
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly trom the original or copy submitted. Thus. some thesis and

dissertation copies are in typewriter face, while others may be trom any type of

computer printer.

The quality of thia reproduction la depend.nt upon the quallty of the

copy aubmitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had ta be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left...hand corner and continuing

trom left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

8QO...S21-0600

•

•

TRIE rvIETHüDS FOR STRUCTURED DATA ON

SECONDA.RY STORAGE

by

XIAOY:4N ZHAO

School of Computer Science

~IcGill University

~[ontréal. Québec

Canada

October 2000

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

OF wlCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

Copyright © 2000 by XIAOYAN ZHAO

1"'1 National Library
of Canada

Acquisitions and
Bibliographie seNÎCeS

385 welinglon Str••
Ottawa ON K1A QN.t
c.nadII

BibüoIhèque nationale
du Canada

Acquisitions et
seMees bibliographiques

395. rue Wellington
oa... ON K1A 0N4
CaNda

The author bas granted a non
exclusive licence alloWÏDg the
National Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microfo~
paper or elecuonic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts trom it
may he printed or otherwise
reproduced without the author's
permJSSlon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-69955-2

Canadl

•

•

Abstract

This thesis presents trie organizations for one-dimensional and rnultidimensional struc

tured data on secondary storage. The new trie structures have several distinctive fea

tures: (1) they provide significant storage compression by sharing cornillon paths near

the root: (2) they are partitioned into pages and are suitable for secondary storage:

(3) they are capable of dynamic insertions and deletions of records: (4) they support

efficient rnultidimensional variable-resolution queries by storing the most significant

bits near the root.

\Ye apply the trie structures to indexing, storing and querying structured data on

secondary storage. \Ve are interested in the storage compactness~ the 1/0 efficiency.

the order-preserving properties. the general orthogonal range queries and the exact

rnatch queries for very large files and databascs. \Ve also apply the trie structures to

relational joins (set operations).

\'\te compare trie structures to various data structures on secondary storage: mul

tipaging and grid files in the direct access method category, R-trees/R*-trees and

X-trees in the logarithmic access cast category~ as weIl as sorne representative join al

gorithrTIs for performing join operations. Our results show that range queries by trie

nlethod are superior to these competitors in search cost when queries return more

than a fe\\" records and are competitive to direct access methods for exact match

queries. Furthermore. as the trie structure compresses data. it is the winner in terms

of storage compared ta aIl other methods mentioned above.

\Ve also present a new tidy function for order-preserving key-to-address transfor

mation. Our tidy function is easy ta construct and cheaper in access time and storage

cast compared to its closest competitor.

ii

•

•

Résumé
Cette thèse prèsente des structures de trie pour des données unidimensionnelles et multidi

mensionnelles sur la mémoire secondaire. Les nouvelles structures de trie ont plusieurs dis

positifs distincts: (1) elles fournissent la compression significative de données en partageant

les voies d'accès communes près de la racine de disque; (2) elles sont divisées en pages

et conviennent pour la mémoire secondaire; (3) elles permettent des mises en place et des

suppressions dynalniques des enregistrements; (4) elles supportent des requêtes multidimen

sionnelles efficaces de résolution variable en enregistrant les bits les plus significatifs près de

la racine.

Nous avons appliqués les structures de trie à l'indexation, l'enregistrement et la sélection

des données structurées sur la mémoire secondaire. Nous sommes intéressés à la com

pacticité de mémoire. refficacité de EjS, les propriétés de conserver l'ordre, les requêtes

orthogonales générales et les requêtes exactes pour les fichiers et les bases de données

très grands. Nous avons utilisées également les structures de trie à l'apparenté de joint

(opérations de pair).

Nous avons comparés des structures de trie aux autres diverses structures de données

sur la mémoire secondaire: multipaging et grille classé dans la catégorie de méthode acces

directe. le R-arbres jR*-arbres et les X-arbres dans la catégorie logarithmique de coût

d'accès, ainsi que des algorithmes représentatifs pour exécuter des opérations de liens. Nos

résultats prouvent que les requêtes d'intervalle par la méthode de tric sont supérieures à

tous les ses concurrents sur le coût de recherche quand des requêtes retournant plus que

seulement quelques enregistrements et sont concurrentielles aux méthodes d'accès direct

pour des requêtes de recherches exactes. De plus, car la structure de trie comprime des

données, elle est gagnante en termes de mémoire comparant à toutes autres méthodes

mentionnées ci-dessus.

Nous présentons aussi une nouvelle fonction ("tidy function") pour des transforma

tions clé-à-adressons avec l'ordre-préservé. Notre fonction ""tidy" est facile à construire et

peu coûteuse en temps d'accès et coût d'entreposage comparatovement à ses plus proches

compétiteurs.

iii

•

•

Acknowledgements
First and foremost, I would like to express my gratitude to my supervisor, Professor

Tim :\Ierrett, whose support and encouragement were indispensable throughout my

doctoral program. He contributed a great deal of his time, effort and thought ta the

work presented in this dissertation; Professor ~'1errett has shown dedication to his

students and his profession. During the years of my study in the program, 1 also

received his constant financial support, without which it would be impossible for me

to complete this program.

1 am grateful ta the School of Computer Science and IRIS for their financial

support, and to my thesis committee members. Thanks [nust also go to :\[s. Franca

Cianci, :\[s. Vicki Keirl.)"Is. Teresa De .-\ngelis and ail the secretaries for their patience

and readiness to provide administrative help, as weil as aIl systems staff for their

technical assistance.

1 wish to thank aH my friends during my years at :\'!cGill and ~'[ontréal for the

joy and fun we shared. Special mention should be made of :\[engxuan Zhuang, Jian

\Vang, Qin Huang, ~an Yang, Helen Qiao, \Vei Gu, Xiaochen Zhang, Xinming Tian.

Yanmei Zhang. and Song Hu.

Special thanks to Dr. Bill Dykshoorn, who did a great job of proofreading to get

the writing iota shape.

Thanks must also go to my dear parents and my brother for their love and constant

support.

Finally, 1 would like ta send a special note of appreciation to my husband, Ping

Zhang, for his constant understanding and support, and for the love and joy we share.

iv

•

•

Contents

.\bstract ii

.\cknowledgements IV

1 Introduction 1

1.1 ~Ioti\"ation . l

1.2 Originality . 3

1.3 Glossary of Symbols 4

lA Thesis Outline . 4

2 Trie Structures 6

2.1 Trie ~Iethods 6

2.2 Trie Properties 9

2.3 Trie Applications 10

2.3.1 Prefix searching . 10

2.3.2 Text Searching 10

2.3.3 Spatial Data Representation 12

2.3.-1 Other .-\pplications 13

2.-1 Trie Representations and .\lgorithms 14

2A.1 Tabular Forms 14

2A.2 Linked Lists . 15

2.-1.3 Other Representations 16
.) - Trie Refinements 18_.ù

2..j.l LC-tries 18

v

•

.-

2.5.2 Hybrid Tries and Trie Hashing.

2.5.3 FuTrie, OrTrie and PaTrie on Secondary Storage

2.6 DyOrTrie. a Refinement of the OrTrie for Dynamic Data

3 Related Work

3.1 One-dimensional File Structures

3.1.1 Hash Functions

3.1.2 Tidy Functions

:3.2 \Iultikey File Structures

3.2.1 Direct Access)'1ethods

3.2.2 Logarithmic Access)'1ethods .

3.3 Join Algorithms .

3.3.1 General Reyiew

3.3.2 Sorne Representati\'e .loin Aigorithnls .

3.3.3 Sort-)'Ierge Join (S)'IJ) .

3.3...t Stack Oriented FUter Technique (SOFT)

3.3.5 .loin by Fragment (.JF) .

3.3.6 DistributÏ\'e .loin (DJ) .

3.3.7 Bucket Skip)'Ierge .Join (BS)'1.1) .

3.3.8 Duplicate join-attribute \'alues .

:3...t Surnmary .

4 Tidy Functions

4.1 Piece-wise Linear Tidy Functions .

4.2 Heuristic Construction .-\lgorithms with ~1inimal Oyerflow

4.3 Search Aigorithms

4...t Experimental Results

-1.-1.1 Construction

4...t.2 Storage ..

4.-1.3 Searching

4.5 Summary

18

20

23

32

32

32

33

35

35

38

-13

-13

-1.)

-15

-16

-16

-18

49

50

50

51

51

5-1

59

61

61

63

63

65

• 5 Tries for One Dimensional Queries

5.1 Tries as Tidy Functions.

5.2 Experimental Comparisons with Tidy Functions

5.2.1 Storage

5.2.2 Searching

5.3 Sumnlary

6 Tries for Multidimensional Queries

6.1 Variable Resolution Queries . . .

6.1.1 Exact ~latch Queries . . .

6.1.2 Orthogonal Range Query .

6.2 Experimental Comparisons \Vith ~lultikey File Structures .

6.2.1 Costs.....................

6.2.2 Data File and .-\lgorithm Implernentation .

6.2.3 Parameters .

6.2A Speed versus File Size

6.2.5 Speed versus Selectivity

6.2.6 Speed versus Dimension

6.2.7 Speed and Storage Cost versus Data Distribution

6.2.8 Data Compression versus Storage Oyerhead

6.3 Sumnlary .

66

66

67

67

68

70

71

71
-.),-
74

78

78

80

81

81

8-1

87

89

95

96

7 Relational Joins by Tries 98

7.1 .Join .-\lgorithms by Tries. 99

7.2 Comparisons of TJ with Existing Join .-\lgorithms 106

7.2.1 Best and \Vorst Case .-\nalysis of T.L ~IJ and BS;\IJ Algorithms 106

7.2.2 Experimental Comparisons . 108

7.3 Discussions and Conclusions 112

•

8 Conclusion

8.1 Contributions

8.2 Future Research ..

vii

114

114

117

•

•

Bibliography

Appendix 1. Brief History of Trie Structures

viii

119

136

•

•

List of Tables

2.1 Tabular Forrnat of a Binary Trie. 1-1

2.2 Data Structure for FuTrie 20

2.3 Data Structure for OrTrie 21

2.-1 Data Structure for PaTrie 21
.) - Data Structure for Paged OrTrie 23_ •.J

2.6 Data Structure for Dynamic Paged OrTrie .)-_.J

ï.1 And Operation of Two nodes in ~atural Joins by Tries 102
- .) :\Iatching Two :'\odes in Xatural Joins by Tries 1021.-

ï.3 :\Iatching Two ~odes in Lnion .loin of Tries 10-1

ï.-1 :\Iatching Two ~odes in Symmetric Difference .loin of Tries. 104

ï.5 :\Iatching Two :\odes in Difference .loin of Tries 104

ï.6 Best and \\·orst Case Cost Summary for .loin :\'Iethods 108

LX

•
List of Figures

•

2.1

2.2

2.3

2.4

2.6
.) -_.1

2.8

2.9

2.10

2.11

3.1

3.2

3.3

3.4

3.5

·1.1

-1.2

-1.3

4.4

-l.5

·l.6

-l.T

Trie Structures

8inary Tries . .

Linked List Representations of Tries.

A Compressed Trie .

A Bitstring Representation of Trie.

Le-trie .

Construction of Bucket Tries for Trie Hashing

Paged Tries

Insertion Key 1010 to Paged Trie

Paged Trie Insertion Algorithm .

Paged Trie Deletion Algorithm. .

Grid Directory in T",o Dimensions

~Iultipaging in Two Dimensions . .

Rectangles Organized to Form an R-tree Structure.

Example of X-tree Structure

Three Join ~Iethods for Data Set Rand S

A Distribution Function and a I-piece Line Tidy Function

Forming a Bounding Parallelogram in Tidy Function Construction

Finding p Segments of Zero Curvature: First Steps

A Tidy Function with 10 Linear Pieces

Tidy Function Construction Algorithm

Searching and '~Collision Resolution~l for Tidy Function

Number of Passes of Pagekey File to Build p Lincar Pieces

x

8

16

17

17

18

19

23

24

26

29

36

37

39

-lI

-l7

56

57

58

60

62

•

•

4.8

5.1
-.)l>._

6.1

6.2

6.3

6A

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.lG

6.17

6.18

6.19

6.20

6.21

6.22

7.1
- ,)1._

7.3

7A

Average Probes per Search versus File Size .

Trie Compression vs. File Size .

:\verage Number of Probes per Search \·s. Number of Data Records

Variable Resolution in Two Dimensions .

Exact :\!Iatch Queries by DyOrTrie

Range Query of [2,6)x[-l,8) in an 8x8 Space

Orthogonal Range Query using DyOrTrie .

Orthogonal Range Query using Grid File or ~Iultipaging

Page Searching in Orthogonal Range Query using ~Iultipaging

Page .-\ccesses vs. File Size, 20, Exact ~Iatch

Page :\ccesses vs. File Size, 160, Exact :\[atch .

Equivalent .-\ccess Times vs. File Size. 160, Exact ~[atch

Page :\ccesses vs. File Size, 20, Range Query

Page :\ccesses vs. File Size. 160, Range Query .

Equivalent :\ccess Times vs. File Size. 160. Range Query .

Page :\ccesses vs. Selecti\'ity, 2D

Page .-\ccesscs vs. Selectivity, 160 .

Equivalent :\ccess Tirnes vs. Selectivity, 1GD

Exact ~Iatch: Page :\ccesses vs. Dimension

Exact ~Iatch: .-\ccess Tinle vs. Dimension

Range Query: Page Accesses vs. Dimension

Range Query: .-\ccess Times vs. Dinlension .

Storage Cost vs. Distribution

Exact ~\'Iatch: .-\ccess Cost vs. Distribution .

Trie Compression vs. Record Size (Dinlension)

Joining Data Set Rand S by Tries

Xatural Join .-\lgorithm by Tries .

Disk .-\ccesses versus Join Selectivity

Disk .-\ccesses versus File Size

xi

64

68

69

71

73

i5

76

ii

79

82

82

83

85

86

87

88

89

90

91

91

92

92

93

94

96

100

103

110

111

•

•

Chapter 1

Introduction

1.1 Motivation

Space and speed are t\Vo major considerations for storage and retrieval in large

database systems on secc~dary storage. Furthermore. data. types and distributions

\"ary from application to application. There are special data such as text, spatial

(\'ector) and image (pixel) data versus structured data such as payrolls and invento

ries: one dimensional versus multiple dimensional data: order-preserved data versus

random-ordered data: uniformly versus non-uniformly distributed data; etc. Query

selectivities performed on data also vary from one application to another~ ranging

fron1 only one data item (record) to a significant percentage of source data files.

Query operations can be unary or binary as weIl.

An10ng the various existing data structures for large database systems~ a data

structure that is good at structured data may become inefficient if it is applied ta

spatial or text data. A data structure that behaves quite weIl for uniform data may

become inefficient for pathological data distributions. Data structures for organizing

one dimensional keys may not work for keys with multi-dimensional attributes. Fur

thermore~ data structures that support low selectivity queries nlay not be efficient in

performing high selectivity queries.

Hashing in general is good at single retrieval only. B-trees [B~'172] on secondaI')'

1

CHAPTER 1. IJVTRODUCTI01V 2

.'

•

storage have logarithmic behavior. K-D-B-trees (RobBI] extend B-trees for multidi

mensional data. Their costs of accessing secondary storage depend on the height of

trees~ and thus the fan-out, as weil as the data set size. The storage efficiency of grid

files [~HS84L a multikey direct access method~ is reduced by pûorly distributed data.

The access or storage efficiency of multipaging (~108Ia, ~1082] also decreases for

pathological data distributions. Bang-files (Fre87] and the Interpolation Based Grid

Files [0~192] use logarithmic accessing cost to compensate for the storage overhead

of grid files for nonuniform data. R-trees [Gut84] and their variants [BKSS90, SR87]

for spatial data contain overlapped hyper-rectangular regions which may lead ta less

efficient searehes for sorne queries than others. In addition, aU the aboye structures

do not generally support text indexing and searching.

In sunlmary. a data structure that is good at dealing with one kind of data in one

particular area for one type of query is likely to have bad performance for another

purpose. Is there a simple but powerful dynanlÎc structure for large-scale databases

that is efficient for text. spatial and structured data~ in terniS of both space and

speed; regardless of the distribution, the dimensionality. the operations, and the

query seleetivity?

On the other hand. digital trees [Knu73]~ or tries [Bri59. FreGOL are tree structures

that store data along paths rather than at nodes~ which is what a tree structure usually

cioes. They have many desirable eharacteristics. Among them~ the following three

are the most important.

1. They store data according to resolution. with the most important bits stored

near the root. Thus, we eaIl tries variable resolution structures or zoom tries.

Sueh a zooming property of tries may speed up queries at different resolutions

by starting with an approximation and refining it only when there is uncertainty.

Tries have been applied to various spatial queries and map retrieving. However,

it should be noted that the data need not to be spatial.

2. Tries compress data br requiring minimal storage overhead, only a couple of

bits per node. Paths near the root are shared by many data. In text searching,

such compression is important for indexing substrings in a large text~ which

requires at least a pointer to each character in the text .

CH.-\PTER 1. INTRODUCTI01V 3

•

•

3. Tries maintain order preservation in data. one of the fundamentals for efficient

high selectivity queries.

Tries, simple yet powerful structures. have shown advantages in nlany application

areas. In database systems they have achieved great performance in dealing \Vith text

data for \\'hich the trie compression makes substring indexing possible, which would

otherwise be impractical. \Vith spatial data, in addition to the storage advantage.

tries provide a way to do variable resolution queries in sublinear time.

But are tries aiso strong at organizing structured data such as tables and rela

tions? Are they efficient structures for both la\\' selectivity (such as exact matches)

and high selecti\"ity (such as range queries)? Can general relational algebra, such

as the join operations of relational databases be perfornled by tries efficiently, and

how? If yeso what are the advantages of applying trie structures to general database

systenls conlpared with state-of-the-act data structures and algorithms'? As far as we

know. these renlain open questions. This thesis attempts to answer these questions

by extending trie methods to be dynamic and applying various unary and binary

operations on structured data. and thus pursues the c1ainl that tries offer the best

general representations for large-scale databases.

1.2 Originality

To the best knowledge of the author. the originality of this work includes the following

methods. algorithms. comparisons and corresponding experimental results:

• DyOr·Trie. an extended pointerless bitstring representation for binaI)" tries used

for dynamic operations:

• .-\ piece-wise, linear tidy function approximation method with minimum over

flows. inc1uding construction and search algorithms for one-dimensional (ID)

queries:

• Comparisons of tries versus the tidy functions for 10 queries;

CH.-\PTER 1. INTRODUCTI01V 4

• • A new analysis of multidimensional data distribution for sorne direct access

methods based on information theory;

• Experimental comparisons of tries versus various direct and logarithmic access

methods for multidirnensional unary queries, including exact match and range

queries:

• Relational join algorithms by tries on structured data (binary operations on

tries):

• Comparisons of trie join algorithrns versus traditional and state-of-the-art join

algorithms.

1.3 Glossary of Symbols

Here are symbols used through the thesis.

N:

n:

P:

1..-.

p:

D(x):

B:

1.4

number of keys or records in a file on secondary storage

number of pages (blacks) in a file on secondary storage

page capaci ty

number of dimensions

number of linear pieces for tidy functions

cumulative distribution function

memory buffer size

Thesis Outline

•

The thesis is organized as follows. Chapter 1 presents motivation for the work and

the problem domain, followed by a summary of new results.

Chapters 2 and 3 principally concentrate on a literature review of data structures

and algorithms.

Chapter 2 concerns itself with trie structures. It reviews their properties, applica

tions. representations and sorne refinernents. The last section of the chapter presents

CHA.PTER 1. INTRODUCTION 5

•

•

an original dynarnic trie structure. This dynarnic trie is the underlying structure

which is used throughout the thesis.

Conventional data structures and joïn algorithms are introduced in chapter 3. It

reviews the data structures according ta their dirnensionality, from one-dimension

(10) to multidimensions. The ID structures include hashing and order preserving

key-to-address transfornlations. ~Iultidirnensional file structures are classified into

direct access and logarithrnic access files. :\ sun-ey of join algorithrn is also presented

in this chapter.

The rernaining chapters elucidate original work. They are organized in four chap

ters.

Chapter -l introduces a heuristic piece-wise linear approximation tidy function on

secondary storage. \Ve show its superiority to its closest competitors - sorne order

preserving hashing nlethods.

Chapters 5 ta 7 present three trie applications.

Chapter 5 dernonstrates tries for ID queries, conlparing with the piece-wise linear

tidy function that we propose in the previous chapter. Detailed comparisons on

storage and search cost are given.

Chapter 6 describes tries for multidimensional queries, comparing with grid files,

multipaging, R*-trees and X-trees. Exact nlutch and range query algorithms are pro

vided. as well as detailed experimental camparison results and discussions on speed

and space cost versus file size, record size, query selectivity, dimensionality, and dis

tribution. The results indicate that tries are better than other data structures when

files contain more than a few records and the query returlls more than a few records.

Chapter 7 demonstrates ho\\" tries can be used for binary join operations. ~atural

join and union join algorithrns are presented. \Vhen join attributes are organized by

tries, we show their significant advantage over all other join algorithms based on bath

theoretical analysis and experimentations.

Chapter 8 summarizes the thesis and proposes sorne future research tapies.

•

•

Chapter 2

Trie Structures

2.1 Trie lVlethods

The trie uses characters, or digital decomposition of a key, ta direct the branch

ing [Gongl]. The decision which way ta follow during a search from an internaI node

at depth d is made according ta the value of the dth position in the search key. For ex

arnple. a. trie for a key set of table, space. speed, trie and text is shawn in Figure 2.1(a).

The first letter splits the keys into two sets of subtries, s-keys and t-keys. The second

letter splits the t-keys into three groups of ta-keys, te-keys and tr-keys and so on.

\Vhen searching a ward, say trie, the first letter t leads us to the right child of the

root. The second letter r leads us ta the rightmost descendant. Eventually, if a leaf

node is reached. as in our case, a search returns successfully. Othenvise if a nulllink

is reached. it means the ward is not on the trie. Thus an unsuccessful search usually

stops at an internai node.

The trie presented in Figure 2.1(a) is referred to as a full trie [CS77] or pU1'e

trie [Ore82b]. ~ote that there exist subtries leading ta only one key (leaf node) in

a full trie. Such subtries can be pruned and the resulting trie is called an ordinaïlJ

trie (radix search tTee~ pruned trie [Knu73, CS77] or in most of the literature. simply

trie [Gong1]). Figure 2.1(b) is an example of an ordinary trie. The truncated char

acters, ce~ ed~ ble, xt and ie can either be stored on leaf nodes or in a separate file

6

CH..\PTER 2. TRIE STRUCTURES 7

•
(a) Full Trie (b) Ordinary Trie

Figure 2.1: Trie Structures

o

(c) Patricia Trie

•

pointed ta by these leaf nodes.

There still exists a single descendant node~ between link sand p for words space and

speed in Figure 2.1(bL which does not brandI a search to any new subtrie. Such node

chains can be further eliminated if on the first branching descendant node a number

is used to indicate its corresponding level, or the number of skips from its ancestor

node. Figure 2.1(c) shows the resulting trie. ~umbers on internaI nodes indicate the

number of skips from their parent nodes. Such tries, without single descendant nodes

are called Patricia tries [~Ior68, Knu73, N1F85b, Gong1] (Practical Algorithnl To

Retrie\'e lnfornlation Coded In .41phanumeric). Patricia tries are especially capable

of indexing \'ery long, variable length and even unbounded key strings. Thus they

are very useful in text searching (cf. section 2.3).

The tries in Figure 2.1 are n-ary tries. Tries can also be binary. A binary trie is

a binary tree in \\-hich the branching decision on each node depends on the current

bit of a binary search key: branching left if it is 0, else right. A binary trie can be

fonned on the binary string format of numerical or alphabetic keys. Figure 2.2 shows

the binary full trie, ordinary trie and Patricia trie of the numerical key set {a, l, 2,

3. 7. 12. 13}. The corresponding bitstring set is {OOOO, 0001, 0010, 0011, 0111, 1100,

110I}.

Tries were first developed by de la Briandais [Bri59] and E. H. Fredkin [Fre60].

The name trie cornes from the ward retrieval [Fre60]. They were used for prefix

searching by ~[orrison [~'lor68]. Intensive discussions about the structure can be

round in Knuth [Knu73] and many other data structure books_ Tries \Vere associated

CH..\PTER 2. TRIE STRUCTURES 8

•
(a) Binary full trie

II
1101
ilOIlO
Il Il 01 II
00000000000000

(d) FuTrie rcprcsentation

(b) Binary ordinary trie

II
II 01
Il OO{ Il} 10
II II 11
000000000000

(e) OrTrie representation

Figure 2.2: Binary Tries

o

(c) Binary partricia trie

1{OH}
I{OH} 1{2}{IOI
1{OH} O{2}{ III O{O}{} O{O}{}
I{OH} l{O}{}
O{OH} O{Ol{} O(Ol{} O{O}{ 1

(t) PaTrie represenlation

•

with digital searches. and thus are also called digital trees [Knu73]. Since then~ tries

have been applied extensively t0 various text indexing and searching.

Several trie pararneters are of great interest: trie depth, height and size. Trie depth

is defined as the average path length frorn the trie root to its leaves. It represents the

average cost of a sllccessful search. Trie height is the longest path from the trie root

to the leaves. It is indicative of the worst case search time. Ideally, it is advanta

geolls ta know depth distributions in order to llnderstand the behavior of tries~ such

as how balanced/skewed the trie is. Trie depth/height has a rich research history

since 1970s [Knu73~ Dev82~ Dev84. Pit85~ Szp88~ Szp90~ Szp91, .Jac91~ Dev87, Szp92.

Szp93~ RJS93. CFV98, CFV99, KSOOb, KSOOa]. Trie size in storage consumption

is as inlportant a parameter as trie depth and height in measuring access time. It

is the nurnber of nodes in a trie. Trie size has been analyzed and explored in the

literature [Knu73. Jac91. Szp90, Szp91, CFV98~ CFV99] ..-\ trie is called a symmetric

trie if data stored on tries are uniformly distributed. Otherwise, it is an asymmetric

trie. For asymmetric tries~ the entropy determines depth distribution. The more

asymmetric the symbol alphabet is, the more skewed a trie is. Sorne discussions of

asymptotic behavior of asymmetric tries can be found in the literature [RJS93, FL94.

CHA.PTER 2. TRIE STRUCTURES 9

•

•

KSOOa, KSOOb]. Since the late 1970s, prefix tries have also been applied to spatial

data index schemes ranging from quadtrees • [Hun78, Dye82, Sam90], octries [Nlea82],

k-d-ties [Ore82b], pr-ties [Sam90], and FuTries p~IIS94, Sha94]. The 1980s saw various

trie structures proposed for dynamic trie hashing. Other development and applica

tions of tries include lexical analyzers and eompilers. natural language analysis, data

compression, pattern recognition, parallel searching, and even Internet IP routing. :\

brief trie history can be found in .-\ppendix 1.

The next two sections will foeus more specifically on trie properties and applica

tions.

2.2 Trie Properties

The sinlple but elegant trie structure has many attractive properties, and thus has

been applied to various database and non-database applications.

• The compression of data by the overlap of paths near the root reduces space

cost of the trie, and provides faster transfer of data from the seeondary storage

to t he main memory.

• It stores the nlost significant bits first near the root. It allows queries to start

at sorne approximation and perform refinernents by reading lower levels of tries

only if there is uncertainty.

• Tries are arder preserving data structures which is essential ta high selectivity

queries such as range queries.

• Prefix searching looks for any word that matches a given prefix. Trie searching

is. in fact. prefix searching, unlike hashing or any other normal tree search.

Patricia tries are capable of indexing extremely long and unbounded keys and

thus are extremely suitable for prefix searehing.

•{;nÎortunately, the ternI quadtree is confusing as it has different meanings. In most cases, it
refers to a trie structure and thus should be called quadtrie. In sorne ather cases, it may also refer
ta a tree structure (FB7-l. FGP~193, FL9-l] .

CH.-\PTER 2. TRIE STRUCTURES 10

•

•

• The shape of the trie is uniquely determined by the data sets, and thus is not

affected by poor data distributions.

• Tries can be interpreted as multiple key structures and hence are amendable to

multidimensional space. A key with multiple attributes can first be interleaved

bit by bit to an interleaved key. Then these interleaved keys can be used to

construct a trie. as if they were in one dimension.

• Tries have short search time. Successful search cost is bounded by the length

of the search key, regardless of the file size. Unsuccessful searches may cost less

as they are likely to stop at internaI nodes.

• Trie structures are flexible and can be combined \Vith many other structures sim

ply by applying the trie structure near the root and switching to these structures

near the leayes. Further explanations are discussed in the next section.

2.3 Trie Applications

2.3.1 Prefix searching

~'[any applications require recognition of keywords from dictionaries and thus require

efficient prefix searching. Traditional dictionary lookups, such as hashing and tree

searching, do not support search keys to be prefixed or abbreviated and thus are

inadequate. Trie structures, on the other hand, are ideal for indexing prefixes. Trie

searching has been applied for data compression [B\VC89, BK93], lexical analyzers

and compilers [ASU86), pattern recognition [B589, DTK91, ABV95], spelling checkers

(LE~[R89L natural language analysis [TITK88, Jon89], parallel searcbing [HCE91]

and Internet routing [NK98].

2.3.2 Text Searching

A major problem for text indexing which is capable of accessing every substring of

a large text is its size. Clearly, at least one pointer is needed for every character in

CH.-\PTER 2. TRlE STRUCTURES Il

•

•

the text and each pointer is at least logJV bits. where lV is the number of substrings.

The total index must be of size J,V log JV bits or ~ ~V log lV bytes. For a text of size 227

characters or substrings such as the New Oxford English Dictionary (OEDJ, pointers

to the text already require 3A1V bytes. Trie compression mal--es text indexes possible.

Along with its capability to index very long and even unbounded strings and its fast

access property. the trie is a suitable data structure for text indexing and searching.

• prefix search:

Tries have been used for prefix searches by ~Iorrison [~Ior68] and exploited by

Gonnet et al. [Gon88~ GB\rgl. Tom92] as the basis for the retrieval methods

used in the electronic version of the New üED. using P.-\T tries.

Gonnet [Gon88] treats a text as a long single character string. A sistring is a

semi-infinite suffix of a text. A trie of string suffixes is a suffix trie [Apo85,

Szp92]. E\'ery subtrie of a suffix trie has aIl the sistrings of the given prefix.

Prefix searching in suffix tries consists of searching tries up to the point the

prefix is exhausted. or when there are no more subtries. In either case the

search cost is only bounded by the length of the prefix, independent of trie size.

Suffix tries are efficient for prefix searching and longest repetition searching.

• longest repetition search:

Longest repetition of a text is a match between two sistrings which has the

most number of characters in the entire text. For PAT tries, it is the sistring

pair with the highest depth. For a given text, it can be found during the

construction of the trie. It can be applied to manipulations of general sequences

of symbols [SK83L such as string editing, comparison, correction and collation

of different versions of the same file. It is also applicable to genetic/biomedical

sequences.

• range search:

Suffix tries or PAT tries can do range search efficiently, searching for all the

strings that are lexically between two gi\'en values, in the order of trie height

[Gon91] and the size of the answer set .

CH.4PTER 2. TRIE STRUCTURES 12

•

•

• most frequent search:

This search is to find the most frequently used string in the text. \Vith suffix

tries. it is equivalent to finding the largest subtrie whose search path begins

with a space and ends with a second space [Gon9!]. This type of search has

great practical interest such as finding the most frequently used word in a text.

• regular expression search [B'YG89]:

Regular expression searching also has great practical interest. Tries have been

also applied to regular expression searches of texts [BYG89~ Gon91~ Sha94].

• proximity search:

This search gives strings that are at a fixed distance away from a given string.

The distance of two strings can be defined as the nurnber of differences (in

sertion. deletion. substitution and/or transportation) between the t\Va given

strings. '"arious data structures. algorithms and techniques have been devel

oped and applied to solve this problem [Knu73! HD80. SK83~ Kuk92~ BYP92] .

.-\gain. tries are one of the structures that can he readily applied to it. In

Gonne(s paper [GBY91L PAT array, a compact representation of the PAT

tree. was used for proximity searching. Shang and ~Ierrett [Sha94, S~I96] apply

Fu Trie. a binary full trie structure. to proximity searching.

2.3.3 Spatial Data Representation

Spatial data are points. lines. etc. in multidimensional space. Prefix tries for spatial

data are tries on interleaved numerical data. with the most significant bits stored

close to the trie root. This variable-resolution structure allows sorne queries to look

only part way clown the trie to retrieve and search on approximations. The search

choice on anode can be ··accept'~ (all records in the subtrie are in the answer setL

or "reject" (no record in the subtrie is in the ans\ver set): or ;';'explore", wben tbere is

uncertainty at this early stage. The search only goes clown to subtries wben there is

uncertainty.

CHA.PTER 2. TRIE STRUCTURES 13

•

•

Tries have been applied to spatial data indexing schernes, rangÏng from k-d

tries (Ore82b], octrees [Nlea82], pr-tries (Sam90], zoom tries (~IS94] to various quadtrees

(quadtries) [Hun78, Sarn90]. Sorne of the other multi-dimensional structures such as

k-d-trees~ K-D-B-trees, gnd files~ muLtipaging, R-trees etc. will be discussed later in

chapter 3.

K-d-tries are a generalization of 10 binary tries. They are named after k-d

trees [Ben75], because they use the same principle of interleaving coordinates. The

advantage of k-d-tries over k-d-trees is that tries store data under variable resolutions,

i.e .. the nlost significant bits are stored near the root. This property, zooming, \Vas

exploited to display spatial data at any reso1ution using on1y one copy of the data

and transferring from secondary storage only the amount of data needed for that

display [~IS94. Sha94].

2.3.4 Other Applications

Signal Processing and Telecommunications

One of the most inlportant issues in signal processing is to e3timate the output for a

known inpuL Le.. a query from the input/output data seen to this point. A nonlinear

adaptive estimation method that uses a k-d-trie was presented in [Iig95]. 1V records

of k-dinlensional input vectors and their corresponding scalar outputs are stored in

the k-d-trie. These latest ~V input/output records are used to estimate the output of

a given input (query point). A trie range search. with ma.ximum distance from the

query point in each dimension less than L, is perfornled. Then, a non-linear local

model is applied to those records retrieved from the range query in order to obtain

the estimate of the output. The method requires updating the trie as each new data

point is available such that only the latest ~V data are maintained on the trie. The

k-d-trie is chosen instead of a k-d-tree since it has superior performance to the latter

in terrns of the average time requirement for updating; it requires no rebalancing

operations for insertions and deletions.

Data compression. message encoding/decoding techniques are widely used in telecom

munications. Ziv-Lempel (ZL77, ZL78] coding is currently one of the most practical

CH.4PTER 2. TRIE STRUCTURES 14

• data compression schemes. It operates by replacing a substring of a text \Vith a

pointer ta its previous occurrence in the input. Tries are one of the structures capa

ble of longest string searching as mentioned above [BK93].

~Iessage decoding and conflict resolution algorithms for broadcast cornmunications

can also be equi\'alent to trie search processes [Cap79, Ber84, ~IF85a].

Image processing

Trie hashing has been used as a dynamic method for similarity retrieval in picto

rial database systems. It is claimed to have good perfornlance in pictorial database

management systems [CL93].

2.4 Trie Representations and Aigorithms

2.4.1 Tabular Forms

Tries have been represented variously. :\. straightforward implementation is the table

or matrix form [Fre60~ :\lor68. Knu73, RBK89]. :\. k-ary trie with S nodes and lV

keys is represented by a table of k x (S - 1V) entries. where k is the number of rows

and S - .V the number of colunlns. In the table~ each column represents an internai

node of the trie, where each table entry contains a colunln number, a null pointer,

or a pointer to a key (leaf node). The first column is the root. Table 2.1 gives the

tabular format of the binary trie given in Figure 2.2(a). There are 20 table entries

for.V = 7,k = 2. and S = 17.

o
1

a 1 2 3 4 5 6 7 8 9
1 2 9 0010 6 1100 0000
4 7 3 0011 5 1101 8 0111 0001

•

Table 2.1: Tabular Format of a Binary Trie

Civen a key, the search is initiated by looking up the table starting at the first

column~ the root node. If following the column number of a link, an empty entry is

CHA.PTER 2. TRIE STRUCTURES 15

•

•

found, the search returns unsuccessfully. :\. search is successful if a termination con

dition (a leaf node) is reached and matches with the search key. Dynamic insertion

of anode simply amounts to adding a new eolumn and putting a eolumn number at

the entry of its parent column. In faet, Table 2.1 is the result of dynamic insertions

of the keys in the following order: {DOlO, 0011, 1100, 1101,0111,0000, OOOl}. Dele

tions may leave blank columns in the table which may be filled by the last column.

However! the parent node of the last column must be updated too. ~lerrett and

Fayerman [~IF85bl suggest locating the parent column by adding reverse pointers to

each node. Shang [Sha94] suggests that it can be solved without adding extra storage

o\'erhead. Instead, simply seareh for a keyword clown the subtrie rooted at the last

column followed by another search of the keyword from the root.

There are more subtle implementations of the tabular forms by either using three

arrays or double arrays to minimize the storage overhead [TYt9. :\.oe89]. The idea is

to compress the table iota a ID array with fe\ver entries by mapping from positions

in the table to the array such that no two non-empty entries in the table are mapped

ta the same position in the array.

2.4.2 Linked Lists

Tabular representations are prohibitive when k is large for a k-ary trie when many

of the entries in the table are empty. Dynamic structures, such as linked lists, are

an alternative way ta overcome the problem (ES63, Knu73, AHU83. Jon89, Dun91].

Figure 2.3 shows the corresponding linked list representations of the alphabetical and

the numerical trie exanlples.

In the linked list representation, each node is a linked list of outgoing (right) links.

The link contains a character and a pointer to the left-most child in the siblings of

the child node (left link). This is in fact a dO'uble chained tree [ES63], or a binary tree

[Knuï3].

Searching on anode is done by comparison of a character (bit) of the key and

the character (bit) on the node~ following the outgoing (right) links until a match is

round: then the pointer to the left-most child (left link) is taken to match the next

•
CH.4PTER 2. TRIE STRUCTURES

(a) Linkedlist for a n-ary trie (b) Linked list for a binary trie

16

•

Figure 2.3: Linked List Representations of Tries

character (bit). In the \Vorst case, ail outgoing links of a node have to be followed

before a matched one is round.

Linked lists are general and highly flexible structures. Insertions and deletions are

trivial with dynamic menlory allocation techniques. Furthermore, it does not store

null olltgoing links and therefore. unlike the tabular representation, is indifferent to

k. the degree of a node. in ternlS of storage space.

2.4.3 Other Representations

Compressed Tries

Compressed Tries or C-tries [~Ialï6] are a tree representation of tries for static data.

Instead of using explicit pointers. a node of the compressed trie consists a bit array

indicating the outgoing links and a counter of [09k1V bits indicating the number of

links before the current node in the node level. Figure 2.4 shows the C-trie for the

binary trie example. :\ node contains a bit array of size 2! indicating the set bits,

and a counter of such bits in the level before the current node. Note that dotted Hnes

indicating links on the figure do not exist explicitly. During the search, the address

of a child node linked by the i th set bit in the next level is the i + co'unterth node on

the next level.

\Vith a base address for each node level, the C-trie can be stored continuously

•
CH.4PTER 2. TRIE STRUCTURES

[iliJ.o

8n 0 [ili] 2

ŒE1.0 [ili] 2 [ili] 2

[ili] 0 [ill2 rn -l

~ 0 [ili] 0 [ili] 0 [ili]0 ~ 0 [ili] 0

Figure 2.4: A Compressed Trie

17

•

on secondary storage level by level, and node by node within each level. It is a very

compact representation for static data.

Bitstring Representations

8itstring [Ore82a~ Ore82b) extends the C-trie even further by only storing bit arrays.

Finding the child link on the next level involves Hnear scanning on the next level.

.-\. bitstring representation of the binary trie example is given in Figure 2.5. The

bitstring in curly brackets indicates the remaining bits of the leaf. But Orenstein

argues that the Humber of bits scanned in each level cao be reduced to an arbitral')'

constant by organizing bits into blocks depending on the black size.

11
11 01
11 00{11} la
11 11 11
00 00 00 00 00 00 00

Figure 2.5: A Bitstring Representation of Trie

Bath C-tries and bitstring representations are pointerless trie structures.

CH.-\PTER 2. TRIE STRUCTURES 18

• 2.5 Trie Refinements

•

2.5.1 Le-tries

Le-trie [.\~93] applies LeveL compression to reduce further the height of the patricia

trie. The basic idea is that if the i th highest level of a trie is complete, but level (i + 1)

is not. then the ith highest levels are replaced by a single node of degree ki (2 l for a

binary trie). The replacenlent is applied top-down starting from the root. Figure 2.6

shows the LC-trie transfered from the patricia trie in Figure 2.2(c).

Figure 2.6: Le-trie

It is claimed by .\ndersson [.-\~93] that for random~ independent data~ the average

depth of a LC-trie is reduced to 8(log· ~V) from o (log lV), where ~V is the nunlber of

keys.

2.5.2 Hybrid Tries and Trie Hashing

Because of the flexibility of trie structures, they are often combined with sorne other

structures to obtain efficient behavior, i.e., applying trie structures near the foot and

switching to other data structures near the leaves. They are referred to as hybrid

tries. One cornmon combination is \Vith external buckets, called bucket tries [Knu73].

Bucket tries are widely used as collision resolution strategy for dynamic trie hash

ing [ED80, Lit8L Lit85. LZL88. LRLH91] .

•
CH.-\PTER 2. TRIE STRUCTURES

internai oode bucket buckclS

~0~'"
inœm31 node

~ ~ IS~cd IEJ ~space spac;e

0 0 1 0

lJI (bl

19

buckets

I::~ Il ~~~e 1EJ
o 1 l

internai node(sl

~~~
o 1 :!

•

(Cl

Figure 2.7: Construction of Bucket Tries for Trie Hashing

Suppose keys in Figure 2.1 are inserted in the follo\Ving order: {table, space, speed,

trie. text} and the capacity of a bucket is two items. Figure 2.7 shows the dynamic

construction of the bucket trie for hashing. A trie node contains four fields: DV, DN,

LP and HP. where DY is the value of the digit, DN the digit number of the key, and

LP and CP are two lower and upper pointers, either to internai nodes or external

buckets. The value of an internal pointer is anode address. The value of an external

pointer is either the address of a bucket or null. In arder ta distinguish internaI and

external pointers. the value of an internai node is in fact the negative of the node

address. In Figure 2.7(a). when the first t\Vo keys are inserted, they are stored in

bucket O. No internai nodes are needed. Figure 2.7(b) shows that when speed is

inserted, bucket 0 contains three keys. and thus has ta he split iota t\Vo at the first

digit s. Any key with the first digit greater than s is stored in bucket 1 and painted

ta by the HP pointer: othenvise it is in hucket 0 and pointed ta by the LP pointer.

The branching information is stored in an internai Dode O. Figure 2.7(c) shows the

insertion of the last key. Bucket 1 containing table, trie, text is split iDto hucket 1

aDd 2 at the first two digits te. Correspondingiy, t\Vo internai nodes are generated,

\Vith Dode 1 for the split at the first digit t and Dode 2 for the second digit e.



CH6-\PTER 2. TRIE STRUCTURES 20

.' Trie hashing has been claimed to require one disk access when internaL nodes of

the trie can be heLd in RA~I ~ and two accesses for very Large files when the trie has

to be on disk [Lit85~ LZL88. LRLH91]. Furthermore, the file can be highLy dynamic.

2.5.3 FuTrie, OrTrie and PaTrie on Secondary Storage

Fu Trie. OrTrie and Pa Trie are three pointerless trie structures. FuTries. OrTries

and PaTries denote the binary full tries, binary ordinary tries and binary patricia

tries [Sha9.t] respectively. The three organizations are extensions of Orenstein!s point

erless bitstring representations on secondary storage. They use two bits for each node

and tries are partitioned inta pages. and thus are suitable for secondary storage.

FuTrie

FuTrie is a binary tree whose nodes do not store information and whose left links arc

labelled with 'O's and right links with 'l·s. The ith bit of a search key determines the

link to be followed at lever i of the trie: if it is '0' ~ go Left and otherwise right. ThllS.

each root-to-leaf path has il one-to-one correspondence to a key. The height of the

trie is bounded by the length of the keys.

:'\ow. we move on ta FuTrie representations. Two bits are sufficient ta represent a

FllTrie node: Il if the node has two descendants! 10 if it has only a left descendanL

01 if only a righL and 00 for il leaf. The FuTrie for the binary trie example is shawn

in Figure 2.2(d). This is exactly Orenstein's bitstring representation. TabLe 2.2 shows

the definition of a FuTrie structure.

typedef enunI

typedef struct
typedef struct

III /~)la /
01 ~

00 •
{ TrieNode trie..nodeD; }
{ TrieLevel trieJevel0;}

TrieNode;

TrieLevel;
Fu Trie;

•
Table 2.2: Data Structure for FuTrie



CH.-\PTER 2. TRIE STRUCTURES 21

• OrTrie

An OrTrie is a pruned FuTrie in which subtries containing only one leaf are pruned.

Figure 2.2(e) shows the OrTrie transformed from Figure 2.2(d), Bits in curly brackets

are the path-to..leaf suffices that have been truncated. It can also be a pointer to the

corresponding key or record stored in an external file. The OrTrie structure is defined

in table 2.3.

typedef enUffi

typedef struct
typedef struct

PaTrie

Il
10
01

{
{sujJix} {other_attributes} }

00 or{pointer}
{ TrieXode trie-IlodeO; }
{ TrieLevel trieJeveID;}

Table 2.3: Data Structure for OrTrie

•
Trie!\iode:

TrieLevel:
Or'Trie:

PaTries are used ta represent binary patricia tries. Figure 2.2(f) shows the PaTrie

representing the patricia trie in Figure 2.2(c). As there are no single descendant nodes

in a binary patricia trie. a node on a PaTrie can be represented br one bic 1 for an

internaI node and a for a leaf node. For an internai node. the number of skips and

the corresponding substring that has been skipped need only be attached. For a leaf

node, either a pointer ta the record or suffix of the key and other attributes of the

record have to be stored. Table 2...l shows such a PaTrie structure.

typedef enum

typedef struct
typedef struct

{

1{#skips}{ substring}

a{ {length}{suj jix} }
or{pointer}

{ Trie~ode trieJ1odeD; }
{ TrieLe\"el trieJeveID;}

TrieNode;

TrieLevel;
PaTrie;

•
Table 2.-1: Data Structure for PaTrie



CHA.PTER 2. TRIE STRUCTURES

Paged Tries

22

•

.-\s it stands~ like the C-trie and the bitstring representation, FuTrie, OrTrie and

PaTrie structures require a sequential search on each trie level, destroying the laga

rithrnic search cast and the variable resolution advantage tries provide. However, in

a paged structure for secandary storage, this can be fixed.

The paged structure partitions a trie into layers (page levels) of l node lcvels each.

and then cuts each layer vcrtieally inta pages of subtries. \\ïthin a page. descendant

nades of each layer are either entirely on or entirely off the page, i.e., links ean only

cross the horizontal boundaries of layers, not the vertical boundaries of pages. The

resulting paged trie reads one page pel' layer from secondary storage during the search.

and restricts sequential search within pages only.

Figure 2.8(a) shows the paged OrTrie with l = 3 and a page capacity of three

nodes. .-\ page contains two counters to avoid the sequential search and redecnl the

trie search. Tco'Unt enunlerates the number of links entering the page le\'cl fronl the

abo\"e. up to but not induding the current page. Bcount does the same for links

leaving the bot tom of the page level. The two counters can be used to find the page

where the left descendant of the node ·'X·, locates without a sequential scan of pages

in the next page le\·el. The Beount of the page with node "X" is -1, which nleans

-l links have already descended from earlier left pages in the page level. As the left

descendant of "X" is the first link in the page, so it is the 5th leaving the current page

level. Thus in the next page le\·el. we must look for a page with Tcount the greatest

integer less than (or equal ta) 5. The candidate pages on the page level below are

Tcount= 0 and 3. and thus we choose 3. Thus the left descendant of '~X,· is located

on the second page in the next page level.

Thus far. when checking Tcounts at the next page leveL we still do a sequential

scanning. However. it can be avoided simply by moving Tcounts of each page le\"el up

into lists of Tcounts in the parent pages above. Theo we can calculate directly from

the current page which page ta follow on the next level. .-\S shown in Figure 2.8(b).

each page contains a Bcount and a list of Tcounts of child pages. Dashed lines painting

ta pages are implicit in the paged trie structure.



CH.4PTER 2. TRIE STRUCTURES

:······_··········...··(i·~
~ Il lo.IA
~ Il 01 i

'"·ïi·~~~::~::~:r~:::;~~--···7·.
~O.3' Il 1 OO{ Il} 10 (3/
~ IIII~II i

····.::::::::=:l'''~:~:::·::::;;:::[::::::~::
f 7, 00 00 oof 00 00 00 ~f'~
t. _ J )

23

(a) Paged OrTrie (b) Paged OrTrie Structure

Figure 2.8: Paged Tries

•

The paged OrTrie structure is given in Table 2.5.

typedef struct { int Tcount; }
OrTriePage *page; } LinkTo;

typedef struct { int Bcount;
LinkTo linktoD;
OrTrie bitstrings; } OrTriePage:

typedcf struct { OrTriePage trie_page0;} PagedOrTrie:

Table 2.5: Data Structure for Paged OrTrie

2.6 DyOrTrie, a Refinement of the OrTrie for Dy

namic Data

This section describes new work~ although it appears in a review of trie structures. ft

is an irnprovement over the existing paged trie structures, OrTries, for dynamic data

insertions and deletions.

Insertion is straightfonvard for the paged OrTrie. An insertion of key 1010 to the

trie presented in Figure 2.8 is given in Figure 2.9.

The insertion fo11ows a search of the key. As the first bit is 1, the search goes



CHA,PTER 2. TRIE STRUCTURES

(a) Paged OrTrie: after inscrting 10 10

(l·ï-··-;.-;~·1
: 1111 :

... ,",:~::~:::~:~~J~~~===-:.~~_ ..
jg3' Il f DO( III OO(lOI1,'[ 10 fJ,'
: Il Il i Il '
"~_.._.....' .._"':::::'-".__...._".""_.."'.._" ...._..~~~~~:..::::::.-.......

lF-oo.:~:(~~~_:~r-
(b) Pagcd OrTrie Structure after inserting 1010

24

•

Figure 2.9: Insertion Key 1010 to Paged Trie

to the right descendant of the root. The second bit is 0 but the current node does

not have a lert descendant. and thus a new node (highlighted) ~ the third node in

the third node level. is inserted into the second page of the second page level. The

corresponding parent node at the root page is thus updated from 01 to 11. Following

this~ the page holding the new node is split into two as it exceeds the page capacity.

The Bcount and Tcou.nt lists of pages to the right of the split page in the same page

level need to be updated accordingly. Similarly for the pages in parent page levels if

the split propagates to the parent page levels.

From the exanlple. we notice that the change caused by the insertion/deletion of

a key is usually localized~ i.e .. updating anode at the root page from 01 to Il and

inserting a new node OO{ ID} into the second page on the second page level. But as

pages in a page level are organized sequentially, top and bottonl counters stored at the

current page and pages following need to be updated, although usually only by a shift

of a constant. But it means a sequential scanning and updating of those pages~ which

is prohibitively expensive on secondary storage. Thus~ the paged structures are good

at batched insertion of ordered keys [Sha94] due to the 3equential page organization

within each page level. To avoid this, we modify the paged trie structure so that all

counters are stored separately \Vith pointers pointing to their corresponding bitstring

pages. \Vith the assumption that these counters can be stored in RANI, the ne\\" paged

trie structure DyOrTrie~ given in table 2.6, is capable of efficient dynamic insertions

and deletions.



•

•

CHA.PTER 2. TRIE STRUCTURES

typedef struct { int Tcount; }
OrTrie *page; } LinkTo;

typedef struct { int Bcount;
OrTrie *page:
LinkTo linktoO;} OrTrieLink;

typedef struct { OrTrie pageO;
OrTrieLink linkD; } DyPagedOrTrie:

Table 2.6: Data Structure for Dynamic Pageti OrTrie

Insertion of a record starts \\'ith a search of the record. The search may result in

one of the following situations:

• .-\ lear node is found. and the remaining bits of the Hode nlatch with that of the

search key. This is a duplicate key and the insertion algorithm returns.

• The search stops at an internai node, because it can not find the branch aecord

ing to the seareh key. In this situation, update the eurrent node from DIor 10

to Il and add a corresponding descendant leaf node at the child level.

• The search stops at a leaf node. but the remaining bits of the node do not mateh

\Vith that of the key. In this case~ the originalleaf node that \Vas truneated has

ta be extended to the level at which the bit of the original key differs frOlTI that

of the new key.

The update in the second scenario is rather local. Cpdating the node from DIor

10 to Il costs no extra storage space. But adding a corresponding descendant leaf

node to the child level may occasionally cause the page where the child level is located

ta exceed page limits. and thus a page split is required. But the split does not in

any situation propagate ta upper levels. On the other hand~ the extension of links

in the third scenario may cause the pages on the path from the node to the leaves

exceed page Iimits and require splitting. Furthermore~ the split may propagate from

the page holding the two leaves ta the page where the node extension happens.

Figure 2.10 shows the pseudo-code for key insertions. Like B-trees: the cast is

bounded by the trie height due to the occasional splitting of trie pages whieh may



•
CHAPTER 2. TRIE STRUCTURES

Boolean Trielnsertion(key)
{

Ilsearch the key and find the node that is either a Ieaf node or
lIa node that the search has to stop because of a mismatch:
node= search_and_find_nodeCkey);
if (node -> is_Ieaf() kt node-> rest_bits_match_with( key» {

Ilthe key is already on the trie:
return (false);

}

if (node-> is_Ieaf() li !node-> rest_bits_match_with( key» {
Ilexpend the node until the two keys differ (return the new leaf):
node= node-> expend(key);

}

else { Ilnode is not a leaf, at which the node is updated to 11 and
lIa new leaf node is created at the next level:

new_Ieaf_node= node-> update_node_value();
node= new_Ieaf_node;

}

Ilsplit the page if necessary:
page= node-> current_page();
while ( page != NULL ii page-> size() > page_capacity) {

if (page -> parent_page != NULL) { Il not root page
split_page ( page);
Ilupdate page links and counters in the parent page level:
page= page-> parent_page();
page -> update_page_links_and_counters();

}

else Ilthis is root page, cannot be split:
return (false);

}

}

void split_page( OrTrie .page)
{

26

•

Illinear scan of the page and find i'th subtrie at which
Ilsubtries 1, ,i consumes <- page_capacity while
Ilsubtries 1, ,i,i+l consumes> page_capacity:
i- find_subtrie_in_page_by_Iinear_scan ( page);
/Imove subtries i+l, ... from page to a newly constructed page, nevpage:
OrTrie .newpage = new OrTrie(page, i+l);
Ilupdate page links and counters of page and newpage:
page->update_page_Iinks_and_counters();
newpage-> update_page_Iinks_and_counters();

}

Figure 2.10: Paged Trie Insertion :\.lgorithm



•

•

CHA.PTER 2. TRIE STRUCTURES

propagate up to the root page.

Now we discuss the splitting algorithm and the page utilization after splitting.

\Vhen a trie page exceeds the page capacity during the insertion, the page is forced

to be broken into two pages. Ideally, we would like the two pages to be equally full.

Due to the fact that trie pages do not have branches to neighboring pages in the same

page level, the issue becomes dividing the page containing a forest of subtries into

t\Vo groups of subtries of approximately equal size. :\5 these subtries are ordered! the

splitting is to find the i th subtrie in a total of m 5ubtries 5uch that subtries 1. 2.....

and i consume no more than half of the page capacity. but if i+1 is included. they

exceed half of the page capacity. Thus, subtries 1,2, ... ,i renulÎn in the original page

and subtries i+1, ....Tn move to the newiy generated page. This can he done simply

by a linear scan of the page in R:\~·1.

The least page occupation after splitting occurs when the splitting houndary is

set at subtrie i + 1 which is a complete trie. ~Iore over, the least page utilization

\'êlille is a function of the page capacity P and the nurnber of node levels in a page!

l. :\ complete subtrie of 1 levels has 21 - 1 nodes and each node takes 2 bits! Le..

approxirnately 21+ l bits or 2l
- 2 bytes for the subtrie. Sa the least page lltilization rate

is correspondingly 1/2 - 2l
- 2 / P. Thus, the larger the page capacity Pis! the higher

the least page occupation is. On the other hand, the more node levels there are, the

lower the least page occupation can he. For instance. if the page capacity is -1096

bytes and there are 10 node levels in a page level. then the least page occupation rate

is 1/2 - 2 LO
-

2 /-I096 = 0.-1375.

:\ deletion also starts with a search of the key. There are three different situations

as fo11ows.

• The search stops at an internaI node, the key is not found and the deletion stops

there.

• The search stops at a leaf node, but the remaining bits of the node do not

match with the that of the key; and thus the search rails as weIl as the deletion

operation.



CH4-tPTER 2. TRIE STRUCTURES 28

•

•

• The search stops at a leaf node! and the remaining bits of the node match with

that of the key. The key is found and the leaf node is renloved. Then~ the parent

node is updated. If the sibling node of the deleted leaf node is also a leaf node!

the branch to the sibling node can be truncated and the parent node becomes

a new leaf node. The truncation operation may propagate up to the root. Due

ta the truncation of the path, the page occupation decreases. If both the page

and one of its neighboring page consume space less than a threshold, a merging

of the t\Vo pages can be performed in arder ta improve the storage utilizatioll.

Like the page splitting in the insertion operation, this can also propagate to the

root page level.

Figure 2.11 shows the pseudo-code for a key deletion. The cast is bounded by the

trie height.

\Ve daim that with the current RA~I capacity, the dynamic paged trie structure

is suitable for practical database sizes of the order of gigabytes (billions of records).

For exanlple. with a page capacity of 4096 bytes, it only requires a RA:\[ size of 4

nlegabytes ta build a dynanlic trie holding up to 232 (-l-billion) records of data. If

this calculation is altered for 236 records of data~ roughly 6-1 megabytes are required.

If a record consumes 4 bytes. 232 and 236 records are 16 and 256 gigabytes of data

respectively. The calculation is as follows.

Bottom/top counters and page pointers are stored in RA:\1. For simplicity, we

choose to give examples with complete tries. A complete trie with 33 node levels,

assuming page capacity is 4096 bytes and node levels in a page is ID! can hoid 232

(-l-billion) records. :\ page of capacity 4096 (2 12 ) bytes can hoId 214 trie nodes, as

each node consumes 2 bits. :\ complete subtrie of 10 levels has 210 - 1 :::::: 210 trie

nodes. Thus a page can hold up to 21.1/2 10 = 16 complete tries of 10 node levels.

\Ve now calculate RA:\I space required by page levels.

The root page level only has one root page. On the bottom of the page, there are

210 outgoing links to the next level and each page on the next level can hoid at most

16 incoming links! as a page can hold only 16 complete tries of 10 node levels. The

2LO outgoing links has ta go to 210 /16 = 26 different pages on the second level. So the



•
CH.~PTER 2. TRIE STRUCTURES

Boole4O TrieDeletion(key)
{

node = search_4Od_f ind_node ( key) j
if ( !node-> is_leaf() Il !node-> rest_bits_match_with(key» {

Ilthe key is not found, cannat delete!
return (false)j

}

IIThe key is found:
parent_node = node-> parent;
parent_node -> remove_child (node);
node= parent_node;
while ( node-> has_only_one_child_node_which_is_a_leaf() ) {

Il update node and truncate the branch if possible:
node= node-> parent;
node-> value = 00; Il remove child and set node to be a leaf
if (node -> page() != node-> parent-> page(» {

Ilthe node is in the first node level of a page:
page= node-> page();
Ilmerge_candidate() returns the neighbor page less full:
neighbor_page= merge_candidate( page);

29

•

if ( page-> size() + neighbor_page-> size() < Threshold)
Il do a merge with the neighbor page having less page utilization:
merge( page, neighbor_page);

Ilupdate page links/counters in the page level and the level above:
page-> update_page_links_and_counters() ;
node-> parent ->page()-> update_page_links_and_counters();

}

}

return (true);
}

OrTrie .merge_candidate( OrTrie .page)
{

if (size(page-> left_neighbor(» <a size(page-> right_neighbor(»)
return page-> left_neighbor;

else
return page-> left_neighbor;

}

Figure 2.11: Paged Trie Deletion Algorithm



CHA.PTER 2. TRIE STRUCTURES 30

•

fanout of the root page is 26 pages. It is the number of top counters of the root page.

The R.A~I space used by the root level is that of the top counters plus the page

pointers to the next level of pages. A counter takes 4 bytes. 50 does a page pointer.

50 the root page level consumes 26 (4 + 4) = 29 bytes of RA~I space.

On the second page leveL there are 26 pages. ~ow we calculate the fanout of each

page. The outgoing links at the bottom of this page level is 16 x 210 = 214 per page

since each page holds 16 complete subtries of 10 levels. A page in the next page level

can hoId as much as 16 complete tries. Thus the fanout of the second page level is

21-1/16 = 210
• Thus there are 210 page pointers to the next page level per page. For

each page, there is a bottonl counter, which takes 4 bytes~ and 210 top counters and

page pointers to the third page level. AIl together, a page uses 4 + 21°(4 + 4) bytes of

RA~[ space. In total, the second page level takcs 26 x (4 + 2LO x (4 + 4)) :::::: 2 19 bytes

of RA1\[ space.

The third level is the second last leveL There are 220 incoming links from the

previous level and each page in the level can hold 16 complete subtries of 10 levels.

i.e., 16 nodes per page. Thus the number of pages in this level is 220 /16 = 2 L6
• The

outgoing links at the bottom of this page level is 16 x 2 LO = 214 per page, since each

page holds 16 complete subtries of 10 levels. The page fanout in this page level is

different from that of the previous one due to the fact that there are only three node

levels in the next page level (the last page level). This is because the number of total

node levels is 33. In the last page level, each subtrie only contains three levels of

nodes and consumes only (23 - 1) x 2 bits~ Le., approximately 2 bytes. A page of

4096 bytes can hold 2 L2 /2 = 211 complete subtries of three levels. So the fanout of

a page in the third level is 21-1/2 11 = 4. In totaL the RA;\[ space consumed by the

third level is therefore 216 (4 + 23 x (4 + 4)) = 222 bytes.

The last page level contains no outgoing links and the fanout of a page is zero.

Thus no RA.~I space is required.

Summing up the RA:\-[ space used by ail page levels, it is approximately 222 = 4

megabytes for a complete trie of 33 levels holding 4 billions of records. Note that it

is principally the second last page level which consumes the most R.-\~I space.

~ow consider a complete trie of 37 levels containing 264 records, only the second



CH.4.PTER 2. TRIE STRUCTURES 31

•

last level consumes more R.-\~I space than in the last example of 232 records. Pages in

the last page level contain 7 node levels consuming (27 -1) x 2 bits, i.e., approximately

28 bits or 32 bytes per subtrie. Thus a page hoIds 212 /32 == 27 complete subtries. It

makes the fanout of a page in the second last page level 16 x 210 /27 == 27• So the

R.-\~I space consumed by the page level is 216 (4 + 27 (4 + 4)) ~ 226 or 64 ~"B. This

also represents the total approximate amount of memory consumed by aIl page levels.

The abo"e are two examples of complete tries. For general tries, the RA~'I space

is also mostly consumed by the second last page le,·e1. Due to ·thinner~' subtries. a

page is able to hoId more subtries than complete subtries. This allows the page level

to have fewer pages than that of complete tries. On the other hand, a general trie

holding the same number of records contains more node levels than a complete trie.

This would make subtries in the last page levellikely to have more node levels, which

is a factor in reducing the number of subtries a page can hold in that level. As a

consequence, it may increase the page fanout in the second last page level. \Ve know

that the R.-\:\I space consumed is roughly #pages x (4 + fanout x (4 + 4)) in the

second last page level. Since Cl general trie would have fewer pages but higher fanout.

it depends on which one of the above t\Vo factors outweighs the other to determine

whether it consunles more or less RA:\l space than a conlplete trie.



•

Chapter 3

Related Work

3.1 One-dimensional File Structures

3.1.1 Hash Functions

Hashing is a direct access method which locates records with given key by a key

to-address transformation function. The expected time to retrieve a key among .V

keys is etfectively a constant, though the \Vorst case can be proportional to ~V. Colli

sion resolution strategies are needed to deal \Vith inlperfections in the key-to-address

transfornlation.

Hashing works even better for files on secondary storage [Knu73] as many records

are allowed to be stored at the same address. Collision handling is simpler than in

R.-\).I. On disks. file 1/0 are in units of pages (also called blocks) in arder ta take the

advantage of high data transfer speed relative to block access time, \Vith one page

storing tens or hundreds of records. If more records are mapped to a page than its

capacity. the extra records are overftow which must be stored somewhere eise. This

is the reason for extra accesses which may cause the \Vorst case to be expensive, and

increase the expected cost as weIl.

Perfect hashing [Spr77] is a hash function which yields no collision, thus the

search cost is a constant even in the worst case. Perfect hashing may involve a

certain amount of wasted space due to empty address space to which no keys are

32



CHA,PTER 3. REL.4.TED \;VORK 33

mapped. If a perfect hashing can reduce aU the possible address space to the size

of the presented key/record set, then it is called a minimum perfect hashing. Vari

ous algorithms \Vith different time complexities have been presented for constructing

(minimal) perfect hash functions. They CaU inta several general categories: number

theoretical methods. segmentation techniques, algorithnls based on search space re

duction and algorithms based on sparse matrix packing [~1\VHC96]. They are claimed

to be constructed in O( ~V) expected time [CHK85, FHCD92, ~1\VHC96]. where ~V

is the number of keys. though it usuaUy requires rnany passes of the data set and

would he prohibitively expensive for large amount of data on secondary storage. :\n

other issue of (minimal) perfect hash functions is that they require auxiliary storage

space [FHCD92, ~\'1\VHC961 which is proportional to ~V [CHK85, FHCD92], or even

more expensive (~V 10g:.V [~1\VHC96]).

Hashing in general is only efficient for low selectivity Queries such as exact nUltch

queries. where the selectivity is defined as the ratio of records retrieved by a query to

the total number of records presented. It is not suitable for high selectivity queries

such as sequential and range queries. This is mainly because hashing does not organize

keys in order.

3.1.2 Tidy Functions

Ordered key-to..address transformation functions are called tidy functions [~[er83]*.

Tidy functions support efficient high selectivity sequential accesses and range queries.

Tidy functions are order-preserving direct access functions [~Ier83]. Like perfect

hashing, the tidy function reduces the space of ail possible values of search keys to

a storage space just containing records actually present. But unlike hash functions,

ticly functions preserve the order of keys. If D(x) is a cumulative distribution function

on the search key, and is defined as the following:

D(x) = probability(key :5 x) (3.1)

•
-In Roger's Thesaurus of English Words and Phrases (1936), ··tidy!'! falls under the category

'"Reduction ta Order~. Key-to-address transformations are intended to reduce the key space to a
much smaller address space, and tidy functions intend ta preserve order as weIl.



CHA.PTER 3. REL.~TED "VORK

then the tidy function is

t =fn D(x)l

34

(3.2)

•

where n is the number of pages on secondary storage. However, storing t to its full

resolution means that we have to store index data for every black (data page). But

when files are truly large, this cannat be assumed to be stored in RANI. \Ve need to

assume that the tidy function is stored on secondary storage tao. Therefore, in order

to get the page address of the keys, extra probes to the tidy function on secondary

storage are required. This nlakes the tidy function less efficient both in access time

and in storage.

Other approaches to tidy functions include the following.

Sorenson et al. [DST75. STD78] \Vere interested in removing distribution depen

dence from hash functions and introduced D(x) for this process. They describe four

key-to-address functions based on this tidy function.

Gonnet et al. [GRG80] assume that a D(x) is known analytically and propose a

tidy function which has a search cost of O(log log ~V) probes. Garg and Gotlieb [GG86]

in\'estigated ways to break down D(x) into pieces small enough to contain unifornl

distributions. but give no performance results.

In sorne of the literatl1re, tidy functions are referred ta as order preserving hash

functions. If a minimum perfect hash function also preserves the key arder, then it

is an Order Preserving Alinimum Perfect Bash Function (OP~[PHF).Clearly, it is a

type of tidy function. The OP:\IIPHF of Fox et al. [FCD91] used two mappings of

a hash function to produce a bipartite graph which is then straightened out with the

aid of a second hash function , which results in an order-preserving minimunl perfect

hash fl1nction. This method reql1ires at least three accesses to auxiliary tables. Since

the bipartite graph so formed is not always a tree, extra probes are required , the

average cost of which works out to be 3.25 accesses. The construction consists of

three steps, ~~mapping~~ l "orderin~(! and ~·searching!!. The first step requires the

equivalent of at least 6.8 passes of the file containing keys! and the third is still more

expensive. Details and more related works on OP:\,[PHF can he found in further

references (FHCD92, CH~I92. GSB94] .



CH.-\PTER 3. REL.t\TED \VORK

~·'Iore discussion on tidy functions will he given in Chapter 4 and 5.

3.2 Multikey File Structures

35

•

j,[ultikey data structures permit access to data on several fields together or inde

pendently~ based on one index structure. ~Iultidimensional tree structures such as

k-d-trees [Ben75] generalize the binary tree to multiple dimensions by cyc1ing, from

one level in the tree to the next. through the attributes to be used as composite keys.

Like binary trees~ k-d-trees can be unbalanced and thus may degenerate, resulting in

O(~V) access time instead of O(log .V), where ~V is the total number of keys. K-D-B

trees [Rob8I] combine k-d-trees with B-trees [B~172]. Like B-trees, they preserve the

height balance and have a guaranteed logarithmic retrieval performance. HoweveL

at that time. two direct access methods - multipaging [~I08Ia, ~I082] and grid

files [NHS84] \Vere proposed as alternative direct access multikey file structures. In

the next two subsections. we review direct and logarithmic multikey file structures

accordingly.

3.2.1 Direct Access Methods

Grid files

In grid files~ k-dimensional (kD) data space is partitioned by repeated bisections of

the data space in each dimension into orthogonal grids. The grid can be defined by a

kD array called scales. A boundary of a seale is a (k-l)D hyperplane which partitions

the data space inta two disjoint parts. Based on the scales~ the grid directoT1J~ a kD

array, can he built..-\n element of the grid directory is a grid cell. The grid cell has

a pointer to a data page containing aU data records that lie in the grid cell. There

is a many-to-one correspondence between a grid cell and a data page on seconda!)·

storage. The region of grid cells pointing to the same data page is thus called a page

region. Page regions are in shape of hyper-rectangles so that data ean be clustered

for efficient range queries.



CHAPTER 3. REL.-\TED ~V'ORK 36

•

Figure 3.1 is an example of grid directories in 2D. There are 7 pairs of numeric 2D

data: {(7,15), (255,0), (0, 64), (0, 127), (32, 128), (64, 128), (96, 192)}, assuming the

page capacity is two records. The example shows that the grid directory is obtained

by repeated bisections of data space in each dimension in turn. Grid cells holding

"-1" point to null data pages. Please note that page regions, grid celIs \Vith same

page nunlbers, are aH rectangular.

grid
ceUs

Figure 3.1: Grid Directory in Two Dimensions

Since the grid directory can he large and therefore cannot be assumed to be stored

in R.-\~L the search cost for a data itenl is precisely two disk accesses: one to the grid

clirectory. the page that cantains the right search key address, and the other to the

carresponding page address to retrieve the record.

The grid directory is stored as an extra index, \Vith its size depending on the size of

the source file. According to Regnier [Reg85], the growth of the index is superlinear to

the file size for uniformed distributions. ~'Ioreover, the constraints on grid partitions

prevent grid files from fine tuning. As a result, the sizp of the grid directory is also

sensitive to data distribution. In faet, grid directories can grow extremely large under

poor distributions. Heavily, nonuniformed data make some regions of the data space

require more partitions than the rest. Yet these partitions are performed not only

on the local regions but also across the whole data space. Thus, this can cause the

increment of scales, grid cells and the size of the grid directories.

Bang files [Fre87] and nested interpolation-based grid files [ON192] \Vere aimed

at improving the growing direetory problem against poor distributions. But their



CHAPTER 3. REL.-\TED UlORK 37

improvements on index sizes are based on tree structured directories, resulting in

logarithmic search cost to the size of a problem, which differs from the direct access

nlethods (0(1)).

l\1ultipaging

~Iultipagingwas invented even before grid files. Like grid files, the kD data space is

partitioned rectilinearly by (k-l)D hyperplane parallel ta aIl a"{es except the one which

it iotersects orthogonally. The partitions inlpose a grid of hyper-rectangles in the kD

space. Every hyper-reetangle can he addressed by k 10 arrays called scales. just as

in grid files. The main design difference is that there is a one-to-one correspondence

between a hyper-rectangle and a data page. [n addition, a scale of a dimension is

obtained based on partitions on the specifie set of data distributed over that field;

each range of values of an attribute field is partitioned ioto m intervals such that

there are approximately the same number of records located on each interval.

ew record
Il

1 3 an
Il ~ Il /

x~
li

a 2
. li

data pages rQl r;I~
l.L!.J ~ ~

Page 3 has an overflow record which is stored on page 2.
Therefore page 3 has a pointer ta page 2.

(2)

255

(' )

3 .....-~ data
pages

32

a 2

scales

Figure 3.2: ~Iultipaging in Two Dimensions

•

Figure 3.2(1) shows an example of a 2 x 2 multipage space, \Vith the same data

as given in the grid file example (7 pairs: {(7,15), (255,0), (0,64), (0, 127), (32, 128),

(6-L 128). (96, 192)}). The numbering of data pages are shown for reference only. It

is in the column-major arder for the 2D array.

If data is poorly distributed~ it is likely ta have overflow records on sorne pages.



CH.-\PTER 3. REL.4TED ~VORK 38

•

•

O\'erfiow records of a page can be stored on a chain of pages starting with the most

enlpty page. or they can be chained onto separate overflow pages. For example!

figure 3.2(2) shows that when record (200!100) is inserted into page 3, it makes the

page overflow. \Vith the firs! collision resolution strateg)'! a pointer on page 3 is used

ta point ta page 2 where the record is actually stored.

In the absence of knowledge of the shape of the data space! it is reasonable to

assunle that it is hypercubic. with a.xes of equal length! n l/k. where n is the number

of total pages. Then scales in kD are of size kn l/k. and can easily be fit in R.-\~l

- there is almast no storage overhead. Thus ideally! multipaging can retrieve any

record for an exact match in exactly one disk access. If there are overflow chains.

more accesses might be needed. Poorly distributed data may cause many overflow

records and long overflow chains. and thus increase the search cast. Distributions of

a diagonal line and a circle in 2D are t\Vo examples of pathological distributions for

multipaging.

One way to reduce the length of overftow chains is to reduce the load factor. the

ratio of accupied space ta available space! i.e.! multipaging allows storage space ta be

traded for access cast.

There are \'ersions of multipaging bath for statie and dynamic data [~I081b.

~I082]. The former uses an algorithm ta analyze the data in O(kn log n) time. and

deternlÎnes the storage utilization and expected number of probes possible for a mul

tipaged file. The latter salves the problem of representing dynamic multidimensional

arrays. and controls either the storage utilization or the expected number of probes.

3.2.2 Logarithmic Access ~Iethods

R-tree Family

R-trees \Vere first proposed by Guttman [Gut84] as a direct extension of B-trees for

spatial data in multidimensians. Like B-trees! R-trees are height-balanced trees. A

leaf node of the R-tree is of forro (oid! R)! where oid is an abject identifier in the

database~ and R is a minimum bounding rectangle (:\'IBR) approximation of the data

abject. R is of the form: (bo• bl ! '''! bk-d, where bi represents the i th coordinate pair



CH.4PTER 3. RELA.TED \VORK 39

L

•

•

of the lower-Ieft and upper-right corners of a kD hyper-rectangle b. An internai Dode

of the R-tree CODsists of (ptrChild, R) pairs, where ptrChild is a pointer ta a child

Dode in the next Dode level. and rectangle R is the ;\,IBR of aU rectangles on the child

Dode.

If .\1 is the maximum Dumber of entries that cao fit in a node, and m $ JI/2

is a pararneter specifying the minimal nurnber of entries in anode, then the R-tree

satisfies the fol1owing conditions:

1. The root Dode has at least t\Vo children unless it is a lear.

2. Every node contains between m and JI entries unless it is the root.

3. .-\11 leaves appear on the same levelt .

4. For every entry in a leaf Dode. oid represents the smallest rectangle that spatially

cantains the kD spatial data abject.

;J. For every entry in a non-Ieaf node, R is the smallest rectangle that spatially

contains ail rectangles in the child node.

E

r r - - ,.....-----,
Ile
"

A"
l ,

....&.....-+-'.... - - - - - 'T 
1

1

1

1 1

8 __:
Figure 3.3: Rectangles Organized ta Form an R-tree Structure

Figure 3.3 shows the structure of a R-tree and the containment and overlap

ping relationships among its rectangles. The R-tree families have many members,

including packed R-trees [RL85] for statie data, R+ trees [SR87] \Vith guaranteed

disjointness of nodes, R *-trees [BKSS90] \Vith a complex but effective node splitting

tThe first three properties are the same as a B-tree. except m = r~\l/21 for the B-tree.



CH.4PTER 3. REL.~TED \~rORK 40

•

•

algorithm for insertions, and Hilbert R-trees [KF94] that are an improved R-tree vari

ance using fractals. There are also models developed to give analytical estimations

on R-trees/R*-tree performance (TS96].

In the R-tree family, the R*-tree is a representative with the most efficiency. The

construction algorithnl is certainly more complex than that of the R-tree, but is

still considered affordable. Thus it is the most widely applied R-tree variance. Its

nutin inlprovement over the R-tree is its splitting algorithm used for insertions. The

heuristics of the R*-tree combines the optimization (minimization) of the area of the

~IBR. the margin of the ~[BR and the overlap of enclosing rectangles. On the other

hand. the original R-tree only minimizes the area of the encIosing rectangles.

The R-tree family is convenient for representing point and spatial abjects and

their enlbedded relationships. Like B-trees, they are height balanced trees. This

linüts the worst case perfornlance in insertions and deletions to (0 10g(lV)), where ~V

is the number of data objects. On the ather hand, keeping trees balanced becomes

one of the major tasks for R-trees as weIl as for B-trees and K-D-B-trees. ~Ioreover.

it is cornman that rectangles on R-trees overlap. Overlaps in the directory directly

affect the query perfornlance since it means multiple paths need to be searched. Thus

worst searching cost cannot be guaranteed by O(log ~V), and minimizing overlaps of

rectangles is of primary importance in R-tree construction. For example, data .\ in

figure 3.3 locates in the overlap area of ~IBR .-l and B. Searching for .\ thus requires

visiting two child nodes of the root out of three.

In a word, two major problems exist for R-tree family: how to keep it balanced,

and ho\\' to minimize the overlap areas of rectangles. Tries, on the other hand, are

free from both issues by nature.

X-trees for high dimensions

R*-trees may deteriorate rapidly when going to higher dimensions, as large over

lap in directories may increase rapidly with the growing dimensionality of data. X

trees (BKK96] are invented as a hybrid of R*-trees and linear array-like directories!

called "supernodes:~ (\Vith extended variable node size), for higher dimensions in order



CH_o\PTER 3. REL.4.TED \VORK

to reduce the overlap problem in R*-trees.

41

f~""""""""" "1

:"0: 4:
:: -: :
~ . . .
". . .
o. • •

" . .

I:~:l" " ITIJ
normal directory node supemode

•

(a) data objects (b) R*-tree (c) X-tree

Figure 3.4: Example of X-tree Structure

Figure 3.4(c) shows a simple example of the X-tree structure for data objects

shown in figure 3.4(a). For comparison, the corresponding R-tree is also given in

figure 3.4(b). It is a 2D example containing 4 data abjects. These abjects have size l~

2. 1 and 3 units respectively. and they are inserted according ta their numeric order.

\Ve assume the maximal overlap allowed in the directory is 1 unit for X-trees, the

maximal directory capacity AI is 3 members, and the minimal capacity m is 2 for

bath the X-tree and the R*-tree. For the R*-tree~ when data abject 4 is inserted

after abject 1. 2 and 3. a split of the root containing the first three abjects has ta be

performed since the capacity of a directory node is 3. The split should partition the

four objects into two groups. each holding t\Vo objects. Note that the overlap area of

~[BR .-\ and B on the root of the resulting R*-tree is 2 units.

If anode splitting using the R*-tree algorithm \Vould make the overlap exceed a

predetermined threshold value~ the X-tree insertion method tries a so called "overlap

minimum-spliC algorithm without considering the balance of the number of members

in each group. If the second try fails due to a minimalload factor requirement on

every node, a supernode is generated instead of a normal node split. The rationale

is to improve the search by replacing part of the expensive hierarchical search (due

to overlaps) by a cheaper linear search within the supernode. In our example, when

inserting object .1. the R*-tree split algorithm is tried first. Since the overlap of .4



CHA.PTER 3. REL..\TED "\TORI< 42

•

•

and B is 2! greater than the threshold value of 1 unit, it then tries the "overlap

minimum-splif' which generates two groups - object 1,2!3 in group one and object

-l in group two. It is indeed an overlap free split. Unfortunately, it does not meet

the minimal node utilization requirement (m = 2), and thus fails the second attempt

for a splitting. As a result, a supernode of capacity 2 x Al = 6 is generated instead.

holding aIl four objects. Figure 3.4(c) shows the resulting X-tree containing only a

supernode. Searching an object in rectangle 2 by the X-tree becomes a linear search

of the supernode in figure 3.4(c) instead of a traversaI of aIl the R*-tree nodes in

3.-l(b).

Obviously! a problem \Vith the X-tree is that in very high dimensions, the con

struction algorithm may fail to generate a hybrid hierarchy structure at aU; instead,

the whole tree deteriorates into one single supernode. As a result, the search becomes

a linear search of the directory. Although this linear search might still be more ef

ficient than tree searches by the R*-tree, it is likely oot the most efficient method

available. In addition. the construction cost of the X-tree is much higher than that

of the R*-tree.

There are many other structures for high dimensional data. Among them are the

T\'-tree (LJF94L the hB-tree [Lom90], the SS-tree (\VJ96] and the SR-tree [KS97a),

etc.

The TV-tree improves the performance of the R*-tree for higher dimeosional data

by employing the reduction of dimensionality and the shift of active dimensions. But a

restriction is that it requires an ordering on dimensions based on importance, and the

dimensionality is reduced by activating only a few of the more important dimensions

for indexing.

hB-trees [Lom90] are based on K-D-B-trees and the idea of '"holey-bricks", bricks

in which subregions have been extracted. The internode search and growth processes

of hB-trees are precisely analogous to the corresponding B-tree processes. The in

tranode processes use k-d trees as the structure within nodes. Node splitting results

in a k-d tree split which produces nodes no longer represented by brick-like regions

in k-space, but rather as holey bricks. hB-trees have been invented to obtain high

storage utilizations of the directory.



CHA.PTER 3. RELA.TED ~\I0Rl( 43

•

•

The SS-tree and SR-tree are t\Vo index structures especially designed for high

dimensional nearest-neighbour queries.

Unlike tries that give data compression, aIl the above index structures require

extra space for directories. The utilization (load factor) of directory pages and data

pages is normally between 1/2 and 2/3.

K-D-B-trees

K-D-B-trees [RobSI] extend B-trees to multidimensional space. The data space is

recursively partitioned into hyper-rectangular subspaces, each of which corresponds

to a page. The k-coordinates of each point in a data page correspond to the k key

attributes of a tuple in a page. It is Ilot specified how subspaces are to be represented

in the index pages. A splitting of bath data and directory pages can be performed on

an arbitrarily chosen point along an arbitrarily chosen partition a.xis. The method in

generai has to cascade a split downwards through every Iower levei of the tree to the

leaves \Vhen a directory page is split. This is a severe drawback, since the insertion

costs and the minimal occupancy of the resulting pages have no guarantees.

:\ Iater attempt by Freeston [Fre95] is also a generalization of B-trees to k dimen

sions. The new BV-tree is designed ta have a guaranteed mininlal page occupancy of

1/3. The trade-off is that it is no longer a height-balanced tree.

3.3 Jaïn Aigorithms

3.3.1 General Review

Joins are one of the fundamental database operations. Since the invention of the

relational data model in the early 1970's [Cod70] , many join processing techniques

have becn proposed and investigated. Basically, there are three classes of join algü

rithms according to implementations: nested-Ioops joins, sort-merge joins and hash

joins. Early database query processing schemes were based on either nested loop

(nested block scans) joins or sort merge joins. Hash based joins \Vere proposed Iater

to improve the join performance. ~Iishra et al. [NIE92] have written an overview of



CHA.PTER 3. REL.-\TED \VORI( 44

•

•

many of the three classes of join algorithms. There had been a long debate on the

issue of the best join schemes (sort merge joins or hash joins) until recent compre

hensive studies showed that there exist dualities between the two (GLS94]. Current

commercial databases support bath of them.

There are man)" ways ta classify join algorithms. They could be grouped by

whether the algorithm uses special indexes such as join indexes (Va187, B~[90], or

by different jain operators. The join operator can be equijoins (including naturai

joinsL and non-equijoins, including band joins (DNS91, LT95], division joins, etc.

Join algorithms that are efficient for one type of join predicates may not be efficient

for another.

~[eanwhile, there has been a lot of effort placed in the development of efficient

join algorithms for parallel and distributed database systems (~[E92, CY"96, HCY97].

Efficient spatial join algorithms have become a new focus for database researchers.

According ta whether indexed structures are used or DoL spatial join algorithms can

be classified as joins based on special data structures, such as R*-tree joins (BKS93,

HJR97] and seeded trees (LR94], and non-index based join algorithms, such as size

separation spatial joins (KS97b], spatial hash joins (LR96], partition based spatial

merge joins [PD96], etc.

:\"evertheless. natural join operations are one of the most critical and fundamentai

operations for efficient query processing. ~Iany such joins algorithms have been pro

posed since the 70s. The relatÏ\'ely recent algorithms among them include Joins by

Fragmentat'ion(.JF) (Sac86], Distributive Join(DJ) [NP91], Stack Oriented Pilter Tech

nique (SOFT) joins (S~I94] and B'Ucket Skip Alerge Join (SSNIJ) algorithms [KR96].

These natural join algorithms apply one or more of the following strategies:

• partitioning (see next section):

• avoiding duplicate page accesses;

• skipping page accesses whene\'er possible:

• using special (extra) indexes.

Overall, there is no single algorithm that is the best in aIl cases; a proper algorithm

should be chosen based on the characteristic of an application. Furthermore, to the



CH.4.PTER 3. RELA.TED \tVORK 45

•

•

best of our knowledge, there has been no work on join algorithms that takes the

advantage of structures that directly organize the data, Le., witbout using extra

indexes, for better join performance, and yet achieving spatial compression at the

same time.

3.3.2 Sorne Representative Join Aigorithlns

\Ve consider joins of large relations that cannot be held in RA~L First, we will review

several join algorithms under the assumption that values of join attributes are unique.

In the last subsection, we will discuss the situation when duplicate join attributes are

present.

3.3.3 Sort-Merge JoÏn (SMJ)

The standard sort-merge join is executed in t\Va steps. In the first step, the t\Vo

relations Rand Sare sorted according ta their join attributes. This can he done

llsing a (8-1 )-way disk merge-sort algorithm [BEi7]. Since the number of passes of

the relation during the sorting is flog(B-l) ~Vl (see Section 1.3 for symbols), the 1/0

cost of the merge-sort is

where ;.VR! ;.Vs is the number of records in Rand S. The second step is the merge

scan, during which both relations are scanned in the order of the join attributes, and

tuples satisfying the join condition are merged to form the output relation. The 1/0

cost of the merge-scan is exactly l'in + ;.Vs if the join attributes in R or S have no

duplicates. Otherwise. the cast may not be linear [BE77, Sac86]. See more discussion

in Subsection 3.3.8.

The sort-merge join algorithm has found to be the best choice if there is no indexes

available on the join attributes, if not much is known about the selectivity, and there

is no basis for chaosing particular algarithms [BE77, Su88, ~IE92].



CHAPTER 3. REL..\TED ~\lORK 46

•

•

3.3.4 Stack Oriented Filter Technique (SOFT)

Among the recent techniques of join operations, partitioningf has been found to not

onlyease parallelization but also improve the overall efficiency. The basic idea is to

partition the input relations Rand S into m disjoint sub-relations Ri and Si, where

Ri and Sj are disjoint if i =1= j, i = L ... ~ m, such that

RMS= L Ri C'<I Si
i::::L. •..•m

SOFT. hashed loop joins[DG85], JF and DJ are sorne of the join implernentations

of the technique.

In SOFT. joining sets are repeatedly divided by a ma.ximum of live statistically

independent hash functions until a partition of both joining sets is found to have an

identical join attribute. \Ye will not discuss SOFT further as it uses stacks during the

partitioning process and assumes that data sets can fit in RA~[, while our interest.

as mentioned at the beginning, is in large data sets stored on secondary storage.

3.3.5 Joïn by Fragment (JF)

.-\s a representative partition based hash join algorithrn, .IF applies relatively similar

ideas to SOFT. FirsL it partitions the joining datasets recursively into disjoint subsets

by hash functions. with the use of B blocks of memory buffer. The difference is that

the partition continues until aoy subset from the smaller relation can fit into a memory

buffer of size B - 1. In this \Vay the .IF algorithm partitions the data sets without

sorting them. Then it performs the join by a merge-scan of subset pairs.

Figure 3.5(a) gives relations Rand S. Figure 3.5(b) shows the merge-scan phase

by JF. assuming the block capacity is -l data items. In the figure, sets Rand S have

been partitioned iota fragments bya hash function before the merge-scan phase. The

hash function used during the partition is k mod 2, Le.. the first fragments for Rand

S hold odd \·alues, and the second fragments hoId even values.

tIn the literature. it is inaccurately referred to as ·~divide-and-conquern. Strictly speaking,
divide-and-conquer is a strateg)" for reducing asymptotic complexity, such as sort from O(N2) ta
O(N log N) .



CH.-\PTER 3. REL.4TED nlORK 47

118.2.~.161 C><J 1 8.2.12.1 O.~.6.1~

[c' Distributive Join:

R S
subsct \2. 3.~. 5 1 [><J 1 3.S.I.2A 1

R: 13.18.5. 2.~. 17. 16.3• (a) Joining SelS:

(b) Join by FragmenlS:
R

1 13.5.17.31

S

C><l 111.3.5.9.1.15.7.13

S: 11. 3. 5.8.9. 1.2. 15. 12. 10.~. 7. 6. I~. 13

partial join 1 result

-1 13.5.3

- 1- - ~ 1
2.-'

partla Jom-

rcsult
partial join 1 2.3A.5-

subsct p.16.L7.181 [><J 111.8.9.15.12.1O.7.6.1~.13 I---~_~ IL....I_3__-J

partial join 2

td) Buckct Skip Merge Join:

Join auributc values

13

resuh
RC><J S

High

High

Law

buckct
table low value high value ptr

forS 1 ~

2 5 8

3 9 12

~ 13 15

Low

low value high value ptr

2 5

2 13 18

High

High

Low

Low

buckct
table
for R

High - Buckct portions mat
were skipped

Law Indic3ting pointer

~ traversai during

High mcjoin

Law

1,...-- ....J

,
1

1,

•
Figure 3.5: Three Join ~\'[ethods for Data Set Rand S



CH.-\PTER 3. REL.4TED n/'ORK 48

•

•

The 1/0 cast of JF contains t\Vo parts. the partitioning cost and the merge-scan

cast. \Vith the use of B blacks in memor'y~ JF applies the hash function (k mod (8

1)) ta partition Rand S into B - 1 sub-groups. Subsequently, it divides the subsets

recursively until one of the resulting subset ~ and Si has no more than B - 1 blacks.

In case of unifornl distributions. if the number of partitions is kR for relation R, then

.VRI(B - l)k R ~ B - 1. Therefore

Each application of the hash partition on R has an lia cast of

.-\S a result. the cost of completely partitioning R or S is

where i = R or S. :\"ote that this is lower than the sorting cost by S~IJ. In case of

no duplicate join attribute values in R or S. the merge-scan phase is just ~VR + ~Vs

(same a.s S~['J) and the total cast of the JF is therefore

Like other hash partition join techniques. the JF algorithm is particularly suitable

when indexes for joining attributes do not exist and the data is unsorted.

3.3.6 Distributive J oin (DJ)

.\lthough sharing the same "divide and conquer:' idea as JF l the approach by DJ is

different. DJ belongs ta the ··sort-merge·' category. But it improves the standard

sort-merge algorithm by avoiding completely sorting bath input data sets on the join

attributes. Instead, it only sorts the one with the smaller amount of data completely

and partitions it into subrelations. The size of the subrelation is less than that of

the available R-\~I buffer. The boundary values of these subrelations are stored in a



CH.-\PTER 3. REL.-\TED \-VORI( 49

•

•

table calied the distributive table. Theo the large relation is partitioned and partially

sorted using the distributive table. The DJ algorithm, therefore saves part of the

sorting cost. There are three steps in the algorithm:

1. completely sort the smaller data set into ordered subsets (R1l R2 , ••• , Rm) \Vith

each subset size no more than B -l, and produce a distributive table containing

baundary values of the joïn attributes of the subsets;

2. distribute the larger data set inta subsets using the values in the distributive

table as the boundaries of its subrelations using a partial distributive sort;

3. perform the join bet\veen the sorted and the distributed sets.

Figure 3.5(c) shows the merge-join phase of sets Rand 5 given in figure 3.5(a).

Before the nlerge-join. set R has been sorted into t\Vo sets, while set 5 has only been

sorted partially.

The cost of DJ consists three parts: the cost of complete sorting of the smaller

relation R, (2~VR rloga_1 ~VR1), the cost of distributing the larger relation S into

r~VR/(B - 1)1 subsets, and the cost of merge-join bet\Veen ~ (sorted set) and Si

(distributed setL where i = L ... , m. The last part is (JVR + 1VS ) in the absence of

duplicate joiIl values. Csing a B - l way distribution algorithm on secondary stor

age. the number of passes to distribute S into m subrelatioos is [098 _ 1r~VR/(B - 1)1,

which is strictly smaller than the number of passes to sort S completely by S~vIJ in

most cases [~P91]. Therefore at least one pass of the large relation can be saved in

conlparison to 5:\IJ.

3.3.7 Bucket Skip Merge JoÏn (BSMJ)

The 8ucket 5kip :\lerge Join (85:\IJ) improves 5:\IJ by creating and maintaining sorne

extra storage, bucket tables 00 secondary storage, to hold upper and lower values of

join attributes for each data bucket (page) as \Vell as pointers to corresponding data

buckets. The bucket table entries are first accessed during the join processing in order

to avoid data bucket fetches and attribute comparisons in R..-\NI whenever possible.



CHA.PTER 3. RELA.TED \l"ORK 50

•

•

BS~'IJ has its great advantage over aH hash joins including JF and DJ in the situation

that the input sets have been sorted and indexed.

Figure 3.5(d) shows bucket tables, data buckets, file pointer movements of the

bucket skip merge join on Rand S in figure 3.5(a) and the result of the join. The

shaded area is the bucket portion that has been skipped during the join.

BS~[J focuses on sorted relations. By maintaining extra storage for bucket tables,

the cost of merge-join can be less than one pass because of the skip factor, when there

is no duplicate values.

3.3.8 Duplicate join-attribute values

In the presence of duplicate values, the cost of aIl above join algorithms may increase.

\Vhen DJ algorithms are applied to duplicate values, the cost to distribute the

larger relation increases in order to meet the restriction that aU tuples having the

same \'alue of join attributes nIust belong to the sanIe subrelation. This suggests

there may be nI0re subrelations in the presence of duplications. But it has been

prO\'en that with duplicates, the extra cost of distributing the larger relation can be

no nl0re than one pass than without duplicates (NP91].

The cost of both partitioning and/or sorting is independent of data distribution

and duplication for S~IJ, JF and BS~I.J algorithms. It is only the final join phase

that is affected by the duplicate values. If sorne of the duplicate join values exceed

the capacity of the available buffer in R:\~L aU S;\;IJ, DJ, JF and BS~IJ algorithms

are forced to apply nested block scans. and the cost of merging can become quadratic.

3.4 Summary

The chapter gives a literature review on ID to multi-dimensional data structures,

direct access method to tree structures. as weil as a review on join algorithms. In

conclusion, there does not exist a single approach as a solution for aIl the problems

posed by one dimensional to multidimensional data. low to high selectivity, special

to structured data, efficient in both space and time and distribution independence.



•
Chapter 4

Tidy Functions

4.1 Piece-wise Linear Tidy Functions

Let us look at the tidy function definition fronl section 3.1.2:

t =fn D(x)l (ot1)

•

where x is a key and n is the number of pages on secondary storage. If t has to be

stored in its full resolution~ it nlay exceed the RAJ\I capacity for large files. Indeed~

it is valuable to make the assumption that RA~I capacity is 0(1) while file size is

O( n). Tidy functions stored on secondary storage will not only increase the storage

cost but also the retrieval time. A solution for this is a piece-wise linear interpolation

of nD(x). which results in a so called piece-w-ise linear tidy function.

Assume that the number of linear pieces~ p~ is given, the tidy function can be

represented by 2p numbers with 2(p - 1) pairs of x and nD(x), the range of keys and

the total number of pages n. This tidy function is certainly a bigger structure and

more complex to calculate than a simple hash function, such as x mod n. But it is

small and quick compared to secondal}' storage which it is addressing. Here, p « n

is bounded by R--\~I capacity, and has a data distribution dependency as weil.

\Ve assume that the file is loaded onto pages in key order just like a sequential

file. The load factor can be as high as one~ i.e.~ our tidy function is indeed an order

preserving minimal hashing fUfiction. But it need not to be one; there can be empty

51



CH.-\PTER 4. TID1- FU1VCTI01VS 52

•

•

space in our file. In this case~ we simply have a different distribution function to

approximate. and the tidy function is an order preserving hashing.

Overftows

page boundaries

4

3

2

1

x
Figure .t.l: .-\ Distribution Function and a I-piece Line Tidy Function

Figure .1. l shows a distribution function nD(x) and a one-piece linear approxima

tion tidy fUIlction L(x). Three horizontal lines are drawn at page boundaries from

nD(x) to L(x). \Ve shaH show that these lines represent the overflow keys that the

tidy function L(x) gives the wrong page address. For example, key a maps to page

3 according to tidy function nD(x). but according to the approximate line L(xL it

should be on page .t. .-\S a matter of facto L(x) maps any key on the three horizontal

lines between nD(x) and L(x) at page boundary L 2 and 3 to a wrong page address.

Thus these horizontal lines at page boundaries represents aU possible records which

will cause the search to make at least one extra probe. The SUffi of the length of

these lines gives the total number of overflowing records. For continuous key space

this hoIds strictly, but we still get the right proportion if the key space is discrete.

The ahove discussion counts both successful and unsuccessful searches. ~Iore often,

successful searches are more useful and one should only apply records present on those



CH.-\PTER 4. TIDY FUNCTI01VS 53

• horizontallines between the tidy function and the linear pieces at page boundaries.

Now we show that the area between nD(x) and L(x) gives approximately the total

number of overflows. This is because the horizontal Hnes drawn at page boundaries

are equally spaced vertically~ by a distance of a page, h. Each section of the area

between L(x) and nD(x) is approximately a parallelograrn of height h and length bil

the length of the horizontal line. \Ve have

Clearly, the area is proportional to the total length of horizontal Hnes drawn at page

boundaries which represent the total overflow. In other words, the area between the

tidy function nD(x) and the approximation linear pieces L(x) gives the total nurnber

of extra probes.

\Vhen overftows oceur, different relative positions of L(x) and nD(x) give different

extra probings. If L(x) is above nD(xL the linear probing is downwards frorn the

target page of the tidy function ta the page it truly presents. The linear probing is

upwards when L(x) is below nD(x) . .-\ny page that contains an intersection of nD(x)

with L(x). with nD(x) starting abave and crossing clawnwards under L(x), will have

no overftaws. On the other hand. any page with an opposite intersection will overftow

in both directions and thus needs both downwards and upwards linear probings.

Obviously. the goal of the piece-wise linear tidy function approximation is to find

a set of p points on nD(x) with minimal overftows. i.e., the minimal surn of the length

of horizontal lines. or the Ininirnal area between nD(x) and L(x).

Analytical Example

\Ve start to minimize the overftow with a simple analytical exarnple D(x) = x 2 , \Vith

x E [0,1), by two linear pieces. Assume that the t\Vo pieces meet at (z, Z2). Then

L(x) contains t\Va pieces: L1(x) = zx and L2 (x) = (1 + z)x - z. The area between

the t\Va curves are

•
fo

= 2 fI,) 1 2 1
(zx - x )dx + ((1 + .:)x - z - x~)dx = - (z - z + -)

a = 2 3
(4.2)



•
CHA.PTER 4. TID1· FUNCTIONS

After minimizing the above~ we get

dl,} 1 1
- - (z- - :; + -) = z - - = 0 => z = 1/2
dz 2 3 2

54

•

50 the optimal approximation by t\Vo linear pieces is ta partition the range of search

keys at the middle. Similarly. we can minimize the overflow \Vith three pieces of L(x)

for D(x) = x 2 at points (Zl~ZI2) and (':2,Z2
2

). The calculation gÏves ZI = t and

4.2 Heuristic Construction Aigorithms with Min

imal Overflow

In practice. distribution functions are not analytical. For distributions of interest, we

find that we can turn ta dynamic programming to get the optimal partitions with

minimal o\·erflow.

Let men, p) denote the minimal overflow cost if we use p Iinear pieces to approx

imate the distribution function nD(x), and d( i, j) be the overflo\\" cost of the line

piece if we connect point i to j with a straight lîne. Then men, p) can be recursively

defined as fo11ows:

m(n,p) = m.znp<i<r.{m(i.p - 1) + dei, n)}

where Tl is the number of pages, 0 < i < n and p is the number of linear pieces. A

brute-force method to calculate men, p) costs O(nP ). Dynamic programming solves it

by calculating and storing e\'ery possible value of m in a n x p table~ and d in a n x n

table, and therefore avoids recomputation of every entry in these tables. A bottorn-up

calculation of the table elements is used, from m(l, 1),m(2, 1), m(2, 2), m(3, 1), m(3, 2),

... ~ m(i, jL ..., to m( n, p). It turns out that the cost of this dynamic programming is

O(pn2 ). This is tao many disk accesses to be acceptable. Instead, we propose a less

expensive heuristic construction algorithnl which cao also make the optimal use of p

linear pieces br applying them to the Hne segments \Vith ma.ximal overflow.



CH!\PTER 4. TIDY FUNCTI01VS 55

• \Vith the new rnethod, systematically, we look for straight segments of the distri

bution, and to fit the longest and straightest of these segments using as nlany of the

p pieces as we can; i.e., we look for sections with zero curvature.

\Ve do this by bounding nD(x) with a sequence of parallelograms, iteratively

splitting the most expensive one until there are p parallelograms. The first steps are

shown in Figure ~.2.

(a) distribution function nD(x) (b) connecting from end to end
with a straight Hne. L(x)

(d) forming two linear pieces
LI and L2

,,,,,,,,,
1 ,

~'

,1

" 1
, 1

, 1

" 1
, 1,,,,

break point ,,'
~ ,,'-'-~

(c) forming a bounding parallelogram
with breakpoint at the maximum vertical
distance from nD(x) to L(x)

Figure ~.2: Forming a Bounding Parallelogram in Tidy Function Construction

•

\Ye start by connecting nD(x) from end to end with a straight Une (Figure 4.2 (b) ).

Then we look for the point on nD(x) which has the ma.ximal vertical distance from

the Hne (Figure ~.2(c)); this maximum vertical distance corresponds to the longest

o\"erfiow chain from the page which the straight Hne indicates the record at that point

is on, to the page it is really 00, according to nD(x). \Ve cali the point ;~breakpoint",



CHAPTER 4. TIDY FUIVCTIONS 56

•

•

for it is chosen as the endpoint of two new straight Hnes (Figure 4.2(d)). Consiclering

each of these lines as an approximate tidy function, we calculate the overflow cast for

each. The segment \Vith the larger cost is the next candidate for splitting. For the

candidate segment, we repeat step (c) and (d) in Figure 4.2. Thus, we again find the

point of nD(x) in this segment that is the maximum vertical distance from the line.

and make it the endpoint of t\Vo new straight Hnes. As an example, these first few

steps are shawn in Figure 4.3.

.- 1
.- 1.-,

.-
- - -_._------"---_.,. ..~ - ,-'-~ ---,

......

pages

kevs

Figure ·t3: Finding p Segments of Zero Curvature: First Steps

In the end. we have a fit to the original distribution, such as shown in Figure -lA.

The example sho\vs a fit of 10 pieces to an original data distribution lOOD(~') given

in Figure 4.3. The numbers from 1 to 9 on the curve correspond to the iteration at

\Vhich the point is selected as the ;'breakpoinf'.

The parallelograms that we show in the figures serve to indicate the furthest

vertical point of the distributions. Clearly, the skinnier the parallelogranl is. the

more nearly the part of the distribution function it bounds has zero curvature. and

the longer they are. the more useful a linear approximation is to the segment. The

heuristic construction algorithm is outlined in Figure 4.5, where Q serves as a queue



CH:\PTER 4. TIDY FUjVCTI01VS 57

,-5

./

.0-8 __ -

100 -===-=--==::-:::::.-=c:-=--~-----~~-----.. ~.

95 . -~ -- original CUNe with 99 pages -4" --
90 . -.- t 0 approximating line segments
85 •----~----~----.

80 .
75 .
70 .
65 .
60 .
55 .
50 .
45 •
40 .
35 •
30 .
25 .
20 .
15 .
10 .
5 .
o .-,- -_., .- ---~.- -_.~ ,-- - .... - .0 ~~._.~ ~---~.

2.09+083.0e+084.0e.085.0e.086.0e+087.09+088.0e+089.0e+081.09.091.1 e.09

•

values of keys

Figure -tA: :\ Tidy Function \Vith 10 Linear Pieces

of candidates for splitting, ordered by decreasing overflow cost.

~ote that building our tidy function requires an initial pass of the whole file to load

the data and to extract only those keys marking the boundary of pages. Thereafter.

we work with the set of n keys, which we caU a pagekey file.

The \Vorst case cost of the above construction algorithm happens when the ith

breakpoint has to be found among n - i + 1 page keys, and the search has to look

over n - i + 1 page keys. It happens when the p - 1 breakpoints are where the first

(or last) p - 1 page keys are located. Therefore~ the total cost is

p-l

~(n - i + 1) = (p - 1)(n + 1) - O.5p(p - 1) = O(pn)
i=l

•

This corresponds to about p passes of the page keys.

The lowest construction cost happens when the data distribution is uniform and

the breakpoint is always the kt.h point of 2k points in any linear piece. Thus finding

the i th breakpoint means checking through ni Llog2(i + l)J page keys in the range.

Therefore the best construction cost is
p-l

2: ni L10g2 (-i + 1)J~ n log2 P = 0 (n log2 p)
i=l



CH.APTER 4. TIDY FUj\jCTIONS 58

• typedef struct {
POINT -staPoint,
float overflow;

} Segment;

/- Definition of a Segment -/
-endPoint, -brkPoint; /- POINT is a pair:(k, nD(k»-/

typedef struct {
Segment -set;
int num_elements;

} LineSegmentSet;

/- Definition of a Segment Set */

•

/* num: is the number of line segment pieces
- pO, pl: two end points of the distribution function
- Q: a queue of candidates for splitting, ordered by decreasing overflow cost
./

void tidyConstruction( int num, POINT -pO, Point -pl, LineSegmentSet Q)
{

Q= {};
aSegment= processOneSegment(pO, pl);
insertNewElement(Q, aSegment);
for ( i= 0; i< num-l; i++) {

aSegment = removeFirstElement(Q); /- take lst member of Q for prccessing-/
segmentl= processOneSegment(aSegment.staPoint, aSegment.brkPoint);
segment2= processOneSegment(aSegment.brkPoint, aSegment.endPoint);
insertNewElement(Q, segmentl); /- insert a member ta Q such tbat the */
insertNewElement(Q, segment2); /* overflow cost is in decreasing order */

}
}

Segment *processOneSegment(POINT -pO, POINT -pl)
/. find the breakpoint and calculate the overflow cost of the segment-/
{

Segment -aSegment = new Segment(pO, pl);
maxYDist = 0;
totalYDist = 0;

for POINT -p= pO to pl {
curYDist = verticalDistance(p, Line(pO, pl»;
totalYDist = totalYDist + curYDist;
if (curYDist > maxYDist) {

brkPoint = p; /* brkPoint is the one with max distance to nO(x) -/
maxYDist = curYDist;

}
}

aSegment->brkPoint= brkPointi
aSegment->totalOverflow= totalYDisti
/* overflow is proportional to the sum of vertical distance to nD(x) -/
return aSegmenti

}

Figure 4.5: Tidy Function Construction Algorithm



CH.4PTER 4. TID),P FUNCTI01VS 59

•

•

This amounts to about log2 p passes of the page keys. For example~ if p = 25~ OOO~

the least tidy function construction cost is about 15 passes of the page keys.

4.3 Search Algorithms

Searching the data using the tidy function consists of two steps. First. calculate the

page address where \'le expect to find the data using the tidy function stored in RA~C

as we would use a hash function. \Ve caH this page address the home page. Second~

like "collision resolution'~ in hashing~ search the file for the page that really contains

the data. The second step is similar to linear probing in hashing. The difference~

however. is that the probing can be in either direction: either downwards or upwards

from the home page as discussed in section 4.1. If the linear approxÎInate line is above

nD(xL i.e.. the data on the home page have larger value than what we are searching

for. the search will continue downwards. If it is be/ow, the actual data will be above

the home page, and the Iookup will be upwards.

In either case, if the data being hunted is not present in the file (unsuccessful

search). the search must proceed in the appropriate direction(s) until the data values

are above and/or below the one that we are seeking and a failure is discovered.

Our experiments show that in a large number of situations, aH data that is ex

pected to lie in a given home page may in fact be found in a range of pages considerably

above or below the home page for a small number of linear pieces, p~ and irregular

distributions. The above search algorithm can be improved by eliminating the linear

probing through the pages containing no data which are searched for by storing a

pointer on each page pointing ta the nearest page that actually holds rele\'ant data.

\Vhile the o\'erhead is negligible, our experiments show an arder of magnitude search

ing performance improvement for very large files as a result of storing these pointers.

Furthermore. sometirnes even the range of pages holding the actual data maybe

large, and a linear search through the pages after following the pointer is still quite

expensÏ\·e. \Ve can impro\'e the search performance further if a second pointer on

each page. pointing to the furthest in the range~ is used. \Vith the two pointers on



CH.4.PTER 4. TIDl~ FU1VCTIONS 60

each page, we can do a binary search between these two pointers.

D(x)

L(a)

-1
D(L (L!--(atn

•

Figure -1.6: Searching and "Collision Resolution" for Tidy Function

Figure .1.6 shows the idea of these pointers by an example. It shows a key a.

mapped by the linear approximation ta page L(a). The bottom of the page is denoted

lL(a)J, and the top is fL(a)l. Data a is actually stored on page nD(a), in a 5-page

range starting sixteen pages above the home page L(a). The bottom page of the

range is page nD(L-l(L(a)J)). and the top of the range is page nD(L-l(f(a)l)). The

two pointers in the home page ta the bottom and top pages are shawn in the figure.

It is clear from the example that steep portions of nD(x) are responsible for large

ranges, and thus large overftows. This happens where the search keys are clustered

closely together and there are not enough linear pieces to closely approximate these

clusters.

•



CHAP TER 4. TIDYFUNCTIO~ 61

• 4.4 Experimental Results

•

Our experiments were conducted on two sets of data. The first set \Vas generated in

the following way to produce cumulative distributions similar ta what are shown in

Figures 4.3 and 4.4. Tl random nurnbers were generated in 9 groups. Each group is

based on a random (0 - 215 ) multiple of 215 , and contains a random number of ele

ments, each of which is generated randomly by mod 227 . After sorting, these numbers

produce values of keys located at the top of each of n pages, and give a cumulative

distribution to work with. Each of these cumulative distributions has 9 major steps,

\Vith nlÎnor fluctuations. However, when 9 gets larger than several hundred, and

n >~ 104 , the big steps tend to disappear and the resulting distribution becomes too

easy to approximate well. So we modify the method by inserting additional random

elernents within the steps in order to increase the vertical scale of the distributions 1

such as those shown in Figures 4.3 and 4.4. By doing 50, we increase the numbers of

extra probes in searching.

The second set of data \Vere real phone data from ProCD, a business phone

book [Pr096]. which contains more than 15 nlillion American business phone num

bers. It \Vas used to verify the results we obtained from synthetic data. \Ve choose

the phone data because the cumulative distribution has big vertical steps, which

challenges our tidy functions.

\Ve will compare our experimental results with Fox's order-preserving minimal

perfect hash method. the closest competitor, in construction time, storage consump

tian. and search time.

4.4.1 Construction

After the initial pass of the whole file to extract the pagekey file of size n, the cost

of finding p linear pieces to approximate nD(x) using our method depends on p.

Figure 4.7 shows the number of passes we must make of the pagekey file in order ta

construct p linear pieces. Since the data describing these p pieces must be contained in

R:\~L we may build up to only 50 many pieces. In Figure 4.i, we stop at p = 25,000,



•
CHAPTER 4. TID1

P

FUNCTI01VS

and for these many pieces, the cost is 17.5 passes of the pagekey file .

Number of Passes of Pagekey File to Build p Linear Pieces
18ïT"""----"""T"""----"""T"""----......,......-----r-------r-l

16

14

12
II)

al
II)

~10
Q,

'0

~
E
~

c:

4

2

0L....l--------l......-------l......------I....- --I.... ......I....J

62

a 0.5 1 1.5 2
p: number of approximate line segments

2.5

x la"

•

Figure -1. 7: ~umber of Passes of Pagekey File to Build p Linear Pieces

To compare this construction with Fox's method, we make a conservative assump

tion that each page on1y hoIds 10 records, Le., lVln = 10. This is a minimal nunlber.

\Ve also assume that these records consist of nothing but keys. So 17.5 passes of

the pagekey file need the same amount of 1/0 as 1.75 passes of the whole file. This

is much less expensive compared with 6.8 passes for the first cheap stage of Fox's

construction method. \Ve have easily won by an order of magnitude as compared to

Fox in thp aboye estinlate.

\Ve can do another conlparison on construction time from a later paper by Fox et

al.(FHCD92) on minimal perfect hash functions which are not order-preserving. The

construction cost here is lower than the order-preserving hash function by inspecting

the two algorithms. In their paper, they constructed 3.9 million keys into a hash



CHA.PTER 4. TIDY FUNCTIOiVS 63

•

•

function in 33000 seconds on their fastest machine. If we suppose, reasonably, these

keys and their associated records are stored on 400,000 pages, and that each key

consumes 10 bytes, the pagekey file would he 4~'IB in size. \\Te now estimate how

nluch it would take to construct the tidy function on a slow disk with 2J.lsecond

transfer time per byte. One pass of the file would cost about 8 seconds, and 1ï.5

passes would cost 140 seconds. On a shared disk, we would have to access each block

separately. Suppose an average disk seek time and rotation time is 20ms, and a

block size for the pagekey file is 1KB, then 4~IB page keys would he on 4000 blocks

with loading each black costing 20ms+ 1000 x2J.ls = 22ms or 88 seconds per pass.

This translates to 1540 seconds for 1ï.5 passes, or 21 times faster than that of Fox's

method.

Br both comparisons. our tidy function construction method is more than one

order of magnitude faster than that of Fox et al. ).;[oreover, our method is truly

linear. and not almost linear as for the other authors.

4.4.2 Storage

Our method is a minimal perfect hashing, requiring no empty locations in the data

file. The load factor. a, the ratio of occupied space to available space, is l.

The storage overhead of our method is negligible. It stores only a p-piece set of

linear approximations which by definition can fit into R.-\~I, and two pointers per

data page used to set up the binaI}' search for overflows.

Although Fox et al. cIaim a minimal perfect hash function (Q = 1), their method

nlust store an auxiliary table of size 1.261V pointers, or 1.26 pointers per record.

4.4.3 Searching

Figure 4.8 shows our experimental results on searching with the synthetic randomly

generated cumulative distributions and 15 million American business phone numbers

(the crosses on the figure). The cast of searching is a function of file size and p, the

number of approximating linear pieces. \Ve have measured up to 107 pages which may

correspond to at least a 10 GB file. \Vith this size, our expected number of probes



CH.-tPTER 4. TIDY· FUNCTIOl\jS 64

• 7

6

2

Access Cost versus Number of Data Pages

- 1 piece and 25k pieces

- .. 100 pieces

1000 pieces

10000 pieces

x 15M phone data

....

x

x

x

. ~ ....

x

•

O'--~~~........Io..._~-~~----o..·_~..........1--_........--........L_-~..............J
1i 1~ 1~ 1~ 1~ 1~

Number of Data Pages

Figure ..1.8: .-\verage Probes per Search versus File Size

ta search the file~ \Vith 25~000 linear pieces~ just gets up ta 3. This is still better than

the 3.25 of Fox et al. Since Fox~s search cast is independent of file size, they would

eventually inlprove our result for large file size. However ~ ta construct a file of lOi

pages. or 108 keys~ by their method would require at least 106 seconds~ or two weeks.

In Figure ·t.8. we also give the search cast tested on the 15 million phone data.

The result matches with what we get from our synthetic data.

It is clear froln Figure ·t.8 that for file sizes massively larger than the allowed

number of linear pieces~ the logarithmic behavior of the binary search takes over from

the direct access behavior of the tidy function. This leads to the natural question

of whether the B-tree should in fact he used. It is indeed true that the search cost

by B-tree can be competitive to tidy functions when the first two levels are stored

in R:\~L However~ the construction cost of B-tree is O(n log n) while our method is

much cheaper - it is O(n) .



CHA.PTER 4. TIDY FUNCTIOltlS 65

• 4.5 Summary

•

In this chapter. we have introduced a class of order-preserving key-to-address trans

formation funetions (tidy funetions) that ean be constructed in linear time and are

significantly faster than the time for the closest competition. Our method requires

no storage o\'erhead while the earlier methods need linear index space on disks. Our

nlethod is simple in conception and the algorithms are straightforward to implement.



•

•

Chapter 5

Tries for One Dimensional Queries

.-\ Inajor weakness of the linear heuristic tidy function we proposed in the last chapter

is that it is intended for static datasets. In this chapter, we propose tries as an al

ternative structure to order-preserving key-to-address transformation funetions. The

gain fronl this is three-fold: dynamic, conlpactness and speed.

5.1 Tries as Tidy Fonctions

.-\ ID trie on the search keys can be interpreted as if it is an order-preserving key-to

address transformation function, even though the former is not direct access method

as the latter. The remaining fields of a data record are stored either on a trie leaf,

or a separate file pointed to by a pointer on the leaf node. The method exploits

the variable-resolution capacity of tries, their order-preserving properties. and profits

from substantial compression achieved using indexed keys.

Construction of the trie consists of two steps: a) convert keys to their binary

representations, and since these keys are in order, so are the binary representations of

these keys. b) perform a batched process of merging trie norles to construct DyOrTries,

similar to OrTrie construction proposed by Shang (Sha94]. Trie paging can he done

during the process by creating a trie page and writing it ta the disk whenever trie

nodes in the page layer exceeds a given page capacity. The construction algorithm

reads the ordered keys once and writes the trie once. Thus. the cost is Hnear to the

66



number of keys and file size.

Using the insertion and deletion algorithms of the DyOrTrie structure proposed

in section 2.6, our trie is capable of inserting and deleting keys at a cost of O(log lV)

page accesses~ where ~V is the number of keys. ~evertheless, the Hnear construction

algorithm is much cheaper than building the trie by dynamic insertions.

To search a data iterrl with a given key, first, we convert the key to its binary

representation, and then look for it on the trie starting at the root. At any trie node,

if the current bit of the binary key is '·0", the search goes on to the left branch, and

to the right brandl if ··r'. \Vhenever a lear node is reached, a record \Vith the given

key is found by following the pointer to the remaining data attributes in the file.

Therefore, the cost of successful searching is h page accesses. where h is the height

of the trie. assuming the root page of the trie can be stored in R.A~vl. :\ search is

unsuccessful if it has to stop at an internai node of the trie at page leveli. The cost

in this case is siroply i-1 disk accesses.

•
CHA.PTER 5. TRIES FOR ONE DIAfENSIO:.V.<\L QUERIES 67

•

5.2 Experimental Comparisans with Tidy Func

tians

In order to compare \Vith tidy functions. we use the same two groups of data. as in

the last chapter (unless mentioned otherwise): one is the synthetic nonuniform data,

and the other 15 million American business phone numbers.

5.2.1 Storage

The trie compresses data and can achieve a significant compression rate due ta the

overlap of paths near the root. As the file gets larger, this compression effect becomes

more pronounced. For files consisting of uniformly distributed keys only. figure 5.1

shows that the data compression increases to over 90% as the file gets large. Obviously,

this is superior to the tidy function which needs a small mount of space overhead ta

store information about the p linear segments, and two pointers per page used to set



•
CHAPTER 5. TRIES FOR ONE DIAIENSIOlV.4.L QUERIES

up the binary search.

compression ratio vs. 'records

~~-.-- me melhCXl
• me methOd ( mil) data)

~~-~._-~~---

68

•

.--.---... - ........ --. -

~ .

1~ 1~ 1~ 1~
number of records

Figure 5.1: Trie Compression vs. File Size

5.2.2 Searching

•

Figure 5.2 shows the cost of searching by trie method on nonuniform data sets. This

is compared \Vith the tidy functions of 25.000 linear segments given in figure -1.8 •.

The trie page capacity is fixed at -1096 bytes. This measure also assumes that the

first t\Vo trie page levels are stored in R.-\~1. This is based on the assumption that the

RA~I buffer size can store the information of 25,000 linear segnlents. From the figure,

we sec that for large files (lOi to 108 records), the trie method gives 2 page aceesses,

which is superior to the performance of tidy functions. For small files, the trie is at

least as good as the tidy function method ,vith 25,000 linear segments. \Vhen the file

is small enough and the trie is stored in RAl\L one access to the data page is the only

cost of searching, this happens when the number of records does not exceed 105
•

The figure also shows the results from the 15 million entries from phone book

data. It verifies and matches with the results obtained from the synthetic data sets.

• Here file size is given in number of records instead of number of pages. \Ve assume that a page
holds 10 records.



.

•
CHA.PTER 5. TRIES FOR ONE DI~"IE~VSI01'iA.LQUERlES

Search Cost versus Number of Data Records

tidy function:synthetic data

3.5 x tidy function: phone data

- trie:synthetic data

3 -- 0 lrie:phone data

~li: 2.5-
; x

;' 
; ----~

~ 0 •
~

;
/

;
/

/
;

_._ J

o

0.5--

Ol--_~-_.l..-_--_..J....-_--_.....,I.-__--.... ...J.... ......J

103 10· 105 106 10
7

108

Number of Data Records

69

•

Figure 5.2: Average ~umber of Probes per Search \·s. ~umber of Data Records



CH.-\PTER 5. TRIES FOR ONE Dll\IE1VSI01VA.L QUERIES 70

• 5.3 Summary

•

In this chapter~ we have applied the 10 trie method as an alternative ta the order

preserving key-to-address transformation function. The I-d-trie achieves compatible

searching performance to that of the tidy function. The gain is the storage compres

sion the trie achieves~ as weIl as its capability of dynamic insertions and deletions at

a cost of no more than O(1og ~V) page accesses per key.

:\ B-tree \Vith a fanout of 100 and its first two levels stored in RA~I is competitive

in its search cost. \Ve assume that the page capacity is 4096 bytes and a page hoIds

100 records on average. For example, \Vith 108 keys, a B-tree file has four levels and

a total of approximately 106 pages (one root page on the first level, 102 pages on the

second, 104 pages on the third, and 106 pages on the fourth (leaf) level). The cost for

searching a record is t\Vo accesses. which is quite compatible \Vith the trie method.

However, in terms of space cost, there is no \Vay that it can be deemed conlpatible

with the storage compression of the trie structure.



•
Chapter 6

Tries for M ultidimensional Queries

In this chapter, we shaH extend tries for nlultidimensional queries~ including exact

match and orthogonal range queries.

\Ve shaH compare our method with that of existing representative multidimen

sional methods. These include direct access methods such as multipaging and grid

files. as well as weH-applied multidimensional logarithmic nlethods such as R*-trees

and their variances X-trees for high dimensional data.

6.1 Variable Resolution Queries

2 3 4 5 6 7

01 10.011 lllE1E:!
r--l

10 i'

011 1 : : i
oo! Iii 1

- - - - - - - -.... 00 01 10 11

01

1.-J
----~mo 1 6;....1~-4---I-~--J--II--!-----1

1

51r--+--+-_
4!
~I--r--

3 I--~+--+---+--+---+----+-~

-------------------. 21--~~+__~~_+___~I~'

:i:====: '---':--l-tJj~;
o 1

x

Figure 6.1: Variable Resolution in Two Dimensions

•
71



CH.-\PTER 6. TRIES FOR 1\IULTIDIJIENSI01VA.L QUERlES 72

•

•

A k-d-trie for multidimensional data can be interpreted as a variable-resolution file

structure. For example~ figure 6.1 shows the variable-resolution trie for two numerical

point data (3A) and (2~7'). Note that the two points are interleaved ioto t\Vo bit

strings 011010 and 011101 before inserting them in the trie. vVe consider t\\'o bits

(two trie node levels) at a time. At the first resolution leveL both strings appear as

01. representing the upper left corner of a 2 x 2 space shown in the leftmost square.

They are not distinguishable at this time. \Vhen we nlove on to the next level of

resolution to include the next most significant t\Vo bits~ this gives two strings~ 0110

and 0111. shown in the middle -l x -l square. Finally. at the full resolution level. we

have the full strings in the rightmost 8 x 8 square.

This is how spatial queries of ~[errett and Shang[~IS9-l] display at various res

olutions using one copy of data. They are not limited to t\Vo dimensions. In k

dimensions. the queries consider k bits at a time. They are not limited ta point data

either. Edges/rectangles in k dimensions become points in 2k dimensions; triangles

in k dimensions become points in 3k dinlensions.

In this section, we go on to consider general queries based on variable-resolution

\"Ïews of tries. The data need not be spatiaL but more importantly they are multi

dimensional and we must consider the multidimensional interpretation of data when

processing queries.

6.1.1 Exact Match Queries

This section is a description of algorithms on exact match queries in multidimensions.

These are prior work done by others [~I081a. Sha9-l~ :\HS8-l].

Exact Match by Tries

Exact match queries are one of the most frequently used queries. The process of the

exact match query by trie is a straightforward ID trie search once the multidimen

sional search key is interleaved into a binary string. The ID exact match search by

(full) trie method has been introduced in section 2.l.

For an exact match query using an ordinal!" trie~ the algorithm differs only at the



•

•

CHAPTER 6. TRIES FOR !vIULTIDlYIE1VSI01V.4L QUERIES

Boolean TrieExactHatchQuery( DATA key)
{

String skey;
TrieNode .node;

skey= interleave(key);
node= root();
return (doExactMatch(node. skey»;

}

Boolean doExactMatch(TrieNode node. String skey)
{

if (node== CaO') { Illeaf node
Ilcompare the suffix string stored at the leaf to that of skey:
if (strcmp( node-> suffixe). suffix(skey, node-> level(») == 0)

return (true); Il a match
return(false); Il a mismatch

}

else {Ilnode is NOT a leaf
if (node ai current_bit(skey. node-> level(») {lia match

node: node-> child( skey);
return( doExactMatch(node. ++skey»;

}

else Iimismatch
return(false);

}

}

Figure 6.2: Exact ~Iatch Queries by DyOrTrie

73



leaf node: a comparison of the truncated suffix at the leaf node to the remaining bits

of the interleaved key has to be done. The multidimensional exact match query algo

rithm by DyOrTrie is givell in figure 6.2. Note that we assume the paging mechanism

on secondary storage l'uns in the background.

Clearly, the cost of exact match queries depends on the search key length~ and

not directly on the size of the trie. However, the upper bound of the search cost is

the height of the trie, which is a logarithmic function of the file size.

•
CHA.PTER 6. TRIES FOR !v[ULTIDI1\;fENSI01VA.L QUERIES 74

•

Exact l\Iatch by Multipaging

Exact match queries by multipaging can be done in two steps. First. search the scales

in R.-\~-l and calculate the corresponding page index. Second, load the page into RA~l

and perform the search. If there are overflow records stored on other pages, these

pages in the overflow chain have to be loaded and searched. So the cast of exact

match by multipaging is one disk aceess ideaIly, and the length of the overflo\v chain

plus one if there are overfiows.

Exact Match by Grid file

Grid files share the first step in exact match queries by multipaging to search seales

and retrieve the index. But to obtain the page address, it requires one access to

the direetory on secondary storage. Then the corresponding data page is loaded and

examined. Thus the cost using grid files is exactly two disk page accesses.

6.1.2 Orthogonal Range Query

Orthogonal Range Queries by Tries

An orthogonal range query is a range query for multikey files~ involving ranges of sev

eral fields: aIl records with every attribute value of a seareh key in a given range. For

orthogonal range queries~ we must interpret the trie multidimensionally. Figure 6.3

shows a 2D trie, \Vith each node schematically indicating the region it represents

(shaded area). Labels at each Dode present the paths from the root. Thus there is a



•
CHAPTER 6. TRIES FOR 1\JULTIDUvIE1'lSI01VAL QUERIES

Figure 6.3: Range Query of [2,6)x[4,8) in an 8x8 Space

75

•

one-to-one correspondence between anode, determined by a path from the root, and

an area it represents. An orthogonal range query involves the searching of a set of

nodes whose areas overlap the given ranges. Consider the 8 x 8 space of figure 6.1.

The range query is from 2 ta 5 in the first dimension and from 4 ta 7 in the sec

ond dimension, i.e., [2.6) x [4,8), the shaded area in the right most, 8 x 8 square of

figure 6.1. The range query is processed on a trie node recursively as follows:

1. If the eurrent node does not overlap with the query ranges, it is rejected, along

\Vith the subtrie rooted at the node.

2. [f it is entirely contained in the query, it is accepted, along with the subtrie

rooted at the node.

3. Otherwise overlap occurs. and the search continues on descendents of the node

recursively.

Therefore, the range query in the given example continues on the root and its

t\\'o descendents. It 'rejects at node 00 and continues at 01. \Vhen processing the

descendents of 01, it rejects 010 and accepts 011. Once anode is accepted, aH the

lea\'es that descend from it are also accepted. The same search considerations apply

ta node 1 as \Vell. The crosses and checks show where the search halts in rejection or

acceptance respectively.

The orthogonal range query algorithm by DyOrTrie structure is outlined in fig

ure 6..1..\gain, we assume that the paging mechanism is running in the background.

The ranges are given by the multidinlensionallower and upper corner coordinates.



.'

•

CH..\PTER 6. TRIES FOR AJULTIDIAJE1VSI01VA.L QUERIES

void TrieRangeQuery( DATA lover, DATA upper)
{

TrieNode *node;
node= root();
doRangeQuery(node, lover, upper);

}

void doRangeQuery( TrieNode *node, DATA lover, DATA upper)
{

if ( node-> value() =z '00') { Il leaf node
if (overlap( node-> suffixe), lover, upper»

outputSubtrieRootedAt( node); Ilaccept the leaf node
return;

}

else { Ilinternai node:
if (!overlap( node->area(), lover, upper»

return; Ilrejecting
else
if (contained( node->area(), lover, upper» {

outputSubtrieRootedAt( node); Ilaccept leaves in the subtrie
return;

}

else { Iloveriaps: continuing on descendents
doRangeQuery(node-> left(), lover, upper);
doRangeQuery(node-> right(), lover, upper);

}

}

}

Figure 6.4: Orthogonal Range Query using DyOrTrie

76



CHAPTER 6. TRIES FOR .l\;IULTIDIAIE1VSI01V:\L QUERIES 77

•

•

The variable-resolution property of the trie enables queries like exact match and

range queries to elirninate impossible subtries at an early stage near the root and only

continue to process on refined data by increasing the resolution untH only relevant

data remain. Thus. the cost of orthogonal range queries is sublinear to the size of

the trie. Along \Vith the fact that tries are compressed in storage, they have a strong

potential in achieving significant performance irnprovement over the existing query

methods by other data structures.

In order to do experimental comparisons \Vith existing ulethods, we give a brief

description of orthogonal range range queries by grid files and multipaging as follows.

Prior work done by others exists for both.

Orthogonal Range Queries by Grid Files

The orthogonal range query algorithm by grid files is shown in figure 6.5. The ranges

are given by the lower and upper corner caordinates.

void GridFileRangeQuery(DATA lo~er, DATA upper)
{

int lowind[k), upind[k];
DataPage *celllist;
SearchScale(lo~er, upper, lowind, upind); /Iconvert into index vectors;
GenCellList(lo~ind, upind, cellist); //generate a list of page addresses;
DoRangeQuery(lo~erJ upper, cellist); /Ipages are looked up;

}

Figure 6.5: Orthogonal Range Query using Grid File or ~'[ultipaging

First, using index scales stored in RA~I, vectors of lower and upper corner coor

dinates of the range query are converted iuto index vectors, lowind and upind, by

procedure the SearchScale (not shown). Then these index vectors are used by the

grid directory to generate a list of page addresses in procedure the GenCellList (not

shawn). This requires k loops, from lowind to upind in each dimension, to convert

aB the page cells into a set of pointers to data pages. Duplicate pointers to the same

data page are removed. The above process needs to access the grid directory usually

on secondaI)" storage. Finally~ the list of data pages are accessed. The cost in terms



•
CHA.PTER 6. TRlES FOR NfULTIDIAJENSI01VA.L QUERIES

of disk accesses is loosely bounded by

le

II (upind[i] -lawind[i] + 1)
i=l

and will be examined in the experimental section.

Orthogonal Range Queries by Multipaging

78

(6.1)

•

Range queries by multipaging share the first two stages of SearchScale and GenCellList

as those of grid files. The only difference is that GenCellList can be performed in

R.-\~[ and thus requires no time in our model, where only the number of disk accesses

count. But the DoRangeQuery is more complex than that of grid files because a data

page may have pointers to its overflow pages. The pseudo..code of DoRangeQuery

for multipaging is given in Figure 6.6. The cost of multipaging when distributions

are close to uniforrn is also bounded by Equation 6. L However, for pathological

distributions, overflowing pages couId lead to a visit of the entire data file.

6.2 Experimental Comparisons with Multikey File

Structures

In the following experiments, we address eosts against four parameters that may

affect performance. These four parameters are file size, distribution, dimensionality

and query selectivity. Costs studied inc1ude the number of disk page aceesses, access

time and storage costs. The file structures we are going to compare to are aIl suitable

for multidimensional data, including direct access methods (multipaging and grid

files) and logarithmic file structures (R-trees/R*-trees and their derivative X-trees).

6.2.1 Costs

The number of page accesses to the secondal1' storage are a straightforward assess

ment of query eosts. But in some situations, not aIl page aceesses require the same

amount of time. Counting numbers of page accesses becomes insuflicient and may



•
CH.4.PTER 6. TRIES FOR l'vIULTIDIAJE1'lSrO./V•.:\L QUERIES 79

•

void DoRangeQuery(DATA lover, DATA upper, DataPage .cellHead)
{

DataPage .p= cellHead; IIp is head of the linklist of pages
vhile Cp is not null) {

DoRangeQueryOnAPage( lover, upper, p)j Ilprocess one page at a time
p = p-> next; IIp points to the next data page member of the linklist

}
}

void DoRangeQueryOnAPage(DATA lover, DATA upper, DataPage .p)
{

DataPage *q;
Ilload data page pinto RAH and do a sequential search on the page:
sequentialSearch(lover, upper, p);

Ilif p has an overflov page chain list, search them as vell:
q= p-> linkto; Ilq point to the first member of the overflov page list
while ( q is not null) {

if (!q-> visited(» Ilif the page has not been processed
DoRangeQueryOnAPageCq); lIdo range query on the overflov page

q= q-> linkto; Ilgoto the next page of the overflov list
}

}

Figure 6.6: Page Searching in Orthogonal Range Query using ~'!ultipaging



CH.-\PTER 6. TRIES FOR AIULTIDIAJE.N5IONA.L QUERIES 80

•

•

even be nlisleading. In the case of X-trees, supernodes are groups of nodes which are

accessed sequentially rather than directly. So for X-trees, we cite the access times.

The times are not nleasured directly because of operating system interference as weIl

as the existence of mernory buffers and disk buffers. Instead, time is calculated using

the parameters of our disk~ a Seagate Hawk 2XL Ultra SCSI 3 with an average seek

time and rotation time of 14.54 msec, and a read time (for 1KB of data) of 168J.lsec.

For sequential reads. the random seek time is omitted.

Another cost to he considered is storage. Tries compress data, as opposed to

aIl the other methods we have discussed in the context of this thesis. vVe will look

at the trie compression rate in subsection 6.2.8. On the other hand, grid files are

significantly dependent on the correlation among multidimensional distributed data.

and which in turn affects the amount of storage for grid directories. ~'[ultipagingalso

degenerates for exact match queries when there is a strong correlation among the data.

Section 6.2.7 in\'estigates this based on new models in characterizing distributions.

6.2.2 Data File and Algorithm Implementation

Data llsed in the experinlents are from several sources. vVe use uniform random

synthetic data, synthetic data with nonllniform distributions, as \Vell as data from

contour maps [E~[R} and the {J.S. Census TIGER data.

AlI trie. multipaging and grid file algorithms are implemented by the author.

The R*- and X-tree implementations are from the X-tree author Berchtold [BKK96}.

These are the implementations they \Vrote. and were run on their machine as weIl.

The black size of files on seconda~' storage \Vas set at 4096 bytes for aH tests unless

specified othen\·ise.

In aIl cases, results shown are averages of 50 ta 100 runs where applicable. AH

queries are on point data. Tries on shaped data are investigated and compared \Vith

an analytical model of R*-trees [TS96], which is beyond the scope of this chapter.



CH.-\PTER 6. TRlES FOR ~\t[ULTIDI1'lE1VSI01VALQUERIES 81

•

•

6.2.3 Parameters

There are four parameters that may affect the query cost: file size, dimensionality~

query selectivity and distribution.

The cost of tries~ R*- and X-trees are logarithmic to file sizes. Nlultipaging and

grid files are direct access methods and thus they are independent of file size in

general. Section 6.2.4 shows that direct access methods have greater speed in exact

match queries. But for range queries, tries outperform ail others.

The increase of dimensionality degenerates the R*-tree performance. One rea

son is due to the overlap of directories which increases rapidly \Vith the growing

dinlensionality of the data. The X-tree is designed to improve the R*-tree at high

dimensions using a hybrid organization of partial hierarchy and partial linear orga

nizations. Tries do not have the overlapping problem as that of the R-tree variants.

In section 6.2.6. we demonstrate that tries outperform R*- and X-tree for both exact

and range queries in various dimensions.

Selectivity is defined as the ratio of records retrieved by a query to the total

number of records in the file . .-\ range query is an example of high selectivity in most

cases. Section 6.2.5 will show that tries outperform aIl other data structures except

at very lo\v selectivities, such as an exact match quer)'.

The distribution of data in multidimensions, i.e.~ the way in which data correlate

across dimensions. significantly affects the perfol'nlance of multipaging and grid files.

Section 6.2.7 shows that tries are not affected entirely by pOOl' distributions in tel'ms

of speed and storage costs.

6.2.4 Speed versus File Size

Figure 6. 7~ 6.8, and 6.9 show how the cost of exact match queries varies with the file

size. Figure 6.7 shows the 20 result, and figure 6.8 displays the high 160 result. Tries

are compal'ed with X-trees~ and R*-trees in 160. .-\S X-trees contain supernodes which

use subsequent sequential searches among its directory search, a complete analysis

should also include time delay measures. Figure 6.9 shows the equivalent elapse time

spent on disk accesses .



CH.~PTER 6. TRIES FOR 1\t[ULTIDI~IENSI01V.4LQUERlES 82

.

1 (3.2)
1

1

~
1

/
/

/

1

1

1

/
~1.00)

- (0.67)

0 0 ~0.50)

105 106

o-

... 0

""

Exact match: 0:z2, page size=1024, uniform data

""

R--tree

- - grid file

multipaging
-DyOrTrie

8

2l~ - - - -0- - - - .....~ ...- - - - El - - - -~~~--~~-~~

ol--__........-'-- --........ -.....I_~ ..L____........_.L___..................J

100 10' 102 103 10"
'records

Figure 6.7: Page :\ccesses vs. File Size, 20. Exact ~Iatch

•

Exact match: 0=16. page size=4096 bytes. uniform data
10

2
.----------------------------.

• X-trees
- - R--trees
- OyOrTries

o
1

(2.9)
1,

1

1

ci,

1

1

1

1, ,/

, .4)"

.;~---_.- ...
./

/"
",.

,
/

".

100.~----_e:::----_e::------------------J

100 10
1

102 103 10
4

105

'records

Figure 6.8: Page .-\ccesses vs. File Size. 16D~ Exact ~Jlatch

•



CHAPTER 6. TRIES FOR l\;IULTIDIAJENSIOIVA.L QUERIES

10
2

Exact match: 0=16, page size=4096 bytes, uniform data

• 1

1

Re-trees 1

êi)
- - X-trees 1 2.5}

~ - DyOrTries /li)

§. 1/

li)
Il

~
1 1

1
li)

1 1Q)

8 1 1
eu 1

1
~ e
'6 "
c
0

ë
8-
li)

Q) ;r-----
-~ /
ë ;'
Q) ;'
iU />
"S /CT
W /

;'

/

101
10° 10' 102 103 10" 105

'records

Figure 6.9: Equivalent Access Times vs. File Size, 160, Exact ~'Iatch

83

•

Fronl these results. when the number of records exceeds a million, tries are slower

than multipaging by a factor of 3 and grid files by 1.5, simply because tries are log

arithmic and not direct access structures. However, comparing \Vith tree-like struc

tures, tries outperform R*-trees by factors of 3.2 at 106 records in 2D. In 160, tries

are 2.9 times more efficient in page accesses using 105 records, and outperform X-trees

at 5 x 1001 records by 2.5 when considering the total time spent on disk accesses.

\Vhen file sizes increase, the trend is that trie costs increase logarithmicly, however,

tries supercede R*-trees and X-trees by greater degrees in exact match queries. This

is because R*-trees and X-trees performance deteriorates when files are bigger in high

dimensions. It is difficult for R*-trees to find overlap-free partitions when files are

\'ery big, and thus they have more overlapped directory pages ta be searched. The

X-tree tends to rail building hybrid hierarchy structures when there are an increasing

number of records in a file. Instead, the whole structure generates more and larger

supernodes, especially near the foot. These supernodes near the root are more likely



CH.4PTER 6. TRIES FOR !\IULTIDI1\JE1VSION.4.L QUERIES 84

•

•

to he visited during a query. This results in a sequential search of most of the file

instead of a tree search. In fact, it is exactly this reason why in figure 6.8, when

the number of records exceeds 103 , R*-trees have an improved ahility over X-trees

in terms of the number of page accesses; R*-trees have overlapped directory pages

to be visited, while X-trees have to search sorne supernodes· which further increase

costs. On the other hand, in terrns of time spent on these disk accesses, X-trees do

sequential searches on those supernodes, which save considerable amount of access

time to secondary storage. This is why in figure 6.9, the time delay search costs of

X-trees are lower or no \Vorse than that of R*-trees when files are larger than 103

records in 16D.

For orthogonal range queries, figures 6.10, 6.11 and 6.12 give the same set of

conlparisons at 0.2 selectivity for 2D and 160 respectively. Cost increases linearly,

along with the nUlllber of records, briefly for aU structures, bath in 2D and 160,

when there are enough records. Tries are superior to aU other structures. In 20, tries

outperform R*-trees by a factor up to 5.3, and irnprove performance over grid files

and multipaging by a factor of 1.9 and 2.1 respectively at 106 records. In 160 , tries

outdistance both R*-trees and X-trees up ta a factor of 2.2, at 105 records.

The major reason for the enhanced performance of tries over other structures is on

account to the storage compression they achieve. In fact, tries compress data while

other methods add storage overhead which in summary accounts for the result. \Ve

look further at the compression rate of tries in section 6.2.8.

6.2.5 Speed versus Selectivity

In this section. we give two groups of figures for the query cost versus the selectivity

for the contour and TIGER data, one in 20 and the other in 160. The selectivity plays

a principle role in the query cost for aU data structures. The higher the selectivity

is, the higher the query cost for any structure. Figures 6.13, 6.14 and 6.15 show that

tries outperform aU other methods, surpassing R*-trees, grid files and multipaging by

factors 5.5, 3.L and 2.1 respectively at 100% selectivity in 2D.

·One supernode contains a number of regular nodes. thus counts for more than a page.



CH.4.PTER 6. TRIES FOR 1\tIULTIDINIENSI01V.4L QUERIES 85

Range Ouery: 0=2, page size=1024, selectivity=O.2. uniform data
10

4
C--~""""""""""'~-""""""""""-'--~----'-"""""'''''''''''''r----..................~-.....-. .......................,• - - Re-tree

- - grid file

multipaging

-OyOrTIe

- - - - - --"g:. '"
100 - - - - -

10' 102

", ",

" "
", '"

0'"
"'0

"'''
,,"''' 0

#records

",

•

Figure 6.10: Page :\ccesses vs. File Size~ 20, Range Query

In figure 6.13 for 20. aU curves are linear except multipaging. The cast of mul

tipaging increases quickly at low-end selectivities. This is due to the fact that the

experimental data used here are non-uniformly. :\ brief explanation follows. \Vhen

the selectivity is low. the probability that pages in overflow chaios are outside the

query range is high. and consequently increases the search cost. When the selectiv

ity increases. the probability that those pages holding overflow records are located

outside the query range decreases.

In high dimensions, tries retain an advantage over both R*-trees and X-trees at

any selectivity. This again is due to the compression property of tries. The factor

of improvement now appears in the range 2.4 to 2.7 at 100% selectivity. Note that

these cun-es are different from that in 2D - they are not linear. :\.11 costs increase

rapidly at low selectivities, e.g.~ at 10% selectivity for contour map data, costs of

the R*-tree and X-tree are about 30% of those at 100% selectivity, and thase of the

trie are approximately 80% of the 100% selectivity. This is the so-called "curse of



CH.-tPTER 6. TRIES FOR JIULTIDL\JEl'iSI01VAL QUERJES 86

Range Query: 0=16, page size=4096 bytes, selectivity:o: 0.2, uni.orm data
104

r----~~---.-..........................---.---.-----.............~----.------.-.......-r---------"'T"""'O' ............,

#" (2.2)

(1.0)

- - X-trees
- - Re-trees
- DyOrTries

q

""... ", ,
... "

"",,""
"",

o ~"
, ' ...0, ..

, :::: - "'"
,._ ........... -

100~;;...""".,--,~__.L...- --..l ~"""""' -...J

101 102 103 104 105

#records

101

•

Figure 6.11: Page .-\ccesses \·s. File Size~ 16D~ Range Query

dinlensionality~·. For simplicity. assunle the query range is a hypercube. \-Vith the

selectivity at 10%. the sicle length in a dimension is 0.1 l/16 = 0.87 in a data space of

a 16D unit hypercube [O. 1) 16. This is larger than three-fourth of the space in that

dimension. \Ve know that tries always partition the space into two haU subspaces.

This means that at least the first 2 x 16 + 1 = 33 levels of the trie nodes need to be

\·isited. A complete trie with 33 levels of nodes can hold up to 232 = 4 billion records.

Thus~ with 6 x 104 records in the contour map file, 33 levels of nodes certainly means

most pages of the trie. For the R*-tree and the X-tree~ the data space is split only

once in a number of dimensions. It is not split at all in the remaining dimensions,

and thus the bounding boxes of the pages include almost the whole extension of the

data space in these dimensions. For example~ if a 160 data space has been split

exactly once in each dimension~ it would require 216 = 65536 data pages, and we have

only less than 2000 pages for bath the R*-tree and X-tree. On the other hand~ it

is intuitively clear that a query with sicle length of 0.87, must intersect with every

•



CH.-\PTER 6. TRIES FOR 1\IULTIDIAIE1VSION.4L QUERlES 87

Range Ouery: r=,16, page size=4096 bytes, selectivity=0.2. uniform data
, 05

...-:-----.-----.--.....................y-~~-.-.-.......-r- ...........--.......................,....-~--- ..........~.....,

. ; (2.2)

,,.
/'

, ,.,./
q

"'...

- - R·-trees
- - X-trees

- DyOrTries

10''''-------~-----...I.-------...I.-------..-.....J

la' 102 103 10· 105

"records

•

Figure 6.12: Equivalent Access Times vs. File Size, 160, Range Query

bounding box having at least side length 0.13 in each dimension. Thus the access

probability of pages in the R*-tree and the X-tree are high even when the selectivity

is not particularly high~ it is this which contributes to the high cast of the queries at

10% selectivity. A more accurate analysis for the curse of dimensionality on X-trees

(and R*-trees) for range queries can be found in the literature (BBK98].

6.2.6 Speed versus Dimension

•

Poor R*-tree behavior at higher dimensions has provided a motivation for the intro

duction of X-trees. \Ve move on to see ho\\" tries behave in higher dimensions. vVe

make two sets of experiments on tries, R*-trees and X-trees, one for exact match

query and the other for high selectÏ\'ity range queries. In each set, we give both the

average number of disk accesses and the equivalent time spent on these page accesses.

Figures 6.16 and 6.18 show that tries reroain better than R-trees and X-trees

by factors similar to the experimental results in the previous subsections for exact



CH.-\PTER 6. TillES FOR ~\[ULTIDI:.\JE1'lSION.4L QUERIES 88

• 10000

9000

8000

- - R--tree

- - grid file

multipaging

- DvOrTrie

Range auery: 0=2. page size=' 024 bytes

upper group; contour map, trecords=480K
lower group (with -}"); tiger db, trecords=48K

(5.5)

oc
CD
lI'l

7000lI'l
CD

~
ca
lI'l 6000
CD (3.1)0) -ca
i- 5000
CD
Cl

t! 4000CD (2.1)><
3000

0.9

---_ .... ---

0.8

- - - - - - - -

0.70.30.2 0.4 0.5 0.6
selectivity

Figure 6.13: Page :\ccesses vs. Selectivity~ 2D

o 0.1

1000

2000

nlatches and range queries with the selectivity fixed at 20%. Figures 6.17 and 6.19

again confirnl superior trie performance when measuring times spent on disk accesses.

These experiments are done by fixing the file size at 6.4~IB. The higher the di

mensionality~ the fewer the number of records actually stored. This explains why

tries have slightly better performance for exact matches in higher dimensions. On

the other hand. the key length increases with dimension. ~'1oreover~ for range queries

with fixed selectivity~ the higher dirnensionali ty indicates that in each dimension the

range to he searched within that attrihute space becomes larger on average. This is

the reason that costs for range queries by tries increase \Vith dimensionality. However,

tries remain cost effective O\'er both R*-tress and X-trees due to their compactness.

The trie curves in figure 6.18 and 6.19 have the same shape as those of R*/X-trees.

AIl of them increase rapidly for low dimensionality~ say less than 6 to 8 dimensions.

The reason is quite similar to what is explained at the end of section 6.2.5, the so

called ~;curse of dimensionality~~. .-\ssuming the query range is a hypercube~ when

•



CHAPTER 6. TRIES FOR ~\fULTIDIllIENSI01'l.4.LQUERJES 89

• 1600

1400

- - X-tree
- - A--tree
- DyOrTrie

Range Ouery: 0= 16. page size=4096 bytes

_ - (2.7)

(2.4)

contour map: Irecords= 60K

~

~ 1200
en
CIl

~
~ 1000
CIl
Cl
Ils

i' 800 ~
CIl

g' "J~.!;"~~~~~~~~~~~~~~~~~~~~~(1~)

/
1

200-' _ - --- - -.- - _.- - --_.--- _._--
f, _ - - -=-:: :----- -=. - - - - - - - - - - - - - - - - - - - - - -

_ - GO - - - - tiger db: 'records= 6K

0.1 0.2 0.3 0.4 0.5 0.6
selectivity

0.7 0.8 0.9

•

Figure 6.1--1: Page .-\cccsses vs. Selectivity, 16D

the dirnensionaIity increases~ the query side length increases non-linearly. At 20%

selectivity~ the sicle length is 0.-15 in 2D~ 0.67 in 4D, 0.82 in 8D, and 0.90 in 16D. For

X-trees (and R*-trees). the percentage of accessed pages quickly approaches the 100%

nlark as the dinlensionality reaches 10. and when database size and selectivity are

fixed, according to Berchtold [BBK98]. This roughly explains why when dimensions

exceed 8. the curves of the X- and R*-trees are almost fiat - the queries retrieve

alrnost aIl pages in the files while the database size (file size) is fixed.

6.2.7 Speed and Storage Cost versus Data Distribution

The distribution of data in the multidimensional space can seriously affect the per

formance of grid files and multipaging in storage space and search time respectively.

Thus we must find ways to characterize and quantif:~' these distributions.

The usual statistical measures of correlation are not suitable indicators of the

distribution as they depend on the arder of the data. Thus, attribute Y may be a



CH.4PTER 6. TRIES FOR AfULTIDll\JE1VSI01V.4.L QUERlES 90

20000 .----y----r---r---,-------r--~-~--r---~-___,
Range Ouery: 0= 16. page size=4096 bytes

• 18000

ûi"
(.)

~ 16000
§.
en
~ 14000
en
(1)

~ 12000
JI:.
en
'6
g 10000 ~

- - X-tree
- - R--tree

- DvOrTrie

.-

contour map: 'records: 60K

_ (2.6)

(2.4)

c ' ;
(1) " ,,"

fi- 8000 ~ " "
(1) 1,,:..-"_------------------,(1.0)

i:::(,/'
Lff l,

2000 __-_--":. = =_-_-_~ =..:--~-- -=. =------- =. =-----"":... ==--.:..--
.._ - ~ - tiger db: 'records::: 6K

0.90.80.70.30.20.1 0.4 0.5 0.6
selectivity

Figure 6.15: Equivalent .-\.ccess Times vs. Selectivity, 16D

function of attribute .\! Y = f(x), but the statistical correlation between .Y and }

will be quite different depending on \Vhether f is a straight Hne or f has points which

are distributed uniformly across the plane.

"oe turn to information theory and find that the information-theoretic correlation,

which we will from now refer to as correlation for simplicity! provides an excellent

measure for the behavior of multipaging. Similarly, the mutual information, which we

will from now on refer to as information, is a good indicator for grid files performance.

For random variables .\. Y, ... , Z \Vith probability P(Xi, Yj' ...• Zk), and .\ = Xi,

} - = Yj ... Z = Zk. the information is

Ix}·...z = L P(Xi, Yj, ... , Zk) logp(xi, Yj, ... , Zk)
ij ...k

The correlation is given by the expression

I.·o ·...z - lx - Iy - ... - Iz

•



CHA.PTER 6. TRIES FOR 1vIULTIDI1\JE1VSI01VAL QUERIES

Exact match: file size=6.4 MB. page SiZ8=4096 bytes. unitorm data
140...----...---~----r----...---"'"T'""---...J---...,

(46)

91

120

- - Re-trees
_. - X-trees

- DyOrTries

100 ..
i
li)
li)
Q,l

8 80ca
."

li)
Q,l

i
Q. 1•Q,l 60~ /

C)

e
Q,l
:>
4(

40

20~

f---- - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (3.0)

C::====::i::====::::L:====::::::;:======:L::::::====:::C=====:::i:====:::j(1.0;
°2 4 6 8 10 12 14 16

dimension

Figure 6.16: Exact ~'(atch: Page Accesses vs. Dimension
Exact match: file siZ8=6.4M bytes. page siz8z 409Gbytes. uniform data

160
- - Re-trees

en - - X-trees
~ 140.. - DyOrTries
§.
en
~ 120 - ...... ---:;:-
~ .:'--- -
~ 100
'6
c:
~ 80~
c:
§.

- - -

,

----- - - - ----------

.-

-

-

•

Q,l
60~

~
ë
lU
(ij 40~
>
"3
CT
~

20

O
2 4 6 8 10 12 14 16

dimension

Figure 6.17: Exact ~latch: Access Time vs. Dimension



CH.-\PTER 6. TRIES FOR 1\;fULTIDI1\JE1VSI01V.4L QUERIES 92

2500
Range query: file size=6.4MB.page size=4096 bytes.selectivity=0.2.unitorm data

__-_-- ~ ;:- t~:6~

1614128 10
dimension

- - - -.:--- :: 
'- -- : =--

__----------1(1.0)

64

- - Re-trees

- - X-trees

- DyOrTries """""F
" """".""

""" "" ""
""

""
" "

" ""
"1

"1
N

1"

1"
·1

Il

"Il

1000

2000

Figure 6.18: Range Query: Page Accesses vs. Dinlension

Range query: tile size=6.4MB,page size=4096 bytes.selectivity=0.2.uniform data

22.0)

20.6)

(1.0)

- - Re-rrees - -- -(- -- -- - X-trees - - (~ - - - - - - -- - - - -
- DyOrTries - - -- - - - -- - - - - - -,,- - -

""""~

1
/

/.. ,,
",

,"
,,'

" "..
"1

/"
1/
1

V
- 'i

'"//

40000

cn35000
c.,)

~
§.
~30000
en
en
ID

~
~25000
'6
co

1.20000

ID

:§
E 15000
ID
(ij
>
"3
r:r
w 10000

4 6 8 10
dimension

12 14 16

Figure 6.19: Range Query: Access Times vs. Dimension

•



CH.-\PTER 6. TRIES FOR AIULTIDll\IElVSI01V.-\L QUERIES 93

• The correlation vanishes only when the distribution of .Y, }~, ... , Z is the product

of the distributions of the individual fields. This is referred to as a Cartesian product

distribution. The correlation reaches its maximum when every pair of variables forms

a function..-\ Cartesian product distribution is ideal for multipaging. On the other

hand: functional dependencies produce pathological distributions. An example of such

is a circular distribution. which also has a high correlation. Therefore, we consider

the correlation as a good predictor of multipaging performance for access times.

The information is minimal when the probabilities are aH equal and the distri

bution is uniformt. The information is maximal when aU probabilities but one are

zero. and the distribution is sharp. This happens exactly wh~n the grid file directory

has to waste the most space. Thus we can use the information to predict grid file

directory space costs.
Storage consumption :D::2,page size::1024 bytes,synthetic data.#records=1OOOk

4,....------r-----r------r----r------r----.------..--,

3.5

0.5

• X-tree

RO-tree

- - grid file

multipaging

- DyOrTrie

. - - - -------__-- -- l! _ - - - - - - - - - - -"_:1'

. ,..

- - "/'"" ,,,,

, (12.8)

',. • (5.7)
- - - (5.4)

(3.7)

-- (1.0)

•

O'--__.....J.... .l--__--l- ....l.....-__--L. ....I....-__--J.~

-14 -13 -12 -11 -,0 -9 -8 -7
Ixy at resolution level of around grid level

Figure 6.20: Storage Cost \'s. Distribution

tXote that we are using the negative of what is normally called "information" and which is ma.'C
imum for uniform distributions. This is to make the consistency that low values always correspond
ta good performance.



CHA.PTER 6. TRIES FOR }/ULTIDIlvIE1VSI01V.;.\L QUERIES 94

18r-------r---,----~---yo---,.....--~----'T--~-___.,. (6.0)
Exact match: 0=2. page size=1024 bytes. synthetic data. 'records=1000k

• 16- • X-tree
- - R·-tree

14 - - grid file

multipaging

l12 - DyOrTrie
lit

§
: 10 r-
& l' ~ -- - ... - - - -a. ...!! - - - - - - - -.- - - -
• 8r-
G)

~

l 6~

4

•-----
- - (2.7)

1----------------------------;(1.0)

2-·- - -'-'- - _.- _.- _._._._.- _.- _.- _._._.- - _.- -'- --- (0.7)

0.5 1 1.5 2 2.5 3 3.5
Correlation at resolution level of around grid level

4 4.5

•

Figure 6.21: Exact ~'[atch: :\.ccess Cost vs. Distribution

It can be nlisleading if we measure information and correlation based on each indi

vidual record location. For instance, }' might be a function of .\ and the correlation

is at a nlaximum. and thus the predicated performance of nlultipaging is very poor.

But this function could be such that every page of a multipaging space is unifornlly

occupied, which results in optimal performance. :\.s we count costs in terms of disk

pages/blocks on secondary storage. we measure the probabilities for page locations.

i.e., aggregated over pagefuls of records! in the following experiments.

To test the effects of data distribution, we use a 2D synthetic data with distri

butions ranging from Cartesian product to functional straight lines, each with 106

records and a page capacity of 1024 bytes.

:\. poor data distribution affects the storage of grid files, but does not bother

tries or multipaging. Thus, we use infornlation as a measure of the distribution

in Figure 6.20 ~. ~[ultipagÏng requires a small storage overhead. The trie gains

tThe correlations as defined are negative. and to help intuition, we double the negative.



CH.-\PTER 6. TRIES FOR 1\JULTIDI1\fE.l'lSION.-\L QUERIES 95

•

•

compression due to the overlap of paths near roots. The grid file starts with a 50%

overhead! and it rises ta 350% as the distribution quality declines. This is mainly due

to the expansion of the grid directory. The R*- and X-trees have overheads that faH in

the range of 130% to 300%. But apparently they do not depend on the information.

Figure 6.21 shows the effect of the data distribution on access costs. ~Iultipaging

is the only data structure which shows a dependency, and thus the correlation is used

as a measure of the data distribution§. For a good distribution (correlation is 0),

illUltipaging demonstrates the best performance at one access, follawed by grid files

and tries~ at a constant two and three aceesses respectively! at this particular nurnber

of keys.

R-trees and X-trees retain higher access costs than the other methods, but are

unaffected by the data distribution in general. R-trees have higher access costs be

cause of the overlaps of rectangles causing more pages than necessary to be searched.

The costs of X-trees are very similar to R-trees since we count a super node access

as equivalent to many regular page accesses. however, recall that the linear accesses

can in fact reduce the costs in tinle ta those less than that of R-trees.

The cast of multipaging degenerates quickly, while others are remain stable for

different distributions.

6.2.8 Data Compression versus Storage Overhead

One of the main reasons that tries obtain an advantage over other methods for exact

nlatch and range queries rests on the fact that it compresses data. \Ve define the

file compression rate as the ratio of the size of the compressed file to the size of the

original data file. Figure 5.1 in chapter 5 shows that the file compression rate becomes

less than 0.1, i.e., over 90% of the file size has been reduced! for large files in 10.

In addition, the data compression also depends on the size of a data record (if we

assume that every attribute of a record consumes the same space! then the size of a

data record is determined by its dimensionality as weil). Figure 6.22 shows how the

§The absoiute value ranges from 0 to a maximum, which depends on the size of the data set.
The range is not significant .



CHA.PTER 6. TRIES FOR AIULTIDI1\JE1VSIONA.L QUERIES 96

• trie compression rate varies depending on the record size (dimensions). The curves

correspond to file sizes of 1.28 and 6.4 ~IB of uniform data. From the figures we see

that an inverse relationship exists between record size and file compression rate. This

fol1ows, since if we fix the size of the data file, Larger record size impLies fewer records,

and thus Less common paths to be shared near the trie root.

Compression by tries: page size=4096, uniform data
0.8 r-------r----r-----.--------,------r-----r------,

- source file: 1.28M bytes
- - source file: 6.40M bytes

------------------- - -
0.7

'"'"
1

0.6
1

1

Q)
1

! 1

1

.§ 0.5 1
li) 1li)

! 1
~ 1
E8 0.4 1

1
~ 1
Li:

1

0.3
,
1

1

1

1401201004020 60 80
record size (bytes)

Figure 6.22: Trie Compression vs. Record Size (Dimension)

6.3 Summary

•

This chapter extends tries for general queries other than text searching and spatial

data retrieval. \Ve use tries for multidimensionaL exact match queries and orthogonal

range queries. Orthogonal range queries are applicable to spatial data such as maps,

but are strictLy more general - the attributes queried need Dot be even numeric.

\Ve address access cast and storage cost in terms of file size, record size, selecthity,



dimensionality and distribution. Our experimental results show that tries are superior

to aU other structures (both direct access methods represented by multipaging and

grid files~ and tree structures including B-trees, R-trees/R*-trees and X-trees) in

queries returning more than a few records. ~Ioreover, tries are competitive with

direct access method in exact match queries.

Cnlike multipaging which cao deteriorate on search cost with pathological dis

tributions. and grid files which can \Vaste storage space on grid directories for bad

distributions. tries are unaffected by the data distribution.

For high dimensionality, tries are still up to 2 and 3 times better than R*- and

X-trees which \Vere invented for high dimensional spatial data.

Tries always compress data, resulting in savings for storage cost. This is in contrast

to grid files which consume large amounts of space for uneven distributions, and R*

trees and X-trees that use at least twice as much space as the sources. HoweveL it is

noted that multipaging does indeed have small space overhead as in the case of tries.

In facto trie compression is one of the two major reasons that tries achieve better

speed performance for queries returning more than a few records. This combines

with the variable-resolution property, enable tries to be a superior method for mul

tidimensional general data. Our task is to extend them to more general queries and

operations. In the next chapter. we will apply tries to relational join operations.

CHA.PTER 6. TRIES FOR AJULTIDIAJEiV5IONA.L QUERIES 97

•

•



Chapter 7

Relational Joins by Tries

\Ve have surveyed join algorithms in Section 3.3. Overall, to the best of our knowledge,

there has been no work on join algorithnls that takes advantage of existing data

structures, i.e., no extra indexes, for better join performance, and yet achicving spatial

conlpression at the same time.

In this chapter. we are \vorking on data sets organized by tries, not relations di

rectly. \Vith the buHt-in properties of order preservation on keys. storage compression

and \"ariable-resolution. tries have benefits Dot only in indexing large text data and

spatial data retrieval. but also in general database queries such as exact matches and

orthogonal range queries. In this chapter we extend them for even broader use to join

processïng"

\Ve tirst assume that the joïn attributes do not have duplicates, i.e., they are keys.

In this situation. joins are in fact set operations. Our inputs are two tries built on the

joïn attributes and the join result is a new trie. Based on the unique characteristics of

the data structure, there are a number of advantages that joins by tries can achieve.

1. The variable-resolution structure of the trie supports less than one pass search

cast in terms of the trie size. This happens in practice by making decisions

at la\\" resolutions near the root as ta whether a particular subtrie needs to be

visited or not for various unary Queries and binary joins.

2. The worst case cost of the trie join (TJ) algorithm happens when ranges of joïn

98

e

le



CHA.PTER 7. RELA.TI01VA.L JOINS BY TRIES 99

attribute values are totally overlapped, and that the output values organized by

the trie are as large as the input tries. In this case, complete traversaIs of bath

input tries have to be done. But due to the compression tries achieve, the cost

is still less than one pass of the original data sets without trie compressions.

Therefore the worst case join cost is linear with a leading coefficient which is

less unity. Note that we exclude the cost of the input trie construction and

sortïng.

3. Hash joïn methods do not r>reserve arder, which is indeed maintained by tries.

This property allows tries to be easily extended for efficient non-equijoins.

.-\mong them, union (unionL symnletric difference (xor), and difference joïn

(minus) operators will be considered in further discussions.

-1. \\llell there exist indexes on joining attributes, which is the situation in very

large databases~ the queries can make use of these indexes to achieve better

perfornlance. Our input tries have built-in indexes on joining attributes.

7.1 Joïn Algorithms by Tries

Binary tries for data sets Rand S in section 3.3.2 figure 3.5(a) are given ln fig

ure 7.1(a). The two sets in binary format are [00010~ 00011, 00100. 00101, OliOL

10000. 1000L 10010], and [00001, 00010, ... ~ Ollill respectively. Figure 7.I(b) shows

their corresponding OrTries. Our join algorithm performs synchronous~ depth-first~

post-arder traversaIs of the tries. First~ root Rodes of Rand Sare visited, and the

depth-first traversais lead to the first left leaf node of R and the second left leaf node of

S shown in figure i.l(b), with paths 10, 11, 11, 01, 11. The two nodes are compared

by an and operator~ 00 and 00, resulting in OO~ a new leaf Dode. Then, the jain visits

the right siblings and performs and operation on them, which results in a leaf node 00

as weIl. :\ext~ the post-order traversaI returns to the parent code 11. As it has bath

left and right children. the value 11 is made final. The post-arder traversai returns

back another level~ ta node 01, and it is made final as weIl, as it only has a right child

node 11. The post-order traversaIs of both trics continue. \Vhen the second nodes

•

•



CH.~PTER 7. REL.-\TIONAL JOINS BY TRiES

R

100

s •
11
11 10
110110
01101011
Il 1101 Il 10
0000000000000000

10
Il
Il Il
Il Il Il Il
01 Il 11 Il Il Il 11 Il
000000000000000000000000000000

(a) (Full) Tries for Set R and S

R S

r
Il
Il 10
1100(101}1O
01 10 Il

I II Il 1100(01
000000000000

10
Il
Il Il
Il Il Il Il
OO( 11 Il Il Il Il Il Il Il
0000000000000000000000000000

lb) OrTrics for Set R and S (Shaded nodes arc the common nodes visited during the join process.)

10 1Il
1100(1011
01 10

11 Il J
00000000

(c) Resulting Trie after Natural Join of R and S

Figure 7.1: Joining Data Set Rand S by Tries

•



CH.4PTER ï. RELA.TIONA.L JOINS B}· TRIES 101

on the third levels, OO{ DID} and 11, are reached, with the former a leaf Dode and the

latter an internai node, and since the path 010 can also lead to a leaf on 5, a nlatch

is found and the join results in a leaf Dode OO{ 01 O}. Otherwise, the resulting node is

empty~ and we denote it by cjJ. If this happened, when returning to the parent node~

the corresponding offspring, right child in this case, should have been truncated; the

parent node should be changed to 10 from 11. \Vhen the traversais of Rand 5 return

to the roots, the output node lOis made final, and the join process is complete. The

shaded nodes in figure 7.1(b) give the common paths that ~.re traversed by the join

process. Other nodes have been skipped during the process. The output trie is given

in figure 7.1 (c) .

:\ow we summarize the trie join algorithrn from the above example; it is a syn

chronous. depth-first post-arder traversai of the two tries of input data sets. The

tran~rsal starts with the roots of the t\Vo tries, and moves down leveis in tandem until

there is no match possible in the subtries, or a leaf node is reached in one of then1.

At each step, the two nodes from t\Vo tries are compared. If the result is a match, the

corresponding subtries are then visited, resuiting in depth-first traversaIs. Otherwise.

when returning ta its parent node. this offspring shouid be removed in the output..

and the subtries rooted at these t\Vo nodes neecl no further visits. \Vhen two nodes

are first visited during the traversais, the logical and operation is performed on the

2-bit nodes. If the result is not 00 for internai nodes, it is a match. However, when

any leaf node OO{ remaining bits} is invoived, if the other node in comparison is also a

leaf Dode and their remaining bits are a match, or if it is an internaI node and a path

from the node to a leaf representing the same remaining bits, then it is still considered

as a match. In bath cases, OO{remaining bits} is the result of the join. Otherwise.

the resuit is a lnismatch and the path from its ancestor node must be truncated.

Table 7.1 is a binary table showing the result of the IOgÎcal and operator on t\Vo

nodes from the input tries, when they are first visited during the traversaIs. The first

column and the first row gÎve node values from the two input tries respectively. The

result is Rb, an abbreviation for remaining bits, if the two inputs match, eise empty!

denoted by d>. \Vhen the result is empty, it means that the link must be remo\'ed

from its parent node when the post-order traversai returns to the parent level. :\s a

•

•



CH:\PTER 7. REL..4TIONA.L JOINS BY TRIES 102

OO{rb} OO{rb} or 4> OO{ rb} or 4J OO{ rb} or 4> OO{ rb} or <p
01 OO{ rb} or 4> 01 ri> 01
10 OO{rb} or ,p 4> 10 10
Il OO{ rb} or l/J 01 10 Il

~ OO{ rb} 01 10 Il •
Table 7.1: .4nd Operation of Two nodes in Natural Joins by Tries

result, table 7.1 is modified to table 7.2 ta include all possible output values when the

node is revisited after both its children have been visited in the post-arder traversaI.

il OO{rb} 01 10 Il
OO{rb} OO{ rb} or f/J OO{ rb} or 4> OO{ rb} or l/J OO{ rb} or 4>

01 OO{ rb} or cP DIor cP cP DIor l/J
10 OO{ rb} or cP 4> 10 or 4> 10 or 4>
Il OO{ rb} or l/J DIor rP 4> or 10 01, 10, Il or 4>

Table 7.2: ~Iatching Two Nodes in Natural Joins by Tries

\Vith B blacks of rnemory buffer, larger than three trie heights in pages, the paths

fronl root to leaf during traversais on both input and output tries cao always stay

in RA~1. Therefore, the cost of the join in terms of disk accesses consists only of the

cost of traversais of both input tries, and thus is always no more than one pass of the

input tries. Figure 7.2 gives the detailed natural join algorithm by tries (T,J).

As tries maintain key order~ the T J algorithm can be extended for efficient union

joins (or). symmetric difference (xor) and difference (minus) operations as well. Ta

ble 7.3 shows the possible union join results on two input trie nodes. \Vhen no leaf

nodes are involved, the union of two nodes is the simple logical or operation on t\Vo

nodes. Otherwise, the result depends on what the remaining bits stored on a leaf

node are. For example. OO{ Oxxx} union OO{ lyyy} results in Il (and OO{xxx} OO{yyy}

at its child level). Tables 7...1 and 7.5 give the xor and minus operations on two input

nodes respectively.

Similarly ta the natural join algorithm given in figure 7.2, the union, symmetric

difference and difference join operations on tries can be obtained. The union join

•



•
CH.-\PTER 7. REL.-\TION.4L JOllVS BY TRIES

BOOL NaturalJoinCTrieNode *tl, TrieNode *t2)
{

if( is_leaf(tl) or is_leaf(t2» {
if(NaturalJoinOneLeaf (tl, t2» {
~ite_a_leaf_node(tl)j Iloutput the leaf Dode to the resulting trie;
return(TRUE)j

}

else
return(FALSE)j

}

node= 0; Il set tvo bits for the Dode to be 00
if (both tl and t2 have left branches) {

if( NaturalJoin (tl-> left, t2-> left»
Dode += 2j Il set tvo bits for the node to be 'lX'

}

if (both tl and t2 have right branches)
if (NaturalJoin (tl-> right, t2-> right»

Dode += 1; Il set tvo bits for the node to be 'Xl'

103

}

if (node == 0)
return( FALSE);

Il no match

•

vrite_a_node( node); Iloutput the node to the resulting trie;
return (TRUE);

}

BOOL NaturalJoinOneLeaf(TrieNode -tl, TrieNode -t2)
{

if (is_leaf(tl) and is_leaf(t2»
return (NaturalJoinLeaves( tl, t2»;

if (is_leaf(t2»
return (NaturalJoinOneLeaf( tl, t2»; Iltl i5 the leaf node

Ilthere i5 only one path from node t2 that might match vith tl
if ( cur_bit(tl) matches vith Dode t2 ) {

if ( is_leaf_level(t2) )
return (TRUE);

else
return( NaturalJoinOneLeaf( tl, t2-> left»;

}

return (FALSE);
}

BOOL NaturalJoinLeaves( TrieNode -tl, TrieNode *t2)
{

if (rest_bits_matchC tl, t2»
return (TRUE);

return (FALSE);
}

Figure 7.2: Natural Join Algorithm by Tries



•
CHA.PTER i. REL.-\TI01V:\L JOINS BY- TRIES 104

OO{rb} 01 10 [TI]
OO{ rb} OO{rb}, 01. 10 or Il DIor Il 10 or Il Il

01 DIor Il 01 Il Il
10 10 or Il Il 10 Il
Il Il Il Il Il

Table 7.3: ~Iatching Two Nades in Union Join of Tries

OO{ rb} 01 10 Il
GO{ rb} dJ. 01, 10 or Il 4>.01 or Il (j), 10 or Il 01, 10 or Il

01 dJ. DIor Il <P or 01 Il 10 or Il
10 ([J. 10 or Il Il (jJ or 10 DIor Il
Il 01.10 or 11 10 or Il DIor Il ,p. DL 10 or Il

Table 7..1: ~Iatching Two Nodes in Symmetric Difference .loin of Tries

OO{ rb} 01 10 Il

•

OO{ rb} cP or OO{rb} 4> or OO{ rb} (jJ or OO{ rb} 6 or OO{rb}
01 00 or 01 ,p or 01 01 cP or 01
10 00 or 10 10 4J or 10 <t> or 10
Il 01. 10 or Il 10 or Il DIor Il r/J, 01, 10 or Il

Table 7.5: ~Iatching Two ~odes in Difference Join of Tries



CHAPTER ï. RELA.TIOl'lAL JOnVS BY TRIES 105

•

•

algorithm is simpler than the other joins in the sense that there is no need to backtrack

and truncate paths from leaves to the root. The point is that tries are capable of

various binary join operations. In the following discussion~ we focus on natural join

as a representative of various join types which can be performed efficiently on trie

structures.

The above discussion on trie joins assumes that join attributes have no duplicate

values. In the presence of duplicates~ there are two different situations:

1. There exist non-join attributes, which are not indexed by the tries. This leads

ta a scenario where trie leaf nodes contain pointers to more than one record

stored on a separate file (or records share the sanie indexed attributes but have

different remaining attributes stored on a trie leaf).

2. There exist non-join attributes which are indexed on k-d-tries. This inlplies

that sorne trie node levels are non-join attribute bits and should be skippcd

during the join.

In the first case~ the joill algorithm rernains the same except at the end of the join

when leaves are reached: either pointers are used to point ta all remaining non-join

attributes corresponding ta many records on files, or these records have to be stored

on the leaf node themseh·es. \\te now partition the cost of joins into t\Vo pa.rts: one

for reading the input tries, and the other for writing the result to disk. Clearly, unlike

other join algorithms. the complexity of the first part of the T J algorithnl does not

increase, even though the size of the result increases. However, the cast of writing

the output trie to disk increases.

In the second case. the T J algorithm performs only on node levels representing

the joill attributes and skips others. The trie join becomes a many-forest join . The

same is true for ail other join algorithms. If duplicates can not be held within the

memory buffer~ the cost of the T J algorithm will be quadratic.



CHA.PTER ï. REL.4TI01V.4L JOllVS BY TRIES 106

• 7.2 Comparisons of TJ with Existing Jain AIgo

rithms

•

Sorne of the representative and state-of-the-art join algorithrns include the sort-rnerge

join (S~IJ), the distributive join (DJ), the join by fragment algorithm and the bucket

skip merge join (BSNIJ). However, since the T J algorithms use the built-in indexes

on joining attributes~ we assume the following for data sets in order to make fair

comparisons.

1. For S~IJ, both input sets are ordered according to join attributes. That is~ only

the merge phrase has to be carried out. Therefore we call it rnerge join (~[J)

frorn now on.

2. For DJ ~ both input data sets are already in order~ and the distribution table

has been built.

3. For BS~[J~ input sets are in arder and the bucket tables have been built up.

[t is pointed out and proven by Negri [NP91] that when input files are sorted

according to join attributes. the above join methods have the following relations:

1\JJ> DJ > JF

where .>' rneans more efficient than. Therefore it is true that T J is a more efficient

join algorithm than ~IJ~ DJ, JF and BS~IJ if only we can show that TJ is more

efficient than both ~IJ and BS~IJ for data sets ordered on join attributes. Thus, our

conlparisons become focussed on T,J, ~IJ and BS~IJ.

7.2.1 Best and Worst Case Analysis of TJ, MJ and BSMJ

Algorithms

The efficiency of a join algorithm is best characterized by the amount of disk accesses

required for the join processing. In this subsection, we analyze the best and worst

case in terms of disk accesses for T J, ~'IJ and BSNIJ .



CH.4.PTER 7. RELA.TIONAL JOllVS BY TRIES 107

•

•

The best case for the T J scheme occurs when there is no match at the top trie

levels, especially if the root pages do not match. In this instance, the total disk âccess

cost of T J is t\Vo pages. However, ~IJ and BSJ\IJ may still need to load aH the pages

for a possible match as ranges for the t\Vo datasets may fully overlap \Vith each other.

Therefore, this may still he the \Vorst case for the NU and BS~IJ schemes.

The best case for ~'IJ and BSJ\[J occurs \Vhen all values of the join attributes of

one set is less than (or greater than) that of the other set. In this case, ~IJ will

examine aH the pages of one dataset and only the first page of the other, Le.. ~Vs + 1

blacks. as the cursor moves only in one key set. BS~IIJ only needs to visit the bucket

tables, and no pages in the data set are visited. In fact, one bucket table page of set

R and ail bucket table pages of set 5, which correspond to lVs b/p pages. Assume a

file with 106 data itenlS of 8 bytes each, page size p = 4096 bytes and bucket table

entry size b = 20 bytes. Then :,Vs = 8 X 106 /4096 = 1953, and the bucket table

size is 1953 x 20(1096 :::::: 10 pages. The best case for BSl\'IJ is to visit only the

bucket table for set S. plus the first bucket table page for set R. Thus the total

cost is about Il accesses. The upper bound for the cost of T.J in this situation is

Height(trie R ) + Height(tr-ieJ. wherc the height of the trie in pages is a logarithmic

function of the size of the data set. For a file \Vith several million data items, the

trie height can be as low as 3 pages. Thus a typical upper bouod of T J cost is about

2 x 3 = 6 pages.

The worst case of the T.J algorithm occurs \Vhen ail pages have ta be loadcd from

the disk. Of course. this happens when aIl the join attributes overlap. The saIne

situation also coincides with the worst case of the NIJ and BS~IJ schemes when ~IJ

needs to visit aIl data pages. and BS~IJ not only has to visit ail data pages but also

the eotire set of bucket tables.

Table 7.6 summarizes the hest and the \Vorst case cost for each join algorithm.

The hest case speed-up of T J can he orders of magnitudes improvement over ~IJ

and BS~IJ. It shows that even in the worst case, T J outperforms ~IJ and BS~IJ by

a factor of Ifr (assume r = r R = r 5), where r is the compression ratio of the trie

organization. This compression ratio is a function of the file size and the size of data

items! and it can he any value between 0 and 1 for data sets contaioing more than



•
CH.;\PTER i. RELA.TI01VA.L J011'18 B}'~ TRIES

Case Join Aigorithm Disk Access Cost
Best case BS~IJ lVs ; + 1

~IJ lVS + 1
TJ 2

\Vorst case BS~[J (1 + ~)(lVR + .Ns )
~[J (1.VR + lYS)
TJ TR1VR + Ts lVS

Table 7.6: Best and \Vorst Case Cast Summary for Join NIethods

108

•

a few hundred records. This means a speed-up by T J over ~/[J and BSN[J is no less

than one in the \Vorst case.

In the case of duplicate join attributc values~ nested black scan have to be applieci

for ail these join algorithms including the TJ scheme. The \Vorst case cost is quadratic

to the input relation sizes. But since tries organize data \Vith considerable compres

sion, the gain by a TJ scheme over other methods increases. Assume the cast of ~(J

by nested block scan is C 1.'12 • where C is a constant, and 1.'1 is the input relation size.

If wc assume the conlpression rate by trie organization is T, where 0 < r < 1. then the

size of the input tries is r.V and the cast by TJ is no more than C(TJ.V)2 = r'2C·.V2 .

Hence~ the T.I scheme still outperforms its competitors, and its cast is no more than

r2 of that of ~[J with nested block scan. The more tries compress data, the smaller

r is resulting in a nlore efficient TJ.

7.2.2 ExperiInental Comparisons

In this subsection we give and compare experimental results for TJ, ~[J and BS~IJ.

Two inlportant parameters for the tests are the join selectivity, defined as the ratio

of the overlapped range to the total input data range of an attribute, and the dataset

size. Thus \Ve have made t\Vo sets of experiments; one is disk access versus the join

selectivity, and the other is disk access with respect to input file size.

AIl test data sets are 2D random data uniformly distributed between [0, 1f. If

the join selectivity is p~ then the two joins sets are in the range of [0, (1 + P)/2)2 and

[(1 - P)/2.1f respectively. For example, if P= 0.4, the left set range is [0,0.7f and



CH.~PTER ï. RELAT101'1A.L J011'1S BY' TRIES 109

•

•

the right set range is [0.3, 1)2.

Figure 7.3(a) shows the cost of disk accesses \Vith respect to the join selectivity.

The dataset size is 500k records (4~1 bytes) for bath input sets. T J has the fewest disk

accesses, while BSNIJ and ~[J vie in their raIe as the most expensive. The starting

cost of ~IJ is the highesL since it has to examine at least one of the two input data

files, even when the files have no intersection at aH. The starting cast of BS:\IJ is

not as cast as ~IJ because it includes only the visits to bucket tables when the join

selectivity is zero. T J is the best among the three at P = 0, as it avoids visiting aU

the remaining files by making decisions at the root page levels. It can he observed

that aIl three schelnes are affected by the jain selectivity because when the selectivity

grows. more data items are involved in the join and the corresponding disk accesses

increase.

Figure 7.3( b) shows the speed-up of TJ over ~IJ and BSNIJ. The lower the join se

lectivity, the more T.J improves over the other t\VO methods. Even when the selectivity

is one, i.e., the t\Vo joining sets are fully overlapped, T J has a marked inlprOVenlent

over both ~IJ and BS:\IJ by a factor of 2. BS~IJ is hetter than NIJ when joïn selec

tivity is less than one. However, this is reversed when selectivity is one hecause of

the extra accesses to the bucket tables by BS~[J.

The added advantages that T J exhibits in terms of disk access can he explained

by the following points. Firstly, the compression property of tries makes the input

data sets organized by tries consume less space. Secondly, the variable-resolution

structure of tries enable T J to avoid sorne accesses to lower level (high resolution)

pages by making decisions at low resolution levels near the root. \Vhen the join selec

tivity is lo\\", the variable-resolution property is the primary reason for the enhanced

performance over the other t\Vo join algorithms. \Vhen the join selectivity is high.

the compression property becomes the major factor for the improvement.

T J scales very well with respect to the size of the input sets; the scalability of the

algorithm is compared in figure 7.4. The join selectivity is fixed at 0.4 for these tests.

Figure 7.4(a) shows the cost of joins in terms of disk accesses when the file size varies

from 100 records to 106 records. The abscissa represents the file size as indicated by

the number of records in each input data file. Both the abscissa and ordinate are



6000

7000

•
CHA.PTER 7. REL.-\TI01VAL JOINS BY TRIES

20 random uniform data, SOOK records X2. page size=1024 bytes
8000r---~-"---r--"---r--"------r---"---r--,----'_ f~:8J

rn
-4(- -: ~ -,--

---- ~~MJ _:lt'" - - - - ,+...

-TJ
... )e" .....+.....

13000
:'1

Z

2000

1000

110

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Joïn Selectivity Between Two Input Data Sets

(a) Cast in terms of disk accesses

0.9

2D random uniform data, SOOK records X 2, page size=1024 bytes

- - speed-up over MJ
- - speed-up over BSMJ

" .

,

, ,
, ,

~-
"'X- ---+- -

- =~ -----.: : ~-~--- _.~--

•
100 l..-_----I.__~__.....I....__ ___I~_ ____L__~__.L__ __I_____L._ __J

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Join Selectivity Setween Two Input Data sets

(b) Speed-up (disk accesses) ofTJ

Figure 7.3: Disk Accesses versus Join Selectivity



•
CH.4PTER i. REL.4TIONA.L JOIl~S BY' TRIES

2D random uniform data, page size=1024 bytes. join selectivity=0.4

111

10"

10'

œ-MJ
- - BSMJ
-TJ .

. ", f3:~J. ~ - ".JI
. )( r

:,':f"-- :
" ., ,

,~,' (1.0)
, ,

;x' ,

,",+"
". ,,', .;

,"-'
. '" .'", ,

"',', '",
:x '

,::.-+'"
"- "

"'""',
'-,'"',, ", ...

",
~."

•

102 103 10" 105 106

Input Data Set Size (records)

(a) Cast in terms of disk accesses
20 random uniform data. page size=1024 bytes, join selectivity=O.4

- - speed-up over MJ
- - speed-up over BSMJ

t T
~ ._._._- --,--'-+- --- -'_.-. _.+
~
:::)
1

i
c%1

OL.-~--_ ............L..._-_---..-...........L_-~----.-... ............-._---_......J
1~ 1~ 1~ 1~ 1~

Input Data Set Size (bytes)

(b) Speed-up (disk accesses) ofTJ

Figure 7.4: Disk Accesses versus File Size



CH.o\PTER 7. RELATI01'l.o\L JOINS BY TRIES 112

•

•

in logarithmic measures. Even though costs for aH three algorithms are linear \Vith

respect to the input size~ T J not only has the lowest cost but also the smallest slope.

This results from tries compression as the sizes of the data sets increase. On the

right of figure 7.-1(bL we clearly see the relative speed-up of tries over the other two

methods. The improvement is between 2.2 and 4.8 times for l'vIJ, and between 2.0

and 3.5 times for BS~IJ when files contain from a 103 ta 106 records. Both graphs in

figure 7.-1 clearly show that the T J method scales very weIl \Vith input size.

7.3 Discussions and Conclusions

Join processing, a costly operation in relational database systems, critically deter

mines the performance of information retrievals and database queries. The cast of

join operations on large input data files largely consists of the disk accesses. .-\1

though it is a relatively mature field in database technology, the T J algorithul we

present here is a new method that achieves significant performance improvement over

the traditional join schemes and the recent BS~'lJ scheme, and is therefore more ef

ficient than the representative join algorithms JF and DJ when input data sets are

already sorted according ta the join attributes. Like BSwlJ scheme, it improves over

Sj.IJ by avoiding accesses to data items and reducing page accesses whenever pos

sible. But unlike BS~IJ which maintains extra bucket tables to achieve the bucket

skips. T J achieves the irnprovement without using extra indexes. It simply applies

the variable-resolution structure of tries on the join attributes to avoid unnecessary

block/page accesses at an early stage near the trie root. Instead of using extra stor

age, T J takes the advantage of the compression property of tries ta achieve storage

conlpression as weil as speed improvement.

The major contributions of the chapter are as follows:

• TJ algorithm and its extension from natural joins to union joins as one aspect in

the process of proposillg tries as efficient data structures on secondary storage

for specialized and structured data (Zha96];

• :\nalysis of the best and the worst case performance of T J algorithms as weIl



CH.-\PTER ï. REL.-\TIOiVAL JOINS BY TRIES 113

•

•

as competitive join algorithms ~IJ and BS~IJ;

• Detailed performance tests which show the superior performance improvement

of T J over BS~IJ and ~IJ ~ and thus show the superiority over the inlproved

hash join method JF and the improved merge join method DJ when input sets

are ordered.

So far we have assumed that the join attributes of the input data files are keys

stored on trie structures. If the input data files are not organized by tries or the

join attributes are not stored as keys on trie structures, we need to build tries on

these join attributes before performing the join. The construction of a trie from an

unordered input data seL like the construction of any other index structure~ has a

cost of l.V 10g(~V), where ..v is the number of keys. Thus, it remains an open research

problcm whether in this case joins by tries would still outperforrn existing join al

gorithms. ~evertheless. detailed T J algorithms and experimental results neecl to be

explorecl in the situation when sorne. but not aH attributes indexed by k-d-tries~ are

involved in the join process.



•

•

Chapter 8

Conclusion

8.1 Contributions

Trie Organization

Based on the pointerless trie structures Fu Trie~ OrTrie and Pa Trie, we have proposed

DyOrTries. They represent an improvement in that they separate trie nodes stored

on pages from the page headers and counters which are used to preserve tree searches

instead of linear searches within a page leveL and thus are capable of dynamic inser

tions and deletions of records. \Ve have focussed on this particular methodology to

make tries dynamic in order ta lead to our own work and further daims.

Order-preserving Key-to-Address Transformation Function

\Ve have proposed a class of order-preserving key-to-address transformation functions

which we caU tidy funetions. These heuristie piece-wise linear tidy functions have no

space overhead and can be constructed in linear time. They are competitive to B-trees

and the closest minimum order-preserving hashing method in search performance for

files up ta more than 10GB (lOi pages \\;th page capacity lKB) in size~ while requiring

no extra storage. Our results show that for files with about lOi pages~ the method

requires around three disk accesses to search a given key. It is simple in concepL and

the construction and searching algorithms are straightforward.

114



However, we have applied also ID tries as the order-preserving key-to-address

transformation function. The search performance by the trie method benefits from

the fact that it stores keys with the most important bits first, near the root. This

variable-resolution structure permits the trie to avoid unnecessary searches into sorne

subtries at the early stage and only explore nodes where there is a possible match.

From our experimental results, ID tries are superior in search performance to the

tidy function we proposed: indeed with ordered keys, the construction algorithm

needs only to pass the source file once, which is less costly than the construction

of linear heuristic tidy functions. Gther advantages include reduced storage space

requirement as a resuit of trie compression, and support for dynamic insertions and

deletions of records.

•
CH.4.PTER 8. CONCLUSION 115

•

Variable Resolution Queries

In this work, we extend tries to multidimensional structured data on secondary storage

other than text and spatial data. To supplement this effort, we propose exact match

and the general orthogonal range query algorithms.

\Ve also have done extensive experimental comparisons \Vith representative mul

tidimensional data structures in two categories: direct access methods including grid

files and multipaging, and logarithmic methods including R*-trees and X-trees. The

access and storage costs are addressed based on four categories: the query selectivity.

data distribution, the dimensionality and the file size (record size). The access cast

is measured bath \Vith the number of disk accesses, and the equivalent time spent on

the disk accesses based on disk parameters.

Our experirnental results show that tries have the best query performance among

all the abave competitors for queries returning more than a few records. Tries are also

competitive in exact match queries \Vith the two direct access methods (multipaging

and grid files).

Tries are not affected by poor data distributions both in searching and storage

cast; this is in contrast to the access cost of multipaging which increases rapidly for

pathologïcal distributions and the grid file degeneration as the directory size grows



CHA.PTER 8. CONCLUSI01V 116

•

•

rapidly. Ta aid in our analysis, we have proposed two new analysis methods to

characterize and quantify the distribution for grid files and multipaging.

As we carry on the comparison to R*-trees and X-trees in high dimensions! tries

are able to show their reliabHity by displaying improved performance by factors by

up to 2 or 3 times depending on the query selectÏ\'ity.

Tries are also superior to aH other methods in terms of storage cast. These other

methods either require a small amount of additional space (multipaging), or significant

amounts of directory (index) space (grid files, R*-trees and X-trees) on secondary

storage. Tries compress data due to sharing common paths near the root. The file

compression ratio of tries ranges between zero and one, depending on the file size and

the record size. In general. trie compression increases as the file size grows larger. An

inverse relationship exists as the record size becomes larger.

Trie Joins

\Ve apply tries to binary operations by presenting new (natural) join algorithms by

tries. The new algorithm takes two input tries and outputs a new trie by joining

comnl0n keys. It achieves significant performance improvement in comparison to the

bucket skip merge join~ the best among competitors to trie joins~ including the sort

merge join~ the distributive join~ and the join-by-fragment algorithms. Our scheme

applies the order-preserving and variable-resolution trie structures on join keys to

avoid unnecessary page accessing at an early stage near the root. Instead of requiring

extra indexes. it takes advantage of trie compression in order to obtain significant

speed improvenlent. Our natural join (set merging) algorithm of tries can easily he

extended ta union joins. difference joins and exclusive or operations on two tries.

~Ioreover~ the join attributes need not to be keys. If the input trie indexes at

tributes contain attributes that are not exclusively join attributes~ the algorithm can

be easHy extended by skipping the levels of trie nodes containing non-join attributes

and performs the join operations only on node levels of the join attributes.

By extending tries~ traditionaHy applied to text and spatial data~ to general ID



Cff.:\PTER 8. COlveLUS/Ol'! 117

•

•

or multidimensional data on secondary storage to perform exact match queries. or

thogonal range queries, as weil as binary operations represented by join operations

on tries, we have explicitly demonstrated the following:

• the variable-resolution trie structure achieves efficient query performance;

• the trie compression not only saves storage cost, but also makes high selectivity

queries and operations on tries affordable;

• the trie method is unaffected by data distributions; and

• the query perfonnance by tries is better than the representative tree structures.

such as R*- and X-trees, designed for multiple and high dinlensions.

8.2 Future Research

.-\lthough trie construction methods are much more efficient when aU the data is

inserted at once rather than by single record insertion, we have discussed and mod

ified the trie organization on secondary storage 50 that it is is capable of inserting

and deleting records at run time. However. we have not discussed how the storage

overhead would increase as a trade-off for supporting these dynamic operations.

Several new data structures and methodologies are invented each year; to keep

track of them and continually compare \Vith tries becomes a challenging, and even an

endless task!

\Ve need to extend the trie method to broader queries other than the exact match

queries and range queries. \Vill tries still be more efficient or at least competitive

for other queries. such as the nearest neighbor queries of recent specialized data

structures, such as SS-trees and SR-trees, which are especially designed for such

queries?

\Ve have investigated principally natural joins of tries with the attributes organized

by the input tries. This raises the question of the whole family of various joins. \Vhat

if the attributes indexed on one trie are not in the same arder as the attributes on



CH.-\PTER 8. C01VCLUSION 118

•

•

the other input trie? \Vhat if there are more attributes on the input tries than the

common join attributes? what if the join attributes are not ordered by the trie at

aH? Can we still benefit from trie joins? Algorithms in the above situations need ta

be invented, implemented and tested.

In a ward, this work is a modest, albeit important, attempt at presenting the

trie method, a simple but powerful and efficient method, as a key ta general pur

pose queries and operations on multidimensional data. There still remains a lot of

unplotted ground for further research and study.



•
Bibliography

•

[ABV95]

(AHC83]

[A:'\93]

[Aoe89]

(Apo85]

(ASC86]

[BB((98]

\Valid G. Aref~ Daniel Barbara~ and Padmavathi Vallabhaneni. The

handwritten trie: Indexing electronic ink. In ~lichael J. Carey and Dono

van A. Schneider. editors, Proceedings of the 1995 AGNI SIGklOD Inter

national Conference on J.tlanagement of Data. pages 151-162. San Jose.

California. may 1995.

A.B. Aho. .J. Hopcroft l and J. l'llman. Data Structures and Algoïithms.

Addison-\Vesley, Reading, ~IA. 1983.

A. Andersson and S. Nilsson. Efficient implenlentation of suffix trees.

Software Practice and Experience~ 25(2) :129---1L Febrary 1993.

.J.r. .-\oe. An efficient digital search algorithm by using a double-array

structure. IEEE Transactions on Software Engineering~ 15(9):1066-ï7~

1989.

.-\. Apostolico. The myriad virtues of suffix trees. In Gombinatorial

Algorithms on ~Vords~ pages 85-96. Springer-Verlag l 1985.

A.B. Aho. R. Sethi, and J. Cllman. Gornpilers: Principles, Techniques,

and TooEs. Addison-\Vesley, Reading, :\IA, 1986.

Stefan Berchtold. Christian Bohm, and Hans-Peter Kriegel. The

pyramid-technique: Towards breaking the curse of dimensionality. In

Proceedings of the AGNI SIGMOD Annual Conferencel pages 1--12-53,

1998.

119



BIBLIOGR.4PHY~ 120

• [BE77]

[Ben75]

[Ber8-l]

[BK93]

E. \V. Blasgen and K. P. Eswaran. Storage and access in a relational

database. IBkl System Journal, 16(4):361-77~ 1977.

J.L. Bentley. ~-Iultidimensional binary search trees used for associative

searchillg. Communications of the AGNI, 18(9):509-17, September 1975.

T. Berger. Poisson multiple access for packet broadcast channels. IEEE

Transactions on Infonnation Theory, IT-30:7.t5-51, 1984.

T. Bell and O. Kulp. Longest-match string searching for Ziv-Lempel

conlpression. Software Practice and Experience~ 23(7):757-71, December

1993.

•

[BKK96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-tree:

An index structure for high-dimensional data. In Proceedin9s of 22th

International Conference on VLDB, pages 28-39, 1996.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and Be:-nhard Seeger. Efficient

processing of spatial joins using R-trees. In Peter Buneman and Sushil

Jajodia, editors, Proceedings of the 1993 AG1\t/ SIGMOD International

Conference on k!anagement of Data, pages 237-246, \Vashington. D.C.,

may 1993.

[BKSS90] :\. Beckmann. H. P. Kriegel, R. Schneider, and B. Seeger. The R* 

tree: an efficient and robust access method for points and rectangles. In

Proceedings of the SIGklOD Conference, pages 322-31, ~Iay 1990.

[B~172] R. Bayer and E. ~IcCreight. Organization and maintenance of large

ordered indices. .4cta Informatica. 13:173-89. 1972.

[8:\190] Jose A. Blakeley and Nancy L. ~Iartin. Join index, materialized view,

and hybrid-hash join: A performance analysis. In Proceedings, Sixth

International Conference on Data Engineering: February 5-9, 1990, Los

.4ngeles Airporl Hilton and Towers~ Los Angeles, California, USA~ pages



BIBLIOGRAPH1'" 121

•

•

[Bri59]

[BS89]

[B\VC89]

[BYG89]

[B't'P92]

[Cap79}

[CFV98]

[CFV99]

256-263~ 1109 Spring Street~ Suite 300, Silver Spring, NID 20910~ USA~

1990. IEEE Computer Society Press.

R. De La Briandais. File searching using variable length keys. In Pro

ceedings of the Western Joint Computer Conference, volume 15, pages

295-8. IRE, New York, 1959. Spartan Books, N~w York.

R.:\1. Bozinovic and S.N. Srihari. Off-line cursive script word recogni

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence~

11(1):68-83. January 1989.

T. Bell. I.H. \\ïtten! and J.G. Cleary. :\[odeling for text compression.

ACAl Computing Surveys. 21(4):557-91~ December 1989.

R.A. Baeza-Yates and G.H. Gonnet. Efficient text searching of regular

expressions. In Proceedings of 16th International Colloquium on .4u

tomata. Languages and Programming. L~CS 372. pages 46-62. Stresa~

Italy. July 1989. Springer-Verlag.

R.A. Baeza-Yates and C.H. Perleberg. Fast and practical approximate

string matching. In Proceedings of 3rd .4nnuaL Symposium on C01nbi

natorial Pattern klatching, L~CS 644, pages 185-92, Tucson, Arizona,

April 1992. Springer-Verlag.

J.1. Capetanakis. Tree algorithms for packet broadcast channels. IEEE

Transact'ions on Information Theory, IT-25(5):5D5-15, 1979.

.1. ClémenL P. Flajolet, and B. Vallée. The analysis of hybrid trie struc

tures. In Proceedings of the Ninth .4C.fW-SIAA-I Symposium on Discrete

.41gorithms, San Francisco~ CA~ January 1998.

J. Clément. P. Flajolet~ and B. Vallée. Dynamical sources in information

theo~': A general analysis of trie structures. Technical Report 3645, In

stitut ~ational De Recherche en Informatique et en Automatique, 1999.



BIBLIOGR.APH)'~ 122

• (CHK85] G. V. Cormack, R. N. S. Horspool, and ~I. Kaiserswerth. Practical

perfect hashing. Computer Journal, 28(1):54-58, 1985.

•

[CH~192] Z. J. Czech, G. Havas, and B. S. ~lajewski. An optimal algorithm for gen

erating minimal perfect hash functions. Information Process'ing Letters,

43(5):257-6-1, Oct 1992.

[CL93] C. C. Chang and J. Liang. Dynamic pictorial databases design for simi

larity retrieval. Information Science, 87(1-3):29-46, Nov. 1993.

[C~I95] Richard H. Connelly and F. Lockwood ~Iorris. A generalization of the trie

data structure. J\fathematical Structures in Computer Science, 5(3):381

-118, September 1995.

[Cod70] E.F. Codd. _-\ relational model of data for large shared data banks.

Cornmunications of the AC!'!, 13(6):377-87, June 1970.

[CS77] D. Corner and R. Sethi. The complexity of trie index construction. Jour

nal of the ACJ\f, 24(3):428-40, July 1977.

[C'-96] Soon ~I. Chung and Jaerheen Yang. Parallel distributive join algorithnl

for cube-connected multiprocessors. IEEE Transactions on Parallel and

Distributed Systems, 7(2):127-137, February 1996.

[Dev82] L. Devroye. .-\ note on the average depth of tries. Computing, 28:367-71.

1982.

[Dev84] L. Devroye. .-\ probabilistic analysis of the height of tries and of the

complexity of triesort. Acta Informatica. 21:229-37, 1984.

[Dev87] L. Devroye. Branching processes in the analysis of the heights of trees.

Acta Informatica, 24:277-98, 1987.

[DG85] D. J. De\Vitt and R. H. Gerber. ~\'lultiprocessor hash-based join al

gorithms. In A. Pirotte and Y. Vassiliou, editors, Very Large Data

Bases: Stockholm, 1985/11th International Conference on Very Large



BIBLIOGR.:\PHl~ 123

•

•

[DNS91]

[OST75]

[DTK91]

[Dun91]

[Dye82]

[ED80]

[E~IR]

[ES63]

[FB7.I]

[FC091]

Data Bases, Stockholm, August 21-23, 1985, page 151, Los Altos, CA

94022, USA, 1985. Nlorgan Kaufmann Publishers.

O. Oe\Vitt, J. ~aughton, and O. Schneider. An evaluation ofnon-equijoin

algorithms. In vldb, pages 443-452, 1991.

R. F. Deutscher, P. G. Sorenson, and J. P. Tremblay. Distribution

dependent hashing functions and their characteristics. In Proceedings of

the International Conference on the Management of Data, pages 224-36,

San Jose, CA, ~Iay 1975.

.-\.C. Downton. R.\V.S. Tregidgo, and E. Kabir. Recognition and veri

fication of handwritten and hand printed British postal addresses. In

ternational Journal of Pattern Recognition and A.rtificial Intelligence,

5( 1-2) :265-91, 1991.

J .A. Dundas. Implernenting dynanlic nünimal-prefix tries. Software Pruc

tice and Experience, 21 (20): 1027-40. October 1991.

C.R. Oyer. The space efficiency of quadtrees. Corrtputer Graphies and

/rnage Processing, 19(4):335-48. August 1982.

R. J. Enbody and H. C. Du. Dynamic hashing schemes. A CAtI Computing

Surveys. 20:85-113. 1980.

Canada Energy, ~lines, and Resources. ~Iemphremagog: 1:50,000, 31h1.

.Ir. E.H. Sussenguth. Use of tree structures for processing files. Commu

nications of the ACAtI, 6(5):272-9, 1963.

R.A. Finkel and J. L. Sentley. Quad trees - a data structure for retrieval

on composite keys. Acta Informatica, 4(1):1-9, 1974.

Edward A. Fox, Qi Fan Chen. and Arnjad ~1. Daoud. Order-preserving

minimal perfect hash function. .4 C!vI Transactions on Information Sys

tems, 9(3):281-308, 7 1991.



BIBL10GR.4PHY' 124

• [FG89] E.R. Fiala and D.H. Greene. Data compression \Vith finite windows.

Communications of the AGNI, 32(4):490-505, 1989.

•

[FGP~193] P. Flajolet, G. Gonnet, C. Puech, and Robson J. ~1. Analytic variations

on quadtrees. Algorithmica, 10(7):473-500, December 1993.

[FHCD92] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Arnjad ~1. Daoud.

Practical minimal perfect hash functions for large databases. Communi

cations of the AC.J\{ 35(1):105-121, 1 1992.

[FL94] P. Flajolet and T. Lafforgue. Search costs in quadtrees and singular

ity pertubation asymptotics. Discrete and Computational Geometry,

12(4):151-175. 1994.

[Fre60] E.H. Fredkin. Trie memory. Comrnunications of the AGkl, 3:490-500,

Septenlber 1960.

[FreSi] ~1. Freeston. The BANG file: .-\. new kind of grid file. In Proceedings of

the SIGklOD Conference, pages 260-69, San Francisco. NIay 1987.

[Fre95] ~I. Freeston. A general solution of the n-dimensional B-tree problem. In

Proceedings of the SIGMOD Conference, pages 80-91, San Jose, Califor

nia, ~[ay 1995.

[GBY91] G.H. Gonnet and R.A. Baeza-Yates. Lexicographical indices for text:

Inverted files \"s. pat trees. Technical Report OED-91-01, Centre for the

New OED., University of \Vaterloo, 1991.

[GG86] .-\.nil. K. Garg and C. C. Gotlieb. Order-presearving key transformations.

ACkl Transactions on Database Systems. 11(2}:213-234, 1986.

[GLS94] G. Graefe, A. Linville, and L. D. Shapiro. Sort versus hash revisited.

ACkl Transactions on Knowledge and Data Engineering, 6(6):934-44,

December 1994.



BIBLIOGR.4PHY 125

•

[Gon88]

[Gon91]

[GRG80]

[GSB9-t}

[Gut8-t]

[HCE91}

[HC'{97]

[HD80]

[HJR97]

G.H. Gonnet. Efficient searching of text and pictures. Technical Report

OED-88-02. Centre for the New OED., University of \Vaterloo, 1988.

G.H. Gonnet. Handbook of Algorithms and Data Structures. Addison

\Vesley, Reading, ~vIA, 1991.

G. H. GonneL L. D. Rogers, and J. :\. George. An algorithmic and

complexity analysis of interpolation search. Acta Informatica, 13:39-52,

1980.

R. Gupta, S..-\. Smolka, and S. Bhashar. On randomization in sequen

tial and distributed algorithms. ACAt Comput'ing Surveys, 26(1):23-86,

~vlarch 1994.

:\. Guttman. R-trees: :\ dynamic index structure for spatial searching.

In Proceedings of the SIGMOD Conference, pages -t5-57, Boston~ June

198-t.

.1 ..1. Hardwicke. J.H. Connolly, and .1. Edwards. Parallel access to an

English dictionary. l\Jicroprocessors and klicrosystems. 15(6):291-8, July

1991.

Hui-I Hsiao. ~ling-Syan Chen, and P. S. Yu. Parallel execution of hash

joins in parallel databases. IEEE Transactions on Parallel and Dis

tributed Syste'ms, 8(8):872-883. August 1997.

P.:\.V. Hall and G.R. Dowling. Approximate string matching. Computing

Surveys, 12(-1):381--102, December 1980.

\~un-\Vu Huang, ~ing Jing, and EIke A. Rundensteiner. Spatial joins

using R-trees: Breadth-first traversaI \Vith global optimizations. In

VLDB '97, Proceedings of 23rd International Conference on Very Large

Data Bases, pages 396-405, 1997.



BIBLIOGR..-\PH}~

. '

•

[Hun78}

[Iig95]

[Jac91]

[Jon89]

[KF94]

[Knu68]

[Knu73]

[KR96]

[KS97a]

126

G.~'l. Hunter. Efficient Computation and Data Structure for Graphies.

PhD dissertation, Department of Electrical Engineering and Computer

Science, Princeton University, Princeton, NJ, 1978.

Y. Iiguni. Nonlinear signal processing based upon a reconfigurable knowl

edge database. Electronics and computations in Japan, Part III: Funda

mental Electronic Science, 78(8):22-30, August 1995.

P. Jacquet. Analysis of digital tries with markovian dependency. IEEE

Transactions on Information Theor?J. IT-37(5):1407-75, September 1991.

L.P. Jones. Portrep: A portable repeated string finder. Software Practice

and Experience. 19(1):63-77, January 1989.

1. Karnel and C. Faloutsos. Hilbert R-tree: An improved R-tree using

fractals. In Proceedings of 20th International Conference on VLDB, pages

500-9. September 1994.

D.E. Knuth. Information Structures, volurne 1 of The Art of Computer

Programming. Addison-\Vesley, Reading, :\[A, 1968.

D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer

Programming. Addison-\Vesley, Reading, ~[A, 1973.

~L Kamath and K. Rarnarnritharn. Bucket skip merge join: A scalable

algorithm for join processing in very large databases using indexes. Tech

nical Report C~I-CS-1996-020, Cniversity of ~[assachusetts, Amherst,

Computer Science, ~Iarch, 1996.

Noria Katayama and Shin'ichi Satah. The SR-tree: An index struc

ture for high-dimensional nearest neighbor queries. In Proceedings of the

SIGA-fOD Conference, pages 369-79, Arizona, ~[ay 1997.



BIBLIOGR.A.PHY 127

[KS97b] Nick Koudas and Kenneth C. Sevcik. Size separation spatial join. In

Proceedings of the AGkl SIGMOD International Conference on klan

agement of Data. volume 26,2 of SIGNIOD Record, pages 324-335, New

York, ~\'lay13-15 1997. AC~I Press.

•

[KSOOa] C. Knessl and \V. Szpankowski. Asyrnptotic behavior of the height in

a digital search tree and the longest phrase of the Lempel-Ziv scheme.

In SIANI-ACi\;1 Symposium on Discrete Algorithms, pages 187-196, San

Franscisco, January 2000.

[KSOOb] C. Knessl and \V. Szpankowski. Limit laws for heights in generalized tries

and patricia tries. In LATIN '2000. Punta dei Este, Uruguay, January

2000.

[Kuk92] K. Kukich. Techniques for automatically correcting words in text. Com

puting Surueys, 24(-1):377-439, December 1992.

[LE~IR89] Y.H. Lee. ~L Evens..1.A. ~Iichael. and A.A. Rovick. Spelling correction

for an intelligent tutoring system. In Proceedings of Computing in the

90 's. The First Great Lakes Computer Science Conference, pages 77-83,

Kalamazoo, ~II, October 1989.

[Lit80] \V. Litwin. Linear hashing: A new tool for file and table addressing. In

Proceedings of 6th International Conference on VLDB, pages 212-223.

~Iontreal, October 1980.

[Lit8!] \V. Litwin. Trie hashing. In Proceed'ings of AGNI SIGMOD 81, pages

19-29..-\pril 1981.

[Lit85] \V. Litwin. Trie hashing: Further properties and performances. In Pro

ceedings of the International Conference on Foundations of Data Orga

nization and .4lgorithms, 1985.



BIBLIOGR.;\PHtP

128

[LJF94] K.-I. Lin, H.V. Jagadish, and C. Faloutsos. The TV-tree: An index

structure for high-dimensional data. The VLDB Journal, 5(-1):517-42,

1994.

[Lom90] David B. Lomet. The hB-tree: A multiattribute indexing method \Vith

good guaranteed performance. ACkl Transactions on Database Systems.

15(-1):625-658. December 1990.

[LR9-1] ~ling-Ling Lo and C. V. Ravishankar. Spatial joins using seeded trees.

S/Gi\tlOD Record (ACkl Special /nterest Group on Management of Data),

23(2):209-220. June 1994.

[LR96] ~ling-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In H. V.

Jagadish and Inderpal Singh ~;Iumick, editors. Proceedings of the 1996

ACi\t1 SIGAJOD International Conference on AJanagement of Data. pages

247-258, ~Iontreal, Quebec, Canada, June 1996.

[LRLH91] \V. Litwin, N. Roussopoulos, G. Levy, and \V. Hong. Trie hashing \Vith

controlled load. IEEE Transactions on Software Engineering, 17(7):678

91, 1991.

•

[LT95]

[LZL88]

[~Ia176]

[~IE92]

Hongjun Lu and Kian-Lee Tan. On sort-merge algorithm for band joins.

IEEE Transactions on Knowledge and Data Engineering, 7(3):508-510.

June 1995.

\V. Litwin, D. Zegour. and G. Levy. ~,Iultilevel trie hashing. In Ad

vances in Database Technology y EDBT!88: International conference on

Extending Database Technology, Venice, Italy, 1988. Berlin, New York:

Springer-Verlag.

K. ~Ialy. Compressed tries. Communications of the ACM, 19(7):409-15.

1976.

Priti ~lishra and :\Iargaret H. Eich. .loin processing in relational

databases. A Ckl Computing Surveys, 24(1) :63-113, ~Iarch 1992.



BIBLIOGRA,PH1" 129

.i

•

[~Iea82]

[~(er83]

[~(F85a]

[~(F85b]

[~nA94]

[~I081a]

[~[081b]

[~[082]

[~'[or68]

[~IS941

D. NIeagher. Geometrie modeling using octree encoding. Computer

Graphies and Image Processing, 19(2):129-47, June 1982.

T, H, ~Ierrett. Relational Information Systems. Reston, 1983.

P, ~[athys and P. Flajolet. Q-ary collision resolution algorithms in ran

dom access system with free and blocked channel access. IEEE Transac

tions on Information Theory, IT-31(2):217-43, 1985.

T. H. ~'lerrett and B. Fayerman, Dynamic Patricia. In Proceedings of

the International Conference on Fundations of Data Organization, pages

13-20! Kyoto. Japan! ~Iay 1985,

Katsushi ~[orimoto. Hirokazu Iriguchi, and Jun-Ichi Aoe. A method

of compressing trie structures. Software-Practice and Experience,

24(3):265-288, ~[arch 1994.

T. H. :\[errett and E, Otoo. ~[ultidimensional paging for associative

searching. Technical Report SOCS-81.I8. School of Computer Science,

~'[cGill Cniversity. ~'Iay 1981.

T. H. ~[errett and E. J. Otoo. DynanlÎc rnultipaging: a storage structure

for large shared data banks. Technical Report SOCS-81-26, School of

Computer Science, ~[cGill University, ~Iontreal, Quebec, Canada, 1981.

T. H. ~Ierrett and E. J. Otoo. Dynamic multipaging: A storage struc

ture for large shared data banks. In Improving Database Usability and

Responsiveness, pages 237-54. Academic Press, New York, 1982.

D.R. :\Iorrison. Patricia - practical algorithm to retrieve information

coded in alphanumeric. Journal of the .4 CM, 14(4):514-34, October 1968.

T. H. :\[errett and H. Shang. Zoom tries: A file structure to support

spatial zooming. In Sixth International Symposium on Spatial Data Han

dling, pages 792-804, Edinburgh, 1994.



BIBLIOGR.4PHY· 130

• [~ISZ96} T .H. Nlerrett, H. Shang, and X. Zhao. Database structures, based on

tries, for text, spatial and general data. In Proceedings of International

Symposium on Cooperative Database Systems for Advanced Applications~

pages 316-24, Kyoto, Japan, Dec 1996.

[~I\VHC96] B. S. ~IajewskL ~. C. \Vormald, G. Havas, and Z. J. Czech. A family of

perfect hashing methods. Computer Journal, 39(6):547-54, Dec 1996.

•

[NHS8-l]

[NK98}

[NP91!

[O~18-1]

[O~192}

[Ore82a}

[Ore82b]

J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: An adapt

able, symmetric multikey file structure. ACkl Transactions on Database

Systems. 9(1):38-71, ~ilarch 1984.

Stefan Nilsson and Gunnar Karlsson. Internet programming fast IP rout

ing with Le-tries: .-\chieving gbit/sec speed in software. Dr. Dobb Ys

Journal of Software Tools, 23(8):70, 72-75, August 1998.

:\1. Negri and G. Pelagatti. Distributive join: A new algorithm for join

ing relations. A Ck/ Transactions on Database Systems, 16(4):655-669.

December 1991.

J .A. Orenstein and T .H. :\Ierrett. A class of data structures for as

sociative searching. In Proceedings of Third ACAJ SIGACT-SIGfl.;/OD

Symposium on Principles of Database Systems~ pages 181-90~ \Vaterloo,

April 198-1.

~1.A. Ouksel and O. ~Iayer. A robust and efficient spatial data structure

the nested interpolation-based grid file . ..4cta Informatica, 29(4):335-373,

1992.

.J .A. Orenstein. Algorithms and Data Structures for the Implementation

of a Re/ational Database. Technical report socs-82-17, School of Com

puter Science, ~lcGill University, 1982.

J ..-\.. Orenstein. :\Iultidimensional tries used for associative searching.

Information Processing Letters~ 14(14):150-6, June 1982.



BIBLJOGR-4PHY· 131

•

•

[PD96]

[Pit85]

[Pro96]

[RBK89]

[Reg85]

[Reg88]

[RJS93]

[RL85}

[Rob81]

[Sac86]

Jignesh NI. Patel and David J. De\Vitt. Partition based spatial-merge

join. In H. V. Jagadish and Inderpal Singh NIumick, editors, Proceedings

of the 1996 .4Ckl SIGkfOD International Conference on Management of

Data, pages 259-270, ~Iontreal, Quebec, Canada, June 1996.

B. Pittel. .\symptotical growth of a class of random trees. The Annals

of Probability! 13(12) :414-27! 1985.

ProCD. Business phone book. ProCD Inc, 222 Rosewood Drive! Danvers.

:\·L-\ ÜI923-9893! 1996.

R. Ramesh. A.J.G. Babu! and J.P. Kincaid. Variable-depth trie index

optimization: Theory and experimental results. A GM Transactions on

Database Systems, 14(1):41-74! :\,Iarch 1989.

:\1. Regnier. Analysis of grid file algorithms. BIT, 25:335-357, 1985.

:\1. Regnier. Trie hashing analysis. In Proceedings of Fourth Interna

tional Confe1'ence on Data Engineering, pages 377-81, Los Angeles, CA.

February 1988.

B. Rais. P. Jaquet. and \V. Szpankowski. A limiting distribution for the

depth in patricia tries. SIAM Journal on Discrete Mathematics, 6:197

213, 1993.

~. Roussopoulos and D. Leifker. Direct spatial search on pictorial

databases using packed R-trees. In Proceedings of the SIGMOD Con

ference, pages 17-26, ~Iay 1985.

J. T. Robinson. The K-D-B-tree: A search structure for large multidi

mensional dynamic indexes. Proceedings AGAf SIGklOD Conference on

ktanagement of Data, June 1981.

G. ~I. Sacco. Fragmentation: A technique for efficient query processing.

ACkt Transactions on Database Systems, 11(2):113-133, June 1986.



BIBLIOGR.4PHY 132

•

•

[Sam90]

[Sha94]

[SI\:83]

[S~194]

[S~196]

[Spr7ï]

[SR8ï]

[STD78]

[Su88]

[Szp88]

[Szp90]

H. Samet. Applications of Spatial Data Structrues: Computer Graphies,

Image Processing, and GIS. Addison-\Vesley, Reading~ wlass., 1990.

H. Shang. Trie methods for text and spatial data on secondary storage.

PhD dissertation, School of Computer Science, ~lcGill University, Nlon

treal, Quebec, ~ovember 1994.

D. Sankoff and J.B. Kruskal. Time JVarps, String Edits, and /lilacro

'molecules : the Theory and Practice of Sequence Comparison. Addison

\\~esley, Reading, :\Iass., 1983.

D. K. Shin and A. C. :\Ieltzer. A new join algorithm. sigmod, 23(4):13-18,

December 1994.

H. Shang and T.H. ~Ierrett. Tries for approximate string matching. IEEE

Transactions on Knowledge and Data Engineering, 8(4):540-7, .-\ugust

1996.

R. Sprugnoli. Perfect hash functions:a single probe retrieval method for

static sets. Communications of the ACAti, 20( Il) :841-50, 1977.

T. Sellis and N. Roussopoulos. The R+ -tree: a dynamic index for mul

tidimensional objects. In Proceed'ings of 13th International Conference

on VLDB, pages 507-18, Brighton, UK, September 1987.

P. G. Sorenson, J. P. Tremblay, and R.f. Deutscher. Key-to-address

transformation techniques. INFOR, 16(1 ):1-34, 1978.

S.Y.\V. Su. Database Computers: Principles1 Architectures, and Tech

niques. :\lcGraw-Hill, New York, 1988.

\V. Szpankowski. Sorne results on V-ary asymmetric tries. Journal of

Algorithms, 9:224-44, 1988.

\V. Szpankowski. Patricia tries revisited. Communications of the AC/liI,

37(4):691-71L October 1990.



BIBLIOGR.-\PHY 133

• [Szp91] \V. Szpankowski. A characterization of digital search trees from the

successful search viewpoint. Theoretical Computer Science, 85:117-34,

1991.

•

[Szp92] \V. Szpankowski. Probabilistic analysis of generalized suffix trees. In

Goos and Hartmanis [BYP921, pages 1-14.

[Szp93] \V. Szpankowski. Asynlpototic properties of data compression and suffix

trees. IEEE Transactions on Information Theory, IT-39, 1993.

[TITK88] T. Tokunaga, ~l. Iwayama, H. Tanaka, and T. Kamiwaki. Langlab:

A natural language analysis system. In Proceedings of the 1,~th Inter

national Conference on Computational Linguistics, pages 655-60. Bu

dapest. Hungary, August 1988.

[Tom92] F.\V. Tompa. An overview of waterloo's database software for the OED.

Technical Report OED-92-01, Centre for the New OED., University of

\Vaterloo, 1992.

[TS96] Y. Theodoridis and T. Sellis. A model for the prediction of R-tree per

formance. In Proceedings of the ACNI SIGACT-SIGNIOD-SIGART Sym

POSiU'ffi on Principles of Database Systems - ACNI PODS, pages 161-71,

~lontreal, Canada, June 1996.

[TYi91 R.E. Tarjan and A.C.C. Yao. Storing a sparse table. Communications

of the ACA!, 21(11):606-11, October 1979.

[ValS7] P. Valduriez. .loin indices. ACNI Transactions on Database Systems,

12(2):218---16, June 1987.

[\VJ96] O. A. \Vhite and R. Jain. Similarity indexing with the SS-tree. In

Proceed'ings of the 12th International Conference on Data Engineering,

pages 516-23, New Orleans, Feb 1996.

[Zha96] Xiaoyan Zhao. Tries for structured data on secondary storage. Ph.D.

thesis proposaI! January 1996.



BIBLIOGR--\PHY' 134

•

•

(ZL77]

(ZL78]

J. Ziv and A. Lempel. A universal algorithm for sequential data compres

sion. IEEE Transactions on Information Theory, 23(3):337-43, 1977.

J. Ziv and :\. Lempel. Compression of individual sequences via variable

rate coding. IEEE Transactions on Information Theory! 24(5):530-6~

1978.



•

BIBLIOGR.APHY·

_-\ppendix I. Brief History of Trie Structures

Year(s) Descriptions and Citations

59 First paper on trie structures [Bri59]

60 Trie memory (Retrieval) [Fre60]

68 Patricia tries for text and prefix searching [~lor681

68.73 Pruned trie~ digital trees. patricia trie (Knu68, Knu73]

76 Compressed trie/c-trie for static data [~laI76]

77 Complexity of trie constructions [CS77]

78 Quadtries [Hun78]

80.81 Trie hashing [ED80. Lit80, Lit81]

82 K-d-tries and bitstring representation of trie~ [Ore82b), ûctree [~'lca82]

8-1 Z-order to organize k-dimensional data [O~I841

85 Suffix tries [Ap085), Trie hashing [Lit851

86 Trie nlethods applied on lexical analyzers and compliers [ASU86]

88 Trie methods on naturallanguage analysis [TITK88]

Prefix text search, PAT tree (Gon88]

~[ore trie hashing [LZL88. Reg88]

89 Tries applied to data compression [B\VC89. FG89]

Pattern recognition (BS89},

~atual language analysis [.Jon89L and

Spellillg checker [LE:\IR89]

Trie implementation [RBK89]

90 Pr-tries and quadtries for spatial data [Sam90]

91 Tries for pattern recognitions[DTK91j~

Parallel searching [HCE91]

Trie implementations for minimal-prefi."{ tries [Dun9!]

Patarray for text indexing (GBY91, Gon9!]

92 Tries for prefix text search [Tom92]

Suffix tries analysis[Szp92]

93 Suffix trie implementations[AN93]

135



BIBLIOGR.-\PHY 136

•

•

94

95

96

98

Trie hashing for similarity retrieval in pictorial databases [CL93]

FuTrie for spatial data zooming [~IS94]

PaTrie for text indexing and spatial data zooming [Sha94]

Cornpressing trie [).UA94]

Trie application on signal processing [Iig95]

Trie application on pattern recognition [.-\BV95]

Generalization of trie structures [C~I95]

Tries for approximate string matching [S~I96, ~[SZ96]

LC-tries on IP routing [NK98]


