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Abstract

The phase separation method is a practically important method for producing multi-
component materials. Particularly, many commercialized polymer blends, such as High-
Impact Polystyrene (HIPS) and acrylonitrile-butadiene-styrene (ABS), are manufactured
by the polymerization-induced phase separation (PIPS) method, polymerizing monomer
compounds (styrene) in the presence of polymers (polybutadiene). In this thesis, rigorous
mathematical models, describing the PIPS process, have been formulated using the
nonlinear Cahn-Hilliard (C-H) theory and the Flory-Huggins (F-H) theory combined with
a second-order reaction equation. In particular, this thesis analyzes and simulates for the
first time the PIPS process for the case of a monomer polymerizing in the presence of a
polymer. The model equations are solved using the numerical methods, and the
simulation results are characterized to identify the main dynamical and morphological
phenomena of the PIPS process. Lastly, the PIPS process under a temperature gradient is
studied to produce functional composite materials exhibiting space-dependent

microstructures and properties.



Résumé

La méthode de séparation de phases est une méthode pratique importante pour la
production des matériaux multi-composants. En particulier, plusieurs mélanges
commerciaux de polymeéres comme par exemple le polystyréne haut impact (PSHI) et
I'Acrylonitrile-Butadiene-Styrene (ABS) sont produits par méthode de séparation de
phases induite par polymérisation (SPIP), en polymérisant des compounds de monoméres
(Styrene) en présence de polymeéres (Polybutadiene). Au cours de cette thése, des
modeles mathématiques rigoureux décrivant le procédé SPIP, ont été formulés en
utilisant la théorie non-lineaire de Cahn-Hilliard (C-H) et la théorie de Flory-Huggins (F-
H) combinée a une équation de réaction de second ordre. En particulier, cette thése
analyse et simule pour la premiére fois le procédé SPIP dans le cas d'un monomére
polymérisé en présence d'un polymére. Les équations du modéle sont résolues en utilisant
des méthodes numériques classiques et les résultats de la simulation sont caractérisés en
utilisant de nouvelles techniques afin d'identifier les principaux phénoménes dynamiques
et morphologiques du procédé SPIP. Pour finir, le procédé SPIP sous gradient de
température est étudié afin de produire un matériau composite fonctionnel avec une

microstructure et des propriétés spacio-dépendantes.



Acknowledgments

It is a great pleasure to express my deep gratitude to my research supervisor,
Professor Alejandro D. Rey, for his sincere and valuable research guidance, motivation,
and encouragement, throughout the course of this thesis.

I have been lucky to enjoy excellent working conditions in my computer lab, and [
thank to all my colleagues, Arvinder Pal Singh, Ae-Gyeong Cheong, and Dinesh Sharma
for their helpful discussions and suggestions. [ would like to give special thanks to my
officemate, Chang-Wook Choi, who encouraged me for last two years. I am also grateful
to Philippe Le Bot for translating the thesis abstract into French.

Lastly, [ would like to thank my parents and sister for their love, understanding,
support, and sacrifice.



Table of Contents

ACKNOWIEAZEMENLS..........cereeenieceecerenrererrssevestrenestssesessssssssesassesssssssrasensassenns

TabIe Of CONIENLS ..cveeeeeeeeeeeeeeeeseeeirete st e eeeseamseseseseeeseneneeessessasanans

LiSt Of SYIMIBOLIS ..ottt ccerceresesessesseessseresssnssssensse s sssessnssessnsssnsrseseses

Chapter 1
Introduction and Background

1.1 General Introduction. trrereseietebereneaeeaeeaneeanaseaenresarerasanesans

[.2 Thermodynamics of Phase Separation..........coocovsvenrerarene

1.3 Phase Separation Methods............ccouvereremrveerereneennnnn.

1.3.1 Thermal-induced Phase Separation (TIPS) method..........ccceeeeemeerrererennnnne
1.3.2 Solvent-induced Phase Separation (SIPS) method .........coceeceencrnrernccnn.
1.3.3 Polymerization-induced Phase Separation (PIPS) method............cccouee....

1.4 Phase Separation Mechanisms.............

1.5 Spinodal Decomposition THEOTIES...........ccovectemruecscncemranccsecesenssesessssassensessnsas
1.5.1 Cahn and Hilliard EQUAION ........cccoveueerrereeceeeeetenerresereeseseraesesassesessnsnns

1.5.2 Flory-Huggins Theory ............

...................

1.6 Previous Works and Motivation of Present ThesiS. . ...coovevereeevereeermeeoessressanens

1.7 Thesis Objectives.................

1.8 Methodology....................

1.9 Thesis Organization ........

Chapter 2
Governing Equations for Polymerization-induced Phase Separation

Summary ...

2.1 Introduction

2.2 Theory of the Governing Equations

.............

.................

12

12
13
13
15
18

18
21
22
23
23

25

28
28
30



24

25

2.2.1 Theory of Spinodal DecompoSItion........cccoueeurecevererereerersesenees

2.2.2 Molecular Weight and Concentration Dependence of Mobility and

Interfacial Parameter ... neeccresescserassennes

2.2.3 Polymerization Kinetics and Molecular Weight Distributions in
Nonlinear Polymerization ..
Formation of the Governing Equations of Polymerization-induced Phase
Separation

.........

.........

2.3.1 Model Equation for the Non-Entanglement Region..........c.ccoceneurc.
2.3.2 Model Equation for the Entanglement Region
2.3.3 Initial and Boundary Conditions............ccecoeesuveerrecressmenensnerereseenenne

Methods of Solutlon

.........

---------

.........

........

2.4.2 Time Integration Methods cerveneneenaenans
Conclusions

.........

Chapter 3
Computational Simulation and Morphological Analysis of Polymerization-
induced Phase Separation

3.1
3.2
33
34

3.5

Summary
Introduction

....................

.........

Governing Equations and Auxiliary Conditions...........ccceeeemreecrececnesrecrnnenn

Morphological Characterizations

Result and Discussion....
3.4.1 Typical Phase-Separated Structures and Patterns

....................

.........

3.4.2 Dynamical Analysis in Polymerization-induced Phase Separation ..

.........

3.4.3 Morphological Analysis in Polymerization-induced Phase Separation.....

3.4.4 Droplet Size and Shape Distributions

3.4.5 General Guidelines for Morphological Control in the PIPS process
Conclusions

........

Chapter 4
Computational Simulation of Polymerization-induced Phase Separation
under a Temperature Gradient

4.1
42
4.3

44

Summary

.......

Introduction

Theories

Result and Discussion.....

4.3.1 Typical Phase-Separated Structures and Patterns of PIPS under a
Temperature Gradient

4.3.2 Dynamical Features of PIPS under a Temperature Gradient ....................
4.3.3 Characterizations of the Non-Uniform Phase-Separated Structures..........

Conclusions

30

32

36

38
39
41
43
45
45
52
52

53
54
57
63
66
66
74
80
89
93
94

95
96
98
103

103
110
111
116



Chapter §
Conclusions and Recommendations

5.1 Conclusions.........

5.2 Recommendations.....

References

118
120

121



List of Symbols

Simbol

PN

N1

LN

O O o &
o .

au

m & MW

ENE T N o~ M ot

~

Description Typical units
area of the droplet m’
dimensionless collision frequency factor dimensionless
collision frequency factor m’ mole™ 5™
step length of primitive chain :1
bond length .:1
dimensionless diffusion coefficient dimensionless
self diffusion coefficient of polymer A m’s"
self diffusion coefficient of polymer B m’s?
dimensionless droplet diameter dimensionless
extent of phase separation -
dimensionless activation energy dimensionless
Arrhenius activation energy J mole™
total free energy of the system J
free energy density of the system Jm™

ratio of the square radius of a branched molecule to that

of a linear one of the same molecular weight -

intensity of segregation -
net flux -
dimensionless reaction rate constant dimensionless
reaction rate constant st
Boltzmann constant JIK!
length scale of the computational domain m



L tube length A

{; effective interaction length between the molecules :l

L, length of a monomer m
M mobility m’skg"
M, mobility of component A m’ s kg
M, mobility of component B m’ s kg
M, molecular weight between entanglement points kg mole™
M, molecular weight of 2 monomer kg mole™
M, molecular weight of a polymer kg mole™
N degree of polymerization of polymer -
N total number of nodal points in the computational domain -
N total number of couples of concentrations taken -
N, degree of polymerization of polymer A -
N, degree of polymerization of polymer B -
N, critical degree of polymerization -
N, number of monomer units between entanglement points -
n outward unit normal vector -
n, number of molecules of component A -
ng number of molecules of component B -
n, molar volume of the reference unit m’ mole”
n, number of monomers -
P perimeter of the droplet m
p extent of reaction -
R gas constant K K mole™
R weighted residual -
R (r) coefficient of correlation -



L &ty ¥ o

[ 7

L

radius of gyration

length of dipole

boundary of the domain
variance of concentrations
scale of segregation

shape factor

absolute temperature

initial temperature

dimensionless temperature

lowest temperature in a temperature gradient
dimensionless lowest temperature in a temperature
gradient

highest temperature in a temperature gradient

dimensionless highest temperature in a temperature
gradient

time

dimensionless time

dimensionless characteristic time
dimensionless induction time
dimensionless polymerization lag time
dimensionless phase separation lag time
dimensionless transition time

lumped unknown coefficient
approximate solution

unknown coefficient

volume of the domain

volume of the reference unit

B xoe

=~

dimensionless

dimensionless
K

dimensionless

s
dimensionless
dimensionless
dimensionless
dimensionless
dimensionless

dimensionless



..§ <i

>

R

R

vector

weight function
number average molecular weight

weight average molecular weight

branching coefficient

scalar

critical branching coefficient

Flory-Huggins’ interaction parameter

Flory-Huggins’ interaction parameter at the critical point
enthalpy contribution to 7

entropy contribution to y

volume fraction of component A

volume fraction of component A in & phase

volume fraction of component A in £ phase

arbitrary chosen volume fraction of component A

arbitrary chosen volume fraction of component A
dimensionless concentration of component A

volume fraction of component A at the spinodal point
dimensionless average concentration of component A
dimensionless concentration of component A at the (i, j)th
computational nodal point

dimensionless lower binodal concentration of component A
dimensionless upper binodal concentration of component A
volume fraction of component A at the spinodal point

one of dimensionless concentrations of component A at two

points at a distance of r



9]

@

e o ©

.s\-.

NN

NOX & ™R §

44

one of dimensionless concentrations of component A at two

points at a distance of » -

volume fraction of component B -

dimensionless concentration of component B -

critical volume fraction -
global trial and test function -
local basis function -
functionality of monomer -
local orthogonal coordinate -
interfacial constant Jim
interfacial constant Jim
chemical potential of component A J
chemical potential of component B J
theta temperature K

variance for completely unmixed state -
dipole length at which R(¢)=0 m
reduced time dimensionless
volume fraction of « phase -
volume fraction of £ phase -
local orthogonal coordinate -
dimensionless entropy -
lumped Hermitian basis function -

friction coefficient kg/s



Chapter 1

Introduction and Background

1.1 General Introduction

Multi-component polymer materials such as polymer solutions, blends and
composites find a wide range of engineering applications [1]. The combinations of two or
more polymers give higher performance including impact resistance, toughness, high
temperature performance, high modulus, and improved elasticity. Blending polymers also
offer control over melt viscosity, processability, and solvent resistance. For example,
homopolymer polystyrene is very brittle and fractures relatively easily. Mixing
polybutadiene with styrene monomer, commercialized under the trade name High-Impact
Polystyrene (HIPS), increases impact resistance and toughness of the final plastic. It
absorbs more energy on loading, delaying, or preventing fracture. Poly(ethyiene
terephthalate) is used in nylon-6 tire to reduce flat spotting, and rubber-rubber blends
such as polybutadiene or naturai rubber, is also used to increase tear resistance.
Acrylonitrile-butadiene-styrene (ABS) plastic is one of the fully developed and
commercialized materials due to its excellent toughness. The acrylonitrile contributes oil
resistance, a higher glass transition temperature to the plastic. The relative position of
some commodity thermoplastics is shown in Table 1.1, taking HIPS as a standard [2]. As
shown in Table 1.1, HIPS has an excellent price/property balance and ABS has an
excellent toughness despite its inferior processability and price. On the other hand, PS
does not have toughness and PP has lower processablility due to its crystalline nature and
flexional modulus. The commercial importance of multi-component polymer materials is

currently remarkable. The total amount of polymer composites and blends constitutes



over 30 wt % of the total polymer consumption, with an annual growth rate of about 9 %
[3, 4].

However, the great majority of polymer pairs are immiscible due to their
endothermic heat of mixing and very small entropy of mixing, and only a few polymer
pairs are known to be miscible. When two polymers dissolve even in the rare exception,
generally they phase-separate at some temperature and molecular weight, and form
multiphase systems. For this reason, phase separation methods have been one of the
practical methods to produce multi-component composite materials, and an active
research area in material science during the past two decades. Most polymer blends
including thermoset / thermoplastic polymer blends, porous polymer membrances, rubber
toughened engineering plastics, interpenetrating polymer networks (IPNs) and polymer
dispersed liquid crystals (PDLC) are prepared via phase separation methods [5-10].

The phase separation method has a number of advantages compared to other
methods. It offers a great deal of variation in the morphologies, depending on the polymer
type, the polymer concentration, and the nature of the phase separation process [11]. In
addition, films formed by the quenching and polymerization phase separation methods
undergo relatively little shrinkage as the polymer phase separates. The polymerization-
induced phase separation (PIPS) method is more complex compared to the thermal-

induced phase separation (TIPS) method because phase separation and polymerization

HIPS PS ABS PP
Processablility S S [ I
Toughness S P E S
Flexional Modulus S E E I
Surface gloss S transparent E S
ESCR S E E E

S: standard; E: excellent; I: inferior; P: poor

Table 1.1 Relative Position of Commodity Thermoplastics [2].



process occur simultaneously in the PIPS method. Nevertheless, the PIPS method
involved condensation-reaction polymerization is one of major class of variable multi-
phase material production because the phase-separated morphology can be relatively
easily controlled by the rate of polymerization and diffusion. Furthermore, the desired
morphology can be obtained by controlling the gelation point in the PIPS method. The
typical example is the production of high impact polystyrene (HIPS). HIPS is
manufactured by the PIPS process, polymerizing styrene in the presence of polybutadiene
(PB). As polymerization proceeds, PB phase separates and disperses in the polystyrene
(PS) matrix. The particle size of the PB phase can be controlled to obtain the desired
properties by a proper choice of the processing conditions.

Polymer blends exhibit a number of morphologies, that is the physical arrangement
of the phase domains (1], and the phase-separated morphologies may be simple or
complex depending on the phase separation mechanism. Most well-known morphologies
in a binary polymer blend system are droplets of phase a dispersed in phase £ and

interconnected cylinders of phase @ in phase £ as shown in Figure 1.1. The dispersed

droplet-type morphology (Figure 1.1.a) characterizes the structure of a material for which
the volume fraction of one phase ais low [12]. In this type of morphology, the droplets
are discretely and uniformly distributed in the matrix phase. If the volume fraction of the
minor phase « is increased until the critical point, the interconnected cylinder-type
morphology (Figure 1.1.b) is observed. A more complex case is the double-diamond
interconnected cylinders or onion rings of phase & in phase £. Recently, ‘phase within a
phase within a phase’ is observed in multi-component high-impact polystyrene (HIPS)
and acrylonitrite-butadiene-styrene (ABS) materials, as shown in Figure 1.2. Many
polystyrene sub-particles also exist inside the polybutadiene particles. The phase-
separated morphology, such as droplet size and distribution, is critical in determining the
properties of multi-component composite materials [1]. For instance, the fracture
toughness increases with decreasing particle sizes and the toughness of the high-impact
plastic also increases with the volume fraction of polystyrene inside the polybutadiene
droplets. The optical properties of materials are also affected by the phase-separated
structures. If the average droplet size decreases, film scattering increases because the

number of scattering sites within the film increases, and the film has a translucent white



(a) (b)

Figure 1.1 Typical phase-separated morphologies in a binary polymer blend system: (a) the
droplet type morphology and (b) the interconnected cylinder-type morphology.

Figure 1.2 Morphology of a high-impact polystyrene (reprinted from reference [2]).

appearance [11]. Therefore, the optimum mechanical behavior for many materials is

observed with the particles’ size being about 2-5um, and the spacing between the
particles should be of the order of 1-5zm . Consequently, for muiti-component composite
materials with desirable properties, it is crucial to process the desirable phase-separated
morphology.



More recently, an effort has been made to produce a composite material, exhibiting
inhomogeneous microstructures (or composition) and properties in some spatial direction,
namely a functionally graded material (FGM) [13, 14]. A schematic representation of the
microstructure of a two-component FGM is shown in Figure 1.3. The composition
gradually varies along the spatial direction. Many current applications of materials
require performance, which vary with location within the component. For example, the
body of a gear must be tough; however its surface must be hard and wear-resistant. The
body of a turbine blade must be strong, tough and creep-resistant, whereas its outer
surface must be refractory and oxidation-resistant. However, the abrupt transitions in
composition and microstructure cause some serious damage and failure in interfaces. The
graded structures designed with which the transition from one material to the other
gradually can distribute the local concentrations of stress optically. FGM is also designed
to take advantage of certain desirable features of each of the constituent phases [13]. The
graded structures are fabricated by the several constructive processes: powder

densification, coating or lamination. However, the transport-based processed, based on

Figure 1.3 Schematic representation of the microstructure of a two-component functionally
graded material (FGM), for which the composition gradually varies along the spatial direction
(reprinted from reference {13]).



natural transport phenomena, such as the flow of fluid, the conduction of heat and the
diffusion of species (in phase separation) can also create gradients in local microstructure
and/or compositions that are useful [14]. In this thesis, a spatially dependent PIPS
methodology will be applied to produce a FGM.

The objectives of this study are, therefore, to develop a rigorous model of the PIPS
process for binary composite materials and to design the desirable phase-separated
morphologies with desirable particle size and shape using computational methods. This
study is mainly devoted to the PIPS process via spinodal decomposition for binary
composite materials. To mimic a processing method for the various commercialized
polymer blend materials, we assume that only one component undergoes polymerization
in the presence of another polymer component that does not participate in the reaction
and that has a constant molecular weight. Additionally, the PIPS process under the
temperature gradient field is also studied with the aim to produce spatially graded
structures with inhomogeneous microstructures and concentrations. The governing
equations with auxiliary conditions of the PIPS process for binary composite materials is
developed in Chapter 2. The method of solution is also outlined in Chapter 2, which
includes the Galerkin finite elements method with bicubic Hermitian interpolants for
spatial discretization and the finite difference method for time integration with a first-
order implicit Euler predictor-corrector method and an adaptive time step control step.
The governing equation is solved, implemented and validated in Chapter 3. The kinetics
of phase separation and the obtained morphologies are characterized using novel
dynamical and morphological analysis techniques. In Chapter 4, the governing equations
of the PIPS process under a temperature gradients are solved and implemented to
simulate the formation of graded materials.

Lastly, in this introductory chapter, the basic concepts of phase separation are
presented to understand why (Section 1.2. Thermodynamics of phase separation) and how
(Section 1.3: Methods of phase separation, and Section 1.4: Mechanisms of phase
separation) phase separation occurs in a multi-component polymeric mixture. In Section
1.5, the nonlinear Cahn-Hiiliard (C-H) theory and the Flory-Huggins theory, which are
the basic theories for spindoal decomposition, are presented and discussed. Lastly, the



description of previous works, the thesis objectives, methodology and organization are

given in Section 1.6, 1.7, 1.8, and 1.9, respectively.

1.2 Thermodynamics of Phase Separation

To understand the nature of phase separation in two-component polymeric systems,
it is important to understand the mixing properties of the two components, that is, under
which conditions two polymers either form a homogeneous phase or a two-phase
structure. In order to find out whether mixing occurs, the change in the Gibbs free energy
S has to be considered.

The composition ®; of component i (i = A, B in a binary system) in terms of its
volume fraction is given by:

- N.ln,l . ¢ - Nlnl
‘ Nn,+Nn, * N, +N,n,

(1-1-a,b)

o, +0, = 1 (1-2)

where N, and N, are the degree of polymerization of polymer A and B, respectively.

and n,, n, are the number of molecules of the corresponding polymers, respectively.

Let us begin with the determination of the free energy of a two-phase «// mixture.
If a two-phase (a and /£) structure is formed, the composition of A in each phase is ®

and @4, respectively. If the interphase surface energy of the two-phase mixture is

neglected, the total free energy of component A may be written as the sum of the bulk

free energies of the each component phases as follows [15]:

f./®,) = [ (@%) o*+f (04) &’ (1-3)

where f, ,(®,) is the total Gibbs free energy of the two phases, f (®7) and 1 (/)

are the Gibbs free energies of the # and # phases, respectively, and @*, o’ are the



volume fractions of the « and A phases, respectively. Thus, from following mass

balance relations:
50"+ Diaf= @, (1-4)
o'+’ =1 (1-5)
we find that:
- o -P°
a  _ 4 $ ; wl - A 1‘6' b
v -a" ¥ -0 (1-6-20)

Substituting Eq. (1-6-a) and (1-6-b) into Eq. (1-3) yields :

)= s aser)+ D04 (o) a-n

fa.ﬂ((D. (Dﬂ

Figure 1.4 shows Eq. (1-7) as a straight line connecting (<D‘j, f ( ‘4')) and
@4, 1 (@4).

5

!

f (@)
fusl®,)

f (o3)

@ P, o
Figure 1.4 The Gibbs free energy, f, as a function of composition of component A, ®, fora
two-phases mixture, & and A, where f_ /,(CD ,) is the total Gibbs free energy of two phases,
f ((D'i) and f (@f) are the Gibbs free energy of the & and £ phases, and ®7, @/ are the

concentrations of the mixture in phases @ and £, respectively. The free energy of a two-phase
mixture has a linear concentration dependence.



The Gibbs free energy of the single-phase mixture is shown as curves in Figure
1.5.2 and Figure 1.5.b. Within the composition range ®',<® ,<®? in Figure 1.5.a, the
curve describing the free energy of the single-phase mixture lies above the straight line
describing the free energy of the two phase-mixture. The mixture cannot be stable in this
region because the equilibrium state of a system tends toward the minimal free energy
conditions. Consequently, a mixture of a composition corresponding to a point on the
convex part of the Gibbs free energy curve, d>f/d®,’ <0, is unstable against an
infinitesimal concentration heterogeneity and decomposition always occurs. This region
is called the unstable region and the decomposition phenomena occurs in the unstable
region is called spinodal decomposition (SD) [15].

However, if the Gibbs free energy curve is concave within the range @' <® <>,

4
which is characterized by d*f / d®,’> 0, it lies below the straight line connecting the
points (@, f (') and (@3,  (®2)) (See Fig 1.5-b.). Thus in this case, the single-
phase mixture has less free energy than the two-phase mixture. If a homogeneous mixture
characterized by d*f / d®,’> 0 at the point ®, is unstable to the formation of a two-

phase mixture with compositions, ®% and @4, the mixture is stable with respect to

infinitesimal fluctuations and the system does not undergo spinodal decomposition.

In the case presented in Figure 1.5.b, however, decomposition may occur under
certain circumstances. The region, where decomposition occurs, is called metastable
region and the decomposition occurs by the nucleation and growth (NG) mechanism. The
boundary line between the unstable region and the metastable region is called the
spinodal line. The spinodal line is defined by the expression:

2
f _,
do,

(1-8)

"~

Figure 1.6 shows a typical Gibbs free energy versus composition of an asymmetric
polymer mixture (A and B), that is, the molecular weight of the mixture’s components are
different. The shape of the Gibbs free energy curve depends on temperature and
molecular weights. When the free energy curve lies above the critical value (the



@,

Figure 1.5 The Gibbs free energy, f, as a function of composition of component A, @, , fora
single-phase mixture (a solid curve) and two-phase mixture (a dotted line) where ®' and @
are the two arbitrary concentrations of component A. (a) The free energy curve describing the
single-phase state lies above the straight line describing the free energy of the two-phase
mixture. Thus, a single-phase mixture is unstable against decomposition and this instability is

called spinodal instability. (b) The free energy curve for a single-phase mixture lies below the
straight line for the two-phase mixture. Therefore, a singie-phase state is stable and spindoal

decomposition does not occur.

10
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Figure 1.6 Typical Gibbs free energy versus composition diagram of an asymmetric polymer
mixture (A and B). The dotted curve represents the critical Gibbs free energy curve and the solid
curves represent the arbitrary Gibbs free energy curves. Two spinodal points, ((D;, f (¢'4 ))

and (@7, f (@7 )), denoted by the blanked circles (o) are located at the inflection points of the

Gibbs free energy profile. Two binodal points, (d)‘;, f (tbﬁ )) and ((Df f (ID‘: )), denoted by the

filled circles () are located where the straight tangent line touches the corresponding Gibbs free
energy curve.

critical Gibbs free energy curve is denoted by the dotted curve in Figure 1.6.), a
maximum point emerges. The spinodal points, (@), f (@) and (@], £ (®7)),
characterized by Eq. (1-8) are located at the inflection points of the Gibbs free energy
profile. The two spinodal points are denoted by the blanked circle (O) in Figure 1.6. The
lowest level of the straight lines describing the two-phase mixture can be represented by

the common tangent line of the free energy curve, which connects two points f (<D:)

i1



and f (be ) Therefore, the regions, @9 <®,<®’ and & <d, <P/, are metastable
regions because the mixture is unstable against the formation of a two-phase mixture but
the free energy curve is concave. However, if the free energy curve lies below the critical
value, the Gibbs free energy curve is concave everywhere. The curve lies below the two-
phase straight line, and the single-phase state has less free energy than the two-phase
state. In this case the mixture of two polymers is always stable against decomposition and
the system is entirely miscible. This condition is called the stable condition. The
boundary line between the metastable region and the stable region is cailed the binodal
line and is set up by two binodal points (@7, £ (®2]) and (®4, f (®#)). The binodal
points are located where the straight tangent line touches the corresponding Gibbs free
energy curve. The two binodal points are denoted by the filled circles (@) in Figure 1.6.

1.3 Phase Separation Methods

As mentioned in the previous sections, the phase separation method is widely used
to produce binary composite materials. In the phase separation method, phase separation
can be accomplished by a change in temperature and/or molecular weight to transfer the
mixture from the one-phase (stable) region into the two-phase (unstable or metastable)
region. When an initial single-phase mixture is transferred into the two-phase region by
thermal quenching, soivent evaporation or polymerization, one of the components phase
separates from the other components’ phase and forms either dispersed droplets or
interconnected cylinders. These methods are called thermal-induced phase separation
(TIPS), solvent-induced phase separation (SIPS), and polymerization-induced phase
separation (PIPS), respectively [9, 10].

1.3.1 Thermal-induced Phase Separation (TIPS) method

In the TIPS process, a multi-component mixture is prepared at high temperature to
form a single-phase mixture. When the mixture is quenched to low temperature (the

12



unstable or metastable region), one component solidifies and the other phase separates.
The phase diagram, temperature T versus concentration @, for the TIPS process is
illustrated in Figure 1.7 (a). In Figure 1.7, the solid curves represent the binodal lines
while the dashed curves represent the spinodal lines, where T,, ®,, ®_ and N, are

initial temperature, the average concentration, the critical concentration and the degree of
polymerization, respectively. The TIPS process is useful for thermoplastic polymers that
melt below their decomposition temperature [16]. Depending on the average
concentration of the components, two types of phase separated structures can be obtained:

droplet-type structure in the off-critical region(fbD # tbc) and the interconnected

structure in the critical region(d)oz d)c). The droplet size in the TIPS process can be

controlled by the rate of cooling [9, 10]. For instance, rapid cooling leads to smaller
droplet sizes. The droplet size is also dependent on the rate of diffusion, viscosity, and
chemical potential of the components. While the TIPS method is simple, the films formed
by the TIPS method are often unstable at high temperature and sensitive to the process
history [16].

1.3.2 Solvent-induced Phase Separation (SIPS) method

In the SIPS process, an organic solvent is used to solubilize the polymeric materials,
and form a single phase. When the solvent evaporates, one component phase separates
and disperses as droplets in a polymer matrix. This method is useful for thermoplastic
polymers that melt above the decomposition temperature of the thermoplastic [16].

1.3.3 Polymerization-induced Phase Separation (PIPS) method

In the PIPS process, a single-phase mixture is initially prepared. Polymerization
induced through the application of heat, light, or radiation leads to the increase of the
length of polymer molecules {16, 17]. When the single-phase mixture is thrust into the
unstable or metastable region, the solubility of polymer decreases and phase separation
occurs. The schematic representation for the PIPS process is shown in Figure 1.7 (b).
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critical quench off-critical quench

(a)

(b)

Figure 1.7 Schematic representation of the phase separation methods: (a) the thermal-induced
phase separation (TIPS) method and (b) the polymerization-induced phase separation (PIPS)
method. The solid curves represent the binodal lines and the dashed curves denote the spinodal
lines where 7, ®,, ®_, and N, are initial temperature, the average concentration, the critical
concentration and the degree of polymerization of component B. The phase separation
phenomena take place when the initially prepared one-phase mixture transferred into the two-
phase region by quenching (a) or increasing the degree of polymerization (b).
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The PIPS method can be either photo-initiated [18-20] or thermal-initiated {10].
Thiol-ene and acrylate chemistries are mostly applied for photo-polymerization process,
and epoxy chemistry is mostly used for thermal-initiated PIPS system. Photo-initiated
polymerization usually follows addition polymerization while thermal-initiated system
undergoes condensation polymerization or ring-opening polymerization [16]. Epoxy-
based PIPS method forms the highly crosslinked networks. These networks can cause
unstable long-term behavior of films because they reduce the mobility of unreacted
species and these species continue to react over time, changing the properties of the
materials [16]. Nevertheless, the PIPS method involved condensation-reaction
polymerization is one of major class of PDLC film production.

In the PIPS method, the droplet size can be controlled by the rate of polymerization,
the types of polymers used, and physical parameters such as viscosity, rate of diffusion,
and solubility of the polymer [9, 10]. The rate of polymerization is controlled by cure
temperature and the relative concentration of materials or by light intensity for
photochemical polymerization. As the rate of polymerization increases, the crosslinked
networks form earlier and the droplets, which are formed by mass diffusion, are not

allowed to grow larger.

1.4. Phase Separation Mechanisms

When the mixture is transferred from the one-phase (stable) region into the two-
phase (unstable or metastable) region, phase separation occurs. Phase separation can be
accomplished by a change in temperature in the TIPS method or in molecular weights of
components in the PIPS process. The evolution of a two-phase structure, that arises
during phase separation, can be observed by several methods such as light microscopy or
scattering experiments.

An example of two temperature jumps from the homogeneous-phase region into the
two-phase region for a typical symmetric binary polymer mixture, that is N, =N, is
illustrated in Figure 1.8. The arrow (a) indicates the temperature change into the
metastable region (nucleation and growth) while the arrow (b) jumps into the unstable
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region (spinodal decomposition). In Figure 1.8, the solid curve denotes the binodal line
and the dotted curve represents the spinodal line, respectively. Depending on the location
in the two-phase region, phase separation occurs by spinodal decomposition (SD) or by
nucleation and growth (NG).

The most significant differences between nucleation and growth (NG) and spinodal
decomposition (SD) are the mechanism of decomposition, caused by the different
character of the instability [1,15]. Even if a mixture is homogenous, concentrations are
not uniform on microscopic scales. There are always fluctuations about the average

concentration, @, and these fluctuations lead to a change in the Gibbs free energy.
Depending on the curvature, the Gibbs free energy can increase or decrease by the

concentration fluctuation. In the metastable region, characterized by & ? f1é ®%>0,

the concentration fluctuation causes the increase in the Gibbs free energy and the
structure is stable with respect to spontaneous concentration fluctuation. Therefore, ND is

a non-active mechanism and some form of activation mechanisms such as nucleation is

necessary. On the other hand, in the unstable region, characterized by 7 : f12 @ <0,

the fluctuation lead to a decrease in the Gibbs free energy and the system is unstable even

T |

P,
Figure 1.8 Typical phase diagram of a symmetric binary polymer mixture for the TIPS precess.
The arrow () indicates a temperature change from the homogeneous region into the metastable
region (nucleation and growth) and the arrow (b) represents a temperature jump into the unstable
region (spinodal decomposition) where the solid curve is binodal line and the dotted curve is
spinodal line.
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for an infinitesimally small fluctuation. Phase separation takes place spontaneously and
continuously. SD is an active and irreversible mechanism, that is, once the phase
separation has occurred, the system cannot homogenize.

Figure 1.9 shows phase separation mechanism for nucleation and growth (top) and
spinodal decomposition (bottom) where (a-1) and (b-1) represent the early stage of phase
separation while (a-2) and (b-2) represent the intermediate stage, and (a-3) and (b-3)

denote the late stage of phase separation. If a nucleus of composition ®¢ is formed in

@

@, (a)

NMAIARIRN .,
(a-1) (a-2) (a-3)

@]

SIPEAYEANY AVAN ®

(b-1) (®-2) (b-3)

Figure 1.9 Schematic representation of phase separation mechanisms for nucleation and growth
(a), and spinodal decomposition (b) where @, denotes the average concentration, and ®%, &/

represent the concentration in phase a and £ in the early, (a-1) and (b-1), intermediate, (a-2)
and (b-2), and late, (a-3) and (b-3), stages, respectively. The arrows indicate the direction of the
diffusion of the molecules. The diffusion coefficient is positive in nucleation and growth
mechanism, while it is negative in spinodal decomposition.



NG process (a-1), the composition of the matrix in the immediate vicinity of that nucleus
would be bef through the phase separation process, (see (a-2) and (a-3)). During phase
separation of NG, the composition of the minor component domains, that is nucleus,
remains constant, and only size of the domains and its distribution change with time. On

the other hand, in SD, a multi-component system of composition ®,, with a

concentration fluctuation continuously decompose into two phases of composition ®9

and ©7. In this case, both the composition and size of the domains increase continuously

with time (see (b-1) and (b-2)). At the late stage of SD, (b-3), the wavelength of the
oscillation is fixed by the scale of phase-separated structure, which has the minimization
condition of the free energy. The arrows in Figure 1.8 indicate the direction of diffusion

of the component A. The diffusion coefficient can be negative or positive depending on

the sign of the curvature J : f 128 ©. Therefore, as we can see, the molecules diffuse

from higher concentrations toward lower concentrations in NG, that is positive diffusion;
however, in SD, the diffusion coefficient is negative and abnormally molecules diffuse

toward higher concentrations from lower concentration.

1.5 Spinodal Decomposition Theories.

1.5.1 Cahn and Hilliard Equation

The idea of the gradient contribution to the thermodynamic properties of materials
was first presented by Cahn and Hilliard [21]. In systems with large spatial
inhomogeneity, the local density of thermodynamic functions, such as entropy, volume,
energy, etc., depends not only on the values of the intensive properties in the volume
element but also on their local gradients [22]. For a system undergoing spinodal
decomposition, the length scale of the concentration profile is of the order of 10nm or
shorter, thus the contribution of its local gradients is not negligible. The composition
fluctuations of this length scale which lead to phase separation occur in spinodal
decomposition. Thus the C-H equation has been widely used for phase separation process
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as well as pattern formation [23, 24]. According to the Cahn and Hilliard assumption, the
total free energy F can be expressed as the integral of the sum of a homogeneous

contribution f{®,) and a gradient contribution V¢ ,:

F=[[r@)ex(ve )| (1-9)

where « is a positive interfacial constant and f°(®,) denotes the free energy of

homogeneous concentration. Eq. (1-9) can be obtained from the Taylor series expansion

of a local free energy density, as follows:

f((b',,V(Dv,,V‘d)',,...) = f”(tb,)ﬂr,V’(Dj -Hr,(Vd)‘): +..e (1-10)
where
C f 2 :f
= = 1-11- b
K, Y and X, | "r ( a,b)

If higher order terms in Eq. (1-10) are neglected, the total free energy F of this volume

will be:

F= j'[ (@) +x7'0, +x:(v¢4)’]dv (1-12)

By assuming the surface gradients are zero, and applying the divergence theorem and
natural boundary conditions [21], V&, -/ =0, the second term in the right hand side in

Eq. (1-12) may be expressed as:
[(x V' )dv =~ [(dx, 1 d Y V®,) aV + [(x,9®, -7)dS =~ [(dx, / d® VO ) ¥ (1-13)

Thus, Eq. (1-12) can be simply written as:

F=[[f(@.)+x(ve,) v (1-14)

where
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dx (1-15)

The most important feature of Eq. (1-14), compared to the classical mass diffusion
equation, is the additional term which is proportional to the square of the gradient of the
composition distribution, (V& )’

In order to describe phase transition in binary systems, the model equation can be

derived from a continuum model [25, 26]. If we consider only pure diffusion, the net flux

J might be expressed as chemical potentials per unit volume of each component, #, and

4y, as:

J=-MV([I. -.”A) (1'[6)

where M is total mobility [27, 28] in the given system which depend on the volume
fractions ®, and ®,. General thermodynamic relation between the chemical potential

and the free energy which can be written as:

JF
. 22— 1‘17
STy (1-17)
Hence, Eq. (1-16) gives [25]:
J=-mvZE (1-18)
o,

By inserting Eq. (1-18) into the continuity equation for a non-reacting mixture:

A
i y.y= -19
= +V-J=0 (1-19)

we can obtain the following equation:

7%, _yg. Gf s -
=V [Mv[m‘ zxvq,ﬂ (1-20)
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Eq. (1-20) is the fourth-order non-linear partial differential equation that governs the

spatial and temporal evolution of concentration fluctuation in spinodal decomposition.
1.5.2 Flory-Huggins Theory

To describe the phase separation phenomena, an appropriate expression for the bulk

free energy density f in the nonlinear C-H equation, Eq. (1-20), has to be selected. The

most widely and successfully used theory in polymer studies is the Flory-Huggins (F-H)
theory [29, 30]. The Flory-Huggins treatment represents the free energy density of
mixing, f, as a sum of two contributions [30]. The increase in the configurational

entropy associated with the increase of motion of all the polymer molecules during the
mixing process, and the change in the local interactions and motions of the monomers.
Combining these two contributions and assuming that the two polymer species have the
same volume v and they occupy the cells of a regular lattice [30], the F-H free energy

density of mixing f can be expressed as:

f= an{%mq +%In<b, +7 mdm,]
4 8

(1-21)

k—“T—(%mwl +%’-1n¢, y ‘D,.%)

v p B

where R is the gas constant, T is the absolute temperature, y is the temperature-
dependent Flory’s interaction parameter, k, is Boltzmann constant, v is the volume of
each polymer species, and n_ is the molar volume of the reference unit, i.e. the molar
volume of each polymer species given by:

n =(K] (1-22)

\4

where ¥ is the total volume of the system. Additionally, we assume that the volume
change of mixing is negligible. Note that, for ®, -0 and ®, —» 0, the local free energy

term in Eq. (1-21), y © ®,, must vanish. Miscibility between two polymers occurs when
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z has negative values, but the two polymers are incompatible with each other when y is
positive. The interaction parameter y can be expressed as the addition of two

contributions, an entropic part z, and an enthalpy part 7, [31]:

X=X+ Xn (1-23)

Since, in most polymer mixtures the entropic part y, is positive due to very small
combination of entropy of mixing, the compatibility of two polymers is determined by
the enthalpy term. However, endothermal conditions are dominant in polymers and the
great majority of polymer mixtures are immiscible [32]. Only when special local

interactions exist between A and B monomers, miscibility is possible.

1.6 Previous Works and Motivation of Present Thesis

The polymerization-induced phase separation (PIPS) method, coupled phase
separation and polymerization, has been modeled using the time dependent nonlinear
Cahn-Hilliard theory, the Flory-Huggins (F-H) theory for phase separation, and a reaction
kinetic equation for polymerization, in the previous studies [33-35]. It has been found that
the combination of diffusion and reaction mechanisms determines the length scale of the
phase separation patterns, and the phase-separated morphology can be controlled by the
rate of diffusion and polymerization. However, relatively few studies have been
completed on the PIPS method because it is a more complicated process than the classical
thermal-induced phase separation (TIPS) method. Many numerical studies have been
performed assuming that the mobility of a polymer and its interfacial parameter are
constants with an attempt to simplify the problems [36-41] and only a few studies have
been performed with a molecular weight and concentration dependent mobility (42, 43].
Therefore, the classical model equations describing the PIPS process are not realistic
since the expressions for the mobility used in the previous studies are inaccurate. In
addition, computational divergence problem occurs in the classical numerical studies for

highly asymmetric polymer systems, and the attempts have failed in describing



practically important process, such as a monomer polymerizing in the presence of a

polymer.

1.7 Thesis Objectives

The objectives of the present thesis are as follows:

1. To formulate, solve and validate a mathematical model that describes the
polymerization-induced phase separation method, suitable for the widely
commercialized polymer blend material process, that is, a monomer B polymerizing

in the presence of a polymer A.

!\)

To develop an appropriate expression for mobility that depends both on the molecular

weight of components and their local concentration.

3. To formulate, solve and validate a mathematical model that describes the

polymerization-induced phase separation process under a temperature gradient.

4. To develop a characterization method of the state of mixing and the phase-separated

morphologies.

1.8 Methodology

In this thesis, the computational simulation of polymerization-induced phase separation

has been carried out using the following procedure:

1. Specify the independent variables (time and space dimensions) and dependent
variables of the model. The dependent variables are initial concentration of

component A and the degree of polymerization of component B. To do this, it is



necessary to calculate phase diagrams numerically using the Flory-Huggins equation

for our particular conditions.

. Derive the appropriate expression for mobility that depends on the molecular weight
of components and their local concentration to reflect the diffusion behavior of
polymer molecules with increasing the molecular weight and changing their local

concentration in the PIPS process.

. Derive the governing time-dependent partial differential equations to describe the
PIPS process using the expression of mobility derived in step 2 and the conditions
specified in step 1. The Cahn-Hilliard and Flory-Huggins theories are used for phase

separation and the first-order kinetic reaction equation is used for polymerization.

. Derive the appropriate boundary and initial conditions to solve the governing
equation developed in step2. The zero mass flux and natural boundary conditions, and
the randomly generated initial conditions are used to reflect the infinitesimal thermal

concentration fluctuations initially presented.

. Nondimensionalize the governing equations and boundary conditions obtained in step

3 and 4 to obtain the dimensionless parameters.

. Develop a computation program using the Galerkin finite element method with
Hermitian bicubic basis functions to solve the dimensionless governing equation and

boundary conditions obtained in step 4.

. Solve the computation program obtained in step 6 using the appropriate

dimensionless parameter values.

. Analyze the computer simulation output. The primary outputs are concentration of
component A and the degree of polymerization of component B. The secondary
outputs are the results from calculation of the extent of phase separation for the
dynamical analysis, and calculation of the intensity and scale of phase separation, the
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dimensionless average droplet diameter, and the shape factor for the morphological

analysis.

9. Derive the governing time-dependent partial differential equations to describe the
PIPS process under a temperature gradient using the expression of mobility derived in
step 2 and the conditions specified in step 1. The Cahn-Hilliard and Flory-Huggins
theories are used for phase separation and the first-order kinetic reaction equation is
used for polymerization. The space dimension, the diffusion coefficient, the reaction
rate constant and the Flory-Huggins interaction parameter are dependent on
temperature in the part of the thesis. The temperature dependent reaction rate

constant is obtained using the chemical Arrhenius equation.
10. Follow step 4, 5, 6, 7, and 8 to solve the governing equation derived in step 9.
11. Finally, validate the simulation resuits with published data.

The computational modeling procedure based on our objectives and methodology is
given in Figure 1.10, in a compact flow-chart format. As shown in Figure 1.10, the
primary step in the numerical study is to propose objectives. As a secondary step, a model
is developed and implemented based on these objectives, existing theories, and
experimental data. The model is then solved using the appropriate computational
methods. Lastly, the numerical results obtained from the simulations are characterized
such that they can be validated with existing experimentai data.

1.9 Thesis Organization

The thesis organization is as follows:

Chapter 1 presented a general introduction and a background of this thesis, including an
industrial and academic motivation, the nature and methods of the phase separation

phenomena, and the thesis objective and organization.



Objectives Methodology
Cahn-Hilliard theory
Flory-Huggias theory
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—_— > Model
development &
implementation
>
Computational Simulation of
the PIPS process under a Temperature gradients
temperature gradient Arrhenius equation
(Objectives 2, 3,4)
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results
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Average droplet diameter
Shape factor
General guidelines for
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Figure 1.10 Computational modeling procedures based on our objectives and methodology
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Chapter 2 presents the mathematical model equation that describes the polymerization-
induced phase separation, ranging from the low molecular weight regime to the high
molecular weight regime. The model is composed of the nonlinear Cahn-Hiliard and
Flory-Huggins theories for spinodal decomposition and the first-order kinetic reaction
equation for polymerization. A rigorous expression for mobility in the Cahn-Hilliard
theory is also derived in this chapter.

Chapter 3 presents results from computational simulation of polymerization-induced
phase separation. Numerical resuits that describe the time dependent morphological
evolution of concentration fluctuations in spinodal decomposition are characterized and
discussed dynamically and morphologically, performing an extensive dimensionless

parametric study.

Chapter 4 presents results from numerical simulation of polymerization-induced phase
separation under a temperature gradient field. Numerical results that show the spatially
inhomogeneous phase-separated structure are elucidated to design and tailor the
morphology with desirable properties for high performance.
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Chapter 2
Governing Equations for Polymerization-induced

Phase Separation

Summary

When a monomer (component B) polymerizes in the presence of another polymer
(component A), the initial one-phase mixture phase-separates via spinodal
decomposition. The model equations based on the Cahn-Hilliard theory and the Flory-
Huggins theory are developed to describe this polymerization-induced phase separation
(PIPS) process. The theoretical models derived in this study can cover the range from the
polymer’s low molecular weight regime to the highly entangled molecular weight regime,
using the different diffusion theories. The expression for the mobility is also developed,

that is dependent on the molecular weight of components and their local concentration.

2.1 Introduction

Phase separation is 2 common technique for producing multi-component composite
materials such as thermoset / thermoplastic blends, porous polymer membranes and
polymer dispersed liquid crystal (PDLC) films [5-10]. As a result, phase separation in
general and spinodal decomposition (SD) in particular have been active areas of material
science research. A great number of experimental [5-10, 44-47] and theoretical [33-38,
42-43, 48-51] studies on SD have been performed intensively during the past two
decades. The majority of these works has been performed under thermodynamic
equilibrium conditions, but recently a few studies has been performed on the phase
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behavior under external fields such as shear flow [52-54] or electric fields [55, 56).
However, relatively few studies have been completed on the polymerization-induced
phase separation (PIPS) method [33-35, 50] because it is a more complicated process than
the thermal-induce phase separation (TIPS) method, although the PIPS process has many
advantages over other phase separation techniques.

The variable properties of polymer mixtures are caused by their morphology or
phase separated structure. For instance, the properties of PDLC films, such as scattering,
reflection, solar energy transmission, and the switching response time, are determined by
the droplet size, orientation, distribution, etc [9, 10]. The toughness of high impact
polystyrene (HIPS) can be increased with decreasing droplet size. In the PIPS process, it
has been shown that the resulting morphology can be controlled by changing cure
temperature, polymerization rate or concentration [9, 10]. To obtain desired material
properties, solidification of phases such as gelation can also be used [33, 34].

The phase separation phenomena combined with polymerization has been modeled
using the time dependent Cahn-Hilliard (C-H) theory and the Flory-Huggins (F-H) theory
for phase separation, and the reaction kinetic equation for polymerization. Glotzer et al
[35] solved the nonlinear Cahn and Hilliard equation with coupled diffusion and chemical
reaction. They found that the combination of diffusion and reaction mechanisms
determines the length scale of the phase-separated pattern. However, they used the
solvent and solute system, thus the mobility (see Egs. (2-16) and (2-17)) was constant.
Lin and Taylor [50] studied theoretically the PIPS method to understand the effects of
temperature, polymerization rate and concentration on the resulting droplet size and
uniformity. They simulated the morphological evolution by evaluating the energy
difference between a randomly selected site and one of its neighbors, and exchanging
their occupancies if the energy difference is negative. Chan and Rey [33, 34] solved the
nonlinear fourth-order C-H equation to study the effects of diffusion coefficient and
polymerization rate on the phase separated morphology in the PIPS process. However,
they studied only polymer solutions. In addition they used the concentration independent
mobility, thus their equation diverges when the concentration approaches unity for an
asymmetric polymer solution system. Shaginyan and Manevich [57] studied the initial
stage of the PIPS process of a multi-component blend. The degree of polymerization of



the second component ¥, is determined by the time dependent reaction conversion factor

in their study. However, the molecular weight effect on the mobility was not considered
in their study. It is known that the mobility is highly dependent on the molecular weight
of component and their local concentration as suggested by several authors [42, 43].
Consequently, the classical model equations describing the PIPS process are not realistic
since the expressions for the mobility used in previous works are inaccurate. The
objective of this chapter is to develop a generally valid model and an accurate expression
for the mobility

In this chapter, two governing equations are developed to describe the PIPS process
taking into account the concentration and molecular weight dependence of the mobility.
The mobility is formulated to reflect the effect of the polymer chain iength growth due to
reaction by using the Rouse theory in the non-entanglement regime [58] and the de
Gennes’ reptation theory in the entanglement regime [59, 60]. Non-periodic boundary
conditions and zero mass flux boundary conditions are used to solve the governing
equations [33, 34, 48, 49].

2.2 Theory of the Governing Equations

2.2.1 Theory of Spinodal Decomposition

This section briefly summarizes the theoretical background and spinodal
decomposition (SD) equations presented in Chapter 1. Phase separation via SD can be
induced by thermal quenching, solvent evaporation or polymerization, namely the
thermal-induced phase separation (TIPS), solvent-induced phase separation (SIPS) and
polymerization-induced phase separation (PIPS), respectively [9, 10]. In the PIPS
method, as the molecular weight of component increases due to polymerization reaction,
the phase diagram shifts toward higher temperature and concentration. When the
homogeneous initial system located in the stable region above the binodal line passes
over the spinodal line, it is thrust into the unstable region and phase separation occurs.
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The Cahn and Hilliard (C-H) theory [21] is most widely used theory for phase
separation via SD [23] because it takes into account the contribution of the local
gradients. According to C-H’s assumption, the total free energy F can be expressed as
the integral of the sum of two contributions; homogenous contribution f(®,) and

gradient contribution V&, as follows:

F={ [rl®)+x(vo,}|av (2-1)

where « is a positive interfacial constant, @, is the volume fraction of polymer A, and
V is the total volume of the system. For binary mixture, ® ,= 1 — ®,, where @, is the

volume fraction of polymer B. Eq. (2-1) has been obtained from the Taylor series
expansion with the natural boundary conditions, V® ,#=0. By using a continuum modei

equation [25, 26] and expressing the net flux J with chemical potentials, the following

forth-order partial differential equation can be obtained:

2D éf
L=V | M(® N, NIV - %V'D, 2-2

4

where M is concentration and molecular weight dependent mobility, ¢ is time, and ¥,
and N, are the degree of polymerization of polymers A and B, respectively.

An appropriate expression for the bulk free energy density has to be selected to
solve the nonlinear C-H equation, Eq. (2-2), and the most widely and successfully used
theory is the Flory-Huggins (F-H) theory [29, 30]. The F-H free energy of mixing f is
expressed as:

4

f= anc(%imcb,%m«b,q q:p,) 2-3)
8

_ kT %mod%mcp,q CDACD,)

v 4 B

where R is the gas constant, T is the absolute temperature, n_ is the molar volume of the

reference unit, y is temperature dependent interaction parameter, k, is Boltzmann
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constant, and v is the volume of the reference unit. In Eq. (2-3), the first two terms inside
parenthesis represent the contribution of the configurational entropy and the last term

represents the contribution of the enthalpy of mixing. The interaction parameter y is a

function of temperature and can be written as [31]:

et

where ¥ is the dimensionless entropy and © is the theta temperature defined by:

vely, 2-5)
o=—Zl (2-6)
1/2-p,

where y, and y, are the enthalpy and entropy contribution to jy, respectively.

2.2.2 Molecular Weight and Concentration Dependence of Mobility and

Interfacial Parameter.

In the PIPS method, the polymer molecular weight constantly increases during the
polymerization process, and the local concentration continuously changes due to phase
separation. The mobility M and interfacial parameter x are dependent on both the
polymer molecular chain length and local concentration. Many numerical studies,
however, have been performed assuming that M and x are constants with an attempt to
simplify the problems {36-41] and only a few studies have been performed with a
molecular weight and concentration dependent mobility [42, 43]. The interfacial
parameter « can be assumed to be concentration independent in the absence of any
accurate information about its behavior; however, M is known to be highly sensitive to
concentration changes [43].

The molecular chain lengths and local concentration dependence of the mobility can
be captured from its relation with the self-diffusion coefficient [61-63] as:
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p,-u 2L (2-7-2)

S
D, =ML (2-7-b)
TR

where D, and D, are the self-diffusion coefficients of polymer segments and f is the
free energy of mixing. In Eqs. (2-7-a) and (2-7-b), an expression of 7°f/J®* can be

formed using the Flory-Huggins theory when we neglect any interactions between
polymer chains [59], as follows:

H 4

J j;=k,T P, 1 ) (2-8-2)
2P v \N®, N0,

b 4

of kIf L, 1 ) (2-8-b)
2D v \NO, N0,

Substituting 7°f/F®* in Eqs. (2-7-a) and (2-7-b) with Eqs. (2-8-a) and (2-8-b), we
obtain the following expressions of the mobility of polymer segments:

D, (2-9-a)

M, =
kT( 1 1 )
+
v \N®, N0,

D, (2-9-b)

M, =
erf L, 1]
v N.l¢.l NJ¢!

The total mobility can be obtatned by simply addingup M;' and M;' as:

p=LHM

"M, + M, (2-10)

This mixing rule has been used for deriving the total mobility in the system by de Gennes

[59]. Thus, we find that the total mobility can be expressed by inserting Egs. (2-9-a) and
(2-9-b) into Eq. (2-10) as:
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DID.'N.IN,¢J®'
kT
( 2 )(Dl +D, N ®,+N,0,)

\4

M=

(2-11)

H. Zhang et. al [42] arrived at a similar result for the mobility.

All diffusion phenomena of polymers are nearly proportional to either N or N,
depending on their molecular weight. Published data shows that in the low molecular
weight regime, N <¥V,, where the material dependent N, is the critical degree of
polymerization, diffusion of polymer exhibits an N dependence as expected from the
Rouse prediction [58]. The diffusion coefficient based on the Rouse theory is written as:

k,T

D=2 N<N, (2-12)
N,

where ¢ is a friction coefficient characteristic of the interaction of a bead with its
surrounding (Rouse model represents the polymer chain as a linear series of beads
connected by springs).

On the other hand, in the high molecular weight regime, N> N_, diffusion of

polymers would depend on the inverse square of the molecular weight since polymer
properties such as diffusion coefficient or viscosity are affected by entanglements. The
reptation model represents the behavior of the highly entangled polymers and the
diffusion coefficient may be written as [59, 60, 64]:

R 2
D kT ‘,) kTla — ysw (2-13)
3 NG 3¢ N

where R, is the radius of gyration, L, is the tube length (the reptation model imagines

that the motion of the polymer chain is confined in a tube-like region), a is the step
length of primitive chain and b is bond length, respectively. It is convenient to express
Eq. (2-13) in terms of molecular weight instead of the coefficients a and 5. To do this,

we can use the relation between a and 5 as [60]:

2 4Me
SM

4

a Nb? 2-14)
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where M, is the molecular weight between entanglement and M, is the molecular
weight of a polymer, respectively. Since M=M_N and M,/ M_=N, where M_ denotes
the molecular weight of each monomer and », represents the molecular chain length

between entanglements, we can obtain the diffusion coefficient in the high molecular

weight region by inserting Eq. (2-14) into Eq. (2-13) as:

D= [-%] [f‘dvﬂ) , N>N. (2-15)

The crossover in D from the Rouse theory to the reptation theory occurs at the
critical polymer chain length, N . It is known that ¥ =2N,. The value of N, is material
dependent and in the range of 30< N <120 for typical thermoplastic and thermoset
polymers. The diffusion of polymer chains starts to deviate slightly from Rouse behavior
where N 230 [65].

Substituting the diffusion coefficients in Eq. (2-11) with Eq. (2-12), one finds that
the mobility for the low molecular weight system is given by:

NN, O, N<N (2-16)

M= ’
4(.‘V_‘ + Nl)(NJQJ + NAQB) ’

while for the high molecular weight region, the mobility M is found by inserting Eq. (2-
15) into Eq. (2-11) to give:

HNNND O,

M= I[N +N)N @, +N,2,)’

N>N, 2-17)

Note that £ can be assumed to be the same for A and B segments [66].

For polymer solution, Chan [24] derived an expression for the x parameter that is a
function of the radius of gyration. They used de Gennes’ [59] derivation that is
appropriate for symmetric polymer blends, assuming that the effective interaction length
between the molecules / is same with the radius of gyration:

k’Tl.’z=£R:z (2-18)
v

=

v
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The radius of gyration R, of a nonlinear polymer can be written in terms of polymer

chain length of component i as [24]:

R =[g%n_N]z 2-19)

where g is the ratio of the square radius of gyration of a branched molecule to that of a

linear one of the same molecular weight, and is less than unity, n_ is the number of
monomers, and /_ is length of each monomer, respectively.

In order to obtain an appropriate expression of « for the mixed two components

system, we can use the random phase approximation [67, 68]. Assuming n_ and [/, for

each component A and B are identical, we arrive at (33, 34]:

x=x(N,+N,) (2-20)
where
e, =5l oin @2-21)
12v

Note that in Eq. (2-20), we neglect any concentration dependence of «, because x can be
assumed to be constant as mentioned earlier. On the other hand, « is proportional to the
polymer chain lengths in Eq. (2-20). As the polymer chain grows, the interaction between
the molecules increases. As shown below, Eq. (2-16), (N<V.), and Eq. (2-17) (N>N.),
are used for M, and Eq. (2-20) is used for x in Eq. (2-2) to derive the governing

equation, respectively.

2.2.3 Polymerization Kinetics and Molecular Weight Distributions in Nonlinear
Polymerization

In the PIPS method, the phase diagram continuously changes as molecular weight
increases during polymerization. The rate of molecular weight increase is governed by its
polymerization kinetics. The rate of polymerization also affects the morphology of
mixtures such as droplet size [9, 10]. In addition, if the monomers are multi-functional,
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polymerization leads to the formation of branched polymers and three-dimensional
network. In this study, we assumed that a monomer B undergoes the self-condensation
polymerization in the presence of a non-reactive polymer A, and it is assumed that
monomer B has three functional groups, B,.

The kinetic rate equation for bimolecular of a single reactant is expressed as [69]:

dp _ _ 2 R
-d—t--lc,(l ?) (2-22)

where p is the extent of reaction, ¢ is time and &, is the rate constant. Using the initial
condition p(r =0)=0, the solution to Eq. (2-22) is:
kit

= 2-23
P 1+ k¢ ( )

The expressions for the number average X, and the weight average X, molecular
sizes in terms of functionality have been derived by Stockmayer {70-72] for predicting
the extent of reaction at the gel point. These expressions are obtained by assuming that
the reactivity of all functional groups is the same and that there are no intramolecular

reactions between functional groups [70-72], and are given by:

= 1

— (2-24-a)
l-ay/2

Xt (2-24-b)
1 - (;f - 1) a

where 7 is the functionality of the monomer and « is the branching coefficient, defined

as the probability that a given functional group of a branch unit leads to another branch
unit {55]. Since the extent of reaction p at time ¢ is given by the ratio of the number of

functional groups that have reacted to the number of finctional groups presented initiaily,
for the single reactant system, a is equal to p. The gelation for a reactant of

functionality 7 can occur when at least one of the (¥ - 1) chain segments connect its
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branch unit to another branch unit. Thus, the critical branching coefficient can be defined
as [73]:

@, = — (2-25)

Eq. (2-25) is valid only for y > 2, and when y = 3, a, =05. Because X. is infinite
while X. has a finite value of 4, at the critical point (o, =05), X. better reflects the
molecular weight growth of multi-functional units [33, 34]. By assuming N, can be
represented with X. and combining Eq. (2-23) and Eq. (2-24-b), we can obtain for N,

as:

1+ 2kt
1+ 2kt - ykt

(2-26)

8

This value of N, is used to determine the free energy function f in Eq. (2-3) and the
mobility M in Eq. (2-2). Hence, the Gibbs free energy f(r) and the mobility M(r) are

now time dependent functions.

2.3 Formulation of the Governing Equations of Polymerization-induced

Phase Separation.

We assume that the initial system is located in the one-phase region and it is a
homogenous-phase mixture consisting of two components, a polymer A with chain length
N, and a monomer B (N, =1) that has three functional groups. The condensation
polymerization in the system induces the growth of N, and leads to the formation of a

branched polymer B. It is also assumed that only one constituent B undergoes
polymerization, and a polymer A does not participate in this reaction and its molecular
weight remains constant (N, =100). As N, increases due to polymerization, the phase

diagram changes continuously and shifts toward higher temperature and concentration

38



(see Figure 1.7 (b)). As a result, the curing point is thrust into the unstable region, hence
spinodal decomposition takes place during the polymerization process. Even though the
system might pass through a metastable region before it reaches the unstable region, the
phase separation phenomenon can be considered strictly as spinodal decomposition.
Nucleation and growth (NG) can be skipped because of the fact that NG is a very slow
and stochastic process [74).

2.3.1 Model Equation for the Non-Entanglement Region (N < V)

The model of spinodal decomposition is governed by the nonlinear Cahn-Hilliard
theory given by Eq. (2-2). The time variation of the volume fraction field of polymer
component A, & (x, y.r) in terms of the Flory-Huggins free energy function is given by:

50 (x,y, 2 f(e, ,
—-'c(:l—yt)=V[M(di‘,N,,N,)-V(—&%-—)—ZxV'Q,” @2-27)

4

where M is mobility given by Eq. (2-16) and Eq. (2-17) for two different molecular
weight regime. Combining Eq. (2-27) with the F-H theory, Eq. (2-3), gives:

C‘;(D‘(.t,_v.t) ={M(¢07N1,Nl)'v(k'r[]n¢“ +_1—- ln(l-(bt) —_I_' (2'28)
At v l- N‘ N" N N

2 3

+1(1-2¢,)]-2xv*¢,)]

For the low molecular weight regime (¥ < N_), or non-entanglement region, by

inserting the mobility M given in Eq. (2-16) into Eq. (2-28) and performing the
functional derivative, Eq. (2-28) is rewritten as:

G0 (xyt) KT |-N(N®+N,(1-9,)-N,N, -N)1-9,)
G 4N, +N,)| (N0, +N,1-0,)
. NA(NAd).C +Nl(l-®A))-Nl(NA "NI)QA
(¥, +N,(1-0,)

(2-29)
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N.,N,(N_,tbj +N,(l-@_,)Xl-l@,)—M,N,(N_‘ -N,)o. (1-9))
(vo,+N,1-0,)

(ﬁd},a"@,_‘_i(t),a"(b‘)*_ kT [ N(-0)
dx dx Jy dy) {N,+N,)|N® +N,(1-0,)

; NOD, 2 N‘«Na¢.«(l_¢4) dz(b‘ + ﬁ’tblj
NO +N(1-0) *N®+N,(1-0)\ o  dy

2w NN(NO, +N,(1-0)f1-20,)-NN,(N,-N,)0 (1-0)
¢V, +N,) (vo,+N,(1-0))

(a’cb, 50, 20, 39, ', 79, IO, a‘*cb,}
2x’ dx JIx3y' dx JSxFy dy Jy 2Py

____wNNO(-®) (s, , d'0, +a'"tb‘)
(N, +N)N® +N,(1-0 )\ dx* “Fxdy 2y

For convenience, it is assumed that the degree of polymerization ¥, and ¥, are always

monodisperse and Flory’s interaction parameter y given in Eq. (2-4) is temperature

dependent only. The system will be restricted to a two-dimensional square of length L in
this study.

Eq. (2-29) can be written in dimensionless form by suitable rescaling. The
following dimensionless variables are used: x =x/L, y =y/L, T =T/@,

" =2xwvt/ L', and D* =k,©OL / 2vx,. Therefore, Eq. (2-29) can be rewritten as:

GO feyt) DT |-N(N®+N,[1-0))-N,(N,-N)1-®)
ar _(N‘+N,)L (¥, +N,(1-2.)
N (N @, +N,1-®)))-N,(N,-N, )0,
(¥, +N,(1-9)

(2-30)

NN,(N @, +N,(1-0)f1-20)-N N, (N, - N, )0, (1-@))
(N, +N,0-2))

(m; o, 9, am;)+ pr [ N,((1-0)
éx dx Jy 3y ) (N,+N)| N, +N,(1-2))



NO NNO(1-0) |7 a’cb;]
+— -2 - 4+
N, +N,(1-0)) N®, +N,(1-®)\x" Fy

NN,(N @, +N,(1-0,)f1-20,)-N,N,(N,-N, )0, (1-®))
(N, + N,(l-da;))‘

(a’m;a«p o0, 20, 5P, 2% +a¢ tb)
Ax’ éx Fxdy’ dx o"t gy @y Ay’ dy

NN (1-0) (5'd, | 3'0, a‘m;)
- t+2 5] =t -
(Vo +N,(1- ))kéx axdy’ dy

where the superscripted asterisks denote dimensionless variables.

2.3.2 Model Equation for the Eantanglement Region (N > V)

The physical properties of a polymer such as viscosity, modulus and diffusion
coefficient dramatically change when its molecular weight exceeds a certain critical

value, N,. This change is due to the entanglement effect of polymer molecules. The

governing equation for high molecular weight region can be obtained by inserting Eq. (2-
17) into Eq. (2-28), reflecting the entanglement effect. After performing functional

derivative, Eq. (2-28) gives:

,(t y,r) _ 4 k,T N, l‘—N,(N_‘(D“ +N,(1—‘D,))—N,(N‘ -'N,)(l-@.‘)
cr 15NN (N0, +N,(1-0,)
. N(N®, +N,(1-0))-N(N,-N,)0,
Vo, +N,1-0,)

(2-31)

N +N -0 1-20) NN, —N,)(b‘(l—tb,)]

(vo,+N,(0-0,)

(acp‘amuaq:,acp,% 4kTN, [ N(-0)
dx dx Jdy Fy) 154Ni+Ni)|N,®, +N,(i-0,)

NO, NN, (1-0,) Yo', (ﬁp‘)
* 2y +
NA(D‘ +N,(1—(D‘) N‘(D‘ +N.(I_¢4) axt éyz
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goN,  NN(N®, +N,(1-0 ))1-20,)-NN,(N,-N,)D,(1-0,)
15 (N + V) (vo,+N,01-0,)

(a’oj 29, 0’0, 70, 2’0, a¢,+a’¢,a¢d)
’x’ ox o"xiy Gx 2x3yJdy Sy Ay

_ 8N N, N® (1-9,) (6'o, 25@ aq))
15N+ NN, +N,(1-0 )\ 5 TFxFy Gy

Using the same scaling variables used in Eq. (2-30), we can rewrite Eq. (2-31) as:

c’d’f,(x,y,t) _ 4 D'T.N, I'—N,(Nld); +Na(]‘"¢;))-Na(Nc _Ns)(l _(D;)
o 15 (Nj«x-Ni)l_ (N..¢;+N,(l-¢',))x
N [N®, +N,(1-9)))-N (N, -N, )0,
v (V@ +N,(1-0))

(2-32)

N NN @, +N,(1-0 )} 1-207)=N,N,(N, - N,)o’ 1 -¢;)}
‘Zl . XY
(V@ +N,(1-0)))

(m 5P, 29, ach aDpTN, [ N(1-0)
ix dx  dy oy ) (N, +N)|_N<b +N,(1-0")

N NN®(1-0) (50, J'e, J
PN N(-) AN N -0) \ax T ay

4 N(N,+N,)NN,(N®, +N,(1-9,)1-20,)-N N, (¥, -N,)D,(1-2’)
15 (N} + ;) (v, +N,(1-0")f

[a’cp; o0, I®, 59, I, I, +ao mJ
éx” éx dxdy’ éx ér 6y éy dy’ dy

4NV +N,) NNO(-0Y) (5, , 59, am)
I5(Vi+N) (N, +N, (-0 )\ ox* TaxeyT dy

To determine the crossover point from the non-entanglement regime to the

entanglement regime, the values of N, for typical thermoset polymers are given as
follows: N (PMMA) = 100, N (PSF: altemating copolymer of Bisphenol A and
dichlorodiphenyl sulfone) = 20 {75]. Recall that N, =2N,. Because N, is a material
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dependent value, the crossover point from the non-entanglement regime (Eq. 2-30) to the
entanglement regime (Eq. 2.32) would vary depending on the materials used. In this
study, it is assumed that N _, >100 and N, , =31.5. Since component A does not
participate in the reaction, remaining constant molecular weight (N, =100), the model
equation governed by Rouse theory (Eq. (2-30)) is used from t" =0 to t'(N, =31.5) and
it is switched to the equation governed by reptation theory (Eq. (2-32)) for t >
(N, =31.5).

The value of N, in Egs. (2-30) and (2-32) is determined by Eq. (2-26) to describe

polymerization process. Eq. (2-26) also can be written in dimensionless form as:

2K (2-33)
1+2Kt-y Kt
where K is the dimensionless reaction rate constant defined by:
4
g = kle (2-34)
2x,v

In Eq.(2-33),if "= 0, N, = 1,andif £’ - ®, N, = = and gelation occurs

2.3.3 Initial and Boundary Conditions

To solve the governing dimensionless equations given in Eq. (2-30) and Eq. (2-32),
four boundary conditions and one initial condition for each equation are required. A set of
natural boundary conditions can be used for solution of Eq. (2-30) and Eq. (2-32) which

is written as:

(Vo,)-7i=0 (2-35)

where # is the outward unit normai vector to a bounding surface. Therefore, the first set
of dimensionless boundary equations are given by:
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3 L=0 |, at >0, and x"=0 and x =1 (2-36-a)

x

%= ) atr >0, and y'=0 and y =1 (2-36-b)
y

The other set of boundary conditions can be obtained by the fact that there is no mass flux
with the surroundings [49]. By setting the mass flux J to zero, Elliott and Songmu [76]
derived the zero mass flux boundary conditions as:

2 (@)

J==MV| =L _2T'®" | =0 2-37

Thus, the second set of dimensionless boundary conditions are written as [49]:

)

7'y,

++—rt==0 , at >0, and x' =0 and x' =1 (2-38-a3)
x JxcJy
id).h— d,(b‘., =0 , at '>0,and y'=0 and y =1 (2-38-b)
cy” Jyox

The infinitesimal concentration deviations from the average concentration are
always present initially even in the homogeneous one-phase mixture. These deviations
are called homophase thermal concentration fluctuations. The infinitesimal thermal

concentration fluctuations must be reflected in the initial condition as:

@ (x",y . =0)=0, + 5D (x,y " =0) (2-39)

where @, is the average concentration. Chan et al [33, 34, 49] used a linearization
approximation to describe the thermal concentration fluctuations & @, by retaining only

linear terms in their equation. Then they decomposed the free energy function into its
Fourier components and applied the equipartition theorem. This approximation is
plausible because the homophase concentration fluctuations in the very early stages of the
phase separation are infinitesimal. Thus, their approximation and expression for & @,

are employed to describe the thermal concentration fluctuation in this study.



In summary, from £ =0 to ¢ = £{N, = 31.5), Egs. (2-30) and (2-33) are
solved with four sets of boundary conditions given in Egs. (2-36-a), (2-36-b), (2-38-a)
and (2-38-b), and an initial condition given in Eq. (2-39). At ¢ >¢_, Eqgs. (2-32) and (2-
33) are solved with the same boundary conditions used for ¢ <. In addition, the
solutions of Eq. (2-30) at £.(N, = 31.5) are used as the initial condition for Eq. (2-32).
The dependent variables are @, and N,, and the independent variables are x*, y* and

t’. While there is an analytical solution to the equation describing the polymerization
process (Eq. (2-33)), there is none for phase separation process (Egs. (2-30) and (2-32)).
Thus, Egs. (2-30) and (2-32) with their auxiliary conditions must be solved numerically
to obtain the solution vector for tD:,(x', ¥y, t'). The parameters are the dimensionless
diffusion coefficient D", the dimensionless rate constant X~, the dimensionless initial

average concentration @', ,, the dimensionless temperature T*, and the Flory-Huggins

interaction parameter y . The temperature dependence of y is given in Eq. (2-4).

2.4 Methods of Solution

2.4.1 Galerkin Finite Elements Method and Hermitian Basis Functions

The Galerkin finite elements riethod (GFEM) has been widely used for solving
problems governed by ordinary differential equations, partial differential equations and
integral equations in many applications [77, 78]. When we suppose that the given
differential equation with appropriate initial condition and boundary conditions for two

dimensional problem is expressed as:

L(u)=0 asx<h, asysbh (2-40)

then, an approximate solution u, can be assumed to be written as:
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w(x.0)= S e (5.) )

where ¢’ ’s are known analytic functions, called global trial and test functions, and u,’s
are time dependent unknown coefficients. Replacing « in Eq. (2-40) with «, in Eq. (2-

41), we can obtain the following expression:

L{u,)=R=0 (2-42)

where R is the residual. An approximate solution u, is assumed to be represented in a

piecewise approximate function, so that if this piecewise approximation is correctly
constructed, then it will approach the corresponding exact solution u. In other words, the
aim of method of residual is to force R to zero and consequently to make an approximate

solution u, approach the exact solution. To do this, we need to set the inner product of

the residual R and an independent weight function w, equal to zero:

F= _[IR w(x,y)dAd= [IL(u.) w,(x,y)d4=0 (2-43)

In the Gakerkin method, the weight function w, is chosen from the same family of
function in Eq. (2-41), hence, Eq. (2-43) can be rewritten as:

F= ]:j R p'(x,y)dd= _[IL(u.) @'(x,y)dd =0 (2-44)

where i, j = 1,2,..N. We can note that Eq. (2-44) can be expressed as a set of N
differential equations to be solved for the unknown coefficients #, when we use the

Gaussian integration. Consequently, Eq. (2-40) has been reduced to a set of ordinary
differential equations (2-44).

In this study, the given differential equation L(x,) is the fourth-order two-
dimensional partial differential equation (see Eq. (2-30) and Eq. (2-32)) given by:

L{u,)= ‘;“t - F(u)Vu,-Vu, - G(u)V'u, + H(u )Vu, -V(Vu )+ I{u,)V'u, =0 (2-45)




where V=(2/Jx)i +(6/ 3 y)j . Inserting Eq. (2-45) into Eq. (2-44) leads the residual

equation as:

F = j ——F (,)Vu, - Vu, - (u‘)V’u.+H(u‘)Vu.-V(V’u‘)-#I(u.)V‘u.] @' dxdy (2-46)

To lower the order of the derivatives of Eq. (2-46), we can use the divergence theorem.

For a scalar « and vector v ;
[av-av = [afi-7dS - [Va-vdV (2-47)
14 s 1 4

where S is the boundary of the domain V, and 7 is the outward unit normal vector. Using
the divergence theorem twice and the vector differential identity [79]:

Va-Vy= V-[(V‘a)(V‘y)]-V’aV‘y (2-48)

we can rewrite the fourth order terms in Eq. (2-46) as:

”” o [Vu, - V(Vu,|dsdy = [Eu)or5-[(V7u, (P )Jds - I IV[H o | [(V2.)(Va ) ey

- [TH ) (Ve XVu,)|xdy (2-49-)
and

331(“,)¢‘V‘u_dxdy = [I{uw)oi-Vuds - | (VW 1, ) s

+[ [V, )V [ 1{u, ) ixay (2-49-b)

*

Finally, Eq. (2-46) can be expressed as governing terms and three boundary terms as:

F= j ”‘: — F(u,)Vu, - Vu, - G(u,)V* ]g)'dtdy
- J’ J{V )¢ (Viu,)(Vu )]+H(u qp‘[(V’  (Viu,) ] (Viu, )[V’ I(u ) ]]}Lmy (2-50)
+ JH(u‘)qp‘E -[(V’u. NVu, )]dS + !I(u.)qp‘ﬁ -Vu dS - Jiz' ’(V’u_){V[I(u,)ﬁ ]]d.S’
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Once the governing equation has been set in Galerkin form, the next step is
discretization, that is, the domain must be divided into a number of finite elements. Note
that for one-dimensional problem each element has two nodes, thus if there are N
elements, N+1 nodes exist. For two-dimensional problems, either triangles or rectangles
can be used for elements, depending on the boundary geometry. The number of nodes has
to be properly chosen to represent the solution more effectively where rapid changes in
the solution are expected. Balance between the number of elements and computational
time and memory space shouid be also taken into account.

As shown in Eq. (2-41), an approximate solution has been expressed as the
summation of the product of unknown coefficient u;(r) and the global trial and test

function @/(x,y). However, in computations, by using the local test and trial functions

instead of the global test and triai function, the given problems can be solved very
economicaily. This is plausible because the test and trial functions span a very small
section of the spatial domain. The test and trial functions are nonzero only in the
immediate vicinity of the j-th node and zero outside of this range. A schematic
representation of two-dimensional global and local domains is shown in Figure 2.1,
where & and 7 represent the local orthogonal coordinate system. Note that , defined at

the local level is identical to »"' at the global level where the subscript index represents
the local level and the superscript index implies the global level. So thus in each element,

we obtain that:

u(¢, rl)=Z|u..,¢,(§, n) (2-51)

where ¢, is the local basis function.

Once the locations of the nodes have been determined, the appropriate nodal basis
functions have to be selected. Hermitian cubic basis functions are known to be
appropriate for the forth-order partial differential equations [80]. In Hermite interpolation
both function values and derivatives are interpolated at the ends of each element.
Therefore, in one dimension, each element has two double nodes and four basis functions.

Using the following features of the Hermitian basis functions:
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i+l
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U & i,
Figure 2.1 Element configurations in a two-dimensional global domain and corresponding local
domain. xand y represent the global two-dimensional coordinate axes while & and 7 represent

the local coordinate axes. Note that « defined at the local domain becomes «, at the global
domain.
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we can construct the Hermitian cubic basis functions as:

P, =1-38+2¢& (2-53-a)

=£-28+& (2-53-b)
@, =38 -28 (2-53-¢)
P = -5 + i (2'53-3)

where ¢ . interpolate the function values and ¢, interpolate their derivatives. Hence, the

Hermitian cubic expansion based on local domain can be written as:

dD)= S0+ 300,04 @254

By means of mapping &— x, the approximate solution of the global domain has the

form:

= i[w; +%¢] (2-55)

-t

On the other hand, for two dimensional problem, each element has four sets of four nodes

and 16 basis functions. Thus introducing @,,(&7) and @, (£7) in the orthogonal
coordinate (£,77), Eq. (2-54) and (2-55) have to be rewritten as:

. Z

W& n)=2up(&n)+ Z( )40,.(50) Z( ),J(s‘,r/)ﬂ‘g[ :52'”](0,.3(5,0)(2'55)

)=t st
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and

du, Ju a"zu‘
2

u_=2:‘[u,¢,’+ a"x¢:+éy%,+a"xo"y (2-57)

4

where @ , interpolates the function values and ¢,, ¢,,, and @, interpolate their
derivatives with respect to &, 7. It is much convenient way to lump the coefficient in Eq.

(2-57) together as U, and the Hermitian basis functions together as y/; [48], which gives:

u =) Uy (2-58)
where
j=1,59,13, .., 4N-3
U =u,y¥=0 for (2-59-a)
k=1,2134, .. N
p (j=2,6,10,14, .., 4N -2
7 =_air v,= ot for (2-59-b)
’ \k=1,2,34 .. N
5 (j=3, 7,11, 15, ..., 4N =1
v, =—;'-1 v= ¢7§ for (2-59-c)
Y \k=1,2,3,4, ., N
PE (j=4,8,12,16, ..., 4N
u
Rl e 2 for (2-59-d)
*y \k=1,2,34, .. N

Inserting Eq. (2-58) into Eq. (2-50) and applying the boundary conditions, we can obtain

an equation in a matrix form:

J U= -F (2-60)

where J is the Jacobian matrix which can be determined by J,, =FF,/JU, and F is
given in Eq. (2-50). Finally Eq. (2-60) is solved for the unknown coefficient U, using a
Newton-Raphson iteration scheme. Convergence is assumed when the length of the

vector of the difference of two successive computed solution vectors is less than 10°°.
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2.4.2 Time Integration Methods

The nonlinear time-dependent partial differential equations given in Eq. (2-50) have
been reduced to a set of ordinary time-dependent differential equations. The finite
difference method and a first-order implicit Euler predictor-corrector method are used for
time discretization [81]. In addition, an adaptive time step control method [81] is used to

minimize computing time while maintaining accuracy.

2.5 Conclusions

A theoretical model was developed to describe the phase separation phenomena
during polymerization of a monomer B in the presence of a polymer A. During
polymerization takes place, the phase diagram of the two component mixture A and B
continuously moves toward higher temperature and concentration. The curing point
initially located in the homogeneous phase region is thrust into the unstable region, and
phase separation occurs via spinodal decomposition. The nonlinear Cahn-Hilliard theory
and the Flory-Huggins theory were used to develop a model of spinodal decomposition.
The local concentration and molecular weight dependent mobility was derived to reflect
the molecular dynamics in the multi-component polymeric system. The two different
diffusion theories, the Rouse theory and the reptation theory, were used for mobility to
reflect the different molecular behavior with an entanglement effect. Therefore, two
governing equations were developed for the non-entanglement regime and for the
entanglement regime, respectively, for one reaction operation. The sets of zero mass flux
and natural boundary conditions were formulated as non-periodic boundary conditions.
The infinitesimal thermal concentration fluctuations present in an initial homogeneous
mixture implemented to reflect better initial conditions. The Galerkin finite element
method with Hermitian bicubic interpolants was chosen for spatial discretization of the
governing equations. In addition, a first-order implicit Euler predictor-corrector method
and an adaptive time scheme were used to perform temporal discretization. In summary, a
full model for the PIPS method and its method of solutions, based on GFEM and
corrector/predictor method, have been developed.
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Chapter 3
Computational Simulation and Morphological
Analysis of Polymerization-induced Phase

Separation

Summary

A rigorous model of polymerization-induced phase separation (PIPS), based on the
nonlinear Cahn-Hilliard (C-H) and Flory-Huggins (F-H) theories combined with a
second-order polymerization reaction equation, has been formulated. The model describes
phase separation in system consisting of a non-reactive polymer and a monomer that
undergoes condensation polymerization. The model consists of a balance equation for the
low molecular weight regime and another balance equation for the high molecular weight
entangled region. The model equations are solved, and the solutions are characterized to
identify the dynamical and morphological phenomena of the PIPS process. The extent of
phase separation increases with time significantly during the early stage of phase
separation, and slows down in the intermediate stage. The various types of the phase-
separated morphologies are fully characterized using the novel morphological
characterization techniques, known as the intensity and scale of segregation. Both the
dynamical and morphological features of the PIPS method are sensitive to the magnitudes
of the dimensionless diffusion coefficient D° and the dimensionless reaction rate
constant K' . The scale of segregation and the droplet size decrease as D" and K~
increase. On the other hand, the intensity of segregation increases with X, but decreases

with D",
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3.1 Introduction

When a single-phase mixture is thrust into the unstable region of the phase diagram,
the mixture phase separates via spinodal decomposition (SD). Phase separation can be
induced by thermal quenching, solvent evaporation or polymerization, known as thermal-
induced phase separation (TIPS), solvent-induced phase separation (SIPS), and
polymerization-induced phase separation (PIPS), respectively. The PIPS method is a
complex process because phase separation and polymerization occur simultaneously. In
the PIPS method, the degree of polymerization of the polymerizing component
continuously increases as the reaction proceeds, and this induces phase separation
because the curing point eventually crosses over from the homogenous (stable) region to
the two-phase (unstable) region [1, 9, 10].

The PIPS method based on condensation-reaction polymerization is an important
manufacturing route for multi-phase material production. A typical example is the
production of high impact polystyrene (HIPS). HIPS is manufactured using the PIPS
process by polymerizing styrene monomer in the presence of polybutadiene (PB). As
polymerization proceeds, PB phase separates and disperses in the polystyrene (PS)
matrix. The particle size of the PB phase can be controlled by a proper choice of the
processing conditions to obtain the desired properties. However, despite practical
importance of PIPS in producing multi-component composite materials, relatively few
theoretical [33-35, 50, 57, 82] and experimental [5, 44, 63, 74, 83] studies have been
performed. In particular, no model has yet been developed to describe monomer
polymerization in the presence of a polymer taking into account phase separation.

Coupled phase separation and polymerization processes have been modeled using
the time dependent nonlinear Cahn-Hilliard (C-H) and Flory-Huggins (F-H) theory for
phase separation, and a reaction kinetic equation for polymerization, in the previous
studies [33-35]. The mobility and interfacial parameter in the C-H theory are dependent
on both the polymer molecular chain lengths and local concentration in the PIPS process.
Many numerical studies, however, have been performed assuming constant mobility and
interfacial parameter with an attempt to simplify the problem. The interfacial parameter

can be assumed to be concentration independent in the absence of any accurate



information about its behavior; however, the mobility is known to be highly sensitive to
concentration changes {43].

Glotzer et. al. [35] solved the nonlinear C-H equation with coupled diffusion and
chemical reaction equations. They found that the combination of diffusion and reaction
mechanisms determines the length scale of the phase separation pattemns. However, they
considered only a low-molar mass solvent and solute system using constant mobility.
Chan and Rey [33, 34] solved the nonlinear fourth-order C-H equation to study the
effects of diffusion coefficient and polymerization rate constant on the phase-separated
morphology for polymer solutions in the PIPS process. Their system described
polymerizing monomers in the presence of low molar mass solvents. They found that
morphologies with high density of small droplets would be obtained by increasing the
diffusion coefficient and the rate constant. However, they used a concentration
independent mobility and, as a consequence, their equation diverges in the intermediate
stage of phase separation when the concentration approaches unity. Furthermore, they
obtained almost perfectly spherical droplets due to constant mobility. Shaginyan and
Manevich [57] studied the PIPS process for a multi-component blend using a time-
dependent reaction conversion factor. They used a concentration dependent mobility
based on the Rouse theory and found that the thermodynamic states of the reacting
mixture contain two different classes of relaxation of the concentration inhomogeneities.
However, their study is limited to the very early stage of spinodal decomposition, where
linear governing equation is solved analytically. The PIPS process is complex to describe
and, for highly asymmetric polymer systems, computational divergence problem occurs
in the very early stage of phase separation. For these reasons, the attempts have failed in
describing practically important process, such as a monomer polymerizing in the presence
of a polymer.

As a result of phase separation, various types of phase-separated structures can be
formed depending on several factors, including concentration, the rate of polymerization,
the types of materials used, and physical properties such as viscosity and the rate of
diffusion [1]. Typical examples of phase-separated morphologies in polymer systems are
the droplet-type morphology and the interconnected cylinder-type morphology. The type
and characteristics of the phase-separated morphology are critical in determining the
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mechanical and optical properties of multi-component composite materials. For example,
the fracture toughness increases as particle sizes in the morphology decrease. However, if
the average droplet size decreases, scattering of multi-component materials increases
because the number of scattering sites within the film increases. Therefore, it is necessary
to develop a characterization of phase-separated morphologies to eventually find optical
structures. A morphological analysis technique, known as intensity of segregation and
scale of segregation, are employed in this study to characterize the phase-separated
morphologies arising in the PIPS method.

In this chapter, the model equations based on the nonlinear C-H and F-H theory
coupled with a reaction kinetic equation are solved to describe the PIPS method for the
case of a monomer polymerization in the presence of 2 polymer. Numerical results are
presented with the intensive parameter studies: the dimensionless diffusion coefficient
and the dimensionless reaction rate constant. The dynamical and morphological studies
on PIPS are performed and discussed to evaluate numerical results. The govemning
equations and auxiliary conditions are developed in Section 3.2 using the molecular
weight and local concentration dependent mobility. Two governing equations for
spinodal decomposition are formulated depending on the molecular weight regime of
polymerizing component to reflect polymer chain diffusion in the presence of
entanglements. In this study, the degree of polymerization of one component increases
with time due to polymerization. Therefore, at the moment the degree of polymerization
of the polymerizing component exceeds a critical degree of polymerization compounds to
the onset of entanglements, the model equation is switched. In other word, our model
equation covers various molecular weight regimes of polymerizing component ranging
from low molecular weight polymer solutions to highly entangled polymer blends. The
sets of non-periodic natural and zero-mass flux boundary conditions are used. In addition,
the randomly generated initial conditions are used to reflect the infinitesimal thermal
concentration fluctuations. Section 3.3 presents the brief background in the
morphological characterization methods. The concepts of the intensity of segregation and
the scale of segregation are discussed in this section.

The results of the intensive dynamical and morphological studies on PIPS are
presented in Section 3.4. The typical types of the phase-separated structures of the PIPS
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method are illustrated in Section 3.4.1. The effects of the initial composition on the
phase-separated morphologies are also discussed in this section. The dynamical features
of the phase separation phenomena are studied and discussed, using Nauman’s extent of
phase separation [84], in Section 3.4.2. The extent of phase separation is a useful measure
to determine the stages of phase separation and their temporal ranges. The various
temporal critical points (the dimensionless polymerization lag time, the dimensionless
phase separation lag time, the dimensionless induction time, the dimensionless transition
time, etc.) are determined and studied for the different values of the dimensionless
diffusion coefficient and the dimensionless reaction rate constant. Section 3.4.3 presents a
study of the morphological analysis of PIPS. In this section, visualizations of patterns as a
function of the dimensionless diffusion coefficient and the dimensionless reaction
constant are presented to show how the morphologies change as two dimensionless
parameters change. The effects of the dimensionless diffusion coefficient and the
dimensionless reaction constant on the phase-separated morphologies are evaluated by
using the scale of segregation. In addition, a measure of the time kinetics and the
compositional non-uniformity of the phase separation process known as the intensity of
segregation is shown as a function of time for different values of the dimensionless
diffusion coefficient and the dimensionless reaction rate constant in this section. The
various types of the phase-separated morphologies are re-characterized using the
dimensionless average droplet diameter and the shape factor in Section 3.4.4. The
dimensionless average droplet diameter and the shape factor give more accurate
information about droplet size and shape distribution. Lastly, the general guidelines for

morphological control in the PIPS process are presented in Section 3.4.6.

3.2 Governing Equations and Aucxiliary Conditions

The Cahn and Hilliard equation is a widely used model for the phase separation
phenomena via spinodal decomposition and is given by [21, 25, 26]:
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ﬂ:V-[MV[ F —2W1¢4H 3-1)
ot oD,

where @, is the volume fraction of component A (for a binary mixture, ® +®,=1), V

denotes 8/éx i + 0/dy j,where { and j are unit normal vectors for x and y directions,
respectively, M is mobility, f is free energy density of the system, ¢ is time, and « is a
positive interfacial constant, respectively.

For the bulk free energy density f in Eq. (3-1), the Flory-Huggins theory is used
and is written as [29, 30]:

f:k_avi(i:,;«.m, 2ein0,4 ¢“¢,) (3-2)

where k, is Boltzmann constant, T is absolute temperature, v is the volume of the
reference unit, ¥, and N, are the degree of polymerization of polymer A and B,
respectively, and y is the temperature dependent interaction parameter. The temperature

dependence of y can be written as [31]:

S 7 P 3-3
=3 T (3-3)

where ¥ is the dimensionless entropy and © is the theta temperature.
The mobility M in Eq. (3-1) is known to be highly dependent on the molecular
weight and local concentration of the components and it is defined by:

DJD‘NANIQ A¢'
(D)o, +DYw.0,+¥,0,)
v

where D, and D, are the self diffusion coefficients of polymer segments A and B,

respectively. Full details of the derivation of Eq. (3-4) are given in Chapter 2, Section
2.2.2. Since polymer segments entangle when their molecular weight exceeds a critical
degree of polymerization value N_, polymers exhibit a different diffusion behavior
depending on their molecular weight. To capture this different diffusion behavior, Eq. (3-
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4) has to be specialized by using two different theories according to components’
molecular weight. The Rouse theory represents the diffusion phenomena in the non-
entanglement regime as {58]:

Lol
~

, N<N. (3-5)

N

while the diffusion of entangled polymers follows the reptation theory as [59, 60]:

D=(%)(§—I;VJ N>N. (3-6)

where ¢ is the friction coefficient and ¥, is the entanglement chain length. Note here
that N = 2N,.

The molecular dependent interfacial parameter x in Eq. (3-1) is given by [24]:

x=x,(N,+N,) (3-7)
where
kT
:—' l: 3'8
=15, % 8lan (3-8)

where g is the ratio of the square radius of a branched molecule to that of a linear one of
the same molecular weight, n_ and /_ are the number of monomers and length of each
monomer, respectively.

The governing equations describing spinodal decomposition are obtained by
inserting Egs. (3-2), (3-4), and (3-7) into Eq. (3-1), and performing the functional
derivative. The diffusion coefficients, D, and D,, in Eq. (3-4) can be replaced with
either Eq. (3-5) or Eq. (3-6) based on polymer components’ molecular weight. Thus, for

the non-entanglement regime:

N<N_:

ad’;(x,y,t) = DT [-N'(Nﬂfb; + Nl(l—(p;))_Nl(NA —N,)(l—‘b;)
at (N,. +N,)[ (N4¢;+N,(l—(b;))l
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For the entangled high molecular weight regime, the governing equation is written as:

N>N_:
S fr) 4 DTN, [N N0+ N,(1-8.)-N,(¥, -,)1-0))
U R TR

N (N, +N,(1-0)-N,(N,-N,)0,
" (¥, +N,(1-07))

) NN,(N®,+N,(1-0;)(1-20})-N N, (N, - N, Jo(1- @)
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I®, 09, ¥, 59,) 4DTN, [ N,(1-9))
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4 N(N,+N,)NN,(N®,+N,(1-®){1-20])-N N,(N, -N,)®;(1-0")
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Egs. (3-9) and (3-10) are written in dimensionless form and the superscripted asterisks
denote dimensionless variables where dimensionless variables are as follows: x =x/L,
y=ylL, ' =2xw/Ll'{, T"=T/0, and D" =k,0L° /2vk, where L represents length

scale of the computational domain. To solve Eq. (3-9) and Eq. (3-10), the following sets

of natural and zero-mass flux boundary conditions are used:

0;0." =0 , at ¢ >0, and x"' =0 and x =1 (3-11-a)
X
i—q’%: ) att >0, and y'=0 and y =1 (3-11-b)
y
and
J q?,"+ é’,q)‘,, =0 , at 1'>0, and ¥ =0 and x' =1 (3-12-a)
ax  fxdJy
9., 72 =0 , at ©">0, and y'=0 and y'=1 (3-12-b)

-~ -J? - 2
gy Jdydix

In addition, the randomly generated initial conditions are used to reflect the infinitesimal

thermal concentration fluctuations present initially in the homogeneous phase mixture as:

o (r=0)=0+50(=0) (3-13)

The linearization approximation and the equipartition theorem are employed for the
infinitesimal concentration derivations & @’,, and details are given in references [48] and
[49].

In the PIPS method, the molecular weight of one of the components, say B,
increases with time due to polymerization and this induces phase separation. The growth
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rate of N, in Egs. (3-9) and (3-10) is determined by solving the following kinetic rate

equation:

P _ el - LF )
= k(1 - »f (3-14)

where p is the extent of reaction and &, is the rate constant. By assuming N, can be
represented with the weight average molecular sizes X, for the single reactant system
the solution to Eq. (3-14) leads to [24]:

1 +2KC
Pl 2k -y K

(3-15)

where y is the functionality of monomer, and the dimensionless reaction rate constant
K’ is defined by K'= k,L'¢/2x,v. Note that, for t = 0, N,= | while for £’ > 0, N,
is infinite and gelation occurs.

The governing equations, describing the polymerization-induced phase separation
process, are Eq. (3-9) to Eq. (3-13), and Eq. (3-15). At ¢" <£(N.), Egs. (3-9) and (3-15)
are solved with the boundary conditions given in Egs. (3-11) and (3-12), and the initial
condition given in Eq. (3-13). At ¢ =t"(N_), the polymer molecules start to entangle
with each other. Therefore, the governing equation describing phase separation process is
switched from Eq. (3-9) to Eq. (3-10) to reflect the entanglement effect and Egs. (3-10)
and (3-15) are solved using the same boundary conditions. However, the solution of the

previous time step is used for the initial condition for Eq. (3-10). The value of N, is
material dependent, and it is set N, =31.5 in this study. The dependent variables are @',

and N,, and the independent variables are x°, y* and ¢ . While there is an analytical
solution to Eq. (3-15), there is none for Egs. (3-9) and (3-10). Thus, Egs. (3-9) and (3-10)
with their auxiliary conditions must be solved numerically for @ (x', ¥y, t'). The
parameters are the dimensionless diffusion coefficient D", the dimensionless rate

constant K~ , the dimensionless initial average concentration @', ,, the dimensionless
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temperature 7 , and the Flory-Huggins interaction parameter y . Moreover, the 2-
dimensional square ( L x L) geometry is used in this study. The main object of interest in
the computational modeling of the PIPS process is to characterize the temporal dynamics
and morphological phenomena as a function of the governing dimensionless parameters.
Therefore, in this study, we mainly focus on the effect of the dimensionless diffusion
coefficient D" and the dimensionless reaction rate constant K~ on the dynamical and
morphological features of the PIPS process.

3.3 Morphological Characterizations

As mentioned earlier, a characterization of phase-separated morphologies is
necessary to implement and visualize the SD in the PIPS method because mechanical
properties of polymer blends depend on their morphologies, as mentioned earlier. The
morphologies induced by SD could be uniform spherical droplets or non-uniform
interconnected structures depending on the concentration of components [48, 49]. [n
visualizing morphological characteristics, it is much more complicated to analyze non-
uniform structures than uniformly distributed components in matrix. In this study, a
method for characterizing texture is introduced to analyze the various types of
morphologies induced by SD.

In his paper dealing with the human visual perception of texture {85], Julesz
introduced the order of complexity of textures to demonstrate that one can discriminate
from each other if textures differ in their first- and second-order statistics, but cannot if
they differ in their third- or higher-order statistics. The order of complexity is determined
by scattering dots, needles, or triangles on the two textures and observing the
probabilities with which dots, both ends of the needles, or all three ends of the triangles
land on one component for the first-, second-, or third-order statistics, respectively. In
other word, the first-order statistics represents the concentration of one component in a
sample texture. Thus, we can distinguish its difference by brightness or luminance if one
component is black and the other is white, for example. Even if, however, the proportions

of two components are the same in two different samples, the probability of both ends of
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the needles landing on one component could be different if the two components are
distributed differently in those samples. The second-order statistics are different for two
sample textures in this case.

Tadmor and Gogos [86] applied the concept of the order of complexity to the
characterization of polymer mixtures. They concluded that the state of the mixture can be
characterized by gross uniformity, texture and local structure. In dealing with ‘gross
uniformity’, only the first-order statistics can be taken into account, however, in dealing
with ‘texture’, the situation is more complex because it depends on component’s size,
shape and distribution, that is, second-order statistics.

In this study, a gross uniformity does not have to be considered because we already
assumed that there is no mass exchange with surroundings in our caiculation. Thus a
perfect gross uniformity can be assumed once we initialize same average concentration

for two different calculations.

Figure 3.1 Schematic representation of the intensity segregation and the scale of segregation. A
perfect compositional uniformity is obtained by either reducing the scale of segregation to the
scale of the ultimate particle or by reducing the intensity of segregation to zero. (reprinted from
reference {86])



The textures can be fully characterized by measuring two values; one is ‘the scale of
segregation’ and the other is ‘the intensity of segregation’ [86]. The schematic
representation of the scale of segregation and the intensity of segregation is shown in Fig.
3.1. It should be noted that a perfect compositional uniformity can be obtained by either
reducing the scale of segregation to the scale of the ultimate particle or by reducing the
intensity of segregation to zero [86].

‘The scale of segregation’ is calculated by a process known as ‘dipole (needle)
throwing’, which consists in dropping a dipole of length » on the textures and observing
the frequency with which both ends of the dipole fall on the same phase. However to
avoid to do this tedious process, the coefficient of correlation is defined as:

-

> (0,-0,) (@,-0.,)

R(r) = = T (3-16)

where @, and @', are concentrations at two points at a distance of r from each other,

@', is the average concentration, N is the total number of couples of concentrations

taken, and S is the variance which is calculated from the concentrations at all points and

given by:

3
-

§t = ((D:u‘ (D:m) 31
- AN -1 (3-17)

[

N*

Then, the scale of segregation s is defined as the integral of the coefficient of correlation

R(r) over values of r from zero to ¢ as:

s= ]‘R(r)dr (3-18)

where ¢ represents the dipole length at which R(¢)=0. Note here that for a perfect
correlation between the two phases, R(r)=1, and for no correlation between the two

phases, R(r)=0.
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The intensity of segregation / is defined as the ratio of the measured variance to the

variance of a completely segregated system. Thus it is written as:

[=— (3-19)

5 l y . « ¥
= — Y (0),- o,f (3-20)
and o is the variance for completely unmixed state defined as:

7 = @, {1-®,,) (3-21)

where N is the total number of concentration taken. For completely segregated state,
I =1 and uniformly distributed state, /=0 since S’ =0.

3.4 Result and Discussion

3.4.1 Typical Phase-Separated Structures and Patterns

Figure 3.2 shows plots of 1/  versus ®’ computed based on the Flory-Huggins
equation (Eq. (3-2)) for increasing molecular weight of component B. The solid curves
denote the binodal lines and the dashed curves represent the spinodal lines. The boid solid
and dashed curves represent the initial binodal line and spinodal line, respectively, i.e.
N, =100 and N, =1. As polymerization proceeds at point a or b, the molecular weight of
component B increases and the phase diagram moves up gradually, as indicated by the
upward pointing arrow. In this study, the composition of component A/B is set at 0.2/0.8
(point a) and 0.4/0.6 (point b). Initially, both point a and point b are located in the off-
critical concentration region. However, as polymerization proceeds, point b is thrust into

the dimensionless critical concentration region ®’,,, while point a remains the off-



1.0

Figure 3.2. Phase diagrams of 1/ y versus @', computed based on the Flory-Huggins equation
for increasing molecular weight of component B where y is the Flory-Huggins interaction

parameter and @, is dimensionless concentration of polymer A. The solid curves denote the

binodal lines and the dashed curves represent the spinodal lines. As polymerization proceeds at
point a (A/B=20/80) or point b (A/B=40/60), the molecular weight of component B increases
and the phase diagram is gradually elevated.

critical region at all times during the polymerization process. At both curing points, a and
b, the mixture is initially homogeneous. After a certain reaction time (V, >10 in Figure
3.1), the curing point is thrust into a two-phase region and phase separation via spinodal
decomposition takes place. The simulations listed in Table 1 are performed for the system
described in Figure 3.1. The cases from A to I correspond to point a, while the case J, K,
and L correspond to point b. All simulations are performed with ¥ = 10,7 =1.7 and
1 =0.0882.

67



Case Dot K’ ne’ Q.
A 2 0.2
B 10 0.2
C 50 0.2
D 2 2 0.2
E 2 10 0.2
F 2 50 0.2
G 4 2 0.2
H 4 10 0.2
I 4 50 0.2
J 2 10 0.4
K 2 50 0.4
L 4 50 0.4

Table 3.1. The simulations listed above are performed for the system described in Figure 3.2
where D’ is the dimensionless diffusion coefficient, K~ is the dimensionless reaction rate
constant, and @', , is the dimensionless initial concentration of compenent A. The cases from A

to [ correspond to point a, while the cases J, K and L correspond to point b. All simulations are
performed with ¥ = 1.0, T"=1.7and y=0.0882.

Figure 3.3 describes the dimensionless concentration spatial profile ®’(x’,y") (first
column) and pattemns (second column) formed during phase separation for Case F in
Table 3.1 and at point a in Figure 3.2, and at the following dimensionless times: (a)
£'=1.619 x 10™°, (b) £'= 1.808 x 10~°, (c) £'= 1.816 x 107, (d) r'= 1.823 x 107, (e)
t'=1.838 x 107, and (f) £'= 1.853 x 10™. Darker regions are polymer A rich regions
while brighter regions are polymer B rich region. Since the dimensionless average
concentration of polymer A, @', ,, remains in the off-critical region at all times during the
polymerization and phase separation process for point a, a droplet-type morphology
forms and evolves. At the very early stage, the random initial condition develops into a
droplet-type phase-separated structure (see pattern (b)). The average droplet diameter



[ )
dh 92 9A T8 OA \D

(a ¢ = 1619 x 107

19

L ]
@ 02 oA ©A OA R

[ ]
o ©2 GA O8 OA 0
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(first column) and patterns (second column) formed during the phase separation phenomena for
. Case F at point a (A/B=20/80).
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decreases, but the droplet number density and the concentration intensity inside the
droplets increases with time during phase separation. As polymerization proceeds, the
phase diagram shifts toward higher temperature and concentration as shown in Figure 3.2.
As a result, the quench depth, defined as the absolute difference between the critical and

curing temperature, I T-T I, increases with time and results in the smaller average

droplet diameter and the higher droplet number density because it is known that
wavelength of concentration is inversely proportional to the quench depth [9]. Even
though this fact applies to the TIPS process, it can be also used for the PIPS process since
the phase diagram is fixed at any given time. Some elliptically shaped particles can be
observed in the patterns (d) and (e); however they are subsequently absorbed into the
neighboring matrix as phase separation proceeds, and evolve to the nearly circular

particles.

Figure 3.4 represents the dimensionless concentration spatial profiles th,(x’, y')
(first column) and patterns (second column) formed during the phase separation
phenomena for Case K in Table 3.1 and at point b (A/B=40/60) in Figure 3.2, and at the
following dimensionless times: (a) ¢'=1.649 x 10~°, (b) ¢'=1.797 x 10, (c)

"= 1.804 x 107°,(d) ¢'= 1.806 x 107, (¢) £'= 1.810 x 10~*, and (f) £'= 1.820 x 10°.
Again, darker regions are polymer A rich regions, while brighter regions represent
polymer B rich regions. As shown in Figure 3.2, the initial curing point b is located in the
off-critical region during the very early phase separation stage ( t'< '(N,=20) ) Asa
result, the phase-separated structure at ¢'= 1.797 x 10~ (pattern (b)) in Figure 3.4 is

very similar to pattern at t = 1.808 x 10~ (pattern (b)) in Figure 3.3. In other word, the
random initial condition for Case J develops initially into the droplet-type morphology,
similarly to Case F. As polymerization proceeds, however, the phase diagram
continuously moves toward higher concentration and temperature as mentioned before;
thus the curing point b is thrust into the critical region after t'> ¢’ (N s 20) as shown in
Figure 3.1. As a result, the early phase-separated structure similar to the droplet-type
structure develops into interconnected cylinders. Since the curing point b stays in the off-
critical region during the very early stage of phase separation, droplets coexist with the
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Figure 3.4. (Continued on next page) Dimensionless concentration spatial profiles <b;(x', y')

(first column) and patterns (second column) formed during the phase separation phenomena for
Case K at point b (A/B=40/60).
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interconnected cylinders in the same morphology (see patterns (d) and (e) in Figure 3.4).
When we compare the patterns (e) and (f), the interconnected cylinders coarsen, and the
droplets are absorbed into neighbering cylinders. As the phase separation phenomena
proceeds, concentration gradients at the surface increases: thus the total free energy also
increases with time. To reduce this total free energy, the interconnected cylinders coarsen,

favoring a smaller interfacial area.
3.4.2 Dynamical Analysis in Polymerization-induced Phase Separation

To characterize the dynamical phenomena during phase separation, Ariyapadi and
Nauman [84] developed a useful measure, known as the extent of phase separation E:

1 » ¥ (¢- -CD:,‘O ]

Ad.j

N i (@0 - @7,) (@7,- ©),)

(3-22)

where @', . is the volume fraction of component A at the (i, j)th computational nodal

N}
point, ®,, and @, are the lower and upper binodal concentration of component A,
respectively, and N' is the total number of nodal points in the computational domain. If

there is no phase separation, @}, .= ®,, for all nodal points, thus £ = 0. On the other

hand, for perfect phase-separated structure, @ ,. . equals to either one of the two binodal

Ad.j
points, @', or @', , therefore £ = 1.

It is known that the dimensionless induction time ¢, exists in the PIPS process
because significant phase separation only occurs at ¢'> ¢, [33, 34]. The dimensionless

induction time ¢, can be represented by the sum of the dimensionless polymerization lag

time ¢, and the dimensionless phase separation lag time ¢, as:

£=t+ 0 (3-23)
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The dimensionless polymerization lag time ¢, represents the time it takes for the
spinodal line to cross the initial curing point and the dimensionless phase separation lag

time ¢z, is time required for the system to begin phase separation once it has been placed

in the unstable region [33, 34].
Figure 3.5 illustrates a typical plot of the extent of phase separation £ versus the

difference between the dimensionless time ¢° and the dimensionless polymerization lag

time t,; for Case F. The dashed lines represent tangents to each part of the curve. Their
intersection gives a dimensionless transition time ¢, between the early and intermediate

stage of spinodal decomposition. The dimensionless polymerization lag time I,; can be
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Figure 3.5 Extent of phase separation £ versus dimensionless time ¢~ for Case F, where ¢, and
t, represent the dimensionless polymerization lag time and the dimensionless transition time,
respectively. The intersection of the dashed tangent lines to each part of the curve gives the
dimensionless transition time f, between the early and intermediate stage of spinodal
decomposition. Significant phase separation occurs only after the dimensionless induction time
t; . The dimensionless polymerization lag time can be obtained by solving Eq. (3-15) as
1, = 1.495 x 107 For the pointed cases, £,= 0.314 x 10~ and £;= 1.827 x 10°°.
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computed analytically by solving Eq. (3-15) and, for Case F, 1, = 1.495 x 10™. The
dimensionless induction time ¢; also can be obtained from Figure 3.5, using Eq. (3-23).

Since no phase separation occurs until the curing point is thrust into the unstable region,

E equals to zero from ¢'= 0 to ¢ = ¢, . Significant phase separation only occurs at
t;< t'<t ,and E increases exponentially at this period only. At ¢*> ¢, , phase separation
saturates and £ increases very slightly as it enters the intermediate stage.

Figure 3.6 shows plots of the extent of phase separation £ versus (¢ - ¢,) for Case
D (m), E (a), and F (@). For all three cases, D'= 2 x 10°. However, the dimensionless
reaction rate constants are K'=2 x 10°, K'=1x 10*, and XK'= 5 x 10* for Case D,
Case E, and Case F, respectively. Since ,, depends on K", ¢, ’s are different for all three
cases as follows: ,, (Case D) = 3.738 x 107, ¢, (Case E) = 7.476 x 10~ and ¢, (Case
F) = 1.495 x 107 . However, the difference between ¢* and ¢, is used for the abscissa to
see the effect of K~ on ¢, rather than . This was done so that £, can be obtained by

solving Eq. (3-13) analytically but there is no analytical solution for ¢,. Furthermore,

because the actual phase separation time span is very small for Case K, this coordinate is
easier to see. Figure 3.6 clearly shows that the dimensionless phase separation lag time ¢
decreases as K~ increases. The dimensionless polymerization lag time t,; also decreases
as K  increases as shown before. Consequently the dimensionless induction time ¢, is
inversely proportional to K . The dimensionless transition time ¢, is also inversely
proportional to K~ and after ¢, , phase separation saturates for all three cases. Another
observation from Figure 3.6 is that the slope of £ in the early stage is getting steeper as
K’ increases. Thus, the rate of phase separation is proportional to K.

Plots of the extent of phase separation E versus (¢ - ¢,,) for the different D" s are
shown in Figure 3.7 for Case A (@), Case D (a), and Case G (m). For all three cases,
K'=2x10°, however, the dimensionless diffusion coefficients D° are 1 x 10°,

2 x10°, and 4 x 10° for the cases A, D, and G, respectively. The dimensionless
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Figure 3.6 Extent of phase separation £ versus (¢ — t;) for Case D (m), Case E (a), and Case

F (@). For all three cases, D'= 2 x 10°, but the dimensionless reaction rate constants
areK"= 2 x 10°, 1 x 10*,and 5 x 10* for the cases D, E, and F, respectively.

polymerization lag time ¢, ’s are the same for all three cases (z,= 3.738 x 10™) because
t, depends on K~ but not on D°. Thus the variations of the dimensionless induction
time ¢, in this case are caused only by the variations of the dimensionless phase
separation lag time, 7, . As shown in Figure 3.7, ¢, and ¢, decrease as D" increases. The
values of the extent of phase separation where they saturate are very similar to each other,
1e. E = 0.82. Therefore, their morphological evolution is quite similar in the
intermediate stage although they have different dimensionless transition times ¢, ’s. This

result is coincident with that of reference [33].

The values of ¢,, 7, and ¢, for all cases are listed in Table 3.1. The dimensionless

characteristic time ¢ is defined as £.= 1.01 x ¢, to obtain the consistent phase separation



data for the dynamical and morphological studies. As shown in Table 3.1, ¢, , ¢, and ¢,
decrease as K~ and D increase. However, ¢, decreases only when K increases. The
value of D" does not affect on the value of z, . The degree of polymerization of polymer
B at the dimensionless characteristic time N,( ¢.) increases as K" increases, but

decreases as D increases. Therefore, phase separation is dominantly restrained by
entanglement of molecules at higher X~ and lower D° values. As N, increases, the

phase diagram shown in Figure 3.2 elevates to higher temperature and the upper (lower)
binodal point approaches to the higher (lower) value. As a result, the amount of phase

separation, which is indicated by l o - tD:,‘ol , increases. Therefore, it is expected from

Table 3.1 that the amount of phase separation is proportional to K, but inversely
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Figure 3.7. Extent of phase separation £ versus (r'- t,;) for Case A (@), Case D (a), and Case

G (w). For all three cases, K = 2 x 10, however, the dimensionless diffusion coefficients are
D'=1x10° 2 x 10°,and 4 x 10° for the cases A, D, and G, respectively.
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proportional to D°. However, if N, exceeds the critical degree of polymerization, N

B
it is expected polymer molecules to entangle each other and phase separation to be
retarded. This entanglement effect is reflected in our governing equation by switching
equations from (3-9) to (3-10). The degree of polymerization of component B, N,,

exceeds N, only for the cases B, C, F, and J because we assumed that N, =31.5.In

other word, only for the cases B, C, F, and J, the system undergoes entanglement and
phase separation simultaneously while for other cases, phase separation already saturates

before the entanglement point.

Case | x10° | rx10° | £x10° | £x10° | N,()
A 3738 | 3520 | 4098 | 4139 | 1542
B 7476 | 1469 | 9.022 | 9112 | 3178
C 1495 | 0529 | 1914 | 1933 | 88.00
D 3738 | 2480 | 4000 | 4040 | 1362
E 7476 | 0924 | 8498 | 8583 | 1917
F 1495 | 0314 | 1827 | 1845 | 3672
G 3738 | 1740 | 3928 | 3967 | 1252
H 7476 | 0586 | 8.180 | 8262 | 1526
I 1495 | 0200 | 1707 | 1724 | 19.74
J 7476 | 0917 | 8485 | 8570 | 1823
K 1495 | 0304 | 1812 | 1830 | 3328
L 1495 | 0194 | 1699 | 1716 | 1876

Table 3.1 Results for dynamical study of polymerization-induced spinodal decomposition where
t,. I, 1,,and ¢, denote the dimensionless polymerization lag time, the dimensionless phase

separation lag time, the dimensionless transition time, and the dimensionless characteristic time,
respectively.
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3.4.3 Morphological Analysis in Polymerization-induced Phase Separation

Figure 3.8 shows the dimensionless concentration spatial profiles @', (.t' , y') (first
column), and patterns (second column), for Case D (first row), Case E (second row), and

Case F (third row), at the dimensionless characteristic times ¢, . Note that we defined the
dimensionless characteristic time, ¢., as £.= 1.01 x ¢, . For all three cases D'= 2 x 10°,

however, the dimensionless rate constant K" ’s are: 2 x 10°, 1 x 10*, and 5 x 10* for
Case D, Case E, and Case F, respectively. Figure 3.8 clearly shows that the average

droplet diameter decreases but the number of droplets increases as K~ increases.

Additionally, the maximum value of concentration of component A, ® inside the

A,max ?

droplets increases as K increases (for Case D, d):,m= 0.767, for Case E,

@, o= 0.857, and for Case F, @, = 0.979). It is also observed that the sizes and

shapes of the phase-separated droplets are not perfectly circular, and some elliptically
shaped particles are observed for all cases. This is clearly due to the local concentration
dependent mobility, which is getting more important as phase separation continues.
Almost perfectly circular droplets are obtained when we use the concentration dependent
mobility [33, 34] because molecules diffuse symmetrically. Figure 3.8 clear shows that
the orientation distribution of the major axis of the ellipses is broad, as it should
realistically. This is in agreement with other studies that report that the elliptically shaped
particles are observed when the concentration dependent mobility is used [84].

To perform the efficient morphological analysis neglecting any temporal variations

for the each case, we defined the reduced time as:

r=— (3-24)

where ¢, is the dimensionless transition time from the early stage to the intermediate

stage of spinodal decomposition. Figure 3.9 shows plots of the intensity of segregation /
versus the reduced time r for Case D (@), Case E (a), and Case F (@). The intensity of
segregation / has been defined in Eq. (3-17). Recall that I correspond to the first-order
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statistics, that is the difference of the proportion of each components, and the scale of
segregation represents the second-order statistics, that is droplets’ size or distribution in
this study. The reduced time r gives an efficient time scale to perform morphological
studies on phase-separated textures in the presence of large phase separation temporal

ranges. Note that at the dimensionless transition time ¢'= ;, r equals to 1.00, while at

the dimensionless characteristic time ¢ = ¢

., ¢ equals to 1.01. As mentioned earlier, for
completely segregated state, / = 1, and uniformly distributed state, / = 0.

As shown in Figure 3.9, / increases significantly with time during the early stage
of SD (0.98 < r < 1.00); however, this significant growth slows down near the
dimenstonless transition time 7 = 1.00 for all three cases. After phase separation enters
the intermediate stage (7 > 1.02), [ saturates at [ =~ 0.1 for all three cases. However,

phase separation is more significantly repressed for Case F because molecules start to

entangle each other before they enter the intermediate stage. The entanglement effect of
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Figure 3.9 Plots of the intensity of segregation / versus the reduced time r for Case D (@),
Case E (a), and Case F (m)
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polymer molecules appears dominantly in the intermediate stage. Moreover, at the
beginning of the intermediate stage (1.00 < 7 < 1.02), the growth rates of I are
significantly different for the different X ’s, and they increase as K~ increases. At the
dimensionless characteristic time (z = 1.01), [ (case D) = 0.070, [ (case E) = 0.087,
and /(case F) = 0.091. This can be explained as follows. The rate of changes of
concentration are significantly different for different X ’s. Therefore, it takes more time
for Case D (lower K') to reach the saturated point than Case F (higher K"). In addition,
as K increases, the degree of polymerization of polymer B at the dimensionless

characteristic time N,( ¢) increases as shown in Table 3.2. As a result, the amount of

phase separation and the intensity of segregation increase as K~ increases. This result is

consistent with the observation in Figure 3.8. The Figure 3.8 shows that at ¢'= ¢,

(r = 1.01), the maximum value of concentration of component A, ® inside the

Amax >
droplets increases as K~ increases. As the intermediate stage proceeds, however, these
concentration differences (between Cases D, E, and F) inside droplets decrease and
eventually disappear. For example, the Figure 3.9 shows thatat = 1.06, [ = 0.1 forall
three cases.

Figure 3.10 illustrates plots of the scale of segregation s defined in Eq. (3-15)
versus 7, for Case D (@), Case E (a), and Case F (®). Recall that s is proportional to the
average droplet size, but it is inversely proportional to the number density of the droplets
as shown in Figure 3.1. Figure 3.10 shows that the scale of segregation s decreases as
time proceeds and as K~ increases. This is expected from Figure 3.3 and Figure 3.8.
Since the random initial conditions develop initially a phase separation structure (see
patterns (a) and (b) in Figure 3.3), the dimensionless average equivalent droplet diameter

(d') and the scale of segregation s are large. As phase separation proceeds, (d)
decreases, thus s decreases significantly during the early phase separation stage until the
dimensionless transition time 7 = 1.0 (see pattems (c) and (d) in Figure 3.3). However,
just after 7 = 1.0, s increases slightly when the phase-separated structure coarsens. As

shown in Figure 3.7, (d) decreases as K increases. Therefore, s decreases as K~
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Figure 3.10 Scale of segregation s versus reduced time z, for Case D (@), Case E (a) and Case F
(w).

increases at all times during the phase separation process, as Figure 3.10 shows. The
values of s at the very early stage of SD (7 = 0.95) are significantly different for each
case, which indicates that from the very early stage of SD, the phase-separated structures,
such as droplet size or distribution, are aiready different for each case.

Figure 3.11 illustrates the dimensionless concentration spatial profiles CD:,(x',y')
(first column) and patterns (second column) for Case A (first row), Case D (second row)
and Case G (third row), at the dimensionless characteristic time ¢.. The dimensionless
reaction constants K ’s are K = 2.0 x 10° for all three cases. However, the
dimensionless diffusion coefficients are: D= 1.0 x 10° (Case A), D'= 2.0 x 10° (Case
D), and D= 4.0 x 10° (Case G). Figure 3.11 shows that the average droplet diameter
decreases as D’ increases; however, the droplet number density increases more
drastically as D" increases. As a result, the maximum value of concentration, @, .,

inside the droplet and the intensity of segregation I decrease at the dimensionless
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characteristic time ¢, as D" increases, when we compare the height of the dimensionless

concentration spatial profiles (first column in Figure 3.11) and the gray level intensity of
the patterns (second column in Figure 3.11).

Plots of the intensity of segregation / as a function of the reduced time 7 for these
cases are shown in Figure 3.12, for Case A (@), Case D (a) and Case G (®). Certainly, the

value of / at the dimensionless characteristic time ¢, (at r = 1.01) decreases as D"

increases. The intensity of segregation /, which grows fast during the early phase
separation stage, slows down and saturates at the value of [ which are very close to each
other for all three cases. This result is due to the following reasons. The intensity of
segregation / is proportional to the amount of phase separation, which is indicated by

l o, - @;_ol. As shown in the Table 3.1, the degree of polymerization of polymer B at

the dimensionless characteristic time N, (t:) increases with K~ , but decreases with D".
As N, increases, the phase diagram elevates to higher temperature (see Figure 3.2), thus
the amount of phase separation l - CD;_ol increases. Consequently, / is proportional

to N, and K", however it is inversely proportional to D" .
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Figure 3.12 Intensity of segregation / as a function of reduced time r for Case A (8), Case D
(a), and Case G (m)
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Figure 3.13 shows plots of the scale of segregation s versus reduced time r for
Case A (@), Case D (a), and Case G (m). The scale of segregation s decreases as D’
increases. This coincides with the results shown in Figure 3.11, that the average droplet
size decreases and the droplet number density increases as D" increases. The scale of
segregation s decreases with time during the early phase separation stage; however, s
slightly increases during the intermediate phase separation stage. This growth of s is
clearly due to coarsening of phase separated structure as shown in Figure 3.3.

Figure 3.14 illustrates plots of the scale of segregation s versus the intensity of
segregation / for different K™ ’s with constant D° (Figure 3.14 (a)) and for different D" ’s
with constant K~ (Figure 3.14 (b)). Figure 3.14 (a) represents Case D (@), Case E (a),
and Case F (), and Figure 3.14 (b) shows Case A (@), Case D (a), and Case G (m). Both
figures show that the scale of segregation s exponentially decreases as [ increases during
the very early stage of phase separation for all cases because the initial infinitesimal
concentration fluctuations develop into the phase-separated structures during the very
early stage of SD. Therefore, the significant morphological changes only occur
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Figure 3.13 Scale of segregation s versus reduced time 7 for Case A (@), Case D (a), and Case
G (m).

87



010 [
| )

® o009
c
S t
®0O08 [ « o
S’. 5 Ce o o ® ¢ ’
Poo7l
%) S (a)
‘.6 - . a - a a &
° 0.06 ’ s s
[
Q

0.05
@ l.. = a2 g . s ae""

0.04

000 002 004 006 008 010 0.12
Intensity of Segregation, |

o100
o .

- [ ]
§ooof
% .

a “ . .
§°°°'i"' . o ®)
; . - . a ‘. o8 a o s 8
g 007F ®ass "

0.06 1 L 1 1 X L

0.00 0.02 004 006 0.08 0.10

Intensity of Segregation, |

Figure 3.14 Plots of the scale of segregation s versus the intensity of segregation I (a) for
different K" 's with constant D" for Case D (@), Case E (a) and Case F (@), and (b) for different
D’ ’s with constant K~ for Case A (@), Case D (a) and Case G (m).

88



immediately after the dimensionless induction time, ¢; . During the early stage of SD, /

continuously increases without any changes of s. Therefore, it is expected that the
amplitude of concentration increases during the early stage of phase separation while the

wavelength or droplet size is nearly constant in this period. After entering into the
intermediate stage of phase separation, that is £*> ¢, s increases slightly as [ increases,
which indicates that during the intermediate stage of SD, both the amplitude and
wavelength of concentration increases and the phase-separated structure coarsens.
However, s and 7 eventually saturate at / ~ 0.1. Furthermore, the scale of segregation s

decreases as K~ and D’ increase at a constant intensity of segregation /.
3.4.4 Droplet Size and Shape Distributions

Using the intensity and scale of segregation, we can obtain comprehensive
statistical information about the intensity of concentration inside the droplets, the droplet
size, and number density. However, they do not give precise values of the droplet size
and shape distributions. To obtain these more accurate measures, we performed an

evaluation of droplet size and droplet shape distributions by computing the dimensionless

equivalent diameter of the nearly circular droplets, 4", and the their shape factor, § ’-

The dimensionless equivalent diameter, d°, is defined as d = ( 44/ )"2 where
A is the area of the nearly circular droplets, and the shape factor is defined as
S=4r A/ P? where P is the perimeter of droplets, respectively. Figure 3.15 shows

frequency histograms for the dimensionless equivalent diameter d~ (first column) and the

shape factor §, (second column) for Case F in Table 3.1 at the following representative
dimensionless times: "= 1.823 x 10~ (first row), ¢ = 1.838 x 10~ (second row), and
t'=1.853 x 107 (third row). Note that S, represents a measure of how circular a
droplet is. For a perfect circle, §,= 1, while §,= 0 for a line. The time variation of the

histograms shows that the phase-separated morphology evolves gradually from the
structure which has a wide distribution of droplet sizes and shapes to the structure which
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Figure 3.15 Frequency histograms for the dimensionless equivalent diameter of the nearly
circular droplets d" (first column) and the shape factor S, (second column) for Case F at the

following dimensionless times: ¢ = 1.823 x 10~ (first row), ¢ = 1.838 x 10~ (second row),
and £'= 1.853 x 107 (third row).

90



contains a dominant droplet size and shape range. The histograms of relative frequency
versus d_ also show that d° gradually decreases with time during the early phase
separation stage. As phase separation proceeds, bigger droplets disappear while smaller
droplets appear. However, the dominant droplet size ranged 0.15<d’ <0.17 does not
change. These results are also supported by the patterns shown in Figure 3.3. The

histograms of relative frequency versus §, show that dominant shape moves from the
elliptical shape to the circular shape as time proceeds. The histograms for S, also
indicate that no droplets are perfectly circular, that is §, = 1. Furthermore, the elliptically

shaped particles are observed at all times during phase separation.

The simulation resuits for the various dimensionless parameter values are
summarized in Table 3.3 where I()), S(t.), (d‘(t;)), (S[(t: )) denote the intensity of
segregation, the scale of segregation, the dimensionless equivalent average diameter and
the average shape factor of the droplets, respectively, at the dimensionless characteristic
time #,. As shown in Table 3.3, (¢ ) increases, but S(t’) and (d " )) decrease as K’

increases at constant D". However I{t.), S(;.) and (d (zc)) decrease as D" increases at

constant K. As mentioned earlier, the intensity of segregation / relates to the amount of
phase separation. Thus it is proportional to the degree of polymerization of poiymer B.
Since the degree of polymerization of polymer B at the dimensionless characteristic time
N, tc) is proportional to K  but inversely proportional to D, the intensity of
segregation at ¢ is also proportional to K~ but inversely proportional to D°. The scale
of segregation s is proportional to the average droplet diameter, however it is inversely

proportional to the droplet number density. Therefore, s decreases as K~ and D’

increase.
However, / (t,) for Case C is noticeably small compared to those of other cases.
This result is clearly due to the entanglement effect governed by Eq. (3-10). With the

higher value of K and the lower value of D, the rate of molecular weight increase
dominates over the rate of phase separation, and molecular entanglement occurs in the

early stage of phase separation. Table 3.3 also shows that the intensity of segregation is
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Cose 1 i(e)x10t | s()x10t | (a()) | (s,(2))
A 792 8.07 0.281 0.845
B 8.78 6.79 0.249 0.788
C 741 533 0.203 0.780
D 7.06 7.60 0.280 0.839
E 851 5.96 0.216 0.853
F 8.59 4.80 0.154 0.839
G 4.82 7.28 0.266 0.864
H 7.45 5.03 0.208 0.837

[ 7.60 347 0.154 0.748
J 10.54 6.02 NA NA
K 10.81 498 NA NA
L 893 384 NA NA

Table 3.3 Results for the morphological study of polymerization-induced spinodal
decomposition where [ [t:), S (t;). (d '(t; )) , and (S p (t,)) denote the intensity of segregation,
the scale of segregation, the dimensionless equivalent average diameter and the average shape
factor of the droplets, respectively, at the dimensionless characteristic time t: . (NA means not
available)

more affected by polymer entanglement than the scale of segregation. This is because the
phase-separated structure is established in the very early stage of phase separation as
discussed earlier. Figure 3.16 illustrates the intensity of segregation / versus the
dimensionless time ¢~ for Case F to show the effect of the switched governing equation.
The arrow indicates the critical degree of polymerization of component B N, _, that is
the switching point from Eq. (3-9) to Eq. (3-10). Two different governing equations,
switched from Eq. (3-9) to Eq. (3-10) at N,_, are used for the circles and only one
equation, Eq. (3-9), is used for the triangles. Figure 3.16 clearly shows that phase

separation is restrained by Eq. (3-10), because the diffusion of molecules is retarded due
to the entanglement of polymers.
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Figure 3.16 Intensity of segregation / as a function of the dimensionless time ¢~ for Case F

where the arrow indicates the critical degree of polymerization of component B, N, ,. Two

governing equations (switched from Eq. (3-9) to Eq. (3-10) at N, _) used for circles and only

one equation (Eq. (3-9)) is used for triangles. This figure clearly shows that phase separation is
restrained by entanglement of polymers reflected in Eq. (3-10).

3.4.5 General Guidelines for Morphological Control in the PIPS process

To obtain the morphology with the smaller droplet diameter (or the narrower
spacing between the particles) and the higher number density, the higher value of the
reaction rate constant and/or the higher value of the diffusion coefficient should be used.
The higher values of the reaction rate constant and the diffusion coefficient also give a
faster processing time. However, the circular droplets are observed in the lower values of
K" and D’. For the morphology with the larger droplet size and the lower number
density, on the other hand, the low values of the reaction rate constant and the diffusion
coefficient should be used.

The amount of phase separation is proportional to the dimensionless rate constant,
K’ , but it is inversely proportional to the dimensionless diffusion coefficient D" . Hence
a large amount of phase separation can be obtained by using the higher value of X~ and
the lower value of D" . However, the degree of polymerization during the phase

separation process N, also increases with increasing K~ . Therefore, with the high value
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of K’ the rate of increase of molecular weight dominates that of phase separation, and

the polymer entanglements would occur in the early stage of phase separation.
3.5 Conclusions

In this chapter, simulations describing the PIPS process are presented when a
monomer polymerizes in the presence of a polymer. The nonlinear fourth order partial
differential governing equation based on the Cahn-Hilliard and Flory-Huggins theory for
phase separation combined with a second-order polymerization kinetic equation is solved.
The model consists of a balance equation for the low molecular weight regime and
another balance equation for the high molecular weight entangled regime to cover all the
molecular weight ranges of polymerizing component. We use the mobility that is a
function of the molecular weight and concentration of the components, to describe the
morphological evolution realistically. The most important aspects of the initial
concentration evolution in the PIPS process, that is the dynamical and morphological
features, are studied using useful indexes (the extent of phase separation for the
dynamical study, and the intensity and scale of segregation for the morphological study).
Depending on initial curing composition, two different types of morphology are formed:

the interconnected cylinder-type morphology and the droplet-type morphology. The

dimensionless phase separation induction time ¢, represents the sum of the dimensionless
polymerization lag time r, and the dimensionless phase separation lag time ¢, and it

decreases as the dimensionless reaction rate constant X~ and the dimensionless diffusion

coefficient D" increase. The phase-separated morphology is fully characterized using the
intensity of segregation / and the scale of segregation s. The intensity of segregation /

is proportional to K, however it is inversely proportional to D°. The scale of
segregation s and the average droplet diameter decrease with increasing K~ and D". The
amount of phase separation increases as K~ increases and D’ decreases. With the high
value of K~ , the polymer entanglements occur in the early stage of phase separation

because the degree of polymerization of polymer B N, increases with K.
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Chapter 4
Computational Simulation of Polymerization-
induced Phase Separation under a Temperature

Gradient

Summary

Polymerization-induced phase separation (PIPS) via spinodal decomposition (SD)
under a temperature gradient for the case of a monomer polymerizing in the presence of a
polymer is studied using high performance computational methods. An initial polymer
(A) / monomer (B) one-phase mixture, maintained under a temperature gradient, phase-
separates and evolves as polymerization of component B and phase separation proceed to
form spatially inhomogeneous microstructures. The space-dependence of the phase-
separated structures under the temperature gradient field is determined and characterized
using a visualization method. It is found that the droplet-type phase-separated structure is
formed in the higher temperature region as a result of the intermediate stage of SD. On
the other hand, the lamella- (interconnected cylinder) type phase-separated structure is
observed in the lower temperature region, indicating structure of the early stage of SD, in
the strong (weak) temperature gradient field. The kinetics of the evolution of composition
depends on the magnitude of the temperature gradient field. The non-uniform
morphology induced by the temperature gradient is characterized using the novel
morphological techniques, known as the intensity and scale of segregation. It is found
that the significant (noticeable) non-uniform structure is formed in the strong (weak)
temperature gradient while the uniform morphology is formed at constant temperature.
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4.1 Introduction

Polymerization-induce phase separation (PIPS) is an important and practical
method for producing multi-component composite materials [9, 33, 34]. With increasing
demands and interests on multi-phase materials that have better properties and
functionality, phase separation, particularly spinodal decomposition (SD), has been active
area of material science research. The PIPS process is a more complicated process than
the classical thermal-induced phase separation (TIPS) method because phase separation
and polymerization occur simultaneously in the PIPS method. For this reason, relatively
few theoretical [9, 33-35, 50, 82] and experimental [$, 44, 63, 74, 83] studies have been
performed on the PIPS method despite many advantages over other phase separation
techniques.

In the PIPS process, an initial mixture is prepared in the one-phase (stable) region
and the mixture is homogeneous. When the molecular weight of the components
increases due to polymerization, the phase diagram, which has an upper critical solution
temperature (UCST) in this study, constantly shifts toward higher temperature and
concentration. As a result, the single-phase mixture is thrust into the unstable or
metastable region, and phase separation occurs. The polymerization-induced phase-
separated morphologies may be different depending on the initial composition and
molecular weight. Typically, in a binary polymer blend system, the droplet-type
morphology can be found if the volume fraction of one phase is low (off-critical region).
If the volume fraction of the minor phase is increased until the critical point (critical
region), the interconnected cylinder-type morphology can be observed [1].

The majority of works on phase separation has been performed in the absence of
external fields, such as temperature gradient. However, temperature gradients are
common during material processing and characterization experiments. Recently a few
studies concerning phase separation behavior under external fields such as shear flows
[52-54], electric fields [55, 56], and temperature gradients {87, 88] have been presented.
In addition, composite materials, exhibiting inhomogeneous microstructures (or
compaosition) and space-dependent properties, known as functionally graded materials
(FGM) (89, 90], have received attentions because many current applications of materials
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require specific bulk/surface properties. For example, a body of turbine blade must be
strong, tough and creep-resistant, whereas its outer surface must be refractory and
oxidation-resistant [89]. It is expected that in the future similar space-dependent
functionality may be applied for polymeric materials. FGM’s are designed to take
advantage of certain desirable features of each of the constituent phases and reduce the
local concentration of stress induced by the abrupt changes in composition and
microstructure [89, 90]. The spatially graded structures are produced by several
constructive processes. However, as shown here, transport-based processes, such as the
polymerized-induced phase separation method, can also create locally graded
microstructures.

Phase separation under a temperature gradient was studied by several authors in the
last few years [87, 88, 91-93]. Platten and Chavepeyer [91] studied experimentally phase
separation under a temperature gradient for a low-molar mass binary solution. Kumaki et.
al [93] also performed an experimental study of phase separation under a small
temperature gradient and they found that phase separation can be induced by the
temperature gradient even in the one-phase region because macromolecules tend to move
toward the colder surface. Tran-Cong and Okinaka [87, 88] investigated the TIPS process
of poly(2-chlorostyrene) / poly(vinyl methyl ether) (P2CS/PVME) blend under a
temperature gradient. Since P2CS/PVME blend has a lower critical solution temperature
(LCST), they found that the interconnected structure is formed slowly in the high-
temperature side and the droplet-type structure is formed as a result of the late stage of
spinodal decomposition in the low-temperature side of the gradient. To our knowledge,
however, no numerical study has yet been performed on polymerization-induced phase
separation (PIPS) under a temperature gradient.

The objectives of this study are: (1) to develop and solve a computational model of
the PIPS process for binary composite materials under a temperature gradient, and (2) to
develop guidelines for the formation of spatially inhomogeneous microstructures applied
to produce FGM’s, using the PIPS process. We study the particular case of the PIPS
process of a monomer polymerizing in the presence of a polymer. The organization of
this chapter is as follows. In Section 4.2, the PIPS process is described theoretically using
the nonlinear Cahn-Hilliard (C-H) theory and the Flory-Huggins (F-H) theory coupled



with a reaction kinetic equation. The numerical equation describing the PIPS process
under a temperature gradient is formulated and solved using the computational methods.
The numerical results are presented in Section 4.3. Section 4.3.1 presents the typical time
evolution of the morphology under a temperature gradient field for the different
magnitude of temperature gradient. In Section 4.3.2, the dynamical features of PIPS
under a temperature gradient are studied and discussed. In Section 4.3.3, the length scale
and compositional non-uniformity of phase-separated structures are characterized using a
useful morphological characterization techniques, known as the scale of segregation and
the intensity of segregation, respectively, as a function of positions along the temperature
gradient. Moreover, the resuits of morphological analysis under the temperature gradient
are compared with those of PIPS under constant temperature.

4.2 Theories

In this 2-dimensional study of the PIPS process, it is assumed that a linear
temperature gradient exists along, say, the y-axis. The computational domain is a square
of size: 0 <x < L and 0 < y < L. Therefore, the temperature field is given by:

T(y) = T_-L_T_n y+T, T<T, (4-1-a)
dT

= = 4-1-b

, (4-1-b)

Under the temperature gradient field given in Eq. (4-1), one of the components
(monomer), say B, undergoes polymerization while the other component, polymer A,
does not participate in this polymerization reaction.

In the PIPS method, the degree of polymerization of component B, N,, constantly
increases due to polymerization. The growth rate of N, can be determined by solving the

following kinetic rate equation [69]:
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d_p _ B 1
= = k(- pf @2)

where p is the extent of reaction, ¢ is time, and %, is the reaction rate constant. The

solution to Eq. (4-2) is:

_ ke
1+ k¢t

p (4-3)

The reaction rate constant k, depends on reaction temperature, following the Arrhenius

equation as [73]:

k= A,exp[-E,/RT] (4-4)

where 4, is the collision frequency factor, E; is the Arrhenius activation energy, and R
is the gas constant.
The expressions for the weight average molecular size X, in terms of functionality

of the monomer y is given by [70-72]:

- l+a

s sy

(4-5)

where « is the branching coefficient, defined as the probability that a given functional
group of a branch unit leads to another branch unit [73]. By assuming the degree of

polymerization of component B, N,, can be represented by X, and applying Eq. (4.4)

for k, , the growth rate of N, can be written as:

1+ 2kt
5T+ 2kt —pet
_ 1 + 2 (4,exp(~E,/RT)) ¢
1+ 2 (4yexp(—E,/RT)) ¢ ~  (dyexp(-E,/RT)) ¢

(4-6)

Since k, depends on reaction temperature, following Eq. (4-4), N, is a function of both ¢

and y in this study.



The phase separation phenomena via spinodal decomposition can be properly
described by the non-linear Cahn-Hilliard equation as [21, 25, 26]:

0P, . 0f 5.
= -V[MV[B(DA 2xv¢,,]] @4-7)

where @, is the volume fraction of component A (for a binary mixture, ® ,+ ®,= 1),

M is mobility, f is free energy density of the system, and « is a positive interfacial
constant.

The Flory-Huggins theory is used for the bulk free energy density f in Eq. (4-7)
and is written as [29, 30]:

£ =5 (Lo, Lo, 0,0, @)

v 4 8

where &, is Boltzmann constant, v is the volume of the reference unit, N, is the degree
of polymerization of polymer A, and y is the temperature dependent interaction

parameter. The expression for z in terms of temperature can be written as [31]:

z:%-‘{’(l—gJ 4-9)

where ‘¥ is the dimensionless entropy and © is the theta temperature. Note that the
interaction parameter y also depends on temperature, thus it is also a function of y, in
this study.

The mobility M in Eq. (4-7) depends on the molecular weight and local
concentration of the components, and, for the low molecular weight regime, it is defined

as:

- NNPL, yw (4-10)
4‘(NA +NB XNA(D 4 +NB QB )

where ¢ is the friction coefficient and N, is the critical degree of polymerization. For

the high molecular weight regime, M is defined as:

100



: 4uN N N, 0 @,
156 Vi+N; [N, @, +N,0,)”
where N, is the number of monomer units between entanglements. The full derivations

N>N, (4-11)

of Egs. (4-10) and (4-11) are presented in Chapter 2, Section 2.2.2. Lastly, the molecular
dependent interfacial parameter « in Eq. (4-7) is written as [33, 34]:

k= (N + N,) (4-12)

where &, the interfacial parameter for a linear polymer.

The dimensionless governirng equation describing the polymerization process can be
obtained from Eq. (4-6). When we introduce the dimensionless collision frequency factor
as A'= A,L'¢/2x,v and the dimensionless activation energy as £ = E,/R®, Eq. (4-6)

can be expressed in the dimensionless form as:

.. 1+ 24 expl-E"1T")
Ny, 1) = 413
1) 1+ 24°exp(-E"/T") '~ y Aexpl-E"1T") ¢ @)

where x =x/L, y'=y/L, t =2xm/L', and T"=T/©. The superscripted
asterisks denote dimensionless variables.

The detailed expressions for the governing equation describing the phase separation

phenomena are given in Sections 2.3 and 3.2 where the dimensionless diffusion
coefficient is defined as D’ =k,®L*/2vk,. The govemning equation for the phase
separation process and the boundary and initial conditions used in Chapter 3 are also used
in this study. However, the dimensionless temperature T, the Flory-Huggins interaction
parameter y, and the degree of polymerization of component B in the governing
equation for the polymerization process are variables along the spatial direction y~ under
the temperature gradient, as given in Eq. (4-1), Eq. (4-9), and Eq. (4-13), respectively.
The governing equation describing the polymerization process given in Eq. (4-13)
is the dimenstonless algebraic equation and it can be solved analytically. However, the
governing equation for the phase separation process has to be solved numerically for

(D;(x', ¥y, t') using sets of natural and zero mass flux boundary conditions and initial
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conditions, reflecting the infinitesimal thermal concentration fluctuations presented
initially. Hence, the numerical computation is carried in the 2-dimensional geometry
(0 < x'<1, 0 < y'< 1), assuming only one of the components, B, in a binary mixture,
undergoes polymerization while the degree of polymerization of the component A
remains constant (N ,= 100), under the temperature gradient. The dependent variables
are ®’, and N,, and the independent variables are x°, y°, and ¢ . The parameters are
the dimensionless diffusion coefficient D", the dimensioniess collision frequency factor
A", the dimensionless activation energy E , the dimensionless initial average

concentration @', , the dimensionless temperatureat y'= 0, T, , andat y'=1, 7, , and

Parameter Value
D’ 2.0 x 10°
A 2.0 x 10
E 10
D, 0.2
b 4 1
© 273
N, 100
T 1.500
T,: Case A 1.510
Case B 1.502
Case C 1.500

Table 4.1 Parameter values used in this study. D’ is the dimensionless diffusion coefficient, 4°
is the dimensionless collision frequency factor, £~ is the dimensionless activation energy, © is
theta temperature, <D;.o is the dimensionless initial average concentration, ‘¥ is dimensionless

entropy, and Tl and T; are the lower and higher dimensionless temperature, respectively. Three

different temperature gradient fields are examined: Case A (high temperature gradient), Case B
(low temperature gradient), and Case C (constant temperature)
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the Flory-Huggins interaction parameter, . The parameter values used in this study are

listed in Table 4.1. The three different cases for the different magnitude of the
temperature gradient are studied, i.e. the strong and weak temperature gradient, and
constant temperature, as shown in Table 4.1.

In the previous study (see Chapters 2 and 3), we used two different governing
equations for phase separation depending on the molecular weight regime of component

B, and assumed that the critical degree of polymerization ¥, is 31.5. However, in this

study, the degree of polymerization of component B never exceeds the critical value.

Therefore, only the governing equation for the low molecular weight regime is used.

4.3 Result and Discussion

4.3.1 Typical Phase-Separated Structures and Patterns of PIPS under a
Temperature Gradient.

Figure 4.1 shows plots of 1/ 7 versus @', for Case A at the lowest temperature
side (" =1.50) and the highest temperature side (T, =1.51), at the dimensionless times
of t' =2.039x10™ and ¢ =2.091x10™. The long and short dashed lines represent the
binodal and spinodal lines, respectively, at 7, , and the solid and dotted lines denote the
binodal and spinodal lines, respectively, at T, . The blank and filled circles represent
curing temperature, 7, and 7., respectively. The arrow indicates the phase diagram
changes with increasing molecular weight of component B. Since ¥, =100 and N, =1

at ¢ =0, and everywhere in the system, the lower temperature side is located closer to
the initial binodal line. However, as polymerization proceeds, the molecular weight of
component B increases faster in the high-temperature region than the low-temperature
region because the dimensionless reaction rate constant K~ is proportional to temperature
following the Arrhenius equation shown in Eq. (4-4). As a result, for Case A, the curing
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T =150 ]

0.8 1.0

Figure 4.1 Phase diagrams of 1/ y versus @, computed based on the Flory-Huggins equation

(Eq. (4-7)) for Case A in Table 4.1, where y is the Flory-Huggins interaction parameter and @,
is dimensionless concentration of polymer A. The long and short dashed lines represent the
binodal and spinodal lines, respectively, at the lowest temperature (Tl' )- The solid and dotted

lines denote the binodal and spinodal lines, respectively, at the highest temperature (T; ). The
blank and filled circles represent the curing temperature, T, and T, , respectively.

point at the higher temperature side is thrust into the unstable region earlier and phase
separation occurs first in the high-temperature region.

Figure 4.2 shows the dimensionless concentration spatial profile, CDA( x, y'),
(first column) and patterns (second column) formed during phase separation for Case A
in Table 4.1 at the following representative dimensionless times: (a) ¢ =2.531x10~, (b)
t =2570x107, and (c) t =2.598x10*. Darker regions represent polymer A rich
regions while brighter regions are polymer B rich regions. The temperature gradient
exists along the y’-axis and the temperature at y'= 0 (Tl'= 1.50) is lower than the

temperature at y = [ (T2 = 1.51). Because we assume that the mixture has an upper
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Figure 4.2 Dimensionless concentration spatial profiles Q;(x', y') (first column) and patterns

(second column) formed during the phase separation phenomena under a temperature gradient for
Case A.
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critical solution temperature (UCST), the lower temperature side is closer to the unstable
region of the phase diagram than the higher temperature side, as shown in Figure 4.1.
However, Figure 4.2 clearly shows that phase separation occurs earlier and more
drastically in the high-temperature region. This is obviously due to the different values of
the dimensionless reaction rate constants, K , along the direction of the temperature
gradient. Since the dimensionless reaction rate constant K~ is proportional to reaction
temperature according to Eq. (4-4), the phase diagram elevates more rapidly in the high-
temperature region as shown in Figure 4.1. As a result, in the high-temperature region,
phase separation occurs more significantly, and the droplet-type morphology forms and
evolves. Moreover pattern (c) indicates that the phase separation phenomena already
reaches to the intermediate stage of phase separation in the high-temperature region. It is
noted that phase separation occurs exponentially and the significant phase-separated
structure is established during the early stage of phase separation. Phase separation slows

down in the intermediate stage as shown in Chapter 3.

In Figure 4.2, the arrows indicate the locations of the front y}, defined as the
boundary between the phase-separated region and the region in which no phase
separation occurs. The location of the front y} constantly propagates toward the low-
temperature region, leaving the high-temperature region behind, as phase separation

proceeds. In the high-temperature region far away from y}, y > y;. , phase separation
occurs more significantly. On the other hand, in the low temperature region, y" <y, no
phase separation takes place until the front line passes, and in the region near y},

y' =y, phase separation occurs slowly. For the strong temperature gradient field, the

propagation of the front line is slow. As a result, a lamella-type of phase-separated
structure parallel to the x" -axis forms in the low-temperature region.

The droplet-type of phase-separated structure indicates that the curing point at the
higher temperature side remains in the off-critical region during the polymerization and
phase separation process. As phase separation and polymerization proceed, the lamella-
type structures slowly break up during the phase separation process to form the droplet-
type structure (see Figure 4.4 for constant temperature). Thus in general a composite
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structure of lamella and droplet morphologies can be obtained by the PIPS method under
the strong temperature gradients.

Figure 4.3 represents the dimensionless concentration spatial profiles ®"( x", y')
(first column) and pattens (second column) formed during the phase separation
phenomena for Case B in Table 4.1, at the following dimensionless times: (a)
t =2.590x107°, (b) ¢’ =2.610x10™*, and (c) ¢ =2.615x10™°. A temperature gradient
exists along the y"-axis and the temperature at y° =0 (7, =1.500) is lower than the
temperature at y =1 (7, =1.502). Since the temperature gradient for this case is
weaker than that for Case A, the front line shown in Figure 4.2 propagates toward the
low-temperature region much faster than Case A. As a result, the initial one-phase
mixture phase-separates and the initial concentration evolves almost simultaneously.
However, the weak temperature gradient also induces the spatially different
morphologies (the droplet-type phase-separated structures in the high-temperature region
and the highly interconnected cylinder-type morphology in the lower temperature region)
in this case, indicating different temporal ranges of phase separation. The interconnected
cylinder-type structure also breaks up (see pattem (c)) to form the droplet-type
morphology. Consequently, both for Case A and Case B, the spatially graded structures
from the lamella- (interconnected cylinder) type te the droplet-type morphology are
obtained under the temperature gradient.

The dimensionless concentration spatial profiles ®"(x",y") (first column) and
patterns (second column) for constant temperature (Case C in Table 4.1) are presented in
Figure 4.4, at the following dimensionless times: (a) ¢ =2.610x10"° (b)
t'=2.617x107°, and (c) " =2.640x10™°. Compared to Case A (Figure 4.2) and B
(Figure 4.3), the initial mixture phase-separates and evolves independently on the
position during the polymerization and phase separation process. At the early stage of
phase separation, the random initiai condition develops into an interconnected cylinder-
type structure because the initial curing point is located in the critical region at given
concentration and temperature, as shown in Figure 4.1. As polymerization proceeds, the
phase diagram shown in Figure 4.1 shifts toward higher temperature and concentration

region, and the curing point moves off the critical region into the off-critical region. Asa
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Figure 4.3 Dimensionless concentration spatial profiles @', (x', y') (first column) and patterns

(second column) formed during the phase separation phenomena under a temperature gradient for
Case B.
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temperature).

109



result, the early phase-separated structure similar to the interconnected cylinder-type
develops into the droplet-type structure.

4.3.2 Dynamical Features of PIPS under a Temperature Gradient

It is known that a dimensionless induction time ¢, exists in the PIPS process and
that significant phase separation only occurs at ¢* >, [33, 34]. As shown in Chapter 3,
the dimensionless induction time f; can be represented by the sum of the dimensionless
polymerization lag time t,; and the dimensionless phase separation lag time 1, as
t; =1, +1,. The dimensionless polymerization lag time ¢, represents the time it takes
for the spinodal line to cross the initial curing point and the dimensionless phase
separation lag time ¢, is time required for the system to begin phase separation once it
has been placed in the unstable region [33, 34]. The dimensionless polymerization lag
time t,; , the dimensionless phase separation lag time ¢, , and the dimensionless induction
time ¢, for Case A, B, and C are listed in Table 4.2.

In this chapter, simulations are performed only for the early stage of phase
separation because of numerical limitations. When the interconnected-cylinder type of
structure breaks up in pattern (c) in Figure 4.2 and 4.3, rapid variation of the integrand
occurs at the pinching points. The time step Az, for stable integration must be less than
the smallest time scale of the problem. The smallest time scale becomes infinitesimally
small with rapid variation of the relaxation velocities d®",/dt" at the pinching points,
thus limiting the ability of the computational scheme to capture fast and small temporal
scale procedures. However, the dominant morphological inhomogeneities depend on the
focation along the temperature gradient can be found in the very early stage of phase
separation. Thus, these computational limitations do not preclude visualization of the
main morphological transformations in the PIPS process.

Table 4.2 shows that all the dimensionless kinetic values, ¢,,, ¢, and ;, decrease

as the magnitude of the temperature gradient increases and the highest temperature in the
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Case t, x10° t, x10° t; x10°
A 2.039 0.489 2.528
B 2.080 0.505 2.585
C 2.090 0.516 2.606

Table 4.2 Results for dynamical study of polymerization-induced phase separation where 7., 1,,,

and ¢, denote the dimensionless polymerization lag time, the dimensionless phase separation lag
time, and the dimensionless induction time, respectively.

system T, increases. As discussed in Chapter 3, the dimensionless polymerization lag
time t,; decreases with increasing K, and the dimensionless phase separation lag time
t, is inversely proportional to both the dimensionless diffusion coefficient D° and the

dimensionless rate constant K. Since the dimensionless rate constant K~ is proportional
to temperature, phase separation occurs earlier in the strong temperature gradient field in
this study.

4.3.3 Characterizations of the Non-Uniform Phase-Separated Structures

The state of the phase-separated mixture can be fully characterized by measuring
two values: ‘the intensity of segregation’ and ‘the scale of segregation’ [86]. The
intensity of segregation / represents the compositional difference of the each component
and it is defined as the ratio of the measured variance to the variance of a completely

segregated system as:

(V1Y) 3
R 9
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where N’ is the total number of concentration taken, @', is the dimensionless

concentration of the various points in the sample, and (D:w is the dimensionless average
concentration. Note that for completely segregated state, / =1, and uniformly distributed
state, I =0.

The scale of segregation s represents the length scale of segregated structures and
their distributions. The scale of segregation s is defined as the integral of the certain
function of correlation, known as the coefficient of correlation R(r), and R(r) is defined
as:

"
h

_Z (‘D',u - (D;.o X‘Dtu - (D:q.o
R(r)= & —
N§°

(4-15)

where @, and ®,; are concentrations at two points at a distance of r from each other,

N’ is the total number of couples of concentrations taken, and § is the variance which is
calculated from the concentrations at all points. Similarly, for a perfect correlation

between the two phases, s = ¢ where ¢ represents the value of r at which R(¢)=0, and

for no correlation between the two phases, s =0. The detailed explanations for / and s

are given in Chapter 3, Section 3.3.

Figure 4.5 shows the intensity of segregation / as a function of y~ for Case A
(@#,—), Case B (a,~ ) and Case C (m,~-") at the following characteristic times: (a)
t' =t =0019, (b) t' -t =0.026, and (c) ¢ -, =0.040. In Figure 4.5, the intensity of
segregation [/ is calculated individually for the particular region along the temperature

gradient. [n addition, to eliminate the differences of the dimensionless induction time r,.°
due to the temperature gradient for each case, 1 —¢; is used for the characteristic time.

Note that Case A and Case B are under the strong and weak temperature gradient field,
respectively, while Case C is maintained at constant temperature. For all three cases, the
intensity of segregation [/ increases with time. However, the time variations of [ are

significantly different for each case. For Case A, near the low-temperature side (between

y~ =0 and the front y} ), I =0, since no phase separation occurs. On the other hand, at
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the high-temperature side (¥ =1), the value of 7 is considerably high because phase
separation occurs significantly in the high-temperature region during the early stage of

phase separation. It is also observed that the location of the front y} propagates slowly

toward the low-temperature side y* =0. In Figure 4.5 (c), phase separation slows down
in the high-temperature region, indicating the intermediate stage while phase separation
starts to occur in the vicinity of the front. Consequently, the highly position-dependent
microstructure forms in the strong temperature gradient field.

Plots of the intensity of segregation for Case B clearly shows that the non-uniform
structure forms during the phase separation process in the weak temperature gradient
field. As expected, the value of / in the high-temperature side is much higher than that in
the low-temperature side. The slopes of plots for Case B are considerably steep compared
to those for Case C. Figure 4.5 also shows that the phase-separated morphology evolves
uniformly for Case C, and almost same values of / are observed in everywhere.

Plots of the scale of segregation s as a function of y° are shown in Figure 4.6 for
Case A (@;,—), Case B (a;,~), and Case C (m; -°) at the following characteristic times: (a)
t' -t =0.019, (b) ¢ -z, =0.026, and (c) ¢ —¢;, =0.040. The scale of segregation s
decreases as phase separation proceeds for all three cases. Figure 4.6 also shows that the
highly inhomogeneous microstructure forms during the phase separation process for Case
A. In the high-temperature region, the value of s is low, indicating that the droplet-type
morphology forms as a result of the intermediate stage of phase separation. On the other
hand, the morphology in the low-temperature region is the highly lumped lamella-type
structure, and the value of s is high.

In the weak temperature gradient field, as shown in plots for Case B, the phase-
separated particle size is different along the gradient. Since the value of s in the high-
temperature region is slightly lower than that in the low-temperature region, it is expected
that the small droplet-type morphology forms in the high-temperature region and the
interconnected phase-separated structure develops in the low-temperature region.
However, for Case C, the phase-separated morphology evolves uniformly everywhere,
and the space-independent droplet-type morphology forms.
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Figure 4.5 Plots of the intensity of segregation / as a function of the position along the
temperature gradient y~ for Case A (®, —), Case B (a,—), and Case C (®,--) at the following

characteristic times: (a) ¢ -t,.' =0.019, (b) ¢ -t,.' =0.026,and (c) ¢ —t,.' =0.040.
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Figure 4.6 Plots of the scale of segregation s versus the position along the temperature gradient
v~ for Case A (8;—), Case B (o;— ), and Case C (8- ) at the following characteristic times: (a)

. t' =1 =0.019,(b) £~ =0.026,and (c) £ —¢; = 0.040.
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In conclusion, the space-dependent morphologies, showing different particle size
and shape, are obtained by the PIPS process under the temperature gradient. Since the
mechanical and optical properties of multi-component composite material depend on the
phase-separated morphology, it is expected that the presented numerical results can be
applied to fabricate muiti-component polymers with graded properties, and, in particular,
FGM with different skin/core properties. As general guidelines, it can be stated that the
strong temperature gradient field should be applied for broad distributions of particle size
and the highly inhomogeneous microstructures. However, the position-dependent
structures with considerably inhomogeneous particle size and shape can be also produced
in the weak temperature gradient field.

4.4 Conclusions

This chapter presents the computational modeling of polymerization induced phase
separation (PIPS) process under a temperature gradient. The time evolution of
morphology under a temperature gradient describes how the initial homogeneous mixture
evolves and phase-separates during the phase separation and polymerization process to
eventually form a spatially inhomogeneous microstructure. The droplet type morphology
(in the high-temperature region) and the lamella type morphology (in the low temperature
region) are obtained in the strong temperature gradient field. The location of the front
propagates toward the low-temperature side, leaving the high-temperature region behind.
In the region far from the front (high-temperature side) phase separation occurs much
earlier and more significantly while no phase separation takes place ahead of the front
line (low-temperature region). On the other hand, the droplet and interconnected cylinder
type structure is found in the weak temperature gradient field.

The kinetic measures of the PIPS process under a temperature gradient, such as the
dimensionless polymerization lag time, the dimensionless phase separation lag time, and
the dimensionless induction time, decrease as the highest temperature in the system

mcreases due to the increasing reaction rate constant.
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Lastly, the time variations of the intensity and scale of segregation as a function of
the location along the temperature gradient, also indicate that the phase-separated
structure evolves non-uniformly along the gradient. Under a temperature gradient field,
the intensity and scale of segregation change more significantly in the high-temperature
side than in the low-temperature side. However, the variations of the intensity and scale
of segregation are uniformed at constant temperature.

In conclusion, to design FGM (functionally graded materials) with composite
tamella-droplet morphologies, these simulations show that the temperature gradient
should be greater than a critical value, so that front propagation behavior sets in. In this
case, a droplet morphology forms in the hotter region while a lamella morphology with
unit normal parallel to the temperature gradient forms in the cooler region. These resuits
provide useful guidelines in the manufacturing of FGM’s by the PIPS method.
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Chapter 5

Conclusions and Recommendations

This thesis presents a detailed theoretical and computational study of
polymerization-induced phase separation (PIPS) method, which is an industrial process
for muiti-phase material production. In particular, this thesis has been mainly devoted to
the industrially relevant PIPS process, consisting of a monomer poiymerizing in the
presence of a polymer. This study has been performed based on the following two main
objectives: (1) the numerical and theoretical study of the PIPS process and (2) the
numerical and theoretical study of the PIPS process under a temperature gradient. The
first section of this chapter gives the conclusions to this thesis and the second section

presents recommendations on further work.
5.1 Conclusions

The characterization and analysis of the main dynamical and morphological
features, that are predicted to arise during the PIPS process, can be summarized as
follows. (1) The time evolution of morphology exhibits the interconnected phase-
separated structure in the critical region and the droplet-type morphology in the off-
critical region. (2) Phase separation occurs exponentially during the early stage of phase
separation but eventually slows down in the intermediate stage of phase separation. (3)
The time and length scales of the phase-separated structure strongly depend on the
dimensionless diffusion coefficient D" and the dimensionless reaction rate constant K.
Specifically, in dynamical analysis, as D" and K" increase, the dimensionless induction
time f; and the dimensionless transition time ¢, decrease. With respect to the

morphological analysis, the intensity of segregation [, that represents the difference of
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the concentration of each component, increases as K~ increases but decreases as D’

increases. The scale of segregation s, that represents the droplet size and distribution,

decreases as K~ and D’ increase. The average dimensionless droplet diameter (d > also

decreases as K' and D" increase. In addition, droplet number density is proportional to
K" and D°. Lastly, (4) phase separation slows down drastically in the high molecular
weight region (above the critical point N,) because it is restrained by topological

constraints, that is the entanglement of polymers.

The simulation results of the PIPS process under a temperature gradient have shown
the following results. (1) The time evolution of morphology exhibits a spatially
inhomogeneous phase-separated structure depending on the location along the
temperature gradient. In the strong temperature gradient field, the droplet-type
morphology is observed in the high-temperature region and the lamella-type morphology
forms in the low-temperature region. On the other hand, in the weak temperature gradient
field, the droplet-type morphology is found in the high-temperature region and the
interconnected cylinder-type phase-separated structure forms in the low temperature
region. (2) The dynamical indices of the PIPS process under a temperature gradient, such
as the dimensionless polymerization lag time, the dimensionless phase separation lag
time, and the dimensionless induction time, decrease as temperature in the system
increases. (3) As phase separation and polymerization proceed, the intensity of
segregation / increases and the scale of segregation s decreases more significantly in the
high-temperature region than the low-temperature region under a temperature gradient,
showing broad distribution of particle size and shape, while / and s change uniformly
under a constant temperature.

The presented simulation results replicate reported experimental observations on the
polymerization-induced phase separation (PIPS) method of forming the binary
component composite material and on the phase separation method under a temperature
gradient, and serve as useful guidelines for the optimization and control of
microstructures in functionally graded polymer material systems.
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5.2 Recommendations

The following recommendations are suggested for further work in the subject area
of this thesis:

(1) The numerical model used in this thesis has been formulared assuming that the
mixture is binary and polymer component is monodispersed. However, for more
realistic situation, the ternary mixture and polydispersed molecular weight

distribution have to be considered.

(2) Using the ternary component system, the numerical model for a more complex
morphology, such as “phase within a phase within a phase”, has to be developed and

solved.

(3) The numerical model describing the polymerization-induced phase separation

(PIPS) process under the shear flow has to be formulated and solved.
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