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"Disputed loud and long, 
Each in his own opinion 
Exceeding stiff and strong, 
Though each was partly in the right, 
And aIl were in the wrong!" 

John Godfrey Saxe 
"The Blind Men and the Elephant" 
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ABSTRACT 

In 1986 Thereza Imanishi-Kari, then an assistant professor at the Massachusetts 

Institute of Technology, was at the peak of her career. She had just coauthored a 

paper in the prestigious journal Cell with David Baltimore, a Nobellaureate. Their 

research was exciting and their findings promising. 

Margot O'Toole, Imanishi-Kari's postdoctoral fellow at the time, was unable 

to reproduce sorne of the experimental results published in the paper and could 

not resolve this with her postdoctoral supervisor. Subsequently, O'Toole became 

convinced that there were serious errors in the paper and, shortly afterwards, the 

National Institutes of Health began officially investigating the questions she raised 

about it. 

It may have been simply a character clash between Imanishi-Kari and O'Toole 

but partly due to the involvement of a figure such as Baltimore, this clash possibly 

ruined their careers, took 10 years to settle down, cost millions of dollars of public 

money, polarized the scientific community, and went down in history as one of the 

most widely followed cases of scientific fraud. 

Based on statistical, forensic and other evidence, Imanishi-Kari was found guilty 

of scientific misconduct and banned from receiving public funding for 10 years. This 

was not the end of the matter, however, because Imanishi-Kari appealed the decision 

and was later exonerated. 

In this thesis, we tell the statistical story by putting forward the statistical 

arguments that were used against lmanishi-Kari and the counterarguments to them. 
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ABRÉGÉ 

En 1986, la carrière de Thereza Imanishi-Kari, professeure adjointe à l'institut de 

Technologie du Massachusetts, était en plein essor. Elle venait de coécrire un article 

dans le prestigieux journal CeU avec David Baltimore, un lauréat du prix Nobel. 

Leur recherche était intéressante et leurs résultats prometteurs. 

Margot O'Toole, contemporaine de lmananishi-Kari au postdoctorat l'époque, 

était incapable de reproduire certains des résultats expérimentaux publiés et ce, 

même avec l'aide de son directrice de recherche aux études postdoctorales; elle 

devint donc convaincue que le rapport comportait de sérieuses erreurs. S'ensuivit une 

enquête officielle par l'Institut national de la santé sur les doutes émis par O'Toole. 

Ce qui aurait pu n'être qu'un malentendu ou un conflit de personnalité entre 

deux chercheurs devint un problème notoire dans la communauté scientifique à cause 

de l'implication de figures proéminentes comme Baltimore; le litige dura 10 ans et 

coûta des millions de dollars en fonds publics. La controverse aurait facilement pu 

détruire la carrière des deux femmes. . 

Sur la base de preuves statistiques, légales et autres, lmanishi-Kari fut reconnue 

coupable de mauvaise conduite scientifique et il lui fut interdit de recevoir des bourses 

publiques pour 10 ans. L'affaire ne s'arrêta toutefois pas là, puisque Imanishi-Kari 

en appela de la décision et fut exonérée. 

La présente thèse vient analyser l'enchainement statistique des événements qui 

se sont déroulés, par le biais des arguments qui utilisés contre Imanishi-Kari et des 

arguments qui ont servi à la déculpabiliser. 
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CHAPTER 0 

The Road To This Thesis Topie 

During my qualifying year in the Masters program, l took my first courses 

in statistics. Until then, l really did not know what statistics was about. l had 

gone through a Bachelor's degree without ever being exposed to statistics from the 

academic point of view; l only knew of statistics, as most of people know it, as 

pervading the news, on the weather channel, in sports, in fact in nearly every aspect 

of everyday life. 

Because of the poor reputation that statistics (unjustly) carries, l acquired an 

interest in the misuse of statistics and l felt that my Masters thesis would be a great 

opportunity to learn more about the possible source of sorne of this suspicion about 

statistical practice. To provide greater focus, l decided to draw upon my other strong 

interest, health, and thus l came to "the misuse of statistics in the field of medicine." 

With these key words in mind, l was quickly led, through an online search, to 

Professor Douglas Altman, who is currently the director of Centre for Statistics in 

Medicine and Cancer Research UK Medical Statistics Group. l was so determined 

to learn more about this questionable side of statistics that not even the fact that 

he was in England and l in Canada prevented me from contacting him to see if he 

would be interested in being my supervisor. Thankfully, he was wiser than I, and 
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after initial interest, he politely declined, explaining to me that overseas supervision 

would be too complicated. 

Next, I entered into communication with Professor Chamont Wang at Trenton 

State College, New Jersey, whose book "Sense and Nonsense of Statistical Inference," 

I was reading at the time. He was quick to offer help and support which I shall not 

fbrget. 

And, as if that was not enough, I was also communicating eiectronically with 

Professor Herbert F. Spirer at Columbia University, New York, whose book, "Misuse 

of Statistics," I was reading as weIL For approximately the full summer, he kept 

"alerting" me to aIl the current misuses that were taking place in the news as weIl 

as to other interesting on es about which he knew. 

At around that time, the person responsible for me taking up statistics in the 

first place sat me down, told me, essentiaIly, "to calm down" and that he and I 

cou Id look up some topics on the misuse of statistics and "take it from there." This 

person is my current supervisor, Professor David Wolfson, to whom I shall be forever 

thankfuL 

He gave me three ideas: the ongoing breast cancer screening controversy, the 

studies on therapeutic touch and the case of Imanishi-Kari. The goal, essentially, was 

to have the thesis comprise of three or four cases where statistics had been rnisused. 

AlI were intriguing and 1 spent most of the summer of 2005 reading up on them and 

accurnulating knowledge. 
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While l was researching the case of Imanishi-Kari, l contacted Professor Terence 

Speed of the University of California at Berkeley, sin ce l cou Id not obtain the statis­

tical analysis, which had played an important role in the initial finding of scientific 

misconduct. Professor Speed who had, as a statistical expert, defended Imanishi­

Kari, had already communicated with a fellow student, Geva Maimon, a couple of 

years before. By the beginning of the academie year, l had the report on the statis­

tical analysis in my possession, eourtesy of Professor Speed. 

It soon beeame clear to my supervisor and me that the full thesis cou Id concen­

trate on the case of Imanishi-Kari alone. 

It is my sincere hope that you will find this thesis topie as intriguing as l did. 

Happy reading! 
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"Those were horrible years. 1 want to make sure that people know 

that 1 was exonerated - and that 1 am just like anybody else." 

Reprinted by permission from Macmillan Publishers Ltd: NATURE MEDICINE, Volume 12, 

Issue 5, pages 492-493. Where are they now? by Paroma Basu. @2006 





CHAPTER 1 

Introduction 

In 1986, David Weaver, Moema H. Reis, Christopher Albanese, Frank Con­

stantini, David Baltimore and Thereza Imanishi-Kari published a paper in the 45th 

volume of the prestigious journal Cell. (Weaver et al., 1986) In 1994, the Office 

of Research Integrity (ORI) found Imanishi-Kari guilty of scientific misconduct for 

deliberately falsifying data, which appeared in the paper, and data, which she sub­

sequently used to oppose the initial charges. (Grigg, 1994) Imanishi-Kari appealed 

the ORI's decision. In 1996, the Research Integrity Adjudication Panel, Departmen­

tal Appeals Board, Department of Health and Human Services, concluded that the 

evidence was not sufficient to support a case of misconduct. (Department of Health 

and Human Services, Departmental Appeals Board, Research Integrity Adjudica­

tions Panel, 1996) In this chapter we briefly recount the turn of events that led to 

the initial indictment of Imanishi-Kari and, later, to her exoneration. 

The results reported in the Cell paper and the main conclusion drawn by its 

authors had minor, though important, implications for the treatment of weakened 

immune systems caused by diseases such as AIDS. The conclusion was and still is 

controversial within the biological sciences community. 
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The immune system pro duces a large number of antibodies. Antibodies are 

proteins, which attack antigens, that is foreign substances, entering the body. The 

antibodies attack the antigens by binding to them. Once the immune system has 

produced antibodies to fight a specifie type of antigen, those antibodies will always 

be present in the body and ready to counter that specific type of antigen the next 

time it enters the body. That is why people generally suffer from viral diseases such 

as mononucleosis (mono) or chickenpox, only once. 

In certain mice, antibodies display a distinctive, genetically determined, chemi­

cal feature called an idiotype. These idiotypes can be used to study the inheritance 

of the genes that pro duce antibodies. 

Imanishi-Kari had obtained a certain kind of antibody from hybridomas (fast 

growing cell-cultures) developed from an inbred strain of mice. Researchers at the 

laboratory supervised by Baltimore were able to extract the DNA that characterized 

these antibodies. Baltimore's idea was to engineer a gene containing this DNA, insert 

that gene into mi ce that were known to be missing it and then observe their immune 

response. Scientists call such gene a transgene and such mice transgenic mice. 

Apart from the fact that Frank Constantini, a biologist at Columbia University, 

produced the transgenic mice, all experiments were conducted in the laboratories 

supervised by Imanishi-Kari and Baltimore at the Massachusetts Institute of Tech­

nology (MIT). Baltimore created, in his laboratory, a colony of the transgenic mice 

obtained from Constantini. His postdoctoral fellow, David Weaver, carried out the 

molecular analysis of the antibodies. Baltimore wanted to know more about the 

antibodies circulating in the blood of the mice but he had neither the skills nor the 
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equipment for such analysis. Hence, he asked lmanishi-Kari to carry out comple­

mentary serological analysis of the antibodies. 

Both independent analyses reached the same unexpected conclusion about the 

results of the experiment, namely, that antibody produced by the transgene appeared 

in the newly born mice. The central daim of the CeU paper was that this was due 

to "idiotypic mimicry." That is, the introduced gene did not cause the production of 

these foreign antibodies but rather it caused the immune system of the transgenic 

offspring to produce antibodies, which mimicked those foreign antibodies. 

In the summer of 1985, Margot O'Toole was hired by lmanishi-Kari as a post­

doctoral fellow to find out exactly how "idiotypic mimicry" worked. To understand 

better the experimental process, O'Toole attempted to repeat the experiments pub­

lished in the Cell paper. She was unsuccessful at reproducing its results. Frustrated, 

O'Toole turned to lmanishi-Kari for explanation and requested to see the original 

laboratory notebooks. 

In the spring of 1986, O'Toole found seventeen pages of lab notes that lmanishi­

Kari's fellow Brazilian co-worker, Reis, and also co-author to the paper, had left 

behind. O'Toole found discrepancies between what was recorded and what was 

reported in the paper. For example, Figure 1-1 below shows a sample of one of 

these seventeen pages. This page recorded measures for antibody production of a 

normal mouse. The column, to which the arrow is pointing, indicates unusually high 

antibody production considering that this mouse was known to be missing the gene. 

The antibody count in mice with the foreign gene and in mice without it were similar. 

This implied that the presence of the transgene made no difference to the level of 
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antibodies produced by the experimental mice contrary to what was concluded in 

the paper. 

10 



'\-' , 

. 

" 

... " 
Il ~ 

.. .. 

t 

,', '~ 

,;-" . 
" 

" " 
'. 
,~, 

- " 

" -'. 
-

_ f ,,<';'; 

'l, N,!~' l, 

" ',"1 

t",. 
" 

f 
,f 

'. 1 , 
'" .' " , 

" 1 

" 

Reprinted by permission from W. W. Norton fj Company, Inc. The Baltimore Case: A Trial 

of Politics, Science, and Chamcter by Daniel J. Kevles. @1998 

Figure 1-1: One of the 17 pages O'Toole found in Reis's notebook showing antibody 
production of a normal mouse. 
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Since Imanishi-Kari did not provide any of the original results to O'Toole, her 

discovery of these seventeen pages became one of the turning points in the history 

of the case. O'Toole began seriously doubting the veracity of the results published 

in the Cell paper. One event led to another and, eventually, in the spring of 1987, 

the National Institutes of Health (NIH) began its first official investigation into the 

case of Imanishi-Kari's scientific misconduct. 

Ending early 1989, the first investigation of the NIH found that there were "sig­

nificant errors of mis-statement and omission ... [but] no evidence of fraud, conscious 

misrepresentation, or manipulation of data." (Anderson, 1991) A few months later, 

the NIH's newly formed Office of Scientific Integrity, which was later renamed to 

the Office of Research Integrity (ORI), reopened its investigation. As a result of 

this investigation, the ORI found lmanishi-Kari guilty of nineteen charges of scien­

tific misconduct. The ORI used forensic analysis, statistical analysis, and scientific 

evidence to reach its conclusion. 

All three tables of the Cell paper were doubted and believed to contain falsified 

or fabricated data. It was also believed that the results plotted in sorne of the figures 

in the paper did not pertain to true experiments. Examples of the paper's disputed 

tables and figures are given in Table 1-1 and Figure 1-2 below. 

12 



·Table .2. l'ro<!l'',,,;y'OII7,?Z IdlO1ypè'Pi<JWcilig HYI>ri~Oma$ 
in NOrmal. SM !i'ans.9éniG"Mk:c 

'11.2.26. 17~25~Iii~:Plu.: . 
ldiotype' . 'À!'1I-N1" Ailit,Np 

Organ P(>oltlVe (~) (l,) i!~ .pb. 

Normal li"," .. 1'1144 i t lf44 ~144 01144 01144 
«i~) 

NtinnalLymph OMo iJlldo 01100 M!lO 01100 
tiodos 

7" ...... 19 $,pteen 4:tllsO. 0143 7~143 giM3 1143 
(28~ 

Tr.~ 12$1190 aM9 111112!l 331129 10/129 
t.ymphNodos ~) 

B",!q~,..,.~flà"'JIP_lI/Idlymph"""'ot1ral\i. 
9en"'.n.i,~ C67B!J8·I!lic:e;s.cr.tect tg Ifom bYb,klo ... w .. 
.... ~.Io..~I<>~_I7.2..2!l'ièliol)'ptc antlbDdr or for NP· 
bI"iItngIVm\'olt.hfi1.OT" IiIIhl"" .... , lhe ~ ot\liëhi\>ilèlom'" 
Ihat~thO'I~_.~Y;;~ byllMi.~Ù'aIiOtypean"bà<I. 
1 .. ~.fI;gu~ 1)10 o;ooi>c:I ... 1he alif>l7.2.2!;'tdfolyJlè bJndingwRh 
ellher·1!Hi ~ •• ",~~ iIIIot\'f1a • 
• W"~~I)'", ~ to ... ~"7.~:25. 
t Not 11.ù!i td,~ * l1I7".,.~ ID'hllVO p·,.lIoIype. 
_"",,,,to ... rlD œLbeaiing tg. ond 719 ...... I<>rind lobe .-be"1n!I 
clg .. 

Table 1--1: Table 2 of the Cell Pa.per (Weaver ct al., 1986) 

50 

i 
'" ti .t---L----'-~="'-_I 
~ 
"-

Hl(} 

Reprinted by permission from W. W. Norton f3 Company, Inc. The Baltimore Case: A Trial 

of Politics, Science, and Chamcter by Daniel J. Kevles. @199S 

Figure 1-2: Figure 1 of the Cell paper. 
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We include these figures at this stage in order to aid the reader in better un­

derstanding the controversy that surrounded them. Table 1-1 illustrates the much 

disputed Table 2 of the CeU paper.The ORI believed that the data in this table did 

not exist at the time the paper was published. Rather, it believed that an entire data 

set had been falsified to provide data reported in this table after doubts had been 

raised about its validity. The next chapter examines in detail the ORI's statistical 

analyses of the evidence for the falsification of this data set. Figure 1-2 illustrates 

one of the seven figures in the CeU paper. The forth points on each of the curves, 

highlighted in the figure, were under dispute. 

A standard practice for experiments like those performed in the CeU paper is to 

use a radiation counter to identify the presence or absence of antibodies. A reagent 

is used that reacts with a specifie antibody. If the antibody is present, the reagent 

will react with it, emanating radiation. The intensity of that radiation is measured 

in counts per minute. The radiation counter prints out these counts per minute on 

so caUed counter tapes. 

The Secret Service investigated Imanishi-Kari's experimental records. In par­

ticular, it obtained her counter tapes and compared them against other researchers' 

contemporaneous counter tapes. For instance, Figure 1-3 below exhibits a pho­

tograph of sorne of the tapes the investigators compared. The central tape, which 

stands out in clarity from the rest, belongs to Imanishi-Kari. The Secret Service con­

cluded that Imanishi-Kari's tapes were more recent than they were actually dated to 
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be. This did not immediately suggest fraud but it provided evidence that Imanishi­

Kari had not performed sorne of her experiments on the date that she had indicated. 

Reprinted by permission fram Macmillan Publishers Ltd: NATURE, Volume 347, Issue 6293, 

page 507. Science meets forensic science by Christopher Anderson. @1990 

Figure 1-3: A photograph of sorne of the radiation counter tapes, which the Secret 
Service invcstigated. 

The ORI performed three statistical analyses using techniques of serial correla-

tion, Poisson mixture models and distribution of digits. (Office of Research Intergrity 

Report, 1994) James Mosimann, an adjunct professor at the American University, 

was the ORI's statistical expert, and Austin M. Barron, an associate professor at 

the same university, was brought by the ORI from outside the NIH to analyze, in 
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part, the correctness of Mosimann's statistical arguments. (Department of Realth 

and Ruman Services, Departmental Appeals Board, Research Integrity Adjudica­

tions Panel, 1996; Kevles, 1998) After Imanishi-Kari appealed the ORI's decision, 

Terence Speed, a professor at the University of California at Berkeley, testified on 

her behalf for the statistical analyses performed by the ORI. 

In the next three chapters we delve into what became known as "The Baltimore 

Case," by examining the statistical arguments put forward by the ORI, and the 

counterarguments to them. 
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CHAPTER 2 

Seriai Correlation 

Table 2 of the CeU paper reported data for transgenic mi ce and normal mice. 

Much of the normal mouse data were taken from Imanishi-Kari's notebook. The 

rest of the data in the table were taken from Reis's notebook. Since a normal 

mouse in that experiment was later discovered to be actually transgenic, lmanishi-

Kari confirmed during the investigation that she had used no~mal mouse data from 

another, earlier, experiment instead. The ORI believed that the entire data set, 

known as the January fusions 1 , was falsified by lmanishi-Kari in an attempt to 

produce data for Table 2 that otherwise did not exist. 

The ORI analyzed data sets of radiation counts from comparable fusion exper-

iments presented in three notebooks belonging to Imanishi-Kari, Reis and Weaver, 

respectively. The datafrom lmanishi-Kari consisted of a series of gamma radiation 

counter tapes. The purpose of the analysis carried out by the ORI was to determine 

if the radioactivity counts on these tapes were authentic records of a fusion experi-

ment. In particular, the ORI analyzed disputed data from lmanishi-Kari's notebook 

l Fusion experiments (also referred to as fusions) In this context, it refers to 
expcrimcnts measuring antibody production by cells, which arc a fusion of a normal 
ccU with a canccrous celI. A fusion of two ceUs rcfcrs to the union of two eeU nuclei. 
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and also compared her data with data that were not in dispute from Reis's and 

Weaver's notebooks. 

Antibody-growing cells from the transgenic mice were placed in weIl plates. Each 

of the wells was inserted into a tube in a rack, which was then placed in the radiation 

counter. Figure 2-1 below illustrates this pro cess for a 96-well plate. 

.j Radiation 
1 •• Coùriter 

! 

1 __ 

~_._-------' 

L_,..~_~_ 

ge-well 
plate 

(a"x5?) 

The radiation· 
ootlllter 

meaSurèS the 
radlalleniri 
each.lube 
separately 

Reprinted by permission from W. W. Norton & Company, Inc. The Baltimore Case: A Trial 

of Politics, Science, and Character by Daniel J. Kevles. @1998 

Figure 2--1: Wells are put into tubes on a rack, whieh is then placed in the radiation 
counter. It measures the antibody production by cells in each weIl as radiation counts 
per minute (cpm). 

The higher the number of antibodies produced in a weIl, the higher the radioac-

tivity count for that weIl. Since the number of antibodies produced in any of the 

wells on a particular plate was assumed to be random, no pattern between high 

and low counts should have been observed. In other words, it was expected that if 
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the counts were authentic, then there would have been little or no seriaI correlation 

between high and low counts. 

A sequence of auto correlation coefficients was obtained by comparing each cou nt 

with the cou nt immediately following it, and with the count after that and so on 

up to the 30th subsequent count. Let Wi be the radiation count for the ith weIl, 

i = 1,2, ... , n. (Most of the plates used in the experiments were 96-well plates. 

Thus, for a single such plate, n = 96.) Further, if it is assumed that the pro cess of 

counts {Wi } is weakly stationary, that is 

E(Wi ) = IL for i = 1,2, ... ,n, 

and 

Cov(Wi , Wi+j) = 'Yj for i = 1,2, ... , n and j = 0,1,2, ... , min (30, n - i), 

then the correlation coefficient Pi,j is only a function of the number of lags j, and is 

given by 

(2.1 ) 

The OR! report did not specify why the number of lags, j, was taken to be at 

most 30. However, it is important to note that, as Box et al. (1994) suggest is done 

in practice, in order to obtain a good estimate of the autocorrelation function, it is 

necessary that n > 50 and j :s; n/4. 

Let Wi be the radiation count observed for the i th weIl, i = 1,2, ... , n. The 

authors of the OR! report refer to two estimators of 'Yj' (Abraham and Ledolter, 
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1983; Kendall et al., 1983) The first estimator is given by 

and the second estimator by 

1 n-j 

ij2 = --. 2:)Wi - w)(Wi+j - w) 
n - J i=l 

where W = ~ 2:f=l Wi and j = 0,1,2, ... , min(30, n - i). 

(2.2) 

(2.3) 

Kendall et al. (1983) assert that (2.2) is preferred over (2.3), because it has 

smaller mean square error in most applications. The estimator used by the ORI 

is not made clear in the report but its authors appear to have used (2.3) in their 

analysis. (We explore this issue further in Section 2.4.) Hence, their estimator of the 

correlation coefficient, Pj, as a function of the number of lags j is given by 

(2.4) 

where j = 0,1,2, ... , min(30, n - i). 

In the next section, we describe the data that were examined in these seriaI 

correlation analyses. 

2.1 Data Under Scrutiny 

The disputed Table 2 of the Cell paper reported data from the experimental 

records of Imanishi-Kari and Reis. The ORI did not question the veracity of the 

data from Weaver and Reis, while the data from Imanishi-Kari's notebooks were 

the subject of close scrutiny. In fact, the ORI used Weaver's and Reis's data as the 

control data sets in their analyses. 
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Moreover, the ORI carried out computer simulations aiming to illustrate how 

various patterns in data can produce certain trends in the seriaI correlations. Con­

sider, for example, environmental data, where seriaI correlation is very common. 

Suppose we are to compute the seriaI correlations of the average monthly tempera­

tures for, say, a 10 year period starting January of Year 1 and en ding December of 

Year 10. Since we have 12 observations per year over a 10 year period, we have a 

sample size of 120 observations. As discussed in the previous section, for a proper 

estimation of the seriaI correlations we should restrict the maximum number of lags, 

j, to at most 120/4 or 30. 

Now, from one day to the next, high temperatures in summer tend to stay high 

and, similarly, low temperatures in winter tend to stay low. This behavior is very 

similar from year to year. Therefore, the average temperature in January of Year 1 

is likely to be positively correlated with the average temperature in January of the 

subsequent years but negatively correlated with the average temperature in July of 

Year 1 as weIl as in July of subsequent years. Therefore, theoreticaIly, we should 

have that PIZ = 1, whereas P6 = -1. Thus, if we are to plot the seriaI correlations 

estimated from our 120 average monthly temperatures against the number of lags, 

which we restrict to 30, we would expect to see a cyclical function and, in particular, 

a function with a cycle of length 12. 

The first three sets of graphs displayed in Figure 2-2 below are examples of the 

computer simulations carried out by the ORI, while the forth set of graphs illustrates 

the seriaI correlations computed from Imanishi-Kari's data. Although it is not ex­

plicitly specified in the ORI report, it appears that the data sets for the simulations 
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exhibited in Figure 2-2 were generated reflecting the pattern the ORI claimed to 

have observed in Imanishi-Kari's original data. That is, the ORI's analysts observed 

a cyclical pattern of length 12 in the seriaI correlations computed from her data and 

wanted to show that inducing a specifie pattern in a randomly or deterministically 

generated data can cause this type of pattern in the seriaI correlation function. 
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Figure 2--2: Computer simulations showing how certain patterns in data can cause 
strong cydical patterns in the observed seriaI correlations. (Office of Rcscarch In­
tergrity Report, 1994) 
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In Figure 2-3 below we reproduce the third simulation, which was deterministic, 

from Figure 2-2. 

C! ..... 
'" g 
'" ." 

~ ci 
0 

Ü 0 
ëii 
~ 

ci 

CI) ." 
ci 
1 

o 20 40 60 80 100 120 o 5 10 15 20 25 30 

SampleNo. NLAG 

Figure 2-3: One of the deterministic simulations in Figure 2-2 is reproduccd here. 
NLAG refers to the number of lag variables (j in our case). 

Reading off the values from the left plot in Figure 2-3, we have 120 samples of 

radiation count, Wl, Wz, ..• , WIZO, where 

Wz = Wl4 = ... = Wno = 5.5 x 10-4 

WIZ WZ4 = ... = WIZO = 0.5 X 10-4
. 

Then, using (2.4) we obtain a sequence of 30 correlation coefficients, Pi for j 

1, ... ,30, which are plotted in the right graph in Figure 2-3. 

In its analysis, the ORI assumed that the observations taken from neighboring 

wells were independent. Now, if the n radiation counts W 1 , ..• , Wn were independent 
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and identically distributed, then we should have that Po = 1 and Pi = 0 for aIl 

j - 1,2, ... ,30. In this case, if n is large, the estimated autocorrelations, Pi for 

J 0,1,2, ... ,30 from the observed radiation counts Wl, ... , W n will be roughly 

independently and normaIly distributed with mean 0 and variance lin. (Box et al., 

1994) 

We next recount the evidence for fraud that the ORI accumulated based on 

these statistical analyses. 

2.2 Evidence of Scientific Fraud 

EssentiaIly, the ORI carried out two types of comparisons. First, it compared 

the seriaI correlations estimated from data on different pages from lmanishi-Kari's 

notebook only. Second, it compared the seriaI correlations estimated from lmanishi­

Kari's data to the seriaI correlations estimated from unquestioned data recorded in 

the notebooks of Reis and Weaver. 

In the first type of comparison, the ORI compared the seriaI correlations esti­

mated from data on pages 102, 103 and 104 in Imanishi-Kari's notebook. The ORI's 

main observation was that the seriaI correlations estimated from data on pages 102 

and 104 exhibited a strong cyclical pattern with a cycle of length 12 but the rela­

tionship differed, it became weaker, when data from page 103 was included in the 

estimation of the seriaI correlations. Figure 2-4 below exhibits the graphs of these 

seriaI correlation functions. 
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Figure 2-4: Comparisons of seriaI correlations estimated from Imanishi-Kari's data 
aIone. (Office of Research Intergrity Report, 1994) 
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According to the report , there existed independent forensic evidence, which sug­

gested that data on page 103 could not have been part of the continuous experimental 

record reported on pages 102 and 104. The forensic analysts claimed that the counts 

were recorded before Imanishi-Kari had obtained the mice! According to the ORI, 

the statistical analysis only gave more support to this finding. With the seriaI cor­

relations exhibiting a different pattern depending on whether or not data from page 

103 was included, the ORI concluded that data on page 103 had been inserted into 

the data reported on pages 102 through 104 and, hence, that "the purported contin­

uous experimental record was actually discontinuous." (Office of Research Intergrity 

Report, 1994) 

In the second type of comparison, the ORI found that the seriaI correlations 

estimated from Imanishi-Kari's data revealed a strong cyclical pattern. In contrast, 

when the ORI compared the estimated seriaI correlations obtained from comparable 

fusion experiments by Reis and Weaver, it observed no apparent cyclical pattern. 

Figures 2-5 and 2-6 below illustrate the seriaI correlations estimated from data from 

Imanishi-Kari and from Weaver, respectively. 
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Figure 2--5: SeriaI correlations estimated from data from Imanishi-Kari's notebook. 
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The ORI claimed that this cyclical pattern was "profoundly different than the 

pattern seen in the unquestioned data, and appear[ed] to be highly non-random." 

(Office of Research Intergrity Report, 1994) As the ORI frazed it, Imanishi-Kari's 

data appeared only "superficially similar" to Weaver's data. The ORI considered 

this as an additional evidence that the data set did not represent an authentic ex­

periment al record. 

It is important to point out that, presumably, the ORI combined radiation 

counts on several pages to increase the sample size. As was mentioned earlier, for a 

reliable estimation of the correlation fun ct ion , practice suggests that it is necessary 

to have the sample size, n, greater than 50. Also mentioned earlier was the fact that, 

if the observations are independent and identically distributed, we would expect the 

estimated seriaI correlations to be roughly independently and normally distributed 

with mean '0 and variance lin. Although no formaI justification is presented, the 

graphs in Figures 2-5 and 2-6 show that Weaver's data are consistent with the null 

hypothesis of independence of the radiation counts but Imanishi-Kari's data are not. 

Since the estimated seriaI correlations were not consistent with those arising 

from independent counts, the ORI doubted their authenticity. While examining 

these weIl counts, the ORI investigators came across what they believed to be an 

anomalous sequence of positive wells. 

The cells, once pipetted into the wells, can either grow or not grow. Wh ether 

the cells grow or not is considered to be a completely random process. Wells with cell 

growth are referred to as positive wells. The investigators found that of 260 wells, 

137 were positive. The last 15 wells, that is, 246-260, were aIl positive. Mosimann 
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calculated that the "probabiIity of ending with 15 consecutive positive wells [was] 

less than 0.0001." (Office of Research Intergrity Report, 1994) Explicitly, given that 

the data are not fraudulent, 

Pr(Iast 15 of 260 aIl positive) = ~~:~ = 2îs = 0.00003 < 0.0001. 

Renee, the ORI believed that the low probability of the event added more weight to 

the case of fraud. 

In the next section, we examine the objections raised to these analyses by the 

Appeals Board based on the testimony by Speed. 

2.3 The Counterarguments 

Speed countered that there were three major flaws with the analysis above. 

Re said that the right question had not been asked, he doubted the underlying 

assumptions and he questioned the appropriateness of the control data sets. 

Speed argued that, when calculating the probability of 15 consecutive positive 

wells, Mosimann asked the wrong question. Using the analogy of obtaining 20 con­

secutive heads in 100 tosses of a coin, Speed explained that Mosimann had found the 

probability of the event of 15 consecutive positive wells on a particular plate when, 

in fact, he should have found the probability of the event on any of Imanish-Kari's 

many plates. (Kevles, 1998) 

Next, the ORI assumed that for aIl such fusion experiments, the level of antibody 

in one weIl is not influenced by the level of antibody obtained in the surrounding 

wells. (Office of Research Intergrity Report, 1994) Speed pointed out that although 
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this may be the case in an ideal situation, in an experiment this assumption may not 

hold. 

Finally, Speed argued that Weaver's data set was not comparable to lmanishi­

Kari's and, hence, was not a valid control. (Kevles, 1998) In fact, the Appeals Board 

concluded that there were "problems with relying on the" controls.'''' (Department 

of Health and Human Services, Departmental Appeals Board, Research Integrity 

Adjudications Panel, 1996) This is discussed in more detail in the next chapter on 

Poisson mixture models. 

2.4 A Third (My) Opinion 

In addition to the objections raised by Speed, there are various other issues with 

these analyses that need to be addressed. 

Covariance Estimators. As was mentioned earlier, there seems to be some 

ambiguity whether (2.2) or (2.3) was used as an estimator of li wh en calculating the 

seriaI correlations. Figure 2-7 below compares, graphically, the two estimators. 
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Figure 2-7: Comparing the seriaI correlations estimated using (2.3) (the ORI result) 
and (2.2) (the prcferred estimator). 

Since we do not have the original data sets, we cannot investigate if using (2.2) 

instead of (2.3) when estimating the seriaI correlations from Imanishi-Kari's data 

would have lead to different conclusions by the OR!. 

Post Hoc Analyses. Another possibly serious fiaw in the analyses performed 

by the ORI is the fact that many of them were carried out post hoc. 

For instance, the data generated for the computer simulations followed a cyclical 

pattern with a çycle of length 12. The choice for the length of the cycle seems to 

have been infiuenced by the fact that the ORI observed a similar pattern in the serial 

correlations estimated from Imanishi-Kari's data. In other words, the choice of cycle 

period was a post hoc choice. 

As another example, Mosimann calculated the probability that the last 15 

wells would aIl be positive because he had observed this out come in lmanishi-Kari's 
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records. However, one could argue that all such probabilities should be calculated 

conditioning on the fact that the event has already taken place. This changes the 

sample space and, therefore, the probability. Hence, Mosimann's calculation could 

be rendered invalid. 

Letting 

A = {last 15 consecutive positives in 260 wells} (2.5) 

and 

B = {o bserved event A}, 

then, trivially, the conditional probability is given by 

Pr(AIB) = 1, 

in contrast to the unconditional probability of 0.00003 calculated by Mosimann. 

Incorporating A vailable Information in the Probability Calculation. 

It is worth pointing out that in the sam pIe Mosimann was considering for the prob­

ability calculation, more than half of the wells were positive. Define the event 

c = {observed 137 positives in 260 wells} 

and let the event A be defined as in (2.5). 

Pipetted cell cultures in a weIl may or may not grow. De BIas et al. (1981) 

estimate the probability of growth, p, for monoclonal (single clone) ceIl cultures to 
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be 

A number of wells with growth 
p= -----------------------

total number of wells 

Any particular weIl may contain one or more clones of cells. The more cells 

there are, the likelier it is that they will grow. (Newkirk, 2006) This suggests that 

the probability of cell growth is not identical across the wells. 

Imanishi-Kari claimed that most wells contained a single clone and the few 

that did not, contained two or at most three clones. (Kevles, 1998) However, since 

the number of cells a weIl would contain was completely determined by chance and 

not induced in any systematic way by Imanishi-Kari, the probability of cell growth 

remains constant across the wells. This explains why, as Kevles (1998) points out, 

it can be expected that the wells with cell growth are randomly scattered across the 

plate. Therefore, for a single plate of wells, the assumption that aIl out cornes are 

equally likely is valid. 

Another important observations to make is that the size of the sample in question 

implies that the counts came from more than one plate of wells. However, since these 

counts came from the same set of cell fusions simply spanning sever al weIl plates, 

the assumption of equiprobable out cornes is not affected. 

Now, we have a situation where aIl outcomes have equal probability and in any 

one weIl we can observe a 0 (no growth) or a 1 (growth). We can, therefore, use 

the Fermi-Dirac method to establish the total number of out cornes with a specified 

number of positive wells. (Feller, 1960) In particular, if we let r be the number of 
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positive wells and n be the total number of wells, then by the Fermi-Dirac method 

we have a total of (;) possible outcomes. 

Hence, we have that 

Pr(A n C) Pr(A) 2~:~ 2245 

Pr(AIC) = Pr(C) = Pr(C) = (im = (260) ::::: 0.0009. 
2260 137 

As expected, the Pr(AIC) is larger than the Pr(A). Therefore, it would have been 

more correct to take into account the fact that 137 of the 260 wells were aU positive, 

albeit this difference seems to be of little practical importance. 

Analysis of the Probability of Fraud. Mosimann's probability calculation 

could be analyzed from another point of view. Define the event 

F = {falsified or fabricated data} 

and let the event A be as defined in (2.5). 

In a recent survey of scientists, Martinson et al. (2005) found that about 0.5% 

of researchers in their early careers and about 0.2% researchers in their mid-careers 

falsify research data. Although, the survey period does not coincide with the time 

when Imanishi-Kari carried her research, we assume that Pr(F) has not changed 

over time and we use this assumption to carry a simple analysis of the Pr(FIA) for 

illustrative purposes only. 

Now, we found earlier that Pr(AIFC) = 0.00003. The ORI's daim was that 

the low value of Pr(AIFC) added weight to the case of fraud. Essentially, the ORI 

reasoned, under the" null hypothesis" (of no fraud) the observed event, A, has very 

low probability and, therefore, is unlikely to have arisen if no fraud had taken place. 
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Using the results of the study carried by Martinson et al. (2005), if we let Pr(F) lie 

between 0.001 and 0.005, then we obtain the following graph for various values of 

Pr(AIF). 
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Figure 2-8: Analyzing the behavior of Pr(FIA) over different Pr(F) when PT(AIFC
) 

is kept fixed at 0.00003 and Pr(AIF) is allowed to vary from 0.00003 to 0.3. 

The solid line in Figure 2-8 illustrates that when Pr(AIF) = Pr(AIFC), then 

PT(FIA) = Pr(F) as is expected since then the events A and F would be inde-

pendent. The remaining lines in the figure above sim ply show that no matter what 

Pr(AIF) is as long as it is larger than Pr(AIFC), Pr(FIA) greatly exceeds Pr(F), 

that is, Pr(FIA) » Pr(F). 
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Further, consider the behavior of the odds 

Pr(FIA) 
1- Pr(FIA)' 

as Pr(AIF) increases, illustrated in the figure below. 
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Figure 2--9: Analyzing the behavior of the odds 1~;~11~) as Pr(AIF) increascs. 

We see from Figure 2-9 that as long as Pr(AIF) ::; 0.3, the odds of fraud having 

taken place given that A has been observed are less than 10. We believe that when a 

reputation of a scientist is at stake, su ch odds do not represent a sufficiently strong 

supporting evidence for fraud. Therefore, as this analysis simply aims to show, the 
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ORI's approach at evaluating such evidence was rather ftawed. 

In this chapter, we presented the seriaI correlation analyses carried out by the 

ORI. First, we defined the estimator, which the ORI seemed to have had used wh en 

estimating the seriaI correlations. Next, we described the data, from which the seriaI 

correlations were estimated, as weIl as the computer simulations the ORI used as 

supporting evidence for the case of fraud. We then recounted the statistical evidence, 

which the ORI put forward against Imanishi-Kari, based on these seriaI correlation 

analyses. Finally, we outlined several possible ftaws with these analyses. We present 

in the next chapter, in a similar manner, the second set of analyses carried out by 

the ORI, namely, the Poisson mixture model analyses. 
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CHAPTER 3 

Poisson Mixture Models 

Mixture distributions have been increasingly studied over the last few decades. 

With improved computational power they form an important class of statistical mod­

els. In its second set of statistical analyses, the ORI used a mixture of Poisson dis­

tributions to examine the veracity of the low count data. In this chapter, we present 

the details of these analyses. 

At the time wh en the ORI published its report there appears to have been only 

one application in the literature of a mixture of Poisson distributions. (Titterington 

et al., 1985) The example modeled the number of death notices of women 80 years of 

age and older, reported in the Times newspaper for each day over the 3-year period 

from 1910 to 1912. Modeling the data with a standard Poisson distribution gave a 

very poor fit. A mixture of two Poisson distributions gave a much better fit. One 

possible explanation was that death rates in winter could be expected to be higher 

than in summer. Clearly, the mixture model, by modeling two different mean death 

rates, allowed for such heterogeneity in the sample. 

A recent search in the literature revealed more examples on the application of 

Poisson mixture models, including those of order greater than two. The fields of 
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computer science, marketing and even chemistry have benefitted from the develop­

ment of these models. (Church and Gale, 1995; Willse and Tyler, 2002; Brijs et a!., 

2004) 

We, therefore, begin by giving sorne basic notions of Poisson mixture models. 

3.1 Basics of Poisson Mixture Models 

Poisson mixture models can be finite or infinite. We will describe first the general 

Poisson mixture model and then show how two special cases arise from it, namely, 

the Negative Binomial model (an infini te mixture of Poisson distributions) and the 

finite Poisson mixture mode!. Lastly, we will provide the formaI definition of a finite 

mixture mode!. In the next section, we will address the ORI's justifications for the 

use of the Poisson mixture mode!. 

Recall the notation we introduced in Chapter 2, where we let W1 , ••. , Wn be 

n random weIl counts and Wl,"" W n be the corresponding observed well counts. 

Without 108S of generality, we drop the subscripts and we define W as the recorded 

counts coming from a single weil. Let f(w) be the probability mass function of W. 

If we model f(w) as an infinite mixture of Poisson distributions, it will take the 

form of 

f(w) = 10
00 

f(wl>')dS(>') (3.1) 

where f(wl>') is the Poisson probability mass fun ct ion with parameter >., the ob­

served value of the "random" Poiss.on rate, A, and S is any cumulative probability 

distribution function of A. 
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Therefore, it is easy to see how differently defined cumulative probability distri­

bution functions, S(.>'), would give ri se to different mixtures of Poisson distributions. 

This is the motivation behind a special case of the Poisson mixture model, the Neg-

ative Binomial model, that the ORI also studied. 

The Negative Binomial Model 

If S(À) is any absolutely continuous density function, then (3.1) can be written as 

f(w) = 1000 

f(wIÀ)dS(À) = 10
00 

f(wIÀ)S'(À)dÀ. (3.2) 

In particular, if we let S'CÀ) be the Gamma probability density fun ct ion with 

parameters ct = rand j3 = (1 - p)/p, it can be easily verified that f(w), in (3.2), is 

the Negative Binomial probability mass function with parameters rand p. 

Mostly, however, the OR! relied on the finite mixture model, which also arises 

as a special case of the infinite mixture, given by (3.1). 

The Finite Mixture of Poisson Distributions 

If the mixture is finite, the number of components, g, is fixed. Further, the infinite set 

of À's in (3.1) is actually a finite set consisting of À1 , . .• , Àg. And, the corresponding 

component weights become 1f1, ... , 1fg , that is, also a finite set. 

Let Ài, ... , À; be a permutation of À!, ... , Àg such that ÀÎ < .. , < À; and 

let 1f~, ... , 1f; be the corresponding permutation of 1f1, ... ,1fg. We can define the 

probability mass function of A, the random Poisson rate, as 

if A = À;, i = 1, ... ,g; 

otherwise. 
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Let Àô = O. Then, it follows that the cumulative probability distribution function of 

Ais given by 

o if 00 < A < À*' - 0' 

1 if A> À;. 

Therefore, (3.1) can be written as a Riemann-Stieltjes integral, 

(3.3) 

(3.4) 

9 

L f(wIÀ;)s(À;), (3.5) 
i=l 

that is, as a finite mixture of Poisson probability mass functions. To visualize this 

better consider the graph below. 
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Figure 3--·1: A jump of height 1fT occurs whenever >'j = >.;. 

As Figure 3-1 illustrates, in (3.3) we are essentially integrating over a step func-

tion with jumps of height 1fi at >.: for i = 1, ... , g. 

We now present the formaI definition of a finite mixture modei given by McLauch-

lan and Peel (2000). 

Definition 3.1 Let YI, Y 2 , ... , Y n denote a random sample of size n, where 

Y j is a p-dimensionai vector with probability density function f(Yj) on Rl. Let Yj 

denote the observed value of the random vector Y j . Then, the probability density 

function (or the probability mass function (pmf) in the case of discrete random 

sampIe) f(Yj) of Y j is said to be a finite component mixture density if, 

9 

f(Yj) = L 1fd(YjIOi) (3.6) 
i=l 

where 
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• the number of components, g, isfixed; 

• the quantities 1fl, 1f2, •.. , 1f gare· the mixing proportions or weights, with 0 ::; 

1fi::; 1 for i = 1,2, ... ,g and I::f=l1fi = 1; 

• the densities f(YjIOl), f(YjI02), ... , f(YjIOg) are the component densities of the 

mixture parameterized by el, °2, .. . ,Og, respectively. 

Any convex linear combination of densities gives a density and, hence, f(Yj) is a 

density. Its corresponding distribution function, F(Yj), is called the g-component 

finite mixture distribution function. 

In particular, if we con si der a univariate model, where f(YjIBi) = f(YjIÀ i ), i = 

1,2, ... ,g, are Poisson probability mass functions, then f{Yj) is said to be a "g­

component mixture of Poisson mass functions." 

We next examine how the Poisson mixture models came to be used in the accu­

sations against Imanishi-Kari. 

3.2 Why the ORI Used Poisson Mixture Models 

The ORI claimed that the count data from uncontested experiments of the type 

carried out by Imanishi-Kari should roughly follow a mixture of Poisson distributions. 

We shall see later in this chapter, however, that this assumption is difficult to justify. 

We proceed to examine the details of the ORI's arguments in support of its claim. 

We recall that the amount of radiation emanating from each weIl is measured 

by the gamma counter in counts per minute, which we denoted by W. Therefore, 

define W(t) as the recorded counts coming from a single weIl over time t. That is, 

{W(t), t ~ O} is a random fun ct ion of time and, by definition, a stochastic process. It 

has been experimentally verified that radiation emitted from a radioactive source is 
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adequately described by a homogeneous Poisson process. In particular, the counting 

pro cess {W(t), t ~ a}, that arises from counts recorded by a gamma counter, fit a 

Poisson pro cess very weIl. 

A formaI definition of a Poisson pro cess follows. 

Definition 3.2 A stochastic pro cess {N(t), t ~ a} is a Poisson process with 

mean rate v, if the following two assumptions are satisfied: 

l. {N(t), t ~ a} has stationary independent increments; 

2. the number of events in the time intervaI [t, t+~tJ follow a Poisson distribution 

with parameter v~t, that is, 

Pr(N(t + ~t) - N(t) = k) = exp (-À~!t)(À~t)k (3.7) 

and 

E(N(t + ~t) - N(t)) = Var(N(t + ~t) - N(t)) = v~t. (3.8) 

Next, we present an alternative definition of a Poisson pro cess that is more often 

adopted in practice as justification for the use of a Poisson process. (Parzen, 1965) 

Definition 3.3 Let v be any positive constant and suppose that a counting 

process, {N(t), t 2: a}, satisfies the following axioms: 

Axiom O. Define N(a) = a. 
Axiom 1. The process {N (t), t ~ a} has stationary independent increments. 

Axiom 2. Pr(N(t + ~t) - N(t) = a) = 1 - v~t + o(~t) 

Axiom 3. Pr(N(t + ~t) - N(t) = 1) = v~t + o(~t) 

Axiom 4. Pr(N(t + ~t) - N(t) 2: 2) = o(~t) 
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Then, {N(t), t ~ O} is a Poisson process as defined by Definition 3.2. 

Axiom 4 shows that the events of a Poisson counting process, {N(t), t ~ O}, are 

rare, being highly unlikely that we will observe more than one event over a small 

interval [t, t + ~tl. This is the underlying reason for the claim by Willse and Tyler 

(2002) that the Poisson distribution represents low count" data more accurately than 

other models, and is, presumably, also the reason why the ORI included only counts 

less than 600 cpm in their Poisson mixture analyses. 

AU counts in both the questioned and the unquestioned experimental records 

were counts per minute. Therefore, foUowing Definition 3.2, we have, 

W = W(t + 1) - W(t). 

Thus, if we denote the mean rate of the radiation emanating from a weIl by À, from 

Definition 3.2 we see that the pmf f(w) of W is given by 

f(w) = exp (-À)(À)W 
w! 

(3.9) 

Now, ifW were to have a Poisson distribution, then E(W) = Var(W). However, 

this assumption was most likely violated for the data that arose from aU examined 

experiments, both contested and uncontested, that the ORI analyzed. These data 

tended to be overdispersed, with Var(W) » E(W). To account for this excessive 

variation in these data, the ORI decided to fit them using a mixture of Poisson 

distributions. There are at least two different reasons (other than overdispersion, 

which is an empirical reason) for considering a Poisson mixture model. 
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Provided the data were authentic, one of the ORI's experts, other than Mosi-

mann, claimed that since different assays had been carried out and different reagents 

used, a mixture model would be appropriate. That is, different reagents may have 

given rise to different distributions for the weIl counts. That is, a particular weIl 

count, W, could have arisen with a certain probability from one of a number of 

different Poisson distributions. 

On the other hand, Mosimann claimed that a mixture model was appropriate to 

model authentic count data because the wells had different "cooking" times meaning 

that the amount of radiation emanating from the wells during a certain time interval 

varied for each weIl. As this amount was measured by the gamma counter in counts 

per minute, the counts recorded for the different wells would not be expected to 

follow the same Poisson distribution. 

Consequently, the ORI's justifications for the use of the mixture model in this 

setting were not consistent. We will return to the problems with its justification in 

section 3.6. In summary, the ORI used the Poisson mixture model, 

(3.10) 

with mixing proportions, ?ri, i = 1, ... ,9, estimated using the method of maximum 

likelihood. The component intensities, Ài' i = 1, ... ,9, were also estimated using 

the same approach. Furthermore, the number of components, 9, was unknown and 

calculated from the data as weIl (see section 3.4 for details). Due to computer 

limitations, the ORI was forced to restrict 9 :::; 9. 
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Next, we present the spikiness index, which Mosimann developed as an ad-

ditional measure of assessing whether the data were consistent with a mixture of 

Poisson distributions. 

3.3 The Spikiness Index 

Mosimann reasoned that excessively "spiky" data were not likely to follow a 

Poisson mixture mode!. Therefore, he believed that a high spikiness index provided 

further evidence against the null hypothesis that the data fit the mode!. 

Definition 3.4 Let ni denote the number of observations in cell i, i = 1, ... , m, 

of a frequency histogram of a sample of N observations. Let IIni-l - ni Il be the 

absolute value of the difference between heights of the adjacent cells i - 1 and i. 

Then, the spikiness index, SI, is defined as 

m+l 

SI = L Ilni-I - ndl (3.11) 
i=l 

where no and nm+l are the number of observations before the first and after the last 

positive cell frequency, respectively, and are taken to be no = n m+1 = o. 
The spikiness index is always an even number and it is always less than or equal 

to twice the sam pIe size, N. The former property of the index is not necessary in 

understanding the analysis to follow and, hence, its derivation is omitted. We will 

return to the latter property in the next chapter when we discuss the relative spikiness 

index. We present its proof now, which is not provided in the documentation of the 

lmanishi-Kari case. 

Theorem 3.5 Let max {SI} denote that maximum possible value of the spiki­

ness index. Then, max {SI} = 2N. 
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Proof Proof by induction. 

Base Case. Suppose there is on1y 1 eell with nI = N > a observations. Then, by 

definition, the spikiness index, SI, is given by 

Henee, we have verified the base case. 

Inductive Hypothesis. Suppose there are m cells with nI, n2, ... ,nm observations in 

each ceIl, where L~I ni = N. Without 10ss of generality, assume that nI > 0, n2 > 

0, ... ,nm > O. Then, by definition, the spikiness index, SI, is given by 

m m 

SI = 110 - nI Il + L IIni-1 - nill + IInm - 011 ~ 2Lni = 2N. 
i=2 i=I 

Inductive Step. Then, for m + 1 cells with L~11 ni = N + nm+l = K, we have 

m+l 
SI = 110 - nI Il + L IIni-1 - ni Il + /lnm+I - 0/1 

i=2 
m 

110 - nI Il + L IIni-i - ni Il + IInm - nm+III + IInm+1 - 011 
i=2 
m 

110 - nI Il + L IIni-l - ni Il + IInm - 01l-lInm - 011 + IInm - nm+III + IInm+l - 011 
i=2 

m 

< 2L ni -lInm - 0/1 + Ilnm - nm+III + IInm+I - 011 
i=l 
m 

= 2L ni + IInm+l - 011 + IInm - nm+lll-lInm - 011 
i=l 
m 

i=l 
m 

2 L ni + nm+I + IInm - nm+111 -lInmli 
i=l 
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m 

< 2Lni+nm+l+llnm-nm+l-nmll 
i=l 
m 

2 Lni + nmH + 11- nm+lll 
i=l 
m 

- 2 L ni + nm+l + nm+l 
i=l 
m 

2L n i + 2nm+l 
i=l 

2N + 2nm+l 

2K 

Q.E.D. 

Having introduced Poisson mixture models and the spikiness index, we now 

describe in detail the data analyses that the ORI carried out using these statistical 

techniques. 

3.4 Data Under Scrutiny 

In this set of statistical analyses, the ORI focused mainly on what became 

known as the June subcloning data. Although this data set was not published in 

the disputed paper, it played a major role throughout Imanishi-Kari's case. She 

provided the June subcloning data to the National Institutes of Health (NIH) during 

their first investigation and she also referred to it in a correction letter she submitted 

to the journal CeU a year after the investigation had started. (Office of Research 

Intergrity Report, 1994; Imanishi-Kari et al., 1989) At that time, the NIH did not 

dispute the veracity of this data set. 
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However, it was during the second investigation that this data set was scruti­

nized, mainly because forensic analysis of the ink showed that the tapes on which 

Imanishi-Kari had recorded her counts were created earlier than the date she had 

indicated. This was a serious problem because the ceIls producing the antibodies did 

not exist at the time the forensic analysis showed the tapes were created. Thus, the 

forensic experts concluded that the data were fabricated and falsified. 

Because of the forensic evidence, the ORI doubted the authenticity of the hand­

written counts from Imanishi-Kari's experimental records. In order to assess if these 

data represented true experimental records, it matched the questioned data sets with 

data sets whose veracity was not contested. It selected, as controls, tape counts that 

were never in dispute from Imanishi-Kari's and Reis's notebooks. Since the ques­

tioned data consisted of handwritten counts, as further controI s, the ORI selected 

the unquestioned handwritten counts from Reis's records. 

Overall, Mosimann examined 10 data sets, of which four were the contentious 

handwritten counts belonging to Imanishi-Kari. Of aIl the data sets, two belonged 

to Reis. Lastly, five of the data sets consisted of tape count data and the other five 

consisted of handwritten count data. We could not directly assess any of these data 

sets as we did not have access to them. Hence, we shaIl mainly rely on the ORI 

report to describe the analyses that it carried out on these data sets. 

For each data set, the ORI estimated the number of components, g, from the 

data. In particular, Mosimann tried to fit the data to mixture models of orders 

ranging from one to ni ne "successively," which, to our understanding, means that 

for each value of 9 :::; 9 that he tried, Mosimann carried out a goodness-of-fit test. 
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He stopped whenever he found a model to fit the particular data set. StrangeIy, as 

will become apparent in the next section, for the data sets that did not fit a Poisson 

mixture model, he reported the results of the goodness-of-fit tests for modeis of 

order less than 9. Instead, we wouid have expected him to have reported that he had 

attempted to fit models of aIl orders up to 9 = 9, a Iimit imposed by computationai 

constraints. 

Mosimann estimated the other unknown parameters of the model, nameIy, the 

mixture components, 7ri, i = 1, ... ,g as weIl as the Poisson rates of the component 

densities, Ài' i = 1, ... ,g, using the method of maximum Iikelihood. We do not know 

what aigorithm he used and, further, the ORI report do es not provide the estimates 

of these unknown parameters. From the report, we only had at our disposaI the 

histograms of the fitted modeis. 

For exampIe, Figure 3-2 below shows the frequency histogram of a data set 

comprising of 34 weIl counts, the smaIlest of aIl data sets that Mosimann anaIyzed, 

and the fitted Poisson mixture model. 
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Figure 3--2: A frequeney histogram of the weIl counts on page 125A of Imanishi­
Kari's notebook and the eorresponding Poisson model fitted to the data. (Office of 
Researeh Intergrity Report, 1994) 

For the purpose of eompleteness, in section 3.7 we first derived the maximum 

likelihood estimators of the mixture model parameters by invoking the EM algorithm. 
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We then approximated the data set of 34 counts by reading them off the histogram to 

illustrate Mosimann's putative analysis. We assumed that 9 = 4 as did Mosimann. 

We recall that Mosimann tried to fit aH of the data sets to the Negative Binomial 

model as weIl, to overcome the restriction 9 ::; 9. Since, as we saw in section 3.1, the 

Negative Binomial distribution arises as an infinite mixture of Poisson distributions, 

the ORl believed that any data, which fit a Poisson model of any number of mixtures, 

should fit a Negative Binomial model - an assumption which, as we shaIl see, came 

into question. 

Mosimann further believed that authentic experimental records from a mixture 

of Poisson distributions should not exhibit excessive spikiness. He was convinced 

that lmanishi-Kari's data were unusually spiky. This motivated him to compute the 

spikiness indices for each and every one of the data sets he examined and compare 

the observed spikiness indices for the different data sets. He relied on computer 

simulations to assess the statistical significance of the observed indices, as this was 

a new statistical procedure. 

In the next section, we will present aIl the statistical evidence that the ORI ac­

cumulated as further evidence of fraud based on the Poisson mixture model analyses. 

3.5 Evidence of Scientific Fraud 

AlI of the control data sets fitted a Poisson mixture model, whereas none of the 

questioned data sets fitted. Further, Imanishi-Kari's handwritten counts exhibited 

a spiky behavior in contrast to the counts from the data sets whose veracity was 

undisputed. We next present the results of the Poisson mixture model analysis and 

the spikiness analysis. 
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3.5.1 Poisson Mixture Model Analysis of Examined Data 

Mosimann fitted the 10 examined data sets that consisted of four questioned 

and six unquestioned data sets to mixtures of up to nine Poisson distributions. As 

we see in Table 3-1 below, he also tried to fit aH of these data sets to the Negative 

Binomial distribution. 

Exhibit STAT-2 
Fits of Poisson Mixture Models to Background Counts 

NoteboolcPages Mixture Chi Degrees of Probability Mode! Fils 
Mode! Square Freedom Data? 

1-1:97-99 N. Binomial' 24.7 26 NS' Yes 
7-mixture' 20.1 IS NS Yes 

1-1:102-104 N. Binomial 17.2 16 NS Y~~ 
S-mixture 8.2 S NS Yes 

1-1:12-19 N. Binomial 13.0 17 NS Yes 
6-mixture 15.7 6 .02 No 

1-1:48-58 N. Binomial 52.1 42 NS Yes 
9·mixture 60.3 32 .002 No 

R-l:19-24 N. Binomial 22.2 24 NS Yes 
7-mixture 20.9 14 NS Yes 

1-1:7-8 N. Binomial 198.7 32 <.00001 No 
7-mixture 172.4 22 <.00001 No 

1-1:121 N. Binomial 105.8 22 <.OOOÔI No 
4-mixture 75.9 13 <.00001 No 

1 ·1:12SA N. Binomial 30.1 14 .007 No 
4-mixture 27.1 7 .0003 No 

1-1:124-128A N. Binomial 246.7 28 <.00001 No 
(not 12SA) 5-mixturc 163.2 20 <.00001 No 

R-2: 114-124 N. Binomial 86.1 44 .0002 No 
'.mixture 31.2 32 NS Yes 

• NS - not significant ';t the 0.05 probability leve!. This means that the mode! -·fits· the dara 
at issue. 

Table 3---1: The results of fitting the data to Poisson mixture models and to the 
Negative Binomial model. (Office of Research Intergrity Report, 1994) 

The first five rows and the last row of Table 3-1 correspond to the control data 

sets. The results of the fit to the June subcloning data set are presented in the second 

to last row. 

57 



If any of the data sets fitted neither a finite mixture of Poisson distributions 

nor the Negative Binomial distribution (that is, an infinite mixture of Poisson dis­

tributions) the ORI concluded that the data did not fit any-component mixture of 

Poisson distributions. For aH other situations, the ORI concluded that the Poisson 

mixture model "adequately" described the count data. Table 3-2 below summarizes 

these conclusions. 

Exhibit STAT·1 
Notebook Pages from wbich Background Counts werc Studied 

NotebOOk:Pages 

Table 3-2: A summary of the ORI's conclusions whether or not the data analyzed are 
fitted by a mixture of Poisson distributions. (Office of Research Intergrity Report, 
1994) 

The highlighted handwritten counts in Table 3-2 correspond to the four data 

sets from Imanishi-Kari's notebook that the ORI examined for fraud. As we can see, 

none of these data sets fitted a Poisson mixture model, finite or infinite, and, hence, 
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the ORI deemed these results as support for its speculation that the data had been 

fabricated and falsified. 

Since different reagents were used in the experiments, the ORI analyzed certain 

sets of cou nt data separately for each different reagent. The results of these analyses 

reflected what the ORI found for the samples without grouping the counts by the 

individual reagents. In other words, the handwritten counts from Imanishi-Kari's 

note book did not fit a mixture of Poisson distributions, whereas the tape counts 

from Reis's notebook fitted a mixture of Poisson distribution. 

Mosimann believed that Imanishi-Kari's data possibly did not fit a mixture 

of Poisson distributions because they were spiky. He reasoned that spiky data were 

unlikely to fit a Poisson mixture model and, therefore, he set out to examine whether 

that was really the case. In the next section, we briefly summarize the spikiness index 

analysis that he carried out. 

3.5.2 The Spikiness Index Analysis of the Examined Data 

Further analysis of the handwritten counts from Imanishi-Kari's notebook exhib­

ited a very spiky behavior in contrast to the sets of counts that were used as controIs, 

which exhibited a ""solid base" appearance." To support this daim, Mosimann com­

puted the spikiness indices for each set of counts, both questioned and unquestioned. 

He found that the four sets of data which did not fit a Poisson mixture model exhib­

ited a statistically significant spiky behavior, evaluated using computer simulations. 

This was in sharp contrast to the spikiness observed for the control data sets. The 

ORI made the same observation from the analysis that it carried out for several of 

the data sets separately by reagent. 
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It is important to note that the ORI acknowledged in its report that spikiness 

could have occurred due to rounding of the counts. To account for this fact, Mosi­

mann analyzed counts for spikiness, which were recorded in lmanishi-Kari's notebook 

and which were known to have been rounded. These counts did not exhibit a .spiky 

behavior. 

We summarize the ORI's conclusion based on the results of the Poisson mixture 

model and the spikiness index analyses. 

3.5.3 The ORl's Conclusion 

The ORl set out to investigate if there was any compelling statistical evidence 

that, as the forensic evidence had suggested, the June subcloning data as weIl as 

other handwritten counts from lmanishi-Kari's notebooks had been fabricated. To 

objectively assess the veracity of these questioned data, it relied on control data sets 

whose veracity was never disputed. 

Overall, from the Poisson mixture model and the spikiness index analyses that 

Mosimann carried out, it can be seen that aIl of the control data sets fitted a Poisson 

mixture model and did not exhibit spikiness, whereas none of the questioned data 

sets fitted a Poisson mixture model and, further, exhibited a statisticaIly significant 

spiky behavior. 

Consequently, from these results, the ORI was led to believe that the handwrit­

ten counts of the June subcloning data, the most critical of aIl the questioned data, 

were "likely" to have been produced by human selection rather than generated from 

a gamma counter. 
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In the next section, we discuss in detail the counterarguments summarized in 

the decision of the Appeals Board, that were based on testimonies by expert scien­

tific witnesses such as Terence Speed. (Department of Health and Human Services, 

Departmental Appeals Board, Research Integrity Adjudications Panel, 1996) 

3.6 The Counterarguments 

Speed attacked Mosimann's mixture model analyses on several fronts. In partic­

ular, he questioned the underlying assumptions and several of the techniques used in 

these analyses. He also disputed the inferences Mosimann made from these analyses. 

Barron, the ORI's other statistical expert, generally agreed with Mosimann's 

analyses. Nevertheless, he pointed out that, based on them alone, one could not 

conclude that Imanishi-Kari had fabricated her data. Although he did not clearly 

indicate whether or not he agreed with the validity of the underlying assumptions in 

the analyses, one can assume an implicit acceptance of these assumptions. 

Validity of the Poisson Mixture Distribution Mode!. Largely based on 

the testimonies by Speed, the Appeals Board questioned the validity of the Poisson 

mixture distribution model and concIuded that its use was not properly justified. 

We examine the reasons for Speed's complaints. 

First, as we have seen earlier in this section, if the gamma radiation counts come 

from a constant source (that is, a single weIl), then it might be reasonable to assume 

that the counts over a certain time interval would follow a Poisson distribution. 

However, these experiments consisted of many wells, each of which provided separate 

counts. The Appeals Board argued that no scientific or empirical evidence existed 
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to support the validity of the Poisson distribution assumption when the radiation 

source was not constant. 

Moreover, Speed asserted that Mosimann had not justified the use of the mixture 

models in this experimental setting. We describe below the two common situations 

when mixture models arise. 

Two Interpretations of Mixture Models 

Recall that a finite mixture model takes the form 

9 

f(y) = L 1fd(yIBi ), (3.12) 
i=l 

where y is the observed value of a random variable Y, 9 is the number of components 

of the mixture, 1fi is the mixing proportion for component i, and f(yIBi) is the density 

of Y with parameters Bi for mixing component i. 

Interpretation l 

Suppose a chemist is studying a new chemical compound consisting of three chemical 

elements and is particularly interested in its fiammability. A common measure for 

that is the amount of heat released as the compound burns. This quantity depends on 

the specifie mixture of the chemical elements forming the compound rather than on 

the amount of heat released by each chemical element when it burns separately. The 

usual approach would be to model Y, the amount of heat released by the compound, 

using a mixture model. 

In this instance of the use of the mixture model, a random sample from this pop-

ulation would consist of homogeneous observations. That is, each observation would 

arise from the same underlying mixture distribution, where the mixing proportions, 
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7fi for i = 1,2,3, represent the actual fractions of the three chemical elements forming 

the compound, respectively. 

Interpretation II 

On the other hand, consider what appears to be one of the earliest uses of a mixture 

model attempted by Karl Pearson. The data he analyzed consisted of measurements 

of a certain body characteristic in a sample of crabs. The scientist, who had asked 

Pearson's help with the analysis of these data, believed that the crabs were evolving 

toward two new subspecies. Pearson managed to fit the data to a 2-component 

Normal mixture model supporting the speculation of the scientist. (McLauchlan 

and Peel, 2000) 

In this second instance of its use, the mixture model is actually a mixture of 

probability models. A random sample from this population would consist of heteroge-

nous observations each arising from only one of a number of possible subpopulations. 

In particular, if we let y in (3.12) be the observed measurement for a single crab, we 

obtain 

2 

f(y) = I: 7fd(yIOi) = 7fl!(yIOI) + 7f2!(yI02) (3.13) 
i=l 

where f(yIOi) is the density of a Normal random variable with parameters 6 i = 

(f1i,(Yi) for i = 1,2. Here, y arose either from the Normal(/11,(Yl) distribution with 

probability 7fl or from the Normal(/12, (Y2) distribution with probability 7f2. 

Returning ta the count data in Mosimann's analyses, it can be seen that the first 

interpretation of a mixture model does not apply to them. Rather, it is the second 
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interpretation, which possibly motivated the use of mixture models in this context. 

Since counts from a single weIl can be assumed to foIlow a Poisson distribution, the 

important question to ask is whether a mixture of counts, coming from different 

wells, can be expected to foIlow a mixture of Poisson distributions - the assumption 

the ORI made. 

We recall once again that Mosimann fitted the count data to Poisson mixture 

models because of variation from one experimental preparation to another. Now, 

consider for example, the one set of count data in Imanishi-Kari's notebook that fitted 

a 5-component mixture of Poisson distributions. Was the fit successful because there 

were five separate experimental preparations from which these counts arose? Not 

necessarily. Most likely, the variability of the data sim ply happened to be explained 

weIl by a 5-component mixture mode!. Consider the diagram below. 
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Figure 3-3: How the gamma counter generated the weIl counts. 

From Figure 3-3, we can see that different wells may sometimes give rise to 

different Poisson distributions. This phenomenon might even arise from wells on 

the same plate, sinee wells from the same plate may emanate radiation at different 

Poisson rates due to the variability of the experimental preparation from well to weIl. 

Mosimann argued that one might consider one of 9 possible Poisson candidate 

distributions for producing each well count. Thus the weIl counts recorded for each of 

the n wells may be thought of as being selected with probability 7ri from the Poisson 

distribution with mean Ài. However, there was no concrete example to support this 

explanation of why a mixture model might be appropriate. 
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In particular, consider Wl, the cpm recorded for the first weIl. If we know for 

example that W1 arises from the Poisson distribution with parameter À3, say, then 

the pmf f(Wl) of W1 is simply 

If, on the other hand, we do not know from which of 9 possible Poisson dis­

tributions W1 arises but the value of 9 is known or supported by strong scientific 

argument, then the pmf f(Wl) of W1 becomes 

9 

f(Wl) = L 7rd(WIIÀi ), 

i=l 

that is, a g-component mixture of Poisson distributions. 

However, there was no prior experiment that indicated that there was a "master 

set" of À's from which a particular Ài would have been "selected" with probability 

7ri, for each weIl count. 

In summary, there was no compelling scientific evidence to support the ORI's 

claim that the count data should fit a Poisson mixture model. Moreover, as we shall 

see in the next counterargument, there is a statistical flaw in the ORI's analysis. 

Problems with the Control Data Sets. The handwritten counts from 

Imanishi-Kari's notebook were the subject of close scrutiny. The ORI selected, as 

controls, data sets from Imanishi-Kari's tape counts as weIl as tape and handwritten 

counts from Reis's notebook. The Appeals Board disagreed with the analysis of the 

control data sets for the following reasons. 
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First, Mosimann believed that the model was valid because it explained the 

control data sets weIl. Consider the graph below. 

DATA 

Control 

Critical 

--_a Data Fit Model --.-----.• Data May Fit Model 

Figure 3--4: Several candidates for the valid (true) modcl to fit the count data. 

Suppose the ORI fitted the control data sets to model Ml in Figure 3-4. Now, 

consider models M2 and M3, in a neighborhood of model Ml. These two models may 

also fit the control data sets and possibly also fit the critical data sets. The point is 

that there may be many such models which explain the control data weIl. Lack of 

fit of the contentious data to model Ml does not mean that the models M2 and M3 

would not have fit these data. Selecting the model Ml as the model the questioned 

data should fit, is poor statistical practice. 
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Moreover, goodness-of-fit tests in general and, particularly, for Poisson mixture 

models have low power except for very large samples. Therefore, the argument that 

because the control data "fit" Poisson mixture models so should the contentious 

data, was flawed. 

Lastly, Mosimann did not justify his choice of control data sets. This was a 

problem, in particular, because the control data sets were not comparable to the 

questioned data sets, since they were from experiments performed at a different time 

from those experiments in question. The tape counts used as controls were the exact 

(no rounding) tape counts obtained from the counter, in contrast to the questioned 

data which were heavily rounded. The control data sets were from less complicated 

experiments and for different reagents. 

Binning Data. It appears that lmanishi-Kari rounded the low counts (less 

than 600 cpm) to the nearest 10. To carry out the goodness-of-fit tests, the ORl 

needed to decide how to bin these count data. Speed complained that Mosimann's 

choice of binning was subjective. 

Because of lmanishi-Kari's Tounding procedure, Mosimann used a bin size of 

10. That is, he divided the count data into data classes of width 10. Speed argued 

that he should have followed instead the general rule to bin data, so that there were 

at least five observations of counts per bin, whereas the rule Mosimann followed 

resulted in many bins with less than five observations. In addition, the ORI had 

cited another version to the" 5-per-bin" rule, which was to have five observations 

or more in at least 80% of the bins and at least one observation in aIl of the bins. 
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However, Mosimann had violated this variation to the rule as well, with most of the 

data sets he analyzed. 

If the frequency in the bins is not large enough, the chi-square distribution might 

not serve as a good large sample approximation to the null distribution of the chi­

square test statistic. Hence, the p-values obtained based on the observed values of 

the test statistic might not be valid. 

In fact, Speed pointed out that if he rebinned a particular critical data set that 

he had selected to ensure at least 5 counts per bin, then he found that the contentious 

data set that had not previously fit the Poisson mixture model, then fitted it. Yet, 

Mosimann countered by arguing that the rule of minimum 5 values in each bin was 

not a necessary rule to follow at aIl times as he believed it hindered the effectiveness 

of the chi-square test. 

Now, Cochran (1952) questions a variant of the 5-per-bin rule, that the smallest 

expected number of counts in any class should be 5 or 10. He suggests, as Mosimann 

did, that the sensitivity of the chi-square test is likely to be jeopardized if many cells 

are pooled together at the tails in order to alleviate the "too-few-per-bin" problem. 

Importantly, it is in the tails, where the differences between the observed and the 

theoretical distributions are often most apparent and thus easily detected. That is, 

large bin sizes lead to lack of sensitivity for the test. 

In its report, the Appeals Board was concerned about the contradictory views of 

two adversarial expert witnesses, especially as they had come to different conclusions. 

This con cern supported Speed 's case, that there was at least considerate doubt as to 

the validity of Mosimann's statistical conclusions. 
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Problems with the Negative Binomial Model. The Appeals Board con­

sidered Mosimann's Negative Binomial analysis a failed attempt to deal with the 

computer limitations that the ORI faced, since they were able to fit mixture models 

of order up to nine only. 

We saw earlier in this chapter that the Negative Binomial model arises as an 

infinite mixture of Poisson distributions. As a result, contrary to what MosimaI!n 

claimed, it did not constitute an alternative independent analysis to lend support to 

the Poisson mixture model analysis already carried out. 

Moreover, the ORI asserted that any data which fit a Poisson mixture model 

should fit the Negative Binomial model. Yet, in the analysis the ORI performed, one 

of theunquestioned data sets fitted a 7-component Poisson mixture model but did 

not fit the Negative Binomial model. 

In addition, as will be suggested by the simulations we carried out in the next 

section, a single mixture model can pro duce data sets quite different in appearance. 

In fact, each data set could well be described by a number of different mixture models. 

Further, Speed pointed out that fitting the data to an infinite mixture of Poisson 

distributions was not equivalent to fitting the data to a Poisson mixture model with 

a finite number of components. 

Spikiness Index and Computer Simulations. Since Mosimann worried 

about certain aspects of the chi-square test, he developed the spikiness test. It 

is not, however, a widely acceptable statistical procedure and, hence, accusations 

of fabrication based on the spikiness statistic were questionable. Speed pointed out 
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that a formaI spikiness test was unnecessary since the histogram conveyed the notion 

of spikiness weIl enough. 

After Mosimann carried out aIl of these analyses, he came to believe that a 5-

component mixture of Poisson distributions explained best the whole set of the June 

subcloning data. He carried out simulations based on this mode!. The purpose of 

these simulations was ostensibly to examine the behavior of a 5-component mixture 

model so that he cou Id compare this behavior with that of the data from Imanishi­

Kari's experiments. In particular, the simulated data enabled him to carry out 

significance tests for the spikiness index. The Appeals Board thought the simulations 

had the same problems of subjectivity and invalid assumptions as the actual analysis. 

We have attempted to reconstruct the analysis and simulations in section 3.7 for a 

particular data set. 

3.6.1 Conclusion of the Appeals Board 

Overall, the Poisson mixture model analyses carried out by the ORI were seri-

ously flawed, because 

1. the underlying assumptions of the model were not justifiedj 

2. the control data sets fitted the model weIl but this did not prove its validitYj 

3. the Negative Binomial model did not lend support to these analyses nor the 

spikiness index served as further indication that fraud had taken place. 

Yet, the Appeals Board argued, even if the statistical analyses were not flawed, 

there were other possible explanations as to why the data did not resemble a random 

sequence of radiation counts. For instance, it had been already established that 

71 



lmanishi-Kari did not intend to be exact when recording the counts and that such 

behavior was not unusual among scientists who carry out such experiments. 

In conclusion, the Appeals Board did not find these statistical analyses convinc-

ing and reIiable enough to conclude that lmanishi-Kari had intentionally fabricated 

or falsified experimental data. 

3.7 A Third (My) Opinion 

Mosimann fitted the data by the method of maximum likelihood. Up to this 

day, no widely distributed software is available which fits count data to a mixture of 

Poisson distributions. Personal communication with Barron (the ORI's other statis­

tical expert) confirms that Mosimann must have written the software procedures to 

carry out the tests himself. We do not have the original data nor do we know what 

statistical software package, if any, Mosimann used. Further, we do not know the 

algorithm, which he developed to fit the data and estimate the unknown parameters. 

However, to enhance our understanding of the analysis, we attempted to fit the 

34 counts on page 125A of lmanishi-Kari's notebook by employing the EM algorithm. 

We read off these counts from the histogram in Figure 3-2. In the next few pages, 

we provide, for completeness, a detailed description of how the EM algorithm can be 

applied in this setting. 

We established earlier in this chapter that the probability mass function f(wj) 

for well count Wj , j = 1, ... ,n, is given by 
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i~ 

For simplicity, let À = ()'1'" ., Àgf and let (J = (1f}, ... , 1fg-1, À)T. Then, the 

likelihood of n independently observed well counts will be given by 

This likelihood is difficult to maximize and, hence, we resorted to the EM algo­

rithm by formulating the problem as an incomplete-data problem. We defined the 

random variable Zij as 

1 if W j arises from group i; 

o otherwise 

for i = 1, ... , 9 and j = 1, ... , n. The group assignments of the observations are 

unknown, which is the reason why our problem became one of a "missing data" 

problem. 

Thus, for a particular observation Wj , we have that 

and also that Z1j,"" Zgj follow the multinomial distribution with parameters 1f1, .. • , 1fg 

and n = 1. Explicitly, we have that 

Pr{Zlj = 0, ... , Zkj = 1, ... , Zgj = 0) 
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Then, the joint density of Wj and Zlj, ... , Zgj is given by 

Pr(Wj = Wj, Zlj = 0, ... , Zkj = 1, ... , Zgj = 0) 

Pr(Wj = WjlZlj = 0, ... , Zkj = 1, ... , Zgj = 0) 

x Pr(Zlj=O, ... ,Zkj=l, ... ,Zgj=O) 

f(WjIÀk) 7rk 

[f(wjIÀl)7rlJO X ... x [J(WjIÀk)7rkF x ... X [J(wjIÀg)7rg]O 

[J(WjIÀ1)7rl]Zlj X ... X [J(wjIÀk)7rk]Zki X ... X [f(wjIÀg)7rg]Zgj 
9 

il [f(wj 1 Ài)7ri]Zij , 
i=l 

where the Zij are the realized values of Zij, for i = 1, ... ,g and j = 1, ... ,n. 

We then let Zj = (Zlj, .. . , ZgjV and let Z = (Zl, .. . , ZnV. Since the obser-

vations Wj, j = 1, ... , n, are independent, it immediately follows that the random 

vectors Zj, j = 1, ... ,n, are also independent. Finally, the complete-data likelihood 

is thus given by 

n 9 

.c(Olw, z) = f(w, zlO) = il il[7rd(wjIÀiWij
, 

j=l i=l 

and the complete-data log likelihood is given by 

n 9 

log.c(Olw,z) = LLZij{log7ri+logf(wjIÀi)}, 
j=l i=l 

where z = (Zl, ... ,Zg). 
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At this stage, we applied the EM algorithm. It is an iterative procedure in 

two steps, the first being the E (Expectation) step and the second being the M 

(Maximization) step. 

E-Step 

In this step, we found the expected value of log C( Olw, z) conditional on the observed 

data w. Let O(k) be the value of 0 after the kth iteration of the algorithm and let 

0(0) be the initialized value of O. Then, at the (k + 1 )th iteration we evaluated the 

expected value of log C( Olw, z) conditional on the observed data w using the values 

we estimated for 0 from the kth iteration. That is, we evaluated 

for k = 0,1, .... 

Now, 

EO(k){logC(Olw,z)IW = w} 

E.,.) { Ct, t, zij{log?rd log f( Wjl,I;)) 1 w ~ w } 

n 9 

L L EO(k) (ZijiW = w){log 7fi + logf(wjIÀi) 
j=l i=l 

n 9 

L L EO(k) (ZijlWj = wj){log 7fi + log f(wjIÀi) 
j=l i=l 

where, in general, for 1 ~ i ~ 9, 
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and, therefore, 

M-Step 

Pr(Zlj = 0, ... , Zij = 1, ... , Zgj = 0, Wj = Wj) 
Pr(Wj = Wj) 

Pr(J(k) (Zij = llWj = Wj) 

7T1k) J( Wj IÀ}k)) 
9 (k) ( 1 (k))· 2:m=l7Tm J Wj Àm 

Recall that we obtained earlier the following likelihood 

n 9 

logL:(Olw, z) = L L zij{log 7Ti + log J(WjIÀi)}. 
j=1 i=l 

(3.14) 

(3.15) 

(3.16) 

We maximized this likelihood with respect to 7Ti subject to the constraint that 

2:?=1 7Ti = 1 using the method of Langrange multipliers as follows 

o{n 9 } 07Ti ~ Zij{log 7Ti + log J(Wj/Ài)} + K fI 7Tm = 0 

o{n g} 
~ 07T" '?::>ij log 7Ti + K L 7Tm = 0 

t J=1 m=1 
n 1 

~ L Zij - + K = 0 
j=1 7Ti 

9 9 n 

===} K L 7Ti = - L L Zij 
i=l i=l j=l 

9 "n 

~ K = - LLZij = -no 
i=1 j=1 
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(3.18) 

(3.19) 

(3.20) 

(3.21) 



Thus, from (3.19) it follows that the maximum likelihood estimator of 1ri is given by 

for i = 1, ... ,9. 

1 n 
7ri = - LZij 

n j=l 

Similarly, we maximize the likelihood in (3.16) with respect to Ài such that 

n 8 
L Zij 8À. {-Ài + Wj log Ài - log Wj!} = 0 
j=l ~ 

n ZijWj 
L-Zij+~=O. 
j=l ' 

Solving for Ài we obtain the maximum likelihood estimator of Ài 

for i = 1, ... ,9. 

Lastly, sin ce we cannot observe Zij we replaced them in both estimators 7ri and 

:\ by the conditional expectation of Zij evaluated in the E-step derived in (3.15). 

We stopped the algorithm whenever 

for sorne small E > O. 
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We used the R statistical software package and we obtained the following fit. 
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Figure 3-5: Fitting counts from page 125A in Imanishi-Kari's notebook to a mixture 
of four Poisson distributions using the EM algorithm. 

We see that the fit depicted by the solid line in Figure 3-5 is very close to the 

fitted model in Figure 3-2. 

We continued by simulating several samples of 34 counts from the fitted mode!. 

We present in the figure below the first 12 samples we generated. 
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Figure 3-6: Simulating 12 samplcs of 34 counts from the fitted mixture of four 
Poisson distributions. 

From this figure it becomes immediately apparent that the data sets from the 

same mixture model are highly variable. We have roughly unimodal data in Sample 

1 and multimodal data in Sam pIe 8. AIso, the data from Sample 10 appear to be 

spikier than the data from Sample 4. 

79 



This type of variability in the data increases the plausibility of the explanation 

that the data from lmanishi-Kari's records were simply a "chance" sample ofrandom 

counts but nevertheless still possible to be observed as opposed to being fabricated 

or falsified. 

We simulated 500 samples of size 34 from the fitted mixture of four Poisson 

distributions in the same way that we simulated the 12 samples in Figure 3-6 ab ove , 

and computed the spikiness index for each of these 500 samples. Finally, we found 

the number of times those indices exceeded the value of 56, the index observed from 

the original 34 counts. Letting S be the random variable representing the spikiness 

index, then we found based on this current simulation, that 

Pr(S > 56) = 0, 

since out of the 500 spikiness indices computed, none exceeded 56. 

Mosimann found a probability of 0.0004. Although, this simulation was solely 

do ne for the purpose of illustration, it does seem to support Mosimann's claim that 

the count data of sample 125A were more spiky than would be expected from a 

mixture of four Poisson distributions. 

In this chapter, we presented the Poisson mixture model analyses carried out by 

the OR!. First, we developed the background necessary to understand these analyses. 

Next, we described the data under scrutiny, in particular, the June subcloning data 

set and the various control data sets. We then recounted the statistical evidence, 

which the ORI put forward against Imanishi-Kari, based on these mixture model 
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analyses. FinaIly, we carried out sorne simulations of a 4-component Poisson mixture 

model, where the unknown parameters were estimated using the EM algorithm, and 

we also presented an example of how the significance of the spikiness index was 

evaluated. We present in the next chapter, in a similar manner, the third and 

final set of statistical analyses carried out by the ORI, namely, the analyses on the 

distribution of digits in the handwritten counts from the June subcloning data set. 
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CHAPTER 4 

Distribution of Digits 

Suppose you were asked to flip a coin 200 times and record whether you observed 

a head or a tai!. Vou have two choices. Vou can either repeatedly flip the coin 200 

times and record the outcome each time or just "pretend" you flipped the coin and 

simply write down a sequence of heads and tails made up by you to appear as if they 

had arisen as true outcomes of coin tosses. After an, how difficult can cheating on 

this exercise be if you were to go unnoticed? 

WeIl, it turns out it is not that easy. What people believe to be a random 

sequence of heads and tails may not produce anything like a true random sequence 

of heads and tails. In fact, it can be shown, by using a simple Markov chain argument, 

that a true random sequence of 200 tosses will produce at least one run of six or more 

heads or six or more tails with probability around .95. However, such runs are rarely 

observed in the recorded outcomes by people who cheat. 

This is a simple instance of the fact that people are rarely able to generate 

a truly random sequence of numbers because of an inherent preference of certain 

digits over others, and because randomness incIudes sequences that humans would 

be tempted to regard as nonrandom because of runs of repeated outcomes. As a 

. result, this makes faking or fabricating experimental numerical data quite difficult. 
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Not surprisingly statistical techniques relying on this fact are available to analyze 

data sets for their veracity. This is precisely the motivation behind this third and 

last statistical analysis that the ORI carried out. 

It is necessary to differentiate between the distribution of leading and non­

leading digits. Since Imanishi-Kari had rounded her counts, the ORI was interested 

in the non-Ieading digits of the counts it analyzed. In particular, the following 

algorithm was used to give the sets of digits, whose analysis was to determine whether 

falsification had taken place. 

1. "Starting from the right si de of the number and moving left, the first nonzero 

digit (called x) was found. 

2. If there was at least one more digit to the left of digit x, then digit x was 

selected as the digit from the number; however, if there was no digit further to 

the left of x, then x was discarded and no digit was selected from that number." 

(Office of Research Intergrity Report, 1994) 

The ORI explained the algorithm with the following two examples. Consider the 

count 38200 cpm. Then, following the first step, they set x=2. From the second 

step, they verified that there was a digit to the left of x. Therefore, they selected to 

use in their analyses the digit 2 from this count. On the other hand, consider the 

count 800. Here, they set x=8 but sinee there was no other digit to the left of digit 

8, they selected no digit from this count. 

The whole point of this algorithm was to obtain a data set of "insignificant" 

digits ranging from 1 to 9. If the counts were to be randomly generated, then the 
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ORI asserted that these digits should follow the discrete uniform distribution with 

the probability of each digit occurring equal to 1/9. 

Handwritten and tape counts that the ORI used as the control data sets, which 

were not rounded, were subjected to a rounding algorithm designed by Mosimann. 

The design of the algorithm attempted to reRect the way Imanishi-Kari had rounded 

her data. The rounding mIes were as follows: 

• "numbers over 10,000 were rounded to the nearest "thousand" (e.g. 12,450 to 

12,000, 17,800 to 18000); 

• numbers less than 10,000 but over 1,000 were rounded to the nearest "hundred" 

(e.g. 1,245 to 1,200, 1,780 to 1,800); 

• numbers less than 1,000 but over 100 were rounded to the nearest "ten" (e.g. 

242 to 240, 585 to 590); and 

• numbers less than 100 were not used." (Office of Research Intergrity Report, 

1994) 

The ORI also computed the "relative spikiness index" for each sample of digits. 

Definition 4.1 The relative spikiness index, RS 1, is defined as the spikiness 

index, SI, (see Definition 3.4) of a sample of N observations divided by the sample 

size, N. (Office of Research Intergrity Report, 1994) That is, RSI is given by 

SI 
RSI = N' 

Theorem 4.2 Let max {RS!} be the maximum value of the relative spikiness 

index. Then, max { RS!} = 2. 
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Proof From Theorem 3.5, we know that SI < 2N. It immediately follows, 

therefore, that 

RSI = SI < 2N = 2. 
N-N 

Q.E.D. 

Now, recall that the rounding rules changed at the points 100, 1000 and 10000 

disturbing the uniformity of the data. Henee, departure from uniformity alone could 

not lead to the conclusion that the data were counterfeit. If, in addition, the data 

were spiky, then the ORI considered it as evidence of fraud. The ORI reIied on the 

RSI as the measure of spikiness. 

4.1 Data Under Scrutiny 

For the distribution of digits analyses, the ORI focused on the June subcloning 

data set as weIl. In fact, aIl but one of the data sets used in these analyses were 

the same as those used in the Poisson mixture model analyses. However, for the 

distribution-of-digits analyses, unlike for the Poisson mixture model analyses, both 

low counts (less than 600 cpm) as weIl as high counts (greater than or equal to 600 

cpm) were analyzed. 

The data sets were essentially divided into two groups, the" critical" data sets 

and the "neutral" data sets. The critical data sets consisted of the handwritten 

counts by Imanishi-Kari. The "neutral" data sets consisted of tape and handwritten 

counts from Reis's notebook as weIl as tape counts from lmanishi-Kari's notebook. 

For each data set, where applicable, the distribution of digits from high counts was 

analyzed separately from the distribution of digits from low counts. 
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Of particular importance was one of the control data sets from Imanishi-Kari's 

notebook consisting of high tape counts, for which the corresponding rounded counts 

by the author were also available. The ORI included part of that data set in its report. 

We reproduce it below in Table 4-1. 
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Exhibit STAT-7 
Rounding Behavior of the author of Notebook 1-1 

T.pe CPM Scri9'CPM. T .... CPM &toc (l' .. c..t) T ... CPM SctiptCPM. Ta""CPM &toc(pct 
R04Indcd rrUnu. lloundcd _NIed aùnu. R.oundcd c...I) 

CPM CPM 

19&90 19000 &90 4.5 4S4O 4500 40 0.9 

1736 1100 .... ·3.7 '9" 4900 19 O •• 

1917$ 19000 17$ \.' 1621\ 16200 21 0.\ 

1219 1000 219 1.1 34931 3SOOO -62 ~.1 

4O'l9 4000 19 0.7 313\3 3\000 313 \.0 

:211i 2lOO -79 ·3.7 Slll S200 21 0.4 

1461 1400 61 4.6 1062 - 1000 62 0.1 

44S9 4400 S9 1.3 1031 1000 32 3',1 

1644 1600 .. 0.5 3174 3100 14 1.9 

1997 1000 -3 .0.2 2102 2000 102 4.9 

IHIS 13000 .as u S293 5300 " ~.1 

T7S1 7100 -42 ~.5 lSll lSOO 12 0.9 

2llS 1200 35 U 1921 1900 :a 1.5 

10S1 1000 SI U 16l? 1600 11 1.7 

3927 3900 27 0.7 m 100 " -1.0 

1$766 1$700 66 0.4 - 4100 46 0.9 

19327 19000 327 1.7 7sn 7600 ·23 .4,3 

13467 13000 467 3.5 11003 11000 3 0.0 

\089 1000 19 8.1 3386 3300 16 2.5 

1241 2lOO 41 2.1 503 soo .3 0.6 

\7971 17000 971 $.4 1.76 1500 -14 -\.0 

3H7 3000 3" 10.4 1301 1300 l' 0.1 

657' 6600 .26 ~.4 2941 2900 4& \.6 

13sn 13S00 _. n 0.6 10441 10400 41 0.4 

19006 19000 6 0.0 1975 1900 7S 3.' 

13069 13000 69 0.5 9010 9000 10 0.1 

31lS noo 15 0.7 &33. 1000 ' 334 4.0 

1132 1100 32 2.. 1412 1400 12 0.1 

17393 17000 393 2.3 11712 11700 12 0.1 

3074 3000 74 2.4 2329 lloo 29 1.2 

1697 1700 -3 ~.1 6629 6600 19 O •• 

4433 4000 '33 9.1 HJ9S 24300 95 0.4 

1219 1000 129 2.1 37107 37100 7 0.0 

Table 4··}: Original tape counts and the corresponding ronuded conuts by lmanishi-
KarL (Office of Research IntergTity Report, 1994) . 
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As an illustration, we apply the rounding algorithm and the digit selection al-

gorithm to three counts from Table 4-1. 

Tape Count Rounded by Rounded by Selected Digit: Rounded by 

lmanishi-Kari Aigorithm Aigorithm (Imanishi-Kari) 

19890 19000 20000 none (9) 

1736 1800 1700 7 (8) 

792 800 800 none (none) 

Table 4-2: Examples illustrating how the ORl applied the rounding rules and the 
digit selection algoritlull to the data in its analyses. 

From the few examples in the Table 4-2 ab ove , we see that often the rounded 

counts from lmanishi-Kari and from the algorithm differ. Although the discrepancy 

is not big, it inevitably results in a different distribution of digits from the same 

sample of counts. Figure 4-1 below illustrates this point explicitly. 
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1-1:12-19 

(50 digits trom author-rounded counts) 
10 

8 

>-
(.) 

6 z 
w 
;:) 
a w ·4 
~ u.. 

2 

0 

1 2 3 4 5 6 7 8 9 

DIGITS 

1-1:12-19 

(58 digits trom computer-rounded counts) 

10 

6 

6 6 ffi 
;:) 
a .0.' 

w 4 
Il: u.. 

2 

0 

1 2 3 4 5 6 7 8 9 

DIGITS 

Figure 4-1: A total of 50 digits were selceted from the counts rounded by the author 
and a total of 58 digits were selected from the same connts but rounded using the 
rounding algorithm. (Office of Research Intergrity Report, 1994) 
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We see from Figure 4-1 that the counts rounded by Imanishi-Kari led to the 

selection of 50 digits, whereas the counts rounded by the computer algorithm led to 

the selection of 58 digits for exactly the same sample of counts. The analysis of both 

samples, however, led to the same conclusion that the digits were not in consistent 

with the null hypothesis of uniformity. 

Explicitly, for the various data sets the ORI analyzed, it tested, using the chi­

square goodness-of-fit test, the null hypothesis that the digits 1 to 9 followed the 

discrete uniform distribution with probability 1/9 against the alternative that the 

digits did not follow the specified distribution. In addition, the ORI calculated the 

relative spikiness index for each sample of digits. 

4.2 Evidence of Scientific Fraud 

Figure 4-2 below provides the summary of results of the digit distribution analy­

ses the ORI carried out. 
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PAGES, 
HIGHOR LOW 

IWübit STAT-8 
FREQUENClES OF DIGITS 1 TO 9 

PROBABIUTY 
OFCmSQUABE 

CRITlCAL DATA SETS: Handwritten counts by the author of Dotebook I-! 

High script: 
[-1:12SA 43 0.0451 
1-1:121 47 0.0001 
I .. 1: 124 ... 12SA (not t2SA) 61 <.CXlO1 

(BEr -1 a1ooc) 26 0.0495 
(AF~ a1ooc) Il 0.0424 
(And-,. a1one) 24 0.1879 

1-1:7-8 53 <_0001 
1-1:9-10 69 0.003& 

Law script: 
1-1:I2SA 33 0.0023 
1-1:121 68 <,0001 
l-l:124-128A (Dot 12SA) 260 <.0001 

(BEr-1 a10D0) 79 <.0001 
(AF~ a10DC) 99 <.0001 
(Anti-,. a1ooc) 82 0.0001 

1-1:7-8 63 <.0001 
I-l:9-10 26 <.0001 

RELATIVE 
SPIKINESS' 

0.698 
0.979 
0.820 
1.000 
i.273 
0.750 
1.245 
0.667 

1.455 
1.412 
1.123 
1.342 
1.192 

.1.049 
1.492 
1.462 

NEUIRAL DATA SETS: Author's roundin! versus computer's roundjng, for thg same counts 
High tapc: 

1-1:20-21, Author ofI-1 50 0.8233 0.520 
1-1:20-21, Computer 5& 0.7902 0.621 

COMPUTER'S ROUNDING OF TAPE COUNTS 

High tape: 
1-1:12-19 68 0.4627 0.618 
1-1: 124-128A 149 0.0049 0.483 
1-1:48-58 254 0.1841 0.402 
1-1:102-104 147 0.1512 0.558 
1-1:97-99 ... .- 60 0.4838 0.533 
R-l:19-24 9S 0.4543 0.S68 

Law tapc: 
1-1:12-19 100 0.36&5 0.460 
1-1:124-128A 22 0.2176 0.636 
1-1:48-58 497 0.9931 0.266 
1-1:102-104 100 0.9924 0.380 
1-1:97-99 SS 0.7863 0.509 
R-I:19-24 161 0.8399 0.360 

COMPUTER'S ROUNDING OP HANDWlUTl'EN COUNTS BY THE AUTHOR OP R-2 
Law script: 

R-2:114-124 144 0.9769 0.347 

l'Relative spikiness" i$ the spikinea index divided by the Dumber of observatlollS. N. 

Figure 4-2: A summary of the results of the digit distribution analysis. (Office of 
Researeh Intergrity Report, 1994) 
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For the 15 "neutral" data sets tested, which consisted mostly of tape counts, we 

see from Figure 4-2 that almost aU were consistent with the uniform distribution. 

In fact, the high tape counts from only one data set seemed to be inconsistent with 

the uniformity assumption (p-value = 0.0049). However, the ORI accounted for 

the fact that 15 simultaneous tests were carried out and, hence, subjected the p­

value to a Bonferroni correction. The corrected p-value was no longer significant 

(corrected p-value = 15*0.0049 = 0.074). The ORI also pointed out that sinee the 

relative spikiness index was low at 0.483, the departure from uniformity for that 

sample of digits was not due to the fact that the digits were spiky. OveraU, the ORI 

concluded that the uniform distributions" adequately describe" the distributions of 

digits coming from the control data sets. (Office of Research Intergrity Report, 1994) 

On the other hand, for the 16 "critical" data sets tested, which consisted mostly 

of handwritten counts, none exeept one fitted the uniform distribution. In particular, 

consider the low handwritten counts only. Even after the Bonferroni correction was 

applied to aU the p-values by multiplying each p-value by 16 for the number of 

simultaneous tests carried out, they still remained significant thus indicating that 

these samples of digits did not fit the uniform distribution. Furthermore, the ORI 

pointed out, the relative spikiness indices calculated for these samples were quite 

high an being greater than 1. 

Now, consider the high handwritten counts. With the Bonferroni correction, four 

of these samples of digits appeared to be nonuniform. In addition, these samples also 

had higher relative spikiness indices than any of the indices calculated for the control 

data sets. 

93 



OveraU, for the most critical data set consisting of the handwritten counts from 

the June subcloning data set found on pages 124-128A of lmanishi-Kari's notebook, 

the ORl found that the digits were not uniformly distributed and were spiky. With 

the low handwritten counts, visual examination revealed that the digits 1,3,7 and 8 

appeared more frequently than expected and with the high handwritten counts, the 

digits 7 and 8 appeared more frequently than expected. Figure 4-3 below graphically 

illustrates this facto 

DIGITS FROM JUNE SUBClONING DATA 
Lelt column: Iow cOunts (Iess Iban 600) 

Right column: hlgh counts (600 Of greater) 
Handwritten Counts (BET-1, AF-6, anti-tt) 

70,-------------~ 70~------------_. 

~~ ~~ 
fii 40 fii 40 
6-30 &30 .t 20 .t 20 

10 10 \œ_FIIIfII ___ 
o 0-

1 2 3 4 5 6 7 8 9 1 234 S 6 7 8 9 

Figure 4-3: Histograms showing the frequcncy of digits in the June subcloning data 
for both high and low counts. (Office of Rcscarch Intergrity Report, 1994) 

Imanishi-Kari's known rounding behavior did not account for the nonuniformity 

and spikiness of the sample of digits from the critical data sets. This was because 

the rounded counts in Imanishi-Kari's notebook, for which the original tape counts 

were also available, were consistent with the assumption of uniformity and were not 

spiky. 

In summary, aU the control data sets were consistent with the uniform distrib­

ution and were not spiky. In contrast, most questioned data sets and, in particular, 
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the June subcloning data set, departed from uniformity and had comparatively high 

relative spikiness indices. Since these results were not explained by lmanishi-Kari's 

rounding behavior, the ORl concluded that the handwritten counts, including the 

June subcloning counts, were likely to have been fabricated. 

4.3 The Counterarguments 

There was general consensus that the handwritten counts in lmanishi-Kari's 

notebook were the result of sorne sort of human intervention. However, what the 

statistical analysis aimed at showing was the fact that this human intervention was 

intentional. The Appeals Board did not find this analysis convincing enough to 

conclude that lmanishi-Kari had fabricated or falsified her data for the following 

reasons. 

First, the statistical analysis of the distribution of digits of the June subcloning 

data showed that certain digits occurred more often than others. This reflected 

lmanishi-Kari's personal preference for certain digits over others. However, this 

fact did not in itself prove that the counts were fabricated. An equally plausible 

explanation could be that she had not been meticulous when she was recording the 

counts. 

Second, the assumption of uniformly distributed digits applies to rightmost dig­

its only. The ORl based its analysis on this assumption although it was not the 

rightmost digits that were being analyzed. The algorithm Mosimann used to select 

the digits for the analysis described earlier in this chapter gave digits, which were 

the rightmost digits that were nonzero and that were also not the leftmost digits. 
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The ORI did not justify that the assumption of uniformity was valid in that case as 

weIl. 

Third, the ORI claimed it carried out its analysis on "insignificant" digits, that 

is, the digits which did not contain any information. However, the Appeais Board 

questioned the way in which digits were judged to be significant or insignificant. In 

its analysis, the ORI considered, for exampIe, the digit 8 in 800 to be significant but 

the digit 7 in 27000 not to be significant. 

LastIy, Mosimann at first claimed that his rounding aigorithm did not aim at 

mimicking exactIy Imanishi-Kari's rounding behavior but in his testimony he said 

that it did follow her rounding behavior. In actual fact, the Appeals Board found that 

the rounding algorithm, to which the control data sets were subjected did not really 

model the rounding behavior of Imanishi-Kari. This observation was supported by 

a data set from lmanishi-Kari's notebook, for which the tape counts were available 

in addition to the handwritten counts. 

Although Barron deemed valid the statistical methods used by Mosimann in this 

analysis, he said that he would not conclude that fabrication had occurred based on 

this analysis aione. Barron asserted that other evidence was necessary to reach such 

a conclusion. 

In summary, the Appeals Board concluded that "the statistical analyses [were] 

not reliable evidence that the June subcloning data or other questioned data were 

created by fabrication of falsification as alleged by [the] OR!." (Department of Health 

and Human Services, Departmental Appeals Board, Research Integrity Adjudications 
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Panel, 1996) 

In this chapter, we presented the last statistical analyses carried out by the ORI, 

namely, the distribution of digits analyses. First, we provided the necessary back­

ground to understand them. Next, we described the data that were examined. We 

then recounted the statistical evidence, which the ORI put forward against Imanishi­

Kari, based on these digit distribution analyses. Finally, we outlined several possible 

flaws with them. We present in the next chapter our concluding remarks on the 

Imanishi-Kari's alleged case of fraud. 

97 





CHAPTER 5 

Conclusion 

Up until 1986 there was no central body within the United States National 

Institutes of Health (NIH) that was designated specifically for dealing with cases of 

scientific misconduct. In 1989, after the NIH had concluded its first investigation into 

the case of Imanishi-Kari, the United States Public Health Service created the Office 

of Scientific Integrity (OSI) and the Office of Scientific Integrity Review (OSIR). A 

month after that, the NIH reopened its investigation into the case within the newly 

created OS1. 

A few months just before, United States Congress had become involved in 

Imanishi-Kari's case as weIl. The Congressional Investigations Committee of Rep­

resentative John Dingell held the hearings. DingeIl, a Democrat from Michigan, 

chaired the House Energy and Commerce Committee, which had control over the 

NIH. He was interested in scientific fraud particularly because the NIH had a very 

high operating budget and he believed that his commit tee .could not "afford to di­

vert precious dollars into areas of meaningless or fraudulent work." (Kevles, 1998) 

Dingell forced Imanishi-Kari to provide aIl her research records and he sent them to 

the Secret Service for analysis. 
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In 1992, the OSI and the OSIR merged to form the currently ~nown Office 

of Research Integrity (ORI). About two years later, the ORI issued its 231 page re­

port with attachments accusing Imanishi-Kari on 19 charges of scientific misconduct. 

She appealed the decision to an independent body, the United States Department 

of Health and Human Services Departmental Appeals Board, whose mission is to 

provide "prompt, fair, and impartial dispute resolution services to parties in many 

different kinds of disputes involving components of the, Department of Health and 

Human Services." (Department of Health and Human Services, Departmental Ap­

peals Board) In 1996, an adjudication panel of three members appointed by the 

Appeals Board concluded that the "ORI did not prove by a preponderance of the 

evidence that Dr. Imanishi-Kari engaged in scientific misconduct as charged." (De­

partment of Health and Human Services, Departmental Appeals Board, Research 

Integrity Adjudications Panel, 1996) 

In essence, at the time the case was unfolding, the institution then playing 

the role of the ORI today, was undergoing major reorganization. There were no 

weIl established procedures for such cases nor were there people with well defined 

responsibilities to take care of these procedures. No doubt, this situation further 

complicated the case. 

5.1 Dealing with Scientific Misconduct Today 

We have used the phrase "scientific misconduct" numerous times throughout 

this thesis, but what exactly does it mean? It is a challenging task to come up with 

a comprehensive definition for a term such as this. The currently accepted definition 

by the ORI is the following: 
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"Scientific misconduct or misconduct in science means fabrication, falsification, 

plagiarism, or other practices that seriously deviate from those that are commonly 

accepted within the scientific community for proposing, conducting, or reporting 

research. It does not include honest error or honest differences in interpretations or 

judgements of data." (Office of Research Integrity Model Policy, Revised February 

1997) 

It is of interest to note that the National Research Council Canada has also 

adopted this definition of scientific misconduct. (National Research Council Canada) 

Now that we have defined the problem, the natural question arises. How are we 

to solve it? How do institutions such as the ORI currently deal with an alleged case 

of scientific misconduct? 

The ORI has come a long way since the case of Imanishi-Kari. It has established 

many policies and procedures for handling misconduct ranging from the protection 

of the whistleblower to the complete review of final reports in the investigations 

to assure quality and fairness. (Office of Research Integrity Model Policy, Revised 

February 1997; Office of Research Integrity Model Procedures, Revised February 

1997) It has also published numerous studies on or relating to scientific integrity and 

has various other studies currently in progress. 

The ORI's website offers a plethora of information not only on scientific mis­

conduct and aIl related information in the United States but also on the current 

state of this issue around the world. The ORI has bec orne an exceptional institution 

of its kind, the steps of which the newly created UK Research Integrity Office, for 

example, hopes to follow. (BBC News, 2006a) 
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Without doubt the major goal of such institutions is at the least discouraging 

and at the best preventing research misconduct. Clearly, scientific integrity cannot 

be forced upon the researcher but various aspects of the research practices can be. 

Scientific journals and research institutions such as the universities have a major 

role to play. The good news is that these bodies have become increasingly aware 

of the need to take action. For example, the BMJ (British Medical Journal) has 

an ethics committee, which is an independent body set up ta advise editors and 

peer-reviewers on research ethics. As another example, by July 1995 the government 

of Canada had required from an its research universities to establish policies and 

guidelines for handling scientific fraud. (Science, 1994) 

In general, what can countries do to handle scientific misconduct effectively 

before and after it has happened? Richard Smith, a former editor of BMJ for 25 

years, presents the following arguments: N aturaIly, the first step is to recognize 

that the problem exists. He points out that a widely accepted definition of scientific 

misconduct is essential. Next, an issues of or relating to scientific misconduct must be 

dealt with by a centralized independent body. AIso, protection of the whistleblowers 

as weIl as a fair system has to be guaranteed as much as possible. FinaIly, a code of 

good research practice has ta be established and widely promoted and encouraged. 

(Smith, 2001) 

The implementation of these steps would only indicate strong attempts by gov­

ernments to enforce good research practice in their scientific communities. However, 

the international scientific community today is so intertwined that measures beyond 
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the nationallevel are necessary. Unfortunately, the drawback is that too many reg­

ulatory or monitoring policies may also create an unproductive and an undesirable 

research environment. 

There is a wide range of reasons why one pursues a career in science the most 

common being his or her genuine interest in the advancement and understanding of 

that particular scientific field. Researchers today face enormous pressure to obtain 

results and to build a reputation through a sound list of publications. There is intense 

competition and there shaH always be circumstances which will trigger unethical 

research practices. Therefore, the responsibility in preventing those practices from 

taking place rests in no other but the scientists themselves, young and old alike. 

5.2 Years Later: Update on the Players 

Thereza Imanishi-Kari is currently an associate professor of pathology at Tufts 

University. She has one PhD student under her supervision. The main focus of their 

research is the pathogenesis of systemic lupus erythematosus, a systemic autoimmune 

disease. 

David Baltimore is currently the president of the California Institute of Tech­

nology and has held that position since 1997. He supervises a laboratory with nine 

postdoctoral fellows, five staff members and one undergraduate student. Topics be­

ing researched in his laboratory include various critical factors affecting HIV genome 

expression. 

The latest records of the whereabouts of Margot O'Toole date to 1998, when 

she was working for a biotechnology company in Boston. Her husband at the time 
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and possibly today, Peter Brodeur, currently also holds a position as an associate 

professor of pathology at Tufts University. 

Baltimore, together with three of the other five authors, retracted the disputed 

paper. (Weaver et al., 1991) lmanishi-Kari did not retract the paper. One of the 

inconsistencies that O'Toole found in the published data was on the specificity of 

one of the reagents used in the experiments. lmanishi-Kari replied to this with a 

letter to the edit or of CeIl. (Imanishi-Kari et al., 1989) In general, however, the 

authors claimed that the errors in the paper were scientifically insignificant. Balti­

more doubted that if any other scientific paper was so harshly scrutinized it would 

be found errorless. 

Recently, we have ascertained that the study in contention was rather corn pli­

cated and no one other than Imanishi-Kari has reaIly attempted to repeat these 

experiments and confirm or refute the results published in the paper. In addition, 

the theory which this study aimed at supporting, has fallen out of fashion. There 

seems to be sorne ev id en ce for its plausibility but there do not seem to be many 

researchers willing to pursue the topic further. 

So, what did really happen? Did Imanishi-Kari fabricate and falsify data or was 

she a victim of serious injustice? Were O'Toole's strong beliefs in the correctness of 

science an excuse for the fraud investigators in their endless pursuit of guilt? Was 

Baltimore an arrogant scientist or a heroic figure who stood behind Imanishi-Kari at 

aIl costs? 

It is neither in our ability nor was it our intent to objectively answer these 

questions. Imanishi-Kari was exonerated because there was insufficient evidence to 
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prove fraud and not because there was strong evidence that she was innocent. But 

innocent or not, a doubt has been cast on her reputation as a scientist. 

It was the goal of this thesis, however, to assess critically the statistical argu­

ments that were put forward against lmanishi-Kari and the counterarguments to 

them raised before the Appeals Board. As we did not have access to the actual 

experimental records, this limited to a certain extent our ability to present a more 

comprehensive study of the case from the statistical point of view. We briefly sum­

marize the three statistical analyses that the ORl carried out to prove fraud and the 

reasons why they were disputed. 

First, the method of seriaI correlations was used to establish whether or not the 

data represented a true experimental record of gamma radiation counts. What took 

place in any particular weIl was assumed to be independent from what took place in 

its neighboring wells. Hence, if the counts were authentic, little or no seriaI correla­

tion was expected to be observed. Although, theoretically, this is a sound statistical 

approach at evaluating independence in a data set, its application by the ORl had 

serious flaws. As Speed pointed out, the control data sets were not comparable to 

lmanishi-Kari's and, therefore, any difference observed between the critical and the 

control data sets was not very informative and conclusive. Furthermore, he pointed 

out that the fundamental assumption of independence between the observations was 

probably invalid in an actual experimental setting such as those being studied. 

Second, different "control" data sets were fitted by Poisson mixture distribution 

models, and it was expected that the contentious data sets should, therefore, also fit 

Poisson mixture models. Yet, there are various models which may explain equally 
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well, any particular data set, should "a fit" be dedared; there is no reason to require 

that the contentious data should also fit a Poisson mixture mode!. As importantly, 

the physicaljbiological justification that the data should follow a mixture of Poisson 

distributions in the first place was seriously put in doubt by Speed, who pointed 

out that there was neither any compelling scientific nor any empirical evidence to 

support that daim. 

The third and last set of statistical analyses involved the distribution of in­

significant digits in the count data. These analyses were based on the weIl known 

assumption that leading digits in random numerical experimental data follow the dis­

crete uniform distribution. Unfortunately, the digits analyzed were not the leading, 

significant, digits in the counts. Moreover, which digits were deemed "insignificant" 

for the analyses, suggested serious subjectivity on the part of the OR!. 

Recently, Nature Medicine devoted a special section on scientific fraud. Imanishi­

Kari's case was presented as the "stuff of folklore," and one that will retain its pop­

ularity despite the fact that there have been and continue to be increasingly many 

allegations of scientific misconduct. (Basu, 2006) 

Professor Ranjit Kumar Chandra, a prominent Canadian researcher in the field 

of nutrition and immunology, was recently accused of scientific fraud. He is said to 

have published at least 10 studies, which are based on fraudulent data and is known to 

have attracted substantial amounts of research funds to support them. (CBC News, 

2006) As another example, Professor Hwang Woo Suk, a South Korean researcher 

and termed a national hero based on his stem cel! research, recently admitted to 
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faking data. He has also beeil able to attract millions and millions of dollars in 

public and private funding to support his research. (BBC News, 2006b) 

We bring lmanishi-Kari's story to an end by pointing out that, true or otherwise, 

with each allegation of scientific fraud there is more at stake than just the protection 

of the whistleblower and the reputation of the scientist involved. One of the most 

precious things we hold as scientists, particularly in academia, is our freedom to carry 

out our research. We will be allowed to keep it so long as the public continues to 

trust us and the work that we carry. This is exactly the reason why we, as scientists, 

have the greatest role to play in keeping high ethical standards in scientific research 

and the greatest interest in doing so if we want to see future generations of scientists 

follow from where we leave off. 
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