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Abstract

This thesis contains a collection of results in computational geometry that are
inspired from music theory literature. The solutions to the problems discussed are
based on a representation of musical rhythms where pulses are viewed as points
equally spaced around the circumference of a circle and onsets are a subset of the
pulses. All our results for rhythms apply equally well to scales, and many of the
problems we explore are interesting in their own right as distance geometry problems
on the circle.

In this thesis, we characterize two families of rhythms called deep and Euclidean.
We describe three algorithms that generate the unique Euclidean rhythm for a given
number of onsets and pulses, and show that Euclidean rhythms are formed of repeat-
ing patterns of a Euclidean rhythm with fewer onsets, followed possibly by a different
rhythmic pattern. We then study the conditions under which we can transform one
Euclidean rhythm to another through five different operations. In the context of mea-
suring rhythmic similarity, we discuss the necklace alignment problem where the goal
is to find rotations of two rhythms and a perfect matching between the onsets that
minimizes some norm of the circular distance between the matched points. We pro-
vide o(n?)-time algorithms to this problem using each of the ¢, {3, and {., norms as
distance measures. Finally, we give a polynomial-time solution to the labeled beltway
problem where we are given the ordering of a set of points around the circumference
of a circle and a labeling of all distances defined by pairs of points, and we want to
construct a rhythm such that two distances with a common onset as endpoint have

the same length if and only if they have the same label.
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Abrégé

Cette thése contient un ensemble de résultats en géométrie algorithmique qui
ont été inspirés par la littérature en théorie de la musique. Nos résultats se basent
sur une facon de reprsenter un rythme musical ou les pulsations sont symbolisées par
des points répartis uniformément sur un cercle, et les onsets sont des sous-ensembles
des pulsations. Tous nos résultats sur les rythmes s’appliquent également aux notes,
et de nombreux problémes que nous avons étudis sont intéressants en tant que tels,
c’est-a-dire formuls comme des problemes de distance géométrique sur le cercle.

Dans cette thése nous caracétrisons deux familles de rythmes, les rythmes pro-
fonds (deep) et les rythmes Euclidiens. Nous décrivons trois algorithmes qui génerent
'unique rythme Euclidien correspondant un nombre donné d’onsets et de pulsations.
Nous montrons que les rythmes Euclidiens sont constitués de motifs répétitifs formés
par d’autres (sous-)rythmes Euclidiens définis par un nombre moindre d’onsets, par-
fois suivi par un motif rythmique différent. Ensuite, nous étudions les conditions
nécessaires pour pouvoir transformer un rythme Euclidien en un autre, en utilisant
cing types d’oprations bien définies. Dans le cadre de la mesure de la similitude entre
rythmes, nous étudions le probléme de I'alignement de collier (necklace alignment),
ot1 'objectif est de trouver la rotation d’un rythme et un alignement parfait entre les
onsets qui minimise la norme d’une distance circulaire particuliere. Nous présentons
trois algorithmes dont le temps d’exécution est en o(n?), respectivement pour les
normes ¢;, {5 et £,. Finalement, nous proposons un algorithme polynomial pour le
probleme du labeled beltway: étant donné un ensemble ordonné de points autours

d’un cercle, et un labeling de toutes les distances définies par les paires de points,
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nous voulons construire un rythme tel que deux distances qui partent d’'un méme

onset ont la méme longueur si et seulement si ces distances ont le méme label.
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Chapter 1
Introduction

How would you place four points in the plane so that there is a distance de-
termined by pairs of points that appears once, a distance that appears twice, and
a distance that appears three times? With a few trials you may be able to find an

embedding that satisfies these constraints; one solution is shown in Figure 1-1.

a=(0,v3)

b=(-1,0) ¢ =(1,0)

d=(0,-1)

Figure 1-1: Each distance appears a unique number of times: |ad| = 1+ V'3 appears
once, |bd| = |dc| = v/2 appears twice, and |ab] = |bc| = |ca| = 2 appears three times.

Now, can you do the same with any number of points? That is, is it possible to
have n points in general position (no three on a line or four on a circle) such that

for every i = 1,...,n — 1, there exists a distance that appears exactly ¢ times? Paul

1



Chapter 1. Introduction

Erdds asked this question in 1989. Today, almost 20 years later, we can answer his
question only for n up to 8. This problem in distance geometry led to the study
of geometric properties of musical rhythms, which is the topic of this thesis. The
connection is not very obvious of course, but the path from geometry to music theory
is nevertheless not too long. Since the solution to Erdds’s question does not seem to
be trivial, to say the least, we can try to solve a variation of the problem: restrict
the points to a circle (you may think of it as dimension 1.5). It turns out that points
on a circle with similar restrictions on distance multiplicities have been studied in
music theory and are called deep scales. This was our first result in computational
music theory and is rightfully the first result described in this thesis.

The problems in music theory that we restrict ourselves to in this work are
related to time intervals within rhythms and pitch intervals within scales. We ignore
all considerations to tempo (speed of a musical piece), acoustics (the physics of
sound), harmonics, and all problems related to human musical perception. The
problems discussed fall into two main categories: the study of properties of musical
rhythms and scales, and their transformations given certain restrictions on their

interval durations.

Motivation. Historically, mathematics and music have interacted for millenia. In
some cases, musicians have composed pieces with no consideration to mathematics
but where mathematical ideas may be detected, while in other cases, musicians
have explicitly employed mathematical ideas such as Fibonacci numbers and the
golden ratio in their musical compositions. An interesting example of the latter

is Schoenberg’s twelve-tone technique; Schoenberg developed a method for music
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composition which ensures that all the 12 notes of the diatonic scale appear exactly
the same number of times throughout the piece, without emphasizing any [92]. The
result is a disturbing musical feel that has made such musical pieces popular in
soundtracks of horror movies.

More indirect applications of mathematics to music composition are the model-
ing and classification tools of musical elements. Such tools help composers visualize
the space of musical possibilities. For example, Tymoczko [178] has developed a
visualization where every possible musical chord is represented as a point in space,
and segments connecting chords describe how to transform one chord to another.
According to Tymoczko, composers sometimes like to combine harmonic consistency
with efficient voice-leading; one can do this only if the chords divide the octave
nearly evenly, or if they are clustered close together in the geometric visualization.
This is clear when we look at the geometry, but not so obvious when we are think-
ing musically ! . Geometric representations of musical elements may also be useful
for teaching: teaching music via geometric visualization, or teaching geometry via
musical thythms and scales [166].

The study of properies of music transformations help us understand and formal-
ize improvisation techniques used by musicians, and perhaps devise new techniques
based on mathematical rules. Transformations are also useful in phylogenetic anal-
ysis of musical rhythms [63, 171], that is, the study of evolutionary relationship

between various rhythms.

1 Personal communication with Tymoczko, 2008.
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More recently, and with the prevalence of computers, other applications of math-
ematical ideas to musical ends have surfaced. Notable applications include music
retrieval from large databases having as query an arbitrary piece of melody, music
comparison and recognition, computer-aided music composition, etc. We will detail
these applications further in forthcoming chapters.

It should be noted however that finding direct applications of the problems
discussed here to music theory is not the purpose of this thesis. We do not claim
that our results will provide new tools for musicians, nor try to show connections
between music and mathematics that are not necessarily there. The core topic of this
work is the study of algorithmic and geometric properties of sequences within the
framework of music analysis. Some of the ideas in this work may find their way in
musical applications, but they are also of independent interest theoretically because

of the new tools and techniques developed for solving these problems.

How to read this thesis. While reading this thesis, the reader must keep in mind
that it is written by a person with a background in computer science, and with
almost no formal knowledge in music theory except the very little seen in various
dance classes and learned during the evolution of this thesis. Music however remains
the inspiration to this work, and the context in which the mathematical results are
presented.

In the next chapter, we define terminology and notation that are common in all
the subsequent chapters. Additional notation specific to a chapter as well as review

of literature for each topic discussed will be defined in the relevant chapter.
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We believe that history, in general, is an integral element for understanding the
present and its problems. In the context of this work, we view the history of our
topic as an important part of the topic itself. Thus, we start in Chapter 2 with
a brief historical account of the interaction between mathematics and music, and
introduce the objects of our study: rhythms and scales. We then present our first
result on deep rhythms in Chapter 3, followed by a longer chapter on maximally even
rhythms (Chapter 4). In Chapter 5 we further investigate the properties of maxi-
mally even rhythms and follow it with a chapter where we describe some operations
on rhythms and the conditions under which these operations preserve the maximal
evenness property (Chapter 6). Chapter 7 describes algorithms for aligning rhythms
while minimizing certain distance norms and shows connections to problems on con-
volutions and sorting X + Y matrices in computer science. Our final result is about

reconstructing rhythms given some restrictions on time intervals (Chapter 8).

Main contributions of this thesis. The main contributions of this thesis are:

1. Characterize the rhythms that have the deep property: each distinct distance
between onsets occurs with a unique multiplicity, and these multiplicities form
an interval 1,2, ...,k — 1. Our characterization shows that deep rhythms form
a subclass of generated rhythms, which in turn proves a useful property called
shelling.

2. Demonstrate relationships between the classical Euclidean algorithm for finding
the greatest common divisor of two numbers and many other fields of study,

particularly in the context of music and distance geometry. Specifically, we



Chapter 1. Introduction

show how the structure of the Euclidean algorithm defines a family of rhythms

that encompass over forty timelines from traditional world music.

. Prove that Euclidean rhythms have the mathematical property that their onset

patterns are distributed as evenly as possible: they maximize the sum of the
Euclidean distances between all pairs of onsets. We describe three algorithms
that generate rotations of the unique Euclidean rhythm for a given number
of onsets and pulses, and show the connection between deep and Euclidean

rhythms.

. Show that Euclidean rhythms are composed of a repeating pattern P, followed

possibly by a pattern 7. Both P and T are shown to have the Euclidean
property; furthermore, T is a subsequence of P. We also show that pattern P

is minimal: it cannot be rewritten as a repeating pattern with fewer pulses.

. Show how to transform one rhythm to another using an operation, with the ad-

ditional restriction that both the original and resulting rhythms are Euclidean.
We define five operations: shadow, complementation, concatenation, alterna-
tion, and decomposition, and study the conditions under which they preserve

the Euclidean property.

. Design a o(n?)-time algorithm to find rotation of a rhythm with respect to

another and a perfect matching between onsets that minimizes the circular
distance between matched onsets. The distance measures we consider are the
?1, €y, and £, norms. We also show connections of this problem to convolutions

and sorting X + Y matrices.
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7. Given the ordering of a set of points around the circumference of a circle
and constraints involving pairs of distances with a common endpoint, show
a polynomial-time algorithm that reconstructs a rhythm satisfying the order-
ing constraint and such that two distances sharing an onset have the same

length if and only if these distances have the same label.



Chapter 2
Music and Mathematics

In 1787 Wolfgang Mozart designed a game where the idea is to compose a
musical piece by choosing and pasting together pre-written musical measures. Each
pre-written musical bit is chosen by rolling a pair of dice and looking up the rolled
sum in a table to determine which measure to pick [110] (see Figure 2-1). Mozart,
however, was not the first to design such a dice game ! .

Musical dice games were popular
during the 18th century, and the first
person known to have published such a
game is Kirnberger. Due to the popular-

ity of the game, other designers quickly

followed; a few notable names are Hoegi,
who claimed that it is possible to “com- Figure 2-1: Today, you can buy Mozart’s
pose ten thousand, all different” min- Musical Dice Game - Luzury Edition from

uets using his game, and Haydn, who Vienna’s Leopold Museum.

1 1t should be noted that Mozart’s authorship of this game is disputed. For more
information and for a complete list of musical dice games in the 18th century, see [95].
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claimed that one may compose “un infinito numero” of minuet trios [92]. Both fig-
ures for the number of composable pieces are incorrect of course, as this number
is above ten thousand and definitely finite. Nevertheless, these games were per-
haps the first random music generators, conceived more than a century before the
first computer was built. They also constitute a close connection between music
and mathematics — a field towards which the 18th century displayed great public
enthusiasm.

However, the relationship between music and mathematics dates back to much
earlier than the 18th century. In fact, the two fields have been intimately intertwined
for over 2,500 years. Perhaps the first person to have mentioned such a connection is
Pythagoras of Samos (6th century B.C), who noticed that the ratio between a string
and the frequency of the tone it makes when plucked remains constant as the length
of the string is varied [20]. He divided the length of a string into halves, thirds,
quarters, and fifths, thus creating the first four overtones: an octave, a perfect fifth,
a perfect fourth, and a major third. In music theory, these overtones have become
the building blocks of musical harmony, which deals with how pitches relate to one
another.

The interaction between musical arts and mathematics has continued to present
times, when musical pieces are often composed with the help of computer algorithms
(see for example [51]). A thorough historical snapshots of this interaction between the
two fields can be found in the work of H. S. M. Coxeter [54]. Until recently however,
most of this interaction has been in the domain of pitch and scales; in music theory,

much attention has been devoted to the study of intervals used in pitch scales [75],
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Figure 2-2: The Diatonic scale.

but relatively little work has been devoted to the analysis of time duration intervals
of thythm. Some notable recent exceptions are the books by Simha Arom (7], Justin
London [113], and Christopher Hasty [94].

So what are rhythms and scales?

2.1 Rhythms and Scales

A musical scale is a collection of musical notes sorted by pitch. The ordering
of these notes gives a measure of musical distance, whereby the intervals defined by
two consecutive pitches in this ordering are not necessarily equal. In Western music,
perhaps the most famous musical scale is the Diatonic scale, composed of seven notes
(the white keys of the piano). See Figure 2-2.

Similar to a scale, a rhythm is a sorted collection of beats that occur at intervals
which are not always regular. The interval between two onsets represents the amount
of elapsed time between the first and the second. Thus, unlike pitch intervals, in-
teronset intervals define a measure of time. The time dimension of rhythms and the
pitch dimension of scales have an intrinsically cyclic nature, cycling every measure

and every octave, respectively. As such, musical rhythms and scales can both be
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seen as two-way infinite binary sequences [169]. It is also generally assumed that the
two-way infinite bit sequence is periodic with some period 7, so that the information
can be compacted down to an n-bit string. In a rhythm, each bit represents one
unit of time called a pulse (for example, the length of a sixteenth note), a one bit
represents a played note or onset (for example, a sixteenth note), and a zero bit
represents a silence (for example, a sixteenth rest). In a scale, each bit represents a
pitch, and zero or one represents whether the pitch is absent or present in the scale.
Here we assume that all time intervals between onsets in a rhythm are multiples of
a fixed time unit, and that all tone intervals between pitches in a scale are multiples
of a fixed tonal unit (in logarithm of frequency).

In this thesis, we consider rhythms and scales that match this cyclic nature of
the underlying space. In the case of rhythms, such cyclic rhythms are also called
timelines or claves, rhythmic phrases or patterns that are repeated throughout a
piece and serve as a rhythmic reference point {130, 179]. In what follows, we use
the term “rhythm” to mean “timeline”. The infinite bit sequence representation of a
cyclic thythm or scale is just a cyclic repetition of some n-bit string, corresponding
to the timespan of a single measure or the log-frequency span of a single octave. To
properly represent the cyclic nature of this string, we imagine assigning the bits to
n points equally spaced around a circle of circumference n [120]. A rhythm or scale
can therefore be represented as a subset of these n points. We use k to denote the
size of this subset; that is, k is the number of onsets in a rhythm or pitches in a
scale. For uniformity of terminology, the remainder of this thesis speaks primarily

about rhythms, but the notions and results apply equally well to scales.
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2.2 Representation

We use four representations of rhythms of timespan n. The first representation is
the commonly used boz-like representation, also known as the Time Unit Box System
(TUBS), which is a sequence of n ‘x’s and ‘- ’s where ‘x’ represents an onset and
“.” denotes a silence [169]. This notation was used and taught by Philip Harland at
the University of California, Los Angeles, in 1962, and it was made popular in the
field of ethnomusicology by James Koetting [108]. However, such box notation has
been used in Korea for hundreds of years [98]. The second representation of rhythms
and scales we use is the clockwise distance sequence, which is a sequence of integers
that sum up to n and represent the lengths of the intervals between consecutive
pairs of onsets, measuring clockwise arc-lengths or distances around the circle of
circumference n. Note that the clockwise distance sequence notation requires that
the rhythm starts with an onset, so it cannot be used to represent all rhythms;
however, it is useful for rhythmic analysis that disregards the starting position of
the sequence. The third representation of rhythms and scales writes the onsets as
a subset of the set of all pulses, numbered 0,1,...,n — 1, with a subscript of n on
the right-hand side of the subset to denote the timespan. Clough and Douthett [43]
use this notation to represent scales. For example, the Cuban clave Son rhythm can
be represented as [X - - X - - x -« + X+ X - - -] in box-like notation, (3,3,4,2,4)
in clockwise distance sequence notation, and {0,3,6,10,12}¢ in subset notation.
Finally, the fourth representation is a graphical clock diagram [169], such as Figure 4-
1, in which the zero label denotes the start of the rhythm and time flows in a

clockwise direction. In such clock diagrams we usually connect adjacent onsets by
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line segments, forming a polygon. We consider two rhythms distinct if their sequence
of zeros and ones differ at every bit position, starting from the leftmost bit. That is,
two rhythms that do not have the same sequence are different. Moreover, rhythms
that have the same sequence but differ in the starting beat are also considered to be
different. In this case we say that one rhythm is a rotation of the other and that
the two rhythms are instances of the same necklace: a cyclic sequence of onsets and
pulses with no regards to a starting beat. From a mathematical perspective, cyclic
binary sequences that are instances of the same necklace are considered to be the
same mathematical object; from a music perspective however, rhythms that have the
same sequence of pulses and onsets but different starting beats sound very different,
and thus are considered to be different musical objects. The rhythmic properties we
discuss below are in truth properties of necklaces; however, we will talk mainly about
rhythms to stress this musical distinction.

We now define some precise mathematical notation for describing rhythms.
These notations are common in all the chapters; further definitions will come up

as needed.

2.3 Basic Definitions and Notations

Let Z* denote the set of positive integers. For k,n € Z*, let ged(k,n) denote
the greatest common divisor of k and n. If ged(k,n) = 1, we call k and n relatively
prime. For integers a < b, let [a,b] = {a,a+1,a+2,...,b}. We let logn denote the
base 2 logarithm of n.

Let C be a circle in the plane, and consider any two points z,y on C. The chordal

distance between z and y, denoted by d(z,y), is the length of the line segment T7;
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that is, d(z,y) is the Euclidean distance between « and y. The clockwise distance
from z to y, or of the ordered pair (z,y), is the length of the clockwise arc of C from
z to y, and is denoted by 3(:1:,1/). Finally, the geodesic distance between z and y,
denoted by 5(1:, y), is the length of the shortest arc of C' between z and y; that is,
d(z,y) = min{d(z,y), 4, 2)}.

A rhythm of timespan n is a subset of {0,1,...,n — 1}, representing the set of
pulses that are onsets in each repetition. For clarity, we write the timespan n as
a subscript after the subset: {...}, (this is the subset notation described earlier).
Geometrically, if we locate n equally spaced points clockwise around a circle Cy, of
circumference n, then we can view a rhythm of timespan n as a subset of these n
points. We consider an element of C, to simultaneously be a point on the circle
and an integer in {0,1,...,n — 1}. When n is an arbitrary real number, and onsets
can be at arbitrary (not necessarily integer) points along the circle, then we call
such rhythms continuous rhythms. Similarly, we say that rotations of a continuous
rhythm are instances of the same continuous necklace.

The rotation of a rhythm R of timespan n by an integer A > 0 is the rhythm
{(i+ A)mod n : i € R}, of the same timespan n. The scaling of a rhythm R of
timespan n by an integer a > 1 is the rhythm {ai : i € R}q4, of timespan an.

Let R = {ro,71,...,Tk-1}n be a rhythm of timespan n with k onsets sorted
in clockwise order. Throughout this thesis, an onset r; will mean (7 mod ) mod n.
Observe that the clockwise distance ?l(ri, r;) = (r; — r;) mod n. This is the number
of points on C,, that are contained in the clockwise arc (ri,r;] and is also known as

the chromatic length [43].
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The clockwise distance sequence of R is the circular sequence (dp,d1, ..., dk-1)
where d; = g(ri, ri41) for all ¢ € [0,k — 1]. Observe that each d; € Z* and ), d; = n.
Observation 1. There is a one-to-one relationship between rhythms with k onsets
and timespan n and circular sequences (dp,d,...,dx—1) where each d; € Z* and
Yo di=n.

The geodesic distance multiset of a rhythm R is the multiset of all nonzero
pairwise geodesic distances; that is, it is the multiset {3(ri,rj) i1, 7 € Rymy # 15}
The geodesic distance multiset has cardinality (£). Finally, the multiplicity of a
distance d is the number of occurrences of d in the geodesic distance multiset.

We now start with a short and technical chapter about deep rhythms.
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Deep Rhythms

Deepness is a property of rhythms and scales that pertains to the number of
occurrences of the distances defined by pairs of onsets. Consider a rhythm with &
onsets and timespan n, represented as a set of k points on a circle of circumference n.
Now measure the arc-lengths (geodesic distances along the circle) between all pairs of
onsets. A musical scale or rhythm is Winograd-deep if every distance 1,2,...,|n/2]
has a unique multiplicity (number of occurrences). For example, the rhythm [x x x -
x -] is Winograd-deep because distance 1 appears twice, distance 2 appears thrice,
and distance 3 appears once.

The notion of deepness in scales was introduced by Winograd in an oft-cited but
unpublished class project report from 1966 [187], disseminated and further developed
by the class instructor Gamer in 1967 [79, 80}, and considered further in numerous
papers and books, such as [44, 101]. Equivalently, a scale is Winograd-deep if the
number of pitches it has in common with each of its cyclic shifts (rotations) is unique.
This equivalence is the Common Tone Theorem [101, page 42|, originally described by
Winograd [187] (who in fact uses this definition as his primary definition of “deep”).

Deepness is one property of the ubiquitous Western diatonic 12-tone major scale
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Figure 3—1: A rhythm with k£ = 7 onsets and timespan n = 16 that is Winograd-deep
and thus Erdds-deep. Distances ordered by multiplicity from 1 to 6 are 2, 7, 4, 1, 6,
and 5. The dotted line shows how the rhythm is generated by multiples of m = 5.
[x - x - xXx:x-x-x][101], and it captures some of the rich structure that perhaps
makes this scale so attractive.

Winograd-deepness translates directly from scales to rhythms. For example, the
diatonic major scale is equivalent to the famous Cuban rhythm Bembé [134, 171].
Figure 3-1 shows a graphical example of a Winograd-deep rhythm. However, the
notion of Winograd-deepness is rather restrictive for rhythms, because it requires
half of the pulses in a timespan (rounded to a nearest integer) to be onsets. In
contrast, for example, the popular Bossa-Nova rhythm [x - - x - - x .« X . X
- -] ={0,3,6,10,13}6 illustrated in Figure 4-1 has only five onsets in a timespan
of sixteen. Nonetheless, if we focus on just the distances that appear at least once
between two onsets, then the multiplicities of occurrence are all unique and form an
interval starting at 1: distance 4 occurs once, distance 7 occurs twice, distance 6
occurs thrice, and distance 3 occurs four times.

We therefore define a rhythm (or scale) to be Erdds-deep if it has k onsets and,

for every multiplicity 1,2,...,k — 1, there is a nonzero arc-length/geodesic distance
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determined by the points on the circle with exactly that multiplicity. The same
definition is made by Toussaint [173]. Every Winograd-deep rhythm is also Erdés-
deep, so this definition is strictly more general.

To further clarify the difference between Winograd-deep and Erdés-deep rhythms,
it is useful to consider which distances can appear. For a rhythm to be Winograd-
deep, all the distances between 1 and k& — 1 must appear a unique number of times.
In contrast, to be an Erdds-deep rhythm, it is only required that each distance
that appears must have a unique multiplicity. Thus, the Bossa-Nova rhythm is not
Winograd-deep because distances 1,2 and 5 do not appear.

The property of Erdds deepness involves only the distances between points in
a set, and is thus a feature of distance geometry—in this case, in the discrete space
of n points equally spaced around a circle. In 1989, Paul Erd6s [67] considered the
analogous question in the plane, asking whether there exist n points in the plane
(no three on a line and no four on a circle) such that, for every ¢ = 1,2,...,n — 1,
there is a distance determined by these points that occurs exactly ¢ times. Solutions
have been found for n between 2 and 8, but in general the problem remains open.
Palésti [132] considered a variant of this problem with further restrictions—no three
points form a regular triangle, and no one is equidistant from three others—and
solved it for n = 6.

In this chapter we characterize all rhythms that are Erdés-deep. In particular, we
prove that all deep rhythms, besides one exception, are generated, meaning that the
rhythm can be represented as {0,m,2m,...,(k — 1)m}, for some integer m, where

all arithmetic is modulo n. In the context of scales, the concept of “generated”
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was defined by Wooldridge [188] and used by Clough et al. [44]. For example, the
rhythm in Figure 3-1 is generated with m = 5. Our characterization generalizes
a similar characterization for Winograd-deep scales proved by Winograd [187], and
independently by Clough et al. [44].

In the pitch domain, generated scales are very common. The Pythagorean tuning
is a good example: all its pitches are generated from the fifth of ratio 3 : 2 modulo
the octave. Another example is the equal-tempered scale, which is generated with a
half-tone of ratio ¥/2 [13]. Generated scales are also of interest in the theory of the
well-formed scales [35].

Generated rhythms have an interesting property called shellability. If we remove
the “last” generated onset 14 from the rhythm in Figure 3-1, the resulting rhythm
is still generated, and this process can be repeated until we ruﬁ out of onsets. In
general, every generated rhythm has a shelling in the sense that it is always possible
to remove a particular onset and obtain another generated rhythm.

Most African drumming music consists of rhythms operating on three different
strata: the unvarying timeline usually provided by one or more bells, one or more
rhythmic motifs played on drums, and an improvised solo (played by the lead drum-
mer) riding on the other rhythmic structures. Shellings of rhythms are relevant to
the improvisation of solo drumming in the context of such a rhythmic background.
The solo improvisation must respect the style and feeling of the piece which is usu-
ally determined by the timeline. One common technique to achieve this effect is to
“borrow” notes from the timeline, and to alternate between playing subsets of notes

from the timeline and from other rhythms that interlock with the timeline {1, 4]. In
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the words of Kofi Agawu [1], “It takes a fair amount of expertise to create an effec-
tive improvisation that is at the same time stylistically coherent”. The borrowing
of notes from the timeline may be regarded as a fulfillment of the requirements of
style coherence. Another common method is to make frugal transformations to the
timeline or improvise on a rhythm that is functionally related to the timeline [112].
Although such an approach does not give the performer wide scope for free impro-
visation, it is efficient in certain drumming contexts. In the words of Christophe
Waterman {33], “individuals improvise, but only within fairly strict limits, since
varying the constituent parts too much could unravel the overall texture”.

Of course, some subsets of notes of a rhythm may be better choices than others.
One might often want to select sets of rhythms that share a common property. For
example, if a rhythm is deep, one might want to select subsets of the rhythm that
are also deep. Furthermore, a shelling seems a natural way to decrease or increase
the density of the notes in an improvisation that respects these constraints. For
example, in the Bembé bell timeline [x - X - xx - X - x - x], which is deep, one
possible shelling is [x - X - XX+ X - X+ ], [X X XXX ], [xex X
%« ], [x+x- -+ +x- -] All five rhythms sound good and are stylistically
coherent. In fact the shelled rhythms are used in African drum music [40]. To our
knowledge, shellings have not been studied from the musicological point of view.
However, they may be useful both for theoretical analysis as well as providing formal
rules for improvisation techniques. Rhythmic transformations are further discussed

in Chapter 6.
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One of the consequences of our characterization is that every Erdés-deep rhythm
has a shelling. More precisely, it is always possible to remove a particular onset that
preserves the Erdds-deepness property.

Winograd [187], and independently Clough et al. [44], characterize all Winograd-
deep scales: up to rotation, they are the scales that can be generated by the first
|n/2] or |n/2] + 1 multiples (modulo n) of a value that is relatively prime to n,
plus one exceptional scale {0,1,2,4}¢. In this chapter, we prove a similar (but more
general) characterization of Erd8s-deep rhythms: up to rotation and scaling, they are
the rhythms generable as the first £ multiples (modulo n) of a value that is relatively
prime to n, plus the same exceptional rhythm {0,1,2,4}¢. The key difference is that
the number of onsets k is now a free parameter, instead of being forced to be either
|n/2] or |n/2] + 1. Our proof follows Winograd’s, but differs in one case (the second
case of Theorem 3.2.3).

3.1 Definitions

A rhythm is Erdds-deep if it has (exactly) one distance of multiplicity ¢, for
each i € [,k — 1]. Note that these multiplicities sum to Y i) ¢ = (), which is
the cardinality of the geodesic distance multiset, and hence these distances are all
the distances in the rhythm. Every geodesic distance is between 0 and [n/2]. A
rhythm is Winograd-deep if every two distances from {1,2,...,[5]} have different
multiplicity.

A shelling of an Erdés-deep rhythm R is an ordering si, 2, ..., 8¢ of the onsets
in R such that R—{sy, 83, ..., S;} is an Erdés-deep rhythm for ¢ = 0,1, ... k. (Every

rhythm with at most two onsets is Erdds-deep.)
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3.2 Characterization of Deep Rhythms

Our characterization of Erdds-deep rhythms is in terms of two families of rhythms.
The main rhythm family consists of the generated rhythms Dy, = {im mod n :
i =0,1,...,k — 1}, of timespan n, for certain values of k, n, and m. The one
exceptional rhythm is F = {0, 1, 2,4} of timespan 6.
Fact 3.2.1. F is Erdés-deep.
Lemma 3.2.2. If k < |n/2| +1 and m and n are relatively prime, then Dy pnm 18

Erdés-deep.

Proof. The multiset of clockwise distances in Dgnm is {(m —im)modn : i <
j} = {(j =iy mmodn : ¢ < j}. There are k — p choices of 7 and j such that
j —1 = p, so there are exactly p occurrences of the clockwise distance (pm) mod n in
the multiset. Each of these clockwise distances corresponds to a geodesic distance—
either (pm) mod n or (—pm) mod n, whichever is smaller (at most n/2). We claim
that these geodesic distances are all distinct. Then the multiplicity of each geodesic
distance (&pm) mod n is exactly p, establishing that the rhythm is Erdds-deep.

For two geodesic distances to be equal, we must have pm = +gm (mod n) for
some (possibly different) choices for the + symbols, and for some p # ¢. By (possibly)
multiplying both sides by —1, we obtain two cases: (1) pm = gm (mod n) and
(2) pm = —gm (mod n). Because m is relatively prime to n, m has a multiplicative
inverse modulo n (see Lemma 4.2.2 on page 60). Multiplying both sides of the
congruence by this inverse, we obtain (1) p = ¢ (mod n) and (2) p = —¢ (mod n).
Since 0 < i < j < k< |n/2]+1, wehave 0 < p =j—14 < |n/2] +1, and

similarly for ¢: 0 < p,q < |n/2). Thus, the first case of p = ¢ (mod n) can happen
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only when p = ¢, and the second case of p+ ¢ = 0 (mod n) can happen only when
p = q =0 or when p = ¢ = n/2. Either case contradicts that p # g. Therefore the
geodesic distances arising from different values of p are indeed distinct, proving the

lemma. O

We now state and prove our characterization of Erd6s-deep rhythms, which
is up to rotation and scaling. Rotation preserves the geodesic distance multiset
and therefore Erdds-deepness (and Winograd-deepness). Scaling maps each geodesic
distance d to ad, and thus preserves multiplicities and therefore Erdés-deepness (but
not Winograd-deepness). Note that the rhythm Dy, is a rotation by —m(k —
1) mod n of the rhythm Dy n—m; to avoid this duplication we restrict m to be equal
to at most |n/2].

Theorem 3.2.3. A rhythm is Erdés-deep if and only if it is a rotation of a scaling
of either the rhythm F or the thythm Dy, m for some k,n,m with k < |n/2] + 1,

1 <m < |n/2|, and m and n are relatively prime.

Proof. Since a rotation of a scaling of an Erdés-deep rhythm is Erdés-deep, the “if”
direction of the theorem follows from Fact 3.2.1 and Lemma 3.2.2.

Consider an Erdés-deep rhythm R with & onsets. By the definition of Erdds-
deepness, R has one nonzero geodesic distance with multiplicity ¢ for each ¢ =
1,2,...,k — 1. Let m be the geodesic distance with multiplicity k¥ — 1. Since m
is a geodesic distance, 1 < m < |n/2]. Also, k¥ < |n/2] + 1 (for any Erdds-deep
rhythm R), because all nonzero geodesic distances are between 1 and |n/2] and
therefore at most |n/2] nonzero geodesic distances occur. Thus k and m are suit-

able parameter choices for D pnm.
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Consider the graph G,, = (R, E,,) with vertices corresponding to onsets in R
and with an edge between two onsets of geodesic distance m. By the definition of
geodesic distance, every vertex ¢ in G, has degree at most 2: the only onsets at
geodesic distance exactly m from ¢ are (¢ —m) mod n and (i +m) mod n. Thus, the
graph G, is a disjoint union of paths and cycles. The number of edges in Gy, is the
multiplicity of m, which we supposed was k — 1, which is 1 less than the number of
vertices in G,,. Thus, the graph G, consists of exactly one path and any number of
cycles.

The cycles of G,,, have a special structure because they correspond to subgroups
generated by single elements in the cyclic group (Z/(n),+). Namely, the onsets
corresponding to vertices of a cycle in Gy, form a regular (n/a)-gon, with a geodesic
distance of a = ged(m, n) between consecutive onsets. (a is called the index of the
subgroup generated by m.) In particular, every cycle in G, has the same length
r = n/a. Since G,, is a simple graph, every cycle must have at least 3 vertices, so
r > 3.

The proof consists of four cases depending on the length of the path and on how
many cycles the graph G, has. The first two cases will turn out to be impossible;
the third case will lead to a rotation of a scaling of rhythm F'; and the fourth case
will lead to a rotation of a scaling of D m.

First suppose that the graph G,, consists of a path of length at least 1 and at
least one cycle. We show that this case is impossible because the rhythm R can have
no geodesic distance with multiplicity 1. Suppose that there is a geodesic distance

with multiplicity 1, say between onsets i; and i,. If ¢ is a vertex of a cycle, then
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both (i +m) mod n and (i — m) mod n are onsets in R. If i is a vertex of the path,
then one or two of these are onsets in R, with the case of one occurring only at the
endpoints of the path. If (i;+m) mod n and (i+m) mod n were both onsets in R, or
(i1—m) mod n and (z3—m) mod n were both onsets in R, then we would have another
occurrence of the geodesic distance between 4, and i, contradicting that this geodesic
distance has multiplicity 1. Thus, ¢; and i, must be opposite endpoints of the path.
If the path has length £, then the clockwise distance between 7, and i3 is (ém) mod n.
This clockwise distance (and hence the corresponding geodesic distance) appears in
every cycle, of which there is at least one, so the geodesic distance has multiplicity
more than 1, a contradiction. Therefore this case is impossible.

Second suppose that the graph G,, consists of a path of length 0 and at least
two cycles. We show that this case is impossible because the rhythm R has two
geodesic distances with the same multiplicity. Pick any two cycles C and C’, and
let d be the smallest positive clockwise distance from a vertex of C' to a vertex
of C'. Thus i is a vertex of C if and only if (i + d) mod n is a vertex of C’. Since
the cycles are disjoint, d < a. Since r > 3, d < n/3, so clockwise distances of d
are also geodesic distances of d. The number of occurrences of geodesic distance d
between a vertex of C and a vertex of C’ is either r or 2r, the case of 2r arising
when d = a/2 (that is, C’ is a “half-rotation” of C). The number of occurrences
of geodesic distance d = min{d + m,n — (d + m)} is the same—either r or 2r, in
the same cases. (Note that d < a < n —m, so d +m < n, so the definition of
d’ correctly captures a geodesic distance modulo n.) The same is true of geodesic

distance d’ = min{d—m,n— (d—m)}. If other pairs of cycles have the same smallest
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positive clockwise distance d, then the number of occurrences of d, d’, and d” between
those cycles are also equal. Since the cycles are disjoint, geodesic distance d and thus
d+m and d —m cannot be (pm) mod n for any p, so these geodesic distances cannot
occur between two vertices of the same cycle. Finally, the sole vertex = of the path
has geodesic distance d to onset i (which must be a vertex of some cycle) if and
only if z has geodesic distance d' to onset (¢ + m) mod n (which must be a vertex
of the same cycle) if and only if z has geodesic distance d” to onset (i — m) mod n
(which also must be a vertex of the same cycle). Therefore the multiplicities of
geodesic distances d, d’, and d” must be equal. Since R is Erd6s-deep, we must have
d=d =d". Tohaved=d, either d =d+m or d =n — (d + m), but the first case
is impossible because d > 0 by nonoverlap of cycles, so 2d + m = n. Similarly, to
have d = d”, we must have 2d — m = n. Subtracting these two equations, we obtain
that 2m = 0, contradicting that m > 0. Therefore this case is also impossible.
Third suppose that the graph G,, consists of a path of length 0 and exactly
one cycle. We show that this case forces R to be a rotation of a scaling of rhythm
F because otherwise two geodesic distances m and m’ have the same multiplicity.
The number of occurrences of geodesic distance m in the cycle is precisely the length
r of the cycle. Similarly, the number of occurrences of geodesic distance m' =
min{2m,n — 2m} in the cycle is 7. The sole vertex = on the path cannot have
geodesic distance m or m/ to any other onset (a vertex of the cycle) because z would
then be on the cycle. Therefore the multiplicities of geodesic distances m and m'
must be equal. Since R is Erdés-deep, m must equal m’, which implies that either

m = 2m or m = n — 2m. The first case is impossible because m > 0. In the second
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case, 3m = n, that is, m = %n Therefore, the cycle has r = 3 vertices, say at
AN+ %n, A+ %n The fourth and final onset £ must be midway between two of
these three onsets, because otherwise its geodesic distance to the three vertices are
all distinct and therefore unique. No matter where z is so placed, the rthythm R is
a rotation by A + czn (for some ¢ € {0, 1,2}) of a scaling by n/6 of the rhythm F.

Finally suppose that G,, has no cycles, and consists solely of a path. We show
that this case forces R to be a rotation of a scaling of a rhythm Dy vy with 1 < m/ <
|n’/2] and with m’ and n’ relatively prime. Let ¢ be the onset such that (i—m) mod n
is not an onset (the “beginning” vertex of the path). Consider rotating R by —i so
that 0 is an onset in the resulting rhythm R—4. The vertices of the path in R—i form
a subset of the subgroup of the cyclic group (Z/(n), +) generated by the element m.
Therefore the rhythm R — i = Dypm = {(im)modn : ¢ = 0,1,...,k — 1}, is a
scaling by a of the rhythm Dy n/qm/e = {(im/a) mod (n/a) : i =0,1,...,k - 1},.
The rhythm Dy n/a,m/o has an appropriate value for the third argument: m Jaand n/a
are relatively prime (a = ged(m,n)) and 1 < m/a < [n/2]/e < [(n/a)/2]. Also,
k < |(n/a)/2] + 1 because the only occurring geodesic distances are multiples of a
and therefore the number k — 1 of distinct geodesic distances is at most |(n/a)/2].

Therefore R is a rotation by i of a scaling by a of Di n/a,m/a With appropriate values

of the arguments. |

Corollary 3.2.4. A rhythm is Erdds-deep if and only if it is a rotation of a scaling
of the rhythm F or it is a rotation of a rhythm Dipm for some k,n,m satisfying

k < |n/2g| + 1 where g = ged(m,n).

27



Chapter 8. Deep Rhythms

Proof. First we show that any Erdés-deep rhythm has one of the two forms in the
corollary. By Theorem 3.2.3, there are two flavors of Erdés-deep rhythms, and the
corollary directly handles rotations of scalings of F'. Thus it suffices to consider a
rhythm R that is a rotation by A of a scaling by & of Dy 5 m where k < [n/2] + 1,
1 <m < |n/2], and m and n are relatively prime. Equivalently, R is a rotation by
A of Dy where n’ = an and m' = am. Now g = ged(n/,m) = «, so n'/g = n.
Hence, k < |n'/2g]| + 1 as desired. Thus we have rewritten R in the desired form.

It remains to show that every rhythm in one of the two forms in the corollary is
Erdés-deep. Again, rotations of scalings of F are handled directly by Theorem 3.2.3.
So consider a rotation of Djnm where k£ < [n/2g) + 1. The value of m matters only
modulo n, so we assume that 0 <m <n — 1.

First we show that, if [n/2] +1 < m < n—1, then Dy, ., can be rewritten as a
rotation of the rhythm Dy ,, v where m’ = n—m < |n/2|. By reversing the order in
which we list the onsets in Dy ,m = {immodn:i=0,1,...,k — 1},, we can write
Dipm = {(k—1—-i)mmodn :¢=0,1,...,k — 1},. Now consider rotating the
rhythm Dy ppnom = {i(n —m)modn:i=0,1,...,k — 1}, by (k — 1)m. We obtain
the rhythm {[i (n —m)+ (k—1)m]modn:i=0,1,...,k—1}, = {[(k—1—-i)m+
inJmodn:i=0,1,...,k=1}, = {(k—1-9)mmodn:i=0,1,...,k—1}p = Dipm
as desired.

Thus it suffices to consider rotations of Dynn where 1 < m < |n/2] and
k < |n/2g] + 1. The rhythm Dy n m, where n’ = n/g and m’ = m/g, is Erdds-

deep by Theorem 3.2.3 because n’ and m' are relatively prime, k < |n'/2] + 1, and
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1 <m' < |n//2]. But Dipm is the scaling of Dy m by the integer g, so Dy nm 18

also Erdés-deep. O

An interesting consequence of this characterization is the following:

Corollary 3.2.5. Every Erdds-deep rhythm has a shelling.

Proof. If the Erdés-deep rhythm is Dy, m, we can remove the last onset from the
path, resulting in Di_1 »m, and repeat until we obtain the empty rhythm Do, . At
all times, k remains at most |n/2] + 1 (assuming it was originally) and m remains
between 1 and |n/2] and relatively prime to n. On the other hand, F = {0,1,2,4}s
has the shelling 4, 2,1, 0 because {0, 1,2} is Erdés-deep. a

We can generalize this characterization of Erdés-deep rhythms to continuous
rhythms, where where n and the position of the onsets along the circle are arbitrary
real numbers. In this case we have two kinds of rhythms. First, if m and n are rational
multiples of each other, we can scale the rhythm by some rational p such that pm
and pn are integers, and apply Theorem 3.2.3 using pn and pm to characterize all
deep rhythms where m is a rational multiple of n. Second, if m and n are irrational
multiples of each other, we can show that every Djnm is Erdés-deep. The complete
characterization of continuous Erdds-deep rhythms is as follows:

Theorem 3.2.6. A continuous thythm is Erdés-deep if and only if it is a rotation
of a scaling of Dy pm with k < |n/2) +1, 0 < m < n/2, and where m and n are
either (1) irrational multiples of each other, or (2) rational multiples such that for

some rational p, integers pm and pn are relatively prime.
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Proof. To prove the “if” direction, we show that all geodesic distances defined by
Dy n.m are distinct; hence we need to prove that the multiplicity of each geodesic dis-
tance (£pm) mod n is exactly p. First assume that m and n are irrational multiples
of each other, i.e., there is no rational number that divides both m and n. Suppose
two geodesic distances +pm = +gm (mod n) for some (possibly different) choices for

the & symbols, and for some p # ¢. Then we can write &pm = +gm + rn for some

T
tp¥q

integer 7. This in turn implies that m = n, which contradicts the fact that m
and n are irrational multiples of each other. Therefore, when m and n are irrational
multiples of each other, the geodesic distances arising from different values of p are
distinct, proving that Dy, . is Erdds-deep.

If m and n are rational multiples of each other, then so are each of the geodesic
distances 2m,3m, ... (k — 1)m (mod n) with n. In this case, there exists a rational p
such that pn and pm are both integers. We can now apply Theorem 3.2.3 using pn
and pm, and generate all deep rhythms where m is a rational multiple of n.

For the “only if” direction, consider a continuous Erdés-deep rhythm R with k&
onsets and period n, and with some geodesic distance m having multiplicity & — 1.
Consider the graph G, = (R, En,) as defined in the proof of Theorem 3.2.3 (with
vertices corresponding to onsets in R and with an edge between two onsets of geodesic
distance m). If m and n are rational multiples of each other, then we can scale R
by some rational p and apply Theorem 3.2.3 to show that R is a scaling by 1/p of

Dy, pnpm Where pm and pn are relatively prime integers and 1 < pm < |pn/2], so

0<m<n/2
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If m and n are irrational multiples of each other, then there is no rational number
r such that n = rm. This means that G,, cannot contain a cycle, so consists of a
single path of length k—1. As in the proof of Theorem 3.2.3, we can rotate R by —i so
that 0 is an onset in the resulting rhythm R—i. The vertices of the path in R —i form
a subset of the subgroup of the cyclic group (Z/(n),+) generated by the element m.
Therefore the rhythm R — i = Dy pnm = {(im) modn :i=0,1,...,k — 1}, where m

and n are irrational multiples of each other and 0 < m < n/2. d

This concludes our characterization of deep rhythms. In the next chapter, we
study a different property of rhythms called mazimal evenness, and show the con-

nections between this family and deep rhythms.
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Chapter 4
Maximally Even Rhythms

Roughly speaking, maximally even rhythms are a family of rhythms where the
onsets are distributed among the pulses as evenly as possible. This property of the
onsets being “spread out as much as possible” is know in music theory as mazimal
evenness and was first introduced by Clough and Douthett in 1991 [43]. In this
chapter, we present three algorithms that generate maximally even rhythms (for some
fixed definition of evenness); we then show that for a given number of pulses and
onsets, these algorithms produce the unique rhythm (up to rotation) with maximum
evennes. Finally, we show that that maximally even rhythms with n and k& relatively
prime are Erdés-deep. But first, we investigate the notion of maximal evenness a bit
further.

Consider the following three 12/8-time rhythmic patterns expressed in box-like
notation: [X X X XXX |, [X+X:xXX:x:x.x],and [X XX XX
x - |. The first rhythm contains beats that are distributed perfectly. Such rhythms
are found throughout the world, and are most easily identified and incorporated in
music and dance. However, in many cultures, rhythms that are not perfectly even
are preferred. It is intuitively clear that the first rhythm is more even (well spaced)

than the second rhythm, and that the second rhythm is more even than the third
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rhythm. In fact, the second rhythm is the internationally most well known of all
African timelines. It is traditionally played on an iron bell, and is known mainly by
its Cuban name Bembé [171]. Traditional rhythms tend to exhibit such properties
of evenness to some degree. The reason for such evenness in traditional rhythms
is that many of these timelines often have a call-and-response structure, meaning
that the rhythmic pattern is divided into two parts: the first poses a rhythmic
question, usually by creating rhythmic tension, and the second part answers this
question by releasing that tension. One way of creating rhythmic tension is through
syncopation. Seyer et al. [150] define syncopation as “the shifting of an expected
accent, moving it from the usual strong beat to a beat that is usually weak”. This
definition implies that the rhythm (or meter) must create an ezpectation in order
to later break this expectation and introduce an element of surprise by moving the
accent to an unpredicted location. From a rhythmic perspective, moving an accent
may be accomplished by moving an onset from a strong beat to a weak one. Let us
for example consider the clave Son [X + - x - - x - « - x - x - - -]. The strong beats
of the underlying 4/4 meter occur at positions 0, 4, 8, and 12. This clave creates
rhythmic tension through syncopation, which appears twice in the clave; the first
is between the second and third onsets, and the second is between the third and
fourth onsets. The former syncopation is strong because the strong beat at position
4 is closer to the second onset than to the third onset, while the latter is weak
syncopation because the strong beat at position 8 lies halfway between the third and
fourth onsets [84]. Claves played with instruments that produce unsustained notes

often use syncopation and accentuation to bring about rhythmic tension. Many
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clave rhythms create syncopation by evenly distributing onsets in contradiction with
the pulses of the underlying meter. For example, in the clave Son, the first three
onsets are equally spaced at the distance of three sixteenth pulses, which forms a
contradiction because 3 does not divide 16. Then the response of the clave answers
with an offbeat onset, followed by an onset on the fourth strong beat of a 4/4 meter,
releasing that rhythmic tension.

On the other hand, a rhythm that is too even (most onsets are equally spaced),
such as the rhythm [x - X - X - X - x - x -], is less interesting from a syncopation
point of view. Indeed, in the most interesting rhythms with k onsets and times-
pan n, k and n are relatively prime. This property is natural because the rhythmic
contradiction is easier to obtain if the onsets do not coincide with the strong beats
of the meter. Also, we find that many timelines have an onset on the last strong
beat of the meter, as does the clave Son. This is a natural way to respond in the
call-and-response structure. A different case is that of the Bossa-Nova clave [x - -
X+ X+ -x-+x--]. This clave tries to break the feeling of the pulse and, al-
though it is very even, it produces a cycle that perceptually does not coincide with
the beginning of the meter.

The prevalence of evenness in world rhythms has led to the study of mathemat-
ical measures of evenness in the new field of mathematical ethnomusicology [37, 175,
176], where they may help to identify, if not explain, cultural preferences of rhythms
in traditional music. Furthermore, evenness in musical chords plays a significant role
in the efficacy of voice leading (creating simultaneous melodies by combining chords

with a series of notes) as discussed in the work of Tymoczko [90, 178].
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9

3 7 9 ) 7

(d) Rumba (e) Bossa—Nova (f) Gahu

Figure 4-1: The six fundamental African and Latin American rhythms which all have
equal sum of pairwise geodesic distances; yet intuitively, the Bossa-Nova rhythm is
more “even” than the rest.
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The notion of mazimally even sets with respect to scales represented on a circle
was introduced by Clough and Douthett [43]. According to Block and Douthett [23],
Douthett and Entringer went further by constructing several mathematical mea-
sures of the amount of evenness contained in a scale; see [23, page 40]. One of their
evenness measures simply sums the interval arc-lengths (geodesics along the circle)
between all pairs of onsets (or more precisely, onset points). This measure differ-
entiates between rhythms that differ widely from each other. For example, the two
4-onset thythms [X « + - x -+ X+« X+ Jand [X X X+ X+ ]
yield evenness values of 32 and 23, respectively, reflecting clearly that the first rhythm
is more evenly spaced than the second. However, the measure is too coarse to be
useful for comparing rhythm timelines such as those studied in [169, 171]. For ex-
ample, all six fundamental 4/4-time clave/bell patterns discussed in {169} and shown
in Figure 4-1 have an equal pairwise sum of geodesic distances, namely 48, yet the
Bossa-Nova clave is intuitively more even than, say, the Soukous and Rumba claves.
Jiang [? ] characterizes the configurations of points on a circle that maximize the
sum of arc distances and gives a linear-time algorithm to compute this sum for a
given pointset. This characterization explains why the sum of arc-lengths is not a
very sensitive measure of evenness.

Another distance measure that has been considered is the sum of pairwise
chordal distances between adjacent onsets, measured by Euclidean distance between
points on the circle. It can be shown that the rhythms maximizing this measure of

evenness are precisely the rhythms with maximum possible area. Rappaport [140]
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shows that many of the most common chords and scales in Western harmony corre-
spond to these maximum-area sets. This evenness measure is finer than the sum of
pairwise arc-lengths, but it still does not distinguish half the rhythms in Figure 4-1.
Specifically, the Son, Rumba, and Gahu claves have the same occurrences of arc-
lengths between consecutive onsets, so they also have the same occurrences (and
hence total) of distances between consecutive onsets.

The measure of evenness we consider here is the sum of all pairwise Euclidean
distances between points on the circle, as described by Block and Douthett {23]. It
is worth pointing out that Fejes Téth [167] showed in 1956 that a configuration of
points on a circle maximizes this sum when the points are the vertices of a regular
polygon. This measure is also more discriminating than the others, and is therefore
the preferred measure of evenness. For example, this measure distinguishes all of
the six rhythms in Figure 4-1, ranking the Bossa-Nova rhythm as the most even,
followed by the Son, Rumba, Shiko, Gahu, and Soukous. Intuitively, the rhythms
with a larger sum of pairwise chordal distances have more “well spaced” onsets.

In what follows, we first investigate the notion of maximum evennes in vari-
ous disciplines (Section 4.1). Then in Section 4.2, we study the mathematical and
computational aspects of rhythms that maximize evenness and characterize rhythms
with maximum evenness. Section 4.3 shows connections between maximally even and

Erdés-deep rhythms. We close the chapter with final remarks and open problems.

4.1 Euclid and Evenness in Various Disciplines
In this section, we first describe Euclid’s classic algorithm for computing the

greatest common divisor of two integers. Then, through an unexpected connection
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to timing systems in neutron accelerators, we see how the same type of algorithm can
be used as an approach to maximizing “evenness” in a binary string with a specified
number of zeroes and ones. This algorithm defines an important family of rhythms,
called Euclidean thythms, which appear throughout world music. Euclidean rhythms
are known by different names in several areas of mathematics. In the algebraic
combinatorics of words they are called Sturmian words [114]. Lunnon and Pleasants
call them two-distance sequences [116], and de Bruijn calls them Beatty sequences [57,
58]. See also the geometry of Markoff numbers [149]. In the remainder of the
section, we see how ideas similar to these rhythms have been used in algorithms
for drawing digital straight lines, designing calendars, and in combinatorial strings

called Euclidean strings.

4.1.1 The Euclidean Algorithm for Greatest Common Divisors

The Euclidean algorithm for computing the greatest common divisor of two
integers is one of the oldest known algorithms (circa 300 B.C.). It was first described
by Euclid in Proposition 2 of Book VII of Elements [69, 76]. Donald Knuth [107] calls
this algorithm the “granddaddy of all algorithms, because it is the oldest nontrivial
algorithm that has survived to the present day”.

The idea of the algorithm is simple: repeatedly replace the larger of the two
numbers by their difference until both are equal. This final number is then the
greatest common divisor. For example, consider the numbers 5 and 13. First, 13—5 =
8 then 8 — 5 = 3; next 5 —3 = 2; then 3 — 2 = 1; and finally 2 -1 =1. Therefore,
the greatest common divisor of 5 and 13 is 1; in other words, 5 and 13 are relatively

prime.
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The algorithm can also be described succinctly in a recursive manner as fol-

lows [52]. Let k and n be the input integers with k < n.

Algorithm EucLip(k,n)

1. if £ = 0 then return n

2. else return EucLID(n mod &, k)

Running this algorithm with £ = 5 and n = 13, we obtain EucLID(5,13) =
EucLip(3,5) = EucLip(2,3) = EucLID(1,2) = EucLiD(0,1) = 1. Note that this
division version of Euclid’s algorithm skips one of the steps (5, 8) made by the original

subtraction version.

4.1.2 Evenness in Timing Systems in Neutron Accelerator

One of our main musical motivations is to find rhythms with a specified timespan
and number of onsets that maximize evenness. Bjorklund [21, 22| was faced with a
similar problem of maximizing evenness, but in a different context: the operation of
components such as high-voltage power supplies of spallation neutron source (SNS)
accelerators used in nuclear physics. In this setting, a timing system controls a
collection of gates over a time window divided into n equal-length intervals (in the
case of SNS, each interval is 10 seconds). The timing system can send signals to
enable a gate during any desired subset of the n intervals. For a given number n
of time intervals, and another given number k < n of signals, the problem is to
distribute the pulses as evenly as possible among these n intervals. Bjorklund [22]
represents this problem as a binary sequence of k ones and n — k zeroes, where

each bit represents a time interval and the ones represent the times at which the
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timing system sends a signal. The problem then reduces to the following: construct
a binary sequence of n bits with k ones such that the k ones are distributed as evenly
as possible among the n — k zeroes.

One simple case is when k evenly divides n (without remainder), in which case
we should place ones every n/k bits. For example, if n = 16 and k = 4, then the
solution is [1000100010001000]. This case corresponds to n and k having a common
divisor of k. More generally, if the greatest common divisor between n and & is g,
then we would expect the solution to decompose into g repetitions of a sequence
of n/g bits. Intuitively, a string of maximum evenness should have this kind of
symmetry, in which it decomposes into more than one repetition, whenever such
symmetry is possible. This connection to greatest common divisors suggests that a
rhythm of maximum evenness might be computed using an algorithm like Euclid’s.
Indeed, Bjorklund’s algorithm closely mimics the structure of Euclid’s algorithm.

We describe Bjorklund’s algorithm by using one of his examples. Consider a
sequence with n = 13 and k = 5. Since 13 — 5 = 8, we start by considering a
sequence consisting of 5 ones followed by 8 zeroes which should be thought of as 13
sequences of one bit each:

[1]{2)[1}[2] (][0} [0} 0] [0}[0}{O] 0] [0]
If there is more than one zero the algorithm moves zeroes in stages. We begin by
taking zeroes one at a time (from right to left), placing a zero after each one (from
left to right), to produce five sequences of two bits each, with three zeroes remaining:

[10] [10] [10} [10] [10] [0] [0} [0]
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Next we distribute the three remaining zeros in a similar manner, by placing a [0]
sequence after each [10] sequence:
(100] [100] [100] [10] [10]
Now we have three sequences of three bits each, and a remainder of two sequences of
two bits each. Therefore we continue in the same manner, by placing a [10] sequence
after each [100] sequence:
(10010] [10010] [100]
The process stops when the remainder consists of only one sequence (in this case the
sequence [100]), or we run out of zeroes (there is no remainder). The final sequence
is thus the concatenation of [10010], [10010], and [100]:
[1001010010100]

We could proceed further in this process by inserting [100] into [10010] [10010].
However, Bjorklund argues that, because the sequence is cyclic, it does not matter
(hence his stopping rule). For the same reason, if the initial sequence has a group
of ones followed by only one zero, the zero is considered as a remainder consisting
of one sequence of one bit, and hence nothing is done. Bjorklund [22] shows that
the final sequence may be computed from the initial sequence using O(n) arithmetic
operations in the worst case.

A more convenient and visually appealing way to implement this algorithm by
hand is to perform the sequence of insertions in a vertical manner as follows. First

take five zeroes from the right and place them under the five ones on the left:
11111000

00000
Then move the three remaining zeroes in a similar manner:
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11111
00000

000
Next place the two remainder columns on the right under the two leftmost columns:

111
000
000
11

00
Here the process stops because the remainder consists of only one column. The final

sequence is obtained by concatenating the three columns from left to right:
1001010010100

Bjorklund’s algorithm applied to a string of n bits consisting of k£ ones and
n — k zeros has the same structure as running EucLID(k,n). Indeed, Bjorklund’s
algorithm uses the repeated subtraction form of division, just as Euclid did in his
Elements [69]. It is also well known that applying the algorithm EucLID(k,n) to
two O(n) bit numbers (binary sequences of length n) causes it to perform O(n)
arithmetic operations in the worst case [52]. The connection between the algorithms

of Bjorklund and Euclid is studied in further detail in Section 5.1.
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4.1.3 Euclidean Rhythms

The binary sequences generated by Bjorklund’s algorithm, as described in the
preceding, may be considered as one family of rhythms. Furthermore, because Bjork-
lund’s algorithm is a way of visualizing the repeated-subtraction version of the Eu-
clidean algorithm, we call these rhythms Fuclidean rhythms. The Euclidean algo-
rithm has been connected to music theory previously by Viggo Brun [31]. Brun used
the Euclidean algorithm to calculate the lengths of strings in musical instruments
between two lengths [ and 2!, so that all pairs of adjacent strings have the same
length ratios. In contrast, we relate the Euclidean algorithm to rhythms and scales
in world music.

Throughout the remainder of this thesis we denote the Euclidean rhythm by
E(k,n), where k is the number of ones (onsets) and n is the length of the se-
quence (number of pulses). For example, E(5,13) = [1001010010100]. The zero-
one notation is not ideal for representing binary rhythms because it is difficult
to visualize the locations of the onsets as well as the duration of the interonset
intervals. In the more iconic box notation, the preceding rhythm is written as
E(5,13) =[x+ - x - x + - x - X - - ]. It should be emphasized that Euclidean rhythms
are merely the result of applying Bjorklund’s algorithm and do not privilege a priori
the resulting rhythm over any of its other rotations.

The rhythm E(5,13) is in fact used in Macedonian music (8], but having a
timespan of 13 (and defining a measure of length 13), it is rarely found in world music.
For contrast, let us consider two widely used values of k and n; in particular, what is

E(3,8)? Applying Bjorklund’s algorithm to the corresponding sequence [11100000],
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® (b)

Figure 4-2: (a) The Euclidean rhythm F(3,8) is the Cuban tresillo. (b) The Eu-
clidean rhythm E(5,8) is the Cuban cinquillo.
the resulting Euclidean rhythm is E(3,8) = [x « - x - - x -]. Figure 4-2(a) shows
a clock diagram of this rhythm. The Euclidean rhythm E(3,8) is one of the most
famous on the planet. In Cuba, it goes by the name of the tresillo, and in the USA,
it is often called the Habanera rhythm. It was used in hundreds of rockabilly songs
during the 1950’s. It can often be heard in early rock-and-roll hits in the left-hand
patterns of the piano, or played on the string bass or saxophone [29, 74, 127]. A good
example is the bass thythm in Elvis Presley’s Hound Dog [29]. The tresillo pattern
is also found widely in West African traditional music. For example, it is played on
the atoke bell in the Sohu, an Ewe dance from Ghana [103]. The tresillo can also
be recognized as the first bar (first eight pulses) of the ubiquitous two-bar clave Son
shown in Figure 4-1(b).

In the two examples E(5,13) and E(3,8), there are fewer ones than zeros. If
instead there are more ones than zeros, Bjorklund’s algorithm yields the following

steps with, for example, k = 5 and n = &:
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11111000]
[10] 10 [10] [1] [1]
[101] [101] [10]
[10110110]

The resulting Euclidean rhythm is E(5,8) = [x - xx - xx -|. Figure 4-2(b)
shows a clock diagram for this rhythm. It is another famous rhythm. In Cuba, it
goes by the name of the cinquillo and it is intimately related to the tresillo [74]. It
has been used in jazz throughout the 20th century [139], and in rockabilly music.
For example, it is the hand-clapping pattern in Elvis Presley’s Hound Dog [29]. The
cinquillo pattern is also widely used in West African traditional music [137, 169], as
well as Egyptian [89] and Korean [98] music.

We show in this chapter that Euclidean rhythms maximize evenness, which

should come as no surprise given how we designed the family of rhythms.

4.1.4 Euclidean Rhythms in Traditional World Music

In this section, we list all the Euclidean rhythms found in world music that we
have collected so far, restricting attention to those in which k and n are relatively
prime. In some cases, the Euclidean rhythm is a rotated version of a commonly used
rhythm; this makes the two rhythms instances of the same necklace. Figure 4-3
illustrates an example of two rhythms that are instances of the same necklace. We
provide this list because it is iAnteresting ethnomusicological data on rhythms. We
make no effort to establish that Euclidean rhythms are more common than their
rotations, and leave the problem of defining which rhythms are preferred over others

as an open problem to ethnomusicologists.
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Figure 4-3: These two rhythms are instances of the same rhythm necklace.

Rhythms in which k£ and n have a common divisor larger than 1 are common all
over the planet in traditional, classical, and popular genres of music. For example,
E(4,12) =[x+ - x - - x - - x - -]is the 12/8-time Fandango clapping pattern in the
Flamenco music of southern Spain, where ‘x’ denotes a loud clap and ‘ -’ denotes a
soft clap [63]. However, the string itself is periodic. A sequence {ag,a1,...,an_1} is
said to be periodic with period p if it satisfies a; = @(itp) mod n for the smallest possible
value of p < n and for all i = 0,...,n — 1. In our example, E(4,12) is periodic with
period 3, even though it appears in a timespan of 12. For this reason, we restrict
ourselves to the more interesfing Euclidean rhythms that do not decompose into
repetitions of shorter Euclidean rhythms. We are also not concerned with rhythms
that have only one onset ([x -], [x - -], etc.), and similarly with any repetitions of
these rhythms (for example, [x - x - ]).

There are surprisingly many Euclidean rhythms with £ and n relatively prime
that are found in world music. Appendix A includes more than 40 such rhythms

uncovered so far.
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4.1.5 Aksak Rhythms

Euclidean rhythms are closely related to a family of rhythms known as aksak
rhythms, which have been studied from the combinatorial point of view for some
time [8, 26, 42]. Béla Bartok [14] and Constantin Brailoiu [26], respectively, have
used the terms Bulgarian thythm and aksak to refer to those meters that use units
of durations 2 and 3, and no other durations. Furthermore, the rhythm or meter
must contain at least one duration of length 2 and at least one duration of length 3.
Arom |[8] refers to these durations as binary cells and ternary cells, respectively.

Arom (8] generated an inventory of all the theoretically possible aksak rhythms
for values of n ranging from 5 to 29, as well as a list of those that are actually used
in traditional world music. He also proposed a classification of these rhythms into
several classes, based on structural and numeric properties. Three of his classes are
considered here:

1. An aksak rhythm is authentic if n is prime.
2. An aksak rhythm is quasi-aksak if n is odd but not prime.
3. An aksak rhythm is pseudo-aksak if n is even.

A quick perusal of the Euclidean rhythms listed in Appendix A reveals that aksak
rhythms are well represented. Indeed, all three of Arom’s classes (authentic, quasi-
aksak, and pseudo-aksak) make their appearance. There is a simple characterization
of those Euclidean rhythms that are aksak. From the iterative subtraction algorithm
of Bjorklund it follows that if n = 2k all cells are binary (duration 2). Similarly, if

n = 3k all cells are ternary (duration 3). Therefore, to ensure that the Euclidean
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rhythm contains both binary and ternary cells, and no other durations, it follows
that 7 must be between 2k and 3k.

Of course, not all aksak rhythms are Euclidean. Consider the Bulgarian rhythm
with interval sequence (3322) [8], which is also the metric pattern of Indian Lady
by Don Ellis [104]. Here k = 4 and n = 10, and E(4,10) = [x - - X - x - - X -] or
(3232), a periodic rhythm.

Appendix B lists some examples of Aksak rhythms.

4.1.6 Drawing Digital Straight Lines

Euclidean rhythms and necklace patterns also appear in the computer graph-
ics literature on drawing digital straight lines [105]. The problem here consists of
efficiently converting a mathematical straight line segment defined by the z and y
integer coordinates of its endpoints, to an ordered sequence of pixels that most faith-
fully represents the given straight line segment. Figure 4-4 illustrates an example
of a digital straight line (shaded pixels) determined by the two given endpoints p
and g. All the pixels intersected by the segment (p,q) are shaded. If we follow either
the lower or upper boundary of the shaded pixels from left to right we obtain the
interval sequences (43333) or (33334), respectively. Note that the upper pattern cor-
responds to E(5,16), a Bossa-Nova variant. Indeed, Harris and Reingold [93] show
that the well-known Bresenham algorithm [28] is described by the Euclidean algo-
rithm. Reinhard Klette and Azriel Rosenfeld [105] have written an excellent survey
of the properties of digital straight lines and their many connections to geometry

and number theory.
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po 4 8 12 16
Figure 4-4: The shaded pixels form a digital straight line determined by the points
p and gq.
4.1.7 Calculating Leap Year in Calendar Design

For thousands of years human beings have observed and measured the time it
takes between two consecutive sunrises, and between two consecutive spring seasons.
These measurements inspired different cultures to design calendars [10, 142]. Let T,
denote the duration of one revolution of the earth around the sun, more commonly
known as a year. Let Ty denote the duration of one complete rotation of the earth,
more commonly known as a day. The values of T}, and T} are of course continually
changing, because the universe is continually reconfiguring itself. However the ratio
T,/Tqy is approximately 365.242199..... It is very convenient therefore to make a year
last 365 days. The problem that arises both for history and for predictions of the
future, is that after a while the 0.242199..... starts to contribute to a large error. One
simple solution is to add one extra day every 4 years: the so-called Julian calendar.
A day with one extra day is called a leap year. But this assumes that a year is
365.25 days long, which is still slightly greater than 365.242199...... So now we have
an error in the opposite direction albeit smaller. One solution to this problem is

the Gregorian calendar [151]. The Gregorian calendar defines a leap year as one
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divisible by 4, except those divisible by 100, except those divisible by 400. With
this rule a year becomes 365 + 1/4 - 1/100 + 1/400 = 365.2425 days long, a better
approximation.

Another solution is provided by the Jewish calendar which uses the idea of
cycles [10]. Here a regular year has 12 months and a leap year has 13 months. The
cycle has 19 years including 7 leap years. The 7 leap years must be distributed as
evenly as possible in the cycle of 19. The cycle is assumed to start with Creation -as
year 1. If the year modulo 19 is one of 3, 6, 8, 11, 14, 17, or 19, then it is a leap
year. For example, the year 5765 = 303 - 19 + 8 and so is a leap year. The year
5766, which begins at sundown on the Gregorian date of October 3, 2005, is 5766 =
303x19 + 9, and is therefore not a leap year. Applying Bjorklund’s algorithm to the
integers 7 and 19 yields E(7,19) = [x - - X+ X - + X+ « X - X - - x - - |. If we start
this rhythm at the 7th pulse we obtain the pattern [« - x - - x X - - XX -
x - x], which describes precisely the leap year pattern 3, 6, 8, 11, 14, 17, and 19 of
the Jewish calendar. In this sense the Jewish calendar is an instance of a Euclidean

necklace.

4.1.8 Euclidean Strings

In this section we explore the relationship between Euclidean rhythms and Eu-
clidean strings, which were introduced by Ellis et al. [66] as part of the study of the
combinatorics of words and sequences. We use the same terminology and notation
introduced in [66]. Euclidean strings result from a mathematical algorithm and rep-

resent a different arbitrary convention as to how to choose a canonical rhythm that
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Figure 4-5: Two right-rotations of the Bembé string: (a) the Bembé, (b) rotation by
one unit, (¢) rotation by seven units.

represents the necklace. Whether there is anything musically meaningful about these
conventions is left to ethnomusicologists to decide.

Let P = (po,p1,...,Pn_1) denote a string of non-negative integers. Let p(P)
denote the right rotation of P by one position; that is, p(P) = (Pn-1,P0,P1, -+» Pn—2)-
Let p?(P) denote the right rotation of P by d positions. If P is considered as a cyclic
string, a right rotation corresponds to a clockwise rotation. Figure 4-5 illustrates
the p(P) operator with P equal to the Bembé bell-pattern of West Africa [171].
Figure 4-5(a) shows the Bembé bell-pattern, Figure 4-5(b) shows p(P), which is a
hand-clapping pattern from West Africa [134], and Figure 4-5(c) shows p"(P), which
is the Tambu rhythm of Curagao [147].

Ellis et al. [66] define a string P = (po,p1, ..., Prn-1) to be Euclidean if incre-
menting pp by 1 and decrementing p,_; by 1 yields a new string 7(P) that is the
rotation of P. In other words, P and 7(P) are instances of the same necklace.

Therefore, if we represent rhythms as binary sequences, Euclidean rhythms cannot
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be Euclidean strings because all Euclidean rhythms begin with a ‘one’. Increas-
ing py by one makes it a ‘two’, which is not a binary string. Therefore, to explore
the relationship between Euclidean strings and Euclidean rhythms, we will repre-
sent rhythms by their clockwise distance sequences, which are also strings of non-
negative integers. As an example, consider E(4,9) = [x - X - x - X - -] = (2223).
Now 7(2223) = (3222), which is a rotation of E(4,9), and thus (2223) is a Euclidean
string. Indeed, for P = E(4,9), 7(P) = p3(P). As a second example, consider the
West African clapping-pattern shown in Figure 4-5(b) given by P = (1221222). We
have 7(P) = (2221221) = p®(P), the pattern shown in Figure 4-5(c), which also
happens to be the mirror image of P about the (0,6) axis. Therefore P is a Eu-
clidean string; however, note that P is not a Euclidean rhythm. Nevertheless, P is
a rotation of the Euclidean rhythm E(7,12) = (2122122).

Ellis et al. [66] have many results about Euclidean strings. They show that
Euclidean strings exist if, and only if, n and py + p1 + ... + Pn—1 are relatively prime,
and that when they exist they are unique. They also show how to construct Euclidean
strings using an algorithm that has the same structure as the Euclidean algorithm.
In addition they relate Euclidean strings to many other families of sequences studied
in the combinatorics of words [2, 114].

Let R(P) denote the reversal (or mirror image) of P; that is, R(P) = (Pn-1,
Dn-2,...,P1,00). Now we may determine which of the Euclidean rhythms used
in world music listed in Appendix A, are Euclidean strings or reverse Euclidean
strings. The length of a Euclidean string is defined as the number of integers it con-

tains. In the rhythm domain, this translates to the number of onsets in a rhythm.
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Furthermore, strings of length one are Euclidean strings, trivially. Therefore all
the trivial Euclidean rhythms with only one onset, such as E(1,2) = [x -] = (2),
E(1,3) =[x -] =(3),and E(1,4) = [x - - -] = (4), etc., are both Euclidean strings
as well as reverse Euclidean strings. Appendix C gives a list of Euclidean rhythms
that are also Euclidean strings.

The Euclidean rhythms that often appear in classical music and jazz are also
Euclidean strings (the first group of Appendix C). Furthermore, this group is not
popular in African music. The Euclidean rhythms that are neither Euclidean strings
nor reverse Euclidean strings (group three of the appendix) fall into two categories:
those consisting of clockwise distances 1 and 2, and those consisting of clockwise
distances 2 and 3. The latter group is used only in Bulgaria, and the former is used in
Africa. Finally, the Euclidean rhythms that are reverse Euclidean strings (the second
group of the appendix) appear to have a much wider use. Finding musicological
explanations for these mathematical properties raises interesting ethnomusicological
questions.

The Euclidean strings defined in [66] determine another family of rhythms, many
of which are also used in world music but are not necessarily Euclidean rhythms. For
example, (1221222) is an Afro-Cuban bell pattern. Therefore it would be interest-
ing to explore empirically the relation between Euclidean strings and world music
rhythms, and to determine formally the exact mathematical relation between Eu-

clidean rhythms and Euclidean strings.
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4.2 Algorithms and Characterization of Maximally Even Rhythms

In this section we first describe three algorithms that generate even rhythms.
We then characterize rhythms with maximum evenness and show that, for given
numbers of pulses and onsets, the three described algorithms generate the unique
rhythm with maximum evenness. As mentioned earlier, the measure of evenness
considered here is the pairwise sum of chordal distances. More formally, it is

Z d(r,75).
0<i<j<k~1

The even rhythms characterized in this section were studied by Clough and
Meyerson [45, 46] for the case where the numbers of pulses and onsets are relatively
prime. This was subsequently expanded upon by Clough and Douthett [43]. We
revisit these results and provide an additional connection to rhythms (and scales)
that are obtained from the Euclidean algorithm. Most of these results are stated

in [43]. However our proofs are new, and in many cases are more streamlined.

4.2.1 Characterization
We first present three algorithms for computing a rhythm with k onsets, times-
pan n, for any k < n, that possess large evenness.

The first algorithm is by Clough and Douthett [43]:

Algorithm CLOUGH-DOUTHETT(k,n)

1. return {|2] :i € [0,k —1]}

Since ¥ < n, the rhythm output by CLOUGH-DOUTHETT(k,n) has k onsets as

desired.
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The second algorithm is a geometric heuristic implicit in the work of Clough

and Douthett [43]:

Algorithm SNAP(k,n)

1. Let D be a set of k evenly spaced points on C, such that DNC,, = 0.
2. For each point z € D, let z’ be the first point in C, clockwise from z.

3. return {z': z € D}

Since k < n, the clockwise distance between consecutive points in D in the execution

of SNAP(k,n) is at least that of consecutive points in Cy,. Thus, =’ # y' for distinct

z,y € D, so SNAP returns a rhythm with k onsets as desired.

The third algorithm is a recursive algorithm in the same mold as Euclid’s al-

gorithm for greatest common divisors. The algorithm uses the clockwise distance

sequence notation described in the introduction. The resulting rhythm always de-

fines the same necklace as the Euclidean rhythms from Section 4.1.3; that is, the

only difference is a possible rotation.

Algorithm EUCLIDEAN(k,n)

1. if k evenly divides n then return (3,%,...,

2. a —nmodk

n

)

>3

N ——’
k

3. (z1,72,...,2,) < EUCLIDEAN(a, k)
4 xeturn (12, 120 1210 20, (21 T2 oo 12, L2 T2D)
b_-\’1_/ 1 1
r1— To— Tq—
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As a simple example, consider £ = 5 and n = 13. The sequence of calls
to EUCLIDEAN(k,n) follows the same pattern as the EUCLID algorithm for great-
est common divisors from Section 4.1.1, except that it now stops one step earlier:
(5,13), (3,5), (2,3), (1,2). At the base of the recursion, we have EUCLIDEAN(1,2) =
(2) = [x -]. At the next level up, we obtain EUCLIDEAN(2,3) = (1,2) = [xx -].
Next we obtain EUCLIDEAN(3,5) = (2;1,2) = [x - xx -]. Finally, we obtain Eu-
CLIDEAN(5,13) = (2,3;3;2,3) = [x - x - - x - - x.x- -]. (For comparison, the
Euclidean rhythm from Section 4.1.2 is E(5,13) = (2, 3,2, 3, 3), a rotation by 5).

We now show that algorithm EUCLIDEAN(k, n) produces a circular sequence of k
integers that sum to n (which is thus the clockwise distance sequence of a rhythm
with k onsets and timespan n). We proceed by induction on k. If k£ evenly divides n,
then the claim clearly holds. Otherwise a (= nmod k) > 0, and by induction

Z?=1 z; = k. Thus the sequence that is produced has k terms and sums to
o[F]+ 3 S -n=e[f] v ol
{1+ 3] +-a3

The following theorem is the main contribution of this chapter.
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Theorem 4.2.1. Let n > k > 2 be integers. The following are equivalent for a
rhythm R = {ro,T1,...,Tk-1}n With k onsets and timespan n:

(A) R has mazimum evenness (sum of pairwise interonset chordal distances);

(B) R is a rotation of the CLOUGH-DOUTHETT(k,n) rhythm,

(C) R is a rotation of the SNAP(k,n) rhythm;

(D) R is a rotation of the EUCLIDEAN(k,n) rhythm,; and

(%) for all £ € [1,k] and i € [0,k — 1], the ordered pair (ri,7iye) has clockwise

distance 2(ri,ri+g) e {l&],T%1}.

Moreover, up to a rotation, there is a unique rhythm that satisfies these conditions.

Note that the evenness of a rhythm equals the evenness of the same rhythm
played backwards. Thus, if R is the unique rhythm with maximum evenness, then
R is the same rhythm as R played backwards (up to rotation).

The proof of Theorem 4.2.1 proceeds as follows. In Section 4.2.2 we prove that
each of the three algorithms produces a rhythm that satisfies property (x). Then
in Section 4.2.3 we prove that there is a unique rhythm that satisfies property (x).
Thus the three algorithms produce the same rhythm, up to rotation. Finally in
Section 4.2.4 we prove that the unique rhythm that satisfies property (*) maximizes

evenness.

4.2.2 Properties of the Algorithms
We now prove that each of the algorithms has property (x). Clough and Dou-

thett [43] proved the following.
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Proof (B) = (). Say R = {ro,71,...,Tk—1}n is the CLOUGH-DOUTHETT(k, n) rhythm.

Consider an ordered pair (r;,7;4¢) of onsets in R. Let p; = in mod k and let
pe = ¢nmod k. By symmetry we can assume that 7; < 7(;3¢)moa k- Then the

o]
clockwise distance d(r;, 7i1¢) is

Sl s M o e R G S e R

which is [ 2] or [£], because |&£2| € {0,1}. a

A similar proof shows that the rhythm {[2] : ¢ € [0, k—1]} satisfies property (x).
Observe that (%) is equivalent to the following property.
(%%) If (do,dy, ..., dk—1) is the clockwise distance sequence of R, then for all £ € [1, k],

the sum of any # consecutive elements in (do,d1, ..., dk—1) equals [£] or |£].

Proof (C) = (x*). Let (dp,d1,...,dr—1) be the clockwise distance sequence of the
rhythm determined by SNAP(k,n). For the sake of contradiction, suppose that for
some £ € [1,k|, the sum of £ consecutive elements in (do,dy,...,dx_1) is greater
than [£]. The case in which the sum is less than |£] is analogous. We can
assume that these £ consecutive elements are (dg,d,...,d¢-1). Using the notation
defined in the statement of the algorithm, let zg, z1, ..., x¢ be the points in D such
that 3(zfi,x;+1) = d; for all © € [0,£ — 1]. Thus 3(x'1,x;+1) > [2] + 1. Now
?i(:cul,xgﬂ) < 1. Thus ?l(x’l,aw“) > [2] > & which implies that g(l‘1,$e+1) > &
This contradicts the fact that the points in D were evenly spaced around C, in the

first step of the algorithm. O
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Proof (D) = (%x). We proceed by induction on k. Let R = EUCLIDEAN(k,n). If k
evenly divides n, then R = (%,%,...,%), which satisfies (D). Otherwise, let a =
n mod k and let (z1,2s,...,7,) = EUCLIDEAN(a, k). By induction, for all £ € [1,a],
the sum of any ¢ consecutive elements in (z1, z9, . . ., Z,) equals L%J or [%] Let S be
a sequence of m consecutive elements in R. By construction, for some 1 <7 <7 < q,
and for some 0 < s <z; —1and 0 <t < z; — 1, we have
§= (oo BT Bl LBL TR (B LBL TR L) (2
~ e — < 5

e — e —
s Tiy1—1 zj—1~1 t

It remains to prove that |22] < 355 < [22].
We first prove that 5°.5 > |22|. We can assume the worst case for 3 S to be

minimal, which is when s = z; — 1 and ¢t = z; — 1. Thus by induction,

m+1—2:ca_ [_Z___’L)’ﬂ

Hence,

am _a[(—t+1)k a _af(j—-it+lk+a-1 a , 1
me _2<2 i, -,
k‘"k[ a K=k a A

Thus |[4*] < j — i and

T = nlf]+s-
2 ] L5 - o)) - L L )] - L
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Now we prove that Y S < [%J We can assume the worst case for D S to be

maximal, which is when s = 0 and ¢t = 0. Thus by induction,

m—1= iwaz[(f_‘l&‘_l)ﬁ}

a=i+1
Hence
am _a|(G—-t-1)k a_af(—-i—-1k—-—a+1 a 1
> 2> 2 S B B
PR a IR . T e

4.2.3 Uniqueness

In this section we prove that there is a unique rhythm satisfying the conditions
in Theorem 4.2.1. The following well-known number-theoretic lemmas will be useful.
Two integers = and y are inverses modulo m if zy = 1 (mod m).
Lemma 4.2.2 ([162, page 55]). An integer = has an inverse modulo m if and only
if ¢ and m are relatively prime. Moreover, if © has an inverse modulo m, then it has
an inverse y € [1,m — 1].
Lemma 4.2.3. Ifz and m are relatively prime, then iz # jz (mod m) for all distinct

i,jelo,m—1].
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Proof. Suppose iz = jz (mod m) for some i,j € [0,m — 1]. By Lemma 4.2.2, z has

an inverse modulo m. Thus i = j (mod m), and i = j because 7,5 € [0,m —1]. O

Lemma 4.2.4. For all relatively prime integers n and k with 2 < k < n, there is an
integer £ € [1,k — 1] such that:

(a) ¢n =1 (mod k),

(b) il # j¢ (mod k) for all distinct i,j € [0,k — 1], and

(c) il&] # j| %] (mod n) for all distinct 4,5 € [0,k —1].

Proof. By Lemma 4.2.2 with £ = n and m = k, n has an inverse £ modulo k.

This proves (a). Thus k and ¢ are relative prime by Lemma 4.2.2 with z = £ and

m = k. Hence (b) follows from Lemma 4.2.3. Let ¢ = [£|. Then ¢n = kt + 1. By

Lemma 4.2.3 with m = n and z = ¢ (and because k < n), to prove (c) it suffices to

show that ¢ and n are relatively prime. Let g = ged(¢,n). Thus €% = ké + é. Since

< and :—J are integers, é is an integer and g = 1. This proves (c). d
The following theorem is the main result of this section.

Theorem 4.2.5. For all integers n and k with 2 < k < n, there is a unique rhythm

with k onsets and timespan n that satisfies property (x), up to a rotation.

Proof. Let R = {ro,T1,...,Tk-1}n be a k-onset rhythm that satisfies (x). Recall that
the index of an onset is taken modulo k, and that the value of an onset is taken
modulo n. That is, r; = z means that 7; pod x = £ mod n.

Let g = ged(k,n). We consider three cases for the value of g.
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Case 1. g = k: Since R satisfies property (x) for £ = 1, every ordered pair
(r:,Tis1) has clockwise distance }. By a rotation of R we may assume that ro = 0.
Thus r; = % for all ¢ € [0,k — 1]. Hence R is uniquely determined in this case.

Case 2. g = 1 (see Figure 4-6): By Lemma 4.2.4(a), there is an integer
¢ € [1,k—1] such that én = 1 (mod k). Thus ¢n = (k—1)| %]+ [%]. Hence, of the
k ordered pairs (r;,7i+¢) of onsets, k — 1 have clockwise distance |£| and one has
clockwise distance [%] By a rotation of R we may assume that ro = 0 and 74, =
n-— [%”] Thus 7y = z[%"] for all i € [0, k — 1]; that is, T(i¢) mod ¥ = (z[%"]) mod n. By
Lemma 4.2.4(b) and (c), this defines the k distinct onsets of R. Hence R is uniquely

determined in this case.

Figure 4-6: Here we illustrate Case 2 with n = 12 and k = 7. Thus £ = 3 because
3x 12 =1 (mod 7). We have [£2] = 6 and |§*] = 5. By a rotation we may assume
that 7o = 0 and rx,_, = r4 = 6 (the blue or darker dots). Then as shown by the
arrows, the positions of the other onsets are implied.

Case 3. g € [2,k—1] (see Figure 4-7): Let &' = § and let n’ = 2. Observe that

both k' and n’ are integers. Since R satisfies (x) and [£2] = |E2| = n/, we have
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0
d(ri,risw) = n' for all i € [0,k — 1]. Thus

Tikrj = 0 +7; (4.1)

for alli € [0,g — 1] and j € [0,n' — 1].

Now ged(n, k') = 1 by the maximality of g. By Lemma 4.2.4(a), there is an
integer £’ € [1,k’ — 1] such that #n’ =1 (mod &'). Thus £'n’ = (k' — e’"’] + [[ 7,
implying ¢n = (k — g) J + g[‘Z ‘1. Hence, of the k ordered pairs (r;,7iye) Of
onsets, k — g have clockwise distance |42 | and g have clockwise distance [£%-]. By
a rotation of R we may assume that 7o = 0 and r¢ = [£2-]. By Equation (4.1) with

j =0and j=/¢, we have
Tik! = in' and Tik! 40 = in' + [%] (4‘2)

for all 4 € [0,g — 1]. This accounts for the g ordered pairs (r;,7iyer) with clockwise

distance [gkl,‘—'] The other k — ¢ ordered pairs (r;, 7i+¢) have clockwise distance | ;c’," .
Define
Ly=0and L; = [£¥] + (- 1) |é% | for all j € [1,K' —1] .
Thus by Equation (4.2),
Tawje =in' + Lj

for all i € [0,¢g — 1] and j € [0,k — 1]; that is, rr4jer) moa k = (0 + L;) mod n.
To conclude that R is uniquely determined, we must show that over the range
€ [0,g — 1] and j € [0,k" — 1], the numbers ik’ + j¢' are distinct modulo £, and the

numbers in’ + L; are distinct modulo n.
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Figure 4-7: Here we illustrate Case 3 withn = 15and k = 9. Thus g = 3,n’ = 5 and
k' = 3. We have ¢ = 2 because 2 x 5 = 1 (mod 3). Thus [£X] =4 and €2 ) = 3.
We have Ly = 0, L; = 4 and Ly = 7. A rotation fixes the first g = 3 onsets (the blue
or darker). As shown by the arrows, these onsets imply the positions of the next
three onsets (medium or green dots), which in turn imply the positions of the final
three onsets (the light or yellow dots).

First we show that the numbers ik’ + j£' are distinct modulo k. Suppose that
ik’ + €' = pk’ + j¢' (mod k) (4.3)

for some i,p € [0,g — 1] and j,q € [0,k' — 1]. Since k = k'g, we can write (ik’ +

4£) mod k as a multiple of k¥’ plus a residue modulo &’. In particular,
(ik' + j¢) mod k = ¥’ ((i +[]) mod g) + (j¢ mod k) .
Thus Equation (4.3) implies that

K’ ((z + Ll,fT' ) mod g) +(j¢ mod k') = k' ((p + L"k—e,'J) mod g) +(q¢' mod k') . (4.4)
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Hence j# = qf' (mod k'). Thus j = q by Lemma 4.2.4(c). By substituting j = g into
Equation (4.4), it follows that i = p (mod g). Thus ¢ = p because i,p € [0,9 — 1].
This proves that the numbers ik’ + j¢' are distinct modulo k.
Now we show that the numbers in’ + L; are distinct modulo n. The proof is
similar to the above proof that the numbers ik’ + j¢' are distinct modulo k.
Suppose that
in' + L; = pn’ + Ly (mod n) (4.5)

for some i,p € [0,g — 1] and j,q € [0,k —1]. Since n = n’.g, we can write

(in’ + L;) mod n as a multiple of n’ plus a residue modulo n’. In particular,
(in’ + L;) mod n = n/ ((z + {%J) mod g) + (L; mod n') .
Thus Equation (4.5) implies that

n' ((z + H%J) mod g) + (L mod n') = n/ ((p + [%J) mod g) + (L, mod n') .
(4.6)
Hence L; = L, (mod n’). We claim that j = ¢. If j = 0 then L; = 0, implying
L, =0 and ¢ = 0. Now assume that j,¢ > 1. In this case, L; = j %’,‘—'J + 1 and

L,=q|% )+ 1. Thus

Hence j = g by Lemma 4.2.4(c). By substituting j = ¢ into Equation (4.6), it follows
that 1 = p (mod g). Thus i = p because i,p € [0, g—1]. This proves that the numbers
in’ + L; are distinct modulo n.

Therefore R is uniquely determined. O
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We have shown that each of the three algorithms generates a rhythm with prop-
erty (x), and that there is a unique rhythm with property (x). Thus all of the
algorithms produce the same rhythm, up to rotation. It remains to prove that this

rhythm has maximum evenness.

4.2.4 Rhythms with Maximum Evenness

We start with a technical lemma. Let v,w be points at geodesic distance d
on a circle C. Clearly, d(v,w) is a function of d, independent of v and w. Let
f(C,d) = d(v,w).
Lemma 4.2.6. For all geodesic lengths T < d on a circle C, we have f(C,z) +
f(C,d—z) <2 f(C, %), with equality only if d = 2z.

Proof. We may assume that C is a unit circle. Consider the isosceles triangle formed
by the center of C and a geodesic of length d (< 7). We have $f(C,d) = sin%.
Thus f(C,d) = 2sin &. Thus our claim is equivalent to sinz + sin(d — z) < 2sin 4
for all z < d (< 7/2). In the range 0 < z < d, sinz is increasing, and sin(d — z) is

decreasing at the opposite rate. Thus sin z +sin(d — z) is maximized when z = d —z.

That is, when d = 2z. The result follows. 0

For a rhythm R = {ro,71,...,Tk—1}n, for each £ € [L,k], let S(R,¢) be the
sum of chordal distances taken over all ordered pairs (r;,7;4¢) in R. That is, let
S(R,¢) = Zf;ol d(ri,Tire). Property (A) says that R maximizes Zle S(R,¢). Before
we characterize rhythms that maximize the sum of S(R,£), we first concentrate

on rhythms that maximize S(R,£) for each particular value of £. Let D(R,¢) be

o}
the multiset of clockwise distances {d(ri,r+¢) : ¢ € [0,k — 1]}. Then S(R,£) is
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determined by D(R,£). In particular, S(R,£) = Y {f(Cr,d) : d € D(R,{)} (where
{f(C,,d) : d € D(R,{)} is a multiset).
Lemma 4.2.7. Let1 < ¢ < k < n be integers. A k-onset thythm R = {ro,71,...,Tk=1}n

0 o]
mazimizes S(R, £) if and only if |d(ri, Tiye) — d(rj,7j4e)| < 1 for alli,j € [0,k - 1].

Proof. Suppose that R = {rg,71,...,Tk-1}n maximizes S(R,£). Let d; = col(r,-,ng)
for all i € [0,k — 1]. Suppose on the contrary that d, > d, + 2 for some p,q €
[0,k — 1]. We may assume that ¢ < p, d, = d; + 2, and d; = dg + 1 for all
i € [g+1,p—1]. Define 7, = r; + 1 for all ¢ € [g+ 1,p], and define r; = r; for all
other i. Let R’ be the rhythm {r},7,...,7%_;}n. Thus D(R,€)\ D(R',£) = {dp,d,}
and D(R',¢)\ D(R,£) = {d, — 1,dy +1}. Now d, — 1 = dg+ 1 = }(d, + dy). By
Lemma 4.2.6, f(Cp,dp) + f(Cnydg) < 2+ f(Cn, 3(dp + dg). Thus S(R,£) < S(R', ),
which contradicts the maximality of S(R, £).

For the converse, let R be a rhythm such that |g(ri,ri+g) - 3(Tj,rj+[)l <1 for
all 4,7 € [0,k —1]. Suppose on the contrary that R does not maximize S (R,£). Thus
some rhythm T = (to,t1,...,tx_1) maximizes S(T,¢) and T # R. Hence D(T\,¢) #
D(R,?). Since . D(R,¢) = Y D(T,¢) (= £n), we have g(ti,ti+g) - (oi(tj,tj+[) >2
for some i,j € [0,k — 1]. As we have already proved, this implies that T does not

maximize S(T,£). This contradiction proves that R maximizes S(R, ). a

Since Zi-:ol ?l(r,-,riJrg) = {¢n for any rhythm with £ onsets and timespan n,
Lemma 4.2.7 can be restated as follows.
Corollary 4.2.8. Let1 < £ < k < n be integers. A k-onset rhythm R = {ro,71,. .. yTk=1}n
mazimizes S(R,£) if and only if 3(ri,ri+e) € {[2], 2]} forallic[0,k—1]. O
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Proof (x) = (A). If (%) holds for some rhythm R, then by Corollary 4.2.8, R max-
imizes S(R, ¢) for every £. Thus R maximizes y_, S(R,?). O

Proof (A) = (x). By Theorem 4.2.5, there is a unique rhythm R that satisfies prop-
erty (x). Let R denote the unique rhythm that satisfies property (x). Suppose on
the contrary that there is a rhythm T = (¢o,t1,...,tk—1) With property (A) but
R # T. Thus there exists an ordered pair (t;,t;1+¢) in T with clockwise distance
3(t,~,t,~+g ¢ {|2],[21}. By Corollary 4.2.8, S(T,£) < S(R,£). Since T has prop-
erty (A), Sb_, S(T,£) > 35, S(R, ). Thus for some ¢ we have S(T,¢') > S(R,?).
But this is a contradiction, because S(R,¢') > S(T,¢') by Corollary 4.2.8. O

This completes the proof of Theorem 4.2.1. We now show that Theorem 4.2.1
can be generalized for other metrics that satisfy Lemma 4.6. To formalize this idea
we introduce the following definition. A function g : [0, 7] — R* U {0} is halving if
for all geodesic lengths £ < d < 7 on the unit circle, g(z) + g(d —z) < 2- g(g), with
equality only if d = 2z. For example, chord length is halving, but geodesic distance
is not (because we have equality for all z). Observe that the proof of Lemma 4.2.7
and Corollary 4.2.8 depend on this property alone. Thus we have the following
generalization of Theorem 4.2.1.

Theorem 4.2.9. Let n > k > 2 be integers. Let g be a halving function. The
following are equivalent for a rhythm R = (ro,71,...,7Tk—1) with n pulses and k
onsets:

(A) R mazimises 31—, Z] e 9( T,,’rj)),

(B) R is determined by the CLOUGH-DOUTHETT(k,n) algorithm,

(C) R is determined by the SNAP(k,n) algorithm,
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(D) R is determined by the EUCLIDEAN(k,n) algorithm,
(x) for all £ € [1,k] and i € [0,k — 1], the ordered pair (ri,riye) has clockwise
distance d(ri,mive) € {| 2], T%1}.

Moreover, up to a rotation, there is a unique rhythm that satisfies these conditions.

4.3 Connection Between Deep and Even Rhythms

A connection between maximally even scales and Winograd-deep scales is shown
by Clough et al. [44]. They define a diatonic scale to be a maximally even scale with
k = (n+2)/2 and n a multiple of 4. They show that diatonic scales are Winograd-
deep. We now prove a similar result for Erdés-deep rhythms.
Lemma 4.3.1. A rhythm R of mazimum evenness satisfying k < |n/2] + 1 is

Erdés-deep if and only if k and n are relatively prime.

Proof. Recall that by property (x) one of the unique characterizations of an even
rhythm of maximum evenness can be stated as follows. For all 1 < £ < k, and
for every ordered pair (r;,7:+¢) of onsets in R, the clockwise distance ?l(ri,ri+g) €
{181,181}

For the case where k and n are relatively prime, by Lemma 4.2.2, there exists a
value £ < k such that fn = 1 (mod k). Thus we can write fn = k{fn/k|+1. Let m =
|n/k|. Now consider the set {im modn:i=0,1,...,k—1},. By Lemma 4.2.4(c),
we get k distinct values, so R can be realized as Dy nm = {immodn:i=0,1,...,k—

1},. Thus, by Lemma 3.2.2, R is Erdds-deep.
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Observe that F = {0,1,2,4}¢ does not maximize evenness because 8(0, 2) =2
and 3(2, 0) = 4 yet £ = 2. Hence, any rhythm that maximizes evenness and that is
deep must also be generated.

Now consider the case where n and k are not relatively prime. We show that the
assumption that R is deep leads to a contradiction. Thus, assuming that R is deep
implies that there is a value m such that R can be realized as Dgpnm = {im mod n :
i=0,1,...,k —1},. This in turn implies that there exists an integer £ such that
km = ¢n + 1, that is, én = 1 (mod k). However, for this to happen, n and k must
be relatively prime, a contradiction.

Thus we have shown that R is Erdés-deep if and only if £ and n are relatively

prime. O

4.4 Further Remarks and Open Problems

As discussed in the beginning of this chapter, evenness is an important and
desirable property of rhythms and scales; it is thus worth investigating this property
further. In this section, we propose two measures of evenness that are different than
the ones described in this chapter and that might lead to interesting theoretical
and/or musically meaningful results.

Mathematically, there are many ways to quantify the “evenness” of a rhythm.
However when it comes to defining useful measures of evenness, there are two prop-
erties that are highly desirable. The first property is sensitivity: the measure has

to be sensitive enough to discriminate between rhythms that are very different. The
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second property is computational efficiency: how fast can we compute it? There-
fore, we would like to define measures based on how well they discriminate between
rhythms, how fast they can be computed, and also how useful they are in practice.
We now propose two measures that are ripe for further exploration, both musically
and mathematically.

The first measure is called the degree of irregularity of a rhythm. The notion
was first introduced by Hitt and Zhang [97] as a way of quantifying how far away
a given cyclic polygon is from the regular polygon with the same number of edges.
Let P be a cyclic polygon having § = {6,,6s,...,6,} as the ordered set of its central
angles (angles between the center of the circle and the endpoints of each of the n
edges), with 0 < §; < m for all ¢ = 1,2,...,n. Hitt and Zhang [97] define the degree

of irregularity of P, denoted by I(P), to be:

I(P) = nsin(n/n) — Zsin(Oi/Z).
=1

A rhythm R represented as a clock diagram is essentially a cyclic polygon, and a
rhythm that divides the timeline evenly is the regular cyclic polygon. The degree
of irregularity of R tells us how “uneven” R is with respect to the perfectly even
rhythm, which in this case is a regular cyclic polygon with the same number of
onsets and pulses. Note that I(R) is a positive value invariant under scaling and is
equal to 0 only when R is perfectly even. The major drawback of this measure is
that J(R) is independent of the permutation of the central angles (or edges) of the
cyclic polygon it defines. Thus, for a rhythm with k onsets and n pulses, there may

be up to k! rhythms with the same degree of irregularity.
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One way of quantifying the evenness of a rhythm is by measuring how far it is
from the maximally even rhythm (maximizing the sum of pairwise interonset chordal
distances) with the same number of onsets and pulses. Toussaint [170, 174] proposes
a few distance measures for comparing and classifying rhythms; some examples of
the proposed distance measures are hamming distance, edit distance, swap distance,
earth mover’s distance, . ..etc. Using these definitions of distance, it is thus possible
to compute the evenness of a rhythm based on how far it is from the perfectly even
rhythm. It is not clear whether these different distance measures produce distinct
total orderings of rhythms with the same number of onsets and pulses. We now define
a measure of evenness that is different than the ones discussed above. This measure
was first described by Bjorklund in [21] as the measure of ugliness of a binary string.
Because we can represent musical rhythms as binary strings, the ugliness property
can be transposed to rhythms. Let §;(i) be the forward distance between the ith
and (i + j)th 1-bits of a binary string (onsets of a rhythm). The ugliness of a binary
string is equal to

1 kel ket n)?

72 (53'(1) - T) ; (4.7)
The ugliness of a rhythm R measures how far away R is from the perfectly even
rhythm with the same number of pulses and onsets. In this case, a perfectly even
rhythm is the one that maximizes the sum of pairwise Euclidean distances between
onsets. This measure of evenness is invariant under rotation, but not under the
permutation of the bits; the ugliness of a perfectly even pattern (such as 10101010)

is zero. It should be noted here that the total ordering of all possible rhythms with n

pulses and k onsets under the ugliness measure is different than the ordering under
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the swap distance measure [170, 174]. For example, the ugliness of rhythm [xx -
X« xxX + -] is 0.51 while the swap distance from the perfectly even rhythm [x x -
X + XX + X -] is 1; whereas the ugliness of [x X - xx - xx - -] is 0.44 while the swap
distance from the perfectly even rhythm is 2.

Bjorklund naively computes the ugliness of a binary pattern in quadratic-time,
which is not very efficient in terms of computability of the measure. However, it
is possible to reduce the running time for computing the ugliness of a rhythm to

linear-time by simplifying equation (4.7). See Appendix D for details.
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Chapter 5
Structural Properties of Euclidean Rhythms

Maximally even rhythms are an important class of rhythms that seem to dom-
inate popular Western music, as well as rhythms throughout the world. In this
chapter, we study some structural properties of this family of rhythms. We re-
strict our attention to Euclidean rhythms defined in Section 4.1.3 in the previous
chapter: these are the maximally even rhythms generated by Bjorklund’s algorithm
(Section 4.1.2). In particular, we show that Euclidean rhythms are composed of a
pattern P repeated a certain number of times, plus a (shorter) pattern T repeated at
most once. We also show that each of P and T are themselves Euclidean rhythms,
and that pattern P is minimal; that is, for a given Euclidean rhythm R there is no
way of splitting R into repeated patterns P’ (possibly followed by a shorter pattern
T") such that the number of bits in P’ is less than the number of bits in P.

In this chapter we focus on the internal structure of Euclidean rhythms. We first
take a closer look at Bjorklund’s and Euclid’s algorithms; we then prove two technical
lemmas in Section 5.3 and show how the first relates to Bezout’s theorem [53]. In
the same section, we show the main contribution of this chapter: that patterns P

and T are Euclidean and that P is minimal.
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5.1 Bjorklund and Euclid Revisited

Consider Bjorklund’s algorithm described in Section 4.1.2. Observe that this
algorithm consists of two steps: an initialization step, performed once at the begin-
ning; and, a subtraction step, performed repeatedly until the stopping condition is
satisfied. At all times Bjorklund’s algorithm maintains two lists A and B of strings
of bits, with a and b representing the number of strings in each list respectively.

1. Initialization step. In this step the algorithm builds the string {1,.. % ..

and B as the remaining b = max{k,n — k} bits. Next the algorithm removes
|b/a] strings of a consecutive bits from B, starting with the rightmost bit, and
places them under the a-bit strings in A one below the other (see Figure 5-1,
steps (1) and (2)). Lists A and B are then redefined: A is now composed of a
strings (the a columns in A), each having |b/a| + 1 bits, and B is composed
of b mod a strings of 0-bits. Finally, the algorithm sets b = b mod a.

2. Subtraction step. At a subtraction step, the algorithm removes |a/b] strings
of b consecutive bits (or columns) from B and A, starting with the rightmost
bit of B and continuing with the rightmost bit of A, and places them at the
bottom-left of the strings in A one below the other. Lists A and B are then
redefined as follows: A is composed of the first b strings (starting with the
leftmost bit), while B is composed of the remaining a mod b strings. Finally,
the algorithm sets b = a mod b and a = b (before b was redefined). see

Figure 5-1, step (3).
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The algorithm stops when, after the end of a subtraction step, list B is empty
or consists of one string. The output is produced by returning the strings of A

from left to right followed by the strings of B, if any; see Figure 5-1, step (4).

A B
Initialization A B 1111111 000
step (1) [T111111][0000000000] — (2) 0000000 -
17=7x2+3x1
A B
111 ({1
Subtraction 000
(3) | 000 — Output: (4) E(7,17)={10010100101001010}
step 111
000
17=3x5+1x2

Figure 5-1: Bjorklund’s algorithm for generating the Euclidean rhythm E(7, 17). In
the initialization step, a is set to 7, and b is set to 10. In Step (2), the algorithm
removes |10/7] = 1 string of 7 bits from B and places it under the string in A. List
A is now composed of seven 2-bit strings [10], while list B is composed of three 1-bit
strings [0] (think of each string as one column in box A or B). The new values of a
and b are 7 and 3 respectively (the underlined digits in Step (2)). In the subtraction
step (Step (3)), the algorithm takes |7/3] = 2 strings of 3 bits (columns) each from
B and A (starting with the rightmost column in B) and places them at the bottom-
left of A, one below the other. The algorithm now stops because B is formed of the
single string [10].

Let us establish now the relationship between the algorithms of Euclid and
Bjorklund. Both perform the same operations, the former on numbers, while the
latter on strings of bits. At some subtraction step, Bjorklund’s algorithm first per-
forms the division |a/b| by moving bits from B to A, after which it sets b as the
number of strings in A and a mod b as the number of strings in B. This is exactly
what Euclid’s algorithm does at a subtraction step: it sets b, @ mod b as the new

pair (for a > b). The initialization step of Bjorklund’s algorithm is equivalent to the
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first step of Euclid’s algorithm when k£ < n — &, and to the first two steps of Euclid’s
algorithm when k > n — k. This is because in the latter case, the initialization step
sets a = n — k and b = k; after moving the bits needed to build lists A and B, the
number of strings turns out to be n — k and k£ mod (n — k), exactly what Euclid’s
algoirhtm produces after the second step.

For example, consider computing ged(27,10) using Euclid’s algorithm. The
sequence generated during its execution is {ged(10,7),ged(7,3),gcd(3,1)}. When
applying Bjorklund’s algorithm the sequence formed by the number of strings at
each step is also {ged(10,7),gcd(7,3),gcd(3,1)}. On the other hand, if we com-
pute ged(27,17), the sequence associated with Euclid’s algorithm is {ged(17,10),
ged(10,7), ged(7, 3),ged(3, 1)}, whereas the sequence associated with Bjorklund’s al-
gorithm is {ged(10,7),ged(7,3),gcd(3,1)}. This example also illustrates the fact
that the sequence provided by Bjorklund’s algorithm is the same for both E(k,n)
and E(n — k,n).

We can keep track of the dimensions of the lists A and B at each iteration of
Bjorklund’s algorithm using Euclid’s algorithm for computing the greatest common
divisor of n and k. This can be accomplished by rewriting the quotient in terms of the
remainder (the underlined numbers in the example below) at every step of Euclid’s

algorithm and grouping the terms apropriately. For the example in Figure 5-1 we

77



Chapter 5. Structural Properties of Euclidean Rhythms

have:
17 = 7Tx1+10x1

= 7x1+(7Tx1+3x1)x1
= 7x24+3x1
= (3x2+1x1)x2+3x1
= 3x5+1x2

The algorithm stops at this point because we have a remainder of 1. The last
expression in the above example tells us that £(7,17) has 3 strings of length 5 each,
and 1 string of length 2.

Once Bjorklund’s algorithm is completed, we obtain two lists A and B that form
the Euclidean rhythm E(k,n). It follows that E(k,n) is composed of multiple copies
of a pattern P given by the strings of A, followed (possibly) by a single pattern T’
given by the only string in list B. We call P the main pattern of E(k,n) and T
the tail pattern. We now introduce some notation that will be used throughout the

remainder of the chapter.

5.2 Definitions
Let Ecp(k,n) denote the Euclidean rhythm with k onsets and n pulses generated
by the Clough-Douthett algorithm (Section 4.2.1):

in

Eco(k,n)={[ﬂ:i=0,1,...,k—1]}. (5.1)

For any two rhythms R, and R; let R; & R, denote the rhythm composed of the
pulses of R, followed by the pulses Rj; this is known as the concatenation of R, and

R, and is discussed further in Section 6.3 of the following chapter. The length of the
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main pattern P will be denoted by £,, the length of the tail pattern T by ¢;, and
the number of times P is repeated in E(k,n) by p. For any k and n, the following

equality holds:

n=€,, Xp+et (52)

Analogously, call k, the number of onsets of the main pattern P and k; the

number of onsets of the tail pattern T. When ged(k,n) = 1, k can be written as:

k=k,xp+k (5.3)

Additionally, if ged(k,n) = d > 1, it follows that p = d and £; = 0. Hence,

n=14{,xd, and k =k, x p.

5.3 The Subpatterns of E(k,n)

One question to ask about Euclidean rhythms is whether patterns P and T are
themselves Euclidean. In this section we show that this indeed is the case. We first
prove two technical lemmas.

Lemma 5.3.1. Let E(k,n) be a Fuclidean rhythm where 1 < k < n and let g =
ged(k,n). The following equalities hold:

(a) If g > 1, then nk, — ké, = 0.

(b) If g =1, then nk, — kf, = £1 and £k, — kilp, = 1.
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Proof. If g > 1, then n = g¢, and k = gk,, and a simple computation proves this

case:

l, =n—1,k, =1 and the required equality holds sincen-1—1- (n—=1)=1.

For the inductive step, assume the statement is true for all values less than k.
Consider first the case n — k < k. When the initialization step of Bjorklund’s
algorithm is executed, it produces a list A of n — k strings of [#J bits each, and
a list B of r = nmod (n — k) strings of one bit. In other words, it performs the

division:

n=(n—k)[nikJ+r (5.4)

At this point we replace each string in list A by the symbol ©. This replacement

algorithm to this string, we obtain a Euclidean rhythm E*(n — k,n — k + 1) (here
the symbols © play the role of onsets and the 1's those of rests). When we perform
the inverse replacement on E*(n — k,n — k + r), that is, when © is replaced by the
original string in A, we get the Euclidean rhythm E(k,n). Figure 5-2 shows the
entire process.

By equation 5.4, it follows that r < n — k; this implies that n —k +r — (n—-k) <
n — k. Therefore, we can apply the induction hypothesis to E*(n — k,n — k + ).
Thus, we have:

(n—k+ 1)k, — (n— k)l = £1,
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111111111111111 0000 = (Initialization step)

——
k n—k
1111111 1
" 0000 10
L% 1111 == (Replacement: N ©)
1111 1
N et N e’
n—k T
1
PEE0111=— ? ? ? © = (Replacement:© — (1) )
N 1

E*(n—kn—k+r)

= E(k,n)

—m = D
= e D
—_ = D

_= = O

Figure 5-2: Proof of Lemma 5.3.1, case k > n — k.

where k,, is the number of onsets (that is, ©’s) in the main pattern of E*(n — k,n —
k+r), and l; is the number of pulses. The following equations show the relationship
between k;, l;, and kyp, {,.

o k;, = I, — ky, since the number of ©’s in the main pattern of E*(n—k,n—k+r)
is equal to the number of zeroes in E(k,n).

o l,= k;, | 2] + l;, - k;,, where the first term of the right-hand side accounts for
the expansion of ©, while the last two terms account for the number of ones in
E*(n—k,n—k+r).

Applying the induction hypothesis to E*(n — k,n — k + r), together with equa-

tion (5.4) we obtain:
+1 = (n—k+nk,—(n—k)],
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’ 1

= 1k, — (n—k)(l, - k,)

)

= 1k, — (n— k)l +k;,(n —r)

= T

N~

=

= nk,— (n—k)l,

= ki, —n(l, — k,) = ki, — nk,.

We now turn to the case when n — k > k. The proof is similar to the previous

case. As above, the initialization step of Bjorklund’s algorithm is first applied to

symbol Z. This yields the string {Z .*. Z0 .7. 0}, where r = nmod k. Next
we execute Bjorklund’s algorithm on string {Z .*. Z0 .7. 0}, which produces a
Euclidean rhythm E*(k, k + r) composed of Z’s and 0’s. Figure 5-3 illustrates these
transformations. Note that we cannot apply induction here as the number of onsets
in E*(k,k + r) is at least k. However, since k +7 — k = r < k we can apply the

result of the first case to E*(k,k + r) and write the following:
(k +r)k, — ki, = 1,

where k;, is the number of onsets in the main pattern of E*(k,k + r), and l; the
number of pulses.
Again, we need to relate the main patterns of E*(k,k +r) and E(k,n) in order
to derive the final formula.
. k;, = ky, since the number of Z’s in E*(k,k +7) is equal to the number of ones

in E(k,n).
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1111‘000000020000009 = (Initialization step)

k n—k
1111000 1
L)Joooo 1o
L% 0000 = (Replacement: 0 — 1)
0000 0
\_\k,—-—-f\_v—-/
T
1
TTTT000—> g g g T (Replacement: T —s g )
S————
E*(kk+r) 0
1111
0000
000 0 =E(kn)
00060
0 00

Figure 5-3: Proof of Lemma 5.3.1, case k < n — k.

o [, = k;, 2]+ l;, — Ic;,, where the first term on the right-hand side accounts for
the expansion of Z, while the last two terms account for the number of zeroes
in E*(k, k+ 7).

We can now carry out a similar manipulation as above to prove the result:

+1 = (k+n)k, - ki,

= 1k, —k(l,— k)

- k(o5 [7)

!

= rk,—kl, + k;,(n —r)

P

= nk, — ki,

= nkp, — klp.
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Finally, we prove that the equality ¢;k, — k:£, = £1 holds. Using equations (5.2)

and (5.3) together with the above result we obtain:

+1 = nk,—k¢,

I

(pép + et)kp - (pkp + kt)ep
= plpky + biky, — pkply, — kil

= Ztkp - k]tep

This completes the proof of the lemma. ]

We now show a connection between Lemma 5.3.1 above and what is called
Bezout’s theorem [53].
Theorem 5.3.2 (Bezout’s Theorem). Given two integers a and b, there exists two
integers x and y such that:

az + by = ged(a, b).

When k and n are relatively prime, Lemma 5.3.1 states that &, and £, are the
absolute value of their Bezout coefficients. It also states that the absolute value of
the Bezout coefficients of k, and £, are ¢, and k; respectively.

Note that when n = 1 mod & the tail pattern of E(k,n) is just {0} (by conven-
tion, we will consider that {0} is the Euclidean rhythm E(0,1)). This is due to the
fact that in this particular case Bjorklund’s algorithm performs only the initialization
step. Otherwise, it follows from Bjorlklund’s algorithm that the tail pattern consists

of the first ¢; pulses of P.
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Observation 2. Given a fixed integer j > 0, the rhythm {LL’—*’;—)”J modn:i =
0,...,k — 1} is Ecp(k,n) starting from the onset at position j. The rhythm
{j+|2)modn:i=0,...,k— 1} is a rotation of Ecp(k,n) to the right by j posi-
tions.

For example, take thythm Ecp(7,24) = {L%J mod24:i=0,..., 6} = {0, 3,6,
10,13, 17, 20}. The rhythm { [‘L?ESJ mod 24:4i=0,... ,6} is {10,13,17, 20,0, 3, 6},
which is just a reordering of Ecp(7,24) with exactly the same onsets. On the
other hand, the formula {3+ |%] mod 24:i=0,...,6} = {3,6,9,13,16,20,23}
produces a rhythm with onsets at different positions from those of Ecp(7,24). This
rhythm is a rotation of Ecp(7,24) by 3 positions to the right.

A rhythm of the form {— H;J + [@ki)ﬂJ modn:i=0,...,k— 1} is a rotation
of Ecp(k,n) - it is Egp(k,n) starting from position j. For example, the rhythm
R={-|32]+ | 422 mod24:i = 0,...,6} s {0,3,7,10,14,17,20}. By com-
paring the clockwise distance sequences of Ecp(7,24) = (334343 4) and R =
(343433 4), it is proved that R is Ecp(7,24) when listed from the onset at
position 3.

Finally, consider the clockwise distance sequence of Ecp(k,n), say, {do,d1, ...,
di_1}. Distances d; are equal to ['—‘%ZJ — L%J and this expression can only take the
values of | 2| or [2]. As shown in Section 4.2.1, E(k,n) and Ecp(k, n) are the same
rhythm up to rotation. Therefore, there exists an index s such that {ds,dst1,. ..,

di_1,do,d1, ..., ds_1} is the clockwise distance sequence of E(k,n). Set m = Yoo di
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Thus, the position of the i-th onset of E(k,n) is given by the following formula:

—m + {%J : (5.5)

For example, the clockwise distance sequence of £(7,17)is C; = (3,2,3,2,3, 2,2),
while the clockwise distance sequence of Ecp(7,17) is Cy = (2,2,3,2,3,2,3). A ro-
tation of C; to the left by 4 transforms Cj into C;. Then, s =1 and m = 2+ 2.
Therefore, the formula —4 + {MJ, for « = 0,...,6 generates the onsets of
E(7,17) = {0,3,5,8,10,13, 15}.

We now proceed to prove our second technical lemma.

Lemma 5.3.3. Let E(k,n) = P® .». ®P & T be a Fuclidean rhythm. Let E*(k,n)
be a rotation of E(k,n) such that E*(k,n) = P'® .2. ®P' @ T, where |P'| = £, and
|T'| = ¢,. Then, P is a rotation of P'.

Proof. If there is no P’ that is a subrhythm of P & P, then P’ must be a subrhythm
of P® T. In this case the number of subrhythms P in E(k,n) is at most two. If
E(k,n) has only one pattern P, then n = 1 mod k. In this case T = {0} and P is the

P. This forces P to be equal to an only-rest rhythm, which leads to a contradiction
since E*(k,n) would also come to an only-rest rhythm. If E(k,n) has two patterns P,
then at least one P’ has its first j pulses in P and its last n — j pulses in T. From
Bjorklund’s algorithm we know that when there is more than one pattern P, the
tail T of E(k,n) is composed of the first ¢, pulses of P (when n # 1 mod k). In this
case, P’ consists of the last £, — j pulses of P, for some j with j < ¢;, followed by

the first j pulses of P. By Observation 2, P’ is a rotation of P. O
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Theorem 5.3.4. The main pattern of rhythm E(k,n) is Euclidean up to rotation.

Proof. Consider first the case ged(k,n) > 1. Using (5.1) and the expressions (5.2)

Eoplk.n) = EJ [(k—l) J}

g

- Pl 5]
D
-

and (5.3) we get:

ot |45 |45

0ok, +e (K, —1}’ ...... ’Vpkp(]f%)J,Vp(kp(Pk—l)“)J,...,

= ECD(k,,,E,,) D Eop(kp,fp) DD Ecp(k:p,fp). (5.6)

It is clear from the above expansions that Ecp(k,n) is the concatenation of p
copies of E¢p(ky,£,). Rhythms Ecp(k,n) and E(k,n) are both Euclidean up to a
fixed rotation, and by Lemma 5.3.3 this implies that P and Ecp(k,, £,) are rotations
of each other. Consequently, P is a Euclidean rhythm.

When ged(k,n) = 1, we split the proof into two subcases depending on the value

of the expression nk, — £,k, which by Lemma 5.3.1 can be equal to either +1 or —1.
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Consider first the case when nk, — k=1 =>n = 5”—,’::—1 We first show that

L%J = {%”—J foralli=0,1,...,k — 1. This means that we need to show that:

3] ] 15522 - - [

The above expression is true if the following inequality holds:

iy i il
PR T h;J 1

Let r; = i, mod k,. Then,

iy i ilp , { 12
Py < |2 0, + — b
el LA L R L P
= —<k [&J — iy + Ky

kp

=

| e | e

<kp-7'i

The greatest value that % can take is %, which is always strictly less than 1; on

the other hand, the smallest value that k, —r; can take is 1. Therefore, the above in-
equality always holds and L%J = {-’,f—:J foralli=0,1,...,k—1. Together with (5.6),
this implies that E¢p(k, n) is formed by the concatenation of p copies of Ecp(kyp, &)
followed by the concatenation of the sequence {pe,, + [%J 1=0,1,...,k — 1}.
Since E(k,n) and Ecp(k,n) differ by a rotation, by Lemma 5.3.3 it follows that P
is a rotation of Ecp(kp, £p).

Now suppose that nk, — £,k = —1. For this case we will first show that {%SJ +

[k,‘c—fl”J = {M]})—"J fori=0,...,k—1. We start by observing that the multiplicative
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inverse of ¢, mod k, is exactly k;. This result is deduced from the equality £;k, —

¢,k; = —1, which was proved in Lemma 5.3.1.
If we write n = e’f—p‘l and perform some algebraic manipulations, we arrive at

the following equality:

('L + kt)n . fpk -1 lgp 1 ktep kt il ktﬁ i+ kt
_— = kj = |— = — —_— | = e 4 e S .
[ F i+ k)=, Pl vl e R

Let r; be the remainder of the integer division of ¢, by k,. Since k¢, = 1 mod k,,

we can write:
ifp ktgp 14+ kt _ pr ktep T + 1 1+ kt
{k,, % % | BT e TR R
Finally, the expression we seek to prove is reduced to the following equation:
(Z+kt)n _ :tfz_, _ k?tep _ Ti+1_i+kt
k ky ko | L Ky kk, |

Therefore, we must prove that the inequality 0 < % — i,:;’:‘ < 1 is true. By

multiplying the inequality by kk,, we obtain:

0<Ti+1_i+kt
STh T Tk

<1=0<k(ri+1) - i+ k) < kkp

The greatest value the expression k(r;+1)—(i+k;) can attain is k(k,—1+1)—(0+
1) = kk,—1 < kk,. To show that k(r;+1) — (¢+k;) is always non-negative, we distin-
guish two cases. If k, divides %, then 7; = 0 and the smallest value of our expression
is k(0+1) — (pk,+ k;) = 0. If k, does not divide i, then r; > 1 and the smallest value

of our expression is k(1 +1) — (k—1+k;) = k — k;+1 > 0. Therefore, the above in-

equality is always true, and hence l%’)’J + {%} = L(ij,’:‘—)"J fori =0,...,k—1. From
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Observation 2 we know that {[WJ modn:i=0,...,k— 1} is Ecp(k,n) start-

ing from the onset at position k;, and {{%ﬂ + [%EJ modn,i=0,...,k— 1} is a
rotation of Ecp(k,n) by L%‘“—J , which moreover is in the hypothesis of Lemma 5.3.3.
Hence, P is the Euclidean rhythm Ecp(kp, €,) up to rotation. This completes the

proof of the theorem. a

It remains to prove that rhythm {pép + {%J 1=0,1,...,k — 1}, is in fact
E(ki, £;) up to rotation. The next theorem settles this question.

Theorem 5.3.5. The tail pattern of rhythm E(k,n) is Fuclidean up to rotation.

Proof. The tail pattern T has nonzero length when ged(k,n) = 1. If n = 1 mod &k,
from Bjorklund’s algorithm we know that the tail is the Euclidean rhythm {0}.
Assume now that n # 1 mod k. This implies that k; # 0. The proof of this case is
very similar to the proof of the previous theorem. We again split the proof into two
subcases based on the value of £,k; — £;k,, which by Lemma 5.3.1 can be 1 or —1.

Assume first that £,k — £;k, = 1. We will prove that L%’J = {%J, for 1 =
0,...,k, — L

Thus, we need to show that:

i, | |it, i(ek, +1)| |k, i, J th
b [ i § (P R k') Y ) SNLE [ )
\;kPJ \xktJ Oj[ ktkp Ky 0= [ t ktkp k;

The above expression is true if the following inequality holds:

il i il
< | 4L
R TRE S [ J +
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Substituting r; = i¢; mod k; in the above inequality, with an argument similar
to the one in the proof of Theorem 5.3.4, we can show that this inequality is always
true and hence T is Euclidean. For conciseness we omit the details.

For the case ¢pk; — ik, = —1, we will show that [%}J + ["k—‘;‘J = {%J, for
i=0,...,k, — 1 and for some value a. Let r; = if; mod k; and af; =1 mod k:. On
the other hand, since £pk; — £k, = —1 = kpf; = 1 mod k;, then o = k, mod k;. This
fact falls out from equality £,k — £ik, = —1 (Lemma 5.3.1) when we take modk; of
both sides of the equation. From the two expressions for a we get that 1 < a < k;—1.

Now,

{MJ = |G+ a)zti':k; 1J

_ th i aét « J

E Rk R Rk
_ | ol it aJ
th kt ktkp

_ % N a_ét_ + ri+1_i+a
N | ke ki ki kiky |

If the following inequality holds,

rn+1 i4+a

0<

S TR 1= 0S k(i) — i+ o) < kiky,

then [%J + l"‘k—i‘J = ‘.gik'zﬁJ The upper bound of ky(r;+1) — (i + ) is kp(k: — 1+
1)—(0+1) = kyk; — 1 < kpkq. To show that k,(r; +1) — (i + ) is always nonnegative,
we analyze two subcases. If k; does not divide ¢, then since £, and k; are relatively

prime, r; must be at least 1. Thus, the lower bound for our expression in this case is

kp(1+1)— (kp — 1+ k¢ — 1) = kp — ks +2 > 0. Now suppose k; divides 7; then, r; = 0
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and the greatest value of ¢ that is divisible by k; is k; [%J Thus, the lower bound
in this case is k,(0+ 1) — (kt [%—J + a) = kp — (k, —a+a) = 0. This completes the

proof of the theorem. O

If P admits a decomposition P = Q& .9. ®Q, for certain ¢ > 1, then E(k,n)
can be written as the concatenation of a pattern @ having fewer pulses. We will
now show that, in fact, P does not admit such a decomposition, and therefore is
minimal. First we show that the rhythm obtained by removing the tail of a Euclidean
rhythm remains Euclidean. Note that this fact does not follow immediately from the
preceding two theorems, as the main pattern in a Euclidean rhythm depends on its
number of pulses and onsets; removing the tail changes these numbers, and it is thus
not clear what the main pattern in a Euclidean rhythm with fewer pulses looks like.
Theorem 5.3.6. Let k and n be two integers with ged(k,n) = 1. If E(k,n) =
Pod .». ®P & T is the decomposition given by Bjorklund’s algorithm, then rhythm
P® .P. ®P is a rotation of E(kyp, Lpp).

Proof. It is sufficient to prove the result for the Clough-Douthett representation

Ecp(kp, £,) of P. By concatenating p copies of Ecp(kp, £,) we obtain:

ECD(kp)Kp)@ 2. EBECD(kpaep)

¢ (k, — 1) ¢ (k, — 1)¢
- {o, —J[—————Jee +H,...,e +[_u
{ \\kp kp P kP ? P

k
£(p - 1), 60— 1)+ {i_:J L1+ {(k,, ;:)&)J }

pépJ {(kp - l)ppr \\P&)J [(kp - 1)p€IJJ
= 0,|=2,...,.| ———|,6, 6+ |—|,.... 0o+ |—— |,
{ [pkp pky P pkyp ’ pkyp

o ) 52
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- (o)) 2]
g ] A [
|
|

[pkpfp(;v—l) (ks —1p€p }
pky

- oL B g )

= Ecp(pkp, ply)-

Therefore, the concatenation of p copies of P is a rotation of E(kyp, {pp). d
Theorem 5.3.7. The main pattern P of E(k,n) is minimal.

Proof. Assume first that gcd(k,n) > 1. If Q is a pattern such that P = Q& .7. &0,

for some g > 1, then the number ¢gp must divide both n and k. Since in this case

p = ged(k,n), it follows that ¢ = 1, and therefore, P = Q.

Assume now that ged(k,n) = 1. By Theorem 5.3.6, removing the tail pattern
of E(k,n) will produce the rhythm E(k,p, £,p) up to rotation. By the previous case,
the main pattern P of E(k,p,{,p) cannot be written as the concatenation of copies

of a shorter pattern Q. Thus, the main pattern of E(k,n) is minimal. a

This concludes our study of structural properties of Euclidean rhythms. Be-
sides satisfying our theoretical curiosity about the mathematics behind this family
of rhythms, understanding these properties helps us understand various transforma-
tions of these rhythms throughout the progression of musical pieces. In the following
chapter, we study transformations of maximally even rhythms that preserve this

evenness property.
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Chapter 6
Evenness Preserving Operations on Rhythms

An operation transforms one musical rhythm into another based on a set of rules.
Rhythmic transformations are common in musical pieces, where they are often used
to vary the flavor of the piece while at the same time staying within the same musical
theme during its progression. For example, a jazz soloist must respect the style and
feeling of the piece, and thus play an improvised variation based on the foundation
of the main theme [92]. One way of realizing such an improvisation is by taking the
base rhythm and transforming it to another through one or more operations. It is
generally desirable that such rhythmic transformations preserve some properties of
the original rhythm. One example of a rhythmic operation is the shelling operation
described in Chapter 3; when applied (carefully) to a deep rhythm, the shelling
operation produces another deep rhythm with fewer onsets. Operations are thus
important for improvisation as well as music composition. They are also useful for
music analysis, for example to understand rhythmic transformations and generate
new ones, as well as to provide formal rules for improvisation techniques.

In this chapter, we are interested in analyzing transformations of maximally even
rhythms through the study of interlocking rhythms. In many musical traditions, the

concept of interlocking rhythms is intuitive more than well defined. Although some
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rhythms are classified as interlocking in certain contexts, the label is applied almost
intuitively; nonetheless, we see interlocking rhythms in many musical traditions.
Roughly speaking, interlocking rhythms are a set of rhythms that, when played
together, cover the rhythmic timespan (possibly with overlap). For example, in
Afro-Cuban music interlocking rhythms are found in styles such as the son or the
guaracha where the timbal plays an interlocking rhythm called cdscara [146, 179].

In percussion, especially in funk and jazz, playing the complement of a rhythm
very quietly, more felt than heard, is common. This is referred to as playing the ghost
notes. Interlocking rhythms are also related to complementary rhythmic canons.
Rhythmic canons were first introduced by the French composer Olivier Messian as
part of his compositional ideas. A rhythmic canon is a rhythmic pattern played
several times, each at a different entry time; it is called complementary when, on each
pulse, no more than one pattern has an onset. Rhythmic canons were first studied
by Vuza [181-184] and later by Andreatta [3]. Hall [91] studied the relationship
between asymmetric rhythms and tiling canons, complementary canons whose union
tiles (covers with no overlap) the entire timespan.

In Western classical music interlocking rhythms became more frequent in the
early common practice period. For example, in Tchaikovsky’s Romeo and Juliet
Fantasy-Overture, interlocking rhythms are found in the development section — be-
tween measures 333-342 the trombone plays a solo melody, while the rest of the
orchestra plays on the complement of its onsets.

Another outstanding example of interlocking rhythms in Western classical music

is from the allegretto of Beethoven’s string quartet Op. 59, no. 2. Here, for more
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than half of the movement the first violin plays a melody whose rhythmic pattern
is [x - - x], while the second violin and the viola play the complementary rhythmic
pattern [ x X - |.

Interlocking rhythms also occur in music from Cuba, Spain, Brazil, the Caribbean,
and Germany. For some examples of interlocking rhythms from these regions, see
[4, 6, 111, 122, 179]. A few authors have also studied the psychological aspects of
interlocking rhythms considered within a melodic context [64, 121, 156].

In this chapter we define five operations on musical rhythms and study the
conditions under which a given operation preserves the Euclidean property. The op-
erations we describe are shadow, complementation, concatenation, alternation, and
decomposition. Later, in Section 6.5 we study the problem of decomposing Euclidean
rhythms into Euclidean rhythms with a smaller number of onsets. Finally, we relate

these mathematical properties to interlocking Euclidean rhythms in Section 6.6.

6.1 Shadow

Several ethnomusicologists have argued that African drumming, handclapping,
and mallet performance are best understood as a motor activity. For example, a
hand (arm) is raised and then dropped to strike the instrument.

According to Jay Rahn [139], one possible mechanism for the tacit motor media-
tion of attack points of onsets is the peaking of the gesture at the temporal midpoint
between two sounds. He calls the sequence of midpoints of the onsets of a rhythm the
shadow of the rhythm. For example, the Cuban tresillo rhythm given by [x - - - - -
Xooooo e x + - -] has the shadow [+ -+ x - « -+ - X -+ + + X -], which yields the

shadow rhythm [x - - - - - X+ x- -] (Figure 6-1).
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Figure 6-1: The Cuban tresillo and its shadow.

Performed on a rhythm, the shadow operation increases the evenness of the
new rhythm. One question that comes to mind is: what happens to the sequence
obtained when we continue to perform this operation on every rhythm resulting from
the shadow of another? It turns out that this is a geometric problem that has been
investigated in the mathematics literature [148].

The study of the properties of sequences of polygons generated by performing
iterative processes on an initial polygon has received much attention, and the shadow
operation is just one of many operations that has been investigated. Perhaps the
most studied sequence is the one sometimes referred to as Kasner polygons [148].
Given a polygon PP, the Kasner descendant P! of P° is obtained by placing the
vertices of P! at the midpoints of the edges of P°. Fejes Téth [168] was interested in
the more general problem of sequences of Kasner polygons where each polygon P* in
the sequence is obtained by dividing every edge of P*~! with a ratio a : (1—a) in the
clockwise (or counterclockwise) direction and making the division points the vertices

of Ptfort =1,2,.... He proved that if @ = 1/2 (Kasner polygon), then the sequence
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converges to a regular polygon when P? is a convex pentagon or a convex hexagon.
He conjectured that for any « and any initial convex polygon, the sequence converges
to a regular polygon. Reichardt [141] showed that if o = 1/2, every convex polygon
converges to the regular polygon. Later, Liik§ [115] proved that for any a € [0, 1]
and for any convex polygon P°, the sequence P°, P!, P2 ... converges to a regular
polygon, thus settling the more general conjecture of Fejes Téth. More results on
Kasner polygons can be found in [11, 56].

The shadow sequence of a rhythm we study here is similar to the Kasner se-
quence. Hitt and Zhang [97] show that given any convex cyclic polygon PO its
shadow sequence converges to a regular polygon. From their proof, it follows that
the area of each P’ is greater than or equal to the area of P! for any ¢ > 0, with
equality resulting only when P* is regular.

In their proof of the convergence of the shadow sequence, Hitt and Zhang make
use of doubly stochastic matrices and Schur-convex functions. Below we provide a
simpler proof that uses a different approach and is more intuitive. This proof also
gives a bound on the rate of convergence. We then show how our results extend to
the general shadow sequence of a rhythm, where at each step every arc is split into
a fixed ratio o of the arc lengths in the clockwise or counterclockwise direction.
Theorem 6.1.1. The shadow sequence of a cyclic polygon converges to a regular
polygon in such a way that the variance of the interval lengths decreases at each step

by at least one half.
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Proof. Let P be a polygon inscribed in a unit circle, and let (ag,a1,...,a,-1) be the
sequence of intervals or edge lengths of P, where by length we mean the geodesic dis-
tance along the circle between two consecutive vertices of P. Thus, ) 1~ _0 a; = 1. Let
P! denote the polygon P after ¢ shadow operations, and a! denote its corresponding

edge lengths, for i = 0,1,...,n — 1. At any step ¢, we can write the edge lengths of

® , (D)
{&—i;';l:izo,l,...,n—l}.

Also, the average edge length of P! is 1/n for any t. Since the edge lengths sum to

Pt*! as the sequence:

1 at any step, we can treat the sequence of edges as a random variable and compute
its variance. We will show that the variance V'*! of the sequence of edge lengths at
time ¢ + 1 decreases by a constant fraction of the variance at time ¢. For simplicity,
we will assume a! = a;; thus,
n—1
vt = l Z (at.+1)2 . i
(3

2
n n
i=0

_ 1nz—1 @i+ a1\ 1
- n < 2 n2

1 Z a + a't+1 + 2a1a,+1 1

4 n?

i= 0
n—1

1 2a2+a2, 1 aal+1
NS SEEL INES SLC
4 n <

n

1 &1 1
= %;GEJF nzaaz+1__

i=1
n—1

1 2
m LT ﬁ Z Gt T on2
i=0
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n—1 n—1
1(1 , 1 1 1
T2 (; 2%~ E’) ¥ gn 24N " 50

=0

1 1 1 1
R 720 B e
- 2V + 2n ;alalﬂ 2n?

To show that V**! is at most a fraction of V* at any step ¢, we find the max-
imum value of Z;:ol a;a;4+1 subject to the constraint E:.:Ol a; = 1. Using Lagrange
multipliers it can easily be determined that the maximum value of the above sum is
attained when all the a;’s have the same value, that is, when they are all equal to

1/n. To find this maximal point, we solve:

o n—1 n—1
B—f <§E:aﬂh+1) +'A (j{:ai—-l) =:0
% \i%o i=0
Differentiating these n equations (for j = 0,1,...,n—1) we obtain, a;_1+a;41+A = 0.

Using the constraint Z::ol a; = 1 we find that a; = %

Thus, we have:
1 1 & 1
Vil = Vi — %4l — 55
2 + 2n Zo: 4i%1 — 932

n—1

1 1 1 1 1 1

S A LI 16
2 +2nz 2

=

Therefore, after every shadow step the variance is at least halved; and since the
variance is always bounded below by zero, then it converges to zero as t goes to
infinity. This in turn implies that every edge length converges to the mean value,
which is 1/n. Thus, the shadow sequence of any cyclic polygon converges to the
regular polygon in such a way that the variance of the edge lengths decreases by at

least one half at every step. O
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Let us now consider the general case, where each polygon P!*! in the shadow
sequence is obtained by dividing every arc of P* with aratioa: (1—a) (0 <a < 1)
in the clockwise (or counterclockwise) direction, and making the division points the
vertices of P't! for all ¢t > 0. In this case, at any step t we can write the edge
lengths of P'*! as the sequence: {(1— a)al+aal,;:i=0,1,...,n—1}. We can
extend the proof of Theorem 6.1.1 to show that the variance of the edge lengths of
the generalized shadow sequence decreases at every step by at least 20 — 2a + 1.
By doing calculations similar to those made in the proof of Theorem 6.1.1, we can

show that:

n—1
vl = lZ(aHl)z—-—l—

7
n & n
14 1
= = 1 - a)a; + aair1)? — =
n;(( )az z+l) n2

< (202 =2+ 1)V!

Note that 0 < 20%—2a+1 < 1 for any 0 < o < 1. Therefore, after every shadow
step the variance decreases by a constant fraction that depends on o. Thus, again
the variance converges to zero as t goes to infinity, and every edge length converges
to 1/n.

In general, however, we want to represent a rhythm as a cyclic polygon with
vertices that lie on integer coordinates (pulses). Let R be a rhythm represented as a
cyclic polygon with integer vertices (pulses). If an onset v of the shadow does not lie
on an integer point, then we move v to the nearest integer coordinate in the clockwise

direction. The result is the discrete shadow of R. Consider the clockwise distance
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sequence notation (ag, @y, . ..,ar—1) of a rhythm R where a; is the geodesic distance
between two consecutive onsets in the clockwise direction for all = 0,1,...,k — 1.
Then the discrete shadow of R is (ap, aj, . . ., a)_,), where each a} = |a;/2|+[a;y1/2].

Theorem 6.1.2. The discrete shadow of a Euclidean thythm R is a rotation of R.

Proof. 1t was proved in Section 4.2.1 that a Euclidean rhythm generated by Bjork-

lund’s algorithm has the form (in clockwise distance sequence notation):

(LRl LRL TR (R LEL TRL s LR LR TRD
N e’

- > . o’
— ~

z1 z2 Tp

for z1,23,...,2, > 0. Let a = |%| and b = [%]. Then a Euclidean rhythm R has
the form

(a,...,a,b;a,...,a,b;...5a,...,a,b).
T T2 Tp

Let R’ be the discrete shadow of R. Then R’ is the rhythm:

R o= (5 + 181 s I+ [5L 180+ 131 5]+ T50;

-~

L1185 L) + T3 180+ 8L L3 + T80
L1+ 1815130 + 131, 180+ [81, 18] + T8)

- (e B L [F o 18] L L) 15
...... oo 13+ [H,14) + 13D
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Chapter 6. Evenness Preserving Operations on Rhythms

If k divides n, then @ = b and |2 + [2] = [ 2] + [2] = g; in this case, R and R’
are the same Euclidean rhythm (a,a,...,a). Now suppose k does not divide n; then
b=a+ 1. Two cases arise:

1. If a is even, we have:
o gl TEI= g0+ =g+
o LB HT8 = [P+ [ =5+ 3 =a

+1l=a+1=0

e

Therefore, R’ is the rhythm (a,...,a,b,q;a,...,a,b,a;...;a,...,0,b,a).
— — ——’ N’
r1—1 z2-1 rp—1
Rotating R’ to the right by one position we obtain (a,a,...,a,ba,a,...,a,b;...;
N — ——

r1—1 ro—1

a,a,...,a,b), which is rhythm R.
N —

zp—1

2. If a is odd, we have:
e LEl+ Tl =13+ =15+ l5)+1=0
o 1L)+T81 =55+ 3] =[5+ g1 =at1=b

Therefore, R’ is the following rhythm:

(a,...,a,a,b;a,...,a,a,b;...5a,...,0,a,b;)
—— N——r ——
z1-1 zo2—1 zp—1
= (a,...,a,ba,...,a,b;...;a,...,a,b;)
N — e —r

T T2 Tp
which, again, is rhythm R.
Therefore, the discrete shadow of every Euclidean rhythm is a rotation of itself.

O

Corollary 6.1.3. The discrete shadow of a mazimally even rhythm R is a rotation

of R.
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6.2 Complement

The study of the complementary sets of sets of intervals in the context of pitch
(scales and chords) has received a lot of attention in music theory [125]. The comple-
ment of rhythm, on the other hand, has scarcely been explored. Consider the Cuban
cinquillo thythm given by [X - X x - xx -]. Its complementary rhythm is [- x - -
x + - x|, which is a rotation of the famous Cuban tresillo rhythm given by [x - -

X - - x -] (see Figure 6-2).

@ (b)
Figure 6-2: (a) The Cuban cinquillo (b) The complement of the Cuban cinquillo is
a rotation of the Cuban tresillo.

Complementary sets have many applications, such as the composition of rhyth-
mic complementary canons [181]. Clough and Douthett [43] show that the com-
plement of a maximally even rhythm is maximally even. This theorem was later
proved independently by other authors such as Bruckstein {30}, who presents several
self-similarity properties of digital straight lines which indirectly show that the com-
plement of a Euclidean rhythm is also Euclidean. Here we present a simple proof
of the complementation theorem that is different from that of Clough and Douthett
but that uses digital straight lines.

Theorem 6.2.1 ([30, 43, 93]). The complement of a Euclidean rhythm is Euclidean

up to rotation.
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Proof. Harris and Reingold [93] showed that Euclid’s algorithm for computing the
greatest common divisor of two integers generates digital straight lines described by
the Bresenham algorithm [28]. Euclid’s algorithm also generates Euclidean rhythms
(Section 4.2.1); thus, a sequence of 0-1 bits of a Euclidean rhythm corresponds to
the sequence of 0-1 bits of a digital straight line (up to rotation). Without loss of
generality, assume that a 0-bit of a digital straight line corresponds to a vertical
segment and a 1-bit corresponds to a horizontal segment.

Let R be a Euclidean rhythm corresponding to the digital line L defined by the
equation y = ax (we assume the line passes through the center of our coordinate
system). If we rotate L by 90°, then the equation of the rotated line L’ becomes
z = ay. To draw the digital line L', we can merely interchange the z and y axis and
plot line L : y = ax. This means that L and L’ are the same digital line and hence
are both described by Euclid’s algorithm. However, when we rotate L, the 0-bits of
R become 1-bits and the 1-bits become 0-bits. Hence we get the complement of R.
Since both R and its complement correspond to the “same” digital line drawn by

the same sequence of vertical and horizontal segments, they are both Euclidean. 0

Corollary 6.2.2. The complement of a mazimally even rhythm is mazimally even.

6.3 Concatenation

The concatenation of two rhythms R; and R, denoted by R; @ Ry, is a new
rhythm R formed by the pulses of R, followed by those of R,. For example, E(3, &
E(4,6) =[x -x -x--]®[x xx:%x]=[x-x-xx:xx-x]. Concatenation

of Euclidean rhythms were extensively used in proofs of theorems in Chapter 5.
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The following theorem examines the conditions under which the concatenation of
Euclidean rhythms is itself Euclidean.
Theorem 6.3.1. For any Euclidean rhythm E(k,n) with 1 < k < n, and any natural
number ¢ > 1.
1. E(ck,cn) is the concatenation of ¢ copies of a rotation of E(k,n). Ifged(k,n) = 1,
the main pattern of E(ck,cn) is a rotation of E(k,n).

2. E(k,n) ® E(ck,cn) is a rotation of E((c+ 1)k, (c+ 1)n).

Proof. We will use the Clough-Douthett form of E(k,n) to prove (1).
_ cn (k—1)cn (ck — k)en (ck —k+ l)en
Ecp(ck,en) = {O’LkJ’”"[ ",---,{ " , e ,

|k =1L)en 5
[==])
1)n

_ {”%J (ﬁ_____’__.,[(ck;k)nJ,[(ck—l;Jrl)n}’

T &

| {ek=1)n
- {0, {%Hk (kJil)"
e

---,n(c—-l)+t kl‘)nJ}

= Ecplk,n)® .<. @Ecp(k,’n).

If gcd(k,n) = 1, the greatest common divisor of ck and cn is c. Therefore, the
main pattern of E(ck,cn) has n pulses and k onsets. Since by Theorem 5.3.4 the

main pattern is Euclidean, then by Lemma 5.3.3, it has to be a rotation of E(k,n).
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As for (2), we have the following computation:

Ecp(k,n) & Ecp(ck,cn)
= {0, l%J , f?nJ ey \‘@—%QEJ ,n,n + E%J ,+ \\%%L—J ey
et {(ck Zkl)an}
B (5 ] e [tesneoe

_ {O’{(c%-l)nJ,{2(c+l)n},m,[(k—l)(c+1)nJ,{k(c+l)nJ,

(c+ 1)k (c+ 1)k (c+ 1)k (c+ 1)k
{(k+1)(c+1)nJ [((c—f—l)k— 1)(c+1)nJ}
(c+ 1)k (c+ 1)k

= FEcp((c+ 1)k, (c+ 1)n).
O

In general it is not true that the concatenation of two arbitrary Euclidean
rhythms is Euclidean. The concatenation of rhythms E(3,7) @ E(4,6) is [x - x -

X+« X« XX + X|, which is not equal to E(7,13) or any of its rotations.

6.4 Alternation

Starting from the j-th onset, the alternation operation keeps every c-th on-
set of a rhythm and transforms the remaining onsets into rests. More formally,
let {ug,us,...,us—1} be the sorted sequence of the positions of the k onsets of a
rhythm R. The j-alternation of order c of R, denoted by A;.(R), is the rhythm whose

pulses are all rests except the onsets uj, Ujye, Ujtacs - - - s Ujpwe, 0T 0 < j <c< k-1

and v = [—k_i_jj.
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In general alternations of a rhythm may not be rotation invariant. The alterna-
tion A;. of a rhythm R and a rotation of R might not produce the same rhythm (or
any of its rotations). To see this, consider the alternation Apo of rhythms E(7,17)

and Ecp(7,17).

E(T,17) = [X+ X X XX+ X-X"]
Ao(B(T,17T)) = [X+ v X oo o X o0 X -]
Ecp(7,17) = [X XX+ XX+ XX -]
Ap2(Ecp(7,17)) = [X><><><]

Clearly, the two alternations are not rotations of each other.

Euclidean rhythms fulfill very precise constraints on the durations between on-
sets; the lengths of these durations are changed after an alternation operation. In
general, an arbitrary alternation might destroy the Euclidean property of a rhythm.
In this section we will determine the conditions under which the alternation of a
Euclidean rhythm remains Euclidean.

Note that when ¢ does not divide k, we can obtain two alternations having
different numbers of onsets by varying the value of j. Set r = k mod c; there are r
alternations with [k/c| onsets (these are Ag. ..., Ar_1,c), and ¢ —r alternations with

|k/c| onsets (the remaining A, ..., Aq_1). Indeed, we can write:
1+ {k—l—]J -1+ {k—l—]+r—rJ _ 14 {k:rJrr—l—]J
c

el
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If j <r—1,then |™2=] is 0, and thus 1 + |*==I| = [£]. Whenr -1 <

c

j < ¢—1, the quotient "=~/ is negative, and |“=-=Z| = —1, which implies that

A = 8.

c

Consider the rhythm E(8,17) and its 3-alternations:

EB,17) = [X- X X X XXX %X ]
Aos(EB,17)) = [x« -« - - X oo e X o]
Ara(B(8,17)) = [+ X+ «« - - X oo x - -]
Ags(EB,17)) = [+« %o X oo ]

Alternations Ag3(E(8,17)) and A, 3(F(8,17)) have [8/3] = 3 onsets, whereas
alternation A, 3(E(8,17)) has |8/3] = 2 onsets. Here 7 = 2 = 8 mod 3, and therefore
there are 2 alternations with 3 onsets and one alternation with 2 onsets. Note that
A;3(E(8,17)) is not Euclidean.

In what follows we make use of another characterization of Euclidean rhythms
that relates to the clockwise distances between onsets. Corollary 4.2.8 from Chapter 4
tells us that a rhythm is Euclidean (up to rotation) if and only if the clockwise
distance of the ordered pair of onsets (r;,7:1¢) is equal to either || or [£] for all
£=1,2,...,kandi=0,1,...,k— 1. In particular, when £ = 1 this characterization

n n

states that the clockwise distances between consecutive onsets is either [EJ or [ﬂ

We can now show the following.
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Theorem 6.4.1. The j-alternation of order ¢ of any rotation of E(ck,n) is Fuclidean

up to rotation for c > 1.

Proof. Let E*(ck,n) be a rotation of E(ck,n). Denote by r; the onsets of E*(ck,n).
Since E*(ck,n) is a rotation of E(ck,n), there exist two integers j > 0 and m such
that the formula m + V(Z%ZJ generates the onsets of E*(ck,n). In addition, denote
by r; the onsets of E(ck,n). Finally, let us compute the clockwise distances for the

alternation. Let £ be a positive integer.
; . nj  nc(i+ ¢) nj = nc
e T = M [ck + ck m ck + ck

= e - {|22] [} = { ] [%])

By Corollary 4.2.8, the last equality implies that the alternations of E*(ck,n)

are rotations of E(k,n). O

We now prove a result on the alternations of Egp(k,n). We first show the
following lemma.
Lemma 6.4.2. The alternations of order 2 of Ecp(k,n) are Euclidean up to rotation

if and only if k is even.

Proof. First suppose k is even, and consider the two alternations Ag2(Ecp(k,n))

and A;2(Ecp(k,n)). By Theorem 6.4.1, both of these alternations are Euclidean.
Now assume for the sake of contradiction that k is odd. By Corollary 4.2.8

the clockwise distance sequence of E(k,n) is formed by only two distances a and b,

where b = a+ 1 and a > 1. Moreover, we have the constraint that the consecutive

110



Chapter 6. Evenness Preserving Operations on Rhythms

clockwise sequence of a Euclidean rhythm cannot have distances that differ by more
than 1. The proof is hence divided into four cases:

1. Rhythm FE(k,n) has the form (b,b,...,b,c), where c is either a or b. When
N —’

k-1
we keep the odd onsets, we obtain (2b,2b,...,2b, c), which contains distances
e ———’

(k—-1)/2
that differ by more than 1 (there is a distance equal to 2b — ¢ > 1). Thus, this

alternation cannot be a Euclidean rhythm.

. Rhythm E(k,n) has the form (b, a,q,...,a) (starts with distance b followed by

a’s). When we keep the odd onsets, we obtain (b+ a,2a, ..., 2a, a), which is

(k—1)/2
not Euclidean (there is a distance equal to a + b —a > 1).

. Rhythm E(k,n) has the form (b,...,a,...,b) (starts and ends with b, having

at least one a in between). If we take the odd onsets, the last distance wraps
around and results in a distance of 2b+ a or 3b in the alternation. On the other
hand, the distance @ in E(k,n) is transformed into either a distance 2a or a +b
in the alternation. Hence, there is a pair of distances in the alternation that

differs by more than 1, and hence the alternation cannot be Euclidean.

. Rhythm E(k,n) is of the form (a,a,...,a,b}. If we take the even onsets, we
e’

k=1
obtain a rotation of rhythm (2a, ..., 2a, 2a + b), which is not Euclidean (there
e —

(k—1)/2
is a distance equal to 2a + b —2a > 1).

O

Note that the proof of Theorem 6.4.2 is an argument on the clockwise distance

sequence of E¢p(k,n) and it can be applied to E(k,n) or any of its rotations in a

straightforward manner. Consequently, we state the following corollary.
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Corollary 6.4.3. The alternations of order 2 of any rotation of E(k,n) are Eu-

clidean up to rotation if and only if k is even.

Theorem 6.4.4. The alternations of order ¢ of Ecp(k,n) are Euclidean up to ro-

tation if and only if ¢ divides k (where 1 < k <n).

Proof. When c divides k, the fact that the alternation A;.(Ecp(k,n)) is Euclidean
for all j < c follows directly from Theorem 6.4.1.

Assume now for the sake of contradiction that ¢ does not divide k and A;.(k,n) is
Euclidean for all j < c¢. Let r = k mod c. Because c does not divide k, 7 # 0. In this
case there are r alternations having [k/c] onsets and ¢ — r alternations having |k/c|
onsets. Consider two of these alternations, Ao, and A, .. Since Ay, is Euclidean by
hypothesis, by Corollary 4.2.8 its consecutive clockwise distances can only belong to
the set {2, [$2], 5], ]} This is because Ao is formed by changing ¢ — 1
onsets into rests from each consecutive block of ¢ onsets, followed by a final block
where only » — 1 onsets are changed into rests. The blocks of c onsets generate
distances {| €], <21}, while the block of 7 onsets generates distances {| ], (21}
Consecutive clockwise distances of a Euclidean rhythm can only take two distinct

values (Corollary 4.2.8), and therefore at least one of the following equalities must

= FLFE - FLFE = FL =T

Since r < c, the first three equalities || = |%2], [2] = [%] and [2] = | 2]

hold:

%
lead to contradictions. Consider the equality |=| = [72]:

2 =[F] » le-r o)1)+
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= {(c——r)ﬁ—%rEJ = VnJ +1

k' k k
> [Ce-ngl+[Flra=[F]
= L(c—r)%J%—a:l,

where o = | &= “‘°dkk+'" modk | If @ = 1, we obtain [@J = 0, which lead to a

contradiction. So, suppose o = 0. Then,
l(c-m)2|=1=1<(c-1)E<2

For this inequality to be true, n < 2k and r = ¢ — 1 must hold. This is the only

case that, for the moment, does not cause a contradiction.

When considering A, the possible clockwise distances are {[ ], [ ], L(CT)"J,

[@-]} The distances {|$*], %]} come from blocks of c onsets of A,.. The
last block of A, . wraps around and produces two blocks: one with ¢ onsets located
at the end of the rhythm, and another with r onsets located at the beginning. The
distances for these blocks are {[(ifkr—)ﬂj, [(i%r)—"-] }. Again, at least one of the following

equalities must hold:

2] - | ) ) - [l o] [le] o] | e

Since ¢ < ¢+, equalities || = {@J, [2] = [(C’L,:)"‘l and 2| = [(—C’Lkr—)"—‘

lead to a contradiction.
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Finally, consider equality [%] = V”TT)”J

-3 + (2)eae e
o 8] 01- 4]+ e
_n_ )
= _T'E_—f“a——l,

where o = | rmedbxermodk |- hence o can only take the values 1 or 0. If o = 1, then

|7%] = 0, which leads to a contradiction. Suppose a = 0. In this case |_r%_| = 1.
This equality is true when r = 1 and n < 2k. Equality r = 1 contradicts equality
r = ¢ — 1 derived in the previous case, except for the value of ¢ = 2. However, in
Lemma 6.4.2 it was already proved that this case cannot occur either. This concludes

the proof. ]

Theorem 6.4.5. The alternations of order c of any rotation of E(k,n) are Euclidean

if and only if ¢ divides k.

Proof. Let E*(k,n) be a rotation of E(k,n). There exist two integers jo > 0 and
m such that the sequence {m + {WJ :1=20,...,k — 1} produces the onsets of
E*(k,n). Furthermore, the onsets of the j-alternation of order ¢ of E*(k,n) are given
by {m+ [ﬂl"—?ﬂlJ :1=0,...,k—1}. Denote by r; the onsets of 4;.(E*(k,n)) and
by r; those of F(k,n). First, we will compute the distance between two consecutive

onsets in Agc(E*(k,n)) for any i = 0,..., [¥] - 1.

o = m4 [n(jo+ggi+1)c)J B (m+ {n(jol;i—ic)J)

= Tjo+cite — Tjo+eai € {{%J ’ [%“}
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For the case i = I_%J, that is, for the distance between the last onset and the first

one, we have:

dﬂ_a::m+vﬂ%f%-(m+V@E%ﬂ2D
= e |HBEE] (o | HE2D )
= Tjo+k ~ Tjo+k-r € H%J ’ [%H

We now look at the alternation A, (E*(k,n)). For i = 0,...,|%] — 1, the

c

consecutive distances are:

: - m+[n(jo+r+(i+l)c)J_(m+{n(jo+r+ic)J>

Tivi =T = k
nc nc
= Tjodrtecite — Tjot+r+ei € { \\?J ’ {-7{:—-‘ }

For ¢ = L%J — 1, we have:

=l = m+[ﬂﬁiﬁi@J_(m+[ﬂh+r+ua—1mJ)

k

[n(jo +kr + k)} B [n(jo +r +kk —-r = c)J

= Tiotrtk — Tjotk—c € {{n(clj 7Q)J ’ [n(c’: T)”

For both alternations Ay (E*(k,n)) and A, .(E*(k,n)) we obtained the same set
of consecutive distances: {| ], [, [5], [F]} for Ao (E*(k,n)) and {|£],[<],

[(C—+,:—)—7—’J, [(CL,:)E]} for A,.(E*(k,n)). Using similar arguments as in the proof of

Theorem 6.4.4, we can complete the proof of our theorem. 0
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6.5 Decomposition

Let R; and R, be two rhythms having the same number of pulses and represented
as binary strings. The union of R; and R, is the rhythm R obtained by performing
the logical OR operation between the ith bit of R; and the ith bit of R, for all
i=0,2,...,n — 1. For example, the union of the two rhythms [x - x - xx - x. x .
x]and [X - x - X+« %+ X -]is the thythm [x - x - xXx . x . x . x]. We say that
R can be decomposed into the two rhythms R; and R;. A union of two rhythms
R, and R, is disjoint if the bits in position ¢ in R; and R, are not both 1 for any
0 < i< n—1 We can think of the alternation operation as a form of rhythm
decomposition. The following result follows from Theorem 6.4.1 from the previous
section:
Theorem 6.5.1. E(k,n) can be decomposed into the disjoint union of d copies of

B(k

E,n) up to rotation, where d is a divisor of k.

The following two results concern the decomposition of a rhythm in terms of its
complement.

Theorem 6.5.2. A Euclidean rhythm E(k,n) with {n/2] < k < n can be decomposed
into the union of [;’—_‘—k_l copies of the rotations of the rhythm E(n — k,n). Such a

union is disjoint if and only if n — k divides n.

Proof. Consider the complement E*(n — k,n) of the rhythm E(k,n). We want to
find a set of rhythms whose union has a 1-bit at every 0-bit position of E*(n —k,n).
Let Ef(n — k,n) denote the rhythm E*(n — k,n) rotated ¢ steps in the clockwise

direction, and consider the union R of the rhythms E}(n — k,n), E5(n — k,n), ...,
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Ex(n — k,n) where z = | 2| — 1. Rhythm R has at most k onsets:

(n—k)qnka—1>=n—r—(n—k)=k—rgk,

where r = n mod (n — k). The number of consecutive onsets between pairs of 0-bits
is exactly [7—1—'};] —1. By Corollary 4.2.8, the distance between two consecutive onsets
in E(n — k,n) is either [-2;| or [-2;]. Hence, R has every 1-bit coinciding with
a 0-bit position in E*(n — k,n). If n — k divides n, then the distance between any
two consecutive onsets in E*(n — k,n) is exactly ¢, and R has exactly k onsets;
it follows that R = E(k,n) and is the union of I.ﬁﬂ—'EJ rhythms. If n — k£ does not
divide n, then the distance between any two consecutive onsets in E*(n — k,n) is
either [n%kj or [#], and R has fewer than k onsets (and hence is not equal to
any rotation of E(k,n)). The onsets of E(k,n) that are missing in R are those
between two consecutive onsets of E*(n — k,n) that are at distance [-“¢|. Let
E_i(n — k,n) be the rotation of rhythm E*(n — k,n) by one bit in the counter-
clockwise direction. If we take the union of R and E_i(n — k,n), this will add the
missing onsets, and the rhythm resulting from this union will be the rhythm E(k,n).

Note that RU E_;(n — k,n) is not necessarily disjoint, and the total number of

rhythms in this union is equal to |.?£%J —141= Ln—ﬁﬂ O

Our final result on decomposition of rhythms is the following:
Theorem 6.5.3. A Euclidean thythm E(k,n) with [n/2] < k < n is the union of

rotations of two disjoint Euclidean rhythms E(n — k,n) and E(2k —n,n).

Proof. Consider the rhythm E(2(n — k),n). Applying Theorem 6.4.4 to E(2(n —

k),n), we can conclude that E(2(n — k),n) is the disjoint union of rotations of
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Apz(n — k,n) and Ay 2(n — k,n). Moreover, by Theorem 6.4.1, E(2(n — k), n) is the
union of two copies of rotations of E(n — k,n). On the other hand, E(2(n — k), n) is
the complement of E(2k — n,n) up to rotation, which implies that the two rhythms
are disjoint. Therefore, by taking the complement of one of the alternations we obtain
a decomposition of E(k,n) into the disjoint union of two rotations of E(n — k,n)

and E(2k — n,n). O

6.6 Musical Connections

In this section we interpret the mathematical results of this chapter in musical
terms. As mentioned in the introduction, we are interested in studying interlocking
and Euclidean rhythms; here we combine both ideas and study interlocking rhythms
that are Euclidean.

First, we will define three types of interlocking rhythms with the same timespan.
Complementary interlocking rhythms are a set of rhythms that have no common onset
and exactly one onset on any pulse of the timespan; Disjoint interlocking rhythms
are interlocking rhythms that have no onset at a common position; and non-disjoint
interlocking rhythms are a family of rhythms such that every rhythm in the family
has no more than half of its onsets in common with other rhythms in the family.

We will first consider complementary interlocking rhythms formed by Euclidean
rhythms. We already know that the complement of a Euclidean rhythm is Euclidean
up to rotation. Therefore, it is always possible to build pairs of complementary
interlocking Euclidean rhythms. Next, as its most straightforward generalization,
we may ask when a Euclidean rhythm can generate a tiling canon. According to

Hall and Klingsberg [91], a tiling canon is a canon of periodic rhythms that has
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exactly one-note onset (in some voice) per pulse. If E(k,n) is a tiling canon, k
necessarily divides n, and ¢ = ¢ is the number of voices (or the number of times
E(k,n) is played). By applying our results on alternations (Theorems 6.4.1 and 6.5.1)
to rhythm E(n,n), we conclude that alternations A;.(k,n),...,Acc(k,n) are all
clockwise rotations of E(k,n) and that they tile a timespan of n pulses. It is worth
noting that the resulting tiling canon is rather uninteresting musically. Because k&
divides n, rthythm E(k,n) consists solely of an onset played regularly every 3 pulses.
The tiling canon is then composed of consecutive clockwise rotations of E(k,n). For

instance, consider a timespan of 12 pulses and a tiling canon of 4 onsets. The number

of voices is 3 = 12/4 and the tiling canon is:

A0,3:[X--X--x--x..]
A1,3=[.x..x..x..x.]

A2,3.—_[..x..x..x..x]_

When the number of voices ¢ does not divide n, tiling canons cannot be built.
Let us generalize the concept of tiling canons so that this case can be subsumed. We
define a tiling quasi-canon as a set of ¢ periodic rhythms that tiles a timespan of n
pulses and whose number of onsets for each pair of rhythms differs at most by one.
Note that this definition includes that of usual tiling canons. Euclidean rhythms,
even when ¢ does not divide n, admit tiling quasi-canons. Indeed, the equality
n = c|n/c| +r, where r = n mod c, can be rearranged as n = (c—r)|n/c] +r[n/c].
This equality implies that a timespan of n pulses can be tiled with ¢ — r rotations of
E(|n/c),n) and r rotations of E([n/c],n). It is enough to apply Theorem 6.4.1 to

rhythm E((c — r)|n/c],n) and its complement E(r[n/c],n). For example, consider
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the problem of finding a tiling quasi-canon with 4 voices on a timespan of 19 pulses.
Given that r = 19 mod 4 = 3, the tiling quasi-canon is formed by ¢ — r = 1 rhythm
of |19/4] = 4 onsets and r = 3 rhythms of {19/4] = 5 onsets, as shown below.

Unlike tiling canons, rotations of the tiling quasi-canon are not consecutive.

If we relax the complementarity constraint, we may consider disjoint interlocking
rhythms. When k < |n/2] the decomposition of E(k,n) is not interesting. Often
such a decomposition does not exist or is trivial (it is the union of rotations of
E(1,n)). For example, E(4,11) =[x - - x - - X - - X -] cannot be decomposed into
Euclidean rhythms with a smaller number of onsets, except for the trivial union of
four copies of E(1,11). Moreover, the interesting case is the decomposition of a
dense rhythm in terms of sparser rhythms. Theorem 6.5.2 shows that, when k& >
|n/2], E(k,n) can be decomposed into the union of two disjoint interlocking rhythms,
namely, rotations of E(n — k,n) and F(2k — n,n). Below is an example of such a

decomposition for rhythm E(9,11).

E(9,11) = [x - xxxXX:XXXX]
E(7,11) = [x+xX-X:XX-X]
E(@2,11) = [+ %X« -%"]
EQ 1) = [-X- X+ -]
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Interestingly enough, rhythm E(9,11) can also be decomposed into the union of
rotations of rhythms E(3,11) because 3 divides 9.

Note that this result also provides a new way for finding complementary in-
terlocking rhythms. Since the complement of a Euclidean rhythm is Euclidean, for
k > |n/2] there exists a decomposition of the timespan as the union of E(2k —n,n)
and two copies of E(n — k,n), up to rotation.

Finally, we analyze the union of Euclidean rhythms when this union is not
required to be disjoint. Recall from the introduction that interlocking rhythms are
defined as having no more than half of their onsets in common. Theorem 6.5.2 ensures
that, when k < |n/2], there is a decomposition of E(k, n) into not necessarily disjoint
rhythms. If n — & divides n, such a decomposition is disjoint; otherwise, the number
of onsets in common is n mod (n— k), a number that is strictly less than n—k < n/2.

For example, consider E(9,11).

E(9,11) = [Xx+XXXX:XXXX]
E(2,11) = [- - x- x ]
E@211) = [+« %+ ox- -]
E(2,11) = | P X X -]
E(2,11) = [- - - - X - X]
E(2,11) = [x- X ]

As a tangible musical example, consider the bembé, a style from the Afro-Cuban
musical tradition. Its instrumentation includes at least one bell that plays a time-
line also called bembé [x - X - xx + x « x - x], which is a rotation of the Euclidean

rhythm E(7,12). Sometimes in the bembé ensemble there are two bell players, one
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playing the bembé itself, also known as the standard pattern, and the other playing
one of its rotations [40, 171, 179].

This concludes our analysis of interlocking rhythms. There are however some
interesting outstanding questions. For example, there is no characterization for the
decomposition of a Euclidean rhythm into other Euclidean rhythms (up to rotation).
It would also be interesting to find further conditions for the concatenation of Eu-
clidean rhythms to be Euclidean. Equally interesting would be finding other ways of

decomposing Euclidean rhythms apart from those given by alternations.
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Necklace Swaps, Convolutions, and X +Y

In the previous chapter, we were interested in transforming one rhythm into
another while retaining some rhythmic property — in our case maximal evenness —
without worrying about how different or similar the initial and final rhythms sound.
We now turn our attention to the question of how similar two rhythms with the same
number of pulses and onsets are. There is no single answer to this question. A variety
of methods for measuring similarity of rhythms exist, many of which have been
thoroughly studied in the music literature. A measure that quantifies the distance
between different rhythms is essential to any algorithm that compares, queries, or
recognizes rhythms. Similarity measures find applications in methods for retrieving
music from large databases using techniques such as query by humming [83], or for
finding music copyright infringements [55]. Thus, good measures of similarity are
useful and important tools for music analysis.

Toussaint describes a variety of distance measures for thythm comparison {170,
174]. The hamming distance is one measure that compares two strings of characters
and is widely used in coding theory. It essentially measures the number of places
where two strings do not match. One drawback of the hamming distance is that

it does not measure how far the mismatching characters are from each other. In
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music, two rhythms where the positions of mismatching onsets are far apart sound
much different than rhythms where mismatching onsets are close. Thus, for rhythm
similarity analysis it is preferable to use a measure that expresses the extent of the
mismatch.

A measure that reflects the distance between mismatches better is the edit dis-
tance, which in a way is a generalization of the hamming distance. The edit distance
allows insertions and deletions of characters. Applications of the edit distance to
measuring music similarity can be found in [123, 129]. One drawback of the edit
distance is its costly running time. While the hamming distance can trivially be
computed in linear time, the edit distance has a quadratic-time algorithm using dy-
namic programming. A different generalization of the hamming distance is the fuzzy
hamming distance that allows shifting of characters in addition to insertions and
deletion [24, 25, and can be computed in linear time [100]. A restricted version of
the fuzzy hamming distance is the swap distance [170, 171] introduced by Tous-
saint, that can similarly be computed in linear time [100, 174]. The swap distance
between two strings is the minimum number of swaps (interchange of two adjacent
characters) required to convert one string to another. For example, one can convert
the Tambtt rhythm [x - X - X - x X - X - X] to the Yoruba rhythm [x - x - xx - x -
x X - | by swapping the fourth and seventh onsets of the first with their left neighbor;
this makes the swap distance between these two rhythms equal to 2. In comparing
some rhythmic similarity measures, Toussaint [172] shows that the swap distance
performs better than other measures based on how well rhythms may be recognized

with them, how well they model human perception and cognition, and how efficiently
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they can be computed. The distance measures that Toussaint considers are the ham-
ming distance, the Euclidean interval vector distance, the interval-difference vector
distance, the chronotonic distance, and the swap distance.

The similarity measures discussed so far are useful for comparing linear strings.
In a musical context however, rhythms are cyclic binary strings, and in some appli-
cations (such as music retrieval and rhythm phylogeny [63, 172]) we are interested
in finding the best alignment of two cyclic binary strings over all possible rotations.
In other words, we want to minimize the distance between two rhythms over all
possible rotations of one with respect to the other, for some definition of distance.
Toussaint calls this measure the necklace swap distance [174] since it is the swap
distance between two rhythmic necklaces. The necklace swap distance between two
cyclic strings can be computed trivially in O(n?) time by using a linear-time algo-
rithm for computing the swap distance of two strings for every possible alignment of
the necklaces. Ardila et al. [5] show that this distance may be computed in O(k?)
time, where k is the number of onsets in each rhythm. Toussaint highlighted as an
interesting open question whether the necklace swap distance can be computed in
o(n?) time. In this chapter, we answer this question by giving o(n?)-time algorithms
for finding the best alignment of two continuous necklaces using each of the ¢;, £s,
and £., norms as distance measures. The ¢; norm is equivalent to solving the necklace
swap distance problem, and thus solves the open question posed by Toussaint. We
also show a surprising connection to convolutions, for which we also obtain improved
running times. Thus, in the remainder of this chapter we will temporarily step out

of the musical setting and talk about the more general necklace alignment problem,
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Zo

z1

T3 Zo

Figure 7-1: An example of necklace alignment: the input (left) and one possible
output (right).
one variation of which (the £; norm) computes the necklace-swap distance in o(n?)

time.

7.1 The Necklace Alignment Problem

In the necklace alignment problem we are given two continuous necklaces, each
represented by a set of n points on the unit-circumference circle, and our goal is
to find rotations of the necklaces, and a perfect matching between the beads of the
two necklaces, that minimizes some norm of the circular distances between matched
beads. In particular, the ¢; norm minimizes the average absolute circular distance
between matched beads, the £, norm minimizes the average squared circular distance
between matched beads, and the £, norm minimizes the maximum circular distance

between matched beads.
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Our approach is based on reducing the necklace alignment problem to another
important problem, convolution, for which we also obtain improved algorithms. The
(+,-) convolution of two vectors x = (%o, Z1,...,Zn-1) a0d ¥ = (Y0, V1, Yn-1)»
is the vector x*y = (29, 21,...,2n-1) Where 2z = Zf:o Z; - Ye—i- While any (@, ®)
convolution with specified addition and multiplication operators (here denoted x z y)
can be computed in O(n?) time, the (+, -) convolution can be computed in O(n logn)
time using the Fast Fourier Transform [50, 81, 96], because the Fourier transform con-
verts convolution into elementwise multiplication. Indeed, fast (+, ) convolution was
one of the early breakthroughs in algorithms, with applications to polynomial and
integer multiplication [19], batch polynomial evaluation [53, Problem 30-5], 3SUM
(12, 68], string matching [49, 73, 99, 102], matrix multiplication [47], and even jug-
gling [34].

As we show in Theorems 7.2.1, 7.3.2, and 7.4.2, respectively, ¢; necklace align-
ment reduces to standard (+, -) convolution, £, necklace alignment reduces to (min, +)
[and (max, +)] convolution, and ¢; necklace alignment reduces to (median, +) convo-
lution (whose kth entry is median®_; (z; + yk-i)). The (min,+) convolution problem
has appeared frequently in the literature, already appearing in Bellman’s early work
on dynamic programming in the early 1960s [18, 72, 118, 124, 144, 164]. Its name
varies among “minimum convolution”, “min-sum convolution”, “inf-convolution”,
“infimal convolution”, and “epigraphical sum”. To date, however, no worst-case
o(n?)-time algorithms for this convolution, or the more complex (median, +) convolu-
tion, has been obtained. In this chapter, we develop worst-case o(n?)-time algorithms

for (min, +) and (median, +) convolution in the real RAM model of computation. It
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should be noted that o(n?)-time algorithms for (min, +) and (median, +) convolution
in the nonuniform linear decision tree model appear in [27].

More formally, in the necklace alignment problem, the input is a number p repre-
senting the £, norm, and two sorted vectors of n real numbers, x = (0, T1y+ -+, Tn—1)
and y = (Y0,%1, - - -, Yn—1), representing the two necklaces. See Figure 7-1. Canoni-
cally, we assume that each number z; and y; is in the range [0, 1), representing a point
on the unit-circumference circle (parameterized clockwise from some fixed point).

The optimization problem involves two parameters. The first parameter, the
offset ¢ € [0,1), is the clockwise rotation angle of the first necklace relative to the
second necklace. The second parameter, the shift s € {0,1,...,n}, defines the perfect
matching between beads: bead i of the first necklace matches with bead (i+s) mod n
of the second necklace. (Here we use the property that an optimal perfect matching
between the beads does not cross itself.)

The goal of the £, necklace alignment problem is to find the offset ¢ € [0,1) and
the shift s € {0,1,...,n} that minimize

n—1

Z |»’C¢ — Y(i+s)modn T C P
=0

or, in the case p = oo, that minimize
n—1
r?_a[')x |$i — Y(i+s) mod n T C‘ .

Although not obvious from the definition, the ¢;, 43, and £, necklace alignment
problems all have trivial O(n?) solutions. In each case, as we show, the optimal offset

¢ can be computed in linear time for a given shift value s (sometimes even independent
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of s). The optimization problem is thus effectively over just s € {0,1,...,n}, and

the objective costs O(n) time to compute for each s, giving an O(n?)-time algorithm.

Related work. Although necklaces are studied throughout mathematics, mainly
in combinatorial settings, we are not aware of any work on the necklace alignment
problem before Toussaint [174]. He introduced ¢; necklace alignment, calling it the
cyclic swap-distance or necklace swap-distance problem, with a restriction that the
beads lie at integer coordinates. Colannino et al. [48] consider some different distance
measures between two sets of points on the real line in which the matching does not
have to match every point. They do not, however, consider alignment under such
distance measures.

The only subquadratic results for (min, +) convolution concern two special cases.
First, the (min, +) convolution of two convex sequences or functions can be trivially
computed in O(n) time by a simple merge, which is the same as computing the
Minkowski sum of two convex polygons [144]. This special case is already used in
image processing and computer vision [72, 118]. Second, Bussieck et al. [32] proved
that the (min, +) convolution of two randomly permuted sequences can be computed
in O(nlogn) expected time. Our results are the first to improve the worst-case

running time for (min, +) convolution.

Connections to X + Y. Necklace alignment problems, and their corresponding
convolution problems, are also intrinsically connected to problems on X +Y matrices.
Given two lists of n numbers, X = (o, T1,...,Zn-1) and Y = (Yo, Y1, -+, Yn-1),
X +Y is the matrix of all pairwise sums, whose (¢, j)th entry is z; + y;. A classic

unsolved problem [62] is whether the entries of X + Y can be sorted in o(n?logn)

129



Chapter 7. Necklace Swaps, Convolutions, and X +Y

time. Fredman [78] showed that O(n?) comparisons suffice in the nonuniform linear
decision tree model, but it remains open whether this can be converted into an
O(n?)-time algorithm in the real RAM model. Steiger and Streinu [161] gave a
simple algorithm that takes O(n?logn) time while using only O(n?) comparisons.
The (min, +) convolution is equivalent to finding the minimum element in each
antidiagonal of the X + Y matrix, and similarly the (max,+) convolution finds
the maximum element in each antidiagonal. We show that ¢, necklace alignment is
equivalent to finding the antidiagonal of X +Y with the smallest range (the maximum
element minus the minimum element). The (median, +) convolution is equivalent to
finding the median element in each antidiagonal of the X +Y matrix. We show that
¢; necklace alignment is equivalent to finding the antidiagonal of X + Y with the
smallest median cost (the total distance between each element and the median of the
elements). Given the apparent difficulty in sorting X +Y, it seems natural to believe
that the minimum, maximum, and median elements of every antidiagonal cannot be
found, and that the corresponding objectives cannot be minimized, any faster than
O(n?) total time. Figure 7-2 shows a sample X + Y matrix with the maximum
element in each antidiagonal marked, with no apparent structure. Nonetheless, we

show that o(n?) algorithms are possible.

In this chapter, we give subquadratic algorithms in the standard real RAM
model for the ¢, £, and £ necklace alignment problems, and for the (min,+)
and (median, +) convolution problems, using techniques of Chan [36]. Despite the
roughly logarithmic factor improvements for ¢; and £, these results do not use

word-level bit tricks.
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Figure 7-2: An X + Y matrix. Each polygonal line denotes an antidiagonal of the
matrix, with a point at coordinates (z,y) denoting the value z + y for z € X and
y € Y. An x denotes the maximum element in each antidiagonal.
1. O(nlogn)-time algorithm on the real RAM for ¢, necklace alignment (Section
7.2).
2. O(n%/logn)-time algorithm on the real RAM for /., necklace alignment and
(min, +) convolution (Section 7.3).
3. O(n?(loglogn)?/logn)-time algorithm on the real RAM for ¢, necklace align-

ment and (median, +) convolution (Section 7.4).
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7.2 {3 Necklace Alignment and (+, ) Convolution
In this section, we show how £, necklace alignment reduces to standard convo-
lution, leading to an O(nlogn)-time algorithm.

Theorem 7.2.1. The £y necklace alignment problem can be solved in O(nlogn) time.

Proof. The objective expands algebraically to

3
—

(xi — Y(i+s) mod n + C)2

=0
n—1 n—1
= Z (1"12 + y(2i+s) modn T 2cz; — 2cy(i+s) mod n T Cz) -2 Z L3Y(i+s) mod n
1=0 1=0
n—1 n-1
= Z (zzz + yzz + 261:1' - ZCyi + 02) -2 Z ZiY(i+s) mod n
=0 =0
n—1 n—1 n—1
= (1.12 +yz2) +2CZ(1‘Z _yi) +’I’LCZ _2iny(i+s) mod n-
=0 =0 =0

The first term depends solely on the inputs and the variable ¢, while the second
term depends solely on the inputs and the variable s. Thus the two terms can be
optimized separately. The first term can be optimized in O(n) time by solving for
when the derivative, which is linear in ¢, is zero. The second term can be computed,
foreach s € {0,1,...,n—1}, in O(nlogn) time using (4, -) convolution (and therefore

optimized in the same time). Specifically, define the vectors

x = (zo,%1,..-,%n-1;0,0,...,0),
N ——
n
Y = (Yn-1,Yn-2s- -1 Y0 Yn—1Yn-2s- - -, ¥0)-
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Then, for s’ € {0,1,...,n — 1}, the (n + §')th entry of the convolution x' xy’ is
n+s’ n-1

Z z;y:z+s’—i = Z ZiY(i—s'—1) mod n»

i=0 i=0

which is the desired entry if we let s/ = n — 1 —s. We can compute the entire

convolution in O(n logn) time using the Fast Fourier Transform. O

7.3 ¢, Necklace Alignment and (min, +) Convolution
First we show the relation between £, necklace alignment and (min, +) convo-
lution. We need the following basic fact:
Fact 7.3.1. For any vector z = (29,21, - - - , Zn—1), the minimum value of max? 7y |2+
cl| is
* (e = — fiuh 1)
5 Rt oA
1

which is achieved when c = —3 (min

n—1 n—1
i=0 <i T Mmax;_g zi).

Instead of using (min,+) convolution directly, we use two equivalent forms,
(min, —) and (max, —) convolution:
Theorem 7.3.2. The s necklace alignment problem can be reduced in O(n) time

to one (min, —) convolution and one (max, —) convolution.

Proof. For two necklaces x and y, we apply the (min, —) convolution to the following

vectors:

I .
x = (zo,T1,...,Tn-1;00,00,...,00),
N, e’
n
r_ .
y = (yn-l,yn-z, o YosYn—1Yn-2, . - - ,y0>-
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Then, for s' € {0,1,...,n — 1}, the (n + s')th entry of x' * y’ is

n+s’ ’ n—1
MIN(Z; — Yppgr—i) = MN(T; = Yaog'-1) mod n),

which is min?;ol(a:,- — Y(i+s) mod n) if we let ' = n — 1 —s. By symmetry, we can
compute the (max, —) convolution x” mix y’, where x” has —o00’s in place of co’s, and
use it to compute max? ¢ (T; — Y(i+s) modn) for each s € {0,1,...,n — 1}. Applying
Fact 7.3.1, we can therefore minimize max('_y |&; — Y(i+s) mod n + €| OVer ¢, for each

s € {0,1,...,n — 1}. By brute force, we can minimize over s as well using O(n)

additional comparisons and time. a

Our results use the following geometric lemma from Chan’s work on all-pairs
shortest paths:
Lemma 7.3.3. [36, Lemma 2.1] Given n points p1,ps,...,pn in d dimensions, each
colored either red or blue, we can find the P pairs (p;,p;) for which p; is red, p; is
blue, and p; dominates p; (i.e., for all k, the kth coordinate of p; is at least the kth
coordinate of p;), in 2019n!+e + O(P) time for arbitrarily small € > 0.
Theorem 7.3.4. The (min, —) convolution of two vectors of length n can be com-

puted in O(n?/logn) time.

Proof. Let x and y denote the two vectors of length n, and let x * y denote their
max

(max, —) convolution. (Symmetrically, we can compute the (min, —) convolution.)

For each 6 € {0,1,...,d — 1}, for each ¢ € {0,d,2d,...,[n/d|d}, and for each
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j€{0,1,...,n — 1}, we define the d-dimensional points

Psi = (Tivs — Tiy Tixs — Tixl, -+ Tigs — Tivd-1),
4sj = (yj—6 = Yi Yj-6 —Yi-1y, -+ Yj—5 — yj—d—l)-
(To handle boundary cases, define x; = oo and y; = —oo for indices 7, j outside

[0,n—1].) Foreaché € {0,1,...,d—1}, we apply Lemma 7.3.3 to the set of red points
{psi:i=0,d,2d,...,|n/d]d} and the set of blue points {gs5; : 7 = 0,1,...,n — 1},
to obtain all dominating pairs (ps;, ¢s,;)-

Point p;; dominates gs; precisely if x5 — Zivy > yj—s — y;—s for all &' €
{0,1,...,d — 1} (ignoring the indices outside [0,n — 1]). By re-arranging terms, this
condition is equivalent to ;15 — Yj—s > Tits — Yj—o for all & € {0,1,...,d —1}. If
we substitute j = k — i, we obtain that (ps;, gsx—;) is a dominating pair precisely if
Tirs—UYk—i-6 = maxg;ll(a:Hy —Yk—i—&)- Thus, the set of dominating pairs gives us the
maximum My (i) = max{T; — Yk—s, Ti+1 — Yk—it1> - - - » Tminfi+dn}—1 — Ymin{k—i+d;n}—1}
for each i divisible by d and for each k. Also, there can be at most O(n?/d) such
pairs for all 4, j, §, because there are O(n/d) choices for ¢ and O(n) choices for j, and
if (psi, gs,;) is a dominating pair, then (ps ;, g5 ;) cannot be a dominating pair for any
8’ # 8. (Here we assume that the max is achieved uniquely, which can be arranged by
standard perturbation techniques or by breaking ties consistently [36].) Hence, the
running time of the d executions of Lemma 7.3.3 is d20@n!+¢ + O(n?/d) time, which
is O(n?/logn) if we choose d = alogn for a sufficiently small constant a > 0. We
can rewrite the kth entry max® ,(z; — yx—i) of x m;axy as max{My(0), My(d), Mi(2d),
..., Mi([k/d]d)}, and thus we can compute it in O(k/d) = O(n/d) time. Therefore

all n entries can be computed in O(n?/d) = O(n?/logn) time. O
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Combining Theorems 7.3.2 and 7.3.4, we obtain the following result:
Corollary 7.3.5. The £y necklace alignment problem can be solved in O(n?/logn)
time.

It should be noted that any improvement to this approach beyond O(n?/logn)
would probably require an improvement to Lemma 7.3.3, which would in turn im-
prove the fastest known algorithm for all-pairs shortest paths in dense graphs, the

O(n®/logn)-time algorithm of [36].

7.4 {; Necklace Alignment and (median, +) Convolution

First we show the relation between ¢; necklace alignment and (median, +) con-
volution. We need the following basic fact: .
Fact 7.4.1. For any vector z = (zp,21,--.,2n-1), Z|z,- + ¢| is minimized when
c= — rnediani":_1 Z. =

Instead of using (median, +) convolution directly, we use the equivalent form,
(median, —) convolution:

Theorem 7.4.2. The ¢, necklace alignment problem can be reduced in O(n) time to

one (median, —) convolution.

Proof. For two necklaces x and y, we apply the (median, —) convolution to the

following vectors, as in the proof of Theorem 7.3.2:

I .
X = (anmO»thl,---axn~l’xn—1v907_oo)oo,_oov'--,Oo,_09>)
2n
, .
Yy = <yn—1)yn—l)yn—2,y’n—-23""yO,yOayn—l)yn—layn—‘Z»yn-—Z:'"ay07y0>'

136



Chapter 7. Necklace Swaps, Convolutions, and X +Y

Then, for s’ € {0,1,...,n — 1}, the 2(n + §') + 1st entry of x’ ;dy’ is

2(n+sf)+1 , , n-1

mggéan (xz - y2(n+s’)+1—i) = mezg(l)an(xz — Y(i—s'—1) mod 'n)»
which is median?;ol(xi—y(iﬂ) mod n) if welet s’ = n—1—s. Applying Fact 7.4.1, we can
therefore minimize median?; |Zi — Y(i+s) mod n+c| OVer ¢, for each s € {0,1,...,n—1}.
By brute force, we can minimize over s as well using O(n) additional comparisons

and time. 0

Our results for (median, —) convolution use the following result of Frederickson
and Johnson:
Theorem 7.4.3. [77] The median element of the union of k sorted lists, each of
length n, can be computed in O(klogn) time and comparisons.

Our result for (median, —) convolution is the following:
Theorem 7.4.4. The (median, —) convolution of two vectors of length n can be

computed in O(n*(loglogn)?/logn) time.

Proof. Let x and y denote the two vectors of length n, and let x ;dy denote their
(median, —) convolution. For each permutation 7 on the set {0,1,...,d — 1}, for
each i € {0,d,2d,...,|n/d]d}, and for each j € {0,1,...,n — 1}, we define the

(d — 1)-dimensional points

Pri = (xi-Hr(O) — Titn(1)) Titn(l) — Ti+n(2)> -+ s Litn(d-2) — $i+w(d—1)),
Grg = Yjmrn(© = Yj-n(1), Yi-r(1) = Yi=n(@) -+ +» Yi-n(d-2) = Yj-n(d-1);
(To handle boundary cases, define z; = oo and y; = —oco for indices i, j outside

[0,n — 1].) For each permutation 7, we apply Lemma 7.3.3 to the set of red points
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{pri:i=0,d,2d,...,|n/d|d} and the set of blue points {g,;:j=0,1,...,n —1},
to obtain all dominating pairs (pr.i, qn,;)-

Point p,; dominates g, ; precisely if Tipr(s) = Titn(s+1) = Yj—n(6) — Yj—n(s+1) for
all § € {0,1,...,d — 2} (ignoring the indices outside [0,n — 1]). By re-arranging
terms, this condition is equivalent to Ziyr(s) — Yj—n(s) = Titn(6+1) — Yj—n(s+1) for all
§€{0,1,...,d—2}, ie., mis a sorting permutation of (z;—v;, Tis1—Yj-1,. - -, Titd—1—
Yj—da+1). 1f we substitute j = k — i, we obtain that (ps;,¢rk—s) is a dominating
pair precisely if 7 is a sorting permutation of the list Lx(i) = (i — Yk—i, Tit1 —
Yk—it1s - - - » Tmin{i+dn}—1 — Ymin{k—i+dn}~1). Lhus, the set of dominating pairs gives us
the sorted order of L (i) for each i divisible by d and for each k. Also, there can be
at most O(n?/d) total dominating pairs (pr,qr ;) over all 4, j, 7, because there are
O(n/d) choices for i and O(n) choices for j, and if (py i, g ;) is a dominating pair, then
(Pw iy Grr;) cannot be a dominating pair for any permutation 7’ # 7. (Here we as-
sume that the sorted order is unique, which can be arranged by standard perturbation
techniques or by breaking ties consistently [36].) Hence, the running time of the d! ex-
ecutions of Lemma 7.3.3 is d! 2°@n!+¢ + O(n?/d) time, which is O(n?loglog n/logn)
if we choose d = alogn/loglogn for a sufficiently small constant a > 0. By Theo-
rem 7.4.3, we can compute the median of Li(0) U L(d) U Lg(2d) U - - U Li([k/d]d),
i.e., median®_o(x; — yk—i), in O((k/d)logd) = O((n/d)logd) comparisons. Also, in
the same asymptotic number of comparisons, we can binary search to find where the
median fits in each of the L(A) lists, and therefore which differences are smaller and

which differences are larger than the median. This median is the kth entry of x ;d Y.
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Therefore all n entries can be computed in O(n?(logd)/d) = O(n*(loglogn)?/logn)

time. O

Combining Theorems 7.4.2 and 7.4.4, we obtain the following result:

Corollary 7.4.5. The £ necklace alignment problem can be solved in O(n?(loglogn)?/
logn) time.

As before, this approach likely cannot be improved beyond O(n?/logn), because
such an improvement would require an improvement to Lemma 7.3.3, which would
in turn improve the fastest known algorithm for all-pairs shortest paths in dense
graphs [36].

In contrast to (median, +) convolution, (mean, +) convolution is trivial to com-

pute in linear time by inverting the two summations.

7.5 Conclusion

Although motivated by measuring music similarity, the necklace alignment prob-
lem is interesting in its own right from the theoretical point of view. The convolution
problems we consider here have connections to many classic problems, and it would be
interesting to explore whether the structural information extracted by our algorithms
could be used to devise faster algorithms for these classic problems. For example,
does the antidiagonal information of the X + Y matrix lead to a o(n?logn)-time

algorithm for sorting X + Y7
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Chapter 8
Rhythm Reconstruction from Interval Content

In the problems discussed so far, we either characterized rhythms having some
desired properties, or we were given a rhythm that we wanted to transform into
or compare to another thythm. Solutions to these problems involved studying the
intervals between pairwise onsets of the rhythms and how they relate to one another.
In the final chapter of this thesis, we introduce a class of problems that, in a way, go
in the reverse direction. In this reverse setting, we are given constraints on interonset
intervals and are required to reconstruct rhythms satisfying these constraints.

Consider a rhythm represented as a clock diagram. Every pair of onsets deter-
mines an interonset geodesic distance (or interval). We will call the multiset of these
geodesic distances between every pair of onsets the interval content of the rhythm.
It is clear that every rhythm uniquely determines an interval content; however, the
converse is not necessarily true. The patterns [x - x - -+ x - - - . x] and [XX - -
Xoo X v e ], which are two well known tetrachords, are neither rotations nor
mirror images of each other, and yet they have the same interval content (Figure 8-
1). Therefore, there is an inherent problem in uniquely reconstructing a rhythmic

pattern from its multiset of distances.
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Figure 8-1: Two rhythms with the same interval content that are neither rotations
nor mirror images of each other.

In music theory, music perception, and music information retrieval, questions
concerning the existence and constructibility of melodies and rhythms from partial
information is a well studied problem. One popular method of encoding rhythms
and melodies with only partial information is via rhythmic and melodic contours.
Rhythmic contours have been used for the analysis of rhythms, the description of
general stylistic features of music, the design of algorithms for automatic classification
of musical genres, and also for the study of perceptual discrimination of rhythms [119,
152, 158]. The rhythmic contour is defined as the pattern of successive relative
changes of durations in a rhythm. Some authors represent the rhythmic contour as a
sequence of integers reflecting these changes; others simply describe the changes in a
qualitative manner, observing whether a duration becomes longer, shorter, or remains
the same. As an example, consider the rhythmic contour of the clave son rhythm
expressed in box notation as [x + - X+ + X+ - - x - x . - -]. First, we determine its
cyclic ordered set of duration intervals (3,3,4,2,4). The difference-encoding of this set

is given by {0,1, —2,2, —1}. The rhythmic contour is concerned with only the pattern
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of direction changes of the durations, which may be encoded as {0,1,-1,1,—1}.
Alternately we can write {+ —+0—} [126, 136]. A pitch (melodic contour) is defined
in the same way [153]. Two types of contours have received a great deal of attention in
the music literature: the adjacent contours (edge lengths of adjacent onsets) described
in the preceding, and the full contours that use the entire matrix of distances between
all pairs of points on the circle. An interesting composition problem in music theory
is whether a given set of intervals (adjacent or full) admits a realization as a melody
or thythm [138]. Demaine et al. [59] give efficient algorithms for determining whether
a rhythm may be reconstructed.

It must be noted here that reconstruction problems also have applications in
areas such as crystallography and DNA sequencing [109, 157]. One variation, called
the turnpike problem, dates back to the 1930’s in the area of X-ray crystallography,
where the objective was to reconstruct the coordinates of the atoms in a crystal.
More recently, reconstruction problems have become important in the field of DNA
sequencing — determining the pattern of the amino acids that constitute a strand of
" DNA. Given a DNA molecule, exposing it to a special kind of enzyme (called restric-
tion enzyme) divides it into pieces of different lengths. The lengths of these fragments
can be measured with standard techniques, and the challenge is to reconstruct the
original ordering of these fragments in the DNA molecule. In molecular biology, this
reconstruction problem is called the partial digest problem and is equivalent to the
turnpike problem in crystallography.

From a theoretical perspective, problems related to reconstructing sets from

interpoint distances are, in general, computationally challenging. Even when the

142



Chapter 8. Rhythm Reconstruction from Interval Content

points are restricted to a line (turnpike or partial digest problem), the complexity
of the problem remains unknown. One of the main difficulties of these problems lies
in the fact that while a given pointset uniquely defines a multiset of distances, the
inverse is not always true: there may be many pointsets defining a given multiset of
distances; such pointsets are known as homometric sets. Lemke et al. [109] study
the computational and combinatorial complexity of pointset reconstruction problems.
For a given set of (}) distances, they give upper and lower bounds on the number of
mutually noncongruent and homometric n-point sets that realize these distances in
R?. They also show that the decision problem of whether a multiset of (}) distances
is realized by n points in R? (for arbitrary dimensions d) is NP-complete.

When a rhythm is represented as a clock diagram, the edges defined by onsets
consecutive along the circumference of a circle form a cyclic polygon. One question
is how one may construct such a polygon given the lengths of its sides. In [117]
Macnab describes a method to construct such a cyclic polygon: given an ordered list
of edge lengths (ag, ay, ..., a,-1), start with a large enough circle and place n vertices
Vo, V1, . . - Un_1 on the circumference such that the distance of the chord between v;
and vi,; is equal to a; for all 7 € [0,n — 2]. Then, decrease the radius of the circle
continuously until the first and last vertices vy and v,_; coincide. Macnab claims
that this heuristic produces the desired cyclic polygon. However, Pinelis [133] gives
a simple counterexample to Macnab’s heuristic with only three edge lengths, and
provides a fix. Pinelis’s example shows that making the circle smaller sometimes
causes the diameter to be equal to the longest edge of the polygon. If the first and

last vertices do not coincide at this point, the circle cannot be made smaller because
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the longest edge cannot fit in a smaller circle. As a fix, Pinelis suggests increasing
the radius of the circle after this point until the first and last vertices coincide. It
is worthwhile to mention here that a heuristic identical to that of Macnab’s also
appears in a paper by Pak [131]. Pinelis moves on to show that given an ordered
sequence of edge lengths (ag, as, . ..,an—1) such that each a; is strictly less than the
sum of the rest, there is a unique convex cyclic polygon with the given edge lengths.
Changing the order of the edges around the circle will result in a different cyclic
polygon, but with the same area: the area of a cyclic polygon can be seen as the
sum of the areas of the triangles determined by the two endpoints of an edge of the
polygon and the center of the circle, and rearranging the triangles will keep the area
unchanged. Since any triangle is cyclic, its edge lengths determine a unique triangle.
For polygons with a higher number of edges however, it is necessary to have the cyclic
condition in order to guarantee uniqueness of the area of the polygon described by
the given lengths.

The question of whether constructing a cyclic polygon given its edge lengths
is possible with only a ruler and compass is settled by Schreiber [154] who proves
that such a construction with a ruler and compass is indeed not possible in general,
even if the edge lengths are equal. In fact, Carl Gauss [82] proved around the year
1800 that a regular polygon can be constructed with a ruler and compass only if the
number of its vertices is the product of a power of two and any number of distinct
Fermat primes (a prime number of the form 2% 4 1). Later in 1836, Pierre Wantzel

proved that Gauss’s condition is also necessary [186].
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In an attempt to construct approximate regular polygons with a ruler and com-
pass, Treatman and Wickham [177] describe a construction that uses cyclic polygons.
To construct a regular polygon with n sides, first place n points vp,vy,...,v,-1 at
arbitrary positions around the circumference of the circle such that the arc lengths
between two consecutive points are sorted counterclockwise in a nondecreasing or-
der. Inserting edges between consecutive points v; and v;41 produces a cyclic polygon
P Then for every i = 0,1,...,n — 1, move v; to the center of the arc 7;_,v; and
let the resulting polygon be P!. This can be done using a ruler and compass. By
repeating this operation, one can construct a sequence of polygons P°, P!, P% .. ..
Treatman and Wickham show that the limit of the such a sequence P as i goes to
infinity is a regular polygon, and that the area of P is at most the area of P*t!.
Hitt and Zhang [97] describe a similar operation, that we call the shadow operation
in Section 6.1, and show that the shadow sequence of any convex cyclic polygon
converges to a regular polygon. Note that every shadow polygon in the sequence can
be constructed by a ruler and compass.

Reconstruction problems have connections with other areas such as crystallogra-
phy and DNA sequencing [109, 157]; we omit further discussion of connections with
such areas and move to the discussion of the main problem in this chapter. In what
follows, we describe a reconstruction problem we call the labeled beltway problem,

and provide a polynomial-time solution.
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8.1 The Labeled Beltway Problem

Lemke et al. [109] call the version of the reconstruction problem where the points
lie on a circle the beltway problem. Here we consider a variation of the beltway prob-
lem, which we call labeled beltway, where the edges defined by the points along the
circle are assigned labels. More formally, given a set of points and their clockwise
order around a circle, we want to find an embedding of the points on the circumfer-
ence of a unit circle subject to some constraints. The constraints involve the geodesic
distance between pairs of points. The distance constraints are given by a labeling
of the edges defined by pairs of points such that two edges having the same label
have the same length. Note that if together with the ordering we were given all the
distances between pairs of points, the problem is easy in the plane, as well as on the
circle. If the points are embedded on a circle, then we have two cases: if the lengths
of the convex hull edges sum to 1, then the given edge lengths measure the clockwise
distance between pairs of points consecutive around the circumference, and we can
embed. Otherwise, the longest edge of the convex hull equals the sum of the lengths
of the remaining edges; in this case, invert the length of the longest edge around 1;
all the edges now have clockwise distances and we can again embed.

We specify the constraints on the geodesic distances between pairs of points by
associating these distances with edges of the complete graph on the n points. In the
labeled beltway problem, each vertex assigns a label to each incident edge, and two
edges incident to the same vertex are constrained to have equal geodesic lengths if
and only if they have the same label assigned by that vertex. Thus, incident pairs

of edges have an isometry or anisometry constraint, while nonincident edges have no
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direct constraints. In this chapter we give a solution to the labeled beltway problem

by reducing it to solving a set of linear equations and nonequations.

8.2 Reduction to a Set of Linear Equations

Let {po,p1,...,Pn—1} be a set of points embedded on a circle of unit circumfer-
ence such that p(y1) mod n is the closest point to p; in the clockwise traversal along
the circumference starting from p; for ¢ = 0,1,...,n — 1. We say that an edge p;p;
is oriented clockwise if its geodesic distance is the length of the traversal from p; to
p; along the circumference of the circle; it is oriented counterclockwise if its geodesic
distance is the length of the traversal from p; to p; along the circumference. If the
length of an edge is %, then the edge can be oriented either way; but otherwise, its
orientation is forced.

We now state the constraints on the edges of the labeled complete graph more
formally as follows: for every three distinct points p;,p;,pr on the circle, if the
edge p;p; has the same label as p;pi, then the geodesic distance between p; and p;
is equal to the distance between p; and py, that is, g(pi,pj) = L;dj(pj,pk) (isometry
constraints); moreover, two edges with different labels must have different geodesic
lengths (anisometry constraints).

We show how to reconstruct the points given isometry and anisometry con-
straints between pairs of edges that do not cross (that is, edges whose endpoints
appear together in the cyclic order). In particular, such constraints capture all con-
straints, solving the problem. Our solution is based on representing the constraints

by linear equations (3_, a;z; = by ), linear inequalities (3, a;z; < b and ), a;2; < b),
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and linear nonequations (3_, a;z; # b;) on n variables. We then solve this system by
reducing to a sequence of linear programs with only linear equations and inequalities.

We parameterize the desired embedding of the n points on the circle by variables
Zo,T1, ..., Tn_1, Where z; = 3(pi,pi+1), the clockwise distance from p; to p;y1. These
n variables determine an embedding up to rotation provided that they satisfy the

following constraints (defining an open (n — 1)-simplex):

Xn:xi =1
i=0

z; > 0 fori=0,1,...,n—1

The positivity constraints force the points to embed to distinct locations in the
correct cyclic order.

The challenge in representing an isometry or anisometry constraint among geodesic
distances is that a geodesic distance between two points p; and p; may be realized by
either the clockwise distance z; + ;41 + - -+ + x,;_1 or the counterclockwise distance
Tj+Zj41+ -+ 1. If we knew the orientation of every edge, then we could write
the isometry or anisometry constraint as a linear equation or nonequation. There are
n choices for the orientations of the n — 1 edges incident to a vertex p;, depending on
which wedge between consecutive edges contains the center of the circle. Considering
all vertices, there are at most n™ choices for the orientations, each leading to a system
of linear equations and nonequations. On the other hand, consider the n pairwise
crossing edges p;pi+n/2; the orientation of each can be chosen independently. Hence,

there are at least 2" possible orientations.
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For the edges that do not cross, the isometry and anisometry constraints can
be reconstructed easily. Two edges p;p; and pgp; do not cross if their endpoints
appear in the order p;, p;, pk, pi along the circumference. Fortunately, for constraints
between such noncrossing edges, we can effectively determine the orientations of the
edges to obtain a single system of linear equations and nonequations. To describe
these constraints we first need the following lemma:

Lemma 8.2.1. If the points p;,pj, Pk, D1 appear in clockwise order around the circle
(with the possibility that j = k or | =1 but not both) then we cannot have both edges

pip; and ppp; oriented counterclockwise.

(o}
Proof. Suppose both edges are oriented counterclockwise. This implies that d(p;, p;) >
0
1 and d(px,p;) > 3. Because of the ordering of the points around the circle, both py

and p; lie on the clockwise arc from p; to p;. Thus,

(o) O (o] o]
d(p;,pi) = d(pj, px) + d(pk, p1) + d(p1, Ps)-

o]
This equality cannot hold because d(p;,p;) < % while the right-hand-side is strictly

greater than half. Thus, at least one of the edges must be oriented clockwise. |

We start with the isometry constraints, for which we need the following lemma.:

Lemma 8.2.2. If the points pi, p;, Pk, P1 appear in clockwise order around the circle
U u

(with the possibility that j = k or | =4 but not both) such that d(px,p) = d(pi, p;),

then both edges p;p; and prp; must be oriented clockwise.

Proof. By Lemma 8.2.1 we know that we cannot orient both edges counterclockwise.

U o]
Suppose only pgp; is oriented counterclockwise; this means that d(pe, p1) = d(pi, pe) <
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u o]
% and d(p;, p;) = d(p;, p;). Because of the ordering of the points p;, pj, px, pi around
the circle, we have

(o] o] (o] (o]
d(pi, pe) = d(pi, pi) + d(ps, p;) + d(pj, pr) <

[N

0
Because at least one of the distances d(pl,p,) and d(p],pk) is greater than zero,

(o}

d(pi, px) > d(pz,p]) which implies that d(pk,pl) > d(p,,p])' contradlctlon Simi-
larly, if only p;p; is orlented counterclockw1se then this would imply that d(pz, p;) >

0

d(pk,p1). Therefore, if d(pz,pj) = d(pk, p;) then both edges must be oriented clock-

wise. |

Thus, if two edges p;p; and pgp; are noncrossing and their edge lengths must
be equal, then by Lemma 8.2.2 we can assume that the edges are oriented clockwise

and we force this by adding the linear inequalities

Now that we have forced the edges to be oriented clockwise, we can force the equality
of their lengths with a linear equation:
dow o= )

i<r<j k<s<l

For the anisometry constraints, we first show the following lemma:
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Lemma 8.2.3. If the points p;,p;, Pk, P appear in clockwise order around the circle
(with the possibility that j = k or | = 1 but not both) such that at least one of the

o} 0
edges p;p; and pxp, must be oriented counterclockwise, then d(p;,p;) # d(pk,pr)-

i By

0
Proof. Assume that pxp, is oriented counterclockwise; then, d(pi,px) 5

<
o}
d(plapi) +

0 o] o] 0
d(pi, p;)+d(pj, pe) < 5. Because at least one of d(p, p;) or d(p;, px) is strictly positive,

o]
Lemma 8.2.1, p;p; must be oriented clockwise. Then, we have d(p;, px) =

(o] (o]
then d(pk,pi) > d(pi,p;). Thus, the two edges have distinct clockwise lengths. [

Now consider an anisometry constraint between two noncrossing edges p;p; and
prp;. We represent this constraint by a linear nonequation:
Do # D5
i<r<j k<s<l
To show that the above nonequation holds independent of the orientation of
each of the edges, we need to show that it holds if and only if the desired geodesic
distances are distinct. First, if both edges can be oriented clockwise, then this
constraint on the clockwise distances is equivalent to the distinctness of the geodesic
lengths. Second, if one of the edges must be oriented counterclockwise, then by
Lemma 8.2.2, the geodesic lengths must be different; and by Lemma 8.2.3, the linear

nonequation must be satisfied.
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8.3 Solving Systems of Linear Equations and Nonequations

The previous section yields a linear system like the following.

Az < % (8.1)
Mz=f (8.2)
Nz #yg (8.3)

z; > 0 (8.4)

Geometrically, (8.1), (8.2) and (8.4) define a (partly open) convex polyhedron
P, while each row of (8.3) defines a forbidden hyperplane. To solve this system,
we will use the following idea: initially we ignore the forbidden hyperplanes and
find a relative interior point in the feasible region P. Then we check if this point
lies on a forbidden hyperplane; if it does not lie on any forbidden hyperplane, we
have a solution. Otherwise, if the point lies on h;, then we recurse on one side
of h; N P. Recursing on one side of h; ensures that we never pick a point on the same
hyperplane more than once. Thus, in the worst case we will eventually run out of
forbidden hyperplanes and one side of the last eliminated hyperplane will be a region
with no forbidden points. We can now find a feasible point in this region.

After a suitable (and polynomial time computable) change of coordinates, we
may assume that P has interior points. Let h(a,u) denote the hyperplane {z |
(a,z) = pu}.

Proposition 8.3.1. If h{a,u) N P has relative interior points, then for any suffi-

ciently small € > 0, h(a,p + €) and h(a, x — €) both have relative interior points.
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The idea is that given a point ¢ in the relative interior of PN h(a, i) (if such a g
does not exist, then h(a, 1) is redundant and can be discarded), choose ¢ sufficiently
small so that h(a,u + €) N P has relative interior, and does not collide with any
possible parallel forbidden hyperplanes. If a solution exists, then there is one on the
hyperplane h(a, it + €). To avoid calculation of €, we add the inequality a”z > p to
our system, replacing the nonequation a”z # p. If this new system is infeasible, it
means that P C h(a, 1), and the original problem is infeasible.

Our basic computational step is thus to find a relative interior point of a poly-
hedron defined by strict and nonstrict inequalities. This is equivalent to feasibility
testing for systems of strict linear inequalities, which can be solved by linear pro-
gramming.

The inequalities and (non)equations of our system describe the constraints for
pairs of noncrossing edges. We have added a constant number of constraints per
pair of noncrossing edges having the same or different labels. Because we have a
total of () edges, pairing them gives us ©(n*) constraints. The linear programs
required can be solved in time polynomial in n and the number of bits required of
the output. In our case, ©(n) bits suffice to disambiguate all the distinct distances,
at which point the solution will be correct; so we can solve the linear programs in
time polynomial in n. The number of times we solve such a system is at most equal
to the number of forbidden hyperplanes, which is a polynomial function of n. Thus

we have a polynomial-time solution to the labeled beltway problem.
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Conclusion

In this thesis we have shown a variety of mathematical and geometric problems
that have connections to computational music theory. Although most of these prob-
lems were not initially derived from musical considerations and are primarily solved
for mathematical objectives, they may find applications in constructing practical
tools for music classification, retrieval, comparison, etc., as well as for music-theoretic
analysis of rhythms and scales. One example in the latter case is the study of deep
rhythms described in Chapter 3, which initially arose as a problem in distance geom-
etry, but which also appears independently in one form as Gamer’s Common Tone
Theorem in the music literature. On the other hand, sometimes problems that arise
in music analysis contexts may find unexpected connections with theoretical prob-
lems in mathematics and computer science, and hence may improve on results in
this latter area. An example is the necklace alignment problem in Chapter 7, which
initially was a problem in rhythmic comparison and whose solutions improved results
on convolutions. Therefore, the problems studied in this thesis contribute in a way
to both areas of theoretical computer science and computational music theory.

Irrespective of the connections between these two areas however, if we move

away from the musical context it is clear that the objects we study here are in
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essence cyclic binary sequences. Although such sequences have been extensively
studied in the computer science literature, what sets our work apart is our geometric
representation of these objects. This representation allows us to visualize the related
problems differently, and to make use of geometric tools and properties (such as area,
distance, polygons, etc.) to solve them.

The two areas of music and mathematics feed each other with endless open

problems. This thesis leaves us with a few that we list below.

Open Problem 9.0.2 (Measures of evenness). Define new measures of evenness
based on how well they discriminate between rhythms, how fast they can be computed,
and how useful they are in practice. Two possibly useful measures were discussed in

Section 4.4.

Open Problem 9.0.3 (Reconstructing even rhythms). Suppose we are given a set of
intervals that represent the geodesic distances between consecutive onsets of a rhythm.
Is it possible to find an ordering of these intervals that mazimizes the evenness of
the rhythm described by this ordering? Geometrically, the problem is equivalent to
rearranging the edges of a cyclic polygon such that evenness is mazimized, for some

definition of evenness.

Open Problem 9.0.4 (Constructing approximate cyclic polygons). In the intro-
duction to Chapter 8, it was discussed that, in general, the problem of constructing
a cyclic polygon given the lengths of its edges is not possible with a ruler and com-

pass. Is the problem of reconstructing such polygons possible in the real RAM model
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of computation? If not, is it possible to design an algorithm that constructs a good

approzimation of the desired polygon?

Open Problem 9.0.5 (Rhythm reconstruction). Given an integer r, design and
algorithm that places points around a unit circle such that the number of distinct
geodesic distances realized by these points is equal tor. Is such a construction possible

for any r?

Open Problem 9.0.6 (Global beltway). The global beltway problem is a variation
on the beltway problem discussed in Chapter 8. In this variation, constraints on the
edges are defined globally such that any two edges are constrained to have the same
geodesic length if and only if they have the same label. To restate the problem more
formally, we are given the ordering of a set of points around the circumference of
a unit circle and some global constraints involving the distances defined by pairs of
points. We want to embed these points such that the distance constraints are satisfied.
These distance constraints are as follows: for every four distinct points p;, p;, Pk, Dt
on the circle, if the length p;p; has the same label as pipi, then the geodesic distance
between p; and p; is equal to the distance between py and p;; moreover, two distances

with different labels must have different lengths. Is this problem NP-complete?
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APPENDIX A

Euclidean Rhythms in Traditional World Music

Below is a list of Euclidean rhythms that can be found in traditional world
music. We restrict out attention to rhythms where k and n are relatively prime.

o E(2,3) = [xx -] =(12) is a common Afro-Cuban drum pattern when started on
the second onset as in [x - x]. For example, it is the conga rhythm of the (6/8)-
time Swing Tumbao [106]. It is common in Latin American music, as for example
in the Cueca [180], and the coros de clave [145]. It is common in Arabic music, as
for example in the Al Tder rhythm of Nubia [89]. It is also a rhythmic pattern of
the Drum Dance of the Slavey Indians of Northern Canada [9].

o E(2,5) =[x -x . -] =(23) is a rhythm found in Greece, Namibia, Rwanda and
Central Africa [8]. It is also a 13th century Persian rhythm called Khafif-e-
ramal [189], as well as the rhythm of the Macedonian dance Makedonka [155].
Tchaikovsky used it as the metric pattern in the second movement of his Sym-
phony No. 6 [104]. Started on the second onset as in [x - - x -] it is a rhythm
found in Central Africa, Bulgaria, Turkey, Turkestan and Norway [8]. It is also
the metric pattern of Dave Brubeck’s Take Five, as well as Mars from The Planets

by Gustav Holst [104]. B as in [X - - X - X - - X - -], it is a Serbian rhythmic
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pattern [8]. When it is started on the fourth (last) onset it is the Daasa al kbiri

rhythmic pattern of Yemen [89].

(o]

E(4,15) =[x+ %+« x- - x- -] =(4443) is the metric pattern of the pasicam

savart tal of North Indian music [41].

(o}

E(5,6) = [xxxx X -] = (11112) yields the York-Samai pattern, a popular Arabic
rhythm [160]. It is also a handclapping rhythm used in the Al Medémi songs of
Oman [65].

(e}

E(5,7) = [x - xx + xx] = (21211) is the Nawakhat pattern, another popular Ara-
bic rhythm [160]. In Nubia it is called the Al Noht rhythm [89].

[¢]

E(5,8) = [x - xx - xx -] = (21212) is the Cuban cinquillo pattern discussed in
the preceding {74], the Malfuf rhythmic pattern of Egypt [89], as well as the Korean
Nong P’yon drum pattern [98]. Started on the second onset, it is a popular Middle
Eastern rhythm [185], as well as the Timini rhythm of Senegal, the Adzogbo dance
rhythm of Benin [39], the Spanish Tango [70], the Maksum of Egypt [89], and a
13th century Persian rhythm, the Al-saghil-al-sani [189]. When it is started on
the third onset it is the Miisemmen rhythm of Turkey [17]. When it is started on
the fourth onset it is the Kromanti rhythm of Surinam.

o E(5,9) = [x - x - x - x - x| =(22221) is a popular Arabic rhythm called Agsag-
Samai [160]. Started on the second onset, it is a drum pattern used by the Venda
in South Africa [137], as well as a Rumanian folk-dance rhythm {135]. It is also the
rhythmic pattern of the Sigaktistos thythm of Greece [89], and the Samai aktsak
rhythm of Turkey [89]. Started on the third onset, it is the rhythmic pattern of

the Nawahiid rhythm of Turkey [89].
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o F(5,11) =[x - X + X - x « X » -] = (22223) is the metric pattern of the SavarT tala

used in the Hindustani music of India [113]|. It is also a rhythmic pattern used
in Bulgaria and Serbia [8]. In Bulgaria is is used in the Kopanitsa [143]. This
metric pattern has been used by Moussorgsky in Pictures at an Ezhibition [104].
Started on the third onset, it is the rhythm of the Macedonian dance Kalajdzijsko
Oro [155], and it appears in Bulgarian music as well [8].

E(5,12) =[x - - x - X - X - x -] = (32322) is a common rhythm played in the
Central African Republic by the Aka Pygmies [7, 37, 38]. It is also the Venda
clapping pattern of a South African children’s song [134], and a rhythm pattern
used in Macedonia [8]. Started on the second onset, it is the Columbia bell pattern
popular in Cuba and West Africa [106], as well as a drumming pattern used in
the Chakacha dance of Kenya [15], and also used in Macedonia [8]. Started on the
third onset, it is the Bemba bell pattern used in Northern Zimbabwe [134], and the
rhythm of the Macedonian dance Ibraim Odza Oro [155]. Started on the fourth
onset, it is the Fume Fume bell pattern popular in West Africa [106], and is a
rhythm used in the former Yugoslavia [8]. Finally, when started on the fifth onset
it is the Salve bell pattern used in the Dominican Republic in a rhythm called
Canto de Vela in honor of the Virgin Mary [71], as well as the drum rhythmic
pattern of the Moroccan Al Kuddm [89)].

E(5,13) =[x - « X+ x - «Xx-x- -] =(32323) is a Macedonian rhythm which is

also played by starting it on the fourth onset as follows: [x - X . - Xx . . x.X

-] [8].
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o B(5,16) =[x+ X+ %X+ %X+ -x-- | =(33334) is the Bossa-Nova rhythm neck-
lace of Brazil. The actual Bossa-Nova rhythm usually starts on the third onset
as follows: [x -« -x- . x..-x--x- -] [169]. However, other starting places
are also documented in world music practices, such as [X « « X« - X« - x. . .
X« +][16).

o E(6,7) = [xxxxxx -] =(111112) is the Pontakos rhythm of Greece when started
on the sixth (last) onset [89)].

o F(6,13) =[x+ X+ XX +X+x- | =(222223) is the rhythm of the Macedonian
dance Mama Cone pita [155]. Started on the third onset, it is the rhythm of the
Macedonian dance Postupano Oro [155], as well as the Krivo Plovdivsko Horo of
Bulgaria [143].

o E(7,8) = [xxxxxxx -] =(1111112), when started on the seventh (last) onset,
is a typical rhythm played on the Bendir (frame drum), and used in the accom-
paniment of songs of the Tuareg people of Libya [160].

o E(7,9) =[x - xxX - xxx] = (2112111) is the Bazaragana rhythmic pattern of
Greece [89].

o E(7,10) = [x - xX - xx - xx] = (2121211) is the Lenk fahhte rhythmic pattern
of Turkey [89].

o E(7,12) = [x - xx + X - X%« X -] = (2122122) is a common West African bell
pattern. For example, it is used in the Mpre rhythm of the Ashanti people of
Ghana [171]. Started on the seventh (last) onset, it is a Yoruba bell pattern of
Nigeria, a Babenzele pattern of Central Africa, and a Mende pattern of Sierra

Leone [163].
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E(7,15) = [X - X - X + X + X« X - X+ -] = (2222223} is a Bulgarian rhythm when
started on the third onset [8].

E(7,16) =[x+ - x - XX+ «x«x-:x-]|=(3223222) is a Samba rhythm neck-
lace from Brazil. The actual Samba rhythm is [x - X - - X - X - X+ - x - x -] ob-
tained by starting E(7,16) on the last onset, and it coincides with a Macedonian
rhythm [8]. When E(7,16) is started on the fifth onset it is a clapping pattern
from Ghana [134]. When it is started on the second onset it is a rhythmic pattern
found in the former Yugoslavia [8].

E(T,17) =[x+ - X «X - X%+ %X ]=(3232322) is a Macedonian rhythm
when started on the second onset {155].

E(7,18) =[x+ - X +X - XX -x:x-]=(3232323) is a Bulgarian rhyth-
mic pattern [8].

E(8,17) =[x - x + X+ X + X+ X+ X - X + - | = (22222223) is a Bulgarian rhythmic
pattern which is also started on the fifth onset (8].

E(8,19) =[x+ X+ X X« «X-X-X-+X-|=(32232232) is a Bulgarian rhyth-
mic pattern when started on the second onset (8].

E(9,14) = [x - xX + XX - XX » XX -] = (212121212), when started on the second
onset, is the rhythmic pattern of the Tsofyan rhythm of Algeria [89].

E(9,16) = [x - xX - X « X + XX - X « X - | = (212221222) is a rhythm necklace used
in the Central African Republic [7]. When it is started on the second onset it is a
bell pattern of the Luba people of Congo [128]. When it is started on the fourth
onset it is a rhythm played in West and Central Africa [74], as well as a cow-

bell pattern in the Brazilian samba [159]. When it is started on the penultimate
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onset it is the bell pattern of the Ngbaka-Maibo rhythms of the Central African
Republic [7].

0 B(9,22) =[x+ » X+ X+ + XX XXX X-]=(323232322) is a Bulgarian
rhythmic pattern when started on the second onset [8].

0 B(9,23) =[X - - X X+ XX+ XX X% -] =(323232323) is a Bulgar-
ian rhythm [8].

o F(11,12) =[x x X x XX XXX x X -] = (11111111112), when started on the second
onset, is the drum pattern of the Rahmani (a cylindrical double-headed drum)
used in the Sot silam dance from Mirbat in the South of Oman [65].

o E(11,24) =[x - - X« X« X+ X+ X+ » XX -X-X-X-]=(32222322222) is arhythm
necklace of the Aka Pygmies of Central Africa [7]. It is usually started on the sev-
enth onset. Started on the second onset, it is a Bulgarian rhythm [8].

o B(13,24) =[X - XX - X + X + X+ X+ XX - X« X« X+ X ] =(2122222122222) is an-
other rhythm necklace of the Aka Pygmies of the upper Sangha [7]. Started on the
penultimate onset, it is the Bobangi metal-blade pattern used by the Aka Pygmies.

0 B(15,34) = [X + + X+ X XX+ XX XX+ X:X:X:X: X:X]=
(322232223222322) is a Bulgarian rhythmic pattern when started on the penulti-

mate onset [8].
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Aksak Rhythms

The following Euclidean rhythms are authentic aksak:

E(2,5) = [x - x - -| = (23) (classical music, jazz, Greece, Macedonia, Namibia,
Persia, Rwanda).

E(3,7) =[x - x - x - -] = (223) (Bulgaria, Greece, Sudan, Turkestan).

E(4,11) =[x - - x - - X - - x +] = (3332) (Southern India rhythm), (Serbian neck-
lace).

E(,11) =[x - x - x - x - x - -] =(22223) (classical music, Bulgaria, Northern
India, Serbia).

E(5,13) =[x - X+ x - XX+ -] =(32323) (Macedonia).
E(6,13) =[x« X« X + x + x - X - +| = (222223) (Macedonia).
E(7,17) = [x PX e X X e e X X ] = (3232322) (Macedonian necklace).
EB,17) =[x - X+ x - X« X+ %X+ XX -] =(22222223) (Bulgaria).
E(8,19) = [x PX X e XXX+ X ] = (32232232) (Bulgaria).
E(9,23) = [x PX X X e X e XX X e - | =(323232323) (Bulgaria).

The following Euclidean rhythms are quasi-aksak:

E(4,9) =[x - x - x - x - -] = (2223) (Greece, Macedonia, Turkey, Zaire).
E(7,15) =[x« x - X - X« X + X + X + -] = (2222223) (Bulgarian necklace).
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The following Euclidean rhythms are pseudo-aksak:

o E(3,8) =[x +x--x-]=(332) (Central Africa, Greece, India, Latin America,
West Africa, Sudan).

o E(5,12) =[x+ - x « X+ + x - x -] =(32322) (Macedonia, South Africa).

o E(7,16) =[x - + X - X - X+ - XX - X -] = (3223222) (Brazilian, Macedonian, West
African necklaces).

o E(7,18) =[x+ - X+ X+ + X+ X+ XX -] =(3232323) (Bulgaria).

0 F(9,22) = [X - + X + X+ XX+ XX+ XX ]=(323232322) (Bulgarian neck-
lace).

o B(11,24) = [X « - X+ X« X+ X=X+ »X-X-X-X-X-]|={(32222322222) (Cen-
tral African and Bulgarian necklaces).

0 B(15,34) = [X - - X - X+ X X+ X XX X+ X:X:X:X: X:X-]=

(322232223222322) (Bulgarian necklace).
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Euclidean Strings

In the lists that follow the Euclidean rhythms are shown in their box-notation
format as well as in the clockwise distance sequence representation. The styles of
music that use these rhythms is also included. Finally, if only a rotated version of
the Euclidean rhythm is played, then it is still included in the list but referred to as

a necklace.
The following Euclidean rhythms are Euclidean strings:

o E(2,3) = [xx -] = (12) (West Africa, Latin America, Nubia, Northern Canada).

o E(2,5)=[x-x- -] =(23) (classical music, jazz, Greece, Macedonia, Namibia,
Persia, Rwanda), (authentic aksak).

o E(3,4) = [x xx -] = (112) (Brazil, Bali rhythms), (Colombia, Greece, Spain, Per-
sia, Trinidad necklaces).

o E(3,7) =[x - x - x - -] = (223) (Bulgaria, Greece, Sudan, Turkestan), (authentic
aksak).

o E(4,5) = [xxxx -] = (1112) (Greece).

o E(4,9) = [x - x - x - x + -] =(2223) (Greece, Macedonia, Turkey, Zaire), (quasi-
aksak).

o E(5,6) = [xxxxx -] =(11112) (Arab).
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o E(5,11) =[x+ x « x+ xx- -] =(22223) (classical music, Bulgaria, Northern

India, Serbia), (authentic aksak).

o E(5,16) = [x - + X+ + X+ X+ X -] =(33334) (Brazilian, West African neck-
laces).

o E(6,7) = [xxxxxx -] =(111112) (Greek necklace)

o E(6,13) = [x - x - XX+ x+Xx- -] =(222223) (Macedonia), (authentic aksak).

o E(7,8) = [xxxxxxx -] =(1111112) (Libyan necklace).

o E(7,15) = [x - X + X - X - X - X + X -] = (2222223) (Bulgarian necklace), (quasi-
aksak).

o B(8,17) =[x - X - X - X + X - X - X + X - - | = (22222223) (Bulgaria), (authentic ak-
sak).

The following Euclidean rhythms are reverse Euclidean strings:

o E(3,5) = [x - x - x] = (221) (Korean, Rumanian, Persian necklaces).
o E(3,8)=[x--x--x-]=(332) (Central Africa, Greece, India, Latin America,
West Africa, Sudan), (pseudo-aksak).
E3,11) =[x+ - +x- - X -] =(443) (North India).
E(3,14) =[x+ -+ x- %+ -] =(554) (North India).
o E(4,7) = [x - x - x - X] = (2221) (Bulgaria).
E(4,11) =[x - - x - - x - - X -] = (3332) (Southern India rhythm), (Serbian neck-
lace), (authentic aksak).
o BE(4,15) =[x+ - - X+ %+ «x- ]| =(4443) (North India).
o E(5,7) =[x - xx - xx]| = (21211) (Arab).
o E(5,9) =[x+ x - x - x - x]=(22221) (Arab).
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o E(5,12) =[x - - x - X+ + X - X - | = (32322) (Macedonia, South Africa), (pseudo-
aksak).

o E(7,9) = [x - xxx - xx x| =(2112111) (Greece).

o E(7,10) = [x - xx - xx - xx] = (2121211) (Turkey).

o E(7,16) = [x - + X« X« X - + %X« X - x -] = (3223222) (Brazilian, Macedonian, West
African necklaces), (pseudo-aksak).

o B(7,17) =[x - - X + X - + X -+ X+ - X% | =(3232322) (Macedonian necklace),
(authentic aksak).

0 E(9,22) =[x+ + X+ X+ +X-X- X X X-:x-]|=(323232322) (Bulgarian neck-
lace), (pseudo-aksak).

o E(11,12) = [x - x X x X X X X x X x| = (11111111112) (Oman necklace).

o B(11,24) = [X - - X X -+ X+ X+ X« - X+ X+ X% - X -] =(32222322222) (Cen-

tral African and Bulgarian necklaces), (pseudo-aksak).

The following Euclidean rhythms are neither Euclidean nor reverse Euclidean

strings:

o E(5,8) =[x - xx-xx -] =(21212) (Egypt, Korea, Latin America, West Africa).
o E(5,13) =[x+ - x-x+x-x--]=(32323) (Macedonia), (authentic aksak).
o E(7,12) = [x - XX « X + X% » X - | = (2122122) (West Africa), (Central African,
Nigerian, Sierra Leone necklaces).
o B(7,18) =[x+ « X+ X+ XX+ XX+ -]=(3232323) (Bulgaria), (pseudo-aksak).
0 B(8,19) =[x+ - x +x X+ - XXX x-]=(32232232) (Bulgaria), (authen-
tic aksak).

o E(9,14) = [x - xx - xx - XX - X% -] = (212121212) (Algerian necklace).

167



Chapter C. Fuclidean Strings

o E(9,16) = [x - xX + X + X » XX - X » X - | = (212221222) (West and Central African,
and Brazilian necklaces).

0 B(9,23) =[x+ - X+ X+ X X+ XX+ XX -]=(323232323) (Bulgaria),
(authentic aksak).

0 E(13,24) = [X - XX+ X+ X+ X+ X XX+ X+ X% X -] =/(2122222122222) (Cen-
tral African necklace).

0 B(15,34) = [X - - X+ X+ X+ X+ XXX Xr XXX X0 X X]=

(322232223222322) (Bulgarian necklace), (pseudo-aksak).
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Measure of Ugliness in Linear Time

Let the forward distance vector of a rhythm be denoted by (dy,dy,...,dk—_1).

k-1
We know that Z d; = n. Define
i=0
( k—1
> d;, i<k
j=0
D; = ¢
i~k
> di+n, k<i<2k
LJ—-O

so that the D;’s are the cumulative values with a circular definition. Bjorklund’s

8;(¢) = Diyj-1 — Di_1, and his measure of ugliness is proportional to:

ko

-1

k
Z i+j—-1 — z 1~ CY,]')2 (Dl)

1 i=1

[
Il

where o = Lkﬂ We will rewrite equation (D.1) in a form that makes it easy to
compute it in O(n) time.
Manipulating equation (D.1) we get:

kE k
2
E E z+] 1~ 11*%')—

j=1 i=1

Di+k—1 b Di—l - aj)z (DZ)

.
i >
—

~—~
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The second term of equation (D.2) can be computed in linear time. We will
thus concentrate on the first term of the equation and first expand it to:
ko k ko k k k
D2 (Disjmi = D)+ 33 0f =23 0y} (Digms = D) (D)
j=1 i=1 j=1 i=1 =1 =1

=
+
C
+
!

Clearly, the second term
ko ok k
2 2
=D D of=k) o
j=1 i=1 j=1
Next, because D,y = D; +n for all 0 < j < k, we have:

k
Y (Diyj-1 = Diex) = nj (D.4)

=1

Thus, the third term of equation (D.3)

k k
—220@2( itj—1 — =—22a1 nj

j=1 =1
Therefore, the only variable element in equation (D.3) is the first term (A), as

the other two can be precomputed. Expanding (A) we get:

kook ko k kook
ZZZ( -1 7 ZZ -1 T ?—1)_222Di+j—lDi—l

j=1 i=1 j=1 i=1 j=1 i=1
(D.5)

We can simplify equation (D.5) by using the following three relations:
k k
Z Diyj1 = Z Dj;_; + ni,
j=1 j=1
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already used in equation (D.4),

J

k J
ZDW 1= (Diy +n)? ZDZ 1—2D3_1+2nZD¢—1+n2j,

i=1 i=j+1 =1 i=1

and koK k 2 k
ZZDHj—lDi—I = (Z Dz’) + nZiDi
J=1 i=1 '

We can now rewrite equation (D.5) as

k 2 k
kZD2 1+2nZZD1 L +n —‘1)-2<2Di> —2n) _iD;
i=1 i=1

j=1 i=1

k-1

NotethatZZDz 1_ZD, 121_2 ) D;_y

J=1 i=1
Therefore, the computatlon of (4) takes hnear time.
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