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Abstract

This thesis presents trie organizations for one-dimensional and multidimensional struc-
tured data on secondary storage. The new trie structures have several distinctive fea-
tures: (1) they provide significant storage compression by sharing common paths near
the root: (2) theyv are partitioned into pages and are suitable for secondary storage:
(3) they are capable of dynamic insertions and deletions of records: (4) they support
efficient multidimensional variable-resolution queries by storing the most significant
bits near the root.

\We apply the trie structures to indexing, storing and querving structured data on
secondary storage. We are interested in the storage compactness, the [/O efficiency.
the order-preserving properties, the general orthogonal range queries and the exact
match queries for very large files and databases. We also apply the trie structures to
relational joins (set operations).

We compare trie structures to various data structures on secondary storage: mul-
tipaging and grid files in the direct access method category, R-trees/R*-trees and
X-trees in the logarithmic access cost category. as well as some representative join al-
gorithms for performing join operations. Our results show that range queries by trie
method are superior to these competitors in search cost when queries return more
than a few records and are competitive to direct access methods for exact match
queries. Furthermore. as the trie structure compresses data. it is the winner in terms
of storage compared to all other methods mentioned above.

We also present a new tidy function for order-preserving key-to-address transfor-
mation. Our tidy function is easy to construct and cheaper in access time and storage

cost compared to its closest competitor.
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Résumeé

Cette these présente des structures de trie pour des données unidimensionnelles et multidi-
mensionnelles sur la mémoire secondaire. Les nouvelles structures de trie ont plusieurs dis-
positifs distincts: (1) elles fournissent la compression significative de données en partageant
les voies d’accés communes prés de la racine de disque; (2) elles sont divisées en pages
et conviennent pour la mémoire secondaire; (3) elles permettent des mises en place et des
suppressions dynamiques des enregistrements; (4) elles supportent des requétes multidimen-
sionnelles efficaces de résolution variable en enregistrant les bits les plus significatifs pres de
la racine.

Nous avons appliqués les structures de trie a l'indexation, I'enregistrement et la sélection
des données structurées sur la mémoire secondaire. Nous sommes intéressés a la com-
pacticité de mémoire. |'efficacité de E/S, les propriétés de conserver l'ordre, les requétes
orthogonales générales et les requétes exactes pour les fichiers et les bases de données
trées grands. Nous avons utilisées également les structures de trie a 'apparenté de joint
(opérations de pair).

Nous avons comparés des structures de trie aux autres diverses structures de données
sur la mémoire secondaire: multipaging et grille classé dans la catégorie de méthode acces
directe, le R-arbres /R*-arbres et les X-arbres dans la catégorie logarithmique de coit
d’acces, ainsi que des algorithmes représentatifs pour exécuter des opérations de liens. Nos
résultats prouvent que les requétes d'intervalle par la méthode de triec sont supérieures a
tous les ses concurrents sur le coiit de recherche quand des requétes retournant plus que
seulement quelques enregistrements et sont concurrentielles aux méthodes d’accés direct
pour des requétes de recherches exactes. De plus, car la structure de trie comprime des
données, elle est gagnante en termes de mémoire comparant a toutes autres méthodes
mentionnées ci-dessus.

Nous présentons aussi une nouvelle fonction (“tidy function”) pour des transforma-
tions clé-a-adressons avec |'ordre-préservé. Notre fonction *tidy” est facile a construire et
peu couteuse en temps d’acces et cout d'entreposage comparatovement a ses plus proches

compétiteurs.
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Chapter 1

Introduction

1.1 Motivation

Space and speed are two major considerations for storage and retrieval in large
database systems on seccadary storage. Furthermore. data types and distributions
vary from application to application. There are special data such as text, spatial
(vector) and image (pixel) data versus structured data such as payrolls and invento-
ries: one dimensional versus multiple dimensional data: order-preserved data versus
random-ordered data; uniformly versus non-uniformly distributed data; etc. Query
selectivities performed on data also varv from one application to another, ranging
from only one data item (record) to a significant percentage of source data files.
Query operations can be unary or binary as well.

Among the various existing data structures for large database systems, a data
structure that is good at structured data may become inefficient if it is applied to
spatial or text data. A data structure that behaves quite well for uniform data may
become inefficient for pathological data distributions. Data structures for organizing
one dimensional keyvs may not work for keyvs with multi-dimensional attributes. Fur-
thermore. data structures that support low selectivity queries may not be efficient in
performing high selectivity queries.

Hashing in general is good at single retrieval only. B-trees [BM72] on secondary
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storage have logarithmic behavior. K-D-B-trees [Rob81] extend B-trees for multidi-
mensional data. Their costs of accessing secondary storage depend on the height of
trees, and thus the fan-out, as well as the data set size. The storage efficiency of grid
files [NHS84], a multikey direct access method. is reduced by poorly distributed data.
The access or storage efficiency of multipaging [MOS81a, MO82] also decreases for
pathological data distributions. Bang-files [Fre87] and the Interpolation Based Grid
Files [OM92] use logarithmic accessing cost to compensate for the storage overhead
of grid files for nonuniform data. R-trees [Gut84] and their variants [BKSS90, SR87]
for spatial data contain overlapped hyper-rectangular regions which may lead to less
efficient searches for some queries than others. In addition. all the above structures
do not generally support text indexing and searching.

[n summary. a data structure that is good at dealing with one kind of data in one
particular area for one type of query is likely to have bad performance for another
purpose. Is there a simple but powerful dynamic structure for large-scale databases
that is efficient for text. spatial and structured data, in terms of both space and
speed; regardless of the distribution, the dimensionality. the operations, and the
query selectivity?

On the other hand. digital trees [Knu73], or tries [Bri39. Fre60], are tree structures
that store data along paths rather than at nodes, which is what a tree structure usually
does. Thev have many desirable characteristics. Among them, the following three
are the most important.

1. They store data according to resolution. with the most important bits stored

near the root. Thus, we call tries variable resolution structures or zoom tries.
Such a zooming property of tries may speed up queries at different resolutions
by starting with an approximation and refining it only when there is uncertainty.
Tries have been applied to various spatial queries and map retrieving. However,
it should be noted that the data need not to be spatial.

2. Tries compress data by requiring minimal storage overhead, only a couple of
bits per node. Paths near the root are shared by many data. In text searching,
such compression is important for indexing substrings in a large text, which
requires at least a pointer to each character in the text.
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3. Tries maintain order preservation in data. one of the fundamentals for efficient

high selectivity queries.

Tries, simple vet powerful structures, have shown advantages in many application
areas. In database systems they have achieved great performance in dealing with text
data for which the trie compression makes substring indexing possible, which would
otherwise be impractical. With spatial data, in addition to the storage advantage.
tries provide a way to do variable resolution queries in sublinear time.

But are tries also strong at organizing structured data such as tables and rela-
tions? Are they efficient structures for both low selectivity (such as exact matches)
and high selectivity (such as range queries)? Can general relational algebra, such
as the join operations of relational databases be performed by tries efficiently, and
how? If ves. what are the advantages of applving trie structures to general database
systems compared with state-of-the-art data structures and algorithms? As far as we
know. these remain open questions. This thesis attempts to answer these questions
by extending trie methods to be dynamic and applying various unary and binary
operations on structured data. and thus pursues the claim that tries offer the best

general representations for large-scale databases.

1.2 Originality

To the best knowledge of the author, the originality of this work includes the following

methods. algorithms. comparisons and corresponding experimental results:

e DyOrTrie. an extended pointerless bitstring representation for binary tries used

for dvnamic operations;

e A piece-wise, linear tidy function approximation method with minimum over-
flows. including construction and search algorithms for one-dimensional {1D)

queries:

e Comparisons of tries versus the tidy functions for 1D queries;
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e A new analysis of multidimensional data distribution for some direct access

methods based on information theory;

e Experimental comparisons of tries versus various direct and logarithmic access
methods for multidimensional unary queries, including exact match and range

queries:

o Relational join algorithms by tries on structured data (binary operations on

tries);

e Comparisons of trie join algorithms versus traditional and state-of-the-art join

algorithms.

1.3 Glossary of Symbols

Here are symbols used through the thesis.

N: number of keys or records in a file on secondary storage
n: number of pages (blocks) in a file on secondary storage
P: page capacity

k number of dimensions

p: number of linear pieces for tidy functions

D(z):  cumulative distribution function

B: memory buffer size

1.4 Thesis Outline

The thesis is organized as follows. Chapter 1 presents motivation for the work and
the problem domain, followed by a summary of new results.

Chapters 2 and 3 principally concentrate on a literature review of data structures
and algorithms.

Chapter 2 concerns itself with trie structures. It reviews their properties, applica-

tions. representations and some refinements. The last section of the chapter presents
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an original dynamic trie structure. This dynamic trie is the underlying structure
which is used throughout the thesis.

Conventional data structures and join algorithms are introduced in chapter 3. It
reviews the data structures according to their dimensionality, from one-dimension
(1D) to multidimensions. The 1D structures include hashing and order preserving
key-to-address transformations. Multidimensional file structures are classified into
direct access and logarithmic access files. A survey of join algorithm is also presented
in this chapter.

The remaining chapters elucidate original work. They are organized in four chap-
ters.

Chapter 4 introduces a heuristic piece-wise linear approximation tidy function on
secondary storage. \We show its superiority to its closest competitors — some order
preserving hashing methods.

Chapters 5 to 7 present three trie applications.

Chapter 5 demonstrates tries for 1D queries, comparing with the piece-wise linear
tidy function that we propose in the previous chapter. Detailed comparisons on
storage and search cost are given.

Chapter 6 describes tries for multidimensional queries, comparing with grid files,
multipaging, R*-trees and X-trees. Exact match and range query algorithms are pro-
vided. as well as detailed experimental comparison results and discussions on speed
and space cost versus file size, record size, query selectivity, dimensionality, and dis-
tribution. The results indicate that tries are better than other data structures when
files contain more than a few records and the query returns more than a few records.

Chapter 7 demonstrates how tries can be used for binary join operations. Natural
join and union join algorithms are presented. When join attributes are organized by
tries, we show their significant advantage over all other join algorithms based on both
theoretical analysis and experimentations.

Chapter 8 summarizes the thesis and proposes some future research topics.



Chapter 2

Trie Structures

2.1 Trie Methods

The trie uses characters, or digital decomposition of a key, to direct the branch-
ing [(Gon91]. The decision which way to follow during a search from an internal node
at depth d is made according to the value of the dth position in the search key. For ex-
ample. a trie for a key set of table, space. speed, trie and tezxt is shown in Figure 2.1(a).
The first letter splits the keys into two sets of subtries, s-keyvs and t-keys. The second
letter splits the t-keys into three groups of ta-keys, fe-keys and ¢r-keys and so on.
When searching a word, sayv trie, the first letter ¢ leads us to the right child of the
root. The second letter r leads us to the rightmost descendant. Eventually, if a leaf
node is reached. as in our case, a search returns successfully. Otherwise if a null link
is reached. it means the word is not on the trie. Thus an unsuccessful search usually
stops at an internal node.

The trie presented in Figure 2.1(a) is referred to as a full trie [CST7] or pure
trie [Ore82b]. Note that there exist subtries leading to only one key (leaf node) in
a full trie. Such subtries can be pruned and the resulting trie is called an ordinary
trie (radiz search tree, pruned trie [Knu73, CS77] or in most of the literature, simply
trie [Gon91]). Figure 2.1(b) is an example of an ordinary trie. The truncated char-

acters, ce, ed. ble, rt and ie can either be stored on leaf nodes or in a separate file



CHAPTER 2. TRIE STRUCTURES

-1

(a) Full Trie (b) Ordinary Trie (¢) Patricia Trie

Figure 2.1: Trie Structures

pointed to by these leaf nodes.

There still exists a single descendant node, between link s and p for words space and
speed in Figure 2.1(b), which does not branch a search to any new subtrie. Such node
chains can be further eliminated if on the first branching descendant node a number
is used to indicate its corresponding level, or the number of skips from its ancestor
node. Figure 2.1(c) shows the resulting trie. Numbers on internal nodes indicate the
number of skips from their parent nodes. Such tries, without single descendant nodes
are called Patricia tries [Mor68, Knu73, MF85b, Gon91] (Practical Algorithm To
Retrieve Information Coded In Alphanumeric). Patricia tries are especially capable
of indexing very long, variable length and even unbounded kev strings. Thus they
are very useful in text searching (cf. section 2.3).

The tries in Figure 2.1 are n-ary tries. Tries can also be binary. A binary trie is
a binary tree in which the branching decision on each node depends on the current
bit of a binary search key: branching left if it is 0, else right. A binary trie can be
formed on the binary string format of numerical or alphabetic keys. Figure 2.2 shows
the binary full trie, ordinary trie and Patricia trie of the numerical key set {0, 1, 2,
3. 7. 12, 13}. The corresponding bitstring set is {0000, 0001, 0010, 0011, 0111, 1100,
1101}.

Tries were first developed by de la Briandais [Bri59] and E. H. Fredkin [Fre60].
The name trie comes from the word retrieval [Fre60]. They were used for prefix
searching by Morrison [Mor68|. Intensive discussions about the structure can be

found in Knuth [Knu73] and many other data structure books. Tries were associated
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(a) Binary tull trie (b) Binary ordinary trie (c) Binary partricia trie

11 11 1{0}{}

1101 1101 1{0}{} 1{2}{10})

110110 1100{11} 10 H{O}{} O{2}{11} O{O}{} O{O}{}
11110111 i1 1{O}{) 1{O}{}

00 00 00 00 00 00 00 00 00 00 00 00 00 0(0}{}0{0}{}O[0}{) O{0}(}
(d) FuTrie representation (e) OrTrie representation (f) PaTrie representation

Figure 2.2: Binary Tries

with digital searches. and thus are also called digital trees [Knu73|. Since then, tries
have been applied extensively to various text indexing and searching.

Several trie parameters are of great interest: trie depth, height and size. Trie depth
is defined as the average path length from the trie root to its leaves. It represents the
average cost of a successful search. Trie height is the longest path from the trie root
to the leaves. It is indicative of the worst case search time. I[deally, it is advanta-
geous to know depth distributions in order to understand the behavior of tries, such
as how balanced/skewed the trie is. Trie depth/height has a rich research history
since 1970s [Knu73, Dev82, Dev84. Pit83, Szp88, Szp90, Szp91, Jac9l, Dev87, Szp92.
Szp93. RJS93. CFV98, CFV99, KS00b, KS00a]. Trie size in storage consumption
is as important a parameter as trie depth and height in measuring access time. [t
is the number of nodes in a trie. Trie size has been analyzed and explored in the
literature [Knu73. Jac91. Szp90, Szp91, CFV98, CFV99]. A trie is called a symmetric
trie if data stored on tries are uniformly distributed. Otherwise, it is an asymmetric
trie. For asvmmetric tries, the entropy determines depth distribution. The more
asymmetric the symbol alphabet is, the more skewed a trie is. Some discussions of

asymptotic behavior of asymmetric tries can be found in the literature [RJS93, FL94.
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KS00a, KS0Ob]. Since the late 1970s, prefix tries have also been applied to spatial
data index schemes ranging from quadtrees * [Hun78, Dye82, Sam90|, octries [Mea82],
k-d-ties [Ore82b), pr-ties [Sam90], and FuTries [MS94, Sha94]. The 1980s saw various
trie structures proposed for dynamic trie hashing. Other development and applica-
tions of tries include lexical analyzers and compilers. natural language analysis. data
compression, pattern recognition, parallel searching, and even Internet IP routing. A
brief trie history can be found in Appendix [.

The next two sections will focus more specifically on trie properties and applica-
tions.

2.2 Trie Properties

The simple but elegant trie structure has many attractive properties, and thus has

been applied to various database and non-database applications.

e The compression of data by the overlap of paths near the root reduces space
cost of the trie, and provides faster transfer of data from the secondary storage

to the main memory.

e [t stores the most significant bits first near the root. It allows queries to start
at some approximation and perform refinements by reading lower levels of tries

only if there is uncertainty.

e Tries are order preserving data structures which is essential to high selectivity

queries such as range queries.

e Prefir searching looks for any word that matches a given prefix. Trie searching
is. in fact. prefix searching, unlike hashing or any other normal tree search.
Patricia tries are capable of indexing extremely long and unbounded keys and

thus are extremely suitable for prefix searching.

*Uniortunately, the term quadtree is confusing as it has different meanings. In most cases, it
refers to a trie structure and thus should be called quadtrie. In some other cases, it may also refer
to a tree structure (FB74. FGPM93, FL94].
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e The shape of the trie is uniquely determined by the data sets, and thus is not
affected by poor data distributions.

e Tries can be interpreted as multiple key structures and hence are amendable to
multidimensional space. A key with multiple attributes can first be interleaved
bit by bit to an interleaved key. Then these interleaved kevs can be used to

construct a trie, as if they were in one dimension.

e Tries have short search time. Successful search cost is bounded by the length
of the search key, regardless of the file size. Unsuccessful searches may cost less

as they are likely to stop at internal nodes.

e Trie structures are flexible and can be combined with many other structures sim-
plv by applying the trie structure near the root and switching to these structures

near the leaves. Further explanations are discussed in the next section.

2.3 Trie Applications

2.3.1 Prefix searching

Many applications require recognition of kevwords from dictionaries and thus require
efficient prefix searching. Traditional dictionary lookups, such as hashing and tree
searching, do not support search keys to be prefixed or abbreviated and thus are
inadequate. Trie structures, on the other hand, are ideal for indexing prefixes. Trie
searching has been applied for data compression [BWC89, BK93|, lexical analyzers
and compilers [ASU86), pattern recognition [BS89, DTK91, ABV95], spelling checkers
(LEMRS9], natural language analysis [TITK88, Jon89], parallel searching [HCE91]
and Internet routing [NK98].

2.3.2 Text Searching

A major problem for text indexing which is capable of accessing every substring of

a large text is its size. Clearly, at least one pointer is needed for every character in
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the text and each pointer is at least logN bits, where NV is the number of substrings.
The total index must be of size .V log NV bits or ; Vlog NV bytes. For a text of size 2%
characters or substrings such as the New Ozford English Dictionary (OED), pointers
to the text already require 3.4V bytes. Trie compression makes text indexes possible.
Along with its capability to index very long and even unbounded strings and its fast

access property. the trie is a suitable data structure for text indexing and searching.
e prefix search:

Tries have been used for prefix searches by Morrison [Mor68] and exploited by
Gonnet et al. {Gon88, GBY91. Tom92] as the basis for the retrieval methods

used in the electronic version of the New OED. using PAT tries.

Gonnet [Gon88| treats a text as a long single character string. A sistring is a
semi-infinite suffix of a text. A trie of string suffixes is a suffiz trie [Apo83,
Szp92]. Every subtrie of a suffix trie has all the sistrings of the given prefix.
Prefix searching in suffix tries consists of searching tries up to the point the
prefix is exhausted. or when there are no more subtries. In either case the
search cost is only bounded by the length of the prefix, independent of trie size.

Suffix tries are efficient for prefix searching and longest repetition searching.

e longest repetition search:

Longest repetition of a text is a match between two sistrings which has the
most number of characters in the entire text. For PAT tries, it is the sistring
pair with the highest depth. For a given text, it can be found during the
construction of the trie. It can be applied to manipulations of general sequences
of svmbols [SK83], such as string editing. comparison, correction and collation
of different versions of the same file. It is also applicable to genetic/biomedical

sequences.

e range search:

Suffix tries or PAT tries can do range search efficiently, searching for all the
strings that are lexically between two given values, in the order of trie height

[Gon91} and the size of the answer set.
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e most frequent search:

This search is to find the most frequently used string in the text. With suffix
tries, 1t is equivalent to finding the largest subtrie whose search path begins
with a space and ends with a second space [Gon91]. This type of search has

great practical interest such as finding the most frequently used word in a text.

e regular expression search [BYG89):

Regular expression searching also has great practical interest. Tries have been

also applied to regular expression searches of texts [BYG89. Gon91, Sha94].
e proximity search:

This search gives strings that are at a fixed distance away from a given string.
The distance of two strings can be defined as the number of differences (in-
sertion. deletion. substitution and/or transportation) between the two given
strings. Various data structures. algorithms and techniques have been devel-
oped and applied to solve this problem [Knu73, HD80. SK83, Kuk92, BYP92].
Again. tries are one of the structures that can be readily applied to it. In
Gonnet’s paper [GBY91], PAT array, a compact representation of the PAT
tree. was used for proximity searching. Shang and Merrett [Sha94, SM96| apply

FuTrie. a binary full trie structure. to proximity searching.

2.3.3 Spatial Data Representation

Spatial data are points, lines. etc. in multidimensional space. Prefix tries for spatial
data are tries on interleaved numerical data. with the most significant bits stored
close to the trie root. This variable-resolution structure allows some queries to look
only part way down the trie to retrieve and search on approximations. The search
choice on a node can be “accept” (all records in the subtrie are in the answer set).
or “reject” (no record in the subtrie is in the answer set), or “explore”, when there is
uncertainty at this early stage. The search only goes down to subtries when there is

uncertainty.
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Tries have been applied to spatial data indexing schemes, ranging from k-d-
tries [Ore82b], octrees [Mea82|, pr-tries [Sam90|, zoom tries [MS94] to various quadtrees
(quadtries) [Hun78, Sam90]. Some of the other multi-dimensional structures such as
k-d-trees, K-D-B-trees, grid files, multipaging, R-trees etc. will be discussed later in
chapter 3.

K-d-tries are a generalization of 1D binary tries. They are named after k-d-
trees (Ben73], because they use the same principle of interleaving coordinates. The
advantage of k-d-tries over k-d-trees is that tries store data under variable resolutions,
i.e.. the most significant bits are stored near the root. This property, zooming, was
exploited to display spatial data at any resolution using only one copy of the data
and transferring from secondary storage only the amount of data needed for that
display [MS94. Sha94].

2.3.4 Other Applications
Signal Processing and Telecommunications

One of the most important issues in signal processing is to estimate the output for a
known input, i.e.. a query from the input/output data seen to this point. A nonlinear
adaptive estimation method that uses a k-d-trie was presented in {lig95]. NV records
of A-dimensional input vectors and their corresponding scalar outputs are stored in
the k-d-trie. These latest .V input/output records are used to estimate the output of
a given input (query point). A trie range search. with maximum distance from the
query point in each dimension less than L, is performed. Then, a non-linear local
model is applied to those records retrieved from the range query in order to obtain
the estimate of the output. The method requires updating the trie as each new data
point is available such that only the latest .V data are maintained on the trie. The
k-d-trie is chosen instead of a k-d-tree since it has superior performance to the latter
in terms of the average time requirement for updating; it requires no rebalancing
operations for insertions and deletions.
Data compression. message encoding/decoding techniques are widely used in telecom-

munications. Ziv-Lempel {ZL77, ZL78] coding is currently one of the most practical
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data compression schemes. It operates by replacing a substring of a text with a
pointer to its previous occurrence in the input. Tries are one of the structures capa-
ble of longest string searching as mentioned above [BK93].

Message decoding and conflict resolution algorithms for broadcast cornmunications
can also be equivalent to trie search processes [Cap79, Ber84, MF85a].

Image processing

Trie hashing has been used as a dynamic method for similarity retrieval in picto-
rial database systems. It is claimed to have good performance in pictorial database
management systems [CL93].

2.4 Trie Representations and Algorithms

2.4.1 Tabular Forms

Tries have been represented variously. A straightforward implementation is the table
or matrix form [Fre60, Mor68. Knu73, RBK89]. A k-ary trie with S nodes and N
keyvs is represented by a table of £ x (§ — N) entries, where & is the number of rows
and S — .V the number of columns. In the table, each column represents an internal
node of the trie, where each table entry contains a column number, a null pointer,
or a pointer to a key (leaf node). The first column is the root. Table 2.1 gives the
tabular format of the binary trie given in Figure 2.2(a). There are 20 table entries
for V=7,k=2 and S =1T.

0

112 3 (45| 6 7] 8 9
112]9]|0010 6 | 1100 0000
147300115 1101 | 8 [ 0111 | 0001

Table 2.1: Tabular Format of a Binary Trie

Given a key, the search is initiated by looking up the table starting at the first

column, the root node. If following the column number of a link, an empty entry is
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found, the search returns unsuccessfully. A search is successful if a termination con-
dition (a leaf node) is reached and matches with the search key. Dynamic insertion
of a node simply amounts to adding a new column and putting a column number at
the entry of its parent column. In fact, Table 2.1 is the result of dynamic insertions
of the keys in the following order: {0010, 0011, 1100, 1101, 0111, 0000, 0001}. Dele-
tions may leave blank columns in the table which may be filled by the last column.
However, the parent node of the last column must be updated too. Merrett and
Faverman [MF85b]| suggest locating the parent column by adding reverse pointers to
each node. Shang [Sha94] suggests that it can be solved without adding extra storage
overhead. Instead, simply search for a kevword down the subtrie rooted at the last
column followed by another search of the keyword from the root.

There are more subtle implementations of the tabular forms by either using three
arrays or double arrays to minimize the storage overhead [TY79, Aoe89]. The idea is
to compress the table into a 1D array with fewer entries by mapping from positions
in the table to the array such that no two non-empty entries in the table are mapped

to the same position in the array.

2.4.2 Linked Lists

Tabular representations are prohibitive when k is large for a k-ary trie when many
of the entries in the table are empty. Dynamic structures, such as linked lists, are
an alternative way to overcome the problem [ES63, Knu73, AHU83. Jon89, Dun91].
Figure 2.3 shows the corresponding linked list representations of the alphabetical and
the numerical trie examples.

In the linked list representation, each node is a linked list of outgoing (right) links.
The link contains a character and a pointer to the left-most child in the siblings of
the child node (left link). This is in fact a double chained tree [ES63], or a binary tree
[Knu73].

Searching on a node is done by comparison of a character (bit) of the key and
the character (bit) on the node, following the outgoing (right) links until a match is
found: then the pointer to the left-most child (left link) is taken to match the next



CHAPTER 2. TRIE STRUCTURES 16

(a) Linkedlist for a n-ary trie (b) Linked list for a binary trie

Figure 2.3: Linked List Representations of Tries

character (bit). In the worst case, all outgoing links of a node have to be followed
before a matched one is found.

Linked lists are general and highly flexible structures. Insertions and deletions are
trivial with dvnamic memory allocation techniques. Furthermore. it does not store
null outgoing links and therefore. unlike the tabular representation, is indifferent to

k. the degree of a node. in terms of storage space.

2.4.3 Other Representations
Compressed Tries

Compressed Tries or C-tries [Mal76] are a tree representation of tries for static data.
Instead of using explicit pointers, a node of the compressed trie consists a bit array
indicating the outgoing links and a counter of logi .V bits indicating the number of
links before the current node in the node level. Figure 2.4 shows the C-trie for the
binary trie example. A node contains a bit array of size 2, indicating the set bits,
and a counter of such bits in the level before the current node. Note that dotted lines
indicating links on the figure do not exist explicitly. During the search, the address
of a child node linked by the i** set bit in the next level is the i + counter® node on
the next level.

With a base address for each node level. the C-trie can be stored continuously
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Figure 2.4: A Compressed Trie

on secondary storage level by level, and node by node within each level. It is a very

compact representation for static data.

Bitstring Representations

Bitstring [Ore82a, Ore82b| extends the C-trie even further by only storing bit arrays.
Finding the child link on the next level involves linear scanning on the next level.
A bitstring representation of the binary trie example is given in Figure 2.5. The
bitstring in curly brackets indicates the remaining bits of the leaf. But Orenstein
argues that the number of bits scanned in each level can be reduced to an arbitrary

constant by organizing bits into blocks depending on the block size.

11

11 01

11 00{11} 10

11 11 11

00 00 00 00 00 00 00

Figure 2.5: A Bitstring Representation of Trie

Both C-tries and bitstring representations are pointerless trie structures.
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2.5 Trie Refinements

2.5.1 LC-tries

LC-trie [AN93] applies level compression to reduce further the height of the patricia
trie. The basic idea is that if the i** highest level of a trie is complete, but level (i +1)
is not. then the ** highest levels are replaced by a single node of degree k' (2' for a
binary trie). The replacement is applied top-down starting from the root. Figure 2.6

shows the LC-trie transfered from the patricia trie in Figure 2.2(c).

forrr}y {1100} {1101}

{0000} {0010}
{0001} {0011}

Figure 2.6: LC-trie

It is claimed by Andersson [AN93] that for random, independent data. the average
depth of a LC-trie is reduced to O(log® .V) from O(log :V), where .V is the number of

kevs.

2.5.2 Hybrid Tries and Trie Hashing

Because of the flexibility of trie structures, they are often combined with some other
structures to obtain efficient behavior, i.e., applying trie structures near the root and
switching to other data structures near the leaves. They are referred to as hybrid
tries. One common combination is with external buckets, called bucket tries [Knu73].
Bucket tries are widely used as collision resolution strategy for dynamic trie hash-
ing [EDS8O0, Lit81. Lit85. LZL88. LRLH91].
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Figure 2.7: Construction of Bucket Tries for Trie Hashing

Suppose keys in Figure 2.1 are inserted in the following order: {table, space, speed,
trie. tert} and the capacity of a bucket is two items. Figure 2.7 shows the dynamic
construction of the bucket trie for hashing. A trie node contains four fields: DV, DN,
LP and HP. where D\’ is the value of the digit, DN the digit number of the key, and
LP and UP are two lower and upper pointers, either to internal nodes or external
buckets. The value of an internal pointer is a node address. The value of an external
pointer is either the address of a bucket or null. In order to distinguish internal and
external pointers. the value of an internal node is in fact the negative of the node
address. In Figure 2.7(a). when the first two keys are inserted, they are stored in
bucket 0. No internal nodes are needed. Figure 2.7(b) shows that when speed is
inserted, bucket 0 contains three keys. and thus has to be split into two at the first
digit s. Any key with the first digit greater than s is stored in bucket 1 and pointed
to by the HP pointer; otherwise it is in bucket 0 and pointed to by the LP pointer.
The branching information is stored in an internal node 0. Figure 2.7(c) shows the
insertion of the last key. Bucket 1 containing table, trie, text is split into bucket 1
and 2 at the first two digits te. Correspondingly, two internal nodes are generated,
with node 1 for the split at the first digit ¢ and node 2 for the second digit e.



CHAPTER 2. TRIE STRUCTURES 20

Trie hashing has been claimed to require one disk access when internal nodes of
the trie can be held in RAM, and two accesses for very large files when the trie has
to be on disk [Lit85. LZL88. LRLH91]. Furthermore, the file can be highly dynamic.

2.5.3 FuTrie, OrTrie and PaTrie on Secondary Storage

FuTrie. OrTrie and PaTrie are three pointerless trie structures. FuTries. OrTries
and PaTries denote the binarv full tries, binary ordinary tries and binary patricia
tries [Sha94] respectively. The three organizations are extensions of Orenstein’s point-
erless bitstring representations on secondary storage. They use two bits for each node

and tries are partitioned into pages, and thus are suitable for secondary storage.

FuTrie

FuTrie is a binary tree whose nodes do not store information and whose left links are
labelled with "0's and right links with ‘1's. The i** bit of a search key determines the
link to be followed at level ! of the trie; if it is *0’, go left and otherwise right. Thus.
each root-to-leaf path has a one-to-one correspondence to a key. The height of the
trie is bounded by the length of the keys.

Now. we move on to FuTrie representations. Two bits are sufficient to represent a
FuTrie node: 11 if the node has two descendants, 10 if it has only a left descendant,
01 if only a right, and 00 for a leaf. The FuTrie for the binary trie example is shown
in Figure 2.2(d). This is exactly Orenstein’s bitstring representation. Table 2.2 shows

the definition of a FuTrie structure.

11 /N
. 0 —
typedef enum 01 N\ TrieNode;
00 e
typedef struct { TrieNode trie_nodel}; } TrieLevel;
typedef struct { TrieLevel trielevel(];} FuTrie;

Table 2.2: Data Structure for FuTrie
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OrTrie

An OrTrie is a pruned FuTrie in which subtries containing only one leaf are pruned.
Figure 2.2(e) shows the OrTrie transformed from Figure 2.2(d). Bits in curly brackets
are the path-to-leaf suffices that have been truncated. It can also be a pointer to the

corresponding key or record stored in an external file. The OrTrie structure is defined
in table 2.3.

11 N\
10 N
typedef enum 01 Ny TrieNode:
OO{ {suf fiz}{other_attributes} }
or{pointer}
tvpedef struct { TrieNode trie_node[]; } TrieLevel:
typedef struct { TrieLevel trielevel(];} OrTrie:

Table 2.3: Data Structure for OrTrie

PaTrie

PaTries are used to represent binary patricia tries. Figure 2.2(f) shows the PaTrie
representing the patricia trie in Figure 2.2(c). As there are no single descendant nodes
in a binary patricia trie. a node on a PaTrie can be represented by one bit. 1 for an
internal node and 0 for a leaf node. For an internal node. the number of skips and
the corresponding substring that has been skipped need only be attached. For a leaf
node, either a pointer to the record or suffix of the key and other attributes of the

record have to be stored. Table 2.4 shows such a PaTrie structure.

L{#skips}{substring} "\
typedef enum { 0 { {length}{suf fiz} } } TrieNode;
or{pointer}
typedef struct { TrieNode trie-node[]; } TrieLevel;
typedef struct { TrieLevel trieevel[];} PaTrie;

Table 2.4: Data Structure for PaTrie
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Paged Tries

As it stands, like the C-trie and the bitstring representation, FuTrie, OrTrie and
PaTrie structures require a sequential search on each trie level, destroying the loga-
rithmic search cost and the variable resolution advantage tries provide. However, in
a paged structure for secondary storage, this can be fixed.

The paged structure partitions a trie into lavers (page levels) of [ node levels each.
and then cuts each layer vertically into pages of subtries. Within a page. descendant
nodes of each laver are either entirely on or entirely off the page, i.e., links can only
cross the horizontal boundaries of layers, not the vertical boundaries of pages. The
resulting paged trie reads one page per laver from secondary storage during the search.
and restricts sequential search within pages only.

Figure 2.8(a) shows the paged OrTrie with | = 3 and a page capacity of three
nodes. A page contains two counters to avoid the sequential search and redeem the
trie search. Tcount enumerates the number of links entering the page level from the
above. up to but not including the current page. Bcount does the same for links
leaving the bottom of the page level. The two counters can be used to find the page
where the left descendant of the node *X” locates without a sequential scan of pages
in the next page level. The Bcount of the page with node “X" is 4, which means
1 links have alreadyv descended from earlier left pages in the page level. As the left
descendant of “X" is the first link in the page. so it is the 5" leaving the current page
level. Thus in the next page level. we must look for a page with Tcount the greatest
integer less than {or equal to) 5. The candidate pages on the page level below are
Tcount= 0 and 3. and thus we choose 3. Thus the left descendant of “X" is located
on the second page in the next page level.

Thus far. when checking Tcounts at the next page level, we still do a sequential
scanning. However. it can be avoided simply by moving Tcounts of each page level up
into lists of Tcounts in the parent pages above. Then we can calculate directly from
the current page which page to follow on the next level. As shown in Figure 2.8(b).
each page contains a Bcount and a list of Tcounts of child pages. Dashed lines pointing

to pages are implicit in the paged trie structure.
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Figure 2.8: Paged Tries
The paged OrTrie structure is given in Table 2.5.
typedef struct  { int Tcount; }
OrTriePage *page; } LinkTo;
typedef struct  { int Beount;
LinkTo linkto(];
OrTrie bitstrings; } OrTriePage;
tvpedef struct  { OrTriePage trie_page(];} PagedOrTrie:

Table 2.5: Data Structure for Paged OrTrie

2.6 DyOrTrie, a Refinement of the OrTrie for Dy-

namic Data

This section describes new work, although it appears in a review of trie structures. It

is an improvement over the existing paged trie structures, OrTries, for dvnamic data
insertions and deletions.

Insertion is straightforward for the paged OrTrie. An insertion of key 1010 to the
trie presented in Figure 2.8 is given in Figure 2.9.

The insertion follows a search of the key. As the first bit is 1, the search goes
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Figure 2.9: Insertion Key 1010 to Paged Trie

to the right descendant of the root. The second bit is 0 but the current node does
not have a left descendant. and thus a new node (highlighted). the third node in
the third node level. is inserted into the second page of the second page level. The
corresponding parent node at the root page is thus updated from 01 to 1/. Following
this. the page holding the new node is split into two as it exceeds the page capacity.
The Bcount and Tcount lists of pages to the right of the split page in the same page
level need to be updated accordingly. Similarly for the pages in parent page levels if
the split propagates to the parent page levels.

From the example. we notice that the change caused by the insertion/deletion of
a key is usually localized, i.e.. updating a node at the root page from 01 to 11 and
inserting a new node 00{10} into the second page on the second page level. But as
pages in a page level are organized sequentially, top and bottom counters stored at the
current page and pages following need to be updated, although usually only by a shift
of a constant. But it means a sequential scanning and updating of those pages. which
is prohibitively expensive on secondary storage. Thus, the paged structures are good
at batched insertion of ordered keys [Sha94] due to the sequential page organization
within each page level. To avoid this, we modify the paged trie structure so that all
counters are stored separately with pointers pointing to their corresponding bitstring
pages. With the assumption that these counters can be stored in RAM, the new paged

trie structure DyOrTrie, given in table 2.6, is capable of efficient dynamic insertions
and deletions.
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tvpedef struct { int Tcount; }

OrTrie *page; }  LinkTo;
typedef struct { int Bceount;

OrTrie *page:

LinkTo linkto[];}  OrTrieLink;
tvpedef struct { OrTrie page(];

OrTrieLink link[]; } DyPagedOrTrie:

Table 2.6: Data Structure for Dvnamic Paged OrTrie

Insertion of a record starts with a search of the record. The search may result in

one of the following situations:

e A leaf node is found. and the remaining bits of the node match with that of the

search key. This is a duplicate key and the insertion algorithm returns.

e The search stops at an internal node, because it can not find the branch accord-
ing to the search key. In this situation, update the current node from 01 or 10

to 11 and add a corresponding descendant leaf node at the child level.

e The search stops at a leaf node. but the remaining bits of the node do not match
with that of the key. In this case. the original leaf node that was truncated has
to be extended to the level at which the bit of the original key differs from that

of the new key.

The update in the second scenario is rather local. Updating the node from 01 or
10 to 11 costs no extra storage space. But adding a corresponding descendant leaf
node to the child level may occasionally cause the page where the child level is located
to exceed page limits. and thus a page split is required. But the split does not in
any situation propagate to upper levels. On the other hand. the extension of links
in the third scenario may cause the pages on the path from the node to the leaves
exceed page limits and require splitting. Furthermore, the split may propagate from
the page holding the two leaves to the page where the node extension happens.

Figure 2.10 shows the pseudo-code for key insertions. Like B-trees, the cost is

bounded by the trie height due to the occasional splitting of trie pages which may
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Boolean Trielnsertion(key)

{

}

//search the key and find the node that is either a leaf node or
//a node that the search has to stop because of a mismatch:
node= search_and_find_node (key) ;
if (node -> is_leaf() && node-> rest_bits_match_with( key)) {
//the key is already on the trie:
return (false);
}
if (node-> is_leaf() && 'node-> rest_bits_match_with( key)) {

//expend the node until the two keys differ (return the new leaf):

node= node-> expend(key);
}
else { //node is not a leaf, at which the node is updated to 11 and
//a new leaf node is created at the next level:
nev_leaf_node= node-> update_node_value();
node= new_leaf_node;

}

//split the page if necessary:
page= node-> current_page();
while ( page '!'= NULL && page-> size() > page_capacity) {
if (page -> parent_page '= NULL) { // not root page
split_page ( page);
//update page links and counters in the parent page level:
page= page-> parent_page();
page -> update_page_links_and_counters();
}
else //this is root page, cannot be split:
return (false);

}

void split_page( OrTrie spage)

{

//linear scan of the page and find i’th subtrie at which
//subtries 1,...,i consumes <= page_capacity while
//subtries 1,...,1i,i+1 consumes > page_capacity:

i= find_subtrie_in_page_by_linear_scan ( page);

//move subtries i+l, ... from page to a newly constructed page, newpage:

OrTrie snewpage = new OrTrie(page, i+1);

//update page links and counters of page and newpage:
page->update_page_links_and_counters();

nevpage-> update_page_links_and_counters();

Figure 2.10: Paged Trie Insertion Algorithm
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propagate up to the root page.

Now we discuss the splitting algorithm and the page utilization after splitting.
When a trie page exceeds the page capacity during the insertion, the page is forced
to be broken into two pages. Ideally, we would like the two pages to be equally full.
Due to the fact that trie pages do not have branches to neighboring pages in the same
page level, the issue becomes dividing the page containing a forest of subtries into
two groups of subtries of approximately equal size. As these subtries are ordered. the
splitting is to find the i** subtrie in a total of m subtries such that subtries 1. 2. ....
and ¢ consume no more than half of the page capacity. but if i+1 is included. they
exceed half of the page capacity. Thus, subtries 1,2,...,i remain in the original page
and subtries i+1,....m move to the newly generated page. This can be done simply
by a linear scan of the page in RAM.

The least page occupation after splitting occurs when the splitting boundary is
set at subtrie ¢ + 1 which is a complete trie. More over, the least page utilization
value is a function of the page capacity P and the number of node levels in a page,
. A complete subtrie of [ levels has 2! — 1 nodes and each node takes 2 bits, i.e..
approximately 2/*! bits or 2/=2 bytes for the subtrie. So the least page utilization rate
is correspondingly 1/2 — 2:=2/P. Thus, the larger the page capacity P is, the higher
the least page occupation is. On the other hand, the more node levels there are, the
lower the least page occupation can be. For instance. if the page capacity is 1096
byvtes and there are 10 node levels in a page level. then the least page occupation rate
is 1/2 —219-2/1096 = 0.4375.

A deletion also starts with a search of the key. There are three different situations

as follows.

e The search stops at an internal node, the key is not found and the deletion stops

there.

e The search stops at a leaf node, but the remaining bits of the node do not
match with the that of the key; and thus the search fails as well as the deletion
operation.
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e The search stops at a leaf node, and the remaining bits of the node match with
that of the key. The key is found and the leaf node is removed. Then, the parent
node is updated. If the sibling node of the deleted leaf node is also a leaf node,
the branch to the sibling node can be truncated and the parent node becomes
a new leaf node. The truncation operation may propagate up to the root. Due
to the truncation of the path, the page occupation decreases. If both the page
and one of its neighboring page consume space less than a threshold, a merging
of the two pages can be performed in order to improve the storage utilization.
Like the page splitting in the insertion operation, this can also propagate to the
root page level.

Figure 2.11 shows the pseudo-code for a key deletion. The cost is bounded by the
trie height.

We claim that with the current RAM capacity, the dvnamic paged trie structure
is suitable for practical database sizes of the order of gigabytes (billions of records).
For example. with a page capacity of 4096 bytes, it only requires a RAM size of 4
megabytes to build a dynamic trie holding up to 23 (4-billion) records of data. If
this calculation is altered for 2% records of data, roughly 64 megabytes are required.
If a record consumes 4 bytes. 232 and 23® records are 16 and 256 gigabytes of data
respectively. The calculation is as follows.

Bottom/top counters and page pointers are stored in RAM. For simplicity, we
choose to give examples with complete tries. A complete trie with 33 node levels,
assuming page capacity is 4096 bytes and node levels in a page is 10, can hold 23°
(4-billion) records. A page of capacity 4096 (2'?) bytes can hold 2'* trie nodes, as
each node consumes 2 bits. A complete subtrie of 10 levels has 2! — 1 =~ 2!° trie
nodes. Thus a page can hold up to 2!1/2!% = 16 complete tries of 10 node levels.

\We now calculate RAM space required by page levels.

The root page level only has one root page. On the bottom of the page. there are
219 outgoing links to the next level and each page on the next level can hold at most
16 incoming links. as a page can hold only 16 complete tries of 10 node levels. The

219 gutgoing links has to go to 2'°/16 = 26 different pages on the second level. So the



CHAPTER 2. TRIE STRUCTURES 29

‘ Boolean TrieDeletion(key)

{

}

node = search_and_find_node( key);

if ( 'node-> is_leaf() || !'node-> rest_bits_match_with(key)) {
//the key is not found, cannot delete!
return (false);

}

//The key is found:
parent_node = node-> parent;
parent_node -> remove_child (node);
node= parent_node;
vhile ( node-> has_only_one_child_node_which_is_a_leaf() ) {
// update node and truncate the branch if possible:
node= node-> parent;
node-> value = 00; // remove child and set node to be a leaf
if (node -> page() != node-> parent-> page()) {
//the node is in the first node level of a page:
page= node-> page();
//merge_candidate() returns the neighbor page less full:
neighbor_page= merge_candidate( page);

if ( page-> size() + neighbor_page-> size() < Threshold)
// do a merge with the neighbor page having less page utilization:
merge( page, neighbor_page);

//update page links/counters in the page level and the level above:
page-> update_page_links_and_counters();
node-> parent ->page()-> update_page_links_and_counters(};
}
}

return (true);

OrTrie »merge_candidate( OrTrie spage)

{

if (size(page-> left_neighbor()) <= size(page-> right_neighbor()))
return page-> left_neighbor;

else
return page-> left_neighbor;

Figure 2.11: Paged Trie Deletion Algorithm
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fanout of the root page is 2¢ pages. It is the number of top counters of the root page.

The RAM space used by the root level is that of the top counters plus the page
pointers to the next level of pages. A counter takes 4 bytes. So does a page pointer.
So the root page level consumes 2%(4 + 4) = 29 bytes of RAM space.

On the second page level. there are 25 pages. Now we calculate the fanout of each
page. The outgoing links at the bottom of this page level is 16 x 2! = 214 per page
since each page holds 16 complete subtries of 10 levels. A page in the next page level
can hold as much as 16 complete tries. Thus the fanout of the second page level is
214 /16 = 2! Thus there are 2!° page pointers to the next page level per page. For
each page, there is a bottom counter, which takes 4 bytes, and 2'° top counters and
page pointers to the third page level. All together, a page uses 4 + 2!%(4 +1) bytes of
RAM space. In total, the second page level takes 26 x (4 +2'% x (4 +4)) =~ 2'% bytes
of RAM space.

The third level is the second last level. There are 2°° incoming links from the
previous level and each page in the level can hold 16 complete subtries of 10 levels.
i.e., 16 nodes per page. Thus the number of pages in this level is 22°/16 = 2'. The
outgoing links at the bottom of this page level is 16 x 2!9 = 2! per page, since each
page holds 16 complete subtries of 10 levels. The page fanout in this page level is
different from that of the previous one due to the fact that there are only three node
levels in the next page level (the last page level). This is because the number of total
node levels is 33. In the last page level, each subtrie only contains three levels of
nodes and consumes only (23 — 1) x 2 bits, i.e., approximately 2 bytes. A page of
4096 bytes can hold 2'2/2 = 2!'! complete subtries of three levels. So the fanout of
a page in the third level is 214/2!! = 4. In total, the RAM space consumed by the
third level is therefore 2!(4 + 23 x (4 + 4)) = 2% bytes.

The last page level contains no outgoing links and the fanout of a page is zero.
Thus no RAM space is required.

Summing up the RAM space used by all page levels, it is approximately 2% = 4
megabytes for a complete trie of 33 levels holding 4 billions of records. Note that it
is principally the second last page level which consumes the most RAM space.

Now consider a complete trie of 37 levels containing 2% records, only the second
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last level consumes more RAM space than in the last example of 232 records. Pages in
the last page level contain 7 node levels consuming (27 —1) x 2 bits, i.e., approximately
28 bits or 32 bytes per subtrie. Thus a page holds 2!2/32 = 27 complete subtries. It
makes the fanout of a page in the second last page level 16 x 2!%/27 = 27. So the
RAM space consumed by the page level is 2'6(4 + 27(4 + 1)) =~ 226 or 64 MB. This
also represents the total approximate amount of memory consumed by all page levels.

The above are two examples of complete tries. For general tries, the RAM space
is also mostly consumed by the second last page level. Due to “thinner” subtries, a
page is able to hold more subtries than complete subtries. This allows the page level
to have fewer pages than that of complete tries. On the other hand, a general trie
holding the same number of records contains more node levels than a complete trie.
This would make subtries in the last page level likely to have more node levels, which
is a factor in reducing the number of subtries a page can hold in that level. As a
consequence, it may increase the page fanout in the second last page level. We know
that the RAM space consumed is roughly #pages x (4 + fanout x (4 + 4)) in the
second last page level. Since a general trie would have fewer pages but higher fanout,
it depends on which one of the above two factors outweighs the other to determine

whether it consumes more or less RAM space than a complete trie.
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Related Work

3.1 One-dimensional File Structures

3.1.1 Hash Functions

Hashing is a direct access method which locates records with given key by a key-
to-address transformation function. The expected time to retrieve a key among .V
keys is effectively a constant, though the worst case can be proportional to .V. Colli-
sion resolution strategies are needed to deal with imperfections in the key-to-address
transformation.

Hashing works even better for files on secondary storage [Knu73} as many records
are allowed to be stored at the same address. Collision handling is simpler than in
RAM. On disks. file [/O are in units of pages (also called blocks) in order to take the
advantage of high data transfer speed relative to block access time, with one page
storing tens or hundreds of records. If more records are mapped to a page than its
capacity. the extra records are overflow which must be stored somewhere else. This
is the reason for extra accesses which may cause the worst case to be expensive, and
increase the expected cost as well.

Perfect hashing [Spr77) is a hash function which yields no collision, thus the
search cost is a constant even in the worst case. Perfect hashing may involve a

certain amount of wasted space due to empty address space to which no keys are

32
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mapped. If a perfect hashing can reduce all the possible address space to the size
of the presented key/record set, then it is called a minimum perfect hashing. Vari-
ous algorithms with different time complexities have been presented for constructing
(minimal) perfect hash functions. They fall into several general categories: number
theoretical methods. segmentation techniques, algorithms based on search space re-
duction and algorithms based on sparse matrix packing [MWHC96]. They are claimed
to be constructed in O(V) expected time [CHK83, FHCD92, MWHC96]. where NV
is the number of keys. though it usually requires many passes of the data set and
would be prohibitively expensive for large amount of data on secondary storage. An-
other issue of (minimal) perfect hash functions is that they require auxiliary storage
space [FHCD92, MWHC96] which is proportional to N [CHK835, FHCD92], or even
more expensive (.\Vlog.V [MWHC96]).

Hashing in general is only efficient for low selectivity queries such as exact match
queries, where the selectivity is defined as the ratio of records retrieved by a query to
the total number of records presented. It is not suitable for high selectivity queries
such as sequential and range queries. This is mainly because hashing does not organize

keys in order.

3.1.2 Tidy Functions

Ordered key-to-address transformation functions are called tidy functions [Mer83]*.
Tidy functions support efficient high selectivity sequential accesses and range queries.

Tidy functions are order-preserving direct access functions [Mer83]. Like perfect
hashing, the tidy function reduces the space of all possible values of search keys to
a storage space just containing records actually present. But unlike hash functions,
tidy functions preserve the order of keyvs. If D(z) is a curnulative distribution function

on the search keyv, and is defined as the following:

D(z) = probability(key < 1) (3.1)

“In Roger’'s Thesaurus of English Words and Phrases (1936), “tidy” falls under the category
“Reduction to Order”. Key-to-address transformations are intended to reduce the key space to a
much smaller address space, and tidy functions intend to preserve order as well.
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then the tidy function is
t = [n D(z)] (3.2)

where n is the number of pages on secondary storage. However, storing t to its full
resolution means that we have to store index data for every block (data page). But
when files are truly large, this cannot be assumed to be stored in RAM. We need to
assume that the tidy function is stored on secondary storage too. Therefore, in order
to get the page address of the keys, extra probes to the tidy function on secondary
storage are required. This makes the tidyv function less efficient both in access time
and in storage.

Other approaches to tidy functions include the following.

Sorenson et al. [DST75. STD78] were interested in removing distribution depen-
dence from hash functions and introduced D{x) for this process. They describe four
key-to-address functions based on this tidy function.

Gonnet et al. [GRG80] assume that a D(x) is known analytically and propose a
tidy function which has a search cost of O(log log .V) probes. Gargand Gotlieb [GG86]
investigated ways to break down D(z) into pieces small enough to contain uniform
distributions. but give no performance results.

In some of the literature. tidy functions are referred to as order preserving hash
functions. If a minimum perfect hash function also preserves the key order, then it
is an Order Preserving Minimum Perfect Hash Function (OPMPHF). Clearly. it is a
tvpe of tidy function. The OPMPHF of Fox et al. [FCD91] used two mappings of
a hash function to produce a bipartite graph which is then straightened out with the
aid of a second hash function, which results in an order-preserving minimum perfect
hash function. This method requires at least three accesses to auxiliary tables. Since
the bipartite graph so formed is not always a tree, extra probes are required, the
average cost of which works out to be 3.25 accesses. The construction consists of
three steps. “mapping”. “ordering”, and “searching”. The first step requires the
equivalent of at least 6.8 passes of the file containing keys, and the third is still more
expensive. Details and more related works on OPMPHF can be found in further
references [FHCD92. CHM92. GSB94].
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More discussion on tidy functions will be given in Chapter 4 and 5.

3.2 Multikey File Structures

Multikey data structures permit access to data on several fields together or inde-
pendently, based on one index structure. Multidimensional tree structures such as
k-d-trees [Ben73] generalize the binary tree to multiple dimensions by cycling, from
one level in the tree to the next. through the attributes to be used as composite keys.
Like binary trees, k-d-trees can be unbalanced and thus may degenerate, resulting in
O(N) access time instead of O(log.V), where .V is the total number of kevs. K-D-B-
trees [Rob81] combine k-d-trees with B-trees [BMT72]. Like B-trees, they preserve the
height balance and have a guaranteed logarithmic retrieval performance. However,
at that time. two direct access methods — multipaging [MO81a, MOS82] and grid
files (NHS84| were proposed as alternative direct access multikey file structures. In
the next two subsections. we review direct and logarithmic multikey file structures

accordingly.

3.2.1 Direct Access Methods
Grid files

In grid files, A-dimensional (kD) data space is partitioned by repeated bisections of
the data space in each dimension into orthogonal grids. The grid can be defined by a
kD array called scales. A boundary of a scale is a (k-1)D hyperplane which partitions
the data space into two disjoint parts. Based on the scales, the grid directory. a kD
array, can be built. An element of the grid directory is a grid cell. The grid cell has
a pointer to a data page containing all data records that lie in the grid cell. There
is a many-to-one correspondence between a grid cell and a data page on secondary
storage. The region of grid cells pointing to the same data page is thus called a page
region. Page regions are in shape of hyper-rectangles so that data can be clustered

for efficient range queries.
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Figure 3.1 is an example of grid directories in 2D. There are 7 pairs of numeric 2D
data: {(7,13), (255,0), (0, 64), (0, 127), (32, 128), (64, 128), (96, 192)}, assuming the
page capacity is two records. The example shows that the grid directory is obtained
by repeated bisections of data space in each dimension in turn. Grid cells holding
"-17 point to null data pages. Please note that page regions, grid cells with same

page numbers, are all rectangular.
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Figure 3.1: Grid Directory in Two Dimensions

Since the grid directory can be large and therefore cannot be assumed to be stored
in RAM. the search cost for a data item is precisely two disk accesses: one to the grid
directory. the page that contains the right search key address., and the other to the
corresponding page address to retrieve the record.

The grid directory is stored as an extra index, with its size depending on the size of
the source file. According to Regnier [Reg85], the growth of the index is superlinear to
the file size for uniformed distributions. Moreover, the constraints on grid partitions
prevent grid files from fine tuning. As a result, the size of the grid directory is also
sensitive to data distribution. In fact, grid directories can grow extremely large under
poor distributions. Heavily, nonuniformed data make some regions of the data space
require more partitions than the rest. Yet these partitions are performed not only
on the local regions but also across the whole data space. Thus, this can cause the
increment of scales, grid cells and the size of the grid directories.

Bang files [Fre87] and nested interpolation-based grid files [(OM92] were aimed

at improving the growing directory problem against poor distributions. But their
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improvements on index sizes are based on tree structured directories, resulting in
logarithmic search cost to the size of a problem, which differs from the direct access
methods (O(1)).

Multipaging

Multipaging was invented even before grid files. Like grid files, the kD data space is
partitioned rectilinearly by (£-1)D hyperplane parallel to all axes except the one which
it intersects orthogonally. The partitions impose a grid of hyper-rectangles in the kD
space. Every hyper-rectangle can be addressed by & 1D arrays called scales, just as
in grid files. The main design difference is that there is a one-to-one correspondence
between a hyper-rectangle and a data page. In addition, a scale of a dimension is
obtained based on partitions on the specific set of data distributed over that field;
each range of values of an attribute field is partitioned into m intervals such that

there are approximately the same number of records located on each interval.
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Figure 3.2: Multipaging in Two Dimensions

Figure 3.2(1) shows an example of a 2 x 2 multipage space, with the same data
as given in the grid file example (7 pairs: {(7,15), (255,0), (0. 64), (0, 127), (32, 128),
(64, 128), (96, 192)}). The numbering of data pages are shown for reference only. It
is in the column-major order for the 2D array.

If data is poorly distributed, it is likely to have overflow records on some pages.
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Overflow records of a page can be stored on a chain of pages starting with the most
empty page. or they can be chained onto separate overflow pages. For example,
figure 3.2(2) shows that when record (200,100) is inserted into page 3, it makes the
page overflow. With the first collision resolution strategy, a pointer on page 3 is used
to point to page 2 where the record is actually stored.

In the absence of knowledge of the shape of the data space, it is reasonable to
assume that it is hypercubic. with axes of equal length, n'/*  where n is the number
of total pages. Then scales in kD are of size kn!/*, and can easily be fit in RAM
— there is almost no storage overhead. Thus ideally, multipaging can retrieve any
record for an exact match in exactly one disk access. If there are overflow chains,
more accesses might be needed. Poorly distributed data may cause many overflow
records and long overflow chains. and thus increase the search cost. Distributions of
a diagonal line and a circle in 2D are two examples of pathological distributions for
multipaging.

One way to reduce the length of overflow chains is to reduce the load factor. the
ratio of occupied space to available space, i.e., multipaging allows storage space to be
traded for access cost.

There are versions of multipaging both for static and dynamic data [MOS81b.
MOS82]. The former uses an algorithm to analyze the data in O(knlogn) time. and
determines the storage utilization and expected number of probes possible for a mul-
tipaged file. The latter solves the problem of representing dynamic multidimensional

arrays. and controls either the storage utilization or the expected number of probes.

3.2.2 Logarithmic Access Methods

R-tree Family

R-trees were first proposed by Guttman [Gut84] as a direct extension of B-trees for
spatial data in multidimensions. Like B-trees. R-trees are height-balanced trees. A
leaf node of the R-tree is of form (oid, R). where oid is an object identifier in the
database, and R is a minimum bounding rectangle (MBR) approximation of the data

object. R is of the form: (bg.by,....be_1), where b; represents the i** coordinate pair
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of the lower-left and upper-right corners of a kD hyper-rectangle b. An internal node
of the R-tree consists of (ptrChild, R) pairs, where ptrChild is a pointer to a child

node in the next node level. and rectangle R is the MBR of all rectangles on the child

node.

If M is the maximum number of entries that can fit in a node, and m < M/2

is a parameter specifving the minimal number of entries in a node, then the R-tree

satisfies the following conditions:

1.

The root node has at least two children unless it is a leaf.

. Every node contains between m and M entries unless it is the root.

All leaves appear on the same levelt.

For every entry in a leaf node. oid represents the smallest rectangle that spatially

contains the AD spatial data object.

For every entrv in a non-leaf node, R is the smallest rectangle that spatially

contains all rectangles in the child node.
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Figure 3.3: Rectangles Organized to Form an R-tree Structure

Figure 3.3 shows the structure of a R-tree and the containment and overlap-

ping relationships among its rectangles. The R-tree families have many members,

including packed R-trees [RL83] for static data, R+ trees [SR87] with guaranteed

disjointness of nodes, R *-trees [BKSS90] with a complex but effective node splitting

"The first three properties are the same as a B-tree, except m = [AM/2] for the B-tree.
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algorithm for insertions, and Hilbert R-trees [KF94] that are an improved R-tree vari-
ance using fractals. There are also models developed to give analytical estimations
on R-trees/R*-tree performance [TS96].

In the R-tree family, the R*-tree is a representative with the most efficiency. The
construction algorithm is certainly more complex than that of the R-tree, but is
still considered affordable. Thus it is the most widely applied R-tree variance. Its
main improvement over the R-tree is its splitting algorithm used for insertions. The
heuristics of the R*-tree combines the optimization (minimization) of the area of the
MBR. the margin of the MBR and the overlap of enclosing rectangles. On the other
hand. the original R-tree only minimizes the area of the enclosing rectangles.

The R-tree family is convenient for representing point and spatial objects and
their embedded relationships. Like B-trees, they are height balanced trees. This
limits the worst case performance in insertions and deletions to (O log(V)), where V
is the number of data objects. On the other hand, keeping trees balanced becomes
one of the major tasks for R-trees as well as for B-trees and K-D-B-trees. Moreover.
it is common that rectangles on R-trees overlap. Overlaps in the directory directly
affect the query performance since it means multiple paths need to be searched. Thus
worst searching cost cannot be guaranteed by O(log.V), and minimizing overlaps of
rectangles is of primary importance in R-tree construction. For example, data X in
figure 3.3 locates in the overlap area of MBR A and B. Searching for .X thus requires
visiting two child nodes of the root out of three.

In a word, two major problems exist for R-tree family: how to keep it balanced,
and how to minimize the overlap areas of rectangles. Tries, on the other hand, are

free from both issues by nature.

X-trees for high dimensions

R*-trees may deteriorate rapidly when going to higher dimensions, as large over-
lap in directories may increase rapidly with the growing dimensionality of data. X-
trees BKK96] are invented as a hybrid of R*-trees and linear array-like directories,

called “supernodes” (with extended variable node size), for higher dimensions in order
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to reduce the overlap problem in R*-trees.
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Figure 3.4: Example of X-tree Structure

Figure 3.4(c) shows a simple example of the X-tree structure for data objects
shown in figure 3.4(a). For comparison, the corresponding R-tree is also given in
figure 3.4(b). It is a 2D example containing 4 data objects. These objects have size 1,
2. 1 and 3 units respectively. and they are inserted according to their numeric order.
We assume the maximal overlap allowed in the directory is 1 unit for X-trees, the
maximal directory capacity M is 3 members, and the minimal capacity m is 2 for
both the X-tree and the R*-tree. For the R*-tree, when data object 4 is inserted
after object 1. 2 and 3. a split of the root containing the first three objects has to be
performed since the capacity of a directory node is 3. The split should partition the
four objects into two groups. each holding two objects. Note that the overlap area of
MBR A and B on the root of the resulting R*-tree is 2 units.

If a node splitting using the R*-tree algorithm would make the overlap exceed a
predetermined threshold value, the X-tree insertion method tries a so called “overlap-
minimum-split” algorithm without considering the balance of the number of members
in each group. If the second try fails due to a minimal load factor requirement on
every node, a supernode is generated instead of a normal node split. The rationale
is to improve the search by replacing part of the expensive hierarchical search (due
to overlaps) by a cheaper linear search within the supernode. In our example, when

inserting object 1. the R*-tree split algorithm is tried first. Since the overlap of A
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and B is 2, greater than the threshold value of 1 unit, it then tries the “overlap-
minimum-split” which generates two groups — object 1,2.3 in group one and object
4 in group two. It is indeed an overlap free split. Unfortunately, it does not meet
the minimal node utilization requirement (m = 2), and thus fails the second attempt
for a splitting. As a result, a supernode of capacity 2 x M = 6 is generated instead,
holding all four objects. Figure 3.4(c) shows the resulting X-tree containing only a
supernode. Searching an object in rectangle 2 by the X-tree becomes a linear search
of the supernode in figure 3.4(c) instead of a traversal of all the R*-tree nodes in
3.4(b).

Obviously, a problem with the X-tree is that in very high dimensions, the con-
struction algorithm may fail to generate a hybrid hierarchy structure at all; instead,
the whole tree deteriorates into one single supernode. As a result, the search becomes
a linear search of the directory. Although this linear search might still be more ef-
ficient than tree searches by the R*-tree, it is likely not the most efficient method
available. In addition, the construction cost of the X-tree is much higher than that
of the R*-tree.

There are many other structures for high dimensional data. Among them are the
TV-tree [LJF94]. the hB-tree [Lom90j, the SS-tree [WJ96] and the SR-tree [KS9T7a],
etc.

The TV-tree improves the performance of the R*-tree for higher dimensional data
by employing the reduction of dimensionality and the shift of active dimensions. But a
restriction is that it requires an ordering on dimensions based on importance, and the
dimensionality is reduced by activating only a few of the more important dimensions
for indexing.

hB-trees [Lom90] are based on K-D-B-trees and the idea of “holey-bricks”, bricks
in which subregions have been extracted. The internode search and growth processes
of hB-trees are precisely anailogous to the corresponding B-tree processes. The in-
tranode processes use k-d trees as the structure within nodes. Node splitting results
in a k-d tree split which produces nodes no longer represented by brick-like regions
in k-space. but rather as holey bricks. hB-trees have been invented to obtain high

storage utilizations of the directory.
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The SS-tree and SR-tree are two index structures especially designed for high-
dimensional nearest-neighbour queries.

Unlike tries that give data compression, all the above index structures require
extra space for directories. The utilization (load factor) of directory pages and data
pages is normally between 1/2 and 2/3.

K-D-B-trees

K-D-B-trees [Rob81] extend B-trees to multidimensional space. The data space is
recursively partitioned into hyper-rectangular subspaces, each of which corresponds
to a page. The k-coordinates of each point in a data page correspond to the £ key
attributes of a tuple in a page. It is not specified how subspaces are to be represented
in the index pages. A splitting of both data and directory pages can be performed on
an arbitrarily chosen point along an arbitrarily chosen partition axis. The method in
general has to cascade a split downwards through every lower level of the tree to the
leaves when a directory page is split. This is a severe drawback, since the insertion
costs and the minimal occupancy of the resulting pages have no guarantees.

A later attempt by Freeston [Fre93] is also a generalization of B-trees to k dimen-
sions. The new BV-tree is designed to have a guaranteed minimal page occupancy of

1/3. The trade-off is that it is no longer a height-balanced tree.

3.3 Join Algorithms

3.3.1 General Review

Joins are one of the fundamental database operations. Since the invention of the
relational data model in the early 1970’s [Cod70], many join processing techniques
have been proposed and investigated. Basically, there are three classes of join algo-
rithms according to implementations: nested-loops joins, sort-merge joins and hash
joins. Early database query processing schemes were based on either nested loop
(nested block scans) joins or sort merge joins. Hash based joins were proposed later

to improve the join performance. \ishra et al. [ME92] have written an overview of
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many of the three classes of join algorithms. There had been a long debate on the
issue of the best join schemes (sort merge joins or hash joins) until recent compre-
hensive studies showed that there exist dualities between the two [GLS94]. Current
commercial databases support both of them.

There are many ways to classify join algorithms. They could be grouped by
whether the algorithm uses special indexes such as join indexes [Val87, BM90|, or
by different join operators. The join operator can be equijoins (including natural
joins), and non-equijoins, including band joins [DNS91, LT95], division joins, etc.
Join algorithms that are efficient for one type of join predicates may not be efficient
for another.

Meanwhile, there has been a lot of effort placed in the development of efficient
join algorithms for parallel and distributed database systems [ME92, CY96, HCY97].
Efficient spatial join algorithms have become a new focus for database researchers.
According to whether indexed structures are used or not. spatial join algorithms can
be classified as joins based on special data structures, such as R*-tree joins [BKS93,
HJRI7] and seeded trees [LR94|, and non-index based join algorithms, such as size
separation spatial joins [KS97b], spatial hash joins [LR96], partition based spatial-
merge joins [PD96], etc.

Nevertheless. natural join operations are one of the most critical and fundamental
operations for efficient query processing. Many such joins algorithms have been pro-
posed since the 70s. The relatively recent algorithms among them include Joins by
Fragmentation(JF) [Sac86|, Distributive Join(DJ) [NP91], Stack Oriented Filter Tech-
nique (SOFT) joins [SM94] and Bucket Skip Merge Join (BSMJ) algorithms [KR96].
These natural join algorithms apply one or more of the following strategies:

e partitioning (see next section):

e avoiding duplicate page accesses;

e skipping page accesses whenever possible:
e using special (extra) indexes.

Overall, there is no single algorithm that is the best in all cases; a proper algorithm

should be chosen based on the characteristic of an application. Furthermore, to the
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best of our knowledge, there has been no work on join algorithms that takes the
advantage of structures that directly organize the data, i.e., without using extra
indexes, for better join performance, and yvet achieving spatial compression at the
same time.

3.3.2 Some Representative Join Algorithims

We consider joins of large relations that cannot be held in RAM. First, we will review
several join algorithms under the assumption that values of join attributes are unique.
In the last subsection. we will discuss the situation when duplicate join attributes are

present.

3.3.3 Sort-Merge Join (SMJ)

The standard sort-merge join is executed in two steps. In the first step, the two
relations R and S are sorted according to their join attributes. This can be done
using a (B-1)-way disk merge-sort algorithm [BE77]. Since the number of passes of
the relation during the sorting is {log z_;, V] (see Section 1.3 for symbols), the [/O
cost of the merge-sort is

'Z.N'R [[OgB_l .\/’R-I + 2.\1-5 [loga_l .'\"g‘l

where Ng, Ng is the number of records in R and S. The second step is the merge-
scan, during which both relations are scanned in the order of the join attributes, and
tuples satisfving the join condition are merged to form the output relation. The I/O
cost of the merge-scan is exactly Nz + Vs if the join attributes in R or S have no
duplicates. Otherwise. the cost may not be linear [BE77, Sac86]. See more discussion
in Subsection 3.3.8.

The sort-merge join algorithm has found to be the best choice if there is no indexes
available on the join attributes, if not much is known about the selectivity, and there

is no basis for choosing particular algorithms [BE77, Su88, ME92].
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3.3.4 Stack Oriented Filter Technique (SOFT)

Among the recent techniques of join operations, partitioning? has been found to not
only ease parallelization but also improve the overall efficiency. The basic idea is to
partition the input relations R and S into m disjoint sub-relations R; and S;, where

R; and S; are disjoint if  # j.{ = 1,.... m, such that

SOFT. hashed loop joins[DG83|, JF and DJ are some of the join implementations
of the technique.

In SOFT. joining sets are repeatedly divided by a maximum of five statistically
independent hash functions until a partition of both joining sets is found to have an
identical join attribute. We will not discuss SOFT further as it uses stacks during the
partitioning process and assumes that data sets can fit in RAM, while our interest,

as mentioned at the beginning, is in large data sets stored on secondary storage.

3.3.5 Join by Fragment (JF)

As a representative partition based hash join algorithm, JF applies relatively similar
ideas to SOFT. First. it partitions the joining datasets recursively into disjoint subsets
by hash functions. with the use of B blocks of memory buffer. The difference is that
the partition continues until any subset from the smaller relation can fit into a memory
buffer of size B — 1. In this way the JF algorithm partitions the data sets without
sorting them. Then it performs the join by a merge-scan of subset pairs.

Figure 3.5(a) gives relations R and S. Figure 3.5(b) shows the merge-scan phase
by JF. assuming the block capacity is 4 data items. In the figure, sets R and S have
been partitioned into fragments by a hash function before the merge-scan phase. The
hash function used during the partition is £ mod 2, i.e., the first fragments for R and

S hold odd values, and the second fragments hold even values.

‘In the literature. it is inaccurately referred to as “divide-and-conquer”. Strictly speaking,
divide-and-conquer is a strategy for reducing asymptotic complexity, such as sort from O(N?) to
O(:V log V).
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The I/O cost of JF contains two parts, the partitioning cost and the merge-scan
cost. With the use of B blocks in memory, JF applies the hash function (k mod (B —
1)) to partition R and S into B — 1 sub-groups. Subsequently, it divides the subsets
recursively until one of the resulting subset R; and S; has no more than B — 1 blocks.

In case of uniform distributions. if the number of partitions is k, for relation R, then
Nr/(B —1)kr < B — 1. Therefore

kiz = |—Iog8—l -\rR1 -1

Each application of the hash partition on R has an I/O cost of

Vg

.VR+(B-1')[(B_1)

‘I = 2.’VR
As a result. the cost of completely partitioning R or S is
2Ni([logg_; Vi1 — 1)

where ;{ = R or S. Note that this is lower than the sorting cost by SMJ. In case of
no duplicate join attribute values in R or 5. the merge-scan phase is just Ng + Ns

(same as SMJ) and the total cost of the JF is therefore
2Vr([logp_, V1) +2Vs([logs_, Vr]) — Nk ~ Ns

Like other hash partition join techniques. the JF algorithm is particularly suitable

when indexes for joining attributes do not exist and the data is unsorted.

3.3.6 Distributive Join (DJ)

Although sharing the same “divide and conquer” idea as JF, the approach by DJ is
different. DJ belongs to the “sort-merge” category. But it improves the standard
sort-merge algorithm by avoiding completely sorting both input data sets on the join
attributes. Instead. it only sorts the one with the smaller amount of data completely
and partitions it into subrelations. The size of the subrelation is less than that of

the available RAM buffer. The boundary values of these subrelations are stored in a
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table called the distributive table. Then the large relation is partitioned and partially
sorted using the distributive table. The DJ algorithm, therefore saves part of the
sorting cost. There are three steps in the algorithm:

1. completely sort the smaller data set into ordered subsets (R;, Rj, ..., R,) with
each subset size no more than B —1, and produce a distributive table containing

boundary values of the join attributes of the subsets;

2. distribute the larger data set into subsets using the values in the distributive

table as the boundaries of its subrelations using a partial distributive sort;

3. perform the join between the sorted and the distributed sets.

Figure 3.3{c) shows the merge-join phase of sets R and S given in figure 3.5(a).
Before the merge-join. set R has been sorted into two sets, while set S has only been
sorted partially.

The cost of D.J consists three parts: the cost of complete sorting of the smaller
relation R, (2.Vg[log,_, Vr]), the cost of distributing the larger relation S into
[Nr/(B — 1)] subsets, and the cost of merge-join between R; (sorted set) and S;
(distributed set), where i = 1....,m. The last part is (Ng + Ng) in the absence of
duplicate join values. Using a B — 1 way distribution algorithm on secondary stor-
age. the number of passes to distribute S into m subrelations is log,_, [Ng/(B — 1)].
which is strictly smaller than the number of passes to sort S completely by SMJ in
most cases [NP91]. Therefore at least one pass of the large relation can be saved in
comparison to SMJ.

3.3.7 Bucket Skip Merge Join (BSMJ)

The Bucket Skip Merge Join (BSMJ) improves SMJ by creating and maintaining some
extra storage, bucket tables on secondary storage, to hold upper and lower values of
join attributes for each data bucket (page) as well as pointers to corresponding data
buckets. The bucket table entries are first accessed during the join processing in order

to avoid data bucket fetches and attribute comparisons in RAM whenever possible.
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BSMJ has its great advantage over ali hash joins including JF and DJ in the situation
that the input sets have been sorted and indexed.

Figure 3.5(d) shows bucket tables, data buckets, file pointer movements of the
bucket skip merge join on R and S in figure 3.5(a) and the result of the join. The
shaded area is the bucket portion that has been skipped during the join.

BSM1J focuses on sorted relations. By maintaining extra storage for bucket tables,
the cost of merge-join can be less than one pass because of the skip factor, when there

is no duplicate values.

3.3.8 Duplicate join-attribute values

In the presence of duplicate values, the cost of all above join algorithms may increase.

When DJ algorithms are applied to duplicate values, the cost to distribute the
larger relation increases in order to meet the restriction that all tuples having the
same value of join attributes must belong to the same subrelation. This suggests
there may be more subrelations in the presence of duplications. But it has been
proven that with duplicates, the extra cost of distributing the larger relation can be
no more than one pass than without duplicates [NP91].

The cost of both partitioning and/or sorting is independent of data distribution
and duplication for SMJ, JF and BSMJ algorithms. It is only the final join phase
that is affected by the duplicate values. If some of the duplicate join values exceed
the capacity of the available buffer in RAM, all SMJ. DJ, JF and BSMJ algorithms

are forced to apply nested block scans. and the cost of merging can become quadratic.

3.4 Summary

The chapter gives a literature review on 1D to multi-dimensional data structures,
direct access method to tree structures, as well as a review on join algorithms. In
conclusion, there does not exist a single approach as a solution for all the problems
posed by one dimensional to multidimensional data, low to high selectivity, special

to structured data, efficient in both space and time and distribution independence.
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Tidy Functions

4.1 Piece-wise Linear Tidy Functions

Let us look at the tidy function definition from section 3.1.2:
t =[n D(z)] (4.1)

where r is a key and n is the number of pages on secondary storage. If ¢ has to be
stored in its full resolution, it may exceed the RAM capacity for large files. Indeed.
it is valuable to make the assumption that RAM capacity is O(1) while file size is
O(n). Tidy functions stored on secondary storage will not only increase the storage
cost but also the retrieval time. A solution for this is a piece-wise linear interpolation
of nD(x). which results in a so called piece-wise linear tidy function.

Assume that the number of linear pieces, p. is given, the tidy function can be
represented by 2p numbers with 2(p — 1) pairs of z and nD(z), the range of keys and
the total number of pages n. This tidy function is certainly a bigger structure and
more complex to calculate than a simple hash function, such as z mod n. But it is
small and quick compared to secondary storage which it is addressing. Here, p < n
is bounded by RAM capacity, and has a data distribution dependency as well.

We assume that the file is loaded onto pages in key order just like a sequential
file. The load factor can be as high as one, i.e.. our tidy function is indeed an order

preserving minimal hashing function. But it need not to be one; there can be empty

o1
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space in our file. In this case, we simply have a different distribution function to

approximate. and the tidy function is an order preserving hashing.

Overflows

A page boundaries

4T
3T A
27 nD(x)
1T
L(x)
Ta X

Figure 4.1: A Distribution Function and a 1-piece Line Tidy Function

Figure 4.1 shows a distribution function nD(z) and a one-piece linear approxima-
tion tidy function L(x). Three horizontal lines are drawn at page boundaries from
nD(z) to L(r). We shall show that these lines represent the overflow keys that the
tidy function L(z) gives the wrong page address. For example, key @ maps to page
3 according to tidy function nD(r). but according to the approximate line L(r), it
should be on page 4. As a matter of fact. L(z) maps any key on the three horizontal
lines between nD{zx) and L(r) at page boundary 1, 2 and 3 to a wrong page address.
Thus these horizontal lines at page boundaries represents all possible records which
will cause the search to make at least one extra probe. The sum of the length of
these lines gives the total number of overflowing records. For continuous key space
this holds strictly, but we still get the right proportion if the key space is discrete.
The above discussion counts both successful and unsuccessful searches. More often,

successful searches are more useful and one should only apply records present on those
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horizontal lines between the tidy function and the linear pieces at page boundaries.

Now we show that the area between nD(z) and L(z) gives approximately the total
number of overflows. This is because the horizontal lines drawn at page boundaries
are equally spaced vertically. by a distance of a page, h. Each section of the area
between L(z) and nD(z) is approximately a parallelogram of height h and length b;,
the length of the horizontal line. We have

area = Zb,-h x Zbi

Clearly, the area is proportional to the total length of horizontal lines drawn at page
boundaries which represent the total overflow. In other words, the area between the
tidy function nD(r) and the approximation linear pieces L(r) gives the total number
of extra probes.

When overflows occur, different relative positions of L(z) and nD(z) give different
extra probings. If L(r) is above nD(z). the linear probing is downwards from the
target page of the tidy function to the page it truly presents. The linear probing is
upwards when L(r) is below nD(z). Any page that contains an intersection of nD(z)
with L(x). with nD(x) starting above and crossing downwards under L(z), will have
no overflows. On the other hand. any page with an opposite intersection will overflow
in both directions and thus needs both downwards and upwards linear probings.

Obviously. the goal of the piece-wise linear tidy function approximation is to find
a set of p points on nD(z) with minimal overflows. i.e., the minimal sum of the length

of horizontal lines. or the minimal area between nD(z) and L(z).

Analytical Example

We start to minimize the overflow with a simple analytical example D(z) = z?, with
z € [0,1). by two linear pieces. Assume that the two pieces meet at (z,z2). Then
L(z) contains two pieces: Li(z) = zz and L.(z) = (1 + z)z — z. The area between
the two curves are
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After minimizing the above, we get
2 _ .
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So the optimal approximation by two linear pieces is to partition the range of search
kevs at the middle. Similarly, we can minimize the overflow with three pieces of L(x)

for D(zx) = z* at points (21, 2:?) and (22,%%). The calculation gives 2; = 1 and

g

-
2

[™1[}

4.2 Heuristic Construction Algorithms with Min-

imal Overflow

In practice. distribution functions are not analyvtical. For distributions of interest, we
find that we can turn to dynamic programming to get the optimal partitions with
minimal overflow.

Let m(n.p) denote the minimal overflow cost if we use p linear pieces to approx-
imate the distribution function nD(z), and d{i,j) be the overflow cost of the line
piece if we connect point ¢ to j with a straight line. Then m(n, p) can be recursively
defined as follows:

m(n.p) = minycicn{m(i.p=1) +d(i.n)}

where n is the number of pages. 0 < i < n and p is the number of linear pieces. A
brute-force method to calculate m(n, p) costs O(n?). Dyvnamic programming solves it
by calculating and storing every possible value of min a n x p table, anddinanxn
table, and therefore avoids recomputation of every entry in these tables. A bottom-up
calculation of the table elements is used, from m(1,1),m(2,1), m(2, 2), m(3, 1), m(3, 2),
weam(i. j). ..., to m(n,p). It turns out that the cost of this dvnamic programming is
O(pn?). This is too many disk accesses to be acceptable. Instead, we propose a less
expensive heuristic construction algorithm which can also make the optimal use of p

linear pieces by applying them to the line segments with maximal overflow.
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With the new method, systematically, we look for straight segments of the distri-
bution, and to fit the longest and straightest of these segments using as many of the
p pieces as we can; i.e., we look for sections with zero curvature.

We do this by bounding nD(z) with a sequence of parallelograms, iteratively
splitting the most expensive one until there are p parallelograms. The first steps are
shown in Figure 4.2.

nD(x) nD(x)

Lix)

(a) distribution function nD(x) (b) connecting from end to end
with a straight line, L(x)

L2(x)
Ll(x)
(c) fon’ning a bounding parallelogram (d) forming two linear pieces
with breakpoint at the maximum vertical L1 and L2

distance from nD(x) to L(x)
Figure 4.2: Forming a Bounding Parallelogram in Tidy Function Construction

We start by connecting nD(z) from end to end with a straight line (Figure 4.2(b}).
Then we look for the point on nD(z) which has the maximal vertical distance from
the line (Figure 4.2(c)); this maximum vertical distance corresponds to the longest
overflow chain from the page which the straight line indicates the record at that point

is on, to the page it is really on, according to nD(z). We call the point “breakpoint”,
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for it is chosen as the endpoint of two new straight lines (Figure 4.2(d)). Considering
each of these lines as an approximate tidy function, we calculate the overflow cost for
each. The segment with the larger cost is the next candidate for splitting. For the
candidate segment, we repeat step (c) and (d) in Figure 4.2. Thus, we again find the
point of nD(z) in this segment that is the maximum vertical distance from the line.
and make it the endpoint of two new straight lines. As an example, these first few

steps are shown in Figure 4.3.

pages

Figure 4.3: Finding p Segments of Zero Curvature: First Steps

In the end. we have a fit to the original distribution, such as shown in Figure 4.4.
The example shows a fit of 10 pieces to an original data distribution 100D(x) given
in Figure 4.3. The numbers from 1 to 9 on the curve correspond to the iteration at
which the point is selected as the “breakpoint”.

The parallelograms that we show in the figures serve to indicate the furthest
vertical point of the distributions. Clearly, the skinnier the parallelogram is. the
more nearly the part of the distribution function it bounds has zero curvature. and
the longer they are. the more useful a linear approximation is to the segment. The

heuristic construction algorithm is outlined in Figure 4.5, where @ serves as a queue
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Figure 4.4: A Tidy Function with 10 Linear Pieces

of candidates for splitting, ordered by decreasing overflow cost.

Note that building our tidy function requires an initial pass of the whole file to load
the data and to extract only those keys marking the boundary of pages. Thereafter.
we work with the set of n keys, which we call a pagekey file.

The worst case cost of the above construction algorithm happens when the i**
breakpoint has to be found among n — i + 1 page keys, and the search has to look
over n — i + 1 page keys. It happens when the p — 1 breakpoints are where the first
(or last) p — 1 page keys are located. Therefore, the total cost is

p—1

Z(n —i+1)=(p-1)(n+1) —0.3p(p—1) = O(pn)

i=1
This corresponds to about p passes of the page keys.

The lowest construction cost happens when the data distribution is uniform and
the breakpoint is always the k** point of 2k points in any linear piece. Thus finding
the i** breakpoint means checking through n/|log,(i + 1)| page keys in the range.

Therefore the best construction cost is

p—1
Z n/|logs(i +1)] = nlog, p = O(nlog, p)
=1
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typedef struct { /*= Definition of a Segment =/
POINT *staPoint, »endPoint, *brkPoint; /+ POINT is a pair:(k, nD(k))s/
float overflow;

} Segment;

typedef struct { /* Definition of a Segment Set =/
Segment sset;
int num_elements;

} LineSegmentSet;

/% num: is the number of line segment pieces
» p0, pl: two end points of the distribution function
* Q: a queue of candidates for splitting, ordered by decreasing overflow cost
s/
void tidyConstruction( int num, POINT =p0, Point *pl, LineSegmentSet Q)
{
e= {};
aSegment= processOneSegment(p0, pl);
insertNewElement (Q, aSegment);
for ( i= 0; i< num-1; i++) {
aSegment = removeFirstElement(Q); /* take 1st member of Q for prccessing »/
segmentl= processOneSegment (aSegment.staPoint, aSegment.brkPoint);
segment2= processOneSegment (aSegment.brkPoint, aSegment.endPoint);
insertNewElement (Q, segmentl); /+« insert a member to Q such that the */
insertNewElement(Q, segment2); /= overflow cost is in decreasing order =/

}
}

Segment sprocessOneSegment (POINT =pO, POINT »p1)
/* find the breakpoint and calculate the overflow cost of the segments/
{

Segment »aSegment = new Segment(p0, pl);

maxYDist = 0;

totalYDist = O;

for POINT »p= pO to pl {
curYDist = verticalDistance(p, Line(p0, p1));
totalYDist = totalYDist + curYDist;
if (curYDist > max¥YDist) {
brkPoint = p; /» brkPoint is the one with max distance to nD(x) =/
maxYDist = curYDist;
}
}
aSegment->brkPoint= brkPoint;
aSegment->totaldverflow= totalYDist;
/* overflow is proportional to the sum of vertical distance to nD(x) =»/
return aSegment;

Figure 4.5: Tidy Function Construction Algorithm
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This amounts to about log, p passes of the page keys. For example, if p = 25, 000.

the least tidy function construction cost is about 135 passes of the page keys.

4.3 Search Algorithms

Searching the data using the tidy function consists of two steps. First. calculate the
page address where we expect to find the data using the tidy function stored in RAM,
as we would use a hash function. We call this page address the home page. Second,
like “collision resolution™ in hashing, search the file for the page that really contains
the data. The second step is similar to linear probing in hashing. The difference,
however. is that the probing can be in either direction: either downwards or upwards
from the home page as discussed in section 4.1. If the linear approximate line is above
nD(z). i.e.. the data on the home page have larger value than what we are searching
for. the search will continue downwards. If it is below, the actual data will be above
the home page. and the lookup will be upwards.

In either case, if the data being hunted is not present in the file (unsuccessful
search). the search must proceed in the appropriate direction(s) until the data values
are above and/or below the one that we are seeking and a failure is discovered.

Our experiments show that in a large number of situations, all data that is ex-
pected to lie in a given home page may in fact be found in a range of pages considerably
above or below the home page for a small number of linear pieces. p, and irregular
distributions. The above search algorithm can be improved by eliminating the linear
probing through the pages containing no data which are searched for by storing a
pointer on each page pointing to the nearest page that actually holds relevant data.
While the overhead is negligible, our experiments show an order of magnitude search-
ing performance improvement for very large files as a result of storing these pointers.

Furthermore. sometimes even the range of pages holding the actual data maybe
large. and a linear search through the pages after following the pointer is still quite
expensive. We can improve the search performance further if a second pointer on

each page. pointing to the furthest in the range. is used. With the two pointers on
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. each page, we can do a binary search between these two pointers.
DL (L@))) / D(x)
D(L( L))
( — A
a

Figure 4.6: Searching and “Collision Resolution” for Tidy Function

Figure 1.6 shows the idea of these pointers by an example. It shows a key a.
mapped by the linear approximation to page L(a). The bottom of the page is denoted
[L(a)]. and the top is {L(a)]. Data a is actually stored on page nD(a), in a 5-page
range starting sixteen pages above the home page L(a). The bottom page of the
range is page nD(L~'(|(a)])). and the top of the range is page nD(L~!([(a)])). The
two pointers in the home page to the bottom and top pages are shown in the figure.
[t is clear from the example that steep portions of nD(z) are responsible for large
ranges, and thus large overflows. This happens where the search keys are clustered
closely together and there are not enough linear pieces to closely approximate these
clusters.
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4.4 Experimental Results

Our experiments were conducted on two sets of data. The first set was generated in
the following way to produce cumulative distributions similar to what are shown in
Figures 4.3 and 4.4. n random numbers were generated in g groups. Each group is
based on a random (0 - 2'%) multiple of 2!, and contains a random number of ele-
ments, each of which is generated randomly by mod 2%7. After sorting, these numbers
produce values of keys located at the top of each of n pages, and give a cumulative
distribution to work with. Each of these cumulative distributions has g major steps,
with minor fluctuations. However, when g gets larger than several hundred, and
n >= 10%, the big steps tend to disappear and the resulting distribution becomes too
easy to approximate well. So we modify the method by inserting additional random
elenents within the steps in order to increase the vertical scale of the distributions.
such as those shown in Figures 4.3 and 4.4. By doing so, we increase the numbers of
extra probes in searching.

The second set of data were real phone data from ProCD, a business phone
book [Pro96]. which contains more than 15 million American business phone num-
bers. It was used to verify the results we obtained from synthetic data. We choose
the phone data because the cumulative distribution has big vertical steps, which
challenges our tidyv functions.

We will compare our experimental results with Fox’s order-preserving minimal
perfect hash method. the closest competitor, in construction time, storage consump-

tion, and search time.

4.4.1 Construction

After the initial pass of the whole file to extract the pagekey file of size n, the cost
of finding p linear pieces to approximate nD(z) using our method depends on p.
Figure 4.7 shows the number of passes we must make of the pagekey file in order to
construct p linear pieces. Since the data describing these p pieces must be contained in

RAM. we may build up to only so many pieces. In Figure 4.7, we stop at p = 25, 000,
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and for these many pieces, the cost is 17.5 passes of the pagekey file.

Number of Passes of Pagekey File to Build p Linear Pieces
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Figure 4.7: Number of Passes of Pagekey File to Build p Linear Pieces

To compare this construction with Fox’s method, we make a conservative assump-
tion that each page only holds 10 records, i.e.. N/n = 10. This is a minimai number.
\We also assume that these records consist of nothing but keys. So 17.5 passes of
the pagekey file need the same amount of I/O as 1.75 passes of the whole file. This
is much less expensive compared with 6.8 passes for the first cheap stage of Fox’s
construction method. We have easily won by an order of magnitude as compared to
Fox in the above estimate.

We can do another comparison on construction time from a later paper by Fox et
al.[FHCD92| on minimal perfect hash functions which are not order-preserving. The
construction cost here is lower than the order-preserving hash function by inspecting

the two algorithms. In their paper, they constructed 3.9 million keys into a hash
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function in 33000 seconds on their fastest machine. If we suppose, reasonably, these
kevs and their associated records are stored on 400,000 pages, and that each key
consumes 10 bytes, the pagekey file would be 4MB in size. We now estimate how
much it would take to construct the tidy function on a slow disk with 2usecond
transfer time per byte. One pass of the file would cost about 8 seconds, and 17.5
passes would cost 140 seconds. On a shared disk, we would have to access each block
separately. Suppose an average disk seek time and rotation time is 20ms, and a
block size for the pagekey file is 1KB, then 1MB page keys would be on 4000 blocks
with loading each block costing 20ms+ 1000 x2us = 22ms or 88 seconds per pass.
This translates to 1540 seconds for 17.5 passes, or 21 times faster than that of Fox’s
method.

By both comparisons. our tidy function construction method is more than one
order of magnitude faster than that of Fox et al. Moreover, our method is truly

linear. and not almost linear as for the other authors.

4.4.2 Storage

Our method is 2 minimal perfect hashing, requiring no empty locations in the data
file. The load factor. a. the ratio of occupied space to available space, is 1.

The storage overhead of our method is negligible. It stores only a p-piece set of
linear approximations which by definition can fit into RAM, and two pointers per
data page used to set up the binary search for overflows.

Although Fox et al. claim a minimal perfect hash function (a = 1), their method

must store an auxiliary table of size 1.26.N pointers, or 1.26 pointers per record.

4.4.3 Searching

Figure 4.8 shows our experimental results on searching with the synthetic randomly
generated cumulative distributions and 15 million American business phone numbers
(the crosses on the figure). The cost of searching is a function of file size and p, the
number of approximating linear pieces. We have measured up to 107 pages which may

correspond to at least a 10 GB file. With this size, our expected number of probes
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Access Cost versus Number of Data Pages
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Figure 4.8: Average Probes per Search versus File Size

to search the file, with 25.000 linear pieces, just gets up to 3. This is still better than
the 3.25 of Fox et al. Since Fox's search cost is independent of file size, they would
eventually improve our result for large file size. However, to construct a file of 107
pages. or 10® keys, by their method would require at least 10° seconds, or two weeks.

In Figure 4.8. we also give the search cost tested on the 15 million phone data.
The result matches with what we get from our synthetic data.

It is clear from Figure 4.8 that for file sizes massively larger than the allowed
number of linear pieces, the logarithmic behavior of the binary search takes over from
the direct access behavior of the tidy function. This leads to the natural question
of whether the B-tree should in fact be used. It is indeed true that the search cost
by B-tree can be competitive to tidy functions when the first two levels are stored
in RAM. However, the construction cost of B-tree is O(nlogn) while our method is

much cheaper — it is O(n).
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4.5 Summary

In this chapter. we have introduced a class of order-preserving kev-to-address trans-
formation functions (tidv functions) that can be constructed in linear time and are
significantly faster than the time for the closest competition. Our method requires
no storage overhead while the earlier methods need linear index space on disks. Our

method is simple in conception and the algorithms are straightforward to implement.



Chapter 5
Tries for One Dimensional Queries

A major weakness of the linear heuristic tidy function we proposed in the last chapter
is that it is intended for static datasets. In this chapter, we propose tries as an al-
ternative structure to order-preserving key-to-address transformation functions. The

gain from this is three-fold: dynamic, compactness and speed.

5.1 Tries as Tidy Functions

A 1D trie on the search keys can be interpreted as if it is an order-preserving key-to-
address transformation function, even though the former is not direct access method
as the latter. The remaining fields of a data record are stored either on a trie leaf,
or a separate file pointed to by a pointer on the leaf node. The method exploits
the variable-resolution capacity of tries, their order-preserving properties. and profits
from substantial compression achieved using indexed keys.

Construction of the trie consists of two steps: a) convert keys to their binary
representations, and since these keys are in order, so are the binary representations of
these kevs. b} perform a batched process of merging trie nodes to construct DyOrTries,
similar to OrTrie construction proposed by Shang [Sha94]. Trie paging can be done
during the process by creating a trie page and writing it to the disk whenever trie
nodes in the page layer exceeds a given page capacity. The construction algorithm

reads the ordered keys once and writes the trie once. Thus. the cost is linear to the

66
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number of keys and file size.

Using the insertion and deletion algorithms of the DyOrTrie structure proposed
in section 2.6, our trie is capable of inserting and deleting keys at a cost of O(log NV)
page accesses, where :V is the number of keys. Nevertheless, the linear construction
algorithm is much cheaper than building the trie by dynamic insertions.

To search a data item with a given key, first, we convert the key to its binary
representation, and then look for it on the trie starting at the root. At any trie node,
if the current bit of the binary key is “0”, the search goes on to the left branch, and
to the right branch if “1”. Whenever a leaf node is reached, a record with the given
key is found by following the pointer to the remaining data attributes in the file.
Therefore, the cost of successful searching is h page accesses, where h is the height
of the trie. assuming the root page of the trie can be stored in RAM. A search is
unsuccessful if it has to stop at an internal node of the trie at page level i. The cost

in this case is simply {-1 disk accesses.

5.2 Experimental Comparisons with Tidy Func-

tions

In order to compare with tidy functions. we use the same two groups of data, as in
the last chapter (unless mentioned otherwise): one is the synthetic nonuniform data,

and the other 15 million American business phone numbers.

5.2.1 Storage

The trie compresses data and can achieve a significant compression rate due to the
overlap of paths near the root. As the file gets larger. this compression effect becomes
more pronounced. For files consisting of uniformly distributed keys only. figure 5.1
shows that the data compression increases to over 90% as the file gets large. Obviously,
this is superior to the tidy function which needs a small mount of space overhead to

store information about the p linear segments, and two pointers per page used to set
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up the binary search.
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Figure 3.1: Trie Compression vs. File Size

5.2.2 Searching

Figure 3.2 shows the cost of searching by trie method on nonuniform data sets. This
is compared with the tidy functions of 25.000 linear segments given in figure 4.8 *.
The trie page capacity is fixed at 4096 bytes. This measure also assumes that the
first two trie page levels are stored in RAM. This is based on the assumption that the
RAM buffer size can store the information of 25,000 linear segments. From the figure,
we see that for large files (107 to 10® records), the trie method gives 2 page accesses,
which is superior to the performance of tidy functions. For small files, the trie is at
least as good as the tidy function method with 25,000 linear segments. When the file
is small enough and the trie is stored in RAM, one access to the data page is the only
cost of searching, this happens when the number of records does not exceed 105°.
The figure also shows the results from the 15 million entries from phone book

data. It verifies and matches with the results obtained from the synthetic data sets.

*Here file size is given in number of records instead of number of pages. We assume that a page
holds 10 records.
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Search Cost versus Number of Data Recards
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Figure 5.2: Average Number of Probes per Search vs. Number of Data Records
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5.3 Summary

In this chapter, we have applied the 1D trie method as an alternative to the order-
preserving key-to-address transformation function. The 1-d-trie achieves compatible
searching performance to that of the tidy function. The gain is the storage compres-
sion the trie achieves, as well as its capability of dvnamic insertions and deletions at
a cost of no more than O(log.V) page accesses per key.

A B-tree with a fanout of 100 and its first two levels stored in RAM is competitive
in its search cost. We assume that the page capacity is 4096 bytes and a page holds
100 records on average. For example, with 10® keys, a B-tree file has four levels and
a total of approximately 10° pages (one root page on the first level, 10 pages on the
second, 10* pages on the third, and 10°® pages on the fourth (leaf) level). The cost for
searching a record is two accesses, which is quite compatible with the trie method.
However, in terms of space cost, there is no way that it can be deemed compatible

with the storage compression of the trie structure.



Chapter 6
Tries for Multidimensional Queries

In this chapter, we shall extend tries for multidimensional queries, including exact
match and orthogonal range queries.

We shall compare our method with that of existing representative multidimen-
sional methods. These include direct access methods such as multipaging and grid
files. as well as well-applied multidimensional logarithmic methods such as R*-trees

and their variances X-trees for high dimensional data.

6.1 Variable Resolution Queries
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Figure 6.1: Variable Resolution in Two Dimensions



CHAPTER 6. TRIES FOR MULTIDIMENSIONAL QUERIES 72

A k-d-trie for multidimensional data can be interpreted as a variable-resolution file
structure. For example, figure 6.1 shows the variable-resolution trie for two numerical
point data (3.1) and (2.7). Note that the two points are interleaved into two bit
strings 011010 and 011101 before inserting them in the trie. We consider two bits
(two trie node levels) at a time. At the first resolution level. both strings appear as
01. representing the upper left corner of a 2 x 2 space shown in the leftmost square.
They are not distinguishable at this time. When we move on to the next level of
resofution to include the next most significant two bits, this gives two strings, 0110
and 0111, shown in the middle 4 x 4 square. Finally. at the full resolution level, we
have the full strings in the rightmost 8 x 8 square.

This is how spatial queries of Merrett and Shang[MS94] display at various res-
olutions using one copy of data. They are not limited to two dimensions. In &
dimensions. the queries consider & bits at a time. They are not limited to point data
either. Edges/rectangles in k dimensions become points in 2k dimensions; triangles
in & dimensions become points in 3k dimensions.

In this section, we go on to consider general queries based on variable-resolution
views of tries. The data need not be spatial. but more importantly they are multi-
dimensional and we must consider the multidimensional interpretation of data when

processing queries.

6.1.1 Exact Match Queries

This section is a description of algorithms on exact match queries in multidimensions.
These are prior work done by others [MO81a. Sha94. NHS84].

Exact Match by Tries

Exact match queries are one of the most frequently used queries. The process of the
exact match query by trie is a straightforward 1D trie search once the multidimen-
sional search key is interleaved into a binary string. The 1D exact match search by
(full) trie method has been introduced in section 2.1.

For an exact match query using an ordinary trie. the algorithm differs only at the
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Boolean TrieExactMatchQuery( DATA key)
{

String skey;

TrieNode *node;

skey= interleave(key);
node= root();
return (doExactMatch(node, skey));

}
Boolean doExactMatch(TrieNode node, String skey)
{
if (node== ‘00’) { //leaf node
//compare the suffix string stored at the leaf to that of skey:
if (strcmp( node-> suffix(), suffix(skey, node-> level())) == 0)
return (true); // a match
return(false); // a mismatch
}

else {//node is NOT a leaf
if (node &k current_bit(skey, node-> level())) {//a match
node= node-> child( skey);
return( doExactMatch(node, ++skey));
}
else //mismatch
return(false);

Figure 6.2: Exact Match Queries by DyOrTrie



CHAPTER 6. TRIES FOR MULTIDIMENSIONAL QUERIES 74

leaf node: a comparison of the truncated suffix at the leaf node to the remaining bits
of the interleaved key has to be done. The multidimensional exact match query algo-
rithm by DyOrTrie is given in figure 6.2. Note that we assume the paging mechanism
on secondary storage runs in the background.

Clearly, the cost of exact match queries depends on the search key length, and
not directly on the size of the trie. However, the upper bound of the search cost is

the height of the trie, which is a logarithmic function of the file size.

Exact Match by Multipaging

Exact match queries by multipaging can be done in two steps. First, search the scales
in RAM and calculate the corresponding page index. Second. load the page into RAM
and perform the search. If there are overflow records stored on other pages, these
pages in the overflow chain have to be loaded and searched. So the cost of exact
match by multipaging is one disk access ideally, and the length of the overflow chain

plus one if there are overflows.

Exact Match by Grid file

Grid files share the first step in exact match queries by multipaging to search scales
and retrieve the index. But to obtain the page address, it requires one access to
the directory on secondary storage. Then the corresponding data page is loaded and

examined. Thus the cost using grid files is exactly two disk page accesses.

6.1.2 Orthogonal Range Query
Orthogonal Range Queries by Tries

An orthogonal range query is a range query for multikey files, involving ranges of sev-
eral fields: all records with every attribute value of a search key in a given range. For
orthogonal range queries, we must interpret the trie multidimensionally. Figure 6.3
shows a 2D trie, with each node schematically indicating the region it represents

(shaded area). Labels at each node present the paths from the root. Thus there is a
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X v v X

Figure 6.3: Range Query of [2,6)x[4,8) in an 8x8 Space

one-to-one correspondence between a node, determined by a path from the root, and
an area it represents. An orthogonal range query involves the searching of a set of
nodes whose areas overlap the given ranges. Consider the 8 x 8 space of figure 6.1.
The range query is from 2 to 5 in the first dimension and from 4 to 7 in the sec-
ond dimension, i.e.. [2.6) x [4,8), the shaded area in the right most, 8 x 8 square of

figure 6.1. The range query is processed on a trie node recursively as follows:
1. If the current node does not overlap with the query ranges, it is rejected, along

with the subtrie rooted at the node.

[ )

. If it is entirely contained in the query. it is accepted, along with the subtrie
rooted at the node.
3. Otherwise overlap occurs. and the search continues on descendents of the node

recursively.

Therefore, the range query in the given example continues on the root and its
two descendents. It rejects at node 00 and continues at 01. When processing the
descendents of 01, it rejects 010 and accepts 011. Once a node is accepted, all the
leaves that descend from it are also accepted. The same search considerations apply
to node 1 as well. The crosses and checks show where the search halts in rejection or
acceptance respectively.

The orthogonal range query algorithm by DyOrTrie structure is outlined in fig-
ure 6.4. Again, we assume that the paging mechanism is running in the background.

The ranges are given by the multidimensional lower and upper corner coordinates.
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void TrieRangeQuery( DATA lower, DATA upper)

{

TrieNode snode;

node= root();

doRangeQuery(node, lower, upper);
}

void doRangeQuery( TrieNode *node, DATA lower, DATA upper)
{
if ( node-> value() == ’00’) { // leaf node
if (overlap( node-> suffix(), lower, upper))
outputSubtrieRootedAt ( node); //accept the leaf node
return;

}
else { //internal node:
if (‘overlap( node->area(), lower, upper))
return; //rejecting
else
if (contained( node->area(), lower, upper)) {
outputSubtrieRootedAt( node); //accept leaves in the subtrie
return;
}
else { //overlaps: continuing on descendents
doRangeQuery (node-> left(), lower, upper);
doRangeQuery(node-> right(), lower, upper);
}
}

Figure 6.4: Orthogonal Range Query using DyOrTrie

76
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The variable-resolution property of the trie enables queries like exact match and
range queries to eliminate impossible subtries at an early stage near the root and only
continue to process on refined data by increasing the resolution until only relevant
data remain. Thus. the cost of orthogonal range queries is sublinear to the size of
the trie. Along with the fact that tries are compressed in storage, they have a strong
potential in achieving significant performance improvement over the existing query
methods by other data structures.

In order to do experimental comparisons with existing methods, we give a brief
description of orthogonal range range queries by grid files and multipaging as follows.

Prior work done by others exists for both.

Orthogonal Range Queries by Grid Files

The orthogonal range query algorithm by grid files is shown in figure 6.5. The ranges

are given by the lower and upper corner coordinates.

void GridFileRangeQuery(DATA lower, DATA upper)

{
int lowind[k], upind(k];
DataPage *celllist;
SearchScale(lower, upper, lowind, upind); //convert into index vectors;
GenCellList (lowind, upind, cellist); //generate a list of page addresses;
DoRangeQuery(lover, upper, cellist); //pages are looked up;

Figure 6.5: Orthogonal Range Query using Grid File or Multipaging

First, using index scales stored in RAM. vectors of lower and upper corner coor-
dinates of the range query are converted into index vectors, lowind and upind, by
procedure the SearchScale (not shown). Then these index vectors are used by the
grid directory to generate a list of page addresses in procedure the GenCellList (not
shown). This requires k loops, from lowind to upind in each dimension, to convert
all the page cells into a set of pointers to data pages. Duplicate pointers to the same
data page are removed. The above process needs to access the grid directory usually

on secondary storage. Finally, the list of data pages are accessed. The cost in terms
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of disk accesses is loosely bounded by

f[(upind[i] — lowind[i] + 1) (6.1)

=1

and will be examined in the experimental section.

Orthogonal Range Queries by Multipaging

Range queries by multipaging share the first two stages of SearchScale and GenCellList
as those of grid files. The only difference is that GenCellList can be performed in
RAM and thus requires no time in our model, where only the number of disk accesses
count. But the DoRangeQuery is more complex than that of grid files because a data
page may have pointers to its overflow pages. The pseudo-code of DoRangeQuery
for multipaging is given in Figure 6.6. The cost of multipaging when distributions
are close to uniform is also bounded by Equation 6.1. However, for pathological

distributions, overflowing pages could lead to a visit of the entire data file.

6.2 Experimental Comparisons with Multikey File

Structures

In the following experiments, we address costs against four parameters that may
affect performance. These four parameters are file size, distribution, dimensionality
and query selectivity. Costs studied include the number of disk page accesses, access
time and storage costs. The file structures we are going to compare to are all suitable
for muitidimensional data, including direct access methods (multipaging and grid

files) and logarithmic file structures (R-trees/R*-trees and their derivative X-trees).

6.2.1 Costs

The number of page accesses to the secondary storage are a straightforward assess-
ment of query costs. But in some situations, not all page accesses require the same

amount of time. Counting numbers of page accesses becomes insufficient and may
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void DoRangeQuery(DATA lower, DATA upper, DataPage ®*cellHead)
{
DataPage *p= cellHead; //p is head of the linklist of pages
vhile (p is not null) {
DoRangeQueryOnAPage( lower, upper, p); //process one page at a time

P = p-> next; //p points to the next data page member of the linklist
}

}

void DoRangeQueryOnAPage (DATA lower, DATA upper, DataPage =»p)
{

DataPage =*q;

//load data page p into RAM and do a sequential search on the page:
sequentialSearch(lower, upper, p);

//if p has an overflow page chain list, search them as well:

q= p-> linkto; //q point to the first member of the overflow page list
vhile ( q is not null) {

if (!'q-> visited()) //if the page has not been processed
DoRangeQueryOnAPage(q); //do range query on the overflow page
q= q-> linkto; //goto the next page of the overflow list
}
}

Figure 6.6: Page Searching in Orthogonal Range Query using Multipaging
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even be misleading. In the case of X-trees, supernodes are groups of nodes which are
accessed sequentially rather than directly. So for X-trees, we cite the access times.
The times are not measured directly because of operating system interference as well
as the existence of memory buffers and disk buffers. Instead, time is calculated using
the parameters of our disk. a Seagate Hawk 2XL Ultra SCSI 3 with an average seek
time and rotation time of 14.534 msec, and a read time (for 1KB of data) of 168usec.
For sequential reads. the random seek time is omitted.

Another cost to be considered is storage. Tries compress data, as opposed to
all the other methods we have discussed in the context of this thesis. We will look
at the trie compression rate in subsection 6.2.8. On the other hand, grid files are
significantly dependent on the correlation among multidimensional distributed data.
and which in turn affects the amount of storage for grid directories. Multipaging also
degenerates for exact match queries when there is a strong correlation among the data.

Section 6.2.7 investigates this based on new models in characterizing distributions.

6.2.2 Data File and Algorithm Implementation

Data used in the experiments are from several sources. We use uniform random
svnthetic data, synthetic data with nonuniform distributions, as well as data from
contour maps [EMR] and the U.S. Census TIGER data.

All trie, multipaging and grid file algorithms are implemented by the author.
The R*- and X-tree implementations are from the X-tree author Berchtold [BKK96].
These are the implementations they wrote, and were run on their machine as well.
The block size of files on secondary storage was set at 4096 bytes for all tests unless
specified otherwise.

In all cases, results shown are averages of 50 to 100 runs where applicable. All
queries are on point data. Tries on shaped data are investigated and compared with
an analytical model of R*-trees [TS96]. which is beyond the scope of this chapter.
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6.2.3 Parameters

There are four parameters that may affect the query cost: file size, dimensionality,
query selectivity and distribution.

The cost of tries, R*- and X-trees are logarithmic to file sizes. Multipaging and
grid files are direct access methods and thus they are independent of file size in
general. Section 6.2.4 shows that direct access methods have greater speed in exact
match queries. But for range queries, tries outperform all others.

The increase of dimensionality degenerates the R*-tree performance. One rea-
son is due to the overlap of directories which increases rapidly with the growing
dimensionality of the data. The X-tree is designed to improve the R*-tree at high
dimensions using a hybrid organization of partial hierarchy and partial linear orga-
nizations. Tries do not have the overlapping problem as that of the R-tree variants.
In section 6.2.6. we demonstrate that tries outperform R*- and X-tree for both exact
and range queries in various dimensions.

Selectivity is defined as the ratio of records retrieved by a query to the total
number of records in the file. A range query is an example of high selectivity in most
cases. Section 6.2.5 will show that tries outperform all other data structures except
at very low selectivities, such as an exact match query.

The distribution of data in multidimensions, i.e., the way in which data correlate
across dimensions. significantly affects the performance of multipaging and grid files.
Section 6.2.7 shows that tries are not affected entirely by poor distributions in terms

of speed and storage costs.

6.2.4 Speed versus File Size

Figure 6.7, 6.8, and 6.9 show how the cost of exact match queries varies with the file
size. Figure 6.7 shows the 2D result, and figure 6.8 displays the high 16D result. Tries
are compared with X-trees, and R*-trees in 16D. As X-trees contain supernodes which
use subsequent sequential searches among its directory search. a complete analysis
should also include time delay measures. Figure 6.9 shows the equivalent elapse time

spent on disk accesses.
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Figure 6.7: Page Accesses vs. File Size, 2D. Exact Match
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Exact match: D=16, page size=4096 bytes, uniform data
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From these results. when the number of records exceeds a million, tries are slower
than multipaging by a factor of 3 and grid files by 1.5, simply because tries are log-
arithmic and not direct access structures. However, comparing with tree-like struc-
tures, tries outperform R*-trees by factors of 3.2 at 10° records in 2D. In 16D, tries
are 2.9 times more efficient in page accesses using 10° records, and outperform X-trees
at 5 x 10* records by 2.5 when considering the total time spent on disk accesses.

When file sizes increase, the trend is that trie costs increase logarithmicly, however,
tries supercede R*-trees and X-trees by greater degrees in exact match queries. This
is because R*-trees and X-trees performance deteriorates when files are bigger in high
dimensions. It is difficult for R*-trees to find overlap-free partitions when files are
very big, and thus they have more overlapped directory pages to be searched. The
X-tree tends to fail building hybrid hierarchy structures when there are an increasing
number of records in a file. Instead, the whole structure generates more and larger

supernodes, especially near the root. These supernodes near the root are more likely
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to be visited during a query. This results in a sequential search of most of the file
instead of a tree search. In fact, it is exactly this reason why in figure 6.8, when
the number of records exceeds 10%, R*-trees have an improved ability over X-trees
in terms of the number of page accesses; R*-trees have overlapped directory pages
to be visited, while X-trees have to search some supernodes® which further increase
costs. On the other hand, in terms of time spent on these disk accesses, X-trees do
sequential searches on those supernodes, which save considerable amount of access
time to secondary storage. This is why in figure 6.9, the time delay search costs of
X-trees are lower or no worse than that of R*-trees when files are larger than 10°
records in 16D.

For orthogonal range queries, figures 6.10, 6.11 and 6.12 give the same set of
comparisons at 0.2 selectivity for 2D and 16D respectively. Cost increases linearly.
along with the number of records, briefly for all structures, both in 2D and 16D,
when there are enough records. Tries are superior to all other structures. In 2D, tries
outperform R*-trees by a factor up to 5.3, and improve performance over grid files
and multipaging by a factor of 1.9 and 2.1 respectively at 10°® records. In 16D , tries
outdistance both R*-trees and X-trees up to a factor of 2.2, at 10° records.

The major reason for the enhanced performance of tries over other structures is on
account to the storage compression they achieve. In fact, tries compress data while
other methods add storage overhead which in summary accounts for the result. We
look further at the compression rate of tries in section 6.2.8.

6.2.5 Speed versus Selectivity

In this section. we give two groups of figures for the query cost versus the selectivity
for the contour and TIGER data, one in 2D and the other in 16D. The selectivity plays
a principle role in the query cost for all data structures. The higher the selectivity
is, the higher the query cost for any structure. Figures 6.13, 6.14 and 6.15 show that
tries outperform all other methods, surpassing R*-trees, grid files and multipaging by
factors 3.5, 3.1, and 2.1 respectively at 100% selectivity in 2D.

*One supernode contains a number of regular nodes, thus counts for more than a page.



CHAPTER 6. TRIES FOR MULTIDIMENSIONAL QUERIES 85

. Range Query: D=2, page size=1024, selectivity=0.2, uniform data
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Figure 6.10: Page Accesses vs. File Size, 2D, Range Query

In figure 6.13 for 2D. all curves are linear except multipaging. The cost of mul-
tipaging increases quickly at low-end selectivities. This is due to the fact that the
experimental data used here are non-uniformly. A brief explanation follows. When
the selectivity is low. the probability that pages in overflow chains are outside the
query range is high, and consequently increases the search cost. When the selectiv-
ity increases. the probability that those pages holding overflow records are located
outside the query range decreases.

In high dimensions, tries retain an advantage over both R*-trees and X-trees at
any selectivity. This again is due to the compression property of tries. The factor
of improvement now appears in the range 2.4 to 2.7 at 100% selectivity. Note that
these curves are different from that in 2D — they are not linear. All costs increase
rapidly at low selectivities, e.g., at 10% selectivity for contour map data, costs of
the R*-tree and X-tree are about 30% of those at 100% selectivity, and those of the

trie are approximately 80% of the 100% selectivity. This is the so-called “curse of
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Range Query: D=16, page size=4036 bytes, selectivity= 0.2, uniform data
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Figure 6.11: Page Accesses vs. File Size, 16D, Range Query

dimensionality”. For simplicity. assume the query range is a hypercube. With the
selectivity at 10%. the side length in a dimension is 0.1!/'® = 0.87 in a data space of
a 16D unit hypercube [0.1)'°. This is larger than three-fourth of the space in that
dimension. We know that tries always partition the space into two half subspaces.
This means that at least the first 2 x 16 + 1 = 33 levels of the trie nodes need to be
visited. A complete trie with 33 levels of nodes can hold up to 232 = 4 billion records.
Thus. with 6 x 10? records in the contour map file, 33 levels of nodes certainly means
most pages of the trie. For the R*-tree and the X-tree, the data space is split only
once in a number of dimensions. It is not split at all in the remaining dimensions,
and thus the bounding boxes of the pages include almost the whole extension of the
data space in these dimensions. For example, if a 16D data space has been split
exactly once in each dimension, it would require 2'® = 65536 data pages, and we have
only less than 2000 pages for both the R*-tree and X-tree. On the other hand, it

is intuitively clear that a query with side length of 0.87, must intersect with every
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HRange Query: "=16, page size=4096 bytes, selectivity=0.2, uniform data
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Figure 6.12: Equivalent Access Times vs. File Size, 16D, Range Query

bounding box having at least side length 0.13 in each dimension. Thus the access
probability of pages in the R*-tree and the X-tree are high even when the selectivity
is not particularly high; it is this which contributes to the high cost of the queries at
10% selectivity. A more accurate analyvsis for the curse of dimensionality on X-trees

(and R*-trees) for range queries can be found in the literature [BBK98].

6.2.6 Speed versus Dimension

Poor R*-tree behavior at higher dimensions has provided a motivation for the intro-
duction of X-trees. We move on to see how tries behave in higher dimensions. We
make two sets of experiments on tries, R*-trees and X-trees, one for exact match
query and the other for high selectivity range queries. In each set, we give both the
average number of disk accesses and the equivalent time spent on these page accesses.

Figures 6.16 and 6.18 show that tries remain better than R-trees and X-trees

by factors similar to the experimental results in the previous subsections for exact
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Range Query: D=2, page size=1024 bytes
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Figure 6.13: Page Accesses vs. Selectivity, 2D

matches and range queries with the selectivity fixed at 20%. Figures 6.17 and 6.19
again confirm superior trie performance when measuring times spent on disk accesses.

These experiments are done by fixing the file size at 6.4MB. The higher the di-
mensionality. the fewer the number of records actually stored. This explains why
tries have slightly better performance for exact matches in higher dimensions. On
the other hand. the key length increases with dimension. Moreover, for range queries
with fixed selectivity. the higher dimensionality indicates that in each dimension the
range to be searched within that attribute space becomes larger on average. This is
the reason that costs for range queries by tries increase with dimensionality. However,
tries remain cost effective over both R*-tress and X-trees due to their compactness.

The trie curves in figure 6.18 and 6.19 have the same shape as those of R*/X-trees.
All of them increase rapidly for low dimensionality, say less than 6 to 8 dimensions.
The reason is quite similar to what is explained at the end of section 6.2.3, the so-

called “curse of dimensionality”. Assuming the query range is a hypercube, when
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Figure 6.14: Page Accesses vs. Selectivity, 16D

the dimensionality increases, the query side length increases non-linearly. At 20%
selectivity, the side length is 0.45 in 2D, 0.67 in 4D, 0.82 in 8D, and 0.90 in 16D. For
X-trees (and R*-trees). the percentage of accessed pages quickly approaches the 100%-
mark as the dimensionality reaches 10. and when database size and selectivity are
fixed, according to Berchtold [BBK98|. This roughly explains why when dimensions
exceed 8. the curves of the X- and R*-trees are almost flat — the queries retrieve

almost all pages in the files while the database size (file size) is fixed.

6.2.7 Speed and Storage Cost versus Data Distribution

The distribution of data in the multidimensional space can seriously affect the per-
formance of grid files and multipaging in storage space and search time respectively.
Thus we must find ways to characterize and quantify these distributions.

The usual statistical measures of correlation are not suitable indicators of the

distribution as they depend on the order of the data. Thus, attribute Y may be a
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Figure 6.15: Equivalent Access Times vs. Selectivity, 16D

function of attribute X', y = f(z), but the statistical correlation between X and Y
will be quite different depending on whether f is a straight line or f has points which
are distributed uniformly across the plane.

We turn to information theory and find that the information-theoretic correlation,
which we will from now refer to as correlation for simplicity. provides an excellent
measure for the behavior of multipaging. Similarly, the mutual information, which we
will from now on refer to as information, is a good indicator for grid files performance.

For random variables X.Y,...,Z with probability p(zi,y;,.... %), and X = z;,

Y =y; ... Z = z, the information is
Ixy .z = Z p(Ti, yj, -5 2k) log p(Ti, Yy -er 2k)
ij..k

The correlation is given by the expression

Ixy. z—Ix—Iy—...— Iz
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The correlation vanishes only when the distribution of X, Y’ ..., Z is the product
of the distributions of the individual fields. This is referred to as a Cartesian product
distribution. The correlation reaches its maximum when every pair of variables forms
a function. A Cartesian product distribution is ideal for multipaging. On the other
hand, functional dependencies produce pathological distributions. An example of such
is a circular distribution. which also has a high correlation. Therefore, we consider
the correlation as a good predictor of multipaging performance for access times.

The information is minimal when the probabilities are all equal and the distri-
bution is uniform’. The information is maximal when all probabilities but one are
zero. and the distribution is sharp. This happens exactly when the grid file directory
has to waste the most space. Thus we can use the information to predict grid file

directorv space costs.
Storage consumption:D=2,page size=1024 bytes,synthetic data,#records=1000k
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Figure 6.20: Storage Cost vs. Distribution

"Note that we are using the negative of what is normally called “information” and which is max-
imum for uniform distributions. This is to make the consistency that low values always correspond
to good performance.
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Exact match: D=2, page size=1024 bytes, synthetic data, #records=1000k
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Figure 6.21: Exact Match: Access Cost vs. Distribution

[t can be misleading if we measure information and correlation based on each indi-
vidual record location. For instance, Y might be a function of X' and the correlation
is at a maximum. and thus the predicated performance of multipaging is very poor.
But this function could be such that every page of a multipaging space is uniformly
occupied, which results in optimal performance. As we count costs in terms of disk
pages/blocks on secondary storage. we measure the probabilities for page locations,
i.e., aggregated over pagefuls of records, in the following experiments.

To test the effects of data distribution, we use a 2D synthetic data with distri-
butions ranging from Cartesian product to functional straight lines, each with 10°
records and a page capacity of 1024 bytes.

A poor data distribution affects the storage of grid files, but does not bother
tries or multipaging. Thus, we use information as a measure of the distribution

in Figure 6.20 *. Multipaging requires a small storage overhead. The trie gains

*The correlations as defined are negative. and to help intuition, we double the negative.
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compression due to the overlap of paths near roots. The grid file starts with a 50%
overhead, and it rises to 350% as the distribution quality declines. This is mainly due
to the expansion of the grid directory. The R*- and X-trees have overheads that fall in
the range of 130% to 300%. But apparently they do not depend on the information.

Figure 6.21 shows the effect of the data distribution on access costs. Multipaging
is the only data structure which shows a dependency, and thus the correlation is used
as a measure of the data distribution!. For a good distribution (correlation is 0),
multipaging demonstrates the best performance at one access, followed by grid files
and tries, at a constant two and three accesses respectively, at this particular number
of kevs.

R-trees and X-trees retain higher access costs than the other methods, but are
unaffected by the data distribution in general. R-trees have higher access costs be-
cause of the overlaps of rectangles causing more pages than necessary to be searched.
The costs of X-trees are very similar to R-trees since we count a super node access
as equivalent to many regular page accesses, however, recall that the linear accesses
can in fact reduce the costs in time to those less than that of R-trees.

The cost of muitipaging degenerates quickly, while others are remain stable for

different distributions.

6.2.8 Data Compression versus Storage Overhead

One of the main reasons that tries obtain an advantage over other methods for exact
match and range queries rests on the fact that it compresses data. We define the
file compression rate as the ratio of the size of the compressed file to the size of the
original data file. Figure 3.1 in chapter 5 shows that the file compression rate becomes
less than 0.1, i.e., over 90% of the file size has been reduced, for large files in 1D.
In addition, the data compression also depends on the size of a data record (if we
assume that every attribute of a record consumes the same space, then the size of a

data record is determined by its dimensionality as well). Figure 6.22 shows how the

$The absolute value ranges from 0 to a maximum, which depends on the size of the data set.
The range is not significant.
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trie compression rate varies depending on the record size (dimensions). The curves
correspond to file sizes of 1.28 and 6.4 MB of uniform data. From the figures we see
that an inverse relationship exists between record size and file compression rate. This
follows, since if we fix the size of the data file, larger record size implies fewer records,

and thus less common paths to be shared near the trie root.

Compression by tries: page size=4096, uniform data
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Figure 6.22: Trie Compression vs. Record Size (Dimension)

6.3 Summary

This chapter extends tries for general queries other than text searching and spatial
data retrieval. We use tries for multidimensional exact match queries and orthogonal
range queries. Orthogonal range queries are applicable to spatial data such as maps,
but are strictly more general — the attributes queried need not be even numeric.

We address access cost and storage cost in terms of file size, record size, selectivity,
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dimensionality and distribution. Our experimental results show that tries are superior
to all other structures (both direct access methods represented by multipaging and
grid files, and tree structures including B-trees, R-trees/R*-trees and X-trees) in
queries returning more than a few records. Moreover, tries are competitive with
direct access method in exact match queries.

Unlike multipaging which can deteriorate on search cost with pathological dis-
tributions. and grid files which can waste storage space on grid directories for bad
distributions. tries are unaffected by the data distribution.

For high dimensionality, tries are still up to 2 and 3 times better than R*- and
X-trees which were invented for high dimensional spatial data.

Tries always compress data, resulting in savings for storage cost. This is in contrast
to grid files which consume large amounts of space for uneven distributions, and R*-
trees and X-trees that use at least twice as much space as the sources. However, it is
noted that multipaging does indeed have small space overhead as in the case of tries.

In fact. trie compression is one of the two major reasons that tries achieve better
speed performance for queries returning more than a few records. This combines
with the variable-resolution property, enable tries to be a superior method for mul-
tidimensional general data. Our task is to extend them to more general queries and

operations. In the next chapter. we will apply tries to relational join operations.



Chapter 7
Relational Joins by Tries

We have surveyed join algorithms in Section 3.3. Overall, to the best of our knowledge,
there has been no work on join algorithms that takes advantage of existing data
structures, i.e., no extra indexes, for better join performance. and vet achieving spatial
compression at the same time.

In this chapter. we are working on data sets organized by tries, not relations di-
rectly. With the built-in properties of order preservation on keys. storage compression
and variable-resolution. tries have benefits not only in indexing large text data and
spatial data retrieval. but also in general database queries such as exact matches and
orthogonal range queries. In this chapter we extend them for even broader use to join
processing.

We first assume that the join attributes do not have duplicates, i.e., they are keys.
In this situation. joins are in fact set operations. Our inputs are two tries built on the
join attributes and the join result is a new trie. Based on the unique characteristics of

the data structure, there are a number of advantages that joins by tries can achieve.

1. The variable-resolution structure of the trie supports less than one pass search
cost in terms of the trie size. This happens in practice by making decisions
at low resolutions near the root as to whether a particular subtrie needs to be

visited or not for various unary queries and binary joins.

2. The worst case cost of the trie join (TJ) algorithm happens when ranges of join
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attribute values are totally overlapped, and that the output values organized by
the trie are as large as the input tries. In this case, complete traversals of both
input tries have to be done. But due to the compression tries achieve, the cost
is still less than one pass of the original data sets without trie compressions.
Therefore the worst case join cost is linear with a leading coefficient which is
less unity. Note that we exclude the cost of the input trie construction and
sorting.

3. Hash join methods do not preserve order, which is indeed maintained by tries.
This property allows tries to be easily extended for efficient non-equijoins.
Among them, union (union), symmetric difference (ror), and difference join

(minus) operators will be considered in further discussions.

4. When there exist indexes on joining attributes, which is the situation in very
large databases. the queries can make use of these indexes to achieve better

performance. Our input tries have built-in indexes on joining attributes.

7.1 Join Algorithms by Tries

Binary tries for data sets R and S in section 3.3.2 figure 3.5(a) are given in fig-
ure 7.1(a). The two sets in binary format are [00010, 00011, 00100, 00101, 01101,
10000. 10001. 10010], and [00001, 00010, ...,01111] respectively. Figure 7.1(b) shows
their corresponding OrTries. QOur join algorithm performs synchronous, depth-first,
post-order traversals of the tries. First, root nodes of R and S are visited, and the
depth-first traversals lead to the first left leaf node of R and the second left leaf node of
S shown in figure 7.1(b), with paths 10, 11, 11, 01, 11. The two nodes are compared
by an and operator, 00 and 00, resulting in 00, a new leaf node. Then, the join visits
the right siblings and performs and operation on them, which results in a leaf node 00
as well. Next, the post-order traversal returns to the parent rode 1. As it has both
left and right children. the value 11 is made final. The post-order traversal returns
back another level, to node 01, and it is made final as well, as it only has a right child

node I1. The post-order traversals of both tries continue. When the second nodes
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(a) (Full) Tries for Set R and S
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(b) OrTries for Set R and S (Shaded nodes are the common nodes visited during the join process.)
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1100{101}
01 10

il
00 00 00 00

(c) Resulting Trie after Natural Join of Rand S

Figure 7.1: Joining Data Set R and S by Tries
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on the third levels, 00{010} and 11, are reached, with the former a leaf node and the
latter an internal node, and since the path 010 can also lead to a leaf on S, a match
is found and the join results in a leaf node 00{010}. Otherwise, the resuiting node is
empty. and we denote it by ¢. If this happened, when returning to the parent node,
the corresponding offspring, right child in this case, should have been truncated: the
parent node should be changed to 10 from 11. When the traversals of R and S return
to the roots, the output node 10 is made final, and the join process is complete. The
shaded nodes in figure 7.1(b) give the common paths that are traversed by the join
process. Other nodes have been skipped during the process. The output trie is given
in figure 7.1(c).

Now we summarize the trie join algorithm from the above example; it is a svn-
chronous. depth-first post-order traversal of the two tries of input data sets. The
traversal starts with the roots of the two tries, and moves down levels in tandem until
there is no match possible in the subtries, or a leaf node is reached in one of them.
At each step, the two nodes from two tries are compared. If the result is a match. the
corresponding subtries are then visited, resulting in depth-first traversals. Otherwise.
when returning to its parent node. this offspring should be removed in the output.
and the subtries rooted at these two nodes need no further visits. When two nodes
are first visited during the traversals, the logical and operation is performed on the
2-bit nodes. If the result is not 00 for internal nodes, it is a match. However. when
any leaf node 00{remaining bits} is involved, if the other node in comparison is also a
leaf node and their remaining bits are a match, or if it is an internal node and a path
from the node to a leaf representing the same remaining bits, then it is still considered
as a match. In both cases, 00{remaining bits} is the result of the join. Otherwise.
the result is a mismatch and the path from its ancestor node must be truncated.

Table 7.1 is a binary table showing the result of the logical and operator on two
nodes from the input tries, when they are first visited during the traversals. The first
column and the first row give node values from the two input tries respectively. The
result is Rb, an abbreviation for remaining bits, if the two inputs match, else empty,
denoted by ¢. When the result is empty, it means that the link must be removed

from its parent node when the post-order traversal returns to the parent level. As a
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| 00{75} 01 10 11
00{rb} || 00{rb} or ¢ | 00{rb} or ¢ | 00{rb} or ¢ | 00{rb} or &

01 00{rb} or ¢ 01 ) 01

10 | 00{rb} or & p 10 10

11| 00{rb} or & 01 10 11

Table 7.1: And Operation of Two nodes in Natural Joins by Tries

result, table 7.1 is modified to table 7.2 to include all possible output values when the

node is revisited after both its children have been visited in the post-order traversal.

[ 00{r6} | Ol 10 1 |
00{rb} || 00{rb} or ¢ | 00{rb} or ¢ | 00{rb} or @ | 00{rb} or ¢
01 00{rb} or ¢ 01 or ¢ o) 01 or ¢
10 00{rb} or @ ) 10 or ¢ 10 or ¢
11 00{rb} or ¢ 01 or ¢ ¢ or 10 01, 10, 11 or o

Table 7.2: Matching Two Nodes in Natural Joins by Tries

With B blocks of memory buffer, larger than three trie heights in pages, the paths
from root to leaf during traversals on both input and output tries can always stayv
in RAM. Therefore, the cost of the join in terms of disk accesses consists only of the
cost of traversals of both input tries, and thus is always no more than one pass of the
input tries. Figure 7.2 gives the detailed natural join algorithm by tries (TJ).

As tries maintain key order, the TJ algorithm can be extended for efficient union
joins (or). symmetric difference (zor) and difference (minus) operations as well. Ta-
ble 7.3 shows the possible union join results on two input trie nodes. When no leaf
nodes are involved, the union of two nodes is the simple logical or operation on two
nodes. Otherwise, the result depends on what the remaining bits stored on a leaf
node are. For example. 00{ 0zzz} union 00{1yyy} results in 11 (and 00{zzz} 00{yyy}
at its child level). Tables 7.4 and 7.5 give the zor and minus operations on two input
nodes respectively.

Similarly to the natural join algorithm given in figure 7.2, the union, symmetric

difference and difference join operations on tries can be obtained. The union join
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BOOL NaturalJoin(TrieNode stl, TrieNode »t2)

{
if( is_leaf(tl) or is_leaf(t2)) {
if(NaturalJoinOneLeaf (t1, t2)} {
write_a_leaf_node(tl); //output the leaf node to the resulting trie;
return(TRUE) ;
}
else
return(FALSE) ;
}
node= 0; // set two bits for the node to be 00
if (both t1 and t2 have left branches) {
if( Naturalloin (t1-> left, t2-> left))
node += 2; // set tuwo bits for the node to be ‘iX’
}
if (both tl and t2 have right branches)
if (NaturalJoin (t1-> right, t2-> right))
node += 1; // set two bits for the node to be ‘X1’
}
if (node == 0) // no match
return( FALSE);
write_a_node( node); //output the node to the resulting trie;
return (TRUE);
}

BOOL NaturalJoinOneLeaf(TrieNode stl, TrieNode =t2)
{
if (is_leaf(tl) and is_leaf(t2))
return (NaturallJoinLeaves( tl, t2));

if (is_leaf(t2))
return (NaturalloinOnelLeaf( ti, t2)); //t1l is the leaf node

//there is only one path from node t2 that might match with t1
if ( cur_bit(tl) matches with node t2 ) {
if ( is_leaf_level(t2) )
return (TRUE);
else
return( NaturalJoinOneleaf( t1, t2-> left));

}

return (FALSE);
}
BOOL NaturalJoinLeaves( TrieNode st1, TrieNode »t2)
{

if (rest_bits_match( t1, t2))

return (TRUE);

return (FALSE);

}

Figure 7.2: Natural Join Algorithm by Tries
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[ 00{rb} 01 10 11 ]
00{rb} || 00{rb}, 01,10 0r 11 {0l or 11 | 10 or 11 | 11
01 0lorll 01 11 11
10 10 or 11 11 10 11
11 11 11 il 11

Table 7.3: Matching Two Nodes in Union Join of Tries

| | 00{rb} 01 10 11 |
00{rb} || . 01,10 0r 11 | .0l or 11 | ¢, 10 or 11 01,10 or 11
01 ¢.0lorll ¢ or 01 11 10 or 11
10 o, 10 or 11 11 o or 10 Olorll
11 01.10 or 11 10 or 11 Ol or 11 ¢.01, 10 or 11

Table 7.4: Matching Two Nodes in Symmetric Difference Join of Tries

[ 00{ 70} 01 10 11 ]
00{rb} || © or 00{rb} | ® or 00{rb} | ¢ or 00{rb} | & or 00{rb}
01 00 or 01 ¢ or 01 01 ¢ or 01
10 00 or 10 10 ¢ or 10 o or 10
11 01, 10 or 11 10 or 11 Olor1l 0, 01, 10 or 11

Table 7.5: Matching Two Nodes in Difference Join of Tries
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algorithm is simpler than the other joins in the sense that there is no need to backtrack
and truncate paths from leaves to the root. The point is that tries are capable of
various binary join operations. In the following discussion, we focus on natural join
as a representative of various join types which can be performed efficiently on trie
structures.

The above discussion on trie joins assumes that join attributes have no duplicate

values. In the presence of duplicates. there are two different situations:

1. There exist non-join attributes, which are not indexed by the tries. This leads
to a scenario where trie leaf nodes contain pointers to more than one record
stored on a separate file (or records share the same indexed attributes but have

different remaining attributes stored on a trie leaf).

2. There exist non-join attributes which are indexed on k-d-tries. This implies
that some trie node levels are non-join attribute bits and should be skipped

during the join.

In the first case, the join algorithm remains the same except at the end of the join
when leaves are reached; either pointers are used to point to all remaining non-join
attributes corresponding to many records on files, or these records have to be stored
on the leaf node themselves. We now partition the cost of joins into two parts: one
for reading the input tries, and the other for writing the result to disk. Clearly, unlike
other join algorithms. the complexity of the first part of the TJ algorithm does not
increase. even though the size of the result increases. However, the cost of writing
the output trie to disk increases.

In the second case. the TJ algorithm performs only on node levels representing
the join attributes and skips others. The trie join becomes a many-forest join . The
same is true for all other join algorithms. If duplicates can not be held within the

memory buffer, the cost of the TJ algorithm will be quadratic.
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7.2 Comparisons of TJ with Existing Join Algo-

rithms

Some of the representative and state-of-the-art join algorithms include the sort-merge
join (SMJ), the distributive join (DJ), the join by fragment algorithm and the bucket
skip merge join (BSMJ). However, since the TJ algorithms use the built-in indexes
on joining attributes, we assume the following for data sets in order to make fair

comparisons.

L. For SMJ, both input sets are ordered according to join attributes. That is, only

the merge phrase has to be carried out. Therefore we call it merge join (MJ)
from now on.

2. For DJ, both input data sets are already in order, and the distribution table
has been built.

3. For BSMJ, input sets are in order and the bucket tables have been built up.

It is pointed out and proven by Negri [NP91] that when input files are sorted

according to join attributes, the above join methods have the following relations:
MJ>DJ>JF

where *>" means more efficient than. Therefore it is true that TJ is a more efficient
join algorithm than MJ, DJ, JF and BSMJ if only we can show that T.J is more
efficient than both MJ and BSMJ for data sets ordered on join attributes. Thus, our
comparisons become focussed on TJ, MJ and BSMJ.

7.2.1 Best and Worst Case Analysis of TJ, MJ and BSMJ
Algorithms
The efficiency of a join algorithm is best characterized by the amount of disk accesses

required for the join processing. In this subsection, we analyze the best and worst

case in terms of disk accesses for TJ, MJ and BSMJ.
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The best case for the TJ scheme occurs when there is no match at the top trie
levels, especially if the root pages do not match. In this instance, the total disk access
cost of TJ is two pages. However, MJ and BSMJ may still need to load all the pages
for a possible match as ranges for the two datasets may fully overlap with each other.
Therefore, this may still be the worst case for the MJ and BSMJ schemes.

The best case for MJ and BSMJ occurs when all values of the join attributes of
one set is less than (or greater than) that of the other set. In this case, M.J will
examine all the pages of one dataset and only the first page of the other, i.e., Vg + 1
blocks. as the cursor moves only in one key set. BSMJ only needs to visit the bucket
tables, and no pages in the data set are visited. In fact, one bucket table page of set
R and all bucket table pages of set S, which correspond to Nsb/p pages. Assume a
file with 10% data items of 8 bytes each, page size p = 4096 bytes and bucket table
entry size b = 20 bytes. Then N, = 8 x 10°/4096 = 1953, and the bucket table
size is 1953 x 20/4096 =~ 10 pages. The best case for BSMJ is to visit only the
bucket table for set S. plus the first bucket table page for set R. Thus the total
cost is about 11 accesses. The upper bound for the cost of TJ in this situation is
Height(trie,) + Height(trie,). where the height of the trie in pages is a logarithmic
function of the size of the data set. For a file with several million data items, the
trie height can be as low as 3 pages. Thus a typical upper bound of TJ cost is about
2 x 3 = 6 pages.

The worst case of the TJ algorithm occurs when all pages have to be loaded from
the disk. Of course. this happens when all the join attributes overlap. The same
situation also coincides with the worst case of the MJ and BSMJ schemes when MJ
needs to visit all data pages. and BSMJ not only has to visit all data pages but also
the entire set of bucket tables.

Table 7.6 summarizes the best and the worst case cost for each join algorithm.
The best case speed-up of TJ can be orders of magnitudes improvement over MJ
and BSMJ. It shows that even in the worst case, TJ outperforms MJ and BSMJ by
a factor of 1/r (assume r = r, = r.), where r is the compression ratio of the trie
organization. This compression ratio is a function of the file size and the size of data

items, and it can be any value between 0 and 1 for data sets containing more than
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Case Join Algorithm | Disk Access Cost
Best case BSMJ NS% +1
MJ Ng+1
TJ 2
Worst case BSMJ (1 + 2)(Ng + Ns)
MJ (.‘VR + le)
TJ TRNR + 7T iVs

Table 7.6: Best and Worst Case Cost Summary for Join Methods

a few hundred records. This means a speed-up by TJ over MJ and BSMJ is no less
than one in the worst case.

In the case of duplicate join attribute values, nested block scan have to be applied
for all these join algorithms including the TJ scheme. The worst case cost is quadratic
to the input relation sizes. But since tries organize data with considerable compres-
sion, the gain by a TJ scheme over other methods increases. Assume the cost of MJ
by nested block scan is C N2, where Cis a constant, and N is the input relation size.
[f we assume the compression rate by trie organization is r, where 0 < r < 1, then the
size of the input tries is r.V and the cost by TJ is no more than C(rN)? = r2C.N=.
Hence, the T.J scheme still outperforms its competitors, and its cost is no more than
r of that of MJ with nested block scan. The more tries compress data, the smaller
r is resulting in a more efficient TJ.

7.2.2 Experimental Comparisons

In this subsection we give and compare experimental results for TJ, MJ and BSMJ.
Two important parameters for the tests are the join selectivity, defined as the ratio
of the overlapped range to the total input data range of an attribute, and the dataset
size. Thus we have made two sets of experiments; one is disk access versus the join
selectivity, and the other is disk access with respect to input file size.

All test data sets are 2D random data uniformly distributed between [0,1). If
the join selectivity is P, then the two joins sets are in the range of [0, (1 + P)/2)? and

(1 = P)/2.1)? respectively. For example, if P= 0.4, the left set range is [0,0.7)? and
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the right set range is [0.3,1)%.

Figure 7.3(a) shows the cost of disk accesses with respect to the join selectivity.
The dataset size is 500k records (4M bytes) for both input sets. TJ has the fewest disk
accesses, while BSMJ and MJ vie in their role as the most expensive. The starting
cost of MJ is the highest, since it has to examine at least one of the two input data
files, even when the files have no intersection at all. The starting cost of BSMJ is
not as cost as MJ because it includes only the visits to bucket tables when the join
selectivity is zero. TJ is the best among the three at P = 0, as it avoids visiting all
the remaining files by making decisions at the root page levels. It can be observed
that all three schemes are affected by the join selectivity because when the selectivity
grows, more data items are involved in the join and the corresponding disk accesses
increase.

Figure 7.3(b) shows the speed-up of TJ over MJ and BSMJ. The lower the join se-
lectivity, the more TJ improves over the other two methods. Even when the selectivity
is one, i.e., the two joining sets are fully overlapped, TJ has a marked improvement
over both MJ and BSMJ by a factor of 2. BSMJ is better than MJ when join selec-
tivity is less than one. However, this is reversed when selectivity is one because of
the extra accesses to the bucket tables by BSMJ.

The added advantages that TJ exhibits in terms of disk access can be explained
by the following points. Firstly, the compression property of tries makes the input
data sets organized by tries consume less space. Secondly, the variable-resolution
structure of tries enable TJ to avoid some accesses to lower level (high resolution)
pages by making decisions at low resolution levels near the root. When the join selec-
tivity is low, the variable-resolution property is the primary reason for the enhanced
performance over the other two join algorithms. When the join selectivity is high.
the compression property becomes the major factor for the improvement.

TJ scales verv well with respect to the size of the input sets; the scalability of the
algorithm is compared in figure 7.4. The join selectivity is fixed at 0.4 for these tests.
Figure 7.4(a) shows the cost of joins in terms of disk accesses when the file size varies
from 100 records to 10° records. The abscissa represents the file size as indicated by

the number of records in each input data file. Both the abscissa and ordinate are
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in logarithmic measures. Even though costs for all three algorithms are linear with
respect to the input size, TJ not only has the lowest cost but also the smallest slope.
This results from tries compression as the sizes of the data sets increase. On the
right of figure 7.4(b), we clearly see the relative speed-up of tries over the other two
methods. The improvement is between 2.2 and 4.8 times for MJ, and between 2.0
and 3.5 times for BSMJ when files contain from a 10° to 10° records. Both graphs in

figure 7.4 clearly show that the TJ method scales very well with input size.

7.3 Discussions and Conclusions

Join processing, a costly operation in relational database systems, critically deter-
mines the performance of information retrievals and database queries. The cost of
join operations on large input data files largely consists of the disk accesses. Al-
though it is a relatively mature field in database technology, the TJ algorithm we
present here is a new method that achieves significant performance improvement over
the traditional join schemes and the recent BSMJ scheme, and is therefore more ef-
ficient than the representative join algorithms JF and DJ when input data sets are
already sorted according to the join attributes. Like BSMJ scheme, it improves over
SMJ by avoiding accesses to data items and reducing page accesses whenever pos-
sible. But unlike BSMJ which maintains extra bucket tables to achieve the bucket
skips. TJ achieves the improvement without using extra indexes. It simply applies
the variable-resolution structure of tries on the join attributes to avoid unnecessary
block/page accesses at an early stage near the trie root. Instead of using extra stor-
age, TJ takes the advantage of the compression property of tries to achieve storage
compression as well as speed improvement.

The major contributions of the chapter are as follows:

e TJ algorithm and its extension from natural joins to union joins as one aspect in
the process of proposing tries as efficient data structures on secondary storage
for specialized and structured data {Zha96|;

e Analysis of the best and the worst case performance of T algorithms as well
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. as competitive join algorithms MJ and BSMJ;

e Detailed performance tests which show the superior performance improvement
of TJ over BSMJ and MJ, and thus show the superiority over the improved
hash join method JF and the improved merge join method DJ when input sets

are ordered.

So far we have assumed that the join attributes of the input data files are keys
stored on trie structures. If the input data files are not organized by tries or the
join attributes are not stored as keys on trie structures, we need to build tries on
these join attributes before performing the join. The construction of a trie from an
unordered input data set, like the construction of any other index structure, has a
cost of :Vlog(.V), where .V is the number of keys. Thus, it remains an open research
problem whether in this case joins by tries would still outperform existing join al-
gorithms. Nevertheless, detailed TJ algorithms and experimental resuits need to be
explored in the situation when some. but not all attributes indexed by k-d-tries, are

involved in the join process.



Chapter 8

Conclusion

8.1 Contributions

Trie Organization

Based on the pointerless trie structures FuTrie, OrTrie and PaTrie, we have proposed
DyOrTries. They represent an improvement in that they separate trie nodes stored
on pages from the page headers and counters which are used to preserve tree searches
instead of linear searches within a page level, and thus are capable of dynamic inser-
tions and deletions of records. We have focussed on this particular methodology to

make tries dynamic in order to lead to our own work and further claims.

Order-preserving Key-to-Address Transformation Function

We have proposed a class of order-preserving kev-to-address transformation functions
which we call tidy functions. These heuristic piece-wise linear tidy functions have no
space overhead and can be constructed in linear time. They are competitive to B-trees
and the closest minimum order-preserving hashing method in search performance for
files up to more than 10GB (107 pages with page capacity 1KB) in size, while requiring
no extra storage. Our results show that for files with about 107 pages, the method
requires around three disk accesses to search a given key. It is simple in concept. and

the construction and searching algorithms are straightforward.
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However, we have applied also 1D tries as the order-preserving key-to-address
transformation function. The search performance by the trie method benefits from
the fact that it stores kevs with the most important bits first, near the root. This
variable-resolution structure permits the trie to avoid unnecessary searches into some
subtries at the early stage and only explore nodes where there is a possible match.
From our experimental results, 1D tries are superior in search performance to the
tidv function we proposed: indeed with ordered keys, the construction algorithm
needs only to pass the source file once, which is less costly than the construction
of linear heuristic tidy functions. Other advantages include reduced storage space

requirement as a resuit of trie compression, and support for dynamic insertions and

deletions of records.

Variable Resolution Queries

In this work, we extend tries to multidimensional structured data on secondary storage
other than text and spatial data. To supplement this effort, we propose exact match
and the general orthogonal range query algorithms.

We also have done extensive experimental comparisons with representative mul-
tidimensional data structures in two categories: direct access methods including grid
files and multipaging, and logarithmic methods including R*-trees and X-trees. The
access and storage costs are addressed based on four categories: the query selectivity.
data distribution, the dimensionality and the file size (record size). The access cost
is measured both with the number of disk accesses, and the equivalent time spent on
the disk accesses based on disk parameters.

Our experimental results show that tries have the best query performance among
all the above competitors for queries returning more than a few records. Tries are also
competitive in exact match queries with the two direct access methods (multipaging
and grid files).

Tries are not affected by poor data distributions both in searching and storage
cost; this is in contrast to the access cost of multipaging which increases rapidly for

pathological distributions and the grid file degeneration as the directory size grows
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rapidly. To aid in our analysis, we have proposed two new analysis methods to
characterize and quantify the distribution for grid files and multipaging.

As we carry on the comparison to R*-trees and X-trees in high dimensions. tries
are able to show their reliability by displaying improved performance by factors by
up to 2 or 3 times depending on the query selectivity.

Tries are also superior to all other methods in terms of storage cost. These other
methods either require a small amount of additional space (multipaging), or significant
amounts of directory (index) space (grid files, R*-trees and X-trees) on secondary
storage. Tries compress data due to sharing common paths near the root. The file
compression ratio of tries ranges between zero and one, depending on the file size and
the record size. In general. trie compression increases as the file size grows larger. An

inverse relationship exists as the record size becomes larger.

Trie Joins

We apply tries to binary operations by presenting new (natural) join algorithms by
tries. The new algorithm takes two input tries and outputs a new trie by joining
common keys. It achieves significant performance improvement in comparison to the
bucket skip merge join, the best among competitors to trie joins, including the sort-
merge join, the distributive join, and the join-by-fragment algorithms. Our scheme
applies the order-preserving and variable-resolution trie structures on join keys to
avoid unnecessary page accessing at an early stage near the root. Instead of requiring
extra indexes. it takes advantage of trie compression in order to obtain significant
speed improvement. Our natural join (set merging) algorithm of tries can easily be
extended to union joins. difference joins and exclusive or operations o two tries.

Moreover, the join attributes need not to be keys. If the input trie indexes at-
tributes contain attributes that are not exclusively join attributes, the algorithm can
be easily extended by skipping the levels of trie nodes containing non-join attributes
and performs the join operations only on node levels of the join attributes.

By extending tries, traditionally applied to text and spatial data, to general 1D
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or multidimensional data on secondary storage to perform exact match queries, or-
thogonal range queries, as well as binary operations represented by join operations

on tries, we have explicitly demonstrated the following:

e the variable-resolution trie structure achieves efficient query performance;

e the trie compression not only saves storage cost, but also makes high selectivity

queries and operations on tries affordable;
o the trie method is unaffected by data distributions; and

e the query performance by tries is better than the representative tree structures.

such as R*- and X-trees, designed for multiple and high dimensions.

8.2 Future Research

Although trie construction methods are much more efficient when all the data is
inserted at once rather than by single record insertion, we have discussed and mod-
ified the trie organization on secondary storage so that it is is capable of inserting
and deleting records at run time. However, we have not discussed how the storage
overhead would increase as a trade-off for supporting these dynamic operations.

Several new data structures and methodologies are invented each year; to keep
track of them and continually compare with tries becomes a challenging, and even an
endless task!

We need to extend the trie method to broader queries other than the exact match
queries and range queries. Will tries still be more efficient or at least competitive
for other queries. such as the nearest neighbor queries of recent specialized data
structures, such as SS-trees and SR-trees, which are especially designed for such
queries?

We have investigated principally natural joins of tries with the attributes organized
by the input tries. This raises the question of the whole family of various joins. What

if the attributes indexed on one trie are not in the same order as the attributes on
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the other input trie? What if there are more attributes on the input tries than the
common join attributes? what if the join attributes are not ordered by the trie at
all? Can we still benefit from trie joins? Algorithms in the above situations need to
be invented, implemented and tested.

In a word, this work is a modest, albeit important, attempt at presenting the
trie method, a simple but powerful and efficient method, as a key to general pur-
pose queries and operations on multidimensional data. There still remains a lot of

unplotted ground for further research and study.
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Appendix [. Brief History of Trie Structures

Year(s) Descriptions and Citations

39
60
68
68.73
76

o dand

ti
8
80.81
82
84
85
86
88

89

90
91

93

First paper on trie structures [Bri39]

Trie memory (Retrieval) [Fre60]

Patricia tries for text and prefix searching [Mor68]
Pruned trie. digital trees, patricia trie [Knu68, Knu73|
Compressed trie/c-trie for static data [Mal76]
Complexity of trie constructions [CS77]

Quadtries [Hun7§]

Trie hashing [ED80. Lit80, Lit81]

K-d-tries and bitstring representation of tries [Ore82b], octree [Mca82]
Z-order to organize k-dimensional data [OM84]

Suffix tries [Apo83]. Trie hashing [Lit853]

Trie methods applied on lexical analyzers and compliers [ASUS6]
Trie methods on natural language analysis [TITK88]
Prefix text search., PAT tree [Gon88]

More trie hashing (LZL88, Reg88]

Tries applied to data compression [BWC89, FG89]
Pattern recognition [BS89),

Natual language analysis [Jon89]. and

Spelling checker [LEMRS89]

Trie implementation [RBK89]

Pr-tries and quadtries for spatial data [Sam90)]

Tries for pattern recognitions|DTK91],

Parallel searching [HCE91]

Trie implementations for minimal-prefix tries [Dun91]
Patarray for text indexing [GBY91, Gon91]

Tries for prefix text search [Tom92]

Suffix tries analysis{Szp92]

Suffix trie implementations{AN93]
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94

96
98

Trie hashing for similarity retrieval in pictorial databases [CL93]
FuTrie for spatial data zooming [MS94]

PaTrie for text indexing and spatial data zooming [Sha94|
Compressing trie [MIA94]

Trie application on signal processing [lig93)

Trie application on pattern recognition [ABV95]

Generalization of trie structures [CM95]

Tries for approximate string matching [SM96, MSZ96)

LC-tries on IP routing [NK98]



