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ABSTRACT

A study is made of the topological space gX-X , where BX
denotes the Stone-Cech compactification of the g-compact Hausdorff
space X . A homomorphism is defined from the Boolean algebra R(X)
of all regular closed subsets of X into R(PX-X) . 7Under certain
conditions, the image under this mapping of a certain subalgebra of
R(X) 1is isomorphic to the Boolean algebra of all open-and-closed sub-
sets of BH-—E » Where N 1is the countable discrete space. This re-
sult is used to obtain new properties of the projective cover of BX-X
and of the set of remote points of . BX . The Lebesgue dimension of
PX-X 1is studied, and a new proof is given of the (known) theorem that
55?—-2? has dimension n (where g? denotes Euclidean n-space).
Let R denote the space of non-negative real numbers. Then BEF— gf
is an indecomposable continuum containing decomposable subcontinua.

The space PBX-X is not connected im kleinen at any point.
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INTRODUCTION

This thesis is devoted to a study of certain properties of the
topological space BX-X , where X 1is a o-compact Hausdorff topological

space and PBX denotes the Stone-Ceech compactification of X .

In chapter I a summery is given of known results that will be

used throughout the thesis.

In chapter II a homomorphism is defined from the Boolean alge-
bra R(X) of all regular closed subsets of X into R(BX-X) . It is
then shown, assuming the continuum hypothesis, that if the ring of
real-velued continuous functions defined on the o-compact space X has

cardinality 2No

., then the image under the above homomorphism of a
certain subalgebra of R(X) is isomorphic to the Boolean algebra of

all open-and-closed subsets of BN—N , where N denotes the count-
eble discrete space. The proof relies on Parovicenko's characteriz-
etion of this latter Boolean algebra. Still assuming the continuum
hypothesis, the projective cover of BX-X , i.e. the Stone space of
R{BX-X) , is shown to be homeomorphic to the projective cover of BN-N ,
and. an alternative proof of this is- given. The chapter closes with a

necessary condition that a compact space have a projective cover homeo-

morphic- to that of BN-N .

Chepter III - is concerned primarily with the properties of the
set of remote points of BX , i.e. those points that are not in the

BX-closure of any discrete subspace of X . The concept of & remote



point of BR (where R denotes the- space of real numbers) was first
defined by Fine and Gillmen, who proved, assuming the continuum hypo-
thesis, that- BR has a set of 22No remote points which form a dense
subset of BR—R . Plank extended these results to show if X is a
o-compact metric space without isolated points, then BX has 22N°
remote points which form a dense subset of 8X-X . Plank gives an

explicit formule for this subset.

Chapter III begins with a generalization of some results of
of Gleason, who demonstrated the existence of an irreducible map
from the projective cover of a compact space Y onto Y . It is
shown that if A is a suitable subalgebra of R(Y) , then there is
an irreducible mapping from the Stone space of /R onto Y . Under
somevhat stronger conditions on Y and -Ji, it is shown that there
is associated with A a dense subset of Y that can be embedded
densely in the Stone space of A . This and the results of chap-
ter II are combined with Plank's results to show that if X is a
o-compact metric space without isolated points, then, assuming the
continuum hypothesis, the remote points of PBX-X can be embedded
densely in BN-N . Call a space strongly countably compact if the
closure in X of every counteble subset of X is compact. Under
the above assumptions it is shown that both the remote points of BX
and their complement in BRX-X are strongly countably compact. Thus
BX~-X can be decomposed- into two disjoint dense strongly countably

compact subspaces. ‘A similar decomposition is obtained for BN-N .



In chapter IV a necessary and sufficient condition is obtained
that the (Lebesgue) dimension of pX-X be equal to the non-negative
integer n . This criterion is used to obtain a new proof of the known
result, first proved by Jerison, that the dimension of ng- 5? is n .

In chapter V it is shown that Bng-§+ (where 5? denotes the
space of non-negative real numbers) is an indecomposable continuum,

but contains proper subcontinua that are decomposable. If n >1 then
n

PR~
o-compact then gX-X 1is not connected im kleinen at any point, and

5? is a decomposable continuum, It is also shown that if X is
hence is not locally connected at any point,

Originality may be claimed for all results in chapters II to V
with the exception of the following: 2.1 , 2,10 , 2.14 , 2,16 , 3.16 ,
3.17 , and 4.11 . Theorem 4,11 is due to Jerison, but our proof of it
is new. Lemma 3.20 was discovered independently by Mandelker and myself.

The concept of a basic subalgebra (1.86) also appears to be new.,
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I PRELIMINARIES

In this chapter we shall give a summary of the definitions and
results that will be needed in later chapters. No original material
appears in this chapter, with the exception of the concept of a basic

subalgebra of R(X) (1.86) , which to our knowledge is new.

A. Set-theoretic Notation and Conventions

1.1 DNotation
(i) The set of non-negative integers will be denoted by N .
(ii) The countable discrete space will be denoted by X .
(iii) The space of real numbers will be denoted by R , the
non-negative real numbers will be denoted by gf » and gf will denote

Euclidean n-space.

1.2 Notation

The cardinality of a set A will be denoted by |A] .

1.3 Notation
The cardinal number of N will be denoted by }Qo, and ?\a will

denote the first uncountable cardinal.

1.4 Remark

By the continuum hypothesis we shall mean the assumption that
9§= é§&. The use of the continuum hypothesis in a proof will be indicated
by the appearance of the symbol "[CH]" immediately preceding the state-

ment of the theoremn.



1.5 Notation

If & is a family of sets, the set r‘] F will be denoted

by (]:} . red

B. Topological Prerequisites

Results for which a reference is not supplied can be found in
the text by Gillman and Jerison [GJ] . References will be given for the

other results that are quoted.

1.6 Definition

A Hausdorff space X is said to be completely regular if, given
any closed subset A of X and any point p € X such that p ¢ A ,
there exists a continuous real-valued function f defined on X such that

f(p) = 0 and f[A] = {1} .

Throughout this thesis all topological spaces will be assumed to be

completely regular Hausdorff spaces.

1.7 Notation
Let S be a subset of a space X . The closure, interior, and

boundary of S with respect to X will be denoted respectively by chS ’
int,S , and bd,S (bd.xS = cl,§ - 1nth) .

1.8 Definition
(i) A closed subset S of a space X is said to be regular

closed if 8§ = clx(inth) .




(ii) An open subset V of a space X is said to be regular

open if 1ntX(chV) =V.

1.9 Proposition

If B is a base for the closed subsets of X , then so is

{cl (int,B) : Be®} .

Proof: Let A be a closed subset of X . If p ¢ A , then as X is
completely regular there exists a continuous real-valued function f
on X such that f(p) =0 and f[A] = {1} . Thus £ ~([1/2 , 3/2])
is a closed subset of X not containing p , so as B is a base for
the closed subsets of X , there exists B(p) ¢ B such that p ¢ B(p)
and £7H([1/2 , 3/2]) ©B(p) . Thus A ((1/2 , 3/2)) < int,B(p)

and so A = f] cl (intXB(p)) . The proposition follows.
pla ¥

1.10 Definition
If X 1is a locally compact, non-compact space that can be writ-
ten as the union of countably many compact subspaces, then X is said to

be a o-compact space.
Note that by our convention c-compact spaces are not compact.
The next two results can be found in Dugundji [D] .

1.11 Theorem
A non-compact space X 1is o-compact if and only if X can be

expressed in the form lJ Vn where for each ne N , Vn is open in
n=0



in X and cl Vn is compact and contained in Vn+ Without loss of

X

generality we may also assume that each Vn is regular open and that

1

Vn+l - chVn is non-empty.

1l.12 Theorem

A g-compact space is normal.

1.13 Proposition

A closed subset S of a g-compact space X 1is compact if and

only if there exists n € N such that sq;'vn .

Proof: If Sq;'Vn then S 1is a closed subset of the compact space
chV'n ; conversely, if S%Vn for each n € N , then (Snvn)neN is

an open cover of S that has no finite subcover.

1.14 Definition
The ring of all continuous real-valued functions defined on a
space X will be denoted by C(X) . The ring of all continuous bounded

real-valued functions defined on X will be denoted by C¥*(X) .

1.15 Definition
A subset S of a space X is said to be C-embedded (C¥-embedded)
in X if, given any f € C(S) ( £ € C*¥(S) ), there exists g e C(X)

such that the restriction of g to S is f .

1.16 Proposition

In a normel space every closed subset is C-embedded.



1.17 Definition
Any subset of a space X that is of the form f‘l(O) for some

f e C(X) 1is called a zero-set of X .

1.18 Notation

The family of all zero-sets of X will be denoted by 2Z(X) .

1.19 Proposition
A Hausdorff space X is completely regular if and only if

Z(X) forms a base for the closed sets of X .

1.20 Proposition

The femily Z(X) is a lattice under set-theoretic union and

intersection, and is closed under countable intersection.

1.21 Proposition

If X is a metric space then every closed subset of X is

a zero-set.

1.22 Definition

A cozero-set of X is the complement of some zero-set of X .

1.23 Definition
A z-filter on a space X is a non-empty subfamily Z} of
z(X) satisfying the following conditions:
(1) ¢ ¢ F
(ii) 1Ir z, and 7, e”}, then zlﬂ Z, eg‘.

(iii) 1If zley and 2, &7, then 7, e cf.




A z-filter that is not properly contained in any other z-filter is called
a z-ultrafilter. By Zorn's lemma every z-filter is contained in some

z-ultrafilter.

1.24 Theorem
Corresponding to every completely regular space X there is a
compact space BX which contains X as a dense subspace and which is
characterized up to homeomorphism by each of the following equivalent
conditions:
(i) X 1is C*¥-embedded in BX .

(z leﬂcl 7

Z,. ¢ 2(X) , cl axlo *

172 BX B

The space BX is called the Stone-Cech compactification of X .

(ii) For any 2 N Zz) = cl

1

1.25 Theorem
The family {clBXZ : Z e Z2(X)} is a base for the closed sub-

sets of BX .

1.26 Notation

The space RX-X will be denoted by X¥ .

1.27 Theorem

If X is a normal space and if A and B are any two closed

subsets of X then cle(An B) = clBXAﬂcleB .

Proof: Obviously clBX(Ar]B)C; clBXA(]clBXB . Conversely, suppose that

D ¢ clBX(Af]B) . By 1.25 there exists (Za)aC: 7(X) such that p € ED CIBXZa

and (EDclBXZa)f]clBX(Ale) =@ . As BX is compact, there exist (Zi)lsiSn



n n
in Z(X) such that p e r_] clyyZ: end [.(_] elgy?; ] ﬂclBX(AﬂB) =g .
i=1 i=1
n
Put zo = ir;]l Z; . By 1.20 Z, € Z(X) and by 1.2k (ii) p ¢ clBXZO 5 ob-

viously clBXZOrlclBX(Ar]B) =@ . Thus ZOFIAITB =@ . As X is normal,
the disjoint closed sets Zor]A and B are contained in disjoint zero-
sets; it follows from 1.2k (ii) that cle(Zor]A)f]clBXB =@ . If p¢ cleB
we are finished; if not, p ¢ clBX(Zor'A) . A repetition of the above
argument shows that there exists 2' ¢ Z(X) such that Z'r]Zor]A =@ and
' v — ' s
P e ClBXZ . Thus p ¢ clBXZOr}cleZ clBX(ZO(]Z ) (by 1.24 (ii) ),
and so p ¢ ClBXA (as above). Thus p ¢ clBXAr]cléXB and the theorem follows.

1.28 Theorenm
The space X is open in BRX if and only if X is locally

compact. Thus PBX-X is compact if and only if X 1is locally compact.

1.29 Theorem

The space BN has cardinality 22 °.

1.30 Theorem

A subset S of a space X is C*-embedded in X if and only if
ClBXS = RS .

There is a natural one-to-one mapping from BX onto the family
of all z-ultrafilters on X . This relationship is summarized in the

following theorem.



1.31 Theorem
b
If p e BX , then the family R = {Z € 2(X) : p ¢ clBXZ} is
8 z-ultrafilter (1.24) on X . Conversely, if S is a z-ultrafilter
on X , then ﬂ cl _,Z is &a unique point of BX , and ﬂ cl %= {p}

zeR  BX 7 BX
for each p e BX .

1.32 Proposition

If £ 1is a continuous mepping of a space X onto & space Y
whose restriction to a dense subset T is a homeomorphism, then f

carries X -T onto Y - f[T] .

1.33 Definition
A point p of a space X 1is called a P-point of X if every
Gé—set of X +that contains p 1is a neighborhood of p . If every

point of X 1is a P-point, then X 1is called a P-space.

1.34 Notation

The set of all P-points of a space X will be denoted by P(X) .

1.35 Propesition

(i) A space X is a P-space if and only if every zero-set of
X 1is open.

(ii) A point p is a P-point of X if and only if every
zero-set containing p 1is a neighborhood of p .

(iii) A P-point of X is a P-point in any subspace of X that
contains it.

(iv) A compact P-space is finite.



(v) For any space X , P(X) = r1 [x - bdXZ] .
ZeZ(X)

1.36 Definition
A space X 1is called an F-space if every cozero-set of X

is C*¥-embedded in X .

1.37 Theorem

If X 1is o-compact then RX-X is a compact F-space.

1.38 Theorem
If D is a countable subset of an F-space X then D is

C¥-embedded in X .

1.39 Definition
A space X is said to be realcompact if, for every p e BX-X ,

there exists Z e Z(BX) such that p e Z¢ BX-X .

1.40 Proposition

Every o-compact space is realcompact.

The following two results are due to Fine and CGillman [FGl’

lemma 3.1] , although 1.42 is not explicitly proved.

1.41 Theorem
If X 1is locally compact and realcompact then every zero-set

of BX-X 1is regular closed.

1.42 Proposition

Every zero-set of a space X is regular closed if and only if



10.

every non-empty Gs-set of X has a non-empty interior.

o0
Proof: First note that if f e C(X) then f"l(o) = ﬂ f‘l(-l/n , 1/n)
n=1

and so f_l(O) is a Gs-set.

Suppose ch(intXZ) # Z for some Z e Z(X) . Choose
Pez- clx(intXZ) . Then as X 1is completely regular there exists
Z' € Z2(X) such that pe 2'EX - ch(intXZ) (choose f e C(X) such
that f(p) =0 and flel,(int,2)] = {1} and put 2' = £1(0) ).
Thus ZM2Z' e 2(X) but int, (2Nz') = ¢ , so 2ZM12' is a non-empty

Gs-set with an empty interior.

Conversely, suppose that every gzero-set of X is regular
closed. Let (Vn)neN be a countable family of open subsets of X ,
and let p e () Vy, + HAs above there exists Z e Z(X) such that

n=0
=] o (o]
pe2 SV . Thus pe (] 2 &) V. andby 1.20, ¢ # | Z_ e 2(X)
R n=0 * " p=0 T n=0 "

oo

Thus @ # 1ntx( N Zn) and so 1ntX(rgO Vn) #0 .
n=0
The following result is due to Rudin [R] and Parovidéenko [Pa]

for X = N ; the more general case follows similarly by use of 1.h4l .

1.43 Theorem
Let X be locally compact and realcompact and let ?’ be a
family of dense open subsets of X . If I?l < N' » then ny‘ is

dense in BX-X .



11.

An immediate consequence of 1.43 is the following result:

1.44 Theorem [CH]

N
If X is locally compact and realcompact and if [C(X)] =2°

3

W
then BX-X has a dense set of 22 ° P-points.

1.45 ©Notation

Let S ©be a partialily ordered set and let A and B Dbe sub-
sets of S . Then "A < B" will mean that a<b for each a € A and
beB. If s €8S then A <s and s < B will mean, respectively,

that a<s for each a € A and s<b for each b e B .

1.46 Definition

A totally ordered set S is called an n,-set if, given any

1
empty, finite, or countably infinite subsets A and B of & such

that A < B , there exists c¢ € S such that A <c <B.

1.47 Proposition

N,
The cerdinality of any n,-set is at least 2 °.

1.48 Definition
If S is a partially crdered set, then a maximal chain in S
is a totally ordered subset of S that is not properly contained in

any other totally ordered subset of S .

By Zorn's lemma each totally ordered subset of § 1is contained

in some maximal chain of S .
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The following theorem is due to Rudin [R] and Parovicenko [Pa] .

1.49 Theorem [CH]

The Boolean algebra of all open-and-closed subsets of BN—N
has cardinality 2§%, and maximal chainsiin this Boolean algebra (exclud-
ing # and BN-N ) are nl-sets. Further, if B is any other Boolean
algebra with these two properties, then B is isomorphic to the Boolean

algebra of all open-and-closed subsets of BN-N .

The following notion is due to Fine and Gillman [FG2] » Who
proved, assuming the continuum hypothesis, the existence of a set of

remote points in PR that is dense in BR—-R .

1.50 Definition
A point p e BX 1is called a remote point of BX if p is not

in the BX-closure of any discrete subspace of X .

The idea of demonstrating the existence of remote points in BR
by use of 1.43 is due to Negrepontis. Plank [Pl , theorems 5.k , 5.5]

has proved the,following more general result.

1.51 Theorem
If X is a separable, locally compact non-compact metric space
without isolated points, then the set of remote points of BX is pre-

cisely the set (hl [(BX-X) - (el (bdXZ) - X)] , which is identical
7e2(X) BX

with the set [(BX-X) - bdx*(cl Z - X)] . Assuming the continuum
ZeZ(X) BX
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N
hypothesis, this is a dense subset of BX-X¥ of cardinality 22 %,

1.52 Notation

The set of remote points of BX will be denoted by T(X*) .

1.53 Remark
Since a locally compact, non-compact metric space is separable
if and only if it is o-compact, the phrase "separable, locally compact

non-compact" in 1.51 may be replaced by "o-compact".

The following result was proved by Plank [Pl , theorem 6.2]
for X =R . His proof can be adapted with virtually no changes to

yield the following result.

1.54 Theorem [CH]

Let X be a o-compact metric space without isolated points.
Then the sets P(x*) 1 T(x*) , [x* - 2(x*)]1 O o(x*) , p(x) [} [x* - 7(x)] ,
and x* - [P(x*) U T(x*)] are all dense in BX-X and have cardinal-

‘)

ity 2

1.55 Definition

(i) A space X is said to be extremally disconnected if
every open subset of X has an open closure.

(ii) A space X 1is said to be basically disconnected if

every cozero-set of X has an open closure.

1.56 Proposition

A space X is basically disconnected if and only if, given



1k,

8 cozero-set U and an open set V disjoint from U , the set

chU N cJXV is empty.

1.57 Proposition
If X is en arbitrary space, its subspace P(X) is basically

disconnected.

1.58 Proposition

The space X 1is extremally disconnected if and only if BgX

is extremally disconnected.

1.59 Proposition

If X is compact and p € X , then the connected component of
X +that contains p 1is the intersection of all the open-and-closed

subsets of X that contein p .

1.60 Definition

A compact connected space is called a continuum.

1.61 Definition
A continuum is said to be indecomposable if it cannot be written

as the union of two proper subcontinua.
The following result appears in Hocking and Young [HY , theorem 3.41]

1.62 Theorem
A continuum K 1is indecomposable if and only if every proper

subcontinuum of K has en empty interior.
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1.63 Definition
A space X is said to be locally connected at a point p if,
for every open set U containing p , there is a connected open set

V containing p and conteined in U .

1.64 Definition

A space X 1is said to be connected im kleinen at a point »p
if for each open set U containing p , there is an open set V con-
taining p and lying in U such that if Yy is any point of V ,

then there is & connected subset of U containing p and y .

The following result appears in Hocking and Young [HY] .

1.65 Proposition

If X 1is locally connected at P , then it is connected im

kleinen at p , but the converse is untrue in general.,

1.66 Definition

(i) A cover of a space X is & finite collection of open sub-
sets of X whose union is X .

(ii) A collection x of open subsets of a space X is said
to be a refinement of a cover CLL of X if 67r‘ is a cover of X and

if every member of § is a subset of some member of'cLL.

1.67 Definition
The order of a covarcLL of a space X - abbreviated oré?l.-

is defined as follows:
n+l

= . i C
ord U sup{n € N : there exists (Ui)lsisnﬂ'u such that .Ql U, # 7}
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1.68 Definition
The Lebesgue dimension of g space X - abbreviated dim X -

is defined as follows:
dim X = min{n € N : every cover of X hes a refinement of order < n}

If the sbove set is empty then dim X = N,.

1.69 Theorem

If X and Y are normal spaces and if X is C*-embedded in

Y then dim X < dim Y .

1.70 Theorem

If X is normal then dim X = dim (Bx) .

The following result can be found in Hurewicz and Wallman

[EW , theorem IV 3] .

1.71 Theorem

If ACR® then dimA =n if ang only if intRnA 0 .

C. Boolean Algebras

The basic reference for the following material is Sikorski [s] .

All Boolean algebras are assumed to contain 1 .

1.72 Definition
Consider the following conditions on a subset F of a Boolean
algebra B :

(i) o¢rF




1T.

(i1) If x e F and y ¢ F then XAy e F .

(iii) If x e F and x<y then y e F .
If F satisfies these three conditions then F 1is called a filter.
A filter that is not properly contained in any other filter is called
an ultrafilter.

By Zorn's lemma every filter is contained in some ultrafilter.

1.73 Definition
Let B be a Boolean algebra. If every subset of B has a
supremum in B , then B is said to be complete. If every countable

subset of B has a supremum in B , then B 1is said to be g-complete.

1.74 Definition

Let B be a Boolean algebra and let S be & subset of B .
If, for every x ¢ B such that x # 0 s there exists y € S such that
O # ysx , then S is said to be a dense subset of B . If 8 1is also

& subalgebra of B , then S is said to be a dense subalgebra of B .

1.75 Theorem

Let Bl and B2 be complete Boolean algebras, let Ul be a
dense subalgebra of Bl » and let U2 be a dense subalgebra of B2 .
If f:Ul - U2 is a Boolean algebra isomorphism of Ul onto U2 ’
then there exists a Boolean algebra icomorphism g:Bl - 32 such that

the restriction of g to Ul is £ .

1.76 Definition

Let B %be a Boolean algebra and U a subalgebra of B . Then



U
S of
plete.

18.

is said to be a o-subalgebra of B if, for every countable subset

U , the supremum in B of S belongs to U whenever it exists.

Obviously a o-subalgebra of a complete Boolean algebra is o-com-

1.77 Definition

Let B be a Boolean algebra and S & subset of B . Then S

is said to generate a subalgebra A of B if A is the smallest sub-

algebra of B that contains S . The subalgebra of B generated by

S will be denoted by <S> .

1.78 Theorem

n
sists of all elements of the form \ A x

for each pair i , J , either x,

Let S %be a subset of a Boolean algebra B . Then <S> con-
m

i ° where m , ne N and

J=1 i=1

or its complement belongs to S .

i

1.79 Definition

Let B be a Boolean algebra and S a subset of B . Then S

is said to o-generate a subalgebra A of B if A is the smallest

g-subalgebra of B that contains S . The subalgebra of B og-gener-

ated by S will be denoted by oS .

Obviously if B 1is complete and S&B then oS 1is o-complete.

1.80 Theorem

If S 1is a subset of the Boolean algebra B , then IOSI < [Sl °,
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'P. Boolean Algebras of Regnlar Closed Sets

Results for which no reference is given can be found in Sikorski [S] .

1.81 Notation
The family of all regular closed subsets of a space X will be

denoted by R(X)

1.82 Theorem
The faemily R(X) is a complete Boolean algebra under the foll-
owing definitions of < , Vv ’ A\ y and complement !
(1) A < B if and only if AcB.
n

n
(ii) V A, = i(___jl A

i=1
n n
(i1i) AN a. = el (N int A, )
i=1 * i=1 .

(iv) A' = cl (X - 4) .
Henceforth the symbols \/ ’ /\ » and ' , when applied to regular closed

sets, are to be interpreted according to the above definitions.

1.83 Notation
The family of all open-and-closed subsets of a space X will be

denoted by B(X)

1.84 Proposition
The family B(X) is a subalgebra of R(X) and if A , B e B(X) ,

then AAB =AMlB and A' =X - 4 .
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1.85 Proposition
If X is a compact totally disconnected space then B(X) is

dense (see 1.74) in R(X) .

1.86. Definition
A subalgebra J1 of R(X) is called a basic subalgebra of R(X)

if \fi is a base for the closed subsets of X.

1.87 Theorem
Ir A is a basic subalgebra of R(X) , if V is open in X ,

and if p e V , then there exists A ¢ S such that P e intXAQEIXg;V .

Proof: As R is a base for the closed subsets of X , there exists
F<S A such that x-v=ﬂ§3‘ . Thus
v=x-n:}=U(x-F)=U int (F') .
FeF red X
Thus V has been expressed as a union of members of {intxA :AeR} .
This family is thus a base for the open subsets of X , and hence the

theorem follows from the complete regularity of X .

1.88 Proposition
Every basic subalgebra A oor R(X) is dense in R(X) .

Proof: Let B e R(X) and assume that B # § . Then intXB # 0 so by
1.87 there exists A e\fl such that @ #.Aq;intXB . The proposition

follows.

The converse of 1.88 is not true in general.
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1.89 Theorem
A space X is extremally disconnected if and only if B(X) is

complete and is a base for the open subsets of X .

1.90 Theorem

Let U be a Boolean algebra and let S(U) be the family of all
ultrafilters (1.72) on U . For each x e U > let Ax) = {a e 8(U) : xe a} .
If a topology 1 is assigned to S(U) by letting {i(x) : x ¢ U} be
an open base for t , then (S(U) , t) is a compact totally disconnected
space and the map x -+ A(x) is a Boolean algebra isomorphism from U

onto B(S(U)) . The space S(U) is called the Stone space of U .

1.91 Definition
Let f£:X +Y be a continuous mapping of the space X onto the
space Y . If f[A]l # Y for each proper closed subset A of X , then

£ is said to be irreducible.

1.92 Proposition

If f£:X > Y is an irreducible closed mapping of X onto Y ’

and if D is dense in Y , then f'l[D] is dense in X .

Proof: As f is closed, we have f[clx(f_l[D])] ;?clYD =Y . It follows

from the irreducibility of f that clx(f'l[D]) =X .

The following result is due to Gleason [G , theorem 3.2] , who

first investigated projective covers of compact spaces.
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1.93 Theorem
Let X be a compact space. Then there exists an irreducible

continuous mep f sending S(R(X)) onto X ; the map f 1is defined
by f£(y) = r] A for each  y e S(R(X)) , where A:R(X) - B(S(R(X)))

AeR(X)

yer(A)
is the canonical isomorphism.defined in 1.90-. . Furthermore, if K is
any other compact extremally disconnected space and if g:K + X is an

irreducible mapping of K onto X s then there exists a homeomorphism

h:K + S(R(X)) such that g = foh .

The space S(R(X)) is called the projective cover of X .
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II THE PROJECTIVE COVER OF BX-X. .

Let X ©bve any o-compact space. In this chapter we will define
& Boolean algebra homomorphism *:R(X) + R(BX-X) and examine the prop-
erties of this homomorphism. In particular we will show that if 48 is
& basic subalgebra (1.86) of R(X) such that |§]| = 2“" and with the

-] [+<]
property that if (sn)nsNC_:J and if rgo 5 ¢ R(X) then [;]o 5 ¢ ,g R

then the image of 4% under this homomorphism is isomorphic to B(BL-N) .
It will then follow that if X is & o-compact space with |C(X)| = 2N°,

then the projective cover of BX-X is homeomorphic to that of BN—-N .

Throughout this chapter we will assume that X is a o-compact

space (see 1.10) and observe the notational conventions stated in 1.11 .

2.1 Notation
Let A be a closed subset of X . Then A* will denote fhe
set (clBXA) - X . Note that this is consistent with the notation de-
fined in 1.26 . If A and B are closed subsets of X , the following
results are immediate:
(i)  (aUs)*
(ii) (aNB)*

A¥ Y JB%* |

A*1B*  (see 1.12 and 1.27)

(iii) A* = ¢ if and only if A is compact.

2.2 Proposition

Let (An) be a countable family of closed subsets of X ,

neN

and define the positive integer kn by:
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k = min {JeN : AnﬂVJ # ¢}
for each n e N . Then:

[

(i) If limk_= o , then {J A  is closed.

n n
n-roo n=0

(ii) If lim kn = » and An e R(X) for each n € N , then

n-roe
[~<]

Ua erx) ena U A = A
n=0 n=0 n=0

[+ -3
Proof: (i) Let p e ch(L} An) and let U be an open subset of X
n=0

containing p . There exists i € N such that P e Vi 3 thus as Uf‘lVi

(-]
is open, it follows that (UflVi)‘]( U Ah) #0 . As lim k = = , there
n=0 no

exists m e N such that n 2 m implies Anf}Vi =@ . Thus

m-1 m=-1
(UﬂVi)n( U An) # ¢ and so UN(U An) #@ . As U was an arbitrary
n=0 n=0

open set containing p , it follows that P Dbelongs to the closed set
m-1 o ©
UA ,andso pe |J A . Thus LJ A is closed.
n n n
n=0 n=0 n=0

(ii) 1f pe U A, there exists k € N such that p ¢ A .
n=0

As A e R(X) , it follows that p e ch(in‘tx.A.k)C.‘_. ch(intX[ U An]) .
n=0

[~-]

as- | A is closed by (i) , it follows that |J A e R(X) .
n=0
oo «©
Obviously [J .An = An .
n=0 n=0
2.3 Lemma

Let A and B be closed subsets of X .
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(i) A*< B* if ang only if there exists n e N such that
A-BgvV .
(i1) 1r A*S B* and if B e R(X)., then (int,B) - (AUchVn) £

for each ne N ,

Proof: (i) Suppose that 4 - BQ;V% for some n e N . Then as chVn
is compact, ch(A - B) is also compact. As A is closed, it follows

that A = (AnB)UcJX(A - B) . By 2.1,

A%

(aNp)* Y [e1,(a - B)]*

(AOB)* (by 2.1 (iii) )

A*[IB*  (by 2.1 (i1) ).

Thus A*C B* .,

Conversely, Suppose that A - B is not contained in Vn for any

n e N . Then there exists a sequence (n,) of positive integers,

i“ieN

with lim n, = «» , such that (4 -B) 1 (v -clV )# @ for each
. i n, X'n,
i i+l i

ieN. Let p; € (A - B) rl(Vh - chVn ) for each i ¢ N » and put
i+l i

S = (pi)ieN - By 2.2 S is closed, and obviously S is not containeg
in any Vn 3 hence by 1.13 S is not compact and so by 2.1 (iii) , g* #0 .
Obviously SCA - B , so S*S A* and by 2.1 (ii) , S*MB* = ¢ . con_
Sequently A* - B¥ £ g ang (1) follows.

(1i) By (i) it follows that for each ne N, B - (AUVn+l) # ¢
and 5o B - (AUclL,V ) # ¢ . Thus [e1,(int, B)I N [x - (aUer,v )] # ¢

and so (intXB) nix - (AUchVn)] 0.




26.

2.4 Proposition

If A 1is a closed subset of X , then Clyy (X* - A%) = lel(x - a)]% .

Proof: Since Al} ch(X -A) =X,y 2.1 (i) it follows that
a*{J [l (X~ A)]* = x* | Tnus x» - A*C [el (X - A)]* , and as

[ch(X - A)]* is closed in x* s it follows that
™ - * ces
clyy(X* - 4 ) S [el (X - 4)] (1)

Conversely, suppose that x ¢ clx*(X* - A*) . Since by 1.25
the family {clBXZ : 2 e Z2(X)} is a base for the closed subsets of gX ,
it follows that {X* - S* . g closed in X} 1is a base for the open sets

of X* . Thus since Xx* is completely regular, there exists g closed

subset B of X such that x e X* - B* and also (Xx* - B*)f}@lx*(x* -A*¥)=¢

thus (X* - B*) ) (x* - A*) = ¢ and thus by 2.1 (i) , X* = (AU B)* .

By 2.3 (i) there exists i e N such that X - (AUB)gVi . Thus

[el (X - )T (x - B)C e v, e (2)

X

for if mot, [el (X - A)I N (x - B) ) (x - cl,V.) # ¢ and as

(x-8)) (x - ¢l,V.) is open, it would follow that

(x-a) N (x-38) N(x- ¢lyV;) # # , which contradicts X - (AUB) SV, .
It follows from (2) +that [clx(X -A)] - Bgvi+l » and so by 2.3 (i)
we have [ch(X -A)J*CB¥ . As x e x* - p# » it follows that

x ¢ [ch(X - A)]* . Thus [ch(X - A)]*C;clx*(x* ~ A*) , and combining

this with (1) yields the proposition,
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2.5 Proposition
. . *) = ; *
If A 1is a closed subset of X , then clx*(lntx*A ) [clx(lntXA)] .

Proof: Since int, 4 A% = X* - clx*(X* - A*) , by 2.4 it follows that

i ¥ = Y¥ _ - *
1ntx*A X [clx(X A)]* and so

clx*(intx*A*) clx*(X* - [ch(X - A)]¥)

[clx(X - [ch(X - A)])]* (by 2.4)

3 #
[clx(lntXA)] .
The following result is an immediate consequence of 2.5 .

2.6 Corollary
If A e R(X) then A¥* ¢ R(X*) .

2.7 Theorem
The map A + A* is a Boolean aigebra homomorphism from R(X)

into R(X*) .

Proof': By 2.6 the map A -~ A¥% ig well-defined. Suppose that A and

B belong to R(X) . Then by 2.1 (i) ,
A*VB* = a*UB* = (AUB)* = (AVB)* (see 1.82) .
Using 2.4 it can be seen that
(AM)* = [ch(X ~A)]* = clx*(X* - A¥) = (A¥%)!

Thus the map preserves suprema and complements and hence is a Boolean

algebra homomorphism.
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Note that the kernel of this map is the family of compact reg-

ular -.ysed subsets of X .

2.8 Notation

(1) If F is a subfamily of R(X) , then [FI* will denote
the family {F* : F ¢} .

(ii) The family {clx(intxZ) t 2 e Z2(X)} will ve denoted by
G(X) . Recall (1.21) that if X is a metric space then every closed

subset of X is a zero-set, and so G(X) = R(X) .

The following result will be needed later.

2.9 Progosition

The family [G(X)]* is a base for the closed subsets of X¥* .

Proof: Since {Z* : Z € Z(X)} is a base for the closed subsets of X*

(see 1.25) , it follows from 1.9 that {clx*(intx*Z*) : Ze Z2(X)} is a

base for the closed subsets of X* . The proposition then follows from 2.5 .

The proof of the following result mimics that of [GT , lemma 13.5]

2.10 Lemma
Let \ﬂ be any subalgebra of R(X) and let £ be any countable

subset of [A]* . Then & has a family (En)neN of preimages in R -

that is, £ - (E*)

- 3 ¥* *
) el such that if E, , EJ € (En)neN s then EigE

J
implies EigEJ .

Proof: Let (Fn)neN be any indexed family of preimages of SL. The feamily
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(E )

will be defined inductively. Put E. =F. . For a fixed
n ' neN o] o

n el , assume that for each k < n ’ Ek has been defined so that:

(i) E¥*CE* implies E,CE for eny J , k <n .
1= % 3= B

(ii) Ei = F* for each k < n .

Let H = sup {E,j : Engg} and let X = inf {EJ : EE SF2} . From the
induction hypotheses, HCK . Define En = (H VFn)AK » With the con-
vention that H or K 4{s simply omitted in case the set defining it is
empty. Then (Ek)Osksn satisfies (i) and (ii) , and so <En)neN

has the desired properties.

2.11 Theorem
Let 8 be a basic subalgebra of R(X) with the property that

if (s) &4 and ir nL=}O S € R(X) , then nI:L S €A . Then max-

imal chains in [ ]#* - {8, X*¥} are n,-sets (see 1.46 and 1.48) .

Proof: Let A and ® ve chains (with respect to set-theoretic in-
clusion) in [¥]* - {g > X*} , and assume that both A and ® have
cardinality no greater than N, . Then in order to prove the theorem,

it suffices to show that if ﬂ<6 s then there exists ¢ ¢ 8 such
that A< c* < B (see 1.45 for notation). As /3 is a basic subalgebra

of R(X) , it can be assumed without loss of generality that X - Vn € 8 5

for as (intXS)Se8 is a base for the open subsets of X (see 1.87) ,

there exists, for each ne N , a family (Sa) zg/S such that

(834

Vn+l = ooy 1ntXSa +  Thus c]_xvng(mz lntXSa » and so by the compactness
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of cJ.XVn there exist q s ** L, 0

. ,
1 , € I such that eV < .L=jl lntxsai .

k k
Thus el VC V s Celv » and we may replace X - V by (V g )
X'n=—= i=1 % = X n+l n i=1 ai

Let R = (A:)neN and B = (B%) . There are several cases

n’'nel

to consider.

Case 1 Assume that A either is empty or has = largest member, and that
® nas no smallest member. ILet A#* be the largest member of ﬂ (for
some A 6/8), and put A* = ¢ ir A is empty. By replacing B:; by

n
N\ B:*.L“ if necessary, and noting that B has no smallest member, we can
i=Q

* % *
assume that A EBm_lE- Bl for each n e N . Thus by 2.10 we can assume
Cy LoV ve e
that A Z Bne1 7 B, for each ne N . By 2.3 (ii) it is evident that
(1ntXBn) - (AUchVn) # 0 for each ne N . Thus for each n € N, there
exists kn € N such that the open set
(int, B ) (N (x - a) N (x - e1,v ) N vkn
is non-empty. As % is a basic subalgebra of R(X) > by 1.87 there exists

Sn € /S suc¢h that

¢#Sn§(intXBn)n(X-A)n(X-can)nd cee (1)

X n
Put E = nL=JO S, As S CX- clyV ~for each ne N, by 2.2 (ii)
E € R(X) . Thus by hypothesis E €. By (1) ,E - v _D_Sn -V, # ¢

for each n e N , so by 2.3 (i) E* #0 . As SnnA = @ for each

nelN (see (1) ), it follows that ENA = # , and so E¥fia* = ¢ |
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Put C = AUE ; then it follows from the sbove remarks that A*% C*¥ and

Ce . As ACB, for each J e N, it follows that

J

J) (2)

C-BJ=E-BJ=nL=JO(Sn-B

But by (1) , 5, - ng (1nthn) - B If n2J then B (B, and

J J

so 8§ - Bj is empty. Thus by (2) ,
J=-1 J-1
the second inclusion follows from (1) . Thus C - B (;Vm where

J

m=mex {k } . Thus by 2.3 (i) , C*QB*?B_l for each j e N .
OsnsJ-1 | J 7

Thus A< c* < B

Case 2 Assume that B either is empty or has a smallest member, and
that AL has no largest member. Let B¥ be the smallest member of @
(and put B* = X* if B is empty). As in case 1 s since ﬁ has no
largest member we can assume that AI’;C;,: AZJ.-]_C# B* for each ne N ,

(ot c
and thus by 2.10 that An ” An+l 7 B for each n e N .

As AS?B* » it follows by 2.3 (i) that (B - AO) N (x - chVo) # 0
and so we can choose Py € (B - AO) n (x - chVo) . Put m) =0 and

choose ml € N so that po € le « Thus ml > mo . Inductively, sup-

pose that we have chosen pieX,Osisn—l,and mieN,OsiSn,

such that:

(i) Wy >m 5 0s5ign-
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(11) p; e B-a) N(x-cry )NV Losciscnl o (3)
i i+l

As A*CB* | by 2.3 (1) there exists point p e (B-A)MN (x-ciyv )
n # n n X m
and an integer L. €N such that P,E th+l . Thus <pn)neN and
(mn)nEN satisfy (i) and (ii) . Put
©
c= Ul Ax-v ] e ()
n=Q n+l

By (i) , lim m = =3 hence by 2.2 (ii) it follows that C ¢ R(X) . As
n-»oo

Anf\(X - Vm ) € 48 for each n e N , it follows from the hypotheses that
n+l

C e /3 - It is obvious from (4) that for each n ¢ N , C¥ ;A;[\(X - Vm ¥,
n+l
i - * = YH * * *
By 2.3 (i) , (x th+1) X* and so C ;?An ;DAn—l for each ne N .
Thus ~f2< C¥* |

On the other hand, it is obvious from (&) that C*C_:(VAn)* Cs* ,
n=0 ™
Furthermore, for fixed i e N s the set

(8- a1 (x- clemi) N vmmn [a_A(x - an+1)]

is empty for each ne N ; for if n > i , then V (} (x -v )=1¢ ,

m, m
i+1 n+l

and if n < i , then (B - Ai)ﬂAn =@ . Thus by (3) and (L), p, £C

for each i e N . The set S = (p,) is closed by 2.2 (i) since

i’ieN
pi € X - chVm 3 since S 1is disjoint from ¢ » it follows from 2.1
i
that S*1C* = ¢ . But S* # ¢ by 1.13 , and so C*E cells* . By (3)

S*C B* and so C*EB* . Thus R < c* < B,
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Case 3 Assume that A either is empty or has a largest element, and
that ® either is empty or has a smallest element. Let A¥* be the lar-
gest element of R and let B* be the smallest element of B (put

A* = ¢ if A is empty and B* = X* ir B jis empty). Then A* C#:B* .
By 2.3 (ii) , (inth) ~ A is not contained in any V. - By a simple
induction, for each n € N we can find kn e N such that the open set

(rrt B)[ (x - a) Nx- ely V nV is non-empty. As 8 is a
n+l

basic subalgebra of R(X) , for each n € N we can find Sn > 3 such

that ¢ # S < (int.B) (1 (x - ) () (x - e, )My, . Also, for
2n-1 2n

each n ¢ N there exists P, € (intXB) N (x -a) N (x- el v, YO v .
2n 2n+l

If we set C=AU(YU Sn) » then by arguments of a type previously seen,
n=0

Ced end A*C;':C*. If (p ) =5, then C*f1s* = ¢ and ¢ # s*CB* .

n'neN
Thus ﬁ< C* < 6

Case 4 Assume that (ﬁ has no largest member and B has no smallest mem-

*C‘. * *
ber. As in cases 1 and 2 , it can be assumed that A A +l§' +l§ B
for each n , me N . By 2,10 it can also be assumed that

C c = -
8,5 2,15 Bm_'_l?Bm for each n ,me N . Put C \_/[An/\(x V)]

As in earlier cases, it is evident that C 83 Obviously

* * - ¥ = p% % * % * *
C¥ DAXN(X - v )* = A% Pa¥ | for each ne N, and C*C( n\-/oA ==

for each me N . Thus A< c* <B . This completes' the proof of the

theorem.
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2.12 Theorem [CH]

Let X be a o-compact space and assume that c(x)] = 2N°.
Then [oG(X)]* 4is a basic subalgebra of R(X*) and is isomorphic to
B(BN—N) (see 1.83 and 2.8 for notation) . In particular the projective

covers of BX-X and RBN- N are homeomorphic.

Proof: Since |[C(X)]| = 2N°, it follows that |G(X)]| = 2N°; thus by 1.80
loa(x)]| = EN° and so [oG(X)]*¥ has cardinality no greater than 2N°.

By 1.9 and 1.19 oG(X) is & basic subalgebra of R(X) , and since oG(X)
is o-complete (see 1.73) it satisfies all the conditions on /é? required
in 2.11 . Thus by 2.11 maximal chains in [oG(X)]* - {g , X*} are
ni-sets. Since by 1.47 every n,-set has cardinality at least 2N°, and
since (as noted above) [0G(X)]* has cardinality no greater than 2N°,
it follows that [o0G(X)]* is a Boolean algebra of cardinality QR'. It
then follows from 1.49 that [oG(X)]* 1is isomorphic to B(BN—-N) . As
G(X)C 0G(X) , it follows from 2.9 that [0G(X)]* is a basic subalgebra
of R(X*). Consequently by 1.87 [oG(X)]* is dense in R(X*). As

BN-N

=

is totally disconnected, by 1.85 B(BN—N) 1is dense in R(BN-N) ;
thus by 1.75 R(BN~N) and R(BX-X) are isomorphic. It follows immed-

iately from 1.93 that BN—N and BX-X have homeomorphic projective covers.

2.13 Remarks

(i) Note again that if X is & o-compact space in which every
closed set is a zero-set, asnd if lc(x)] = EN‘, then 0G(X) = G(X) = R(X)
end so [R(X)]* is isomorphic to B(BN~-N) .

(i1) Not only do BN—-N and BX-X have homeomorphic projective
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covers, but we can in fact make the stronger statement that there is a
continuous irreducible map from BN-N onto BRX-X . This will become

clear in remark 3,7

It was noticed, after the proofs in 2.11 and.2.12 had been found,
that one of the conclusions of 2.12 - namely that if X is o-compact

N,

and [C(X)] =2 then 8¥-X and BN -N have homeomorphic projective

covers - can be deduced from the following three known results:
. . N,
(i) [CH] If X is a o-compact space and [C(X)| = 2°°°, then
P(gX-X) and P(BN—N) are homeomorphic [CN , theorem 3.6] (see 1.3k
for notation) .
(ii) [CH] If X 4is locally compact and realcompact and if
[c(x)] = 2N°, then P(BX-X) is dense in BX-X (1.h4k) .

(iii) If S is & dense subspace of Y , then R(S) and R(Y)

are isomorphic.

We include a proof of (iii) bvelow as we cannot find a refer-

ence for it.

2.14% Theorem
If 8 1is a dense subspace of Y , then R(S) and R(Y) are

isomorphic.

Proof: Suppose A e R(Y) . Then AfS e R(S) ; for suppose x £ AfS .
If W 1is any open subset of Y containing x » then Wl‘clY(intYA) #0¢ ,
and so Wf\intYA #@ . As S is dense in Y , it follows that

(WNint A)Mls # ¢ , i.e. (wNs)0) (s Mint A) # 6 . Thus x e ely(intg(a0s))
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and so AflS ¢ R(S) . Thus the mapping h:R(Y) > R(S) defined by
n(a) = Afls is & well-defined mapping from R(Y) into R(S) . If &

and B are in R(Y) , then

(aVB) .= (aUs)Ms = (aNs) U (80s) = n(a)Vn(z)
and so h preserves supremsa.

We now claim that if A e R(Y) , then (int ) [)s = inty (af1s)
Obviously (intYA)ﬂsg intS(AnS) . Conversely, if x ¢ intS(Aﬂs)
there exists W open in Y such that X e W and WnSC_:_.AﬂS . If
W-A#0,then (W-a)lS#0 as S is demsein Y. This is & cop.

tradiction, so WC A and hence x ¢ (intYA)nS . It follows that

n(a') = sf el (Y - A)

s)(y - int A)
S - [-(intYA)nS]

S - intS(S Na)

L[}

dsw -(SnAXL

[h(a)]"

and so h preserves complements. Thus h is a Boolean algebra homomor-

phism,

Suppose that A and B are in R(Y) and that A # B . Then
either (intYA) -B#9 or (intYB) - A# @ ; assume that (intYA) -B#¢ .
As S is demse in Y , it follows that (Sf]intYA) - (s0B) # ¢ » and so

h(A) # h(B) . Thus h is one-to-one.
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Finally, suppose that B ¢ R(S) . Then there exists W open in
Y such that WS = int,B . As B-= cls(intSB) » it follows that
cl,B = cJY(intSB) = c]Y(Wﬂ S) = cl,W and so clyB e R(Y) . Obviously
Bg SnclYB 5 and as S - B 1is open in S , there exists an open subset
U of Y such that UMNS =S - B . Thus UﬂclYB = ¢ and so
SncJYBg.B . It follows that h(clYB) =B and so h maps R(Y) onto

R(S) . Thus R(Y) and R(S) are isomorphic Boolean algebras.

An attempt was made to characterize topologically those compact
spaces whose projective covers are homeomorphic to that of BN-N . Al-
though this attempt was unsuccessful, the following partial result was

obtained.

2.15 Theorem [CH]
Let Y be a compact space whose projective cover is homeomorphic

to that of BN—N . Then dense Ga-sets of Y have non-empty interiors.

Proof: If Y and BN-—N have homeomorphic projective covers, then
R(Y) and R(BE=-N) are isomorphic. Thus R(Y) contains a dense copy

F or B(BN-N) (see 1.85) . Let G = () U, be & dense Go-set in Y,
n=0

vhere (U ) is a countable family of dense open subsets of Y . As

n'nelN
F is dense in R(Y) , there exists Fy e F such that @ # Fog U,
(see 1.7h) . s U; 1is demse in Y , it follows that (intYFo)nUl is

non-empty. Thus there exists Fl e? such that @ # Flg (intYFO)nUl .

Inductively, suppose we have found (Fk)05ksn in 3 such that
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g # F.C (1ntYFi_l)nUi (1sisn) . Then as Uy, 1isdensein Y, it

follows that (1ntYFn)f1Un+l # @ and so there exists F 1 e::} such

n+

thet §#F . C (1ntYFn)ﬂUn+l .

Thus we have a sequence (Fn)neN §3 such that ¢ # FC (intYFn-tl)ﬂUn
Tor eaéh neblN. Thus (Fn)neN is a countable chain of non-empty mem-
bers of%} » and since 3’ is isomorphic to B(Bl- g) » Whose maximal
chains are n,-sets (see 1.46) , it follows by 1.49 that there exists
H e & such that ¢¢Hgﬁ F o ﬁ U, =G . As int H #¢ , it fol-

n=0 n=0

lows that intYG #0 .
2.16 Remark

It is not necessarily true that if Y is compact and has a pro-
Jective cover homeomorphic to that of BN-N , then every non-empty G -set
of Y has a non-empty interior. As an example, let Y be the projective
cover of BN-N . Then Y is extremally disconnected (see 1.82 » 1.89 ,
and 1.93) . It follows from 1.55 (i) +that every regular closed subset of
Y 1is open-and-closed. If every non-empty Gd-set of Y had a non-empty
interior, then by 1.42 every zero-set of Y would be regular closed and
hence open-and-closed. It follows from 1.35 (i) that Y would be a com-
bpact P-space; hence by 1.35 (iv) Y would be finite, which is impossible.
Thus the projective cover of BN -N contains non-empty GG—sets with em-

pty interiors.
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III THE REMOTE POINTS.OF BX -

3.1 Definition

Let X be a compact space and let o be an arbitrary cardinal
number. Then X will be called a Baire a-space if, given a family 2}
of dense open subsets of X such that l:}l £ a , the set (1 Z} is

dense in X .

The Baire category theorem states that every compact space is a
Baire'hL—space. Theorem 1.43 says that if X is locally compact and
realcompact, then RX-X is a Baire §{—space. We shall be concerned pri-

marily with Baire N,-spaces of this sort.

The following thecrem is a generalization of a result due to

Gleason (1.93) . Our proof mimics the proof of [G , theorem 3.2] .

3.2 Theorem

Let Y be a compact space and let S be a basic subalgebra of
R(Y) . Then there exists an irreducible surjection f:S(R) ~ Y defined
by fx) = () fAeR: xe a(a)} (see 1.90 and 1.91 for notation and

terminology) .

Proof: We first show that f is well-defined. Since Y 1is compact, if

n
) C R such that (N A, = ¢ and

f(x) were empty there would exist (A 1¢isnE 1

i

n n

X € r7 A(Ai) .  But then /\ Ai =@, and as A is an isomorphism,
i=1 =1

n
this implies that () A(Ai) = @ , vhich is a contradiction. Thus f£(x)
i=1
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is not empty. If y and 2z are distinct points of Y belonging to
n {Aef: xea(A)}, then since S is a basic subalgebra of R(Y) ,

by 1.87 there exists E e R such that y e int,E and =z ¢ E . Since

Y
z € ﬂ {A e R: xe a(a)}, it follows that x # AM(E) . Thus as S(R)

is totally disconnected, it follows that x € A(E)' = A(E') . Since

¥ € intYE it follows that y ¢ E' , and since y ¢ n{A eﬁ: x e A(a)}
it follows that x # A(E') , & contradiction. Thus f is a well-defined

mep.

To show that f is continuous, let x ¢ S() and let W be any
open subset of Y that contains f(x) . As Jl is a basic subalgebra of
R(Y) , there exists A e Sl such that £(x) e int ACACW . Thus
x € AM(A) eand if z e A(A) , then f£(z2) e ACW . Thus x ¢ A(A)gf_l(w)

and so f is continuous.

To show that f maps SM) onto Y , let y e Y and consider

n
the family = {aeR:ye intYA} . Then A Ay # @ for every finite
i=1

subfamily (A_) g?, and since JU is a basic subalgebra of R(Y) ,

i"1si<n
it follows from 1.87 that 03= {y} . Evidently oF is a filter on R
¢
and so it is contained in some ultrafilter W on S (see 1.72) 3 thus
by 1.90 the intersection (] A(U) is a unique point x of S(R)
Us?l

Obviously f(x) =1y .

To show that f 1is irreducible, let K be any proper closed sub-

set of S(R) . Then there exists a non-empty A e\fi such that

MA)C S(R) - K. Thus KC A(A') and so f£[K]CA' . It follows that
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f[K]nintYA =@ ,eand so f[K] #Y . Thus f is irreducible and the

theorem is proved.

3.3 Definition
Let Y be a space and let ¢ be a subfamily of R(Y) . Then

H(F) is defined to be the set nﬁ(y - deF) .
Fe

Note that H(3) may be empty.

3.4 Proposition
Let Y be a space and let F be a subfamily of R(Y) . Then

H) = H(<F5)  (see 1.77 for notation)
Proof: Since FC <> , it follows that

H(<d>) = n (Y - ba,E) C ﬂE}(Y - bd,F) = 1(
Fe

Es<8>
Conversely, if E ¢ <E}> » there exists by 1.78 a finite subfamily

n m
(Fi,j)lsism of I such that E = \/(/\ Ei,jFi,j) ,» where €;4F;y equals
J=1 i=1
l<jsn

either F., or Fi ' . It is well-known that if B » C € R(Y) , then

J J
bd.Y(BUC)C__“_bd.YBUdeC and bdB = bd (B') ; thus de(BAc)g deBUdeC
also. Consequently deEg lilj ( lj deFiJ) and so
i=1 3=1
fn)l(ﬁ[y &, F. . )CY - bd B . Thus (1 (Y -1 F) SH(<F>) and
- . - . us - < >
i=1 g=1 RETRAS “r Fe W=

the result follows.

3.5 Remark

There seems to be some formal similarity between the notions of
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& basic subalgebra S of R(Y) and the associated subset H(R) of Y
and the concepts, defined by Plank [Pl s definitions 2.2 and 3.1] , of a
B-subalgebra A of C(X) and the associated set of A-points of BX-X .

However, the exact relationship between these concepts is unclear.

3.6 Theorem

Let Y be a compact space and SR a basic subalgebra of R(Y) .

(i) There exists a topological embedding g:H(AR) » S(R) such
that fag is the natural inclusion of H(R) in Y (where f 1is the
mapping defined in 3.2)

(i) If Y is a Baire a-space and if |A| s o then H(WR) is

dense in Y , g[H(A)] is dense in S(R) , and f[sMR) - g[HW)]] = Y - HR)

Proof: (i) Let y e HA) . If A ef, then from the definition of HR)
it is apparent that y ¢ A if and only if y e A - deA = intYA . Define
'U.(y) = {AMA) : AeR and y e A} (see 1.90 for notation). This is an
ultrafilter (1.72) on B(S(A)) ; for if A(A)) end A(A,) dbelong to Uly)
then y ¢ int.A [l intyh, = inty (A AL,) . Thus A(A N A)) = A(a)NA(4y)
is a member of (U.(y) . Obviously @ ¢ GU,(y) and if A(Al) eM(y) end
Ma)) S AA,) then A(ay) e WUy) . Tus Wly) is & filter on B(S(WR))
Finally, if A(A) ¢ U(y) for some A ¢ A, then vy ¢ A and since \R is
& basic subalgebra of R(Y) , there exists B e JU such that ¥y € B and
AflB = ¢ . Thus A(B) e Uly) end A(8) M A(B) = ¢ ; hence ‘U.(y) is

an ultrafilter on B(S(R)) . Thus ﬂcU.(y) is a single point of S(RA)

end so we can define g(y) by g(y) = n?ﬂy)
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Suppose that x and y are distinct members of H(R) . Since
-Ji is & basic subalgebra ofi R(Y) , there exists A ¢ Ji such thet y e A
and x e A' . Thus g(y) e A(A) , g(x) ¢ A(&') , anda A(a) [l a(a') =9 .

Thus g 1s one-to-one.

We next claim that if y € H(R) and if B e¢ SR, then g(y) e A(B)
if and only if y € B . It is obvious from the definition of g that
y € B implies g(y) € A(B) . Conversely, if y ¢ B then y ¢ B' and

so g(y) e A(B') = A(B)' ; thus g(y) ¢ AM(B) and our claim is valid.

We now show that g is continuous. It follows from the previous

paragraph that

e AA)] = {y € HIR) : aly) e AA))

1(Q)ft A

1

for each A eJl. Since {A(A) : A e} is a base for the closed sub-
sets of SM) and since H@h)rlA is closed in H(A) , it follows that

g 1is continuous.
Finally, for each A e\fi we have

{ely) : vy e 1R)0 a3
Al glr@)] .

g[HA)N A]

Since S is a basic subalgebra of R(Y) , the family {H)NA : A e} ,
which is identical with {H®)N int A 1 A e} , is a base for the open

sets of H(f) , and so g is an open mapping onto its range. It follows
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that E(A) and g[H(R)] are homeomorphic, and so g is .a topological

embedding.

Suppose that y ¢ HW) . Since g(y) € A(A) if and only if

y e A for each A eR , it follows that f£(g(y)) = [1{A ef:y e A} =y .

(ii) since |R| s « , the family - {Y - ba A : A efl} is a
family of not more than o dense open subsets of Y . Since Y 1is a
Baire a-space, the set H(A) = ﬂg‘ is dense in Y . Thus if A is any
member of R s it follows that (intY.A)n HR) # 8 . Choose y e (intYA)n HWR) ;
then g(y) e A(a)(] glH(WR)] , as seen above. As {A(A) : A ¢ A} is a
base for the open subsets of S(R) , it follows that g[H(R)] is dense
in SW) . Finally, since by (i) the restriction of f +to the dense
subset g[HM)] of SWR) is a homeomorphism onto H(R) » it follows

from 1.32 that f[S(R) - g[HR)]] = ¥ - HR)

3.7 Remarks
(i) H®) = SR) = Y if and only if Jl= B(Y) and Y is com-
pact and totally disconnected.

N". If we

(ii) [CH] Let X be o-compact and suppose [C(X)]| = 2
put Y = BX-X and f= [0G(X)]* (see 2.8 for notation) , then the condit—
ions of 3.6 (i) and (ii) are satisfied for a = N\ (see 1.40 and 1.43) .
Since by 2.12 [0G(X)]* is isomorphic to B(BN-N) , it follows that S(A)

is homeomorphic to BN~ N . Thus there is a continuous irreducible sur-

Jection from BN- N onto BX-X .

Recall the definition of remote points given in 1.50 . Using the
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characterization of the set of remote points of BX given in 1.51 s We

obtain the following statement.

3.8 Theorem [CH]
Let X be a o-compact metric space without isolated points.

Then T(X*) can be embedded densely in BN~N (see 1.52 for notation)

Proof: Since X is separable (1.53) , clearly |c(x)]| = 2N°. By 2.12

end 2.13 (i) , it follows that [R(X)]* is a basic subalgebra of R(X*)
and is isomorphic to B(BN-N) . Thus S([R(X)]*) is homeomorphic to
BN-N , and by 3.6 (i) there is an embedding g of H([R(X)]*) into

BN-N . Since |[R(X)]*| = e and X* 1is a Baire N -space (1.143) , it

follows from 3.6 (ii) that g[H({R(X)]*)] 1is dense in BN—-N . Using
1.51 and recalling (1.21) that in & metric space R(X)C z(X) , we have
T(x*) & ﬂ [X* - ba ,A*] = H([R(X)]*) .
AeR(X)
As T(X*) is dense in X* (1.51) and hence in H([R(X)]*) , it follows
that g[T(x*)] is dense in g[H([R(X)]*)] and thus in BN-N . As g

is a topological embedding, g[T(X*)] is homeomorphic to T(X*) and

dense in BN -N .

3.9 Definition
A space X will be celled strongly countably compact if the clos-

ure in X of every countable subset of X is compact.

3.10 Proposition

A strongly countably compact space is countably compact.
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Proof: Let D be a countably infinite subset of the strongly countably
compact space X ., Then chD is compact and thus contains limit points
of D . Thus each countably infinite subset of X has limit points, and

so X 1is countably compact.

3.11 Example

L3 an example of a countably compact space that is not strongly
countably compact, consider the space Y = BN - {p} , where p ¢ N .
Since N 1is a countable dense subset of Y and Y is not compact, it
follows that Y is not strongly countably compact. By 1.58 , BN, is
extremally disconnected and thus is an F-space (1.36) . Thus if D is
any countably infinite subspace of Y » it follows from 1.38 and 1.30
that ClBEP is homeomorphic to BN and thus by 1.29 has cardinality
22 °, Thyus D has limit points in BN, other than p , and thus has

Y-limit points. Thus Y is countably compact.

3.12 Theorem

Let X be a o-compact metric space without isolated points.
Then both T(X*) and X* - T(X*) are strongly countably compact. Thus
assuming the continuum hypothesis, X¥* can be decomposed into two dis-

Joint dense strongly countably compact subspaces.

Proof: We first prove that T(X*) is strongly countably compact. Let
Py
D = (pn)m_:N be any countable subset of T(X*) , and let S 2 pe the

© D.
z-ultrafilter on X associated with 1 (see 1.31) . pPut Z}= NRA?
i=0

and set K = {]iF* . Then p, € F*¥ for each n ¢ N and each F € t}}
FedF




-

and so D is a subset of K , which is closed in X* . It thus suffices
to show that K T(X*) . Suppose that q ¢ T(X*) . Then by 1.51 there
exists a closed nowhere dense subset Z‘ of X such that q e Z% .

Since pn is a remote point, it follows that 2 éJQPn for each ne N ,

Pn
and so we can choose An eJL such theat Zf]An = @ ., Without loss of

generality we can assume that AGCKX- V, for each n e N (see 1.11) .
It follows from 2.2 (i) that [.1 Ai is closed in X and sas AnQ; Ai
. 1=0 i=0

o0 [=+]
for each n e N , evidently [} A € 3 Thus K ( | A¥ . But
i=0 i=0

z (U A;) =@ soby 2.1 (ii) we have 2z*[|( LJ Aj)* = ¢ . Thus
i=0 i=0

a4 ¢ K and so KCT(x*) .

We next prove that X* - T(X*) is strongly countably compact. Let
be a countable subset of X* - T(X*) . By 1.5l we can, for
each n e N , find a closed nowhere dense subset Zn of X such that

pn € Z: s and without loss of generality we can assume that ZnQ;ZX - Vn .

By 2.2 (i) it follows that LJ Zi is closed, and obviously P, € (LJ Zi)*
1=0 i=0

for each n e N . Thus clx*I>§;( LJ Zi)* . Applying the Baire category
=0

(2]

theorem to the locally compact space X , we see that intX(LJ Zi) =0 ;
i=0

thus it follows from 1.51 that ( |J zi)*<;;x* - T(X*) . Hence clygD is
i=0

a subset of X¥ - T(X*) .

Since, assuming the continuum hypothesis, both T(X*) and X* - T(X*)

are dense subsets of X¥ (1.53) , the final assertion follows.
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3.13 Theorem [CH]

Let X be a o-compact metric space without isolated points, and
let g be the embedding of 3.8 . Then (BN-N) - g[T(X*)] is a dense,
strongly countably compact subspace of BN - N of cardinality 22N°.

Thus BN—N can be decomposed into two disjoint, dense strongly count-

ably compact subspaces.

Proof: Let f be the irreducible map from BN-N onto BX-X described
in 3.7 (ii) . By 3.6 and 3.8 » the restriction of f to the dense sub-
set g[T(X*)] is a homeomorphism sending g[T(X*)] onto T(X*) . It
follows from 1.32 that fI(BN-N) - g[T(X*)]] = x* - p(x*) s which by
1.54 is dense in X* . As f is irreducible, by 1.92 the set

£ - T(X*)] = (B~ N) - g[T(X*)] is dense in BN-N , and as

N,
X* - T(X*) has cardinality 22 °, 50 does (BN-X) - g[T(x*)] .

Let D = (pn)nsN be a countable subset of (BN-N) - g[T(x*)] .

Then as seen above, the set (f(pn))neN is a countable (or finite) sub-

* _ * - A 3
set of X T(X*) and so by 3.12 it follows that Clx*[(f(pn))nel\l] 1s

& subset of X¥ - T(X*) ., Thus

LD G £ el [(£(p)))__]]

“Lrxx - ()]

N

T

= (BN-N) - g[T(x*)] .

Finally, since glT(x*)] is homeomorphic to T(X*) , it follows from
3.12 and the above that g[T(X*)] and (BN-N) - g[T(X*)] are the sub-

. spaces of BN-N whose existence is claimed in the statement of the theorem.
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The following result generalizes a portion of theorems 3.12 and
3.13 .

3.13a Theorem [CH]
If X is a g-compact space and. lC(x)l = 2N°, then PBX-X can
be partitioned into two disjoint, dense strongly countably compact sub-

spaces.

Proof: Since lC(X)I = 2N°, the family of 2N° cozero-sets of X* forms
a base for the open subsets of X* . Hence by 1.44 there exists a dense
subset D of X* consisting of N, P-points of X* . Put

S = §x ¢ X* : there exists ECD such that |E| =N and x ¢ clx*E}.

As D has N. countable subsets - say (}:"h‘)“‘< w,” ¥e can write S in the

form S=U cl*Ed.
A<, X

Now intx*(clx*Ed‘) =@ for each &k < W) for if not, let E, = (xi)
By 2.12 we can, for each i ¢ N , find A'if' € [R(X)]* such that

ieN*

8 # int A% C int, (c1.,E,) - {p% .

By case 1 of 2.11 there exists BY € [R(X)I* such that

oo
P # int, BY C© Qo int A% ond clyBa = B,

which i8 a contradiction. Thus intx*(clx*E“) =@ and s0o S is a
union of N| closed nowhere dense subsets of X* ., By 1.43 it follows that

X* - § is dense in X* . Of course § is dense in X* also.

Now S is strongly countably compact, for let (xn)neNt‘:'s .
Then there exists, for each n e N » a subset En of D such that
[En] =, and x ecly E . Thus
o °L°J )
(%) chl*E gcl*( E) C s
n’ neN n=o0 X*"n X a0 P
(as U En is a countable subset of D). Thus CIX*(xn)neN (; S , and
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so S 1is strongly countably compact.

Finally, suppose that there exists a countable subset A of
X* -~ S such that S|1 clx*A # @ . Then there exists a countable subset
E of D such that cly,E f\clx*A ¥0 . Now cl.,E © S so the set
(clx*E)f] A =0 . As each point of E 1is a P-point of X* , it ig evi-
dently not a limit point of any countable subset of X%* , and so
E(\ clx*A =@ . Thus E and A are disjoint open-and-closed subsets
of the countable subspace AlJE of X* . As X* 1is an F-space (see
1.37), A1) E 1is C*-embedded in X* (see 1.38). Thus

el E el A =cl M) =9

(see 1.30 and 1.27). This is a contradiction and so § r]clx*A =@ for
each countable subset A of X* - S . Thus X* - S is strongly count-

ably compact and {S ,» X* - S} is the desired decomposition of X* .
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3.14 Proposition

Let X be any o-compact space and let A be s closed subset of

X . Then (bdA)* = b, A% .

Proof: Since A* is closed in X* , it follows that

A% - int, A%

b A¥

a* () c1, (x% - a%)

A*n [clx(X - A)]* (see 2.4)

(an el (X - A)]* (see 2.1 (ii) )

(bd.xA)* .

3.15 Remarks

(1) [CH] We are now in e position to indicate somewhat simpler
proofs of two of Plank's results. First, it is evident that the equival-
ence of the two characterizations of T(X*) that appear in 1.51 follows
immediately from 3.1k . Second, in his proof of the fact that
[x* - p(x*)]10 T(X*¥) is a dense subset of X* of cardinality 22N°,
Plank constructs a compact infinite set of remote points by appealing to
& somewhat complex result of Fine and Gillman [FG2 » lemma 2.3] . This
can be avoided by taking the closure in X* of s countable set of re-

mote points (see 3.12) .

(ii) [CH] 1In [M, section 4] Mandelker calls = subset A of
BX & round subset of BX if for any Z e Z(X) , if clBXZ contains A
then it is a neighborhood of A . If we sey that p 1is a round point

of BX if and only if {p} is a round subset of BX » then it is evi-
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dent that the set of round points of BX that are not in X is pre-~

cisely the set n [x* - bd.x*Z*] . Obviously the proof of 3.8 can
ZeZ(X)

be adapted to show that if X is a o-compact space such that lc(x)| = QN'
and R(X)Q 2(X) , then the set of round points of BX that are not in

X can be embedded densely in BN-X .
Recall that P-points were defined in 1.33 .

3.16 Lemma

If X is a dense subspace of T , then P(X) = x{lp(T) .

Proof: It is immediate from 1.35 (iii) that X(P(T)CP(X) . Con-
versely, let p e P(X) , let Z e Z(T) , and suppose that PeZ . Then
zNX e 2(X) and so by 1.35 (ii) there exists an open subset W of T
such that p € WﬂXgZﬂX . If W-2#%#@ , then since W - Z is open

in T and since X is dense in T , it follows that (W(lX) - (z0x) # ¢ s
which gives a contradiction. Thus WgZ and so Z 1is a neighborhood

(in T ) of P . As Z was an arbitrary zero-set of T , it follows from

1.35 (ii) that p e P(T) .

In [CN , theorem 3.6] , Comfort and Negrepontis have shown, assum-
ing the continuum hypothesis, that if X and Y are two o-compact spaces
and if |c(X)| = |c(y)] = é"“, then P(BX-X) and P(BY-Y) are homeo-
morphic. We can, using the results developed in this chapter, prove the

following weaker result.
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3.17 Theorem [CH]
If X is a o-compact metric space without isolated points,

then there exists a dense subset of P(BX-X) of cardinality .22“; that

is homeomorphic to a dense subset of P(BN—N) .

Proof: By 1.54 , P(X*)(7 T(X*) is a dense subset of X* of cardinality

22}%.

If g 1is the embedding of T(X*) in BN—~XN defined in 3.8 » it
follows from the fact that g[T(X*)] is dense in BN-N that

P(glT(x*)]) = glp(x*) T(X*)] is a dense subset of BN-N of cardinal-
ity 22, By 3.16 , P(alz(x#)]) = glr(x#)] N P(BL-J) and the theorem

follows.

If X is a og-compact metric space without isolated points, then
{a*()o(x*) : A ¢ R(X)} is evidently a family of open-and-closed subsets
of T(X¥) that forms a basis for the open sets of T(X*) . This raises
the question of whether T(X*) has the stronger property of being basic-
ally disconnected (1.55 (ii) ) . The following proposition provides the

answer,

3.18 Proposition

Let X be locally compact and realcompact, and let S be a
dense subset of BX-X with the property that SO[x* - p(x*)] # ¢ .
Then S is not basically disconnected. Thus, assuming the continuum
hypothesis, if [c(X)]| = 2™ then P(X*) is the largest dense basically

disconnected subset of BX-X .

Proof: By hypothesis there exists a non-empty Z e Z(X*%) such that
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SMvay,z # ¢ (see 1.35 (v) ) . Let xe slva,z . As S is dense in
X* , the set S{l(Xx* - 2) is a non-empty cozero-set of S . By 1.k

Z = clx*(intx*z) and so S|l (intx*Z) # @ . Since Sf](X* - Z) and
Sﬂ(intx*Z) are disjoint, by 1.56 it suffices to show that

clS[Sf\(X* ~2)] r]cls[S‘](intx*Z)] is non-empty. Let W be any open
subset of X* containing x . As x e clx*(intx*z) » it follows that
Wf]intx*Z #@ . As S is dense in X* » We see that Srlwr]intx*z £ 0
and so x ¢ cls[sr]intx*z] . Since x ¢ clx*(X* - Z) , it follows in a
similar manner that x ¢ clS[Sr](X* -Z)] , and so S is not basically
disconnected. Assuming the continuum hypothesis, if 'C(X), = gib then
by 1.44 and 1.57 P(X*) is a dense basically disconnected subspace of

X¥* |, and the final statement of the theorem follows.

Combining 3.18 and 1.53 , we immediately obtain the following result.

3.19 Corollary

If X is a o-compact metric space without isolated points, then

T(X¥) 1is not basically disconnected.

We conclude chapter III by showing that the set of remote points
of BR 1is precisely the set H([R(R)]*) . To do this we need the foll-
owing lemma, which was proved independently and approximaetely simultan-

eously by ourselves and Mandelker (M, lemma 2.3] .

3.20 Lemma
Let K be a closed nowhere dense subset of R . Then there ex-

ists A e R(R) such that KC bd A .
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Proof: Without loss of generality we can.assume that X is unbounded,
as any bounded closed nowhere dense subset of R is & subset of some
unbounded closed nowhere denge subset of R . We can thus write R-K

(-]

in the form };g(ai,bi) where &, <b, end i # J implies that

(ai,bi)r](aa,bj) =@ . Fix i and form a "Céntor set" from [ai.bi] by
deleting "open middle third" intervals in the stendard way. This is acec-
omplished in a sequence of steps; at the n th step 2n-l intervals are
deleted. Inductively, we call the "open middle third" intervals that we
delete from [ai,bi] either "red" or "green" according to the following
rule:

(1) (a; + (b, - a,)/3, a; +2(b, - a,)/3) is red.

(ii) Suppose that the n th stage of deleting "open middle third"
intervals has been completed and that colours have been assigned to these.
At the (n+l) st stage we delete 2 open intervals and assign each inter-
val I a colour as follows: if there is a previously deleted interval to
the left of I , assign I the colour that is the opposite of the colour
of the previously deleted interval that lies closest to the left of I .

If there is no previously deleted interval to the left of I , then the
colour of I is taken to be the opposite of the colour of the previously

deleted interval that lies closest to the right of I .

Let Ri be the union of the red subintervals of [ai,bi] , and

let G, be the union of the green subintervals of [ai,bi] . Put R = L_} R,
i=1

[
and G = 3;{ G, . Then as RiUGi is dense in (ai,bi) » RUG is dense
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[+
in U (ai,bi) = R - K and thus is dense in R . Obviously rflg = @
i=1

and KGR - (RUG) . From the construction of R and G it is easily
seen that R - (RUG) = de(ClRG) » and of course clG e R(R) . The lemma

follows immediately.

3.21 Theorem

T(R*) = H([R(R)]*) .

Proof: Recall (1.51) that T(R*) = ﬂ [R¥* - (bd.RZ)*] and that
ZeZ(R) =

H([R(R)]*) = ﬂ [B* - (bd A)*] . As R(R)C z(R) , obviously
AeR(R) =

T(B*) S H([R(R)]*) . Conversely, if 2 e Z2(R) then by 3.20 there exists
A € R(R) such that bdangdB.A ; thus R¥* - (de-A)* C R* - (bd.ggz)* .

Thus H([R(R)]*¥) C T(R*) and the theorem follows.

3.22 Questions

(1) Is H([R(X)]*) = T(X*) for any o-ccxpact metric space X
without isolated points?
(ii) If X and Y are two o-compact metric spaces without iso-

lated points, are T(X*) and T(Y*) homeomorphic?
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IV THE DIMENSION OF BX-X

In this chapter we develop, for a o-compact space X , a rela-
tively simple characterization of the Lebesgue covering dimension of
BX-X . This characterization is then used to show that for each positive
integer n , the Lebesgue .covering dimension of Bg? - g? is n .

Throughout this chapter we assume that X 1is o-compact (and hence normal).

b.1 Lemma
If B 1is closed in BX-X and W is open in BX-X , and if

BE W, then there exists A ¢ R(X) such that Bgintx*A*g A*C W .

Proof: Since X is o-compact, it follows from 2.12 that [R(X)1* is g
basic subalgebra of R(X*) 3.thus by 1.87 , the family {intx*A* : A g R(X)}
is a base for the open subsets of X*¥ . As B and X* - W are disjoint
closed subsets of the normal space X* » there exists (Aa)aezqgfﬂxj
such that
s it & el [U int %) = kv .
ael ael
As B is compact there exist a. , °** J 0 ¢ % such that
n 1 n
BC U int JA*CQ KCW . It follows from 2.1 (1) and 2.5 that
i=1 %3
n n
ol U dmtgnr 1= (Y a 0w,
i=1l i i=1 i

Put A = 3 then A e R(X) and obviously BC intx*A*gA*gW .

n
Ay

=10 %

4.2 Definition

A cover of BX-X all of whose members are of the form intx*A*
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(for some A e R(X) ) will be called an R-cover of BX-X . 1If Y ig
both a refinement of a cover QI of BX-X and also an R-cover of BX-X ,

then ¥ will be called an R-refinement of ?l.(see_l.66 for terminology).
The proof of the following lemms mimics the proof of [GJ , theorem 16.6],

4.3 Lemms

Let U, = (U ))¢sac

- . = . * * .
R-refinement S (lntX*Ai)lsisk or ‘U such that Aiqztﬁ_ for each i

be a cover of BX-X . Then there exists an

from 1 to k .

k
. - 0 I3 . - - * -
Proof: The family (Ai)lsisk is defined inductively. Put B =X LJL&.

i=2
Then as Gll. is a cover of X* » 1t follows that Bl and X - Ul are

disjoint closed subsets of X* ., By 4.1 we can find A e R(X) such

. * * - * LN} i
that B, C int  A}CATC U; + Then {1ntx*Al » Uy s » U} is a

cover of X¥* ,

Suppose that we have defined A, , +.. s A € R(X) such that:

1 i-1
(i) AB‘(;UJ » lgdgi-1,
/i ] 1 * * o 1 * LN
(ii) The family {1ntx*Al , » inty A¥ J U > Ul

is a cover of Xx¥ .

Put B = X* - (intyarl} ... U intya?  Uu, U - ] U} if

k-1
. - * _ . * . % _
i#k, and put Bk X }gi 1ntx*AJ . By (ii) Bi and X U, are

disjoint closed subsets of Xx* 3 thus by 4.1 there exists A € R(X)
such that Bigintx*A’i‘gA;gUi + Then (i) and (ii) are both sat-

isfied when i-1 is replaced by i . This induction yields the desired ufi.
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L.y Proposition

The following two statements are equivalent:

(i) The space BX-x has a cover “\l such that every refinement
of ‘U has order (see 1.67) not less than n .

(ii) The space BX-X has an R-cover g such that every R-refine-

ment of Whas order not less than n .

Proof: Let CU. be a cover of x* such that every refinement of ‘U., has
order not less than n . By 4.3 there exists an R-refinement q’f ofgu, .
As every refinement ofw is a refinement ofcu. > eévery R-refinement of

czWhas order not less than n .,

Conversely, if% is an R-cover of X* such that every R-refine-
ment of% has order not less than n , let R4 be any refinement of%.
By 4.3 Ry has an R-refinement S , and R is an R-refinement or “¥f .

R o A
Thus there exist Al s e, An+l E such that i]:(l Ai #F0 . As

is a refinement of CX s We can find Vl s v, Vn+l :-:C\( such that

AiC_ V. for each i from 1 to n+l . Thus nﬁl Vi # ¢ and so
- i=1

ord Tz n . Thus %{ is the desired U .

4.5 Proposition

The dimension of BX~X is not less than n if and only if there
exists an R-cover‘W of BX-X such that every R-refinement of% has

order not less than n .,

Proof: From the definition of dimension (1.68) it is evident that
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dim X¥ > n if and only if it is false that every cover of X* has a re-
finement of order not greater than n-l . Thus dim X*¥ > n if and only
if X¥ has a covercll.‘such that every refinement of cLL has order not

less than n . By L.h this occurs if and only if there exists an R-cover

0}{ of X* such that every R-refinement ofcan has order not less than n .

4.6 Proposition

If Y is a normal space, then every cover of Y has a refine-

ment all of whose members are regular open sets.

Proof: Suppose that B is closed in Y , W is open in Y , and BC W .
Then as Y is normal, there exist an open set U and a closed set K
such that B UC KW . Thus BCUC clYUgw . Thus there exists
A e R(Y) - namely A = el,U - such that BC intYAC;AgW . A repe-
tition of the proof of 4.3 now yields the proposition, since intYA is a

regular open set,

L.7T Proposition

Let X be a o-compact space and let (Ai) CR(X) . Then

lsisk

k
. * 3 - - 3 - - -
(1ntx*Ai)lsisk is an R-cover of BX-X if and only if X }Z{ 1ntXAi
is compact. .
. . . * - - P * 3 -
Proof.k The family (1ntX*Ai)lsisk is a cove; of X* if and only if
* . * = . . . % _ 3 * =
X 1_} int G A¥ @ , i.e. if and only if f} (x lntX'Ai) ¢ . But
i=] i=1
- K k

(1 (x* - int A%) = () el (x* - A%)
i=1 . i=1
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k
[N cJ.x(x - Ai)]* (by 2.1 (ii) and 2.4)
i1

kK
[() (X - int. A )]H
i=l

k
[x - U int A, ]#
i=1

The proposition now follows from 2.1 (iii) .

4.8 Proposition

Let (Ai)lsism and (Ei)lsisk be subfamilies of R(X) , and let
= * - - i
Ei (1ntX*Ei)lsisk be an R-cover of BX-X . Then the family
= . * . - . . . .
R (lntX*Ai)lSiSm is an R-refinement of é% if and only if there exists
a compact subset K of X such that X - [J intXAiq;I{ and for each i
i=1

from 1 to m , there exists' Ji eN ,1cz5)).

<k 4, such that A, - E
i i

C— K .
i

J

m
Proof: By 4.6 Jq, is a cover of X¥* if and only if X - [J intXAi is
——— 21

compact. By definition gFl is a refinement of Ei if and only if

. *C . * .
1ntX*Ai —'lntX*EJi for each i from 1 to m and some J, (1 < 3 = k).
Since by 2.5 A§ and E§ are regular closed, this occurs if and only if
i
A*{Q B} . By 2.3 (1) aC E¥ if end only if A; - By 1is contained
i i i

m m
in some compact subset Ki of X. Put K= (X~ }Z& lntXAi)lJ (J;& Ki)

and we are done.

4.9 Proposition

= (i * - - .
Let £l (1ntX*Ai)lsisk be an R-cover of BX-X . Then ordfl 2 n

. . . _ . % _
if and only if there exist n+l members of N, say (1ntX*AiJ)lstn+l
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n+l
such that ﬂ intxAi is not contained in any compact subset of X .
J=1 J

Proof: Evidently ordR 2 n if and only if there exists & subfamily

n+l
. * \ % .
(mtx*AiJ)l cjsmey OF U such that Jljl 1n1;x,,AiJ # @ . By 1.82 this
n+l
occurs if and only if. /\ A"i“ # @ , which by 2.7 is equivalent to
=1 7

n+l
(A A; )*# 6 . By 2.1 (iii) and 1.82 this occurs if ang only if

J=1 7
n+l
ﬂ intxA. is not contained in any compact subset of X .
i
J=1 J
L.10 Theorem
Let X be s o-bompa.ct space. Then dim X* > n if and only if
there exists a cover U = (Ui)l<i<k of X such that every refinement

of U contains n+l sets whose intersection is not contained in any

compact subset of X .

Proof: Suppose that the cover GU- exists as described. By 4.6 there

exists a refinement W = (Wi)IT(.<i<k of u all of whose members are reg-

ular open sets. Since X - U W, o= # 5 by 4.7 the family
i=1

= (4 * i - * = (3 *
(I (1ntx*(clxwi) )l_<i< is an R-cover of X* . If S (lntX*Ai)lsiSm

<k
is an R-refinement of 8 » then by 4.8 there exists a compact subset K

m
of X such that X -~ U intxAi g K and such that for each i from
i=1

1 to m, there exists an integer 3 (1< 3 s k) such that A;- chWJ CKk.
i

If (intxAi)n (X - intylelyi, 1) N(x-x)#0, i.e. if
1

(intxAi) ﬁ el (X - cly Ji) f1(X -KX) # 0, then it follows that
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(intXAi - chWJ ) ﬂ (X -K) # ¢, which is a contradiction. Thus by 1.8
i

it follows that int,A, - W, =intA. - intx(cleJ JCK (L<ism).
i i

Consider the family :}‘ of open subsets of X defined as follows:
J - (Camten M 1x - kD), U s W) g

where S is an open subset of X such that KC S and chS is com~-

m
pact (such en S exists as X is o-compact) . Since X - U int A,
i=1

is a subset of K and (intxAi)rl(X -KC WJ » it follows that :j' is
i .

& refinement ofc*(, and hence of 1J.. Thus by hypothesis iE} contains

n+l sets whose intersection is not contained in any compact subset of X

As chS is compact, it follows that there exist sets Ai s **° , A,

1 Tn+l
n+l
such that rj intXAi is not contained in any compact subset of X .
J=1 J

By 4.9 ordJi 2n , and as\ji was an arbitrary R-refinement of EL s it

follows from 4.5 that dim X* > n .

Conversely, suppose that dim X* > n . Then by 4.5 there exists
an R-cover E; of X* such that every R-refinement of Ei contains n+l

. - 3 . - - - * .
sets with non-empty intersection. If &, (1ntx*Ei)lsisk » then by 4.7

k
the set X - LJ intXEi is compact. Let W be any open subset of X
i=1
k
such that chW 1s compact and X - 5;& 1ntXEiq;VJ. Then
v, 1ntXEl y 1ntXEk} 1; a cover i} of X . Let (Ui)lsism be
a refinement of Z}'. Since LJ intx(chUi) =X , by 4.7 the family
i=1
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= a * s - % . . _
c}‘( (1ntx*[chUi] )lsism is an R-cover of X* ., Since chW is com

ract, for each i such that (ClXUi)* # @ , there exists an integer 35

(1 <5, < k) such that Uigln‘t:.xE|ji » Thus cl,U. C CIX(lntXE.ji) =E,

1

1

and so intx*(clei)*C_:_int E¥ . Thus ¥ is an R-refinement of 8,

X*7y,
i n+l
i oo (333 Ve o+ 1. . *
and so there exist Ue > U such that ﬂ 1ntX*(CIXUk.) #0 .
1 n+l i=1 i
n+l

A repetition of the proof of 4.9 shows that T = intx[ N el U, ] is not

i=1 i

contained in any compact subset of X . Using the notation of 1.11 s Sup-

n+l
pose that n Uk Cc Vs for some s e N . Then as the open set
i=1 i
) (x - chVs) is non-empty and meets chUk » 1t follows that the open
1
set Tl (x - clxvs)n Uk is non-empty. Since this meets cl U s it fol-

1 Xk,

lows that Tn(X - eV )nU Nu # @ . A repetition of this argument

s kl k2
n+l

shows that T{l (X - chVs)n (N U, ) # @ ,.which is a contradiction.
i=1 i

n+l n+l

Thus n Uk - VS #@ for all s ¢ N , and so ) Uk is not contained
i=1 i i=1 i

in any compact subset of X . As (u,) was an arbitrary refinement

l<sigsm
of ‘3' s 1t follows that 63 is the desired cover ‘U. of X .

i
L.11 Theorem (Jerison)
For each positive integer n , dim (Bgn- gn) =n .

Proof: For each k ¢ N put Sk = {x ¢ g.n t 2k+1l < Jixll < 2k+2}  (where

(o]
| xll denotes the norm of x) 5 and let X = U S, - By 2.2 (i) K is
k=1
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closed in the metric space 5? and thus by 1.16 K is C*¥-embedded in
5? - It follows from 1.30 that C1BBPK is homeomorphic to BK and
thus X* is homeomorphic to RK-K . Since K* 1is closed in the normal
space (R")* , it follows from 1.16 that it is C*-embedded in (B")* ;
thus by 1.69 it follows that dim K¥* < dim (g?)* . By 1.70 and 1.71 ,

din-(BF') = dim B = n . Since (R®)* 1is closed in BR" , by 1.16 it

is Ct-embedded in 8R" and thus by 1.69 aim (R%)* < dim R'=n .

Hence to prove the theorem it ‘suffices to show that dim K* 2 n . Since
K¥ is homeomorphic to BK-K s by 4.10 it suffices to exhibit a cover GLL
of K such that every refinement of GLL contains n+l sets whose inter-

section is not contained in any compact subset of K .

As intgPSk # # , it follows from 1.71 that dim S, =n . Thus

there exists a cover QJk = (Uli{)lsiss of Sk such that every refinement

of q)k contains n+l members whose intersection is non-empty. If

J s k e N then SJ and Sk are homeomorphic and so we can assume that

eachc\Lk contains the same finite number s of sets. Put ?J.= ( LJ U§)1<i<s
k=1 =

As each Sk is open-and-closed in K » each member of CLL is an open

subset of K , and thusczl. is a cover of K . We also note that if

meN and 1< j<s, then S [1 ( Lj Uk) = U® (since the (8,) are
"= R M K

pairwise disjoint) .

Suppose that‘wny is a refinement of CLL such that any n+l mem-

bers of ﬁn{ have a bounded intersection. As GXK-has only finitely many

/

subfamilies containing n+l members, there exists m € N such that




6l

n+l
(N w )nS =@ for any n+l members W, , ¢e¢ , W of %{ Con-
=1 J; B 1 )

sider the family = (wﬂsm)wa\( of open subsets of S, + Obviously V(}
is a cover of Sm . As "\6'( is a refinement of ’U. > cach W e% is con-

© [+ ]
tained in a set of the form k[;J]_ UJ: . Thus Wf(} 5, & (kgl U‘ljf)ﬂsm = UI: ,

and so ?‘ is a refinement of ‘U.m . By our choice of m , any n+l mem-
bers of 8’ have an empty intersection; this contradicts our choice of

‘U\m , and so% cannot exist. Thus "U is the type of cover of K re-
quired in the hypotheses of 4.10 and so n < dim (BK-K) = dim K* . Hence

by our previous remarks, it follows that dim (R")* = n .

4,12 Corollary

If C 1is a cozero-set of egn- g,n s then dim C=n .

Proof: Since (R")* is an F-space (see 1.37) , it follows from 1.36 that
C is C*-embedded in (E'n)* ; hence by 1.69 dim C < n . Since by 2.12
[R(R")]* is a basic subalgebra of R((E")*) , by 1.87 there exists

A e R(R") such that 9 # A*C C . Thus intopA 1is unbounded, and hence
there exists a sequence (Sk)keN of n-cubes, each contained in intinA .

such that any compact subset of g,n contains only finitely many of these

cubes. Put B = U Sk . As any two n-cubes are homeomorphic, the argu-
k=0

ment used in 4.11 to prove that dim K* > n can be used here to show
that dim B* 2 n . Since by 1.16 B¥ is C*-embedded in (R")¥* , it is
also C*¥-embedded in C and so by 1.69 n < dim B¥ < dimC £ n . Thus

dim C =n .
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4,13 Remark

Tt;eorem 4,11 was first proved by Jerison [J] by constructing an
essential mapping of Bgn- &n onto [-1 , 1]n « Our method of proof
seems to have a greater range of applications for example, it is used to

prove theorem 4.12 .

4.14 Question

If W is an arbitrary open subset of ﬂl_{n— l‘ln » what is the dim-
ension of W ¢ It is evident that if W 1is normal then the argument em-
ployed in 4.12 can be used to show that dim W 2 n , but it is not obvious
that dim W.-<n .
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V  CONNECTED SUBSETS .OF BX-X

5.1 Theorem

Let X be a o-compact space. Then BX-X.. is not connected im
kleinen (see 1.64) at any point, and thus is not locally connected gt
any point.
Proof: Using the notation of 1.11 » put A.=.J:L(clxvhn_2 - th_3) and

B = U(clV -V ) . It follows from 2.2 (i) thet A and B are
1 X hn hn-1

closed, and evidently AfB =¢ . Thus by 2.1 (iii) , A*1B* = ¢ . 1Let
P be any point of X* . Either p e X* - A% op P € X¥ -~ B¥ : assume
without loss of generality that p e X* - A% ., For n=1,2, <.,

= - = v - =
put B = elyVa 5= Vg and F_ lyVgae1 = Vg, p » ond set E nl;Jl E_

and F = LJ Fh « By2,1 (i) E and F are closed in X ; evidently
n=1

ENfF = ¢ ena a*lJe*Ur* = x% . Hence x# - A*C E*(JF* and E*]F* = ¢ .
Thus either p e E¥ -~ F* op P e F* - E* ; suppose without loss of gener-
ality that p ¢ E¥ - F% | Tpen P e (X* - a%) ﬂ (x* - F*)C.:_intx*E* .

Let W be any open subset of X* contained in intx*E* and contain-

ing p . Since by 2.12 <E(ch[intXZ])* :VZ € Z(X)E} is a basic subalge-
bra of R(X*) , there exists 2 ¢ Z(X) such that p ¢ (clx[intxz])*gwc_:E* .
Thus by 2.3 (i) there exists k e N such that clx(intXZ) -EC Vi -

As @ # (ch[intXZ])*g;Eﬁ » 1t is possible to partition the positive in-
tegers greater than k into two disjoint families Nl and N2 such
that clx(intXZ)('En # ¢ for infinitely many n ¢ Nl s and also for in-
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Put 8§ = UE andT-UE.ThenSand
neN . neN

finitely many n ¢ N2 .

T ere disjoint, and by 2.2 (i) they are closed in X . As § - (NlllNe)

is finite, it follows from 2.3 (i) that (SUT)* = E* and neither
S*n[clx(intxz)]* nor T*n[clx(intXZ)]* is empty. Without loss of gen-
erality assume that p e S*rl[clx(intxz)]* » and pick y ¢ T*r][clx(intXZ)]* 3
then y e W . As {s*[)g* » T*(1E*} i5 o partition of E¥ into disjoint
open-and-closed subsets, it follows that no connected subset of 1ntx*E*
contains both p and Y . As W was an arbitrary open subset of

1ntx*E* containing p , it follows that X* is not connected im kleinen

et p. As p was an arbitrary point of Xx* s it follows that X* ig

not connected im kleinen at any point. Thus by 1.65 x* is not locally

connected at any point.

5.2 Lemma
Let X be a o-compact space and let Z ¢ zZ(X) . If A and B
are subsets of Z* such that A1B=¢ ana AUB = g+ » then there exist

closed subsets E and F of X such that A =E*¥ and B = p#* .

Proof: As B is closed in X*., there exists g family {Wa}a 5 of
closed subsets of X such that B = (1 W* . Thus Afl[f] W*]
ol asE
end since X¥ ig compact, there exist indices al s "ty @ € I such
that Aﬂ[ﬂ W] = ¢ . Hence Aﬂ[ﬂ z*ﬂw*] » and as AUB.= z* |
=1 % i=1

n
it follows that [) Z*n W:; CB. But obviously BC n z#() W* and o
i= i i=1 %

SO it follows from 2.1 (iii) that
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n n
B= [ [z#0w* 1 =[N zNw J* .
s o, \ o,
i=1 i i=]1 i
n
Thus r] zf]wa is the desired F ; E is constructed in a similar
i=]1 i
manner.

5.3 Theorem
+ _+
The space BR - R is an indecomposable continuum, but contains
decomposable subcontinua. However, if n > 1 +then egf-—g? is decom-

posable (see 1.60 and 1.61 for terminology).

Proof: It is well-known (for instance [GJ , problem 6L.4]) that (gf)* is
& continuum; it remains to show that it is indecomposable. By 1.62 it
suffices to show that every proper subcontinuum of (gf)* has an empty
interior. Let E be such a subcontinuum. Then there exists a family
F<2(R") such that E =FQS_F* . As E# (R)* , there exists 7 e z(3})
such that ECz## (5:)* - Thus it follows from 2.3 (i) that both Z

and gf - Z are unbounded subsets of gf .

Now E is contained in & connected component K of Z* ; for
suppose that Kl and K2 were distinct components of Z* and that
D e Ef]Kl and q € EnK2 . As Z* is compact, it follows from 1.59
that Kl is the intersection of all the open-and-closed subsets of Z¥
that contain p ; hence as q ¢ Kl there exists an open-and-closed sub-
set A of Z¥ such that pe A and qe 2% - A . Then {ENA , EN(z* - A)}

is a partition of E into non-empty open-and-closed subsets, which con-

tradicts the assumption that E is connected.
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Suppose that int(gf)*E # @ . Since by 2.12 [R(gf)]* is a basic
subalgebra of R((gf)*) » there exists B ¢ R(gf) such that ¢ # B*CE .
Since E 1is contained in & connected component of Z* , so is B¥* , As
B*¥(C z* , it follows from 2.3 (i) that there exists & positive integer
n, such that Bft[no s w)g;Z{}[no , ) . As both R - 2 and 7 are

unbounded, we can choose a sequence .{An}neN of real numbers as follows:

(i) Ao =0 and An+l > An+l for each n e N .
(i1) O}, o ﬂrz =¢.

(iii) Zﬂ[An s ’\n+1] #0 foreach neXN .

Another sequence {an}ne of real numbers is now chosen inductively as

N

follows:

(i) @y =0

(11) oy =min Oy 2 a4 > o ) end [a 2 )08 # 9} .

w o
Let 2y =z1(U lagg » @ppeq]) end 2z, = Zﬂ(L_J looney » @onep]) -

n=0 n=0
It follows from 2.2 (i) that Zl and Z2 are both closed, and they are
obviously disjoint since {An}neN[] Z=¢ . It follows from 2.1 (iii)
and the choice of the {an} that B*f]zi and B*[\zg are both non-
empty. Since 2Z¥ = ZXLJZS and Zi[]ZZ = @ , this contradicts our earl-

ier result that E is contained in s connected subset of Z¥ , Thus.

int(R+)*E = @ and so (gf)* is indecomposable.

To complete the proof of the theorem we construct a proper decom-

+ (=]
posable subcontinuum of (R )* . Put Zl = LJ [4n+l , Ln+2] and let
n=1



T0.

[+ ] R
22 = [J [bn+2 , 4n+3] . Let '{rn} and {sn} be sequences in gf with
n=1

the following properties:

(1) kn+1 < r < kn+2 < s < Ln+3 for each positive int-
eger n .

(ii) 1im (hn+2-rn) = 1im (hn+2-sn) =0,
N> n->eo

Let U ve an ultrafilter on N such that (1?}_= @ . Then there exist

+
unigue points p , r , and s in (R )¥ satisfying the following relat-

ions:

re r]{ClBBf{rn tneUl : U e?l.}

P € rw{clBBf{hn+2 tneUl :UeUl

s € r]{CIBBf{Sn tnelU} :Uc¢g ?JJ

Now r and p are both in Z;

connected component of Z; « If they were not, since Z¥ is compact it

follows from 1.59 that there exist non-empty closed subsets A and B of

3 we shall show that they are in the same

Z¥ such that pe A ,r e B, Al = 2# ,and AflB =9 . By 5.2 there

1 1
exist closed subsets S and T of gf such that A = S* and B = T#% .
It follows from 2.3 (i) that S[1T and Zl - (SUT) are both bounded.
As r ¢ S* | it follows that (]{{rn tneUM : UeWHIs*=¢g . Since

+ .
(R )* is compact, there exist Ul st Uk ecLL such that

k k
Nir :ne U.}*r]S* =@ 5 thus by 2.1 (iii) , [{r : n e U.}r]S]* =0 .
=3 O i n =1 1

Put f1 u, = Ua ; then Ua is a member of 7]_ with the property that




-3
=

{rn tne qgf\s is bounded. Let F={nelN :n¢ Ua and r. € s} .
Then as any bounded subset of '{rn} is finite, F is finite and so

N-F el Thus UB=Uaﬂ(N-F)e°U.,andif neU, then r {5 .

B

Replacing {rn} by {hn+2}neN and S by T , we see that a
repetition of the above argument shows that there exists UY € ?J.such
thet if ne U then bm2 £T. Put Uy = U fl U, s then Uy e U and
hence Ué is infinite. As both S{1T ang Zl - (sUT) are bounded,
there exists a positive integer m such that sNTA[m , ») = ¢ eand

is infinite, we can choose

(SUT)n[m,w)=Zln[m,m). As U,

n, e UG such that ny>m. As [hn0+l . hn0+2] is connected, either
[hno+l s hno+2]Q; S or [hno+l . hn0+2](;;T . The former situation is

impossible as rn # S , while the latter situation is impossible since
0
hn0+2 # T . Thus we have a contradiction, and so r and P s&are in the

same connected component El of Zl .

A repetition of the above argument shows that there exists a

connected component E, of Z, containing both P and s . Since

2
+
. i *
D e ElflEZ and since E1 and E2 are closed in (R )* , the set ElU.E2

is a subcontinuum of (gf)* . As r e E, - E, end s« E, - E, », it is

evident that ElUE2 is the union of two proper subcontinua El and E2 ’

and hence is decomposable.

Finelly, if n > 1 let A= {(x) , ** , x.) e R : x, 2 O} .

Then both A and B? - A are unbounded, and so A* is a proper compact

subset of (BF)* . If A* wvere not connected, then by 5.2 there would



T2,

exist closed subsets S and T of gn such that S*{JT* = A* anqd
s*T* = § . By 2.3 (i) there would exist r > 0 such that the set

sfrNix eA :llx]] 2 r} is empty and
(sUm) ) x e A thxl2rl={xeR :|x|2r}.

This is clearly impossible, and hence A* ig g proper subcontinuum of
(Qn)* . Similarly [c]an(an - A)]* is also a proper subcontinuum of (=R=n)*
end evidently (R™)* = A*|) [can(Rn - A)]* . Thus (R™)* is decompos-

able.
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