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SUMDMARY

A method for calculating the collision efficiency of a small pollutant particle onto
a solid long circular cyvlinder in a low Reynolds number fluid flow with inertia offects is
presented. The cylinder is considered at rest in a uniform undisturbed flow at infinity, in

the direction perpendicular to the cylinder axis.

Assuming that the Reynolds number R based on cylinder radius b is very smail but
not zero (R << 1), and the Reynolds number Re based on cylinder length / is of order
unity. the force per unit length of the eyvlinder. correct to the order of R, is obtained, first
for a general flow direction and then for the case of flow perpendicular to the cylinder
axis. This is done by using the Navier-Stokes equations in long slender bodies theory and
applying matched asymptotic expansions in terms of the ratio & of radius to body length.
Flow field around the cylinder is calculated and the equation of particle motion is
developed by appiving Newton's second law of motion. The initial particle velocity far
from the cylinder is calculated analytically and the particle trajectory course is solved
numerically as an initial value problem by using Richardson Extrapolation and the
Bulirsch-Stoer method.

The collision Efficiency E is obtained by trial and error and is plotted against the
dimensionless particle parameter p for different values of R (from 10 to 1). The
numerical calculations show that the curves have a tendency to move to the right and
become like a straight-line as R gets very small. The points at which £ is less than 0.005
are also predicted.



SOMDMIAIRE

Une méthode qui caleule ["efficacité de la collision d'une petite particule de
polluant avec d'un long cyvlindre circulaire solide. dans un écoulement fluide dont le
nombre de Reynolds est bas, avec les effets des forces d’inertie, est présentée. Le cviindre
est considéré au repos dans un écoulement uniforme infini. dans la direction

perpendiculaire & I'axe du cylindre.

En présumant que le nombre de Revnolds R basé sur le ravon du cylindre & est trés
petit (R << 1). mais différent de zéro. et que le nombre de Rewnolds Re basé sur la
longueur du cylindre /. est de ["ordre de I'unité, la force par unité de longueur de
¢ylindre,du méme ordre gue R. est obtenue en premier pour une direction générale de
I'écoulement et alors pour le cas d'un écoulement perpendiculaire a 1'axe du cylindre.
Ceci est effectué en utilisant la théorie des corps longs et minces et en appliquant
’expansion asymptotique en termes du rapport x du rayon a la longueur du corps. Le
champ d’écoulement autour du cylindre est calculé et I’équation de mouvement de la
particule est développée en appliquant la deuxiéme loi de mouvement de Newton. La
vitesse initiale de [a particule, loin du cylindre. est calculée analytiquement et la
trajectoire de la route est résolue numériquement comme un prooléme & valeur initiale en

utilisant I’extrapolation de Richardson et la méthode de Bulirsch-Stoer.

L’efficacité de la collision £ est obtenu par essais et erreurs et est mis en courbes
en fonction du paramétre adimensionnel de la particute p pour différents R (de 10 a 1).
Les calculs numériques montrent que les courbes ont tendance a se déplacer vers la droite
et deviennent des droites quand R devient trés petit. Les points pour lesquels I’efficacité
est infé:ieure & 0.005 sont aussi prédits.
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Chapter 1

INTRODUCTION

The removal of suspended particles from a carrier fluid is of great interest in many
industries. The first step in the design of a filter involves obtaining 2 detailed knowledge
of the fluid dynamics of the flow. The motion of fluid around a fiber or a slender body
has long received considerable attention and, particularly, flow at low Reynolds number
has been extensively studied analytically. In this research, a method for developing the
hydrodynamic forces acting on an isolated long cylinder and deriving the flow field
around the cylinder is presented. We also use the obtained results to develop the
equations governing the motion of a tiny pollutant particle toward the cylinder. Solving
the particle equations of motion, numerically, we calculate the collision efficiency of the
particle onto the cylinder and plot the result into graphs.

Although the applications of this work are specific, they are found in different
industries such as deposition of particles onto (single) pulp fibers in papermaking
suspensions, in the retention of particles in the formiﬁg paper sheet during the
papermaking process, and even in the removal of metallic grains from the lubricating oil
of an internal combustion engine. Generally, this work can be applied in pulp fibers,
asbestos fibers, fibrous filters, and wool and cloth industries.

1.1 STATEMENT OF THE PROBLEM

Consider an isolated long circular cylinder at rest in a uniform flow of velocity U
in the direction perpendicular to the cylinder axis, at infinity. ‘The radius of the cylinder
being b and its length being / (long enough to neglect the ends effects). The Reynolds
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number based on the radius of the cylinder R is very small but not zero (R << 1) and the
Reynolds number based on the length of the cvlinder Re is of order unity. Thus, inertia
effects are considered. A verv smail solid spherical particle is released far from the
cylinder. The specifications of the particle are characterized as a particle parameter p.
The collision efficiency of the particle onto the cvlinder is our final objective in this
research. Because of the long length of the cylinder. every unit length of the cylinder. far
from the ends. can be dealt with exactly the same. Then. by definition. the collision
efficiency £, for each unit length of the cylinder, is the ratio of the largest amount of
initial x; (shown as X! in figure 1.1) over b so that if we release the particle at X, it
just and just touches the surface of the cylinder. Hence the problem turns out to be 2 two

dimensional problem.

Neglecting all hydrodynamic and colloidal interactions, the number of potential
collisions f; per unit length of the cylinder per second, when the cylinder radius & is much

larger than the particle radius a, is given by

fe=2nUb},

where n is the number of pollutant particles per unit volume. The number of pollutant
particles that can be captured by the cylinder per unit length of the cylinder per second is

given by
S=Efe,
with the collision efficiency £ given by
E=2.
U article of radius a Ax;

r——d\\
1‘ N

Figure 1.1 Statement of the problem (cross-section)
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Since our interest is not only in the results, but also in the analytical method of
solution, in order to find the forces per unit length and flow field around the cylinder, we
need to study and develop the necessary equations from the basic theories of long slender
bodies. Applying the modified results for the case of our cylinder, we will be able, then, to

develop a set of differential equations expressing the trajectory of the particle.

In 1970, neglecting inertia effects, the creeping flow equations for a general

direction of velocity was solved by R. G. Cox. The result was a power series in (L)

- »

Inx

3 -
correct to the order of (ﬁ) , where x‘=%<<l. In 1980, R. E. Johnson solved the

same problem but satisfying an integral equation correct to the order of x*' (Re =, and
R=0).

R. E. Khayat and R. G. Cox considered inertia effects in 1989. They solved the
case with

I

I&stU=O(I), and R=67U=xRe <<l1,

and obtained the force per unit length on body as a power series in (Tﬁl';) , correct to the

3
order of (ITIE) , for Re small or of order unity.

In the present research, we first concentrate on the same problem as that of R. E.
Khayat and R. G. Cox (long slender body with circular cross-section) and find the force
per unit length, but as an integral equation.

We will make an expansion in x (correct to the order of x*') treating Re as a
parameter so that if Re — 0, we must have the same result as that of R. E. Johnson
(1980). Then, we will find the flow field based on such a drag force on a slender body.



Applying the obtained result for the case of a long circular cylinder, we will find the flow
ficld around the cylinder. It is worth mentioning that obtaining the same result as n
previous studies for the same conditions but with different methods is the strength of these
studies and increases the reliability of the results. Thereafter, it is possible to obtain the
trajectory equations for a particle released in such a flow field, far from the cylinder.
Having the equations for the path of a particle toward the cylinder, the collision efficiency

is calculated numerically for a series of R’s and p’s.

1.2 OBJECTIVES

As mentioned earlier, our final objective is to calculate the collision efficiency of 2
particle onto the cylinder. Our approach in this research is that we deal with the problem
analytically, go as far as we can, and then solve the rest numerically. Therefore, since the
analytical portion of solution is of our interest too, we set up our objectives in different

stages as follows,

1) Deriving the drag force per unit length of an isolated slender body, considering inertia
effects and correct to the order of x*', as an integral equation and ensuring it is the
same as R. E. Johnson’s result (1980) for Re — 0, as it should be.

2) Developing hydrodynamic forces on the cylinder, based on what we obtained in the
previous stage for a slender body, first for a general flow direction and then for the

" flow perpendicular to the cylinder axis. This must be the same as the result obtained bv
Khayat & Cox (1989).

3) Having the drag forces on the cylinder, we develop the flow field around the cylinder
for the flow perpendicular to the cylinder axis.

4) Deriving the equations governing the motion of a particle as a set of differential
equations.

5) Solving particle equations of motion, numerically, in order to calculate the collision
efficiency of the particle onto the cylinder. This is to be done for different Reynolds
number R (from 10 to 1) and different values of the particle parameter p. Since we
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make the assumption of R << 1, the case R = 1 is not going to be valid but we include
this just to see the behavior of the solution. The case R = 0.1 is somewhere in between
and suspicious. It should be investigated too.
6) By plotting the collision efficiency E against the particle parameter p, we should realize
1) what behavior the plotted graphs show. It is expected that they should move to
right as R gets very small. But do they move to right to a certain curve or go to
infinity or become like almost a straight-line?
if) what the maximum value of p is for £ — 0. This values tell us, for each R, the
minimum value of p we should keep in order to have an impact with the lowest

efficiency.

1.3 THESIS ORGANIZATION AND OUR APPROACH

After some introductory information including the statement of the problem, we
set up our objectives for the different stages of work in chapter one. Our main approach
in this research is that we deal with the problem analytically, go as far as we can, and then
solve the rest numerically. In chapter 2, some of the previous studies related to the
problem on hand are summarized. These include the collection of pollutant, described in
papers in computational fluid dynamics, and the motion of long slender bodies as the basic
theory of developing the flow field around the cylinder. The interrelation between this
work and previous studies is also explained.

Chapter three is a quite analytical chapter devoted to the development of the
equations. After a more detailed explanation of the problem, we concentrate on the flow
around long slender bodies. Inner and outer region variables are introduced, non-
dimensionalized, and the drag force on the body and the flow field are developed by
matching between outer and inner solutions. Then as an example of long slender bodies,
the fluid motion around the cylinder is discussed. Deriving the hydrodynamic forces on
the cylinder for a general flow direction is done analytically by solving the integral
equations developed for a slender body. The advantage of solutions as integral equations



(instead of power series) is that they can be directly solved for bodies which poses a
certain symmetry (like a cylinder). The force and the flow field for the case of flow
perpendicular to the cylinder axis are found by matching the asymptotic expansions. In
the last section of this chapter, the motion of a tiny particle in the flow is investigated.
Using Newton’s second law of motion, the equations governing the trajectory course of

particle are obtained, analytically, by applying the results from the previous section.

The main idea of chapter four is to introduce the numerical method to be used in
solving the equations of motion of the particle. To start any initial value problem, initial
values must be determined. Calculation of the initial velocities, far in the outer region, is
the only analytical section of this chapter. Then, after comparing different methods for
solving an initial value problem, Richardson extrapolation and the Bulirsch-Stoer method
is chosen and discussed.

In chapter five, we first explain what we are doing in the numerical calculations.
Optimizing the solution and error control in a numerical solution are other topics
discussed in this chapter. Then, the numerical results are presented, partly in table form
and fully as different graphs for different Reynolds numbers R. Discussion about these
results is the subject of the last part of this chapter.

Conclusion and suggestions for future work are the ideas of chapter six. The
relationship between the final results, the results obtained in each chapter and section and
our objectives expressed in chapter one is discussed and shown. Interesting and useful
topics to continue this work are explained as suggestions for future studies.

The next part, Appendix A, includes the source program which has been used to
obtain the results, presented in chapter five, and also the tables produced by the program
as their outputs,

The last part of this thesis, Appendix B, is a list f the nomenclature. A list of all
symbols used throughout the thesis is presented.
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Chapter 2

SUMMARY OF PREVIOUS STUDIES

There have been a tremendous number of research studies on low Reynolds
number fluid flow particularly after C.-L.-M.-H. Navier, and Sir G. G. Stokes formulated
their well-known equations, ordinanily called the Navier-Stokes equations, independently
in 1822 and 1345, respectively. However, there are only a few problems in which it is
possible to solve exactly the creeping motion equations for flow around a single isolated
solid body. When it comes to inertia effects, of course, the number of cases with exact
solutions are even less. Since our interest. in this research, is not only in the results, but
the analytical method of solving is also of importance, what we discuss here is mostly
related to solving the flow field and drag forces on slender bodies as the basis for finding
the equation of motion of a particle colliding with the slender body, analytically. The rest
of the problem, to calculate the collision efficiency, is solved numenically and there is
usually no available analytical solution for it. Some of the previous studies, related to the

problem on hand, are summarized in this chapter.

2.1 COLLECTION OF POLLUTANT

2.1.1 _Explanation of Theory

Fonda and Hemne, in the 1940s, numerically evaluated the collision efficiency, £, as
a function of the particle parameter, p, for impact of poliutant on a falling rain or mist
drop. A falling rain drop has the same flow around it as a solid sphere since

: p“" =50-100>> 1 (neglecting inside circulation of the drop). Because of the likeness

of this problem with our problem and in order to get familiar with the problem solving
procedure, this case is going to be explained along with more details than the others.



Consider a drop of radius R sedimenting with velocity V.

™~
i<

Figure 2.1 A falling rain drop
The velogity field around drop v (£) must be, by dimensional analysis, of the form
r VR
2=Vf(§’7), 2,1)
where v = kinematic viscosity, and if Re = 7<<-l, we have creeping flow.

vV

—.—’-—/’—\\——

N

Figure 2.2 Velocity field around the sphere

Where Re >>1, the flow is inviscid flow ahead of the drop and since V'is a
uniform velocity far enough from the sphere, we have irrotational flow, described by

layer Boundary layer separates
Figure 2.3 Inviscid flow
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where p = density of the tluid
u = velocity field
p = pressure field

V = Nabla operator (“,: P+ T:Ti)

Takinz the curl (Vx), to get rid of p

0=p(rVe+wVu) w=Vxu, (2.3)
Do ce D
= =TQ+1_.V(:)=—¢»J.VQ = —§=0 . (2.4)
t &t == = PRER

where @ = vorticity

D
—5% = Lagrangjan derivative

o _
T 0 (unsteady term)

In fact, since @ =0 for upstream, @ = 0 everywhere. In other words, the viscous

term in the Navier-Stokes equations is neglected, for Re >>1, so there is no cause of

diffusion for vorticity.

vé ., 25

<]
x
=
n
[
[t
]

V.u=0 = A&

]
o

(2.6)

where ¢ = velocity potential and with 4, = % =0 at the drop surface.

If the pollutant is in the form of smail solid particles of radius a (where a <<R),

the position r of a single particle is given by



v(r)

Figure 2.4 Small solid pollutant

(37a'p)F=6mualu(r)-7]. @.7)

where a = radius of particle
0 = density of particle
#= acceleration of particle relative to the constant coordinates on the sphere
4 = viscosity of the fluid
v(r)= velocity of fluid relative to the sphere

£ = velocity of particle relative to the sphere

In the right hand side of the equation (2,7), the result of Stokes problem (falling
sphere) is used (drag forces on a spherical solid body, F = 6mt aU, where Re =0 and U'is
the constant velocity of sphere relative to fluid, but in here we use the expression of
velocity of fluid relative to particle, instead). We are also assuming here that the particle
radius a is sufficiently small so that inertia effects in the fluid for flow around it are

negligible.

Defining dimensionless quantities

._r . .y
so that 7is ime and ¥° = v™(z” ,Re). Hence the particle motion is given by
drr drt ..
—= === 2,
p— =g el Re), (2.9)
2p,aV

where the particle parameter, p= OLR



Figure 2.5 Particie orbit

. . Coa .. v
Thus the particie orbit depends only on mitial position E .p.and Re.

If y is less than some y,. the particle collides with the drop. Othenwise it v > v | it
misses the drop. Hence ¥, is the height of the highest point at which if we release the

particle in infinity, we will still get an impact.

Figure 2.6 Collision efficiency and y,

By definition, the collision efficiency is £ = (%:] = ('%) . Then £ depends on

p and Re only, with 0 S E'£ 1 (£> 1 are not considered).

As mentioned earlier, Fonda and Homne evaluated £ = £ (p) numerically for
(@) Creeping flow v" = (") around drop (for Re <<1).

() Potential flow v" = v (r") around drop (for Re >>1).

The result of their numerical calculations, assembled in a graph, was more or less

stmilar to what is presented in chapter 5.

2.1.2 Effects Not Included in the Above Theory

(a) Effect of finite (non-zero) size of particle.



(b) The intermediate Revnolds numbers are totally neglected. That is, for instance. for
creeping flow ( Re <-<I), inertia effects are ignored.

{c) When a panicle gets close to the drop surface the hydrodynamic interaction of
particle with drop surface will resuit in a change of trajectory [actually including (c)
wouid result in £ = 0].

(d) Intermolecular (van der Waals) forces and electrostatic forces between a particle and
the drop or other colloidal forces.

(e) Deformation of the drop surface as the particle gets close to it. The particle may

bounce - no capture,
penetrate the surface or
be captured at the surface.

(f) For the inviscid case (Re >> 1) effects of boundary layer and wake {i.e. they change

~ valueof ¥ {(rh

(g) Effect of gravity on the particle.

(h) Brownian motion of the particle (diffusion portion of motion). Diffusion may
dominate over convection with very small particles,

(1) Shape of particle will modify many of the above effects.

2.1.3 Papers in Computational Fluid Dynamics

Many theoretical papers have been appearing in recent years aimed at numerical
calculation of particle collection , collection efficiency, or particle depcsition rates and the
like. Basically, a computational approach is suitable when
(a) There is a particular interest in results (not in the method of solving).

(b) The answer is more or less already known before we start.

The present research is not classified as a numerical approach, instead, the obtained
results can be useful for future computational solutions in this area. However, because of
the similarity in subjects, a few papers in computational fluid dynamics are introduced in
this section.
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In 1981, Z Adamczyvk and T G. M van de Ven predicted particle deposition rates
from a dilute suspension of Brownian particles flowing past an isolated cvlindrical
collector as well as through a fibrous filter. They took into account colloidal interactions

(dispersion and double-laver forces) and also external forces (gravity and electrostatic)

They considered deposition of spherical particles dispersed uniformly in a unitorm
laminar stream and an infinitelv long (to ignore end effects) cylindrical collector placed
perpendicular to the main stream direction. So, the problem of obtaining the fluid velocity
field became in essence two-dimensional and the stream function y was sufficient to
describe it. For flow around a cylindrical collector, they considered several cases for
which the stream function is already developed via Oseen’s hypothesis (inertia effects
considered). However, for flow in a fibrous filter composed of cvlindrical particles (much

more complex) the creeping motion equation derived by neglecting fluid inertia was used.

Neglecting interparticle interactions, they focused their attention upon the role of
colloidal and external forces in particle deposition onte a cylindrical collector. A complete
transport equation was solved numerically by using the implicit weighted-average Crank-
Nicolson scheme and the accuracy was checked by varying the mesh size and accepting the
results with relative difference less than 107,

C. Mclaughlin, P. McComber and A. Gakwaya (1986) presented a2 method for
calculating the collection efficiency of particles by a row of cylinders in a viscous fluid.
The Navier-Stokes equation was solved by the finite element method to determine the
carrier gas velocity field. Then, the particle equation of motion was also solved by the
finite element method to find the particle velocity of impact. Finally, the collection
efficiency was obtained by integration of the intercepted particles on the cylinder surface.
Their numerical calculations covered three gas Reynolds numbers Rep =0.2, 2.0, and 10.

In 1989 and 1991, D. B. Ingham and M. L. Hildyard examined the entry fiow and
the trajectories of small solid particles into 2 fibrous filter modeled_as a single row or
cascade of cylinders. Both large (potential) and zero(creeping) Reynolds number flows
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through the cascade of cylinders were treated using the Boundary Element Method
(BEM). Viscous effects, for the case of potential flow, and inertia effects, in creeping
flow. were ignored. For potential flow it was found that the single fiber collection
efficiency of the first row was increased by adding a second row and further increased as

the row separation was reduced. The opposite effect was observed for creeping flow.

2.2 THE MOTION OF LONG SLENDER BODIES

To find the equations of particle path, we need to have the equations govemning the
flow field around a collector. Therefore, as the analytic basis for developing the particle
trajectory, researches related to the theory of long slender bodies are considered very
briefly in this section. Through an analytic calculation one can find the drag force on 2 unit
length of a slender body which is the main element to solve the flow field around such a
body.

In 1970, R.G. Cox, considered the case of a general flow (velocity in any direction)
with

119 bU

Re T:O, and R T:K‘RB:O.

]
)

where / being the length of body, U the uniform velocity far from body, and x= % <«<1.
Neglecting inertia effects, the creeping flow equations (2,10) was solved for a
circular cross-section

uViu-Vp= o} .10

Vu=0|"

. . (1 1y
The result was a power series in (—J , correct to the order of(—) as
Inx lnx

_ S A 1y
fs)= Inx -(lnx)* +0(lnx') ’ (211)
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where f(s) is the force per unit length of body at a position s= % (see figure 2.7).

Figure 2.7 Slender body

In 1970, G. K. Batchelor, improved the solution of forces on slender bodies for
non-circular cross-section. R. E. Johnson (1980) solved the same problem (circular cross-
section, Re =0, and R = 0) but satisfying an integral equation, He also obtained the forces
on the body correct to order x*' i.e.

F= pIU[(]:—‘K+ (l::c)’ +) + O(x)] . 2,12)

Then R. E. Khayat and R. G. Cox considered inertia effects in 1989, They solved
the case with a body at rest in a uniform undisturbed flow at infinity, a circular cross-
section, and

_w
= v

Re =0(1l), and R=%]-=x}?e<<l,

where x=%<< 1.

They obtained the force per unit length on body as:

3
() A power series in (RI;) , correct to the order of (El;] , for Re small or of order
unity



16

(L) A0 (LY

fs)= Ink  (lnx)* Inx 213)

where f(s) is a function of Re and the parameter x .

3
(b) A power series in (Elﬁ) , correct to the order of (lnLR) , for Re large or of order

unity

E(Re) F(Re }
f9)= ;x(xR)+011(R)2)+O(lan) ’ (2,14)

where f(s) is a function of Re and R.

In the present research, we first concentrate on the same problem as that of R. E.
Khayat and R. G. Cox (long slender body with circular cross-section) and find the force

per unit length, but as an integral equation. We will examine

x=%<<l, and R<<],
with

= % of order unity.

We will make an expansion in x (correct to the order of x*') treating Re as a -
parameter so that if Re — 0, we must have the same result as that of R. E. Johnson
(1980). Then, we will find the flow field based on such a drag force on a slender body.
Applying the obtained result for the case of a long circular cylinder, we will find the flow
field around the cylinder. It is worth mentioning that obtaining the same result as previous
studies for the same conditions but different methods is a point of strength of the involved
studies which increases the reliability of the results. Thereafter, developing the trajectory
equations for a particle released in such a flow field, far from the cylinder, is possible.
Having the equations for the path of a particle toward the cylinder, the collision efficiency
is calculated numerically for & series of R’s and p’s.
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Chapter 3

DEVELOPMENT OF EQUATIONS

3.1 EXPLANATION OF THE PROBLEM

Consider an isolated long solid cylinder with a circular cross-section which does
not vary along the cvlinder, the length of the cylinder being / and its radius being 5. The
cylinder is placed in an incompressible fluid undergoing a given uniform undisturbed flow

of velocity U, perpendicular to the cylinder axis. The Reynolds number R based on the
radius of the cylinder is very small (R = bV—U << 1) but not zero. Thus, the inertia effects of

the fluid are taken into account. A very small solid spherical particle of radius a is released
far enough from the cylinder. The collision efficiency of the particle on the cylinder is

going to be calculated in this research,

Since the cylinder is assumed to be long enough to neglect the ends effects, every
unit length of the cyiinder, far from the ends, can be dealt with exactly the same. Then, by
definition, the collision efficiency £, for each unit length of the cylinder, is the ratio of the
largest amount of initial x] (shown as X in figure 3.1) over b so that if we release the
particle at X, it causes an impact on the surface of the cylinder. Hence the problem turns

out to be a two dimensional problem.

U fPanicIc of radius ¢ Ax;
-

| —
X — jb N

T T

Figure 3.1 General problem (cross-section)




. X . .
r= e for any particular R and p.

On the other hand. the flow field. streamlines, and particie trajectory are all

symmetric about the equatorial plane which is parallel to the undisturbed velocity direction

{/, and passes through the center of the cylinder. Thus the above portion of the equatorial

plane is merely considered.

In the case that x |, the height of initial position of the particle from the equatorial
plane (initial x;), is greater than X, the particle will miss the cylinder and if it is equal or
less than some X!, the particle will collide with the cylinder. It is worth mentioning that

for each flow condition (different Reynolds number R ) and any particle parameter p, there
is a particular X’ to be found out. In other words, if we change either R or particle

parameter p, X’ will change too.

As was mentioned in chapter 2, past researches which are related somehow to this
work are not rare, but they have mostly followed a numerical approach from almost the
beginning of the problem. In this research, however, the problem is going to be dealt with
analytically as far as possible and after obtaining the equations of trajectory of the particle
analytically, the result, the collision efficiency, for different Reynolds numbers R and
particle characteristics p, will be calculated numerically by a quite reliable and powerful
method, discussed in chapter 4. In this manner, the reliability of the results, introduced in

chapter 5, is strongly secured.

A long isolaied circular cylinder is one of the examples of long slender bodies
problems which have been discussed in Fluid Mechanics for a long time. In order to find
the forces per unit length and flow field around the cylinder, we need to study and develop
the necessary equations from the basic theories of long slender bodies in brief. Applying
the modified resuits for the case of our cylinder, we will be able, then, to develop a set of

differential equations expressing the trajectory of the particle.
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3.2 THE FLOW AROUND LONG SLENDER BODIES IN A VISCOUS
FLUID

Consider a long slender body & of circular cross-section, the length of the body
being / and a characteristic value of the cross-sectionai radius being . This body may be
assumed bent in any manner whatsoever so that the radius of bending curvature at all
points is of order /. The distance along the body centre-line measured from an arbitrary

point like one end is &' (see figure 3.2) and a dimensionless quantity s is given by

.s-l {3.1)

so that 0 < s<1 (the dimensionless distance along the body centre-line measured from one
end), and the two ends of the body S being s = 0 and s = . The circular cross-section-
radius at any point of the center line is generally taken to be bA(s), where A(s)is a
dimensionless function of 5. For a circular cylinder the radius & is constant and ." (s) is

equal to 1.

Figure 3.2 A long slender body at rest in a fluid with flow field U(r)

Dimensionless quantities will be used (unless otherwise stated) based upon the
length / (a few miles), the fluid viscosity x# and a characteristic velocity /. The vector
(underlined variables are vectors) is now defined as a dimensionless position of a general
point relative to a fixed set of rectangular Cartesian coordinates with origin O. The body S
is considered placed in an undisturbed flow field with dimensionless value {J (r).
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At a general point P on the body centerline, we define a set of local Cartesian axes
(x',¥',%") and a set of local cylindrical polar coordinates (p7,68,Z') with origin at P and
the =’ axis tangent to the body centerline as is shown in figure 3.3. Expansions of the

velocity and pressure fields for the flow about the slender body are made in terms of the
b ‘
parameter X = 7 <<1, that is the body is slender.

-] =y

P

“gjua

I/ X

Figure 3.3 The local cylindrical coordinate system at the point P

The body is considered at rest ir a fluid (of viscosity u and density p) in which
there is a uniform undisturbed flow field of (dimensional) velocity U, Associated with Uis
the constant free-stream pressure which, without loss of generality, can be taken to be
zero. We are interested in obtaining the drag force on the body in the limit as ¥ — 0 with

i pl
the Reynolds number Re = > = % based on the body length assumed to be of order

. bU . . . .
unity. The Reynolds number R ’—’-;;—-— is based on the body cross-sectional dimension.
Thus

R .
x<<l, R<xl, Re=; (of order unity) (3,2)
We will make expansions of the velocity and pressure field in terms of ¥ (correct

to the order of x **) treating Re as a parameter. However, one should note that this type
of expansion must be singular since the flow locally around the long thin body must be
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very nearly the flow around an infinite cvlinder at zero Reyvnolds number K. and it is well
known (Stokes’ paradox) that it is impossible for such a flow field («. p) 10 satsty the
equations of motion and at the same time to satisfy the no slip condition # = 0 on the
surface of an infinite circular cyvlinder and also to make the velocity # tend to the uniform
flow at infinity. So, we will use Thie Matched Asymptoric Expansion Technique which is a
kind of perturbation method. and through that, we will solve the equations for two regions
(inner and outer). Matching the results of these two regions, we will get an overall

solution for the problem.

3.2.1 Nen-Dimensionalizing

3.2.1.1 Outer Region

We use quantities made dimensionless by o, U, u, and /. The dimensionless

position vector r, flow velocity « and pressure p are defined in terms of the corresponding

dimensional quantities r’, u’,

and p’ as follows:

ol
o
-

ip
H

"™~
]
152
]

<

~ i

., P= (3.3)

where U =|U|. Unless otherwise stated, we use unprimed variables to denote

dimensionless quantities. The vector r is the dimensionless position vector of a general
point relative to a fixed set of rectangular Cartesian coordinates with origin O (see figure

3.2) so that the body centreline itself is given by r = R(s).

The dimensional fluid velocity #' and the pressure p’, for both inner and outer

regions, satisfy the Navier-Stokes’ equations as follows:

p.vp - VrZ U v (Y
pu 'y =V p} 54

V.u'=0

with boundary conditions



u’=0  onthe body surface
(3.3)

w-U as |l 5=

The governing equations of momentum and continuity for the dimensionless
velocity u, and pressure p in the outer region can be obtained by placing outer region
variables in the above equations. They are of the form

ReuVu=V<yu- Vp,} 3.6)
2,

V.u=0.

We have to solve the above equation as an expansion in X using the boundary
conditions

—e as r—ow
} (3.7

u
u=0 on the body surface,

where ¢ is the unit vector in the direction of the uniform undisturbed flow, This will
require obtaining a solution as an outer expansion in X valid in a region (the outer region)
where r is of order unity. As mentioned, in the outer region lengths are made
dimensionless by /, and as & — 0, the body becomes a line singularity r = R(s) (see figure

3.4).

L %)
/

Figure 3.4 In the outer region the body becomes a line singularity

In the outer region, the velocity can be written, generally, as



u=e=u(x,r), (3.8)

U
wheret_‘=|(:fi .and u. -0 a «x—0.

If we apply the velocity from equation (3.8) into the equations(3,6), we will get

Oseen’s equations for the outer region:

2.

V.u =0.

With the boundary conditions #, —0 as |ff = . It is worth mentioning that the

boundary condition on r = R(s) can be obtained only by matching.

3.2.1.2 Inner Region
In the inner region, we use quantities made dimensionless by o, U, i, and 5. The
dimensionless position vector F, flow velocity & and pressure P are defined in terms of

the corresponding dimensional quantities r’, »’, and p’, and also in terms of dimensicuiess

outer variables. Using x =€- , we define:

E= ===
b ,[
g:él@t (3,10)
K
T=u (3,11
Pr bPP
p: =
N -1,0
(“E) 7

pP=xp (3.12)
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Therefore we have two sets of dimensionless variables. Outer region variables in

the form of u, r, and p. and inner region vanables with an overbar signas F, 7, and p.

At any point P on r = Rp (see figure 3.5) of the body centreline one may define an

inner expansion in & for which F is used as the independent variable and Fandp as

dependent vanables.

< ,

(4]

Figure 3.5 Inner region and cylindrical polar coordinates

In a Cartesian coordinate system, the position vector in the inner region F=
(%, 9,7), where the ¥,¥,and 7 are respectively ¥', ¥', and =* made dimensionless by &
(see figure 3.3). In the inner expansion at each point P of the centreline, the unit of length
is & and as ¥ — 0, the body becomes very much like a cylinder of infinite length (since
{ > ). Actually, one has an infinite number of inner expansions corresponding to each
point of the centreline of the body. However all such inner expansions may be considered
simultaneously by taking a general point P of the body centreline. The inner expansion at

such a point is then matched onto the solution for the outer expansion at the same point P.

Relative to the inner dimensionless coordinates ¥,¥,and 5, a dimensionless

cylindrical polar coordinate system (5, 6, £ ), is defined (see figure 3.3) with 7 = %’ » SO

that
¥=p cosf, y=p sind. (3,13)



3.2.2 Matched Asvmptotic Expansion

3.2.2.1 Inner Expansion
At a general point P of the body centreline consider now the inner expansion. The
flow field (Zandp) in the vicinity of the point P is to be computed by solving the

governing motion equations (3.6). using inner variables described above, 1.e.

xk Re iV =Vg-Vp,
V.a=0,

(5]

(3.14)

[
n

with & = 0 on the body surface, where 7 =4 in cylindrical polar coordinates (7, 8, #),
(see figure 3.5). It is worth mentioning that the boundary condition at 5 — © is to be

obtained by matching.

Assuming that A(s)varies slowly with s, (in case of an infinite circular cylinder
A(s)=1), the value of & may then, at the lowest order, be calculated in the same manner

as for Re =0 (Cox, 1970). The general solution for equations (3,14) will be

7, =Clc){1-4p" —2ln(i;)}c059
+D(x)1-1%p" -2ln(%)}sin9,

7,=Cl){1-1p"" +21n(£;-)}c059 | (.19)

+DE-1+4%p" - 2ln(-€-)}sin9.

7= E(c)n2),

P=C(x){4p5 'cos6} + D(x){47 ' sinb} +x F(x ),

where C, D, and £ are arbitrary constants independent of the coordinate system, but they

can be dependent on x . In the equations (3,15), no other terms can appear since terms in
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i, &, like g "' can not appear as they would have to match onto terms in & ™! in the outer

expansion.

We assume C(«x ), D(x), and E(x } are such that as x — 0
C(x)—=>0, Dx)->0, E(x)-0 (3.16)
Using polar axes { p, 8, = ). corresponding to the { £, 8, 5 ) axes so that
p=xp and 2z=xKxZ, (3,.17)

the inner boundary conditions on the outer flow field (u, p), has the following form:

u, ~ {C(x )}(-2Inp)cosd + D(x )(-2In p)sin 6}

+[Cie)2In(xA) + 1jcosf+ Dx )21 (xch) + I sin 6] + O(xc*),
u, ~ {C{x X21n p)sin + D(x X—2In p)cos 6}

+[COe)(-2In () + 1} sin6 + D(x }{2In (1) - 1} cos8] + O(x),
u, ~{E(x)Inp} + E(x){-In(xA)},
P~ [C(x)cos@+ D(x)sin&](4p") +F(x).

- (3,18)

Here C(x), D(x), E(x), and F(x ) will depend on s, the position on the body

centreline,

3.2.2.2 Outer Expansion
We recall that the outer flow field (1, p) satisfies (3,6) with the outer boundary

condition that u— ¢ as r —> = (where e is a unit vector in undisturbed flow direction).

The outer flow field (#, p) has an expansion of the form

u=eg+u(x)+.., 2=0+p(c)+.., (3,19)
where Hl.p|) - (_Q, 0) as x —=0.

At a general point P on the line singularity r = R(s) it is convenient to take a set of



rectangular Cartesian axes with unit base vectors 7, 1., and :, which lic in the same
direction as the (Z.%, ¥)-axes at P (sce figure 3.3) Thus 7, lies in the direction of the
tangent to r = R(s) at P. Since ¥and ¥ axes are arbitrary, one mav choose, for

convenient, Z, to lie in the plane containing . and the velocity vector ¢ (see figure 3 6).

Figure 3.6 The system of axes with unit base vectors ., i . i.

Thus the unit vectors i,, {,, and i, are

e(l-u) . [xe

i_-=£| ix= 1 . I, =

{ (1_|Q._;_I:) L, -y (1 _1‘__,‘!':)1: ,

where 7 = -a% is a unit vector in the tangent direction and [ is the idemfactor.

(3.20)

From the form of u as one approaches the centreline, we see (Cox 1970) that the

singular part of (xy, py) represents a line of force on r = R(s)

[(s) =8xC(x, )i, +8nD(x, )i, - 2n E(x, )i, | (3.21)

where ¥ = pcosf, ¥ =psiné, thus
L7(8)=2x{4C(x, 5)i, +4D(x, s)ip — E(x,s)i. }. (3.22)

Taking variables (3,20), we can write



[7(s)=27 ACx.s)e(f-1) +4D(x.s) 1x e Ew.s)t). (3.23)

(1-ledf)*

We require #; — 0 as z — o so that u, is the flow due to the line distribution of

force f°(s). Thatis

u,), -—I g,(t-Rf 6 &, (3,24)

where 5 is a dummy variable expressing the dimensionless distance along the body
centreline to a general point (see figure 3.7), R=R(3), and the function g,(r) and the

radial distance from the origin r are respectively defined by

g, D=8 Vy () -=5= aé,r‘”;;) : (3.25)
r=( ny*=lrl (3.26)
and where y(r), stream function, is defined by
W) = — Fr-en - a " der (3.27)
The corresponding pressure is
p= I —f G &, (3.28)

where the local axes are defined so that the point P is the origin and 7, is in the direction of

tangent to the body at the point P (see figure 3.7).

! Repeated indices refer 10 summation over the index unless otherwise specified.
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Figure 3.7 Local axes at the point P

Here R(S) is the position vector for any general point from origin O, where
a s5<f, with o and B as two ends of the body. The position vector R(s) is the
same as R(3), but specifically for the point P. Since the integrands for &, and p, become

singular on the line of force, we write

(ut)a = Jl +‘j|.! pl = H +H. (3v29)

where J, and H are the integrals taken over the intervals (0, s-¢ ) and (s+&, 1) and J,”

and H’ are the integrals taken over the remaining interval (s-¢ , s+¢ ). Therefore,

1=+ [, Ya-raN @ &, 3.30)
=5 g - RO O &, e
3=z ~-R(3)) ..



H(s)= *; N ‘mf ) ds. (3.33)

The quantity £ >0 is assumed to be an arbitrary constant and vei‘y much smaller

than unity. Since the integrands only become singular at § ==, if r relies on the line
singularity (r —» R(s)). it follows that the integrals J, and A have integrands with no
singularity, although the values of these integrals will tend to infinity as £ — 0. Since
£ <<1, the integrals /" and &~ may be simplified if one notes that s=§ in the range of

integration. Therefore,

A . 1 ..
I =52 1)1, H o= £ ), (3,39

where

I _j gu(r R)d§

J-: :(r (3,35)
where R = R(5).
By considering figure 3.7
=R(s), rn=R(s)+pcosB, r,=R(s)+psinf (3,36)
we can write
d*R,
RG) =R+ 35+ 2T 55y,
R,(3) = R(s)+——— ( ) s)+%%(§-s)=+..., > (3,37)
8 d*R, -
RE =R+ (“)( -9 45 g8 G

(1

but g--r =§,, and also %-t is a unit vector. Then



dRdR _ |
ds ds
dR d°R _ . d'R
T ds =0 or S, s =0,
d°R,
ds® =0

Using the above quantities in order to find components of /,

(r-R(3), =-(5-5)+0(5-5)",

-

1d°R, .
(r - R(3), —90059*— = (S-35V+..¢ (3.38)
- d=R ..
(r-R(s); = psmé'—— L(E-5) +...

2 ds°
Applying these quantities into |z~ B(3)’, and letting

5—-s5=px, ds = pdkx, (3,39)

we will get

-gip eip X e -cp X dx o x°dx
hi==p Idﬂ(l+x )”'dx O[ I:m(l+x S -[:fp(]-t-x) ‘p-:fp(1+x=)”=}‘(3‘4o)
as p— 0 fora fixed £, we have
3
- x x* dx
Iy==p rw_(l-t-x:)”dt+0|:8’8’fo__(l+x’)”z]' (3,41)

Thus, one should include the Order (&° p°) term. Then we take

2~ R®[ = {(5- 5 + 5} —[cos@%‘--&- sine‘%fl) p(5 - s, (3.42)

+

(3,43)

¥ 3[ d*R, d’R,J p(3-s)*
as ds ) {

]c—B(E)I {(s -s)° +p} +5] oo 6 —==+sinf (E-—s)=+p=}m

Thus,
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- r g : 5
]l = J.’. - (S—S) ELme 'a‘,‘i-{" +siné d %J p(S-S)J +.. | (3144)
1 { {

(3'-5):'*';0:}“ 2 as ds (S‘-s):-a-p:}n
= J'_':;l:- ﬁ%}; - %[cos& ddf' +sin@ (;“f‘) p"(f-:i: = +} dx (3.45)
-p J-: 21-4-—;)2)”_ e - %(cosa ‘;—R' +sing d;:fa) J' ’:(I :3?,)5/: +... (3,46)
Since both integrals are zero, by symmetry,
5,0 a p-o0. (3,47)

We evaluate 7, in the same manner

I:=f:{{ p cosé }u:+0{{ ps-9° : p'(5-s)° p(f—S)’}anE

- - - ~ - - 5/.' ¥ - - -y - ¥ - - -
G-5)+p° G- +0°f {G-9+p)" {E-97+0
_ e _p° cosf N pxt o’ pxt e
Tl P14+ XY P+ 1+ X)) 1+ )

b S dx ) B
I,~p cosBI_mm +O{p‘ Ine,p°lnp,pplnp,pine }, (3,48)

and since
e[ Csirns, oo
we have
1, ~2p" cos@+0(p°) as p—0. (3,50)
Similarly for J5, we obtain
I,~2p"' sin8 + 0(p") as p—0. (3,51)

Now, by inserting J; and J; into expression (3,34), we have as £ — 0



H' ~ 20 207 {0058 () + sind £;'(s)} + 00",

andas p—0

p = :11; 2p”! { cosf f, (s)+ Sinafs.(s)} +H(z)+0(),

or by using equation (3,32)
1 . . .
J2 -'2—p{ cos@ f, (s) +siné f, (5)}

AL B aeco

Matching onto inner expansion of p in expression (3,18) requires

Ol )= o £ D)= g= i)

¢, =R O
Flc)=om e IACED
(K {I -[loc } B( )l f

Now, we concentrate on the function g;; , see equation (3,25)

1-91- a+a—: cz_’+
1-e*° 21 3! -1 a a:
N a - _2!+ 3
Y a® o
I——da a- 221 +33'

Thus as z — 0, we have

1 2, Lpae oy
~(r-er)-gRe(r-ery + SR (r-er)-..,

r 1 r
vu~ (G -e)-gR(r-an)T ).,
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(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3,59)

(3,60)
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where 7, denotes 21 and ., = Gr.or,
6, rnr 1 S nh. 7 n
Yo~ 7’—7.1")-Zf?f-‘{(f-em)(f“jj‘)+(‘r"—‘—’;)(;-e.)}+~- (3.61)
2_1 2e,7; re.
pu2grfe- 20 om0l G.62)
and also

Ve~ 2" = Re(1- 520y (3.63)

Since we have g, = v, —¥,,, we will obtain

9, rr) 1 end, enrr, er er
g, -.[;’-+-;_T’J &{—3&; +3 ": =+ “‘, - - rJ +e,e1}+.... (3,64)

+= —
4 r r

Thus, the term in Re”! is bounded as » -» 0 so that it gives a contribution to J;

(see equation (3,35)) of order £™' and so Re™ —>0 as £—> 0. The termin Re® gjves

g, ~{alc- RO+ - RN - RO~ RO Jr.  G65)

Now, we can evaluate different elements of the tensor g,

& = 1 T i (G-s) 7T [+
" _{(E-s):-a-p:} . {(E—S)z-i-p:} 7] )

_— 1 N picos’ @ ]
- _{(S‘—s)=+p=}"' {(§—S)=+p=}3{-_

[ 1 N psin° 8 ]
{G-s7+0}" {G-97+2)"

4%

(5-5)pcosb
(5-3)°+ p’}m

vy

& =8 ="'{



[P
h

(5-35)psin@
G-97+p}"

gU:gM:—{

O sinf cosd
- - it
(8§ ~s)y + p-}

=8 = “{ (3.66)

By inserting these values into [;; (see equation (3,35)), it can be shown that

2e Jei+pi+e
I, = =~ 2| Lo 2 "5 (.67)
g+ p’ ;;5'+p'—s

and as p — 0 we have

I, ~-4lnp +{dlne -2+ 4In2}+... (3.68)

Similarly, we get
I. ~=2Inp+{2Ing + 212+ 2cos 6 }+..,

Iy~ -2Inp+{2Ing +2In2 + 25in* 0 }+...,
I,y = I, ~ 2sinfcosf+...,
Ly=1,~0,

I,=1,~0, (3.69)

Thus, for equation (3,34), as p — 0, we have
J. = 1 * ) I 3 34
] 8’r .fJ ( ) y ( L )

RO N AT A}
giving
J: ~$[—41np+{41n(2€)—2}+...] IAGH

A 8—1”-[{- 2Inp +(2In(26) + 2c0’ 6)+..} £i"(s) + 2sinBeosf 15 (s)+..]



g~ é [{— 2inp +{2In(2¢) + 2sin° 9)+...}f3'(s) + 2sin9cos¢9f:'(s)+,..] :

Therefore, as p —> 0, based on equation (3.29), we get

(), ~ —gl;f.'(s)lnm[é (2In(26) - 1) £ () + J, (s):|+,_‘

(%), ~ - # £(S)lnp+ ﬁ (In(2¢) + cos 6) £."(s) + % sinfcos8 f3°(s)J:(s)-+...,

(1), ~ —ﬁf;(s)lnp + Il; (ln(2a) +sin’ G)f;(s) + # sinfcosd f,"(s)J, (s)- +....

Now, we may use these quantities into outer region velocity field equation (see

equation (3,19)); so that

u~ _.EL_— £ ()np+ [e, +$ (2In(2a) - l)f,'(S) +J (5)}-»-

1~ —é L’(s)lnp-»[e: 4-4—17r (Ir(26) +cos ) £°(s) +$ sing cos f;(s).fz(s)}.... - (3,70)

1, ~ _t £()n p+[e, +4—; (In(2) +sin*6) £;°(5) *4_1;5 siné cos8 f:'(s)JB(s)]+.... |

In terms of the polar coordinate system (o, 8, =), (see figure 3.8) we generally

have

Q/
U,

2

Figure 3.8 Transfer to the polar coordinate system

u, = u, c0s8+u; sinb,
Uy = —u, SIné + u; cosH,

ll:=lll,



thus, the outer region velocity fields will act like

u, ~ —%{f:'(s) cos8 + £, (5) sinf?}lnp+ {ez + # {ln(Zg) + l)f;(s) + J:(s)}cose

3.7
+ {e3 + 31; (1n(2g) + l)j';(s) + J,(s)} sing +..,
u, ~ —é{— 1. (5)sin@ + £, °(s)cos@ }lnp- {e2 + ﬁ In(2e) £."(s) + J:(s)}sinG
(3.72)
+ {e3 + t In(2) £, (5) + Js(s)}cosﬁ +os
u_ ~ -51; Fl()np +[el + é (21n(2¢) - 1) £ (s) + J, (s)]+.... (3.73)

Matching at order Inp onto the inner expansion velocity fields, expressions

(3,18), we obtain the following

L)
Cle) =50 1365

v

D(x) =8l,rf;(s) (3.74)

E() =5 /)

The values of C(x) and D(x) agrees with equations (3,55), obtained earlier by

matching the pressure. Similarly, matching at order p° gives

C)f2in(et) +1} = e, + ﬁ (n(26) + 1) £,"(s) + /2 (5), (3.75)
D )f2in(e) +1} =, +% (In2e) + 1) £;7(5) + ,(9), (3.76)
Clofainted) -1 = e, + = (In26) + 1 £5°(5) + (o), 3.7

D) 2in(ed) -1} = ¢, + 2 (In2) + 157 (5) + 4 (6). (3.78)



- E(e)In(cA) = ¢, + 2 (21n(2) - 1)/7(5) + J,(5).
Substituting the values of f"(s) from (3,74) i.e.
S (s)=-27 E(x)

J. (5)=+87 C(x)
J, ()= +87 D(x)

we obtain from either equation (3,75) or (3,77)
KA
C(x}Izln(-—-) - 1} =e, +J.(5),
L 2s v
and from either equation (3,76) or (3,78)

D(x ){2 ln(%) - 1} =e, +J,(5),
and from (3,79)

Ex ){- In(%) - -;-} —e,+J(s).

3.2.3 Force per unit Length of the Body

(3,79)

(3.80)

(,81)

(3.82)

(3.83)

From the inner expansion solution, we calculate the force per unit length of the

body as uUf(s); where f(s) is the dimensionless force per unit length on the body

exerted by the fluid and f7(s) being the dimensionless force per unit length on the fluid

exerted by the body.
F®) ==

In inner region ¥ and P are given by equations (3,15) in cylindrical polar

. . 1 .
coordinates. The rate of strain tensor e, = E("' +u,,, ) will be

i)

O%,

€ = 5‘3

2 = Ce)f24°77° - 25"} cos8+ D(x){24°77° - 25 }siné,
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so that considering g = 4 on the cylinder surface, the stress tensor o, = -p&, +2¢, has
the values
Op = -4/1"(C (x)cos®+ D(xc)sind).
Oys = 4&"(C (x)sin@ - D(x')cose), (3.849)
0.5 = A E(c).

3

Figure 3.9 Stress tensor on the cylinder surface
Thus force per unit length / on the body is given by
£ ={A Ew)}2m2 = 22 E(x).,
o= {05 086 - 63 5in6 } 4d6 = -8 C(x),
=0 o 0088 - 055 in6 } 16 = -8 D(x),

that is

S(8) =2z E(x),
() =-8xC(x), (3,85)
J3(s) = -8z D(x),

which when compared with equations (3,80) gives
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)= =f(5)

as expected

Thus the equations (3,81), (3,82), and (3.83) may be written in the form
/i (s){ln(%} + %} = -2 (e, +J, (s)), ]
j}(s){Zln[;—jJ - 1} = -8z (e, + J.(s)).
fg(s){zln[%J - 1} = =87 (e, + J,(5)),

~

(3.86)

where by equation (3,30), we have

s9=-Al 4L, o le- ROV ® .

Thus, if replace r by R(s) in J{(s), since there is no singularity at r = R(s) for J{(s),

we will have

ﬁ(s){2ln(%§)+l} 4z e+ {J‘ + j }gU R(s)- R(3)) f(s)a?‘

_ﬁ(s){Zln(%)—l}:—Sx e:+{_[ +j } (RS)-RELD B, ¢ (3.87)

L(s){?.ln(';—j) - 1}: -8re, + {j’ + j }gn R(s) - R(3)) £, (3) 5,

and since
{L*Ja }Is%l =-2In¢ +In[s(1- )],
we may write
2/,(s) In = () ln[s(1- )] - {j ff }f (i):f

Thus, the equations (3,87) may be written in the form



k¥

[ A A : Ljprs g U N H\) ‘

20| ———— . - L= T e - LIR-RIF -2 !
i (\)wL n| TS IY=—d7¢ 2l-|~ I jl\.t.,.(f_\ R) 1 i s

- \ , |
. KA L feee l‘ 1) ‘ ~ ow
L(5)9 21 | Y T R R)f () - [FEERY
,f_(‘){ n[\'.’. S(l—\)Jl lJ “ 1‘[‘ 'l"‘ ]Lf" (h \)’( ) |\ \||d.
f(s)lZln( K2 \L-ll=-—8xe + J a-f l[e AR- )f( )—*-‘-(i]d.s
} L Zs(l—s)j J ! 1‘ JL l\—\]

However, from set equations of (3,66), we see that for p = 0, (5 =»)
2 o _ 1
g“—|s—§| g_—g;,—|5_§|

Thus, for p =0,and 5 — s,

g,(R- R)f () - 22 2O 2ﬂ(i)| = 257(s) sgn(s - §),

|s—s| |s—sl ]s—.s

g, (R-R)f ) - L - LE. s ()|—f(s)sgn(a 5.

|s-3] |s §| |s
gs,(E‘E)f;() Ifl(—) = £, (s) sgn(s - 3).

Thus, the integrals in equations (3,88) are convergent as £ — 0, so we may write

A (S){ZIH(Q%J + l} —4re + I [g,,(R R)f (3 - ]—sz ‘_(Z)) a5
1 (5){2IH(ZJ-%——:) - I} =-8re, +I (g. R- R)f 3) - |‘: (S)J > (3,89)
f:(S){z ln[—sz—J - } =-8re +J (g;, (R R)f () ~ |f-‘(.$') J

$(1-5)




Letting 1y, f>, and {3 be unit vectors along the 1. 2. and 3 directions, respectively. so

that

= ().

i =

&“ll%

then we can combine equations (3,89) as

[f;(-"')h + fU8) s + f(5) is][z ln( ) - I:"i' 2/, = ‘8'7[31’;1 ey + 83{3] +37T e

KA
s(I-5)

|s=3]

+LI{[8U(£-E)€: +g2,(£-1_3)£: +g,,(}_?-1_3’){3]_ij(§) _ [A), + f9)is +f3(3)£3]}a§

-2 e (2~ B s G a5

or
J (s)[?.ln(2 \/%] - IJ +21(s).1(s)1(s) = 8mwe+4x e.1(s)i(s)
+; [g(R R).f6)- lﬂ ) J - %J:L(S)-g__(ﬁ- R).f($)u(s)d8

or

i(s).Hzln[zfs%s) - 1}; + Zg(s)g(s)} =87 g.[g - —;'g(s)g(s):'

(3,90)
+Jj[[£—§;<s)z(s)].= R-R).£()- |f © |as
Similarly, combining equations (3,87), one can write them as
f(s).[{zln(ﬂ) - 1}1 + zz_(s)g('s)] = —s:rg.[f —%(s)g(s)}
B 2/ )7 -2 (3.91)

oL Jorfeo) - e
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where R is the value of r at the point under consideration, on the centreline; R is the value

of r at the point on the centreline with » — § (see figure 3.7), and the vector { is the tangent

direction at s.

3.2.3.1 Some Points on the above Force Equation

¢ Since the above equation (3.91) for the hydrodynamic force per umt length
acting on the body is of vectorial form, one may consider it relative to any
arbitrary rectangular Cartesian coordinate system

e The value of &£ appearing in the above force integral equation is arbitrary,

satisfving only the inequality 0 <& << 1. Solution is independent of'e .

« The integral equation for f(s) is a Fredholm equation of the 3% kind.

e The value of f(s) depends, in general, on the entire body shape a <5< 8.

3.2.3.2 Value of the Tensor £(r)

Using equations (3,27) and (3.25), we are able to obtain the value of the

tensorS(z). Since

2 riRetr-en) 1 -

v() =0

Redo o

do,

)

1- e-lf'.’Rfl'r-!.g)
s

%Re(r—g-c)

~ |-

[l_e-uznerr-m (5‘! r ,-JJ

W,,f = 1 -3
SRe(r-e.n)

r

1 v
- I/2Re(r-¢ 1) -1/2Re(r~e.r)
-I+2Re(r-g.5)e ‘ +€ r r
+ - Rej =-e -e¢l,
r j\r

%Re‘(r—g-c)’



Ji2Re(r-e r)

~ |t

Vu="2¢

Thus, the equation (3.25) can be written as

g,J = 'f’-u (5,} - w.,, bl =

Y RN CRR I LA
g.u(’-‘)- Re("-t_f-f,): {[r_et) r—e; -(r-QC) r - r3

e-II2R¢(r—! 9] 2(r —-e.r
r

(r-ern)

(3.92)

3.2.3.3 Thelimitof g; as Re —» 0

It is worth mentioning that if we take the limit of equation (3,92) as Re — 0, we

will have the following expression for creeping flow conditions

& A
6,02+ o),
therefore, as expected, we have R. E. Johnson’s (1980) resuit.

The above equations (3,91) and (3,92) are basic equations for a general case. In
the next section we use these essential equations to develop an expression for the force per
unit length on a long cylinder. Then, we will apply the outcoming result to find out the
flow field around such a cylinder. Having the flow field and force equations, we can
develop the required expressions for the trajectory course of a small particle released far
from the cylinder in a fluid with R <<1 (not zero).
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3.3 THE MOTION OF FLUID AROUND AN INFINITE LONG CYLINDER

The special case of an infinitely long cylinder of circular cross-section with radius &
is considered in the present section. ' The cylinder need not be mathematically infinite, but
it is practically long enough to ignore the ends effects (e.g. a few miles). In order to find
the flow field (u, p) around the cylinder, we need to calculate the hydrodynamic forces per

unit length acting on the cylinder: see equations (3,24) and (3,28) eariier in this chapter.

3.3.1 Driving Drag Forces per Unit Length of Cvlinder

Since the cylinder is considered infinitely long, the force per unit length (# Uf ) is
independent of s, where f is the dimensionless force per unit length on cylinder. To solve

the general equation of force per unit length on slender bodies, equation (3,91), for the

case of cylinder, we need to calculate different elements of the tensor g, , as the first step.

A set of Cartesian coordinate axes (1, 2, and 3) is defined (see figure 3. 10) so that the
point P is located at the origin (s = 0).

i
\

1

Figure 3.10 The Cartesian axes and the cylinder

Here, ¢ is a unit vector along the cylinder axis and ¢ is the unit vector of -

undisturbed velocity located in the surface of 1- and 2-axes. Because of symmetry, the
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component of force per unit length in the direction of the cylinder axis (1-direction) is zero

and the other components are constant and independent of §. Thus

JG) =/, £:.0).
¢ = (sina, coser, 0),

£=(Iv050)9

and if we put s = 0, at the origin

™~

=R-R={(s-,0.0}={-50,0},

(r—g.Q=l§+§sina|.

r_]_$ e cons
;_{ E,o,o} {-sgns. 0,0},

(r-e.r)

5 . - s
=l+7ygsina=1+(sgns)sincx.
H
Substituting the above quantities in equation (3,92)

2{1 —e lllRetlil—Ssma)}
Re (5] +§sina )’
¢~ VRRe(lil-3una)

{(~sgns-sina)’ - (1 + (sgnd)sina }(1- 1)}

&=

+—(m{2(1 + (sgnS)sing) - (—sgns - sina)z}

=

2{1 — g VRellirizmall  iReilesana)
cos™ . (3,93)

&u = Re §° +§(sgn§+ sina)

Similarly, for g,.



2‘1__‘, E:R-'l.s'-i\m;nl
=L j{(—cosa): - [1+(sgn®)sina }(1 _0)}

K2 = T - ssina )

e 1 2He(d »vanen

{2[1 +(sgndsina |- (—cosa )’ }

=

2{1 _ e-l,:m(ln.wnm}sina o LIRes| i n e (sgn +sina)

82T T R S sgd < sina) 3
Also
2{1 - L,f!.f:mm.ss.nu)}
T — {1+ (sen$)sina]}
& R"S'(Sgﬂb‘+sma)-{ [1+(sgns) ]j
~1/2Re(l3]+5s5na)
e - .
+3 T 2[1+(sgns)sina
s(sgns+sma){ [1+(sgns) 1}
=
2{1 - e-lﬂRt(Iilti:mc)}sg-lS‘ 2",-IIZR¢(|§]~3 sing) SgnS‘
=- — . ' + _ .
En Re s°(sgns +sina) E
Also

2{1 - e’lﬁR‘(lil*iunc)}
En=8:=7, F(sgns+sine)’ {(-Sgns— sina)(-cosa) - 0}

e-l]ﬂh{hl-uma)

¥ S(sgn3 +sina) {~ (-sgnd - sina)(-cosa)},

2 {1 _ e-ll‘.'Rt(Is|u:mu)} cos@ g VRReilsiuna) oo

Re §(sgn$ +sina) 5

And similarly,

gzj=g32=g13=g31=0.

(3.99)

(3.95)

(3.96)

(3.97)
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Now. we mav substitute the above quantities into equation (3.91). Thus

—

L |
- m'gfihﬁ).,[(x)w = H-?{xnfl -f.f:,:f:}

- Nt

{! Y L-i-unun}
T Re3(sgns +sing)

12

{(sgn.s"-e-sina)f: +cosaf:} (3.98)

S IMerid s dune

e
25(sgns +sina)

{cos: af - {sgns+ sina)cosaf:}.

[({ - -:,_l'ﬂ)g(ﬁ— ]_})i(s)} = {g.'!l.fl "'g::f:}

2{1 _ e.l‘r:Rdiqu sana)}

" Re§(sgns+sina)

{cosaf, - sin af:} (3.99)

J/2Re(i3i Suna)

e Al
+———§——{- cose f; +(sgns + sma)f:},

and because of equations (3,97) we have

[(L‘ %’_’)g(ﬂ = E).L(E):I = {gslﬂ '*'gs:f:} =0, (3,100)

o
-

It is noticeable that for an infinite rod the equation (3,91) must be replaced by

L’(s).[{?.ln(%) - 1}{ +2g] - -ng.[g - %g]

(3,101)
[ - qw g-B. s,

where from equations (3,98) and (3,99) we see that the integrals are convergent at §=1w
so long as

5|+ 3sina > 0,

or l+sgn§+sina>0 atboth §=+» and §=-w,

i.e. we require
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l+stneg>0 and 1-sing>0,

i

(3.102)

-
-

U
]
H
I+
t2]

Since the radius of the cvlinder is the constant 4, the non-dimensional width 4 = 1

Thus the equation (3,101) may be written as

AReini 2R (i + N
—a SRe3 (N \:mn} el.Ra(gmx mu\cm-a) ‘

. | i
_ﬁ{an(%)+l}=4zslna+ﬂ{_L+£ }[{ Res: * 25(sgns$ +sing)
(3.103)

e 1- 1/ 2Re (g s run ) Y 2ReS(gns xnar)
+f{Jl ‘*‘f }L e-, ~ .}Oosa—e — 225,
e e Re§ (sgns +sina) 25
~IaRestymisuna) I/ 2Reitmgnr 20 miar b

X s -¢ }?,coscz ¢ cosQ

_ﬂ[z _,—8] I}:—S:rcosa + f,{L«-f ]( ReTCgirna) F ]a&
(3.104)

{] e.]f"_ﬂﬁcwﬁ.mq}(_zslna) cl]".me: “““(Sg].\ +Sma)

+A{E+f]( Re§*(sgns +sina) * § a

or we may write them as

ll _ e-lf.‘Rli(—losma)} e-[[:}ux‘(-lvlmn)cosz a}‘ﬁ:

2 i) = i
['I"(zg *l -4:rsma+f,f Re§* * -25(-1+sina)

+fr &_ e-tlmti(l-smc)} N ARG vsma) 2
1, Res* 25(1+sina)

r Leoll‘ﬂcx( !—mc)}cosa **R”'if“""‘“’cosa-’ 45
Re§*(=1+sina) -3

{1 - e,m_n.;(;uma)}cosa e-lj‘.!Ru'(louna) cosa};ﬁ
b ]

+f3f[ Res*(1+sin@) 23

(3.105)

and



n
o

r / » , 7 <12 -’t’dhlmna}}')cosa e'l 2Res(-1suna) cosa
£l 2~ =1]=-8; + - = &
]_ RS l TCOSQ f_[ [ RS (-1<sna) 3
s 1 2Rex Lewne 1] S72Re() ~sing )
fil-e 2cos (
*fl_'- { -2 . ’ -e a =2 &
« | Res(1+sing) 5
. - (3,106)
+fj"" f{l__e-l,-Rn{—l-unu)}(_zsina)+ e-l;:Rar-louna)(_l+sina) &
el Re5° (-1 +sina) -5
4 -l 2Re( L v una) 2R (- una ) :
1- —2si 1
+f~r { e _ }( ma)+e ,( +sina) £
Se Res (1 +sina)
However, mathematically
e-a.i e-r
de‘_j:sz_El(as)
~=y=In(ac ) +0(¢) as &£-0,
wiere ¥ is Euler’s constant. Then
feT£~(-lna)+(—y-lna)+0(e). (3.107)

Also

e 5] e

=°8 ~af” es ds = es ~aE (ac)
=g {e“" -ac E (ac )}

~&'{1-ae +..-ae (~y - Ina+...)}

~&' -a+ay+alna+alng+0(s)
~&'+alne+a(lna+y-1)

and

1}

¥

|8y
,ia

=

hl—'



thus,

olag
j ——ds ~ —alnc+a(l-y - lna)+...
£ X

Therefore. for ¢ — 0, the equation (3,105) becomes

Re

J’}[Zln(-’%) + l] = -drsina + _f]]:-l—{—éRc(l -sina)lne

L e sina W1 e 7 - 1nf L Rec1 — s ) _cos'a [ __(l,._.- )
+2Re(l sma){l 7 ln(zRe(l sina) }}+Z(l—sina){ lne-7-In 2!u.(l sma)}

+é{—%Re(l +sina)lne +—;—Re(l+sina){l-?—lr{%Re(l +sina)]}}

L_Ssa {_ Ine -7 — |n(%Re(l +sina))}]

2(l+sina)

cosx 1 . } : il
+j;l:—m{-5!\’e(l-sma)lns +§Re(l—sma){l—?—ln(51u.(l sma))}}

cosa 1 . ) cos l .
+=—="J _lng-¥-Inl = - % |l Re(l+
- { Ing-¥ ln(. Re(l-sina) } (+si ){ 5 Re(l+sina)lne

-

+%Re(l + sina){l -¥= ln(—;-Re(l + sina:))}} - co:a {— Ing-7- ln(%Re(l + sina))}],

-

and after some algebraic operations
4zsina = f[-2Ink+2In2 -2y +2In2 - 2InRe - 2In(cosa)] + £1[0).

where f> has a zero coefficient. The above equation gives

2z sina
= 3,108
/ ink™' —lnRe +2In2 - ¥ -In(cosax)’ ( )

or equivalently

—
~—

27 sina _
= , 3,109
A InR™ +2In2-¥ —In{cosa) ( )

where Reynolds number based on radius & is



U
18]

Thus, dimensional force per unit length in 1-direction is

27 uUsina

A Y , .
inf — +2In2-7 -In{cosx)

v

and it is noticeable that this force is independent of the length of cylinder /, as it should be.

Similarly as £ — 0, we have the following for the equation (3,106)
87cosa = fi[1-2Ink+2In2 - 27 +2In2 - 2In Re - 2In(cosa )] + £,[0],
giving
4r cosa

f:= 7 \ (3.110)
Ink™" ~InRe +2in2 + = ~7 - In(cosa)

and equivalently

4 cosa

j;'_

= T . (3,111)
InR" +21n2+5 -7 -In(cosa)

where R:xRe:é;q.

Therefore, dimensional force per unit length in the 2-direction is

, 4z uUsing
Si= U ] s
In(T) +21n2+§ -7 —In(cosx)

again, independent of / as it should be.
!
The errors in equations /i and f; are of order x f(Re) --?- f (TU-) and since this

must be independent of /, it is of order é—g {i.e. of order R).
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Let 7 be the umt vector along the cylinder axis and ¢ be the unit vector along
undisturbed flow direction (see figure 3.11).

Figure 3.11 Unit vectors

Then,

and the dimensionless force per unit length 7 on the cylinder is

I__=flil + by,

where /, and i, are unit vectors in the 1- and 2-directions, respectively.

Thus,
l..l=.t.9
L_g-lel e~t.et
S lemtet] {e-t.edfe-r.e))”
__e-t.ef
{I-(L.g)z "
Then, :
Jde-1.¢et
Pyt f—;
oy
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Since ¢ ¢ =sm « and cosa = {E-({ g)} . we will have

27 (1. et | drfe—1.¢1)
InR'+2In2-7 -In{cose) InR" +Zln2+%—y -In(cosa),

o

_L:

2e-
) () . 2fe-t.¢1) —. (3.112)

InR* +2In2-7 -%ln(l —(t.¢]') InR" +2ln2+5[-? -%In(l—(g.g)‘)

S AN

3.3.1.1 Noticeable Points on the above Equation of Force on Cylinder
¢ As was mentioned earlier, the dimensionless force per unit length on the cylinder
S is independent of the length of cylinder / and the error associated with
equation (3,112) is of order R, where R <<1,

. i — 0 as R— 0, in other words, there is no solution for viscous flow, R =0

(Stokes paradox).
o The equation (3,112) is valid so long as ¢t .e= %l (ie. & ==-i_-§) otherwise we

get the term In 0 = - in the denominator of the fraction. This means that if

the undisturbed velocity is in the direction of cylinder axis, the above equation

T

X the equation is still correct and

will not help. However, when —§<a <
applicable.
Since the concentration of this research, in this regard, is on @ =0 (undisturbed

velocity is perpendicular to the cylinder axis), we have £.e=0 from now on. Thus the

equation (3,112) becomes

L. 2 +O(R), (.113)
=T R +2n2+>-7




which agrees with the result obtained by Khavat & Cox (1989)  In this equauon
bli : . : L . e
R=xhe= - and the unit vector of velocity ¢ does not appear in this equation. This is

because ¢ = (0, 1. 0). then the only non-zero component of force 15 in the2-direction.
Theretore, the dimensionless force per unit length on the ¢vlinder fin the equation (3.113)

is automatically in the 2-direction.

Having obtained the force equation. we are now able to calculate the tlow field (x,
p) around the cylinder. The universal solution valid everywhere is obtained by matching
two different solutions for the outer and inner regions. Therefore, we first expand a

solution for the outer region as follows.

3.3.2 Outer Region Solution for Flow Perpendicular to an Infinite Rod

In the outer region the dimensionless flow velocity u and the pressure p, based on
the expansion over the parameter & are generally the summation of uniform flow terms (¢,

0} and the terms related to the presence of cylinder in such a flow.

£=§+z_f,(x)+....} (3.114)

p=0+p{)+..

where for the case of an infinite cylinder, the terms related to disturbance can be written as
follows (see equations (3,24) and (3,28)).

1 IR

@), = 5| &~ R®) S ®)a,

" . (3,115)
1 "“' (rJ _RJ(S)) .a

= CE

4 8r 1" lz_}_e(g) |3 L () ’

Considering figure 3.12, we may define a unit vector along the undisturbed velocity

e, a unit vector along the cylinder axis £, and 2 position vector in the outer region r as
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r=(0,pcosg, psing), and fc]=p.

Figure 3.12 Cylinder and outer region variables

By symmetry, the only component of force per unit length on the cylinder f, isin
the 2-direction. Thus, we show it asf

J=(0.1,0),

and

R(3)=(5,0,0),
then,

r-RE)=(-5,pcosg, psing),  |r-RGE)|=p*+5,

elr-R(®)=pcosp .

_{lc-ﬂ(f)l-g-(c—ﬁ(@)}=Jp=+§’ -pcosg ,



Fi
-3

(r-R(S)) — (-5 pcosg. psing).
|C .@(A)| \{p IS s, pcosg, psin

By symmetry. (#:h = 0, however

~

(#), = —é!:gn({—ﬁ(.f)) ds,

)y =~ gl - R@®) .} (3.116)
. J- (r. - R.(.s))

b lr R(S)|

where in (1), , the first subscript corresponds to the first term of disturbance in equation
(3,114), and the second subscript represents the direction of velocity. Sincz fi=/2=0, we

have only the component of j = 2 in equations (3,116).

For pressure py
pt:OS(Z$
__ ds.
b r P ‘g d ) -
Letting § = p tan6,
rﬁ peos psecf .L°°S¢ o " cos6 d,
b= “8r p'sec’ 8

gives us the pressure field for the outer region as

=g cos (3.117)

For the velocity component (u,),

) =~ gl - RO &5,

where, by equation (3,92), g= can be written as
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7“ c F2Rot g it p:u-n}J v I p: :¢ N
{ _ r'_* 3 _ cos o
Rm/p ~§° - peosg )’ [l peFF J ( ' pcosml\xfp - § (p:+§:)":jj
o VIRetp i g J 2 _( r———p TF - peoss) - ( pLose _ ]:
(\/ T gt —pcos¢)l‘/p + § Lgp +5° |
-
" .?.p COS¢ i - P cos¢ 2‘0 COS¢ I/2Rel pcore) -IIZRG(JT.;:)
82 Re(p:+s )3,:; +{\/p:+§2 +(p 5 ) Re(p:-é-.%:)m}e e I
Thus,

.2 |
(). = L ..pcow gViepcone [T 1 pcosd 2pcosg _mhm .
8’:'. I (p '“") J-- 'JP=+-’ (P +5° )+Re(p +s) a

By writing

S§=psinht, & =pcoshtdt, Jp +§ = pcosht,

we have

ds p coshs dr ® s
J-:)(p:_i_g:)y: - o p cosh“ = [tﬂnh!]_m =2p -1

and

~2Refp e B e 1/2Repcosht p cosht dt

e
E"Jp_’?_dg: E" p cosh?

w0
- I e-lsztpmh:dt’

j_e I/'"Rr PRNS I lf:Rrpcuhrp COShf df ljm e-t[zncpcmh: dt
p + 5 ) p cosh™ ¢ g cosh? ’
= |/2Rep conhr

! -IPR:JpT e
el e
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Thus,

Moy ) » 1
cos Repeone F* 1 2xen 2
=] A e 280,

Sz Rep " Coshr * Rep cosh's |

But

an e_ 12Repoomht aan
J' R J g hrfercahl ool rult
-~ cosh™ ¢

Repj e*l["R‘,‘CUﬂhf )dt.

1
ht-
(cos cosh?

Substituting the above quantity into (r,). and simplifying, we will get

4 - RRepeonh
(1), = é[%-em’”‘“'fme""" #==t(] + cosg cosh t)dt]. (3.118)

For the velocity component (u,):
(“1 )3 = ‘éf_mgsz(f“ B_(f)) ds

similarly, we can use the equation (3.92) to find g:2, and substitute it into the above

equation. After simplifying,

g = 2psing I psm¢ - 2psing um«pcome—lrmwp )
T Re(pes)” s (07 F) Re(p*+35)"
and (u,); becomes
i |
(), = 8%[% -eFReec?sing I:e""’”"’ conhit coshtdtJ. (3,119)

To write these velocity components in polar components, we have
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)

8]

lfal ©.

Figure 3.13 OQuter region polar components of velocity

(1), = (), cosg + (u,}; sing

_ ;f._. _4.._ 1/2Repcos¢ bt ~12Repeesht } (3,120)
=8 | Rep e J_m(cos¢ +cosh?)e df’,
and
(1), = =(4), sing + (1), cosg
(3,121)

- j__ o 1/2Repcos - }/2Repcozh
-8” 51n¢e (4 GJ:e /d ’df.

However, the K (z) modified Bessel function is
K(2)=[ e =ar,
differentiating with respect to =
K'(z)= I:— cosh ¢ e g,

thus,
|7 cosh &=t = ~K2(=) = +K,(2)

Therefore,

[Ceemiar= zf:e'““*"d: =2K.(2),

o
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| coshre tdr=2] coshre “™dr = 2K, ().
Thus.

(1), = gf; {‘-‘1‘;:_? - Ze":m"““{ix'n(;_l_l?cp) + cos¢ K,[% Rep )‘}1
J (3.122)

(”t); = é {4};’_1:09 - Zel-:Rr;'cm9 Siﬂ¢ Kl(%RL’p )Jl-

or in polar components

4
("‘ ),_- = _SLH {Re_p__ 2el/:Rﬂ‘cow|:COS¢ K.(%Rﬂp) + Kl(%RL’ijH,

(3.123)
(u), = -81—;- {Zsin;zi e"”""“"’K,(%Rep)}.

Thus, the complete dimensionless velocity in the outer region, in a Cartesian

system, with polar variables (see equations (3,114)) is

(u), =1+ é {%ﬂ - 2e"2"“"°“[K_(%Rep ) +cosg K, G—Rep )]}
(3.124)

(), = % {—-4;21;‘15 - 2e"**"*sing X, (% Rep)}.

Obviously, there is no velocity in the 1-direction. Now, we need to write the outer

. b .
solution in terms nf inner variables. We recall that R = -g =x Re <<1. Since p=x"'p,
then,

Rep=Rexp =Rp, =



—

(), =1+ f {‘4‘5922 - Zel,-:.'wcmc»[/{"(

- el )
S:r R5 2Rp)+cos¢l~.[2 }
__J4sm¢

crneme o ol 1 _
(1), = 37| K5 2e' et ging A,kih’p j}

{
L

Since the asymptotic expansion of modified Bessel functions are

1 .
K (=)~ -IH[E:] -7 +0(z"In2),
K ()~ +0(zinz),

this value for g = O(1) with R — 0 has the form

(u)==l+é)r {4;?;‘!5 (IT_RPCOS¢+8(RPCOS¢) +, )

[(_ xngRE-r+---]°°s¢(ﬁ%+"J]}‘

(")J_L{4sm¢ _(1+—Rpcos¢+ ~(Rpcosg ' +. )sin¢(Ri5+...)}.

Thus,

u, ~ 1 +§% {+ Zln%RE +2y —2cos’ ¢ }+
(3,126)

Iy~ -8{? {— 2sing cos¢ }+

or, in polar coordinates



=N, COSY + . sing

= Cosg 1[ l+£;[ln]€,3 -2In2+y - I]}w....

and
u,=—u, sing + u, cosg
—_ '_ _~f_ - ~ +=2In? - = l
= sm¢-{ 1+ 43[ InRp +2In2-» ]J+
Applying equation (3.113) into the above equations,
2
,)J; = - 7 +0O(R).
IR +2In2+ -7
InR-21n2 =l)+Inp
u, = cosg (n el )+ e +...
o U (-lR+2m2-y +1/2)
[ —y2+Inj
=co +...
| ChmRs2m2-7 + 1/2)}
= = -4’%cos¢ (Ing - y2)+.., (3,127)
and similarly
ty=-Losing (5 - y2)+... (3.128)

3.3.3 Inner Region Solution for Flow Perpendicular to an Infinite Rod

We calculated outer region solutions, so far, both the actual outer solution (using
outer variables) and the outer solution with inner variables. Now, in order to compare the
outer solution with inner variables with the inner solution, we need to have the inner

region solution too. By equation (3,74), we may write
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((K)=§f —_g;r’fzz_'s;fl
Dlc)= 5o /= =5= fi=0
i) = oo S = =5 =0

So that the equations (3,15), takin

n
N
]
o
B
')
|
2
w
O
8
o
il
o
@,
<
1]
w
<
=
[=
[1°]
v
Q
-

inner region solution as

i, = —%coseﬁ (l—p "=2lnp )
7, = —gi%singé (1-57 +2Inp ),

or

__f - =2
n, = a-cosgé (lnp -12+1/2p )
(3,129)

7, = :é—singﬁ -z -y2+1257)

3.3.4 Matching Inrer and Outer Region Solutions

Comparing the inner region solution (3,129) with the outer region solution in inner

variables (3,127) and (3,128), we see that the latter has terms ZJ;—cosga (12p7) in 3,
and %sinci(l/Zﬁ ) in u, missing. Thus the universal solution valid everywhere is

obtained by adding these terms onto the outer region solution (these terms are
proportional to 5 =xp~* and are thus of order x*, so negligible, in the outer region).

Since the complete outer region solution, using equation (3,124), in polar coordinates is



Fl4 . a by, O
It =c0\w'§;\{\m_~a MCO\oA'\:;uP ”\L ep J’ll
s f : . e /I e
1= -sing = llmnca ¢ LE WO Jl ‘

or in terms of inner variables

= _ f-".t ton g R
", =Ccosg + IR [cosgﬁ K [ R

I
S
+
”
f_"\
'J:
!
f
| E——
o
—

i, = ~sing +é {Zs'mgﬁ gl PRAme g [ Rp )

— Nl—
N

the universal solution, valid everywhere, in polar coordinates is

i, =cos¢ + L {f;— 2eRP ‘“’[cosg& K (%RE] + K,(%Rﬁ )]4- P " cosg }

u,=-sing +é{’>sm¢ e”‘""“’“K( Rp) “sing }

or

u, = cos¢ {l +éf—n [5'2 ~ 2g/PRPce K"(%RE )]}
_L 4 ) I,"’RpchK( R-—-)
87: Rp =e P

- _ _L =2 A  l/:Rpcoss (l -—-)
u,-sm¢{ 1+8:r p +2e K 2Rp .

" In Cartesian coordinates, this is

u, = u,cosg - u, sing



66

w, =1 ——L{—e"m"‘"" K (-I—REJ +—LE “(cos* @ —sin" @)
- 4rx 2 8r
f E‘ : | 2K ;reme (] —‘)
- —— —-e " -~ R R
cosg ar | Rp € K, 21,0

and

uy=u,sing +u, cosg,

4r

-2 2 (2R peose - -
i, = sing cosg / ) '+sin¢zj,;—[R—b.——e"‘R’ ’A,(%Rp]].

Thus, the universal flow field in Cartesian coordinates is

L imseme (l —) A VU
h=l= - K\FRP |+3-P "(cos29)

+cosd ﬁ[}%ﬁ— 2R “’K,[%Rﬁ)], L (3.130)

- 2 ma _
u, = -8%5 " sin2¢ + sing %[}7_) - e""""‘“”K,(%Rp )]

In inner region the above equation (3,130) takes the form of equation (3,129) or

I, =7,cos$ -1,sing = If:r—lnﬁ +4L:r(_ /2 + 1/25‘=)c053¢ \

I,=1u, sing +, cosp = ésinw (-1 +5':) .

or the universal flow field can be also expressed as

z =Lz Lz
= Inp +8;r (p ~~1)cos2g,

(3,131)
i, =§£(5" -1 sin2g.
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We can write equation (3,130) in dimensiona! form. by multiplving it by uniform

e — . s B .
velocity field in infinity, {' (dimensional), and using p =% = Thus. the dimensional

o>

universal flow in Cartesian coordinates is

[ ¥ l::R(%)cmo (1 el j f . :
—_ - o . i PELANY 3 ol W o]
i, = Uil py K, 2R( 5 )|+ ) “(cos2¢)

Sz b
2 f2 'ilcm 1 ! 1
+cos¢-£r- i ‘K.(;R(%)] . b (3.152)
R(Y) - j
|
- . . 2 2 £ Cme, . 1 !
u,=U SLE(%) 'sm?.¢+sm¢z-:;— 3 — W 'A,(ER(%)) l
R(F)
where
9{1- = - T T O,

InR™! +2In2+5-¥

-

y =057722,

R=xRe=bTU<<l.
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3.4 THE MOTION OF A TINY PARTICLE IN THE FLOW

Assume that we release a verv small solid pollutant particle far from the cylinder,
where x¥! = -« (see figure 3.14) in a fluid flow with the velocity fields expressed by
equations (3,132). In order to find collision efficiency of this particle onto the cylinder, we
need to develop the governing equations on motion of such a particle. Let radius of

particle be a and density of particle be p,. Thus the mass of particle will be

m= (ij-:r a’p,).
]

3
U x3 P
o ¢
\ particle ) xé 2
b

Figure 3.14 Motion of particle toward the cylinder

According to the Newton’s second law of motion and by using the result of

Stokes’ problem

or
7 -
Ga*ihp=-pru@),

where 7’ is the second derivative of position vector 7’ in respect to time and ' (') is
dimensional velocity field of fluid relative to the cylinder. Therefore, the term

{~# +u'(r’)) indicates the velocity of the fluid relative to the particle.
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This 1s a vectorial equation and we can decompose it into its 2- and 3-components.
We also can write the motion of particle in Cartesian coordinates, using velocity field

obtained earlier, equations (3.132), and

Hl:p- P=\.'-\":" +-\"3: .

pCosg=xl, psing =x;,
cos2¢ = cos” ¢ —sin” ¢,
sin2¢ = 2sing cosg.

Thus, taking xI and x; as the components of position vector r’, we have for the

2.direction

2 - X :2 ' M . .
(Za‘&)f5=—£§+UI—ée"ka[lR———MJ LY (x -x?)

9 H 2 b

I x; 2b T R R
+ -4—_ - . .2 - 2 —€ Kl - R 7 »
0 \/x'{ + XY R\fx’:‘ +xy

and for the 3-direction

2 . 2 -1‘ ’
(za-fﬁ]";=-x;+u S _ben
9 H 4T (x'f +x,3: )-
L X J 2b _enm% l[lRJx'f +x":]

4z fx? +x7 1R\£r’f + x4 2 b

Using dimensional values & and U, we can non-dimensionalize the above two

equations, so that



and the dimensionless parameter ¢ related to time

I,

! =—

bl

U
iy
b L]

thus. the universal non-dimensionalized equations of motion of particle toward the cylinder

is expressed as

Eiz.z -.dﬁ-'..;.'il “LCU:R&K_(E'Rﬂ’x;_‘ +x:_:, ) 4 éﬁﬂ W

4t dr ar 2 (x;: - ).

L ‘x._. - _2 - -—c'm“K,[iR x3 -s-ngj X
4T \fxi +xi |RVXE +x3 2

> (3,133)
d’x, é}__'_[ S X

4z (x§ +x3 )'

dr* = dt

+ f 5 J 2 -e’m’=K,(%R-Jx§ +x3 )H

47 Jxi +3 |RYE +x3

where K, and X, are modified Bessel functions and p is dimensionless particle parameter

and being defined as

p=—t’ (3,134)

and, as we have already had, Reynolds number and dimensionless force per unit length on

cylinder are, respectively

f 2

R=&<<l and’ =
inR!'+2In2+

v 2T

~

=7

b =]

Finally, we obtained a pair of simultaneous non-linear, second-order ordinary

differential equations (3,133), governing, the motion of a tiny pollutant particle moving
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toward an isolated cylinder with the trajectory direction initially perpendicular to the

cylinder (@ = 0). The collision efficiency of a particle on the cylinder is to be calculated

by simultaneously solving the equations (3.133). numerically. It is described in chapter 4.

3.5 EFFECTS NOT INCLUDED IN TH1S THEORY

(a) Effect of finite (non-zero) size of particle. Nevertheless, to compensate, we may add
the value of particles radius to the collision efficiency £~ presented in chapter five.

(b) When a particle gets close to the cylinder surface the hydrodynamic interaction of the
particle with the cylinder surface will result in a change of trajectory [actually
including (a) and (b) would resuit in £ =0].

(c) Intermolecuiar (van der Waals) forces and electrostatic forces between a particle and
the cvlinder or other colloidal forces. this is especially true for particle parameter
p<0.05.

(d) Possibility of different cases in impact of particle and cylinder. The particle may
1) bounce - no capture or
2) be captured at the surface.

(e) Effect of gravity on particle.

() Brownian motion of the particle (diffusion portion of motion). Diffusion may
dominate over convection with very small particles.

(g) Shape of particle will modify many of the above effects.



Chapter 4

NUMERICAL SOLUTION

The collision efficiency £ 1s to be calculated in the present research. The main part
of the numerical calculations to obtain the collision efficiency is to find out the impact
point of a particle on the cylinder for each pair of Reynolds number R and particle
parameter p, if we release the particle far from the cylinder in the outer region. In this
chapter we concentrate on the numerical method to solve the equations of motion of a
particle to find the impact point for any pair of R and p. By definition, £ is the area
(X! x 1) divided by the area (& x 1), where 1 is the unit length in the direction of cylinder

axis.

U ~~Particle of radius a ‘rx;

.

Figure 4.1 Cross-section of problem

In other words, the collision efficiency £, for each unit length of the cylinder, is the

ratio of the largest amount of initial x; (shown as X in figure 4.1) over 5 so that if we
release the particle at X, it will cause an impact on the surface of the cylinder. Thus, for

any particular R and p

E‘:T, = E=X., (4,1)

where X, is the dimensionless initial x; (we recall that wnmprimed variables are

dimeqsionless).



As was expiained in chapter 3. equations (4.2) describe the motion of a panticle
with a trajectory direction perpendicular to the cvlinder at infinity toward the cylinder.

The equations (4.2} are a pair of simultaneous non-linear. second-order ordinary

diiferential equations.

f X, J 2 LR (1 n - )
L 2 —ernp _p fr 2
4T Jxi +x} lR-\/x:: +x3 ARV
o (4.2)
dx, d¢, | f @ xx,
—_— T e— | ——
Pt T {m:&g+xgy

f x} J 2 V:R (I - 1)
— - -I‘:K __R = -
- Vxi +x} lR\/x:z +x3 ) AVEA1)

4

where, as described earlier, K, and K| are modified Bessel functions and p is a
dimensionless particle parameter, being defined as
2a°p U

fe)
bl of Al

also, Reynolds number and dimensionless force per unit length on cylinder are, respectively

I 2

bU
=-;}—<<l and 27 = 1 .
mR“+2m2+§—r

4.1 INITIAL VALUE PROBLEM

Since all variables are known at x, = —c0, equations (4,2) are 2 kind of initial value
problem and need to be solved numerically for more than three thousand times to create
the desired results in the form of different graphs. In order to solve them we change this

pair of simultaneous non-linear, second-order ordinary differential equations into four first-
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order differential equations. Thus, we will have new vanables as

DESCRIPTION OLD VARIABLE | NEW VARIABLE

Dimensionless ume ! X

{indcpendent variabic)

Dimensionless distance X2 32

in 2-direction

Dimenstonless distance X3 Y3

in 3-dircction

Dimensionless velocity dx. Y
in 2-dircction dt

Dimensionless velocity dx, W
in 3-direction dr

Table 4.1 Changing variables

Therefore, equations (4,2) become

ﬁ_ v S ey, (l 3 2) f (y?_, -y
2 O R U G A ey

S __ { 2 —e‘f"*-‘”K,(%R\/yi +y3 )H /p,

+
ar [ 33 R +53

wiv

3




Now. we have a set of four simultancous non-linear. first-order ordinary
differential equations (4.4). As soon as we set up the initial values for this sct of

differential equations. we will be able to solve them.

Some of the imtial values to be taken in the numerical solution are either given or
can be arbitranily chosen from a valid range. However, there are some values, like initial
velocities in 2- and 3-dorections, which need more attention. In each trial, the above
mentioned equations are solved by taking 0 < (initial y:) <1, and initial y: as a negative
large number (large enough to be considered quite in outer region). The Reynolds number
based on radius 4, R, and the particle parameter p are also chosen so that for every
particular pair of R and p, we should find the corresponding initial y: at which if we
release the particle in the outer region, it will finally collide with the cylinder. In other
words, by trial and error, we should find a particular initial y: (for each pair of R and p) at

which if we release the particle, the impact is guaranteed.

The important point here is that the impact point is not necessarily the top point of

the cylinder where x; = & (see figure 4.1), but it can be everywhere in —h<x; <0 and
0<x]<b, otherwise it would be easier (no trial and error) to cover the distance vice

versa (from right to left in figure 4.1).

In addition, since we can not start the program right from x, = - (where initial

particle velocities are known), two initial velocities must be determined. It can be done by

different methods discussed in the next section.

4.1.1 Calculation of Initial Particle Velocity

Even if the value to be taken for the initial particle velocity is not correct, it does

not matter since the effect of is velocity is only local, affecting the particle motion only

over distances of order %, m being the mass of the particle, {/ the uniform flow
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velocity, a the radius of the particle, and & the viscosity. However as we see in figure

4.2, if the velocity is not correct. the vutial value of y; will not be correct either.

= Imual velocity
AN Cvlinder
1

1
initial v,

Figure 4.2 Initial velocity

To avoid this initial transient effect, one should take the initial particle velocity at
infinity to be the fluid velocity at infinity. That is
dy, v e
(—‘5- I - (1 . 0) as initial xa— — .
For.the numerical solution, however, one must take x» as finite. In this case one

has three options.
1. Take the particle initial velocity as the fluid velocity at infinity.

dy, dy,
(% %)=0.9)
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. Take the particle velocity as the fluid velocity at the particle’s initial position.
. Take the position and velocity of the particle initially to be that calculated from the

)

particle’s motion from infinity to the distance initial x.

The other way to solve this initial transient effect problem is to use the results of a
few steps after initial step in numerical solution where we get a smooth trajectory for the
particle course. But we do not consider it as an option because we need to have control
over E (or initial y;). In any case, of these three possibilities, the third one would be the

best. Thus, we follow this option.

The equations (3,125) can be used to describe the velocity field in the outer region

with inner variables. We use inner variables only because # was non-dimensicnalized in



the same manner as x: and x: (by #). Dimensionalizing, by muitiplving the velocity

equations by {/

i 4C05(ﬁ 2R pem - 1 - . ,I —
(), =U 1+8%{ Rp ~ 2! R .{A‘_(Elfp)+cos¢ A‘LERPHH‘

[ f [4sing

(4.5
(), =U -S-}-r-l_[.epT 2e"FP0 sing K, [%Rﬁ )H J

L2

x! y '
3 P
U r
° al ¢
\ patticle ) x; 2
b

Figure 4.3 Dimensional variables

Since initial x, is a large negative number, ¢ =7 and cos¢ =-1, making the

term e"*R#<** =0 Considering mass times acceleration for the particle in the outer

region

(i:r a'p ) =6rpual- +u'(r)),
3 F -
or

2 2& R Pt
G DE =+ @), (4.6)

where F is the second derivative of position vector r’ with respect to time and #’(r’) is
the dimensional velocity field of fluid in the outer region relative to the cylinder,
Therefore, the term (—ﬂ +u'(r ) indicates fhe velocity of fluid relative to the particle.
Applying Cartesian variables in the outer region velocity equations and inserting them in
equation (4,6),

pcosgp=x;, p'sing=x},



78

we will have

r @7)

Using dimensional values & and U, we can non-dimensionalize the above two

equations, so that

’ ’
2 25
3-6‘

and the dimensionless parameter 7 related to time

_r U,
Cyuthh

using the chain rule, we have

p'(zﬂ]=—£+u 1+-.—'f_( b-x-. ]J}

a7 "2z \RE(x +%7)

(265). e f £t
P\ @) & 2T m
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and finally considerning

Rx] << (4.8
one can write the dimensionless particle’s equations of motion in outer region as
d’x)  dv, f ( | J
P[ dr: ] ST “{”'_we x.
#.9)

On the other hand, we know that far enough in the outer region, where we need to
find the initial velocities, the second derivatives in (4,9) can be taken zero (a linear

expression for velocities). This is true for distances for which

Rx,>>1, (4,10)

thus, dimensionless initial velocities, quite far in outer regton, can be written as

d, f '1)
dt _1+2;rRLx: ’

e, f [xaj
dt " 2nR x§ ?

@1

where

R=-££<<l and f: 2
v 2r

InR™ +21n2+-%—}'

In 1994, using another analytical method, Professor R. G. Cox obtained the same
results for initial velocities but in different directions. Those results have been applied in

numerical calculations.
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4.2 NUMERICAL METHOD

It is the nature of the boundary conditions and the behavior of the equations that
determines which numerical methods will be feasible. Based on the needed accuracy,
efficiency, and cxisting facilities one may choose a suitable method for the problem on
hand. There are many different practical methods to solve a set of ODEs numencally.
Neglecting conceptual methods like Euler's and Modified Euler’s method and Taylor

Series method, some popular and practical methods are briefly discussed here.

1. Runge-Kutta methods, named after two German mathematicians, Runge and
Kutta, are very popular because they wvirtually always succeed. Instead of computing
higher derivatives for the truncated Taylor series, they basically propagate a solution over
an interval by combining the information from several Euler style steps and using the
information obtained to match a Taylor Series expansion up to some higher order.
Although these methods improved the efficiency of Taylor Series and Euler’s methods
considerably, they are usually good when moderate accuracy is required. Higher orders
(the most popular Runge-Kutta are fourth and fifth-order while Euler’s method is a special
case of a second-order Runge-Kutta) and even adaptive stepsize control for Runge-Kutta
are available. However, these single-step methods are used when (1) we have a trivial
problem where computational efficiency is of no concern, or (2) we do not know any

better, or (3) we have a problem where better methods are failing.

2. Predictor-corrector methods are a particular subcategory of muitistep and
multivalue methods. They store the solution along the way, and use the results to
extrapolate the solution one step advanced; they then correct the extrapolation using
derivative inforraation at the new point. As a result, they need adequate memory space to
run. These methods are good when a high precision solution is needed for very smooth
functions with a very complicated right-hand side. The most popular predictor-corrector
methods are probably the Adams-Bashforth-Moulton schemes which have very good

stability properties.
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3. Richardson extrapolation uses the powerful idea of extrapolating a computed
result to the value that would have been obtained if the stepsize had been verv much
smaller than what it actually was. The first practical ODE integrator that implemented this
idea was developed by Bulirsch and Stoer, and so extrapolation methods are often called

Bulirsch-Stoer methods.

For high-precision applications or where evaluations of the right-hand sides are not
expensive, Bulirsch-Stoer methods dominate. For convenience, of for low-precision,
adaptive-stepsize Runge-Kutta dominates. Predictor-corrector methods are in the middle.
They are suitable for the exceptional case of very smooth equations and very complicated
nght-hand sides when high-precision is needed. The trajectory course of a particle is very
smooth as far as the particle is not close to the cylinder. But when the particle gets close
to the cylinder, which is the most important part of our calculations, one can not guaranty
that the equations remain as smooth as before. On the other hand, we need more accuracy
than what we may get from Runge-kutta methods. This is because (1) the final results
depend on the accuracy of the method directly and (2) initial y= is a very large negative
number that means we have to calculate a very long course with numerous steps up until

¥, =0 (the end of the course). That may cause an accumulation of truncation errors.

As a result, the use of the Bulirsch-Stoer method is preferred. In the next section,

the basic theories behind this method are explained briefly.

4.2.1 Richardson Extrapolation and the Bulirsch-Stoer Method

The Bulirsch-Stoer method discussed i this section is at least one of the best
known ways (if not the only one) to obtain high accuracy solutions to orainary differential

equations with minimal computational effort. Three ideas are put together in this method.

The first idea is a very general idea called Richardson's deferred approach to the
limir: perform some numerical algorithm for various values of a parameter 4, and then

extrapolate the result to the continuum limit 2 =0. In other words, the idea is to consider
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the final answer of the numerical calculation as itself being an analyvtic function of an
adjustable parameter like the substep-size A Performing the calculation with various
values of A, the analytic function, then, can be evaluated. The point is that none of the
values of 4 needs to be small enough tc yield the accuracy that we desire. Gathering
information about the function through different numbers of substeps, we fir it to some
analytic form and then evaluate it at the optimal point # = 0. As shown in figure 44, a
large stepsize / is divided into different sequences of finer and finer substeps. Their
results are extrapolated to an answer that is supposed to correspond to infinitely fine

su™steps.

extrapolation
1o o0 substeps

2 substeps

Figure 4.4 Richardson extrapolation

The second issue is that what kind of fitting function is used. Bulirsch and Stoer
first recognized the strength of rationmal furction extrapolation in Richardson type
applications, = But more recent experience suggests that S smooth problems
straightforward polynomial extrapolation, using Neville’s algorithm' (not Lagrange’s
classical formula) that gives error estimate as well, is slightly more efficient than rational
function extrapolation. Neville’s algersithm generates a tableau form of P’s (the value at x
of the unique polynomials of various Hegrees) to derive the corrections that make the

extrapolation one order higher.

' A complete explanation of Neville’s method can be found in many books in the field of Applied
Numerical Analysis.
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In tact. Newille's algorithm is a recursive way of filling in the numbers in the
tabieau a column at a time. Keeping track of the small differences between elements of
each column and the next column of the tableau, at each level m (form = 1.2... N-land N
being the number of points) one can compute the corrections due to higher order
extrapolations and repeat it until no further considerable gain is obtained with regard to
roundoft errors. The final answer 2, v.(or ), is the sum of any v, {an arbitrary clement of
the first column of the tableau) plus a set of corrections that torm a path to the rightmost
element. We will accordingly use polynomial extrapolation as a fitting function in our

program. The corresponding routine is called pzextr (see Appendix A).

The third idea is to use a method which error function is strictly even, allowing the
polynomial extrapolation to be in terms of the variable #° instead of just #. For this
purpose, the modified midpoint method is used to advance a vector of dependent variables

M(x) from a point x to a point x - A by a sequence of » substeps each of size 4.

Basically, the modified midpoint method is itself an ODE integrator. In practice,
the method finds its most important application as a part of the more powerful Bulirsch-
Stoer technique. The number of right-hand side evaluations required by the modified

midpoint method is # + 1. The relationships are

2 = y(x)
= =::0+hf(x,::,
Zwet =2 +2H f(x+mh,z) for m=12,. . n-1,

"

and

Yx+H)=y, E%[:,, +2,,+h flx+H,z,)], (4.12)

where 2’s are intermediate approximations which march along in substeps of A, and y, is
the final approximation to y(x + H). The method is basically a “centered difference™ or
“midpoint™ method, except at the first and last points which give the qualifier “modified”.
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The modified midpoint method is a second-order method but with the advantage of
requiring (asvmptoticaily for large #) onlv one derivative evaluation per substep /1 instead

of the two required by the second-order Runge-Kutta method. for instance,

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
derives from a result about equation (4.12). It turns out that the error of this equation,
expressed as a power series in /1, contains only ¢ven powers of A,

o

Y- ¥x+H) =2 a k.
=l

where A is taken as a constant but /# changes by varving #in 4 = A n. Obtaining an even
power series is important because one can combine substeps to eliminate higher-order

error terms. For example, suppose 7 is even and let y,,, denote the result of (4,12) with

half as many substeps (7 — n/2). Then the estimate

4y, =Y.
Pe+ H) =2 Juz (3.13)

2

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only about
1.5 derivative evaluations per substep # instead of Runge-Kutta's four evaluations.
Nevertheless, the result of one full step A is considerably improved by using the
Richardson extrapolation. Thus, a single Bulirsch-Stoer step takes us from x (any
dimensionless time point) to x + H, where / is supposed to be quite a large rumber. That
single step is a grand leap consisting of many (dozens to hundreds) substeps of the
modified midpoint method, which are then extrapolated to zero stepsize. This is very
useful when we have, for instance, for R =107, initial y» = -500,000. Otherwise we need
much more time to get the results of the computations. We recall that, for initial values,

we should keep Rx, >> 1, or in new variables initial y, >> R™'. A value of -50 R is

used for initial y, when R is from 10® to 10® and -100 R is used in the case of larger R’s
to make sure the starting point is far in the outer region.



The sequence of separate atiempts to cross the intenval A 1s made with increasing

values of n, the number of substeps. Bulirsch and Stoer originally proposed the sequence

n=2406812.16243248,64.96.....[n, - 2m.z]....
Then the sequence was improved to the more efficient one as
n=24638.10.121416... [ = 2/].... (4.19)

We do not know, in advance. for each step how far up this sequence we will go.
After each successive » is tried. a polvnomial extrapolation is attempted. That
extrapolation returns both extrapolated values and error estimates. If the errors are not
satisfactory, a higher 2 1s chosen. When they are satisfactory. the next step is started with

anewn=2,

There must be some upper limit. beyond which we conclude that there is some
obstacle in our path in the interval A, so that we should reduce A rather than just
subdivide it more finely. The maximum number of #’s to be tried is taken equal to 8; the
8™ value of the sequence (4,14) ts 16, so this is the maximum number of subdivision / that
is used. This is because, generally, there is very little further gain in efficiency whereas

roundoff can become a problem.

Error control is enforced by monitoring internal consistency, and adapting the
stepsize to match a bound on the local truncation error. [Each new result from the
sequence of 2 modified midpoint integration (a new y for a new ») allows a tableau like the
Neville's algorithm tableau to be extended by one additional set of diagonals. The size of
the new correction added at each stage (dy) is taken as the (conservative) error estimate.
This error estimate is used to adjust the stepsize. Moreover, by implementation of
different £'s (values of the required tolerance for each step) and comparing the final
results of programs we made sure that the accuracy control is met. It is discussed in the

next chapter.
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Chaprer 5

IMPLEMENTATION, RESULTS. AND DISCUSSION

Applving a computer program. written tased on Bulirsch-Stoer method, to solve
the set of four simultaneous non-linear, first-order ordinary differential equations (4,4).
obtained in chapter 4. presenting the results, and discussing them are the issues under
consideration in this chapter. The purpose of the numerical calculation ts to obtain the
collision efficiency of a particle onto the cylinder for various Reynolds numbers R and

particle parameters p.

We recall that the motion of particle toward the cylinder is described by

B[&
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in this set of differential equations. 3, and 3= are dimensionless initial velocities in
2- and 3-directions, respectively  Using new vanables from table < 1. we get these

velocities, from equations (4.11), as

dv; | _f 1

e T 2T R \ye/ |
b (3.2

d_,l-'-, f 1/ t A

(ir 2.TR'\LE P !

where
7
R:évg-«l and = = 7
' IR +2l2+5-7

and under the conditions
Rx.>>1, orinnew variables initial y, >> R™, (5.3)

and

O<initial y, <1. (5,4)

It is important to notice that. in the development of the equations of motion of the
particle (3,133), the cylinder was considered as a line force so that the disturbance effects
due to the presence of the cylinder in the flow field were taken into account without
considering its physical appearance. This approach is necessary to solve the problem in an

easier way.

5.1 NUMERICAL SOLUTION CONCEPTS

In order to get a clear idea of what has been done in regard with the numerical
solution, the procedure of numerical calculations and the ideas behind them is discussed

here conceptually. The collision efficiency £ based on equation (4,1),in new variables, is

E=Y, (5.5)



where I 1s the largest value of ronal v which can cause an impact of the particle onto the

cvlinder (see figure 5 1)

In the case that the herght of the 1nitial position of the particle trom the equatorial
plane (unal yv:) 1s greater than ). the particle will miss the cviinder 1t is less than ),
the paricle passes through the cylinder (certainly has an impact if the presence of the
cyvlinder is considered) and if /rnial v is equal 1o some ¥, the particle just and only just
touches the surface ot the cylinder. Thus, £ =} is the point we are interested in and can

be found by trial and error .

L ' ?micle of rads o ,_,——‘:-h~
L o T e e T
tugaf M, = T, .. — -
r “ *
N N

Figure 5.1 Particle’s trajectory and new variables

Consider the case of Reynolds number R = 107, particle parameter p = 10°, and
(far enough in the outer region) initial y; = -50000. In order to find the collision efficiency
E for these given conditions, the first trial for ¥, is assumed to be initial y: = 0.65. In the
region where y. <1, for each step of the program, the radial distance of the particle from
origin is calculated and the minimum amount of these radial distances in all steps of this

trial is kept in a memory (the stepsize of the program is controlled so that we have about
850 steps for the distance 0 < y. < 1).

If the minimum radial distance is less than one, the initial y; must be increased and
if it is greater than one the initial y; must be decreased. The calculation of the trajectory
course must be repeated with a new initial y; until the minimum radial distance is close
enough to one (in the implemented program only minimum radial distances 20.9996 that
are <1.00039 are accepted). The result is ¥, {collision efficiency E) for the above
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mentioned given conditions and represents only one point on a curve vou will see later in

this chapier

Changing the particie parameter p and finding another £, by trial and error, for
these new conditions, another poimt of a curve 1s found — Therefore, cach curve
corresponds to onlv one Revnoids number 2 and many different p’s. We continue this
process with a new Revnolds number R and various p’s to get enough results to draw the

corresponding curve and the like for another R...

5.2 OPTIMIZING THE SOLUTION

The computer run time required to finish only one point on a curve (one R and one
p) varies between about one minute for the best conditions (when p is a large number. like
100 or higher. or R is not too small, like 10~ or higher) and about ten hours for the worst
conditions (when p is less than 100 and R is less than 10™)!. If we consider an average of
two hours for each point to be calculated, having more than 150 points for seven curves to
be investigated. we need more than 300 hours of pure run time to calcuiate 2ll points. This
is excluding the time needed to check out and debug the program and subroutines and

rerun the program with a different error tolerance £ in order to compare the output to get

a reliable result which is usually much more time consuming.

In other words, if we use a computer 10 hours a day (not normally available), we
need more than a month of just calculating the final resuits. That is why optimizing is a
matter of concern. We used different levels of optimization. On the first level, a suitable
numerical method for the problem in hand must be chosen. Richardson extrapolation with
Bulirsch-Stoer method is a quite powerful and efficient method for our purpose. The
second level, is to optimize the FORTRAN language commands throughout the program

' These results are mainly from a PC 486DX2/66. Sun System’s results can not be compared directly to
theses results because Sun uses a standard multitasking (multiprogramming) environment in which tasks
share the CPU by switching processing between the tasks very rapidly. However. the overall results on
Sun System was not only somewhat faster, but also the accuracy and the ability to deal with very smail
numbers (underflow errors) was considerably better.
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and also fo wnte special commands (o stop the program when something unexpected or
wrong occurs  The third level, 18 to mimimize the numbers of tnal and errors by choosing 2

proper method and a start point for imnad v

When wz have absolutely no idea about the position of 17| the Bisection method is
the best one to use. However. when we know that, for instance, * must be greater or less
than 1" of the last calculated point. the Goldensection method is preferable © Therefore, a

good start and a proper method can save a great dea of time.

5.3 ERROR CONTROL

There are several sources of error in a numerical calculation in addition 1o the

truncaiion error. Here. we discuss different sources of error very briefly.

\. Original Data Errors are due to initial conditions. When initial conditions are not
known exacily, the solution will be effected to a greater or lesser degree, depending on
the sensitivity of the equations. To reduce this kind of error, we calculate the initial
velocities analytically in chapter 4. This is actually the best we could do. However,
since there have been some assumptions and simplifications in this analytical probe, the

result is not perfect.

2. Round-QOff Errors are related to the finite number of decimal places in computations.
No marter whether we round or chop off, there is always error dealing with real
quantities. Carrying more decimal places in the intermediate calculations than we
require in the final answer is the normal practice to minimize this, but in lengthy
calculation this is a source of error that is extremely difficult to analyze and control,
Furthermore, in a computer program, if we use double precision, we require a longer

execution time and also more storage to hold the more precise values. This type of

% In Goldensection method the dividing proportions are 0.618 and 0.382 (instcad of 1.0 and 0.5 in
Bisection method).
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error is espectailv acute when two neariv equal quanuties ar2 subtracied.  This was
actually the case for very small Revnolds numbers with smail particle parameters.
{'nderflow and divided by zero were the most common errors in such cases. To avoid
these errors. double precision on a Sun System was used. Moreover, reducing the
volume of computations by controlling the stepsize is one of the best wavs ¢ reduce
round-off errors. Since this was discussed at the end of chapter 4, we do not repeat it

here.

w2

. Truncation Errors of the Method are due to the use of truncated series for
approximation in our work. In other words, the truncation error is because of the
approximate nature of the numerical method. The best control is the choice of method.
Richardson extrapolation and Bulirsch-Stoer method. explained in chapter 4, were the

answer to this problem.

Despite all these discussions, one needs a sort of reliable and understandable way
to trust the outcome of numerical calculations. Since there is not experimental nor
analytical data to compare cur results, the best way is to vary the local truncation error &
and check the solutions and accept only the solutions exhibiting a relative difference less
than some desirable value. Although we can only show the values of collision efficiency
on our graphs up to two decimal points, we accept only the solutions with a relative
difference less than 10 for the worst conditions. This corresponds to a local truncation

error £ = 10" and guarantees even a higher accuracy for other most cases.

5.4 NUMERICAL RESULTS

Presenting the results of numerical calculations is done in two forms—tables and
graphs. Each table which is the output of computer calculations, corresponds to only one
Reynolds number but several particle parameters. At the beginning of each table the
relevant conditions are introduced and then a summary of the important values of the
results is printed out.
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e =N S .
TOR THEI FOLLIOWING IINDITICONS:
R= ILOC0Q0E-098
EPS- 1.00000E-0%
Initial Y27 = YSTART.I! = =5,00000E-27
THZ RISULTS
SY(2)/dzs = ¥{l} = YSTART(1l) = 0.98733%

I Trial{J) Min.Hyptns Prtelp E=Yo Ln{Przrelp)
1 2 0.9638% 3C000000.0 0.9%618 17.2167
2 5 0.96887 22000000.0 0.98387 16.9065
3 11 0.99993 10000000.0 0.96205 16,1181
4 ) 0.g88%a9 2000000.0 0.89543 14.5087
5 g 0.99971 300000.0 0.76573 12.6115%
8 ] 0.88882 60000.0 0.64431 11.0021
7 5 1.00026 20000.0 0.56236 9.90349
8 13 0.9%88s8 15000.0 0.54062 9.61581
] 11 0.98%65 10000.0 0.51001 8.21034
10 14 0.98985 6000.0 0.47173 8.69951
11 11 0.89966 3000.0 0.4190 8.00637
12 12 1.00038 1500.0 0.36620 7.31322
13 7 0.99%66 1000.0 0.33441 6.90776
14 11 0.999%966 800.0 0.316%¢6 6.68461
15 11 0.998%90 500.0 0.27987 6.21461
16 12 1.00006 350.0 0.25136 5.85793
17 14 0.99878 220.0 0.21346 5.39363
18 13 0.99%67 120.0 0.16355 4.78749
19 12 0.99588 80.0 0.12984 4.38203
20 12 0.99385 50.0 0.09082 3.91202
21 11 0.99963 30.0 0.04598 3.40120
22 8 0.9%982 20.0 0.01763 2.99573
23 14 1.00012 15.0 ¢.000Q01 2.70805
24 2 1.00104 10.0 0.00000 2.3025%

Table 5.1 Results for Reynolds number R = 10®

The first column of each table (1) is a counter, indicating th: number of rows that
is the number of points on the related graph. The second column (Trial(J)) is the
number of trials to find ¥, for the corresponding particle parameter (Prtclp), in column
four. The third column (Min.Hyptns) shows the minimum hypotenuse (radial distance
from origin) of the last trial of the row. This number must be cluse enough to ore (the
dimensionless size of the cylinder radius) in order to accept the collision efficiency (E=¥.)’,

>Or X, in old variables



in column five  The last column (Ln zrzzlz )is the natural logarithm ot column tour.

The number of computed steps in some trials itke for £ = 10 and p = 10, is abouwt
one million while for cases like 2 =10 and p = 20.000 it is about 330 steps (it does not
wmclude the substeps in the Richardson extrapolation). This is becauss of the role of p in

our differential eguations and also the smaller R the larger the absolute value of ininal -,

THIZ IS THE FESULT QF THE PROGRAM MAINT: QONE "R,
FOR THE FTOLLOWING CCONDITIONS:
R= i.0000002-02
EPS= 1.000000E-02
Initial Y{2} = YSTART(2) = -10000.00000C
THE RESULTS
dy(2)/dt = Y{l) = YSTART(1l) = N.9866183

I Trial(J) Min.Hyptns. Prtclpe. E=Yo Ln{Precelpl
1 18 0.98716 50000.0 0.98%¢8 10.81978
2 11 0.59970 20000.0 0.98877 ©.20349
3 13 1.00025 15000.0 0.9858&7 $.61581
4 11 0.98%87 10000.0 0.97991 $.21034
5 12 1.00018 6000.0 0.97251 8.69951
6 11 1.00007 3000.0 0.55552 8.00637
7 ] 1.0003% 1500.0 0.92611 7.31322
8 12 1.00036 1000.0 0.20054 6.50776
8 9 1.0003¢ 800.9 0.88355 6.68461
10 12 l1.00012 500.0 0.83%80 6.21461
11 10 0.98e73 350.0 0.75887 5.85783
12 10 0.98%9. 220.0 0.73575 5.38363
13 12 1.00001 120.0 0.63581 4.78749
14 10 1.00034 80.0 0.55825 4.38203
15 10 0.99570 50.0 0.46213 3.91202
16 10 0.99969 30.0 0.35067 3.40120
17 10 0.995984 22.0 0.28179 3.0%104
18 11 1.00015 14.0 0.18303 2.63806
19 11 0.99578 5.0 0.09285 2.15722
20 8 0.99%65 7.0 0.04678 1.94581
21 14 0.99564 5.0 0.01331 1.60%44
22 16 1.00027 3.0 0.00463 1.09861
2 15 0.88882 2.7 0.00408 1.00001
24 16 1.00004 1.5 0.00243 0.40547
2% 16 0.955%58 1.0 0.001S6 0.00000
26 17 0.95%65 0.5 0.00157 -0.868315

Table 5.2 Results for Reyrolds number R = 10°

L)
L



Here, we onlyv show the tabies for diree Revnolds numbers (8 107, 10" and R

). the others are presented in Appendix A

Although R = 10 1s not a valid case, based on our assumptions & -~ 1, to
investigate the behavior of the solution. we present the related results here and discuss it

later

THIS I3 THE REEULT CF TH™ PRCCRAM MAINT: ONE "R",
FOR THE FOLLOWING JONDITIONS:
|= 1.00000
Zes= 1.00000E-05
Initial Y(2) = YSTART(Z) = -5000.00
THE RESULT
gY¥(2l/cér = Y(1}) = YSTART(l) = 0.98%684

I Trial{J) Min.Hyptins. Prrelp. E=Yo Ln(Prtelpl
1 15 0.99879% 20000.0 0.98027 9.3034%
2 14 0.¢2981 15000.0 0.99881 9.61581
3 13 0.59977 10000.0 0.99808 29.21034
3 14 0.89950 6000.0 0.99735 B8.69951
5 13 0.69985 3000.0 0.99571 8.00637
& 12 1.00006 1500.0 0.99306  7.31322
7 12 0.899%75 1000.0 0.989%6 6.%0776
8 13 0.%9987 800.0 0.98804 6.68461
e 12 1.00020 $00.0 0.98256 6.21461
19 13 0.99985 350.0 0.97607 5.85793
11 14 0.25968 220.0 0.96484 5.393863
12 13 0.65878 120.0 0.94310 4.78749
13 13 1.00007 80.0 0.92228 4.38203
14 ki 0.59961 50.0 0.88857 3.%1202
15 11 1.00022 30.0 0.83%06 3.40120
16 9 0.5996] 22.0 - 0.79960 3.0%104
17 6 0.59%967 14.0 0.72954 2.63906
18 10 0.88%79 9.0 0.64484 2.19722
19 8 0.89%80 5.0 0.50973 1.60944
20 13 1.00018 2.7 0.35835 1.00001
21 11 1.00014 1.5 0.23419 0.40547
22 14 0.%9989 1.0 0.17947 0.00030
23 12 1.00022 0.5 0.13204 -0.69315
24 9 1.00002 0.2 0.10838 -1.60844
25 13 1.00010 0.1 0.10126 -2.30259
26 11 1.2001% 0.05 0.0977% -~2.99573

Table 5.3 Results for Reynolds number R=1.0



Using the lata trom the tables in semi-loganthmic uraphs. the results can be
oresented as the oflowing figures  Only columns tour and five are used to draw the

zraphs

E (Callision Efficiency)

B2 E-1 1E+0 TEel 1E=2 B3 TEws E-S
p (particle parameter)

Figure 5.2 Collision efficiency for Reynolds number R = 1.0

As shown in figure 5.2, we use a logarithmic scale for the values of particle

parameter p (for its large changes) and a linear scale for the collision efficiency £=Y,.

If the data related to the Reynolds number R = 0.1 is used, the outcome is the

following graph.

E {Collision Efficiency)
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Figure 5.3 Collision efficiency for Reynolds number R =0.1

1E~1 1E=2 1E+3 1E~d 1E+%
p (particie parameter)



The graph below corresponds to the data trom the table of reseits tor X

t (Collivon Flliciencey )
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Figure 3.4 Collision fliciency for Reynolds number R = 0.01

Similarly, for the Reynolds number R = 10~ we have

E (Collision Efficiency)
l
o F
ve
. Re1EJ |
Dot !
0s b
var
o _/
1E~0 1E=1 1E«2 tE«3 lE~d 1E=} IE+¢
p (particle parameter)

Figure 5.5 Collision efficiency for Reynolds rumber R = 10°
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and for the Revnoids number R = 107,

E (Collision Efficiency)

N .
IE-0 I8+ 1E«2 1E+3 1E=3 1E~$ 1E+6 1E~7
p (particle parameter)

Figure 5.6 Collision efficiency for Reynolds number R = 10~

The results in the table for the Reynolds number R = 107 are presented in the

following graph.

E (Collision Efficicncy)
H

v3

04

0 N : H H H
1E~1 1E+2 1E~3 1B+~ 1E+5 1E~6 1E~7 1E+8
p (particle parameter)

Figure 5.7 Collision efficiency for Reynolds number R =10
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The graph below presents the results refated to Revnolds number R = 10™,

E (Collision Efficiency )
1

[ o

ozr

0 . - . " . i -
1E~1 JE~2 1E=3 LE+S 1E=5 1E~6 tE+7 1E+R
p (particle parameter)

Figure 5.8 Collision efficiency for Reynolds number R =10

5.4.1 Why to Non-Dimensionalize

During our work, we kept trying to deal with dimensionless variables. Now that
we got the results, the advantage of non-dimensionalizing is more clear. In the original
problem, in dimensional form, the involved quantities are particle radius, particle density,
cylinder radius, fluid viscosity, fluid density, and fluid velocity. Thus, the answer was
going to depend upon six quantities. If we want to solve the problem in dimensional form,
we will have six variables to change. If we just choose for each variable 10 values, we get
10° problems to solve. While in dimensionless form, we only get two variables, the
Reynolds number and the particle parameter, and about 150 cases to solve (6 R’s times 25

P’s).

Moreover, on each graph, instead of having six, we get only two variables R and p
and all the information is put on a single graph. Therefore, for all possible combinations of
the values of dimensional variables in R and p, one can easily calculate the values of these
two dimensionless quantities, select the appropriate curve and p, and just read off the

collision efficiency E.
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5.5 DISCUSSION ABOUT THE RESULTS

As we recall. the restrictions and effects not included in our theory and its

implementation are as follows.

(2) The particle parameter p is a positive quantity (zero to infinity).

{b) Reynolds number R, based on radius of the cylinder 4, is very small (R << 1). Itis
questionable whether the theory can apply to R = 107,

(c) Effect of finite (non-zero) size of the particle. However, we can compensate it by
adding the value of particles radius to the collision efficiency £ presented in chapter
five, after reading £ from a table or a graph. This is true, considering in our problem
E =Y for relatively small particles.

(d) When a particle gets close to the cylinder surface the hydrodynamic interaction of the
particle with the cylinder surface will resuit in a change of trajectory [actually
including (¢) would result in £=0].

(e) Intermolecular (van der Waals) forces and electrostatic forces (or other colloidal
forces) between the particle and the cylinder. This is especially true for the particle
parameter p<0.05 which is not included in this research.

(f) Possibility of different cases in impact of the particle and the cylinder. The particle
may
I) bounce - no capture or
2) be captured at the surface,

(g) Effect of gravity on the particle. .

(h) Brownian motion of the particle (diffusion portion of motion). Diffusion may
dominate over convection with very small particles.

(i) Shape of the particle will modify many of the above effects.

() The particle parameter p can be written as

2a°p. U 2fa)
p=25m =3(3) Zxre,
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where p is fluid density. Since & Ry = R << 1, pal (except whena > A) Thus,

deposition of the particle due to inertia impact is negligible.

Considering the above restrictions. the results are discussed in this section. Putting
the graphs together. we have a better view 10 see the changes. The first three graphs for

Reynolds numbers R = 1, 0.1, and 0.01 are presented as the following graph.

E (Collision Efficicncy)
1

0.3

0.6

0.4

. I | H .
1E-2 1E-1 LE+0 1tE~1 LE+2 1E+3 1E+4 1E+3
p (particle paramcter) ‘

Figure 5.9 Collision efficiency for Reynolds numbers R =1, 0.1, and 0.01

At collision efficiency £ = 0, there is no impact at all (when the largest value of
initial y» which can cause an impact is zero, no impact can be expected any more). The
other extreme is E = 1 at which particle goes in straight line even in inner region and quite
close to cylinder. The extreme £ = 1 is not of particular interest, however, for every
Reynolds number R, the points at which £=0 are important. Such points shows the
minimum values of particle parameter that can be expected to cause an impact. The other
noticeable point is that as p—» 0, the equations of particle trajectory become streamline

equations, resulting in no impact (£ = 0) again.

Since the Reynolds number R = 1.0 is not in the range of our assumptions (R <<

1), its curve can not be valid and behaves differently in figure 5.9. The next Reynolds
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number /2 = 1 1 is still questionabie. While in large p’s its curve shows an acceptable
situation, in small values of p is not quite reliable. The other curves have reasonable

characteristics

E (Coliision Efficicncy)
1

18]

0.6

04

0 _ ‘ ‘ ; ‘
1E~0 1E+1 lE+2 1E-3 1E-4 1E+3$ 1E+6 LE-7 iE+-8
p (particle parameter)

Figure 5.10 Collision efficiency for Reynolds numbers R = 10 to 10°°

From the beginning, it was a question that as R — 0, what may happen to the
curves? Whether they move to the right and go to infinity or whether they move toward 2
certain curve. It was known that for smaller Reynoids numbers R’s, the collision efficiency
E goes down (considering one p, for instance, p = 1000, one may see it on figure 5.10
too), but how the curves behave was a matter of interest. Figure 5.10 shows, explicitly,
the tendency of the curves as R becomes smaller. Now, it can be concluded thatasR — 0
the conesﬁonding curves act more like a straight line. The characteristics of that Line is
not so imp‘ortant to us because, based on our theory, when the Reynolds number R — 0
(i.e. 10™ or less) it needs a cylinder longer than 10*° times (or 10° times) of its radius (no
physical meaning).

In the Reynolds number R = 0, there is no physical flow around the circular
cylinder. This is actually the Stokes’ paradox and there is no solution for two dimensional

flow around the cylinder in R = 0. Thus, R = 0 is meaningless.
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As it is already mentioned, the points at which £=0 are important. This is because
these points shows the minimum values of particle parameter (pm) that can be expected to
cause an impact. In other words, they are the boundaries of impact onto the cylinder
(collector). If for a certain Reynolds number the corresponding p varies ten times, it
means that we may change, for example, the mass of particle ten times greater or smaller
to assure an impact. The values for ps, can be extracted from the results tables. Because
we have calculated no £ =0, we only accepted the values of p corresponding to E=0 (at

least £ < 0.005). Since the data is already a numerical approximation, more accuracy is
meaningless,

R | P=
1.E6 | 15
1E-5 | 13
1E4 | 6
1E3 | 5
1E2 | 1

Table 5.4 Values of p for which E < 0.005

In the Reynolds number R = 0.1, we have p,<< 0.05 (see figure 5.9) which is not
in range of our theory, besides, our calculation is not quite valid for such a case. When
particle parameter and Reynolds number are very small (p<5 and R <10°) the solution may
face a stiffness problem. If one likes to concentrate on such a region, a semi-implicit
extrapolation method like Bader and Deuflhard Method* can be used.

4 Numerical Recipes in FORTRAN (1992),Cambridge Univ, press.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

Throughout this thesis, we obtained various analytical and numerical results that
are reflected in the previous chapters. In this chapter, we put all those results together and

then bring up some useful ideas that can be worked on in future studies.

The first step in any study related to the design of a filter involves obtaining a
detailed knowledge of the fluid dynamics of the flow around (single) filter fibers. As the
analytical basis for development of flow field around the cylinder, long slender body theory
was used and the hydrodynamic force per unit length of an isolated slender body,
considering inertia effects and correct to the order of x™', as an integral equation was

obtained analytically in chapter three. The result was equation (3,91) as

£6s) .Hzln(%) - 1}; * Zz(s)z(s)] =87 g.[g - %.r.(s);(s)] -
+ {L"‘+ [ }[I - égcs)g(s)] &(R-R).f($)a8
and the value of the tensor £(r) is
_ p-WV2Re(r-e.r) R T,
gu@ = 2{‘11?88,_ e-£)= } {(% - ei)(%— ej) -(r -QE)(TU_’;T:LJ}
i 6.2)

o RRer2.0) [ 2r-en)d, (r [r J
T r-en | - _( _e‘) ) }
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If we take the limit of equation (6.2 as /& — 0. we will have the following expression for

creeping tlow conditions

S, t;r!)
g, ~ ey =0(Re).

therefore, as it should be, we have R. E. Johnson's (1980) result.

The next result, in analytical development, was the forces on the cylinder, by
modifying what we obtained for a long slender body. The result, for a general flow

direction and correct to the order of R (R << 1), expressed as equation (3.112),

t.e) 2{e-1.et
InR +21n2—}'—§1n(1—(_t_.g)) InR +21n2+§—?—§ln(1—(t e))

Writing this equation for flow perpendicular to the cylinder axis, we got equation
(3,113) as

L. 2 0. (6.4)

2T R +2mn2+ E—}’

which agrees with the result obtained from a f:ower series by Khayat & Cox (1989) .

The flow field universal solution, valid everywhere, around the cylinder was
obtained by matching two different solutions for the outer and inner regions. The results

was expressed as equation (3,130), in dimensionless form



f VIR TOm@ :/ I —\: f P .
.=1- e K =R - 2
u, 4_& 13 p/ S:-:’) {coslp)

sl -

-

) P - . 71 _\.qf
~ J Y, PR LT S B o \ =
COSP a7 R5 e I\,Lszl. - ‘ (6.5)

f = J

. f r " s
“sin2¢ - sing ~— —— - ¢' K (
8z ¥ ¢ g LRp !
Our next resuits was equations (3.133) governing the motion of particle as a pair of
simultaneous non-linear, second-order ordinary differential equations.

"3 =

A
Rp)

12—

| SR |

d’x, = dk I e, (l T :) S (x§ —x%) ‘
drr ~  dt +[l 2zt R\gRVxE ex :

+ 3
8z (x -

A G
47 Jxl +x3 |RYxE +xd 2

> (6.6)
P—'“d-x1=—ﬁ+ J -x;E{ 3
47 (x3 +x3)

S XL I 2 I;f'.‘Rx. (1 T :)
+ —eT K| =Ryx: +x R
4z fxi +x3 |RVxi +x} 2 J |

where K| and K, are modified Bessel functions and p is a dimensionless particle
parameter defined as

2a°p, U
p - 9# b » (6v7)

and, as we have already had, the Reynolds number and the dimensionless force per unit
length on cylinder are, respectively

R=§E<<1 and f 2
v 2

mR“+2m2+%-r

We also got dimensionless initial velocities in the 2- and 3-directions, equations
(4.11), as
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"‘ﬁ‘: 1 f i/ l\
dr *:‘:R'\\‘.,‘”
- ‘\ (D.S)
B, frxa
dr 2a R\

Solving the particle equations of motion, numerically, we calculated the collision
efficiency of the particle onto the cylinder. The results were plotted into different graphs

for Revnolds numbers R (from 107 to 1) and various particle parameters p.

E {Collision Efficiency)

1
aR -
Re10 |
06 | —— |
| ReIE4 |
94 | ReIE2 ; ‘
L | 1 o,
a2 ,.,/'
0 . __._"_a-vl' N R .
1E2 IE-t 1E+0 1E-1 1E+2 LE+3 15+ IE+$

p (particle parameter)

Figure 6.1 Collision efficiency for Reynolds numbers R =1, 0.1, and 0.01

We recall that, based on our assumptions, the Reynolds number R = 1.0 is not in
the range of cur assumptions (R << 1), its curve can not be valid and shows a different
behavior in figure 6.1. The next Reynolds number R = 0.1 is questionable. While in large
P’s its curve shows an acceptable situation, in small values of p is not quite reliable. The

other curves have reasonable characteristics.

It was also shown that the inertial impact is not important when Re= O(1) and also

R <<1. Taking van der Waals forces into account is the most recommendable work to do.

Finally, considering all results, we could answer the question about the behavior of

curvesas R — 0.



E (Collision Efficiency)

0 : . . . . ‘
LE-Q 1E~t 1E-2 1E-3 1E~4 1E-5 1E+6 LE~7 1E~8
p {particle parameter)

Figure 6.2 Collision efficiency for Reynolds numbers R = 10*to 10°

The question was that, as R — 0, do the corresponding curves move to right to a
certain curve or go to infinity or become a straight-line? It was concluded that they finaily
act more like a straight line for R — 0. The characteristics of that line are not so
important to us because, based on our theory, when the Reynolds number R — 0 (i.e. 10®
or less) it needs a cylinder longer than 10' times (or 10° times) of its radius (no physical

meaning).

The other question was that what the maximum value of p (pn) is for £E20. This
value tells us, for each R, the minimum amount of p we should keep in order to have an
impact with the lowest efficiency. The values for p, was extracted from the results tables.
Because we have calculated no £ = 0, we only accept the values of p corresponding to
£=0 (£ < 0.005). Since the data points are already numerical approximations, these
results are inexact, yet, provide us with a good estimate of the lowest efficiency.



| R Pm
|1ES 113 |
"TE= | o ,
LE-3 |5 1
B2 1|

Table 6.1 Values of p for which £ < 0.005

.2 SUGGESTIONS FOR FUTURE STUDIES

As anv other research study. this work was limited by the available time and
facilities. For future work the following ideas, related directly to the problem on hand, can
be suggested.

1) The study of collision effictency of a particle onto a cylinder when the uniform flow in
infinity is in 2 general direction (not restricted to the direction perpendicular to the
cylinder axis). Equation (6.3) states the drag force per unit length of the cylinder
exerted by the fluid for such a general condition. We can develop the flow field around
the cylinder and, applying Newton’s second law of motion, find the particle trajectory
course for this case. A numerical calculation will be needed to obtain the collision
efficiency.

2) The next step can be the study of a cylinder with finite length. Because of the ends
effects, development of force per unit length is much more difficult in such a case. A
bent infinite cylinder is another alternative. |

3) Instead of working on a single cylinder, study can be done on a row of cylinders and
several particles. This case can be studied both for an infinitely long cylinder and 2
cylinder with a finite length.

4) High Reynolds number flow is another perspective for almost the same kind of
approach as that of this research.

5) Effects of van der Waals attractions can be added to the velocity terms in a region close
enough to the cylinder. This is useful especially when we have £=0asp — 0 and can
be readily incorporated with the present theory.
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Appendix A

SOURCE PROGRAM AND OUTPUTS

A.1 SOURCE PROGRAM

In our numerical calculations, we used the following routines which are all in
FORTRAN. In addition to the source programs, their input variables and output tables are

explained in this appendix.

This program (PROGRAM MAIN7) solves up to a maximum of 19 trials to find the
collision efficiency £ (or ¥;) for only one Reynolds number R and maximum 20 p’s (to plot
a complete curve or a part of it). Each trial means covering a distance from initial y; to
the point where y. = 0. We can mathematically prove that the maximum of 19 trials is for

the worst conditions and we will not need more than that,

PROGRAM MAIN?

PARAMETER (Rwl.0E=5,YSTRT2==5,E6, PIw3,1415826535089793D0, SES=
+1.JE=-5,NVAR=4, NMAN=S}

COMMON /PATH/KMAX, NSTP, HYPTNM

COMMON /PATHS8/HDONE, DYY2, YP (NMAX) , XP

COMMON /LBL1/PRTCLP,RD2, FDIPI

DIMENSION YSTARTINVAR),P({2)

CATA P/10.,6./

KMAX=0

Ni=0.0

RD2=R/2.

FoSPI=1./ (=LOG(R}+1.30%0766%9620)

YSTART |2} =YSTRTI
YETART{1)=1.+(FDIPI/RDI/YSTART (2} )

HMIN=1 . E=5

OPEN (50, FILE=" ', STATUS='NEW')

WRITE(S0,™)° THIS IS THE RESULT OF THE PROGRAM MAINT: ONE "R",°
WRITE(S0.™)' FOR THE POLLOWING CONDITIONS:®

WRITE({SC,*)" '
WRITE(S50,~! 'Re=',R



22 (UP~-DWN)

CALL OTEZINT(YSTART,NVAR

W2, 2PS, HL, HMIN, NCK, NEAD
' TUS='OLD' ,ACCESS« ' AFP
WRITE(E:,40) I,J,HYPTNM, SRTILE,WSTARTI(2),LOGITR
CLOSE (=)

KHMTN}
ND*)

IF(HYPTNM.GE. 0. 9996, AND.E¥PTNM.LE.1.00038) THEN
E=YSTART{3)
GOTO 5
ELSE IF(HYPTNM.GT.1.0) THEN
UpwYs
ELSE
CW=Y'S
ENDIF
YSwhWN«0. 382~ {(UP-DWN)
ENDDO
WRITE(S0,40) I,J,HYPTNM,PRTTLE, YSTART(3),LOG(PRTCLE),KHMIN

FORMAT(' ',I2,3X,I3,5K,F8.5,88,FL0.1,2X,F8.5,24,F8.5,1X,1I8)

ENDDO
PRINT=,"* *

PRINT=, 'Total comp. steps for the last trial of the last PRTCLP =

* L NSTP
END

SUBROUTINE ODEINT(YSTART,NVAR,XL1,EPS,HLl,HMIN,NOK, NEAD, KHMIN)
PARAMETER (MAXSTP=SES, NMAX=S,TINYwl, E-30}
REAL H,HDID,HNEXT,X

COMMON / PATH/KMAX, NSTP, HY PTHM i

COMMON /PATHE/HDONE, DYY2, YR (NMAX), XP

DIMENSION YSTART{NVAR},YSCAL{IMAX),Y (NMAX), DYDX [NMAX) {

X=Xl

H=H1

NOK=(

NBADwO

DY2w0.0

HYPTNM=24, 8%

KHMIN=O

K=

KOUNT=0

DO I=1,NVAR -
Y(I}=YSTART:!I

ENDDO

DO NSTPal,
CALL DERIVSIY,DYDX)

DO Tal NVl

o
TCLP), KHMIN
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CEtY () +DYI.ZE,. 0. DI THEN

<. )THEN

ITIABS(HNEXT . LT.HMIN} HHMIN=RHMIN + 1
HNENTaMAX (HMIN, HNEXT)
H=HNEXT

ENDDO

PAUSE 'Too many steps in odeint.'

RETURN

END

SUBROUTINE BSSTEF(Y, DYDN,NV,X,HTRY,Z25, YSCAL,HDID, DYZ, HNEXT)
PARAMETER [NMAN®3I, KAMAXN® S, IMAX=KAMANN+1, SAFEI=. 25, SAFEZ=.7,
- REDMAX®] .C=%, REDMINe,. 7, TINYwl .2=30, SCALMX=.1}
c INTEGER NV, NMAX, :3MAXKX, IMAX
INTEGER I,IQ.K, KM, KAMAXY, KOPT, NSEQ( IMAX)

T REAL EPS,HDID, HNENT, HTRY, X, DYDX(MV), Y{NV}, YSCAL(NV), SAFEL,
c . SAFEZ, RECMAN, REDMIN, TIRY, SCALMY
REAL EPS1,EPSOLZ, ERRMAX, FACT,H, RED, SCALE, WORK, WRKMIN, XEST,
. . XNEW, A{IMAN), ALE (KAMAXX, KAMAXN ! , ERR ( KAMAXX), YERR (NMAX) ,
- YSAVINMAX], TSEQINMAK)

LOGICAL FIRST,REZUCT

DIMENSION DYDX{NVH, YINV),YSCAL{NVY

SAVE A,ALF,EPSOLZ, FIRST, KAMAX, KOPT, NSEQ, XNEW
DATA FIRST/.TRLE./,ERPSOLD/=1./

DATA NSEQ /2,4,4,3,10,12,14,16,18/

IF(EPS.NE.EPSOLZ! THEN
HNEXT=-1.E29
NNEW=~-1.E20
EPS1mSAFEL*Z2S
Al1)=NSEQ(L!~1
| DO Kal, KAMANN :
AlK+11=AtH) sNSEQIK+1]
ENDDO
DO IQew2, KAMAXN
DO K=l, I2-1
i ALF(K, ZQ)=EPS1+~ ({A(K«3}=A(IQ+11)/
. CGAIIQ LI =A(1]1+1. )= {2~K+1)))
ENDDO
ENDDO
: EPSOLD=EPS
. 0O KOPT=2, HRMAXX-1
IF{A{KOFT-1) .GT.A{KOPT) ~ALF{XOPT~1,KOPT) }GOTO 1
ENDDO
KAMAX=KOPT
ENDIF
HeHTRY
DO Isl, NV
YSAV(I)=Y (I}

(%]
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SHLLS I TIC

ZRR(FM}»  SRAMAN/SAFELI Y= (L. /(2"KM=11 )
INDIF
TEIR.NE.LLAND,. XL GE.KOPT=1.OR. FIRST! ) THEN
IF(ERRMAN.LT. L. IGOTC 4
IF(K.EQ.EAMAN.OR.K.EQ.KOPT+1) THEN
RED=SATZZ/ERR (M)
GOTO 2
ELSE IF(H.Z2Q.HOPT)THEN
IF(ALE ! OPT-1,KOPT}) . LT.ERR[KM) ) THEN
REDw1./ERR{HM)
GOTO 3
ENDIF
ELSE IF(XOPT.EQ.KAMANX)THEN
IF(ALFI:M, KAMAN~1) .LT.ERR{KM) } THEN
REDwALE (KM, KAMAX-1) *SAFEZ/ERR(KM)
GOTO 3
ENDIF
ELSE IF(ALT{KXM,XOPT).LT.ERR{KM})THEN
RED=ALE (KM, KOPT=1)/ERR (M)
GOTO 2
ENDIF
ENDIF
ENDDO
REDwMIN{RED, RECMIN)
RED=MAX (RED, RECMAN)
H=H*RED
REDUCT=.TRUE.
GOTO
HwXNEW
HDID=H
FIRST=.FALSE.
WRKMINe1.E35
DO Kh=1, KM
FACT=MAX (ERR ( KK}, SCALMX)
WORKsFACT A [KH+1)
IF({WORK.LT.WREMIN)THEN
SCALE=FACT
WRKMIN=WORK
KOPT=KK+1
ENDIF
ENDDO
HNEXT=HN/SCALE

[l

IF(KOPT.GE.K.ANC.XOPT . NE. KAMAX . AND. . NOT . REDUCT ) THEN

FACT=MAX (SCALS/ALF{KOPT-1, KOPT)} , SCALMX)
IF(A(KOPT+11~TACT. LE.WRKMIN) THEN
HNEXT=H/ TACT
KOPT=KOET-1
ENDIF
ZNDIF

QYZ»ABS(YSAVI(Z)=T(21)
IF (DYZ.EQ.0.0Q) ZV2=TINY
IF(Y{2}.GE. =2 3000, ) THEN
IF(Y!2!+DY2.GE.0.01GOTO 10
IF({Y(Z:.LE.=2000. ) THEN
HNEXT=MIN (HNEXT, 990.7D0Y2 HDID)
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JUSROQUTTINE MMID{Y, DYDY, NVAR, NS, HTOT, NSTEPR, YOUT)
TARAMETER INMAXD)
CIMENSICN YINVAR), SYDNNVAR], YOUT (NVARY, UM INMAN] TN INMAX
FeHTOTHSTER
IC Il NVAR
TM{I)eY (D)
TN{I et (3)«HTDYDR (D)
IND0DO
NRS+H
TALL DERIVSI(YN,YCQUT)
Hlal.*H
20 Nel,NSTEP
20 I=-1.NVAR
SWAP=YM{1)«HI*YOUT!{I)
YM{I)=YN{I)
YN(I)=SWAP
INDDO
NeN+H
SALL DERIVS(YN,YOUT:
ZNDDO
2Q I=1,NVAR
TOUT(I)=0.9% (YM{I)+YN[I)+H"YOUT(I})
INDDO
RETURN
IND

SUBROUTINE PIEXTR(IEST, XEST,YEST, YI, DY, NV)
TARAMETER (IMAN=13,NMAN=S)

SIMENSION X{IMAX), TESTINV),YZ (NV), DY (NV), QCOL (NMAX, IMAX ), D{NMAX)

JAVE QCOL, X
LIIEST)=XEST

20 Je=l,NV

¥ {J)=YEST{J)

TR {J)eYEST(J}
00O
IT(IEST.EQ.1) THEN

20 Jml,NV

QCOL(J, 1)=YEST(J}

INDDO
ZL5E

20 J=1,NV

D{J)=YEST(J)}

INDDO

20 Kil=1,IEST-1
DELTA=1./{X(IEST-K1)-XEST)
Fl=XEST*DELTA
FleX (IEST-K1)~DELTA
DO J=1,NV

QeQCOL(J, K1}

QCOL(J, K1 1=DY [}

DELTA=D(J]1-Q

DY {~)=F1*DELTA

D{J)=F2~DELTA

Y2 D) @YI{J)+DY ()
ENDDO ’



ZOMMON/LE

DIMENSION Vo8 L DWINIS:

SQuSQRT Y. D 21 eV 2y iaNn

M LIyl Ira=L.t Shen
. e -~ o - w
printe, Yia) edl =L ECRT-IN

printT, vy 1o, cdlvylll,meng
enarf
PART»1.0/ (RIZ-SQI=EXNP(RDI*Y {2} *BESSKI (RDI=3Q)
DYDM (L) m{=" 1L + (1. 0=FDIPI*EXPIRII*Y (2] )*BESSKCIRTI*3Q)
+ FO4TI- 2. (Y (IZh*Y {21 =Y i3 "Y{3) 1/ (8Q=*d. 0=
- FDAFI=Y(2)/SQ*PART) )/ FRTCLE
DYDN(Zi=Y (1!
DYDH{3r=Y (4
OYDN{ 4w (=3 «(FDRPIY(Z) Y131 (SQ-"4.00)+
- FOIEI~Y (3)/SQPART! )/ FRTCL

1oy

RETURN
END

FUNCTICON BESIXC(X)

DOUBLE PRECIZION Y,Pl,P2,P3,Ps,P5,P6,P7,
- Q1,Q3,9Q3,24,0Q5,Q6,Q7

DATA Pl,P2,F3,P4,P5,P6,P7/-0.5772156600,0.4227842000,0.2306%75600,
- 0.34885212-1,0.262698D~-2,0..0750D0-3,0.74D~5/

DATA Q1,Q2,53,04,05,06,Q7/1.25331424D00,-0.78322530-1,0.21895680-1,
- =0.1062448D-1,0.587872D-2,-0.251540D0-2,0. 5320803/

c IF({X.LE.I.. PRINT*, 'X=0. DOES NOT MAKE SENSE I BESSKO'
IF(X.LE.2. .} THEN
YaXT¥/a.
BESSK{= =LOG(X/Z.0)*BESSICIXII=(Pl+Y*{P2+Y~ (P2~
* T IPA-Y " (POeY* (FE-Y*PT) ) 1))}
ELSE
Yol lex.
BESSKC®  ZXP{=X1/SQRT(X) I~ IQL+Y*{Ql+Y* (Q3~
- Y AQISYT(QSYT (QE+Y 0TI M)
ENDIF
RETURN
END

FUNCTION BESZIOX) ‘
DOUBLE PRECISION Y,Pl1,PB2,P3,Ps,P5.P6,P7,
- Ql,Q2,¢3,34,Q5,Q6,07,Q8,Q°
DATA Pl,P2,F3,P4,P5,P6,P7/1.000,3.5156223D0,3.089942400,1.2067492D
-0’ .
e 0.265973.00,0.360768D-1,0.-5813D-2/
DATA Q1,Q2,83,0Q4,05,06,Q7,Q8,Q%/0.3989422800,0.232959%2D-1,
- 0.2253182=2,-0,157565D0-2,¢C.916281D=-2,-0,.205770&b0~1,
- 0.26358370-1,-0,.1647633D~1,0.392377D=-2/
AX=ABS (X}
IF {(AX.LT.:.7Z) THEN
Ya(X/3,75}"~2
BESSIQupl=y"1P2eY* (PA+Y* {PI=T*{PS=Y" (PO+Y"P7}1}}}
ELSE
Yw3. 5780
BESSIO= (EXNE:AR)/SQRT (AN 1* (Qi+Y{Q2+Y*{QI+Y~ (03
- YT QST (QE+Y " {QT+Y* (QI-Y*Q9) 1112 })
ENDIF
RETURN
END
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EMDIF
RETURN
END
FUNCTION BESSIL Y
DOUBLE FRECISICH Y,P1,P2,P3,74,F5,P6,07,
* QL,Ql,03,Q4,05,06,0Q7,Q8,Q9
DATA PL, P2, P32, 54,05, P6,P7/0,500,0.97890594D0, 0. 5143386900,
. 0.1508403327,0.26587330-1, 1, 300832D=2,0,324110-3/
SATA QL,Q0,33,04,08,06,07, 08,03/ 0, 3280420900, =0, 3988023 D-1,
. =0, 3620030, 16380162, - 1. 103158501, 0. 228096701,
. -3.08G53100-1, 0. 178765400, 0. 420059D=2

AX=ABS (W)
(F (AX.LT.3.75) THEN
Y (X/3.75 =2
BESSIlaX~ (PI+y¥~ [PIY~ (PI+Y*{EieY = [PE+Y*{PG+Y~PT1 1) })

ELSE
Y=3,79/AX
BESSILl={EXP(AY]/SQRTIAN) )~ (QLe¥Y (QI«Y* (QI+Y™ (Qi+
~ W (QO*Y T IQE+Y (QT-Y (QI=V*Q%)) 1)) )}
ENDIF
RETURN
END

A2 INPUT VARIABLES
The first input variables are in the first line of the program.

PARAMETER (R=1.0E-5, YSTRT2=-5.E6,PI=3.141592653589793D0, EPS=
+1.0E-5,NVAR=4, NMAX=5)

The value for Reynolds number R must be entered as in R=1.0&8-5. The second -
variable is initial y» which is always a negative number and entered for ysTrT2. If you
like, you may change the value for local accuracy ps. The third variable is particle
parameter which is entered as an array of maximum 20 values in the command DATA
P/10.,6./. You may enier less than 20 values for p, in that case, the number of p’s
must be entered in the command DIMENSION YSTART (NVAR),P(2). This number must
be also entered in the first D0 command in the program as in Do 1=1, 2. Thisloopis

the main loop of trial and error and values in £, up, and pwN can be entered based on



golden-section method and or in respect with the previous results af anv.

A3 PROGRAM OUTPUTS

In this section. the output of the program for different Revnolds numbers 2. is
presentec. At the beginning of each table the relevant conditions are introduced and then a
summary of the important values of the results s printed out.  The first column of each
table (I} is a counter, indicating the number of rows that is the number of points on the

related graph. The second column (Tz:ialiJ)) is the number of tnals to find }. for the

corresponding particle parameter (pztclz). in column four. The third column

(Min.#vpns) shows minimum hypotenuse of the last trnal of the row. This number must

be close enough to one (the dimensionless size of cylinder radius) in order to accept
collision efficiency (=v.)\. in column five. The last column (La:?rrclp:) is the natural

logarithm of column four. It might be needed in drawing the graphs.

THI& 128 THE RESULT AF THE FROGRAM MAINT: CONE "i%,
FQR THE FOLLOWING JONDITIONS:
R= e IIE=r1r
EPSw LI TOUE=L
cnitilal Y2y = YSTART 10 = =5 QUOQUEs "

Tt AAe = Trlg o= PETARTYL) = 009730
Tria. WP Min.Hyptna. srnrlp. E=Ya wn Ervalpil
- N, 33an9 EREREN R ) B ARk MRS S
- . e23997 . ] DLIRORT el MRS
N e 13, 394993 .Q DL 30 Teaiinl
- 1}, 399449 ] 0.89543 Laabua?
] 3 13, 3a97] .Q 0.76573 Teenlld
= 3 3,339, 7 0 D.54431 PRt
b H LA .0 0.5623% RPN BT i)
" ] 13, 39959 LE200,0 054062 3Le158H1
3 s [ e 1 LIM0,0 0,51001 ,21034
Y P i, 3806y Tu0,.0 0,47173 ~,53951
H P U.233%0 3300.0 v.41310 =.,J0%37
w2 - 1.00038 1500.0 J.36520 T.31332
13 - 0, 29956 100.0 0.33441 F R 1Y
P b 0. 99860, 200,0 0,3169% venednl
pe- o 0.239980 500,0 N,27987 Lo ldnl
15 i. 1.90040% 350.0 0.2913% 1.3577)
e Is 0.9%375 20,0 RS i 1 $.39363
i3 L 0,33857 L2200 216358 . TR749
W2 L. 2 A% %e .U S el 1 T 432203
- . 0. 29655 50.0 L0082 CIRS et
- M 10, 39%3 30,0 G, )R A%% F.e0L20
s - 9.99962 ~0.0 H.01763 .. 29873
2 o 1.00012 5.0 1.00001 L.T0OR0Y
a4 - 1.00104 0.0 2.00000 . 30259

'Or X inold variables
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aemasaraamann I T A A R R T R ‘e
LI - TTAR - R

Teet,

Doear

2 L0TE3E
: +Q5el8
: B L1869
M 1.0002% 3.0 0.00013 2495

THIS If THE RESULT OF THE FROGRAM MAINT: ONE "1™,
FOR THE FOLLCWING ICONDITIONS:

R= 1T COQ0E=04
EPS- 1 TOIQQE=05
inizial Yil) o« VSTARTIS: = =500000.

THE RESULTS

L L A L T L N

20 lrar o= Y1) = Y

S Min.Hyptns. Freiip. E=Yo
Q. 99958 SOQURN L0 ),58987)
0. 39960 200000, D.87347
). 9947 SI000.0  Q.92206
0 -3000,0  0,83793

29970

G863 3300.0 0 0.82308
999g1 S0000.Q0 0.7B453
999a4 %000.0  0.73191
29873 3Q00.0 0.e5852
1.9000% 1300.0  0.5%e7

1.90003 000 0.52082
1.00011 $00.¢  0.3039%
100019 200.0  0.4492¢
0. 98954 380.0 0.40731
1.0001n J20.0 0 335289
100003 120,00 D.2BO1S
J.99358 #0.0  Q.2311¢@
1.00012 0.0 Q.17444
V. 99%64 30.0  D.11348
1.0001% 23. 3.07838
0.99985 5.0 0.03%2

1.00036 . 0.01208
1.00012 5.0 Q.00008
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R M J,ana7h 153, .0 0L TTOA2
T e J.00a4 o0, ! D.T2067T
W B\ 3, 94a3a80 SO0, 0, 630BQ
- it -i-1 SO0 0 O.oldbhT
13 12 L.00007 =T CL5T10Y
4 it 2.39474 22000 0, 50087
by P 2, da99a 12¢.7 Q,40672
e i 3, 2999 A, (AR .51
e e L Agaty LoL [AFRLT
8 3 L. O0000S LI DL 18659
19 8 039940 gy 0, 13898
-0 12 1.9998y HET 0.Q9229
23 13 L0001 LI o314
- le 100028 . 0,007 8

THIS IS THE RESULT QF THE PROGRAM MALINT: ONE “R™,
FOQR THE FOLLOWING CINTITIONS:

R= L.000000E=0C
EPS= 1.000Q0CE=120
Inztial Y(2) = YSTART{I} = =10000.000000

THE RESULTE

B L L L L S Y

av{li,sar = Y1) = YSTART:L = 0.9965163

1.Q001% 5005, 3,97251 B.533z]
1.00007 000, : 9.95%%2 B.000 3"
1.00032 150C. . 0.92611 T.31322
1.0003¢ 1000.2 0.9003%4 %207
1.00039 800.7  0.88355% o©.864f1
1.00012 5Q0.0  0.83980 B.ol4al
0.99873 350.L  0.79887 5.8573;:
0.99992 220 0.TIBTY 5.30342
13 1z 1.000Q1 120.7 0.s35%81
14 10 1.00034 §50.C 0.55%92%
13 0 0.99970 $0.¢ 0.46213
16 10 2. 99853 ac.l 0.350%7
7 10 J.99985 Il.l .28179
1 1 1.0001% P 7.18303
13 i J.99978 *.. 0.09285
2 Ll J.999¢5 Tl 0.04678

I Trial(J) Min.Hyptins. pPrrele. E=Yo LntPrez.s
1 21,9871 50030, ! 0.99%9% 19,8197
1 2, 899790 J000C. . 0. 38877 .35
1 1.00028 15000..  0.98587  9.e9154%
1 Q,.99957 100045, Q,97991 3.2103s
1
1

—

LERY- N NRT I NS S VR E R

L= 30 CREN I PRV IR S PV IR A

[y
o
o

3
e
OO0

"

P 4 0.99964 L. 0.0120 0344
22 1% 1.00027 3.0 0.00463 1.07840
23 15 Q.99%992 S.T 0.00409 1.00CCT
o3 1% 1.00004 T.E 0.00243 £.402s57
25 1% 2,99998 Tes 000196 QL0007
g 7 2.99965 w.d 0 0000157 =0,6851%
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THIS 1S THE RESULT OF THE PROGRAM MAINT:
FOR THE FOLLOWING CONDITIONS:

Re 1.00000
EFSe 1.00000E=05

inizial TII' = YSTART(I) = =320

THE RESULTS

0.02377

Q.0Il3g =2.30059

J.63008
< cgeman
Sea?7I2

1050949
1.00007
0.40547
0. CO000
=03.69315
=1.650%44

ONE "R™,

ay({lirde = Tl = YSTART(1) = 2.3358694

(4]
1
P

Trial (J} Min.Hyptins. reelp.

La{Prtclp)

sl edatopsnsasuerpngageps

Y
T Ty PR IR 1)

Borvadbeda LR R ?oragejs B b dmdutud . onr

2
o
N}
a

D G TG QDD - O Dy §k -
D2 O Gty Ri+ B0 AR -JLRD AN S P
>
r

20000.0
15000.0
10000.0
$000.0
3000.0
1300.0
1000.0
800.0
500.0
350.0
220.0
.0
80.0

1%
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1L ]
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12
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3
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L
.
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(=)
o
I
2

9 1.00002
13 1.000Q%0
11 L.000%2

Pl

.
¥,
v
SDOOCOHFHI)DWLY

L}

2.90349
9.61581
9.2103%
8.63951
8.00€37
T.31322
6.90776
6.68461
6.21461
5.85793
5.39363
4.78749
1.368203
3.91202
3.40120
3.09104
2.63900
-.19722
1.€0944
1.00001
Q.40547
0.00000
=0.69315%
=1.60944
=2.30259
=2.99573
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NOMENCLATURE

All vartables in this list of symbols are dimensionless unless otherwise specified.

Symbols mezaning
a = particle radius, m
b = cylinder radius, m
e = natural logarithm
¢ = unit velocity vector
e, = strain tensor
E = collision efficiency
J = force per unit length on
the body (by fluid)
f° = force per unit length on
the fluid (by body)

[ = line distribution of force

~,

{3 = unit vector along the
3-direction
l= idemfactor

K., K, = modified Bessel function

{ = length of the body, m
P = pressure in outer region
P = pressure in inner region
p’ =pressure, Nm®

p = particle parameter

Symbols meaning

r=position vector in outer
region
7 = position vector in inner
region
r’= position vector, m
R = Reynolds number based on
radius &
Re = Reynolds number based on
radius /
R = position vector
s = the ratio s'/{
s’ =distance along the body
from one end, m
§ =distance along the body
centre-line to any point
¢ = time variable
t=unit vector in tangent
direction
U = undisturbed velocity in

infinity, m sec”



Symbois meaning
X time variable
x> x: = distance along the 2 and
3-direction in Cantesian
coordinates
x!, x; = distance along the 2 and
3-direction in Cartesian
coordinates. m
1 = velocity in the 2-direction
¥2, ) = distance along the 2 and
3-direction in Cartesian
coordinates
3 = velocity in the 3-direction
a =one end of the body
a =the angle between uniform
velocity and the 2-axis
B = one end of the body
7 =Euler’s constant
& = very small arbitrary constant
¢ =tolerance for each step
@ = polar coordinates angle
4 =fluid dynamic viscosity,
Pa sec
x = the ratio &/
A =cross-sectional characteristic
v = fluid kinematic viscosity,
m" sec”
p =fluid density, kg m*

£ = polar coordinate distance

123

Svmbols meaning
o = polar coordinate distance.
m
£ = inner region polar
coordinate distance
0’ = inner region polar
coordinate distance, m

p, = particle density, kg m™
¢ = polar coordinates angle

G,

, = components of stress

tensor
¥,. ¥, = stream function
., = stream function derivative

with respect to i





