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ABSTRACT 

A study is made of the topological space ~-X, where ~X 

denotes the Stone-Cech compactification of the o-compact Hausdorff 

space X. A homomorphism i8 defined from the Boolean algebra R(X) 

of aIl regular closed subsets of X into R(~-X). Under certain 

conditions, the image under this mapping of a certain subalgebra of 

R(X) is isomorphic to the Boolesn algebra of aIl open-and-closed sub

sets of ~-N, where N is the countable discrete space. This re--. . 
suit is used to obtain new properties of the projective cover of ~-X 

and of the set of remote points of . ~. The Lebesgue dimension of 

~-X is studied, and a new proof is given of the (known) theorem that 

~Rn_Rn has dimension n (where Rn denotes Euclidean n-space). 

~t __ R+ denote the space of non-ne;ative real numbers. Then ~R+- R+ - -is an indecomposable continuum containing decomposable subcontinua. 

The space ~X-X is not connected im kleinen at any point. 
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a. 

INTRODUCTION 

This thesis is devoted to a study of certain properties of the 

topological space eX-x, where X is a a-compact Hausdorff topological 

space and eX denotes the Stone-Cech compactification of X . 

In chapter l a summary is given of known results that will be 

used throughout the thesis. 

In chapter II a homomorphism is defined from the Boolean alge-

bra R(X) of aIl regular closed subsets of X into R(eX-X). It is 

then shown, aBsuming the continuumhypothesis, that if the ring of 

real-valued ~0ntinuouB functions defined on the a-compact space X has 

cardinality 2~, then the image under the ab ove homomorphism of a 

certain subalgebra of R(X) is isomorphic to the Boolean algebra of 

all open-and-closed subsets of e~-~, where ~ denotes the count-

able discrete space-. The proof relies on Parovicenko' s characteriz-

ation of this latter Boolean algebra. Still assuming the continuum 

hypothesis, the projective cover of BX-X, i.e. the Stone space of 

R{ex-x) , is shown to be homeomorphic to the projective cover of e~-~, 

and an alternative proof of this is- given. The chapter closes with a 

necessary condition that a compact space have a projective cover homeo-

morphic to that of eN-N . = = 

Chapter III- is concernedprimarily with the properties of the 

set of remote points of eX, i.e. thosepoints that are not in the 

eX-closure of any dis crete subspace of X. The concept of a remote 
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point of a~ (where ~. denotes the- space of real numbers) was first 

defined by Fine and Gillman, who proved, assuming the continuum hypo-

° 2 2No 
° hO thes~s, that· a~ has a set of remote po~nts w ~ch form a dense 

subset of aR-R = ... Plank extended these results to show if X is a 

cr-compact metric space without isolated points, then ax has 2
2No 

remote points which form a dense subset ofaX-X . Plank gives an 

explicit formula for this subset. 

Chapter III begins with a generalization of some results of 

of Gleason, who demonstrated the existence of an irreducible map 

from the projective cover of a compact space Y onto Y. It is 

shown that if ~ is a suitable subalgebra of R(Y) , then there is 

an irreducible mapping from the Stone space of ~ onto Y. Under 

somewhat stronger conditions on Y and·~, it is shown that there 

is associated wi th Jl a dense subset of Y that can be embedded 

densely in the Stone space of Jt. This and the results of chap-

ter II are combined with Plank's results to show that if X is a 

cr-compact metric space without isolated points, then, assuming the 

continuum hypothesis, the remote points ofaX-X can be embedded 

densely in a!i, - Ii;'. CalI a space strongly countably compact. if the 

closure in X of every countable subset of X is compact. Under 

the above assumptions it is shown that both the remote points of ex 

and their complement in ex-x are strongly countably compact. Thus 

aX-X can be decomposed· into two disjoint dense strongly countably 

compact subspaces'. . A similar decomposi tion is obtained for aN - N • 



c. 

In chapter IV a necessary and sufficient condition is obtained 

that the (Lebesgue) dtmension of ~-X be equa1 to the non-negative 

integer n. This criter10n 1s used to obta1n a new proof of the known 
n n resu1t, first proved by Jer1son, that the dtmension of ~I - i is n. 

In chapter V it is shown that ~{ = -
+ (~here R denotes the .. 

space of non-negative rea1 numbers) is an indecomposab1e continuum, 

but contains proper subcontinua that are decomposab1e. If n > 1 then 
n n 

~R- R is a decomposab1e continuum. It is a1so shown that if X is D _ 

a-compact then ~-X is not connected tm k1einen at any point, and 

hence is not 10ca11y connected at any point. 

Origina1ity may be c1atmed for a11 resu1ts in chapters II to V 

with the exception of the fo110wing: 2.1, 2.10 , 2.14 , 2.16 , 3.16 , 

3.17 , and 4.11. Theorem 4.11 is due to Jerison, but our proof of it 

is new. Lemma 3.20 was discovered independent1y by Mande1ker and myse1f. 

The concept of a basic suba1gebra (1.86) a1so appears to be new. 



CONTENTS 

Chapter 

1 PRELIMINARIES 

II THE PROJECTIVE COVER OF ex-x 

III THE REMO TE POINTS OF ex 

IV THE DIMENSION OF ex-x 

V CONNECTED SUBSETS OF ex-x 

BIBLIOGRAPHY 

Page 

l 

23 

39 

55 

66 



1. 

l PRELIMINARIES 

In this chapter we shall give a summary of the definitions and 

results that will be needed in later chapters. No original material 

appears in this chapter, with the exception of the concept of a basic 

subalgebra of R(X) (1.86), which to our knowledge is new. 

A. Set-theoretic Notation and Conventions 

1.1 Notation 

(i) The set of non-negative integers will be denoted by N . 

(ii) The countable discrete space will be denoted by !. 

(iii) The space of realnumbers will be denoted by ~,the 

non-negative real numbers will be denoted by + n 
R , and !!. will denote 

Euclidean n-space. 

1. 2 Notation 

The cardinality of a set A will be denoted by lAI . 

1. 3 Notation 

The cardinal number of N will be denoted by ~o, and ~, will 

denote the first uncountable cardinal. 

1.4 Remark 

By the continuum hypothesis we shall mean the assumption that 

~= 2~o. The use of the continuum hypothesis in a proof will be indicated 

by the appearance of the symbol "[CH]" immediately preceding the state-

ment of the theorem. 
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1.5 Notation 

If' is a f'amily of' sets, the set will be denoted 

by 

B. Topological Prerequisites 

Results f'or which a ref'erence is not supplied can be f'ound in 

the text by Gillman and Jerison [GJ] • Ref'erences will be given for the 

other results that are quoted. 

1. 6 Definition 

A Hausdorf'f' space X is said to be completely regular if, given 

any closed subset A of' X and any point p E X such that piA , 

there exists a continuous real-valued function f' def'ined on X such that 

f'(p) = 0 and f'[A] = {l} • 

Throughout this thesis aIl topological spaces will be assumed to be 

completely regular Hausdorf'f' spaces. 

1.7 Notation 

Let S be a subset of' a space X. The closure, interior, and 

boundary of' S with respect to X will be denoted respectively by cIXS, 

1.8 Definition 

(i) A closed subset S of' a space X is said to be regular 

closed if' S = c~(int~) . 
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(ii) An open subset V of a space X is said to be regular 

1.9 Proposition 

If ~ is a base for the closed subsets of X , then so is 

Proof: Let A be a closed subset of X. If piA, th en as X is 

completely regular there exists a continuous real-valued function f 

on X such that f(p) = 0 and f[A] = {1} Thus f-l([1/2, 3/2]) 

is a closed subset of X not containing p, so as (8 is a base for 

the closed subsets of X, there exists B(p) E 03 such that p i B(p) 

and f-l([1/2, 3/2]) c: B(p) • Thus A Cf-l( (1/2 , 3/2)) C;; intxB(p) 

and so A = .n clx(int~(p)) • The proposition follows. 
piA 

1.10 Definition 

If X is a 10cal1y compact, non-compact space that can be writ-

ten as the union of countab1y many compact subspaces, then X is said to 

De a a-compact space. 

Note that Dy our convention a-compact spaces are not compact. 

The next two resu1ts can De found in Dugundji [D] . 

1.11 Theorem 

A non-compact space X is a-compact if and on1y if X can be 
ca 

expressed in the form U V where for each n E N , V is open in 
n=O n n 
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in X and clXVn is compact and contained in Vn+l • Without loss of 

generality we may also assume that each V n is regular open and that 

1.12 Theorem 

A a-compact space is normal. 

1.13 Proposition 

A closed subset S of a a-compact space X is compact if and 

only if there exists n E N such that SC:V 
- n 

Proof: If Sc: V then S is a closed subset of the compact space 
- n 

cl V . conversely. if X n ' • for each n EN, then (8 nV) N n nE 

an open cover of S that has no finite subcover. 

1.14 Definition 

is 

The ring of all continuous real-valued functions defined on a 

space X will be denoted by C(X) The ring of all continuous bounded 

real-valued functions defined on X will be denoted by C*(X) . 

1.15 Definition 

A subset S of a space X is said to be C-embedded (C*-embedded) 

in X if, given any f E C(S) ( f E C*(S) ), there exists g E C(X) 

such that the restriction of g to S is f. 

1.16 Proposition 

In a normal space every closed subset is C-embedded. 
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1.17 Definition 

Any subset of a space X that is of the form f-1 (0) for some 

f E C(X) is called a zero-set of X. 

1.18 Notation 

The family of aIl zero-sets of X will be denoted by Z(X) . 

1.19 Proposition 

A Hausdorff space X is completely regular if and only if 

Z(X) forms a base for the closed sets of X. 

1.20 Proposition 

The family Z(X) is a lattice under set-theoretic union and 

intersection, and is closed under countable intersection. 

1.21 Proposition 

If X is a metric space th en every closed subset of X is 

a zero-set. 

1.22 Definition 

A cozero-set of X is the complement of some zero-set of X . 

1.23 Definition 

A z-filter on a space X is a non-empty subfamily ~ of 

Z(X) satisfying the following conditions: 

(i) ~ i- d-
(ii ) If Zl and Z2 E C;, then Zln Z2 E 3-. 
(iii) If Zl Ed and Zl CZ2 th en Z2 E 0-. 
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A z-filter that is not properly contained in any other z-filter is called 

a z-ultrafilter. By Zorn's lemma every z-filter is contained in some 

z-ultrafilter. 

1.24 Theorem 

Corresponding to every completely regular space X there is a 

compact space SX which contains X as a dense subspace and which is 

characterized up to homeomorphism by each of the fOllowing equivalent 

conditions: 

(i) X is C*-embedded in SX 

(ii) For any Zl ' Z2 e: Z(X) , C1Sx(Zln Z2) = C1SXZlflclSXZ2 . 

The space SX is called the Stone-Cech compactification of X. 

1.25 Theorem 

The family {C1SXZ 

sets of SX. 

1. 26 Notation 

Z e: Z(X)} is a base for the closed sub-

The space SX-X will be denoted by X* . 

1.27 Theorem 

If X is a normal space and if A and B are any two closed 

Proof: Obviously C1Sx(AnB)C cls0nC1S~' Conversely, suppose that 

p i C1Sx(AnB) • By 1.25 there exists (Za\t C Z(X) such that p e: 0 clSXZa 

and (Ç\C1SxZa)nC1Sx(AOB) = (Il. As SX is compact, there exist (Zi)lSi~n 
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n n 
clSXZi ] n ClSX(A nB) in Z(X) such that p e: n clSXZi 

and [n = ~ . 
i=l i=l 

n 
Put Zo = n Z. . By L20 Zo e: Z(X) and by 1.24 (ii ) p e: clSXZO ; ob-

i=l ~ 

vious1y ClSxZon Clsx(AOB) = ~ Thus Zon A [lB = ~. As X is normal, 

the disjoint c10sed sets ZOnA and B are contained in disjoint zero-

sets; it follows from 1.24 (ii) that C1SX(ZOn A) n clS~ = ~ • If P t clS~ 
we are finished; if not, p t C1Sx(Zon A) . A repetition of the ab ove 

argument shows that there exists Z' e: Z(X) such that Z·n Z (lA = ~ 0 
and 

p e: c1SXZ' . Thus p e: ClSxZon clSXZ' = ClSx(Zonz,) (by 1.24 (U) ), 

and so p i c1e~ (as above). Thus p i Cle~nC18~ and the theorem follows. 

1.28 Theorem 

The space X is open in ex if and only if X is locally 

compact. Thus ex-x is compact if and only if X is locally compact. 

1.29 Theorem 

The space e~ has cardinality 

1.30 Theorem 

A subset S of a space X is C*-embedded in X if and only if 

There is a natural one-to-one mapping from ex onto the family 

of aIl z-ultrafilters on X. This relationship is summarized in the 

following theorem. 
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1.31 Theorem 
P 

If P E SX , then the family ~ = {Z E Z(X) : p E clSXZ} is 

a z-ultrafilter (1.24) on X. Conversely, if R is a z-ultrafilter 

on X, then f\ 
ZE.,q 

for each p E SX . 

1.32 Proposition 

is a unique point of SX , and n cl Z = {pl 
R:J SX ZE-K: 

If f is a continuous mapping of a space X onto a space Y 

whose restriction to a dense subset T is a homeomorphism, then f 

carries X - T onto Y - f[T] • 

1.33 Definition 

A point p of a space X is called a P~point of X if every 

Gô-set of X that contains p is a neighborhood of p. If every 

point of X is a P-point, th en X is called a P-space. 

1.34 Notation 

The set of aIl P-points of a space X will be denoted by P(X) . 

1.35 Proposition 

(i) A space X is a P-space if and only if every zero-set of 

X is open. 

(ii) A point p is a P-point of X if and only if every 

zero-set containing p is a neighborhood of p . 

(iii) A P-point of X is a P-point in any subspace of X that 

contains it. 

(iv) A compact P-space is fini te. 



(v) For any space X, p(X) = n [X - bdXZ] 
Ze:Z(X) 

1.36 Definition 

A space X is called an F-space if every cozero-set of X 

is C*-embedded in X. 

1.37 Theorem 

If X is a-compact then aX-x is a compact F-space. 

1.38 Theorem 

If D is a countable subset of an F-space X th en D is 

C*-embedded in X. 

1.39 Definition 

9. 

A space X is said to be realcompact if, for every p e: ex-X, 

there exists Z e: z( eX) such that p e: Z c: ex-X • 

1.40 Proposition 

Every a-compact space is realcompact. 

The following two results are due to Fine and Gillman [FG
1

, 

1emma 3.1] , although 1.42 is not explicitly proved. 

1.41 Theorem 

If X is locally compact and realcompact then every zero-set 

of eX-x is regular c1osed. 

1.42 Proposition 

Every zero-set of a space X is regular closed if and only if 
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every non-empty Gô-set of X has a non-empty interior. 

00 

Proof: First note that if f E C(X) then f-I(O) = n f-l(_l/n , lin) 

f-l(O) 
n=l 

and so is a Gô-set. 

Suppose clX(intxZ) ::f:. Z for some Z E Z(X) . Choose 

P E Z - cIX(intxZ) • 

Z' E Z(X) such that 

Then as X is completely regular there exists 

that f(p) = 0 and 

P E Z' CO;; X - clX(intxZ) (choose f E C(X) such 

f[cIX(intxZ)] = il} and put Z' = f-l(O) ). 

Thus zrtz' E Z(X) but intX(ZOZ') = ~ ,so zOZ' is a non-empty 

G -set with an empty interior. 
ô 

Conversely, suppose that every zero-set of X is regular 

closed. Let (Vn)nEN be a countable family of open subsets of 
co 

X , 

and let p E n V As ab ove there exists Z E Z(X) such that 
n=O n 

P E Z Cv Thus P E n- ,Il. 

co 

Thus ~::f:. intX( n Zn) 
n=O 

n 

co 00 co 

n Z c: n V and by 1.20 , ~ ::f:. n Z E Z(X) 
n - n n n=O n=O n=O 

00 

and so intx(nC)o Vn ) ::f:. 0 . 

The following result is due to Rudin [R] and Paroviéenko [Pa] 

for X = ~ ; the more general case follows similarly by use of 1.41 . 

1.43 Theorem 

Let X be locally compact and realcompact and let ~ be a 

family of dense open subsets of X. If Id 1 ~ N, ' then nd- is 

dense in I3X-X. 

. 



An immediate consequence of 1.43 is the following result: 

1.44 Theorem [CH] 

th en 

1.45 

If 

sx-x 

X is locally compact and realcompact and if 

has a dense set of 22~ P-points. 

Notation 

1 C(X) 1 

Il. 

Let S be a partially ordered set and let A and B be sub-

sets of S . Then "A < B" will mean that a<b for each a e: A and 

b e: B • If s e: S then A < s and s < B will mean, respectively, 

that a<s for each a e: A and s<b for each b e: B • 

1.46 Definition 

A totally ordered set S is called an nl-set if, given any 

empty, fini te , or countably infinite subsets A and B of S such 

that A < B , there exists c e: S such that A < c < B . 

l.l~7 Proposition 

The cardinality of any nl-set is at least 

1.48 Definition 

If S is a partially crdered set, then a maximal chain in S 

is a totally ordered subset of S that is not properly contained in 

any other totally ordered subset of S • 

By Zorn's lemma each totally ordered subset of S is contained 

in some maximal chain of S . 
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The following theorem is due to Rudin [R] and Parovicenko [Pa] . 

1.49 Theorem [CH] 

The Boolean algebra of all open-and-closed subsets of SN-[ 

has cardinality 2No , and maximal chains in this Boolean algebra (exclud-

ing ~ and S[-~) are nl-sets. Further, if B is any other Boolean 

algebra with these two properties, th en B is isomorphic to the Boolean 

algebra of all open-and-closed subsets of SN-N . = = 

The following notion is due to Fine and Gillman [FG ] , who 
2 

proved, assuming the continuum hypothesis, the existence of a set of 

remote points in S~ that is dense in SR-R . 
= = 

1.50 Definition 

A point p E SX is called a remote point of SX if P is not 

in the SX-closure of any discrete subspace of X. 

The idea of demonstrating the existence of remote points in S~ 

by use of 1.43 is due to Negrepontis. Plank [Pl, theorems 5.4 , 5.5] 

has proved the:following more general result. 

1.51 Theorem 

If X is a separable, locally compact non-compact metric space 

without isolated points, th en the set of remote points of SX is pre-

cisely the set 

with the set 

~ [(SX-X) - (C1SX(b~Z) - X)] , which is identical 
ZEZ(X) 

n [(Sx-x) - b~*(clSXZ - X)] . Assuming the continuum 
ZEZ(X) 
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hypothesis, this is ~ dense subset of SX-x of cardinality 

1.52 Notation 

The set of remote points of SX will be denoted by T(X*) . 

1.53 Remark 

Since a locally compact, non-compact metric space is separable 

if and only if it is cr-compact, the phrase "separable, locally compact 

non-compact" in 1.51 may be replaced by "cr-compact". 

The following result was proved by Plank [Pl, theorem 6.2] 

for X = ~. His proof can be adapted with virtually no changes to 

yield the following result. 

1.54 Theorem [CH] 

Let X be a cr-compact metric space without isolated points. 

Then the sets P(X*) n T(X*) , [X* - p(X*)] n T(X*) , p(X*) n [X* - T(X*)] , 

and 

ity 

X* - [p(X*) U T(X*)] 

22~. 

1. 55 Definition 

are aIl dense in SX-X and have cardinal-

(i) A space X is said to be extremally disconnected if 

every open subset of X has an open closure. 

(ii) A space X is said to be basically disconnected if 

every cozero-set of X has an open closure. 

1.56 Proposition 

A space X is basically disconnected if and only if, given 



• 
a co zero-set U and an open set V disjoint from U , the set 

c1XU n c~V is empty. 

1.57 Proposition 

14 • 

If X is an arbitrary space, its subspace P(X) is basica11y 

disconnected. 

1.58 Proposition 

The space X is extremal1y disconnected if and on1y if ex 

is extrema11y disconnected. 

1.59 Proposition 

If X is compact and p € X , then the connected component of 

X that contains p is the intersection of a11 the open-and-c1osed 

subsets of X that contain p • 

1. 60 Definition 

A compact connected space is ca11ed a continuum. 

1.61 Definition 

A continuum is said to be indecomposab1e if it cannot be written 

as the union of two proper subcontinua. 

The fo11owing result appears in Hocking and Young [HY , theorem 3.41] 

1.62 Theorem 

A continuum K is irldecomposab1e if and on1y if every proper 

subcontinuum of K has an empty interior. 
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1.63 Definition 

A space X is said to be locally connected at a point pif, 

for every open set U containing p , there is a connected open set 

V containing p and contained in U. 

1.64 Definition 

A space X is said to be connected im kleinen at a point p 

if for each open set U containing p • there is an open set V con-

taining p and lying in U such that if y is any point of V 

th en there is a connected subset of U containing p and y • 

The following result appears in Hocking and YOIDlg [HY] . 

1.65 Proposition 

If X is locally connected at p , then it is connected im 

kleinen at p , but the converse is untrue in general. 

1.66 Definition 

(i) A cover of a space X is a finite collection of open sub-

sets of X whose union is X. 

(ii) A collection ~ of open subsets of a space X is said 

to be a refinement of a cover ~ of X if c-y; is a cover of X and 

if every member of a--o is a subset of some member of (j,. 

1.67 Definition 

The order of a cover {J, of a space X - abbreviated ordCU -

is defined as follows: 

ord il = sup{n e: N there exists (Ui)1~i~n+1Ç;(lsuch that 
n+l 
n u. :f t} 
i=l ~ 
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1.68 Definition 

The Lebesgue dimension of a space X - abbreviated dim X 

is defined as follows: 

dim X = min{n EN: every cover of X has a refinement of order ~ n} 

If the above set is empty th en dim X =~. 

1.69 Theorem 

If X and Y are normal spaces and if X is C*-embedded in 

y then dim X ~ dim Y . 

1.70 Theorem 

If X is normal then dim X = dim (SX) • 

The following result can be found in Hurewicz and Wallman 

[HW , theorem IV 3] . 

1.71 Theorem 

If A c:: lin then dim A = n if and only if 

C. Boolean Alsebras 

The basic reference for the following material is Sikorski [S] . 

AlI Boolean algebras are assumed to contain 1. 

1.72 Definition 

Consider the following conditions on a subset F of a Boolean 

algebra B: 

(i) 0 i F 



(ii) If x e: F and y e:·F then X" y e: F . 

(iii) If x e: F and x~y then y e: F . 

17. 

If F satisfies these three conditions th en F is called a filter. 

A filter that is not properly contained in any other filter is called 

an ultrafilter. 

By Zorn's lemma every filter is contained in some ultrafilter. 

1.73 Definition 

Let B be a Boolean algebra. If every subset of B has a 

supremum in B ,then B is said to be complete. If every countable 

subset of B has a supremum in B ,then B is said to be a-complete. 

1.74 Definition 

Let B be a Boolean algebra and let S be a subset of B. 

If, for every x e: B such that x # 0 , there exists y e: S such that 

o # y~x ,then S is said to be a dense subset of B. If S is also 

a subalgebra of B; th en S is said to be a dense subalgebra of B. 

1.75 Theorem 

Let BI and B2 be complete Boolean algebras, let Ul be a 

dense subalgebra of BI ' and let U2 be a dense subalgebra of B2 . 

If f:Ul ~ U2 is a Boolean algebra isomorphism of Ul onto U2 ' 

th en there exists a Boolean algebra i~omorphism g:B
l 
~ B2 such that 

the restriction of g to U
l 

is f. 

1.76 Definition 

Let B be a Boolean algebra and U a subalgebra of B. Then 
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U is said to be a (1-subalgebra of B if, for every countable subset 

8 of U, the supremum in B of 8 belongs to U whenever it exists. 

Obviously a cr-subalgebra of a complete Boolean algebra is cr-com-

pIete. 

1.77 Definition 

Let B be a Boolean algebra and 8 a subset of B. Then 8 

is said to generate a subalgebra A of B if A is the smallest sub-

algebra of B that contains 8. The subalgebra of B generated by 

8 will be denoted by <8> • 

1.78 Theorem 

Let 8 be a subset of a Boolean algebra B • Then <8> con-
m n 

sists of aIl elements of the form V A x
iJ ' where m , n e: N and 

J=l i=l 

for each pair i , J , either x
iJ 

or its complement belongs to 8 . 

1. 79 Defini tion 

Let B be a Boolean algebra and 8 a subset of B. Then 8 

is said to cr-generate a subalgebra A of B if A is the smallest 

cr-subalgebra of B that contains 8. The subalgebra of B cr-gener-

ated by 8 will be denoted by cr8. 

Obviously if B is complete and 8 CB th en cr8 is cr-complete. 

1.80 Theorem 

If 8 is a subset of the Boolean algebra B , then 



19. 

<,). Boolean Algebras of Resular Closed Sets 

Results for which no reference is given can be found in Sikorski Es] . 

1. 81 Notation 

The family of aIl regular closed subsets of a space X will be 

denoted by R(X) • 

1.82 Theorem 

The family R(X) is a complete Boolean algebra under the foll-

owing definitions of ~ , \1 1\ , and complement 

(i) A ~ B if and only if AC::B . 
n n 

(ii ) V A. = U A. 
i=l 

~ i=l ~ 

n n 
(iii) 1\ A. = clX( n int0·) 

i=l ~ i=l ~ 

(iv) A' = clX(X - A) • 

Henceforth the symbols \/ , 1\ ,and l ,when applied to regular closed 

sets, are to be interpreted according to the above definitions. 

1.83 Notation 

The family of aIl open-and-closed subsets of a space X will be 

denoted by B(X) . 

1.84 Proposition 

The family B(X) is a subalgebra of R(X) and if A , B E B(X) , 

th en A" B = An. B and A' = X - A • 
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1.85 Proposition 

If X is a compact totally disconnected space then B(X) is 

dense (see 1.74) in R(X) . 

1.86 Definition 

A subalgebra JFl of R(X) is called a basic subalgebra of R(X) 

if Ji is a base for the closed subsets of X • 

1.87 Theorem 

If ~ is a basic subalgebra of R(X) ,if V is open in X , 

and if p e: V , then there exists A e: Jt su ch that p e: int0 C A CV. 

Proof: As ~ is a base for the closed subsets of X, there exists 

3-C J1 such that X - V = n3- . Thus 

V = X - n'J = U (X - F) 
Fe:"J-

Thus V has been expressed as a union of members of {int0: A e: Ji. } 
This family is thus a base for the open subsets of X, and hence the 

theorem follows from the complete regularity of X • 

1.88 Proposition 

Every basic subalgebra ~ of R(X) is dense in R(X) • 

Proof: Let B e: R(X) and assume that B ~ ~. Then intxB ~ ~ sa by 

1.87 there exists A e: Ji such that ~ ~ AÇ int~. The proposition 

follows. 

The converse of 1.88 is not true in general. 
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1.89 Theorem 

A space X is extremally disconnected if and only if B(X) is 

complete and is a base for the open subsets of X. 

1.90 Theorem 

Let U be a Boolean algebra and let S(U) be the family of aIl 

ultrafilters (1.72) on U. For each x EU, let À(x) = {a E S(U) X E a} • 

If a topology T is assigned to S(U) by letting {À(X) : x E U} be 

an open base for T, th en (S(U) ,T) is a compact totally disconnected 

space and the map x ~ À(x) is a Boolean algebra isomorphism from U 

onto B(S(U)) . The space S(U) is called the Stone space of U . 

1.91 Definition 

Let f:X ~ Y be a continuous mapping of the space X onto the 

space Y. If f[A] ~ Y for each proper closed subset A of X , then 

f is said to be irreducible. 

1.92 Proposition 

If f:X ~ Y is an irreducible closed mapping of X onto Y , 

and if D is dense in Y ,then f-l[D] is dense in X. 

Proof: As f is closed, we have f[C~(f-l[D])] ;2clyD = Y. It follo~s 
from the irreducibility of f that CI

X(f-1 [D]) = X . 

The following result is due to Gleason [G , theorem 3.2] ,who 

first investigated projective covers of compact spaces. 
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1.93 Theorem 

Let X be a compact space. Then there exists an irreducib1e 

continuous map f sending S(R(X» onto X; the map f is defined 

by f(y) = n 
Ae:R(X) 
ye:À (A) 

A for each y e: S(R(X» ,where À:R(X) ~ B(S(R(X») 

is the canonica1 isomorphism.defined in 1.90·. Furthermore, if K i8 

any other compact extrema11y disconnected space and if g:K ~ X is an 

irreducib1e mapping of K ontoX , then there exists a homeomorphism 

h:K ~ S(R(X» such that g = foh • 

The space S(R(X» is ca11ed the projective cover of X. 
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II THE PROJECTIVE COVER OF êX~X 

Let X be any cr-compact space. Inthis chapter we will define 

a Boolean algebra homomorphism *:R(X) + R(êX-X) and examine the prop

erties of this homomorphisme In particular we will show that if ~ is 

a basic subalgebra (1.86) of R(X) such that IJI = 2W• and with the 

property that if (8) NC J and if 
n m: -

00 

'U 8 e: R(X) 
n n=O 

th en 

then the image of ,,8 under this homomorphism is isomorphic to B( êK - IjJ 

It will then follow that if X is a cr-compact space with Ic(x)1 = 2~, 
then the projective cover of êX=X is homeomorphic to that of êN-N . = = 

Throughout this chapter we will assume that X is a cr-compact 

space (see 1.10) and observe the notational conventions stated in 1.11 . 

2.1 Notation 

Let A be a closed subset of X. Then A* will denote the 

set (Clê~) - X. Note that this is consistent with the notation de

fined in 1.26. If A and B are closed subsets of X , the following 

results are immediate: 

(i) (AUB)* = A*UB* 

(ii) (AnB)* = A*fl B* (see 1.12 and 1.27) 

(iii) A* = ~ if and only if A is compact. 

2.2 Proposition 

Let (A) N be a countable family of closed subsets of X , 
n ne: 

and define the positive integer k by: 
n 



kn = min {j €N An n V j :F ~} 

for each n € N. Then: 

If lim k = ~ , then 
n n-+«> 

~ 

U A 
n=O 
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is closed. 
n 

(ii ) If lim k = ~ and A € R(X) for each n € N , th en n n n-+«> 
~ co co 

U A € R(X) and U A = V A 
n=O n n=O n n=O n 

~ 

Proof: (i) Let p € Cl
X

( U An) and let U be an open subset of X 
n=O 

containing p. There exists i € N such that p € V. ; thus as U n V . 
1 1 

co 

is open, it follows that (Unv.)fl(U A):F ~ 
1 n=O n 

As lim k = co , there 
n n-+oo 

exists m € N su ch that n ~ m implies A Cl V. = ~. Thus 
m-l m-l n 1 

(u n v. ) n (U A ) :F ~ and so Un (U A ) :F ~. As U was an arbitrary 
1 n=O n n=O n 

open set containing 
m-l 

p , it follows that p belongs to the closed set 
co ~ 

UA. and so p € U A n n n=O n=O n=O 
U A n 

Thus 

~ 

(ii ) If P € UA, there exists n n=O 

is closed. 

k € N such that p e: ~ • 

co 

As ~ € R(X) , it follows that P € clx(intA)<;;clx(intx[U An]} . 
n=O 

co 

As U A is closed by (i) , i t follows that 
n=O n 

co ~ 

A = V A 
n n=O n 

Obviously U 
n=O 

2.3 Lemma 

co 

U A € R(X) . 
n=O n 

Let A and B be closed subsets of X. 



(i) A * c B* if and only if there exists n e: N such that 

A-Bc::V 
- n 

for each n e: N . 
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Proof: (i) Suppose that A - B c: V n for some n e: N. Then as c~V n 

is compact, c~(A - B) is also compact. As A is closed, it fo110ws 

that A = (AOB)Uc~(A - B) . By 2.1, 

A* = (AnB)*U[c1x(A - B)]* 

= (AnB)* (by 2.1 (iii) ) 

= A*nB* (by 2.1 (ii) ). 

Thus A*CB* . 

Converse1y, suppose that A - B is not contained in V for any n 
n e: N. Then there exists a sequence (ni)ie:N of positive integers, 

with 1im n. = 00 , such that (A - B) n (V - c1XV ) # 0 for each i~ ~ ni +1 ni 

i e: N Let Pi e: (A - B) n (V - c~V ) for each i e: N , and put ni +1 ni 

S = (P.). N. By 2.2 S is c10sed, and obvious1y S is not contained ~ ~e: 

in any V ; hence by 1.13 S is not compact and so by 2.1 (iii) , S* # ~ . n 

Obvious1y S CA - B ,so S*C: A* and by 2.1 (ii) , S*n B* = 0. Con-
sequent1y A* - B* # ~ and (i) fo110ws. 

( ii ) By ( i ) it fo110ws that for each n e: N , B - (A U V n+ 1) # ~ 
and so B - (AUC~Vn) # ~. Thus [c1X(intxB)] n [X - (AUC1xVn )] # ~ 
and so (int~) n. [X - (AUc1XVn)] # ~ . 
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2.4 Proposition 

If A is a elosed subset of X ,then elX*(X* - A*) = [elx(X - A)]* • 

Proof: Sinee AUclX(X - A) = X ,.by 2.1 (i) it follows that 

A* U [elx(X - A)]* = X*. Thus X* - A* C [elX(X - A)]* , and as 

(clX(X - A)]* is elosed in X* ,it follows that 

Conversely, suppose that x i elX*(X* - A*). Sinee by 1.25 

the family {elaxZ: Z € Z(X)} is a base for the elosed subsets of ex, 

it follows that {X* - S* : S elosed in X} is a base for the open sets 

of X* Thus sinee X* is eompletely regular, there exists a elosed 

subset B of X sueh that x € X* - B* and also (X* - B*)O,ÜX*(X* - A*) = ~ 
thus (X* - B*) n (X* - A*) = ~ and thus by 2.1 (i) , X* = (AU B)* . 

By 2.3 (i) there exists i € N sueh that X - (AUB)C v .. - ~ 

... 
for if not, [elx(X - A)) n (X - B) n (X - clXV

i ) # 9l and as 

(X - B) (\ (X - elxV
i ) is open, it would follow that 

Thus 

(X - A) n (X - B) n (X - elxV.) # ~ , whieh eontradicts X - (AUB) CV .. ~ - ~ 

It follows from (2) that [elX(X - A)] - B C V
i +

1 ' and so by 2.3 (i) 

we have [elx(X - A) J* ç B*. As x € X* - B* , it follows that 

x t [elx(X - A)]*. Thus [elX(X - A) ]*ç: clX*(X* - A*) , and eombining 

this with (1) yields the proposition. 



2.5 Propositi,:>n 

Proof: Since intX*A* = X* - CIX*(X* - A*) , by 2.4 it follows that 

intX*A* = X* - [clX(X - A)]* and so 

27. 

clX*(intX*A*) = clX*(X* - [clX(X - A)]*) 

= [CIX(X - [CIX(X - A)])]* 

= [cIX(int~)]* • 

(by 2.4) 

The following result is an immediate consequence of 2.5 . 

2.6 Corollary 

If A E R(X) th en A* E R(X*) • 

2.7 Theorem 

The map A + A* is a Boolean algebra homomorphism from R(X) 

into R(X*) . 

Proof: By 2.6 the map A + A* is well-defined. Suppose that A and 

B belong to R(X). Then by 2.1 (i) , 

A*VB* = A*UB* = (AUB)* = (AVB)* (see 1. 82) • 

Using 2.4 it can be seen that 

Thus the map preserves suprema and complements and hence is a Boolean 

algebra homomorphisme 
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Note that the kernel of this map is the family of compact reg-

ular · .. 1sed subsets of X. 

2.8 Notation 

( i ) If d- is a subfamily of R (X) ,then [ :t] * will denote 
the family {F* F e: a} 

(ii) The family {clx(intxZ) : Z e: Z(X)} will be denoted by 

G(X) • Recall (1.21) that if X is a metric space th en every c10sed 

subset of X is a zero-set, and so G(X) = R(X) • 

The following result will be needed later. 

2.9 Pro~osition 

The fami1y [G(X)]* is a base for the closed subsets of X* • 

Proof: Since {Z*: Z e: Z(X)} 1s a base for the closed subsets of X* 

(see 1.25) , it follows from 1.9 that {c~*(intX*Z*) : Z e: Z(X)} is a 

base for the closed subsets of X* . The proposition th en follows from 2.5 • 

The proof of the following result mimics that of [GJ, lemma 13.5] . 

2.10 Lemma 

Let Ji be any subalgebra of R(X) and le.t Ë be- any countable 

subset of [~]*. Then ~ has a family (E ) of preimages in ..Ft -n ne:N 
that is, E. = (E*) -n ne:N such that if E. ,Ej e: (E) N' th en Ei!C E*j l. n ne: l. -

implies E. CE
j 

. 
l.-

Proof: Let (F) N be any indexed family of preimages Of~. The fami1y n ne: 



-----------------

29. 

(En)nEN will be defined inductively. Put Eo = Fo' For a fixed 

n EN, assume that for each k < n ,Ek has been defined so that: 

E*CE* J - k 
implies EJ ç; Ek for any J , k < n • 

(ii) E* = F* for each k < n • k k 

Let H = sup {E : E*CF*} J J - n 
induction hypotheses, H C K 

and let K = inf {EJ : Ej :JF~}. From the 

Define E = (H VF ) AK , with the con-n n 
vention that H or K 1s simply omitted in case the set defining it is 

empty. Then (E ) satisfies k Q::;ksn ( i) and (ii) , and so (E) n nEN 
has the desired properties. 

2.11 Theorem 

Let ~ be a basic subalgebra of R(X) with the property that 

if (8) Ne -8 and if n nE -

co 

U 
n=O 

imal chains in [...8]* - {(ij 

8 E R(X) , then n 

co 

U 
n=O 

8 E..B. n Then max-

X*} are nI-sets (see 1.46 and 1.48) 

Proof: Let Jt and 8 be chains (with respect to set-theoretic in

clusion) in [.8]* - {(ij , X*} , and assume that bath Ji and S have 

cardinality no greater than ~Q' Then in arder ta prove the theorem, 

it suffices ta show that if ft < lB , then there exists C E.8 such 

that Jt< C* < ~ (see 1. 45 for notation). As ~ is a basic subalgebra 

of R(X) , it can be assumed without loss of generality that x - V E ~ n 
for as (intx8)8E~ is a base for the open subsets of X (see 1.87) , 
there exists, for each n EN, a family (8 a) ad: ç ~ such that 

Vn+l = lir int~a' Thus clXVn ç 11r intX8a ' and sa by the compactness 
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k of ••• a e: r' , k such that clXV ç; U int __ S • 
n i=l Xai 

Thus k 
(V S ), • 
i=l ai 

Let Jt = (A*) N and IR = (B*) N' There are severa1 cases n ne: n ne: 
ta considere 

Case 1 Assume that vFt either is empty or has a 1argest member, and that 

QO has no sma11est member. Let A* be the 1argest member of ~ (for 

some A e:..8), and put A* = ~ if Jt is empty. By rep1acing B* by 
n n 

1\ B~ 
~ 

if necessary, and noting that 8 has no sma11est member, we can i=O 

assume that A*7 B* <7 B* n+1 n for each n e: N , Thus by 2.10 we can assume 

that CB C 
A 1: n+l:f: Bn for each n e: N . 

(int~n) - (AUc1xVn) :f: ~ for each n 

exists k e: N such that the open set n 

By 2.3 (ii ) it is evident 

e: N . Thus for each n e: N 

(intXSn) n (X - A) n (X - c1
XVn ) n V

k 
n 

that 

, there 

is non-empty. As ~ is a basic suba1gebra of R(X) , by 1.87 there exists 

S e:..8 sudh that n 

~ :f: s c: (int_~ ) Cl (X - A) ft (X - c1
X

V ) n V
k (1) n - X-n n 

n 
00 

Put E = U S 
n=O n 

As S ex - c1
X

V for each n e: N , by 2.2 (ii) n- n 

E e: R(X) • Thus by hypothesis 

for each n e: N , sa by 2.3 (i) 

E e:~. By 

E* :f: ~. As 

(1) , E - V ~ S - V :f: ~ n - n n 

S n A = ~ for each n 
n e: N (see (1) ) , it fo110ws that E (lA = ~ , and 50 E*OA* = ~ . 
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Put C = AUE; then it f'ollows f'rom the above remarks that A*7 C* and 

C e: ,g. As AC: B j f'or each j e: N , i t f'ollows that 

co 

C - B = E - B = U (S - B ) 
j j n=O n j 

But by (1) , Sn - BjC:·(int~n) - Bj • If' na j then Bn~ Bj and 

so Sn - Bj is empty. Thus by (2) , 

j-l j-l 
C - Bj = U (Sn - Bj) c::: U Vk n=o n=O n 

the second inclusion f'ollows f'rom (1) • Thus C - Bj C V where - m 

m = max {k}. Thus by 2.3 (i) , C* ÇB* c: B* f'or each j e: N • 
O~nsj-l n j # j-l 

Thus ~ < C* < 0:,. 

Case 2 Assume that Œ3 either is empty or has a smallest member, and 

that JL has no largest member. Let B* be the smallest member of lB 

(and put B* = X* if' lB is empty). As in case l , since .ft has no 

largest member we can assume that A* C A* C B* f'or each n e: N , 
n '" n+l # 

2 c: C and thus by .10 that An # An+l # B for each n e: N . 

As A~ 7 B* , i t f'ollows by 2.3 ( i ) that 

and so we can choose Po e: (B - AO) n (X - ClXV
O

) • 

(B - A ) n (X - clXV ) # ~ o 0 

choose ~ e: N so that Po e: V . 
llJ. 

Thus 

pose that we have chosen 

such that: 

p. e: X , 0 ~ i ~ n-l , and 
~ 

m. l > m. ,OS i ~ n-l 
~+ ~ 

Put mO = 0 and 

Inductively, sup-

m. e: N , 0 ~ i ~ n , 
~ 
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(ii) p. e: (B - Ai) n (X - c1XV ) n V 
~ mi mi +1 

o ~ i ~ n-1 • •• (3) 

As An* S B* , by 2. 3 (of) th . t . t (B A) 1"\ (X ) T • ere ex~s s a po~n Pn e: - n 1 l - c1XVm 
and an integer mn+1 e: N such that p e: V . 

n mn+1 

(m) N satisfy (i) and (ii) • Put n ne: 

co 

C = U [A "(X - V )] . n m n=9 n+1 

Thus (p) N and n ne: 

... (4) 

By (i) , 1im m = co ; hence by 2.2 (ii) 
n-+oo n 

it fo11ows that C e: R(X) • As 

A f\ (X - V ) e:..8 for each n e: N , i t fo11ows from the hypotheses that n mn+1 

n 

C e: ~. It is obvious from (4) that for each n e: N C* :=:>A* A (X - V )*. , - n m 

Thus Jt< c* . 

By 2.3 (i) , (X - V )* = X* and so 
mn+1 

C* ::::)A* ::>A* 
- n' n-1 

for each n e: N . 
n+1 

.~ On the other hand, it is obvious from (4) that C*ç:( VAn)*ÇB* 
n=O . Furthermore, for fixed i e: N , the set 

(B - A.) n (X - c~V ) n V n [A ,,(X - V )] ~ mi mi +1 n mn+1 

is empty for each n e: N ; for if n ~ i , then v n (X - V ) = ~ mi +1 mn+1 

and if n < i , th en Thus by and (4) , p. i C 
~ 

for each i e: N The set S = (Pi)ie:N is c10sed by 2.2 (i) since 

p. e: X - c1XV since S is disjoint from C , it fo11ows from 2.1 ~ m. 
~ 

that S*n C* = ~. But S*" ~ by 1.13 , and so C* '1 C*Us*. By (3) 
S* C B* and so C* 7 B*. Thus J=l. < c* < <B. 
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Case 3 Assume that ..A either is empty or has a largest element, and 

that ~ either is empty or has a smallest element. Let A* be the lar-

gest element of fi. and let B* be the smallest element of G3 (put 

A* = ~ if Ji. is empty and B* = X* if B is empty) • Then A* C B* 
1 

By 2.3 (ii ) , (int~) - A is not contained in any V . By a simple n 

induction, for each n € N we can find k € N such that the open set n 

is non-empty. As ..8 is a 

basic subalgebra of R(X) , for each n € N we can find S €.J such 
n 

that ~ 1 Sn c:: (int~) n (x - A) n (X - clXV
k 

) n V
k 

• Also, for 
2n-l 2n 

each n € N there exists Pn € (int~) n (X - A) n (X - clXV
k 

) n V
k 

• 
2n 2n+l 

If we set C = AU (U S ) , th en by arguments of a type previously seen, 
n n=O 

C € J and A*C c* 1 
Thus .ft < c* < (l3. 

Case 4 Assume that ~ has no largest member and CS has no smallest mem-

ber. As in cases land 2 , it can be assumed that A* <::: A* c;:. B* C B* 
n 1 n+l ~ m+l ~ m 

for each n, m € N. By 2.10 it can also be assumed that 
00 

A c A c: B CB f h n 1 n+l 1 m+l # m or eac n , m € N . Put C = V [A /\ (X - V )] • 
n=O n n 

As in earlier cases, i t is evident that C € ~ • Obviously 
Q) 

C* ::>A* /\(X - V )* = A* => A* 
- n n n # n-l 

for each n € N , and C* C (V A )* Ç; B* ~ B* - n m m-l n=O 

for each m € N. Thus Jl. < C* < œ,. This completes the proof of the 

theorem. 
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2.12 Theorem [CH] 

Let X be a cr-compact space and assume that Ic(x)1 = 2~o. 
Then [crG(X)]* is a basic subalgebra of R(X*) and is isomorphic to 

B(S!-~) (see 1.83 and 2.8 for notation) • In particular the projective 

covers of SX-X and S~ -! are homeomorphic. 

Proof: Since Ic(x) 1 = 2~"'10, it follows that !G(X)! = 2No; thus by 1.80 
!crG(X)1 = 2~ and so [crG(X)]* has cardinality no gre~ter than 2~. 

By 1.9 and 1.19 crG(X) is a basic subalgebra of R(X) , and since crG(X) 

is cr-complete (see 1. 73) i t satisfies aIl the conditions on .,8 required 

in 2.11. Thus by 2.11 maximal chains in [crG(X)]* - {~ ,X*} are 

nI-sets. Since by 1.47 every nI-set has cardinality at least 2~~ and 

since (as noted above) [crG(X)]* has cardinality no greater than 2~O, 
it follows that [crG(X)]* is a Boolean algebra of cardinality 2~·. It 

then follows from 1.49 that [crG(X)]* is isomorphic to B(S~-N) . As 

G(X)C::crG(X) , it follows from 2.9 that [crG(X)]* is a basic subalgebra 

of R(X*). Consequently by 1.87 [crG(X)]* is dense in R(X*). As 

SN-! is totally disconnected, by 1.85 B(S:!-MJ is dense in R(e~-NJ 

thus by 1. 75 R( eN- N) = = and R( SX-X) are isomorphic. It follows immed-

iately from 1.93 that e~-~ and SX-X have homeomorphic projective covers. 

2.13 Remarks 

(i) Note again that if X is a cr-compact space in which every 

closed set is a zero-set, and if Ic(x) 1 = 2
N., then crG(X) = G(X) = R(X) 

and so [R(X)]* is isomorphic to B(SN-N) • = = 

(ii) Not only do eN-~ and ex-x have homeomorphic projective 
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covers, but we can in fact make the stronger statement that there is a 

continuous irreducible map from SN-~ onto SX-X. This will become 

clear in remark 3.7 

It was noticed, after the proofs in 2.11 and.2.12 had been found, 

that one of the conclusions of 2.12 namely that if X is cr-compact 

and /C(X) / = 2N., then BX-X and SI!-I! have homeomorphic projective 

covers can be deduced from the following three known results: 

(i) [CH] If X is a cr-compact space and /C(X)/ = 2~o, then 

p(SX-X) and p( SN-N) == == are homeomorphic [CN , theorem 3.6] (see 1.34 

for notation) • 

(ii) [CH] If X is locally compact and realcompact and if 

/C(X) / = 2No, th en p(SX-X) is dense in SX-X (1.44) 

(iii) If S is a dense subspace of Y, th en R(S) and R(Y) 

are isomorphic. 

We include a proof of (iii) below as we cannot find a refer-

ence for it. 

2.14 Theorem 

If S is a dense subspace of Y ,then R(S) and R(Y) are 

isomorphic. 

Proof: Suppose A E R(Y) Then AnS E R ( S ) for suppose x E An S 

If W is any open subset of Y containing x th en W n c~( intyA) :f ~ 

and so W f) intyA :f ~. As Sis dense in Y , i t follows that 

(WOintyA)Os '" ~ ,Le. (wOS) n (SDintyA) :f ~. Thus x E cls(intsU~nS)) 
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and so AnS e: R(S) • Thus the mapping h:R(Y) -+ R(S) defined by 

h(A) = An S is a well-defined mapping from R(Y) into R(S) • If A 

and B are in R(Y) , then 

and so h preserves suprema. 

We now claim that if A e: R(Y) ,then (intyA) nS = ints(AOS) 

Obviously (int~) n S <; intS(An S) • Conversely, if x e: int
s (AnS) 

there exists W open in Y such that x e: W and wO S C An S. If 

W - A # ~ ,then (W - A)OS # ~ as S is dense in Y. This is a con

tradiction, so WC A and hence x e: (int~) n S. It follows that 

h(A') = Sn cly(Y - A) 

= S n (y - intyA) 

= S [( intyA) n S] 

= S - intS(S nA) 

= clS(S - (sIlA) 2" 
= [h(A)]' 

and sa h preserves complements. Thus h is a Boolean algebra homomor-

phi sm. 

Suppose that A and B are in R(Y) and that A # B. Then 

either (intyA) - B # ~ or (intyB) - A # ~ ; assume that (intyA) - B # ~ 
As S is dense in Y , it follows that (S n intyA) - (S nB) # ~ , and so 

h(A) # h(B) . Thus h is one-ta-one. 
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Finally, suppose that B E R(S) . Then there exists W open in 

y such that wO S = intsB. As 

clyB = cly(intsB) = cly(wOS) = Obviously 

B C Sn clyB ; and as S - B is open in S , there exists an open subset 

U of Y such that UnS = S - B. Thus un clyB = (Il and so 

S Cl clyB C. B. It follows that h (ClyB) = Band so h maps R (y) onto 

R(S) . Thus R(Y) and R(S) are isomorphic Boolean algebras. 

An attempt was made to characterize topologically those compact 

spaces whose projective covers are homeomorphic to that of SN-N • = = Al-

though this attempt was unsuccessful, the following partial result was 

obtained. 

2.15 Theorem [CH] 

Let Y be a compact space whose projective cover is homeomorphic 

to that of Sli-Ii. Then dense Gô-sets of Y have non-empty interiors. 

Proof: If Y and S! -! have homeomorphic projective covers, th en 

R(Y) and R(S!!. -Ii) are isomorphic. Thus R(Y) contains a dense eopy 
00 

(see 1. 85) . Let G = n u n n=O 
be a dense Gô-set in y , 

where (U) N is a eountable family of dense open subsets of Y. As n nE 

'3- is dense in R(Y) , there exists FOE 3- sueh that (Il:/: F 0 ç Uo 
(see 1.74) As U

1 
is dense in Y it follows that (intyFO)nU1 is 

non-empty. Thus there exists F l E d- sueh that (Il :/: FI <; (intyF 0) nUl . 

Induetively, suppose we have found (F) in ~ sueh that k O~k~n 



38. 

(lj #- F. C (intyF. 1) nU. J. - J.- J. 
Then as Un+1 is dense in Y, it 

fo110ws that (intyFn)f)Un+l #- (lj and so there exists F
n+1 e: 'J such 

that (lj #- F n+l C (intyF n) n Un+l • 

Thus we have a sequence (F) N c: 'J- such that (lj #- F C (intyF 1) nU n ne: - n - n* n 
for each n e: N. Thus (F) N is a countable chain of non-empty memn ne: 
bers of ~ , and since 'S- is isomorphic to B( S! -!) , whose maximal 

chains are nI-sets (see 1.46) , it follows by 1.49 that there exists 
co co 

H e: d- such that (lj #- He n Fne: n Un = G. As intyH #- (lj , it fol-
n=O n=O 

lows that intyG #- (lj • 

2.16 Remark 

It is not necessarily true that if Y is compact and has a pro-

jective cover homeomorphic to that of SN-N 
= =' th en everY non-empty Go-set 

of Y has a non-empty interior. As an examp1e, let Y be the projective 

cover of SM, -.Ii. Then Y is extrema11y disconnected (see 1. 82 , 1. 89 , 

and 1.93) It follows from 1.55 (i) that every regular closed subset of 

y is open-and-closed. If every non-empty Go-set of Y had a non-empty 

interior, then by 1.42 every zero-set of Y would be regular closed and 

hence open-and-closed. It follows from 1.35 (i) that Y would be a com-

pact P-space; hence by 1.35 (iv) y would be finite, which is impossible. 

Thus the projective cover of SN -! contains non-empty Go-sets with em

pt Y interiors. 
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III THE REMO TE POINTS.OF ex 

3.1 Definition 

Let X be a compact space and let abe an arbitrary cardinal 

number. Then X will be called a Baire a-space if, given a family ~ 

of dense open subsets of X such that /3 / s. a , the set n 'J- is 

dense in X. 

The Baire category theorem states that every compact space is a 

Baire ~-space. Theorem 1.43 says that if X is locally compact and 

realcompact, then ex-x is a Baire N.-space. We shall be concerned pri-

marily wi th Baire N',-spaces of this sort. 

The following thecrem is a generalization of a result due to 

Gleason (1.93). Our proof mimics the proof of [G , theorem 3.2] . 

3.2 Theorem 

Let Y be a compact space and let ..R. be a basic subalgebra of 

R(Y). Then there exists an irreducible surjection f:S(~) ~ Y defined 

by f(x) = n {A t Jt: x e: À(A)} (see 1.90 and 1.91 for notation and 

terminology) . 

Proof: We first show that f is well-defined. Since y is compact, 

f(x) were empty there would exist 

n n 

(A.)l. c.R such that 
~ ::>~sn-

n 
n A. 
i=l ~ 

n À(A.) 
1. 

But then 1\ A. = y:j , and as 
i=l 1. 

is an isomorphism, x e: 
i=l 

n 

= 

if 

y:j 

n À (A.) = y:j , which is a contradiction. 
~ 

Thus f(x) this implies that 
i=l 

and 
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is not empty. If y and z are distinct points of Y belonging to 

n {A e: Jt: x e: À (A) } , then since Jl is a basic subalgebra of R(Y) 

by 1.87 there exists E e:Jt such that y e: intyE and z i E . Since 

z e: n {A e: fl.: x e: À(A)} , it follows that x i À(E) . Thus as s(il) 

is totally disconnected, it follows that x € À(E)' = À (E 1 ) . Since 

y e: intyE it follows that y i El , and since y € niA € Jt: x e: À(A)} 

it follows that xiÀ(E') , a contradiction. Thus f is a well-defined 

map. 

To show that f is continuous, let x e: S(Jt) and let W be any 

open subset of Y that contains f( x) • As J1., is a basic subalgebra of 

R(Y) , there exists A € Jt such that f(x) € intyAÇ A C W. Thus 

x € À(A) and if z € À(A) ,then f(z) e: ACW. Thus xe: À(A)ç.f-l(W) 

and so f is continuous. 

To show that f maps S (.ft) onto Y , let y e: Y and consider 

3' = {A €.ft : 

n 
the family y e: intyA} . Then /\ A. :; r/J for every finite 

i=l ~ 
subfamily (A. ) 1::;' < C J, and since Ji is a basic subalgebra of R(Y) 

~ ~_n 

n~ = {y} it follows from 1.87 that . Evidently 3- is a filter on ..R. 

and so it is contained in some ultrafilter ~LL on vFt (see 1.72) ; thus 

by 1.90 the intersection 

Obviously f(x) = y . 

n À(U) 
U€1..I. 

is a unique point x of S(-R) 

, 

To show that f is irreducible, let K be any proper closed sub

set of S (.R..) • Then thel'e exists a non-empty A e: Ji such that 

À (A) C S (,ft) - K. Thus K C À (A 1) and so f[K] c: A' . It follows that 
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f[K] n intyA = ~ , and so f[K]:;' Y Thus f is irreducible and the 

theorem is proved. 

3.3 Definition 

Let Y be a space and let 'Jo be a subfamily of R(Y) • Then 

H(3') is defined to be the set n (y - b~F) 
Fe:J' 

Note that H(S) may be empty. 

3 .l~ Propos it i on 

Let Y be a space . and let ':j- be a subfami1y of R(Y). Then 

H(3) = H( <~) (see 1. 77 for notation) . 

Proof: Since 2-c < d> , i t follows that 

Conversely, if E e: <(T> , there exists by 1.78 a 
n m 

(Fij)l:;i:;m 
lsjsn 

of d such that E = V (" e:.jF'j) 
j=l i=l l l 

finite subfamily 

equals 

either F
ij or F

ij
' . It is well-known that if B , C e: R(Y) , then 

brly(BUC)Çb~BUbrlyC and b~B = b~(B') ; thus brly(BAC)Ç brlyBUb~C 
m n 

also. Consequently b~E ç .U (U b~F ij) and so 
l=l j=l 

m n .n ( n [y - b~Fij]) C Y - b~E. Thus n (y - b~F) CH«~» and l=l j=l Fe:"J--

the result follows. 

3.5 Remark 

There seems to be some formaI similarity between the notions of 
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a basic subalgebra ..Ft of R(Y) and the associated subset H(~) of Y 

and the concepts, defined by Plank [Pl, definitions 2.2 and 3.1] , of a 

S-subalgebra A of C(X) and the associated set of A-points of SX-X. 

However, the exact relationship between these concepts is unclear. 

3.6 Theorem 

Let Y be a compact space and Jt a basic subalgebra of R(Y) • 

(i) There exists a topological embedding g:H(~) + S(~) such 

that fQg is the natural inclusion of H(Jt) in Y (where f is the 

mapping defined in 3.2) 

(ii) If Y is a Baire a-space and if IJiI ~ a then H(~) is 

dense in Y , g[H(..R.)] is dense in S(..R) ,and f[S(Jt) g[H(J\) ] ] = y - H(Jt) 

Proof: (i) Let y E H(..R) • If A E.R., then from the defini tion of HVl) 

it is apparent that y E A if and only if y E A - b~ = intyA. Define 

Îl(y) = {>,(A) : A E Jl and y E A} (see 1.90 for notation). This is an 

ultrafilter (1.72) on B(S(Jl)) ; for if À(Al ) 

th en y E intyAIO intyA2 = inty (Al "A2) Thus 

is a member 01' l.t (y) . Obviously ~ t au( y ) 

and À(A2 ) belong to ~(y) 

À(Al " A2) = À(Al ) n À(A2 ) 

and if À(Al ) E ll(y) and 

À(Al ) C À(A2) then À(A) E ll(y) . Thus U(y) 

Finally, if À (A) t 1J.(y) for some A E Ji., th en 

is a filter on B(S(Jl)) . 

y t A and since ~ is 

a basic subalgebra of R(Y) , there exists B E Jt sueh that y E Band 

AOB = ~. Thus À(B) E CU(y) and À(A) n À(B) = ~ ; hence l.l(y) is 

an ultrafilter on B(S(J1)) Thus nU(y) is a single point of sUt) 

and so we ean define g(y) by g(y) = fll1(y) . 



II· 

43. 

Suppose that x and y are distinct members of H{Jü . Since 

Ji is a basic subalgebra of R{Y) , there exists A e: Jt such that y e: A 

and x e: A' • Thus g(y) e: À(A) , g(x) e: À(A') ,and À{A) n À(A') = Ç!1 • 

Thus g is one-to-one. 

We next claim that if y e: HG.R) and if B e: tR, then g(y) e: À{B) 

if and only if y e: B. It is obvious from the! defini tion of g that 

y e: B implies g(y) e: À(B). Conversely, if y t B then y e: B' and 

so g(y) e: À(B') = À(B)' ; thus g{y) t À(B) and our claim is valid. 

We now show that g is continuous. It follows from the previous 

paragraph that 

g -I[ À (A)] = {y e: H(,ft) 

= H(.ft.)n A 

g(y) e: À(A)} 

for each A e: Jt. Since {À(A): A e:Jt} is a base for the closed sub

sets of S(Ji.) and since H(Jt) nAis closed in H(.R.) , it follows that 

g is continuous. 

FinaIIy, for each A e: St we have 

g [ H (..ft) nA] = { g ( y ) : y e: H (Ji ) nA} 

= À(A)n g[H(-ft)] • 

Since JAL is a basic subalgebra of R(Y) , the famiIy {H(Jl)O A : A e:Jl} , 

which is identical with {H(~)n intyA : A e:~} , is a base for the open 

sets of H(JR) , and so g is an open mapping onto its range. It follows 



44. 

that H(J1) and g[H(,R)] are homeomorphic, and so g is a topological 

embedding. 

Suppose that y e: H(Jt) • Since g(y) e: À (A) if and only if 

y e: A for each A e:..R, it follows that f(g(y» = n{A e:Jl: y e: A} = Y • 

(ii) Since I~I ~ a , the family ~ = {y - b~ : A e:JAJ is a 

family of not more than a dense open subsets of Y. Since Y is a 

Baire a-space, the set H(J\.) = nd- is dense in Y. Thus if A is any 

member of fi. , it follows that (intyA)fi H(Jt) t: ~. Choose y e: (intyA)n H(J!); 

then g(y) e: À(A)O g[H(.R)] , as seen above. As {À(A): A e:JU is a 

base for the open subsets of S(~ , it follows that g[H(Jt)] is dense 

in S(Jt) • Finally, since by (i) the restriction of f to the dense 

subset g[H(.J\)] of S(Jt) is a homeomorphism onto H(JU , it follows 

from 1.32 that f[S(Jl) - g[H(.A)]] = y - H(Jt) . 

3.7 Remarks 

(i) H(Jt) = S(~) = Y if and only if Ji= B(Y) and Y is com-

pact and totally disconnected. 

(ii) [CH] Let X be a-compact and suppose Ic(x)1 = 2~o. If we 

put Y = SX-X and Ji= [aG(X)]* (see 2.8 for notation) , then the condit

ions of 3.6 (i) and (ii) are satisfied for a = NI (see 1. 40 and 1. 43) 

Since by 2.12 [aG( X) ] * is isomorphic to B ( S!i, - ~) , it follows that S (Jt) 

is homeomorphic to SN- N • = = 
Thus there is a continuous irreducible sur-

jection from S!i,-R onto SX-X. 

Recall the definition of remote points given in 1.50. Using the 



characterization of the set of remote points of SX given in 1.51 , we 

obtain the fOllowing statement. 

3.8 Theorem [CH] 

Let X be a a-compact metric space without isolated points. 

Then T(X*) can be embedded densely in SN - N (see 1.52 for notation) . ......... 

Proof: Since X is separable (1.53) ,clearly Ic(x)1 = 2~Q. By 2.12 

and 2.13 (i) , it follows that [R(X)]* is a basic subalgebra of R(X*) 

and is isomorphic to B(S!-!) • Thus S([R(X)]*) is homeomorphic to 

S,!-! , and by 3.6 (i) there is an embedding g of H( [R(X)]*) into 

SJi-!. Since I[R(X)]*I = l'I.o and X* is a BaireN',-space (1.43) ,it 

follows from 3.6 (ii) that g[H([R(X)]*)] is dense in SJi-N. Using 

1.51 and recalling (1.21) that in a metric space R(X)C: Z(X) , we have 

T(X*) C n [X* - b~*A*] = H( [R(X)]*) . 
Ae:R(X) 

As T(X*) is dense in X* (1.51) and hence in H([R(X)]*) , it follows 

that g[T(X*)] is dense in g[H([R(X)]*)] and thus in S!-,!. As g 

is a topological embedding, g[T(X*)] is homeomorphic to T(X*) and 

dense in S,! - li . 

3.9 Definition 

A space X will be called strongly countably compact if the clos-

ure in X of every countable subset of X is compact. 

3.10 Proposition 

A strongly countably compact space is countably compact. 
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Proof: Let D be a countab1y infinite subset of the strong1y countab1y 

compact space X. Then c1~ is compact and thus contains 1imit points 

of D Thus each countab1y infinite subset of X has 1imit points, and 

so X is countab1y compact. 

3.11 Examp1e 

~3 an examp1e of a countab1y compact space that is not strong1y 

countab1y compact, consider the space Y = S! - {pl , where pi!. 
Since R is a countab1e dense subset of Y and Y is not compact, it 

fo110ws that Y is not strong1y countab1y compact. By 1.58 , S! is 

extrema11y disconnected and thus is an F-space (1.36) . Thus if D is 

any countab1y infinite subspace of Y , it fo110ws from 1.38 and 1.30 

is homeomorphic to SN ..., and thus by 1.29 has cardina1ity 

Thus D has 1imit points in S! other than p , and thus has 

Y-1imit points. Thus Y is countab1y compact. 

3.12 Theorem 

Let X be a a-compact metric space without isolated points. 

Then both T(X*) and X* - T(X*) are strong1y countab1y compact. Thus 

assuming the continuum hypothesis, X* can be decomposed into two dis-

joint dense strong1y countab1y compact subspaces. 

Proof: We first prove that T(X*) is strong1y countab1y compact. Let 
p D = (Pn)nEN be any countab1e subset of T(X*) , and let Jt n be the 

z-u1trafi1ter on 

and set K = f1 F* 
FE"J 

X associated with 

Then p E F* 
n 

(see 1.31) . Put 

for each n E N and each F E: o;t , 



and so D is a subset of K , which is closed in X* It thus suffices 

to show that KÇ T(X*) • Suppose that q i T(X*) • Then by 1.51 there 

exists a closed nowhere dense subset z of X q e: Z* • 

Since Pn is a remote point, 

A e: 
oPn 

and so we can choose ~ 
n 

generality we can assume that 

It follows from 2.2 (i) that 

it follows that for each n e: N , 

such that ZOA = ~ . n 
Without loss of 

A C X - V for each 
n - n 
CIO 

U A. is closed in 
i=O ~ 

n e: N (see 1.11) . 
CIO 

X and as A c: UA. 
n - i=O ~ 

for each n e: N , evidently o A. e: 3-. 
i=O ~ 

CIO 

Thus K ç; ( UA.) * • 
i=O ~ 

But 

CIO 

Zn (U A.) = ~ so by 2.1 (ii) 
i=O ~ 

q t K and so KÇT(X*) . 

CIO 

we have Z* n ( U A.)* = ~ • 
i=O ~ 

Thus 

We next prove that X* - T(X*) is strongly countably compact. Let 

D = (Pn)ne:N be a countable subset of X* - T(X*) . By 1.51 we can, for 

each n e: N , find a closed nowhere dense subset Z of X such that 
n 

P e: Z* , and without loss of generality we can assume that n n 

By 2.2 (i) 
CIO 

i t follows that U Z. is closed, and obviously 
i=O ~ 

CIO 

Z c: X - V 
n - n 

CIO 

p e: (U Z.)* 
n i=O ~ 

for each n e: N. Thus clX*D ç (U Z.)*. Applying the Baire category 
i=O ~ 

theorem to the locally compact space X , we see that 

thus it follows from 1.51 that 

a subset of X* - T(X*) • 

CIO 

(U Z.) * C X* - T (X* ) 
i=O ~ -

CIO 

intX( U Z.) = ~ 
. 0 ~ 
~= 

Since, assuming the continuum hypothesis, both T(X*) and X* - T(X*) 

are dense subsets of X* (1.53), the final assertion follows. 
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3.13 Theorem [CH] 

Let X be a a-compact.metric space without isolated points, and 

let g be the embedding of 3.8. Then (S! - IO - g[T(X*)] is a dense, 

strongly countably compact subspace of S!-! of cardinality 22~. 
Thus S! -! can be decomposed into two disj oint, dense strongly count-

ably compact subspaces. 

Proof: Let f be the irreducible map from S!-! onto SX-X described 

in 3.7 (ii) • By 3.6 and 3.8 , the restriction of f to the dense sub-

set g[T(X*)] is a homeomorphism sending g[T(X*)] onto T(X*) • It 

follows from 1.32 that f[(SIi-li) - g[T(X*)]] = X* - T(X*) , which by 

1.54 is dense in X*. As f is irreducible, by 1.92 the set 

is dense in QN- N ~a:a .. ' 
and as 

X* - T(X*) has cardinality 2N .. 
2 ,so does 

Let D = (p) N be a countab1e subset of (SIi-~) - g[T(X*)] . n ne: 
Then as seen above, the set (f(p )) is a countab1e (or finite) sub-n ne:N 
set of X* - T(X*) and so by 3.12 it follows that C1X*[(f(p)) N] n ne: is 

a subset of X* - T(X*) . Thus 

c1N*D C f-
1

[CIX* [(f(Pn) )ne:NJ] 
= 

~ f-l[X* - T(X*)] 

= (SN-N) - g[T(X*)] .... =-

Final1y, since g[T(X*)] is homeomorphic to T(X*) , it follows from 

3.12 and the above that g[T(X*)] and ( SN - N ) - g [ T (X* ) ] = -= are the sub-

spaces of SM.. - Ii whose existence is claimed in the s.tatement of the theorem. 
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The fo110wing resu1t genera1izes a portion of theorems 3.12 and 

3.13 • 

3.13a Theorem [CR] 

If X is a a-compact space and IC(X)I = ~o, then ~-X can 

be partitioned into two disjoint, dense strong1y countab1y compact sub

spaces. 

Proof: Since (c(x)1 = 2~, the fami1y of 2~ cozero-sets of X* forms 

a base for the open subsets of X*. Rence by 1.44 there exists a dense 

subset D of X* consisting of ~. P-points of X*. Put 

S = {.x € X* : there exists E c: D such that 1 E 1 = ~ and x € c1x*E}. 

As D has 'N, countab1e subsets - say (~)G« w, - we can write S in the 

form S = U c1x*Ec( . 
c:«N. 

Now intx*(c1x*E~) = ~ for each oC. < t.J,~ for if not, let Eoc = (xi) ieN . 

By 2.12 we can, for each i € N ,find A! € [R(X)]* such that 

By case 1 of 2.11 there exists B! € [R(X)]* such that 
ex) 

~ :/: intx.B! ç n intx*A! ç: c lx*E ... - E..c ' 
i=O 

which is a contradiction. Thus intx*(c1x*E~) = ~ and so S is a 

union of ~, c10sed nowhere dense subsets of X*. By 1.43 it fo11ows that 

X* - S is dense in X*. Of course S is dense in X* also. 

Now S is strong1y countably compact, for let 

Then there exists, for each n € N , a subset E of D 
n 

fEn 1 = ~ and xn € clX*En . Thl!8 
00 co 

(xn)n€N ç U c1X*En ç clx*( tJ En) c: S 
n=O n=O 

co 
(as U E 

n=O n 
is a countab1e subset of D). 

(x) Ne: S • n ne -
such that 
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so S is strongly countably compact. 

x* - S 

Finally, 

such that 

suppose that there exists a countable subset A of 

Sn clx*A ~ ~. Then there exists a countable subset 

clx*E n clx*A ~ ~. Now clx*E ç S so the set 

As each point of E is a P-point of X* , it i8 evi-

E of D such that 

(c lx*E) n A = ~ • 

dently not a limit point of any countable subset of X*, and so 

En clx*A = ~. Thus E and A are disjoint open-and-closed subsets 

of the countable subspace AU E of X*. As X* is an F-space (see 

1.37), A lJ E is C*-embedded in X* (see 1.38). Thus 

clX*E n clX*A = clx*(E nA) = (J 

(see 1.30 and 1.27). This is a contradiction and so Sn clx*A = ~ for 

each countable subset A of X* - S. Thus X* - S is strongly count

ably compact and ~S , X* - sl ia the desired decomposition of X*. 



3.14 Proposition 

Let X be any cr-compact space and let A be a closed subset of 

Proof: Since A* is closed in X*, it follows that 

b~*A* = A* - intX*A* 

= A* Cl c~*(X* - A*) 

= A* n [c~(X - A)]* (see 2.4) 

= [A n clX(X - A)]* (see 2.1 (ii) 

= (bY)* 

3.15 Remarks 

(i) [CH] We are now in a position to indicate somewhat simpler 

proofs of two of Plank's results. First, it is evident that the equival-

ence of the two characterizations of T(X*) that appear in 1.51 fol1ows 

i~ediately from 3.14. Second, in his proof of the fact that 

[X* - p(X*)]f1 T(X*) is a dense subset of X* of cardinali ty 2N.. 
2 , 

Plank constructs a compact infinite set of remote points by appealing to 

a somewhat complex result of Fine and Gillman [FG2 ' lemma 2.3] • This 

can be avoided by taking the closure in X* of a countable set of re-

mote points (see 3.12) • 

(ii) [CH] In [M , section 4] Mandelker cal1s a subset A of 

eX a round subset of eX if for any Z E Z(X) ,if c1exZ contains A 

th en it is a neighborhood of A If we say that p is a round point 

of ex if and only if {pl is a round subset of eX, then it is evi-
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dent that the set of round points of SX that are not in X is pre

cisely the set r-t [X* - b~*Z*] • Obviously the proof of 3.8 can 
Ze:Z(X) 

be adapted to show that if X is a a-compact space such that /C(X)/ = 2N• 

and R(X)C: Z(X) , then the set of round points of SX that are not in 

X can be embedded densely in SN -N • - --
Recall that P-points were defined in 1.33 • 

3.16 Lemma 

If X is a dense subspace of T , then P(X) = xO P(T) 

Proof: It is immediate from 1.35 (iii) that XOP(T) Cp(X) . Con-

versely, let p e: p(X) , let Z e: Z(T) , and suppose that p e: Z • Then 

Z nX e: Z(X) and so by 1.35 (ii) there exists an open subset W of T 

such that p e: WnX c Z Ox . If W - Z ~ ~ , th en since W - Z is open 

in T and since X is dense in T , it follows that (wOX) (ZnX) ~ ~ 

which gives a contradiction. Thus WC:Z and so Z is a neighborhood 

(in T) of p. As Z was an arbitrary zero-set of T , it follows from 

1.35 (ii) that p e: P(T) • 

In [CN , theorem 3.6] , Comfort and Negrepontis have shown, assum-

ing the continuum hypothesis, that if X and Y are two a-compact spaces 

and if /C(X)/ = /C(y)/ = 2~, th en p(SX-X) and p(SY-Y) are homeo-

morphic. We can, using the results developed in this chapter, prove the 

following weaker result. 
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3.17 Theorem [CH] 

If X is a a-compactmetric space without isolated points, 

then there exists a dense subset of p(SX-X) of cardinality 22~ that 

is homeomorphic to a dense subset of p( S!-ll) . 

Proof: By 1.54 , p(X*) f1 T(X*) is a dense subset of X* of cardinality 

22*0. If g is the embedding of T (X*) in al -! defined in 3.8 , i t 

follows from the fact that g[T(X*)] is dense in 

P(g[T(X*)]) = g[P(X*)OT(X*)] is a dense subset of 

aN- N that 
-- -= 

~li -:r. ç;f t;;ardinal-
. t 22'Ho l. y • By 3.16 , P(g[T(X*)]) = g[T(X*)] n p(a!i-W and the theorem 

follows. 

If X is a a-compact metric space without isolated points, then 

{A*OT(X*) : A € R(X)} is evidently a family of open-and-closed subsets 

of T(X*) that forms a basis for the open sets of T(X*) • This raises 

the question of whether T(X*) has the stronger property of being basic-

ally disconnected (1.55 (ii) ) • The following proposition provides the 

answer. 

3.18 Proposition 

Let X be locally compact and realcompact, and let S be a 

dense subset ofaX-X with the property that S 0 [X* - p(X*)] :f lZl • 

Then S is not basically disconnected. Thus, assuming the continuum 

hypothesis, if !C(X)! = 2~ then P(X*) is the largest dense basically 

disconnected subset ofaX-X • 

Proof: By hypothesis there exists a non-empty Z € Z(X*) such that 
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Let x e: S fi b~*Z •. As S is dense in 

x* , the set Sn (x* - z) is a non-empty cozero-set of S. By 1. 41 

Z = c1X*(intX*Z) and so Sn (intX*Z) :F (11. Since sn (x* - Z) and 

Sn (intx*Z) are disjoint, by 1. 56 it suffices to show that 

c1S [S n (X* Z)] n clS[S n (intX*Z) J is non-empty. Let W be any open 

subset of X* containing x. As x e: c1X*(intX*Z) , it follows that 

As S is dense in X* , we see that sn wn intX*Z :F (11 

and so x e: c1S [S n intX*Z J. Since x e: c~* (X* - Z) , it follows in a 

similar manner that x e: C1S[Sn (X* - Z) J , and so S is not basica1ly 

disconnected. Assuming the continuum hypothesis, if !C(X)I = 2~ then 

by 1.44 and 1.57 p(X*) is a dense basica1ly disconnected subspace of 

x* , and the final statement of the theorem fol1ows. 

Combining 3.18 and 1.53 , we immediately obtain the following result. 

3.19 Corollary 

If X is a a-compact metric space without isolated points, then 

T(X*) is not basically disconnected. 

We conclude chapter III by showing that the set of remote points 

of S~ is precisely the set H([R(EJ]*). To do this we need the fo11-

owing 1emma, which was proved independently and approximately simultan-

eously by ourselves and Mandelker [M , 1emma 2.3J • 

3.20 Lemma 

Let K be a closed nowhere dense subset .of R . = Then there ex-

ists A e: R(~) such that KÇ b~A • .... 
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Proof: Without loss of generality we can.assume that K 1s unbounded, 

as any bounded closednowhere dense subset of ~ is a subset of some 

unbounded closed nowhere dense subset of R. We can th us write R - K - -Q) 

in the form U (a. ,bi ) where ai < bi and i:f j implies that . i=l ~ 

(ai ,bi)O (aj ,b j) = !2l. Fix i and form a "Cantor set" from [ai ,bi ] by 
deleting "open middle third" intervals in the standard way. This ls acc-

omplished in a sequence of steps; at the n th step n-l 2 intervals are 

deleted. Inductively, we calI the "open middle third" intervals that we 
delete from [a., b.] ei ther "red" or "green" according to the following ~ ~ 

rule: 

(i) (ai + (bi - ai )/3 , ai + 2(bi - ai }/3) is red. 

(ii) Suppose that the n th stage of deleting "open mlddle third" 
intervals has been completed and that colours have been assigned to these. 

At the (n+l) st stage we delete 2n open intervals and assign each inter-
val l a colour as follows: if there is a previously deleted interval to 

the left of l , assign l the colour that is the opposite of the colour 

of the previously deleted interval that lies closest to the left of l • 

If there is no previously deleted interval to the left of l , th en the 

colour of l ls taken to be the opposite of the colour of the previously 
deleted interval that lies closest to the rlght of l • 

Let R. be the union of the red subintervals of [ai,bi ] , and 1. 
00 

let G. be the union of the green subintervals of [ai,bi ] . Put R = U R. l. 

i=l ~ 
Q) 

and G = i~t G. . Then as RiU Gi is dense in (ai,bi ) , RlJ.G is dense 1. 
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co 

in U (a. ,b.) = li - K 
i=l ~ ~ 

and thus is dense in R. - Obvious1y R nG = 0 

and KÇ ~ - (RUG) From the construction of Rand G it is easi1y 

seen that li, - (RUG) = b\(C1~G) , and of course C1~G e: R(~). The lemma 
follows immediately. 

3.21 Theorem 

T(R*) = H([R(R)]*) • - -
Proof: Reca11 (1.51) that T(li*) = (l [~* - (b~Z)*] and that 

Ze:Z(!l) .... 

H( [R(li)]*) = n [li,* - (b~A)*] . As R(!i) C Z(W , obviously 
Ae:R(R) --

T(!i*)CH([R(B,)]*) . Converse1y, if Z e: Z(Il) th en by 3.20 there exists 

A e: R(~ such that bdRZ ç b<ll.A ; thus li,* - (b\A)* c ~* - (b~Z)* . 
Thus H ( [R (li) ] *) C T (!l,* ) and the theorem fo1lows. 

3.22 Questions 

(i) Is H([R(X)]*) = T(X*) for any a-cc~pact metric space X 

without isolated points? 

(ii) If X and Y are two a-compact metric spaces without iso-
1ated points, are T(X*) and T(Y*) homeomorphic? 
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IV THE DIMENSION OF êX-X 

In this chapter we develop, for a a-compact space X, a rela-

tively simple characterization of the Lebesgue covering dimension of 

ax-X. This characterization 1s th en used to show that for each positive 

integer n , the Lebesgue.èovering dimension of n • 

Throughout this chapter we assume that X is a-compact (and hence normal). 

4.1 Lemma 

If B is closed in BX-X and W is open in ax-X, and if 

B c: W , then there exists A e: R(X) such that B C intx*A*Ç A* C W • 

Proof: Since X is a-compact, it follows from 2.12 that [R(X)]* is a 

basic subalgebra of R(X*) ; .thus by 1.87 , the family {intX*A* A e: R(X)} 
is a base for the open subsets of X*. As Band X* - W are disjoint 

closed subsets of the normal space X*, there exists (Aa ) ae:E C R(X) 

such that 

B ç U intX*A~ ç c~*[ U intX*A~] = K ç W • ae:E ae:E 

al ' G" , a e: E n 
such that As B is compact there exist 

n 
Be U intX*A~~ KCW. It follows from 2.1 (i) and 2.5 that i=l 1. 

n 
Put A = U 

1=1 
A a. 

1. 

4.·2 Definition 

then A e: R(X) 

n 
= (U A )* 

i=l ai • 

and obviously 

A coyer of SX-X aIl of whose members are of the form intX*A* 
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(for some A e: R (X) ) will be called an R-cover of SX-X. If 0 'i.s 

both a refinement of a cover ~ of SX-X and also an R-cover of SX-X, 

then ~ will be called an R-refinement of il. (see 1.66 for terminology). 

The proof of the following lemma mimics the proof of [GJ , theorem 16.6]~ 

4.3 Lemma 

Let U = (U.)l . k be a cover of SX-X. Then there exists an J. SJ.S 

R-refinement Jt = (intX*A~)lSi~k 
from l to k. 

of 11 such that A~C U. 
J. - J. 

for each i 

k Proof: The family (Ai)lSiSk is defined inductively. Put B = X* -l UU ... 
i=2 J. Then as ~ is a cover of X* , it follows that BI and X - Ul are 

disjoint closed subsets of X*. By 4.1 we can find Al e: R(X) such 

cover of X* • 

Suppose that we have defined Al ' ••• , A
i

_l e: R(X) such that: 

(i) AjC U
j 

, lsjsi-l, 

(ii ) The family {intX*Al* ••• int A* U , , X* i-l , . i 
, ••• , U

k
} 

is a cover of X* • 

Put B. = X* - (intx*Ai U ... U intx*Ai_l U Ui +l U . .. U U
k

} if J. 
k-l 

i .; k , and put B = X* - U intx*Aj . By (ii) B. and X* - U. are k j=l J. J. 

disjoint closed subsets of X* ; thus by 4.1 there exists A. e: R(X) 
J. 

such that B. C:intx*A~C A~ C U .• J.- J.- J.- J. 
Then and (ii ) are both sat-

isfied when i-l is replaced by i. This induction yields the desired Jft. 
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4.4 Proposition 

The following two statements are e~uivalent: 
(i) The space aX-x has a eover ~ sueh that every refinement 

of ~ has order (see 1.67) not less than n • 

(ii) The spaee aX-X has an R-eover ~ sueh that every R-refine
ment of 'O'f has order not less than n • 

Proof: Let li be a eover of X* sueh that every refinement of Ïl has 
order not less than n. By 4.3 there exists an R-refinement &)f of 11 . 
As every refinement of ~ is a refinement of U , every R-refinement of Of has order not less than n • 

Conversely, if~ is an R-eover of X* sueh that every R-refine
ment of Cà'f has or der not less than n, let c-y be any refinement Gf ~ • 
By 4.3 'Q has an R-refinement ...R. and..Ft is an 
Thus there exist Al ' •••• An+l ESt sueh that 

R-refinement 
n+l n A. :F ~ • 
i=l ~ 

ofa-a6 • 

As Jt 
ls a refinement of c-o , we can find Vl , 
A.C. V. for eaeh i from l to n+l . ~ - l. 

ord 6~ n . ThUS"){ is the desired U. 

4.5 Proposition 

... 
Thus 

, Vn+l E~ sueh that 

nAl V. :F ~ and so 
i=l ~ 

The dimension of SX-X is not less than n if and only if there 
exists an R-eover ~ of SX-X sueh that every R-refinement of C)f has 
or der not less than n. 

Proof: From the definition of dimension (1.68) it is evident that 
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dim X* ~ n if and only if it is taIse that every coyer of X* has a re-

finement of order not greater than n-l. Thus dim X* ~ n if and only 

if X* has a coyer 11 such that every refinement of "Ll has order not 

less than n. By 4.4 this occurs if and only if there exists an R-cover 

')f of X* such that every R-refinement of~ has order not less than 

4.6 Proposition 

If Y is a normal space, then every coyer of Y has a refine-

ment aIl of whose members are regular open sets. 

Proof: Suppose that B is closed in Y , W is open in Y , and Be: W 

Then as Y is normal, there exist an open set U and a closed set K 

such that Be uC KÇ W. Thus BÇ Uc clyUC.W. Thus there exists 

A e: R(Y) such that BC intyA C A C:W. A repe-

tition of the proof of 4.3 now yields the proposition, since intyA is a 

regular open set. 

4.7 Proposition 

Let X be a a-compact space and let (A')l' k C::R(X) • Then 
l. $l.$ - k 

(intx*A!)l~iSk is an R-cover of 8X-X if and only if X - }JI int~i 

is compact. 

Proof: The famiIy 

.. 

(intX*A~)l . k 
l. Sl.S 

is a cover of 
k k 

X* - U 
i=l 

intX*A! = ~ , i.e. if and only if n (X* 
i=l 

k n (X* - intX*Ai) 
i=l 

X* if and only if 

n • 



k 
= [n c~(X-Ai)]* 

i=l 
k 

= [ n (X - int~.)]* 
i=l ~ 

k 
= [X - U int~. ]* 

i=l ~ 

The proposition now fo11ows from 2.1 (iii) • 

4.8 Proposition 

(intX*E~)l<'<k be an R-cover of 
~ -~-

8X-X • 
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(by 2.1 (ii) and 2.4) 

Then the fami1y 

Ji. = (intX*A~ )1<''''' is an R-refinement of ~ if and on1y if there exists 
~ _~",m 

m 
a compact subset K of X such that X - U int~.CK and for each i 

i=l ~ -

from 1 to m, there exists Ji EN, 1 ~ Ji ~ k , such that Ai - EJ.C:K • 
~ 

m 
Proof: By 4.6 Jl is a cover of X* if and on1y if X - U int~i is 

i=l 

compact. By definition JFl is a refinement of ~ if and on1y if 

intX*Ar C intx*Ej. for each i from 1 to m and some ji (l~J. ~k). 
~ 

~ 

Since by 2.5 A~ and E* are regu1ar c1osed, this occurs if and on1y if 
~ ji 

A~CE* By 2.3 (i) A~C E* if and only if A. - E is contained 
~ - J. ~ - j. ~ j. 

~ ~ ~ 

m m 
in some compact subset K. of X. 

~ 

and we are done. 

4.9 Proposition 

Put K = (X - U int~.) U (U K.) 
i=l ~ i=l ~ 

Let Jt= (intX*A~)l~i$k be an R-cover of 8X-X. Then ord~ ~ n 

if and on1y if there exist n+l members of ~ - say 
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n+l 
such that fl int-~. is not contained in any compact subset of X. j=l x--~ j 

Proof: Evidently ordJR ~ n if and only if there exists a subfamily 
n+l 

(intx*Aij)l~jSn+l of ~ such that J]l intx*Ai
j 

# 0. By 1.82 this 

n+l 
occurs if and only if· 1\ Ai! # 0, which by 2.7 is equivalent to j=l ~j 
n+l 
(A A. )* # 0. By 2.1 (Hi) and 1.82 this occurs if and only if j=l ~j 
n+l 
f) int~. is not contained in any compact subset of X. j=l ~j 

4.10 Theorem 

Let X be a cr-compact space. Then dim X* ~ n if and only if 

there exists a cover~ = (Ui)lSiSk of X such that every refinement 

of ~ contains n+l sets whose intersection is not contained in any 

compact subspt of X. 

Proof: Suppose that the coyer ~ exists as described. By 4.6 there 

exists a refinement ~ = (Wi)*SiSk of 1UL aIl of whose m~mbers are reg-
ular open sets. Since X - U W. = !1l , by 4.7 the family 

i=l ~ 

If J1. = (intX*Ai!)l . 
~ ~~~m 

is an R-refinement of ~ , then by 4.8 there exists a compact subset K 
m 

of X such that X - U int~. C K and such that for each i from i=l ~ 

1 to m, there exists an integer ji (1 ~ ji ~ k) such that Ai - clXWj . Ç;K. 
~ If (int0i) n (X - intx[cIXWj .]) n (X - K) # 0 , Le. if 

(int0i) n clX(X - ClXWj .) ft (X - K) # 0 , then it follows that 
~ 
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(intxAi - CIXW
j
.) fl (x - K) ~ ~ , which is a contradiction. Thus by 1.8 
l. 

it follows that int~i - Wj . = intxAi - intX(cIXWj.)Ç;K (1 ~ i ~ m) • 
l. l. 

Consider the family ~ of open subsets of X defined as follows: 

d = ([int-~. Jn [X - K])l· U (S nW·)l . k r-l. Sl.sm l. ~l.~ 

where S is an open subset of X such that KC Sand cI
X

S is com
m pact (such an S exists as X is a-compact) • Since X - U intxA. 

i=l l. 

is a subset of K and (intr\)n (X - K)Ç Wj . ' it follows that d- is 
a refinement Of'){ , and hence of lJ.. Thus b~ hypothesis 8- contains 

n+l sets whose intersection is not contained in any compact subset of X. 

As cl~ is compact, it follows that there exist sets 

n+l 

A. , 
l.1 

A. 
1.n +1 

such that n int-~. is not contained in any compact subset of X j=l r-l. j 

By 4.9 ord Jt ~ n , and as Jl was an arbi trary R-refinement of Ë." i t 

follows from 4.5 that dim x* ~ n • 

Conversely, suppose that dim X* ~ n. Then by 4.5 there exists 

an R-cover Ë of X* such that every R-refinement of t contains n+l 

sets with non-empty intersection. 
k 

If E: = (intx*E~)l<.<k ' then by 4.7 1. _l._ 

the set X - U int~. is compact. 
i=l l. 

Let W be any open subset of 

such that clXW is compact and 
k 

X - U int~iCW 
i=l 

is a cover cl of X . 
m 

Then 

Let 

a refinement of 'j- . Since U intX( clXU .) = X , by 4.7 the family • 1 l. 1.= 

X 
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pact, for each i such that (CIXU
i

)* # ~ , 

(1 s.. ,j'i .s. k) such that Ui ç int~j, • Thus 
1 

there exists an integer Ji 

clXUi C cIX(int~J.) = Ej, 
1. 1. 

and so intX* (clXUi )* C intx*Ej. • Thus ')( is 
1. 

an R-refinement of S, 
n+l and so there exist Uk , ••• , U zuch that 

1 kn+l 
ft intx*(clxUk .)* ~ ~ • 
1.=1 1 

n+l 
A repetition of the proof of 4.9 shows that T = intX[.n clXUk .J is not 

1.=1 1 

contained in any compact subset of X. Using the notation of 1.11 , supn+l 
pose that ft Uk.C: Vs for some s € N. Then as the open set i=l 1 

T n (X - clX Vs) is non-empty and meets 

set Tn (X - clxVs )fl U
k1 

is non-empty. 

cl
X

U
k ,it follows that the open 

1 
Since this meets clXUk ,it fol-

2 

10ws that Tn(X - c~VS)nUklnUk2:f. ~. A repetition of this argument 

n+l 
shows that Tll. (X - cl

X
V ) n (n Uk ) ~ ~ , .. which is a contradiction. 

Thus 

s i=l i 
n+l 

for aIl s € N , and so n· Uk , 
i=l 1. 

is not contained 

in any compact subset of X. As (U')l<'< was an arbitrary refinement 1 _lSlll 

of J , i t fol10ws that a is the desired COVf'r 1L of X. 

4.11 Theorem (Jerison) 

For each positive integer n , 

Proof: For each k € N put Sk = {x € ~n : 2k+l s.. JlxU s.. 2k+2} (where 
00 

Uxll denotes the norm of x) , and let K = U Sk. By 2.2 (i) K is 
k=l 
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closed in the metric space and thus by 1.16 K is C*-embedded in 

It follows from 1.30 that ClS!nK is homeomorphic to SK and 

thus K* is homeomorphic to SK-K. Since K* is closed in the normal 

space (Rn
)* , it follows from 1.16 that it is C*-embedded in (Rn )* -

= 
thus by 1.69 it follows that dim K* ~ dim (~n)*. By 1.70 and 1.71 , 
dim'(S~n) = dim ~n = n. Since (~n)* is closed in S~n, by 1.16 it 
is C*-embedded in and thus by 1,69 

Hence to prove the theorem it suffices to show that dim K* ~ n. Since 

K* is homeomorphic to SK-K, by 4.10 it suffices to exhibit a cover ~ 
of K such that every refinement of IJL contains n+l sets whose inter-

section is not contained in any compact subset of K. 

from 1. 71 that n. Thus As int~nSk ~ ~ , it follows 

there exists a cover ql = (~)1 . ""k ~ S~ss of such that every refinement 

of ~ contains n+l members whose intersection is non-empty. If 

j , kEN 

each CU-k 

th en and are homeomorphic and so we can assume that 
ex> 

Put (1= ( U ~)1<'< • k=l ~ _~_s 

contains the same finite number s of sets. 

As each Sk is open-and-closed in K , each member of ~ is an open 

subset of K, and thus 'l.l is a cover of K. We also note that if 

mEN and l S j S s , then (since the are 

pairwise disjoint) • 

Suppose that ~ is a refinement of ~ such that any n+l mem

bers of ~ have abounded intersection. As ~ has only finitely many 

subfamilies containing n+l members, there exists mEN such that 
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for any n+l members , ... of 'f(. Con-

sider the family 3- = (wOSm)W€'à( of open subsets of' Sm Obviously "3-
is a cover of S As ~ is a refinement of cu. , each W €"OD is con-

m 
00 

tained in a set of the form Ü J: 
k=l ~ 

Thus Wn S C (U J: ) n S = if.1 , 
m - k=l ~ m ~ 

and so c;f is a refinement of tl 
m 

By our choice of m , any n+l mem-

bers of ~ have an empty intersection; this contradicts our choice of 

'l.1m ' and so Cflr cannot exist. Thus cu. is the type of cover of K 

quired in the hypotheses of 4.10 and so n ~ dim (aK-K) = dim K* 

by our previous remarks, it follows that dim (~n)* = n . 

4.12 Corollary 

If C is a cozero-set of n n 
ali - ~ ,then dim C = n • 

re-

Hence 

Proof: Since (~n)* is an F-space (see 1.37) , it fol1ows from 1.36 that 

C is C*-embedded in (~n)*; hence by 1.69 dim C ~ n. Since by 2.12 

[R(~n)]* is a basic subalgebra of R«Rn )*) , by 1.87 there exists 

such that 0 # A*C C • Thus int~nA is unbounded, and hence 

there exists a sequence (Sk)k€N of n-cubes, each contained in 

n such that any compact subset of ~ contains only finitely many of these 
co 

cubes. Put B = U Sk' As any two n-cubes are homeomorphic, the argu
k=O 

ment used in 4.11 to·prove that dim K* ~ n can be used here to show 

that dim B* ~ n. Since by 1.16 B* is C*-embedded in (~n)* , it is 

also C*-embedded in C and so by 1.69 n ~ dim B* ~ dim C ~ n. Thus 

dim C = n . 
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4.13 Remark 

. 
Theorem 4.11 was first proved by Jerison [J] by constructing an 

essential mapping of ~in_ ln ante [-l, l]n. Our method of proof 
seems to have a greater range of application; for example, it 1s used to 
prove theorem 4.12 • 

4.14 Question 
n n If W 1s an arb1trary open subset of ~R - R , what 1s the dim-. .. 

ens10n of W ~ It 1s evident that if W 1s normal then the argument em-
ployed in 4.12 can be used to show that dim W > n , but 1t 18 not obv1ous 
that. dimW'~,n. 
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V CONNECTED SUBSETS.OF SX~X 

5.1 Theorem 

Let X be a a-compact space. Then SX-X.is not connected im 

kleinen (see 1.64) at any point, and thus is not locally connected at 

any point. 

ex> 

Proof: Using the notation of 1.11 ,put A . U (clxV4n_2 - V4n-
3

) and 
n=l 

ex> 

B = U (C1XV4n - V4n_l ) 
n=l 

It follows from 2.2 (i) that A and B are 

closed, and evidently An B = l/l. Thus by 2.1 (iii) ,A* n B* = l/l. Let 
p be any point of X* Either p € X* - A* or p € X* - B* ; assume 
without loss of generality that p € X* - A* . For n = 1 , 2 

ex> put En = clxV8n_
3 - V8n_6 and F = clXV8ü+l - V and set E = U n 8n-2 

n=l ex> 

and F = U F n 
By 2.1 (i) E and F are closed in X evidently n=l 

E n 

E nF = l/l and A*UE*UF* = X*. Rence X* - A*C E*U F* and E*n F* = yj • 

Thus either p € E* - F* or p € F* - E* ; suppose without loss of gener

ality that p € E* - F*. Then p € (X* - A*) n (X* - F*) ç intX*E* . 

Let W be any open subset of X* contained in intx*E* and contain-

ing p. Since by 2.12 ~(clx[intxZ])* : Z € Z(X)B> is a basic subalge-
bra of R(X*) ,there exists Z € Z(X) such that p € (clX[intxZ])*ÇWCE* . 
Thus by 2.3 (i) there exists k € N such that clX(intxZ) - EÇ;Vk . 

As l/l # (Clx[int0])*C E* , it is possible to partition the positive in
tegers greater than k into two disjoint families Nl and N2 such 

that clx(int~)nEn # 0 for infinitely many n € Nl ' and also for in-
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finitely many n E N2 • Put 8 = U E and T = U En . 
nEN2 

Then 8 and n m:N
l 

T are disjoint, and by 2.2 (i) theyare closed in X. As N - (N
I UN

2 ) 

is fini te, it follows from 2.3 (i) that (8 U T)* = E* and neither 

8* n [ clX ( intxz) ] * nor T* n [C1X (int~ ) ] * i s empty. Wi thout los s of gen

erality assume that p E 8*0 [cIX(intxZ)]* , and pick y E T*n [clx(intxZ)]* 
th en y E W. As {8*n E* , T*n E*} is a partition of E~ into disjoint 

open-and-closed subsets, it follows that no connected subset of intx*E* 

contains both p and y. As W was an arbitrary open subset of 

intX*E* containing p, it follows that X* is not connected im kleinen 

at p. As p was an arbitrary point of X* it follows that X* is 

not connected im kleinen at any point. Thus by 1.65 X* is not locally 

connected at any point. 

5.2 Lemma 

Let X be a a-compact space and let Z E Z(X) . If A and B 

are subsets of Z* such that An B = ~ and AUB = Z* , th en there exist 

closed subsets E and F of X such that A = E* and B = F* . 

Proof: As B is closed in X* , there exists a family {W} ... of a aE .. 
closed subsets of X such that B = n W*. Thus A f1 [n W*a'] = ~ 

aEE a aEE 
and since X* is compact, there exist indices ••• ',a E E 

n 
such n 

that A fi [n W*] = ~ . 
i=l ai 

n 
Rence An[n Z*nl-l*] = ~,and as AUB·= Z*, 

i=l ai 

it follows that 
n n z*nw* CB . 

CI.. -i=l l. 

But obviously and 

so it follows from 2.1 (iii) that 
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n n 
B = n [Z*n W* ] = 

i=l ai 
[n ZnW ]* 
i=l ai 

n 
Thus n Zn W is the desired F E is constructed in a similar i=l ai 

manner. 

5.3 Theorem 

The space S~+- ~+ is an indecomposable continuum, but contains 

decomposable subcontinua. However, if n > 1 then SRn - Rn is decom-........ 
posable (see 1.60 and 1.61 for terminology). 

Proof: It is well-known (for instance [GJ , problem 6L.4]) that (~+)* is 

a continuum; it remains to show that it is indecomposable. By 1.62 it 

suffices to show that every proper subcontinuum of (~+)* has an empty 

interior. Let E be sueh a subeontinuum. Then there exists a family 

sueh that E =n F* • As E # (R+)* , there exists Z e: Z(~+) Fe::t .... 
ECZ*# (R+)* - ... such that . Thus it follows from 2.3 (i) that both Z 

and R+ - Z are unbounded subsets of R+ = .... 

Now E is eontained in a eonnected eomponent K of Z*; for 

suppose that KI and K2 were distinct components of Z* and that 

p e: En KI and q e: E nK2. As Z* is compact, i t follows from 1. 59 

that KI is the intersection of aIl the open-and-closed subsets of Z* 

that eontain p; hence as q t KI there exists an open-and-elosed sub-

set A of Z* sueh that p e: A and q e: Z* - A. Then {EllA, E n(Z* - A)} 

is a partition of E into non-empty open-and-elosed subsets, which con-

tradicts the assumption that E is connected. 



Suppose that int(R+)*E # ~ . Since by 2.12 is a basic 
== 

subalgebra of R((~+)*) , there exists 

Since E is contained in a connected component of Z* , so is B*. As 

B*C: Z* , it follows from 2.3 (i) 

nO such that B fi [nO ' (0) C Z Cl [nO 

that there exists a positive integer 

, (0) • As both R+ - Z and Z are 

unbounded, we can choose a sequence {À} N of real numbers as follows: n ne: 

ÀO = 0 and Àn+l ~ 

{À} Nn Z = ~ . n ne: 

À +1 
n 

for each 

Another sequence {a} N of real numbers is now chosen inductively as n ne: 

follows: 

a O = 0 

(ii ) 

00 

Let Z = Zn (u [a2n 1 n=O 

It follows from 2.2 (i) 

a = min {À. 
n l. 

À . > a 1 and [ al' À.] n B # ~} 
l. n- n- l. 

00 

a 2n+l ] ) and Z2 = zn ( U [a2n+l ' a2n+2 ]) • 
n=O 

are both closed, and they are 

obviously disjoint since 

that Zl and Z2 

{À} Nn Z = ~ . n ne: 
It follows from 2.1 (iii) 

and the choice of the {a } 
n 

that and B*O Z* 
2 

are both non-

empty. Since Z* = ZiUz~ and Zi n Z~ = ~ , this contradicts our earl

ier result that E is contained in a connected subset of Z*. Thus 

and so is indecomposable. 

To complete the proof of the theorem we construct a proper decom-

posable subcontinuum of 
00 

Put Zl = U [4n+l , 4n+2] 
n=l 

and let 
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Z2 = U [4n+2 , 4n+3] • Let {r } 
n and {s } 

n be sequences in n=l 

the fo11owing properties: 

(i) 4n+1 < r n < 4n+2 < sn < 4n+3 for each positive int-

eger n. 

(ii ) 1im (4n+2-r ) = 1im (4n+2-s ) = 0 , n n n-+oc> n-+oc> 

Let cu. be an ultrafi1ter on N such that nu = ~. Then there exist 

unique points p, r ,and s in (iJ.+)* satisfyj.ng the fol1owing relat-

ions: 

Now r and p 

r E n {c1SR+{rn : -
PEn {C1S!+{4n+2 

s E n{C1SR+{Sn : -

n E U} : U E 'ù.} 
n E U} : U E 1jJ 

n E U} : U E 'll} 

are both in Z! ; we sha1l show that they 

connected component of Z! • If they were not, sinee Z* 
l 

are in the same 

is compact it 

fo1lows from 1.59 that there exist non-empty c10sed subsets A and B of 

Z* 
l 

such that p E A , r E B , AUB = Z* l , and A nB = '/J • By 5.2 there 

exist c10sed subsets S and T of R+ .... such that A = S* and B = T* . 
It fo11ows from 2.3 (i) that SOT and Z -1 (SUT) are both bounded. 

As r i S* , it fo11ows that n{{r : n E U}* . U Ell.}nS*=~ . Since . n 
(~+)* is compact, there exist ... , Uk EILL such that k n {r 
i=l n 

k 
[{r : n E n U.}nS]* = 

n i=l 1. 

n E U. }*OS* = '/J ; thus by 2.1 (iii) 1. 

k 
Put n Ui = Uex 

i=l 
then U ex is a 1.nember of 11 wi th the property that 

~ . 
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{r : n e: wns is bounded. Let F = {n e: N : n e: U and r e: S} n ex n 
Then as any bounded subset of {r } 

n is finite, F is finite and so 

N - F e: 'li. Thus 

Replacing 

repetition of the 

U = U n (N - F) e: ~, and if n e: Ua then r i s a ex n 

{r} by n {4n+2} N and S by T, we see that a ne: 

ab ove argument shows that there exists U e: (J. such y 

. 

that if n e: U then 4n+2 i T • Put 
Y U ô = Ua f\ u y ; th en U ô e: 1.1. and 

hence Uô is infinite. As both SnT and Zl - (S UT) are bounded, 

there exists a positive integer m such that Sn Tn [m , <Xl) = (l1 and 

(SUT) n [m , <Xl) = zln [m , <Xl) • As U
ô 

is infinite, we can choose 

nO e: Uô such that nO > m. As [4nO+I, 4nO+2] is connected, either 

[4nO+1 , 4no+2]C' S or [4nO+I, 4nO+2] ÇT. The former situation is 

impossible as riS , while the latter situation is impossible since nO 
4nO+2 i T. Thus we have a contradiction, and so rand p are in the 

same connected component Elof Zl. 

A repetition of the above argument shows that there exists a 

connected component E.., .... of Z2 containing both p and s . Since 

p e: E10 E2 and since El and E2 are closed in (R+)* the set ElU E2 =-

is a subcontinuum of (~+)* . As r e: El - E2 and s e: E2 El ,it is 

evident that ElU E2 is the union of two proper subcontinua El and E2 
and hence is decomposable. 

Finally, if n > l let A = {(xl • •• , x ) e: Rn: xl ~ a} • n .... 
Then both A and ~n - A are unbounded, and so A* is a proper compact 

subset of (lin )*. If A* were not connected, then by 5.2 there would 

, 



72~ 

exist closed subsets Sand T of ~n such that S*UT* = A* and 

S*nT* = ~. By 2.3 (i) there would exist r > 0 such that the set 

Sn T n {x e: A : Il xII ~ r} is empty and 

This is clearly impossible, and hence A* is a proper subcontinuum of 

(~n)*. Similarly [c~n(~n - A)]* is alsoa proper subcontinuum of 

and evidently (B,n)* = A*U [c~n(ln - A) J* • 

able. 

Thus (~n)* is decompos-
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