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V:i.rginia R. Brown 

THE EFFECT OF COLLECTIVE EXCITATIONS 

ON THE OPTICAL MODEL 

PHYSICS 

A simple mode! is proposed for the description of the 
scattering of neutrons by a vibrational even-even nucleus employing 
a complex spheroidal well surface interaction. This mode! is 
particularly convenient since it allow s an exact analytic solution. 
which can be written in the form of correction terms to the spherical 
optical model. 

The application of this model to the s wave strength function 
results in a splitting of the single peak at A= 55. The inclusion of 
the effect of octupole excitation introduce s de sir able but min or 
modifications. 

Determination of the total neutron cross sections with 
this model substantiates the view that the flattening of giant 
resonances away from closed shell regions can be attributed to 
the effect of quadrupole excitation. There is also sorne evidence from 
this model that the effect of collective excitations could account 
for the characteristic shift of the maxima associated with these 
resonances. The scattering and reaction cross sections as well 
as the differentiai shape elastic scattering are also calculated. 
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CHAPTER 1 

INTRODUCTION AND SUMMARY 

This thesis is a study of the effect of collective excitations on 

the optical rnodel. The Introduction will be devoted to a sketch of the 

historical developrnents which are pertinent to this investigation. The 

spherical optical rnodel or the optical rnodel before the effects of 

collective excitation are irnposed is discussed at sorne length. Various 

gross properties of the neutron - nucleus scattering problern which are 

particularly suitable for prediction by the optical rnodel are reviewed; 

the gross properties to which we refer are the cross sections and the 

strength function appropriately averaged over resonances. The 

success of the spherical optical rnodel in predicting these properties 

is qualitatively considered. Consideration of the corrections for 

collective effects on the spherical optical rnodel and the resulting 

irnprovernent in the prediction of the aforernentioned gross properties is 

discussed. The particular contribution made by the present thesis to 

this area of nuclear physics is also described. 

For many years the principal nuclear reaction rnechanisrn for the 

interaction of nuclear particles with cornplex nuclei was the idea of 

the compound nucleus introduced by Niels Bohr1 in 1936. Under the 

assumptions of this rnodel a particle, which has entered the nucleus, 

quickly shares its energy with the other nucleons and can be thought 

of as absorbed, thereby forming a compound nucleus in an excited state. 

This state is one in which the motions of all particles are so intirnately 
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coupled that a statistical equilibrium is reached, and the incident 

neutron is no longer distinguishable from the target nucleons. The 

state of the compound nucleus and its manner of decay are independent 

of the way in which it was formed except for the correlations and 

restrictions connected with the over-all conservation laws. 

In 1949, with assumptions akin to the Bohr hypothesis, Feshbach 

and Weisskopf
2 

calculated the energy dependence of neutron - nuclear 

cross sections. The results represented average values over individual 

fluctuations and resonances, and the cross sections were smooth functions 

of energy which decreased monotonically with increasing energy. However, 

the decisive experiments of Barschall
3 

and his co-workers have clearly 

demonstrated that this is not the case. Instead, the experimental 

curves appropriately averaged over resonances have pronounced maxima 

and minima reminiscent of wave interference. Furthermore, these 

maxima and minima demonstrate not a random, but a graduai change 

when examined as a function of mass number and energy, that is, there is 

a significant change over the full range of the mass number, A, but the 

cross sections of neighboring nuclei have a similar energy dependence. 

This type of behavior is indicative of a general flaw in the theory 

since it shows up systematically in all nuclides. The characteristic 

shapes that appear in the total averaged neutron cross sections, ~ 

depend on general properties that vary slowly with A rather than on the 

detailed features of nuclear reactions. The widely spaced shallow 

maxima and minima are what might be expected in scattering from a 

potential well, where resonances occur whenever a whole number of 
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wavelengths can be fitted into the well, but this type of interaction is 

just what was needed for the nuclear shell madel. It was also evident 

that the damping which would be necessary to produce the observed widths of 

these resonances was smaller than that expected from compound nucleus 

arguments. In fact, the results obtained by Feshbach and Weisskopf
2 

had no resonance character because of their assumption of total damping 

based on the Bohr hypothesis. 

It seemed clear, then, that compound nucleus ideas had to be 

modified to encompas s the shell madel point of view. The ba sis of 

the Bohr assumption was that every nucleon incident on the nucleus is 

absorbed, that is, captured immediately into the compound nucleus. 

This is, of course, in direct conflict with the shell madel which necessitates 

long nucleon mean-free-paths in nuclear matter. One might interpret the 

sucee ss of the shell madel as evidence that a neutron could move about 

in the nucleus without interacting with the other particles present. 

However, the shell madel evidence cornes from ground states and 

low excitation levels where the exclusion principle is most effective. 

Since nucleons of incident energies of a few Mev form, with the targets, 

excited states of the arder 8 Mev, one does not expect the long mean

free-paths associated with the shell madel ground states to be valid. 

The optical mode! was devised to combine the virtues of the shell 

madel and the compound nucleus assumptions. The use of the optical 

madel implies the use of a complex potential to represent the target 

nucleus. If the Schrodinger equation is adjusted to include a complex 

potential, it can be shawn that the imaginary part of this potential has 

3 



the effect of adding a term to the continuity equation which corresponds 

to the removal of particles. The magnitude of the imaginary part of the 

potential bears a direct relation to the probability per second that the 

neutron will form a compound state. In the optical mode! tm strong 

coupling or total absorption suggested by the compound nucleus theory 

is replaced by a weak absorption where the capture into the compound 

nucleus takes place with a probability less than unity. The probability 

that is required for compound nucleus formation is expected to be 

consistent with nucleon mean-free-paths in nuclear matter that lie 

somewhere between the short mean- free-paths of the compound 

nucleus theory and the longer paths associated with the shell madel. 

Thus, in the optical mode! the incident neutron is considered to enter 

the nucleus and move inside the nuclear boundaries making many 

internai motions before subsequently being either emitted or absorbed. 

When the incident nucleon is not absorbed, the target nucleus acts as 

a potential well. 

The representation of the nucleus by a potential well is analogous 

to the representation of an optical medium by a refractive index. To 

account for the absorption of light in the optical case, an imaginary 

part of the refractive index is introduced. In nuclear reactions the 

elastically scattered bearn has an intensity which is diminished 

relative to the incident bearn because sorne particles initiate reactions 

and are lost to the incident bearn. This absorption is represented by 

an imaginary part of the potential, again in analogy with the optical 

case. These analogies constitute the ba.sis for the name optical madel 

or clouded crystal bali madel. 

4 



Referring back to the experimental work of Barschall and others we 

had stated that the damping necessary to produce the resonances must 

be smaller than previously expected from Bohr assumptions. Another 

way of stating this in terms· of a clouded crystal hall mode! is that 

the imaginary part of the well must be of the right order of magnitude 

to give the constructive interference necessary to produce the observed 

broad maxima and minima. These giant resonances of the order of 1 Mev 

wide and 1ocated in the energy region of about O. 1 Mev to 10 Mev will 

be important in our considerations in this thesis and will be discussed 

in more detail in future contexts. 

The optical mode! in this form was first presented in 1954 by 

Feshbach, Porter, and Weisskopf
4 

to which we will hereafter refer as 

FPW. In particular, the FPW optical mode! was devised to explain the 

results of the Barschall experiments which were mentioned earlier. The 

FPW optical mode! gave surprisingly good results in reproducing the giant 

resonance structure of the total neutron cross sections averaged over 

resonances and plotted versus mass number and energy. The natural 

explanation of these resonances is that they represent the effect of the 

independent particle levels superimposed on the actual width and 

spacing of the numerous resonances of the many-body system hidden 

beneath the averaging. 

In connection with the actual many-body system, it might be 

mentioned here that by replacing the target nucleus by a complex potential 

well we have disregarded the complicated structure of the nucleus, and at 

best we can only see the gross-structure associated with the scattering. 
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Also we have lumped all reactions. inelastic scattering, and even 

compound elastic scattering together as an absorption. By disregarding 

the intricate quantum mechanical nature of the problem we have failed to 

account for the sharp resonances or the competition between nuclear 

reactions. The point is that by using a shell model potential we have 

determined the average interaction between the nucleus and the neutron. 

It is the fluctuation away from the average that gives rise to the 

compound nuclear resonances. Nevertheless, the clouded crystal 

ball model gives a good description of the average cross sections, 

and one might say that it accounts for nuclear reactions in a global 

fa shi on. 

It should be noted that the position of the optical model has moved 

amazingly since the time of FPW both from the point of view of its 

phenomenology and also from the point of view of its underlying 

foundations. Phenomenologically the optical potential for spherical 

nuclei which has in general been employed is a combination of 

central and spin-orbit potentials. For energies that are not too 

high it should be much like the single-partiels potential for bound 

nucleons in whicn,for example, non-local effects should be included. 

The main improvement on the original square well model is the effect 

of diffusing the well. The reflectivity of the square well is too large. 

consequently, the reaction cross section which is sensitive to the 

nature of the surface is too small. 

The other aspect of the optical model deals with the relationship 

of the op tic al model to more basic theory. This in volves the proof 

of existence of the optical mode! from a many-body Hamiltonian 

and then, in turn. the derivation of the parameters of the optical model 

from the two-body interaction. In this thesis we will be concerned with 

the phenomenological optical model only. 

6 



One of the more outstanding successes of the optical madel has 

been the determination of the strength function, ~ID , which is the 

ratio of the neutron leve! width to the neutron level spacing averaged 

over resonances and normalized to 1 ev. In the low-energy regions 

of weil spaced levels the strength function is simply related to the 

average absorption cross section. The strength function is of 

particular interest to recent nuclear models and is not a property of the 

nuclear energy leve! system, but rather it is a property of the nuclear 

surface itself. To see this consider the following definitions: 

probability per second for disintegration of a 
nuclear leve! by neutron emission. 

time between collisions with the nuclear surface, or 
to put it another way, it is the time for all the 
excitation energy to be reconcentrated on one 
neutron so that it could escape. 

Clearly the strength function which is the product of these 

quantities within a factor of 21r is just the penetrability of the 

nuclear surface. Because the strength function has this property of 

being essentially independent of the method of excitation or equivalently 

because it is external in nature, it is particularly useful in determining 

the parameters of the optical mode! potential. 

The strength function plotted against mass number for the spherical 

optical mode! shows peaks in the vicinity of A = 55 and A = 155. The 

overall agreement with experiment is quite good and can be qualitatively 

understood on the basis of the spherically symmetric potential well used 
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by FPW. The maxima in the strength function correspond to the resonances 

that occur when the energy of the incident neutron, which is essentailly 

zero, is near an s-level of the potentiel employed in the optical mode!. 

If one examines the leve! structure of the spherical nuclei of a 

shell mode! potentiel designed to predict the magic numbers, it is 

seen that the resonance at A = 55 corresponds to a 3s resonance, 

that is, the 2 s leve! is filled, bu the 3 s state is more than a major shell 

away and, ,therefore, just positive. LikewilSee the resonance associated 

with A = 155 can be identified as a 4s resonance. 

The approximate condition for an s-resonance can be determined 

analytically for a square well and is given when the inside wave number 

times the radius is an odd multiple of 1r /2. This is just the condition for 

which new energy levels with l = 0 appear in the bound state problem. From 

the point of view of a real well, the physical interpretation is that the 

incident particle has nearly the right energy to be bound, and, therefore, 

it has a tendency to concentrate in this region. Consequently, there is 

a large distortion produced in the wave function and, in turn, a large 

amount of scattering. The use of a complex well, however, reveals 

these resonances as absorption peaks; therefore, the interpretation is 

different although the condition which locates the position of the peaks is 

still approximately determined by the real part of the well. The 

imaginary component of the well has the effect of broadening the 

resonances. These resonances are often called size resonances; the 

reason for this is that since R = R0 A l/
3

, an increase in mass number 

has the effect of increasing the extent of the well. 



The strength function peak which falls in the region of A = 155 

is in the vicinity of strong deformations and rotational nuclei. The 

interpretation of this region of nuclei is th at the number of particle s 

outside closed shells is so numerous that the nuclear equilibrium shape is 

permanently deformed, thus, giving rise to rotational excitations. 

Although the representation of the target nucleus by a spherical well gave 

good qualitative agreement with experimental results in this region, it 

did not account for the irregularities that existed there. 

By using a spheroidal well to represeat the deformation of these 

nuclei, Margolis and Troubetzkoy
5 

have been able to present a simple 

argument to explain the observed splt.tting of this 4s resonance in terms of the 

deformation of the nuclei in this region. These authors considered the 

problem of s-wave scattering from a complex sphermdal potential in 

the li mit of no recoil of the rotator. This has been called the adiabatic 

approximation where the use of a fixed spheroidal well is justified in 

that the rotation of the target nucleus is slow compared to the nucleon 

transit Ume. The solution was effected by joining the inside and ott side 

wave functions and their derivatives at the surface of the well as a 

function of eccentricity. 

In the ca se of a non- s pherical potential well, angular momentum is 

not a good quantum number, and as a result there is mixing of d-states 

and higher states into the particle wave function ins.i:i e the well. The se 

states resonate at different values of A;consequently, there is a mixing 

in the final result which produces a double peak in the strength function. 

Increasing the eceentricity has the effect of further deforming the well 

which mixes in higher !-states with a resulting additional increase in 

splitting. 
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r 
1 

An extensive study of neutron scattering from non-spherical, 

even-even nuclei in the rotational region of nuclear spectra has been 

considered by Chase, Wilets, and Edmonds
6 

(CWE). These authors 

have used a diffuse-surfaced potentiel well which was chosen to be complex 

in order to allow for inelastic scattering and reactions. In this study 

a target Hamiltonien has been included so as to account for the 

excitation of the low-lying rotational states which, because of the 

deformed shape of the nucleus, are directly coupled to the partiale 

motion. Since angular momentum is not conserved for a deformed well, 

there is an energy exchange between the incident neutron and the target; 

the neglect of this is just what was meant by the adiabatic approximation 

in the discussion of the work presented in Reference S. 

The paper presented by CWE was in part a study of the importance 

of direct interactions compared with compound-nucleus ideractions. A 

plentitude of experimental data on u 238 
provided a propitious case 

for investigation. According to CWE the cross section for the direct 

process compared to that for compound nucleus formation is relatively 

small at low energies (<1 Mev). It becomes important, of course, as 

the incident neutron energy is increased. It is suggested, hovve ver, th at 

the contribution of the direct interaction to the differentia! cross 

section at low energies is significant because of the large anisotropy 

which is associated with this process. Other cross sections and 

effects are also presented. In particular, the strength function is 

determined as a function of mass number with a variable deformation 

parameter based on measured quadrupole moments. This is the physically 

10 



reasonable thing to do, and there is a corresponding improvement in 

the fitting of the experimental curve. It mtght be mentioned here 

that the validity of the adiabatic approximation used by Margolis 

and Troubetzkoy for s-wave scattering was confirmed by CWE. 

The peak in the strength function located in the vicinity of A = 55 

is in tha region of vibrational nuclei, that is, near closed shells where 

the equilibrium shape of the nucleus is still spherical, and there is 

the possibility of vibrational excited states but not rotational. The 

interpretation of vibrational nuclei is that there e::idst particles 

outside closed shells, but there are not enough to permanently deform 

the nuclear equilibrium shape. The experimental strength function in 

the vicinity of A = 55 shows asymmetry when compared to the spherical 

well predictions. It is well known that many even-even nuclei 
+ demonstrate a strong excitation of 2 states by inelastic scattering. 

It is, therefore, conjectured that this dynamical quadrupole distortion may be 

responsible for the asymmetry in the strength function in rouch the same 

wa'J as was evidenced for the permanently distorted nuclei at A = 155. 

This effect has been considered by Professer Bernard Margolis 
7 

and the author of this thesis and !ndependently by B. Buck and F. Perey . 

The particular advantage of the model used by the former is that it yields 

to a particularly nice analytic solution which can be compared directly 

with the work of FPW in the form of correction terms, and 1t is primarily 

for this reas on th at it is pre sented in a la ter chapter. The work 

of Buck and Perey is more extensive in that it includes the p-wave 

strength functions. In addition they have used a di:Sfuse interaction 

11 



potential, and, in general, the method of attack is different from ours. 

We have been discussing the giant resonances in the strength 

function; we shall now consider the giant resonances that appear in the 

total neutron cross section. The consideration of the effect of collective 

excitations on these giant resonances and on the associated cross 

sections constitute the main contribution of the present thesis. The 

calculation of the total cross section presents a much more difficult 

problem than the one which we have been considering because the 

strength function involve s only s-wave calculations, but the giant 

resonances in the total cross section occur at energies up to 10 Mev and 

higher, and,tltli3œfore, consideration of the effect of distortion on these 

giant resonances involves the inclusion of many partial waves. 

Upon examination of the experimental total cross sections versus 

mass number there can be observed a graduai tendency for these giant 

resonances to flatten out in the regions tending away from closed shells. 

There is also a characteristic shift in the energy at which the maximum in 

the cross section occurs. It was inferred that these effects could be 

understood in the region of vibrational nuclei, that is, just away from 

closed shells by taking into account the effecti.of collective excitations. 

The particular regions under investigation in this study are the regions 

ne ar and which are doubly magic closed 

shell nuclei. To our knowledge an investigation of this sort has never 

previously been attempted. 

In Chapter 2 we summarize sorne essential features of the nuclear 

models that will be important in the subsequent developments of the theory. 

12 



In particular this involves the optical model and the collective mode! of 

the nucleus. In Chapter 3 we shall formulate the mode! for the inclusion 

of the effect of collective excitations for vibrational nuclei. In 

Chapter 4 we present sorne numerical results in graphie form, and a 

discussion of these results will be presented in Chapter 5. The 

exact solution of the coupled radial equations is outlined in Appendix I, 

and certain important recursive relations are given in Appendix II. 

13 



CHAPTER 2 

BASIC NUCLEAR MODELS 

2. 1 Optical Mode! Cross Sections 

We have stated that in the optical model, compound nucleus formation 

is considered as an absorption of the incident bearn as represented by the 

imaginary part of the potential. The real part of the potential predicts 

the shape-ela&ic scattering, that is, no compound nucleus is formed. 

Now, the compound elastic scattering is considered as an absorption 

process in this mode1 even though it involves the subsequent emission of 

the incident particle by the entrance channel. As a result the optical 

model predicts only the shape-elaSic scattering and the compound 

nucleus formation. In order to relate the optical model to experiment it is 

necessary to define a set of cross sections which are averaged over 

resonances. Of course, at higher energy when the level width becomes 

comparable in size to the distance between levels the averaging is done 

automatically. 

According to usual scattering theory when a target nucleus is bombarded 

with neutrons, the differentiai cross section for scattering neglecting spin 

effects is given as follows: 8 

(2. 1) 

Where ~.( is the measure of the amplitude and phase of the coherent 

outgoing .ti&. partial wave relative to the unit amplitude and zero phase 
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angle of the incoming wave. The y,.)0 '..$ are the spherical harmonies 

as given by Reference 8, and f0 is the outside wave number. The 

total elastic cross section is obtained by integrating the differentia! 

elastic cross section over all angles, and because of the orthonormality 

of the spherical harmonies, Q;.,t. becomes: 

(2. 2) 

The reaction cross section representa all incoherent processes, that is, 

ali processes where the incident neutron interacts with the target nucleus 

in such a way that it does not leave through the entrance channel.. The 

reaction cross section can be obtained by subtracting the intens ity of the outgoing 

coherent wave from the incident wave and is, therefore, 

(2. 3) 

The total cross section is just the sum of CJ'd. and Q';c. and in terms of 

partial waves 

{2. 4) 

~ R. exhibits rapid fluctuations as a function of energy in the regions of 

closely spaced resonances of the compound nucleus. The theory of 

average cross sections as represented by FPW replaces '1! with an 

average value of '1_1. where the averaging is defined by 

5
€-tr./~ 

ij_cê> = -f 'l_.t (ë) de/. 
\ é-I/2. 

(2. 5) 
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I is an energy interval containing many closely spaced resonances yet 

chosen much smaller than the energy, € ~ such that slowly varying 

functions of E. like ~~ need not be averaged. The average cross 

sections are defined in the same way, and without going into detail it 
. 4 

is easily shown that 

{2. 6) 

where r.J1.l> is the cross section for the formation of the compound 

nucleus~ and o-JQ.) is the shape elastic cross section. These cross 

sections are given by 

(2. 7) 

The angular distribution for the shape elastic scattering is given by 

(2. 8) 

The se newly defiœ d quantities are, if you like, the scattering and reaction 

cross sections of a new problem which is defined by the slowly 

varying function ~.t . The optical model potential is that potential for 

which ""1..t. is the amplitude and phase of the outgoing coherent wave, 

and it is for this reason that the optical potential is said to predict 

the gross propertie s of neutron-nucleus scattering. 
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2. 2 Square Well Optical Model 

The simplest type of well that one can assume for the optical 

mode! is a square well as was first utilized by FPW. As has been 

mentioned, we shall cast our theory for the effect of collective 

excitations on the optical model in a form in which the results appear 

as correction terms for the square well optical model. In the light 

of this, we shall present here the features of the square well model 

which are essential for our purposes. The square well optical potential 

is defined by 

\[(Jt.) = -Vo(l+L~~) -l (2. 9) 

y {.Il.) -::. 0 Jt "?"R.. ) 

where Vo is the real well depth and is taken here as a constant. 'j' is 

the absorption parameter and represents the percentage of v~ that corresponds 

to absorption; 5 Vo is the imaginary part of the potential and has 

the same radial dependence as the real part in this model. The nuclear 

radius, R, is a function of mass number, A, according to the relation. 

R = 1<o A'/~ {2. 1 0) 

We had written down expressions for the various cross section in 

terms of the quantity 1.t . For our purposes it is convenient to write 

the cross sections in terms of the logarithmic derivative, f .1. , which 

is defined by 
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where U.,_ (lt) is the radial part of the wave function of the scattering 

problem and satisfies the Schrodinger equations. 

and 

where 

J..2.._ ~E 
'f(D- "h'l. 

i Jt<R 

ttnd, 

l'(_.t can be written in terms of J..t as follows: 

t.t.- .ât +J.SR. 
s,..- A,.-).~ 

where for the complex square weil 
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(2, 11) 

(2. 12) 

(2. 13) 

(2. 14} 

(2. 15) 

(2. 16} 

(2. 17) 



and 

l<x.) ~ 1 +x 1~CX)/~ · 12. tsl 
.A ac1) 

In the se equations, 4;.. .> m JL and -11;. are, respectively the 

spherical Bessel, Neumann, and Hankel functions. The Hankel 

function is of the first kind, that is, it corresponds to outgoing waves 

only. In fact, A J. + ,4.. Sj.. is the logarithmic derivative of the outgoing 

portion of Lt,1 (IL) , where Â J- and S Jt are both real. In the notation 

of (2.16), {2.17) and (2,18}, 

(2. 19) 

(2. 20} 

and the prime denotes differentiation with respect to the argument; 

this notation will be used consistently throughout. The ratio of the out

going part of the radial wave function to the incoming part is a pure 

phase, and the identification of e.,2 L~ with this ratio leads to the 

expression for ÇJ. given by (2. 16). 

7[i has been expressed in terms of functions evaluated at the 

nuclear surface by (2. 15}; we can now rewrite the cross sections defined 

in (2. 1), (2. 2), {2. 3), and (2. 4) in terms of these functions. 

" ) (2. 21) 
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.. 
J {2. 22) 

{2. 23) 

The differentia! shape elastic cross section (2. 8) can be written 

in terms of CT and the Legendre polynomials, ~ (coc:.e) ~ with the 

aid of (2. 15) and {2. 23) 

2. 3 Vibrational Nuclei 

There is ample evidence 
2 

that nuclei exhibit collective effects 

which are necessarily due to the cooperative behavior of large numbers of 

individual nucleons. This collective effect is due to correlations in 

individual particle motion and can be identified with the degrees of 

freedom which describe the shape and orientation cf the nuclear field. 

The nuclear field to a first approximation can be represented by 

introducing a spherically symmetric potential which describes the 

average effect of the interaction between the nucleons. The success 

of the shell mode! has shown that this is a rather good approximation for 

closed shell nuclei. 
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According to the collective modei, nuclei away from this closed shell 

region consist of a relatively stable core made up of particles in closed 

shells, and theremainingparticles are considered to move in the 

pdential of the core. The core is capable of deformation by the nucleons, 

which are effectively outside the core, and, in turn, once the core is 

deformed it modifies the field in which the nucleons move. The 

collective model, is, then, a compromise between the extreme individual 

particle madel and the liquid drop model. 

For closed shells the individual orbits of the nucleons are uniformly 

distributed and the equilibrium shape remains spherical. Particles in 

unfilled shells, have an anisotropie effect, however, and tend to deform 

the nucleus according to their own density distribution. The distortion 

from spherical equilibrium can be thought of as a competition between 

the tendency for deformation by the individual nucleons in unfilled shells 

and the residual forces which tend to put equivalent nucleons in a 

spherically symmetric state. 

The distinction between rotational nuclei and vibrational nuclei 

as mentioned in the Introduction is based upon the stable equilibrium 

shape. For closed shell nuclei the binding energy is largely due to the 

special stability of the se nuclei. The potential energy, curve is stable 

for the spherical shape and rises steeply for a change in shape. This, 

of course, _implies that nuclear excitations 'N:> uld involve high frequencies. Just 

away from closed shells where only a few particles have been added, the 

potential energy minimum still corresponds to a spherical shape, 
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but now the potential rises less steeply, and excitations involve somewhat 

lower frequencies than in the case of closed shells. 

The addition of particles has the effect of reducing the slope of 

the potential energy which means that the nucleus is more easily 

distorted. With only a few particles outside closed shells the 

equilibrium shape is still spherical and as such exhibits only 

vibrational excitation. When enough nucleons have been added to make 

the spherical shape unstable, then the potential energy has a minimum 

at a nonspherical shape, and we have effectively come into the region 

of rotational nuclei. These nuclei exhibit rotational as well as 

vibrational excitation modes. The rotational modes are low frequency 

collective excitations associated with the rotation of the nonspherical 

equilibrium shape with the intrinsic structure intact. The individual 

nucleon correlations necessary to give this effect are long-range 

correlations such that the over-all space pattern is ne arly cons tant. 

This may be viewed as a surface effect. 

The discussion presented here is dependent upon the separability 

of the intrinsic and the collective degrees of freedom. The coupling of 

particle and collective motions can be neglected when the frequencies 

of collective excitation are small compared to the excitation frequency of 

a shell mode! state. We are concerned in this thesis with the regions 

near closed shells, and due to the high stability of these regions the 

coupling can be neglected. 

Experimentally, vibrational spectra are observed for ali even-even 

nuclei except at closed shells and in the region defined by A ""25, 
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150 <A< 1901 and A> 220 where rotational spectra are found. These 

vibrational excitations can be described in terms of the quantized 

surface vibrations of a liquid drop. The addition of partiales outside 

closed shells is manifest in the decreased restoring force and the 

corresponding decrease in the observed frequency of the collective 

oscillation. 

We shall recapitulate the theory of the modes of excitation for 

a continuous liquid drop using the notation of A. Bohr and B. Mottle son. 
1 

O, 11 

A nuclear surface of general shape can be written as 

R is the radius of the undeformed liquid drop. '!he Y >t'' s are, as 

be fore 
8

, the normalized spherical harmonies. Since the radius is a 

real quantity, the cA;..f-' satisfy 

(2. 23) 

The expansion parameters, o(>-t , are the collective coordinates, and 

they describe the deformation of the nuclear surface. The assumption of 

incompressibility implies that tl...o,o :.: 0 . The contribution of À = l 

gives rise to a rigid translation of the drop. As a result À 0 and). = l 

can be dropped from the sum in (2. 23). 

With the above assumption of incompressibility and the additional 

as sumption of irrotational flow, the Hamiltonian for the system can be 
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developed. For small oscillations about the equilibrium shape the motion 

can be described in terms of normal modes, and the resulting Hamiltonian 

is 

(2. 25) 

lT~p- is the momemtum canonically conjugate to t:ï{Af"' and is given 

by the following relationship: 

(2. 26) 

B À is the inertia parameter, and CA is the effective surface tension. 

The form of the Hamiltonian indicates that the surface oscillations may 

be considered as a system of harmonie oscillators with frequencies, 

(2. 27) 

The quantization of this system is done in the usual way by 

reinterpreting the lfAt' and rXAf- as quantum mechanical operators 

satisfying the proper canonical commutation rules. The Hamiltonian can 

be rewritten by setting 

(2. 28) 

and 

(2. 29) 
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where now 

{2. 30) 

{2. 31) 

and 

{2. 32) 

where ff\Àf"' i~the number of quanta in the mode (À(>· In the usual 

interpretation b~ and b~ are creation and annihilation operators. 

The Hamiltonian and the z component of angular momentum are diagonal 

in the (YI>.._/ representation, and the eigenvalues for the deformation of order 

À are 

(2. 33) 

and 

(2. 34) 

where 

{2. 35) 
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Each energy level is as many times degenerate as the number of ways the 

N excitation quanta can be distributed on the 2 A + l individual modes 

of oscillation. The excitation quanta are equivalent to Bose-Einstein 

phonons of spin À • The mt.f in (2. 34) is then the number of phonons 

which has a z component of angular momentum equal to f'-1; . The energy 

levels for a particular À are equally spaced and the separation is flw~ . 
The ground state is a zero phonon state with spin zero, and the excited 

states for deformation of the arder À correspond to increasing the 

number of phonons of spin.\ by one. 

;y (N) 
The wave functions, (" r , of these vibrational 

usual harmonie oscillator wave functions with coordinates 

The ground state is 

A/(o) 

f'-oo r.{ exp[- L ]AWAol~e::.l. "r zt .J 
and the one phonon state of spin À is given by 

l * ,.y<oJ 
D~ {'-oo • 

' 

states are the 

rl~r . 

(2. 36) 

(2. 3 7) 

In this the sis we will be concerned with the 2 + and 3- first excited 
+ -

one phonon states. The 2 and 3 states correspond respectively to 

quadrupole and octupole vibrations. Since we are interested in the 

ground state and one phonon excited states, then N will take on only the 

values of zero or one. N = 0 corresponds to the no phonon ground 

state, and N = 1 de signate s the first excited one phonon state. 
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À = 2 and 3 correspond respectively to the quadrupole and octupole 

excitations. 

We shall have occasion to use the matrix element of c(_~Î between 

different phonon states. The quantity of interest is 

(2. 38) 

Recalling that rJ.. 'Af' is a combination of raising and lowering opera tors 

we obtain the following: 

j N=-t-h-1 

0 i N~Ht \ 
(2. 39) 

) tJ= H-\ 

It is seen that the quantity o/.._)..f- has non zero matrix elements only 

between states which differ by one phonon with quantum numbers À and r . 
Since we are only considering the no phonon ground state and the one 

phonon À = 2 and À = 3 excited states, we can write the Schrodinger 

equation unambiguously as 

(2. 40) 

where we have taken the ground state to have zero energy. 
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CHAPTER 3 

INCLUSION OF COLLECTIVE EFFECTS 

3. 1 Formulation of the Model 

In this chapter we develop the formalism for the inclusion of the 

effects of collective vibrations of spherical nuclei on the optical 

model. The Hamiltonian for the bombarding of a spherical nucleus by 

a bearn of neutrons neglecting neutron spin can be written: 

(3. 1) 

where the Hamiltonian for the entire system has been written as the 

sum of the neutron kinetic energy~ the target Hamiltonian, and the 

interaction potential. The rJ...~f's are the collective coordinates of the 

target nucleus and "ft represents the coordinates of the incident 

neutron. 

Since the interaction potential is not spherically symmetric, 

the angular momentum of the incident neutrons is not conserved, and 

the change is taken up by the target nucleus via the target Hamiltonian. 

The target Hamiltonian which will be utilized is the pure vibrational., 

even-even Hamiltonian as presented in Section ·2. 3. In writing down the 

Hamiltonian in (3. 1) we have made use of the fact that collective 

motions are slow compared with nucleon transit times. The collective 

parameter, o('t-r , can, therefore, be considered fixed for the duration 

of the interaction. The interpretation is that the neutron excites a 
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collective degree of freedom by interacting with the nucleus as a 

whole and may leave the target in an excited state. 

The interaction potential can be written: 

(3. 2) 

where we have assumed that the potential takes the form of the distoœd 

nuclear shape. We have expanded the nuclear surface, rt ( é ></;) 

in a series of spherical harmonies as was previously done for the 

development of the collective mode!. Now if we assume a complex well 

and take the first two terms of a Taylor series expanded around r = R, 

we obtain the following equation: 

V..el~,i) =-V~)- RY.ü+•\l ~(R..IÙ~~ )'~Cé,où, (3. 3) 

where ~ is given by Equation (2. 9). In (3. 3) we have neglected 

powers of ~~~higher than the first since we are considering only 

small deformations of the surface. The first term in (3. 3) contains 

only neutron coordinates while the second term contains both neutron 

and collective coordinates. It is worth while, then, to rewrite the 

Hamiltonian as follows: 
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where 

, (3. 5) 

and 

(3. 6) 

HN is now the Hamiltonian of the incident neutron and has been written so 

as to include the interaction of the neutron with the undeformed nucleus. 

This is exactly the Hamiltonian used in tm FPW calculations. and we shall 

see the analytical advantages of writing the Hamiltonian in this way. 

H. t is the neutron-nucleus interaction potential, and because of the 
1n 

square well potential, the delta function gives rise to a surface interaction. 

For the present discussion we will consider quadrupole oscillations 

only. Therefore, the sum over À and f- in (3. 6) is restricted to À= 2~ 

and If'\ ~ Â. corresponding to the five degrees of freedom associated 

with this degeneracy. Subsequently, in the development of the strength 

function we will examine the octupole as well as the quadrupole effect, 

and in that case we will expand the formalism so as to include ).. = 3. 

It is clear from (3. 6) thé! only the total angular momentum is a 

good quantum number. In the present work we shall restrict ourselves to 

even-even targets, that is to targets with initial target spin I = O. 

We now construct states of good total angular momentum, J. For the 

incoming partial wave the orbital angular momentum is equal to J because 
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the target spin, I, is initially zero. The z component of the total angular 

momentum will be denoted by M which we take equal to zero from azimuthal 

symmetry. The wave functlon, 4) J' , is given by 

(3. 7) 

where we have considered for the time being only the coupling to the one 
+ 

phonon collective state of spin 2 . 

The Y ;x' • s contain the entire angular dependence as well as 

the dependence on collective coordinates. Explicitly, 

(3. 8) 

where 1-r )M. (rA.~) are the target wave functions. The Schrodinger 

equation satisfied by these target wave functions is given by Equation 

{2. 40). Adjusted to the present notation we have 

{3. 9) 

where we take the ground state (I':o) to have zero energy. The quantities 

C 1. t:.' ( IWI)- rtr\ l J"O) are the usual Clebsch-Gordon coefficients for 

the composition of angular momentum where J=--:JI +"f and M O. 

3. 2 The Schrodinger Equation 

Substitution of (3. 4) and (3. 7) into the Schrodinger equation, HWd"= E4J\f, 
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yields the following set of differentiai equations: 

(3. 1 0) 

where we have made use of (3. 9). 

The solution of Equation (3. 10) was carried out in the following 

manner. If we multiply {3. 10) by t:o and integrate over the target 

coordinates, we obtain: 

(3. 11) 

The interaction term on the right side of the equality gives rise to coupled 

equations since the rJ...2.f as given by Equation (2. 28) is a combination 

of creation and annihilation operators for one phonon. Because of the 

restriction on the mattix element to values of I' = 2, we can rewrite 

(3. 11) as follows: 

(3. 12) 
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The equation akin to (3. 12) can be obtained in an analogous manner 
-* by multiplying (3. 10) by 'f....z.-'1'1\. and integrating over the target 

coordinates. The resultant equation is 

We are now restricted on the right hand side of (3. 13) to the values 

I' = 0 amd rn = O. Further since I' = 0, it follows that J = .J . .I, 

(3. 13} 

and, in turn, f:::: trvl from the target matrix element. We can therefore, 

rewrite (3. 13) as 

(-Kl,.1" '/(lt)-E-i;~j_, t Llj.2.CJ2.(M\'>~ ISO) '{J.'n-1 :: 

iu.JoRVcll+.ti) ~rt-R)Yw ~Jb C.ro(oofüo)~lll 'cl.&• \6~. 
{3. 14) 

Equations (3. 12} and {3. 14) can be further reduced by multiplying by 

the appropriate complex conjugate spherical harmonie and integrating over 

the angular dependance. For each value of J there is a set of coupled 

differentiai equations between uJ:oCn.) and u.J,_w . These equations 

are developed in Appendix I. It was found that values of J~ 8 were needed 

in consideration of the cross sections up to 10 Mev. 

3. 3 Cross Sections with C ollective Effects 

Before proceeding further it will be useful to write down the cross 

sections that we will be using in this work. For the purposes of this 
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thesis we will not be concerned with the explicit contributions to the 

cross sections of the direct scattering, the mechanism for which having 

be en introduced via the pos sibility for collective excitation. We wish 

only to compare the effect of collective excitations on the cross sections 

that were calculated with the FPW mode!. Fqr this purpose we need the, 

yet to be defined, total reaction cross section, the shape elastic cross 

section, and the differentiai shape elastic cross section. 

Because of our model the total reaction cross section now takes into 

account the direct inelastic scattering of the I' = 2 collective state as 

well as the formation of the compound nucleus of the optical model. The 

cross section for compound nucleus formation is 

The cross section for shape elastic scattering (I• 

scattering {I' = 2) is 

The total reaction cross section is, therefore, 

• (3. 15) 

0) and direct inelastic 

(3. 16) 

(3.17) 

The total cross section is the sum of the total reaction cross section of 

(3. 17) and the shape elastic cross section (I' = C) of (3.16). In comparing 
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J'" 
with the FPW cross sections of Section 2. 2 we see that ~J"o replaces 

J1. f. • but otherwise the cross sections which we have specified as 

being of interest are identical. 

3. 4 Logarithmic Derivative (J = 0) 

For J = 0 there are just two coupled equation which are 

(3. 18) 

and 

{3. 19) 

from Equations (I. 7) and (I. 8} of Appendix I. We can integrate (3. 18) 

and (3. 19) from R - â toR +il, and then let â--:110. Because of the ~ 

function surface interaction the results are simply 

(3. 20) 

and 

{3. 21) 

where R and R are the limits of the values when approached from outside + -
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0 
and inside the nucleus, respectively. If we divide (3. 20) by L!J.a,.(R) 

0 
and (3. 21) by U.00 (R) , we obtain expressions for the discontinuities 

in the logarithmic derivatives. that is, 

{3. 22) 

and 

These equations are easily solved, and we have 

(3. 24) 

Now, l\:J,.: is particularly easy to write down since there are only 

outgoing waves for l' 2. F.or r greater than the maximum extent of the 

potential, the radial wave functions have the form 

)t> 1(: 1 :r w ~ l" {:1~ I'=:t. ;:tUJl'z. = f._ f• '1.( :~.rr.) . 
) ) 

and 

j :T {(\) d. {.a) , 
~t>R ·. ~ t..lro = Yl_;ro . :r Tl)+ 'Jd.st) .i X::.o , 

where hl') and hj'L,) are the usual outgoing and incoming spherical 

Hankel Functions. The wave numbers k
0 

and k
2 

are given l;:Jy 
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(3. 2 7) 

and 

(3. 2 8) 

The radial wave functions inside r can be written 

' 
(3. 29) 

and 

n>R·. 1 ) :c -:.0 ' (3. 30) 

where it is the usual spherical Bessel function, 

{3. 31) 

and 

(3. 3 2) 

Utilizing expressions {3. 25) and {3. 29), we obtain 

0 ~)~) i-~ln 
~~ .. ~. = '&~ - T ~Vl (3. 33) 
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where 

(3. 34) 

and 

(3. 35) 

The prime denotes differentiation with respect to the arguments y and y , 
respectively. We can rewrite (3. 33) using the expressions for â..t,'t'J.S..t 

and f 1 as presented in Chapter 2 but expanded so as to include the present 

notation and the appropriate arguments. We have, therefore, that 

(3. 36) 

Using {2. 18)~ (3. 24), and (3. 36} we can write the expression for the 

logarithmic derivative, f: 0 , of our problem: 

{3. 3 7) 

where f0~) is the {9-~o) logarithmic derivative of the square well 

optical mode! of the FPW problem, that is, with no collective effects 

considered. f :o (r,1,V) is the 0 = 0) logarithmic derivative 

corresponding to leaving the target in an unexcited state and is, therefore, 

exactly comparable to f 0 {X). The correction term due to collective 

effects is, therefore, simply related to the d-wave discontinuity in the 
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logarithmic derivative and is due to the ~ function surface interaction. 

3. 5 Logarithmic Derivatives {O < I;:; 8) 

The ether logarithmic derivatives of interest for this problem are 

f 1
, fa., f 1 , f~, f', f~ .... {', and f1

1
0 

, and evaluation is similar to that 
•~ ao Jo o4o "ito ..,- '"7o 

off:. as calculated in Section 3. 4. 

For J = 1 there are three coupled equations given by (I. 12), {I. 13), 

and (I. 14). The integration across the surface is carried out as was done in 

{3. 20) and (3. 21) for J 0, and then the equations can be solved to give 

t.5~s~-t..jR"'V;-Q><~L~~ + .t.~~J (3. 38) 

Here, again, the discontinuities in f 1',_ and f~:z. are easily obtained 

because there are only outgoing waves for I' = 2. We have then that 

where we have introduced the simplified notation that 

{3.40) 

For each J ;:: 2 there are four coupled equations given in Appendix I. 

Proceeding as before we obtain 

(3. 41) 
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and 

The discontinuities of the logarithmic derivatives in the denominators 

of these equations ali correspond to leaving the target in an excited state 

(I' = 2). There are. therefore, only outgoing wave s and we can say in 

general that 

{3. 48) 

(3. 49} 
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CHAPTER 4 

RESULTS 

4. 1 Strength Function 

The strength function was introduced and discussed at sorne 

length in Chapter 1. In this section we shall examine the effect 

on the strength function when collective quadrupole and octupole 

vibrations are considered. 

In the low-energy region of well-spaced levels, the strength 

function is simply related to the cross section for the formation of the 
4 

compound nucleus : 

(4. 1) 

As we have seen, in order to take into account the effect of collective 

vibtations, we simply replace JJX') by 5:, ('Z:.)'(\-)'Y) , but now 

we wish to modify J 
0
°
0 

to account for the octupole as well as the 

quadrupole excitation. 

The Hamiltonian given in Equation {3. 4) must now be adjusted to 

include the contribution from À..,.3 , and the wave function, ~l', of 

Equation (3. 7) becomes 

• (4. 2} 
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This sum now includes the ground state and the first excited state or the 

one phonon state for both the quadrupole and the octupole excitations. 

The target wave functions still satisfy 

where now I' can be equal to 3 as well as 2, and the ground state 

(I' = 0) has zero energy as before. 

(4. 3) 

The Schrodinger equation is solved in the same manner as previously 

and the resultant equation for _co is Joo 

') (4. 4) 

wh:ete 

(4. 5) 

and 

(4. 6) 

C is the surface tension for the n th multipole vibration: M =2 is the 
n 

quadrupole and ft\. = 3 is the octupole contribution. The denominator 

in (4. 4) is the discontinuity in the logarithmic derivative for the d-wave 

and the f wave, respectively. 
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t\e J:: (I')~'"F"'J and I'/1\ 5-:t[;l"'~%-) were determined analytically 

and programmed on the IBM 1410 employing the recursion relations 

as indicated in Appendix II. The strength function with and without the 

collective effect was also calculated and a sampling of the results 

obtained is plotted in Figures 1 through 12. A discussion of these 

curves is presented in Chapter S. 
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4. 2 Total Cross Section 

The total cross section for the FPW mode! is written in 

Equation (2. 23}. We have seen that the total cross section for our mode! 

is obtained by replacing t,_l:X) by Jt~,(~~)V) where fl 
corresponds to J. The total cross section with the appropriate arguments 

is, therefore, 

The total cross sections of (2. 23} and (4. 7} were prograrnrned and sorne 

of the results are plotted in Figures 13 through 22. 
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4. 3 Shape Elastic, Total Reaction, and Differentiai Cross Sections 

The FPW cross sections for shape elastic scattering, compound 

nucleus formation, arrl angular distribution are given in Equations (2. 21) 

(2. 22), and (2. 24). 

These cross sections can be expressed in terms of the model which was 

developed in Chapter 3 by replacing l.t.(.I) of these equations by f.·"'x·(X,~,y") 
in the prescribed manner. This substitution is easily accomplished, and 

we will not present the explicit results here. A portion of the results are 

plotted in Figures 23 through 31. 

The total reaction cross section of our model is exactly analogous to 

the cross section for compound nucleus formation of the FPW optical 

mode! as has been discussed in Section 3. 3. The distinction between 

these cross section~. which, incidently, accounts for the difference in 

name, is that the total reaction cross section includes the direct inelastic 

scattering of the 2 + collective state. 
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CHAPTER 5 

DISCUSSION OF RESULTS 

5. 1 Collective and Optical Model Parameters 

All the curves of Figures 1 through 31 are plotted for both the FPW 

square well optical mode! and the spheroidal weil surface interaction 

of our mode!. The optical model parameters which were used throughout 

are V = 52 Mev, R = 1. 32 F, and ~ = O. 04. The new parameters 
0 0 

inùoduced by taking the affect of collective excitation into account are 

the energy of the excited state and the a mount of deformation as sociated 

with the particular nucleus in question. 

We have ca lied the quantity, tw"' / 3rr Cm , the polarizability of the 

n th multipole vibration. This is a convenient and meaningful term to 

define, and aside from a factor of 471' it is just the square of the off-diagonal 

matrix element of the target wave functions. The polarizability, so 

defined, is essentially a measure of the amount of deformation in the 

nuclear surface. The vibrational correction term to the logarithmic 

derivative is simply proportion al to this polarizability. The strength of 

the polarizability can be determined from Coulomb excitation measurements. 
9 

The energies, 'f\w,..., can also be determined experimentally, and as a 

result no free parameters have been introduced. This fact is particularly 

important in the view of extending this work to a quantitative rather 

than a qualitative study. 
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Experimentally determined values of the vibrational parameters, cl.,.. 

and E , for even-even nuclei are listed in Table 1 where we have n 
introduced the notation dtn= 'kw .... j~rrcl"'.and E""= 1\w,... • The 

quadrupole parameters are fairly representative of the nuclear regions 

in which we are interested. The octupole parameters are less informative 

since they are few in number and only located near closed shells. On 

theoretical grounds, however, one would expect c
3 

to remain fairly 

constant
14 

in contrast to the quadrupole peaking near closed shells. 
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TABLE I 

VIBRATION PARAMETERS FOR EVEN-EVEN NUCLEI
9 ,' (QUADRUPOLE) 

Nucleus E
2

(Mev) c
2

{Mev) E2/81rC 2 

Ti46 • 890 14 
-3 

2. 529 x 10 
22 48 

• 990 29 
-3 

Ti 1.358x10 
56 

. 854 36 
-4 

26Fe 9.44x10 

Ni 58 1. 45 77 
-4 

7. 49 x 10 
28 60 

1. 33 59 
-4 

Ni 8.97 x 10 
64 

1. 000 61 
-4 

30Zn 6.52 x 10 
66 

1. 040 86 
-4 

Zn 4. 81 x 10 
70 

1. 020 120 
-4 

32Ge 3.38x10 

Ge74 0.593 19 
-3 

1. 242 x 10 
74 

0.635 32 
-4 

34Se 7. 895 x 10 

Se78 0.615 20 
-3 

1. 223 x 10 

Se82 0.880 190 1. 843 x 10 
-4 

Mo94 o. 871 67 
-4 s. 17 x 10 

42 
100 o. 528 20 

-3 
Mo 1.050 x 10 

Ru100 0.540 48 
-4 

4.48x10 
44 

104 o. 362 10 
-3 

Ru 1.44 x 10 

Pd108 .430 15 1. 14 x 10 
-3 

Cd110 • 654 58 
-4 

4. 49 x 10 
48 

116 
• 508 32 

-4 
Cd 6. 32 x 10 
T 120 • 560 48 

-4 
52 e 4. 64 x 10 
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Table I {continued) 

Nucleus E
2

(Mev) c
2

(Mev) E2/81rC
2 

Te130 • 850 170 1.989xl0 
-4 

Ndl46 • 455 150 
-4 

1.207x10 
60 148 

• 562 100 
-4 

Sm 2.24 x 10 62 
194 

• 330 39 
-4 

Pt 3.37 x 10 78 198 
• 403 60 

-4 
Pt 2.67 x 10 
Hg198 • 411 88 

-4 
1. 858 x 10 80 

200 
• 370 120 

-4 
Hg 1.227x10 
Hg202 . 439 170 1.027x10 

-4 

Pb206 • 803 1400 
-5 

2. 28 x 10 82 
212 

• 719 640 
-5 

Po 4.47x10 84 
214 

• 606 270 
-5 

Po 8.93x10 

{OCTUPOLE) 
14 

Nucleus E
3

(Mev) c
3

{Mev) E3/81rC
3 

Ca40 3.73 370 4.01 x 10 
-4 

Sr88 2. 76 367 2. 99 x 10 
-4 

Pb208 2. 61 1500± 750 6. 93 x 10 
-5 
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5. 2 Strength Function 

In Figure 1 we have p1otted Re J
0 

and Re ASo:(l<2.) as a function 

of mass number A. Re.fo is the FPW result, and ReA~~ (-<.,a.) is the 

correction term written as a function of o/..2. • Figures 1 through 4 

demon strate the effect of varying E
2 

in the vicinity of 1 Mev. Re1:, (~a.) 
-4 

is plotted for values of E 2 = . 8 Mev and 1. 5 Mev with c('l-= 3 x 10 . 

The curve for E
2 

= O. 8 Mev intercepts Re10 above the A axis. 

and the curve for E2 = 1. 5 Mev intercepts Re.fo below the A axis. 

The effect of this can be seen in Figure 2 where Re. to is added to 

Re. b f;o(JI(.z.) to obtain Re~C:, . In Figure 2, the curve for 

E2 = 1. 5 Mev has a slight asymmetry in which the positive peak to the 

right is diminished relative to the negative peak to the left while the 

opposite effect is observed for E
2 

= O. 8 Mev. For E
2 

= 1. 0 Mev the 

two peaks are symmetric since for this energy, Re ~o intercepts ~e Af:O 
on the A axis. 

Figures 3 and 4 illustrate the effect of this E
2 

variation on the 

strength function. The strength function has been normalized to 1 ev 

and plotted vs A. The curves calculated from the square well optical mode! 

are labelled FPW and those for nuclei with consideration of collective 

· quadrupole coordinates are labelled quadrupole effect. For nuclei in the 

vicinity of this 3s resonance, Table 1 suggests values of E
2 

of about 

O. 8 to 1. 5 Mev. However, in the vicinity of the right peak most of the 

E
2 

values are greater than 1 Mev. 

In Figures 5 and 6 the effect of increasing E
2 

is observed. For 

these curves o(2-= 2 x 10-
4

, and E
2 

is, respectively, 2.0 Mev and 
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· 3. 0 Mev. The effect is as expected, and the right peak becomes much 

like a shoulder to the le ft peak which is wh at we observe experimentally. 

The effect is presented more from the point of view of variation in parameters 

than quantitative experimental fit, however. 

In Figure 7, the octupole correction, Re. A-5':1> {ol3) , has been 

represented along with Re lo and ReAf0:(o(J . The corresponding 

functions I'Mf., L\<k A!0: (o'z.) , and II'M A{oCols) are plotted in Figure 8. 

The collective parameters for these curves are E
2 

= 1. 5 Mev, 
-4 J -4 

r:J. 2. 7 x 10 , E
3 

= 3. 0 Mev and li'J = 4 x 10 • Figures 7 through 

11 are all plotted for the sa me parameters. From Figures 7 and 8 we 

see that whereas the quadrupole correction has its major contribution 

in the vicinity of the resonance, the octupole becomes increasingly 

important as we go to higher values of A. 

Figures 9 and 10 are the corresponding sums of the curves in 

Figures 7 and 9, respectively, and are, in fact, the real and imaginary 

parts of the logarithimic derivative, Ç0°0 
, of our problem. Figure 11 

is the strength function calculated from fo: of Figures 9 and 10 and has 

been plotted so as to see the effect of the quadrupole correction alone as 

well as the combined effect of the quadrupole and octupole correction. 

With the inclusion of the octupole the left peak is relatively unaffected 

while the right peak is lowered increasingly from A = 60 to A = 110. 

This is what is desired experimentally both in decreasing the size of the 

right peak and in lowering the valley in the vicinity of A = 90. The 

experimental values of octupole polarizabilities given in Table 1 indicate 

that the octupole correction is effective in improving the desired qualitative 

behavior for the strength function. 
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Figure 12 demonstrates the effect of smaller polarizabilities, where 
-5 

here we have used E
2 

= 1. 5 Mev, t'{ 1 = 9 x 10 , E
3 

3. 0 Mev and 
-5 

()(! = 4 x 10 • The peaks are conspicuously closer together. 

The real part of the logarithmic derivative of the square well 

optical model goes through zero at a value of A which is effectively the 

position of the strength function resonance. The width of the resonance 

is strongly dependent upon the imaginary part of the logarithmic 

derivative. For the spheroidal optical mode!., Re.. ~=c:> has three intercepts 

with the A axis. These positions correspond to the A values of the 

two peaks and the minimum between them, Increasing the polarizability as 

seen by comparing Figures 11 and 12 has the effect of splitting the peaks. 

The width of the peaks depends largely on !fWI. fo: , and the relative sizes 

of the two peaks is adjusted by E as has been demonstrated in Figures 3 
n 

and 4. 

The effect of the inclusion of quadrupole vibrations is to split the 

single 3s resonance of the FPW optical model into two peaks. This 

splitting develops because of the coupling of the incoming orbital 

angular momentum to the target spin 2.. • The principal peak of the se 

two is the left peak, and so, in effect, the strength function has been 

shifted to lower A by the quadrupole correction. This type of behavior seems 

to be an improvement on the experimental agreement. The actual splitting, 

however, is much more of a shoulder effect than our calculations have 

indicated. 

We expect that the qualitative results obtained with the present 

mode! justify the calculation of this collective effect with the more 
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15 
realistic diffuse surface potential. E. Vogt bas shown that the 

effect of diffusing the well is mainly to multiply the strength function 

by a constant factor. This argument is based upon volume absorption, 

and one expects surface peaking of the imaginary potential. In spite 

of this, it is expected that the qualitative behavior arising from the 

inclusion of the quadrupole and octupole vibrations will maintain itself for 

the diffuse well. This expectation bas been born out in the work of 

B Buck and F. Pere/ where they have used a diffuse surface optical 

mode! with surface peaking of the imaginary part and spin-orbit coupling. 

I. Furuoya and A. Sugie 
15 

have recent! y published a method of 

calculating the strength function with collective effects which is 

similar to the one we have employed. They obtained a triple peak 

in the strength function as a result of including the effect of the second 

z'~" collective leve! which is a 2 phonon state. They did not consider 

the effect of the octupole excitation, however. 

5. 3 Total Cross Section 

The total cross section as a function of energy is plotted in 

Figures 13 through 22 for selected values of A. The FPW total cross 

sections plotted with solid lines are compared to the total cross sections 

with the inclusion of the collective quadrupole effect, and the latter 

are plotted with broken lines. The collective parameters E
2 

and Pl. 
2 

are indicated on the various curves. 

Most of the values of A for which we have represented the total 

cross section were chosen because they are in the regions of magic 

nuclei where either the proton number or the neutron number or both 
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are magic. This endeavor was limited somewhat because of the difficulties 

in matching the most well formed peaks with the appropriate nuclei. 

Again we emphasize that there is no quantitative attempt to coincide with 

experimental curves since we are not using a diffuse surface interaction 

or spin-orbit coupling. Values of A in the regions of permanently 

deformed nuclei are also included, and they will be discussed in 

context. 

The results for A = 44 are plotted in Figure 13. A = 44 ls 

representative of the region ln which the proton number ls near 20 and the 

neutron number ls near 28. The quadrupole effect has been plotted for 

two values of cJ.. 
2 

for comparison. In this case an increase ln the 

polarizability corresponds to a flattening of the peak and a shift in the 

peak towards a lower value of energy. The FPW peak ls considered a d wave 

peak; what this actually means is that the partial wave which gives the 

largest contribution at the peak of the giant resonance is a d wave. This 

does not mean that the other partial waves contribute a minimum nor does 

it mean that the d wave is at its maximum.. In fact, other partial waves 

are usually quite significant in their contribution to the giant resonance in 

and around the peak itself. For the case in question the p wave gives a 

significant contribution. We shall call the giant re son ance obtained with 

the inclusion of the collective effect, the distorted giant resonance. In 

Figure 13, the distorted giant resonance is a p wave resonance rather than 

ad wave. 

Figure 14 illustrates the effect on the giant resonance in the vicinity 

of A = 66, or, alternatively, where the proton number is 28, Again, 
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the e~fect of including the quadrupole excitation is to flatten the giant 

resonance somewhat. However, the energy at which the maximum in the 

distorted resonance now occurs has shifted towards higher energy. The 

undistorted resonance is an f wave at 7. 5 Mev. At 10 Mev the distorted 

resonance is predominantly ad wave and is still rising. The maximum 

value of the distorted resonance will occur at an energy in excess of 

10 Mev and will most likely be ad wave. 

When the neutron number is 50, the mass number is in the low 

90's. Figure 15 illustrates the effect of the quadrupole excitation for 

A = 94. The FPW total cross section does not have a clear resonance 

in our energy region of O. 5 to 10 Mev. The effect of including quadrupole 

excitations is qualitatively the sa me, that is to flatten the total cross 

section and shift the position of the peak. At O. 5 Mev the principal 

partial wave constituent to the FPW curve is the p wave, and the s 

wave contributes only slightly less. In the distorted case the s wave 

is unaffected, but the p wave is diminished by about a factor of 3. At 

10 Mev the g wave (i 4) gives the major contribution to the FPW curve. 

The distorted curve is an f wave, and the distorted maximum for this 

region will be shifted towards higher energy. The exact position of the 

resonance is beyond 10 Mev and, thereby, was not included in this 

anal y sis. 

Figure 16 illustrates the quadrupole effect on the total cross 

section for A = 120, where the proton number is near 50. The slight 

FPW resonance at 1. 8 Mev is due to the p wave. The distorted quadrupole 

resonance at 1. 0 Mev is an s wave peak. The calculated quadrupole effect 
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in this region is observed to be different from that for the case of A :::: 94. 

At O. 5 Mev the s wave is the major consituent of the FPW, as well as 

the distorted, total cross section. The increase in the distorted cross 

section compared to the FPW cross section at this energy is due to the 

additional p and d wave contributions, btt the s wave, although somewhat 

diminished, still contributes the major portion. 

The quadrupole effect for A = 130 is presented in Figure 17. This 

region of A corresponds to a proton number near 50 and a neutron number 

near 82. The giant resonance for this vicinity of nuclei is well formed in 

the O. 5 to 10 Mev energy region. Two values of tl-. 2 are used for 

comparison. The FPW peak at 2. 0 Mev is designated as a p wave 

resonance. 8oth the s wave and the d wave give significant contributions; 

however, the distorted peak is also a p wave, and the position of the 

maximum has made no noticeable shift. The quadrupole effect of tl..,:=- 5'~1() 4 

has flattened the resonance so that a maximum value no longer occurs. 

The fact that the position of the maximum of the distorted giant 

resonance does not shift for A = 130 can be understood in terms of the 

principal partial waves involved. As we have stated, both the distorted 

and undistorted giant resonance peak at 2. 0 Mev. For this case it is also 

true that the p wave itself peaks at 2. 0 Mev for both the distorted and 

undistorted giant resonance. The undistorted s wave peaks below O. 5 Mev 

and the distorted s wave shifts towards lower energy. The undistorted 

d wave peaks at 3. 5 Mev, and the distorted d wave peaks at 4. 5 Mev. 

Since the s and d wave contribute comparable amounts and since they 

shift in opposite directions, whereas the p wave remains stationary, the 

77 



position of the distorted giant resonance peak is unaffected. 

Figure 18 illustrates the quadrupole effect for A = 140 which 

corresponds to a neutron number of 82. The FPW peak at E = 1.75 Mev 
-4 

is a p wave resonance. The quadrupole effect ( r/....'"L = 3 x 10 ) that is 

presented in Figure 18 is such as to eliminate the resonance character of 

the total cross section, but if the distorted curve were plotted for a 

smaller value of cl. 
2 

for which a resonance did occur, it would be a 

p wave resonance also. 

In Figures 19 and 20 we plot the giant resonances for A = 200 and 

A = 208. These correspond to a proton number near 82 and a neutron 

number near 126. In Figure 19 the FPW peak for A = 200 at 6. 0 Mev 

is anf wave. The distorted peak ( o<1.= 3 x 10-
4
) occurs at 5. 5 Mev 

and is a d wave resonance. In Figure 20 the FPW peak is at 6. 0 Mev and is 

also anf wave. The corresponding distorted peak (o('Z.= 5 x 10 -
4
) for 

A = 208 is at 4. 0 Mev and is a d wave resonance. 

Figures 21 and 22 are plotted for A = 180 and A = 232. These 

mass numbers occur in the regions of rotational nuclei or permanently 

deformed nuclei as discussed in the Introduction. The mode! used in 

Chapter 3 for the inclusion of the effect of collective vibrational 

excitations doe s not apply to the se nuclei. For application of the pre sent 

theory to the rotational regions of nuclei the theory must be modified to 

allow for rotational excitations. Nevertheless, we have calculated the 

effect in these rotational regions with the expectation that, with the 

appropriate choice of parameters, one can obtain the qualitative behavior 
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in the se regions. The energy of the excited state will~ of course, be 

much smaller according to the experimental values of the rotational levels 

involved. The polarizability is related to the distortion parameter, 13. This 

correspondence was obtained by comparing the calculations of CWE and 

those of the present madel in the limit of low energy (s wave) incident 

neutrons, where the a function surface interaction was used in both cases. 

The results of this calculation yield the identification of 13 with V lftiîid2. /:tC.1.
1 

• 

It is interesting to compare the dynamical distortions in the 

vibrational nuclei to the permanent distortions observed in rotational 

nuclei. Table l gives information regarding the experimentally 

determined values of the polarizability. These values were determined by 

the Coulomb excitation experiments of Reference 9. This same reference 

also provides us with experimentally determined values of the distortion 

parameter 13. Values of (3 range from O. 2 to O. 5, but for the most part they 

are near O. 3. Table 2 lists sorne values of 13 and the corresponding values 

of the polarizability. 

TABLE 2 

COMPARISON OF ROTATIONAL AND VIBRATIONAL DISTORTION PARAMETERS 

13 1lwz. /8 rr e'1. 

0.51 4 x 10-3 

0.25 1 x 10-3 

0.177 5 x 10-4 

o. 137 3 x 10-4 

0.056 5 x 10 
-5 
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The total cross section for A = 180. which is in the rotational 

region (150 <A< 190), is presented in Figure 21. The FPW peak is 

completely flattened with the inclusion of the quadrupole effect 

( rJ.. 
2 

= 1 x 10 -
3
). This value of rJ..

2 
is characteristic of this region 

of nuclei as is the energy, E
2 

= O. 1 Mev. For the rotational region 

(A> 220)we have plotted the giant resonance for A = 232 in Figure 22. 

The polarizability used here (1<.
2 

= 4 x 10 - 3) is larger than experimentally 

observed in this region, but it is useful in demonstrating the effect of 

such a large polarizability, namely, that the distorted resonance remains 

flat. The energy E
2 

= O. 05 Mev, is characteristic of this region of 

nuclei. 

5. 4 Total Reaction. Shape Elastica and Differentiai Shape Elastic 

Cross Sections 

The total reaction cross section and the shape elastic cross section 

for A = 208 is plotted in Figure 23. The FPW curves are designated as 

undistorted and the spheroidal well surface interaction curve s are 

labelled distorted. The distortion parameters for the quadrupole collective 
.J -4 

effect are E
2 

= O. 4 Mev and V\ 
2 

= 5 x 10 • The sum of the total 

reaction cross section and the shape elastic cross section is the total 

cross section for A = 208 illustrated in Figure 20. Comparison of 

~ and Cfse to experiment is not too meaningful because the experimental 

elastic scattering cross section includes the compound elastic scattering 

whereas in the optical model, compound elastic scattering is included in 

the total reaction cross section or the cross section for compound nucleus 

formation. In spite of this, the effect of quadrupole excitation on the 
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total reaction cross section for A = 208 is a clear improvement on the 

shape of the curve. This may be a coincidence, however. 

We had pointed out in the discussion of Figure 20 that the FPW 

giant resonance at 6. 0 Mev is an f wave peak and that the distorted 

resonance at 4. 0 Mev is due to a d wave. In Figures 24, 25, and 26 we have 

plotted all the partial waves which contribute to the total cross section for 

both the undistorted and the distorted case. A study of the various 

contributions to the giant resonances will clarify how the distorted peak 

becomes ad wave resonance. The major partial wave contributions for both the 

distorted and undistorted case are the f wave and the d wave. Figures 24 and 

25 illustrate the total contributions from the f and the d wave to the total 

cross section. The senaration of the total cross section id:o the contributions 

from the total reaction and shape elastic cross sections for these partial 

waves is also illustrated. The separate contributions are indicated 

clearly on the appropria te curve s. The other partial wave contributions 

to the respective total cross sections are presented in Figure 26. The 

partial wave contribution for 1 = 8 was calculated but was not plotted as it 

did not have a significant effect in this case. Figure 26 has three ordinate 

scales which are labelled according to which curves they represent. 

The total cross section as well as the shape elastic and total reaction 

contributions for A = 48 are plotted in Figure 27. The total cross section 

for A = 48 was not plotted in the earlier section on total cross sections. 

A = 48 is representative of the doubly magic region with the proton 

number near 20 and the neutron number near 28. The FPW giant resonance 

at 2. 5 Mev is considered ad wave but the p wave contributed almost as much as 



the d wave. The distorted total cross section develops two peak values 

in the energy region from O. 5 to 10 Mev. There is a peak at 2. 0 Mev 

which is a d wave resonance with a substantial amount of p wave present. 

The second resonance at 4. 5 Mev is designated as p wave but contains 

considerable d wave as well. 

Figure 28 illustrates the three main partial wave contributions to the 

total cross section as well as the total cross section itself. It is seen 

that the p wave contribution is insignificantly affected by the inclusion 

of collective effects. There are four ordinate scales for the four curves 

presented in this figure. 

The differentiai shape elastic cross section as a function of cos 8cJ'I\ 

and evaluated at 4. 1 Mev is presented in Figures 29 through 31. The values 

of A and the corresponding collective parameters which are plotted, 

correspond for the most part ot the total cross sections presented earlier. 

The angular distribution for shape elastic scattering for A = 44 and A = 48 is 

shown in Figure 29. For A 44 the inclusion of the effect of collective 

excitation deepens the minimum in the vicinity of 80°. Beyond 90° the effect 

of distortion i s mainly one of flattening. The back scattering is diminished. 

For A = 48 the distorted shape elastic scattering is flattened and the 

positions of the two minima and the single maximum shown in the figure are 

all shifted slightly to the right. The forward and backward scattering are 

both slightly diminished. 

In Figure 30 the differentiai shape elastic scattering is presented 

for A = 66, 102, and 140. In ail three cases the back scattering is 
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lowered by taking collective effects into ac:count. For A = 66 and 

102 the peaks are shifted slightly to the left, and the cmve is flattened 

throughout although the logarithmic scale is a bit misleading in determining 

this latter effect. For A = 140, the peaks are shifted slightly to the 

right and flattening is again observed for the distorted angular distribution. 

Finally in Figure 31 the differentia! shape elastic scattering is presented 

for A = 200 and 208. In both cases the peaks are moved slightly to the 

right and considerable flattening is observed for the inclusion of collective 

vibrations. 

5. 5 Conclusions 

·The important effects of the present calculation for the inclusion of 

collective vibrations on the total cross section are the flattening of 

the giant resonances and the energy shifts in the positions of the peaks 

of these resonances. 

Firstly, we shall discuss the flattening of the resonances. Evidence 

that the giant resonances flatten to sorne extent away from closed shells can 

be obtained by examining the peak to valley ratio of these resonances as 

a function of A. The total cross sections for neutron scattering, plotted as 

a function of energy for various. nuclei, are complied in Neutron Cross Sections, 
17 

a Brookhaven National Laboratory report. The various isotopes are not plotted 

separately so that one must think in terms of the atomic number, z, rather than 

the mass number, A. Here again we are making a qualitative study, and the 

fact that we do not have the total cross sections for the isotopes involved in 

our study is only of minor importance. 
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In order to see the evidence for flattening away from closed shells 

for the se total neutron cross sections 
17

, we have pre pared a plot of the 

peak to valley ratio as a function of Z as shown in Figure 32. The peak 

to valley ratio is rather a rough e stimate due to the. different depths of 

the valleys on either side of the resonances. Average values have been 

used, but the peculiar shapes of sorne of the resonances made it 

difficult at times to obtain good estimates of these average values. 

Nevertheless, the points give a fairly good description of the regions 

in which the giant resonances are most clearly defined or most well 

formed. The points are ccmnected by broken Unes for easy reading; there 

has been no attempt to plot a smooth aurve. 

There are certain regions in which we expect to find the giant 

resonance better formed than in neighboring nuclei. These regions are 
"(o 4& . A A. 1\ 4 "2-0i& 

located ne ar j 0Ca2.o, ,.fa'l.l!> 1 2.!bNl,. >i:Xr:o 1 troSntl 1 ë~;... 
1 1i_~2"' , and also 

in regions where A is magic. X stands for any nuclei which can assume 

the associated neutron numbers. There is a peak at Z = 20 in the peak 

to valley ratio versus Z. After this first peak the P /V ratio drops and 

then rises again, and in the vicinity of Z = 28 there is a broader peak. 

This second peak corresponds to the overlap between Z = 28 and N 28. 

The curve starts to rise again near Z = 40 and does not fall again until 

Z = 62. This region is an overlap of the effects of N = 50, Z = 50, and 

N = 82. Most of the isotopes of nuclei with Z = 62 through 74 are in the 

region of deformed nuclei defines by l50<A<l90. The peak to valley 

ratio of these nuclei is 1. 0 corresponding to the flattening of the 

giant resonance for these nuclei. The curve starts to rise again after 

Z = 74 and peaks in the vicinity of Z = 82 and N = 126. 
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It should be borne in mind that this curve is plotted for nuclei as 

identified by atomic number and not for individual isotopes. As a result 

of this, for example, the P/V ratio for bismuth is larger than that for lead 

on the basis of atomic number, but if the giant resonances were plotted for 

the individual isotopes, one would expect 82Pb~~~ ·to have a higher P/V 

ratio than 83Bi~~~ because 82Pb~~~ is a double magic closed sheÎI 

nucleus. Nevertheless, the P/V ratio versus Z gives clear evidence of 

flattening of the giant resonancès away from closed shells. 

In Figures 13 through 22, we have presented the giant resonances for 

neutron scattering as predicted by the FPW square well optical mode! and as 

corrected by including the effect of collective vibrational excitations. We 

have seen that upon taking the vibrational excitation into account, the 

resonances are flattened according to how much distortion is assumed. 

The parameters of distortion are the polarizability and the energy of the 

excitation involved. The values of the distortion parameters that were used in 

calculating the total cross sections were representative of the particular 

region of nuclei involved. Of course, the experimental values o('- and E
2 

vary from nucleus to nccleus., and in many cases only one value for each 

of these parameters was plotted. Quite often the value used for ri.. 
2 

was the largest 

available experimentally in order to see the full effect. The effects of 

smaller values of r/... 
2

, which were also calculated but not plotted, show the 

same behavior as the larger values except that the shifts and the flattening 

effects are less pronounced according to the values which are used. 

As has been pointed out this is a qualitative study, and, therefore, 

it was deemed sufficient to apply the collective correction to closed shell 
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nuclei to obtain the qualitative behavior of the giant resonances of the 

neighboring nuclei. In partiru lar for the cases of 20ca~~· 20ca~~~ 208 . . 
and 

82
Pb

126 
which are doubly maglC closed shell nucle1, one does not 

expect collective effects to contribute; however, collective effects 

were applied to these nuclei for the purpose of determining the effects 

away from closed shell regions. To apply the collective effect properly, the 

total cross section for each value of A should be determined with the 

appropriate collective parameters. It is clear, however, from our 

qualitative analysis that the inclusion of collective vibrational 

excitations has the flattening effect on the giant resonances that is 

desired from experimental observations. 

The other important aspect of the total cross section results is the 

shifting of the energy position of the maximum value with iru:.:reasing mass 

number. One of the main objectives to the FPW optical madel as pointed 

out by J. M. Peterson
18 

is that the FPW total cross sections plotted 

versus energy and mass number show a characteristic shift of the maxima 

towards lower energy with increasing mass number. Experimentally, 

however as first noted by Barschal13, the maxima seem to shift to 

higher energy with increasing mass number. The reason that the FPW 

maxima shift to lower energy with increasing A has been explained, by 

Peterson, as a result of the fact that the FPW resonances aU occur at 

energies which are below the height of the centrifugai barrier at the 

nuclear radius for the partial waves involved. The conElition for a 

partial wave resonance is that a characteristic number of wavelengths fit in 

the radial wave function inside the well to obtain the internai reflection 

necessaryfor the resonance. As the radius, and thereby, the mass 

number is increased the energy mast decrease to maintain kR for the 

resonance. 
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The present study has shown that the giant resonance maxima shift 

with the inclusion of the effect of collective excitations. The question 

is, then, whether these shifts are in the right direction. As has been 

pointed out, we have presented the results by applying the collective 

effect to the closed shell nuclei to obtain the qualitative effect of 

distortion. This is satisfactory for demons1Iating the flattening effect, 

but is not reliable for understanding the characteristic shift in the 

maxima as a function of increasing mass number. For this purpose it 

is necessary to study the distorted total cross sections as a function 

of increasing A in the vicinity of a family of broad maxima or giant 

resonances. Such a study was made in the vicinity of A = 200 where the 

undistorted maxima are f waves. Due to lack of experimental values of 
-4 

the polarizability we have used a fixed value of o(.z. = 1 x 10 • Table 3 

indicates the results. 

TABLE 3 

THE EFFECT OF COLLECTIVE EXCITATIONS ON THE MAXIMA OF THE f WAVE 

GIANT RESONANCE 

A E (Mev) 
max 

200 5.75 

208 6.0 

212 6. 5 

214 7.25 

220 7.75 
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For this case, then, the energy at which the maximum in the distorted 

giant resonance occurs increases with increasing A. It should be 

pointed out that this study may not be realistic since we have u«Sed the 

sa me polarizability for ali A values. It does insure, however, that the 

characteristic decrease in the energy of the resonance with an 

increase in A of the FPW mode! is not a strict rule for the giant resonances 

that occur at energies below the centrifugai barrier as described above. 

If one examines the distorted peaks for A = 44, 46, and 48, it is 

seen that the peaks shift in and out depending upon the amount of 

polarizability that is assumed. The evaluation of the effect of the 

shift in maxima in this region is not straight forward. Firstly, the 

experimental evidence doe s not really indicate that one should expect a 

smooth increase in the energy of the maxima with increasing A, although 

the overall trend does seem to be one of increase. 

Other considerations arise from the model itself. For one thing 

the resonance for this region is very sensitive to distortion. This 

sensitivity is attributable to the character of the partial waves involved. 

Although the FPW resonance is designated as ad wave, the p wave 

contributes appreciably. This is an illustration of the fact that a particular 

family of giant resonances is not attributable to a single partial wave. For 

this region of A near 44, a transition of a p wave resonance into a d wave 

has taken place. Since the p wave is effectively unaltered by distortion 

in this region, the effect of the distortion on the d wave is all important. 

As a result of this sensitivity, the distorted giant resonance can be 

either a p wave or a d wave depending upon the amount of polarizability 

that is assumed. 
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Because of this sensitivity, the experimentally determined 

polarizability should be used for the appropriate isotopes involved 

when an examination of the effect of distortion on the shift in maxima 

is made. These experimental values were not available for this study, 

however. 

Another point that applie s here is that the effect of collective 

excitations has been taken into account in the spherical optical model 

by the optimal choice of the parameters available to that model. The 

parameters previously used may not be the be st parameters for the 

present study. A change in the values of V and R could result in an 
0 0 

alteration in the giant resonance character for this doubly magic 

region. 

The main point here is th at this qualitative study indicate s that 

when collective effects are taken into account, there is a possibility 

of predicting the correct energy shift of the maxima as a function of 

increasing A. A more careful study with the appropriate parameters ~ uld 

have to be undertaken to determine this. 

The strength function has been presented and discussed in Section 

5. 2. The main conclusions are that the quadrupole excitation produces 

a splitting of the 3s giant resonance in the strength function and 

shifts the main peak towards lower A. The octupole contribution is effective 

in decreasing the right hand peak and in lowering the strength function in 

the valley between the 3s and 4s giant resonances. Of course, this latter 

effect is not sufficient in magnitude to account for the large discrepancy 

between theory and experiment in this region. 
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We have said relatively little about the differentiai shape elastic 

cross section. The spherical optical mode! as applied by M. Walt, 

J. R. Beyster andE. W. Salmi 
19 

produced fairly good agreement between 

experimental and calculated differentia! cross sections. The inclusion 

of spin-orbit coupling by F. Bjorklund and S. Fernbach20 improved 

the se results still further. There still existed sorne discrepancies, 

however. A significant discrepancy in the case of tantalum 
21 

was noticed by H. M. Schey • Schey attributed this lack of agreement 

to the permanent quadrupole deformation in tantalum, and he obtained 

adequate improvement with experiment by including the effect of this 

collective deformation in the calculation of the differentia! cross section. 

It has been demonstrated in Figures 29 through 31 that the 

inclusion of the effect of collective vibrations has considerable effect 

on the differentiai shape elastic cross section according to the present 

mode!. It should ge pointed out that the energy for which these cross 

sections were determined is 4. 1 Mev. At this energy sorne correction 

for compound elastic scattering is still necessary for certain mass numbers. 

There has been no attempt to make this correction. The kinds of discrepancies 

that existed for the cross sections of Reference 20 are qualitatively of the 

sa me nature as th ose in Figures 29 through 31, namely, a flattening and 

shifting of peaks. This evidence for the possibility of improvement in 

these cross sections by the correction for collective effects might suggest 

that a program be set up for includiGg the effect of vibrational excitations 

on the Bjorklund-Fernbach mode!~ which becaœ e of the ~pin dependent 

optical potential, is known to be applicable to many elements over a wide 

range of energies. 
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The present work has been devoted to the qualitative determination 

of the effect of collective excitations on the optical madel. The work was 

facilitated by the choice of a delta function surface interaction for coupling 

between collective and individual particle coordinates. We were able to 

obtain an exact solution within the framework of the model:r and; in 

addition, we were able to express this exact solution in a particularly 

conve.nient form for the purpose of comparison to the FPW spherical 

optical madel. 

The use of the delta function surface interaction is an approximation 

that should be justified if one is to believe the results which have been 

presented. It was expected that the delta function would be a good approx

imation if the distortion produced by the polarizability amounted to less 

than a quarter wavelength of the neutron near the surface. This condition 

can be written as ~5!~'L1 R~ ~X where we have identified the polarizability 

with the permanent distortion parameter, !3. 

For the strength function, a low energy phenomenon, for which we 

have taken Vo/2 as the local kinetic energy at the surface, the condition 

for validity reduces to iô~/:a.C'l. 1 ~ fR For the 3s resonance of 

the strength function KR is approximately 5/2 , and, therefore, in 

terms of the polarizability we obtain J 
2 

<: 2. 6 x 10-3. This inequality 

is clearly satisfied, and our approximation is justified. To determine 

the validity of using the delta function for the total cross section, we 

examine one of the worst possible cases. We take A 200 and an 

energy of 10 Mev. The condition for validity for this case reduces to 
-4 

r:J.. 
2 

s. 5 x 10 • As we have se en, application of a polarizability of 
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this order flattens the curve more than is usually desirable. This 

consideration indicates that our approximation is valid although in sorne 

cases rather close to the borderline. 

The results of the calculations with the present mode! represent 

qualitatively those results that would be obtained upon application of 

a more realistic diffuse surface optical mode! with spin-orbit coupling. 

The present calculations have been most rewarding in the magnitude 

and direction of the corrections that have been attained. The dependence 

of the giant resonance peak position on increasing mass number in the 

energy region of O. 1 to 10 Mev has never been properly reproduced, and 

the failure of the FPW optical model to predict this dependence is rather a 
18 

serious drawback. Peterson developed a nuclear Ramsauer effect to 

interpret these maxima, but his theory fails at zero energy, and there 

is sorne discrepancy in parameters that is not understood. The extension 

of the present mode! to a more realistic potential well seems in order, 

especially, in the view of obtaining the correct dependance of the 

giant resonancè peak position as a function of increasing mass number 

in this O. 1 to 10 Mev energy region. The flattening effect of quadrupole 

excitation on the giant resonances as a function of experime:r.ità!ly 

determined collective quadrupole parameters is another important effect 

which should be incorporated into a more realistic potential mode!. An 

important point in this regard is that no free parameters have been 

introduced with the inclusion of collective effects. This connection between 

the quadrupole effect and the total neutron cross sections may have 

future applications upon improvement of the model. 

93 



APPENDIX I 

!. 1 Radial Equations for J = 0 

For J = O, (3. 12) and (3. 14) can be reduced to 

(I. 1} 

and 

f-~2-+VOtl-E ·f~A>2.)tu~O:aa.~-~loo)y2.~ = 
{I. 2) 

'kU:. RV0CttAÜ~tt,R.)~.t Yoo ~(oo\C6)4;~,q~ loo> ·, 

Multip1ying {I. 1) by ~:: and (I. 2) by Y!-wt and integrating over 

the angular dependence yields 

(I. 3) 

and 

(:- ~v-z.+ Y<ï-.>-l; .,.i:;~)-1;,t.t:,.ea.c-m'1-)tol lo~::. 

7i_ u.:o ~VoÜ"'"Aj)~~t-~XYt~ \~ \foo)f o""'{~'tf -
(I. 4) 
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where we have introduced the notation 

(1. 5) 

and where we have used (2.39) to evaluate the target matrix elements. 

Evaluation of the sum over rn in (1. 3) involves the determination of 

the appropriate Clepsh-Gordon coefficients 
12 

as well as the use of the 

following relationship between the spherical harmonies 
8

: 

with these simplifications imposed. (1. 3) and (I. 4) can be written 

(I. 7) 

and 

1. 2 Radial Equations for J = ffi 

Setting J = 1 in (3. 12) and multiplying by y,: 
d '-'1 yields 

and integrating 

over 

(- ~~+ V&..)-EJ ~ U~0 C10(oo(,o)= 
1 (1. 9) 

'kU,~~V0(1+~-~) ~f,.R)~!f.~Y.o lY1-W\ \Y.m)~1C""r"'''o) + 

i u~-.R~0 (ttA~) ~~-R)~~~ ~ .. ~,o \Yz-"' ~ .. ~ tll ... ,-\so) 
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Setting J = 1 in (3. 14), multiplying by · ~,!, and ~'!~ • respectively and 

integrating over dtn.. yields the following two equation: 

and 

In the same manner as for J = O, {1. 9), (1. 10)., and (1. 11) can be 

further reduced to 

(1. 12} 

{I. 13) 

and 

(I. 14} 

I. 3 Radial Equations for J = 2 

Setting J 2 in (3, 12) and (3. 14}, multiplying by the appropriate complex 
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conjugate spherical harmonies. performing the integration over dasù 
and completing the various sums over the azimuthal quantum number 

yields the following set of four coupled radial equations for J = 2. 

) 

and 

I. 4 Radial Equations for I = 3 

(I. 16) 

(I. 17) 

(I. 18) 

Setting J = 3 in (3. 12) and (3., 14) and integrating out the angular 

dependence as in the previous cases yields the following set of four coupled~ 

radial equations for J = 3: 
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{I. 20) 

{!. 21) 

and 

I. 5 Radial Equations for J = 4 

Set ting J = 4 in (3. 12) and (3. 14) and in te gr a ting out the angular 

dependence as in the previous cases yields the following set of four 

radial equations for J = 4. 

) (I. 24} 
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and 

(I. 26) 

I. 6 Radial Equations for I = 5 

Setting J = 5 in (3. 12) and (3. 14) and integrating out the angular 

dependence as in the previous cases yields the following set of four 

radial equations for J = 5. 

(I. 28) 

(I. 29) 

and 
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I. 7 Radial Equations for J = 6 

Setting J = 6 in (3. 12) and (3. 14) and integrating out the angular 

dependence as in the previous cases yields the following set of 

four radial equations for J = 6. 

(I. 3 2) 

(I. 33) 

and 

(I. 34) 

I. 8 Radial Equations for I = 7 

Setting J = 7 in (3. 12) and (3. 14) and integrating out the angular 

dependence as in the previous cases yields the following set of four 

radial equations for J = 7. 
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and 

1. 9 Radial Equations for I = 8 

Setting in J = 8 in (3. 12) and (3. 14) and integrating out the angular 

dependence as in the previous cases yields the following set of four radial 

equations for J 8. 

ttlf+V~>-Et~w~ ~ ~~ -fWI(VJ.H·q){~~(!l-PJ)ï ~' (!. 41} 

and 
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APPENDIX II 

The various cross sections and the strength function were evalua.ted_ 

with the aid of the IBM 1410. Programming invo1ved separating these 

quantities into real and imaginary parts, and these parts are expressible 

in terms of the functions fr-e~ Q. , Titi\ SJ! , 5;. , Â J., and ~.9-
which all satisfy certain recursive relations because of their dependance 

on the spherical Bessel functions. 

For the complex square well with i= 0 we get 

(II. 1) 

(II. 2) 

and 

(II. 3) 

where the arguments have been defined in Section 2. 2. We can separate 

(II. J) into real and imaginary parts obtaining 

Xrtsw...2.~-~:- Yt..-s~M~ ~x::~: 
Co5h 2. î"'I: - Co':> 2 .X::R.. 

(II. 4) 

and 

{II. 5) 
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where 

(II. 6) 

U sing the recurrence relations for the s pherical Bessel function 
13 

we 

can write 

_C x:z. 
J1= ).-~IH- ,l . (II. 7) 

It follows, therefore, that 

, (II. 8) 

and 

{II. 9) 

Similarly 

(II. 10) 

and therefore 

6.,:= 't..1.(l-A2-1) R. , 
~- A,__';j- +G>J.-~ ... 

(II. 11) 

and 

(II. 12) 

The recurrence relations that are convenient for calculating ~9. ('A) 
13 

S.L= 
'1..-z.. S.t-\ 

&- b.f.s-+ ~ .. ,,) ..... 

are just 
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which is also satisfied by the spherical Neumann function. 

For the calculation of the cross sections with the inclusion of 

collective vibrations we must evaluate Re;6~,1y) and I- ~;JK)'â;Y) . 
For the case, J = o .. we can separate ..t..O into real and imaginary 

Job 
parts as follows: 

and 

where tl..= 1-~2. and b =').i • The evaluation of {II. 14) and (II. IS) can be 

carried out by using the recurrence relations just developed for the complex 

square well except that the functions in the correction term contain different 

arguments. In the case that the incident energy .. E, is less than 

then the following modification must be made 

(II. 16) 

and then from (II. 1 0) 

{II. 17) 

and 

{II. 18) 
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For higher values of J, Re_ ~ : 0 and r VJ\ ~:o are obtained in a 

similar fashion.. The results are too lengthy to present here, but the 

method is straight-forward, and the solution in terms of the recursion 

relations i s analogous to the discussion ab ove. 
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