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Ph.D. PHYSICS

Virginia R. Brown
THE EFFECT OF COLLECTIVE EXCITATIONS
ON THE OPTICAL MODEL

A simple model is proposed for the description of the
scattering of neutrons by a vibrational even-even nucleus employing
a complex spheroidal well surface interaction. This model is
particularly convenient since it allows an exact analytic solution,
which can be written in the form of correction terms to the spherical
optical model.

The application of this model to the s wave strength function
results in a splitting of the single peak at A = 55. The inclusion of
the effect of octupole excitation introduces desirable but minor
modifications.

Determination of the total neutron cross sections with
this model substantiates the view that the flattening of giant
resonances away from closed shell regions can be attributed to
the effect of quadrupole excitation. There is also some evidence from
this model that the effect of collective excitations could account
for the characteristic shift of the maxima associated with these
resonances. The scattering and reaction cross sections as well
as the differential shape elastic scattering are also calculated.
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CHAPTER 1

INTRODUCTION AND SUMMARY

This thesis is a study of the effect of collective excitations on
the optical model. The Introduction will be devoted to a sketch of the
historical developments which are pertinent to this investigation. The
spherical optical model or the optical model before the effects of
collective excitation are imposed is discussed at some length. Various
gross properties of the neutron - nucleus scattering problem which are
particularly suitable for prediction by the optical model are reviewed;
the gross properties to which we refer are the cross sections and the
strength function appropriately averaged over resonances. The
success of the spherical optical model in predicting these properties
is qualitatively considered. Consideration of the corrections for
collective effects on the spherical optical model and the resulting
improvement in the prediction of the aforementioned gross properties is
discussed. The particular contribution made by the present thesis to

this area of nuclear physics is also described.

For many years the principal nuclear reaction mechanism for the
interaction of nuclear particles with complex nuclei was the idea of
the compound nucleus introduced by Niels Bohr1 in 1936, Under the
assumptions of this model a particle, which has entered the nucleus,
quickly shares its energy with the other nucleons and can be thought
of as absorbed, thereby forming a compound nucleus in an excited state.

This state is one in which the motions of all particles are so intimately



coupled that a statistical equilibrium is reached, and the incident
neutron is no longer distinguishable from the target nucleons. The
state of the compound nucleus and its manner of decay are independent
of the way in which it was formed except for the correlations and

restrictions connected with the over-all conservation laws.

In 1949, with assumptions akin to the Bohr hypothesis, Feshbach
and Weisskopf2 calculated the energy dependence of neutron - nuclear
cross sections. The results represented average values over individual
fluctuations and resonances, and the cross sections were smooth functions
of energy which decreased monotonically with increasing energy. However,
the decisive experiments of Barschall3 and his co-workers have clearly
demonstrated that this is not the case. Instead, the experimental
curves appropriately averaged over resonances have pronounced maxima
and minima reminiscent of wave interference. Furthermore, these
maxima and minima demonstrate not a random, but a gradual change
when examined as a function of mass number and energy, that is, there is
a significant change over the full range of the mass number, A, but the

cross sections of neighboring nuclei have a similar energy dependence.

This type of behavior is indicative of a general flaw in the theory
since it shows up systematically in all nuclides. The characteristic
shapes that appear in the total averaged neutron cross sections, a;- ,
depend on general properties that vary slowly with A rather than on the
detailed features of nuclear reactions. The widely spaced shallow
maxima and minima are what might be expected in scattering from a

potential well, where resonances occur whenever a whole number of



wavelengths can be fitted into the well, but this type of interaction is

just what was needed for the nuclear shell model. It was also evident

that the damping which would be necessary to produce the observed widths of
these resonances was smaller than that expected from compound nucleus
arguments. In fact, the results obtained by Feshbach and Weisskopf2

had no resonance character because of their assumption of total damping

based on the Bohr hypothesis.

It seemed clear, then, that compound nucleus ideas had to be
modified to encompass the shell model point of view. The basis of
the Bohr assumption was that every nucleon incident on the nucleus is
absorbed, that is, captured immediately into the compound nucleus.
This is, of course, in direct conflict with the shell model which necessitates
long nucleon mean-free-paths in nuclear matter. One might interpret the
success of the shell model as evidence that a neutron could move about
in the nucleus without interacting with the other particles present.
However, the shell model evidence comes from ground states and
low excitation levels where the exclusion principle is most effective.
Since nucleons of incident energies of a few Mev form, with the targets,
excited states of the order 8 Mev, one does not expect the long mean-

free-paths associated with the shell model ground states to be valid.

The optical model was devised to combine the virtues of the shell
model and the compound nucleus assumptions. The use of the optical
model implies the use of a complex potential to represent the target
nucleus. If the Schrodinger equation is adjusted to include a complex

potential, it can be shown that the imaginary part of this potential has



the effect of adding a term to the continuity equation which corresponds
to the removal of particles. The magnitude of the imaginary part of the
potential bears a direct relation to the probability per second that the
neutron will form a compound state. In the optical model the strong
coupling or total absorption suggested by the compound nucleus theory
is replaced by a weak absorption where the capture into the compound
nucleus takes place with a probability less than unity. The probability
that is required for compound nucleus formation is expected to be
consistent with nucleon mean-free-paths in nuclear matter that lie
somewhere between the short mean- free-paths of the compound
nucleus theory and the longer paths associated with the shell model.
Thus, in the optical model the incident neutron is considered to enter
the nucleus and move inside the nuclear boundaries making many
internal motions before subsequently being either emitted or absorbed.
When the incident nucleon is not absorbed, the target nucleus acts as

a potential well.

The representation of the nucleus by a potential wiell is analogous
to the representation of an optical medium by a refractive index. To
account for the absorption of light in the optical case, an imaginary
part of the refractive index is introduced. In nuclear reactions the
elastically scattered beam has an intensity which is diminished
relative to the incident beam because some particles initiate reactions
and are lost to the incident beam. This absorption is represented by
an imaginary part of the potential, again in analogy with the optical
case. These analogies constitute the basis for the name optical model

or clouded crystal ball model.



Referring back to the experimental work of Barschall and others we
had stated that the damping necessary to produce the resonances must
be smaller than previously expected from Bohr assumptions. Another
way of stating this in terms of a clouded crystal ball model is that
the imaginary part of the well must be of the right order of magnitude
to give the constructive interference necessary to produce the observed
broad maxima and minima. These giant resonances of the order of 1 Mev
wide and located in the energy region of about 0.1 Mev to 10 Mev will
be important in our considerations in this thesis and will be discussed

in more detail in future contexts.

The optical model in this form was first presented in 1954 by
Feshbach, Pbrter, and Weisskopf4 to which we will hereafter refer as
FPW. In particular, the FPW optical model was devised to explain the
results of the Barschall experiments which were mentioned earlier. The
FPW optical model gave surprisingly good results in reproducing the giant
resonance structure of the total neutron cross sections averaged over
resonances and plotted versus mass number and energy. The natural
explanation of these resonances is tha;‘. they represent the effect of the
independent particle levels superimposed on the actual width and
spacing of the numerous resonances of the many-body system hidden

beneath the averaging.

In connection with the actual many-body system, it might be
mentioned here that by replacing the target nucleus by a complex potential
well we have disregarded the complicated structure of the nucleus, and at

best we can only see the gross-structure associated with the scattering.



Also we have lumped all reactions, inelastic scattering, and even
compound elastic scattering together as an absorption. By disregarding
the intricate quantum mechanical nature of the problem we have failed to
account for the sharp resonances or the competition between nuclear
reactions. The point is that by using a shell model potential we have
determined the average interaction between the nucleus and the neutron.
It is the fluctuation away from the average that gives rise to the
compound nuclear resonances. Nevertheless, the clouded crystal

ball model gives a good description of the average cross sections,

and one might say that it accounts for nuclear reactions in a global

fashion.

It should be noted that the position of the optical model has moved
amazingly since the time of FPW both from the point of view of its
phenomenology and also from the point of view of its underlying
foundations. Phenomenologically the optical potential for spherical
nuclei which has in general been employed is a combination of
central and spin-orbit potentials. For energies that are not too
high it should be much like the single-particle potential for bound
nucleons in which,for example, non-local effects should be included.
The main improvement on the original square well model is the effect
of diffusing the well. The reflectivity of the square well is too large,
consequently, the reaction cross section which is sensitive to the

nature of the surface is too small.

The other aspect of the optical model deals with the relationship
of the optical model to more basic theory. This involves the proof
of existence of the optical model from a many-body Hamiltonian
and then, in turn, the derivation of the parameters of the optical model
from the two-body interaction. In this thesis we will be concerned with

the phenomenological optical model only.



One of the more outstanding successes of the optical model has
been the determination of the strength function, TT,,.'/:D » which is the
ratio of the neutron level width to the neutron level spacing averaged
over resonances and normalized to 1 ev. In the low-energy regions
of well spaced levels the strength function is simply related to the
average absorption cross section. The strength function is of
particular interest to recent nuclear models and is not a property of the
nuclear energy level system, but rather it is a property of the nuclear

surface itself. To see this consider the following definitions:

M /%

/D

probability per second for disintegration of a
nuclear level by neutron emission.

time between collisions with the nuclear surface, or
to put it another way, it is the time for all the
excitation energy to be reconcentrated on one
neutron so that it could escape.

Clearly the strength function which is the product of these
quantities within a factor of 27 is just the penetrability of the
nuclear surface. Because the strength function has this property of
being essentially independent of the method of excitation or equivalently
because it is external in nature, it is particularly useful in determining

the parameters of the optical model potential.

The strength function plotted against mass number for the spherical
optical model shows peaks in the vicinity of A = 55 and A = 155. The
overall agreement with experiment is quite good and can be qualitatively

understood on the basis of the spherically symmetric potential well used



by FPW. The maxima in the strength function correspond to the resonances
that occur when the energy of the incident neutron, which is essentailly
zero, is near an s-~level of the potential employed in the optical model.

If one examines the level structure of the spherical nuclei of a

shell model potential designed to predict the magic numbers, it is

seen that the resonance at A = 55 corresponds to a 3s resonance,

that is, the 2 s level is filled, bu the 3s state is more than a major shell
away and, therefore, just positive. Likewasee the resonance associated
with A = 15§ can be identified as a 4s resonance.

The approximate condition for an s-resonance can be determined
analytically for a square well and is given when the inside wave number
times the radius is an odd multiple of n /2. This is just the condition for
which new energy levels with 1 = 0 appear in the bound state problem. From
the point of view of a real well, the physical interpretation is that the
incident particle has nearly the right energy to be bound, and, therefore,
it has a tendency to concentrate in this region. Consequently, there is
a large distortion produced in the wave function and, in turn, a large
amount of scattering. The use of a complex well, howewer, reveals
these resonances as absorption peaks; therefore, the interpretation is
different although the condition which locates the position of the peaks is
still approximately determined by the real part of the well. The
imaginary component of the well has the effect of broadening the
resonances. These resonances are often called size resonances; the

1/3

reason for this is that since R = RgA™” 7, an increase in mass number

has the effect of increasing the extent of the well.



The strength function peak which falls in the region of A = 155
is in the vicinity of strong deformations and rotational nuclei. The
interpretation of this region of nuclei is that the number of particles
outside closed shells is so numerous that the nuclear equilibrium shape is
permanently deformed, thus, giving rise to rotational excitations.
Although the representation of the target nucleus by a spherical well gave
good qualitative agreement with experiment al results in this region, it

did not account for the irregularities that existed there.

By using a spheroidal well to represent the deformation of these
nuclei, Margolis and Troubetzkoy5 have been able to present a simple
argument to explain the observed splitting of this 4s resonance in terms of the
deformation of the nuclei in this region. These authors considered the
problem of s-wave scattering from a complex spherdidal potential in
the limit of no recoil of the rotator. This has been called the adiabatic
approximation where the use of a fixed spheroidal well is justified in
that the rotation of the target nucleus is slow compared to the nucleon
transit time. The solution was effected by joining the inside and ou side
wave functions and their derivatives at the surface of the well as a

function of eccentricity.

In the case of a non-spherical potential well, angular momentum is
not a good quantum number, and as a result there is mixing of d-states
and higher states into the particle wave function inside the well. These
states resonate at different values of A;consequently, there is a mixing
in the final result which produces a double peak in the strength function.
Increasing the eceentricity has the effect of further deforming the well
which mixes in higher l-states with a resulting additional increase in

splitting.



\‘

An extensive study of neutron scattering from non-spherical,
even-even nuclei in the rotational region of nuclear spectra has been

considered by Chase, Wilets, and Edmonds6 (CWE). These authors

have used a diffuse-surfaced potential well which was chosen to be complex

in order to allow for inelastic scattering and reactions. In this study

a target Hamiltonian has been included so as to account for the
excitation of the low-lying rotational states which, because of the
deformed shape of the nucleus, are directly coupled to the particle
motion. Since angular momentum is not conserved for a deformed well,
there is an energy exchange between the incident neutron and the target;
the neglect of this is just what was meant by the adiabatic approximation

in the discussion of the work presented in Reference S.

The paper presented by CWE was in part a study of the importance
of direct interactions compared with compound-nucleus ineractions. A
plentitude of experiment al data on U238 provided a propitious case
for investigation. According to CWE the cross section for the direct
process compared to that for compound nucl eus formation is relatively
small at low energies (=1 Mev). It becomes important, of course, as
the incident neutron energy is increased. It is suggested, however, that
the contribution of the direct interaction to the differential cross
section at low energies is significant because of the large anisotropy
which is associated with this process. Other cross sections and
effects are also presented. In particular, the strength function is
determined as a function of mass number with a variable deformation

parameter based on measured quadrupole moments. This is the physically

10



reasonable thing to do, and there is a corresponding improvement in
the fitting of the experimental curve. It might be mentioned here
that the validity of the adiabatic approximation used by Margolis

and Troubetzkoy for s-wave scattering was confirmed by CWE.

The peak in the strength function located in the vicinity of A = 55
is in the region of vibrational nuclei, that is, near closed shells where
the equilibrium shape of the nucleus is still spherical, and there is
the possibility of vibrational excited states but not rotational. The
interpretation of vibrational nuclei is that there eikist particles
outside closed shells, but there are not enough to permanently deform
the nuclear equilibrium shape. The experimental strength function in
the vicinity of A = 55 shows asymmetry when compared to the spherical
well predictions. It is well known that many even~-even nuclei
demonstrate a strong excitation of 2Jr states by inelastic scattering.

It is, therefore, conjectured that this dynamical quadrupole distortion may be
responsible for the asymmetry in the strength function in much the same

wa¥ as was evidenced for the permanently distorted nuclei at A = 155.

This effect has been considered by Professor Bernard Margolis
and the author of this thesis and independently by B. Buck and F. Perey7.
The particular advantage of the model used by the former is that it yields
to a particularly nice analytic solution which can be compared directly
with the work of FPW in the form of correction terms, and it is primarily
for this reason that it is presented in a later chapter. The work
of Buck and Perey is more extensive in that it includes the p-wave

strength functions. In addition they have used a diffuse interaction

11



potential, and, in general, the method of attack is different from ours.

We have been discus si.ng the giant resonances in the strength
function; we shall now consider the giant resonances that appear in the
total neutron cross section. The consideration of the effect of collective
excitations on these giant resonances and on the associated cross
sections constitute the main contribution of the present thesis. The
calculation of the total cross section presents a much more difficult
problém than the one which we have been considering because the
strength function involves only s-wave calculations, but the giant
resonances in the total cross section occur at energies up to 10 Mev and
higher, and,thierefore, consideration of the effect of distortion on these

giant resonances involves the inclusion of many partial waves.

Upon examination of the experimental total cross sections versus
mass number there can be observed a gradual tendency for these giant
resonances to flatten out in the regions tending away from closed shells.
There is also a characteristic shift in the energy at which the maximum in
the cross section occurs. It was inferred that these effects could be
understood in the region of vibrational nuclei, that is, just away from
closed shells by taking into account the effectief collective excitations.
The particular regions under investigation in this study are the regions

4o 308
near 26C 820 and e2PD12,  Which are doubly magic closed
shell nuclei. To our knowledge an investigation of this sort has never

previously been attempted.

In Chapter 2 we summarize some essential features of the nuclear

models that will be important in the subsequent developments of the theory.

12



In particular this involves the optical model and the collective model of
the nucleus. In Chapter 3 we shall formulate the model for the inclusion
of the effect of collective excitations for vibrational nuclei. In

Chapter 4 we present some numerical results in graphic form, and a
discussion of these results will be presented in Chapter 5. The

exact solution of the coupled radial equations is outlined in Appendix I,

and certain important recursive relations are given in Appendix II.

13



CHAPTER 2

BASIC NUCLEAR MODELS

2.1 Optical Model Cross Sections

We have stated that in the optical model, compound nucleus formation
is considered as an absorptipn of the incident beam as represented by the
imaginary part of the potential. The real part of the potential predicts
the shape-elagic scattering, that is, no compound nucleus is formed.
Now, the compound elastic scattering is considered as an absorption
process in this model even though it involves the subsequent emission of
the incident particle by the entrance channel. As a result the optical
model predicts only the shape-eladic scattering and the compound
nucleus formation. In order to relate the optical model to experiment it is
necessary to define a set of cross sections which are averaged over
resonances. Of course, at higher energy when the level width becomes
comparable in size to the distance between levels the averaging is done

automatically.

According to usual scattering theory when a target nucleus is bombarded
with neutrons, the differential cross section for scattering neglecting spin

effects is given as follows:8

d0e -
Boggeconl e

Where 7(4 is the measure of the amplitude and phase of the coherent

th

outgoing partial wave relative to the unit amplitude and zero phase

14



angle of the incoming wave. The YL,O ’.5 are the spherical harmonics
as given by Reference 8, and &o is the outside wave number. The
total elastic cross section is obtained by integrating the differential
elastic cross section over all angles, and because of the orthonormality

‘of the spherical harmonics, O:Qy_ becomes:

O;ﬁ%% (24+1) } |—7[9.r, (2.2)

The reaction cross section represents all incoherent processes, that is,

all processes where the incident neutron interacts with the target nucleus

in such a way that it does not leave through the entrance channel.. The

reaction cross section can be obtained by subtracting the intensity of the outgoing

coherent wave from the incident wave and is, therefore,

O = %'%_ % @+1) f |-mgl‘§ ] (2.3)

The total cross section is just the sum of (Jgg and Ur and in terms of

partial waves

0= % 0o ;(Ué,'f)a- U',&Q) ). (2. 4)

712 exhibits rapid fluctuations as a function of energy in the regions of
closely spaced resonances of the compound nucleus. The theory of
average cross sections as represented by FPW replaces 7& with an

average value of )/(ﬂ where the averaging is defined by

_ E+T/2

Y(L(e)= —i':—S 7[2(6’)«:{6'. (2. 5)

e-Ti2
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I is an energy interval containing many closely spaced resonances yet
chosen much smaller than the energy, € , such that slowly varying

functions of € like ‘&:’ need not be averaged. The average cross
sections are defined in the same way, and without going into detail it

' 4
is easily shown that

— Lo (') o0
-7 550 2.0 0) | e
=0 £ 14

(M}
where U:-_( is the cross section for the formation of the compound
nucleus, and O;e(.Q) is the shape elastic cross section. These cross

sections are given by

Use = Z e X4
; 00 =T 2 e f1- a3

The angular distribution for the shape elastic scattering is given by

dGce ___\% Z5 (-0 Yoo l (2.8)

These newly define d quantities are, if you like, the scattering and reaction

Z [0 l\—-?\ﬂ.
(2.7)

cross sections of a new problem which is defined by the slowly

varying function —L . The optical model potential is that potential for
which —L is the amplitude and phase of the outgoing coherent wave,
and it is for this reason that the optical potential is said to predict

the gross properties of neutron-nucleus scattering.

16



2.2 Square Well Optical Model

The simplest type of well that one can assume for the optical
model is a square well as was first utilized by FPW. As has been
mentioned, we shall cast our theory for the effect of collective
excitations on the optical model in a form in which the results appear
as correction terms for the square well optical model. In the light
of this, we shall present here the features of the square well model
which are essential for our purposes. The square well optical potential

is defined by

Voo =\, . r<R
V_m 9 5 e (2.9)
Y= o ; rzR,

where Yo is the real well depth and is taken here as a constant. ? is

the absorption parameter and represents the percentage of \/0 that corresponds
to absorption; 6 Vo is the imaginary part of the potential and has

the same radial dependence as the real part in this model. The nuclear

radius, R, is a function of mass number, A, according to the relation,

R=7TR, A2 (2. 10)

We had written down expressions for the various cross section in
terms of the quantity 7[1- . For our purposes it is convenient to write
the cross sections in terms of the logarithmic derivative, fﬂ- s Which

is defined by

17



%= RE‘,} %%a

where u-g_(”-) is the radial part of the wave function of the scattering

problem and satisfies the Schrodinger equations,

dnz
and

Cn [ D |0 5 <R
where

”&2;:: —_E)%_-E | zmd, K:’%_[EfVo(H-Lgﬂ R

7(2 can be written in terms of ﬁ as follows:

T &% $r-mase
S 89-1%y

where for the complex square well

§ = tan E}‘w Jmg05],

/
o)
(X)
Wr L= [+ X pi
A+ :ﬁf )
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and

5;;(‘5 =+ X jﬁ(x)/ﬁ(x.) : (2.18)

In these equations, jﬁ N mﬂ_ and /ﬁﬁ) a.re, respectively the

spherical Bessel, Neumann, and Hankel functions. The Hankel

function is of the first kind, that is, it corresponds to outgoing waves
only. In fact, A o+ "'S}L is the logarithmic derivative of the outgoing
portion of ul(m) » where A 9 and S g are both real. In the notation
of (2.16), (2.17) and (2, 18),

X=%0R 2 (2. 19)

X=K,R > (2. 20)

and the prime denotes differentiation with respect to the argument;

this notation will be used consistently throughout. The ratio of the out-
going part of the radial wave function to the incoming part is a pure
phase, and the identification of ﬂ,:“'sy- with this ratio leads to the

expression for S:Q given by (2. 16).

7(;1 has been expressed in terms of functions evaluated at the
nuclear surface by (2.15); we can now rewrite the cross sections defined

in (2.1), (2.2), (2.3), and (2. 4) in terms of these functions.

) _ Z
Us%=%i(za+\) e,z's“—-l— 6———-———2"? S (2. 21)
° =B 4%
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@ T —<4Sy Im%ﬁ. .
0. = é(zqm (RS + (Tm fn—sn)‘ ) (2.22)

0 10y VoS, Cos23e(Tmfa- 5 ~3wizda(ReSe- A0 ‘g 2.23)
D—g) ‘k’o'(zq DSy (Refo-8g)" + Tw§2-52)" (

The differential shape elastic cross section (2.8) can be written

in terms of OT‘- and the Legendre polynomials, fi(cose) » with the
aid of (2.15) and (2. 23)

(%J’—;f = E?E)i- ?% 6‘—#) ﬁ(CpS e)i z+ ‘-"Eiéé (z.t.+s)<$l3v\ 2§ )_[I t (R: ;{Zﬁgﬁfé:éiﬂ;

(2. 24)

25 (Refp-4¢) .
+ Cosz2 S,Q (M:_A,_\u (Em fg-%‘g)‘> %

2.3 Vibrational Nuclei

There is ample evidence2 that nuclei exhibit collective effects
which are necessarily due to the cooperative behavior of large numbers of
individual nucleons. This collective effect is due to correlations in
individual particle motion and can be identified with the degrees of
freedom which describe the shape and orientation & the nuclear field.
The nuclear field to a first approximation can be represented by
introducing a spherically symmetric potential which describes the
average effect of the interaction between the nucleons. The success
of the shell model has shown that this is a rather good approximation for

closed shell nuclei.

20



According to the collective modd, nuclei away from this closed shell
region consist of a relatively stable core made up of particles in closed
shells, and theremainingparticles are considered to move in the
paential of the core. The core is capable of deformation by the nucleons,
which are effectively outside the core, and, in turn, once the core is
deformed it modifies the field in which the nucleons move. The
collective model, is, then, a compromise between the extreme individual

particle model and the liquid drop model.

For closed shells the individual orbits of the nucleons are uniformly
distributed and the equilibrium shape remains spherical. Particles in
unfilled shells, have an anisotropic effect, however, and tend to deform
the nucleus according to their own density distribution. The distortion
from spherical equilibrium can be thought of as a competition between
the tendency for deformation by the individual nucleons in unfilled shells
and the residual forces which tend to put equivalent nucleons in a

spherically symmetric state.

The distinction between rotational nuclei and vibrational nuclei
as mentioned in the Introduction is based upon the stable equilibrium
shape. For closed shell nuclei the binding energy is largely due to the
special stability of these nuclei. The potential energy curve is stable

for the spherical shape and rises steeply for a change in shape. This,

of course, implies that nuclear excitations wo uld invo}ve high frequencies.

away from closed shells where only a few particles have been added, the

potential energy minimum still corresponds to a spherical shape,

21
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but now the potential rises less steeply, and excitations involve somewhat

lower frequencies than in the case of closed shells.

The addition of particles has the effect of reducing the slope of
the potential energy which means that the nucleus is more easily
distorted. With only a few particles outside closed shells the
equilibrium shape is still spherical and as such exhibits only
vibrational excitation. When enough nucleons have been added to make
the spherical shape unstable, then the potential energy has a minimum
at a nonspherical shape, and we have effectively come into the region
of rotational nuclei. These nuclei exhibit rotational as well as
vibrational excitation modes. The rotational modes are low frequency
collective excitations associated with the rotation of the nonspherical
equilibrium shape with the intrinsic structure intact. The individual
nucleon correlations necessary to give this effect are long-range
correlations such that the over-all space pattern is nearly constant.

This may be viewed as a surface effect.

The discussion presented here is dependent upon the separability
of the intrinsic and the collective degrees of freedom. The coupling of
particle and collective motions can be neglected when the frequencies
of collective excitation are small compared to the excitation frequency of
a shell model state. We are concerned in this thesis with the regions
near closed shells, and due to the high stability of these regions the

coupling can be neglected.

Experimentally, vibrational spectra are observed for all even-even

nuclei except at closed shells and in the region defined by A~25,
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150 < A< 190‘ and A > 220 where rotational spectra are found. These
vibrational excitations can be described in terms of the quantized
surface vibrations of a liquid drop. The addition of particles outside
closed shells is manifest in the decreased restoring force and the
corresponding decrease in the observed frequency of the collective

oscillation.

We shall recapitulate the theory of the modes of excitation for

a continuous liquid drop using the notation of A. Bohr and B. Mottleson. 10, 11
A nuclear surface of general shape can be written as
F= 4 1
= + 2.23
ne,@= R+ Z 2N Yage(0:9) (2. 23)

R is the radius of the undeformed liquid drop. The Y ) s are, as
befores, the normalized spherical harmonics. Since the radius is a

real quantity, the 0&)‘}, satisfy
= €1y oh\-p (22 4)

The expansion parameters, 0(),,_ + are the collective coordinates, and
they describe the deformation of the nuclear surface. The assumption of
incompressibility implies that 0(0,0 = O . The contribution of >\ =1
gives rise to a rigid translation of the drop. As a result )\ = 0 and )x =1

can be dropped from the sum in (2. 23).

With the above assumption of incompressibility and the additional

assumption of irrotational flow, the Hamiltonian for the system can be



developed. For small oscillations about the equilibriuin shape the motion
can be described in terms of normal modes, and the resulting Hamiltonian

is

H= % %2%&%& ¥ CAlx,ng - (2.25)

is the momemtum canonically conjugate to 7(.A/4_ and is given
by tc.

e following relationship:

T[A/,‘, DD(A - B (7(7\/,. (2. 26)

B)‘ is the inertia parameter, and C* is the effective surface tension.
The form of the Hamiltonian indicates that the surface oscillations may

be considered as a system of harmonic oscillators with frequencies,

Wy = \[%g (2. 27)

The quantization of this system is done in the usual way by
reinterpreting the m},, and O<A/" as quantum mechanical operators
satisfying the proper canonical commutation rules. The Hamiltonian can

be rewritten by setting

0(;/& {Fa» be D b,\.,% (2. 28)

and

I /{‘ ﬁjﬁ\;% é B;,, -—(—D’Lb)\)-,..?s 2 (2. 29)
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where now

[i))/&)b);}’-] = g»\' %/«/f 3 (2.30)

bl}'b)y;.: m,\}\» > (2. 31)
and

bk}o.b;;w = m)/,*-\‘ (2. 32)

where "\)},. is the number of quanta in the mode (A/») In the usual
*

interpretation IDA and i)) are creation and annihilation operators.

The Hamiltonian and the z component of angular momentum are diagonal

in the mi representation, and the eigenvalues for the deformation of order

>\ are

Exo= "‘{sz (2N +2A+ D (2. 33)
b
and | k£

77(z= }“___)f"m‘/" ) (2. 34)
where

N=/\%A ("A},=O,\,%,--- (2.35)
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Each energy level is as many times degenerate as the number of ways the
N excitation quanta can be distributed on the 2 A + 1 individual modes

of oscillation. The excitatibon quanta are equivalent to Bose-Einstein
phonons of spin )\ . The mx in (2. 34) is then the number of phonons
which has a z component of angular momentum equal to "\- . The energy
levels for a particular )\ are equally spaced and the separation is i‘\-a))‘ .
The ground state is a zero phonon state with spin zéro, and the excited
states for deformation of the order )\ correspond to increasing the

number of phonons of spin >\ by one.

(N)

The wave functions, A s Of these vibrational states are the
usual harmonic oscillator wave functions with coordinates O(bu. .

The ground state is

(0)

oooC exe [’%,_@L?’%A&] ) (2. 36)

and the one phonon state of spin >\is given by

7&/‘_& b;;‘_’x_(;i . (2.37)

In this thesis we will be concerned with the 2+ and 3~ first excited
one phonon states. The 2+ and 3 states correspond respectively to
quadrupole and octupole vibrations. Since we are interested in the
ground state and one phonon excited states, then N will take on only the
values of zero or one. N = 0 corresponds to the no phonon ground

state, and N = 1 designates the first excited one phonon state.
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)\ = 2 and 3 correspond respectively to the quadrupole and octupole

excitations.

We shall have occasion to use the matrix element of 0()\/‘,, between

different phonon states. The quantity of interest is
®)

)AL s i g =Sl 1) e

Recalling that Di)\ is a combination of raising and lowering operators

we obtain the following:

i .
Gy, S VBE s

0 y N#MEI

<7‘(rr)\"‘«\;r\7‘§}’3>=(-i E%T o5 = e

It is seen that the quantity DLA has non zero matrix elements only

between states which differ by one phonon with quantum numbers >\and/l- .

(2. 39)

Since we are only considering the no phonon ground state and the one
phonon )\ = 2 and >\ = 3 excited states, we can write the Schrodinger

equation unambiguously as

H¥)7M= tb);fX)\/u- | (2. 40)

where we have taken the ground state to have zero energy.
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CHAPTER 3

INCLUSION OF COLLECTIVE EFFECTS

3.1 Formulation of the Model

In this chapter we develop the formalism for the inclusion of the
effects of collective vibrations of spherical nuclei on the optical
model. The Hamiltonian for the bombarding of a spherical nucleus by

a beam of neutrons neglecting neutron spin can be written:

= -%v% Hr @) + Vunts Cﬁy;,ﬁ’) (3.1)

where the Hamiltonian for the entire system has been written as the
sum of the neutron kinetic energy, the target Hamiltonian, and the
interaction potential. The 0()‘/,?5 are the collective coordinates of the
target nucleus and ﬁ.’ represents the coordinates of the incident

neutron.

Since the interaction pétential is not spherically symmetric,
the angular momentum of the incident neutrons is not conserved, and
the change is taken up by the target nucleus via the target Hamiltonian.
The target Hamiltonian which will be utilized is the pure vibrational,
even-even Hamiltonian as presented in Section 2.3. In writing down the
Hamiltonian in (3. 1) we have made use of the fact that collective
motions are slow compared with nucleon transit times. The collective
parameter, o(;,,. s can, therefore, be considered fixed for the duration

of the interaction. The interpretation is that the neutron excites a
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collective degree of freedom by interacting with the nucleus as a

whole and may leave the target in an excited state.

The interaction potential can be written:

\/mt = V [K q +§/‘D(),~Y}\/~(e,¢§j b} (3.2)

where we have assumed that the potential takes the form of the distored
nuclear shape. We have expanded the nuclear surface, J{ (é,qﬁ) "
in a series of spherical harmonics as was previously done for the
development of the collective model. Now if we assume a complex well
and take the first two terms of a Taylor series expanded around r = R,

we obtain the following equation:

\/mt@sy.,'@ =V01) = RYo (1++9) SR % ot%)/y.(é, ) s (3. 3)

where V(p) is given by Equation (2.9). In (3.3) we have neglected
powers of pk)‘/,,higher than the first since we are considering only
small deformations of the surface. The first term in {3. 3) contains
only neutron coordinates while the second term contains both neutron
and collective coordinates. It is worth while, then, to rewrite the

Hamiltonian as follows:

H = Hue + Hridy+ Hur (T 5 (5.9
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where
2. —
HN(n)=—§—mv‘+ Vo > (3. 5)
and

Huit @7« )= - RVo(11rg N (-R) ;/; D()yﬁ)y ®,9) (3. 6)

H N is now the Hamiltonian of the incident neutron and has been written so
as to include the interaction of the neutron with the undeformed nucleus.
This is exactly the_ Hamiltonian ﬁsed in the FPW calculations, and we shall
see the analytical advantages of writing the Hamiltonian in this way.
Hint is the neutron-nucleus interaction potential, and because of the
square well potential, the delta function gives rise to a surface interaction.
For the present discussion we will consider quadrupole oscillations
only. Therefore, the sum over )\ and)l. in (3.6) is restricted to A= 2,
and I)A\ = A corresponding to the five degrees of freedom associated
with this degeneracy. Subsequently, in the development of the strength
function we will examine the octupole as well as the quadrupole effect,

and in that case we will expand the formalism so as to include A = 3.

It is clear from (3.6) tha only the total angular momentum is a
good quantum number. In the present work we shall restrict ourselves to
even-even targets, that is to targets With initial target spinI = 0.

We now construct states of good total angular momentum, J. For the

incoming partial wave the orbital angular momentum is equal to J because
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the target spin, I, is initially zero. The z component of the total angular
momentum will be denoted by M which we take equal to zero from azimuthal

symmetry. The wave function, (-l) J s is given by
h l T 0
h) = ? I uglIl (K) S\;’.III (e) ¢)p()/*) b (3° 7)
=0,

where we have considered for the time being only the coupling to the one

+
phonon collective state of spin 2 .

(o)
The y\n«Il 's contain the entire angular dependence as well as

the dependence on collective coordinates. Explicitly,

Y; ’:Ige’% A/\}')‘-‘ Z Cg'-g' (-’"‘a‘m \J 0) Yg‘m@ﬂ) W(‘t')-y.@(w (3. | 8)

where /}L I'sm (OK)*) are thet arget wave functions. The Schrodinger
equation satisfied by these target wave functions is given by Equation

(2. 40). Adjusted to the present notation we have

HT'XI';m(dbvb: A Wy Y—;‘-m (d%,u) (3.9)

where we take the ground state (f:o) to have zero energy. The quantities
C}'t' Chn,.-m\ |To 3 are the usual Clebsch-Gordon coefficients for

——p
the composition of angular momentum where :j:t‘—-f +T and M = 0.

3.2 The Schrodinger Equation

T
Substitution of (3. 4) and (3. 7) into the Schrodinger equation, Hl]) = EQJU
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yields the following set of differential equations:
2. - T ~° ‘kw’ t) e
Y- w2 —
N LS PAS THD PR % e W ¥y, =

6 | (3.10)
quyr“}z U’E;. R%(“Mﬂ S(R‘R)Yl /*0(1/"8—1‘1‘1:' ]

where we have made use of (3.9).

The solution of Equation (3. 10) was carried out in the following
*
manner. If we multiply (3. 10) by ’loo and integrate over the target

coordinates, we obtain:
2 - J
é"z‘-mvl-r \IOO—E)’;; Uy, Crolo017 O)Yso =

' (3.11)
7 4 U RU S0y, 2y omsmi39 by Yot -

prx

The interaction term on the right side of the equality gives rise to coupled
equations since the 0(2 as given by Equation (2. 28) is a combination
of creation and annihilation operators for one phonon. Because of the
restriction on the matrix element to values of I' = 2, we can rewrite

(3.11) as follows:

(—E—:.S"J\fm- E) L% Cruloot 30 Y5, =
(3.12)
; ! —',,—_ @,,RV;,(IHS) S(’L—R))é,’_mg_'z_(nn-ul Jo)éo . | 2- Yﬂ-’m .
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The equation akin to (3.12) éan be obtained in an analogous manner
*
by multiplying (3. 10) by /X-z-m and integrating over the target

coordinates. The resultant equation is

4 é}mvz.*;lzq_ E _t‘%); -‘ﬁ. U;;C}lz(_m\.',- Ho O\ng w =

¥

Z 07 RU4 500 Yop G5 oyl 2 G mi ) Yoo -

p

m
We are now restricted on the right hand side of (3.13) to the values
I' = Oamd m = 0. Further since I' = 0, it follows that] =4/,
and, in turn, =m{ from the target matrix element. We can therefore,
rewrite (3.13) as

2 T '
(-Ey*+ V-4 wb%, 2 Wy, Cyy (' 150) Yarm: =
(3.14)

1 UT, RV (19463 SR Yot Y Cro o170 Vo V03 -

Equations (3.12) and (3. 14) can be further reduced by multiplying by

the appropriate complex conjugate spherical harmonic and integrating over
the angular dependence. For each value of J there is a set of coupled
differential equations between u:—;("-) and u},_w . These equations
are developed in Appendix I. It was found that values of J= 8 were needed

in consideration of the cross sections up to 10 Mev.

3.3 Cross Sections with C ollective Effects

Before proceeding further it will be useful to write down the cross

sections that we will be using in this work. For the purposes of this
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thesis we will not be concerned with the explicit contributions to the
cross sections. of the direct scattering, the mechanism for which having
been introduced via the possibility for collective excitation. We wish
only to compare the effect of collective excitations on the cross sections
that were calculated with the FPW model. For this purpose we need the,
yet to be defined, total reaction cross section, the shape elastic cross

section, and the differential shape elastic cross section.

Because of our model the total reaction cross section now takes into
account the direct inelastic scattering of the I' = 2 collective state as
well as the formation of the compound nucleus of the optical model. The

cross section for compound nucleus formation is

T

0, = I 2.341) (I— Z ' l\") . (3.15)
The cross section for shape elastic scattering (I' = 0) and direct inelastic
scattering (I' = 2) is

Op= %zz z (Nﬂ)lgr’os,u' Ylng:' lz y (3.16)

» J=b 2'=0

The total reaction cross section is, therefore,

0, 0= B2 6o (- ) - (.17

The total cross section is the sum of the total reaction cross section of

(3.17) and the shape elastic cross section (I' = 0 of (3.16). In comparing
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with the FPW cross sections of Section 2. 2 we see that YLTD replaces
7{2 » but otherwise the cross sections which we have specified as

being of interest are identical.

3.4 Logarithmic Derivative (] =

ForJ] = 0 there are just two coupled equation which are

2 —
EILE"—‘ %_ - 35"’-';-_ Yr) -rz%i(E -F“h‘):[u:z("’) =

(3.18)
- 3 (B RU(m) SROIL W)
and
- 2m Voort £ Wo=-22 5 B4 RY (neg o) U3 0> (5. 19

from Equations (I.7) and (I.8) of Appendix I. We can integrate (3.18)
and (3.19) from R - AtoR + A, 'and then let A-20. Because of the S

function surface interaction the results are simply

Ré‘l“-;f e R&““ =- FE"RV,GMQ R US(R) (3. 20)
and
R‘\A%I g R ‘l“l‘: R -t.'- \JE—“’_—’( RV, (ins) R(RY 5 (3.21)

where R+ and R_ are the limits of the values when approached from outside
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o
and inside the nucleus, respectively. If we divide (3. 20) by LL,_%(R)
o
and (3. 21) by uoo(R) s We obtain expressions for the discontinuities

in the logarithmic derivatives, that is,

A ::." L%";('R\ [ %‘%m‘ Agl% ac —1‘- Y {T‘ \{_-7 R, (mg} (3.22)

and

° dus _ dud ]-_ UE®
Aﬁlo = %,(«)l:dn R+ lgrﬂk- MJ; 20 Vo) w829

These equations are easily solved, and we have

A2 = (‘,ﬁq RHVZ Qeasy %’E:—L (3. 24)

Now, A&_,_ is particularly easy to write down since there are only

outgoing waves for I' = 2. Forr greater than the maximum extent of the

potential, the radial wave functions have the form

3} '
>k -,‘—l-u;f@i?zﬁ;‘ﬂ(.&ny ~)I’=2., ) (3. 25)

and

() )
ok pude W Ardnhste

T'=0 (3. 26)

[ 2N

where h}") and h,a") are the usual outgoing and incoming spherical

Hankel Functions. The wave numbers ko and k2 are given by
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and

The

and

A &
radial wave functions inside r can be written
\ S(K J {
)'L(R . _)-{_U‘,Q'z lu)= Ag?. ?g(K:_n) 3 I'—'z.. 2

~

R>R 'ﬁug-oq‘o“)-'-B;;jq— (Ko’o 3 ]:'=o

where éﬂ is the usual spherical Bessel function,

and

(= %L[E +Vo(lﬂ9_l

7. e [E-t&-,_-\- Yo (l +/-§ﬂ

Utilizing expressions (3. 25) and (3. 29), we obtain

o (!) /
A-%'1.7."' ‘d‘%'%) —7 %z:%%
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where
4= faR  (s.34)
and
7= K,R ' (3.35)

The prime denotes differentiation with respect to the arguments y and T ’
respectively. We can rewrite (3.33) using the ekpressions for A,Q,"'"Sl
and f‘Q as presented in Chapter 2 but expanded so as to include the present

notation and the appropriate arguments. We have, therefore, that

Af:z(&'N); D@y +4Saly)- §£4y) (3. 36)

Using (2.18), (3. 24), and (3.36) we can write the expression for the

0
logarithmic derivative, f 0 ° of our problem:

° 'RA . 2k 1)
| ﬁﬁ,*ﬁﬂ):‘g ORIV (1 o2 5 yrT— (3.37)

where £,(€) is the (f=0) logarithmic derivative of the square well

optical model of the FPW problem, that is, with no collective effects
considered. f:D (I,j,V'§ is the ( = 0) logarithmic derivative
corresponding to leaving the target in an unexcited state and is, therefore,
exactly comparable to f , (X). The correction term due to collective

effects is, therefore, simply related to the d-wave discontinuity in the
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logarithmic derivative and is due to the S function surface interaction.

3.5 Logarithmic Derivatives (0 < ] < 8)

The other logarithmic derivatives of interest for this problem are

f.'o, f::, f,:, ;:, 1;;, f;, f;o, and f:o » and evaluation is similar to that
of f;‘ as calculated in Section 3. 4.

For J = 1 there are three coupled equations given by (I.12), (I.13),
and (I.14). The integration across the surface is carried out as was done in

(3.20) and (3.21) for ] = 0, and then the equations can be solved to give

! 2 o4\ 2 a 3
A5 =2 R 9) %%E;Efﬂ__ * 'ATJ (.38

s , \ , .
Here, again, the discontinuities in f,4 and f;z are easily obtained

because there are only outgoing waves for I' = 2. We have then that

\
. 4 foy |_2 >
SIQ(XJ%;Y)’g\(K) -‘—XO 8% A.l'aﬁks\@-f‘(w + Aéq)-n.ss(\;) ~§.‘(1)] > .39
where we have introduced the simplified notation that
2
X, = ?:_%_ R* \L(1+4€) (3. 40)

For each J = 2 there are four coupled equations giwven in Appendix I.

Proceeding as before we obtain

x ] 4w, [ \ /1 18 /1
LED-Sm ke Ny B2Gm " MEGY G- 41
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y _ tho, [ U7 . 4ls 50 /2,
§3D(I;3,Y§-§3(X) + X, T 2 §3<'3,v) +§1f=3>?3+ Aﬁztg;ﬁ 5  (3.42)

4 _ tw._ 10/7 too/-n . 26‘/n
=S 5 om0 O
$gSme ey [ e 2 oo I
A G LAY MG Mgl T

b ) T, | 225/143 | 14/ 28/13 (3. 45)
SLOCX,‘;;N ) Sé(ﬁ) Xf: gvly A§4{3,7)+ Af“’zc_g,'ﬁ-‘- Kﬁgwl] ’

7 _ 4 Yw, | 2143 280/221  36/i1_ ] _
io(f,vax)-&(x))fx A VSIS T 70 (3.46)

and

s 4%, [28/l7 24/9  ée1shkas | |
§ (X'g,Y) g @+ X, S a8 7-(‘!’7) Pz (3. 47)

The discontinuities of the logarithmic derivatives in the denominators
of these equations all correspond to leaving the target in an excited state
(I* = 2). There are, therefore, only outgoing waves and we can say in

general that

ﬁ ) 254y
which can be written
J
Af‘.z_(ﬁ},vh Ay (4) +x Sy~ ng @) - (3. 49)
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CHAPTER 4

RESULTS

4,1 Strength Function

The strength function was introduced and discussed at some
length in Chapter 1. In this section we shall examine the effect
on the strength function when collective quadrupole and octupole

vibrations are considered.

In the low-energy region of well-spaced levels, the strength
function is simply related to the cross section for the formation of the

4
compound nucleus “:

- T [RefE- g+ T0-S6]

As we have seen, in order to take into account the effect of collective
] . °
vibfations, we simply replace S‘O(X) by SOD (K,k&,v') s but now
(-

to account for the octupole as well as the

(4.1)

we wish to modify 00

quadrupole excitation.

The Hamiltonian given in Equation (3.4) must now be adjusted to
include the contribution from >\=-3 , and the wave function, Lﬂr, of

Equation (3.7) becomes

W=2 2  Lug Ve o, ddy) - (4.2)

§=o0 T':0p3

41



This sum now includes the ground state and the first excited state or the
one phonon state for both the quadrupole and the octupole excitations.

The target wave functions still satisfy
HT’K‘-’{;»\.: -‘:\'0;1 ﬁ%r‘,-m (4. 3)

where now I' can be equal to 3 as well as 2, and the ground state

(I' = 0) has zero energy as before.

The Schrodinger equation is solved in the same manner as previously

©
and the resultant equation for Soo is

° 4 Room m+\
&O(I>}m\2:n) = %O(K) +"§2’3 XO 81TCM M‘"‘)*CSM(W' SM&"') > (4- 4)

where

641\: '&“‘R: qz:k—m,_(é—twﬁbt R 5 (4. 5)

and

Z = K R= {% [E-Funer oras3] R (4.6)

cn is the surface tension for the nth multipole vibration; m=2 is the
quadrupole and m_ = 3 is the octupole contribution. The denominator
in (4. 4) is the discontinuity in the logarithmic derivative for the d-wave

and the f wave, respectively.

42



Re %ooo(fﬁ,,.?,,b and Im%:@)?. )2,.3 were determined analytically
and programmed on the IBM 1410 employing the recursion relations
as indicated in Appendix II. The strength function with and without the
collective effect was also calculated and a sampling of the results '
obtained is plotted in Figures 1 through 12. A discussibn of these

curves is presented in Chapter 5.

43



e g e T e o i e

_vaszMev 'P\,-ISZF g o.
dz— 3110‘4' R o1

Sl |

BT RE I T S R W

Vo .
S0
T 004 ~—

M
.

|

o -

At e £r S

mmss NUMBER cm o

44




[
SR

} -

B SREHEA

LTS R

b
-

1
v nl

[
i

-y
[P
|
P

Pue

JAPIROES e

Pheige i

ey = =t e S arn e

Tz ofrrrTiisl

T+

e
Trrderrs




Fi6.3
T/pxio¥ vs A
V:52MeV, R=1.32 F, §=0.04
%=3x10"% .

QUAD, EFFECT CEms Mev )

/DX 164

[

o -l R0

-

X167

1D

o
I
g

QUAD . EFFECT (Ej0.8MeV)

A S

[

0

80 96 180 B




o4

/D %l

—

[

/Dxig¥

w

0 -

q

1

Z ' _ FIG5 .

5 /\ TeIDxiot ¥o A |

4| / \ FPW V523 ReLBLF ) §70.04
/ ~ / E;2.0HeV  of=2x10~

6 . - . e

73 % B _

g éQUADf EFFECT

50 60 YR 80 90 o

—
Lo

FIG. G
R/IDKIVE Vs A |
Vo252 MeV, Re= 1.32F, €20.04
Ez=3.0MeV, o=2X10~4

b X O ¢ AW

FeW .

/ QUAD. EFFEGT

47




=20

=40

- 60

Fle.T
Re§, Reaf, ti) ANDReaGalds) V6 A

QURD, Reb$S () o
Vi .

. HMASS NUMBER (A) —>

OCTURALE & ReAfH(ds)

. Re§, (FPw)

T g0 - 90

. /GUAD:. T A§oK) -

' ‘:‘r'fmgo

’ '/o/cruPaLE

T2l

o .'A‘Im'fo(FPW) D

 Fges R
T 8560 Mo Tl () VS A



6:0

FlG.4
"Re 'Soo VS A
Re$% = Re§°+z ReAﬁo,, (o(,,\) o5 —1.31

MASS MOMBER. (A) >

60 70 | 80

=20
,‘_.4‘.0. 7
S é..O .
.~ 80"
P 6.0

-13.0-

CFIG 10
T—\M-'%ob \J$ A
Imm-.sw\g + Z. ma&,,tm of F.ss




/P X.)b4

[4
~m

m

/D x10

FlG( I
Te/DxIo? VS A

PRRAMETERS FoRFI4S.T1,8, 9, (0D 11
;=52 HeV, R=132F, §=0.0%

£=1.86 MeV ,olp=TXo-¥

Es=3.00 MoV , oiz=4x10=%

D N e NS

QUAD TFFECT

0 QUAD. AND OCTURILE EFFECT
-q ) »
8
1
o
's
A
3
‘/
2 . o P
~ \\\—//ﬂ/
\\ ) — |
16 50 60 70 80 qo0 (00
: | A —
. Fig. 12
e - _
5 Te/Dyis* s, A
4 Vp62MeV | ResL32F | €004
Ezl.E0MeV, olp=AX1076
° / Egaoo Hev,o(3=4xw"5' -

\ ) FPN
\ | / ,‘
\ , QUAD. AND OCTURILE” EFFECT "

\ j

0";'. s e _ ..:,_. ,_v__;_,___, -




4,2 Total Cross Section

The total cross section for the FPW model iswritten in
Equation (2. 23). We have seen that the total cross section for our model
J
is obtained by replacing S}(I) by ‘EQII,(K"%)V') where Q
corresponds to J. The total cross section with the appropriate arguments

is, therefore,

~ U W2 ‘ Cos&mﬁmgg(x.w)-&u\] _Sm-zS,{x)[Keggt;;,V)—Ag(xﬂ% '
U;f = %];;(23'1-«) 25 5}0 +5909 [Relltum-tai 1> + ﬁ__ . f':o(’-'»aﬁ)‘ SOT (4.7)

The total cross sections of (2. 23) and {4.7) were programmed and some

of the results are plotted in Figures 13 through 22.
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4.3 Shape Elastic, Total Reaction, and Differential Cross Sections

The FPW cross sections for shape elastic scattering, compound
nucleus formation, ard angular distribution are given in Equations (2. 21)

(2.22), and (2. 24).

These cross sections can be expressed in terms of the model which was
develoj_oed in Chapter 3 by replacing SL(X) of these equations by ﬁ-JI- (X,%,V)
in the prescribed manner. This substitution is easily accomplished, and
we will not present the explicit results here. A portion of the results are

plotted in Figures 23 through 31.

The total reaction cross section of our model is exactly analogous to
the cross section for compound nucleus formation of the FPW optical
model as has been discussed in Section 3.3. The distinction between
these cross sectiong, which, incidently, accounts for the difference in
name, is that the total reaction cross section includes the direct inelastic

+
scattering of the 2 collective state.

57



5 6 7 B a0

=

25 3

153

10

=y

0.b O

0

‘6.4“

ENERGY (MeY)

S8



2
&
s 1
i X
& 1]
v
‘3 /
2 ) /
I/R\ 6;3\(36) = $)®6) +D‘,f_3 o)
/ .
!
g F1g- 24
: P, COMD TR vs. ENeSaY
4 w)
. Vesa MaV | RplB2F, =004
| EAdoMey y o4
2
A2083
Lo
;s}
@
I
o
B e |
B )
f\< ) N
Lo /
b ' . ' (3)
oS ) // : A/II /O_S&(ONID)
, .
O-lL(, (;DlS) L/ Q—s(g)cb I$3
0.02 // .
o o5 7 o Z 5 4 §67690

ENERGY (MeV) 59



g
ij—T(-z])(UMD) = U's%) ng+ O',f"(q 1)
2
)
Z 1o
£
0 -
N
d]l:)k 0.5
- 02 (o) = 0,201y + G2 (D19)
o2
0.1
FIG 25 |
" T&, 0.2 AND 02 Vs, ENERGN
5 V52 Mely R#L32F, 42004
EfbédMey o= 5% 10 -4
A
A=108
lol - éﬁa({)m}
~
¥ b5 , s
£ \‘\ 5 AR
3y
b 02|
2 i
<
So |
P 0.1
|
o0
O.o‘a.t
E
O.G:J . !
, i ‘ 0s - LO 2 3 4 S 6724910

ENERGY (meV)
60



10

65

T anp U (BARNS)

61

04

0.5

G4

1
ISR -2

P}

) (anNe)

anDd Oy
o

’% 0.6

[-X Y4

0.1

Y Ef)(UNDB

\ jﬁ"é”(ms)
FIG,26

F® VS ENERGY

V;S2Mel ) RoIBLF 4 §20.04

E04MeV  oly= 5x10%

—(5)
NoTe: B SCALLS 07 &)

A=2%08
‘ LA 75 tonny
/
/ //639"3@ 1S)

2.0

9
N

O
N
0P Avd GG (BARNS)

-4
>

0.8

~L-' 3

85 . 7 o 2 3 4 3 6T3910
ENERGY (Me\)
61

o.p)



q 10

¢ 78

5

-0

9

iE

ERRR E—

028

9

ENERGQY (Mev)

62



FIG.2%
07, V& T mp T Vs ENERSY
V=52 MeV, Rz L32F, §=0.04

A48

TP (BRRUS)
- . 9.

Ez1SMeV , ol,= 3x107% Noter 4 Seoles

o2 120
Lo
%.
- =0 65 3
GO aNd TP -~
3 iy
0.2
lo
a
@D
'g o
d 4
I
[ o7
ol 10
;
s 9
i3
- &
0,y _ > 8
[
O (UND 2
~.¥o.5.e,'--; 5 I.O. 2.0 & - B,o 1Zx1D. ho

ENERGY (MeV)
63



==

4

=

1

=3

DY

. = (LEFT‘ Dﬂ

P

58

1

fy?

T

/d




=

e R

I o S S

——

-

—r—

LJI

b §

¢
i

T3 E.

L ——

v
W

O it eyl e v

e N i

Jrre

CEVS

Yo

/8.

<n

[63V)




[

ey e gt

LI

(2

!
.;Lr
=t

M

x—e; \['




CHAPTER 5

DISCUSSION OF RESULTS

5.1 Collective and Optical Model Parameters

All the curves of Figures 1 through 31 are plotted for both the FPW
square well optical model and the spheroidal well surface interaction
of our model. The optical model parameters which were used throughout
are VO = 52 Mev, Ro = 1.32F, and § = 0.04. The new parameters
intoduced by taking the effect of collective excitation into account are
the energy of the excited state and the amount of deformation associated

with the particular nucleus in question.

We have called the quantity, t“’m / 8nCx , the polarizability of the
nth multipole vibration. This is a convenient and meaningful term to
define, and aside from a factor of 47 it is just the square of the off-diagonal
matrix element of the target wave functions. The polarizability, so
defined, is essentially a measure of the amount of deformation in the
nuclear surface. The vibrational correction term to the logarithmic
derivative is simply proportional to this polarizability. The strength of
the polarizability can be determined from Coulomb excitation measurements.
The energies, ﬁwm » can also be determined experimentally, and as a
result no free parameters have been introduced. This fact is particularly
important in the view of extending this work to a quantitative rather

than a qualitative study.
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Experimentally determined values of the vibrational parameters, &m
and En’ for even-even nuclei are listed in Table 1 where we have
introduced the notation olm=hw./8rrcm and E.-Rwm . The
quadrupole parameters are fairly representative of the nuclear regions
in which we are interested. The octupole paraméters are less informative
since they are few in number and only located near closed shells. On

theoretical grounds, however, one would expect C, to remain fairly

3
14
constant™  in contrast to the quadrupole peaking near closed shells.
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TABLE 1

VIBRATION PARAMETERS FOR EVEN-EVEN NUCLEI" (QUADRUPOLE)

Nucleus Ez(Mev) Cz(Mev) 132/87TC2
7146 .890 14 2.529 x 10”5
22 43 -3
i . 990 29 1.358 x 10
56 -4
Fe . 854 36 9.44 x 10
26 5g -4
Ni 1.45 77 7.49 x 10
28 60 -4
Ni 1.33 59 8.97 x 10
7n®4 1.000 61 6.52 x 102
30 66 -4
Zn 1. 040 86 4.81 x 10
70 -4
,,Ge 1.020 120 3.38 x 10
Ge 4 0. 593 19 1.242 x 107°
34Se74 0. 635 32 7.895 x 102
se’8 0.615 20 1.223 x 10°°
set? 0. 880 190 1.843 x 1072
Mo 2 0.871 67 5.17 x 1072
427 100 -3
Mo 0. 528 20 1.050 x 10
Rut %0 0. 540 48 4.48 x 1074
4 o4 -3
Ru 0. 362 10 1.44 x 10
pg!0® . 430 15 1,14 x 1073
calll .654 58 4,49 x 102
48 116 -4
cd .508 32 6.32 x 10
52Te120 . 560 48 4.64 x 102
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Table I {continued)

Nucleus Bz(Mev) Cz(Mev) E2/87r02
Te 130 . 850 170 1.989 x 102
Nal46 . 455 150 1.207 x 10”2

60 148 -4
Sm . 562 100 2.24 % 10

%2 194 -4
Pt . 330 39 3.37 x 10

78 198 -4
Pt . 403 60 2.67 x 10
H9198 .411 88 1.858 x 10”2

80 200 -4
Hg . 370 120 1.227 x 10
ngoz . 439 170 1.027 x 1074
pp206 . 803 1400 2.28 x10°

82 212 -5
Po .719 640 4.47 x 10

84 214 -5
Po . 606 270 8.93 x 10

(OCTUPOLE)l

Nucleus E3 (Mev) C3(Mev) E3/87rC3
ca?l 3.73 370 4.01x 1072

88 -4
Sr 2.76 367 2.99 x 10
~ pp208 2.61 1500+ 750 6.93 x 10°°
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5.2 Strength Function

In Figure 1 we have plotted Re f , andRe A&:@(z) as a function
of mass number A. Re]co is the FPW result, and Reéﬁﬁ, (9(1) is the
correction term written as a function of 0(2_ . Figures 1 through 4
in the vicinity of 1 Mev. Reg:, (&2)

2
is plotted for values of E2 = .8 Mev and 1.5 Mev with 0(,_= 3x10 4.

demonstrate the effect of varying E

The curve for E2 = 0.8 Mev intercepts Re‘gc, above the A axis,

and the curve for Ez = 1.5 Mev intercepts RES:O below the A axis.

The effect of this can be seen in Figure 2 where Re. S’o is added to
[ o
Re Afaofﬂﬂ to obtain Rego,, . In Figure 2, the curve for

Ez = 1.5 Mev has a slight asymmetry in which the positive peak to the

right is diminished relative to the negative peak to the left while the

opposite effect is observed for EZ = 0.8 Mev. ForE, = 1.0 Mev the

-]
two peaks are symmetric since for this energy, Rego intercepts Re Agoo

on the A axis.

Figures 3 and 4 illustrate the effect of this ]E:2 variation on the

strength function. The strength function has been normalized to 1 ev

and plotted vs A. The curves calculated from the square well optical model
are labelled FPW and those for nuclei with consideration of collective

~ quadrupole coordinates are labelled quadrupole effect. For nuclei in the

vicinity of this 3s resonance, Table 1 suggests values of B2 of about

0.8 to 1.5 Mev. However, in the vicinity of the right peak most of the

E, values are greater than 1 Mev.

2

In Figures S and 6 the effect of increasing E2 is observed. For

these curves o(,_= 2x 10_4, and E_, is, respectively, 2.0 Mev and

2
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*3.0 Mev. The effect is as expected, and the right peak becomes much
like a shoulder to the left peak which is what we observe experimentally.
The effect is presented more from the point of view of variation in parameters

than quantitative experimental fit, however.

In Figure 7, the octupole correction, He Ag:,, (o43) , has been
represented along with (e fo and Ke A‘Fo:(of,) . The corresponding
functions Im‘f,, T Aﬁ: *2) , and Tm A{o(o{_.,) are plotted in Figure 8.
The collective parameters for these curves are E, = 1.5 Mev,

2
-4 -
¢%2=7x10 , E, = 3.0 Mev and 9(3 =4x10 4. Figures 7 through

3
11 are all plotted for the same parameters. From Figures 7 and 8 we
see that whereas the quadrupole correction has its major contribution
in the vicinity of the resonance, the octupole becomes increasingly

important as we go to higher values of A.

Figures 9 and 10 are the corresponding sums of the curves in
Figures 7 and 9, respectively, and are, in fact, the real and imaginary
parts of the logarithimic derivative, S-\:o , of our problem. Figure 11
is the strength function calculated from go: of Figures 9 and 10 and has
been pldtted so as to see the effect of the quadrupole correction alone as
well as the combined effect of the quadrupole and octupole correction.
With the inclusion of the octupole the left peak is relatively unaffected
while the right peak is lowered increasingly from A = 60to A = 110.
This is what is desired experimentally both in decreasing the size of the
right peak and in lowering the valley in the vicinity of A = 90. The
experimental values of octupole polarizabilities given in Table 1 indicate

that the octupole correction is effective in improving the desired qualitative

behavior for the strength function.
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Figure 12 demonstrates the effect of smaller polarizabilities, where

here we have used E2 = 1.5 Mev, o(,_ =9x 10_5, E3 = 3.0 Mev and

Kz = 4x 10-5. The peaks are conspicuously closer together.

The real part of the logarithmic derivative of the square well
optical model goes through zero at a value of A which is effectively the
position of the strength function resonance. The width of the resonance
is strongly dependent upon the imaginary part of the logarithmic
derivative. For the spheroidal optical model, Re S:o has three intercepts
with the A axis. These positions correspond to the A values of the
two peaks and the minimum between them, Increasing the polarizability as
seen by comparing Figures 11 and 12 has the effect of splitting the peaks.
The width of the peaks depends largely on Twm {:, , and the relative sizes

of the two peaks is adjusted by En as has been demonstrated in Figures 3

and 4.

The effect of the inclusion of quadrupole vibrations is to split the
single 3s resonance of the FPW optical model into two peaks. This
splitting develops because of the coupling of the incoming orbital
angular momentum to the target spin 2 . The principal peak of these
two is the left peak, and so, in effect, the strength function has been
shifted to lower A by the quadrupole correction. This type of behavior seems
to be an improvement on the experimental agreement. The actual splitting,
however, is much more of a shoulder effect than our calculations have

indicated.

We expect that the qualitative results obtained with the present

model justify the calculation of this collective effect with the more

73



realistic diffuse surface potential. E. Vogt15 has shown that the

effect of diffusing the well is mainly to multiply the strength function

by a constant factor. This argument is based upon volume absorption,

and one expects surface peaking of the imaginary potential. In spite

of this, it is expected that the qualitative behavior arising from the
inclusion of the quadrupole and octupole vibrations will maintain itself for
the diffuse well. This expectation has been born out in the work of

B Buck and F. Perey7 where they have used a diffuse surface optical

model with surface peaking of the imaginary part and spin-orbit coupling.

I. Furuova and A. Sugie15 have recently published a method of
calculating the strength function with collective effects which is
similar to the one we have employed. They obtained a triple peak
in the strength function as a result of including the effect of the second
2'°L collective level which is a 2 phonon state. They did not consider

the effect of the octupole excitation, however.

5.3 Total Cross Section

The total cross section as a function of energy is plotted in
Figures 13 through 22 for selected values of A. The FPW total cross
sections plotted with solid lines are compared to the total cross sections
with the inclusion of the collective quadrupole effect, and the latter
are plotted with broken lines. The collective parameters E2 and « 5
are indicated on the various curves.

Most of the values of A for which we have represented the total

cross section were chosen because they are in the regions of magic

nuclei where either the proton number or the neutron number or both
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are magic. This endeavor was limited somewhat because of the difficulties
in matching the most well formed peaks with the appropriate nuclei.

Again we emphasize that there is no quantitative attempt to coincide with
experimental curves since we are not using a diffuse surface interaction

or spin-orbit coupling. Values of A in the regions of permanently

deformed nuclei are also included, and they will be discussed in

context.

The results for A = 44 are plotted in Figure 13. A = 44 is
representative of the region in which the proton number is near 20 and the
neutron number is near 28. The quadrupole effect has been plotted for
two values of o 2 for comparison. In this case an increase in the
polarizability corresponds to a flattening of the peak and a shift in the
peak towards a lower value of energy. The FPW peak is considered a d wave
peak; what this actually means is that the partial wave which gives the
largest contribution at the peak of the giant resonance is a d wave. This
does not mean that the other partial waves contribute a minimum nor does
it mean that the d wave is at its maximum.. In fact, other partial waves
are usually quite significant in their contribution to the giant resonance in
and around the peak itself. For the case in question the p wave gives a
significant contribution. We shall call the giant resonance obtained with
the inclusion of the collective effect, the distorted giant resonance. In
Figure 13, the distorted giant resonance is a p wave resonance rather than

a d wave.

Figure 14 illustrates the effect on the giant resonance in the vicinity

of A = 66, or, alternatively, where the proton number is 28, Again,

75



the effect of including the quadrupole excitation .is to flatten the giant
resonance somewhat. However, the energy at which the maximum in the
distorted resonance now occurs has shifted towards higher energy. The
undistorted resonance is an f wave at 7.5 Mev. At 10 Mev the distorted
resonance is predominantly a d wave and is still rising. The maximum
value of the distorted resonance will occur at an energy in excess of

10 Mev and will most likely be a d wave.

When the neutron number is 50, the mass number is in the low
90's. Figure 15 illustrates the effect of the quadrupole excitation for
A = 94. The FPW total cross section does not have a clear resonance
in our energy region of 0.5 to 10 Mev. The effect of including quadrupole
excitations is qualitatively the same, that is to flatten the total cross
section and shift the position of the peak. At 0.5 Mev the principal
partial wave constituent to the FPW curve is the p wave, and the s
wave contributes only slightly less. In the distorted case the s wave
is unaffected, but the p wave is diminished by about a factor of 3. At
10 Mev the g wave (¢ = 4) gives the major contribution to the FPW curve.
The distorted curve is an f wave, and the distorted maximum for this
region will be shifted towards higher energy. The exact position of the
resonance is beyond 10 Mev and, thereby, was not included in this

analysis.

Figure 16 illustrates the quadrupole effect on the total cross
section for A = 120, where the proton number is near 50. The slight
FPW resonance at 1.8 Mev is due to the p wave. The distorted quadrupole

resonance at 1. 0 Mev is an s wave peak. The calculated quadrupole effect
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inthis region is observed to be different from that for the case of A = 94.
At 0.5 Mev the s wave is the major consituent of the FPW, as well as
the distorteld, total cross section. The increase in the distorted cross
section compared to the FPW cross section at this energy is due to the
additional p and d wave contributions, buthe s wave, although somewhat

diminished, still contributes the major portion.

The quadrupole effect for A = 130 is presented in Figure 17. This
region of A corresponds to a proton number near 50 and a neutron number
near 82. The giant resonance for this vicinity of nuclei is well formed in

the 0.5 to 10 Mev energy region. Two values of 0(1 are used for
comparisoh. The FPW peak at 2.0 Mev is designated as a p wave
resonance. Both the s wave and the d wave give significant contributions;
however, the distorted peak is also a p wave, and the position of the
maximum has made no noticeable shift. The quadrupole effect of a(,_‘- 57"0_4

has flattened the resonance so that a maximum value no longer occurs.

The fact that the position of the maximum of the distorted giant
resonanée does not shift for A = 130 can be understood in terms of the
principal partial waves involved. As we have stated, both the distorted
and undistorted giant resonance peak at 2.0 Mev. For this case it is also
true that the p wave itself peaks at 2.0 Mev for both the distorted and
undistorted giant resonance. The undistorted s wave peaks below 0.5 Mev
and the distorted s wave shifts towards lower energy. The undistorted
d wave peaks at 3.5 Mev, and the distorted d wave peaks at 4.5 Mev.
Since the s and d wave contribute comparable amounts and since they

shift in opposite directions, whereas the p wave remains stationary, the
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position of the distorted giant resonance peak is unaffected.

Figure 18 illustrates the quadrupole effect for A = 140 which
corresponds to a neutron number of 82. The FPW peak at E = 175 Mev
is a p wave resonance. The quadrupole effect ( 0(1. =3 x 10-4) that is
presented in Figure 18 is such as to eliminate the resonance character of
the total cross section, but if the distorted curve were plotted for a
smaller value of o 2 for which a resonance did occur, it would be a
p wave resonance also.

In Figures 19 and 20 we plot the giant resonances for A = 200 and
A = 208. These correspond to a proton number near 82 and a neutron
number near 126. In Figure 19 the FPW peak for A = 200 at 6.0 Mev
is an f wave. The distorted peak ( ko= 3 x 10_4) occurs at 5.5 Mev
and is a d wave resonance. In Figure 20 the FPW peak is at 6.0 Mev and is
also an f wave. The corresponding distorted peak ("(f 5x 10_4) for

A = 208 is at 4.0 Mev and is a d wave resonance.

Figures 21 and 22 are plotted for A = 180 and A = 232. These
mass numbers occur in the regions of rotational nuclei or permanently
deformed nuclei as discussed in the Introduction. The model used in
Chapter 3 for the inclusion of the effect of collective vibrational
excitations does not apply to these nuclei. For application of the present
theory to the rotational regions of nuclei the theory must be modified to
allow for rotational excitations. Nevertheless, we have calculated the
effect in these rotational regions with the expectation that, with the

appropriate choice of parameters, one can obtain the qualitative behavior
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in these regions. The energy of the excited state will, of course, be

much smaller according to the experimental values of the rotational levels
involved. The polarizability is related to the distortion parameter, B. This
correspondence was obtained by comparing the calculations of CWE and
those of the present model in the limit of low energy (s wave) incident
neutrons, where the S function surface interaction was used in both cases.

The results of this calculation vyield the identification of B with \, Bh, /2¢, .

It is interesting to compare the dynamical distortions in the
vibrational nuclei to the permanent distortions observed in rotational
nuclei. Table 1 gives information regarding the experimentally
determined values of the polarizability. These values were determined by
the Coulomb excitation experiments of Reference 9. This same reference
also provides us with experimentally determined values of the distortion
parameter B. Values of § range from 0. 2 to 0. 5, but for the most part they

are near 0.3. Table 2 lists some values of B and the corresponding values

of the polarizability.
TABLE 2

COMPARISON OF ROTATIONAL AND VIBRATIONAL DISTORTION PARAMETERS

B fw, /8MC,
0.51 4x1073
0.25 1x107°
0.177 5% 10 2
0.137 3x 104
0. 056 5x10°
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The total cross section for A = 180, which is in the rotational
region (150 < A < 190), is presented in Figure 21. The FPW peak is
completely flattened with the inclusion of the quadrupole effect
(A 5 = 1x 10_3). This value of a(z is characteristic of this region
of nuclei as is the energy, E2 = 0.1 Mev. For the rotational region
(A > 220)we have plotted the giant resonance for A = 232 in Figure 22.
The polarizability used here (Az = 4x 10—3) is larger than experimentally
observed in this region, but it is useful in demonstrating the effect of
such a large polarizability, namely, that the distorted resonance remains

flat. The energy EZ = 0. 05 Mev, is characteristic of this region of

nuclei.

5.4 Total Reaction, Shape Elastic, and Differential Shape Elastic
Cross Sections

The total reaction cross section and the shape elastic cross section
for A = 208 is plotted in Figure 23. The FPW curves are designated as
undistorted and the spheroidal well surface interaction curves are
labelled distorted. The distortion parameters for the quadrupole collective
effect are E, = 0.4 Mev and o , = 5x 107%. The sum of the total
reaction cross section and the shape elastic cross section is the total
cross section for A = 208 illustrated in Figure 20. Comparison of

Or and (e to experiment is not too meaningful because the experimental
elastic scattering cross section includes the compound elastic scattering
whereas in the optical model, compound elastic scattering is included in

the total reaction cross section or the cross section for compound nucleus

formation. In spite of this, the eiffect of quadrupole excitation on the
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total reaction cross section for A = 208 is a clear improvement on the

shape of the curve. This may be a coincidence, however.

We had pointed out in the discussion of Figure 20 that the FPW
giant resonance at 6.0 Mev is an { wave peak and that the distorted
resonance at 4.0 Mev is due to a d wave. In Figures 24, 25, and 26 we have
plotted all the partial waves which contribute to the total cross section for
both the undistorted and the distorted case. A study of the various
contributions to the giant resonances will clarify how the distorted peak
becomes a d wave resonance. The major partial wave contributions for both the
distorted and undistorted case are the f wave and the d wave. Figures 24 and
25 illustrate the total contributions from the f and the d wave to the total
cross section. The separation of the total cross section it o the contributions
from the total reaction and shape elastic cross sections for these partial
waves is also illustrated. The separate contributions are indicated
clearly on the appropriate curves. The other partial wave contributions
to the respective total cross sections are presented in Figure 26. The
partial wave contribution for 1 = 8 was calculated but was not plotted as it
did not have a significant effect in this case. TFigure 26 has three ordinate

scales which are labelled according to which curves they represent.

The total cross section as well as the shape elastic and total reaction
contributions for A = 48 are plotted in Figure 27. The total cross section
for A = 48 was not plotted in the earlier section on total cross sections.

A = 48 is representative of the doubly magic region with the proton
number near 20 and the neutron number near 28. The FPW giant resonance

at 2.5 Mev is considered a d wave but the p wave contributed almost as much as
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the d wave. The distorted total cross section develops two peak values

in the energy region from 0.5 to 10 Mev. There is a peak at 2.0 Mev
which is a @ wave resonance with a substantial amount of p wave present.
The second resonance at 4.5 Mev is designated as p wave but contains

considerable d wave as well.

Figure 28 illustrates the three main partial wave contributions to the
total cross section as well as the total cross section itself. It is seen
that the p wave contribution is insignificantly affected by the inclusion
of collective effects. There are four ordinate scales for the four curves

presented in this figure.

The differential shape elastic cross section as a function of COS Ocm
and evaluated at 4.1 Mev is presented in Figures 29 through 31. The values
of A and the corresponding collective parameters which are plotted,
correspond for the most part ot the total cross sections presented earlier.

The angular distribution for shape elastic scattering for A = 44 and A = 48 is
shown in Figure 29. For A = 44 the inclusion of the effect of collective
excitation deepens the minimum in the vicinity of 800. Beyond 90O the effect
of distortion is mainly one of flattening. The back scattering is diminished.
For A = 48 the distorted shape elastic scattering is flattened and the
positions of the two minima and the single maximum shown in the figure are
all shifted slightly to the right. The forward and backward scattering are

both slightly diminished.

In Figure 30 the differential shape elastic scattering is presented

for A = 66, 102, and 140. In all three cases the back scattering is
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lowered by taking collective effects into account. For A = 66 and

102 the peaks are shifted slightly to the left, and the curve is flattened
throughout although the logarithmic scale is a bit misleading in determining
this latter effect. For A = 140, the peaks are shifted slightly to the

right and flattening is again observed for the distorted angular distribution.

Finally in Figure 31 the differential shape elastic scattering is presented
for A = 200 and 208. In both cases the peaks are moved slightly to the
right and considerable flattening is observed fof the inclusion of collective

vibrations.

5.5 Conclusions

‘'The important effects of the present calculation for the inclusion of
collective vibrations on the total cross section are the flattening of
the giant resonances and the energy shifts in the positions of the peaks

of these resonances.

Firstly, we shall discuss the flattening of the resonances. Evidence
that the giant resonances flatten to some extent away from closed shells can
be obtained by examining the peak to valley ratio of these resonances as
a function of A. The total cross sections for neutron scattering, plotted as

. . , . , , 17
a function of energy for various nuclei, are complied in Neutron Cross Sections,

a Brookhaven National Laboratory report. The various isotopes are not plotted
separately so that one must think in terms of the atomic number, Z, rather than
the mass number, A. Here again we are making a qualitative study, and the
fact that we do not have the total cross sections for the isotopes involved in

our study is only of minor importance.
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In order to see the evidence for flattening away from closed shells
for these total neutron cross sections”, we have prepared a plot of the
peak to \}alley ratio as a fun‘ction of Z as shown in Figure 32. The peak
to valley ratio is rather a rough estimate due to the. different depths of
the Valleys on either side of the resonances. Average values have been
used, but the peculiar shapes of sbnde of the resonances made it
difficult at times to obtain good estimates of these average values.
Nevertheless, the points give a fairly good description of the regions
in which the giant résonances are most clearly defined or most well
formed. The points are connected by broken lines for easy reading; there

has been no attempt to plot a smooth eurve.

There are certain regions in which we expect to find the giant
resonance better formed than in neighboring nuclei. These regions are

a4° C 40 A A th A szo‘, and also

20220 22 1%% N,;2 $072 506 NI E 8L, g1 (26
in regions where A is magic. X 'stands for any nuclei which can assume

located near 2‘:‘C

the associated neutron numbers. There is a peak at Z = 20 in the peak
to valley ratio versus Z. After this first peak the P/V ratio drops and
then rises again, and in the vicinity of Z = 28 there is a broader peak.
This second peak corresponds to the overlap bétween Z =28 and N = 28.
The curve starts to rise again near Z = 40 and does not fall again unf:il

Z = 62. This region is an overlap of the effects of N = 50, Z = 50, and
N = 82. Most of the isotopes of nuclei with Z = 62 through 74 are in the
region of deformed nuclei defines by 150<A<190. The peak to valley
ratio of these ﬁuclei is 1.0 corresponding to the flattening of the

giant resonance for these nuclei. The curve starts to rise again after

Z = 74 and peaks in the vicinity of Z = 82 and N = 126.
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It should be borne in mind that this curve is plotted for nuclei as
identified by atomic number and not for individual isotopes. As a result
of this, for example, the P/V ratio for bismuth is larger than that for lead

on the basis of atomic number, but if the giant resonances were plotted for

the individual isotopes, one would expect 82Pb§gg ‘to have a higher P/V
, , 207 208 . .
ratio than 83B1124 because 82Pb126 is a double magic closed shell

nucleus. Nevertheless, the P/V ratio versus Z gives clear evidence of

flattening of the giant resonances away from closed shells.

In Figures 13 through 22, we have presented the giant resonances for
neutron scattering as predicted by the FPW square well optical model and as
corrected by including the effect of collective vibrational excitations. We
have seen that upon taking the vibrational excitation into account, the
resonances are flattened according to hbw much distortion is assumed.

The parameters of distortion are the polarizability and the energy of the
excitation involved. The values of the distortion parameters that were used in
calculating the total cross sections were representative of the particular
region of nuclei involved. Of course, the experimental values 0(—;_ and E2
vary from nucleus to nccleus, and in many cases only one value for each

of these parameters was plotted. Quite often the value used for 2 was the largest
available experimentally in order to see the full effect. The effects of

smaller values of 9? whiqh were also calculated but not plotted, show the

same behavior as the larger values except that the shifts and the flattening

effects are less pronounced according to the val ues which are used.

As has been pointed out this is a qualitative study, and, therefore,

it was deemed sufficient to apply the collective correction to closed shell
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nuclei to obtain the qualitative behavior of the giant resonances of the
neighbori;anuclei. In partiai lar for the cases of 200338, ZOCagg;

and 82Pb126 which are doubly magic closed shell nuclei, one does not
expect collective effects to contribute; however, collective effects

were applied to these nuclei for the purpose of determining the effects

away from closed shell regions. To apply the collective effect properly, the
total cross section for each value of A should be determined with the
appropriate collective parameters. It is clear, however, from our
qualitative analysis that the inclusion of collective vibrational

excitations has the flattening effect on the giant resonances that is

desired from experimental observations.

The other important aspect of the total cross section results is the
shifting of the energy position of the maximum value with increasing mass
number. One of the main objectives to the FPW optical model as pointed
out by J. M. Peterson18 is that the FPW total cross sections plotted
versus energy and mass number show a characteristic shift of the maxima
towards lower energy with increasing mass number. Experimentally,
however as first noted by Barschalls, the maxima seem to shift to
higher energy with increasing mass number. The reason that the FPW
maxima shift to lower energy with increasing A has been explained, by
Peterson, as a result of the fact that the FPW resonances all occur at
energies which are below the height of the centrifugal barrier at the
nuclear radius for the partial waves involved. The condition for a
partial wave resonance is that a characteristic number of wavelengths fit in
the radial wave function inside the well to obtain the internal reflection
necessary for the resonance. As the radius, and thereby, the mass
number is increased the energy must decrease to maintain kR for the

resonance.

87



The present study has shown that the giant resonance maxima shift
with the inclusion of the effect of collective excitations. The question
is, then, whether these shifts are in the right direction. As has beeﬁ
pointed out, we have presented the results by applying the collective
effect to the closed shell nuclei to obtain the qualitative effect of
distortion. This is satisfactory for demonstating the flattening effect,
but is not reliable for understanding the characteristic shift in the
maxima as a function of increas'ing mass number. For this purpose it
is necessary‘to study the distorted total cross sections as a function
of increasing A in the vicinity of a family of broad maxima or giant
resonances. Such a study was made in the vicinity of A = 200 where the
undistorted maxima are f waves. Due to lack of experimental values of
the polarizability we have used a fixed value of 0(7. = 1x 10-4. Table 3

indicates the results.

TABLE 3
THE EFFECT OF COLLECTIVE EXCITATIONS ON THE MAXIMA OF THE f WAVE
GIANT RESONANCE

A Emax(Mev)
200 5.75
208 6.0
212 6.5
214 7.25
220 ‘ 7.75
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For this case, then, the energy at which the maximum in the distorted
giant resonance occurs increases with increasing A. It should be

pbinted out that this study may not be realistic since we have uged the
same polarizability for all A values. It does insure, however, that the
characteristic decrease in the energy of the resonance with an

increase in A of the FPW model is not a strict rule for the giant resonances

that occur at energies below the centrifugal barrier as described above.

If one examines the distorted peaks for A = 44, 46, and 48, it is
seen that the peaks shift in and out depending upon the amount of
polarizability that is assumed. The evaluation of the effect of the
shift in maxima in this region is not straight forward. Firstly, the
experimental evidence does not really indicate that one should expect a
smooth increase in the energy of the maxima with increasing A, although

the overall trend does seem to be one of increase.

Other considerations arise from the model itself. For one thing
the resonance for this region is very sensitive to distortion. This
sensitivity is attributable to the character of the partial waves involved.
Although the FPW resonance is designated as a d wave, the p wave
contributes appreciably. This is an illustration of the fact that a particular
family of giant resonances is not attributable to a single partial wave. For
this region of A near 44, a transition of a p wave resonance into a d wave
has taken place. Since the p wave is effectively unaltered by distortion
in this region, the effect of the distortion on the d wave is all important.
As a result of this sensitivity, the distorted giant resonance can be
either a p wave or a d wave depending upon the amount of polarizability

that is assumed.
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Because of this sensitivity, the experimentally determined
polarizability should be used for the appropriate isotopes involved
when an examination of the effect of distortion on the shift in maxima
is made. These experimental values were not available for this study,

however.

Another point that applies here is that the effect of collective
excitations has been taken into account in the spherical optical model
by the optimal choice of the parameters available to that model. The
parameters previously used may not be the best parameters for the
present study. A change in the values of VO and RO could result in an
alteration in the giant resonance character for this doubly magic

region.

The main point here is that this qualitative study indicates that
when collective effects are taken into account, there is a possibility
of predicting the correct energy shift of the maxima as a function of
increasing A. A more careful study with the appropriate parameters wo uld

have to be undertaken to determine this.

The strength function has been presented and discussed in Section
5. 2. The main conclusions are that the quadrupole excitation produces
a splitting of the 3s giant resonance in the strength function and
shifts the main peak towards lower A. The octupole contribution is effective
in decreasing the right hand peak and in lowering the strength function in
the valley between the 3s and 4s giant resonances. Of course, this latter
effect is not sufficient in magnitude to account for the large discrepancy

between theory and experiment in this region.
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We have said relatively little about the differential shape elastic
cross section. The spherical optical model as applied by M. Walt,
J. R. Beyster and E. W, Salmi]‘9 produced fairly good agreement between
experimental and calculated differential cross sections. The inclusion
of spin-orbit coupling by F. Bjorklund and S. Pernbach20 imp_roved
these results still further. There still existed some discrepancies,
however. A significant discrepancy in the case of tantalum
was noticed by H. M. ScheyZl. Schey attributed this lack of agreement
to the permanent quadrupole deformation in tantalum, and he obtained
adequate improvement with experiment by including the effect of this

collective deformation in the calculation of the differential cross section.

It has been demonstrated in Figures 29 through 31 that the
inclusion of the effect of collective vibrations has considerable effect
on the differential shape elastic cross section according to the present
model. It should be pointed out that the energy for which these cross
sections were determined is 4.1 Mev. At this energy some correction
for compound elastic scattering is still necessary for certain mass numbers.
There has been no attempt to make this correction. The kinds of discrepancies
that existed for the cross sections of Reference 20 are qualitatively of the
same nature as those in Figures 29 through 31, namely, a flattening and
shifting of peaks. This evidence for the pos sibility of improvement in
these cross sections by the correction for collective effects might suggest
that a program be set up for including the effect of vibrational excitations
on the Bjorklund-Fernbach model, which because of the ppin dependent
optical potential, is known to be applicable to many elements over a wide

range of energies.
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The present work has been devoted to the qualitative determination
of the effect of collective excitations on the optical model. The work was
facilitated by the choice of a delta function surface interaction for coupling
between collective and individual particle coordinates. We were able to
obtain an exact solution within the framework of the model, and, in
addition, we were able to express this exact solution in a particularly
convenient form for the purpose of comparison to the FPW spherical

optical model.

The use of the delta function surface interaction is an approximation
that should be justified if one is to believe the results which have been
presented. It was expected that the delta function would be a good approx-
imation if the distortion produced by the polarizability amounted to less
than a quarter wavelength of the neutron near the surface. This condition
can be written as 573_);' Rf I{-‘X where we have identified the polarizability

with the permanent distortion parameter, B.

For the strength function, a low energy phenomenon, for which we
have taken Vg/2 as the local kinetic energy at the surface, the condition
for validity reduces to \l-"t“&/z(-,_ < 1—% . For the 3s resonance of
the strength function KRis approximately 5/2 s and, therefore, in
terms of the polarizability we obtain o( 2 < 2.6 x 10—3. This inequality
is clearly satisfied, and our approximation is justified. To determine
the validity of using the delta function for the total cross section, we
examine one of the worst possible cases. We take A = 200 and an
energy of 10 Mev. The condition for validity for this case reduces to

o 9 < 55X 10_4. As we have seen, application of a polarizability of
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this order flattens the curve more than is usually desirable. This
consideration indicates that our approximation is valid although in some

cases rather close to the borderline.

The results of the calculations with the present model represent
qualitatively those results that would be obtained upon application of
a more realistic diffuse surface optical model with spin-orbit coupling.
The present calculations have been most rewarding in the magnitude
and direction of the corrections that have been attained. The dependence
of the giant resonance peak position on increasing mass number in the
energy region of 0,1 to 10 Mev has never been properly reproduced, and
the failure of the FPW optical model to predict this dependence is rather a
serious drawback. Peterson18 developed a nuclear Ramsauer effect to
interpret these maxima, but his theory fails at zero energy, and there
is some discrepancy in parameters that is not understood. The extension
of the present model to a more fealistic potential well seems in order,
es pecially, in the view of obtaining the correct dependence of the
giant resonance peak position as a function of increasing mass number
in this 0.1 to 10 Mev energy region. The flattening effect of quadrupole
excitation on the giant resonances as a function of vexperimentsélly
determined collective quadrupole parameters is another important effect
which should be incorporated into a more realistic potential model. An
important point in this regard is that no free parameters have been
introduced with the inclusion of collective effects. This connection between
the quadrupole effect and the total neutron cross sections may have

future applications upon improvement of the model.
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APPENDIX I

I.1 Radial Equations for ] = 0

For] =, (3.12) and (3. 14) can be reduced to

R 7T E) % U3, Gyloond Yo =

(I.1)
%\ Jﬁ, u:z RV, (.H“'SB %’R} anw\CZZ(-‘“a""l°°)<°° | Ra-w 25w y‘-‘“ ?

and
224V - £ +500) L U Oy o Yot =
",'l: u:, RV, MSSS(N.—R\ Yzy,{ Yoa CM(oo\ o6) <?.)—wl |dawt o5 -,

(L. 2)

Multiplying {I. 1) by :: and (I.2) by Y;M and integrating over

the angular dependence yields

CEP+Vm-E)L U, =

— (1.3)
= UZRV, (1) S6-0Z <Ya l)é_...\},é sz(h,-ml“)u?_o" ;
and
(—- %v% Vo-E+h W)= Uzn Galm' W o) = 0w 2

202, R Loorg) R ot M Yoy € OB
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where we have introduced the notation

<Yoo W:--Y:Q = S*: Yz-» Yzm a0 (1. 5)

and where we have used (2.39) to evaluate the target matrix elements.

Evaluation of the sum over m in (I. 3) involves the determination of
12

the appropriate Clepsh-Gordon coefficients™  as well as the use of the

following relationship between the spherical harmonicsS:
+D(19'+ 1)

with these simplifications imposed, (I.3) and {I. 4) can be written

h V2-+ V(y;)— E\ —rLL- uoz = -%l.— U’ R (h-LS)SéL R\FJX’I (1.7)

and
t - V() —E +h,) nu;_’,__ 3 UpR Y, (448 S RBE \lt")" (. 8)

I.2 Radial Equations forJ = &

*

0 and integrating

SettingJ = 1 in (3. 12) and multiplying by Y‘
over Alg.\ yields

("' g‘::“'f V_(n.)- Ej ‘!,{ u:o C|°(00lzo):
LULRV(45) Sm W2 '<y,° Voo V. ,,> C.olmeml15) +
ln.us RV o S@ R)\l_,i Z <Y|O\Yz.y|\ }3.,> C;,Lm,—w\;o)

(.9
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% ¥
Setting ] = 1 in (3.14), multiplying by - (! and \/an’ s respectively and

integrating over d 10 yields the following two equation:

(‘ ?_;Vz+ Vw-€ *t“’z)",iul‘;cn(h'rh”\'b = ';liu;‘oR\Jo("“g3 S@R)\‘E-:’?? &m\' W1;JY|¢> ) .(I. 10)
and

92T ) L s, G (e )10) = S, RU(1) 560 E%Q(n N,_.YQ . (. 11)

In the same manner as forJ = 0, {1.9), (I.10), and (I. 11) can be

further reduced to

(-J%‘V"-\- %)_E)‘l,iuzo = "‘ﬁ_ é‘\[iu&,’f\j‘gug,_\RVobﬂi) g(ﬂ.—R} %‘ﬂ'—t‘ 5 (I.12)

Lo sha g ~F Ry oS0y L

and

(T';:V1+Yl'0z)—E‘-v’rsu>,) Lug, = \—E U R brag) S0-0) %L (1. 14)

I. 3 Radial Equations for J = 2

Setting] = 2 in (3,12) and (3. 14), multiplying by the appropriate complex
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conjugate spherical harmonics, performing the integration over du
and completing the various sums over the azimuthal quantum number

yields the following set of four coupled radial equations forJ = 2.

FEr s Tn-E)Lug « LU VF UL JEUL RV e B2 | (1.15)
CEV B Al Uy = L UE R (1) SO-R) %‘{%’_ ) (L. 16)

v T -grho) 103 = - VF L Uz RuGr@y (B, g
and
(R Too-ebo 0 =B Lk RYOupSeR| B - (g

I.4 Radial Equations for T = 3

Setting ] = 3 in (3,12) and (3., 14) and integrating out the angular
dependence as in the previous cases yields the following set of four coupled,

radial equations for ] = 3:

é?‘wpz‘\' \T(m—E)ﬁu;,: %L (\E'(" u?g—@ﬂ;i- i M;’,JR\/O(\M;\S(M) ’8@11%: 5 (I.19)
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Z—‘—}ZV’%VZ»—EJMA LU, \I—' RV,(NASS\’ E;“”- Séx-!) ® 3° ) (L. 20)

(VB ) f U3, = —‘ERV,(H@\ ’;“;; S0l U, (1. 21)
and
(1 24T Erhiu) U= {32 RGO SR U, - (. 22)

I.5 Radial Equations forJ = 4

Setting J = 4 in (3.12) and (3. 14) and integrating out the angular
dependence as in the previous cases yields the following set of four

radial equations for ] = 4.

( A +V(ﬂ-)—E>-—- u4o = RV(”*Q\IT'" S6- R)'L(Fuzz. Iwuﬁ ‘J_n?ubb > (1. 23) |
CE v Voo -Evkon) 5 Use = |5 RVolrig))| 5 S@-E)J-qu 5 (1. 24)
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and

2 = 1.4
(—E‘*MV"-:- - E+h wz)lﬁ M:,_ = J}i_if R Vo(('cxg)\%ﬁ(n&)-ku% . (1. 26)

1.6 Radial Equations forJ = 5

Setting ] = 5 in (3.12) and (3. 14) and integrating out the angular
dependence as in the previous cases yields the following set of four

radial equations forJ = 5.

X, - 3 3
zl;hvzﬂl(n)-E)-;—l Ugo = RV@('*AQ %}S(’t’ﬂ@@'ﬁ% sz*{%fg uu\ > (1.27)

E-%V”{V{'o-Eﬂtl«%-lﬁ_ ng-‘-"ﬁ—? leo(ntg\\r%‘:’fa g(n- ® -*,-,_U\?o > (1. 28)

(5 T £4 b )05 =[BT RV, 522 S004205, .29)
and
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I.7 Radial Equations forJ] = 6

Setting ] = 6 in (3.12) and (3. 14) and integrating out the angular
dependence as in the previous cases yields the following set of

four radial equations for J = 6.

;—';EVH Vi - E) w “60 —'RV,(HLS\{T“’:'- g(,,_ RHT("“ 9.4 {T'MQ,_J,JT-—'ua’) (1.31)

% Bo-Erha) b ul, = r_,-i— RV,,(mg)], Kge S(n.R\-k-u“ , (1. 32)
)va "v(")’E"twibnutz J‘T’RVOC LS tw‘" S‘("-"Q'L ubo > (1.33)

and

(L PiVeo- B+ b L Ugy = \[%5’ R Vo(|+4;}lit§"“2a36m-ﬂlﬁ ug, - (1. 34)

1.8 Radial Equations foar J = 7

Setting ] = 7 in (3.12) and (3. 14) and integrating out the angular
dependence as in the previous cases yields the following set of four

radial equations forJ = 7.

V V- E)‘ u?o-—- R\u“"‘ﬁ{_ﬁ S(’PQ)JLGE_' Uﬂ-‘ J?’un* u‘\z) (1. 35)
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f%,yzt—% E+ttoz§~ul \@Rvo(mg]ﬁ—l S(n- R]-ﬁ-u,,,, 5 (1. 37)

and
EE—;VHV@— E +ﬁaa§#u"71={ﬁ.-_.l-mg(\+§ -8%1_5 (n.—R)-}i IE,,, . (1. 38)

1.9 Radial Equations forJ] = 8

Setting in] = 8 in (3.12) and (3. 14) and integrating out the angular
dependence as in the previous cases yields the following set of four radial

equations forJ = 8.

3 Vo £ U =RV 22 SR (- 0 BB ). 99
(Pl Erfuon) 1 05, = {22 Kvomg)ﬁﬁ’z a-R~ “so 5 (L. 40)

(—E{ﬂ Teo-Evhoo) U= - KVGLM%)@;&S@-N;% Veoy (1.41)

and

B2 Tor-£ +ha) sy , = J_? ?Vo(lﬂgJE So-plog,. (42
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APPENDIX II

The various cross sections and the strength function were evaluated..
with the aid of the IBM 1410. Programming involved separating these
quantities into real and imaginary parts, and these parts are expressible
in terms of the functions Rego_,‘ Im‘gg » Sﬁ_ N A,O.’ and Sy_
which all satisfy certain recursive relations because of their dependence

on the spherical Bessel functions.

For the complex square well with Q.: 0 we get

go(x) =XELX > (IL. 1)

DOHAS) = AX o (1. 2)

§ 0= onclon E,m /moo{) : (L. 3)

where the arguments have been defined in Section 2. 2. We can separate

and

(II. ) into real and imaginary parts obtaining

(I1. 4)

R %: Xgsm2Xg + Yrsah 2Kz
€0 Gosh 2¥r - Cos52 X

and

Ton = XoSwm2¥r — XR smhoEx _ (i 5)

(osh 2K1— (08 L, KR
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where

X=%X+~Xp - (11. 6)
Using the recurrence relations for the spherical Bessel ";functionls we
can write
r N
§ D Sl J (1I. 7)
J-"S’Q-\

It follows, therefore, that

g - (X?—Y:)CQ— Re&ﬂ-l) "leRI:r.Im'YQ—\
K‘? J]

T ERS) + (bt
and
I\m—}l - &R—Xxxrmfl-\ + 22X Xy Ui_ Reg').-b (L. 9)
(- Refp-) + (EmE,n)
Similarly
Apt xSg= (K—A:,L)—}S;.. - (II. 10)
and therefore '
L(Q—Aﬁ-b
A= = - 3 (II. 11)
S SV .V ¥ Y
and
. X*Sg
S4= @ bpy + Se)™ (I 12

The recurrence relations that are convenient for calculating Sg ¢S]

are just

L
fo © = "l—,(—‘é;(x)— L0, (I1. 13)
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which is also satisfied by the spherical Neumann function.

For the calculation of the cross sections with the inclusion of
J J
collective vibrations we must evaluate ReJO@ﬂJY) and Img‘d,bcx-.@,'f) .
For the case, J] = 0, we can separate 5—:’ into real and imaginary

parts as follows:

° m\\/ 2 h Q-(A! - Rebf 3\ b&@p—ﬂngz@' )]
Re& (xyn= Re'&,(‘&i}+€—z)1vo s 8“:; 0 :«;)—Reﬁl ﬂ§+ Ko Tokell (L. 14)

and

0 Fon blbstay-ReS, ][50 Tbut ]
‘ - +( ) 45 s . {11.15)
IW‘%O,(XJ‘J)Y) I‘ﬂ\gom V R S“Cz [&(@ Ref-..@]‘ E‘%‘_I’\_gzm]z
where @&=I-%2 and b =2¢ . The evaluation of (II.14) and {II. 15) can be
carried out by using the recurrence relations just developed for the complex
square well except that the functions in the correction term contain different
arguments. In the case that the incident energy, E, is less than

then the following modification must be made

Ap+ L 3Lp= -4 > (IL. 16)
and then from (II. 10)
Y 0 {11.17)
A’-Q-‘g) - b ?
and
Slp =0 - (11. 18)
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g J
For higher values of J, Re. Su and Lwm &Io are obtained in a

similar fashion.. The results are too lengthy to present here, but the
method is straight-forward, and the solution in terms of the recursion

relations i s analogous to the discussion above.
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