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A method for calculatil:g the collision ct1ïciency of a small pollutant partiele onto

a solid long circular cylinder in a low Reynolds number t1uid t10w with inerti~ ctTects is

presented. The cylinder is considered at rest in a uniform undisturbed fio,," at intinity. in

the direction perpendicular to the cylinder axis.

Asswning that the Reynolds nwnber R based on cylinder radius b is ,"ery small but

not zero (R « 1J. and the Reynolds nwnber Re based on cylinder length / is of order

unity. the force per unit length of the cylinder. correct to the order of R. is obtained. tirst

for a general flow direction and then for the case of flow per.,endicular to the cylinder

axis. This is done by using the Navier-Stokes equations in long slender bodies theory and

applying matched asymptotic expansions in terms of the ratio K of radius to body length.

Flow field around the cylinder is calculated and the equation of partiele motion is

developed by app:ying Newton's second law of motion. The initial particie velocity far

from the cylinder is calculated analytically and the partiele trnjectory course is solved

nwnerically as an initial value problem by using Richardson Extrapolation and the

Bulirsch-Stoer method.

The collision Efficiency E is obtained by trial and error and is ploned against the

dimensionless partiele parameter p for different values of R (from 10-6 to 1). The

nwnericaI caIcuiations show that the curves have a tendency to move to the right and

become like a strnight-line as R gets very smaIl. The points at which E is less th:m O.OOS

are aIse predicted.
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SOMl\IAIRE

Une méthode qui calcule l'efficacité de la collision d'une petite particule de

polluant avec d'un long cylindre circulaire solide. dans un écoulement fluide dont le

nombre de Re)nolds est bas. avec les effets des forces d'inertie. est présentée. Le cylindre

est considéré au repos dans un écoulement uniforme infini. dans la direction

perpendiculaire à l'axe du cylindre.

En présumant que le nombre de Reynolds R basé sur le rayon du cylindre b est très

petit (R « 1J, mais différent de zéro, et que le nombre de Reynolds Re basé sur la

longueur du cylindre /, est de l"ordre de l"unité, la force par unité de longueur de

cylindre,du même ordre Que R, est obtenue en premier pour une direction générale de

l"écoulement et alors pour le cas d'un écoulement perpendiculaire à l"axe du cylindre.

Ceci est effectué en utilisant la théorie des corps longs et minces et en appliquant

l'expansion asymptotique en termes du rapport 1C du rayon à la longueur du corps. Le

champ d'écoulement autour du cylindre est calculé et l'équation de mouvement de la

particule est développée en appliquant la delLxième loi de mouvement de Newton. La

vitesse initiale de la particule, loin du cylindre, est calculée analytiquement et la

trajectoire de la route est résolue numériquement comme un probléme à valeur initiale en

utilisant r extrapolation de Richardson et la méthtxle de Bulirsch-Stoer.

L'efficacité de la collision E est obtenu p.-u- essais et erreurs et est mis en courbes

en fonction du paramètre aclimensionnel de la partiCule: p pour différents R (de 10-6 à 1),

Les calculs numériques montrent que les courbes ont tendance à se déplacer vers la droite

ct deviennent des droites quand R devient très petit. Les points pour lesquels l'efficacité

est infé~ieure à 0.005 sont aussi prédits.
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Clzapter 1

INTRODUCTION

The removal ofsuspended particles from a carrier fluid is ofgreat interest in many

industries. The first step in the design ofa filter involves obtaining a detailed knowledce

of the fluid dynamics of the flow. The motion of fluid around a fiber or a slender body

bas long received considerable attention and, particularly, flow at low Reynolds number

bas been extensively studied analytically. In this research, a method for developing the

hydrodynamic forces acting on an isolated long cylinder and deriving the flow field

around the cylinder is presented. We also use the obtained results to develop the

equations goveming the motion of a tiny pollutant particle toward the cylinder. Solving

the particle equations of motion, numerically, we calculate the collision efficiency of the

particle onto the cylinder and plot the result into graphs.

Although the applications of this work are specific, they are found in different

industries such as deposition of particles onto (single) pulp fibers in papermaking

suspensions, in the retention of p:uticles in the forming paper sheet during the

papermaking process, and even in the removal of metallic grains from the lubricating oil

of an internai combustion engine. Generally, this work can be applied in pulp fibers,

asbestos fibers, fibrous filters, and wool and cloth industries.

1.1 STATEMENT OF THE PROBLEM

Consider an isolated long circular cylinder at rest in a uniform flow ofvelocity U

in the direction perpendicular to the cylinder axis, at infinity. The radius of the cylinder

being b and its length being 1 (long enough to neglect the ends effects). The Reynolds
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number based on the radius of the eylinder R is very small but not zero (R « 1) and the

Reynolds number based on the length of the eylinder Re is of order unity. Thus. inertia

cffeets arc considered. A very small solid spherical particle is released far from the

eylinder. The specifications of the particle are charaeterized as a particie pararneter p.

The collision effieiency of the particle onto the eylinder is our final objective in this

research. Because of the long length of the cylinder. every unit length of the cylinder. far

from the ends. can be dealt with exactly the sarne. Then. by definition. the collision

efficiency E. for each unit length of the cylinder. is the ratio of the largest amount of

initial x; (shown as X: in figure 1.1) over b 50 that if we release the particle at X:, it

just andjust touches the surface of the cylinder. Hence the problem turns out to be a two

dimensional problem.

Neglecting aIl hydrodynamic and colloidal interactions, the number of potential

collisionsfc per unit length of the cylinder per second, when the cylinder radius b is much

larger than the particle radius a, is given by

fc =2n Ub,

where n is the number of pollutant particles per unit volume. The number of pollutant

particles that can be captured by the cylinder per unit length of the cylinder per second is

given by

f=Efc,

with the collision efficiency E given by

E=X:.
b

FJgllre 1.1 Statement orthe problem (cross-sec:tiOD)•
Jl.. [jortic1C ofllldius a

X'

x',
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Since our interest is not only in the results. but also in the analytical method of

solution, in order to find the forces per unit length and flow field around the <:y!:nder, we

need to study and develop the necessary equations ITom the basic tneories of long slender

bodies. Applying the modified results for the case of our cylinder, we will be able, then. to

develop a set ofdifferential equations expressing the trajeetory of the particle.

In 1970, neglecting inertia effects, the crceping flow equations for a generaI

direction ofvelocity was solved by R. G. Cox. The result was a power series in C:J,
(

1 )3 b .
correct to the order of Inl(' , where 1('= 7« 1. In 1980, R. E. Johnson solved the

same problem but satisfYing an integral equation correct to the order of 1(' -1 (Re = C, and

R=O).

R. E. Khayat and R. G. Cox considered inertia effeets in 1989. They solved the

casewith• and
bU

R.-=I('Re «1
v '

•

and obtained the force per unit length on body as a power series in C:J, correct to the

order of Cn
1,J3

, for Re sma11 or oforder unity.

In the present research, we first conœntrate on the same problem as that ofR. E.

Khayat and R. G. Cox (long slender body with circular cross-section) and find the force

per unit length, but as an integral equation.

We will make an expansion in 1(' (correct to the order of 1('+.) treating Re as a

parameter so that if Re -+ 0, we must have the same result as that of R. E. Johnson

(1980). Then, wc will find the flow field based on sueb a drag force on a slender body.



•

•

•

4

Applying the obtained rcsult for the case of a long circular cylinder, we will find the flow

field around the cylinder. It is worth mentioning that obtaining the same rcsult as in

previous studics for the same conditions but with different methods is the strength of these

studies and increascs the reliability of the results. Thereafter, it is possible to obtain the

trajectory equations for a partic1e reIeased in such a flow field, far from the cylinder.

Having the equations for the path of a partic1e toward the cylinder, the collision efficiency

is calculated numerically for a series ofR's and p's.

1.2 OBJECTIVES

As mentioned earlier, our final objective is to calculate the collision efficiency of a

particle onto the cylinder. Our approach in this research is that we dea1 with the problem

analytically, go as far as we cao, and then solve the rest numerically. Therefore, since the

analytical portion of solution is of our interest too, we set up our objectives in different

stages as follows.

1) Deriving the drag force per unit length of an isolated slender body, considering inertia

effects and correct to the order of 1l:".1 , as an integra/ equation and ensuring it is the

same as RE. Johnson's result (1980) for Re ~ 0, as it should be.

2) Developing hydrodynamic forces on the cylinder, based on what we obtained in the

previous stage for a slender body, first for a genera1 flow direction and then for the

flow perpendicular to the cylinder axis. This must be the same as the resu\t obtained by

Khayat & Cox (1989).

3) Having the drag forces on the cylinder, we develop the flow field around the cylinder

for the flow perpendicular to the cylinder axis.

4) Deriving the equations goveming the motion of a particle as a set of differential

equations.

5) Solving particle equations of motion, numerica\ly, in order to calculate the collision

efficiency of the particle onto the cylinder. This is to be done for different Reynolds

number R (trom 10-<\ to 1) and different values of the particle parameter p. Since we
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make the assumption of R « 1. the case R = 1 is not going to be valid but we ;ncludc

this just to see the beha~;or of the solution. The case R = 0.1 is somcwhcre in bctwccn

and suspicious. It should be investigated too.

6) By plotting the collision efficiency E against the particle paramctcr p. wc should realizc

i) what beha~;or the plotted graphs show. It is expected that they should move to

right as R gets very small. But do they move to right to a certain curve or go to

infinity or become like almost a straight-line?

ii) what the maximum value of p is for E ~ O. This values tell us. for each R. the

minimum value of p we should keep in order to have an impact with the lowest

efficiency.

1.3 THESIS ORGANIZATION AND OUR APPROACH

After sorne introduClory information including the statement of the problem. wc

set up our objectives for the different stages of work in chapter one. Our main approach

in this research is that we deai with the problem anaiytically, go as far as wc cao, and then

solve the rest numerically. In chapter 2, sorne of the previous studies related to the

problem on hand are summarized. These include the collection of pollutant, described in

papers in computational f1uid dynamics, and the motion oflong slender bodies as the basic

theory of developing the f10w field around the cylinder. The interrelation bctwcen this

work and previous studies is also explained.

Chapter thrce is a quite analytical chapter devoted to the development of the

equations. After a more detailed explanation of the problem. we concentrate on the f10w

around long s1ender bodies. Inner and outer region variables are introduced, non­

dimensionalized, and the drag force on the body and the f10w field are developed by

matching between outer and inner solutions. Then as an example oflong slender bodies,

the fluid motion around the cylinder is discussed. Deriving the hydrodynamic forces on

the cylinder for a general flow direction is done anaiytically by solving the integra!

equations developed for a slender body. The advantage of solutions as integra! equations
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(instead of power series) is that they can be directly solved for bodies which poses a

certain symmetry (Iike a cylinder). The force and the flow field for the case of flow

perpendicular to the cylinder axis are found by matching the asyrnptotic expansions. In

the last section of this chapter, the moÙon of a ùny particle in the flow is investigated.

Using Newton's second law of moùon, the equaùons goveming the trajeetory course of

particle are obtained, anaIytica11y, by applying the results from the previous section.

The main idea of chapter four is to introduce the numerica1 method to be used in

solving the equations of motion of the particle. To start any iniùal value problem, initial

values must be determined. Calculation of the iniùal ve!ociùes, far in the outer region, is

the only analytica1 section of this chapter. Then, after comparing different methods for

solving an iniùal value problem, Richardson extrapolation and the Bulirsch-Stoer method

is chosen and discussed.

In chapter five, we first explain what we are doing in the numerica1 ca1culations.

Optimizing the solution and error control in a numerica1 solution are other topics

discussed in this chapter. Then, the numerica1 results are presented, partly in table form

and fully as different graphs for different Reynolds numbers R. Discussion about these

results is the subject ofthe last part ofthis chapter.

Conclusion and suggestions for future work are the ideas of chapter six. The

relationship between the final results, the results obtained in each chapter and section and

our objectives expressed in chapter one is discussed and shown. Interesting and useful

topics to continue this work are explained as suggestions for future studies.

The next part, Appendix A, includes the source program which bas been used to

obtain the results, presented in chapter five, and also the tables produced by the program

as their outputs.

The last part of this thesis, Appendix B, is a list f the nomenclature. A list of ail

symbols used throughout the thesis is presented.



•

•

•

ï

C11apter 2

SUMMARY OF PREYIOUS STUDIES

There have been a tremendous number of research studies on low Re~molds

number fluid flow particularly after C.-L.-M.-H. Navier. and Sir G. G. Stokes tàrmulated

their well-known equations. ordinarily called the Nmlier-Srokes equariol/s. independently

in 1822 and !S"5. respectively. However. there are only a few problems in which it is

possible to solve exaetly the creeping motion equations for flow around a single isolated

solid body. When it cornes to inertia effeets. of course. the number of cases with e.'Caet

solutions are even less. Since our interest. in this research. is not only in the results. but

the anaIytical method of solving is aIso of importance. what we discuss here is mostly

related to solving the flow field and drag forces on slender bodies as the basis for finding

the equation of motion ofa partic\e colliding with the slender body, anaIytically. The rest

of the problem, to calculate the collision efficiency. is solved numerically and there is

usually no available anaIytical solution for it. Sorne of the previous studies. related to the

problem on hand. are summarized in this chapter.

2.1 COLLECTION OF POLLUTANT

2.1.1 Explanation of Tbeorv

Fonda and Herne, in the 1940s, numerically evaluated the collision efficiency. E. as

a function of the partic\e pararneter, P. for impact of poIIutant on a falling rain or mist

drop. A falling rain drop has the same flow around it as a solid sphere since

~ =50-100» 1 (negleeting inside circulation of the drop). Because of the likeness
r ..r

of this problem with our problem and in order to get familiar with the problem solving

procedure, this case is going to be e:ocplained aIong with more details than the others.
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Consider a drop of radius R. sedimenting with velocity V.

v
•
•

Fii:ure 2.1 A falJini: rain drop

The ve10city field around drop ~ Cr) must be, by dimensional anaIysis, of the form

•

v =Vf(!: ,VR)
- - R v '

where v = kinematic viscosity, and if Re "'~ <<.:1, we have creeping flow.

v

_:_--~--~----­
~=Q

Fii:Ure 2.2 Velocity field around the sphere

(2,1)

•

Where Re »1, the flow is inviscid flow ahead of the drop and since V is a

uniform velocity far enough from the sphere, we have irrotational flow, descn"bed by

V

Twbulcnt
wake

Boundaly layer scparates

Fi2lJfe 2.3 Inviscid flow
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where p = density of the tluid

/1. = velocity field

p = pressure field

v =Nabla operator C;, ! + .;, L+ .;,~:)

Takin:; the curi (vx), to get rid ofp

•

DIll êlll
-= = -= + U.VIll = -1ll.VU
Dt êt - - - -

where III = vorticity

DIll "d"'Dt = Lagrangtan envatlve

êlll
ôl = 0 (unsteady teern)

Ill=VXU- -'

DIll
-==0
Dt -'

(2,3)

(2,4)

In fuet, since III = Qfor upstrearn. III = Qeverywhere. In other words, the viscous

teern in the Navier-Stokes equations is neglected, for Re »1, 50 there is no cause of

diffusion for vorticity.

!!.=V~ • (2,5)

(2,6)

•
where ~ = velocity potential and with u. =: =0 at the drop surface.

If the pollutant is in the foern ofsmall salid partic/es of radius a (where a «R).

the position cofa single particle is given by



•
10

Figure 2.4 Small solid pollut:lllt

(2.7)

•

where a = radius of particle

p, =density ofparticle

E= acceleration ofparticle relative to the constant coordinates on the sphere

}J = viscosity of the fluid

dcl= velocity offluid relative to the sphere

t. = velocity ofparticle relative to the sphere

ln the right hand side of the equation (2,7), the result of Stokes problem (falling

sphere) is used (drag forces on a spherical solid body, F = 6ltIJ. aU, where Re = 0 and U is

the constant velocity of sphere relative to fluid, but in here we use the expression of

velocity of fluid relative to particle, instead). We are aIso assuming here that the particle

radius a is sufficient1y smaIl so that inertia effects in the fluid for flow around it are

negligible.

Defining dimensionless quantities

.IV
t =-

R
(2,8)

•

so that t is rime and v· = v·(r·,Re). Hence the particle motion is given by

d ' • •
-r dr .(. )

P dt~ =-dt·+~L,Re,

?p, a:V
where the particle pararneter. p = - 9~ R .

(2,9)
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Fi::ure 2.5 P3rticle orbit

Thus the panicle orbit depends only on initial position ~. p. and /?:.

IfY is less than sorne Y., the panicle collides with the drop. Otherwise if y > Y.. it

misses the drop. Hence y. is the height of the highest point at which if we release the

panicle in infinity, we will still gel an impact.

Figure 2.6 Collision efficiency and Y.

By definition, the collision efficiency is E =(:~:) =(~r Then E depends on

p and Re on/y, with 0 SES 1 (E> 1are not considered).

As mentioned earlier, Fonda and Home evaluated E = E (p) numericaIIy for

(a) Creeping flow ~. = ~.«() around drop (for Re «1).

(b) Potentia! flow ~. =~.«() around drop (for Re »1).

The resuIt of their numerical caIcuIations, assembled in a graph, was more or less

similar ta what is presented in chapter 5.

2.1.2 ElTects Not Included in the Above Theorv

(a) Effect offinite (non-zero) size ofparticle.
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Effect ofgravity on the particle.

Brownian motion of the particle (diffusion portion of motion). Diffusion may

dominate over convection with very smal1 particles.

Shape ofparticle wil1 modifY many ofthe above effects.

(b) The interrnediate Reynolds numbers are totally neglected. That is. for instance. for

creeping Ilow ( Re «1), inenia effects are ignored.

(c) When a panicle gets close to the drop surface the hydrodynamic interaction of

particle with drop surface will result in a change of trajectory [actually including (c)

would result in E = Ol

(d) Intermolecular (van der Waals) forces and electrostatic forces between a particle and

the drop or other colloïdal forces.

(e) Deformation of the drop surface as the partlcle gets close to it. The particle may

bounce - no capture,

penetrate the surface or

be captured at the surface.

(f) For the inviscid case (Re» 1) effects ofboundary layer and wake [i.e. they change

value of v"(ih

(8)

(h)

(i)

•

•
2.1.3 Papers in ComputationaI Fluid Dvnamics

Many theoretical papers have becn appearing in recent years aimed at numerical

calculation of particle col1ection , col1ection efficiency, or particle depcsition rates and the

like. BasicaIly, a computational approach is suitable when

(a) There is a particular interest in resuIts (not in the method ofsolving).

(b) The answer is more or less already known before we stan.

•

The present research is not classified as a numerical approach, instead, the obtained

results can be usefùl for future computational solutions in this area. However, because of

the similarity in subjects. a few papers in computational tluid dynamics are introduced in

this section.
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ln !CJSl. Z .-\damczyk and T G. ,,\ van dc \'cn prcdictcd partielc dcposition ratcs

t'rom a dilute suspension of Brownian particles Ilowin); past an isolatcd cvlindrical

colieclOr as weil as through a tibrous tilter They took into account colloidal intcractions

(dispersion and double-layer forces) and also extemal forces (gravit\" and ekctrostatic)

They considered depositi'.)n of spheric:ll particles disperscd uniforrnly in a unitorrn

laminar stream and an infinitely long (to ignore end effects) cylindrical collector placed

perpendicular to the main stream direction. So. the problem of obtaining the tluid velocit)'

field became in essence two-dimensional and the stream function '1/ was sufficient to

describe il. For flow around a cylindrical collector. they considered several cases for

which the stream function is already developed via Oseen's hypothesis (inenia effects

considered). However. for flow in a fibrous filter composed of cylindrical particles (much

more complex) the creeping motion equation derived by neglecting fluid inenia was used.

Neglecting interparticle interactions. they focused their attention upon the role of

colloidal and extemal forces in particle deposition onto a cylindrical collector, A complete

transpon equation was solved numericaIIy by using the implicit weighted-average Crank­

Nicolson scheme and the accuracy was checked by varying the mesh size and accepting the

results with relative difference less than 10-1,

C. Mclaughlin. P. McComber and A. Gakwaya (1986) presented a method for

calculating the collection efficiency of particles by a row of cylinders in a viscous tluid.

The Navier-Stokes equation was solved by the finite element method to detennine the

carrier gas velocity field. Theo. the particle equation of motion was aIso solved by the

finite element method to find the particle velocity of impact. Finally. the collection

efficiency was obtained by Integration of the intercepted particles on the cylinder surfàce.

Their numerical calcu1ations covered three gas Reynolds numbers ReD = 0.2. 2.0. and 10,

In 1989 and 1991. D. B. Ingham and M. L. Hildyard examined the entry tlow and

the trajectories of small solid particles into a fibrous tilter modcl~ a single row or

cascade of cylinders. Both large (potential) and zero(creeping) Reynol,~ number tlows
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through the cascade of cylinders were treated using the Boundary Element Method

(BEM). Viscous effects, for the case of potential flow. and inertia effects. in creeping

flow. were ignored. For potential flow it was found that the single fiber collection

efficiency of the first row was increased by adding a second row and further increased as

the row separation was reduced. The opposite effect was observed for creeping flow.

2.2 THE MOnON OF LONG SLENDER BODIES

To find the equations ofparticle path. we need to have the equations governing the

flow field around a collector. Therefore. as the analytic basis for developing the particle

trajectory, researches related to the theory of long slender bodies are considered very

briefly in this section. Through an analytic calculation one can find the drag force on a unit

length of a slender body which is the main element to solve the f10w field around such a

body.

In 1970, RG. Cox, considered the case ofa general fIow (velocity in any direction)

with

lU
Re=y=O, and

bU
R =- =leRe =O.v

where lbeingthe length ofbody, Uthe uniform velocity farfrom body, and Ie=j« 1.

Neglecting inertia effects, the creeping fIow equations (2,10) was solved for a

circular cross-section

•
The result was a power series in (In

11e) ,correct to the ordero~~Ie) 3 as

f(s)- f. ... ft +0(_1)3
- - Inle :"(lOIe)2 Inle'

(2,10)

(2,11)
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where f(s) is the force per unit length ofbody at a position s= ~ (see figure 2.7).

3

o

Figure 2.7 Slender body

2

•
In 1970, G. K Batche1or, improved the solution of forces on slender bodies for

non-circular cross-section. R. E. Johnson (1980) solved the same problem (circular cross­

section, Re =0, and R = 0) but satisfYing an integral equation. He also obtained the forces

on the body correct to order ,,+1 i.e.

(2,12)

Then R. E. Khayat and R. G. Cox considered inertia clfcets in 1989. They solved

the case with a body at rest in a unifonn undisturbed flow at infinity, a circular cross­

section, and

lU
Re 5-=0(1),v

•

b
wherc ,,= ï« 1.

They obtaincd the force per unit length on body as:

(a) A power series in Cn
1,J, correct to the order of Cn

1IlJ, for Re sma1l or oforder

unity
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(2,13)

where /(s) is a funetion of Re and the parameter 1C .

(b) A power series in (Jnli) , correct to the order of (Inli) 3, for Re large or of order

unity

F,,(Re) F;(Re) (1 Y
/(s) = InR + (lnR)' + 0 inlV '

where /(s) is a funetion of Re and R.

(2,14)

•

•

In the present research, we first concentrate on the same problem as that of R. E.

Khayat and R. G. Cox (long slender body with circular cross-section) and find the force

per unit length, but as an integra/ equation. We will examine

b
1C=7«1, and R« 1,

with

Re = R oforder unity.

"
We will make an expansion in" (correct to the order of ,,+\) treating Re as a

parameter 50 that if Re -+ 0, we must have the same result as that of R. E. Johnson

(1980). Then, we will find the flow field based on such a drag force on a slender body.

Applying the obtained result for the case of a long circular cylinder, we will find the flow

field around the cylinder. It is worth mentioning that obtaining the same result as previous

studies for the same conditions but different methods is a point of strength of the involved

studies which increases the reliability of the results. Thereafter, developing the trajectory

equations for a particle reieased in such a flow field, fur from the cylinder, is possible.

Having the equations for the path ofa particle toward the cylinder, the co1lision efticiency

is calculated numericaUy for a series ofR's and p's.
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C11apter 3

DEVELOPMENT OF EQUATIONS

3.1 EXPLANATION OF THE PROBLEM

Consider an isolated long solid cylinder with a circu!ar cross-section which does

not vary a10ng the cylinder. the length of the cylinder being 1and its radius being b. The

cylinder is placed in an incompressible fluid undergoing a given unifonn undisturbed flow

of velociry U. perpendicular to the cylinder axis. The Reynolds number R based on the

radius ofthe cylinder is very smalI (R = bvU « 1) but not zero. Thus. the inertia effects of

the fluid are taken into account. A very small solid spherical particle ofradius a is released

far enough from the cylinder. The collision efficiency of the partic1e on the cylinder is

going to be calculated in this research.

Since the cylinder is assumed to be long enough to neglect the ends effects, every

unit Iength ofthe cylinder, far from the ends, can be dealt with exactly the same. Then, by

definition, the collision efficiency E, for each unit length of the cylinder, is the ratio of the

largest amount ofinitial xi (shown as x: in figure 3.1) over b so that ifwe release the

partic1e at X: , it causes an impact on the surface ofthe cylinder. Hence the problem turns

out to be a two dimensional problem.

Figure 3.1 General problem (cross-section)•

JL.. (Particlc ofl'lIdius a

X'-----'-'f

x'l
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E = -:'. tor any particular Rand p.

On the other hand. the tlow field. streamlines. and particie trajeclOry are ail

symmetric about the equatorial plane which is parallel to the undisturbed velocity direction

(/. and passes through the center of the cylinder. Thus the above portion of the equatorial

plane is mercly considered.

In the case that x.' the height of initial position of the particie from the equatorial

plane (initial x;), is grcater than X:, the particie will miss the cylinder and if it is equal or

less than some X.: , the particie will collide with the cylinder. It is worth mentioning that

for cach flow condition (different Reynolds number R ) and any particie parameter p, there

is a particular X: to be found out. In other words, if we change either R or particle

parameter p, X.: will change too.

As was mentioned in chapter 2, past researches which are related somehow to this

work are not rare, but they have mostly followed a numerical approach from almost the

beginning ofthe problem. In this research, however, the problem is going to be dealt with

analytically as far as possible and after obtaining the equations of trajeetory of the particle

analytically, the result, the collision efficiency, for different Reynolds numbers R and

particle characteristics p, will be calculated numerically by a quite reliable and powerful

method. discussed in chapter 4. In this manner. the reliability of the resuIts, introduced in

chapter 5, is strongly secured.

A long isolaied circular cylinder is one of the examples of long slender bodies

problems which have been discussed in F1uid Mechanics for a long time. In order to find

the forces per unit length and f10w field around the cylinder, we need to study and develop

the necessary equations from the basic theories of long slender bodies in brief. Applying

the modified results for the case ofour cylinder, we will be able, then. to develop a set of

differential equations e."Cpressing the trajeetory ofthe particle.
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THE FLOW .·\ROUND LONG SLENDER BODIES IN :\ Y1SCOlIS

FLUID

Consider a long sIender body S of circular cross-section. the length of the body

being 1and a characteristic value of the cross-sectional radius being h. This body may be

assumed bent in any manner whatsoever so that the radius of bending curvature at ail

points is of order 1. The distance along the body centre-Iine measured trom an arbitrary

point like one end is s' (see figure 3.2) and a dimensionless quantity s is given by

(3.1 )

so that 0 S s S 1 (the dimensionless distance along the body centre-line measured ITom one

end). and the two ends of the body S being s =0 and s = 1. The circular cross-section­

radius at any point of the center line is generally taken to be bil(s). where il(s)is a

dimensionless funetion of s. For a circular cylinder the radius b is constant and .~ (s) is

equal to 1.

3

o 2

•

Figure 3.2 A long slender body at rest in a Duid witb Dow field Uer)

Dimensionless quantities will be used (unless otherwise stated) based upon the

length 1(a few miles), the fluid viscosity J.l and a charaeteristic velocity U. The veetor !

(underlined variables are veetors) is now defined as a dimensionless position of a general

point relative to a fixed set ofreetangular Cartesian coordinates with ongin O. The body S

is considered placed in an undisturbed flow field with dimensionless value (J (C).
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At a general point P on the body centerline, we define a set oflocal Cartesian axes

(x',y',:') and a set oflocal cylindrical polar coordinates (p',B,z') with origin at P and

the z' axis tangent to the body centerline as is shown in figure 3.3. Expansions of the

velocity and pressure fields for the f10w about the slender body are made in terms of the

parameter le =7«1, that is the body is slender.

1 z'

B

•
ï ;X'

Fi~ure 3.3 The local cylindrical coordinate system at the point P

The body is considered at rest in a f1uid (of viscosity JI and density p) in which

there is a uniform undisturbed f10w field of(dimensional) velocity If.. Associated with !1. is

the constant free..stream pressure which, without loss of generality, can be taken to be

zero. We are interested in obtaining the drag force on the body in the limit as le -+0 with

lU plU
the Reynolds number Re Il - =-- based on the body length assumed to be oforder

v JI

unity. The Reynolds number R li! p~U is based on the body cross-sectional dimension.

Thus

Ie« 1, R« 1, Re = R (oforder unity)
le

(3,2)

We will make expansions of the velocity and pressure field in terms of 1C (correct

to the order of 1C +1) treating Re as a parameter. However, one should note that this type

• of expansion must be singular since the f10w locally around the long thin body must he
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very nearly the tlow around an infinite cylinder at zero Reynolds nllmber R. and i~ is weil

known (Stokes' paradox) that it is impossible for such a tlow lield (/1. p) to s.1tis~· the

equations of motion and at the same time to satis!}' the no slip condition /1 ~ 0 on the

surface of an infinite circular cylinder and also to make the velocity /1 tend to the uniform

tlow at infinity. So. we will use n/l: A/atc/lI:d As):mptutic Expansion T.:c1miqlll: which is a

kind of perturbation method. and through that. we will solve the cquations for two regions

(inner and outer). Matching the results of these two regions. we will get an overall

solution for the problem.

3.2.1 Non-Dimensionalizing

3.2.1.1 Outer Region

We use quantities made dimensionless by p. U. p, and 1. The dimensionless

position veetor 1:, tlow velocity !!. and pressure p are defined in terms of the corresponding

dimensional quantities r', 1/', and p' as follows:

r' u'
r== u==- ['- U'

[p'
p=­

PU
(3,3)

where U =lui . Unless otherwise stated, we use I/nprimed variables to denote

dimensionless quantities. The vector 1: is the dimensionless position vector of a general

point relative to a fixed set of rectangular Canesian coordinates with ongin 0 (see figure

3.2) so that the body centreline itselfis given by 1: = B(s).

The dimensional fluid velocity u' and the pressure p', for both inner and outer

regions, satisfy the Navier-Stokes' equations as follows:

• with boundary conditions

pu'. V'u' = p V'~ 1/' - V'p'}
V'. 1/' =0

(3,4)
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u' = 0 on the body SUrface}

as Ir'i ~x.
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(3.5)

The goveming equations of momentum and continuity for the dimensionless

velocity I!.. and pressure p in the outer region can be obtained by placing outer region

variables in the above equations. They are of the form

Re I!.~vl!. = V=I!. - Vp ,}
V.I!.-O.

(3,6)

We have to solve the above equation as an expansion in /( using the boundary

conditions

as r~x }
on the body surface.

(3,7)

•
where ~ is the unit vector in the direction of the uniform undisturbed f1ow. This will

require obtaining a solution as an outer e.xpansion in /( valid in a region (the outer region)

where 1: is of order unity. As mentioned, in the outer region lengths are made

dimensionless by l, and as /( ~O, the body becomes a liRe singularity 1: = R(s) (see figure

3.4).

3

o

r=B.(s)

2

•
Figure 3.4 ln the outel" region the body becomes a line singularity

In the outer region, the velocity can be VlTÏtten, generalIy, as
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• U
where ~ = lui .and ~: -~ Q as A.' 4 O.

(3.8)

If we apply the velocity !Tom equation (3.8) into the equations(3.6). wc will get

Oseen's equations for the outer region:

Re ~.~~I = 'V:~I - 'VP1.}
V.~I -O.

(3.9)

•

With the boundary conditions ~, 4 Qas ~14 oc. It is worth mentioning that the

boundary condition on c..=8.(s) can be obtained oniy by matching.

3.2.1.2 100er Region

In the inner region. we use quantities made dimensionless by p. U. p • and b. The

dimensioniess position vector E., flow velocity Il and pressure p are defined in terms of

the corresponding dimensionai quantities r', Il', and p' , and aIso in terms ofdimensicniess

outer variables. Using K =-7- ' we define:

•

r- D
F = - .ur
- K

P=Kp

(3,10)

(3. II)

(3.12)
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Therefore we have two sets of dimensionless variables. Outer region variables in

the form of!!.. 1:. and p. and inner region variables ",ith an overbar sign as E.. il.. and p .

At any point P on 1: = !Jy (see figure 3.5) of the body centreline one may define an

inner expansion in K for which E. is used as the independent variable and il. and p as

dependent variables.

3

Figure 3.5 Inner region and cylindrical polar coordinates

In a Cartesian coordinate system. the position vector in the inner region E=

(1".y. =). where the 1". Ji. and =are respectively 1"'. Ji'. and =' made dimensionless by b

(see ligure 3.3). In the inner expansion at each point P ofthe centreline. the unit oflength

is b and as K ~ O. the body becomes very much like a cylinder of inlinite \ength (since

/~ 00). Actually. one has an inlinite number of inner expansions corresponding to each

point ofthe centreline ofthe body. However ail such inner expansions may be considered

simultaneously by taking a general point P of the body centreline. The inner expansion at

such a point is then matched onto the solution for the outer expansion at the same point P.

Relative to the inner dimensionless coordinates y, Ji, and =. a dimensionless

cylindrical polar coordinate system (P. B,=). is defined (see figure 3.3) with P= ~' , so

that

•
1" =P cosB, Ji =p sinB. (3,13)



• 3.2.2 l\1atched Asvmptotic Expansion

3.2.2.1 Inner Expansion

At a general point P of the body centreline consider now the inner expansion. The

flow field (lI and p) in the vicinity of the point P is to be computed by so!\;ng the

governing motion equations (3,6), using inner variables described above, i.e.

~R~ ~.V!! = V'l! - VïJ,}
v. !! - 0,

(3,14)

•

with il= 0 on the body surface, where p =À in cylindrical polar coordinates (p, B,=),

(see figure 3.5). It is worth mentioning that the boundary condition at p -) co is to be

obtained by matclùng.

Assurning that À(s) varies slowly with s, (in case of an infinite circular cylinder

À(s) =1), the value of!! may then. at the lowest order, be calculated in the same manner

as for Re = 0 (Cox, 1970). The general solution for equations (3,14) will be

Ü~ =C(K){I- À ~ p-~ - 2In(~ )}cosB
A.

+D(K){I-À. ~ p'~ -2In(i)}SinB,

Üs =C(K){I-À. ~ p-~ +21n(i)}cOSB

+D(K){-I+À. ~ p-~ -2In(i)}SinB,

p
U. = E(K)ln('I)'

p = C(K){4p"cosB} +D(K){4p" sinB} +KF(K),

(3,15)

•
where C. D. and E are arbitrary constants independent of the coordinate system. but they

cao be dependent on K. In the equations (3,15), no other terms cao appear since terrns in
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fi•. , fi. like p' 1 can not appear as they would have to match OnlO terms in K·
1 in the outer

expansIon.

We assume C( K ), D( K ), and E( K ) are such that as K~ 0

•

C(K) ~ 0, D(K) ~ O. E(K) ~ O.

Using polar axes (p, B, =), corresponding to the (p. B. =) axes so that

p=Kp and Z=Kl!:.

the inner boundary conditions on the outer f10w field (l!. p). has the following form:

",. - {C(K)(-2Inp)cosB+D(K)(-21np)sinB}

+ [CCK ){2In(cl) + l}cosB + D(K ){2 ln (ci) + l}sinB] + O(K:).

". - {C(K)(2Inp)sinB+D(K)(-21np)cosB}

+ [C(K){-21n(ci) + l}sinB + D(K){2In(ci) -1}cosB] + O(K:),

Il. - {E(K)lnp} + E(K){-ln(ci)},

P - [C(K )cosB +D(K)sinB](4p") +F(K).

(3,16)

(3.17)

(3.18)

Here ceK ), D(K), E( K), and F( K) will depend on s, the position on the body

centreline.

3.2.2.2 Outer Expansion

We recall that the outer f10w field (l!. p) satisfies (3,6) with the outer boundary

condition that l!~ ~ as 1: ~ œ (where ~ is a unit vector in undisturbed flow direction).

The outer flow field Œ. p) has an expansion of the form

(3,19)

•
where C!!I. PI) ~ (Q, 0) as K ~ O.

At a general point P on the line singularity 1: = lies) it is convenient to take a set of



• rectangular Canesian axes with unit base \,ectors 1:. 1,. and 1, which lie in the same

direction as the <,:.,\',.i')-axes at P (see figure 33) Thus 1, lies in the direction of the

tangent to [ = 3.(s) at P Since ,\" and .v axes are arbitra!!', one may choose, for

con\'enient, !. to lie in the plane containing 1: and the \'c1ocity \,ector ~ (see ligure 3 0)

Figure 3.6 The system of axes with unit base vectors !•• !,., !,

•
Thus the unit vectors !,. !•. and t,. are

i =-. (3,20)

h dB. ' , , h d"" d /" h'd "w ere ! = ds IS a umt vector ln t e tangent Irecllon an = IS tel emlactor.

From the form of 1!. as one approaches the centreline, we see (Cox 1970) that the

singular part of (1!... Pl) represents a line offoree on r..=B.(s)

[(s) =81l'C(K'. s)t. + 811" D(K', s)(. - 21l' E(K', s)t: ' (3,21)

where X = PcosB. y=psinB, thus

•
[(s) = 21l'{4C(K', s)t. + 4D(K', s)(. - E(K', s)t:} "

Taking variables (3,20), we can write

(3,22)
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We require !lI~ 0 as 1:~ GO so that !!.I is the flow due to the line distribution of

force ["(s). That is

(3,24)

where s is a dummy variable expressing the dimensionless distance along the body

centreline to a general point (see figure 3.7), R= B(s), and the function g,j(!:) and the

radial distance from the origin r are respectively defined by

•
and where YI (C) , stream funetion, is defined by

2 f.~R«'-'!) 1- e,a
YI(c)=- • da.

Re 0 a

The corresponding pressure is

(3,25)

(3,26i

(3,27)

(3,28)

•

where the local axes are defined 50 that the point P is the origin and f, is in the direction of

tangent to the body at the point P (see figure 3.7).

1 Rcpcalcd indices rèfer la summation over the index unIess othernise specifiee!.



•

•

29

2

Figure 3.7 Local axes at the point P

Here B(s) is the position vector for any general point from origin O. where

a $ s$ P , with a and p as two ends of the body. The position vector B(s) is the

same as B(s), but specifica1ly for the point P. Since the integrands for !I and PI become

singular on the line offorce, we write

(u,),=J,+J:, P, =H+H' (3,29)

where J, and H are the integrals taken over the intervals (0, s - & ) and (s +&, 1) and J,"

and H" are the integrals taken over the remaining interval (s - &, S +&). Therefore,

•

1 {r'·' Il } ( .)' .J, (s) = 8K Jo + ,., g,,!. - R(s) f, (s) fiS,

1 {s.'.' l' }(~ -R, (s» ".
H(s) =-4 + 1 Il h (s)fiS,

K 0 ,., r.-R(S)

(3,30)

(3,31)

(3,32)
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1 f,·c(r - R (5»)
H'(s) = - J J /,'(3) fiS

4;r ,·c k_B(s) Il J

The quantity (; >0 is assumed to be an arbitrary constant and very much smaller

than unity. Since the integrands only become singular at s=5. if !: relies on the line

singularity (!: -+ B(s». it follows that the integrals J, and H have integrands with no

singularity. although the values of these integrals will tend to infinity as (; -+ O. Since

(; « 1. the integrals J,' and H' may be simplified if one notes that 5'" S in the range of

integration. Therefore.

where

• 1 j"
J, - 81C J (5) l'J

" 1 "H - 4;r ~ (5) IJ
(3.34)

•
where E=B(s) .

By considering figure 3.7

l'J =r:g'J (!: - E) fiS.

f
,·,(r -R)

l ' J J

J = 1 -'3 fiS•,-, !: - B
(3.35)

'i =~(5). r:, = R:(s)+pcosfJ.

wecan write

r3 =~(s) + p sinfJ (3.36)

•

• dR,(s) • 1d:R,(s). :
R,(s)=R,(s)+ ris (s-s)+'2 ris: (5-S) +...•

• dR.(s) • 1d:R.(s). •
R:(s) =R:(s) + ds (5-S)+ 2 ti: (s-s)-+.... (3.37)

• dR3(s) • 1 d:R3(s). •
R3(s)=R3(s)+ ris (s-s)+'2 ris: (s-s)-+....

but~ = l, = 8". and a1so ";J; =! is a unit vector. Theo
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ds ds' -

dB dB
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--0ds' -
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Using the above quantities in order to find components of1)

(r - 8(05», = -(05 - s) + 0(05 - s)'.

R
") () 1 d' R. _ •

(r-_(s),=Pcos -z ds;(s-s)·+...•

" . 1d' R, _ •
(r-8(s)h = psm()-Z ds' (s-s)·+....

(3.38)

Applying these quantities into II: - B(s)13 , and letting

• we will get

s-s=px, dS=pdx, (3,39)

as p-+ 0 for a fixed & • we have

•

Thus, one should include the Order (&0 pO) tenn. Then we take

1 - l' {- • .} ( ()d'R, . ()d'R1) (- ).!:-B,(s) = (s-s)"+p' - cos d1"+sm ds' p s-s',

1
",,3 {- , ,}'lI: 3( d'/?z. d'R,) p(s-s)'

!:-B(s) = (s-s) +p +-2 cos() .J~ +smB .J~ {_ • .}>r.+....
U) U) (s-s)" +p'

Thus,

(3,41)

(3,42)

(3,43)



• l ( d"R, d") .) ],. (o5-s) 3 ' . -R. p(s-s)
/, =J -1' " "1'"' -2lCOSB -:;:;+smB -J':' 1· " -1" +... dS•• ~-~-+~ ~ ~ ~-~+~

[ " (- -) ') ]." pAX 3 d-R,. d-R, p'X
=J -) ")" --2 casB -J':' + smB -J':' '(1 "l'" +... de

-'P P (1 +x') - ~ "" p' +x-·-

Since bath integrals are zero, by symmetry,

1,~0 as p~O.

We evaluate h in the sarne manner

32

(3,44)

(3,45)

(3,46)

(3,47)

•
J"l pcosB {p'(S-S)' p3(S_S)' P(S-S)'}] •

1:. = { • '}Jr- + 0 {. _ _}~ ~ {. • .}Sf'. ' {. • .}Y: ds
N (s-s)"+p' (s-s)'+P' (s-s)"+p' (s-s)"+p'

J"/~ p' cosB 0{ p7X' p'x' P'x'}] dx
= "IPL p 3(I+x')3f.' + p'(I+x')'r-' p'(I+x')'I' 'p3(I+x')3f.'

1 J'" de o{ '1 • }l,-p' cosB -"(I+x')~~ + p' ne,p'lnp,pplnp,plne ,

and since

fO" dx fKr- sec'BdB fKI'
--'-"::.""'3f.''''' 3 B cofiJdB = +2,-.. (I+x·)· ·Kr- sec •KI'

wehave

(3,48)

(3,49)

Now, by insertingh and 13 into expression (3,34), we have as e~ 0•

1. - 2p·' cosB +O(p°)

Similarly for 13-0 we obtain

as

as

p~O.

p~O.

(3,50)

(3,51)
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(3.52)

and as p~O

or by using equation (3,32)

Matching onto inner expansion ofp in expression (3, IS) requires

(3,54)

1 {f.'-' fI }(rJ - RJ (5» o.

F(K) =-4 + 1 1,J:J(s)dS.
;r 0 'o. 1:. - 11(5)•
1 0

C(K ) =-Sf, (s),;r - D
Io

(K) = S;r/, (s), (3,55)

(3,56)

Now, we concentrate on the function gij , see equation (3,25)

1-e""
a

(3.57)

(3.5S)

•

Thus as 1:.~ O. we have

V'•• -( -e')--4
1
&(r-e.r.)(!i.- e.)+.... (3.60)

r r
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CIf/ C'1f/
whcrc If/., dcnolc5 T and If/"I = cr crr. , J

0.1 r, r, 1 { 0.1 r, '"' '"' r }'" -(---,)--& (r-er)(---)+(--e)(-'--e) +...
.." 'Il r r 4 k k r r J r J r 1

2 1 {2e,r, r, e, }
1f/'''-;-4& 2--r -+1- 27+ 1 +.....

and al50

2 -1 D_ ( r, e, )If/,a - r -r<: 1-- +....
r

Since we have g" =<5.;\fI.a -\fI"I' we will obtain

(3.61 )

(3.62)

(3.63)

(3,64)

•

•

Thus. the term in Re -1 is bounded as r ~ 0 so that it gives a contribution to I;j

(sceequation(3.35»oforder S-I and 50 Re- l
~O as S~O. The term in Re°gives

Now, we can evaJuate different clements ofthe tensor gv

(s-s)pcos8
gl: = g:1 =- {(s-s): +p:}Jr. +...,



•

•

•

(s - s)p sint:l
glJ = g.'1 = - {(_ )_ ,}." +....

s - s . + P'

p' sint:l cost:l
g" = g" = {(- )' ,}." +...s-s'+p'

By inserting these values into lij (see equation (3.35». it can be sho\\'n lhal

and as p ~ 0 we have

11I--41np+{4Ine-2+4In2}+....

Similarly, we get

1" - -21np + {2lne + 21n2 + 2cos' t:I }+... ,

133 - -2lnp + {2lne + 21n2 + 2sin' t:I }+... ,

1" =1" - 2sint:lcost:l+... ,

Thus, for equation (3,34), as p ~ 0, we have

" 1 "J, - 811' f, (s)/. '

giving

J; - 8~ [{- 21np + (21n(2&) + 2cos' O)+...}J;"(s) + 2sin BcosBJ;"(S)+...],

35

(3.66)

(3.67)

(3,68)

(3,69)

(3,34)
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J,' - 8~ [{- 21np + (2In(2&) + 2sin' B)+...}K(s) + 2sinBcosBJ;(s)+.] .

Therefore. as p --+ O. based on equalion (3.29). we gel

(/l,), - - 2~j,'(S)lnp + [ 4~ (2In(2&) -I)j,'(s) + J, (s) ]+....

(/l,), - - 4~f;(s)lnp+ [4~ (In(2&) + cos' B)J;(s) + 4~ sinBcosBK(s)J,(s)} ....

Now. we may use lhese quanlities into outer region velocity field equation (see

equation (3.1 9»; 50 that

/l, - - ~j,'(S)lnp+[et +4~ (2In(Ze)-I)j,·(S)+J,(S)}...

", - - 4~J;'(S)lnp+[e: +4~ (1r.(Ze) +cos' B)J;'(s) + 4~ sinBcosBh'(s)J,(S)}.... (3.70)

l'J --4~h'(S)lnp+[~ + 4~ (In(Ze) + sin'B),h'(s) + 4~ sinBCOSBJ;·(S)J,{S)}....

In terms of the polar coordinate system (P. B.::), (see figure 3.8) we generally

have

3

2

•
Figure 3.8 Transfer to the polar coordinate system

IIp=u,cos8+II,sin8, )

" 8 = -u, sin8 + ", cos8,

u: = "1'
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thus. the outer region veloeity fields will aet like

/10 - - 4~ {- f: '(s)sin8 + f)'(s)eos8 }Inp- {e: + 4~ In(2&)f:'(s) + J:(s)}sin8

+{e) + 4~ In(2&)K(s) + J)(s)}eos8+....

(3.72)

(3.73)

Matehing at order ln p onto the inner expansion velocity fields. expressions

(3.18). we obtain the following

•
1 ,

C(K") =81f f: (s)

1 ,
D(K") = 81f f) (s)

1 ,
E(K") =- 21f ft (s)

(3.74)

•

The values of C(K") and D(K") agrees with equations (3.55). obtained earlier by

matehing the pressure. Similarly. matehing at order pO gives

C(K"){2In(lCÀ.) + 1} =e: + 4~ (In(2&) + l)f:'(s) + J:(s), (3.75)

D(K"){2In(lCÀ.) + 1} = e) + 4~ (In(2&) + I)J;'(s) +J)(s). (3.76)
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•

•

Substituting the values of [(s) from (3,74) i.e.

I."<s) = -2;r E(K»)
j,"(s) = +8;r C(K)

I,·(s) =+8;r D(K)

we obtain from either equation (3,75) or (3,77)

and from either equation (3,76) or (3,78)

and from (3,79)

3.2.3 Force Der unit Length of the Body

(3,79)

(3,80)

(3,81 )

(3,82)

(3,83)

•

From the inner expansion solution, we calculate the force per ulÙt length of the

body as /JU[(s); where [(s) is the dimensionless force per u1Ùt length on the body

exerted by the fluid and [(s) being the dimensionless force per ulÙt length on the fluid

exerted by the body.

[(s)=-[(s)

In inner region Il and p are given by equations (3,15) in cylindrical polar

coordinates. The rate ofstrain tensor ev =~ (u" j +u
J
,,) will be
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so that considering p =2 on the cylinder surface. the stress tensor u. =-pD" + 2e. has

the values

u;;;; = -42-'(C(K)cosB+ D(K)sinB).

u8 ;; =42"(C(K)sinB- D(K)cosB),
-,

u;;; =2 E(K).

3

(3,84)

•
2

•

Figure 3.9 Stress tensor on the cylinder surface

Thus force per unit length 1 on the body is given by

1; = J:"{up,;cosB-OSpsinB }MB =-SlrC(K).

13 = J:"{u",cosB-up;;sinB }2dB = -SlrD(K),

that is

ft (s) =211'E(K), )
I:(s) = -SlrC(K),

h(s) = -S;rD(K),

which when compared with equations (3,SO) gives

(3,S5)
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[<s) = - [(s)

as expected

Thus the equations (3.81). (3.82). and (3.83) may be wnUen in the form

f, (s){ In(~:) +H= -2;r (e, + J, (s»).

f,(S){ 21n(~:) - I} =-8;r (e, + J,(s»).

f,(S){21n(~:) -I} = -8;r (e, + J,(s»),

where by equation (3,30), we have

1 {r'-' l' }J'(S)=-81< Jo + ,., g.k-!3.(S»)J;(s)dS.

(3,86)

•

•

Thus, if replace r by !3.(s) in J,(s), since there is no singularity at r = !3.(s) for J,(s),

we will have

f,(S){21n(~:) + I} =-41< e, +Hr'+f., }g'J(!3.(S) - !3.(s»)J;(s) dS,

f:(S~21n(~:) -Il = -81< e, +{r'+L }g'J(!3.(S) - R(s»)J;(s) dS, (3,87)

,h(S){21n(~:) -Il = -8u) +{r'+L }g)J(!3.(S) - !3.(S»)J;(S) dS,

and since

{f.'-' l' } dS+ p_=-2In& + In[s(l-s)],
o ~.I: I$-SI

wemaywrite

2/,(s) 1n& = /,<s)ln[s(I-s)]- {f.'-' +1\ }rS)i·
o ,-& s-s

Thus, the equations (3,87) may be written in the form



•
-lI

However, frorn set equations of (3.66), we see that for p = O. (.' =s)

2
Kil =-1-'l's-s

1
g" =g" = -1-'1 's-s

•

•

K. =0 for i =j .

Thus, for p = 0, and o5~s,

(R - R')' 1'(') _ 2/,(s) =2/,(s) _ 2/,(s) _ "/,,(.) (._ ')
KI} _ -~} s l '1 l '1 l '1 - 1 s sgn S .',s-s s-s s-s

g, (13. - i3.)'!. (05) - f;(s~ =ts~ -ts~ =f,' (s) sgn(s - 05),
} } Is-sl s-sl s-sl .

g3} (13. - i3.)f,(s) - ('(s~ 1=f; (s) sgn(s - 05).
s-s

Thus, the integrals in equations (3,88) are convergent as e~ 0, so we rnay write
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Letting (" 0., and b be unit vectors along the 1, 2, and 3 directions, respectively. 50

that

. dR )1 = -= = I(s
-1 ds - .

then we can combine equations (3,89) as

or

or

.0' •

•

Similarly, combining equations (3,87), one cao write!hem as

f(S).[{2In(~) -I}L+2f(S)t(S)] = -81r~.[L- ~t(S)t(S)]

+{r-+L }(L- ~t(S)t(s»).~R-R).f(S)c8

(3,90)

(3,91)
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where B. is the value of r at the point under consideration. on the centrcline; Ê is the value

of r atthe point on the centreline with s -.' (see figure 3 7). and the vector 1is the tangent

direction at s.

3.2.3.1 Some Points on the above Force Equation

• Since the above equation (3.91) for the hydrodynamic force per unit length

acting on the body is of vectorial foon. one may consider it relative to any

arbitraI)' rectangular Cartesian coordinate system

• The value of & appearing in the above force integral equation is arbitrary.

satisfying only the inequality 0 < & «1. Solution is independent 01'& .

• The integral equation for /(s) is a Fredholm equation ofthe 3n1 kind.

• The value of / (s) depends. in general. on the entire body shape a :5 S :5 P.

3.2.3.2 Value orthe Tensor :lr(!:)

Using equations (3,27) and (3.25), we are able to obtain the value of the

tensor~(!:). Since

=11- e·lr-R.(,-!.~) )(': _ )
If/.. 1 r e, ,

-Re(r- e.r)
2 --



•
44

Thus. the equation (3.25) can be wrinen as

(3,92)

•

• '

3.2.3.3 The limit ofgij as Re ~ 0

It is worth mentioning that if we take the limit of equation (3,92) as Re ~ 0, we

will have the following expression for creeping fIow conditions

therefore, as expected, we have R. E. Johnson's (1980) result.

The above equations (3,91) and (3,92) are basic equations for a general case. In

the next section we use these essential equations to develop an expression for the force per

unit length on a long cylinder. Theo, we will apply the outcoming result to find out the

fIow field around such a cylinder. Having the flow field and force equations, we can

develop the required e:<pressions for the trajectory course of a small particle released far

from the cylinder in a fIuid with R «1 (not zero).
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3.3 THE MOTION OF FLUID AROUND AN INFINITE LONG CYLINDER

The special case ofan infinitely long cylinder ofcircular cross-section with radius b

is considered in the present section. The cylinder need not be mathematically infinit.:. but

it is practically long enough 10 ignore the ends effects (e.g. a few miles). ln order to find

the flow field (li., p) around the cylinder. we need to calculate the hydrodynamic forces per

unit length acting on the cylinder: see equations (3.24) and (3,28) earlier in this chapter.

3.3.1 Driving Drag Forces Der Unit Length ofCvlinder

Since the cylinder is considered infinitely long, the force per unit length (J.l Uf) is

independent ofs. where f is the dimensioniess force per unit length on cylinder. To solve

the generai equation of force per unit length on slender bodies, equation (3,91), for the

case ofcylinder, we need to calculate different elements of the tensor gv' as the first step.

A set ofCartesian coordinate axes (1,2, and 3) is defined (see figure 3. 10) so that the

point P is located at the origin (s = 0).

1

s /
2

•
Figure 3.10 The Cartesian axes and the cylinder

Here, !.. is a unit vector aIong the cylinder axis and ~ is the unit vector of·

unclisturbed ve10city loeated in the surface of 1- and 2-axes. Because of symmetry, the
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component of force per unit length in the direction of the cylinder axis (l-direction) is zero

and the other components are constant and independent of .Î:. Thus

[<s) = (f,,J,. 0),

!!. = (sina. cosa, 0).

[=(1.0.0),

and ifwe put s = 0, at the ongin

r.=B-Ê= {(S-s),O,o}= {-s, a, a},

;={-fsI, a, a}= {-sgns, a, a},

(r-e.r) s
r- I+fs[sina= 1+ (sgns)sina.

Substituting the above quantities in equation (3,92)

2{1- e-II~R«I;I-; ..na)}
gll = Re(II .' )' {(-sgns-sina)~-(I+(sgns)sina)(I-I)}

s +ssma -

e-I/2R~IiI+.iama) ... • .. • .,

+ (Il ., ) {2(1+ (sgns)sma)-(-sgns-sma)-}s +ssma

•
Similarly, for g,~

(3,93)



• 2{I-f! i:R"'.'.,;,mUl\
go" = , I( ,.. RL~(I,'I",.'sinal' \ -cosal'-[I+(sgn")sina](I-Ol}

e 1 :u.,(... ·',mu)

+ (Is!+.'sina) {2[1-'-(sgn")sinal-(-cosa)'}

Also

_ 2{1- e-I/:R<llil'i"nul}

gJJ - Re s'(sgns + sina)' {- [1 + (sgns)sina l}

e-l/~R-<lil+islna)

+ s(sgns+sina) {2[1+(sgns) sina l}

47

(3,94)

• g33 = (3,95)

Also

• = = 2{1_e- I/:R.(lil+i"nal} •

K, g,: Re'" {(-sgns")( }s-(sgns+ sina): - sma -cosa) - 0

e-l/2Rl<l.il+,isLnQ)

+ s(sgns+sina) {-(-sgns-sina)(-cosa)},

e-1/:::l;Rf(IiI·,i"na) cosa
s

(3,96)

•
And similarly,

gn =gJ: =gl) =g31 =o. (3,97)
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•

:-':ow, wc may subslilule the above quanlilies into equalion (3.91). Thus

!(1, - ~m~Œ - Êl.[<.v)l = (1 - ~l{~Ilj, ," ~"f}
... _. JI-

{1_e;~/i"fj"'~IO(lI} A.

= R .' ( . . {(sgns -;- smalf, -;- cosaf.,\
es' sgns + sma l - .

.] :U..f:i".Î'IlnU 1

-;- ., :( • . {cos' a j, - (sgn.i: -;- sin a l cosa f.}.
_.1' sgns + sma l .

[(L - iLO·frCB - B)-L<.i:)], = kil, +g"fJ
2{)- e·I/~R"(I.iJ";'1lnU)} •

= ._ • . {cosa!, - smaj.}
Res'(sgns+slOa) .
C.I/:Rt'(!jl" j'lifta)

+ S {-cosal, +(sgns+sina)fJ,

and because ofequations (3,97) we have

(3.98)

(3.99)

(3,100)

It is noticeable that for an infinite rod the equation (3,91) must be replaced by

f(S).[{21n(~:) -l}!+2tt] = -8Irg.[!-~ /1]
+{[+[}(!- ~ill.~-lh.j(S)dS,

(3,101)

•

where trom equations (3,98) and (3,99) we see that the integrals are convergent at S = :bo

so long as

Isj+ssina>O.

or 1+sgns+sina > 0 at both s = +00 and s =-«l,

ie. we require



• I---sina >0 and I·-sina > O.

. ,rr
a"~­- ~ . (3.102)

•

Since the radius of the cylinder is the constant h. the non·dimensional width À 0= 1.

Thus the equalion (3.101) may be wrillen as

[,m(.E.)-]- _ {[' r}({I-e·1r-Rât...i·.... '}2cosa _c·lr-Rât...i.ml.'cosa)r. - ~ t --8"cosa+f, + Re"(") • di
• a .!.& .11) & s" sgns +sma s

(3.\ 04)

{[ r }({l-e·J('.Ràl""'·...·'}<-2sina) c·lI".Rà,...;'ml·' (sgns +sina») .
+f, + Re...· + • di• -~ 's'(sgns+sma) S

or we may write them as

•

[ (
K) ] . ({\_e·Ir-R';(-I.~n.)} e·II~R';(-I ..'n.)cos~a)

2In:::- + 1 = -41l'sma + j,[ R •• + 2$( 1 . ) dS
.!.& 'es' - - +sma

(
{1- e·I/~R'i(l...n.l} e·1r-R.i(..... l cos~ a)

+ j,[ Re •• + 2$(1 . ) dS• s' +sma

(
{I-e·1r-R.i(.I.... l}cosa _ e·Ir-R.i(.I ..... lcosa) .

+f.[ Re--( ') 2$ dS. • s' -1+sma - .

(
{1- e·1r-R.;(I ..... ) }cosa _ e·Ir-R';(I'~.) cosa)

+f.[ Re"( . ) 2S dS.'. s' l+sma

and

(3,10S)



• ! , ({I_e·I~Rc:i(-1.~mU'}2COSa e·I:.u...iI-I.,mUJcosaJ
- 11 = -8;rcosa • /, r .'" . dS

.; ,j" Res-(-I.sma) -s

(
il "R<iI""o",\.,COS ·'OR,iC'-.o"' J• r" l -e j- a e cosa dS

' /'j, Rû'(J +sina) s
.. (1 1- e·'/OR<iI"-.o")1(-2sina) e""R<i(-l,"o")(-1 +Sina)J

+ j, r ". + • dS
,j, Res'(-l+sma) -s

. rll- e""ORoÜ(I-.ou) l(-2sina) e""'R<iCl'.ou)(1 +Sina)J
.,. j,[ _'. + _ dS.

, < \. Res'(1 +sma) s

50

(3,106)

•

However. mathematically

e...ü c-l

r~=[:-';1 =E (ac)
~s a&t 1

--y-In(ac )+O(c)

where y is Euler's constant. Then

as c~ 0,

•

re...i
=-::--cJS - (-Inc )+(-y - Ina) +O(c).

< S

A1so

e- r eo4l' e-Q~
=--a ~=--aE(ac)c < S C 1

=c-'{e'" -ac E1(ac)}

- c-'{I-ac +...-ac (-y- Ina+... )}

-c-'-a+ay+aIna+alnc+O(c)

- c-' +alnc +a(Ina+y-l)

and

(3,107)
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thus.

,', 1 e··l
'l T-' --(/In~' +a (I-.v -In(/)+.

Therefore. for s ~ O. the equation (3.105) becomes

•

.t{2In(~) + 1] = -l:rsina +.t{~ {-~Re(l-sina)ln&

+ .!.Re(t - Sina){I- y -ln(.!.Re(l- Sina»)}} + cos:.a {-Ins - Y -ln(.!.RC(I- sina »)}
2 2 2(I-sma) 2

+ ~{-~Re(l+sina)lnS +~Re(I+sina){I-r-l{~Re(I+sina»)}}

cos:a { (1. )}]+ ~ . -Ins-Y-In :;Re(I+sma)_(I+sma) _

+ .1;[- Re(~~ss~na) -~.Re(l- sina)lns + ~.Re(I- Sina){I- r-In(~Re(l-Sina»)}}

cosa { { 1 .)} cosa {I .+-- -Ins-r-I -.Re(l-sma) + . --.Re(I+sma)1ns
2 2 .Re(1 +sma) :::

+~.Re(l + Sina){1-r -ln(~.Re(1 + Sina»)}} - co;a {-Ins - r-lnG.Re(1 + Sina»)n
and after sorne a1gebraic operations

47Z"sina = j,[ - 21nl(+ 21n2 - 2r + 21n2 - 21nRe - 2In(cosa)j + /:[0].

where}i has a zero coefficient. The above equation gives

(3,108)
27Z"sina

j, =Inl(-I -lnRe + 21n2 - r -ln(cosa) ,

or equivalently

27Z" sina
j, = InK' + 21n2 - r - In(cosa) ,

(3,109)

•
where Reynolds number based on radius b is



•
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h lU hl!
R=KRe=--=-.

1 v v

Thus. dimensional force per unit Iength in I-direction is

., U'
j, '= _tr Ji sma

, (hU)"ln -;;- .,.2In2-1-In(cosa)

and it is noticeable that this force is independent of the length of cylinder l, as it should be.

Similarly as E: --l- O. we have the following for the equation (3,106)

8trcosa = 1:[1- 21nK+ 21n2 - 21 + 21n2 - 2InRe - 2In(cosa)] + j,[0].

giving

•
j, = 4trcosa

- 101(,1 -lnRe + 2in2 + ~ - 1 -In(cosa)

and equivalently

f
- 4trcosa

: - l '
InK' +2In2+ 2-1 -ln(cosa)

bU
where R=KRe =-.

v

Therefore, dimensional force per unit length in the 2-direction is

f
' - 411' pUsina
: - (bU)-' 1 '

ln v +21n2+ 2-r-ln(cosa)

(3.110)

(3,111)

•

again. independent of1as it should be.

The errors in equationsii andji are oforder Kf(Re) -~f(/~) and since this

must be independent of1. it is oforder bU (i.e. oforder R).
v
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Let [ be the unit \"eetor along the eylinder a.'l:is and ~ be the unit \'eetor along

undislurbed flo\\" direction (see ligure 3.11).

and the dimensionless force per unit length / on the cylinder is

•

•
Theo,

e

1
!J

Figure3.11 Voit vectors

,.e=cof !!..-a) =sina,- - \2

•

where i, and i, are unit vectors in the 1- and 2-directions, respectively.-. -..

Tnus,

{t ={,
e-I.et e-t .et

!: =l~-l.; ll- {(~-! .;d.(~=~ .~!)}II:
e-!.~!

=ll-ü·~yr .
Theo,
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Sincc ! ~ = sin a and cosa = [1 - (~ .~)'j .we will have

f= 2;r(1.1!)~ ... 4;r(~-~·d
- InR 1 +2In2-: -In(cosa) . 1 1 •InK +2In2+--:-ln(cosa)

2

or

3.3.1.1 Noticeable Points on the above Equation of Force on Cylinder

• As was mentioned earlier, the dimensionless force per urut length on the cylinder

f is independent of the length of cylinder 1 and the error associated with

equation (3,112) is oforder R, whereR «1.

• f -+ Qas R -+ 0, in other words, there is no solution for viscous flow, R = 0

(Stokes paradox).

• The equation (3,112) is valid so long as !. ~;:±I (i.e. a;: ±~) otherwise we

get the term ln 0 = - co in the denominator of the fraction. This means that if

the undisturbed velocity is in the direction of cylinder axis, the above equation

will not help. However, when - ~ < a < ~ , the equation is still correct and

applicable.

Since the concentration of this researcil in this regard, is on a =0 (undisturbed

velocity is perpendicular ta the cyIinder axis), we have !. ~ = 0 from now on. Thus the

equation (3,112) becomes

•
..L_ 2

211" - InK I +2In2+4- r
+O(R), (3,113)
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•

which agrees \Vith the result obtained by Khayat .'\: Cox \ l'lS'l) ln this equation

h(i
R = Jo; l?e = -' . and the unit vector of velocitv ~ does not appear in this e'luation This isv . -

because ~ = (O. 1. 0). then the only non-zero component of force is in thel-direction.

Therefore. the dimensionless force per unit lcngth on the cylinderf in the equation (:;.1 13)

is automatically in the 2-direction.

Having obtained the force equatioll. we are now able to calculate the !low field (!!.

p) around the cylinder. The universal solution valid everywhere is obtained by matching

!WO differem solutions for the outer and inner regions. Therefore. we tirst c.xpand a

solution for the outer region as fo11ows.

3.3.2 Outer Region Solution for Flow Perpendicular to an Infinite Rod

In the outer region the dimensionless flow velocity !! and the pressure p. based on

the e.xpansion over the parameter 1\ are generally the summation of uniform flow terms (~.

0) and the terms related to the presence of cylinder in such a flow.

!! = g, + !!1(K' )+ }

P =0+ p,{K)+ ..
(3.114)

where for the case of an infinite cylinder. the terms related to disturbance can be written as

follows (see equations (3.24) and (3.28».

(3,115)

•
Considering figure 3.12, we may define a unit vector along the undisturbed velocity

!t, a unit vector along the cylinder axis !, and a position vector in the outer region r as
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!O = (O. 1.0) •

! = (1. O. 0).

~ =(O. P cosç$. P sin~)). and kl =p.

e

2

• Figure 3.12 Cylinder and. outer region variables

By symmetry, the only component offorce per unit length on the cylinder f, is in

the 2-direction. TItus, we show it asf
f=(O,f,O),

and

R(S) = (5, 0, 0),

then,

!: - !i(S) = (-5, p cos;, p sin; ),

•
TItus,
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By symmetry. (1/,), = O. however

(/l,), = -f:: [g"k-B(S»)dS.1

(/l,), = - f:: [gJ,k - B(s») dS.

= -..LI~ (r, - R,(S») dS
P, 81r'~ k-B(s)1' .

(3.116)

•

where in (/11)" the first subscript corresponds to the first term of disturbance in equation

(3,114), and the second subscript represents the direction ofvelocity. Sinc:l fi =f2 = O. we

have only the cûmponent ofj = 2 in equations (3,116).

For pressurePI

Lening s=p tan B,

..LI•12 p cosr/J .p sec' B ..L cosr/J 1'"P = - dB= - -- cosB dB
1 81r -.r- pJ sec3 B 81r P -'/' '

gives us the pressure field for the outer region as

•

f -, A.
P, =- 41r P cos\/'.

For the velocity component (u,),

where, by equation (3,92), grz can be written as

(3,117)
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p'cos' (J j1
( , -')"" IfP - + s' )

Thus•

.Lr 2p COS? J- di . l/"",p~'I·{l pCOS? 2p cos'; 1 .v:••Jp '.,' JO]lu ).. = - l- .,. e +.... + fe uS •
1. 8r. Re '-(p'+s')'" .• ~?'+s' (p-+s-) Re(p'+s')'"

• By writing

.S =p sinht,

wehave

dS =p cosht dt,

•

[ dS [PCoshtdt "[ h J'" 2"
''''(p'+s't' = .'" p'cosh' t =P tan t ·w = P •

and

[
e"r-R#Jp";' [ e·1r-R#P'osh'p cosht dt '"
.::....;===~dS= =l e"r-R#poosh'dt,

.'" ~p'+s' .'" pcosht .'"
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Thus.

(II ). = -.LlÎ _ 4 cos~
'" Sil" Rep

But

:ro e-I":Rl'I~Cl'Khr ......

f . dl =J eol.,"".,o"" sech' 1dl
-~ cosh' 1 -~

Rep f~ - 1=-- e-I/·R.,.",,,,, (cosh 1- --)dt.
2 -~ coshl

Substituting the above quantity into (II,), and simplitying. we will get

•
(u). = ..1-[4 cos,p -e'(:'R·'''...r e-'!2R'P"'""'(1 + cos"" cosht)dt].,. Sil" Rep _~ '1'

For the velocity component (III),

(.1.118)

similarly. we can use the equation (3.92) to find gn. and substitute it into the above

equation. After simplifYing.

2p sin,p {I P sin,p 2p sinql } '/ZR"'",...) -1/ZR«~p '.i')g3- = - ,~ + - + ( ") + 'M e e .. Re( - '-)'- ~,.- P''''S' Re( - ._)~.p-+s' P-+S' . p'+S'

• To write these velocity components in polar components. we have

(3.119)



-?

•

•

•
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; ~I~ "'

1 Vu

LL-:"
2

Figure 3.13 Outer region polar components ofvelocity

(u,)p =(II,), cosiP + (II,), siniP

= .L {...i-_e'/'R'P'''''J
w

(cosiP + cosh 1) e-,,~R'P'<>ohtdt l,
Sil" Rep _w J

and

(11,), = -(II,), siniP + (II,), cosiP

=.L {siniP e,r-R'P""'[e-'/'R'P'<>ohtdt}.
Sil" -'"

However, the K.(=) modified Bessel function is

differentiating with respect to =

K:(=) =r-cosh 1e-:-'dl,

thus, r cosh t e-:'<>oh'dl =-K:C=) =+K;(=) .

Theretbre,

60

(3,120)

(3,121)
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fo cosh 1 e '''~hldl = ::[cosh 1 e ""''''dt = ::K,(:).

Thus.

(u) =L ~ 4cosr/J - ?el.'R'C'''-[A.!. ReP) + cos'" K(.!.Rep )·J1.l
" S:r l Rep - '\. 2 '1' 1 2 . J'

(u) =L~4sinr/J-?e"R"·'·~-sin"'K(.!.ReP)1. j
1 J S:r l Rep - '1' , 2 J'

or in polar components

(3.122)

•
(3.123)

Thus, the complete dimensionless velocity in the outer region, in a Cartesian

system, with polar variables (see equations (3,114» is

(Uh=I+!:r {4:~ 2eI/2RWP''''[K.GReP ) + cos; K,GReP )]},

(U)3 = !:r {4:~-2e1r-Rw
p,.. ' sin; K/~ReP)}.

(3,124)

•

Obviously, there is no velocity in the I-direction. Now, we need to write the outer

bU
solution in terms t')finner variables. We reca1l that R =- =K Re «1. Since p =K-'P,

V

then,

Rep::ReKP =Rp, =>
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•

Since the asymptotic expansion ofmodified Bessel functions are

K.(=)--lnG=)-1 +O(=>ln=),)

K,(=)-=-' +O(=ln=),

this value for p = 0(1) with R -l- 0 has the form

) f {4COS,p ?( . 1R - .1. 1(R - .1. )~ )(u , =1+ Sir Rp - - j.,.'2 p cos,/" +"8 p cos,/" +...

[(-ln±RP - 1+.. ) cos,p(R~ +.. ) ]},

62

(3.125)

•

L{4sin 16 i I R - .1. 1 R- .1.)' ) • .I.( 2 )}
(/1») =Sir Rp -,,\1+'2 pcos,/,,+"8( pcas,/" -+... sm,/" Rp+'" .

Thus,

I L { ?I 1R-? ? '.I.} )/1, - + Sir +- n4 p +-1 --cos'/" +... ,

/1) - , {- 2sin,p cos,p }+... ,

or, in polar coordinates

(3,126)
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and

Il. = -II, sinç; + Il, cosç;

= Sinç;{-l + {, [-ln/(o +21n2 - y J}+..

Applying equation (3.113) into the above equations.

f 2
-= +O(R).
2;r 1 1

InK +21n2+ Z-ï

_ ,/, [ (InR-2In2+r -1)+ln p ]
IIp - cos\" 1+ ( ) +...

-lnR+21n2- r + 1/2

_ ,/, [ - 1/2 + ln p ]- cos\" +...
(-lnR+ 21n2 - r + 1/2)

IIp = Zr cos~ (Inp - 1/2)+... ,

and similarly

Il; = ..Lsin~ (-Inp - 1/2)+....
41Z'

3.3.3 Inner Region Solution for Flow Perpendicular to an Infinite Rod

(3,127)

(3,128)

•

We calculated outer region solutions, so far, both the actual outer solution (using

outer variables) and the outer solution with inner variables. Now, in order to compare the

outer solution with inner variables with the inner solution, we need to have the inner

region solution too. By equation (3,74), we may write
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,() 1 • 1 1 11( K =-f- =--1-=--8;r . - 8;r - 8;r!

()
1. 1

/JK =-j, =--1,=0
8;r 8;r

()
1. 1

EK =-1, =--1,=08;r 1 8;r

So that the equations (3,15), taking ;. = 1 for length scale = h, gives values of

inner rcgion solution as

ii,,= -L coslft (1-.0-' - 21n.o),

•
or

ii" =L coslft (In,o -1/2+ 1/2.0-'),

Ü. =L sin 1ft (- In,o -1/2 + 1/2 .0-').

3.3.4 Matching InRer and Outer Region Solutions

(3,129)

•

Comparing the inner region solution (3,129) with the outer region solution in inner

variables (3,127) and (3,128), we see that the latter has terms Lcoslft(1/2p-') in ü"

., and l:r sin 1ft (1/2.0-') in II. missing. Thus the universal solution valid everywhere is

obtained by adding these terms OntO the outer region solution (these terms are

proportional to 1)' = K'P -, and are thus of order K' , so negligible, in the outer region).

Since the complete outer region solution. using equation (3,124), in polar coordinates is
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•

f l.j ~ 1 :Ii•.•. ,,,,.: .,. 1l' \ "l' 1l' ,,]1 l
/1. = COS$ _.~, - _. _c 1 cosç" - \L'p ;' + ". - v.!p , \,. s- ,I~p ~. ~ ,1

~~ , ... - - \

. . l:. l " ',', JI " 1 1
/1 = -SIn"'~'~l~Sln"'c ..?" '/\ I-I~p ,\

, . '" 8:q- \>"\2 ))' 1

or in terms of inner variables

/l,. = cos,p +L{R~ - zeli=R"'~'[cost/J K..(~Rp ) + KI(~Rp )J}.1

". = -sin,p+L{zsin,pëR'·'~'K·aRp )}. f

the universal solution. valid everywhere. in polar coordinates is

"" =cost/J +L{R~ -zelr-RP'''.[cOS,pK·aRp )+K,GRp )]+P'=COs,p}.

". = -sin,p +L{zsin,p e'r-RP'....K.(~Rp ) + p': sin,p }.

or

In C3Itesian coordinates. this is

Il. = Il, cos,p -II.. sin,p- ,
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and

Il, =Il,. sin ifJ + ". cosifJ,

Tnus, the universal flow field in Cartesian coordinates is

•
(3,130)

In inner region the above equation (3,130) takes the fonn ofequation (3,129) or

ü. = ü" cosifJ - Ü. sin9S = ..L.1np + ..L.(_1/2 + 1/21r~)cos29S.
- 411" 411"

~ = ü" sin9S + Ü. cos9S = Zr sin29S (-1 +p-~) ,

or the universal flow field cao be also expressed as

•
Ü. = 4/ Inp + s/ (p-~ - 1) cos29S,

• 11" 11"

ü3 ={;- (p-~ - 1) sin29S.
(3,131)
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We can ",tite equation (~, 1~O) in "1111':11,\'1011,,//01'111, by muhip!ying il by unitl'fln• _ j..l
velocity tield in intinity, l' (dimensionai). and usmg p = ­

h

universal flow in Cartesian coordinatcs is

Thus. the dÙ"l'II,\'lOlIul

• where

1/. =UJI_.Le"R(f)"~'K.(~R(P'»)+.L(p') '(cos2rjJ)
. l 4;r - b S;r h

-/'.L[ 2 _ "'R(~!"~'K(.!.R(P'»)1l+ cos\" 4 p' e,") b J' (3,132)
;r R(-) -

b

1
f ' f [., 1

"
( 1 p' ) ljlp -" . . - IJ::R<-h-)c"-K R )

1/3 = U -(-) . sm2rjJ + smrjJ - ,e 1 -:;- (- l'
8;r b 41Z' R(f?.-) _ b

b ,

L_ 2

21Z' - lnK ' +21n2 +~ - r

r :: 0.57722,

+O(R),

•

bUR=K Re =-« 1.
v
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3.4 THE MOTION OF A T1NY PARTICLE IN THE FLOW

Assume that we release a very small solid pollutant panicle far from the cylinder,

whcre x; :; - '.c, (see ligure 3.14) in a fluid flow with the velocity fields expressed by

equations <3,132). In order 10 tind collision et1iciency ofthis panicle omo the cylinder, we

need to develop the goveming equations on motion of such a panicle. Let radius of

panicle be a and density ofpanicle be Pp' Thus the mass of panicle will be

• 2

•

Figure 3.14 Motion of particle toward the cylinder

According to the Newton's second law of motion and by using the result of

Stokes' problem

or

(~ a: Pp )P' =-f' + Il' Ir')9 p - - _\!...,

where P' is the second derivative of position veetor r' in respect to time and Il' CL) is

dimensional velocity field of f1uid relative to the cylinder. Therefore, the term

(- f' + /l' (r'») indicates the velocity ofthe f1uid relative to the particle.



• This is a \'ectorial equation and we can decompose it into ilS ~. and 3-components

We aise can ",rite the motion of panicle in Canesian coordinates, using \'c1ocity licld

obtained earlier. equations (3.13~). and

Ic:.!=p, p = ~x;' + ..-':.\ .l

•

"-' ' "- 'P cos", = x. . P Sin", = X, •. .

cos2~ = cos' ~ - sin' ~.
, ')"- ')' "- "-SIn_", = _Sin", cos""

Thus. taking x; and x; as the components of position vector r:.. we have lor the

2-direetion

(2 ,pp) -, " U[I f 11'RtK(1 R~x;' +x",) f b' ( " -x")-a - X,=-X,+ --e - + )' x; ,
9 Jl -. 4;r • 2 b S,T (x;' + x,," - .

+ f xi { 2b _ lr.Rt (.!. ~x;' + X',' )}]
4 1 -:; , l' , e KI ')Rb'

H ~ x'-:,- + x'i" R'V x'~- + :c'i' -

and for the 3-direction

(
2 'PD) _, " u[ f b' xi x;-a ~ x =-x + ,
9 Jl 3 3 4;r (x;' +x~')"

+..L x; { 2b
4;r ~x;' + x~' R~x;' + x~'

lr.R~ ( 1 ~x',, + x" )}]e b K -R - ,
1 2 b '

•
Using dimensional values b and U. we can non-dimensionalize the above two

equations. 50 that
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x:
x: =-;;'

and the dimen~ionless parameter 1 related to time

l' U
1=--=-/'

blU b •

tnus. the universal non-dimensionalized equations of motion of panicle toward the cylinder

is expresst:d as

where K. and K, are modified Bessel funClions and p is dimensionless particle parameter

and being defined as

(3.134)

and, as we have already had, Reynolds number and dimensionless force per unit length on

cylinder are, respectively

Finally, we obtained a pair of simultaneous non-linear, second-order ordinary

differential equations (3,133), governir.g the motion of a tiny pollutant particle moving•
bU

R=-«lv
'. -
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towarà an isolated cylinàcr \\;th the trajectory direction initially perpendicular to the

cylinder (a = 0). The collision efficiency of a panicle on the cylinder is to be calculated

by simultaneously solving the equations (3.133). numerically. It is described in chapter 4.

3.5 EFFECTS NOT INCLUDED IN THIS THEORY

(a) Effect of finite (non-zero) size of panicle. Nevenheless. to compensate. wc may add

the value of panicles radius to the collision efficiency E presented in chapter live.

(b) When a panicle gets close to the cylinder surface the hydrodynamic interaction of the

panicle with the cylinder surface will result in a change of trajectory [actually

including (a) and (b) would result in E =0].

(c) Intermolecular (van der Waals) forces and electrostatic forces between a panicle and

the cylinder or other colloidal forces. tbis is especially true for panicle parameter

pSO.OS.

(d) Possibility ofdifferent cases in impact ofpanicle and cylinder. The panicle may

1) bounce - no capture or

2) be captured at the surface.

(e) Effeet ofgravity on panicle.

(t) Brownian motion of the panicle (ditlùsion portion of motion). Ditlùsion may

dominate over convection with very smail panicles.

(g) Shape ofpanicle will modify many ofthe above effeets.
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C11apter4

NUMERICAL SOLUTION

The collision efficiency E is to be calculated in the present research. The main part

of the numerical calculations to obtain the collision efficiency is to find out the impact

point of a particle on the cylinder for each pair of Reynolds number R and particle

parameter p, if we release the particle far !Tom the cylinder in the outer region. In this

chapter we concentrate on the numerical method to solve the equations of motion of a

particle to find the impact point for any pair of R and p. By definition, E is me area

(x: xl) divideè by the area (b xl), where 1 is the unit length in the direction of cylinder

axis.

1l... ,t-1articieOfrndiusa @.J.X;:-i__
~1.~~ b---""";;';f I---x;"'~'"

Figure 4.1 Cross-section of problem

In other words, the collision efficiency E, for each unit length of the cylinder, is the

ratio of the largest amount of initial xi (shown a~ x: in figure 4.1) over b so that ifwe

release the particle at X:, it will cause an impact on the surface of the cylinder. Thus, for

any particular R and p

E=X:
b ' => E=X" (4,1)

•
where X. is the dimensionless initial xi (we recall that unprimed variables are

dimensionless).
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As was explained in chapter 3. equations (4.2) describe the motion of a panicle

with a trajectory direction perpendicular to the cylinder at infinity toward the cylinder

The equations (4.2) are a pair of simultaneous non-linear. second-order ordinal;"

differential equations.

d'x, dx, [ f "'R (1.J' .) f (x~ - x', )
P-,-=--+ l--e' x'K -R x~ +x' +

dr dt 4;r • 2 - 3 S;r (x~ +x',)'

f x. {2 '~R (1..J' , )}]+' - e ,- x, K - R ~ + -
4;r .Jx~ +x~ R.Jx~ +x~ '2 x. X 3 •

(4,2)

where, as described earlier, K. and K, are modified Bessel functions and p is a

dimensionless particle parameter, being defined as

_ 2a'ppU
p- 9J.lb ' (4,3)

aIso, Reynolds number and dimensionless force per unit length on cylinder are, respectively

bUR=-«lv and
L_ 2
211" - 1

InK' +2In2+'2-r

•

4.1 INITIAL VALUE PROBLEM

Since aIl variables are known at x, =-co, equations (4,2) are a kind of initial value

problem and need to be solved numerically for more than three thousand times to create

the desired results in the form of clifferent graphs. In order to solve them we change this

pair ofsimultaneous non-Iinear, second-order ordinary clifferentiai equations into four first-



•

•

•

arder differenlial equalians. Thus. we will have new variables as

DESCRIPTION OLD VARIABLE NEW VARIABLE

Dimenslonlcss lime t X

(independcnl variable)

Dimcnsionlcss distance X2 Y2

in 2-direclion

Dimcnsionlcss distance X3 Y3

in 3-direction

Dimcnsionlcss veleeil)' dx. Y,
-'

in 2-dircction dt

Dimensianlcss veleeil)' dx, Y'

in 3-dircction dt

Table 4.1 Changing variables

Therefore, equations (4,2) became

74

(4,4)
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Now. we have a set of four simuitaneous non-linear. tirst-order ordinarv

differentiai equations (4.4). As soon as we set up the initial values for this set of

differential equations. we will be able to solve them.

Sorne of the initial values ta be taken in the numeric'l1 solution are either given or

can be arbitrarily chosen from a valid range. However. there are sorne vailles. like initial

velocities in 2- and 3-dorections. which need more attention. ln each trial. the above

mentioned equations are solved by taking 0 < (initia! )';) < 1. and initia! y~ as a negative

large number (large enough ta be considered quite in outer region). The Reynolds number

based on radius b. R. and the panicle parameter pare also chosen sa that for every

panicular pair of Rand p. we should find the corresponding initia! )'; at which if we

release the panicle in the outer region. it will finally collide with the cylinder. In other

wards. by trial and error. we should find a panicular initia! y; (for cach pair of Rand p) at

which ifwe release the panicle, the impact is guaranteed.

The important point here is that the impact point is not necessarily the top point of

the cylinder where xi = b (see figure 4.1), but it can be everywhere in - h < x; :5 0 and

0< xi :5 b, otherwise it would be easier (no trial and error) ta caver the distance vice

versa (from right ta left in figure 4.1).

ln addition, since we can not stan the program right from x~ = -a:> (where initial

particle velocities are known), IWO initial velocities must be deterrnined. Il can be done by

different methods discussed in the nex! section.

4.1.1 CaIculation ofJnitial Particie Velocity

Even if the value ta be taken for the initial panicle velocity is not correct, it does

not matter since the effect of is velocity is only local, affecting the particle motion only

over distances of order mU, m being the mass of the particle, U the uniform flow
pa
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veJocity. a the radius of the particie. and .u the viscosity. However as we see in fil,'Ure

4.2. if the velocity ;s not correct. the 1I1Ilial value ofy, will not be correct either.

-Imtlill \'l.:'kK:lly

""'-------, ,
initial y.,

Figure 4.2 Initial velocity

To avoid this initial transient effect. one should take the initial particle velocity at

infinity to be the f1uid velocity at infinity. That is

For. the numerical solution. however, one must take X2 as finite. In this case one

has three options.

1. Take the particle initial velocity as the f1uid velocity at infinity.

(~ dy,~ = (1 0)
dt'du ,.

2. Take the particle velocity as the f1uid velocity at the particle's initial position.

3. Take the position and veiocity of the particle initially to be that calculated trom the

particle's motion trom infinity to the distance initial X2.

The other way to solve this initial transient effect problem is to use the results ofa

few steps after initial step in numerical solution where we get a smooth trajeetory for the

particle course. But we do not consider it as an option because we need to have control

over E (or initialY3)' In any case, of these three possibilities. the third one would be the

best. Thus, weSollow this option.

The equations (3,125) can be used to describe the velocity field in the ollter reg/on

with inner variables. We use inner variables only because P was non-dimensicnalized in
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the same manner as x, and x, (by h), Dimensionalizing. by multiplying the \'elocity

equations by (!

(II), = u[1+~ {4~~~ - 2e"R""._[K.. (~ Rp ) +cos~ K,G Rp )]}J.l
(II), = u[~ {4~;~ -2e'/OR,.".- sin~ K,GRp )}J J

3

(4.5)

Figure 4.3 DimensionaJ variables

Since initial X2 is a large negative number, I/J ::7r and cosi/J == -1 , making the

term e'r..RP'''';: O. Cons:aering mass times acceleration for the particle in the outer

regton

u-

•
,.

\ patliclc 1

b '

p' ~

?
x; 2

or

(~ a' Pp )i" = _;-' + Il' fr')9 f.I - - _\!...,
(4,6)

where P' is the second derivative of position vector r' with respect to time and Il (é) is

the dimensional velocity field of fluid in the outer region relative to the cylinder.

Therefore, the term (- f' + Il' (L)) indicates the velocity of fluid relative to the particle.

Applying Cartesian variables in the outer region velocity equations and inserting them in

equation (4,6),• , A. 'P cos", = x, , , • A. 'P SIO",=X, ,



•
we will have

p = ~' , p' = k:J. . l " "p ="x, -i-X,-.

78

[ ]

1
f bx:

p'i'=-x'+Ul+- -
" 2;r R(x',' +X;,) .

,.., ., U[ f bx; ]
p x, = -x, + -., (' ') •

_tr R X':- + X;-

where p' is a dimensional panicle parameter related to p by

(4,7)

•

•

Using dimensional values b and U. we can non-dimensionalize the above !wo

equations. so that

x',
x, =/;,

and the dimensionless parameter 1 related to time

l' U
1=-=-1'

bjU b

using the chain mie. we have
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On the other hand, we know that far enough in the outer region. where we need to

find the initial velocities, the second derivatives in (4,9) can he taken zero (a linear

expression for velocities). This is true for distances for which

•

•

and tinally considering

R.< «1.

one can write the dimensionless panicle's equations of motion in outer region as

(d'x.) d~. [ f (1)]--' ---' + 1+-'- -P dl' - dl 2;r R x, .

(d'X,) dx, [f (X,)]
P dl' = - dl + 2;rR x; .

Rx,»I.

thus, dimensionless initial velocities, quite far in outer region, can he written as

dx. f l· 1)--=1+-- -
dl 2;r R x: '

dxJ f (xJ )
dl =2;rR x; ,

where

(4.S)

(4,9)

(4,10)

(4,11 )

bU
R=-«1v and L_ 2

2;r - InK' +2In2+k- r

•
In 1994, using another analytical method, Professor R. G. Cox obtained the same

results for initial velocities but in different directions. Those results have been aPi'lied in

numerical calculations.
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4.2 :'oiUMERICAL METHOD

It is the nature of the boundary conditions and the behavior of the cquations that

determines which numerical methods will be feasible. Based on the needed accuracy.

efficicncy, and existing facilities one may choose a suitable method for the problem on

hand. There are many different practical methods to solve a set of ODEs numerically.

Neglecting conceptual methods like Euler's and Modified Euler's method and Taylor

Series method. sorne popular and practical methods are brietly discussed here.

1. RUflge-Kuua methods, named after two German mathematicians, Runge and

Kulta, are very popular because they virtually always succeed. lnstead of computing

higher derivatives for the truncated Taylor series, they basically propagate a solution over

an interval by combining the information from several Euler style steps and using the

information obtained to match a Taylor Series expansion up to sorne higher order.

A1though these methods improved the efficiency of Taylor Series and Euler's methods

considerably, they are usually good when moderate accuracy is required, Higher orders

(the most popular Runge-Kutta are fourth and fifth-order while Et.ler's method is a special

case of a second-order Runge-Kutta) and even adaptive stepsize control for Runge-Kutta

are available. However, these single-step methods are used when (1) we have a trivial

problem where computational efficiency is of no concern, or (2) we do not know any

better, or (3) we have a problem where better methods are failing.

2. Predictor-corrector methods are a particular subcategory of multistep and

multivalue methods. They store the solution along the way, and use the results to

e:<trapolate ,!:le solution one step advanced; they then correct the extrapolation using

derivative information at the new point. As a result, they need adequate memory space to

run. These methods are good when a high precision solution is needed for very smooth

functions with a very complicated right-hand side. The most popular predictor-correetor

methods are probably the Adams-Bashforth-Moulton schemes which have very good

stability properties.
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3. Richardso/l <!xlrapolaliol/ uses the powerful idea of extrapolating a computcd

result to the '..alue that 'l'Ould have been obtained if the stepsize had been vcry much

smaller than what it actually was. The tirst practical ODE imegrator that implclllcntcd this

idea \Vas developed by Bulirsch and Stoer. and so extrapolation methods arc often called

Rulirsch-Stoer methods.

For high-precision applications or where evaluations of the right-hand sides are not

expensive. Bulirsch-Stoer methods dominate. For convenience. or for low-precision.

adaptive-stepsize Runge-Kutta dominates. Predictor-corrector methods are in the middle.

They are suitable for the exceptional case of vel)' smooth equations and vel)' complicated

right-hand sides when high-precision is needed. The trajectol)' course of a partiele is vel)'

smooth as far as the particle is not close to the cylinder. But \Vhen the partiele gets elose

to the cylinder, which is the most important part of our calculations, one can not guaranty

that the equations remain as smooth as before. On the other hand, we need more accuracy

than \Vhat \Ve may get trom Runge-b:utta methods. This is because (1) the final results

depend on the accuracy of the method directly and (2) initial y~ is a vel)' large negative

number that means we have to calculate a vel)' long course with numerous steps up until

y~ = 0 (the end ofthe course). That may cause an accumulation oftruncation errors.

As a result, the use of the Bulirsch-Stoer method is preferred. ln the ne:<t section,

the basic theories behind this method are explained briefly.

4.2.1 Richardson Extrapolation and the Bulirsch-Stoer Method

The Bulirsch-Stoer method discussed i" !!ùs section is at least one of the best

known ways (ifnot the only one) to obtain high accuracy solutions to orainal)' differential

equations with minimal computational effort. Three ideas are put togcther in this metbod.

The first idea is a vel)' general idea called Richardson 's deferred approach to the

/imil: perforrn sorne numerical algorithm for various values of a parameter h. and then

extrapolate the result to the continuum limit h = O. In other words, the idea is to consider
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the linal answcr of the numerical calculation as itself being an anall'tic function of an

adjustable parameter like the substep-size Il. Performing the calculation with various

values of Il, the analytic function. then. can be evaluated. The point is that none of the

values of Il needs to be smalt enough to yield the accuracy that we desire. Gathering

information about the function through different numbers of substeps. we fit it to sorne

analytic form and then evaluate it at the optimal point Il = O. As shown in figure 4.4. a

large stepsize H is divided into different sequences of finer and finer substeps. Their

results are extrapolated tO an answer that is supposed to correspond to infinitely fine

su"~teps.

v

~\1nlpolation

to 00 ~'"U~,"-ps

6 subslcps

2 subslcps

Figure 4.4 Richardson extrapolation

The second issue is that what kind of filting funetion is used. Bulirsch and Stoer

first recognized the strength of rational fur.ctiol/ extrapolation in Richardson type

applications. But more recent experience suggests that ::-r smooth problems

straightforward polynomial extrapolation, using Neville's algorithm1 (not Lagrange's

c1assical formula) that gives error estimate as weil, is slightly more efficient than rational

function extrapolation. Neville's algo~-ithm generates a tableau form ofP's (the value at x

of the unique polynomials of various degrees) to derive the corrections that make the

t>.xtrapolation one order higher.

1 A complctc clI:planation of NC\illc's mCl!lod cao he found in many books in thc ficld of Applicd
Numcrical Analysis.
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ln tàct. ",eville's algorithm is a recursive way of tilling in the numbers in the

tableau a column at a time. Keeping track of the small ditli:rences hctween clements of

each column and the next column of the tableau. at each lewlm (for m = 1.2. ,.\"-1 and.\"

being the number of points) one can compute the corrections due to higher order

e:l:trapolations and repeat it unti! no funher considerable gain is obtained with regard to

roundoff errors. The final answer Pl X ,(or y), is the sum of any y, (an arbitrary clement of

the first column of the tableau) plus a set of corrections that tbrrn a path to the rightmost

element. We will accordingly use polynomial e:\1:rapolation as a tilting function in our

program. The corresponding routine is called pzextr (see Appendix A).

The third idea is to use a method which error function is strictly even, allowing the

polynomial e:\1:rapolation to be in terrns of the variable Il instead of just II. For this

purpose, the modified midpoilll melhod is used to advance a vector of dependent variables

y(x) trom a point x to a point x - H by a sequence of1/ substeps each ofsize II.

H
h --- .

1/

BasicalJy. the modified midpoint method is itself an ODE integrator. ln practice.

the method finds its most imponant application as a pan of the more powerful Bulirsch­

Stoer technique. The number of right-hand side e"aluations required by the modified

midpoint method is 1/ + 1. The relationships are

=0'" y(x)

=1 ==o+hf(x.=,J

=.._, ==..-1 +2hf(x+mh,=..) for m= 1,2..... /1- J,

and

y(x+H) "'y. "'M=. +=._1 +hf(x+H,=.)], (4.12)

•
where ='s are interrnediate approximations which march aIong in substeps of h, and y. is

the final approximation to y(x .,. H). The method is basically a "centered difference" or

"midpoint" method, e."Ccept at the first and last points which give the qualifier "modified".



• The maditied midpoint method is a second-order method but with the ad":lnta),:e of

requiring (asvmptoticaily for large /1) only one derivative e\aluation per substep Ir instead

of the two required by the second-arder Runge-Kulla method. for instance

The usefulness of the moditied midpoint method to the Bulirsch-Stoer technique

derives ITom a result about equmion (4.12). It tums out that the error of this equation.

expressed as a power series in Il. contains only <!\'<!/I powers of Il.

~

v - Y'(x + H) = " a Il''.. '1 .t.... 1 •

1=1

where H is taken as a constant but Il changes by varying 11 in Il c H 11. Obtaining an even

power series is important because one can combine substeps to eliminate higher-order

error terms. For e.xamp1e.. suppose 11 is even and let Y." denote the result of (4,\2) with

haifas many substeps (11~ 11 12). Then the estimate

• y(x +H) =:: 4y.:Y."
.>

(4,13)

•

is fourth-order accurate.. the same as fourth-order Runge-Kutta, but requires only about

1.5 derivative evaiuations per substep h instead of Runge-Kutta's four evaiuations.

Nevertheless, the result of one fulI step H is considerably improved by using the

Richardson extrapolation. Thus, a single Bulirsch-Stoer step takes us trom x (any

dimensioniess time point) to x + H, where H is supposed to be quite a large number. That

single step is a grand leap consisting of many (dozens to hundreds) substeps of the

modified midpoint method, which are then extrapolated to zero stepsize. This is very

useful when we have, for instance, for R =10.... initial~ = -500.000. Otherwise we need

much more time to get the results .:>f the computations. We recaIl that, for initial vaiues,

we should keep R x~ » \. or in new variables initial y~ » R- I
. A vaiue of -50 K' is

used for initialY2 when Ris trom \0-6 to 10-3 and -100 K' is used in the case oflarger R's

to make sure the starting point is far in the outer region.
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The sequence ai separate attempts ta cross the imerval H is made with increasing

values cf /1. the number of substeps Bulirsch and Stoer originally proposed the sequence

/1 = 2.4.6.8.12.16.24.32.48.64.96. .[/1: :JI.. ,].

Then the sequence was improved ta the more efficient one as

/1 =2,...6.8.10.12.14.16..... [/I} = 2J1. ... (4.14)

•

•

We do not know. in advance. for each step how far up this sequence we wiII go.

After each successive Il is tried. a polynomial e:'\.1rap0lation is attempted. That

extrapolation returns both e.'l.1rapolated values and error estimates. If the errors are not

satisfaetory. a higher /1 is chosen. When they are satisfaetory. th~ ne:'\.1 step is started with

a new /1 =2.

There must be sorne upper limit. beyond which we conclude that there is sorne

obstacle in our path in the interval H. so that we should reduce H rather than just

subdivide it more fineIy. The maximum number of1/'S to be tried is taken equal to 8; the

8th value ofthe sequence (4,14) is 16, so this is the maximum number of subdivision H that

is used. This is because. genera11y, there is very little further gain in efficiency whereas

roundoffcao become a problem.

Error control is enforced by monitoring internal consistency, and adapting the

stepsize to match a bound on the local truncation errer. Each new result from the

sequence ofa modified midpoint integration (a new y for a new Il) allows a tableau like the

Neville' s algorithm tableau to be extended by one additional set ofdiagonals. The size of

the new correction added at each stage (qy) is taken as the (conservative) error estimate.

This error estimate is used to adjust the stepsize. Moreover. by implementation of

different &'S (values of the required tolerance for each step) and comparing the final

results of prograrns we made sure that the accuracy control is met. It is discussed in the

next chapter.
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Clzapter .:;

IMPLDIENTATION, RESliLTS, .·\;\;D DISCtiSSIO:\

Applying a computer program. \Vrillcn bascd on Bulirsch-Stocr mcthod. to solvc

the set of four simultaneous non-linear. first-order ordinary differential equations (4,4),

obtained in chapter 4. presenting the results. and discussing them are the iss~cs under

consideration in this chapter. The purpose of the numerical calculation is to obtain the

collisioll efficiellcy of a panicle onto the cylinder for various Reynolds numbers R and

panicle parameters p.

We recall that the motion ofpanicle toward the cylinder is described by

+ f y;
4;r ~Y~ +y~

dy.
~ =y"

dy, -
dx -Y.,

•
(5,1)
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ln rhis ,(:t of ditTeremiaJ equarions. y, and y" are dimensionless initial \'elociries in

2- and 3-direc::ons. respecri\'eJy l'sing new \'"riables from table .! 1. we get these

\'e1ocities. from equations (-l. 11J. as

dv. j' 1 \ ,
--=--0._1_-- -. i

dx - . ~-R' ,.. ,
-~~ \r~:')

where

(5.2)

bU
R=-«lv

and under the conditions

and
L = 2_--:-_

2:r InR- 1 .. ., ln" .. .!. _'l
,- -' 2 .

•
R x: »1. or in new variables initiaiY: » K' .

and

o< initiai v. < 1.. ,

(5.3)

(5.4)

It is imponant to notice that. in the development of the equations of motion of the

panicle (3.133). the cylinder was considered as a line force so that the disturbance effects

due to the presence of the cylinder in the flow field were taken into account without

considering its physical appearance. This approach is necessary to solve the problem in an

easierway.

5.1 NUMERICAL SOLUTION CONCEPTS

In order to get a c1ear idea of what has been done in regard with the numerical

. solution. the procedure of numerical caIcuIations and the ideas behind them is discussed

here conceptually. The collision efficiency Ebased on equation (4.1),in new variables, is

• E= y., (5,5)



• cylinàer tsec tigure ~ 1)

ln the ca:;e lhat the height of the initial position of the partide trom the equatorial

plane 11I1IIIal.\',') is greater than r. the particle will miss the cylinder If it :s Jess than r.

the particle passes through the cylinder 1certainly ha:; an impact if the presence of the

~'linder is considered) and if imtial y,' is equal to sorne r. the particle just and only just

touches the surtàce of the cylinder. Thus. E = }; is the point we are interested in and ean

be found by trial and error ,

P:trticl~ of nsdlU." ..:

i ' •
. -

~

•

•

Figure S.i Particle's trajeetory and new variables

Consider the case of Reynolds number R = 10'3, particle parameter p = 103
, and

(far enough in the outer region) initialY3 = -50000. In order to find the collision efficiency

E for these given conditions, the first trial for Y: is assumed to be initialY3 = 0.65. In the

region wherey.:::; 1, for each step of the program. the radial distance of the particle from

origin is calculated and the minimum amount of these radial distances in ail steps of this

trial is kept in a memory (the stepsize of the program is controlled so that we have about

850 steps for the distance 0 :::; Y: :::; 1).

If the minimum radial distance is [ess than one, the initialY3 must be increased and

if it is greater than one the initial Y3 must be decreased. The calculation of the trajectory

course must be repeated with a new initial Y3 untiI the minimum radial distance is close

enough to one (in the implemented program ooly minimum radial distances~0.9996 that

are :::; 1.00039 are accepted). The result is Y: {collision efficiency E) for the above
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mcntlonf.:d g!\'e:; conditions and n:;Jrc$cnts only Oile ~oint on a cur-.-e yeu \vill see kner :n

this chapter

Changing the particlc parametcr p and tir.ding anothcr 1::. by triai and error. for

these ne\\' conditions. another point of a cur..e is found Theretore. each cur..e

corresponds ta only one Reynolds number Rand many different p's. We continue this

process \\'ith a new Reynolds number R and various p's ta get enou:;h results to dra\\' the

corresponding curve and the like for another R..

5.2 OPTIMIZING THE SOLUTION

The computer run time required to finish only one point on a curve (one R and one

Pi varies between about one minute for the best conditions (when p is a large number. like

100 or higher. or R is not too small. like 10"' or higher) and about ten hours for the worst

conditions (when p is [ess than 100 and R is [ess than 10"')1. If we consider an average of

!wo hours for each point to be calculated. having more than 150 points for seven curves to

be investigated. we need more than 300 hours of pure run time to calcuiate ail points. This

is e.xc1uding the time needed to check out and debug the prograrn and subroutines and

rerun the prograrn with a different error tolerance E: in order to compare the output to get

a reliable result which is usually much more time consuming.

ln other words, if we use a computer 10 hours a day (not normally available), we

need more than a momh ofjust calculating the final results. That is why optimizing is a

matter of"concem. We used different levels of optimization. On the first leveL a suitable

numerical method for the problem in hand must be chosen. Richardson e.xtrapolation with

Bulirsch-Stoer method is a quite powerful and efficient method for our purpose. The

second level. is to optimize the FORTRAN language commands throughout the prograrn

1 Thcsc results an: m:UnIy from a PC 486DX2I66. Sun System's results cm not be comparee! dircctly ta
thcscs results becausc Sun uses a standard multitasking (multiprogramming) emironment in which tasks
shan: the CPU by switching proccssing ben\=r the tasks \.~. rapidly. HOWC\"Cr. the 0\'Cra1l results on
Sun S)"Slem was not only somewhat fastcr. but aIso the aecuracy and the ability ta deal \\ith very small
numbcrs (underllow crrors) was considcrably bencr.
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and J.b(' lt1 \\rite: spcclJ.i \'>.Jr:1n~ands tl) stop the pn)~rJ.:11 \\ncn sl..'mc:thing l1ncxrc:~tc:d ..'r

wrong occurs The tbrd k\·d. is to minimizc the numbers l)f tr131 and c:rrors by ~hi,)()sin!; a

propc:r method J.nd ;], star! point t~1r ulltIal y:

\\'hcn \\.~ ha\'c absolutcl\ no idca about thc position ol )' . thc Biscction mcthod is

the best one to usc. Ho\\evcr. when wc know that. (or instancc. :-. must bc g.rcatcr or Icss

than )' of the !ast ca!culated point. the Goldensection mcthod is prefcrablc: Thcrctorc. a

good stm and a proper mcthod C:JIl save a grcat deal of time.

5.3 ERROR CONTROL

There are severa! sources of error in a numerical calculation in addition to the

truncaiion error. Here. we discuss differem sources of error very brietly.

1. Original DaIa Errors are due to initial conditions. When initial conditions are not

known exaetly. the solution will be effected to a greater or lesser degree. depending on

the sensitivity of the equations. To reduce this kind of error. we calculate the initial

velocities analytically in chapter 4. This is aetually the best we could do. However.

since there have been sorne assumptions and simplifications in this analytical probe, the

result is not perfecto

2. Round-OffErrors are related to the finite number of decimal places in computations.

No matter whether wc round or chop off, there is always error dealing with real

quanooes. Carrying more decimal places in the intermediate calculations than we

require in the final answer is the normal practice to minimize this. but in lengthy

calculation this is a source of error that is extremely difficult to analyze and control.

Furthermore, in a computer program. if we use double precision, we require a longer

execution time and also more storage to hold the more precise values. This type of

: In Goldenscction method the dividing proportions arc 0.618 and 0.382 (instcad of 1.0 and 0.5 in

Biscction mcthod).
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crror IS cspccl~jJ\" acutc when two nearly equal qua.~:llies are subtracteè. This was

actually thc case for vcry sr.1all Reynolds numbers with smail particle parameters.

{'nderflow and dn'rded hy =ero wer~ the most commen errors in such cases. To avoid

these errers. double precision on a Sun System was used. \10reo\'er. reducing the

volume of computations by comrolling the stepsize is one of the best ways t<' reduce

r'Jund-off errors. Since this was discussed at the end of chapter 4. we do not repeat it

here.

3. Troncation mors of the Method are due to the use of truncated series for

approximation in our work. In other \Vords. the truncation errer is because of the

approximate nature of the numerical method. The best control is the choice of method.

Richardson e.xtrapolation and Bulirsch-Stoer method. explained in chapter 4. were the

answer to this problem.

Despite all these discussions. one needs a sort of reliable and understandable way

to trust the outcome of numerical calculations. Since there is not experimental nor

analytical data to compare our results. the best way is to vary the local truncation error &

and check the solutions and accept only the solutions e.'<hibiting a relative difference less

than sorne desirable value. Although we can only show the values of collision efficiency

on our graphs up to !wo decimal points, we acœpt only the solutions with a relative

difference less !han 10-3 for the worst conditions. This corresponds to a local truncation

errer & = 10-5 and guarantees even a higher accuracy for other mos! cases.

5.4 NUMERICAL RESULTS

Presenting the results of nume."ical calculations is done in !WO forms-tables and

graphs. Each table which is the output of computer calculations. corresponds to only one

Reynolds number but severa! particle parameters. At the beginning of each table the

relevant conditions are introduced and then a summary of the important values of the

resuIts is printed out.



• R= :.0CO~JE-06

E?S~ :.00000E-05
:~:':::'..:ll ':.\:; = YS7.;~::-,:~ 0::; -5.0000CE-',:'-:'

THE ::\ES:J!.•TS...................................•..............••.••.

dY(:l/d:. = v', , = YS'!'.;"::''!' ( 1.) = O.99ï:ï:5. \ -.
! T::ial(J) ~t:'n.Hyp:.ns. ?rtclp. E=Yo Ln(P::clpl

--------------------------------------------------------
1 2 0.99989 30000000.0 0.99618 17.2167
~ 5 O.9999ï 22000000.0 0.98387 16.9065
3 11 0.99993 10000000.0 0.96205 16.1181
4 9 0.99999 2000000.0 0.89543 14.5087
5 9 0.99971 300000.0 0.76573 12.6115
6 9 0.99962 60000.0 0.64431 11.0021
7 5 1. 00026 20000.0 0.56236 9.90349
8 13 0.99999 15000.0 0.54062 9.61581
9 11 0.99965 10000.0 0.51001 9.21034

10 14 0.99995 6000.0 0.47173 8.69951
11 11 0.99966 3000.0 O.41Ql~ 8.00637
12 12 1. 00038 1500.0 0.36620 7.31322
13 7 0.99966 1000.0 0.33441 6.90776
14 11 0.99966 800.0 0.31696 6.68461• 15 11 0.99990 500.0 0.27987 6.21461
16 12 1.00006 350.0 0.25136 5.85793
17 14 0.99978 220.0 0.21346 5.39363
18 13 0.99967 120.0 0.16355 4.78749
19 12 0.99988 80.0 0.12984 4.38203
20 12 0.99il85 50.0 0.09082 3.91202
21 11 0.99963 30.0 0.04998 3.40120
22 8 0.99982 20.0 0.01763 2.99573
23 14 1. 00012 15.0 0.00001 2.70805
24 2 1. 00104 10.0 0.00000 2.30259

Table 5.1 Results for Reynolds Domber R = 10-4

•

The first column ofeach table (I) is a counter. indicating th·; number of rows that

is the number of points on the related graph. The second column (Trial (JI) is the

number of trials to find y. for the corresponding particle parameter (Prtclp). in column

four. The third column (Min.Hyptns) shows the minimum hypotenuse (radial distance

&om origin) of the last trial of the row. J1ùs number must be cl<.'Se enough to one (the

dimensionless size ofthe cylinder radius) in order to accept the col1ision efficiency (E_Yo)3.

J Or X. in old variables
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In column ri\1: :hl: last column 1~c. 7 =: 0.= ) is the naturallogarithm of column four

The numcer of computed steps in some trials like ror R ~ 10"' and p ~ 10. is about

one million whik ror cases iike R ~ i O" and p ~ 20.000 it is about 350 steps (it does no!

;"dude the substeps in the Richardson extrapolation). This is because of the role of p in

our differemiai equations and aiso the smaller R the larger the absoiute vaiue of inil/al y,.

:-~:3 :s ':'EE FES:::':- CF THE ?ROG?..;'''''! :-!..;!~"7:

FOR 7HE FOLLOWING CCND:::ONS:

R~ :.OOOOOOE-OZ
EPS~ :.OOOOOOE-OS

Initial Y(2) ~ YSTA.~T(2) ~ -10000.000000

THE RESUL7S

........" ,

..•.............•......•.•.............•....•.... _---- ..

dY(2)/dt = Y(l) = YSTARTlll = n.9966183

E:=Yo

1 18 0.99716 50000.0 0.99999 10.81978

• 2 11 0.99970 20000.0 0.98877 9.90349
3 13 1. 00025 15000.0 0.98567 9.61581
4 11 0.99967 10000.0 0.97991 9.21034
5 12 1. 00016 6000.0 0.97251 8.69951
6 11 1.00007 3000.0 0.95552 8.00637
7 9 1. 00039 1500.0 0.92611 7.31322
8 12 1.00036 1000.0 0.90054 6.90776
9 9 1.00039 800.Q 0.88355 6.68461

10 12 1. 00012 500.0 0.83980 6.21461
11 la 0.99973 350.0 0.79887 5.85793
12 la 0.9999,,- 220.0 0.73575 5.39363
13 12 1. 00001 120.0 0.63581 4.78749
14 la 1.00034 80.0 0.55925 4.38203
15 la 0.99970 50.0 0.46213 3.91202
16 la 0.99969 30.0 0.35067 3.40120
17 la 0.99984 22.0 0.28179 3.09104
18 11 1.00015 14.0 0.18303 2.63906
19 11 0.99978 9.0 O. 09285 2.19722
20 8 0.99965 7.0 0.04678 1. 94591
21 14 0.99964 5.0 0.01331 1.60944
22 16 1. 00027 3.0 0.00463 1. 09861
;;:3 15 0.99992 2.7 0.00409 1. 00001
24 16 1.00004 1.5 0.00243 0.40547
25 16 0.99998 1.0 0.00196 0.00000
26 17 0.99965 0.5 0.00157 -0.69315

Table 5.2 Results for Reynolds numberR= 10~

•



• Her~. \\ 1.: l.)nl~· $ho\\ the: ::.1Î:,lt:s tl'lf l;tfCC Rc~·nl)lds numh:rs {Fi. Il)"", 1tr:..ltld }\'

Il. the 1..1tnc!"s 3rc presentcd in .-\;:,pcndix :\

Although R :::0 lOis :1\."t a \"alid ~asc. bascd IJn our assumptions i\ . '- l, to

investigate the behavior oi the solution. we present the rdated results here and discuss Il

later

:OHIS :3 7~:: ~::3:::::- CE" 7H- ?RCGR.;"1 ~!.=\:~7: C~E "R",
FOR :~:: :CL:0~!~G 2C~~I7:C~S:

R= :.00000
~PS= :.00000E-05

:~~~~al ,1:1 = ,S~~~T(:) = -5000.00

Tt.:;" RESULTS........ __ ..........••........•.••.••............••.....

dY(2)/d~ = Y(l) = YSTART(ll = 0.999694

Tr~a1(J) Mi~.H;~tns. Prtc1p. E=Yo LnlPrtc1pl

1 15 0.99979 20000.0 0.99927 9.90349• 2 14 0.99981 15000.0 0.99881 9.61581
3 13 0.99977 10000.0 0.99808 9.21034
4 14 0.99990 6000.0 0.99735 8.69951
5 13 0.99985 3000.0 0.99571 8.00637
6 12 1. 00006 1500.0 0.99306 7.31322
7 12 0.99975 1000.0 0.98996 6.90776
8 13 0.99987 800.0 0.98804 6.68461
9 12 1. 00020 500.0 0.98256 6.21461

10 13 0.99985 350.0 0.97607 5.85793
11 14 0.99968 220.0 0.96484 5.39363
12 13 0.99978 120.0 0.94310 4.78749
13 13 1. 00007 80.0 0.92228 4.38203
14 7 0.99961 50.0 0.88857 3.91202
15 11 1. 00022 30.0 0.83906 3.40120
16 9 0.99961 22.0 0.79960 3.09104
17 6 0.99967 14.0 0.72954 2.63906
18 10 0.99979 9.0 0.64484 2.19722
19 8 0.99980 5.0 0.50973 1. 60944
20 13 1. 00018 2.7 0.35835 1. 00001
21 11 1. 00014 1.5 0.23419 0.40547
22 14 0.99989 1.0 0.17947 0.00000
23 12 1. 00022 0.5 0.13204 -0.69315
24 9 1. 00002 0.2 0.10838 -1. 60944
25 13 1. 00010 0.1 0.10126 -2.30259
26 11 1. 00015 0.05 0.09779 -2.99573

Table 5.3 Results for Reynolds number R =1.0•



• Lsing :he ":ata from thl: tJ.olt;s in sc.:mi-log;l;.thmic graphs. :h~ results can be

~reser1led as the :c'i!owing ligures On!v co!umns :cur and li,'c are ~'éd 10 draw thé

graphs
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•
Figure 5.2 Collision efficiency for Reynolds number R =1.0

As shown in figure 5.2, we use a logarithmic scale for :lle values of particle

parameter p (for its large changes) and a linear l'cale for the collision efficiency E = y..

If the data related to the Reynolds number R = 0.1 is used. the outcome is the

fotlowing graph.

E (Collision Emà~')

,,----------:::::==-------,

Figure 5.3 Collision efficiency for Reynolds number R = 0.1
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Figure 5.4 Collision fficiency for Reynolds number R = 0.01

•
Similarly. for the Reynolds number R = 10';. we have

E (Collision Effiàmcy)
1
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o.~l...--

'"

lE..IE·~ lE·) lEoool
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Figure 5.5 Collision efficiency for Reynolds number R = 10'"
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:tnd for the Revnoids number R = 10""'.
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Figure 5.6 Collision efliciency for Reynolds number R = 10-'

• The results in the table for the Reynolds number R = lO-s are presented in the

following graph.

E (CoDision Emàmcy)
'r--~------....,..--_::::;:=~-___,

0$

0:
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IE-} lE·: tE·) lE+4 lE.S lE'*6 JE-7

P (portido ponmotor)

•
Figure 5.7 Collision efliciency for Reynolds number R = 1005



• The graph below presents the resu\ts rclated to Reynolds number R ~ 10"".
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Figure 5.S Collision efficiency for Reynolds number R =10"

• 5.4.1 Whv to Non-Dimensionalize

During our work, we kept trying te deal with dimensionless variables. Now that

we got the resu\ts, the advantage of non-dimensionalizing is more c1ear. In the original

problem, in dimensional form, the involved quantities are particle radius, particle density,

cylinder radius, fIuid viscosity, fluid density, and fluid velocity. Thus, the answer was

going to depend upon six quantities. Ifwe want to solvè the problem in dimensional form,

we will have six variables to change. Ifwe just choose for each variable 10 vaiues, we get

106 problems to solve. Whi1e in dimensionless form, we only get two variables, the

Reynolds number and the particle parameter, and about ISO cases to solve (6 R's timcs 25

p's).

•
Moreover, on each graph, instead ofhaving six, we get only two variables R and p

and all the information is put on a single graph. Therefore, for all possible combinations of

the vaiues of dimensional variables in R and p, one can easily calculate the vaiues of these

two dimensionless quantities, select the appropriate curve and p, and just read off the

collision efficiency E.
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5.5 DISCl"SSIO:" ABOUT THE RESULTS

As we recall. the restrictions and effects not included ln our theory and its

implementation are as follows.

(a) The particle parameter p is a positive quantity (zero to infinity).

(b) Reynolds number R. based on radius of the cylinder b. is very small (R « 1). It is

questionable whether the theory can apply to R = 10.2.

(c) Effect of finite (non-zero) size of the particle. However. we can compensate it by

adding the value of particles radius to the collision efficiency E presented in chapter

five, after reading E from a table or a graph. This is true, considering in our problem

E = J-:. for relatively small particles.

(d) When a particle gets close tO the cylinder surface the hydrodynamic interaction of the

particle with the cylinder surface will result in a change of trajeetory [aetually

including (c) wouid result in E= 0).

(e) Intermolecular (van der Waals) forces and electrostatic forces (or other colloidal

forces) between the particle and the cylinder. This is especially true for the particle

parameter pSO.OS which is not included in this research.

(f) Possibility of different cases in impact of the particle and the cylinder. The particle

may

1) bounce - no capture or

2) be captured at the surface.

(g) Effeet ofgravity on the particle.

(h) Brownian motion of the particle (diffusion portion of motion). Diftùsion may

dominate over convection with very small particles.

(i) Shape ofthe particle will modify many ofthe above effects.

(j) The particle parameter p can be written as
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where p is tluiâ density. Since ,,- i?: = R« 1. p-e" 1 (except when ,,~' h) Thus.

deposition of the particle due to inertia imoact is nedi~ible.. - -

Considering the above restrictions. the results are discussed in this section. Puning

the graphs together. we have a bener view 10 see the changes. The first three graphs for

Reynolds numbers R = 1. 0.1. and 0.01 are presented as the following graph.

E (Collision Emden",')

II------------:::::=::a::~=::=::=--~

•

0.8

R·l.O
0.6 : -.- ,

i R.. tE·l 1

o.• 1 R~21
0.2

IE-l lE·O tE... t lE...2 tE"')

P (partiele parameter)
IE+ol

•

Figure 5.9 Collision elliciency for Reynolds numbers R =1,0.1, and 0.01

At collision efficiency E = 0, there is no impact at ail (when the largest value of

initial Y2 wlùch can cause an impact is zero, no impact can be expeeted any more). The

other extreme is E = 1 at wlùch particle goes in straight line even in inner region and quite

close to cylinder. The extreme E = 1 is not of particular interest, however, fore every

Reynolds number R, the points at wlùch E;: 0 are important. Such points shows the

minimum values of particle parameter that can be expected to cause an impact. The other

noticeable point is that as p~ 0, the equations of particle trajeetory become streamline

equations, resulting in no impact (E = 0) again.

Since the Reynolds number R = \.0 is not in the range of our assumptions (R «

1), its curve can not be va1id and behaves differently in figure 5.9. The next Reynolds
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numbcr 1< = 1) 1 is still questionabic. Whilc in large p' s its cun:c shows an acceptable

situation. in small values of p is not quite reliable. The other CUI"\'es have reasonable

charactcristics

E (Colli~ion Emcienc~')

lr-----------:;;:::::::~~=:::::::==::::=-~

o.• ----
R-IE·)--0.6 R-IE'"

1
-
R·'E·~ ,

0.4 1 --
1 R-tE-61
1 -'-

0.2

•

•

oL-_....~:..-.....;. -'- -'-__.....;._---I

IE'O tE-1 IE-2 IE-3 lE-4 IE-S IE-6 IE-7 IE-S

P (particle parameler)

Figure 5.10 Collision efficiency for Reynolds numbers R = 10" to 10'"

From the beginning, it was a question that as R ~ 0, what may happen to the

curves? Whether they moye to the right and go to infinity or whether they moye toward a

certain curve. It was known that for smaller Reynolds numbers R's. the collision efficiency

E goes down (considering one p, for instance., p = 1000, one may see it on figure 5.10

too), but how the curves behaye was a matter of interest. Figure 5.10 shows. explicitly,

the tendency ofthe curves as R becomes smaller. Now, it can be concluded that as R ~ 0

the corresponding curves aet more like a straight line. The charaeteristics of that line is

not so important to us because, based on our theory, when the Reynolds number R ~ 0

(i.e. 10" or less) it needs a cylinder longer than 1010 times (or 109 rimes) ofits radius (no

physical meaning).

In the Reynolds number R = 0, there is no physical tlow around the circular

cylinder. This is aetually the Stokes' paradolC and there is no solution for!Wo dimensional

flow around the cylinder in R = O. Thus, R = 0 is meaningless.
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As it is already mentioned. the points at whicn E,= 0 are important. This is bccause

these points shows the minimum values of panicle pararneler (pm) that can he e.'(pected 10

cause an impact. In other words, they are L'te boundaries of impact onlo the cylinder

(collector). If for a certain Reynolds number lhe corresponding p varies ten times. it

me:ms that we may change, for example, the mass of particle ten limes greater or smaller

to assure an impact. The values for pm. can be extracted from the results tables. Because

we have calculated no E =0, we only accepted the values of p corresponding 10 E= 0 (al

least E < 0.005). Since the data is already a numerical approximation, more accuracy is

meaningless.

R pm

l.E-6 15

l.E-5 13

l.E-4 6

l.E-3 5

l.E-2 1

TableS.4 Values ofp forwbichE<O.OO5

In the Reynolds number R = 0.1, we have p.,« 0.05 (see figure 5.9) which is not

in range of our theory, besides, our calculation is not quite valid for 50ch a case. When

particle pararneter and Reynolds number are very small (p<5 and R <10") the solution may

face a stiffuess problem. If one likes to concentrate on 50ch a region, a semi-implicit

extrapolation method like Bader and Deuflhard Method4 can be used.

• Numcrical Rccipcs in FORTRAN (1992),Cambridgc UDiv. press.
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Cllapter 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

Throughout this thesis. we obtained various analytical and numerical rest:lts that

are retlected in the previous chapters. In this chapter. we put ail those results together and

then bring up sorne useful ideas that cao be worked on in future studies.

The first step in any study related to the design of a filter involves obtaining a

detailed knowledge of the fiuid dynaItÙCS of the fiow around (single) filter fibers. As the

analytical basis for development offiow field around the cylinder. long slender body theory

was used and the hydrodynaItÙc force per unit length of an isolated slender body,

considering inertia effects and correct to the order of ,,-\ , as an integral equation was

obtained analytically in chapter three. The result was equation (3,91) as

•

!(S).[{21n(~) -1}! +2!(S)!(S)] = -81r~.[! -~t(S)t(S)]

+{r-+t }(!-~t(S)t(s)).iR-R).f(s)dS

and the value ofthe tensor gC!:) is-
2{1- e·\r-R·(r-!·~)} {(r. )(r) (8. rr)}r - .J.._ e ...L_ e - r-e r ...!L_~

g.C!:)- Re(r-~.r:i r' r J ( _.[) r r l

e·I/'.R«r-!·~) {2(r-~.dô,1 (" )(r )}+ --e J..- e
(r-~.d r r 1 ri'

(6,1)

(6,2)
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Ifwe take the limit of equation (6.:) as I?: -, O. we \\ill have the followinl:' expression for

creepinl:' l10w conditions

therefore. as it should be. we have R. E. Johnson's (1980) result.

The ne.'<t result. in analytical development. was the forces on the cylinder. by

modifying what we obtained for a long slender body. The result. for a general fiow

direction and correct to the order ofR (R « 1). e.xl'ressed as equation (3.112).

•
L= (!.e)r + 2k-r. e t) .
2;r InK' +2In2- r - 4In(I-(r. gt) InR-' +21n2 + ~ - r - 4In(I-(r. g):)

(6,3)

Writing this equation for fiow perpendicular to the cylinder a.xis.. we got equation

(3,113) as

L_ 2

2;r - InK' +2In2+~-r
+O(R), (6,4)

•

which agrees with the result obtained from a power series by Khayat & Cox (1989) .

The fiow field universal solution, valid everywhere, around the cylinder was

obtained by rnatching !Wo different solutions for the outer and inner regions. The results

was expressed as equation (3,130), in dimensionless fonn
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4;., Rp '2, 1

u,=Lp :si~29.Sinç)_LJ 2_-e:~.~·'m'Kl(lRP)\J11
. k ~LRp 2 J

(6.5)

Our ne'<t results was equaüons (3.133) governing the motion ofparticle as a pair of

simu!taneous non-linear. second-order ordinary differential equations.

•
(6,6)

where K. and K, are modified Bessel functions and p is a dimensionless particle

parameter defined as

(6,7)

and. as we have already had. the Reynolds number and the dimensionless force per unit

length on cylinder are, respectively

We also got dimensionless initial velocities in the 2- and 3-directions, equations

(4,11), as•
bUR=-«lv

and
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lb.S)

Solving the panicle equations of motion. numerically. we ca1culated the collision

efficiency of the panicle onto the cylinder. The results were plotted into different graphs

for Reynolds numbers R (trom 10" to 1) and various panicle parameters p.

n,

E (CoUi~ion Ernc:i~n~')

1I---------=:;:::::=~~=-___,.....-;
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L ,/
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f •
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..._ ...,.1
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lE.: IE·I IE~ lE·) lE·: lE·] Ili+4 IE"'S

P (p.rricl~ p.ram~ter)
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Figure 6.1 Collision efficiency for Reynolds numbers R =1, 0.1. and 0.01

We recall that, based on our assumptions, the Reynolds number R =1.0 is not in

the range of cur assumptions (R « 1). its curve can not be valid and shows a different

beha"ior in figure 6.1. The next Reynolds number R = 0.1 is questionable. While in large

p's its curve shows an acceptable situation. in small values ofp is not quite reliable. The

other curves have reasonable characteristics.

•
It was also shown that the inertial impact is not important when Re= 0(1) and also

R «1. Taking van der Waals forces into account is the MOst reeommendable work to do.

Fmally. considering ail results, we could answer the question about the behavior of

curves as R ~ O.
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Figure 6.2 Collision efficiency for Reynolds numbersR = 10"> ta 10"

The question was that, as R .... 0, do the corresponding curves move to right to a

certain curve or go to infinity or become a straight-line? It was concluded that they finally

act more Iike a straight line for R .... O. The characteristics of that line are not so

important to us because. based on our theory, when the Reynolds number R .... 0 (Le. 10-8

or Jess) it needs a cylinder longer than 1010 times (or 109 times) ofits radius (no physical

meaning).

The other question was that what the maximum value ofp (p.,) is for E;:O. This

value tells us, for each R, the minimum amount of p we should keep in order to have an

impact with the lowest efficiency. The values for POl was extracted from the results tables.

Because we have calculated no E = 0, we only accept the values of p corresponding to

E;: 0 (E < 0.005). Since the data points are already numerical approximations, these

results are ine.uct, yet, provide us with a good estimate ofthe lowest efficiency.
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Table 6.1 Values ofp for which E < 0.005

6.2 SUGGESTIONS FOR FUTURE STUDIES

As any other research study. this work was limited by the available time and

facilities. For future work the fol1owing ideas. related directly to the problem on hand. cao

be suggested.

1) The study of collision efficiency of a particle onto a cylinder when the uniform flow in

infinity is in a generai direction (not restricted to the direction perpendicular to the

cylinder axis). Equation (6.3) states the drag force per unit length of the cylinder

exened by the fluid for snch a generai condition. We can develop the flow field around

the cylinder and. applying Newton's second law of motion. find the particle trajectory

course for this case. A numerical calculation will be needed to obtain the collision

efficiency.

2) The next step can be the study of a cylinder with finite length. Because of the ends

effects.. development of force per unit length is much more difficult in such a case. A

bent infinite cylinder is another alternative.

3) Instead of working on a single cylinder. study can be done on a row of cylinders and

severa! particles. This case can be studied both for an infinitely long cylinder and a

cylinder with a finite length.

4) High Reynolds number flow is another perspective for almost the same kind of

approach as that ofthis research.

5) Effects ofvan der Waals attractions can be added to the velocity terms in a region close

enough to the cylinder. This is useful especially when we have E=. 0 as p ~ 0 and can

be readily incorporated with the present theory.
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Appelldix A

SOURCE PROGR-\M AND OUTPUTS

A.t SOURCE PROGRAM

ln our numerical calculations. we used the following routines which are ail in

FORTRAN. ln addition to the source programs. their input variables and output tables are

explained in this appendix.

This program (PROGRAM MtU:N7) solves up to a maximum of 19 trials to find the

collision efficiency E (or y.) for only one Reynolds number R and maximum 20 p's (to plot

a complete curve or a part of it). Each trial means covering a distance from initial yz to

the point where yz = O. We can mathematically prove that the maximum of 19 trials is for

the worst conditions and we will not need more than that.

?ROGRAM ~.AIN'7

P~ETER(R·l.OE-5,YSTRT~·-5.E6.P!·3.1~lS926S3se9793DO#~PS.

·1.JE-5,NVAR.~,N~X·5}

COMMON IFATH/KMAX.NSTF.HYPTNM
OOMMON IPATHe/HDONE,CYY:,YP(~Xl,XP

OOMMON ILBLI/PRTCLP,RC2,rD~PI

OI~ENSION YSTARTINVAR1,P(21
OA'rA P/IO., 6./

~AX·O

:-:1-0.0
R~=·R':.
::~PI-l./I-LOGIRl+1.30907e6~6::1

~srARTt:I-YSTRT:

Y~ART(ll·l.+(FO~PI/RO:/YstART(:)1

~:N.l.E-S

~~ITE(SO,·)· THIS 15 THE RESULT OF THE PROGRAM MAIN7: ONE WR",'
~~:TE(50,·)' FOR THE FO~~NG CONDITIONS:'
Ô\"R:rt (50,·) .
:~:TE(50,·) 'R-',R•
l"l?::N (50, FILE-' , ,5'I'A'I'U'S-' NEW' l
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':~~-'.::'~-'

... :-. ... :.,
?\."';:-....:A7

',-::-'::=:
;.;:;.:::: ;

:";:7Ë.: ~~'.'O' • 4." ',,:,:

;-:R!7E::~l'.·

·...R.:7S:~'~' • .;:

•
:::5 ~OR."'.AÎ'::-:.-::;:·-'1~

::'0$::(::;),

S"O.0:e
DO : .. :.. _

r'RTC:'P-? :
UE'-e:
O...."N·O. ('
YS·D...."N·~.;::·(U?-D ...."NJ
DO J-l. :.e

'iSTAR7 (~) -YS
YSTM.R7(~:·rO~PI·YSTM.RT(~~'tRO:·YSTART(:J-·::
Hl-l.';

CAL!.. Oi:E::~~':' (YS7ART. UVAl'. :'::. EPS. Hl. HMIN. NOK. ~:=.;o. l\HN!N)
O?E:N(5~.::!..E:.t ·,~7A7~S.·OLD·.ACCESS"·;?PE:NO'J

"'RI':'E:: 5~.'; 0 l ! • .J. HYP7N:-:. ::::"::LP. YSTART (3) • LOG: 2RTCLPl • !';HMIN
CLOSE: ISC)

•
5
40

IF(HYF!~~.GE:.O.~996.N~D.HYPTNM.LE:.l.0003917HEN
E-YSTAAT(3)
GOTO 5

ELSE !FCHYP'I'NM.G'1".l.Ol '!HEN
Up.YS

ELSE
C"l'lN-Y$

ENDI:
YS·O...."N·v.3S:·(UP-OWNI

ENDCO
WRITECSO,.;O) I,J,HYPTNM,PR7::?,YSTART(3),LOGCPRTCLPI,KHMIN
FORMAT (' '. ::, 3X, I3, SX, F8. 5. 5:-., no .1, :.!X, F8. s, ::<., ra ~ S,IX, 18)

ENDCO
PRINT",' 1

PRINT",'To:al comp. 3tepS !or ~~~ la3t trlal of th~ la3t PRTCLP .'
• ,NS1'P

END

SUBROUTINE OOEINT(YSTART,NVA~,Xl,EPS,Hl,HMIN,NOK,NBAO,KHMINI

PARAMETER tMAX$TP-SE8,NMAX-S, ':':~:"t-l ~ E-30)
REAL H,HOIO,HN~,X

CQo!MON IPATH/~,NSTP,HYPTNM: .,'
COMMON IPATHe/HDONE,OYY:.!,YP(~~~),XP

DIMENSION YSTAAT(NVAA), YSCAL(:;:.'.A.~), y (NMAX), OYOXINMA.~)

•

X-Xl
H-Hl
NOK-O
NBAD-O
OY:Z.O~O

H'tP'I'NM-99.9:­
KHMIN-O
K-O
KOUNT-O
00 I-l,NVAR

Y (1) -YS':'AAT:: l
ENOOO

00 NSTP-l,:--';":·:srP
CAI.L OERZ......S: '! , ~'tOX)
00 !-l,~rJA.q,
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c

(:

C

l

: r (';' l ~] ... DY: • :=: . .:. •.): 7HE~:
::' lI':!>''';':':'::~' : 17HEN

;.;p ..;.:
HOONE":-:::D
::lYY:":";"':

DO : .. : ~ :;",'AR
YP(: -Y(1)

ENOOO
ENDrE'

RETURN
ENC!F

:f(ABS(HNEX7'.:7.HMINI Y.HMIN·KHM:~ ... l
HNE:-:T-MA.'< (h~:':~ HNEXT l
H-HNEXT

E:N000
PAVSE '':''00 man! =~~p~ ln ode1n:.'
RE'l'URN
ENO

SUBROUTINE BSS7E:IY,OYOX,NV,X,HtRY.E?S,YSCAL,HOrO,OY:,HNEXTI
PARAMETER lNMA.~·;.~~X·8.!~X.~~~~.1.SAFE1 •. :5.SAFE:•• 7.

RE~X·l.~·:.REDMIN·.7.TINY·l.E-30.SCALMX·.11

!NTEGER NV.NMA.X.~~~~X.:MAX

INTEGER 1. lQ, K. ~::.:. KM. KAMA.X. KOP'I', ~:SE:Q (IMA.X 1
REAL EPS. HOID. H~:::''''''T.HTRY. X. OYO:< (~rll • Y(NVI , YSCALI NVI, SAFEl,

SAFE:.RE~~\.REOMIN.TINY,S~~:

REAL EPsl,EPSO~:.ERRMAX.fACT,H,REO.SCALE.WORK,WRKMIN,XEST,

XNEW,A,C I:-'AXI,ALFlKAMAXX,KAr-"Ax"Xl ,ERRlKAMAX.XI. YERR INMAXI.
YSAVIN~~:.';EQI~~)

"OGI~ 'IRST.RE:UCT
DIMENSION OYOXI~:-."l. y (NVI. YSCAL(N\'l
SAVE .:\.ALF, EPSO:':, FIRST, KAMA.'<, KO~, ~;SEQ,:<NEW

DATA F:RST/.~RCE.I,EPSOLO/-l.1

DATA USEQ 1::,.;,':,:3,lO,1:,14,16,lel

IFIEPS.NE.EPSOL::~HEN

HNE.'(T--l. E:~
XNEW·-l.E::~

EPS1-SAF'El·::::S
AIII-NSEQ(l:-l
00 "-l, ~"o:

AIK+l)·AI~)·NSEQ(K+lJ

ENOoo
00 Io-Z, IQ.."'.;:,::-:

00 1'\-1, :;':-1
ALF(K,:~I·EPS1··(AIK·II-AI:Q+l})1

1;.;(1Q-to11-A(1]·1. )"'(:-1<+111)
E:N000

ENOoo
E~SO"o-E~S

00 KOPT-:, :-:':"''fAXX-l
IFlAIK0E'7-11.G1".AIKOI"l'I-Al.'n:OI"l'-l.KOI"l'IIGOTO l

0<000
KA.'IA.~-KOP'!'

::SOI,
H-HTR\'
00 r-l, NV

YSAVIII-YI::
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:::::: ?'

:?'::-:~;::;';.::Q.:.~ ?:"_'S:: 'S7::: ~::::: ','~;:,:::;;,::",;.; .,' ~~~.37::r·

:-.;:':" :-~:-~:;), ';'.~.:", . :'.::::.:. :;';. :.:. :i. ::2::,;; , !':' •.•~::: ...,.
:':E:2:'~ \ H' :;.8::':,"' •• '
:,;:..:.. ~:EX7R : ~:. :-:::2':' 6 ':: .s::~. ';' •';':::-'~ ~ :;':

ERR...'tA:·: .. :-:..;:·: (ERR.V.A.,'\,.;as (:'E.RR,: l' YSeA:" (: l \ :
E:NOOO

!\'M-K-l
SRR (!'0-n .. : ::~RXA.'I SAre:: J ...... (1../ (:"'~:·l) )

ENorF
: n l\.NE.:' •.;:;: •. ~: .GE.:-:O?ï-l .OR. rIRS':') 1THE:N

!F(ERR.'~~.:"7.1. lGOiO ~

! F (K. EQ. r:.:""!A.':. OR. K. EQ. KOPT·l ):'HEN
REe-SA~:/ERR(~~)

GOTO ,
ELSE: If'O·:.SQ.KOM'I'!"HEN

!F{A1.F:~:OM'-l.KOP'I'I.:,:r.ERR(~llTHEN

RE:-l./ERR(~)

G070 3
ENOlf'

ELSE ! F (~:O?'!'. EQ. KA."!A.X 17HEN
IF(ALF:KM.~~\-ll.LT.ERR(KMII'!"HEN

REo-ALF(~1r~'-ll·SAFE:/ERR(~11

GO'!'O 3
ENDIF

ELSE !F(ALF(KM,KOM'l.LT.ERR(KM))THEN
REo-ALF(KM,KOPT-11/~RR(KMJ

GOTO ;;
ENDIF

ENDIF
ENDDO
R~o-MIN 1R~O, R~CX:~ll

R~o-~XIR~O,Rt~~Xl

H-H-RtO
REDUC'I'-.TRUE.
GOTO :
:':-XNEW
HOID-H
:IRST-. t.:..Lst.
WRKMIN-l.E35
co K}\-l, KM

FAC'I'-MA.XIERRI ,"KI ,SCALMXI
WORK-FAC'I'·AI~:·l )
IFlWORK."T.WRKI1INITHEN

SCAl.E-FAC'r
WRKMIN-WORK
KOn-I\"K... l

ENDIF
ENDDO
HNE.'('l'-H/SCAl.E
l FCKOPT .GE. K.ANC. KOPT .NE. KAM.'\X.AND•• NOT. REDUC'I' 1THEN

FACT-MAX(Sc;:.~/ALF(KOPT-l, KOPTI, SCALMXI
IFIA(KOPT+l}·:ACT.LE.WRKMIN1THEN

HNE:cr-HI :':'CT
KOPT-KOE=':'-l

ENDIF
ENDIF

OY2-ABS(YSAVC:l-:{211
:F IOY:.~Q.O.Ol :~2-TINY

!FIY{Z).GE.-:~OOO.lTHEN

IF(Y~:I·OY:.GE.O.01GOTO10
IF(Y(::.~t.-:OOO.)':'H~~

HN~·~·MIN(HNEXT,990./OY:·HOIO)
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,::..~~::: :::- ';" _ .. :'E:. -;. ~; 7~E:~:

s:..:::. :,. '; ':.. ~=-.-:._:7:-::'~;

'1:;:::':7-:'~::;'~~;S:-:7. _. :'S-.: 1 :::.:. L;:::,

i ,) ; :;7~Rrl

:::.;::.

~·w·aROUT:~IE. ~!O(Y .. DYO:':. NVAR. :':5, HTOT .. NSTEP. YOU':' 1
::.:',AA"'lETER (Nr·I';-":·:"'SI
: ::'-!ENSrCN y (lNA?) .. :;y!)~: (~iVAR 1.. YOUT (~JVAR 1.. y~: N!-',A"':) .. Y~J (Nr-o..;:·:)
:-·~':"O':'/tl~";'!'EP

';':-!( l )-Y (I)
':'~l( Il .. '( (: l-H-DYOX(: l

~~;oOO

:';-:';S·H
~~L DERIVS(YN.YOUTI
'~·2.·H

:0 N-=:.NSTEP
:0 I-l.NVAR

SWAp·YM(I)-H:-YOUîtII
\'M(Il-YN(II
YN(II-SWAP

ENOOO
:-:-X+H
:ALL OERIVSIYN,YOUTI

:::.000
:0 r-l,NVAR

YOUT(II-O.S-tYMII1+YNIIl+H*YOUTfIll
E:.~OOO

;'::TURN
~~:o

~JBROUTINE: P:~XTR(IEST.XE:ST.YEST,Y:,DY.NVI

;.;RAMETER II~~-lJ.N~~-51

::~IENSION Xl lMA."<I. l'Est (NV) .. y: (NVI. DY (NVl , QCOL 1NMAoX, lMA.'<I. :'INMA."':)
2.:...vE QCOL, X
;.:: !ES'tI-XES't
:0 J-l,NV
~Y(JI-YESTiJI

Y:IJI-YESTIJI
~:OOO

:'IIEST.EQ.ll THEN
:'0 J-l,NV

QCOLIJ.ll-YESTIJI
E:NOOO

::.:.sE
:'0 ,J-l,NV

OIJI-YES't{J)
E:NDOO
:0 Kl-l.IEST-l

OELTA-l./IXIIEST-K11-XESTI
Fl-XEST-OELTi'I
F:.X{IEST-Kl)·OEL7A
00 J-l,NV

Q-QCOLIJ.Kl)
QCOLIJ.Kll-OYIJI
OELTi'I-OIJI-Q
OY IJI-F'l·OELTA
O(JI-r;:-OELTi'I
r:(JI-Y:(J)·OYIJ)

ENOOO .
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c

~ .
~ '-" ~ .. ".

:... ~ .. '

;3:.rBROU7:~:S :::::,:·:S(Y.::'Y:):-:~

:OU2~S r~S::~:J~ PAR7
':C:-n-10:-.!i:'E:': ?;7C:,p,R::,.:.r::-.:r:
:-::-1S:-':S:O:, .:'':::::-:i'::

p:-.:.:"I':. .... /i'::l ::d.?(-::S-4'·y(.21
pr.:.n:·.~ : .:~'::·y('::l.-exp;::='::·y('::l l
~ncl.l ~

PART-l.O/(R::'"SQj-EX?(RO'::-Yl:) :'"S8SSKllRO:-SQI
OY~X(:).(-:::'·(1.O-rD4PI·EX?(R::"Y(:1j·SESSKC:;:'::·SQj­

r:l';~:'':.'" (Y (:j-Y (:) -y (3) "Y(3))1 :SO··';. 01­
rO';~:·Y(:J/SQ·PART)liFR7CLP

O':'O:\(:)·Y:::
!)YDX(3)-Yt.;:
DYOX(';) -1-'(:'; ... (FO,;?I-':' (:l-Y: ~ li ($Q•• ';. 0)­

FC';~:·Y(3)ISQ·PARTll'FR7CLP

RETURN
END

FUNCTION BE:S~KOIXI

DOUBLE PREC:E:ON Y.Pl,P2,P3.P':.P5.PG.Pi.
Ql,Q:,Q3,Q4,QS,Q6,Q7

~T~ Pl.P:.~3.P';.PS.P6,P7/-C.S7~:lS6600.0.4::ie';:O~O,O.:306~ïSGDO.

O.34eSS?::-1.O.:626980-:.0.:07500-3.0.740-51
~TA Ql.Q:.G~.Q4.Q5.Q6.Q7/1.:S33141400.-0.783:3S8C-l.O.:le95680-1.

-O.106:~~;D-l.O.58787:D-:.-ù.:51540D-:.O.53:0eD-31

IF'ex.I..E..·: •. [)R.INT·. ':<'-0. OOES NOT MAKE SENSE. :~l BE.SSKO'
IrIX.LE.:.:: THEN

Y-X·:-:I ~. :
BESSKC- -tOG(X/:.O)·BE.SS:C(X11+(Pl+Y·(P2+Y·!?~·

':'·(P4+Y·(PS... Y·lê6+Y·P/111111
ELSE

y-e:.':,:·:·
BESSKO- ~X?I-Xl/SQR!(Xl)·~Q:·Y·IQ:·Y·(Q3 ...

Y·I~4+Y·(QS·Y·(Q6 ...Y·Q~lllI11
ENDIr

RETURN
END

FUNCTION BESS:OIXI
DOUBLE. ?REC:S:ON Y.Pl.P:.P3.P~.?S.P6.P7.

Ql.Q:.C~.~4.Q5.Q6.Q7.QS.Q9

~TA P1.P:.~~.?4.PS.P6.P7/1.0~v.3.S15622900.3.0e994:4DO.l.:0674920

'0.
O.:65973~DO.O.3G07680-1.0.~Se130-:1

DATA Ql.Q:.C~.Q4.Q5.Q6.Q7.Q8.Q9/0.3ge942:eDO.0.13:~S920-1.

0.::5319:-:.-0.1575650-:.0.9162810-:.-0.2057/060-1.
0.26355.-"-l,-0.1647633D-1,O.392377D-21

AX-I\IlSIX)
Ir IAX.LT ••. -SI THEN

Y-(X/3."S:"·;
BESSIO-Pl-;"I?:·Y-(P3+Y·{P4-Y·:PS-Y-(PG-Y·P711): ;

ELSE
Y-3.7S/;:":·:
BESS!0-(E.XP·;:":~1/SQRT(À~11-IQ:·Y"IQ:·Y·{Q3+Y·!Q~

.Y·(Q5-Y·IQG.Y·IQ7.Y·(Q5-Y·Q91)1111 Il
ENDIr
RETURN
END
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';' ~.' .,-, / :.:
f"'ES,Sr::' ~:.:; -:-::/~~QK71:<: ".:':>";" :;;"_";":Qj ..

ï·';':~··:·IQ~·ï·IQI~.·:··;:-: :Ji)

ENorF
RETURN
END

r~NcrION 8ESS:: :XJ
DOUBLE: PREc:s:œ: Y.Pl.P=.P3.?';.~5.?6.Pi,

Ql.Q:.QJ.Q~.QS.QG,Qï.Q8.Q~

~ATA Pl.P:.PJ.:~.P5.PG.PiIO.5:~.Q.8iB905~~DO.O.51~geeG900.

O.150849J4::.0.:G5e733~-1.~.J0153:D-:.O.3:411D-3'

':'.;7;" QI, Q:. Q':. -':':.1:15. Q':.Q-;'. QS. Q?"; .. 39::!9.:::eoo. -0. 3988l\:,:û-l.
-0.36:0:~:-~.0.:6J~OlC-:.-:.:~':1555D-l.0.::8:967~-l.

-.) . .: 8905::: .::-: • C. l ~ BiGS 0-:. -':'. ':':00590-': 1

A.....·ABS ex l
:r (~~.LT.j.i5: iHEN

Y-(X/3.751 .. ·.:
8Essrl·X"IPl-:"(P:·Y"lP3·:·:?~·:"IP5·:·{P6·:·pil111)!

ELSE
Y-3. '5/A.X
8ESSI1·(EXP(~:J/SQRT(~~11·IQ:·Y·(Q:·Y·(Q3·Y·lQ4.

Y" (Q5+),· ~C6 ... Y" (Qi+Y" tQ8 ... ·~· .. Q911 11l 1Il
E:NDI F'
RETURN
END

A.2 INPUT VARIABLES

The tirst input variables are in the tirst [ine ofthe program.

PARAMETER(R=1.OE-5,YSTRT2=-5.E6,PI=3. 14159265358979300, EPS=
+1.OE-5,~=4,NMAX=5)

The value for Reynolds number R must be entered as in R=l. OE-5. The second

vari!lble is initial yz which is always a negative number and entered for YSTRT2. Ifyou

Iike, you may change the value for local accuracy EPS. The third variable is particle

parameter which is entered as an array of maximum 20 values in the command DATA

P/10 . , 6./ • You may enter less !han 20 values for p, in that case, the number of p's

must be entered in the command DIMENSION YSTART(~l ,P (2) • TIùs number must

be also entered in the first DO command in the program as in DO I=l, 2. TIùs loop is

the main loop of trial and error and values in E, UP, and DWN cao be entered based on



•
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golden-iccrion method and or in respect with the pre\"lous results 1iLm\' 1

A.3 PROGRHI Ol'TPl;TS

ln this section. the output of the program for dînèrent Reynolds nUlllbers R. is

presented. At the beginning of each table the relevant conditions arc introdueed and then :1

summary of the important values of the results is printed out. The tirst colunm of each

table (:) îs a counter. indîcating the number of rows that is the number of points on the

related graph. The second column (T~ial iJi) is the number of trials to lind r for the

corresponding particle parameter (P~tclp). in column tàur. The third column

•

(Nin. :;,;:::n5) shows minimum hypotenuse of the last trial of the row. This number must

be close enough to Olll! (the dimensionless size of cylinder radius) in order to accept

collision efficiency (::=:..)1. in column live. The last column (Ln! prtclpl) is the natural

logarithm ofcolumn four. It might be needed in drawing the graphs.
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Appelldix: B

NOi\IENCLAHiRE

Ali variables in this list of symbols are dimensionless unless othel"\vise speciîied.

•

•

Symbols meaning

a = panicle radius. m

b = cylinder radius. m

e = naturallogarithm

!r = unit velocity vector

ey = strain tensor

E = collision efficiency

f = force per unit length on

the body (by fiuid)

1" = force per unit length on

the fiuid (by body)

1" =line distribution offorce

L, = unit vector along the

3-direction

1 = idemfactor-
K•• K, = modified Bessel function

1= length ofthe body. m

p = pressure in outer region

li = pressure in inner region

p' = pressure.. N m'2

p = particle parameter

Symbols meaning

1: = position vector in outer

region

E =position vector 10 mner

reglon

r' = position vector. m

R = Reynolds number based on

radius b

Re = Reynolds number based on

radius /

B. = position vector

s = the ratio s'I/

s' = distance along the body

fTom one end. m

s = distance along the body

centre-Iine to any point

t = time variable

! = unit vector In tangent

direction

U = undisturbed velocity in

infinity, m sec,l



• S~'mbols me:tning Symbols meaning

•

•

.r rime variable

x" x, = distance along the 2 and

3-direction in Canesian

coordinates

. '-d' al "h" dx,. x. - lstance on" t e _ an

3-direction in Canesian

coordinates. m

YI = velocity in the 2-direction

.1'2.)'; =distance along the 2 and

3-direction in Canesian

coordinates

y. =velocity in the 3-direction

a =one end ofthe body

a =the angle between unifonn

velocity and the 2-axis

p = one end ofthe body

;.' =Euler's constant

& =vety small arbitraI)' constant

& =tolerance for each step

8 = polar coordinates angle

.u = fluid dynamic viscosity,

Pa sec

" =the ratio bll

;. =cross-secrional charaeteristic

l' =fluid kinematic viscosity.
m:: sec,"1

p = fluid density. kg m~'

p =polar coordinate distance

p' = polar coordinate distance.

m

p = inner region polar

coordinate distance

p' =inner region polar

coordinate distance. m

Pp =panicle density. kg m';

1ft =polar coordinates angle

Cf,J =components of stress

tensor

'l',. 'l'" =stream funetion

'l'., =stream function derivative

with respect to i




