actual instability occurs and thus creates an anticipatory behavior in

the classifier. Therefore for a dataframe ’D’ at time instant ’t’ the labelling is given by

yDt =
1(Stable) if

(
ηt=tf > 0

)
||
(
ηt=tf ≤ 0 & t ≤ tft st

)
0(Unstable) if

(
ηt=tf ≤ 0

)
& (t > tft st)

(4.6)

where tf is the final simulation time instant and tft st is the instant of fault start. Offline

training of the model may not be enough to reflect actual system conditions because of

variability resulting from proliferation of renewable and distributed generations. However

as the operating horizon approaches, it is possible for the system operators to discern the

actual imminent operating point more accurately and include contingency simulations at

these new operating points into the training set. Hence the prediction model accuracy for

decision tree based detector can be improved through retraining of the entire model or

restructuring of the decision tree [19, 120]. The MLSTM model retraining would involve

training the classifier on the new dataset while initializing from the last trained weights.

4.3.5 Performance Metrics

The data is randomly split into training and testing set and performance evaluation is made

on the testing set. The following three metrics as specified in [18,108,121,122] are used for

assessment

1. Reliability : (Total number of unstable cases - Total number of cases converted to

stable cases)/ Total number of unstable cases

2. Security : (Total number of stable cases – total number of cases converted to unstable

cases)/ total number of stable cases

3. Accuracy : (Total number of cases – number of mis-classifications)/ Total number of

cases

4.4 Results

4.4.1 Details of Classifier Model

The parameters of Ensemble Decision tree classifier has been optimized using the Statistics

and Machine Learning Toolbox of matlab and it was found that with ‘Gentle AdaBoost’
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learning method was the optimal one with 479 Learning Cycles and 0.4158 as Learning Rate

and Minimum Leaf Size of 1. The feature extraction block performs fourier transforma-

tion on a rectangular window with 288 datapoints over each indices and 92 features were

extracted from each dataframe for Wdi indices and 91 features from gamma and kappa.

This implies that for each dataframe a total of 1114 features were extracted. The data

has been normalized to zero mean and unit variance. The highly comparative timeseries

analysis toolbox (HCTSA) [111] is used for feature extraction and the list of features used

is specified in Appendix A.

The MLSTM model consists of 16 LSTM cells and the Convolution block consists of

3 blocks of 128-256-128 filters with initialization and weighing of the kernel as proposed

in [116]. The dropout rate has been set at 80% to prevent overfitting and number of training

epochs at 500 to prevent overfitting. For training of models, an Adam optimizer with initial

and final learning rates of 1e-3 and 1e-4 is used. The data has been normalized to zero mean

and unit variance. MLSTM model is implemented in python using Keras [123] library.

4.4.2 Initial Database Generation

The benchmark IEEE 39 bus network is considered for comparing and evaluating the

classifier performance. The network consists of 10 generators and 34 lines and this results

in 12 instability indices. A three-phase to ground fault is simulated on all the lines for

a period of 12 cycles and the lines are tripped after 12 cycles by the opening of circuit

breakers on either end of the line. This is carried out for different loading scenarios ranging

from 80% to 130% in intervals of 5%. Faults are considered at 25%, 50%, and 75% of the

length of the line. This resulted in a total of 1014 cases and around 95,000 data frames

after database equalization [18]. The data is split into 80% testing and 20% training case

through random selection from the total dataset for initial evaluation. Details of dataframe

are shown in Table 4.1

The critical clearing time of each line was determined to be around 12 cycles at nominal

loading. Stable scenarios were generated by performing simulation at the critical clearing

time for each line which was around 12 cycles at nominal loading for most of them while

for unstable ones it was by increasing the fault duration by 1 cycle. A classifier trained

on time-series data set from these simulations will be able to fit a separating hyperplane

or demarcating surface based on a scenario that is most difficult to distinguish. Any other
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Classifier Details Values (Testing Set ) Values (Robustness set)
Total no. of simulation
data frames

94962 N/A

No. of training data
frames

75970 N/A

No. of test data frames 18992 5260

Table 4.1 Classifier dataset details

scenario with lesser fault clearing time duration eg. 4 to 5 cycle is easily distinguished by the

classifier. With increasing loading on the network, the critical fault clearing time reduces

which is determined at different loading levels and scenarios are generated accordingly for

classifier training. In practical scenario 4 to 5 cycle would be a reasonable duration and

the 12-cycle setting is only relevant because this is a test system, which allows to develop

and demonstrate an effective algorithm for separating between stable and unstable cases

in the general sense.

4.4.3 Robustness Assessment Test Set

A robustness assessment of the established instability detector is performed by generating

an operating condition different from that used in classification by varying the loads in the

network randomly. In the network under consideration generator G39 and load on bus 39

represents the equivalent external system of the New England area [124]. The generation

capacity of G39 is reduced by 20% to reflect the change in the operating condition of the

external system. The remaining loads in the network are varied randomly in the range of

80% to 120% of their values in the nominal condition. Contingencies involved 3 phase fault

on each of the lines followed by tripping of the line. The fault location has been set to vary

randomly between 25% to 75% of the transmission line. The proposed Instability detector

has been used to determine stability and the 34 cases resulted in about 5260 data frames

with 3860 stable and 1400 unstable ones.

4.4.4 Classifier Performance Comparison

The second column in Table 4.2 compares the performance of the ensemble decision tree

and MLSTM on the testing set, with the latter achieving higher accuracy than the decision

tree.
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Testing Set Accuracy Robustness Set Accuracy
Metrics MLSTM Ensemble DT MLSTM Ensemble DT
Accuracy 99.86 % 99.59% 98.15% 97.60%
Reliability 99.99 % 99.86 % 99.69 % 99.14 %
Security 99.87% 99.73% 98.47 % 98.45%

Table 4.2 Classifier Performance details

Also, it was able to achieve the three nines of reliability i.e. it can detect an unstable

case with near perfect certainty. Additionally, it should be noted that the classifiers can

attain good accuracy even though it has been trained on a considerably smaller dataset

compared to results in [18, 24]. As evident from the third column in Table , MLSTM was

able to attain an accuracy of 98.15% accuracy compared to 97.6 % for decision tree. This

implies that MLSTM can capture the variance in data more effectively. Inclusion of the

remaining incorrect cases in training of DT classifier as mentioned in [19] will make it

more robust while the MLSTM training involves running a few iterations over incorrectly

classified sets and initializing with last trained weights.

The cross validation reported in Table 4.2 demonstrates that the recurrent neural net-

work has a good generalization capability given that the security and reliability rates are

98.5% and 99.7% on the robustness set and test set respectively even though the machine

learning is limited to the trained space only. The robustness set and test set are not involved

in training and the test set is correlated but not part of the training set.

4.4.5 Training and Testing time

Training of the MLSTM was done on a GTX 1060 GPU and took 16 hrs to complete while

the decision tree with feature extraction was done on Intel i7 processor (4 cores) and took

approximately 3 hrs. The prediction time for MLSTM is around 0.6 msec only as it is

executed on GPU while that of Decision Tree is around 150 msec with feature extraction

requiring around 110 msec. Although parallel processing toolbox of Matlab has been used

for feature extraction and prediction, however since we have 12 indices in our network so

each processor had to work on 3 of them. Increasing the number of cores will reduce the

computation time of feature extraction.
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4.5 Conclusion

In conclusion, it can be stated that both the classifiers can attain a reasonable degree of

accuracy with MLSTM exhibiting slightly better reliability on testing as well as on a new

dataset. One of the reasons for the good performance of the two classifiers is because of

the inclusion of Wdi. The new instability indices are complementary to the conventional

ones (γCOP ,κCOP ), the former is based on electrical signals only and distributed while the

latter includes electromechanical signal and centralized. Also, together they provide more

spatio-temporal information to the decision tree and LSTM model. Although, it might

be argued that since a moving window classifier with over lap has been used, this might

have also added to the accuracy improvement of the testing set. But the performance of

robustness set which does not include any dataframes from training and testing set shows

that it is not the case.

The decision tree classifier is based on Fourier operation and quite a large number of

spectral features (104) have been extracted for training the decision tree attributing to

enhanced classification results. It is to be noted that the parameters of the decision tree

have been optimized to reach maximal accuracy as indicated in section 4.4.1. Although no

parameter optimization has been done on the LSTM network the model has been designed

and tested with tuned parameters on a wide range of classification problems with very

different nature of time series data [116]. This might explain why the LSTM worked well

in this network stability detection without requiring further tuning.

The MLSTM requires greater training time and hardware resources for its execution

compared to the decision tree. However it has a smaller prediction time as it does not

require any spectral feature extraction from the indices. The computational time increases

as the number of indices in the network increases. Updating the MLSTM model is easier

compared to the restructuring of the decision tree as the latter involves developing an

optimal test for each node that would check the classification for each node and substitute

it with a new one if incorrect.
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Chapter 5

Automated Remedial Action Scheme

5.1 Introduction

In this chapter, the problem of conventional remedial action scheme as stated in chapter

1 is addressed through an energy function based remedial action scheme that operates

on dynamic state information of the network. A methodology for online remedial action

scheme is presented and it demonstrates the benefit of the proposed scheme over the existing

remedial action scheme on benchmark network.

The first part of the chapter focuses on establishing a method for identifying the critical

generators in real time and the subsequent sections focus on taking corrective action in

incremental steps and monitor the system for further actions if necessary to stabilize the

system. No offline simulation training is required for the operation of the Remedial Action

Scheme.

5.2 Critical Generator identification

The proposed online Remedial Action Scheme involves identifying critical generators from

the rate of transient energy change indices (Wdi) as well as the transient energy components

that are dominant during the fault duration. Equations involved in individual generator

transient energy function as presented in [99] are
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where WKE
i and W PE

i corresponds to ith generator Kinetic and Potential Energy and the

subscript ‘0’ correspond to values at the instant of disturbance inception. W 21
i indicates

energy change associated with the governor and prime movers, W 24
i is energy stored in all

series connected reactances including transient reactances, W 25
i accounts for the effect of

the field coil and AVR and W 26
i explains energy variation of damper winding on q-axis of

individual generator. In addition, there are two potential energy terms corresponding to

load buses expressed as

W 22 =

NL∑
i=1

∫ t

t0

PLi

(
dδi
dt

)
dt (5.7)

W 23 =

NL∑
i=1

∫ V

V0

(
QLi(Vi)

Vi

)
dVi (5.8)

where NL corresponds to the number of load buses in the network. Variation of W 21
i term

is slow as it is associated with generator inertia and also true for W 22 as load bus angle does

not change rapidly. It has been demonstrated in [99] that W 21 =
∑NG

i=1W
21
i = W 22 and

W23 variation is negligible. Also during fault duration, it has been found that variations

of W21 ,W22 is small and the dominant component in W PE
i is W 24

i . Thus using eqn (5.2)
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we can obtain an accurate estimate of individual machine potential energy terms based

on the dynamic states information without having to evaluate the energy over load buses.

However the assumption has been seen to be valid only within a certain time after fault

initiation, preferably till fault clearance and subsequent instances would require network

wide TEF computation.

In Fig. 5.1 the Wdi indices and the individual machine energy W T
i and generator

angles are plotted for a three phase fault on one of the lines of the IEEE 39 bus network,

cleared after 12 cycles by opening the line. It can be noted that generator G32 attains the

highest values of Wdi immediately after fault occurrence (t=2 s) and also have the highest

total energy at fault clearance (t=2.2 s).

Fig. 5.1 Comparison of Instability Index (Wdi), Transient Energy Function
(W T

i ) and Rotor angle δi of individual generator following a 3phase fault on
Line5B3B4

Although G31 had the second highest value of Wdi, W
T
i value ends up being less than

G39, which represents the equivalent generator of an external network, and attains the

second highest energy in the network at the instant of fault clearance. Following the dis-

turbance, as the external network starts oscillating against the network under consideration,

the angle difference and speed deviation increases resulting in a rapid increase of WKE
i and

W 21
i components of G39 compared to other generators.
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Index Time(s) G32 G39 G31
W T
i 2.2 3.967 2.989 2.203

|Wdi| 2 0.692 0.234 0.421

Table 5.1 Critical Generator Ranking for a fault on Line5B3B4

This is evident from the G39 transient energy function plot which starts increasing

monotonically after the disturbance. In addition from the rotor angle plots it can be

observed that generators G31 and G32 separate out from the rest of the network at t=3.5

s when no action is taken. Because the energy change of transmission lines and loads are

not included, the total TEF value of the network after fault clearance does not remain

constant.

This pattern based on sound TEF principles has been observed for all of the simulations

in IEEE 39 bus leading to instability and thus offers a method of automatically identifying

the critical generators in the network well before the actual instability sets in. Algorithm

for critical generator identification methodology can be formulated as :

1. Rank generators based on Wdi at fault initiation : Rdi

2. Rank generators based on Transient Energy Function (W T
i ) at fault exit : RT

i

3. If RT
i (1) = Rdi, mark ith generator as critical

4. Represent the top three generators in ranked lists Rdi R
T
i through sets P (S1), P (S2)

5. Find B ∈ P (S1)∩ (S2) such that B 6= {Φ} and order B as RT
i then B provides critical

generator set

6. If B = {Φ} critical generator not identified, then compute and monitor coherency

matrix

5.3 Response based Remedial Action Scheme

A high value of Wdi implies that the corresponding generators will gain a significant amount

of transient energy and is validated by the W T
i indices at the end of the disturbance.

Following a contingency, based on the computed instability indices Wdi and Transient

Energy Function W T
i , the generators are ranked in order of decreasing absolute values of
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Wdi and W T
i . The ranking is based on W T

i values in the event of non-conformity of the two

lists. If the prediction model indicates imminent instability then the first generator on the

ranked list is tripped to stabilize the network. The recursive formulation of the RMS-based

coherency matrix [125] is used to determine the coherent generator groups based on the

rotor angles from the dynamic state estimator:

αnl(tk) = αnl(tk−1) +
∆t

2
(X2

nl(tk) +X2
nl(tk + ∆t)) (5.9)

where Xnl(ti) = [(xn(tk) − xn0) − (xl(tk) − xl0)] , ∆t = tk − tk−1 subscript n,l correspond

to generators and ’0’ to values at fault inception. Since angle coherency is being evaluated

xn(tk) corresponds to nth generator angle at time kth time instant.

Fig. 5.2 Outline of proposed Response based Remedial Action Scheme

The identified remaining critical generators are monitored through the coherency matrix

and if the coherent groups continue to separate, then the next generator in the list is tripped

and monitoring is continued. The moving window classifier as described in the previous

section would also be predicting the system stability during the monitoring stages after each
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RAS action. This provides a new methodology for implementing a Remedial Action Scheme

that identifies the runaway generator extemporaneously using dynamic state information

and related disturbance severity indices. Block diagram of the proposed response based

Remedial Action Scheme elucidating the concept described is shown in Fig. 5.2

5.4 Simulation Results

Fig. 5.3 Comparison of Instability Index (Wdi), Transient Energy Function
(W T

i ) and Rotor angle δi of individual generator following a 3phase fault on
Line30B25B26

An example of the operation of critical generator identification in an IEEE 39 bus

system is shown in Fig. 5.3. In the first two plots of figure the Wdi indices and Transient

Energy of individual generators W T
i are shown for a three phase fault on Line30B25B26.

It can be noted from Table 5.2 that the Wdi indices for G37 and G38 are at their highest

values at fault inception and W T
i values for G38 is maximum at fault clearance, followed

by G37 and G39. Thus the identified critical generators in the network for the contingency

under consideration are G37, G38, G39. The absolute values of the generator angle are

shown in the third plot of Fig 5.3 which depicts the system separating into two groups

without any RAS action.
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Index Time(s) G38 G37 G30
W T
i 2.2 7.652 4.285 2.613

|Wdi | 2 0.535 0.952 0.213

Table 5.2 Critical Generator Ranking for a fault on Line30B25B26

The Instability detector predicts an impending instability at t=2.25 s based on the

computed indices (γCOP , κCOP ,Wdi) and according to the critical generator identification

algorithm, Gen G38 is the critical generator and is tripped at t=2.3 s.The generator rotor

angles relative to slack generator G39 before and after the application of RAS are shown

in Fig. 5.4. Further separation of generators in the network is monitored through the co-

herency matrix and clustering of coherent groups through kmeans. The coherency matrices

and the identified coherent groups computed at t=2.5, 3, 3.5 s are shown in Fig 5.4. Since

the distance between the coherent cluster groups did not increase so no further action was

taken. Thereby it can be noticed that the tripping of generator G38 stabilized the system.

It is to be noted that the proposed method provides an innovative way of using the co-

herency matrix to not only identify the critical machine but also the action that needs to

be taken to stabilize the system.

A multi shot example of the proposed RAS scheme is shown in Fig. 5.6 following a

contingency on Line22B16B19 which would lead to instability in case no action is taken.

Following a 3 phase fault on Line22B16B19, the energy indices values W T
i and Wdi of

individual generators are plotted in the first two plots of 5.5 and generators G33 and G34

separate out from the rest of the network as can be noted from the third plot of Fig. 5.5.

It can be noted from the values in table 5.3 that generator G33 has the highest value

of W T
i at fault clearance and Wdi at fault inception followed by G34. Generator G35

located in close electrical proximity to the fault location attained the third highest values

for these indices. Based on this and the critical generator identification algorithm, G33 is

first considered for tripping followed by G34 if required.

Index Time(s) G33 G34 G35
W T
i 2.2 6.611 5.114 3.527

|Wdi| 2 3.177 0.943 0.608

Table 5.3 Critical Generator Ranking for the fault on Line22B16B19

The Instability detector predicts an impending instability at t=2.4 s and identified
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Fig. 5.4 Network stabilization through proposed RAS scheme following a 3
phase fault and subsequent clearing by tripping Line30B25B26 and coherent
generator group monitoring after first critical generator tripping at t=2.5,3,3.5
s

critical generators are G33, G34. Generator G33 is tripped at this time and the generator

group separation is monitored through the coherency matrix. It can be noticed from the

coherency plots of Fig. 5.6 that the distance of G34 from the rest of the generators in the

network at t=3s has increased compared to that at t=2.4s. and it is tripped subsequently.

Further monitoring is continued through coherency matrices and since it does not indicate

further separation as is evident from the coherency matrix at t=3.5s thus no more corrective

actions are taken. The proposed methodology has been tested for other unstable cases and

the proposed response based RAS is successfully able to detect instability and stabilize

each of them.

Lastly, the performance of the proposed RAS action to stabilize the system following

a fault on Line5B3B4 is shown in Fig 5.7 . Based on the indices plotted in Fig. 5.1 and
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Fig. 5.5 Comparison of Instability Index (Wdi), Transient Energy Function
(W T

i ) and Rotor angle δi of individual generator following a 3phase fault on
Line22B16B19

Table 5.1 it can be noted that G32 is the critical generator and is considered for tripping

to ensure stability. The Instability Predictor detects impending stability at t=2.4 s and a

generator trip signal is sent to G32. The coherency groups are monitored after sending the

trip signal and since no further increase in separation occurs among the coherent generator

group so no further action is taken.

5.5 Discussion

5.5.1 Type of instability mitigation and action

The proposed method only addresses the angular instability problem of the network as the

instability detector scheme is trained on a database labeled based on an index dependent on

maximum generator angular separation. It can deal with single or multi-swing instability,

over a time frame up to 20s which is the standard simulation window used for classifying the

cases. Control actions are limited to generator and load tripping only and do not consider

other equipment’s in the network such as reactive shunt devices.

Since the proposed framework is aimed at stabilizing a power system subjected to out-

of-step of a critical machine or group of machines following a fault, fast reactive power
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Fig. 5.6 Network stabilization through proposed RAS scheme following a 3
phase fault and subsequent clearing by tripping Line22B16B19 and coherent
generator group monitoring after first critical generator tripping at t=2.5,3,3.5
s

switching can help but generator tripping based on excess energy variation is one of the

most effective means [126] to deal with this situation without prior information on the

network topology and generator size. In general, while it is possible to develop PMU

based instability detectors which can address any type of instability over a given time

frame [17], it is far more challenging to determine on-line the appropriate mitigation means

(generator, loads, shunt capacitor, etc.) and even more challenging to determine the amount

of corrective action for a given mean (i.e. MW or MVAR level of action).

5.5.2 Application Area

Mostly the existing RAS schemes are based on detecting network topology changes us-

ing substation breaker statuses and then shedding pre-planned amounts of generation and
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Fig. 5.7 Network stabilization through proposed RAS scheme following a
3 phase fault and subsequent clearing by tripping Line5B3B4 and coherent
generator group monitoring after first critical generator tripping at t=2.5,3,3.5
s

loads at predetermined locations according to the contingency detected and prevalent pre-

fault operating conditions. By contrast, the proposed scheme is aiming at two “ambitious”

goals: blindly detecting instability occurrence without prior knowledge of breaker statuses

and then automatically finding the best generator or load locations for shedding actions

in a granular manner (i.e. one-generation unit or one load-shedding block at a time, these

libraries of discretized atomic actions being the only required prior knowledge). Therefore,

the concept is built assuming an implementation, intrinsically at the Balancing Authority

(BA) level. This assumption alleviates the long distance information communication bur-

den and avoids coordination requirements between entities not sharing a common interest,

even though a grid code can (and should) force cooperation for the good of all. Further-

more, the method is computationally decentralized in such a way that it can be applied

without change to a subset ng of the Ng generators set in the system, in which case, the
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pool of admissible generators will be limited to the ng generators in the energy function

summation.

5.5.3 RAS Protection system Interaction

The purpose of the RAS is to supplement the protection and control device operation

to prevent violations of Reliability Standards such as TPL-001-4 [127] and will not be

involved in the individual operation/mis-operation of protection relays that is not system

critical. RAS operations may have overlap functionalities with protection devices and

will require review to assess the situation in terms of the mis-operation of the device.

The Remedial Action Scheme Reliability Subcommittee and North American Reliability

Coordinator reviews these issues before a RAS is implemented [25]. Modern transmission

system protection relays have a power swing block feature to prevent false operation that

may occur if the power system locus passes through the operating zone of relays. However,

if such a situation happens where the transmission line is tripped without fault but the

generator remains stable then it is not a critical contingency that would result in system

wide instability and the RAS execution will not happen. If the outage of the line is

significant enough to create a variation in generator energy then it will be detected by

the proposed methodology.

Additionally, it is to be noted that the proposed RAS is a response-based scheme that

operates on generator angle information evaluated from individual generator DSE rather

than generator out-of-step relays. Conventional RAS schemes are parameter and event

based and they typically operate based on the operation status of circuit breaker and

relays. In contrast, the proposed response scheme has not considered these signals but

rather operates based on dynamic state information of generators evaluated from terminal

phasor measurements.

5.6 Conclusion

Availability of dynamic state information and transient energy function (W T
i ) values com-

puted from the same have made it possible to design the second stage of proposed RAS

which involves the identification of critical generators on the fly following a disturbance.

When the instability detector predicts an impending instability, the critical generator is

identified extemporaneously from the ranking of the generator using individual machine
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transient energy at the instant of fault clearance and tripping the corresponding one.

Thereby network stability is monitored continuously through recursive coherency matrix

and predictions of the moving window classifier. Further corrective actions are taken if

required, according to the stability trajectory of the system. Successful demonstration of

the proposed response-based multi-shot RAS has been made on an IEEE benchmark test

system. The methodology provided is based on generator dynamic state rather than pha-

sor measurements and demonstrates the utility and added benefit that a DSE provides in

designing improved SIPS that minimizes disturbance impact while providing the same level

of reliability, selectivity, and security.
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Chapter 6

Summary and Conclusions

6.1 Summary

The main contribution of this thesis is the development of a viable technique that can

identify an impending instability in the network following a contingency and maintain

stability by determining and executing corrective action in real time.

Chapter 1 mentions the shortcomings of the existing Remedial Action Scheme which

relies on offline simulation studies and executing preplanned contingency actions for avoid-

ing system collapse. However, due to variability introduced through proliferating renewable

energy resources, it is not possible to encompass all possible operating scenarios in simula-

tion studies. In addition designing control actions for the unstable ones involves a compu-

tationally demanding process of investigating multiple scenarios for the post-contingency

case. Thus it is clear that existing RAS architecture needs to be replaced or augmented

through an approach that does not rely on simulation studies extensively but rather exploits

the readily available network information provided by PMUs.

The subsequent chapter focuses on developing a centralized dynamic state estimator

model which would be the foundation for the proposed online RAS scheme. The obvious

advantage that the DSE provides is that it is able to estimate the internal emf dynamics

of the generator as well as the exciter emf and governor torque from terminal phasor

measurements only. Also, the network wide information is aggregated in a centralized

location while addressing issues of communication interruption and delays.

The added information provided by DSE made it feasible to compute energy function

based instability indices as well as conventional ones based on electromechanical angle and
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frequency. These indices are used to design an instability detector. The performance and

characteristics of two instability detectors that operate on two different operating principles

have been compared and contrasted. One of the detectors uses a boosted decision tree that

requires spectral features extracted from the indices while the other is based on a state of

the art neural network model that operates directly on the indices.

The penultimate chapter establishes the proposed online RAS. It operates by iden-

tifying critical generators through individual generator energy formulation, implementing

corrective actions in incremental steps, and observing the network through the coherency

matrix. The identification and decision-making process are taken extemporaneously and

thereby alleviates the computational burden and shortcomings of the existing RAS. A

successful demonstration of the proposed algorithm has been shown on a benchmark in-

terconnected system. Additionally, software in loop validation on a real time simulation

platform (HyperSim) has been done in Appendix B.

An improved RAS scheme would result in improved network reliability which trans-

lates to profits for utility and improvement in customer satisfaction [49] as well as better

utilization of renewable energy resources as it allows the grid to operate at reduced oper-

ating margins.

6.2 Conclusions

The main findings and contributions of this thesis are summarized in the following state-

ments:

1. The operation of a federation of several dynamic state estimators each one of which

is fully decentralized and correspond to one of the generators in the network is pre-

sented in the thesis. This is the first step required in making the RAS operational.

Each of these DSE is able to tackle probabilistic missing data and transmission delay

issues. Using analytical relation, the DSE estimates the field exciter voltage Efd and

governor torque Tm from the generator terminal PMU measurements. In general all

the generator states are able to track the actual signals with less deviation and ini-

tialize rapidly compared to previously established estimator results. Also apart from,

the PMU measurements, the only other input to each EKF state estimator is Power

Reference (Pref ) and Voltage Reference (Vref ), which are reasonably known over time,
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as a result of the 5-minute economic dispatch update by the control system operator

and are almost constant or slowly varying quantities that are easy to acquire in a

centralized setup.

2. Instability indices consist of individual generator energy derivative change Wdi as

well as γCOP and κCOP for instability prediction. Wdi indices are computed from

generator transient emfs e′d and e′q and show rapid variation in contrast to γCOP

and κCOP computed from generator angle and speed which shows slow variation.

In addition, another interesting feature of the indices is that γCOP and κCOP are

centralized while Wdi indices for individual generators are decentralized which brings

complementary features in the proposed predictor model. Both the indices exhibit

complex variation and is difficult to demarcate between stable and unstable scenario

using a simple classifier. Thereby complex classification algorithms eg. decision trees

and neural networks have been used for making predictions on model stability.

3. In contrast to existing RAS and SIPS schemes, most of which involve topology change

detection and instability mitigation through pre-determined corrective actions, the

proposed scheme presented in the thesis provides the advantage of using generator ter-

minal measurement only. By utilizing the network wide generator state information

provided by the federation of DSE, individual generator energy is computed instanta-

neously and by comparing multiple unstable scenarios a particular pattern has been

observed. Based on this an algorithm has been devised that identifies the critical gen-

erators on the-fly and subsequently stabilizes the network through corrective actions

consisting of tripping the identified critical (run-away) generators. Additionally, the

proposed formulation is a multi-shot Remedial Action Scheme, and network stability

is monitored continuously through recursive coherency matrix and predictions of the

moving window classifier after each action. The successful operation of the proposed

RAS has been demonstrated on the benchmark IEEE 39 bus system.

Apart from this a few other interesting findings reported in the thesis are

1. Parameter sensitivity analysis of the DSE has been performed which identifies the

crucial parameters and also demonstrates how each of the states is affected by the

variability of the parameters.
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2. An interesting predictive property has been presented by comparing the Wdi values,

total energy value W T , and the generator angle of individual generators. In a con-

tingency resulting in instability, it is often the generators that have the highest rate

of change of energy values Wdi at the start of disturbance, and the highest total

energy at end of disturbance are typically ones that separate from the rest of the

network. Although the actual angular separation of generators often happens after

a few seconds of disturbance clearance, however by noting the W T and Wdi values

it is possible to determine the critical generators way before the actual instability

occurs. This predictive property helps to identify the most disturbed generator and

the actions to be taken in an expedited manner.

3. Lastly, the thesis provides a comparative evaluation of two different types of classifiers

- the first one being a conventional decision tree classifier that operates on spectral

features computed from the indices and the other one is a state of the art Multivariate

Long Short Term Memory network. Each classifier offers a different set of advantages

in terms of training time and prediction time although their accuracies are fairly

similar.

6.3 Future Work

The established proposed RAS offers potential for further developments. A few of the areas

where it can be applied would be

1. Making DSE more robust to data quality issues such as non-Gaussian Measurements,

bad data, cyber attacks etc. Also hybrid state estimation approaches that leverages

different theories would be more suitable for the power system model [128].

2. Extending the instability detector to predict other forms of instability eg. voltage

and frequency instability by the inclusion of these scenarios in the training set. Also

inclusion of forced oscillation events into the training space.

3. Extending the scope of possible action to other forms of mitigation action eg. gen-

erator run-back, shunt capacitor switching, etc and also determining the appropriate

amount of corrective action for a given disturbance.



82 Summary and Conclusions

4. Evaluating the performance of the proposed scheme in a grid with an increasing

amount of renewable energy penetration (wind, solar, and other distributed sources

of energy). [128] suggests developing DSE for these asynchronous, intermittent, and

interia-less sources at the point of common coupling which would allow to estimate

the latent synthetic inertia and use it for rotor angle stability. The application of the

proposed technique can also be extended to a grid with a significant amount of renew-

able energy based sources by modeling power electronics converters as Synchronous

Generators through the concept of virtual inertia. A comparative evaluation of ma-

jor virtual inertia topologies and possible future research direction for system level

integration and modeling are presented in [129].
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Appendix A

List of Spectral features

A complete list of the features used in the moving window ensemble decision tree classifier

are shown in table below and a brief description of each of the features are provided.

Feature Names Brief Description

SP-Summaries-fft.maxS Maximum, and max peak width

SP-Summaries-fft.maxProm Maximum prominence of any peak

SP-Summaries-fft.meanProm-2 Mean peak prominence of those with promi-

nence of at least 2

SP-Summaries-fft.meanPeakWidth-

prom2

Mean peak width of peaks with prominence

of at least 2

SP-Summaries-fft.peakPower-2 Power in top 2 peaks

SP-Summaries-fft.peakPower-5 Power in top 5 peaks

SP-Summaries-fft.peakPower-prom2 Peak Power with prominence of at least 2

SP-Summaries-fft.w-weighted-peak-

prom

Peak power weighted by prominence

SP-Summaries-fft.w-weighted-peak-

height

Peak Power weighted by height

SP-Summaries-fft.peakpower1 Number of peaks required to get to 50% of

power in peaks

SP-Summaries-fft.iqr Inter Quartile Range
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SP-Summaries-fft.fpolysat-a Coefficient a after fitting polysat

SP-Summaries-fft.fpolysat-b Coefficient b after fitting polysat

SP-Summaries-fft.fpolysat-r2 Polysat fitting parameter

SP-Summaries-fft.fpolysat-

rmse

Polysat fitting root mean square error

SP-Summaries-fft.logiqr Logarithm of Inter Quartile Range

SP-Summaries-fft.q25 25 % Quartile

SP-Summaries-fft.median Median Quartile

SP-Summaries-fft.q75 75 % Quartile

SP-Summaries-fft.std Standard Deviation of distribution

SP-Summaries-fft.stdlog Standard Deviation of logarithm of distribution

SP-Summaries-fft.mean Mean of distribution

SP-Summaries-fft.logmean Mean of logarithm of distribution

SP-Summaries-fft.mom3 3rd order moment of distribution

SP-Summaries-fft.mom4 4th order moment of distribution

SP-Summaries-fft.mom5 5th order moment of distribution

SP-Summaries-fft.ac1 Auto-Correlation Coefficient 1

SP-Summaries-fft.ac2 Auto-Correlation Coefficient 2

SP-Summaries-fft.tau Auto-Correlation Time Delay

SP-Summaries-fft.wmax-90 Frequency at which cumulative sum is a fraction

of 90 % maximum

SP-Summaries-fft.wmax-95 Frequency at which cumulative sum is a fraction

of 95 % maximum

SP-Summaries-fft.wmax-99 Frequency at which cumulative sum is a fraction

of 99 % maximum

SP-Summaries-fft.w10 90 Width of measures from 10% to 90%

SP-Summaries-fft.w25 75 Width of measures from 25% to 75%

SP-Summaries-fft.fpoly2csS-

p1

Polynomial fitted function coefficients 1

SP-Summaries-fft.fpoly2csS-

p2

Polynomial fitted function coefficients 2
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SP-Summaries-fft.fpoly2csS-p3 Polynomial fitted function coefficients 3

SP-Summaries-fft.fpoly2-sse Polynomial fitted function parameters

SP-Summaries-fft.fpoly2-r2 Polynomial fitted function parameters

SP-Summaries-fft.fpoly2-rmse Polynomial fitted function root mean square

error

SP-Summaries-fft.spect-shann-ent Shannon spectral entropy

SP-Summaries-fft.spect-shann-ent-

norm

Norm of Shannon spectral entropy

SP-Summaries-fft.sfm Spectral Flatness Measure

SP-Summaries-fft.areatopeak Areas under power spectrum upto peak

SP-Summaries-fft.ylogareatopeak Logarithm of area under power spectrum

upto peak (semilog)

SP-Summaries-fft.linfitloglog-all-a1 Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-all-a2 Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-all-sigrat Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-all-sigma Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-all-sea1 Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-lf-a1 Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-lf-a2 Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-lf-sigrat Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-lf-sigma Robust linear fit to log-log plot parameters

SP-Summaries-fft.linfitloglog-lf-sea1 Robust linear fit to log-log plot parameters

SP-Summaries-fft.area-2 1 Area under power in specific frequency bands

(2 bands)

SP-Summaries-fft.logarea-2 1 Area under logarithm of power in specific fre-

quency bands (2 bands)
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SP-Summaries-fft.area-2 2 Area under power in specific frequency bands (2

bands)

SP-Summaries-fft.logarea-2 2 Area under logarithm of power in specific fre-

quency bands (2 bands)

SP-Summaries-fft.statav2-m Ratio of mean and standard deviation in specific

frequency bands (2 bands)

SP-Summaries-fft.statav2-s Ratio of standard deviation in the splitted bands

SP-Summaries-fft.area-3 1 Area under power in specific frequency bands (3

bands)

SP-Summaries-fft.logarea-3 1 Area under logarithm of power in specific fre-

quency bands (3 bands)

SP-Summaries-fft.area-3 2 Area under power in specific frequency bands (3

bands)

SP-Summaries-fft.logarea-3 2 Area under logarithm of power in specific fre-

quency bands (3 bands)

SP-Summaries-fft.area-3 3 Area under power in specific frequency bands (3

bands)

SP-Summaries-fft.logarea-3 3 Area under logarithm of power in specific fre-

quency bands (3 bands)

SP-Summaries-fft.statav3-m Ratio of mean and standard deviation in specific

frequency bands (3 bands)

SP-Summaries-fft.statav3-s Ratio of standard deviation in the splitted bands

SP-Summaries-fft.area-4 1 Area under power in specific frequency bands (4

bands)

SP-Summaries-fft.logarea-4 1 Area under logarithm of power in specific fre-

quency bands (4 bands)

SP-Summaries-fft.area-4 2 Area under power in specific frequency bands (4

bands)

SP-Summaries-fft.logarea-4 2 Area under logarithm of power in specific fre-

quency bands (4 bands)

SP-Summaries-fft.area-4 3 Area under power in specific frequency bands (4

bands)
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SP-Summaries-fft.logarea-4 3 Area under logarithm of power in specific fre-

quency bands (4 bands)

SP-Summaries-fft.area-4 4 Area under power in specific frequency bands (4

bands)

SP-Summaries-fft.logarea-4 4 Area under logarithm of power in specific fre-

quency bands (4 bands)

SP-Summaries-fft.statav4-m Ratio of mean and standard deviation in specific

frequency bands (4 bands)

SP-Summaries-fft.statav4-s Ratio of standard deviation in the splitted bands

SP-Summaries-fft.area-5 1 Area under power in specific frequency bands (5

bands)

SP-Summaries-fft.logarea-5 1 Area under logarithm of power in specific fre-

quency bands (5 bands)

SP-Summaries-fft.area-5 2 Area under power in specific frequency bands (5

bands)

SP-Summaries-fft.logarea-5 2 Area under logarithm of power in specific fre-

quency bands (5 bands)

SP-Summaries-fft.area-5 3 Area under power in specific frequency bands (5

bands)

SP-Summaries-fft.logarea-5 3 Area under logarithm of power in specific fre-

quency bands (5 bands)

SP-Summaries-fft.area-5 4 Area under power in specific frequency bands (5

bands)

SP-Summaries-fft.logarea-5 4 Area under logarithm of power in specific fre-

quency bands (5 bands)

SP-Summaries-fft.area-5 5 Area under power in specific frequency bands (5

bands)

SP-Summaries-fft.logarea-5 5 Area under logarithm of power in specific fre-

quency bands (5 bands)

SP-Summaries-fft.statav5-m Ratio of mean and standard deviation in specific

frequency bands (5 bands)

SP-Summaries-fft.statav5-s Ratio of standard deviation in the splitted bands

(5 bands)
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Appendix B

Software in the Loop Simulation of

Automated Remedial Action Scheme

B.1 Introduction

Real time simulation of a computer model implies that the simulation model executes at

the same rate as an actual clock. Execution of complex power system models in real time

is possible in target platforms called Real Time Simulators (RTS) offered by OPAL-RT

and RTDS. This RTS provides a platform for cost effective and rapid testing of various

control strategies. Besides, it is also an independent validation of the results in transient

stability studies. The role, advantage, and applicability of using a Real Time Simulator

are discussed in detail in [130]. This section is a ”proof-of-concept” demonstration of the

implementation of proposed Automated Remedial Action Scheme in a real time simulator

software.

B.2 Simulation Setup

The proposed RAS implementation in Simulink is implemented in three separate blocks :

1. Dynamic State Estimator

2. Instability Detector

3. Critical Generator Identification
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A block diagram overview of the Simulink model remedial action scheme is shown in

Fig. B.1. Each of the individual blocks shown in the figure is either a Simulink Model or a

user-defined function. The arrows indicate the flow of the signal. The bus terminal signals

are provided to a Phasor Measurement Unit block which is an embedded function block as

reported in [94]. Each of the individual PMU blocks is named ’PMUN’ where N represents

the generator number it is connected to. The PMU blocks compute the phasor values and

pass it on to the DSE Block which is a user-defined function that computes the generator

dynamic states. This block however needs generator parameters to be specified within the

user defined function as these values are not passed explicitly from the generator block to

that of DSE block. The same naming convention as that of the PMUs is followed for DSE

as well i.e. the dynamic state block for generator N is named as DSEN.

Fig. B.1 Overview of block diagram setup

Once the dynamic states have been computed they are aggregated together and passed

on to the Instability Index Computation block and the Individual Generator Energy Calcu-

lation blocks, both of which are user defined function models. The former block computes

the indices γCOP , κCOP as well as energy derivative change Wdi index. All the indices are
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computed based on instantaneous values received from the DSE block. These indices are

passed on to the Instability detector block which either consists of a feature extraction

module and decision tree or a Long Short Term Memory Network (LSTM) block. The

feature extraction module operates on a particular window segment over the indices and

then it passes the feature values to the trained decision tree classifier. Otherwise, the in-

dices stored over the window segments are passed into the LSTM block. The prediction

made by the instability detector as well as the computed instability index values are passed

on to the critical generator identification block. Also using the dynamic state information

individual generator energies are computed and transferred to the critical generator identi-

fication block which selects the generator for tripping and sends the signal to an individual

circuit breaker. Each of the individual generator energy blocks also requires the generator

parameter information which is explicitly specified within them. This critical generator

identification block also computes the coherency matrix and monitors the network for fur-

ther action if required.

Implementation details of each of these blocks are explained in detail in subsequent

subsections.

B.2.1 Dynamic State Estimator Block

The Dynamic State Estimator for an individual generator is developed using user-defined

function blocks. The states variable and other parameters (process and measurement noise)

are defined using the ’persistent’ command and initialized to zero value or predetermined

values of the initial condition. The variables defined as persistent are local to the function

yet their values are retained in memory between calls to the function. The differential

equations corresponding to each state variable are solved using a simple method of Euler

integration in the user defined function and do not call any Matlab solver. Also, the last

received PMU values are stored using persistent variables until a new value is obtained

to deal with communication interruption issues as discussed in Chapter 2. Each of the

DSE blocks also computes the Energy derivative values Wdi from the state variables and

computation of γCOP and κCOP instability indices are done in a separate user defined

function by combining the rotor angle and rotor speed state variables. The computed

instability indices at each time step are passed on to both the Instability Detector and

Critical Generator Identification blocks.
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B.2.2 Instability Detector Block

Instability Detector operation requires the computation of spectral features over a time

window of 250 ms with a 75% overlap. A separate Matlab user defined function is created

for instability detection. The indices are stored in a matrix defined as a persistent variable

and this block predicts discrete windows of 62.5 ms rather than at every simulation step.

The computation of the spectral features requires the usage of several mathematical op-

erations (eg. curve fitting) that are not directly available in Simulink as blocks. So these

operations are executed using ’coder.extrinsic’ command of Mtlab which uses the Matlab

engine for these function call and bypasses code generation for the functions defined under

extrinsic. It is to be noted that the output of an extrinsic function is a mxArray which is a

C language opaque type. Therefore to use these variables as normal ones for an operation

they need to be initialized before using it in a user defined function block. Also the opera-

tion of coder extrinsic is not fully compatible with all the functions (eg. fit ) because the

returned type is a C-object and the returned variable cannot be used for further operation.

Hence an interfacing user-defined function has to be declared that converts the C-object

into a structure suitable for subsequent further actions in Matlab code. The workaround

has been proposed by Matlab support and the development team will address this issue in

a future release of the product.

Once all the relevant features have been computed for individual indices, the features are

concatenated, scaled, and normalized. The scaling and normalization values of each index

are obtained while training the classifier with the initial database generation as explained in

Chapter 4. The normalization is done using an outlier-robust sigmoid transformation and

then scaled to the unit interval. The scaling values are loaded into the user defined function

using the trained classifier prediction of system stability of the computed feature vector.

However, Simulink currently does not support the loading of the trained classifier model

into its workspace which is different from the Matlab base workspace. The workaround

proposed was to transfer the computed feature vector from the Simulink workspace to

the base workspace, make prediction and then transfer the prediction back to Simulink

workspace. This is achieved by using the ’assignin’ command of Matlab which allows

the user to change the workspace of the corresponding variable. The predictions is made

using the ’evalin’ command which evaluates a particular expression and returns the result
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in a specified format of output variables. The prediction results are transferred to the

critical generator identification block for further operation. Principle components of the

coherency matrix are computed and using the first two components kmeans clustering is

done based on an automated optimized clustering policy. It is based on the elbow method

that considers the percentage of variance explained as a function of the number of clusters

and selects the cluster that does not lead to a relatively significant increase in explained

variance. Computed coherency clusters are plotted at every time instant that provides a

visualization of the generators’ dynamics.

B.2.3 Critical Generator Identification Block

The Critical Generator Identification block consists of two subparts. The first one is a

set of user defined function blocks for computing individual generator energy based on the

equations mentioned in Section 5.2. The equations for computing the terms WKE
i , W 21

i ,

W 24
i require knowledge of the variable values at the instant of the start of disturbance which

is stored as persistent variables. Also since the evaluation of W 25
i and W 26

i requires variable

from previous instants which are also stored in the same way. Parameters of individual

generators are also defined inside each individual user defined function. The second part

of the block consists of aggregating the individual generator energy as well as the energy

derivative values and identifying the critical generator based on the algorithm stated in

Section 5.2. Once the critical generator has been identified and an impending instability

is predicted by an instability detector then a trip signal is sent to the corresponding gen-

erator model. Additional steps of connecting a load to the separated generator are taken

to prevent numerical instability and ensuring that the simulation continues. Subsequent

monitoring of instability after the first action is continued through the coherency matrix

and further action through the generator trip signal is taken if required.

It is to be noted that a closed loop is formed starting from the generator terminal

bus signals to PMU block, DSE block, Energy Computation block to Critical Generator

Identification block which finally sends a trip signal to the circuit breaker. However, some

errors resulting from multiple user defined function blocks and the ’goto’ and ’from’ blocks

involved in the loop. The errors were caused as the solver faced problems when attempting

to determine signal dimensions. This was addressed by specifying the output dimension
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sizes of each of the MATLAB Function blocks.

B.2.4 Model Export : Simulink to HyperSim

Simulink allows the generation of standalone C/C++ code for Simulink models for deploy-

ment in a wide variety of applications. The C code for the current model can be imported

into a Real Time Simulation software (RTS) and its performance can be validated. Hy-

persim, a RTS, offers the option of importing a user-defined model through its ”Import

UCM” feature from Simulink. The DSE model requires a phasor signal from the generator

bus terminal to operate but HyperSim does not have a Phasor Measurement Block. So

a PMU block developed in Simulink has been placed inside the Dynamic State Estimator

block and C code generation has been performed on this combined model. This allows the

possibility of connecting the Hypersim signals directly into the imported simulation block

without requiring any pre-processing or needing to create a PMU model in Hypersim. Also,

proper steps have been taken while making the model so that the required DSE parameters

(generator and controller constants) can be modified by the user. This is because each of

the 10 generators in the network have different generator and governor, exciter parameters

which have to be individually set.

The DSE blocks provide the instability indicators and total energy of individual genera-

tors as output. These are connected to the imported Instability detector block and Critical

generator identification block respectively. The output of the Instability detector which

predicts network instability is connected to the critical generator identification block. The

latter determines the unstable generator from the energy signals based on the algorithm

stated in Section 5.3 and sends a trip signal to the corresponding generator.

Two other blocks that separately needed to be created and imported were a generator

angle computation block and a model that behaves similarly to that of Simulink clock.

Surprisingly in the current version of Hypersim software (R6.1.3.o698), there is no option

of extracting the generator rotor angle directly and a custom model had to be used. The

generator angle block consists simply of a discrete integrator and takes in generator speed

signals in pu and provides a rotor angle as output in degrees. A provision for setting the
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initial value of the rotor angle in the compiled model of angle calculator is kept and it is set

to the nearest bus terminal voltage angle. Also, a user-defined script has been written to

emulate the response shown by the ’clock’ model in Simulink. The Point on wave (POW)

synchronization block outputs a time signal but it occurs in discrete steps per second and

at a random time. The newly defined block for clock requires the SyncOut signal of POW

block and time step signal as input and continuous time signal in seconds as output. Also

this overcomes the problem of a clock signal in Hypesim starting at different initial values

rather than from zero.

B.2.5 Results

Fig. B.2 Comparison of Dynamic State Estimator signals with actual gen-
erator signals in HyperSim

An IEEE 39 bus network has been created in HyperSim based on the model used in
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Simulink. However the model behavior is not exactly similar despite having exactly similar

network parameters. In Fig. B.2 , the dynamic state estimator performance on one of

the generators are compared with the actual generator signals. It can be observed that

the dynamic state estimator can track the actual generator signals effectively. Since the

internal model of the generator does not provide e′q and e′d signals it was not possible to

compare the same with the generators.

Fig. B.3 System Instability in IEEE 39 network in Hypersim due to a 3phase
fault on Line30B25B26 at t = 2s and cleared at t = 2.2s without any RAS
action taken

A 3 phase fault occurs in the middle of Line30B25B26 and it is subsequently cleared

by tripping line B25B26 which results in an unstable scenario as shown in Fig. B.3. The

performance of the proposed RAS algorithm is tested in this scenario in which Instability

detector block successfully predicts an instability at t=2.4 sec and identifies G37 as the

critical generator and trips it. It can be noted in Fig.0B.4 that the network is stable after



96 Software in the Loop Simulation of Automated Remedial Action Scheme

this and the generators behave coherently. It is to be noted that the generator angles in

Fig. B.3 and Fig. B.4 are absolute generator angles. The identification of the critical

generator is different from the simulation case of the same contingency when performed in

Simulink as shown in Chapter 5. This demonstrates that although the proposed RAS does

not guarantee a pre specified generator tripping for maintaining stability but adapts based

on a variation of energy signals and takes different action leading to the same stabilizing

action on the grid.

Fig. B.4 Demonstration of system stabilization after proposed RAS detects
instability at t=2.4 s and trips identified critical generator G37 in IEEE 39
bus network in HyperSim

The performance of the implemented end to end simulation model has been validated on

a separate software and it is operating satisfactorily. Using the imported models the same

can be used on a real time simulator platform and a hardware validation of the proposed

scheme can be done. The model is considerably large the real time simulator should have
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sufficient computing capability (greater number of CPU cores) to avoid overruns which

occurs when a target machine cannot compute the results for an individual time step in

a simulation because of the processing tasks for the step overload the CPU in the target

machine.

B.3 Conclusion

This section describes the technical details of the implementation of the proposed auto-

matic remedial action scheme in an end to end Simulink model. Its performance has been

validated and the possibility of code generation for standalone execution in other platforms

has been confirmed as well. Although this ensures only a software validation of the pro-

posed scheme, a hardware validation would simply involve importing the model into a real

time simulator, setting up the test network, and evaluating the model.
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Appendix C

Benchmark Data

The IEEE 39 Bus data used for simulation is provided below. All data are at 60Hz on 100

MVA base where applicable.

C.1 Generators

Parameters for two axis model of synchronous generators are shown in Table below with

values on system base MVA

Gen.

Num.

H Ra x′d x′q xd xq T′d0 T′q0 xl

G39 500 0 0.006 0.008 0.02 0.019 7.0 0.7 0.003

G31 30.3 0 0.0697 0.170 0.295 0.282 6.56 1.5 0.035

G32 35.8 0 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304

G33 28.6 0 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295

G34 26.0 0 0.132 0.166 0.67 0.62 5.4 0.44 0.054

G35 34.8 0 0.05 0.01814 0.254 0.241 7.3 0.4 0.0224

G36 26.4 0 0.049 0.186 0.295 0.292 5.66 1.5 0.0322

G37 24.3 0 0.057 0.0911 0.290 0.280 6.7 0.41 0.028

G38 34.5 0 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298

G30 42.0 0 0.031 0.008 0.1 0.069 10.2 0 0.0125
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C.2 Line/Transformers

Line and transformer data for the network as shown in tables below

Line Data

From Bus To Bus R(Ω) X(Ω) B(Ω)

1 2 0.0035 0.0411 0.6987

1 39 0.001 0.025 0.75

2 3 0.0013 0.0151 0.2572

2 25 0.0070 0.0086 0.1460

3 4 0.0013 0.0213 0.2214

3 18 0.0011 0.0133 0.2138

4 5 0.0008 0.0128 0.1342

4 14 0.0008 0.0129 0.1382

5 6 0.0002 0.0026 0.0434

5 8 0.0008 0.0112 0.1476

6 7 0.0006 0.0092 0.113

6 11 0.0007 0.0082 0.1389

7 8 0.0004 0.0046 0.0780

8 9 0.0023 0.0363 0.3804

9 39 0.0010 0.0250 1.200

10 11 0.0004 0.0043 0.0729

10 13 0.0004 0.0043 0.0729

13 14 0.0009 0.0101 0.1723

14 15 0.0018 0.0217 0.3660

15 16 0.0009 0.0094 0.1710

16 17 0.0007 0.0089 0.1342

16 19 0.0016 0.0195 0.3040

16 21 0.0008 0.0135 0.2548

16 24 0.0003 0.0059 0.0680

17 18 0.0007 0.0082 0.1319
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From Bus To Bus R(Ω) X(Ω) B(Ω)

17 27 0.0013 0.173 0.3216

21 22 0.0008 0.0140 0.2565

22 23 0.0006 0.0096 0.1846

23 24 0.0022 0.0350 0.3610

25 26 0.0032 0.0323 0.5130

26 27 0.0014 0.0147 0.2396

26 28 0.0043 0.0474 0.7802

28 29 0.0014 0.0151 0.2490

Transformer Data

From

Bus

To Bus R(Ω) X(Ω) B(Ω) Tap

Magni-

tude

Tap

Angle

12 11 0.0016 0.0435 0.0000 1.006 0.0

12 13 0.0016 0.0435 0.0000 1.006 0.0

6 31 0.0000 0.0250 0.0000 1.070 0.0

10 32 0.0000 0.0200 0.000 1.070 0.0

19 33 0.0007 0.0142 0.000 1.070 0.0

20 34 0.0009 0.0180 0.000 1.009 0.0

22 35 0.0000 0.0143 0.000 1.025 0.0

23 36 0.0005 0.0272 0.000 1.000 0.0

25 37 0.0006 0.0232 0.000 1.025 0.0

2 30 0.0000 0.0181 0.000 1.025 0.0

29 38 0.0008 0.0156 0.000 1.025 0.0

19 20 0.0138 0.000 1.06 0.0

C.3 Load Bus

Load Bus Information of the network is shown in table below



C.3 Load Bus 101

Bus Type MW MVAR

3 Static 322 2.4

4 Dynamic 500 184

7 Static 233.8 84.0

8 Dynamic 522 176

12 Dynamic 7.5 88

15 Static 320 153

16 Static 329 32.3

18 Static 158 30.0

20 Static 628 103

21 Dynamic 274 115

23 Static 247.5 84.6

24 Static 308.6 -92.0

25 Static 224.0 47.2

26 Static 139 17.0

27 Dynamic 281 75.5

28 Static 206 27.6

29 Static 283.5 26.9

39 Static 1104 250

Static loads exhibit constant impedance. Dynamic loads are modelled as shown in following

equations with np = 1.3 and nq = 2

P = P0(
V

V0
)np (C.1)

Q = Q0(
V

V0
)nq (C.2)
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C.4 Generator Bus

Bus Gen. Num. Volt[pu] MW MVAR

30 G30 1.0475 250 0

31 G31 0.9820 -9.2 -4.6

32 G32 0.9831 650 0.0

33 G33 0.9972 632 0.0

34 G34 1.0123 508 0.0

35 G35 1.0493 650 0.0

36 G36 1.0635 560 0.0

37 G37 1.0278 540 0.0

38 G38 1.0265 830 0.0

39 G39 1.03 1000 0.0

C.5 Exciter

All generators except G39 are equipped with an IEEE Type 1 exciter whose parameters

are

Parameter Information Values

Low Pass Filter Time Constant Tr(s) 20E-3

Regulator Gain Ka 5

Regulator Time Constant Ta 0.06

Exciter Gain Ke 1

Exciter Time Constant T e 0.5

Damping Filter Gain Kf 0.08

Damping Filter Time Constant Tf 1

Maximum Regulator Output Emax
f 3.5

Minimum Regulator Output Emin
f -3.0

Transient Gain Reduction Tb 0

Transient Gain Reduction Tc 0

C.6 Turbine and Governor

All generators except G39 are equipped with turbine and governor whose parameters are
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Parameter Information Values

Regulator Gain Kp 20

Regulator Droop Rp 0.05

Speed Relay Time Constant Tsr 0.001

Servo motor time Constant Tsm 0.15

Minimum rate of gate opening V min
g -0.1

Maximum rate of gate opening V max
g 0.1

Minimum gate opening gmin 0

Maximum gate opening gmax 10

Steam Turbine constants [T2 T3 T4 T5 ] [0.32 10 0.13 0.12]

Turbine torque fractions [F2 F3 F4 F5 ] [0.5 0.5 0 0]
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