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Abstract

The phase separation method is a practically important method for producing multi­

component materiais. Particularly, Many commereialized polymer blends, such as High­

Impact Polystyrene (HIPS) and acrylonitrile-butadiene-stYrene (ABS), are manufactured

by the polymerization-induced phase separation (PIPS) method, polymerizing monomer

compounds (styrene) in the presence ofpolymers (polybutadiene). In this thesis, rigorous

mathematical models, descnoing the PIPS process, have been formulated using the

nonlinear Cahn-Hilliard (C-H) theory and the Flory-Huggins (F-H) theory combined with

a second-order reaction equation. In particular, this thesis analyzes and simulates for the

first time the PIPS process for the case of a monomer polymerizing in the presence of a

polymer. The model equations are solved using the numerical methods, and the

simulation results are characterized to identify the main dynamicai and morphological

phenomena of the PIPS process. Lastly, the PIPS process under a temperature gradient is

studied to produce functional composite materials exhibiting space-dependent

microstructures and properties.
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Résumé

La méthode de séparation de phases est une méthode pratique importante pour la

production des matériaux multi-composants. En particulier, plusieurs mélanges

commerciaux de polymères comme par exemple le polystyrène haut impact (PSHI) et

l'Acrylonitrile-Butadiene-Styrene (ABS) sont produits par méthode de séparation de

phases induite par polymérisation (SPIP), en polymérisant des compounds de monomères

(Styrene) en présence de polymères (Polybutadiene). Au cours de cette thèse, des

modèles mathématiques rigoureux décrivant le procédé SPIP, ont été fonnulés en

utilisant la théorie non-lineaire de Cahn-Hilliard (C-H) et la théorie de Flory-Huggins (F­

H) combinée à une équation de réaction de second ordre. En particulier, cette thèse

analyse et simule pour la première fois le procédé SPIP dans le cas d'un monomère

polymérisé en présence d'un polymère. Les équations du modèle sont résolues en utilisant

des méthodes numériques classiques et les résultats de la simulation sont caractérisés en

utilisant de nouvelles techniques afm d'identifier les principaux phénomènes dynamiques

et morphologiques du procédé SPIP. Pour finir, le procédé SPIP sous gradient de

température est étudié afin de produire un matériau composite fonctionnel avec une

microstructure et des propriétés spacio-dépendantes.

ü
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Chapter 1

Introduction and Background

1.1 General Introduction

MultiooComponent polymer materials such as polymer solutions, blends and

composites find a wide range ofengineering applications [1]. The combinations oftwo or

more polymers give higher performance including impact resistance, toughness, high

temperature performance, high modulus, and improved elasticity. Blending polymers aIso

offer control over melt viscosity, processability, and solvent resistance. For example,

homopolymer polystyrene is very brittle and fractures relatively easily. Mixing

polybutadiene with styrene monomer, commercialized under the trade name High-Impact

Polystyrene (HIPS), increases impact resistance and toughness of the final plastic. It

absorbs more energy on loading, delaying, or preventing fracture. Poly(ethylene

terephthalate) is used in nylon-6 tire to reduce fiat spotting, and rubber-rubber blends

such as polybutadiene or naturaI rubber, is also used to increase tear resistance.

Acrylonitrile-butadiene-styrene (ABS) plastic is one of the fully developed and

commercialized materials due to its excellent toughness. The acrylonitrile contributes ail

resistance, a higher glass transition temperature to the plastic. The relative position of

sorne commodity thermoplastics is shown in Table 1.1, taking HIPS as a standard [2]. As

shawn in Table Ll~ HIPS has an excellent pricelproperty balance and ABS bas an

excellent toughness despite its inferior processability and priee. On the other band, PS

does not have toughness and pp bas Iower processabliIity due to its crystalline nature and

flexional modulus. The commercial importance ofmulti-component polymer materials is

currently remarkable. The total amount of polymer composites and blends constitutes
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over 30 wt % ofthe total polymer consumption. with an annual growth rate ofabout 9 %

[3,4].

However, the great majorit'j of polymer pairs are immiscible due to their

endothennic heat of mixing and very small entropy of mixing, and only a few polymer

pairs are known to be miscible. When two polymers dissolve even in the rare exception,

generally they phase-separate at some temperature and molecular weight, and fonn

multiphase systems. For this reaso~ phase separation methods have been one of the

practical methods to produce multi-component composite materiaIs, and an active

research area in material science during the past two decades. Most polymer blends

including thermoset / thermoplastic polymer blends, porous polymer membrances, rubber

toughened engineering plastics, interpenetrating polymer networks (IPNs) and polymer

dispersed liquid crystals (pDLe) are prepared via phase separation methods [5-10).

The phase separation method has a number of advantages compared to other

methods. It offers a great deal ofvariation in the morphologies, depending on the polymer

type, the polymer concentration, and the nature orthe phase separation process [Il]. In

addition, films fonned by the quenching and polymerization phase separation methods

undergo relatively little shrinkage as the polymer phase separates. The polymerization­

induced phase separation (PIFS) method is more complex compared ta the thermal­

induced phase separation (TIPS) method because phase separation and polymerization

HIPS PS ABS pp

Processablility S S l l
Toughness S P E S
Flexional Modulus S E E 1
Surface glass S transparent E S
ESCR S E E E

s: standard; E: excellent; 1: inferior; P: poor

Table 1.1 Relative Position ofCommodity Thermoplastics [2}.

2
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process occur simultaneously in the PIFS method. Nevertheless~ the PIPS method

involved condensation-reaction polymerization is one of major class of variable multi­

phase materia! production because the phase-separated morphology can be relatively

easily controlled by the rate of polymerization and diffusion. Furthermore, the desired

morphology can be obtained by controlling the gelation point in the PIPS method. The

typical example is the production of high impact polystyrene (HIPS}O' HIPS is

manufactured by the PIPS process, polymerizing styrene in the presence ofpolybutadiene

(PB). As polymerization proceeds, PB phase separates and disperses in the polystyrene

(PS) matrix. The particle size of the PB phase can be controlled to obtain the desired

properties by a proper choice ofthe processing conditions.

Polymer blends exhibit a number of morphologies, that is the physical arrangement

of the phase domains [1], and the phase-separated morphologies May be simple or

complex depending on the phase separation mechanism. Most well-known morphologies

in a binary polymer blend system are droplets of phase a clispersed in phase fJ and

interconnected cylinders of phase a in phase fi as shawn in Figure 1.1. The dispersed

droplet-type morphology (Figure 1.1.a) characterlzes the structure ofa material for which

the volume fraction of one phase ais low [12]. In this type of morphology, the droplets

are discretely and unifonnly distributed in the matrix phase. If the volume fraction of the

minor phase a is increased until the critical point, the interconnected cylinder-type

morphology (Figure l.l.b) is observed. A more complex case is the double..mamond

interconnected cylinders or onion rings ofphase a in phase p. Recently, 'phase within a

phase within a phase' is observed in multi-component high-impact polystyrene (HIPS)

and acrylonitrite-butadiene-styrene (ABS) materials~ as shown in Figure 1.2. Many

polystyrene sub-particles aIso exist inside the polybutadiene particles. The phase­

separated morphology, such as droplet size and distribution, is critical in determining the

properties of multi-component composite materials [II. For instance, the fracture

toughness increases with decreasing particle sizes and the toughness of the high-impact

plastic aIso increases with the volume fraction of polystyrene inside the polybutadiene

droplets. The optical properties of materials are also affected by the phase-separated

structures. If the average droplet size decreases, film scattering increases because the

number ofscattering sites within the film increases, and the film bas a translucent white

3
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Figure 1.1 Typical phase-separated morphologies in a binary polymer blend system: (a) the
droplet type morphology and (b) the interconnected cylinder..type morphology.

r··~·...O•• G

,- ~ •.• tJ ~.,:
• •

~~ Q •

fi - -. ,-· 4m~.. •
• w;r.•~

..~~..r •• ·
_ • .ut &M li

Figure 1.2 Morphology ofa bigh-impact polystyrene (reprinted from reference [2]).

appearance [IlJ. Therefore, the optimum mecbanical bebavior for Many materials is

observed with the particles' size being about 2-Spm, and the spacing between the

particles sbould be ofthe arder of l-Spn . Consequently, for multi--component composite

materials with desirable properties, it is crucial ta process the desirable phase-separated

morphology.

4
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More recently, an effort bas heen made ta produce a composite material, exhibiting

inhomogeneous microstructures (or composition) and properties in sorne spatial direction,

namelya fimctionally graded material (FGM) [13, 14]. A schematic representation orthe

microstructure of a two-component FGM is shown in Figure 1.3. The composition

gradually varies along the spatial direction. Many current applications of materials

require performance, which vary with location within the component. For example, the

body of a gear must he tough; however its surface must be hard and wear-resistant. The

body of a turbine blade must be strong, tough and creep..resistant, whereas its outer

surface must be refractory and oxidation-resistant. However, the abrupt transitions in

composition and microstructure cause sorne serious damage and failure in interfaces. The

graded structures designed with whicb the transition from one material to the other

gradually can distribute the local concentrations ofstress optically. FGM is aIso designed

ta take advantage of certain desirable features of each orthe constituent phases [13]. The

graded structures are fabricated by the severa! constructive processes: powder

densification, coating or lamination. However, the transport-based processed, based on

Figure 1.3 Schematic representation of the microstructure of a two-component fimctionaIly
graded material (FGM), for which the composition gradually varies along the spatial direction
(reprinted trom reference [13D.

5
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natura! transport phenomen~ snch as the tlow of flui~ the conduction of heat and the

diffusion ofspecies (in phase separation) can also create gradients in local microstructure

and/or compositions that are useful [14}. In this thesis~ a spatially dependent PIFS

methodology will he applied to produce a FGM.

The objectives of this study are, therefore, to develop a rigorous model of the PIPS

process for binary composite materials and to design the desirable phase-separated

morphologies with desirable particle size and shape using computational methods. This

study is mainly devoted to the PIPS process via spinodal decomposition for binary

composite materials. To mimic a processing method for the various commercialized

polymer blend materials, we assume that only one component undergoes polymerization

in the presence of another polymer component that does not participate in the reaction

and that has a constant moiecular weight. Additionally, the PIPS process under the

temperature gradient field is also studied with the aim to produce spatially graded

structures with inhomogeneous microstructures and concentrations. The goveming

equations with auxiliary conditions of the PIPS process for binary composite materials is

developed in Chapter 2. The method of solution is also outlined in Chapter 2, which

includes the Galerkin finite elements method with bicubic Hermitian interpolants for

spatial discretization and the finite difference method for time integration with a first­

order implicit Euler predictor-eorrector method and an adaptive time step control step.

The governing equation is solved, implemented and validated in Chapter 3. The kinetics

of phase separation and the obtained morphologies are characterlzed using novel

dynamicai and morphologicai analysis techniques. In Chapter 4, the goveming equations

of the PIPS process under a temperature gradients are solved and implemented to

simulate the formation ofgraded materials.

Lastly, in this introductory chapter, the basic concepts of phase separation are

presented to understand why (Section 1.2. Thermodynamics ofphase separation) and how

(Section 1.3: Methods of phase separatio~ and Section 1.4: Mechanisms of phase

separation) phase separation oceurs in a muiti-component polymerie mixture. In Section

1.5, the nonlinear Cahn-Hilliard (C-H) theory and the Flory-Huggins theory, which are

the basic theories for spindoal decompositio~ are presented and discussed. Lastly, the

6



• description of previous works, the thesis objectives, methodology and organization are

given in Section 1.6, 1.7, 1.8, and 1.9, respectively.

1.2 Thermodynamics of Phase Separation

Ta understand the nature ofphase separation in twa-camponent polymerie systems,

it is important ta understand the mixing properties of the two components, that is, under

which conditions !Wo polymers either fonn a homogeneous phase or a two-phase

structure. In order to find out whether mixing occurs, the change in the Gibbs free energy

f has to be considered.

The composition cI>j of component i (i = A, B in a binary system) in terms of its

volume fraction is given by:

• <l>.c + <l>a = l

(l-l-a,b)

(1-2)

where N..c and Na are the degree of polymerization of polymer A and B, respectively.

and nA' na are the number ofmolecules of the corresponding polymers, respectively.

Let us begin with the determination ofthe free energy ofa two-phase alp mixture.

If a twO-phase (a and P) structure is formed, the composition of A in each phase is <1>~

and cI>~, respectively. If the interphase surface energy of the two-phase mixture is

neglected, the total free energy of component A May he written as the sum of the bulk

free energies of the each component phases as follows [15]:

(1-3)

•
where fa.p(cI> .• ) is the total Gibbs free energy of the two phases, f (<D~) and f (<1>~)

are the Gibbs free energies of the a and p phases, respectively, and(j)Œ, t:t/ are the

7



• volume fractions of the a and p phases, respectively. Thus, from following mass

balance relations:

(1)16 + rff = 1

we find that:

(1-4)

(1-5)

~" - cI>(J)" =.c .f

cIl' _cna

t .f

(1-6-a,b)

Substituting Eq. (1-6-a) and (1-6-b) into Eq. (1-3) yields :

(1-7)

•
Figure 1.4 shows Eq. (1-7) as a straight line connecting (<D~, f (<D~)) and

(<D~, f (cI>~ )).

f

f (<t>~)

fa.I1(<t> A)

f (<t>~)

•
Figure 1.4 The Gibbs free energy, f, as a fimction of composition of component A, <D.

t
for a

two-phases mixture, a and p, where fa.p(<I> A) i5 the total Gibbs free energy of (Wo phases,

f (<D~) and f (<D~) are the Gibbs free energy orthe a and p phases, and <1>: t <I>~ are the

concentrations of the mixture in phases a and Pt respectively. The Cree energy ofa two-phase
mixture bas a Linear concentration dependence.

8
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The Gibbs free energy of the single-phase mixture is shown as curves in Figure

1.5.a and Figure 1.5.b. Within the composition range <I>~«t> A«t>~ in Figure 1.5.~ the

curve describing the free energy of the single..phase mixture lies above the straight line

describing the free energy of the two phase-mixture. The mixture cannot be stable in this

region because the equilibrium state of a system tends toward the minimal free energy

conditions. Consequently, a mixture of a composition corresponding to a point on the

convex part of the Gibbs free energy curve, dlf /d<l> A
2 < 0, is unstable against an

infinitesimal concentration heterogeneity and decomposition always occurs. This region

is called the unstable region and the decomposition phenomena occurs in the unstable

region is called spinodal decomposition (SO) [15].

However, if the Gibbs free energy curve is concave within the range <I>~<<IJ.~<(1)~,

which is characterized by d 2f / dC1> A1> 0, it lies below the straight line connecting the

points (et>~~, f (CI>~)) and (<l>~, f (C1>~)) (See Fig l.S..b.). Thus in this case, the single..

phase mixture has less free energy than the two-phase mixture. If a homogeneous mixture

characterized by dlf 1 d<l> Â 2> 0 at the point <I> A is unstable to the formation of a two­

phase mixture with compositions, CI>~ and C1>~, the mixture is stable with respect to

infinitesimal fluctuations and the system does not undergo spinodal decomposition.

ln the case presented in Figure L5.b, however, decomposition May occur under

certain circumstances. The regio~ where decomposition occurs, is called metastable

region and the decomposition occurs by the nucleation and growth (NG) mechanism. The

boundary line between the unstable region and the metastable region is called the

spinodalline. The spinodai line is defined by the expression:

(1-8)

•
Figure l.6 shows a typical Gibbs free energy versus composition of an asymmetric

polymer mixture (A and B), that is, the molecular weight ofthe mixture's components are

different. The shape of the Gibbs free energy curve depends on temperature and

moiecular weights. When the free energy curve lies abave the critical value (the

9



• f

f (<I>~)

f (<1> JI)
(a)

fa.,u (<1> .~ )

f (<I>~)

•
f

f (t1>~)

(h)

~I,. <1>.4 cil!
.4

•

Figure 1.5 The Gibbs free energy, f, as a function ofcomposition of component~ cil,., for a

single-phase mixture (a solid curve) and two-phase mixture (a dotted line) where cI>~ and cIl~

are the two arbitrary concentrations of component A. (a) The free energy curve descnoing the
single-phase state lies above the straight line descnbing the free energy of the two-phase
mixture. Thus, a single-phase mixture is unstable against decomposition and this instability is
called spinodal instability. (b) The free energy curve for a single-phase mixture lies below the
straight line for the two-phase mixture. Therefore, a single-phase state is stable and spindoal
decomposition does not OCCUT•
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f (<1>;)
f (<I>~)

...............

f (<I>~J

f (<I>~)

•

•

<1>"
•

Figure 1.6 Typical Gibbs free energy versus composition diagram of an asymmetric polymer
mixture (A and B). The dotted curve represents the critical Gibbs free energy curve and the solid

curves represent the arbittary Gibbs free energy curves. Two spinodal points, (<Il:, f (<D~.. ))
and (cI>;, f (<Il: )), denoted by the blanked circles (0) are located at the inflection points of the

Gibbs free energy profile. Two binodal points, (<I>~, f(<t>~)) and (<t>~, f(<t>~ )), denoted by the
filled circles ( • ) are located where the straight tangent line touches the corresponding Gibbs free
energy curve.

critical Gibbs free energy curve is denoted by the dotted curve in Figure 1.6.), a

maximum point emerges. The spinodal points, (<1»:, f (<t>:)) and (<t>;, f (<1>: )),

characterized by Eq. (1-8) are located at the intlection points of the Gibbs free energy

profile. The two spinodal points are denoted by the bIanked circle (0) in Figure 1.6. The

lowest level of the straight lines describing the two-phase mixture can be represented by

the common tangent line of the free energy curve, which connects two points f (<1>~)
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and f (t1>~). Therefore~ the regions~ <1>: < <I>.r < <1>: and <D: < ct>.f < <n't, are metastable

regions because the mixture is unstable against the formation of a two-phase mixture but

the free energy curve is concave. However, ifthe free energy curve lies below the critical

value, the Gibbs free energy curve is concave everywhere. The curve lies below the two­

phase straight line, and the single-phase state bas less free energy than the !Wo-phase

state. In this case the mixture of two polymers is always stable against decomposition and

the system is entirely miscible. This condition is called the stable condition. The

boundary fine between the metastable region and the stable region is called the binodal

fine and is set up by two binodal points (cD~, f (<I>~)) and (<1>~, f (<I>~)). The binodal

points are located where the straight tangent line touches the corresponding Gibbs free

energy curve. The two binodal points are denoted by the filled circles (.) in Figure 1.6.

1.3 Phase Separation Methods

As mentioned in the previous sections, the phase separation method is widely used

to produce binary composite materials. In the phase separation method, phase separation

can he accomplished by a change in temperature and/or molecular weight ta transfer the

mixture from the one-phase (stable) region into the !Wo-phase (unstable or metastable)

region. When an initial single-phase mixture is transferred into the two-phase region by

thermal quenching, solvent evaporation or polymerization, one of the components phase

separates from the other components' phase and forms either dispersed droplets or

intercoIUlected cylinders. These methods are called thermal-induced phase separation

(TIPS), soIvent-induced phase separation (SIPS), and polymerization-induced phase

separation (PIFS), respectively [9, 10].

1.3.1 Thermal-induced Phase Separation (TIPS) method

In the TIPS process, a multi-component mixture is prepared at high temperature to

fonn a single-phase mixture. When the mixture is quenched to low temperature (the

12
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unstable or metastable region), one component solidifies and the other phase separates.

The phase diagram, temperature T versus concentration cD, for the TIFS process is

illustrated in Figure 1.7 (a). In Figure 1.7, the solid curves represent the binodal lines

while the dashed curves represent the spinodal Iines, where 1;, <1>0' cD c and NB are

initial temperature, the average concentratio~ the: critical concentration and the degree of

polymerization, respectively. The TIPS process is useful for thermoplastic polymers that

melt below their decomposition temperature [16]. Depending on the average

concentration ofthe components, two types ofphase separated structures can be obtained:

droplet-type structure in the off-critieal region (<1>0 * <1>c ) and the interconnected

structure in the critical region(cDo~ cDc). The droplet size in the ms process can be

controlled by the rate of coollng [9, 10]. For instance, rapid cooling leads to smaller

droplet sizes. The droplet size is also dependent on the rate of diffusio~ viseosity, and

chemical potential of the components. While the TIPS method is simple, the films formed

by the TIPS method are often unstable at high temperature and sensitive to the process

history [16].

1.3.2 Solvent-induced Phase Separation (SIPS) metbod

In the SIPS process, an organic solvent is used to solubilize the polymerie materials,

and rorm a single phase. When the solvent evaporates, one component phase separates

and disperses as droplets in a polymer matrix. This method is useful for thermoplastic

polymers that melt above the decomposition temperature ofthe thermoplastic [16].

1.3.3 Polymerization-induced Pbase Separation (pIPS) metbod

In the PIPS process, a single-phase mixture is initially prepared. Polymerization

induced through the application of hea4 ligh4 or radiation leads to the increase of the

length of polymer Molecules [16, 17]. When the single-phase mixture is thrust into the

unstable or metastable regio~ the solubility of polymer decreases and phase separation

occurs. The schematie representation for the PIPS process is shown in Figure 1.7 (b).

13
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Figure 1.7 Schematic representation of the phase separation methods: (a) the thermal-induced
phase separation (TIPS) method and (b) the polymerization-induced phase separation (pœS)
method. The solid curves represent the binodallines and the dashed curves denote the spinodal
lines where 1;, cD0' cDc' and NB are initial temperaturet the average concentratio~ the critical

concentration and the degree of polymerization of component B. The phase separation
phenomena take place when the initially prepared one-phase mixture transferred into the two.
phase region by quenching (a) or increasing the degree ofpolymerization (h).
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The PIPS method can be either photo-initiated [18-20] or thermal-initiated [ID].

Thiol-ene and acrylate chemistries are mostly applied for photo-polymerization process,

and epoxy chemistry is mostly used for thermal-initiatecl PIFS system. Photo-initiated

polymerization usually follows addition polymerization while thermal-initiated system

undergoes condensation polymerization or ring-opening polymerization [16]. Epoxy­

based PIPS method forms the highly crosslinked networles. These networks can cause

unstable long-term behavior of films because they reduce the mobility of unreacted

species and these species continue to react over time, changing the properties of the

materials [16]. Nevertheless, the PIFS method involved condensation-reaction

polymerization is one ofmajor class ofPOLe film production.

In the PIPS method, the droplet size can be controlled by the rate ofpolymerization,

the types of polymers used, and physical parameters such as viscosity, rate of diffusion,

and solubility of the polymer [9, 10]. The rate of polymerization is controlled by cure

temperature and the relative concentration of materials or by light intensity for

photochemical polymerization. As the rate of polymerization increases, the crosslinked

networks fonn earlier and the droplets, which are formed by mass diffusion, are not

allowed to grow larger.

1.4. Phase Separation Mechanisms

When the mixture is transferred from the one-phase (stable) region into the two­

phase (unstable or metastable) region, phase separation occurs.. Phase separation can be

accomplished by a change in temperature in the ms method or in molecular weights of

components in the pœs process.. The evolution of a two-phase structure, that arises

during phase separation, can be observed by several methods such as Iight microscopy or

scattering experiments.

An example of two temperature jumps from the homogeneous-phase region into the

two-phase region for a typical symmetric binary polymer mixture, that is NA = N. is

iIlustrated in Figure 1..8.. The arrow (a) indicates the temperature change into the

metastable region (nucleation and growth) while the arrow (h) jumps into the unstable
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region (spinodal decompositioo). In Figure 1.8, the solid curve denotes the binodalline

and the dotted curve represents the spinodalline, respectively. Depending 00 the location

in the two-phase regio~ phase separation occurs by spinodal decomposition (SO) or by

nucleatioo and growth (NG).

The most significant differences between nucleation and growth (NG) and spinodal

decomposition (SO) are the mechanism of decompositio~ caused by the different

character of the instability [1,15]. Even if a mixture is homogenous, concentrations are

not uniform on microscopie scales. There are always fluctuations about the average

concentration, et>.-l.o' and these fluctuations lead to a change in the Gibbs free energy.

Depending on the curvature, the Gibbs free energy can increase or decrease by the

concentration fluctuation. In the metastable region, characterized by ô 2f 1Ô <I> ~ >0 ,

the concentration fluctuation causes the increase in the Gibbs free energy and the

structure is stable with respect to spontaneous concentration fluctuation. Therefore, ND is

a non-active mechanism and sorne fonn of activation mechanisms such as nucleation is

necessary. On the other hand, in the unstable regio~ characterized by ô 2fi ô <I>~ < 0,

the fluctuation Iead to a decrease in the Gibbs free energy and the system is unstable even

T
(a) (b)

.....
'.......'.

so

•
Figure 1.8 Typical phase diagram ofa symmetric binary polymer mixture for the TIPS precess.
The arrow (a) indicates a temperature change from the homogeneous region into the metastable
region (nucleation and growth) and the arrow (b) represents a temperature jump into the unstable
region (spinodal decomposition) where the solid curve is binodalline and the dotted curve is
spinodalline.
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• for an infinitesimally small fluctuation. Phase separation takes place spontaneously and

continuously. SO is an active and irreversible mechani~ that is, once the phase

separation has occurred, the system cannat homogenize.

Figure 1.9 shows phase separation mechanism for nucleation and growth (top) and

spinodal decomposition (bottom) where (a-l) and (b-l) represent the early stage ofphase

separation while (a-2) and (b-2) represent the intermediate stage, and (a-3) and (b-3)

denote the late stage of phase separation. Ifa nucleus of composition <D~ is formed in

) 0 ~ )\ ~ Vi

•
cD. I•O

(a-l) (a-2) (a-3)

<D-..

(a)

cI> f.O

~----------------""""-"""-~-""""----4~:

(h)

1'-----------------........--+-......-~__tcE>~

(b-l) (b-2) (b-3)

•
Figure 1.9 Schematic representation ofphase separation mechanisms for nucleation and growth
(a), and spinodal decomposition (h) where cl> A.O denotes the average concentratio~ and <I>~, <I>~

represent the concentration in phase a and p in the early, (a-I) and (b-l), întermediate, (a-l)

and (b-l), and Iate, (a-3) and (b-3), stages, respectively. The arrows indicate the direction orthe
diffusion of the molecules. The diffusion coefficient is positive in nucleation and growth
mechanism, while it is negative in spinodaI decomposition.
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NG process (a-l), the composition ofthe matrix in the immediate vicinity ofthat nucleus

would be cf)~ through the phase separation process, (see (a-2) and (a-3». During phase

separation of NG, the composition of the minor component domains, that is nucleus,

remains constan~ and ooly size of the domains and its distribution change with time. On

the other hand, in SD, a multi-component system of composition <I> 04.0 with a

concentration fluctuation continuously decompose into two phases of composition <I>~

and et>~ . In this case, both the composition and size of the domains increase continuously

with time (see (b-l) and (b-2». At the late stage of SO, (b-3), the wavelength of the

oscillation is fixed by the scale of phase-separated structure, which has the minimization

condition of the free energy. The arrows in Figure 1.8 indicate the direction of diffusion

of the component A. The diffusion coefficient can be negative or positive depending on

the sign of the curvature Q 2f /Ô et>~. Therefore, as we can see, the molecules diffuse

from higher concentrations toward lower concentrations in NG, that is positive diffusion;

however, in SO, the diffusion coefficient is negative and abnormally Molecules diffuse

toward higher concentrations from lower concentration.

1.S Spinodal Decomposition Theories.

1.5.1 Cabn and BOOard Equation

The idea of the gradient contribution to the thermodynamic properties of materials

was tirst presented by Cahn and Hilliard [211. In systems with large spatial

inhomogeneity, the local density of thermodynamic functions, such as entropy, volume,

energy, etc., depends not ooly on the values of the intensive properties in the volume

element but aIso on their local gradients [22}. For a system undergoing spinodal

decomposition, the length scale of the concentration profile is of the order of IOnm or

shorter, thus the contnbution of its local gradients is not negligtble. The composition

fluctuations of this length scale which lead ta phase separation occur in spinodal

decomposition. Thus the C-H equation bas been widely used for phase separation process

18



• as weIl as pattern formation [23, 24]. According to the Cahn and Hilliard assumptio~ the

total free energy F can be expressed as the integral of the sum of a homogeneous

contribution [(<1> .• ) and a gradient contribution VCl>,f:

(1-9)

where K is a positive interfacial constant and ['"(Cl> .•) denotes the free energy of

homogeneous concentration. Eq. (1-9) can be obtained from the Taylor series expansion

ofa local free energy density, as follows:

where

Ifhigher arder tenns in Eq. (1-10) are neglecte~ the total free energy F ofthis volume

will be:•
and (1-11-a,b)

(1-12)

•

By assuming the surface gradients are zero, and applying the divergence theorem and

natura! boundary conditions [21], VCI> f • n=0, the second tenn in the right hand side in

Eq. (1-12) may be expressed as:

Thus, Eq. (1-12) can he simply written as:

(1-14)

where
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K=K. --­

1 d 4>
.f

(1-15)

The most important feature of Eq. (1-14), compared to the classical mass diffusion

equation, is the additional term which is proportional ta the square of the gradient of the

composition distribution, (V<b.cf .
In arder ta describe phase transition in binary systems, the model equation can be

derived from a continuum model [25,26]. [fwe cansider only pure diffusion, the net flux

J might he expressed as chemical patentials per unit volume of each component, Pc and

P. tas:

where Mis total mobility [27t 28] in the given system which depend on the volume

fractions cl> 1 and et> /1' General thermadynamic relation between the chemical potential

and the free energy which can he written as:

•

•

J = -MV(p. - p,,)

oF
P. - Pc = 84>

.c

Hence, Eq. (1-16) gives [25]:

oFJ=-MV--
ô<l>.c

By inserting Eq. (1-18) inta the continuity equation for a non-reacting mixture:

o<ll.c + V.J =0
dt

we can obtain the following equation:

ùcD.c =v·[4.!.L-~lcD ]]8t ôcD .f

"

20

(1-16)

(1-17)

(1-18)

(1-19)

(1-20)



•

•

Eq. (1-20) is the fourth-order non-linear partial differential equation that govems the

spatial and temporal evolution ofconcentration fluctuation in spinodal decomposition.

1.5.2 Flory-Huggins Theory

To describe the phase separation phenomena, an appropriate expression for the bulk

free energy density f in the nonlinear C-H equation, Eq. (1-20), has to be selected. The

most widely and successfully used theory in polymer studies is the Flory-Huggins (F-H)

theory [29, 30]. The Flory-Huggins treattnent represents the free energy density of

mixing, f, as a SUIn of two contributions [30]. The increase in the configurational

entropy associated with the increase of motion of aIl the polymer molecules during the

mixing process, and the change in the local interactions and motions of the monomers.

Combining these two contributions and assuming that the two polymer species have the

same volume v and they occupy the cells of a regular lattice [30], the F-H free energy

density ofmixing f can be expressed as:

(1-21)

where R is the gas constant, T is the absolute temperature, Z is the temperature­

dependent Flory's interaction parameter, k. is Boltzmann constant, v is the volume of

each polymer species, and ne is the moIar volume of the reference unit, Le. the molar

volume ofeach polymer species given by:

n. =(~) (1-22)

•
where V is the total volume of the system. Additionally, we assume that the volume

change of mixing is negligible. Note that, for ctl A -+ 0 and ctl. -+ 0 , the local free energy

term in Eq. (1-21), Z <l>.~(Ï)., must vanish. MisClbility between two polymers occurs when
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z bas negative values, but the two polymers are incompatible with each other when Z is

positive. The interaction parameter Z can he expressed as the addition of two

contributions, an entropie part Zs and an enthaipy part Z H [31]:

Since, in most polymer mixtures the entropie part Zs is positive due to very small

combination of entropy of mixing, the compatibility of two polymers is determined by

the enthalpy term. However, endothermal conditions are dominant in polymers and the

great majority of polymer mixtures are immiscible [32]. Only when special local

interactions exiS! between A and B monomers, miscibility is possible.

1.6 Previons Works and Motivation of Present Thesis

The polymerization-indueed phase separation (PIFS) method, coupled phase

separation and polymerization, has been modeled using the time dependent nonlinear

Cahn-Hilliard theory, the Flory-Huggins (F-H) theory for phase separatio~ and a reaction

kinetic equation for polymerization, in the previous studies [33-35]. It has been found that

the combination of diffusion and reaction mechanisms determines the length seale of the

phase separation patterns, and the phase-separated morphology can he controlled by the

rate of diffùsion and polymerization. However, relatively few stlldies have been

completed on the PIFS method because it is a more complicated process than the classical

thermal-induced phase separation (TIPS) method. Many numerical stlldies have been

performed assuming that the mobility of a polymer and its interfacial parameter are

constants with an attempt to simplify the problems [36-41] and only a few stlldies have

been performed with a molecular weight and concentration dependent mobility [42, 43].

Therefore, the classical model equations descnDing the PIPS process are not realistic

since the expressions for the mobility used in the previous studies are înaccurate. In

addition, computational divergence problem occurs in the classical numerical studies for

highly asymmetric polymer systems, and the attempts have failed in descoDing

22



•

•

•

practically important process, such as a monomer polymerizing in the presence of a

polymer.

1.7 Thesis Objectives

The objectives of the present thesis are as follows:

1. To formulate, solve and validate a mathematical model that describes the

polymerization-induced phase separation method, suitable for the widely

commercialized polymer blend material process, that is, a monomer B polymerizing

in the presence ofa polymer A.

2. To develop an appropriate expression for mobility that depends both on the molecular

weight ofcomponents and their local concentration.

3. Ta farmulate, solve and validate a mathematical model that describes the

polymerization-induced phase separation process under a temperature gradient.

4. Ta develop a characterization method of the state of mixing and the phase-separated

morphologies.

1.8 Methodology

In this thesis, the computational simulation of polymerization-induced phase separation

has heen carried out using the following procedure:

L Specify the independent variables (time and space dimensions) and dependent

variables of the model. The dependent variables are initial concentration of

component A and the degree of polymerization of component B. To do this, it is
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necessary to calculate phase di8grams numerical1y using the Flory-Huggins equation

for our particular conditions.

2. Derive the appropriate expression for mobility that depends on the molecular weight

of components and their local concentration to reflect the diffusion behavior of

polymer molecules with increasing the molecular weight and changing their local

concentration in the PIPS process.

3. Derive the governing time-dependent partial differential equations ta describe the

PIPS process using the expression of mobility derived in step 2 and the conditions

specified in step 1. The Cahn-Hilliard and Flory-Huggins theories are used for phase

separation and the first-order kinetic reaction equation is used for polymerization.

4. Derive the appropriate boundary and initial conditions ta solve the goveming

equation developed in step2. The zero mass flux and natura! boundary conditions, and

the randomly generated initial conditions are used to reflect the infinitesimal thermal

concentration fluctuations initially presented.

5. Nondimensionalize the goveming equations and boundary conditions obtained in step

3 and 4 to obtain the dimensionless parameters.

6. Develop a computation program using the Galerkin tinite element method with

Hermitian bicubic basis functions to solve the dimensionless goveming equation and

boundary conditions obtained in step 4.

7. Solve the computation program obtained m step 6 using the appropriate

dimension1ess parameter values.

8. Analyze the computer simulation output. The primary outputs are concentration of

component A and the degree of polymerization of component B. The secondary

outputs are the results from calculation of the extent of phase separation for the

dynamicaI analysis, and caIculation of the intensity and scale ofphase separation, the
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dimensionless average droplet diameter, and the shape factor for the morphological

analysis.

9. Derive the governing time-dependent partial differential equations to describe the

PIPS process under a temperature gradient using the expression ofmobility derived in

step 2 and the conditions specified in step 1. The Cahn-Hilliard and Flory-Huggins

theories are used for phase separation and the first-order kinetic reaction equation is

used for polymerization. The space dimension, the diffusion coefficient, the reaction

rate constant and the Flory-Huggins interaction parameter are dependent on

temperature in the part of the thesis. The temperature dependent reaction rate

constant is obtained using the chemical Arrhenius equation.

10. Follow step 4, 5, 6, 7, and 8 ta solve the goveming equation derived in step 9.

Il. Finally, validate the simulation results with published data.

The computational modeling procedure based on our objectives and methodology is

given in Figure 1.10, in a compact flow-chart format. As shown in Figure 1.10, the

primary step in the numerical study is to propose objectives. As a secondary step, a model

is developed and implemented based on these objectives, existing theories, and

experimental data. The model is then solved using the appropriate computational

methods. Lastly, the numerical results obtained from the simulations are characterized

such that they can he validated with existing experimental data.

1.9 Thesis Organization

The thesis organization is as follows:

Chapter 1 presented a general introduction and a background of this thesis, including an

industrial and academic motivatio~ the nature and methods of the phase separation

phenomena, and the thesis objective and organization.
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Figure 1.10 Computational modeling procedures based on our objectives and methodology
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Chapter 2 presents the mathematical model equation that descnoes the polymerization­

induced phase separation, ranging trom the low molecular weight regime to the high

molecular weight regime. The model is composed of the nonlinear Cahn-Hiliard and

Flory-Huggins theories for spinodal decomposition and the first-order kinetic reaction

equation for polymerization. A rigorous expression for mobility in the Cahn-Hilliard

theory is also derived in this chapter.

Cbapter 3 presents results from computational simulation of polymerization-induced

phase separation. Numerical results that descnoe the time dependent morphological

evolution of concentration fluctuations in spinodal decomposition are characterized and

discussed dynamically and morphologicallYt performing an extensive dimensionless

parametric study.

Cbapter 4 presents results from numerical simulation of polymerization-induced phase

separation under a temperature gradient field. Numerical results that show the spatially

inhomogeneous phase-separated structure are elucidated to design and tailor the

morphology with desirable properties for high performance.
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• Chapter2

Governing Equations for Polymerization-induced

Phase Separation

Summary

•

•

When a monomer (component B) polymerizes in the presence of another polymer

(component A), the initial one-phase mixture phase-separates via spinodal

decomposition. The model equations based on the Cahn-Hilliard theory and the Flory­

Huggins theory are developed ta describe this polymerization-induced phase separation

(PIFS) process. The theoretical models derived in this study can caver the range from the

polymer's low molecular weight regime to the highly entangled molecularweight regime,

using the different diffusion theories. The expression for the mobility is also developed,

that is dependent on the molecular weight ofcomponents and their local concentration.

2.1 Introduction

Phase separation is a common technique for producing multi-component composite

materials such as thermoset 1 therm.oplastic blends, porous polymer membranes and

polymer dispersed liquid crystal (pOLe) films [5-10]. As a result, phase separation in

general and spinodal decomposition (SO) in particular have been active areas ofmateria!

science research. A great number of experimental [5-10, 44-47] and theoretical [33-38,

42-43, 48-51} studies on SO have been performed intensively during the past two

decades. The majority of these works bas been performed onder thermodynamic

equiborium conditions, but recently a few studies has been performed on the phase
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behavior under extemal fields such as shear tlow [52-54] or electric fields [55, 56].

However, relatively few studies have been completed on the polymerization-induced

phase separation (pIPS) method [33-35, 50] because it is a more complicated process than

the thermal-induce phase separation (TIFS) method, although the PIFS process has Many

advantages over other phase separation techniques.

The variable properties of polymer mixtures are caused by their morphology or

phase separated structure. For instance, the properties ofPOLe films, snch as scattering,

refiection, solar energy transmissio~ and the switching response time, are determined by

the droplet size, orientation, distributio~ etc [9, 10]. The toughness of high impact

polystyrene (HIPS) can he increased with decreasing droplet size. In the PIFS process, it

has been shown that the resulting morphology can be controlled by changing cure

temperature, polymerization rate or concentration [9, 10]. To obtain desired material

properties, solidification ofphases such as gelation can also be used [33, 34].

The phase separation phenomena combined with polymerization has been modeled

using the tinte dependent Cahn-Hilliard (C-H) theory and the Flory-Huggins (F-H) theory

for phase separation, and the reaction kinetic equation for polymerization. Glotzer et al

[35] solved the nonlinear Cahn and Hilliard equation with coupled diffusion and chemical

reaction. They round that the combination of diffusion and reaction mechanisms

determines the length scale of the phase-separated pattern. However, they used the

soIvent and solute system, thus the mobility (see Eqs. (2-16) and (2-17)) was constant.

Lin and Taylor [50] stlldied theoretically the PIPS method to understand the effects of

temperature, polymerization rate and concentration on the resulting draplet size and

uniformity. They simulated the morphological evolution by evaluating the energy

difference between a randomly selected site and one of its neighbors, and exchanging

their occupancies if the energy difference is negative. Chan and Rey [33, 34] solved the

nonlinear fourth-order C-H equation to study the effects of diffusion coefficient and

polymerization rate on the phase separated morphology in the PIPS process. However,

they stlldied only polymer solutions. In addition they used the concentration independent

mobility, thus their equation diverges when the concentration approaches unity for an

asymmetric polymer solution system. Shaginyan and Manevich [57] studied the initial

stage of the PIPS process of a multi.component blend. The degree ofpolymerization of
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the second component N. is determined by the time dependent reaction conversion factor

in their study. However, the molecular weight effect on the mobility was not considered

in their study. It is known that the mobility is highly dependent on the moiecular weight

of component and their local concentration as suggested by severa! authors [42, 43].

Consequently, the classical model equations descnbing the PIPS process are not realistic

since the expressions for the mobility used in previons works are inaccurate. The

objective of this chapter is to develop a generally valid model and an accurate expression

for the mobility

In this chapter, two goveming equations are developed to descnoe the PIPS process

taking ioto account the concentration and molecular weight dependence of the mobility.

The mobility is formulated to reflect the effect of the polymer chain length growth due to

reaction by using the Rouse theory in the non.entanglement regime [58] and the de

Gennes' reptation theory in the entanglement regime [59, 60]. Non-periodic boundary

conditions and zero mass flux boundary conditions are used to solve the governing

equations [33,34,48,49].

2.2 Theory of the Governing Equations

2.2.1 Tbeory of SpinodaI Decomposition

This section briefly summarizes the theoretical background and spinodal

decomposition (SO) equations presented in Chapter 1. Phase separation via sn can be

induced by thermal quenching, solvent evaporation or polymerization, namely the

thennal-induced phase separation (TIPS), solvent-induced phase separation (SIPS) and

polymerization-induced phase separation (pIPS), respectively [9, 10]. In the PIPS

method, as the moiecular weight ofcomponent increases due to polymerization reaction,

the phase diagram shifts toward bigher temperature and concentration. When the

homogeneous initial system located in the stable region above the binodal line passes

over the spinodalline, it is thrust into the unstable region and phase separation occurs.
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• The Cahn and Hilliard (C-H) theory [21] is MOst widely used theory for phase

separation via SO [23] because it takes into account the contribution of the local

gradients. According to C-H's assumption, the total free energy F can be expressed as

the integral of the sum of two contributions; homogenous contribution I(<f)~) and

gradient contribution V<I>~ as follows:

(2-1)

•

•

where K is a positive interfacial constant, cr>~ is the volume fraction of polymer A, and

V is the total volume 0 f the system. For binary mixture, cr>.f=1 - <I> B , where <DB is the

volume fraction of polymer B. Eq. (2-1) has been obtained from the Taylor series

expansion with the natura! boundary conditions, V~ ...·ii=O. By using a continuum model

equation [25, 26] and expressing the net flux J with chemical potentials, the following

forth-order partial differential equation can be obtained:

(2-2)

where M is concentration and molecular weight dependent mobility, t is time, and N~

and NB are the degree ofpolymerization ofpolymers A and B, respectively.

An appropriate expression for the buIk fiee energy density has to be seIected to

solve the nonlinear C-H equation, Eq. (2-2), and the MOst widely and successfully used

theory is the Flory-Huggins (F-H) theory [29, 30]. The F-H free energy ofmixing f is

expressed as:

(2-3)

where R is the gas constant, T is the absolute temperature, ne is the molar volume ofthe

reference unit, z is temperature dependent interaction parameter, k, is Boltzmann
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• COnstan4 and v is the volume ofthe reference unit In Eq. (2··.), the first two terms inside

parenthesis represent the contribution of the configurational entropy and the last term

represents the contribution of the enthalpy of mixing. The interaction parameter Z is a

function oftemperature and can be written as [31]:

where 'II is the dimensionless entropy and e is the theta temperature detined by:

l
'1' ='2- .1's

e= ZHT

1/2 - .1's

where .1'H and Zs are the enthaipy and entropy contribution to Z, respectively.

(2-4)

(2-5)

(2-6)

1

•

2.2.2 Molecular Weight and Concentration Oependence of Mobility and

Interracial Parameter.

In the PIPS metho~ the polymer molecular weight constantly increases during the

polymerization process, and the local concentration continuously changes due to phase

separation. The mobility M and interfacial parameter IL are dependent on bath the

polymer molecular chain length and local concentration. Many numerical studies,

however, have been performed assuming that M and IL are constants with an attempt to

simplify the problems [36-411 and ooly a few studies have been performed with a

molecular weight and concentration dependent mobility [42, 43]. The interfacial

parameter IL can be assumed ta be concentration independent in the absence of any

accurate information about its behavior; however, M is known to be highly sensitive ta

concentration changes [43].

The molecular chain lengths and local concentration dependence orthe mobility can

be captured trom its relation with the self-diffusion coefficient [61-63] as:
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• D =M tJlf
... .f tJ <Ill

.f

(2-7-a)

(2-7-b)

where D.4 and DB are the self-diffusion coefficients of polymer segments and f is the

free energy of mixing. In Eqs. (2-7-a) and (2-7-b), an expression of tJ%! 1tJ<Il% can be

formed using the Flory-Huggins theory when we neglect any interactions between

polymer chains [59], as foLlows:

(2-8-a)

•
(2-8-b)

Substituting tJ %f 1tJ 4>% in Eqs. (2-7-a) and (2-7-b) with Eqs. (2-8-a) and (2-8-b), we

obtain the following expressions of the mobility ofpolymer segments:

M = D.
, k,T( l 1)

-;- N.•4> .• + N,et>.

The total mobility can be obtained by simply adding up M.;l and M;l as:

ft,{= M...M.
Mf+M.

(2-9-a)

(2-9-b)

(2-10)

•
This mixing rule has been used for deriving the total mobility in the system by de Gennes

[59]. Thus, we find that the total mobility can he expressed by inserting Eqs. (2-9-a) and

(2-9-b) into Eq. (2-10) as:
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• M D"D,N.•N/1}}f),

(k:T){D. +D,)(N,cIIA +N,cil,)
(2-11)

H. Zhang et. al [42] arrived at a similar result for the mobility.

AIl diffusion phenomena of polymers are nearly proportional to either N- l or N~l ,

depending on their molecular weight. Published data shows that in the low molecuIar

weight regime, N < N~, where the materia! dependent Ne is the critical degree of

polymerization, diffusion of polymer exhibits an N-t dependence as expected from the

Rouse prediction [58]. The diffusion coefficient based on the Rouse theory is written as:

D=k.T
NÇ'

N<Nc (2-12)

•
where ç is a friction coefficient characteristic of the interaction of a bead with its

surrounding (Rouse model represents the polymer chain as a linear series of beads

connected by springs).

On the other band, in the high molecular weight regime, N> Nt' diffusion of

polymers would depend on the inverse square of the molecular weight since polymer

properties such as diffusion coefficient or viscosity are affected by entanglements. The

reptation model represents the behavior of the highly entangled polymers and the

diffusion coefficient May be written as [59,60,64]:

N>Ne (2-13)

•

where Rf is the radius of gyratio~ Lt is the tube length (the reptation model imagines

that the motion of the polymer chain is confined in a tube-like region), a is the step

length of primitive chain and b is bond length, respectively. It is convenient to express

Eq. (2-13) in terms of molecular weight instead of the coefficients a and b. Ta do this,

we can use the relation between a and b as [60]:

(2-14)
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• where M. is the molecular weight between entanglement and M p is the molecular

weight ofa polymer, respectively. Sïnce M =M.N and M,lM. =N, where M. denotes

the molecular weight of each monomer and N, represents the molecular chain length

between entanglements, we can obtain the diffusion coefficient in the high molecular

weight region by inserting Eq. (2-14) into Eq. (2-13) as:

D=(~J(k.TNIt)
15 ÇNl '

(2-15)

•

The crossover in D from the Rouse theory to the reptation theory occurs at the

critical polymer chain len~ Nt:. It is known that Ne =lN,. The value of Ne is materia!

dependent and in the range of 30s Nt: S 120 for typical thermoplastic and thennoset

polymers. The diffusion of polymer chains starts to deviate slightly from Rouse behavior

where N ~30 [65].

Substituting the diffusion coefficients in Eq. (2-11) with Eq. (2-12), one finds that

the mobility for the low molecular weight system 1S given by:

M = vN.,N,<D ~et», ,
~N.f + NIIXN.ICI>~ + N,<E>,)

N<Ne (2-16)

while for the high molecular weight regio~ the mobility M is found by inserting Eq. (2..

15) into Eq. (2-11) to give:

M = 4vN"N,4N.4> ,,<D,
15~N.~ + N;)(N.•<D .• + N,cD,) ,

(2..17)

•

Note that ç can be assumed to be the same for A and B segments [66].

For polymer solution, Chan [24] derived an expression for the IL parameter that is a

function of the radius of gyration. They used de Gennes' [59] derivation that is

appropriate for symmetric polymer blends, assuming that the effective interaction length

between the Molecules l, is same with the radius ofgyration:

(2-18)
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• The radius of gyration RI of a nonlinear polymer can be written in terms of polymer

chain length ofcomponent i as [24]:

(2-19)

where g is the ratio of the square radius of gyration of a branched Molecule to that of a

linear one of the same molecular weight, and is less than unity, n.. is the number of

monomers~and lOi is length ofeach monomer, respectively~

In order to obtain an appropriate expression of Ir for the mixed two components

system~ we can use the random phase approximation [67~ 68]~ Assuming n. and lOI for

each component A and B are identical, we arrive at [33, 34]:

•
where

kT
K. =-'-Yarn

a 12v A,O... •

(2-20)

(2-21)

•

Note that in Eq. (2..20), we neglect any concentration dependence of K, because K can he

assumed to he constant as mentioned earlier. On the other hand, K is proportional to the

polymer chain lengths in Eq. (2-20). As the polymer chain grows~ the interaction between

the molecules increases. As shawn below, Eq. (2-16), (N<Nc )' and Eq~ (2-17) (N)Nc )'

are used for M, and Eq. (2-20) is used for Je in Eq. (2-2) to derive the governing

equation, respectively.

2.2.3 Polymerization Kinetics and Molecular Weight Distnbutions in Nonlinear

PolymerizatioD

In the PIPS method, the phase diagram continuously changes as moiecular weight

increases during polymerization~ The rate ofmolecular weight increase is governed by its

polymerization kinetics. The rate of polymerization also affects the morphology of

mixtures such as droplet size [9, 10]. In addition, if the monomers are multi-functional~
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• polymerization leads to the formation of branched polymers and tbree-dimensional

network. In this study, we assumed that a monomer B undergoes the self-condensation

polymerization in the presence of a non-reactive polymer A, and it is assumed that

monomer B has three functional groups, Bl .

The kinetic rate equation for bimoiecular ofa single reactant is expressed as [69]:

dp ( )2-=k I-p
dt 1

(2-22)

where p is the extent of reaction, t is time and kt is the rate constant. Using the initial

condition p(t = 0) = 0, the solution ta Eq. (2-22) is:

(2-23)

•
The expressions for the number average X. and the weight average X., molecular

sizes in tenns of functionality have been derived by Stockmayer [70-72] for predicting

the extent 0 f reaction at the gel point. These expressions are obtained by assuming that

the reactivity of aIl functional groups is the same and that there are no intramolecular

reactions between functional groups [70-72], and are given by:

1
X,,-:----

1 - a y /2

1 + a
X .=--0:-----:'-

1- (r - 1) a

(2-24-a)

(2-24-b)

•

where r is the functionality of the monomer and a is the branching coefficient, defined

as the probability that a given functional group of a branch unit leads ta another branch

unit [55]. Sïnce the extent ofreaction p at time t is given by the ratio of the number of

functional groups that have reacted ta the number of fimctional groups presented initially,

for the single reactant syste~ a is equal to p. The gelation for a reactant of

functionality y can occor when at least one of the (y - 1) chain segments connect its
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• branch unit to another branch unit. Thus, the critical branching coefficient can be defined

as [73]:

l
a =-­

C r - 1
(2-25)

Eq. (2-25) is valid only for r > 2, and when r = 3, ac = 05. Because X. is infinite

while x. has a finite value of 4, at the critical point (ac = 05), X .. better reflects the

molecular weight growth of multi·functional units [33, 34]. By assuming N, can be

represented with X.. and combining Eq. (2-23) and Eq. (2-24-b), we can obtain for N,

as:

N l + 2ktl

B l + 2kt l - r ktt
(2-26)

•
This value of N! is used to determine the free energy function [ in Eq. (2-3) and the

mobility }d in Eq. (2-2). Hence, the Gibbs free energy [(t) and the mobility M(t) are

now time dependent functions.

2.3 Formulation of the Governing Equations of Polymerization-induced

Phase Separation.

We assume that the initial system is located in the one-phase region and it is a

homogenous-phase mixture consisting oftwo components, a polymer A with chain length

N.
f

and a monomer B (Nil = 1) that has three functional groups. The condensation

polymerization in the system induces the growth of N. and leads to the formation of a

branched polymer B. It is aIso assumed that only one constituent B undergoes

polymerization, and a polymer A does not participate in this reaction and its molecular

weight remains constant (N,. =100). As N. increases due to polymerization, the phase

• diagram changes continuously and shifts toward higher temperature and concentration
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•

•

(see Figure 1.7 (h». As a resul~ the curing point is thmst into the unstable regio~ hence

spinodal decomposition takes place during the polymerization process. Even though the

system might pass through a metastable region before it reaches the unstable region, the

phase separation phenomenon can be considered strictly as spinodal decomposition.

Nucleation and growth (NG) can be skipped because of the fact that NG is a very slow

and stochastic process [74].

2.3.1 Model Equation for the Non-Entanglement Region (N < N~)

The model of spinodal decomposition is govemed by the nonlinear Cahn-Hilliard

theory given by Eq. (2-2). The time variation of the volume fraction field of polymer

component ~ ~ •(:c,y.t) in terms orthe Flory-Huggins free energy function is given by:

ûcP,(x,y,t) =1M(4) N N )-1 17 f(~.f) 2&14»] (2-27)
è t ,f' ,f " 0<1>'

.f

where M is mobility given by Eq. (2-16) and Eq. (2-17) for two different molecular

weight regime. Combining Eq. (2-27) with the F-H theory, Eq. (2-3), gives:

tJ cl> .(.t,y,/) JM(<r> N N)- J k.T[ln<l>,. + 1
ô t ~l .'. t • Y l v Nf N..

+ Z (1- 24> ,f )] - 2&1<1> .• )]

1n(1-cI>J
N, N,

(2-28)

For the low molecular weight regime (N < N,J, or non~tanglement region, by

inserting the mobility M given in Eq. (2-16) into Eq. (2-28) and performing the

functional derivative, Eq. (2-28) is rewritten as:

•
k,T [-N,(N.f<l>A +N.(l-~..))-N,(NA -N,)(I-cI>..)

ç(N.• + N,) (N..cI>,f + N,(l-cI> ..)y
N..(N..cI>.f + N,(l-<I>..})-NJNA -N.}cI>..

• 1(N.cI> A + N,(l-~ .. ))
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•

•

•

-2XN,N.tN,lI1, + N.(I-lI1.)Xl - 2l11,)-N,N:(N, - N.)lI1,(I-lI1J]
(N..~ .• + N,(l-~ .• ))

(
Ô<D.t û<D.. Ô~ .• o et» .. ) k,T [ N,(l-et»..)
rJx ox + tJy oy + r;(N.. +N,) N..~ .. +N.(I-~ .• )

. N.•<D.. 2 N.•NII4> .•(l-~ .. ) J8 2
<1> .. Ô 2<1> .. )

T Z --+--
N.,cf).t +NII(l-<t>..) N}t>.t +N,(I-tb.. ) Ô Xl Ô yI

2Kv N.. Nil (N..4J .. +N,(I-4> .. )XI-2C1l .• )-N,.NII(N.. -N,)<t>.• (l-<D,.)
~N. +N.) (N,.et» .• +NJ(l-et»,.)Y

(
OJ<t> .• ûcD.t ûJet».f 04>.f ol4> of ô<D.f Ôl~. 04> A)
----+ + +----
é' :cl Ô X Ô :CO yI 8 X 0 :clÔ y Ô y il yl rJ y

For convenience, it is assumed that the degree of polymerization N.• and N, are always

monodisperse and Flory's interaction parameter Z given in Eq. (2-4) is temperature

dependent only. The system will he restricted to a two-dimensional square oflength L in

this study.

Eq. (2-29) can be written in dimensioniess form by suitable rescaling. The

following dimensionless variables are used: x- = xl L, y- =yI L , r- =rIe t

c- =2KoVC / L4Ç, and D- = ks8L2 /2vILo• Therefore, Eq. (2-29) can be rewritten as:

èll1',(x,y,r) = D'T' [-N.(N. t 4>·. +N,(l-<Il:))-NII(N.. -N.Xl-4>~.)
tJ( (N. +N.) (N.•et»: +NII(I-et»:)Y

N. (N.• <Il ~t + N. (1- tb:)) - N .. (N.t - N.)4>:
+ (2-30)

(lV,.4>: + N.(l-tb:))l

-2 N.• N,(N.c1l~. +N,(I-4>:)Xl - 2ct>:)-N..N.(N.. -N,)<t>:(l-<t>:)]
z (N}~: + N,(l-et»:)Y

( rJ<t>~f Ô<l>~f + ôet»: d<t>~f) + D·r [ N,(l-4>:)
t7:c" 8:c" 8 y" 8 y. (NA + N,) N..<J>: +N,(l-4>~f)

40



•

•

N.tiV.( N.t4>~t + N.(I- 4>:)X1- 24>:) - NAN. (NA - N. )4>:(1-4>:)
(N.t<D~t + N.(I-<D~t)):

where the superscripted asterisks denote dimensionless variables.

2.3..2 Model Equation for the Entanglement Region (N > Ne )

The physical properties of a polymer such as viscosity, modulus and diffusion

coefficient dramatically change when its molecular weight exceeds a certain critical

value, N~. This change is due to the entanglement effect of polymer Molecules. The

goveming equation for high molecular weight region can be obtained by inserting Eq. (2­

17) into Eq. (2-28), reflecting the entanglement effect. After performing functional

d · . E (' '8)· .envatlve, q. _-_ gIves.

Ol

•

(N'f~A+N.(l-<DA))

_2zN,N,(N,4J, + N,(I-4J.)X1- 24JA) - NA~,(NA -N.)4JA(I-4JA)]
(N~cD A +N.(I-<DJ)

(
ècD.tù<D.t+ù<D.. ôetlA1+ 4k.TN~ [ N,(l-<l>.. )
OX O:C ôy ay) IS ~N~+N;) N.t«),c+N.(l-«) .. )

+ N..<D.t 2Z N..N,<DA{l-<D.. ) IÔ1
<D .. + gl<D..1

N..etl.t+N.(l-etl .. ) N..cD.. +N.(l-<D-i) axl ôyl)
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•

8X.l!N. NAN, (N.•4> A + N.(l-cD..)Xl- 2<DA)- N..N,(N.• - N,)<I> .. (l-ct>J
15 ç(N~ +N;) (N.• cD .• +N.(l-cD .. )f

Using the same scaling variables used in Eq. (2-30), we can rewrite Eq. (2-31) as:

êet>~,(:c,y,l) 4 DOT·N~ [-N,(N..<D
O
•+N,(l-<D:))-N.(N. -N,)(l-cD:)

tJ ( 15 (N~ + N;) (N.•cD: + N,(l-cD:)Y

N.(N.•~·. +N,(l-~:))-N .• (NA -N.)<I>~.
+ (2-32)

(N,~~. + N,(1_<I>~,))2

_, N,N.(N.~: +N.(1-~:)Xl-2~:)-N.N.(N, -N.W.(l-~ ..)]
-z ( . ( 0))2

N,~ 1 +N. 1-<1>.,

4 N~(N. +N,) N,N,(N.~: +N,(1-<D:)XI-2<t>~.)-N.cN,(N .. -N,)cD:(l-<D°,)
15 (N.~ + N;) (N..~: +N.(l-cD:)Y

To detennine the crossover point from the non-entanglement regime to the

entanglement regime, the values of N. for typical thermoset polymers are given as

follows: N.(PMMA) == 100, N,,(PSF: altemating copolymer of Bisphenol A and

• dichlorodiphenyl sulfone) == 20 [75]. RecaIl that Ne ::2N". Because Ne is a material
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, dependent value, the crossover point from the non-entanglement regime (Eq. 2-30) ta the

entanglement regime (Eq. 2.32) would vary depending on the materials used. In this

study, it is assumed that Nc.A >100 and Nc.B =31.5. Since component A does not

participate in the reaction, remaining constant molecular weight (NA = 100), the model

equation govemed by Rouse theory (Eq. (2-30» is used from (= 0 ta t·(NB =31.5) and

it is switched to the equation govemed by reptation theory (Eq. (2-32» for f >

( NB =31.5).

The value of NB in Eqs. (2-30) and (2-32) is determined by Eq. (2-26) to describe

polymerization process. Eq. (2-26) aIso can be written in dimensionless form as:

(2-33)

•
where K- is the dimensionless reaction rate constant defined by:

(2-34)

Ut Eq. (2-33), if l- = 0, NB = 1~ and if le ~ ctJ ~ NB ~ <Xl and gelation occW'S

2.3.3 Initial and Boundary Conditions

To solve the goveming dimension1ess equations given in Eq. (2-30) and Eq. (2-32),

four boundary conditions and one initial condition for each equation are required. A set of

natural boundary conditions can be used for solution of Eq. (2-30) and Eq. (2-32) wmch

is written as:

(2-35)

•
where ii is the outward unit normal vector to a bounding surface. Therefore, the fust set

ofdimensionless boundary equations are given by:
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1 ocE>: =0
ox·

at t" >0, and x· =0 and x· =1

at t" > 0, and y" = 0 and y. =1

(2-36-a)

(2-36-b)

The other set ofboundary conditions can be obtained by the fact that there is no mass flux

with the surroundings [49]. By setting the mass flux J to zero, Elliott and Songmu [76]

derived the zero mass flux boundary conditions as:

(2-37)

Thus, the second set ofdimension1ess boundary conditions are written as [49]:

•
at t" > 0, and x" =0 and x" =1 (2-38-a)

at (>0, and y. =0 and y" =1 (2-38-b)

The infinitesimal concentration deviations from the average concentration are

always present initially even in the homogeneous one-phase mixture. These deviations

are called homophase thennal concentration fluctuations. The infinitesimal thermal

concentration fluctuations must be reflected in the initial condition as:

(2-39)

•

where ~~f.O is the average concentration. Chan et al [33, 34, 49] used a linearization

approximation to describe the thermal concentration fluctuations t5 <D~, by retaining only

linear terms in their equation. Then they decomposed the free energy function ioto its

Fourier components and applied the equipartition theorem. This approximation is

plaustDle because the homophase concentration fluctuations in the very early stages ofthe

phase separation are infinitesimal. Thus, their approximation and expression for tY cI>:

are employed to describe the thermal concentration fluctuation in this study.
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•

In summary, from t- =0 ta ( = r;(NB = 31.5), Eqs. (2-30) and (2-33) are

solved with four sets of boundary conditions given in Eqs. (2-36-a), (2-36-b), (2-38-a)

and (2-38-b), and an initial condition given in Eq. (2-39). At t- > t;, Eqs. (2-32) and (2-

33) are solved with the same boundary conditions used for c- < t;. In additio~ the

solutions of Eq. (2-30) at t;(NB = 31.5) are used as the initial condition for Eq. (2-32).

The dependent variables are <t>: and NB' and the independent variables are .t-, y-and

c-. While there is an analytical solution ta the equation descnbing the polymerization

process (Eq. (2-33», there is none for phase separation process (Eqs. (2-30) and (2-32».

Thus, Eqs. (2-30) and (2-32) with their auxiliary conditions must be solved numerically

to obtain the solution vector for <t>~ ''t., y-, t·). The parameters are the dimensionless

diffusion coefficient D·, the dimensionless rate constant K-, the dimensionless initial

average concentration q>:.0' the dimensionless temperature r-, and the Flory-Huggins

interaction parameter z. The temperature dependence of Z is given in Eq. (2-4).

2.4 Methods of Solution

2.4.1 Galerkin Finite Elements Method and Hermidan Basis Functions

The Galerkin finite elements oethod (GFEM) has been widely used for solving

problems govemed by ordinary differential equations, partial differential equations and

integral equations in many applications [77, 78]. When we suppose that the given

ditTerential equation with appropriate initial condition and boundary conditions for two

dimensional problem is expressed as:

then, an approximate solution u. can be assumed to be written as:

•
L(u)=O as:csb, aSySb (2-40)
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• .'1

Ua(X~Ytt) =rUj(t){D'(x~y)
J-a

(2-41)

where fil 's are known analytic functions, called global trial and test functions, and u
j
~s

are time dependent unknown coefficients. Replacing U in Eq. (2-40) with Ua in Eq. (2­

41), we can obtain the following expression:

where R is the residual. An approximate solution Ua is assumed to be represented in a

piecewise approximate function, 50 that if this piecewise approximation is correctIy

constructed, then it will approach the corresponding exact solution u. In other words, the

aim of method of residual is to force R ta zero and consequently ta make an approximate

solution Ua approach the exact solution. To do this, we need ta set the inner product of

the residual R and an independent weight function w, equal ta zero:

• ~ = fIR w,(:c,y)dA= ffL(u.) w.(x,y)dA=O

(2-42)

(2-43)

In the Gakerkin method, the weight function w, is chosen from the same family of

function in Eq. (2-41), hence, Eq. (2-43) can be rewritten as:

~ =ffR(p'(:c,y)dA = ffL(u.) {I)'(x,y)dA =0
A

(2-44)

•

where i, j = l;l,...N. We can note that Eq. (2-44) can be expressed as a set of N

differential equations to be solved for the unknown coefficients Ua when we use the

Gaussian integration. Consequently, Eq. (2-40) has been reduced to a set of ordinary

differential equations (2-44).

In this study, the given differential equation L(u.) is the fourth-order two-

dimensional partial differential equation (see Eq. (2-30) and Eq. (2-32» given by:

L(u.) = ~~. -F(u.)Vu•. Vu. -G(u.)V'u. + H(u.)Vu•.V(V'u.)+ I(u.)V·u. =0 (2-45)
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• where V= (01 0 x)i +(17/ Ô y)]. Inserting Eq. (2-45) into Eq. (2-44) leads the residual

equation as:

Ta lower the order of the derivatives of Eq. (2-46), we can use the divergence theorem.

For a scalar a and vector v:

faV.vdV = fan.vdS - fVa.vdV
.. s y

(2-47)

•

where S is the boundary orthe domain V, and ii is the autward unit nonnal vector. Using

the divergence theorem twice and the vector differential identity [79]:

(2-48)

we can re\vrite the fourth order terms in Eq. (2-46) as:

Il Il It 0

f fH(uJç,.[Vu~ .V(V1uJ)cltdy = fH(u.){O'ii.[(Vzu.)(Vu.))dS - ffv[H{u.){O' ).[(vzuJ(Vu.})ttcdY
., ~ s ••

Il b-ffH(u.)f" [(vzu. XV%uJ}dnly (2-49-a)
" .

and

Il Il

ffl(u.){l"V~u.cltdy = fl(uJ{O'ii. VJu.dS - fii .(V%u.)V[I(uJ~j ~s
• • s S

/) b

+ fJ(V1uJV:[l(uJfi)cady
". (2-49-b)

Finally, Eq. (2-46) can be expressed as goveming terms and three boundary terms as:

Il IIIêu ]F. = f1Lô Col - F(uJVu•.Vu. - G(u.)vzu. rpld:cdy

- jj1v[H(u.)91'l·[(v'u.xVu.)1+H(u.)f1' [(V'u.xv'u,)l-(V'u.Xv,[1(u.),..,]]~ (2-50)..
• +fH(u.)f1'ii.[(V'u.xVu.)1dS+f1(u,)f1'ii.V'u.dS - fii.(V'u.Xv[1(u,)f1'1ps

47



•

•

Once the goveming equation bas been set in Galerkin farm, the next step is

discretization, that is, the domain must he divided into a number of finite elements. Note

that for one-dimensional problem each element bas two nodes, thus if there are N

elements, N+l nodes exist. For two-dimensional problems, either triangles or rectangles

can be used for elements, depending on the boundary geometry. The number ofnodes bas

to he properly chosen to represent the solution more effectively where rapid changes in

the solution are expected. Balance hetween the number of elements and computational

rime and memory space should be also taken ioto account.

As shown in Eq. (2-41), an approximate solution bas been expressed as the

summation of the product of unknown coefficient Uj (t) and the global trial and test

function rpj (x,y). However, in computations, by using the local test and trial functions

instead of the global test and trial function, the given problems can be solved very

economically. This is plausible because the test and trial functions span a very small

section of the spatial domain. The test and trial functions are nonzero only in the

immediate vicinity of the j-th node and zero outside of this range. A schematic

representation of two-dimensional global and local domains is shawn in Figure 2.1,

where ç and " represent the local orthogonal coordinate system. Note that u. defined at

the local level is identical to u'" at the global level where the subscript index represents

the locallevel and the superscript index implies the globallevel. So thus in each element,

we obtain that:

•
u(~,,) =LU••1"1 (çt"),-1

(2-51)

•

where "1 is the local basis function.

Once the locations of the nodes have been determin~ the appropriate nodal basis

functions bave to be selected. Hennitian cuhic basis fimctions are known to he

appropriate for the forth-order partial differential equations [80]. In Hermite interpolation

both function values and derivatives are interpolated at the ends of each element.

Therefore, in one dimensio~ each element bas two double nodes and four hasis functions.

Using the following features orthe Hermitian basis fimctions:
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i -1

j +1

i -1

i -1

j -1

"

1/=1

1/=0

j -1

i +1

j +1

(=1

i +1

i +1

j -1

•

Figure 2.1 Element configurations in a two-dimensional global domain and corresponding local
domain. x and y represent the global two-dimensional coordinate axes while ç and " represent

the local coordinate axes. Note that '" defined at the local domain becomes ",./ at the global

domain.

•
(l1l.O(O) =(l1z.o(l) =l

(l1I.D(1) =(I12.O(O) =0
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d'PlD (0) =d'Pu (1) = df/Ju (0) =dtpu (1) =0
dç dç dç dç

9'1I (0) = fPu (1) = {l1u(O) = 912.J(I) = 0

dfP"l (0) = d{l1u (1) = 1
d( dç

d'Pu (1) = dfIJ:'1 (0) = 0
d( d,;

we cao construct the Hermitian cubic basis functions as:

9'u =1-3( +2Ç'

'Pu =,;-2( +(

{l1u =3( -2(

912.1 =-( +(

(2-52-c)

(2-52-<1)

(2-52-e)

(2-52-f)

(1-53-a)

(2-53-b)

(2-53-c)

(2-53-e)

•
where 9'1.0 interpolate the function values and tpl.1 interpolate their derivatives. Hence, the

Hermitian cubic expansion based on local domain can be written as:

(2-54)

By means of mapping ç~:c, the approximate solution of the global domain bas the

form:

(2-55)

•

On the other band, for two dimensional problem, each element bas four sets offour nodes

and 16 basis funCtiODS. Thus introducing f{Jj,o(ç,l/) and f{Jj.l(Ç,IJ} in the orthogonal

coordinate (ç,J1), Eq. (2-54) and (1-55) have to be rewritten as:
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• and

(2-57)

where 'P1.u interpolates the function values and f/J,.l' !PI.:' and f/JI.J interpolate their

derivatives with respect to ç, ".It is much convenient way to lump the coefficient in Eq.

(2-57) together as U
l

and the Hermitian basis functions together as 'IIj [48], which gives:

l..'1

U" = IU'V'I (2-58)
J-l

where
(j =1. 5. 9. 13•...• 4N -3)

VJ = Ut' 'l/j= 'P: for (2-59-a)
k = 1, 2, 3, 4, ..., N

V ôUt k
(j =2. 6. 10. 14•...• 4N -2)

J =-...-, f/j= 'Pl for (2-59-b)
etx

k = 1, 2, 3, 4, ...! N

• V OUt k
(j = 3. 7. 11. 15•..., 4N -1)

=-, '1/.= rp~ for (2-59-c)
J oy / ...

k =1, 2, 3, 4, ..., N

V tJ=ut k
(j =4, 8, 12. 16•...• 4N]

J
= , '1/.= f/JJ for (2-59-d)

tJ xo y J
k =1, 2, 3, 4, ..., lV

lnserting Eq. (2-58) into Eq. (2-50) and applying the boundary conditions, we can obtain

an equation in a matrix form:

J ·U= -F
= - -

(2-60)

•

where 1: is the Jacobian matrix which can he determined by J,., =ô F, / tJ U
J

and F, is

given in Eq. (2-50). Finally Eq. (2-60) is solved for the unknown coefficient U, using a

Newton-Raphson iteration scheme. Convergence is assumed when the length of the

vector ofthe difference oftwo successive computed solution vectors is less than 10-6.

51



•

•

•

2.4.2 TilDe Integration Methods

The nonlinear time-dependent partial differential equations given in Eq. (2-50) have

been reduced to a set of ordinary time-dependent differential equations. The finite

difference method and a fust-order implicit Euler predictor-corrector method are used for

time discretization [81]. In additio~ an adaptive rime step control method [81] is used to

minimize computing time while maintaining accuracy.

2.5 Conclusions

A theoretical model was developed to descnbe the phase separation phenomena

during polymerization of a monomer B in the presence of a polymer A. During

polymerization takes place, the phase diagram of the two component mixture A and B

continuously moves toward higher temperature and concentration. The curing point

initially located in the homogeneous phase region is thrust into the unstable region, and

phase separation occurs via spinodal decomposition. The nonlinear Cahn-Hilliard theory

and the Flory-Huggins theory were used ta develop a model of spinodal decomposition..

The local concentration and molecular weight dependent mobility was derived ta reflect

the molecular dynamics in the multi-component polymerie system.. The two different

diffusion theories, the Rouse theory and the reptation theory, were used for mobility to

refleet the different molecular behavior with an entanglement effect.. Therefore, two

governing equations were developed for the non·entanglement regime and for the

entanglement regime, respectively, for one reaction operation. The sets of zero mass flux

and natura! boundary conditions were formulated as non...periodic boundary conditions.

The infinitesimal thermal concentration fluctuations present in an initial homogeneous

mixture implemented to reflect better initial conditions. The Galerkin finite element

method with Hermitian bicubic interpolants was chosen for spatial discretization of the

governing equations. In addition, a first-order implicit Euler predictor-corrector method

and an adaptive time scheme were used to perfonn temporal discretization. In summary, a

full model for the PIPS method and its method of solutions, based on GFEM and

corrector/predictor metho~ have been developed.
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Chapter 3

Computational Simulation and Morphological

Analysis of Polymerization-induced Phase

Separation

Summary

A rigorous model of polymerization-induced phase separation (pIPS), based on the

nonlinear Cahn-Hilliard (C-H) and Flory-Huggins (F-H) theories combined with a

second-order polymerization reaction equation, has been formulated. The model describes

phase separation in system consisting of a non-reactive polymer and a monomer that

undergoes condensation polymerization. The model consists ofa balance equation for the

low molecular weight regime and another balance equation for the high molecular weight

entangled region. The model equations are solved, and the solutions are characterized to

identify the dynamicaI and morphological phenomena of the PIPS process. The extent of

phase separation increases with time significantly during the early stage of phase

separation, and slows down in the intermediate stage. The various types of the phase­

separated morphologies are fully characterlzed using the novel morphological

characterization techniques, known as the intensity and scale of segregation. Both the

dynamicai and morphological features ofthe PIPS method are sensitive to the magnitudes

of the dimensionless diffusion coefficient n- and the dimension1ess reaction rate

constant K· . The scale of segregation and the droplet me decrease as D· and K­

ïncrease. On the other hand, the intensity ofsegregation increases with K· , but decreases

with D-.
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3.1 Introduction

When a single-phase mixture is thrust into the unstable region ofthe phase diagram,

the mixture phase separates via spinodal decomposition (SO). Phase separation can be

induced by thermal quenching, solvent evaporation or polymerization, known as thermal­

induced phase separation (TIPS), solvent-induced phase separation (SIPS), and

polymerization-induced phase separation (pIPS), respectively. The PIPS method is a

complex process because phase separation and polymerization occur simultaneously. In

the PIPS method, the degree of polymerization of the polymerizing component

continuously increases as the reaction proceeds, and tbis induces phase separation

because the curing point eventually crosses over from the homogenous (stable) region to

the two-phase (unstable) region [1, 9, 10].

The PIPS method based on condensation-reaction polymerization is an important

manufacturing route for multi-phase material production. A typical example is the

production of high impact polystyrene (HIPS). HIPS is manufactured using the PIPS

process by polymerizing styrene monomer in the presence of poLybutadiene (PB). As

polymerization proceeds, PB phase separates and disperses in the polystyrene (PS)

matrix. The particle size of the PB phase can be controlled by a proper choice of the

processing conditions ta obtain the desired properties. However, despite practical

imponance of PIPS in producing multi-component composite materials, relatively few

theoretical [33-35, 50, 57, 82] and experimental [5, 44, 63, 74, 83] studies have been

performed. In particular, no model has yet been developed to descnoe monomer

polymerization in the presence ofa polymer taking into account phase separation.

Coupled phase separation and polymerization processes have been modeled using

the rime dependent nonlinear Cahn-HilIiard (C-H) and Flory-Huggins (F-H) theory for

phase separation, and a reaction kinetic equation for polymerization, in the previous

studies [33-35]. The mobility and interfacial parameter in the C-H theory are dependent

on both the polymer molecular chain lengths and local concentration in the PIPS process.

Many numerical studies, however, have been performed assuming constant mobility and

interfacial parameter with an attempt to simplify the problem. The interfacial parameter

cao he assumed to he concentration independent in the absence of any accurate
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information about its behavior; however, the mobility is known to be highly sensitive to

concentration changes [43].

Glotzer et. al. [35] solved the nonlinear C-H equation with coupled diffusion and

chemical reaction equations. They found that the combination of diffusion and reaction

mechanisms determ.ines the length scale of the phase separation patterns.. However, they

considered only a low-matar mass solvent and solute system using constant mobility..

Chan and Rey [33, 34] solved the nonIinear fourth-order C-H equation to study the

effects of diffusion coefficient and polymerization rate constant on the phase-separated

morphology for polymer solutions in the PIPS process.. Their system described

polymerizing monomers in the presence of low molar mass solvents. They found that

morphologies with high density of small droplets wouid be obtained by increasing the

diffusion coefficient and the rate constant. However, they used a concentration

independent mobility and, as a consequence, their equation diverges in the intennediate

stage of phase separation when the concentration approaches unity. Furthermore, they

obtained aImost perfectly spherical droplets due ta constant mobility.. Shaginyan and

Manevich [57] stlldied the PIPS process for a multi-component blend using a time­

dependent reaction conversion factor. They used a concentration dependent mobility

based on the Rouse theory and found that the thermodynamic states of the reacting

mixture contain two different classes of relaxation of the concentration inhomogeneities.

However, their study is limited to the very early stage of spinodal decomposition, where

linear goveming equation is solved analytically. The PIPS process is complex to describe

and, for highly asymmetric polymer systems, computational divergence problem occurs

in the very early stage of phase separation. For these reasons, the attempts bave failed in

descnoing practically important process, such as a monomer polymerizing in the presence

ofa polymer.

As a result of phase separation, various types of phase-separated structures can be

formed depending on severa! factors, including concentratio~ the rate ofpolymerization,

the types of materials used, and physical properties such as viscosity and the rate of

diffusion [1]. Typical examples ofphase-separated morphologies in polymer systems are

the droplet-type morphology and the interconnected cylinder-type morphology. The type

and characteristics of the phase-separated morphology are critical in determining the
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mechanical and optical properties ofmulti-component composite materials. For example,

the fracture toughness increases as particle sizes in the morphology decrease. However, if

the average droplet size decreases, scattering of multi-component materials increases

because the number ofscattering sites within the film increases. Therefore, it is necessary

ta develop a characterization of phase-separated morphologies to eventually find optical

structures. A morphological anaIysis technique, known as intensity of segregation and

scale of segregation, are employed in this study to characterize the phase-separated

morphologies arising in the PIPS method.

In this chapter, the model equations based on the nonlinear C-H and F-H theory

coupled with a reaction kinetic equation are solved to descnèe the PIPS method for the

case of a monomer polymerization in the presence of a polymer. Numerical results are

presented with the intensive parameter studies: the dimensioniess diffusion coefficient

and the dimensioniess reaction rate constant. The dynamicaI and morphological studies

on PIPS are perfonned and discussed to evaluate numerical results. The goveming

equations and auxiliary conditions are developed in Section 3.2 usÎng the molecular

weight and local concentration dependent mobility. Two governing equations for

spinodal decomposition are fonnuIated depending on the molecular weight regime of

polymerizing component to reflect polymer chain diffusion in the presence of

entanglements. In this study, the degree of polymerization of one component increases

with time due ta polymerization. Therefore, at the moment the degree of polymerization

ofthe polymerizing component exceeds a critical degree ofpolymerization compounds to

the onset of entanglements, the model equation is switched. In other word, our model

equation covers various molecular weight regimes of polymerizing component ranging

from low molecular weight polymer solutions to highly entangied polymer blends. The

sets ofnon..periodic natura! and zero..mass flux boWldary conditions are used. In addition,

the randomly generated initial conditions are used to retlect the infinitesimaI thermal

concentration fluctuations. Section 3.3 presents the brief backgroWld in the

morphological characterization methods. The concepts ofthe intensity ofsegregation and

the scale ofsegregation are discussed in this section.

The results of the intensive dynamicaI and morphological studies on PIPS are

presented in Section 3.4. The typicaI types of the phase-separated structures of the PIPS
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method are illustrated in Section 3.4.1. The effects of the initial composition on the

phase-separated morphologies are aIso discussed in this section. The dynamical features

of the phase separation phenomena are studied and discussed, using Nauman's extent of

phase separation [84], in Section 3.4.2. The extent ofphase separation is a useful measure

to determine the stages of phase separation and their temporal ranges. The various

temporal critical points (the dimensionless polymerization lag time, the dimensionless

phase separation lag time, the dimensionless induction time, the dimensionless transition

time, etc.) are determined and studied for the different values of the dimensionless

diffusion coefficient and the dimensionless reaction rate constant. Section 3.4.3 presents a

study ofthe morphological analysis ofPIPS. In this section, visualizations ofpatterns as a

function of the dimensionless diffusion coefficient and the dimensionless reaction

constant are presented ta show how the morphologies change as two dimensionless

parameters change. The effects of the dimensionless diffusion coefficient and the

dimension1ess reaction constant on the phase-separated morphologies are evaIuated by

using the scale of segregation. In addition, a measure of the time kinetics and the

compositional non-uniformity of the phase separation process known as the intensity of

segregation is shown as a function of time for different vaIues of the dimensionless

diffusion coefficient and the dimensionless reaction rate constant in this section. The

various types of the phase-separated morphologies are re-eharacterized using the

dimensionless average droplet diameter and the shape factor in Section 3.4.4. The

dimensionless average droplet diameter and the shape factor give more accurate

infonnation about droplet size and shape distribution. Lastly, the general guidelines for

morphological control in the PIPS process are presented in Section 3.4.6.

3.2 Governing Equations and AuxiIiary Conditions

The Cahn and Hilliard equation is a widely used model for the phase separation

phenomena via spinodal decomposition and is given by [21, 25,26]:
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• (3-1)

where cD.. is the volume fraction ofcomponent A (for a binary mixture, <D JI +<1> B=1), V

denotes alôx i + alôy ] , where i and ] are unit nonnaI vectors for x and y directions,

respectively, M is mobility, f is free energy density ofthe system, 1 is time, and K is a

positive interfacial constant, respectively.

For the bulk free energy density f in Eq. (3-1), the Flory-Huggins theory is used

and is written as [29, 30]:

kT(<l> CI> )f =-'- __of In <l> +-'In <t» + v cD CI>
N .• N'A. .. ,

V J 1

(3-2)

•
where k, is Boltzmann constant, T is absolute temperature, v is the volume of the

reference unit, N~ and N, are the degree of polymerization of polymer A and S,

respectively, and Z is the temperature dependent interaction parameter. The temperature

dependence of z can be written as [31]:

(3-3)

where 'l' is the dimensionless entropy and e is the theta temperature.

The mobility M in Eq. (3-1) is known to be highly dependent on the molecular

weight and local concentration ofthe components and it is defined by:

M = D.f D,N..N.4:J ..cD.

(k:T)(DA +D.XN}ll A +N.<ll.l

(3-4)

•
where D. and D. are the self diffusion coefficients of polymer segments A and S,

respectively. Full detaiis of the derivation of Eq. (3-4) are given in Chapter 2, Section

2.2.2. Sînce polymer segments entangle when their molecular weight exceeds a criticaI

degree of polymerization value Nt' polymers exhibit a different diffusion behavior

depending on their molecular weight. To capture this different difiùsion behavior, Eq. (3-
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• 4) has to be specialized by using two different theories according to components'

molecular weight. The Rouse theory represents the diffusion phenomena in the non­

entanglement regÏIJ1e as [58]:

D=k,T
NÇ' N<Nr: (3-5)

while the diftùsion ofentangled polymers follows the reptation theory as [59, 60]:

D_( 4)(k,TN,]
- ï5 ç Nl '

(3-6)

where ç is the friction coefficient and N, is the entanglement chain lengili. Note here

that Ne := 2Ne •

The molecular dependent interfacial parameter K in Eq. (3-1) is given by [24]:

• where

K=Ko(N.• +N,)

k,T l~
IL. =-vg . n

o 12v"" .. ft

(3-7)

(3-8)

where gis the ratio of the square radius ofa branched molecule to that ofa linear one of

the same molecular weight, n. and 1. are the number of monomers and length of each

monomer, respectively.

The goveming equations descnoing spinodal decomposition are obtained by

inserting Eqs. (3-2), (3-4), and (3-7) into Eq. (3-1), and performing the functional

derivative. The diffusion coefficients, D.• and DB' in Eq. (3-4) can he replaced with

either Eq. (3..5) or Eq. (3-6) based on polymer components' molecular weight. Thus, for

the non-entanglement regime:

•
~V < Ne:

ocD~.(x,y,t)

ü(

n·r [-N.(N}~:+N.(I-cD:))-N,(NA -N,Xl-cD:)
(N.• + N.) (N..cD: +N.(l-<D:)Y
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N.t (N.t <1> ~f + N. (1- <1>:)) - NA (Nif - N, )<1>:
+----.;.----......;......-~--

(lV.t <I>~, + N, (1- cf):))
2

-2ZNAN.(N.~: + N.(l-~:)X: -2~:)-~A~.(N.• - N.)~:(l-~:)]
(N~~ .• +N,(I-~J)

(a<D~t 0 <D", + a<f)", 0 <D~c) + D"T" [ N,(l-<I>:) (3-9)
tJ x· tJ:c· tJ y. ô y. (N.c +lV,) N.f~~' +N,(I-<I>:)

lV <1>" N N <1>" (1-<1>0) JtJ2<1>0 tJ 2<1>. '\+ .f .f 2z·. '.f .. __.t +__'•. 1

N., CI>0, + N,(1- <Il ~f ) N.•<Il: + N, (1- cl>:) ô .r:"2 Ô Y02 )

NfN,(N.,<Il~t + N,(I-<Il:)X1- 2<1>:)- N,.N,(N., - N,)ct>:(I-<I>:)
(N,.~: +N.(I-cf):)Y

For the entangled high molecular weight regime, the goveming equation is written as:

•

N>N~:

è <D:(:c~y~t)

ô(
4 DO,TON. [-NtJ(N.f<D: +N,(l-<I>:))-N,(N.. -N,)(I-ct>:)

15 (N~ + N;) (N..<I>: + N.(I-<I>:)Y

Nf(Nf<Il of + N, (1- C!> ~f )) - N.I (N.. - N, )el>:
+-:._---~-~-~

(N.•<fJ: + N, (1- <1>: ))
2

-2 N..N.(N.•~~. +N,(1-eI>:)XI - 2<1>:)-N,.N,(N,f -N,)<I>:(l-<I>:)]
Z {N}I>: + N,(l-<I>:)Y

( O~~f 0<1»: + Ôcl>~f ô<D:) + 4 D"rN. [N,(I-<I>:) (3-10)
il x" è :cO tJ Y0 ô y. 15 (N: +N:) N..cl>: +N, (1- ~:)

N <I>" N N <1>. (1-<1>·) JÔ1cD
O

ô 2<1>" )+ .4 .c 2Z'c ,.. .. __.f +__.A

N ..cD~, + N.(1- cI>:) NAcI>: +N,(1-<1>:) ô ;col 0 Y01
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• 4 N~(N-t +Njf) N.•N,(N.•fI)~( +N,(1-fI):)Xl-2f1):)-N.•N,(N.• -N,)fI):(I-<E>~.)
15 (N.~ + N;) (N..<P: +N,(l-~~.)r

( ùJet>~( acE>: + Ùl~: acD: + Ûl~: ùcD~f + ôlcD: ÔcD:)
il xoJ Û X 0 Ô x 0 a y ol Û X 0 a x'l Ô Y 0 Û y' ù y ol Û y"

Eqs. (3-9) and (3-10) are written in dimensionless form and the superscripted asterisks

denote dimensionless variables where dimensionless variables are as follows: x' =:c1L,

y. = yi L, (= ka vt 1L'Ç, r o = rIa, and DO = t,aL: /2VKo where L represents length

scale of the computational domaine To solve Eq. (3-9) and Eq. (3-10), the following sets

of natura! and zero-mass flux boundary conditions are used:

• and

at ( > 0, and x' = 0 and x 0 = 1

at ( > 0, and y 0 = 0 and y" = 1

(3-11-a)

(3-11-b)

oJ<I>° ô'J<I>0
0 at (>0, and x' = 0 and .~o = 1 (3-12-a)__.f+ ...

a ol Ù oô' .l:c x y

tJJ<D° a 'et>"
0 (>0, and yO =0 and y' =1 (3-12-b).f • .f atô y.) .,. tJ y"ô :col

In addition, the randomly generated initial conditions are used to reflect the infinitesi.-nal

thermal concentration fluctuations present initially in the homogeneous phase mixture as:

(3-13)

•

The linearization approximation and the equipartition theorem are employed for the

infinitesimal concentration derivations cS <D~, and details are given in references [48] and

[49].

In the PIPS method, the molecular weight of one of the components, say B,

increases with time due to polymerization and this induces phase separation. The growth
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• rate of NB in Eqs. (3-9) and (3-10) is determined by solving the following kinetic rate

equation:

(3-14)

where p is the extent of reaction and kt is the rate constant. By assuming NB can be

represented with the weight average molecular sizes X MI' for the single reactant system

the solution to Eq. (3-14) leads to [24]:

(3-15)

•

•

where r is the functionality of monomer, and the dimension1ess reaction rate constant

K· is defined by K·= ktL
4(/2Kov. Note that, for t = 0, NB= 1 while for (~etJ, lVB

is infinite and gelation occurs.

The goveming equations, describing the polymerization-induced phase separation

process, are Eq. (3-9) to Eq. (3-13), and Eq. (3-15). At t· < t;(N,J, Eqs. (3-9) and (3-15)

are solved with the boundary conditions given in Eqs. (3-11) and (3-12), and the initial

condition given in Eq. (3-13). At ( =((N~), the polymer molecules start to entangle

with each other. Therefore, the goveming equation descnèing phase separation process is

switched from Eq. (3-9) to Eq. (3-10) to retlect the entanglement effect and Eqs. (3-10)

and (3-15) are solved using the same boundary conditions. However, the solution of the

previous time step is used for the initial condition for Eq. (3-10). The value of iVe is

material dependent, and it is set N~ = 31.5 in this study. The dependent variables are <1>:

and NB' and the independent variables are x· , y. and t-. While there is an analytical

solution to Eq. (3-15), there is none for Eqs. (3-9) and (3-10). Thus, Eqs. (3-9) and (3-10)

with their auxiliary conditions must be solved numerically for <D~ (x·, y., t·). The

parameters are the dimensioniess diffusion coefficient D· , the dimension1ess rate

constant K- , the dimension1ess initial average concentration <D:.0' the dimension1ess
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temperature r· ., and the Flory-Huggins interaction parameter z. Moreover, the 2­

dimensional square ( L xL) geometry is used in this study. The main object of interest in

the computational modeling of the PIPS process is to characterize the temporal dynamics

and morphologicaI phenomena as a function of the goveming dimensionless parameters.

Therefore, in this study, we mainly focus on the effeet of the dimensionless diffusion

coefficient D· and the dimensionless reaction rate constant K· on the dynamicaI and

morphological features ofthe PIPS process.

3.3 Morphologieal CharacterizadoDs

As mentioned eartier, a characterization of phase-separated morphologies is

necessary to implement and visualize the sn in the PIPS method because mechanical

properties of polymer blends depend on their morphologies, as mentioned earlier. The

morphologies induced by SO could be uniform spherical droplets or non-uniform

interconnected structures depending on the concentration of components [48, 49]. In

visualizing morphological characteristics, it is much more complicated to analyze non­

uniform structures than uniformly distributed components in matrix. In this study, a

method for characterizing texture is introduced ta analyze the various types of

morphologies induced by SD.

In his paper dealing with the human visual perception of texture [85], Julesz

introduced the order of complexity of textures to demonstrate that one can discriminate

from each other if textures differ in their first- and second-order statistics, but cannot if

they differ in their third- or higher-order statistics. The arder ofcomplexity is determined

by scattering dots, needIes, or triangles on the two textures and observing the

probabilities with which dots, both ends of the needIes, or all three ends of the triangles

land on one component for the first-, second-, or third-order statistics, respectively. In

other word, the tirst-order statistics represents the concentration of one component in a

sample texture. Thus, we can distinguish its difference by brightness or luminance ifone

component is black and the other is white, for example. Even if; however, the proportions

of two components are the same in two different samples, the probability ofboth ends of
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the needles landing on one component could be different if the two components are

distributed differently in those samples. The second-order statistics are different for two

sample textures in tbis case.

TadInor and Gogos [86] applied the concept of the arder of complexity to the

characterization ofpolymer mixtures. They concluded that the state of the mixture can be

characterized by gross uniformity, texture and local structure. In dealing with 'gross

uniformity', ooly the first-order statistics can be taken into account, however, in dealing

with 'texture', the situation is more complex because it depends on componenCs size,

shape and distribution., that is, second-order statistics.

In this study, a gross uniformity does not bave to be considered because we already

assumed that there is no mass exchange with surroundings in our calculation. Thus a

perfect gross uniformity can he assumed once we initialize same average concentration

for two different calculations.

11111111
1111_11
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Figure 3.1 Schematic representation of the intensity segregation and the scale of segregation. A
perfect compositional uniformity is obtained by either reducing the scale of segregation to the
scale of the ultimate particle or by reducing the intensity ofsegregation to zero. (reprinted from
reference (86])
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• The textures can he fully characterized by measuring two values; one is 'the scale of

segregation' and the other is 'the intensity of segregation' [86]. The schematic

representation of the scale ofsegregation and the intensity ofsegregation is shawn in Fig.

3.1. It should be noted that a perfeet compositional uniformity can be obtained by either

reducing the scale of segregation to the scale of the ultimate particle or by reducing the

intensity ofsegregation to zero [86].

'The scale of segregation' is calculated by a process known as 'dipole (needIe)

throwing', which consists in dropping a dipole of Iength r on the textures and observing

the frequency with which bath ends of the dipoIe faIl on the same phase. However to

avoid ta do this tedious process, the coefficient ofcorrelation is defined as:

(3-16)

•
where <[)~".i and q>:,; are concentrations at two points at a distance of r fram each other,

et> ~.o is the average concentration, N" is the total number of couples of concentrations

taken, and S is the variance which is calculated from the concentrations at all points and

given by:

(3-17)

Th~ the scale of segregation s is defined as the integral ofthe coefficient ofcorrelation

R(r) over values of r from zero to ç as:

(3-18)

•
where ç represents the dipole length at which R(ç) = O. Note here that for a perfeet

correlation between the two phases, R{r) = l, and for no correlation between the two

phases, R(r) =0.
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• The intensity of segregation 1 is defined as the ratio orthe measured variance to the

variance ofa completely segregated system. Thus it is written as:

(3-19)

where S1 is the measured variance ofthe various points in the sample defined as:

I N'') ~ {· · rs- =. ~ \<1» AJ - <1> A.O
N - 1 j-l

and 0; is the variance for completely unmixed state defined as:

., . ( .)Oô =<1> A.O 1- <1> ....0

(3-20)

(3-21)

•

•

where N' is the total number of concentration taken. For completely segregated state,

1=l and unifonnly distributed state, 1=0 since Sl = 0 .

3.4 Result and Discussion

3.4.1 Typieal Phase-Separated Structures and Patterns

Figure 3.2 shows plots of 1/ Z versus ~~f computed based on the Flory-Huggins

equation (Eq. (3-2» for increasing molecular weight of component B. The solid corves

denote the binodallines and the dashed corves represent the spinodallines. The bold solid

and dashed curves represent the initial binodal line and spinodal line, respectively, Le.

Nf = 100 and N, = 1. As polymerization proceeds at point a or b, the molecular weight of

component B increases and the phase diagram. maves op gradually, as indicated by the

upward painting arrow. In this study, the composition ofcomponent AIB is set at 0.2/0.8

(point a) and 0.4/0.6 (point b). Initially, both point a and point b are located in the off­

critical concentration region. However, as polymerization proceeds, point b is thrust into

the dimensionless critical concentration region cD~.e' while point a remains the off-
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Figure 3.2. Phase diagrams of 11Z versus <1»~ computed based on the Aory-Huggins equation
for increasing moiecular weight of component B where Z is the Flory-Huggins interaction

parameter and <1»~ is dimensionless concentration of polymer A. The solid curves denote the
binodal lines and the dashed curves represent the spinodal lines. As polymerization proceeds at
point a (A/B=20/80) or point b (AIB=40/60), the molecular weight of component B increases
and the phase diagram is gradually elevated.

•

critical region at aIl tintes during the polymerization process. At both curing points, a and

b, the mixture is initially homogeneous. After a certain reaction time (N. >10 in Figure

3.1), the curing point is thrust into a two-phase region and phase separation via spinodal

decomposition takes place. The simulations listed in Table l are perfonned for the system

described in Figure 3.1. The cases from A to l correspond ta point a, while the case J, K,

and L correspond to point b. AlI simulations are performed with 'II = LO ,T-=1.7 and

Z=O.0882.
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Case n-/106 K- /lOJ <1>:.0

A 1 2 0.2
B 1 10 0.2
C 1 50 0.2

D 2 2 0.2
E 2 10 0.2
F 2 50 0.2

G 4 2 0.2
H 4 10 0.2
l 4 50 0.2

J 2 10 0.4
K 2 50 0.4
L 4 50 0.4

Table 3.1. The simulations Iisted above are perfonned for the system descnbed in Figure 3.2
where D- is the dimensioniess diffusion coefficient, K- is the dimensionless reaction rate
constant, and <1> ~.o is the dimensionless initial concentration ofcomponent A. The cases trom A

to [ correspond to point ~ while the cases I, K and L correspond to point b. Ail simulations are
performed with 'II = 1.0 f r- =1.7 and Z= 0.0882.

Figure 3.3 describes the dimensionless concentration spatial profile ~:(x· ,y.) (first

column) and patterns (second column) formed during phase separation for Case F in

Table 3.1 and at point a in Figure 3.2, and at the following dimensionless times: (a)

c·=1.619 x 10-5
, (h) ce=1.808 X 10-5

, (C) 1-= 1.816 X 10-5
, (d) le= 1.823 x 10-5

, (e)

Ce = 1.838 X 10-5
, and (f) te= 1.853 X 10-5

• Oarker regions are polymer A rich regions

while brighter regions are polymer B rich region. Since the dimensionless average

concentration ofpolymer A, ~~o, remains in the off-critical region at aIl times during the

polymerization and phase separation process for point a, a droplet-type morphology

fonDS and evolves. At the very early stage, the random initial condition develops into a

droplet-type phase-separated structure (see pattern (b». The average droplet diameter
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Figure 3.3 (Continued on next page) Dimensioniess concentration spatial profiles cD:(x·,y·)
(first column) and patterns (second column) formed during the phase separation phenomena for
Case F at point a (AIB=20/80).
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decreases, but the droplet number density and the concentration intensity inside the

droplets increases with time during phase separation. As polymerization proceeds, the

phase diagram shifts toward higher temperature and concentration as shown in Figure 3.2.

As a result, the quench depth, defined as the absolute difference between the critical and

curing temperature, 1 T:-TI, increases with time and results in the smaller average

droplet diameter and the higher droplet number density because it is known that

wavelength of concentration is inversely proportional to the quench depth [9]. Even

though this fact applies ta the TIPS process, it can be also used for the PIFS process since

the phase diagram is fixed at any given time. Some elliptically shaped particles can be

observed in the patterns (d) and (e); however they are subsequently absorbed into the

neighboring matrix as phase separation proceeds, and evolve to the nearly circular

particles.

Figure 3.4 represents the dimensionless concentration spatial profiles 4>~f(X·,y·)

(flISt column) and patterns (second column) fonned during the phase separation

phenomena for Case K in Table 3.1 and at point b (AIB=40/60) in Figure 3.2, and at the

foUowing dimensionless times: (a) te=1.649 X 10-5
, (h) te=1.797 X 10-5

, (c)

Ce =1.804 X 10-5 ,(d) te = 1.806 X 10-5 ,(e) te= 1.810 X 10-5
, and (f) te=1.820 X 10-5

•

Again, darker regions are polymer A rich regions, while brighter regions represent

polymer B rich regions. As shown in Figure 3.2, the initial curing point b is located in the

off-critical region during the very early phase separation stage ( te< te(NB=20) ). As a

result, the phase-separated structure at (= 1.797 X 10-5 (pattern (b» in Figure 3.4 is

very sunHar to pattern at ce=1.808 X 10-5 (pattern (b» in Figure 3.3. In other wor~ the

random initial condition for Case J develops initially into the droplet-type morphology,

similarly to Case F. As polymerization proceeds, however, the phase diagram

continuously moves toward higher concentration and temperature as mentioned before;

thus the curing point b is thrust into the critical region after t·> t e (NB == 20) as shawn in

Figure 3.1. As a resul4 the early phase-separated structure similar to the droplet-type

structure develops into interconnected. cylinders. Sînce the curing point b stays in the off­

critical region during the very early stage of phase separation,. droplets coexist with the
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Figure 3.4. (Continued on next page) DimensionIess concentration spatial profiles <I>~f(X· !y.)
(first column) and patterns (second column) formed during the phase separation phenomena for
Case Kat point b (AIB=40/60).
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• interconnected cylinders in the same morphology (see patterns (d) and (e) in Figure 3.4).

When we compare the patterns (e) and (f), the interconnected cylinders coarse~ and the

droplets are absorbed ioto neighbcring cylinders. As the phase separation phenomena

proceeds, concentration gradients at the surface increases: thus the total free energy aIso

increases with tÎme. To reduce this total free energy, the interconnected cylinders coarse~

favoring a smaller interfacial area.

3.4.2 Dyoamical Analysis in Polymerization-induced Phase Separation

To characterize the dynamicaI phenomena during phase separation, Ariyapadi and

Nauman [84] developed a useful measure, known as the extent ofphase separation E:

where et>~,u.j is the volume fraction ofcomponent A at the (i, j)th computational nodal

point, et> ~"J and ~:.u are the lower and upper binodal concentration of component A,

respectively, and Nt is the total number of nodal points in the computational domain. If

there is no phase separation, et>:.i.i= C1l:.0 for all nodal points, thus E =O. On the other

hand, for perfect phase..separated structure, cl>:.i.i equals to either one of the two binodal

points, et>:J or <I> ~...." therefore E =1..

•
(· · rl .Y· N' ~ ~ .. - ~ • 0E =-2: L ....I.) ...

N'! j-t j.t (<1>- - cD- ) (et>- - ~- )
A.O AJ ....,. ....0

(3-22)

It is known that the dimensionless induction rime t; exist5 in the PIPS process

because significant phase separation only occurs at t-> t; [33, 34]. The dimension1ess

induction rime ( can be represented by the SUIn of the dimensionless polymerization lag

time t~ and the dimensionless phase separation lag time t; as:

•
(3-23)
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• The dimensioniess polymerization lag time t; represents the time it takes for the

spinodal tine to cross the initial curing point and the dimensionless phase separation lag

time t~ is time required for the system ta begin phase separation once it bas been placed

in the unstable region [33, 34].

Figure 3.5 illustrates a typical plot of the extent of phase separation E versus the

difference between the dimensionIess time ce and the dimensionless polymerization lag

time t~ for Case F. The dashed lines represent tangents ta each part of the curve. Their

intersection gives a dimensionless transition time t; between the early and intermediate

stage of spinodal decomposition. The dimensionless polymerization lag time l~ can be
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Figure 3.5 Extent ofphase separation E versus dimensionless rime ( for Case F, where t~ and

t; represent the dimensionless polymerization lag time and the dimensionless transition time,

respectively. The intersection of the dashed tangent lines to each part of the curve gives the

dimensionless transition time r; between the earLy and intermediate stage of spinodal

decomposition. Significant phase separation occurs only after the dimensionless induction lime

C;. The dimensioniess polymerization lag time can be obtained by solving Eq. (3-15) as

t~= 1.495 x 10-5
• For the pointed cases, t~= 0.314 x 10-5 and r;= 1.827 x 10-5

•
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computed analytically by solving Eq. (3-15) and, for Case F, t~= 1.495 X 10-5
• The

dimensioniess induction tinte t; aIso can be obtained from Figure 3.5, using Eq. (3-23).

Since no phase separation occurs until the curing point is thrust inta the unstable region,

E equals to zero from c·= 0 ta t·= r; . Significant phase separation only occurs at

cj- < c·< t;, and E increases exponentially at this period only. At te> t;, phase separation

saturates and E increases very slightly as it enters the intennediate stage.

Figure 3.6 shows plots of the extent ofphase separation E versus «(- t~) for Case

D (.), E (A), and F (e). For all three cases, D-= 2 X 106
• However, the dimensionless

reaction rate constants are K-=2 x 103
, K

e = 1 x 1O~ , and K·= 5 x 1O~ for Case D,

Case E, and Case F, respectively. Sînce t~ depends on K-, t~ 's are different for all three

cases as follows: t~ (Case D) = 3.738 x 10-4, t~ (Case E) = 7.476 x 10-5
, and t~ (Case

F) = 1.495 x 10-5
• However, the difference between ( and t~ is used for the abscissa to

see the effect of K· on c~ rather than t~. This was done sa that t~ can be obtained by

solving Eq. (3-13) analYtically but there is no analytical solution for t~. Furthennore,

because the actual phase separation time span is very small for Case ~ this coordinate is

easier to see. Figure 3.6 clearly shows that the dimensionless phase separation lag rime t~

decreases as K- increases. The dimensionless polymerization lag time t~ aIso decreases

as K- increases as shawn before. Consequently the dimensionless induction time t; is

inversely proportional to K·. The dimensionless transition time t; is also inversely

proportional to K· and after t;, phase separation saturates for ail three cases. Another

observation from Figure 3.6 is that the slope of E in the early stage is getting steeper as

K- increases. Thus, the rate ofphase separation is proportionaI to K· .

Plots of the extent ofphase separation E versus «(- l~) for the different D·'s are

shown in Figure 3.7 for Case A (e), Case D (Â), and Case G (.). For all three cases,

K-= 2 x 103
, however, the dimensionless diffusion coefficients D- are 1 x 106

,

2 X 106
, and 4 x 106 for the cases A, D, and G, respectively. The dimensioniess
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Figure 3.6 Extent of phase separation E versus (t -- t~) for Case D (_), Case E (Â), and Case

F (e). For alI three cases, D-=2 X 103
J but the dimensionless reaction rate constants

are K-= 2 x 103
, 1 x 10"', and 5 x 10"' for the cases D, E, and F, respectively.

polymerization lag time t~ '5 are the same for aIl three cases (t~= 3.738 x 10-4) because

t~ depends on K- but not on D-. Thus the variations of the dimensionJess induction

time C; in thi5 case are caused only by the variations of the dimensionless phase

separation lag time, t~. As shawn in Figure 3.7, t~ and ( decrease as D- încreases. The

values ofthe extent ofphase separation where they saturate are very similar to each other,

i.e. E:::: 0.82. Therefore, their morphological evolution is quite similar in the

intermediate stage although they have different dimensionless transition times t; '5. This

result is coincident with that ofreference [33}.

The values of t~, t;, and r; for aIl cases are listed in Table 3.L The dimensionIess

characteristic rime t; is defined as t;= 1.01 x t; to obtain the consistent phase separation

n



• data for the dynamicai and morphologicai studies. As shawn in Table 3.1, t~, r;, and r;
decrease as K- and D- ïncrease. However, t~ decreases only when K- ïncreases. The

value of D· does not affect on the value of l~ • The degree ofpolymerization ofpolymer

B at the dimensionless characteristic time NB ( 1;) increases as Ka increases, but

decreases as Da increases. Therefore, phase separation is dominantly restrained by

entanglement of Molecules at higher Ka and lower D· values. As NB increases, the

phase diagram shown in Figure 3.2 elevates to higher temperature and the upper (lower)

binodal point approaches ta the higher (lower) value. As a result, the amount of phase

separation, which is indicated by 1<1>~ - <1>~.o l, increases. Therefore, it is expected from

Table 3.1 that the amount of phase separation is proportional to Ka, but inversely

• w 0.8
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Figure 3.7. Extent of phase separation E versus (Ca - C~) for Case A (e), Case D (A), and Case

G (.). For all three cases, Ka= 2 X 103
, however, the dimensionless diffusion coefficients are

• 6 6 6D =1 x lO y 2 x 10 ,and 4 x 10 forthecases~D,andG,respectively.
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proportional to D·. However, if NB exceeds the critical degree ofpolymerization, NB~ ,

it is expected polymer Molecules to entangle each other and phase separation to be

retarded. This entanglement effeet is reflected in our goveming equatian by switching

equations from (3-9) ta (3-10). The degree of polymerization of camponent B, NB'

exceeds NB.c' only for the cases B, C, F, and J beeause we assumed that Ns.c =31.5. In

other ward, anly far the cases S, C, F, and J, the system undergoes entanglement and

phase separation simultaneously while for ather cases, phase separation already saturates

before the entanglement point.

Case t~x 105
t~x 105 t; X 105 t;x lOs NB~;)

A 37.38 3.520 40.98 41.39 15.42
B 7.476 1.469 9.022 9.112 31.78
C 1.495 0.529 1.914 1.933 88.00

0 37.38 2.480 40.00 40.40 13.62
E 7.476 0.924 8.498 8.583 19.17
F 1.495 0.314 1.827 1.845 36.72

G 37.38 1.740 3928 39.67 12.52
H 7.476 0.586 8.180 8.262 15.26
1 1.495 0.200 1.707 1.724 19.74

J 7.476 0.917 8.485 8.570 18.23
K 1.495 0.304 1.812 1.830 33.28
L 1.495 0.194 1.699 1.716 18.76

Table 3.1 ResuIts for dynamical study ofpolymerization-induced spinodal decomposition where

t~, l~, t: ' and t; denote the dimensionIess polymerization lag time, the dimension1ess phase

separation lag time, the dimensionless transition time, and the dimension1ess characteristic tîme,
respectively.
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3.4.3 Morphological AnalysÎ5 in Polymerization-induced Phase Separation

Figure 3.8 shows the dimensionless concentration spatial profiles <D~.(x- ,y-) (first

column), and patterns (second column), for Case D (first row), Case E (second row), and

Case F (third row), at the dimensionless characteristic times t;. Note that we defined the

dimensionless characteristic rime, t;, as t;= LOI x t; .For aIl three cases D-= 2 X 106
,

however, the dimensionless rate constant K-'s are: 2 x 10J, 1 x 104
, and 5 x 10"' for

Case D, Case E, and Case F, respectively. Figure 3.8 clearly shows that the average

droplet diameter decreases but the number of droplets increases as K· încreases.

Additionally, the maximum value of concentration of component A, <D~.mu' inside the

droplets increases as K- increases (for Case D, <D~.mu = 0.767, for Case E,

<1>~~.mu =0.857 , and for Case F, cI> ~.max =0.979). It is aIso observed that the sizes and

shapes of the phase-separated droplets are not perfectiy circular, and sorne elliptical1y

shaped particles are observed for all cases. This is cIearly due to the local concentration

dependent mobility, which is getting more important as phase separation continues.

Aimast perfectly circular droplets are obtained when we use the concentration dependent

mobility [33, 34] because molecules diffuse symmetrically. Figure 3.8 clear shows that

the orientation distribution of the major axis of the ellipses is broad, as it should

realistically. This is in agreement with other studies that report that the elliptically shaped

particles are observed when the concentration dependent mobility is used [84].

To perform the efficient morphological analysis neglecting any temporal variations

for the each case, we defined the reduced time as:

(3-24)

•
where t; is the dimensionless transition time from the early stage to the intermediate

stage ofspinodal decomposition. Figure 3.9 shows plots ofthe intensity ofsegregation 1

versus the reduced time T for Case D (e), Case E (Â), and Case F (.). The intensity of

segregation 1 has been defined in Eq. (3-17). Recall that 1 correspond to the tirst-order
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Figure 3.8 Dimensionless concentration spatial profiles cI>~ (x·, y-) (first column) and patterns
(second column) at the dimensionless characteristic time , for Case D (first row), Case E

(second row) and Case F (third row). As the dimensioniess rate constant K- increases, the
number ofdroplets increases while their average size decreases.
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• statistics, that is the difference of the proportion of each components9 and the scale of

segregation represents the second-order statistics, that is droplets' size or distribution in

this study. The reduced time f' gives an efficient time scale to perform morphological

studies on phase-separated textures in the presence of large phase separation temporal

ranges. Note that at the dimensionless transition time t·= r;, f' equals to 1.00, while at

the dimensioniess characteristic time t-=t;, f' equals to 1.01. As mentioned eartier, for

completely segregated state, 1 = l, and uniformly distributed state, 1 = O.

As shown in Figure 3.9, 1 increases significantly with time during the early stage

of SO (0.98 < 1: < 1.00); however, this significant growth slows down near the

dimensionless transition time f' =1.00 for all three cases. After phase separation eoters

the intennediate stage (r > 1.02)9 1 saturates at 1 ~ 0.1 for all three cases. However,

phase separation is more significantly repressed for Case F because molecules start to

entangle each other before they enter the intermediate stage. The entangiement effect of
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• Figure 3.9 Plots of the intensity of segregation 1 versus the reduced time f' for Case D (e),
Case E (~), and Case F (.)
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polymer Molecules appears dominantly in the intermediate stage. Moreover, at the

beginning of the intermediate stage (1.00 < (' < 1.02), the growth rates of 1 are

significantly different for the different K·'s, and they increase as K
e

increases. At the

dimensionless characteristic time (" = 1.01), 1 (case D) = 0.070, 1 (case E) = 0.087,

and 1 (case F) = 0.091. This can be explained as follows. The rate of changes of

concentration are significantly different for different K- 's. Therefore, it takes more time

for Case 0 (lower K-) to reach the saturated point than Case F (higher K-). In addition,

as K- increases, the degree of polymerization of polymer B at the dimensionless

characteristic time Ns( t;) increases as shown in Table 32. As a result, the amount of

phase separation and the intensity of segregation increase as K
e

increases. This result is

consistent with the observation in Figure 3.8. The Figure 3.8 shows tbat at (= l;
(r =1.01), the maximum value of concentration of component A, et>~.max' inside the

droplets increases as K- increases. As the intermediate stage proceeds, however, these

concentration ditTerences (between Cases D, E, and F) inside droplets decrease and

eventually disappear. For example, the Figure 3.9 shows that at " =1.06, 1 ::: 0.1 for ail

three cases.

Figure 3.10 illustrates plots of the scale of segregation s defined in Eq. (3-15)

versus r, for Case D (e), Case E (A), and Case F (.). Recall that s is proportional to the

average droplet size, but it is inversely proportional to the number density of the droplets

as shawn in Figure 3.1. Figure 3.10 shows that the scale of segregation s decreases as

time proceeds and as K
e

ïncreases. This is expected from Figure 3.3 and Figure 3.8.

Sïnce the random initial conditions develop initially a phase separation structure (see

patterns (a) and (b) in Figure 3.3), the dimensionless average equivalent droplet diameter

(de) and the scale of segregation s are large. As phase separation proceeds~ (de)

decreases, thus s decreases significantly dming the early phase separation stage until the

dimension1ess transition time (' = 1.0 (see patterns (c) and (d) in Figure 3.3). However,

just after r = 1.0, s increases slightly when the phase-separated structure coarsens. As

shawn in Figure 3.7, (de) decreases as K
e

mcreases. Therefore, s decreases as K·
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Figure 3.10 Scale of segregation s versus reduced time r t for Case D (e), Case E(.) and Case F
(.).

increases at all tintes during the phase separation process, as Figure 3.10 shows. The

values of s at the very early stage of SD ('" := 0.95) are significantly different for each

case, which indicates that tram the very early stage of SO, the phase-separated structures,

such as droplet size or distribution, are aIready different for each case.

Figure 3.11 illustrates the dimensionless concentration spatial profiles tt>~ (x- ,y- )

(first column) and patterns (second column) for Case A (first row), Case 0 (second row)

and Case G (third row), at the dimensionless characteristic lime t;. The dimension1ess

reaction constants K- ,s are K-=2.0 x 103 for all three cases. However, the

dimensionless diffusion coefficients are: D·= l.0 x 106 (Case A), D-= 2.0 x 106 (Case

0), and D-= 4.0 X 106 (Case G). Figure 3.11 shows that the average droplet diameter

decreases as D- increases; however, the droplet number density increases more

drastically as D- increases. As a result, the maximum value of concentration, tt>~.max'

inside the droplet and the intensity of segregation 1 decrease at the dimensionIess
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characteristic time t; as D- increases, when we compare the height orthe dimensionless

concentration spatial profiles (first column in Figure 3.. 11) and the gray level intensity of

the patterns (second column in Figure 3..11).

Plots of the intensity ofsegregation 1 as a fimction of the reduced time t' for these

cases are shown in Figure 3.12, for Case A (e), Case D (.) and Case G (.). Certainly, the

value of 1 at the dimensionless characteristic time t; (at t' = LOI) decreases as D-

increases.. The intensity of segregation 1 , which grows fast during the early phase

separation stage, slows down and saturates at the value of 1 which are very close ta each

other for all three cases. This result is due to the following reasoDS.. The intensity of

segregation 1 is proportional to the amount of phase separation, which is indicated by

1cD~ - (!)~.ol· As shawn in the Table 3.1, the degree of polymerization of polymer B at

the dimensionless characteristic time NB (t;) increases with K- , but decreases with D- .

As NB increases, the phase diagram elevates to higher temperature (see Figure 3.2), thllS

the amount of phase separation 1 <D~- <D~...ol încreases. Consequently, 1 is proportional

to N8 and K- , however it is inversely proportional ta D- .
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Figure 3.12 Intensity of segregation 1 as a fimction ofreduced time r for Case A (e), Case D
(.), and Case G (_)
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Figure 3.13 shows plots of the scale of segregation s versus reduced time , for

Case A (e), Case D (.), and Case G (.). The scale of segregation s decreases as D·

încreases. This coincides with the results shown in Figure 3.11, that the average droplet

size decreases and the droplet number density increases as D· increases. The scale of

segregation s decreases with time during the early phase separation stage; however, s

slightly increases during the intermediate phase separation stage. This growth of s is

clearly due to coarsening ofphase separated structure as shown in Figure 3.3.

Figure 3.14 illustrates plots of the scale of segregation s versus the intensity of

segregation 1 for different K- 's with constant D- (Figure 3.14 (a» and for different D·'s

with constant K· (Figure 3.14 (b». Figure 3.14 (a) represents Case D (e), Case E (À),

and Case F (_), and Figure 3.14 (h) shows Case A (e), Case 0 (A), and Case G (.). Bath

figures show that the scale of segregation s exponentially decreases as 1 increases during

the very early stage of phase separation for all cases because the initial infinitesimal

concentration fluctuations develop into the phase-separated structures during the very

early stage of SO. Therefore, the significant morphological changes only occur
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Figure 3.13 Scaie ofsegregations versus reduced time , for Case A (e), Case D (A), and Case
G(.).
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immediately after the dimensionless induction time, r; .During the early stage of SO, 1

continuously increases without any changes of s. Therefore, it is expected that the

amplitude ofconcentration increases during the early stage ofphase separation while the

wavelength or droplet size is nearly constant in this period. After entering into the

intermediate stage of phase separation, that is t-> t;, S increases slightly as 1 increases,

which indicates that during the intermediate stage of SO, both the amplitude and

wavelength of concentration increases and the phase-separated structure coarsens.

However, s and 1 eventually saturate at 1 == 0.1. Furthennore, the scale of segregation s

decreases as K- and D· increase at a constant intensity ofsegregation l.

3.4.4 Droplet Sïze and Shape Distributions

Using the intensity and scale of segregation, we can obtain comprehensive

statistical information about the intensity ofconcentration inside the droplets, the droplet

size, and number density. However, they do not give precise values of the droplet size

and shape distributions. To obtain these more accurate measures, we performed an

evaluation ofdroplet size and droplet shape distributions by computing the dimensionless

equivalent diameter ofthe nearly circular droplets, d· , and the their shape factor, SI'

The dimensionless equivalent diameter, d- , is defined as d-=( 4A 1 Ir yn where

A is the area of the nearly circular droplets, and the shape factor is defined as

Sf= 4Jr A / p2 where P is the perimeter of droplets, respectively. Figure 3.15 shows

frequency histograms for the dimensionless equivalent diameter d- (fust column) and the

shape factor Sf (second column) for Case F in Table 3.1 al the following representative

dimensionless times: t-= 1.823 x lO-s (first row), t·= 1.838 x 10-5 (second row), and

t-= 1.853 x 10-s (third row). Note that Sf represents a measure of how circular a

droplet îs. For a perfecl circle, Sf= l, wbile Sf= 0 for a line. The time variation of the

histograms shows that the phase-separated morphology evolves graduaIly from the

structure which bas a wide distribution ofdroplet sizes and shapes to the structure which
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Figure 3.15 Frequency histograms for the dimensionless equivalent diameter of the nearly

circular droplets d· (first column) and the shape factor Sf (second column) for Case F at the

following dimensionIess times: t·= 1.823 x 10-s (first row), t·= 1.838 x 10-s (second row),

and t·= 1.853 x 10-5 (third row).
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contains a dominant droplet size and shape range. The histograms of relative frequency

versus da also show that da gradually decreases with time during the early phase

separation stage. As phase separation proceeds, bigger droplets disappear while smaller

droplets appear. However, the dominant droplet size ranged 0.15 < da < 0.17 does not

change. These results are aIso supported by the patterns shawn in Figure 3.3. The

histagrams of relative frequency versus S, show that dominant shape moves from the

elliptical shape to the circular shape as lime proceeds. The histograms for S, also

indicate that no droplets are perfectIy circular, that is Sf =1. Furthermore, the elliptically

shaped particles are observed at all times during phase separation.

The simulation results for the various dimensionless parameter values are

summarized in Table 3.3 where I~;), S(t;), (d a V; )), (Sf V;)) denote the intensity 0 f

segregation, the scale of segregation, the dimensionless equivalent average diameter and

the average shape factor of the droplets, respectively, at the dimension1ess characteristic

time r;. As shown in Table 3.3, IV;) increases, but S~;) and (da{t;)) decrease as Ka

increases at constant D- . However IV;), S(t;) and (da(t;)) decrease as D- increases at

constant K- . As mentioned eartier, the intensity of segregation 1 relates to the amoWlt of

phase separation. Thus it is proportional ta the degree of polymerization of polymer B.

Sïnce the degree of polymerization of polymer B at the dimensionIess characteristic time

Ns( t;) is proportional to Ka but inversely proportional to Da , the intensity of

segregation at t; is a1so proportional to K- but inversely proportional ta D- . The scale

of segregation s is proportional to the average droplet diameter, however it is inversely

proportional to the droplet number density. Therefore, s decreases as Ka and D­

mcrease.

However, IV;) for Case C is noticeably small compared to those of other cases.

This result is clearly due to the entanglement effect govemed by Eq. (3-10). With the

higher value of Ka and the lower value of D·, the rate of molecuIar weight increase

dominates over the rate of phase separation, and molecular entanglement OCCUIS in the

early stage of phase separation. Table 3.3 also shows that the intensity ofsegregation is
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Case I( t;) x iO! S( t;) X 102 ( dO( t;) ) ( SAt;))

A 7.92 8.07 0.281 0.845
8 8.78 6.79 0.249 0.788
C 7.41 5.33 0.203 0.780

D 7.06 7.60 0.280 0.839
E 8.51 5.96 0.216 0.853
F 8.59 4.80 0.154 0.839

G 4.82 7.28 0.266 0.864
H 7.45 5.03 0.208 0.837
[ 7.60 3.47 0.154 0.748

J 10.54 6.02 NA NA
K 10.81 4.98 NA NA
L 8.93 3.84 NA NA

Table 3.3 Results for the morphological study of polymerization-induced spinodal

decomposition where l(t; ), S(l;), (d- ~; )), and (SI (t;)) denote the intensity of segregation•

the scale of segregation. the dimensionless equivalent average diameter and the average shape
factor of the droplets, respectively, at the dimensionless characteristic time t;. (NA means not

available)

more affected by polymer entanglement than the seale of segregation. This is because the

phase-separated structure is established in the very early stage of phase separation as

discussed earlier. Figure 3.16 illustrates the intensity of segregation 1 versus the

dimensionless time t· for Case F to show the effect of the switched governing equation.

The arrow indicates the critical degree of polymerization of component B NS.e' that is

the switching point from Eq. (3-9) to Eq. (3-10). Two different governing equations,

switched from Eq. (3-9) to Eq. (3-10) at Ns.c' are used for the circles and onlyone

equatio~ Eq. (3-9), is used for the triangles. Figure 3.16 clearly shows that phase

separation is restrained by Eq. (3-10), because the diffusion of Molecules is retarded due

to the entanglement ofpolymers.
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Figure 3.16 Intensity of segregation 1 as a fimction of the dimensionless time t· for Case F
where the arrow indicates the criticaI degree of polymerization of component B, NB.c. Two

goveming equations (switched from Eq. (3-9) to Eq. (3-10) at NB.c) used for circles and only

one equation (Eq. (3-9» is used for triangles. This figure clearly shows that phase separation is
restrained by entanglement ofpolymers reflected in Eq. (3-10).

3.4.5 GeDeral Goidelines for Morpbological Control in the PIPS process

•

To obtain the morphology with the smaller droplet diameter (or the narrower

spacing between the particles) and the higher number densityt the higher value of the

reaction rate constant and/or the higher value of the diffusion coefficient should be used.

The higher values of the reaction rate c~nstant and the diffusion coefficient also give a

raster processing time. Howevert the circular droplets are observed in the lower values of

K- and D· . For the morphology with the larger droplet me and the lower number

densityt on the other hand, the low values of the reaction rate constant and the diffusion

coefficient should be used.

The amount of phase separation is proportional to the dimensionless rate constant,

K- , but it is inversely proportional to the dimensionless diffusion coefficient D· . Rence

a large amount of phase separation can be obtained by using the higher value of Ka and

the lower value of D· . However, the degree of polymerization during the phase

separation process NB also increases with increasing C . Therefore, with the high value

93



•

•

•

of K· ~ the rate of increase of molecular weight dominates that of phase separation, and

the polymer entanglements would occur in the early stage ofphase separation.

3.5 Conclusions

In this chapter, simulations descnoing the PIPS process are presented when a

monomer polymerizes in the presence of a polymer. The nonlinear fourth order partial

differentiai governing equation based on the Cahn-Hilliard and Flory-Huggins tbeory for

phase separation combined with a second-order polymerization kinetic equation is solved.

The model consists of a balance equation for the low molecular weight regime and

another balance equation for the high molecular weight entangled regime to cover all the

molecular weight ranges of polymerizing component. We use the mobility that is a

function of the molecular weight and concentration of the components, to describe the

morphological evolution realistically. The MOst important aspects of the initial

concentration evolution in the PlPS process, that is the dynamical and morphological

features, are studied using useful indexes (the extent of phase separation for the

dynamicaI study, and the intensity and scale ofsegregation for the morphological study).

Depending on initial curing composition, two different types of morphology are formed:

the interconnected cylinder-type morphology and the droplet-type morphology. The

dimensionless phase separation induction time t; represents the sum ofthe dimensionless

polymerization lag time t~ and the dimensionless phase separation lag time l~ and it

decreases as the dimensionless reaction rate constant K- and the dimensionless diffusion

coefficient D· increase. The phase-separated morphology is fully characterized using the

intensity of segregation 1 and the scale of segregation s. The intensity of segregation 1

is proportional to K· , however it is inversely proportional to n· . The scale of

segregation s and the average droplet diameter decrease with increasing K- and D-. The

amount of phase separation increases as K- increases and D· decreases. With the high

value of K- t the polymer entangiements occur in the early stage of phase separation

because the degree ofpolymerization ofpolymer B NB increases with K- .
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Chapter 4

Computational Simulation of Polymerization­

induced Phase Separation under a Temperature

Gradient

Summary

Polymerization-induced phase separation (PIFS) via spinodal decomposition (50)

under a temperature gradient for the case ofa monomer polymerizing in the presence ofa

polymer is studied using high performance computational methods. An initial polymer

(A) / monomer (B) one-phase mixture, maintained under a temperature gradien~ phase­

separates and evolves as polymerization ofcomponent B and phase separation proceed to

form spatially inhomogeneous microstructures. The space-dependence of the phase­

separated structures under the temperature gradient field is detennined and characterized

using a visualization method. It is found that the droplet-type phase-separated structure is

formed in the higher temperature region as a result of the intermediate stage of SO. On

the other hand, the lamella- (interconnected cylinder) type phase-separated structure is

observed in the lower temperature region, indicating structure ofthe early stage ofSO, in

the strong (weak) temperature gradient field. The kinetics ofthe evolution ofcomposition

depends on the magnitude of the temperature gradient field. The non-uniform

morphology induced by the temperature gradient is characterized using the novel

morphologîcal techniques, known as the intensity and scale of segregation. It is round

that the signi.ticant (noticeable) non...uniform structure is formed in the strong (weak)

temperature gradient while the uniform morphology is formed at constant temperature..
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4.1 Introduction

Polymerization-induce phase separation (pIPS) is an important and practical

method for producing multi-component composite materials [9, 33, 34]. With increasing

demands and interests on multi-phase materials that have better properties and

functionality, phase separation, particularly spinodal decomposition (SO), bas been active

area of materia! science researcb. The PIPS process is a more complicated process than

the classical thermal-induced phase separation (TIPS) method because phase separation

and polymerization occur simultaneously in the PIPS method. For this reason, relatively

few theoretical [9, 33-35, 50, 82] and experimental [S, 44, 63, 74, 83] studies have been

performed on the PIPS method despite Many advantages over other phase separation

techniques.

In the PIPS process, an initial mixture is prepared in the one-phase (stable) region

and the mixture is homogeneous. When the molecular weight of the components

increases due to polymerization, the phase diagram, which has an upper critical solution

temperature (UCST) in this study, constantly shifts toward higher temperature and

concentration. As a result, the single-phase mixtw'e is thrust into the unstable or

metastable region, and phase separation OCCUIS. The polymerization-induced phase­

separated morphologies May be different depending on the initial composition and

moiecular weight. TypicaIly, in a binary polymer blend syste~ the droplet-type

morphology can be found if the volume fraction ofone phase is low (off-critical region).

If the volume fraction of the minor phase is increased until the critical point (critical

region), the interconnected cylinder-type morphology can be observed [1].

The majority of worles on phase separation has been performed in the absence of

extemal fields, such as ternperature gradient However, temperature gradients are

common during material processing and characterization experiments. RecentIy a few

studies conceming phase separation behavior under external fields such as shear flows

[52-54], electric fields [55, 56], and temperature gradients [87, 88] have heen presented.

In addition, composite materials, exhibiting inhomogeneous microstructures (or

composition) and space-dependent properties, known as functionally graded materials

(FGM) [89, 90], have received attentions because many current applications ofmaterials
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require specific bulklsurface properties. For example, a body of tuÎbine blade must be

strong, tough and creep-resistant, whereas its outer surface must be refractory and

oxidation-resistant [89]. It is expected that in the future similar space-dependent

functionality May be applied for polymeric materiaIs. FGM's are designed to take

advantage of certain desirable features of each of the constituent phases and reduce the

local concentration of stress induced by the abrupt changes in composition and

microstructure [89, 90]. The spatially graded structures are produced by severa!

constructive processes. Ho\vever, as shown here, transport-based processes, such as the

polymerized-induced phase separation method, can aIso create locally graded

microsmlctures.

Phase separation under a temperature gradient was studied by severa! authors in the

last few years [87, 88, 91-93]. Platten and Chavepeyer [91] studied experimentaIly phase

separation under a temperature gradient for a low-molar mass binary solution. Kumaki et.

al [93] aIso perfonned an experimental study of phase separation under a small

temperature gradient and they found that phase separation can be induced by the

temperature gradient even in the one-phase region because Macromolecules tend to move

toward the colder surface. Tran-Cong and Okinaka [87,88] investigated the TIFS process

of poly(2-chlorostyrene) / poly(vinyl methyl ether) (p2CSIPVME) blend under a

temperature gradient. Sînce P2CSIPVME blend bas a lower critical solution temperature

(LCST), they found that the interconnected structure is formed slowly in the high­

temperature side and the droplet-type structure is formed as a result of the late stage of

spinodaI decomposition in the low-temperature side of the gradient. Ta our knowledge,

however, no numerical study has yet been performed on polYmerization-induced phase

separation (PIFS) under a temperature gradient.

The objectives ofthis study are: (1) to develop and solve a computational model of

the PfilS process for binary composite materials under a temperature gradient, and (2) to

develop guidelines for the formation ofspatially inhomogeneous microstructures applied

to produce FGM's, using the PIPS process. We study the particular case of the PIPS

process of a monomer polymerizing in the presence of a polymer. The organization of

this cbapter is as follows. In Section 4..2, the PIPS process is descnbed theoretically using

the nonlinear Cahn-Hilliard (C-H) theory and the Floty-Huggins (F-H) theory coupled
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with a reaction kinetic equation. The numerical equation descn"bing the PIPS process

under a temperature gradient is fonnulated and solved using the computational methods.

The numerical results are presented in Section 4.3. Section 4.3.1 presents the typical tinte

evolution of the morphology under a temperature gradient field tor the different

magnitude of temperature gradient. In Section 4.3.2, the dynamicaI features of PIPS

under a temperature gradient are studied and discussed. In Section 4.3.3, the length scale

and compositionaI non-uniformity ofphase-separated structures are characterized using a

useful morphological characterization techniques, known as the scale of segregation and

the intensity ofsegregation, respectively, as a function ofpositions along the temperature

gradient. Moreover, the results of morphological analysis under the temperature gradient

are compared with those ofPIPS underconstant temperature.

4.2 Theories

In this 2-dimensional study of the PIPS process, it is assumed that a linear

temperature gradient exists along, say, the y-axis. The computational domain is a square

ofsize: 0 < x < L and 0 < y < L . Therefore, the ternperature field is given by:

(y) 'l- T.T = 2

L
ly+T;,

dT = 0
dx

(4..1-a)

(4..1-b)

•

Under the temperature gradient field given in Eq. (4..1), one of the components

(monomer), say S, undergoes polymerization while the other component, polymer A,

does not participate in this polymerization reaction.

In the PIPS method, the degree ofpolymerization ofcomponent S, NB' constantly

increases due to polymerization. The growth rate of NB can be determined by solving the

following kinetic rate equation [69]:
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• dp ( r-=k l-p
dt t

(4-2)

where p is the extent of reaction, t is time, and kt is the reaction rate constant. The

solution to Eq. (4-2) is:

(4-3)

The reaction rate constant kt depends on reaction temperature, following the Arrhenius

equation as [73]:

(4-4)

•
where Au is the collision frequency factor, Eo is the Arrhenius activation energy, and R

is the gas constant.

The expressions for the weight average molecular me X.,., in terms of functionality

of the monomer r is given by [70-72]:

x.,., = l+a
l-(,-l)a

(4-5)

where a is the branching coefficient, defined as the probability that a given functional

group of a branch unit leads to another branch unit [73]. By assuming the degree of

polymerization of component B, NB' can he represented by X.,., and applying Eq. (4.4)

for kt , the growth rate of NB can be written as:

Since kt depends on reaction temperature, following Eq. (44), NB is a function ofboth t

andy in this study.•

NB = 1 + 2kl t

1 + 2kl t -]kIt

1 + 2 (lfoexp(-Eo1RT)) t
=--~-~-~~~---~~~-~~

1 + 2 (lfoexp(-EoIRT)) t - Y (Aoexp(-EoIRT)) t

(4-6)
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• The phase separation phenomena via spinodal decomposition can be properly

descnoed by the non-linear Cahn-Hilliard equation as [21, 25, 26]:

aa~A .. v{~~ -2KV2~A]] (4-7)

where <I>.{ is the volume fraction of component A (for a binary mixture, cI>,.+ cI> B= 1),

M is mobility, f is free energy density of the system, and le is a positive interfacial

constant.

The Flory-Huggins theory is used for the bulk free energy density f in Eq. (4-7)

and is written as [29, 30]:

k T (cI> cI> )f = _B_ -_.(IncI> + _BInet> + v cI> cI>
N .( N B A. AB

v.( B

(4-8)

•
where k8 is Boltzmann constant, v is the volume of the reference unit, Nif is the degree

of polymerization of polymer ~ and Z is the temperature dependent interaction

parameter. The expression for Z in tenns oftemperature can be written as [31]:

(4-9)

•

where 'II is the dimensionless entropyand e is the theta temperature. Note that the

interaction parameter Z aIso depends on temperature, thus it is aIso a function of y, in

this study.

The mobility M in Eq. (4-7) depends on the molecuIar weight and local

concentration of the components, and, for the low moiecular weight regime, it is defined

as:

(4-10)

where ç is the friction coefficient and Ne is the critical degree of polymerization. For

the high molecular weight regime, M is defined as:
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• M = 4vNeN.{NBCf) ACf)B N>N (4-11)
ISÇ(N~+N; XNACl> A+NB<1> B)' t

where Ne is the number of monomer units between entanglements. The full derivations

of Eqs. (4-10) and (4-11) are presented in Chapter 2~ Section 2.2.2. Lastly, the moiecular

dependent interfacial parameter K in Eq. (4-7) is written as (33~ 34]:

(4-12)

where /Co the interfacial parameter for a linear polymer.

The dimensionless governiLg equation describing the polymerization process can he

obtained from Eq. (4-6). When we introduce the dimensionless collision frequency factor

as A"= AoL~Ç/2KoV and the dimensionless activation energy as E" = Eo/RS, Eq. (4-6)

can he expressed in the dimensionless fonn as:

•
(4-13)

•

where ;c" =;c / L, y" = y / L t (= 2Kovt / L4ç t and r" = T1S. The superscripted

asterisks denote dimensionless variables.

The detailed expressions for the goveming equation descnoing the phase separation

phenomena are given in Sections 2.3 and 3.2 where the dimensionless diffusion

coefficient is defined as D" =ksSL! / 2VKo. The goveming equation for the phase

separation process and the boundary and initial conditions used in Chapter 3 are also used

in this study.. However~ the dimensionless temperature r", the Flory-Huggins interaction

parameter z, and the degree of polymerization of component B in the goveming

equation for the polymerization process are variables along the spatial direction y" under

the temperature gradient, as given in Eq. (4-1), Eq.. (4-9), and Eq. (4-13), respectively.

The goveming equation descnoing the polymerization process given in Eq.. (4-13)

is the dimensionless algebraic equation and it can be solved analyticaIly.. Howevert the

goveming equation for the phase separation process bas ta be solved numerically for

([l~ (x", y" t t") using sets of natural and zero mass flux boundary conditions and initial
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conditions, reflecting the infinitesimal thermal concentration fluctuations presented

initially. Hence, the numerical computation is carried in the 2-dimensional geometry

(0 < x-< 1, a< y-< 1), assuming only one of the components, B, in a binary mixture,

undergoes polymerization while the degree of polymerization of the component A

remains constant (N..t = lOO), under the temperature gradient. The dependent variables

are cI> ~4 and NB' and the independent variables are x- , y- , and t -. The parameters are

the dimensionless diffusion coefficient D-, the dimensionless collision frequency factor

A-, the dimensionless activation energy E-, the dimensionless initial average

concentration <1> ~.o, the dimensionless temperature at y-=0, 1;.-, and at y-= 1, r;, and

Parameter Value

D- 2.0 x 106

A- 2.0 X 107

E- lO

CI>- 0.2
.4.0

\fi 1

e 273

NA. 100

r.- 1.500
1

Tz-: CaseA 1.510

CaseB 1.502
Casee 1.500

Table 4.1 Parameter values used in fuis study. D- is the dimensionless diffusion coefficient, A­
is the dimensionless collision frequency factor, E- is the dimensionless activation energy, e is

theta temperature, <1> ~.o is the dimensionless initial average concentration" '1' is dimensionless

entropy, and 7;- and r; are the lower and higher dimensionless temperature, respectively. Three
different temperature gradient fields are examined: Case A (high temperature gradient), Case B
(Iow ternperature gradient), and Case C (constant temperature)
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the Flory-Huggins interaction parametery Z. The parameter values used in this study are

listed in Table 4.1. The three different cases for the different magnitude of the

temperature gradient are studie~ Le. the strong and weak temperature gradient, and

constant temperature, as shown in Table 4.1.

In the previous study (see Cbapters 2 and 3), we used two different governing

equations for phase separation depending on the molecular weight regime of component

B, and assumed that the critical degree of polymerization Nt: is 31.5. However, in this

study, the degree of polymerization of component B never exceeds the critical value.

Therefore, only the goveming equation for the low molecular weight regime is used.

4.3 Result and Discussion

4.3.1 Typical Pbase-Separated Structures and Patterns of PIPS under a

Temperature Gradient.

Figure 4.1 shows plots of 1/ oZ versus cI>: for Case A at the lowest temperature

side (~. =1.50) and the highest temperature side (1;. =1.S1), at the dimensionless times

of t· =2.039 x 10-s and l- =2.091 x 10-s . The long and short dashed lines represent the

binodal and spinodallinesy respectively, at Ta-, and the solid and dotted lines denote the

binodal and spinodal lines, respectively, at r;. The blank. and filled circles represent

curing temperature, r..- and T2-, respectively. The arrow indicates the phase diagram

changes with increasing molecuIar weight ofcomponent B. Sïnce NA =100 and NB =1

at c- =0, and everywhere in the system, the lower temperature side is located closer to

the initial binodal line. However? as polymerization proceedsy the molecular weight of

component B increases raster in the high-temperature region than the low-temperature

region because the dimensionless reaction rate constant K· is proportional to temperature

followmg the Arrhenius equation shawn in Eq. (44). As a result, for Case~ the curing
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6

5

r; =1.51

~. =1.50

1.00.80.60.40.2
4"----.....---.....-----'----.....---...
0.0

• Figure 4.1 Phase diagrams of 1/ Z versus et>.f computed based on the Flory-Huggins equation

(Eq. (4-7) for Case A in Table 4.1, where Z is the FIory-Huggins interaction parameter and <I> ~f

is dimensionless concentration of polymer A. The long and short dashed lines represent the
binodal and spinodal lines, respectively, at the lowest temperature (~.). The solid and dotted

lines denote the ~inodal and spinodal lines, respectively, at the highest temperature (r;). The

blanle and filled circles represent the curing temperature, ~. and r; ,respectively.

•

point at the higher temperature side is thmst into the unstable region earlier and phase

separation occurs first in the high-temperature region.

Figure 4.2 shows the dimensioniess concentration spatial profile, <I>~ ( x·, y.),
(first column) and patterns (second column) fonned during phase separation for Case A

in Table 4.1 at the following representative dimensionless times: (a) ( = 2.531 x 10-s , (h)

t- =2.570 x 10-5
, and (c) t· =2.598xlO-s . Omer regions represent polymer A rich

regions while brighter regions are polymer B rich regions. The temperature gradient

exists aIong the y. -axis and the temperature at y.= 0 (~.=1.50) is lower than the

temperature at y.= 1 (T;= 1.51). Because we assume that the mixture has an upper
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Figure 42 Dinlensionless concentration spatial profiles <I>~(x· t y-) (first column) and patterns
(second column) formed during the phase separation phenomena under a temperature gradient for
Case A.

lOS



•

•

•

critical solution temperature (UCST), the lower temperature side is closer to the unstable

region of the phase diagram than the higher temperature side, as shown in Figure 4.1.

However, Figure 4.2 clearly shows that phase separation occurs earlier and more

drastically in the high-temperature region. This is obviously due ta the different values of

the dimensionless reaction rate constants, K-, along the direction of the temperature

gradient. Since the dimensionIess reaction rate constant K- is proportional to reaction

temperature according to Eq. (4-4), the phase diagram elevates more rapicily in the high­

temperature region as shown in Figure 4.1. As a result, in the high-temperature region,

phase separation occurs more significantly, and the droplet-type morphology fonns and

evolves. Moreover pattern (c) indicates that the phase separation phenomena already

reaches to the intennediate stage of phase separation in the high-temperature region. It is

noted that phase separation occurs exponentially and the significant phase-separated

structure is established during the early stage ofphase separation. Phase separation slows

down in the intennediate stage as shown in Chapter 3.

In Figure 4.2, the arrows indicate the locations of the front y;, detined as the

boundary between the phase-separated region and the region in which no phase

separation occurs. The location of the front y; constantly propagates toward the low-

temperature region, leaving the higb·temperature region bebind, as phase separation

proceeds. In the high-temperature region far away from y;, y. > y~, phase separation

occurs more significantly. On the other han~ in the low temperature region, y. < y; t no

phase separation takes place until the front line passes, and in the region near y;,
y. ~ y; t phase separation occurs slowly. For the strong temperature gradient field, the

propagation of the front tine is slow. As a resuI4 a (amelIa-type of phase-separated

structure parallel to the x· -axis forms in the low-temperature region..

The droplet-type of phase-separated structure indicates that the curing point at the

higher temperature side remains in the off-critical region during the polymerization and

phase separation process. As phase separation and polymerization proceed, the lamelIa­

type structures slowly break up during the phase separation process to fonn the droplet­

type structure (see Figure 4.4 for constant temperature). Thus in general a composite
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structure oflamella and draplet morphologies can be obtained by the PIPS method under

the strong temperature gradients.

Figure 4.3 represents the dimensionless concentration spatial profiles ~: ( x· t Y· )

(fust column) and patterns (second column) formed during the phase separation

phenomena for Case B in Table 4.1, at the following dimensionless times: (a)

t· =2.590 x 10-5
, (h) t· =2.610 X 10-5

, and (c) t· =2.615 x 10-5
• A temperature gradient

exists alang the y. -axis and the temperature at y. = 0 (T; =1.500) is lower than the

temperature at y. =1 (r; =1.502). Since the temperature gradient for this case is

weaker than that for Case ~ the front Une shawn in Figure 4.2 propagates toward the

low-temperature region much faster than Case A. As a result, the initial one-phase

mixture phase-separates and the initial concentration evolves aImost simultaneousIy.

However, the weak temperature gradient aIse induces the spatially different

morphologies (the droplet-type phase-separated structures in the high-temperature region

and the highly interconnected cylinder-type morphology in the lower temperature region)

in this case, indicating different temporal ranges ofphase separation. The interconnected

cylinder-type structure aIso breaks up (see pattern (c» to rorm the droplet-type

morphology. Consequently, both for Case A and Case B, the spatially graded structures

from the lameIla- (interconnected cylinder) type to the droplet-type morphology are

obtained under the temperature gradient

The dimensionless concentration spatial profiles ct>~ (x· ,y.) (first column) and

patterns (second column) for constant temperature (Case C in Table 4.1) are presented in

Figure 4.4, at the following dimensionless times: (a) t· = 2.610 X 10-5 (b)

t· =2.617 x 10-5
, and (c) t· =2.640 x 10-5

• Compared to Case A (Figure 4.2) and B

(Figure 4.3), the initial mixture phase-separates and evolves independently on the

position during the polymerization and phase separation process. At the early stage of

phase separation, the random initial condition develops into an interconnected cylinder­

type structure because the initial curing point is Iocated in the critical region al given

concentration and temperature, as shown in Figure 4.1. As polymerization proceeds, the

phase diagram shown in Figure 4.1 shifts toward higher temperature and concentration

region, and the curing point moves offthe critical region into the off-critical region. As a
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Figure 4.3 Dimensionless concentration spatial profiles <Il~(x· ,y.) (first colwnn) and patterns

(second co[umn) formed during the phase separation phenomena under a temperature gradient for
Case B.
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•
Figure 4.4 Dimensionless concentration spatial profiles <1>~ (x· ,y.) (first column) and patterns
(second colunm) formed during the phase separation phenomena for Case C (constant
temperature).
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result., the early phase-separated structure similar to the interconnected cylinder-type

develops into the droplet-type structure.

4.3.2 Dynamical Features of PIPS under a Temperature Gradient

It is known that a dimensionless induction time t; exists in the PIPS process and

that significant phase separation only OCCUIS at t· > ( [33, 34]. As shown in Chapter 3,

the dimensionless induction time r; can be represented by the sum of the dimensionless

polymerization lag time t; and the dimensionless phase separation lag lime t~ as

t j• = 1; + t~. The dimensionless polymerization lag time 1; represents the time it takes

for the spinodal line to cross the initial curing point and the dimension1ess phase

separation lag time t~ is rime required for the system to begin phase separation once it

has been placed in the unstable region [33, 34]. The dimensionless polymerization lag

time t~, the dimensionless phase separation lag time l~, and the dimensionless induction

time r; for Case A, S, and C are listed in Table 4.2.

In this chapter, simulations are performed ooly for the early stage of phase

separation because of numerical limitations. When the interconnected-cylinder type of

structure breaks up in pattern (c) in Figure 4.2 and 4.3, rapid variation of the integrand

occurs at the pinching points. The time step Mi for stable integration must he less than

the smallest time scale of the problem. The smallest time scale becomes infinitesimally

small with rapid variation of the relaxation velocities iJ<b~41 a( al the pinching points,

thus limiting the ability of the computational scheme to capture fast and small temporal

scale procedures. However, the dominant morphological inhomogeneities depend on the

location along the temperature gradient can be found in the very early stage of phase

separation. Thus, these computational limitations do not preclude visualization of the

main morphological transformations in the PIPS process.

Table 4.2 shows that all the dimensionless kinetie values, t;, t~, and r; ,decrease

as the magnitude ofthe lemperature gradient increa8es and the highest temperature in the
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Case t; x lOs t~ X 105 r; X 105

A 2.039 0.489 2.528

B 2.080 0.505 2.585

C 2.090 0.516 2.606

Table 4.2 Results for dynamical study ofpolymerization-induced phase separation where t~ t t~ t

and r; denote the dimensioniess polymerization lag time, the dimensioniess phase separation lag

time, and the dimensionless induction time, respectively.

system Tz• increases. As discussed in Chapter 3, the dimensionless polymerization lag

time l~ decreases with increasing K·, and the dimension1ess phase separation lag time

t~ is inversely proportional to both the dimension1ess diffusion coefficient D· and the

dimensioniess rate constant K· . Since the dimensionless rate constant K· is proportional

to temperature, phase separation occurs eartier in the strong temperature gradient field in

this study.

4.3.3 CharacterizatioDs orthe Noo-Uoiform Phase-Separated Structures

The state of the phase-separated mixture can be fully characterized by measuring

two values: 'the intensity of segregation' and 'the scaie of segregation' [86]. The

intensity ofsegregation 1 represents the compositional difference orthe each component

and it is defined as the ratio of the measured variance to the variance of a completely

segregated system as:

• (4-14)
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• where N' is the total number of concentration taken, <1>~,i is the dimensionless

concentration of the various points in the sample, and <D:.0 is the dimensionless average

concentration. Note that for completely segregated state, 1 = l , and uniformly distributed

state, 1 = O.

The scale of segregation s represents the length scale of segregated structures and

their distributions. The scale of segregation s is defined as the integral of the certain

function of correlation, known as the coefficient ofcorrelation R(r), and R(r) is defined

as:

(4-15)

•

•

where <D',.,; and cE> ~.,; are concentrations at two points at a distance of r from each other,

N" is the total number ofcouples ofconcentrations taken, and S is the variance which is

calculated from the concentrations at all points. Sïmilarly, for a perfect correlation

between the two phases, s =ç where ç represents the value of r at which R{ç) =0, and

for no correlation between the {WO phases, s =o. The detailed explanations for 1 and s

are given in Chapter 3, Section 3.3.

Figure 4.5 shows the intensity of segregation 1 as a fimction of y. for Case A

(e, -), Case B (.,.-- ) and Case C (., -_.) at the following characteristic times: (a)

t· - lj· =0.019, (b) t· - ( =0.026, and (c) t· - t; =0.040. In Figure 4.5, the intensity of

segregation 1 is calculated individually for the particular region along the temperature

gradient. [n addition, to eliminate the differences of the dimensionless induction time r;
due to the temperature gradient for each case, t· - r; is used for the characteristic time.

Note that Case A and Case B are under the strong and weak temperature gradient field,

respectively, while Case C is maintained at constant temperature. For all three cases, the

intensity of segregation 1 increases with time. However, the time variations of 1 are

significantly different for each case. For Case A, near the low-temperature side (between

y. =0 and the front y;), 1 =0, since no phase separation OCCUIS. On the other band, at
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the high-temperature side (y. =1), the value of 1 is considerably high because phase

separation occurs significantly in the high-temperature region during the early stage of

phase separation. 1t is also observed that the location of the front y; propagates slowly

toward the low-temperature side y. =o. In Figure 4.5 (c), phase separation slows down

in the high-temperature region, indicating the intermediate stage while phase separation

starts to occur in the vicinity of the front. Consequently, the highly position-dependent

microstructure forros in the strong temperature gradient field.

Plots of the intensity of segregation for Case B clearly shows that the non-unîform

structure forms during the phase separation process in the weak temperature gradient

field. As expected, the value of1 in the high...temperature side is much higher than that in

the low-temperature side. The slopes ofplots for Case B are considerably steep compared

to those for Case C. Figure 4.5 aIso shows that the phase-separated morphology evolves

uniformly for Case C, and aImost same values of1are observed in everywhere.

Plots of the seale of segregation s as a funetion of y- are shawn in Figure 4.6 for

Case A (.,-), Case B (.~~..), and Case C (~_.) at the following characteristic times: (a)

t- -c; =0.019, (b) t- -Ci- =0.026, and (c) (-1; =0.040. The scale of segregation s
decreases as phase separation proceeds for all three cases. Figure 4.6 aIso shows that the

highly inhomogeneous microstructure forms during the phase separation process for Case

A. In the high-temperature region, the value ofs is low, indicating that the droplet...type

morphology forms as a result of the intennediate stage of phase separation. On the other

hand, the morphology in the low...temperature region is the high1y Iumped lamella-type

structure, and the value ofs is higb.

In the weak temperature gradient field, as shawn in plots for Case B, the phase...

separated particle me is different along the gradient Since the value of s in the high...

temperature region is slightly lower than that in the low-temperature region, it is expected

that the small draplet-type morphology forms in the high-temperature region and the

interconnected phase...separated structure develops in the low-temperature region.

However, for Case C, the phase...separated morphology evolves uniformly everywhere,

and the space-independent droplet-type morphology fanns.
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Figure 4.5 Plots of the intensity of segregation 1 as a function of the position alang the

temperature gradient y. for Case A (e, -), Case B (~-), and Case C (11,--) at the following

characteristic times: (a) t· -( =O.019,(b) t· -t; =O.026,and(c) (-t; =0.040.
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In conclusio~ the space-dependent morphologies, showing different particle size

and shape, are obtained by the PIPS process under the temperature gradient. Sïnce the

mechanical and optical properties of multi-component composite material depend on the

phase-separated morpho10gy, it is expected that the presented numerical results can he

applied to fahricate multi-component polymers with gradOO properties, and, in particular,

FGM with different skinlcore properties. As general guidelines, it can be stated that the

strong temperature gradient field should he applied for broad distributions ofparticle size

and the highly inhomogeneous microstructures. However, the position-dependent

structures with considerably inhomogeneous particle size and shape can he a1so produced

in the weak temperature gradient field.

4.4 Conclusions

This chapter presents the computational modeling of polymerization induced phase

separation (PIPS) process under a temperature gradient. The time evolution of

morphology under a temperature gradient descnlles how the initial homogeneous mixture

evolves and phase-separates during the phase separation and polymerization process to

eventually form a spatially inhomogeneous microstructure. The droplet type morphology

(in the high-temperature region) and the lamella type morphology (in the low temperature

regioo) are obtained in the strong temperature gradient field. The location of the front

propagates toward the low-temperature side, leaving the high-temperature region behind.

ln the region far from the front (high-temperature side) phase separation occurs much

earlier and more significantly while 00 phase separation takes place ahead of the front

line (low-temperature region). On the other hand, the droplet and interconnected cylinder

type structure is found in the weak temperature gradient field.

The kinetic measures of the PIPS process under a temperature gradient, snch as the

dimensionless polymerization lag time, the dimensionless phase separation Iag time, and

the dimensioniess induction time, decrease as the highest temperature in the system

increases due to the increasing reaction rate constant.
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Lastly, the time variations of the intensity and scale ofsegregation as a function of

the location along the temperamre gradient, also indicate that the phase-separated

structure evolves non-uniformly along the gradient. Under a temperature gradient field,

the intensity and scale of segregation change more significantly in the high-temperature

side than in the Iow-temperature side. However~ the variations of the intensity and scale

ofsegregation are uniformed at constant temperature.

In conclusio~ to design FGM (functionally graded materials) with composite

lamella-droplet morphologies, these simulations show that the temperature gradient

should he greater than a critical value, so that front propagation behavior sets in. In this

case, a droplet morphology forms in the hotter region while a lamelia morphology with

unit nonnai parallei to the temperature gradient forms in the cooler region. These results

provide useful guidelines in the manufacturing ofFGM's by the PIPS method.
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Chapter 5

Conclusions and Recommendations

This thesis presents a detailed theoretical and computational study of

polyrnerization-induced phase separation (PIPS) method, which is an industrial process

for multi-phase material production. In particular, this thesis bas been mainly devoted to

the industrially relevant PIPS process, consisting of a monomer polymerizing in the

presence of a polymer. This study bas been performed based on the following two main

objectives: (1) the numerical and theoretical study of the PIFS process and (2) the

numerical and theoretical study of the PIPS process under a ternperature gradient. The

first section of this chapter gives the conclusions to this thesis and the second section

presents recommendations on further work.

5.1 Conclusions

The characterization and analysis of the main dynamical and morphological

features, that are predicted to arise during the PIPS process, can be summarized as

foUows. (1) The rime evolution of morphology exhtbits the interconnected phase­

separated structure in the critical region and the droplet-type morphology in the off­

critical region. (2) Phase separation occurs exponentially during the early stage ofphase

separation but eventually slows down in the intermediate stage of phase separation. (3)

The time and length scales of the phase-separated structure strongly depend on the

dimensionless diffusion coefficient D- and the dimensionless reaction rate constant K- .

Specifically, in dynamicaI analysis, as D- and K- increase, the dimensionless induction

time t; and the dimensionless transition time ( decrease. With respect to the

morphological analysis, the intensity of segregation l, that represents the difference of
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the concentration of each component, increases as K- increases but decreases as D­

ïncreases. The scaIe of segregation s, that represents the droplet size and distribution,

decreases as K- and De increase. The average dimensionless droplet diameter (de) aIso

decreases as K· and De increase. In addition, droplet number density is proportional ta

K
e

and D-. Lastly, (4) phase separation slows down drastically in the high molecular

weight region (above the critical point Ne) because it is restrained by topological

constraints, that is the entanglement ofpolymers.

The simulation results of the PIPS process under a temperature gradient have shown

the following results. (1) The time evolution of morphology exhtoits a spatially

inhomogeneous phase-separated structure depending on the location along the

temperature gradient. In the strong temperature gradient field~ the droplet-type

morphology is observed in the high-temperature region and the lamelIa-type morphology

forms in the low-temperature region. On the other hand, in the weak temperature gradient

field, the droplet-type morphology is round in the high-temperature region and the

interconnected cylinder-type phase-separated structure forms in the Iow temperature

region. (2) The dynamicaI indices of the PIPS process under a temperature gradient, such

as the dimensionless polymerization lag time~ the dimensionless phase separation lag

time, and the dimensionless induction time, decrease as temperature in the system

increases. (3) As phase separation and polymerization proceed, the intensity of

segregation 1 increases and the scale of segregation s decreases more significantly in the

high-temperature region than the low-temperature region under a temperature gradient,

showing broad distribution of particle size and shape, while 1 and s change unifonn1y

under a constant temperature.

The presented simulation results replicate reported experimental observations on the

polymerization-induced phase separation (pIPS) method of forming the binary

component composite materia! and on the phase separation method under a temperature

gradient, and serve as useful guidelines for the optirnization and control of

microstructures in functionally graded polymer malerial systems.
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S.2 RecommendatioDs

The following recommendations are suggested for further work in the subject area

ofthis thesis:

(1) The numerical model used in this thesis bas been formulateà assuming that the

mixture is binary and polymer component is monodispersed. However, for more

realistic situation, the ternary mixture and polydispersed molecular weight

distribution have to be considered.

(2) Using the ternary component system~ the numerical model for a more complex

morphology, such as "phase within a phase within a phase", bas to be developed and

solved.

(3) The numerical model describing the polymerization-induced phase separation

(pIPS) process under the shear flow bas ta be fonnulated and solved.
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