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. Cothputnt@énal geometry la the branch or\ fesign and analysis of algorithms which deals

with the computatf:ional aspects of problems involving geometrical objects; i.e., analyzing the

6

4

complexity of geomecr[éal problems ‘and exploiting the properties of geometrical objects to
develop efficient a]gofichms, The increase {n algorithmic studies of different geometric problems

" resulted in the development of useful problem solving techniques; e.g., decomposition, dh;ide-
e ’ o
and-conquer, dynamization and plane-sweep. Also, It was observéd that some geometric objects

0 a;dmi_t more efficient solutions than others; e.g., a monotone polygon compared to an arbitrary

simple polygon when the problem at hand is to compute the shertest rout@between two points.

- In this thesis we apply the decomposition technique together with a hierarchical method for

Ld v

arranging the decomposition components in the design of efficient solutions for }ompuclng the
A3

i . TOA a
. weak visibility polygon from an edge and-computing the shortegt route between two points
e o R
¥ — \

inside a simple poﬁégn, and routing networks inside a rectilinear ﬁoly'ggn. - Using the same

method we present a polynomial algorithm for checking the feasibility of embedding a graph In

the plane such that it represents the visibility graph of a simpie polygon for a specialized class

* of simple polygons.



*

Les algorithrf\es géomébrlques f:orment. une branche de 'analyse des algorithmes qufi traite de
1’aspect calculatoire de probl:zme;s impliquarit des pbjets géométrlques, c:est,-z}.-dire I'étude de la
complexitée de ces problemes et i’uulisanion des proprictés des objets geométriques pour
déweloppcr\dcs algorit.hmes' cﬂ‘icaces‘ L'ctude de I'aspect algorithmique de divers prob!émes:

géomét.riques a conduit 2 l’e’laboxa\.i&n de . techniques de resolution de problemes, tel. que la

décomposit.ion, le diviser-pour-régner. la dynamigation et le balayage du plan. On observe

également que certains objets admettent des solutions plus efficaces que d’autres; par exemple,’

un polygone monotone, en comparaison a un polygone simple arbitraire, lorsqu’il s’agit de
r r

calculer 1é plus court chemin entre deux points

~

]

v

.~ ~ rd ’ ’
Dans ' cette these, nous employons la technique de decomposition et une methode

L3 - +

hiérarchique de classement des (iomgosantes de la décomposlbion pour calculer le polygone de-

faible visibilite d'une aréte, le plus court trajet entre deux points 3 linterieur d'un polygone

>

sithple et leg réseaux d'acheminement a I'intériellr dun polygone rectilincaire. En utilisant la
A ’ 4 ) . ’
meme methode, nous presentons un algbrithme polynomial pour vérifier la faisabilite de

A \ \
I'enchassement d‘un graphe dans le pian de maniere a ce qu'il rcprésence le graphe de vislblme'
- . I .

”

d’un polygone simple, pout une classe spéclfique de polygones simples. . .

1Y

'y
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c . . : Introduction . 1

-

1. Introduction :

’ ‘ N
7

Geometric objects such as poi\nts. line segments, rectangles and polygons are used to model
object’s in arvariety of apphcanon‘s areas In palleorn recognition, points in multi-dimensional
space are used to represent multi-attribute descriptions of objects [Tou] In VLSl design
‘8yst'cm& rectangles are us'ed to molel mmponvm.;, of a circuit to samphify the hierarchical
h\md.mg of complicated designs (MKC)  In roncurrent zramr:rlmn systems, hyperrectangles are

used to describe the progress made toward the completion’ of each  transaction

T
‘

[Y&Pap&K L&Pap] In mmage processing and compuler graphics, polygons are uced to describe

curves by an appropriate selection of points on or near the curve [Pav N&S] These g(;-o'momc
¥

"

abstractions provide clearer understanding of the corresponding problems and of the most

r
2

suitable computer representation for the data, and thus lead to the design of efficient
, algorithmic solutions
' % .
Some geometric objects admit more efficient solutions than others Exambles are: () nlogn)

time is required to solve the hidden-line problem for a set of n line segments [Asa] while a linear
> -

running time algonthm has been presented 1n [E&‘:A) for solving the mdden-iine problem inside a

- [

simple polygon, and {nlogn) time 1s required to compute the convex hull of a set of n points

[Sha] while a linear running time algorithm has been presented in [M&A]| for compumhg the

convex Hull of a simple polygon ) .

.
a

. IS , . B @ - .
©. + Withi the class of polygons, when the problem involves “‘neat” shapes, one can often yse
\.' . ] , ) “
their properties to design optimal solutions Examples are checking query p‘omt inclusion n

. 'star-shaped [Sha”] or monotone (L&P1] polygons, triangulating L ,-convex [E&A&T] or monotone
o \

[G&J&P&T| polygons, and computing the intersection of convex palygons [Sha, O&CLO&N)

Ongmalny of algorlbhms)fm the above problems suggests the decomposition of a mv‘en shape

-

into smaller and more simple components, and then solve the problem for each component
0

separately, e.g., triangtlating the interior of an arbitrary polygon [G&J&P&T] The strategy of

5
t

decomposing z given shape into simpler components 15 also used i shape matching and

‘
v
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2 . Introduction

a

recognition. Examples of shape recognition methods based on decompositions are [Fu, F&P,

Mar, Shap&H], which decompose a given shape into spiral, star-shaped or convex components

" and then recognize each component separately A survey of algorithms for computing such

decompositions can be found in {Tou, Cha, Kei]. This dissertation deals with the use of the
decomposition strategy in develcp\lﬁg efficient solutions for grapfx embedding, visibility, network
routing and shortest route problems. However, good solutions for these problems require the

. . 'y '
use of components’ adjacency relation together with efficlent methods for processing each

- component. In chapter 2 we describe 2 hieragchical method for describing simple polygons

based on a selected decomposition which allows an efficient processing of a given simple polygon

P

and present a linear running time algorithm for building such a description Using such

0

description, proeessing the -vertices of a component may be completely a.vgided if they do not

contribute to the final result. Each chapter from three to six is devoted to describing the use of

this hierarchical description in solvin'g a different problem.
. . . o,

o

Avis and Toussaint [A&T)] introduced the notion of weak visibility and presented a linear
algorithm for checking the weak visibility of a simple polygon from an edge. In chapter 3 wé
present an O(nlogn) algorithm Tor computing the subset of a n-sided simple polygon that is

weakly visible from an edge.. The algorithm uses a hierarchical descriptioﬁ of the polygon based

on a decomposition into simpler components, monotone polygoqp.-in which the weakly visible

vertices can be reported efTiclently. When the given polygon belongs to the specialized class of

monolone polygons, a linear ‘algorithm 1s presented. Application of the algorithm to 2 problem

&

{n motion planning is described in the concluding section of chapter 3 . ,

A
1

Recently, co’mbgnatorial descriptions of geometrical objects have been used in recognizing

shapes Such a system computes a combinatorial description of a given shape, a process which

- v ’

e .
does not usually require extensive com;zuolng, and then attempts to match it with a stored

model. Examples of such descriptions are: the signatdre of a curve [ORou] and the wvisibility

y}aph of a simple polygon [A&ZE and Shap&H] which have been used to check the similarity of

-

the corresponding objects Chapter 4 is concerned with the reverse operation; i.e, coq’structlng

[ >
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s ’
',\4,‘;0 « 9

a zeopxetrical object from its corﬁﬁiﬁ’ﬁtorial description. We characterize the minimal visibility

graph oq a set of vertices, and give an.,,aléorichm for embedding a graph with a given

hamiltonian circuit in‘'the plane such that it represents the visibility graph of a simple polygon X

forha specialize? class‘ of simple polygons, the class of convez fans. The algorithm makes use of
; X

K\ >
a hierarchical aiescripcion of convex fans based on decomposition by special nontintersecting

subset of its diagonals, the mazimal diagonals. The problem. of recognizing visibility graphs

&

]
corresponding to arbitrary simple polygons is also discussed.

Cha.p;er 5 addresses the problem of routing VLSI circuits; ie., specifying thez paths of wires
on the chip. Due to the intractability of the routing problem, shown in [Szy and S&Y], many
researchers directed their attention towards the design of good approximation algorithms.
Examples of good heuristics for rloucing networks when their terminals lie on the boundary of a
reictangle are éiven in [B&B&L, R&B&M, R&LF]. In this chapter we descrit?e the use of a

E

hrierarchica.l description of a simple polygon, based on a decomposition into‘\rectangles, in
enhancing the performance of algorithms; e.g. in PI system [Ruv), for roﬁting networks inside_a.u
rectllineaf polygon, where cermin‘als lie on the boundary of the polygon. We use this description
to provide the routing order for ché rectang‘les/'and to efficiently report the networks to be

routed in each rectfangle. Routing of networks in each rectangle 1s performed using any of the

existing heuristics. The objective of the algorithm is to provide an interactive tool, for a human
» 1 . o

designer, which is capable of efficiently performing the’ tedious and time cons{xming task ‘of

. ’
deca.llqﬁi routing. -

.

Algorithms for reporting the shortest route between two points inside a simple polygon are

presented in chapter 6. Simildr to the algorithm for' computing the weak vigibility region from

» an edge, the shor(test'route algorithm u%es .a hierarchical description of the polygon based on a

decomposiiion Into monotone polygons, in which bt;he shortest route can be computed in linear
time. In addition to the known applications of such algorithms; e‘'g. computing the trajectory of

a racing car [Cha2] and wire routing in integrated boards [High], we describe its use in the

. M ¢
L “ design of eﬂ'iclgnt solutions of some optimization and separability algorithms.

@




+ e s

s g SRR MEPETITRI NS Sy NS by e

e

PR ———

IS

¢
&

4, ABmee rg e

S

4

—_—

4 A Hierarchical Description of Simple Polygohs

2. A Hierarchical Description of Simple Polygons

2.1. DLﬁnitions and Notation o ' ’ o

«
o
L4

A polygdn P with n vertices is a closed path py, Pa. - Ppo Pn H‘(p,,ﬂ + p,) where p, has

(z,, y,) as its x- and y-coordl‘nates The ith edge (or side) of P, denoted by e, , 15 the closed lin'e

“segment joining the par of vertices p, and p;,, The boundary of P, den)oted by BD(P), is the

! 4 «

sequence Of edges €y, €o,..., €, A polygen is said to be stmple when no two nonconsecutive

>

edges intersect We assume that the vertices are given in clockwise order so that the interior of

v

the simple polygon always lies to the right as its boundary is traversed Between a par of R
points s and ¢ on the boundary of P, we define the chain CIN(s,t) to be the subset of BD(P) so

tRat the interior of P always lies to the right as CN(s,t) is traversed from s to t. ¢ .

. .
& o

Let u and.v be two points,msnde' a simple polygon P .u is vzsib[e from v if the closed line

segment joining them does not intersect the exterior of P A closed line segment conrecting two

-

visible points in BD(P)' is a chord of P. A chord connecting two vertices p, and p,, where i <,

]

will be denoted by CHORD, p, AN arm of the polygon P, denoted by ARMP' ? is the subset of

the interior of P which 1s enclosed by the chamn CN(‘p,-, p,) and the chord CHORDPY},]. Note -

\

4 . < .
that the whole polygon can be viewed as an arm. A set of arms of P is said to be nested if,

given any pair ARM , ARM ‘of, the arms, their 1ntersection 15 either ARM, ,
PPy, e, p, PPy,

AJ

-

ARMP p,» OF the empty se} It follows directly from the Jordan curve theorem that a set of
AP REL) . ’

1 4

arms forms 2 nested set ifnand only if the chords v’whlch generate the arms do not properly

'
o

intersect. .

L 2

Q

@ %

2.4. A Linear Time Algorithm for Computing the Hierarchy

-
@ '

A set of chords of a simple polygon P, whose members do not properly intersect,

°

decomposes the interior of P 1nto a set of non-overlapping components The algorithm by Lee

) t

and Preparatz} {L&P1] for decompesing a simple polygon into a set of monotone components

an example of a method for efficiently reporting such a set of chords and the cqgresponding se

»

1
of non-overlapping components
L3 (’

¢ : . Y

"

-




c. A Hierarchical Description of Simple i’olygons : 5
v - = -

'
A

" ‘The hierarchical description of P, denoted by HIER-DESC(P), is ‘based on a recursive

-

partition of the polygon-P into smaller arms, by removing the components of the decomposition

one at a time until each arm has been reduced to one of the components

s

The top of the

‘hierarchyf teprésents the wl:tole polygon vghich can be viewed as an arm. Nodes.in the next level

s

_represent non-overlappini arms of the polygon. The set dil‘ferencé between an ’a.f'rn represe‘ﬁad

by- 2 node in the hierarchy and union oLt\he*arms stored z_n:s‘it;s sons” in the hierarchy is 2

N . . - ”

component, of the selected decomposition of P. For the example shown in Figure 2.1, the

component D, is the set dlfference between the arm ARM, , . and the union of the two arms
8

stored at the next level ARM U ARM

ps by - Since each arm of the polygon uniquely

R
R L . .
corresponds to a chord, it sufl‘ices to label each- node with the chord corresgonding to that arm,

PuPu’

as shown in Figure 2.2. Note“t.ha.t we can also use this representation as an adjé,cency tree of
{

t.he components of P where each node represents a component and two nodes are connecned if |
T . -

the corresponding components share an edge. . ‘" . e . B

then remove the component of P which contains the edge ¢, in its boundaiy, . The removal of.

this eomp‘onent. partitions the remainder of the polygon into a set orh non-overl'a.p’ping APmS. .

. v, -~

Each arm, represented by the corresponding chord is stored as a son of*r.he t.Gp node We th!:n

'
>
¢ * ¢

process (or expand) each new node, in a recursive fashijon, until all the leafl’ nodes repnesen_l;t

components of P. - - '

Y -

We now give a complete descnpmon of the algorithm for. bulldmg HIER-DESC(P)' F‘or

- P -~ -~

convenience, we assudne that the decomposmon contains more than on'e componenx: Ttus case

- ~

can l/)e handled by a stmghtforward sequence of steps. ,‘ ’ - ~'

09 QU - - -
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s B ‘ " A Hierarchical Depcript.lon of Simple Polygons "

.

. -p‘a-oé.dm BUILD-HIER-DESC (P)

AR mpit.
‘ e s - 1. Alist of the components of the simple polygon P, where each

compoénent is represented by a sequence of chords in its
< + boundary starting from the chord with the smallest first vemx.
Components are |nitially unmarked.
2. A list of non-inversecting chords, where each elemeht in
the list points to the two components which contain that
. thora in their boundary, Chords are initially are unmarked.
8. A potlriter, STRT, to the component which contains the edge ¢,
.in its-boundary.
outpst: 1
A pointer, HIER-DESC(P), to the top of the hlerarchlcal
description of the simple polygon P

P

Inistialization Stbpa

store the edge ¢, ln -a node pointed m by Hlm-DESC(P)
cur-node +— HIER-DESC(P); . Lo .
cur-component +— STRT; _ . .o

«

while cur-node does not contain e, of :
cur-component has an unmarked chord do

1

while cur-component has an unmarked chord do
2 if cur-component is unmarked then '~ - .

mark cur-¢component . . - -

for each unmarked chord of cur-component do

3

.

insert a node contalning this chord as & son of cur-node;

3

- end whide - . . ) 3 o ‘.

endsf - i - i
cur-node — son of cur-node contalning an unmarked chord of cur-component;
. mark the chord of the cut-component which is repment‘ed by cur-node;
‘ ‘ eur-component +— the other componenb having the-chord repmented by
\ cur-node in its boundary;.

mark the chord of the cur-component which is represen&ed by cur-node; .

y

cur-component +— the ot.her component havlnz t.he chord represent.ed by . ’
cur-node “In 1ts boundary, i . '
cur-node +— parent-cur-node; o . L

2. )

end while - - F , ' ’ ’

end BULLD-HIER-DESC - R .

"

!
i
i
i
i
|
{
;
§




A Hierarchical Description of Simple Polygons V 7

Analysis of the procedure BUILD-HIER-DESC

First we prove the correctness of the procedure in the following two lemmas; then the

o

-

linearity is proved lp Theorem 2.3.
\
Lemma 2.1 At any time during the exec\;tion of the procedure BUILD-RIER-DESC, each leaf
n'oc.le represents an arm which satisfies the following conditions:
a) ,;s 4 subset of the arms represented by all its ancestors L
b) intersections of its interior with interiors of the larms represented by the rest of the

4

nodes are empty.

-

Proof Initially the hierarchy contains a single node, which corresponds to the whole polygon,

and the conditions of the lemma are satisfied.

Assume that conditions a) and b) are satisfied prior to processing (conceptually, deleting) a
new component of P. The boundary of the new component contains the chord which is stored
in the current node. Therefore, deletion of the new component results in a set of non-
overlapping arms, which are then stored as sons of the current node. Each new arm is a subset
of the arm represented by the current node. Since set inclusion is a transitive relation, it
follows directly that the arm represented by each new node Is also a subset of the arms
represented by all its ancestors. It is easy to see that condition b) is satisfied for the new nodes.
Thus the lemma follows. ro - !

c Q.E.D.

Lemma 2.2 Upon termination of the procedure BUILD-HIER-DESC, the leaf nodes represent

wthe non-overlapping components of the simple polygon P.
EREE

N -

\
Proof Initially all the chords are unmarked. When the arm corresponding to a chord is
partitioned into smaller arms, the procedure marks that chord. Therefore, it is sufficient to

show that upon termination of the procedure all the chords are marked. This follows from the
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.

f’ct that the procedure climbs back out of a node only after all the chords of the corresponding

. ) . 4’
component are marked. Thus the lemma follows.
\

QE.D.

Theorem 3.3 Procedure BUILD-HIER-DESC builds a piei'archtcal representation of a simple

9
' » ° . .

polygon in linear time.

~

Proof Performance of the procedure depends on the number of times each chord is processed.

-

The procedure processes each chord three times only. In the first time, a node which represents

the corresponding arm of ixhe ‘pblygpn is lnserte}i. In the second time, prior to processing

' components of the corresponding arm, the chord is marked in the lists of the two components

+

which contain it in their boundaries. After processing all the components of the corresponding
arm and climbing back to a higher level, a chord is never reprocessed. - Therefore, the procedure ’

runs in O(n) time as the number of chords is less than or equal to n3 .

e A EAt o R bk, b w om ew o~
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3. Computing the Weak Visibility Polygon from an Edge
in a Simple Polygon . ®

3.1. Introgiuct.ion

- | . \ i

3

Computing the visihility region from a single point or in a preferred direction is a recurring

problem in path planmng {Don L&W)] and separability [S&T, T&E, T&S] in robotics, 1n computer

‘

generated pictures of three dimensional objects [C&L,Rap,Yao], in pattern recognition [PD&BJ,

and 1n VLSI routing [Asa2] problems In addftion, an algorithm for solving this problem can be

used in solving other geometric problems (e g triangulating an L-convex polygon) efficiently

[EZA&T]| The two dimensional version of this problem can be described as follows

Given a set of disjoint simple polygons P={P,, P,, .., P; },and a point X in the exterior of P. -
Report the visibility polygon of X (i.e., the subset of the plane that is visible from the point X)
\

»

With the increasing size of the problem instances to be processed, the need for elficient

ElGindy afd Avis [E&A| and Lee [Lee] presented linear runming time

&

algorithms for computing the visibllity polygon when the set P ontains one simple polygon

[

algorithms arises

Asano [As#] proved an 02 (n + klogh) lower“boﬁund for tomputing the visibihity polygon from X
when'the polygons in the set P are conve;x, where n 1s the total number of vertices in P, and
presqnced an algorithmo ‘which achieves that bound: In addition, Asano presented two
algorithms for solving the general two dlmensi”t)nal hidden-line problem that run in O(n +

n logk ) time.

LN

"Recent,ly. Avis and Toussaint {A&T) studied’ the problem of.edge visibility 1n simple
polygons. They introduced three notions of polygonal visibility from an edge comp!etc,l strong

and weak visibihty (refer to Figure 3 1" for 1llustration), and then presented a linear running

bime algorithm for checking visibihty of a simple 'polygon from an edge under any of these
notions Checking the weak visibility of'a*'m‘r,npl@ polygon from an edge is motivated i |[A&T]
by décidin'g if the ‘mtenor of the polygon can be watched by a mobile guard patrolling an cdg‘c of
In thig chapter we present an &léorlthm for computing the weak visibility region
from an edge, lr:side an n sided polygon, which has a complexity of O(nlogn), m;d‘ then describe

the polygon

ts
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0
w

its use in the design of efficient solutions for planar separabslity and reachability problems. The

’ -

method used depends on representing the polygon in a hlerarchical form based on a
decomposition into 2 set of simpler components, monotone polygons, In which the weak

visibility polygon from an edge can be computed efficiently. We also present a linear running
¢ .
time algorithm for computing the weak visibility polygon from an edge in monotone\polygons.
° O 1
* e

2
3.2. Additional Terminology “

A simple polygon P is said to be in standdrd form with respect to its ith edge if all of- its

3
vertices lie on the sgme side of or on the line _through the edge ¢;. A chain is monolone with .

respect to a line LINE if orthogonal projections of the chain points on LINE are in the same

order as the points on the chain. A simple polygon P is sald to be monotone If there exist two

Bvex't;ice:!. p; and p;, and a line LINE such that the chains CN(p;, p;) and CN(p;, p;) are

monotone with respect to the line LINE. ‘ oA e L 4
&

3

Let v and u be two points inside a simple polygon P. The wvisibslity polygon of v is the . :

subsec of the interior and the boundary of P t.ha.l; Is vigible from the point v. Also u ls weakly

o

vigible from the edge 'e; if there exls}s a point w on the edge e; such that u is visible from.w.
Tl;e weak vistbility polygon from e; is the ;ubset of the %erior ;snd the boundary of 2 that is
weakly z/lsible from e;. We define the right intercept of u on e;, denoted by r(e, , u), as the
rurthest clockwise point on e; sych that u and r(e;, u) are visible The vertex of P that lies on

the line gegmenc joining u and r(e;, u) is called the right ancho‘r‘of u with respect to the ¢;, and

denoted by ra(e;, u). Simifirly, the left intercept of u on ¢;, denoted by I(e;, u), is the furthest

counterclockwise point on ¢; such that u ax;d I(e,, u) are visible> The vertex of P that lies on

the line segment joining u and. l(e¢;, u) i called the left anchor of u with respect to the edge e;,

and is denoted by la(e;, u). A pair of vertices p; and p,, where p; precedes p, in a clockwise

traversal of BD(P), is called a gap with respect to the edge ¢; if they are v;rea.kly visible from ¢;

' R

and the set of vertices {p;,, Pj4giee Pi-1} are not weakly visible from the edge ¢; .

e~

o

Aot e it w

e b g
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3.3. Visibility Preliminaries '

Let Q={q1, ¢a... g } be the sét of intersection points of the straight line passing through

the edge ¢; and the edges of the polygon P sorted in order of their occurrence on the straight

i

line. *If the straight line i8 collinear with an edge, then their intersection is x:epresenced by the
two éndpolnt.é of the edge. Let the points ¢;_, and ¢; represent intersection of the straight line
with the edge e;. Refer to Figure 3.2 for illustration.

If the pair of points ¢; and g, ., defines a chord of P (Le. the 113& segment (g;,q;4,) lies

inside P), then the subset of the corresponding arm, ARM, which

0 4;;1’ weakly visible from the
edge ¢; is only visible from the point p;,, (equivalently, g;). Using the algorithm for
computing the visibility polygon from a point, presented in [E&A], this subset can be computed
' 4

in linear running time. The same applies to the pair of intersection points gj-3 and 91

¥

Using the following result,

Lemma 3.1 [E&A] (See Figure 3.3) Let POL be a simple polygon a,t;d e; be an
edge in its boundary s&ch that‘tbe vertices pol;_; and pol; .4 lle on the same side
of. the line passing th;oygh ¢,. If y is a point in the exterior of POL which is
collineaf with the the edge ¢;, then the‘line‘ segment joining y to a point in the” .

interior of POL intersects the chain CN(pol; ., pol;).

we will show that the remainder of the arms corresponding to pairs of points in Q which define

chords of P are not weakly visible from the edge ¢, .

Pairs of non-consecutive points in Q do not form chords of the polygon: Each arm of P
corresponding 10 two consecutive points in Q, whlcp dgnne a chord _or P and are neither q; nor
;-1 together with each point of the edge e; satisfy the condit’.t‘ons of lerqmaf’ 3.1. Therefore,
these arms are ng) weakly vlglble from the edge e, and their deletion does not affect the weak
visibility polygon rr;m the edge e,. The deletion of these am;s results in a smaller simp.le
polygon P*, shown hashed in Figure 3.2, which is in standard form with respect to the edge ¢;.

& ‘ﬁ;ﬁl
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4
Since arms corresponding to pairs of consecutive points in Q form a nested set, we only have to
~ .
<« 1o .
delete those arms that are maximal. Simple modifications of the algorithm for computing the

visibility polygon from a point |[E&A] lead to a linear running time method for reporting and

deleting the necessary arms (i.e , computing the polygon P*).

u
’

Let the pair p, and p; of vertices,"be a gap with respect to the edge ¢;. Extend the line

segment joining la(e;, pj) to p, until it intersects BD(P") in g, and the line segment joiningl

~

ra(e,, p) to p, until it intersects BD(P*} in g, IRefer to Figure 3.4 for illustration. By

definition, the chain CN(g,, g¢) does not contain any vertex of the polygon P and thus 1s a

@

subset of an edge of P The line segiment joining g, and g, is called a gap filler

.
’

Lemma 3.2 The line segment joining g, and g, is weakly visible from e, . .

s . - -

- . v
v
.

s

Proof There are three cases as shown in Figure 3.5. ’ :

I case (a), BD(P) intersects the line segments connecting p, to l(e,, p,) and p; to.r(e,. pi)
- N AY

only al la(e;, p,) and p, respectively. Therefore the two triangles (p,, (¢;, p;), r(e;, pi)) and

(p,, 9y 9 ) lie 1 the polygon P For every point Y in the line segment connecting g, to g, , we

+ draw o hne through p; to a point Z in the edge e, The line segment connecting Z to Y does

[y

not tersect the exterior of P, and thus Y 1s wéakly visible from e, . Case (b) 18 proved

i

similarly R

In case (c), the line segment joining p, and r(e,, p,) intersects the chain CN(p,,, p,1)
only 4t ra(e,, p,). and the line segment joimg p; and r(e,, pp) intersects the chain CN(p;,,,
Pi-1) onl;' at ra(e,, pe ). If we assume that L(c:, p,) follows r(e;, pi) on the edge €;, then ra(e,,
Ye) mus't be a vertex in the chain CN(p, ., pg-y) which contradicts the fact that p; and p;
forrp a gap w:xwtlx‘rcspect to the edge e, Therefore r(e,, p,) and I(e,, p,) precsde.r(e‘, p:) on

the edge e, and the hne scgments connecting p, to i(e,, p;) and p; to r(e,, p;) intersect at a

powt, say X. The two triangles (X, (e, , p, ). 1(¢;, pi)) and (X, 9;, g ) lie in the polygon P.

.

[
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< °

Similar to the proof of case {(a), we can show that every point in_the line segment connecting g;

B

to g, is weakly visible from e; ) \ .

o Q.ED.

» o
.
»

“ % » -

. olt,'l‘ollows from the previous result that one can use the left and right intercepts of the

weakly visible vertices to compute the gap fillers in a single scan of the boundary of P Due to i

-
.

thejr simplicity, details of this step wi/ll be omitted 1n the description of algorithms through the
13

remainder of the chapter . : . - !

S
.

. ‘ .
+3-4. Two Algorithms for Computing the Weak Vi;ibility Polygon from an Edge
in Monotone Polygons.

/” ’ .

In this section we presex’n two algorithms for computiqg the weak visibility region from an

o t

<

— edge in monotone polygons The first algorithm WVE-MON-1 runs in linear time, and is thus
optimal However, the anethod used leads to a quadratic running time algorithm when appled
to an arbitrary simple polygon The sccond algorithm WVE-MON-2 1s slower, runs in O(nlogn)
time, but the method used results in an algonithm with the same complexity when applied to an

—

arbitrary sunple polygon The twd@d algorithms are designed to deal with simple polygons that

ate monotone with respect to a vertical lime, and the weak visibility polygon i1s to be calculated

from an edge in the chain jomning the vertex with the minumum y coordinate to the vertex with

the maxiunum y coordinate Using the algorithm for reporting a line with respect to which a
A .

simple polygon 1s monotone, presented n [P&S], together with simple transformations we can
process an arbitrary monotone polygon to satisfy these conditions in hinear running ttme For
convenience, vertices of the monotone polygon are labeled such that weak vfsnblhny polygon 1s to

v

» be calculated from the edge ¢, Refer to Figure 3 6 for illustration.
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3

Algorithm WVE-MON-1 - .

&
o

Y

Given a simple monotone polygon M = {m, m,.. m,} the algorithmr WVE-MON-1

prof:eeds as follows: . . ' (

Step 1 The algorithm computes the connected subset of M, denoted by M* and drawn in solid
lines in Figure 3.8, which is in standgrd form with respect to the edge e,, a.uod then partitions
M? into three components M, MB, and My Vertices of M, li¢ above both m, and n:z,,,
vertices of Mp lie below both m, and m,, and vertices of M, have their y coordinates between

o

those of m; and m, . It also computes the two extreme points EXTREME, and EXTREMEg.

L]

The algorithm processes the subpolygons A; = M, U MC and My = Mp U M, separately.

Due to the monotonicity of M, vertices of the subpbiygon M, are weakly visible from the edge

‘e, . However, they are processed as'part of both M , and M, since they may be left or right

o AN
anchor points of the vertices of M, or My respectively
v
For the subpolygon M, the algorithm scans the list of vertices in increasing order of their
¥ coordinates maintaining two deque data structures LD and RD. Each deque contains a convex

b

chain that is also monotone with respect to a vertical line. The deque RD consists of vertices of
CN(m,, EXTREME, ) that are the prospective right anchor ‘points of the vertices of M, -to be
processed, \and the deque LD consists of vertices of CN(EXTREME,, m,) that are the
prospective left anchor points of the vertices of M, to be uprocessed. The front element in RD is

the last examined vertex of the chain CN(m, EXTREME,) which is weakly visible from e,,

and the front element in-LD is the Jast examined vertex of the chain CN(EXTREME,, m,)"

,

" which is wéakly visible from e, . The rear element in RD Is the righc’anchor point of the front

element in LD; and RL is defined as the directed line joining the front element in LD to its right
anchor point. The rear. element in LD is the left anchor point of the front element in'RD, and
LL is defined as the directed line joining the front element in RD to its left anchor point. (Refer

to Figure 3:7 for illustration.)

5 e ‘*“ah
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s

: /

When a new vertex in the chain CN(EXTREME,, m,) is encountered, the algorithm

(é“ cheéks its position relative to LL and RL. If it lies to the left of the directed line RL, then it is

not weakly visible from ¢, and is immediately rejected. If it lies to the right of the directed line
’ B
- : LL, then the algorithm terminates the scanning of vertices since the new vertex and the

remainder of the vertices are not weakly visible from the edge ¢, Otherwise, the algorithm
¢

removes vertices from the front of LD until the remaining chain together with the new vertex
. [
form a convex chain, and adds the new vertex to the front of LD. The algorithm then removes

J vertices from the rear of RD until the new vertex lies to the right of the directed line passing’

AN

ot through the last two vertices in RD.

A vertex in the chain CN(m,, EXTREME, ) is processed in a similar fashion with the roles

of LD and RD, and LL and LR interchanged. ..
, A "‘complete description of this step is given In procedure MON-SCAN-1, shown in
/ . Figure 3.8. Processing the syi)polygon M, is a mirror in;ége of processing M,, and its
? ( . description is omitted. ’ -
Step 2 The algorithm performs a clockwise traversal of the boundary gf M?*" and computes gap
fillers for each one of the encountered gaps. N
. . ). -
Analysis of the algorithm WVE-MON-1 .
-*©

li; theorem 3.8. In the following lemmas we will deal with ‘the' sub?:olygon

e

1- The case of the

-

subpolygon M._,issimi.lar. . o T -

/

e 4

Lemma 3.3 During the scanning of the monotone subpplygon M, if a vertex m; which belongs

to the chain CN(EXTREME, , m, ) lies to the left of the directed line RL, then-it is not weakly

visible from the edge ¢, .

-
T

Proof (refer to Fizureha‘-o.) Let m; be the fropt element in the deque LD, which Is the last

[y
LY
- 9 . -
N N
b . N
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: - " exdmined vertex in the chain CN(EXTREME,, m,) that is weakly visible from. the edge ¢,. .

L]

Extend the line segment connecting m; to m; until it intersects the chain CN(ra(e,,

-

°,together with the vertex m; satisfy the copditions of lemma 3.1. Therefore, m; is not*weakly

visible from the edge ? . ' .

. . - QED.

Lemma 3.4 During the scanning of the monotone subpolygon M,, if m; is the first vertex in
the chain CN(EXTREME,, m,) which lies to the right of the directed line LL, then the vertex ~ -

m; and the remainder of the vertices of M, are not weakly visible from e, .

Proof (refer to Figure 3-10.) Let m; be the front vertex-in the deque RD. 'Extend the line

v * segment connecting m; to m, until it intersects the chain CN(m;, m,) in a point, say m,’ .

The arm ARM,,,], m,» Which contains e, in its boundary, together with the vertex m, satisfy

—

. the conditions of lemma 3.1. Therefore, m, is not weakly visible from the edge ¢,. It follows
( ) from lemma 3.3 that remainder of vertices of M, which lie to the right of the directed line-

joining m, to the m; are not weakly vigible from e,. Each remaining vertex of M1 that lies to

¥

* the left of the directed line joining m; to the m; also lies to the right of the directed line LL.

Therefore, remainder of the vertices of M, are not weakly visible from e,, and the lemma
o follows.
.o : QED. -

o .
Lemma 3.5 During the scanning of the monotone subpolygon M,, if a vertex my which belongs
/

to the chain CN(m,, EXTREME,) lies to the right of the directed line LL, then it is not

T

weakly visible from the edge e, .

*

Proof Similar to lemma 3.3.+, ' ‘ - « ’ ;

2
- *®

Lemma 3.8 During the scanning of the monotone subpolygon M,, if m; Is the first vertex in

-
-

~
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.the chain CN(m ,, EXTREME, ) which lies to the left Of the directed line RL, then the vertex
m; .and the remainder 8f the vertices of M, are not weakly visible from e, . v
Proof Similar to lemma 3.4. . Y
’ @

° N ’ - * [}
Lemma 3.7 During the scahning of the monotone subpolygon M ,, if a vertex m; lies to the left
- . o .

of the directed line LL and to the right of, the ‘directed line RL, then it is weakly visible from

3 1

the edge ¢, .

Proof During the execution of the proceduré MON-SCAN-1, vertices stored in the two dcqucs
RD a.nd LD satisly the following properties: . )
(a) vertices in RD and LD are weakly visible from the edge ¢, ..
- (b) the front elements tn RD and LD are the last examined vertices of CN(m ,. EXTREME, s )
and CN(EXTREME, , m,, ) that are found to be weakly visible from €y -
(c) the rear elements in RD and LD are the rlght, and left anchor points of the front elements in
LD and RD, respectlvely =

.
e

First we concentrate on proving that the vertex m, is weakly Visible ‘when the above'

properties are satisfied. Let u aﬁd w be the front elements of RD and LD, respectively. By

, construction, vertices of the chain CN(m,, u) lie to the right of the directed line connecting u to

<

its right intercef)c and to the right of the directed he connecting w to its right interceps. If r(u,

o

e, ) follows f(w,.é,,) on the edge e, then the right aic_hor point ra(w, e, ) must be one of the

processed vertices in the chain CN(u, w). ‘This contradicts the fact that u and w are the last

_visible vertices on the chains CN(m'l; EXTREME,) and CN(EXTREME, , m, ) prior to the

o

proc?ssing of m,, and the monotonicity of M,. It follows from this argument and the fact that

) .
l(u, e,) precedes r(u, e,)on the edge e, that the directed line connecting u‘to its left interc'éﬂpt

intersects the directed lie connecting w to its right intercept at a point, say X, and that the two
. A

triangles (r(w,e¢,),X,l(u,¢,)) and (v ,w' X) lie cémbletely inside the polygon M, (Refer to

Figure 3.11 for illustration). From m; draw a line through X to a point on the-edge g;, say Y.

_The. line segment connecting m; to Y lies inside M. Therefore m; is weakly..visible from the

»

edge ¢, . . i P

s

-

S
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J

Now it remains to show that the three properties are satisfled after the vertex m; s
processed. The proof Is inductive. Initially the deque RD contains the single vertex m,, the
deque LD contains the single vertex m, and properties (a)-(c) are satisfled. Assuming the

lemma is satisfied prior to processing the vertex m;, we will show that the algorithm processes

5

the vertex m; correctly and that properties (a)-(c) are satisfled again after processing the vertex

’

If m; lies to the left of RL or to the right of the line LL, then it is -not weakly visible from

'

the edge e,, as shown in lemmas 3.3 - 3.6. The deques are not updated and the three

properties are satisfied.

It m; is a vertex in the chain CN(m,, EXTREME, ) and lies to the right of RL and to the

left of the line LL, then the algorithm deletes vertices from the rear of LD until a vertex,/s{y/

.mj, is found suclf that all the veriices in LD lie to the left of the directed line joining m; to m;.
Extend the line segment joining m,-' to m; until it intersects the boundary of M, in a point, say
m; (Refer to Figure 3.12). In the first part of the proof we showed that m; is weakly visible
from ¢,. Therefore, m is I(m;, ¢, ) and the rear element in LD is the left anchor point of m;.
The slgorithm then adds m, to the front of the deque RD which satisfies the i)roperties (a)-(c).

The case 'of a vertex in the chain CN(EXTREME, , m, ) is proved in a similar fashion with the
i . - ’

"3y

~ roles of LD and RD, and LL, and RL interchanged.
s " _ ) Q.ED.
" » @ * . -

\

Theorem 3.8 The algopithm WVE-MON-1 computes the weak visibility polygon rrém an edge

. - A
correctly in linear running time. *

7

Proof Correctness of the output has been proved in lemmas 3.1 to 3.7. Performance of the

)

algorithm depends on the number of times each vertex of the polygon is processed.
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/

A vertex may be added to the front of a deque once. Therefore, at most n vertices may be
inserted in each deque. When the algorithm checks the weak visibility of a vertex and computes
its intercepts on the edge e, , it may delete vertices from one end of each deque. Since deleted
vertices are not considered again, checking a front or a rear element of ‘a deque data structure,
and deleting it can be pertormel:l in constant time. It follows that the total running time of the
algorithm is linear in the number of the vertices of the polygon.

Q.E.D.
Algorithm WVE-MON-2

This ;Tgoricbm proceeds in the same steps as the algorithm WVE-MON-1, but it differs in
'the data scructux:e used to store the prospective anchor points during the second step. The
slgorithm WVE-MON-2 uges two balgnccd gearch trees LTree and RTree where each tree
contains°a convex chain that is also monotone with respect to a vertical line. The iree RTree
consists of vertices of CN(m,, EXTREME, ) that are the prospective right anchor points of the

vertices of M 1 to be processed. The element with the largest y coordinate in RTree, denoted by

A

RTreeMax, is the last examined vertex of the chain FN(ml. EXTREME ) which is weakly
. visible from e,, and the element in RTree wi})h the smallest ¥ coordinate, denoted by '
RTreeMin, .is the right anchor point of LTreeMax. RL is defined as the directed line joining

' LTreeMax to its right anchor point. The oriented h‘alf-lines passing through the.edges of the
&

convex chain'in LTree together with. the line RL induce a convex subdivision of th%\&l‘ang. ,

Therefore, processing a mew vertex reduces to a simple version of the point location problem:

L

(Refer to Figure 3.13). The tree LTree and the line LL are defined similarly.

For the subpolygon Ml, the algorithm scans nh‘e vertices in lncreasipg order of their
. k . ; .
y coordinates. When % new vertex in the chain CN(m,, EXTREME,) is encountered, the

-

“a.lzorithm checvks its pc;sit.ion relative to LL and RL. If it lies to the left of the directed line LL

B

and to the right of the directed line RL, then the algorithm searches the planar subdivision

]

generated by the directed half-lines passing through the edges of the convex chain stored in

5
.

¢

A
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A, ]
RTree for the region containing the new vertex and computes the corresponding right anchor

point. Also the planar\subdivision generated by the directed half-lines passing through the

[
2N -

edges of the convex chain stored in LTree is searched for the corresponding J¢ft. anchor point.

'

The algorithm dwdagds vertices in the tree R¥Pree above the right anchor point and the vertices
in the tree LTree below the left anchor point, z;.nd then inserts the new vertex into RTree. If ?
the vertex lies to the right of the directed line LL or to the left of the directed line RL, then its

is,processed as in MON-SCAN-1. oo .

v

A vertex in the chain CN(EXTREME, , m,) is processed in a similar fashion with the roles

of LTree and RTree, and LL and RL interchanged. :

. A complete statement of the procedure MON-SCAN-2 is shown in Figure 3.14.

\ |

Algorithms WVE-MON-1 z;nd WVE-MON-2 differ only in the data structure used to store e
> Rl

the prospective anchor points. Therefore, correctness of the algorit:hm WVE-MON-2 follows

from the lemmas 3.1-3.7. Performance analysis of WYE—MO'N??- is given in the following

’

°

theorem. ‘ R
Theoxjem 3.9 The procedure WVE-MON-2 computes the weak visibility polygon from an edge

in imonotone polygon correctly in b(nlogn) running time.

Proof A vertex may be added to the balanced tree once. Therefore, the tree can contain at

most n vertices Since locating the region that contains a new vertex and updating the tree (i.e.
R .

discarding part of the balanced search trees RTree andg LTree) can be performed in O(logn) time

[AHU, p. 155], it follows that the total running time of the algorithm is Ofnlogn).

QE.D.
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3.5. An Efficlent Algonthm for Computing the Weak Visibility Polygon
from an Edge in Simple Polygons " :

4

We now describe the algorithm for computing the weak visibility from an edge. For

]

convenierice, we assume that vertices of the simple polygon P are labeled such that weak

-

visibility polygon is to be calculated from the edge e, .

The ~algorithm preprofc@sses the polygon P in three passes. First, it deletes arms of the
polygon yvhlch cannot he weakly visible from e, . This results in a simple polygon P* that is in
stax‘lda,rd form” with respect to the edge en . It‘l the second pass, it decoﬂmpoaes the pblygon I;"
into a set of components that are monotone with respect t_q a vertical line, known as the regular
decomposition, using the algorithm presented in (L&P1]. In the thlrld pass, it uses the procedure
BUILD-HIER-DESC to compute the hjerarchical representation of P* based on the regular

decomposition.

4

Similar to the algorithms in the previous section, it then scans the vertices of P* with the

help of the HIER-DESC(P"), to compute thé right and left intercepts of the weakly visible

vertices. Finally, it computes gap fillers. During the scanning step, the algorithm traverses the

(G .
hierarchy HIER-DESC(P*) and processes the vertices of the components encountered. The

-

algorithm starts-at the component which contains the edge e, in its boundary and processes the

monotone polygon as in WVE-MON-2\ That s, computes the two subpolygons M, and M, and

then process the sorted list of vertices for each subpolygon, separately.

« Ip processing t,l;e subpolygon M, when a vertex in the chain CV:N(p 1w EXTREME, ) that is
the u;aper end-point of a chord connecting two vertices non-consecutive o the boundary of P*is
encounteréd, théx algorithm checks its position relative to the directed line LL. If it lies to the
right of LL (as shown in Figure 3.15 a), then the arm corrésponding to the chord found is not
\-Neakly visible frgm ¢, , and the algorithm continges to process the remaindervof the vertices of

M, as in MON-SCAN-2. Otherwise, the algorithm computes the two extreme points of the

chord that are weakly visible from e¢,, Lower and Upper, as shown in Figure 3.15 b. It then

v
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* searches RTree and LTree for the anchoe points of Upper and splits the chains stored in RTree

and LTree such'that:
RTree, (RTree,) contains vertices of the chain below (above) and including the right

anchor point found.

LTree, (LTree,) éontalns vertices of the chain above (below) and including the rilght

anchor point found.

Now the algorithm starts to procqess the néw component which is tﬁe difference between, the
»
arm corresponding to the endpuntered chord and the union of the arms corresponding t,d its sons
in the hierarchy. Vertices the new component with ‘y-coordinates less tha:n that of Lower can
not be wesakly visible 1‘r9m ¢,, and are not processed. The x;emaining vertices of the new
component are processed as in MON-SCAN-2, in order of increasing y-coordinates, using the

vertices of the trees RTree, and LTree, as the initial set of prospective anchor points. After
the vertices of the arm corresponding to the encountered chord are processed, It continues to
process the remainder of the vertices in M, using vertices of the trees R Trtc ; and LTree, as

the prospective anchor points. . —

The case of a chord connecting two non-consecutive vertices in the chain CN
(EXTREME, ,-p,y is handled in a similar way, with the roles of RTree and LTree and LL and
RL interchanged. A complete description of the method for processing M, is given in procedure

SCAN-M1, shown in Figure 3.16. We now give the complete algorithm, procedure WVE.

procedul;e WVE ) ‘

1. Compute the connected subset of the polygon, P*, which s in standard
form with respect to the edge e, .

2. Décompose the polygon P* into a set of monotone components.
3. BUILD-HIER-DESC (P*).

4. Fetch the mondlone component in the top of the HIER-DESC(P"), M.

Locate the two vertices with the maximum and minimum y-toordinates,

o o i s
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- EXTREME, and EXTREMEg respectively; |

Decompose M into the two subpolygons!
M, and M, as described in section 3.4.

RTree +- 1{; Insert p, into RTree; ‘
LTree «— A; Insert p, into LTree;
SCAN-M1 (M, LTree, RTree, EXTREME,) . }

RTree +— A; Insert p, into RTree,
LTree +— A; Insert p, into LTree;
SCAN-M2 (M,, LTree, RTree, EXTREMEp)

5. Scan the weakly visible vertices in clockwise order and compute the gap fillers.

end WVE ) \ @

[

‘We now prove the main result of this chapter.

-

!

Theorem 3.10 Procedure WVE computes the weak visibility poly}on from an edge in an

arbitrary simple polygon correctly in O(nlogn) running time. ,

&

Prqof In lemmas 3.1-3.7 we proved that the algorithm processes a wertex in a monotone
polygon correctly. In this theorem we only prove correctness of the transition step from one

monotone component to another.

o
°

be a chord connecting two non-consecutive vertlces‘ of the polygon P* in

Let CHORD

PrPisl

¢

the chain CN(p,, EXTREME, ), and let Lower and Upper be the two extreme points of the
iﬁ .
chord that are weakly visible from ¢,. Let NEW-COMP be the monotone component of the

arm ARM,

»,5,+; Which contains the.chord CHORD

Vertices of NEW-COMP above the

PPy

point Lower together with the vertices storedin the trees LTree ¢ and RTree, form a monotone

polygon. Therefore, correctness of .the procedure SCAN-M1 follows from lemmas 3.1-3.7 as in
. , ]

the procedure MON-SCAN-2. Vertices in the tree RTree, can only be right anchor points of

vertices of NEW-COMP which lie to the left of the directed line joining Upper to its right

anchor point, which are shown not to be weakly visible from the edge e;, in lemma 3.3.

%, S L e o A A3 W 5 4L G ke
)
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4
Therefore, only vertices of the chain stored in the tree RTree, can be prospective right anchor

points of vertices in NEW-COMP. The fact that only vertices in the tree LTree, can be

prospective left anchor points of vertices in NEW-COM;’ can be shown in a similar way.

)
A

The case of Lower and Upper being vertices in the chain CN(EXTREME, , p, ) is proved in ~

9

a similar way, and is omitted. - b .
) o b
Since the algorithm uses the same data structure as the algorithm WVE-MON-2,-where the
anchor points of a vertex can be computéd in O(logn) time, it follows that the total running
time is O(nlogn). ,
X QE.D,

o

3.8. Conclusion and Applications

.Recently, two different algorithms have been developed for computing the weak visibility
ad

polygon- from an edge in simple polygons. Ghosh and Shyamasundar {G&S] claimed 2 linear

polygon from an edge ¢; in a sfmple polygon is the union of the visibility polygons from a few
‘ 3
vertices; namely p;, p; 4, and the vertices of the polygon that are visible from either p; or p;,;.

N Uﬁrortunat,ely their algorithm does not always work correctly. A counterexample Is given in

y
Figure 3.17, where a vertex that is weakly visible from the edge e; is not visible from the

gelected set of vertices. - .

A different approach, which follows c‘he steps of~the algorithm for checking the weak
visiBllity of a polygon from an edge in [A&T],, is presented by Lee and Lin [L&L]. In this
algorithm, vertices of the polygon are scanned twice to compute their left and right intercepts,
whose relative positions on the edge are later used to dete\rmine the weakly visible region.
During each scan, the algorithm achieves O(nlogn) running time in the worst case by
maintaining the prospective anchor poinis in a concatenable queue and sssociating a

conc_atenable‘, queue with each scanned vertex. ‘The algorithm described in the previous section
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- ) L

4
" diffets from this approach in that the weak visibility of a vertex is immediately determined

when the vertex is encountered during the scanning step (step 4 of procedure WVE) and that

the scanning process is terminated when it Is clear that the remalning vertices are not weakly

visible. An example of ptoblems which require the use of these features in the design of efficient
solutions is the k-reachability problem. This problem is a fundamental problem in printed

circuit routing [I:Iigh], and in computing the reachable workarea of a-robot arm.
/ -

In a k-{rcachabx’lity problem we are given a simple polygon P, an interior point ¢ and a
constant £, it is required ?t,o complte the subset of P that is reachable from ¢ by an interior path
of at most k "bends, The basic idea Is to compute the k-reachable region one bend at a time.
First we compute the O-rea.chab[l\ region from gq (i.e., the visibility polygon of g). We then
compute the O-reachable region from each edage of the visibilify polygon of ¢ which is not part of
the boundary of P (i.e., the weak visibility polygon from that edge). The latter stép is then
repeated k-I times to compute the k-reachable region of ¢ (Refer to Figure 3.18 for an
lllustrg.tion of 0, and 1l-reachable regions). An implementation of 'this mebhod: which uses a
weak visibility algorithm as a black box, leads to an O(knlogn) algor;thm for computing the k-
reachable region of a point inside a n sided polygon However maodltylng the procedure SCAN-

M1 by addiné recursive calls to itself, with the the weakly visible part of LL or RL as the edge

‘from which the weak visibility to be computed, prior to each terminate statement leads to an

O(nlogn) algorithm for the .k-reachability problem. A similar idea is used in computing the

shortest route between two points inside a simple polygén and detailed description will be given

In chapter 6.

Aggther problem which uses tpe algorithn; for computing the weak visibilityupolygon from
an edge in the design of an efficient solution is that of checking the separability of polygons.
Two simple po]ygon; P and Q are said to be movably separable with a single translation if P’cslx.‘n
be moved an arbitrary distance away from Q by a single translation, without collision. In

[T&S], Toussaint et al. presented, a quadratic time algorithm for checking the separability of

two polygons. The algorithm is based on computing the directions of movability for every

-
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13

vertex of P with reape;:t to the p"olygon Q. and tixen ’computinz the intersection of these
directions to o?taln the directions of movability for the polygon P. The linear time algorithm
for computing the visibility polygon from a point [EXZA] was used to com’pute the dlr::c'tlons of
movability for each vertex of P, which led to an overall O(|P|.|Q]) rupning time. Ix; a later
paper [S&:’i‘], they presented a more eﬂicienc algorithm for checking the separ;).bility which runs
in O( (|P|+|Q])log|Q| ) time: Let ¢;g;, I < |, be an edge of the convex hull of Q which Is not
an edge of the polygon. The chain CN(g;, q;) defines a convex deficiency of Q with the lid
§iqj- The algorithm is based on, preprocessing deficiencies of Q by computing the weak
vissbdlity polygon In each deficlency from the corresponding lid, which can be performed in
O(IQlloglél) time. Using a suitable point location method [Kir or L&Y],*the algorithm searches
theN weak visibility polygons and qombutes the directions of movablility for the vertices of P with
respect to Q In O(|P|log|Q|) time. It then proceeds to compute the directions of movébmty for

the polygon P as'in the previous algorithm. ’ ) -

s
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36 Computing the Weak Visibility Polygon

procedure MON-SCAN-1 (M)

input: .
A simple polygon M that is monotone with respect to the y-a.xis

output“
Right and left intercepts of the vertices of M that are weakly visible from e, .

5 t

“e

Instialization Steps
1. Compute the connected subset’M* whcih is in standard form with repsect to the edge e, :

2. Locate the two vertices with the maximum and minimum y-coordinates, EXTREME, and
EXTREMEjg respectively;

3. Decompose M* into the two subpolygons:
M 1 Whose vertices have y-coordinates larger than that of m,,
and M, whose vertices have 'y-coordinates less than that of m,;

Steps for processing the subpolygon M,

1. Insert the vertex m, into the rear of the deque RD;
~  Insert the vertex m, into the front of the deque LD; o .

2. cur-vertex + the vertex-oﬂ\l\wnh the smallest y-coordinate larger than that of m, ;

_3. Repeat }

i

case I cur-vertex is a vertex of the chain CN(m, EXTREME , )

case la: cur-vertex lies to the left of the directed line RL -
. terminate processing the subpolygon M ,;

case 1b: cur-vertex lies to the right-of the directed line RL
and to the left of the directed line LL

delete vertices from the front of the deque RD until the cur-vertex together with

‘ the vertices in the deque RD form a convex chain;

1

delete vertices from the rear of the deque LD until the vertices of LD lie to the left'
of the diretced line joining cur-vertex to the rear of LD;

atare the front vértex of RD and the rear verbex of LD as the right and ‘left anchor
points of cur-vertex, respectively;

insert cur-vertex into the front of the deque RD;
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case £ cur-vertex is a vertex of the chain CN(EXTREME,, m,)

case 2a: cur-vertex is a vertex in Mg

.

delete vertices from the front of the deque LD until cur-vertex together with the
vert(i'ces in LD form 2 convex chain;

store the front vertex of LD as the left anchor point of cur-vertex;
tnsert cur-vertex into the front of LD;

case 2b: cur-vertex is a vertex in MA and lies to the right of the directed line LL
terminate processing the subpolygon M,; .

cdse Lc: cur-vertex is a vertex in M, and lies'to the left of the directed line LL
and to the righ: of the directed line RL

delete vertices from the front of the deque LD until ‘the cur-vgrtex together- with
the vertices in the deque LD form a convex chain;

H

delete vertices from the rear -of the deque RD until the vertices of RD lie to the
right of the diretced line joining cur-vertex to the rear of RD;

store the front vertex of LD and the rear vertex of RD as the left and right anchor
points of cur-vertex, respectively; -

o

ingert cur-vertex into the front or'the deque LD; R

PN
-

o

cur-vertex «+ vertex of M, with ¥fie smallest y-coordina\té' larger than that of cur-vertex;

~
o o

Until cur-vertex = EXTREME, ; . ) o N

Steps for processing the subpolygori M, C
. \ .
! Details of these steps are similar to those of the steps for processing M 1» and are thus

omitted. -

end MON-SCAN-1_

-

: Figure 3-8
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- . Figure 3.0
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Figure 3.13
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procedure MON-SCAN-2 (M)

snput:
( A simple polygon M that is monotone with respect to the y-axis.

output: .
, Right and left intercepts of the vertices of M that are weakly visible from c,,

Imtaahzahon Steps o -
1. Compute the connected subset M* whcih is in standard form with repsect to the edge ¢, ;

2. Locate the two vertices with the maximum and minirpum y-coordinates, EXTREMEA and
EXTREMEjg respectively;

3. Decompose M" into the two subpolygons:
M, whose vertices have y-coordinates larger than that of m, ,
and M, whose vertices have y-coordinates less than that of-m,;

3

~

Steps for processing the subpolygon M,

Co- 1. Insert the vertex m, into the tree RTree;
Insert the vertex m, into the tree LTree, . -

2. cur-{rertex +— the vertex of M, with the smallest y-coordinate larger than that of m, ;

2 3. Repeat - . P
4 -

S

case I cur-vertex is a vertex of,the chain CN(m ,, EXTREME )

case la: cur-vertex lies to the left of the directed line RL
terminate processing the subpolygon M,, .-

cage 1b: cur-vertex lies to the right of the directed line RL .
and to the left of the directed line LI, REEEN

search the tree RTree for the right anchor point of cur-vertex;
RTree + part of RTree whose vertices have y-coordiantes < y-coordinate of the
right anchor point;

search the tree LTree for the left anchor point of cur-vertex;
LTree «— part of LTree whose vertices have y—coordiantes > y-coordinate of the
left anchor point;

store the vertex RTreeMax of Rtree and the vertex LTre'eMln of L'Tree as the right
/" and left anchor points of cur-vertex, respectively;

s

ingert cur-vertex into the tree RTree;
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case £ cur-vertex is a vertex of the chain CN(EXTREME, , m,)

case La: cur-vertex Is a vertex in Mg

search the tree LTree for.the left anchor point of cur-vertex;
N LTree + part of LTree whose vertices have y-coordiantes < y-coordinate of the
- left anchor point;

. . store the vertex LTreeMax of L'Tree as the left anchor point of cur-vertex;

* -

insert cur-vertex into the tree LTree; >, .

s caae'2b: cur_—ver;:ex is a vertex in M, "and lies to the right of the directed lfne LL B
.terminate processing the subpolygon M,; .

" case Lc¢: cur-vertex is-a vertex in M, and lies tG the left of the directed line LL
and to the right of the directed lire RL

search-the tree RTree for the right anchor point of cur-vertex;
RTree « part of RTree whose vertices have y-eoordiantes 2> y-coordinate of the
rlzht anchor point;

search the tree L'Tree for the left anchor point of cur-vertex; -
LTree + part of LTree whose vertices have y-coordiantes < y-coordina.te of the
left a.nchor point;

store the vcrtex RTreeMin of Rtree and the vertex LTreeMax of L'Tree as the right. !
.and left anchor points of cur-vertex, respectively;

ingert cur-vertex into the tree LTree;

1 ’

cur-vertex +— vertex of M, with the smallest y-coordinate larger than that of cur-vertex:

s

Until cur-vertex = EXTREME, .

Steps for pracessing the 3ubpolygon M, ) N

Detaﬂs of these steps are similar to those of the steps for processing M,, a.nd are thus
omltted
end MON-SCAN-2 o
Figure 3-14 ' - ’
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"

Figure 3.15
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48 R Computing the Weak Visibility Polygon :
procedure SCAN-M1 (M,RTree,LTree,Ex’oreme) " ) T
s’nput ’ } o

A simple polygon M that is monotone with respect to the y-axis.
f@ Two balanced trees, RTree and LTree, which containg prospective right and left anchor

Jboints respeqtlvely ; .

3. The vertex with the largest y-coordinate in M. . H B
output: ’ . : S ] )

Right and left intercepts of the vertices of P tha.t are weakly visible from e¢,. * < . /r’
.Method: " o . : -,

o cur-vertex + the vertex of M with the smallest y-coordinate; Co .

~

 Repeat .
case 1: cur-vertex Is a vertex in the chain CN(y,,Extreme) -

sf cur-versex is an upper end-point of a decomposition chord thcn
compute the two extreme points or the chord that are weakly visible from e, ; IR
Lower « lower end-point of the decomposition chord or its intersection with LL;

o

Upper + upper end-point of the decomposition chord or its intersection with RL; ’

g
aearch the tree RTree for the fight anchor point of Upper; 3
RTrec -+~ part of RTree whose vertices have y-coordiantes < y-coordma.te of the
right anchor point;
RTrec 5 +— part of RTree whose vertices have y-coordiantes > i-qoqrdinat;e of the

right anchor point; ) N N ]

- search the tree LTree for the left anchor point of Upper; i o
LTree, + part of LTree whose vertices have y-coordiantes > y-coordinate of the
left anchor point; 5
LTree, + part of LTree whose vertlces have y-coordiantes < y-coordinate of the
left anchor point; : ‘ .

! Fetch the montone component which contains the found chord, NEW-COMP;
- Loga.te the vertex with the largest y-coordinate in NEW-COMP, NewExtreme;

. NEW-COMP, + part of NEW-COMP whose vertices lidve y-coordinates larger
; than that of Lower;

3

SCAN-M1(NEW-COMP,,RTree ,,L Tree ,,NewExtreme);

+

case la: Upper 74 cur-vertex (cur-vertex is not weakly visible from e,) ! .

- o terminale processing the subpolygon. M; - : N

o

case 1b: Uppef == cur-vertex (curtvertex is weakly visible from e, )

©

L RTree + RTree,;
: LTree +— LTreey; ) ) -

e s ‘./

1
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v

‘ storé the vertex RTreeMax of Rtree and the vertex LTreeMin of LTree as the
right and left anchor points of cur-vertex, respectively;

insert.gur-yertex into the tree RTree;
else . ! ’ s
+ case Ic: cur-vertex lies to the left of the directed line RL
terminate processing the subpolygon M; -

- cage ld: cur-vertex lies to the right of the dirécted line RL
and to the left of the directed line LL

search the tree RTree for the right anchor point of cur-vertex;

RTree -+— part of RTree whose vertices have y-coordiantes < y-coordimate of
the right anchor point;

" search the tree L'T'ree for the left anchor point of cur-vertex;

LTrtee +— part of LTree whose vertices have y-coordiantes > y-coordinate of
the left anchor point; ,
store the vertex RTreeMax of Rtree and the vertex LTreeMin of LTree as the
right and left anchor points of cur-vertex, respectively;

tnsert cur-vertex into the tree RTree;

-end if

° ; . .

_case\t’: cur-vertex is a vertex in the chain CN(Extreme,p, ) -

»

"§f our-vertex is an upper end-point of a decomposition chord then

-

-

if cur—vertex is a vertex in Mo then - ' .
Lower «— lower end-point~of the decomposition chord; - L a
Upper +— cur-vertex; : ‘ ’

1 A *

* search the tree LTree for the left anchor point of Upper;’
LTrec, +— part of LTree whose vertices have y-qoordiantes < y.coordinate of
¢ the left a.nchor point; .
" LTree, + part of LTree ‘whose vertices haveé y-coox‘diantes > y-coordinate of
the left anchor point; ,

[y
Y

& - '
Fetch the montone component which contains the found chord, NEW—COMP;

<Locate the vertex with the largest y-coordinate inGNEW-COMP NewEXxtreme;
n,
NEW—COMP1 +«— part of NEW-COMP whose vertnces have y-coordina.tes

[

]
larger than that of Lower; _ )
. ‘ Dj
SCAN-M1(NEW-COMP,,RTree, L Tree , NewExtreme);
'-" ’a & . . -
»  case La: . : \)

: .-
LTree «— LTree,; . -
¢

<
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store the vertex LTreeMax oM.;'I"ree as the left anchor point of cur-vertex;

1

inzert cur-vertex into the tree L'Tree; o )

else

" compute the two extreme points of the chord that are weakly visible from e, ;
. Lower +— lower end-point of the decomposition chord or its intersection with
RL; ’

Upper +— upper end-point of the decomposition chord or its intersection with -~

.
’

search the tree-RTree for the right anchor point of Upper;

RTree, +— part of RTree whose vertices have y-coordiantes > y-coordinate of
the right anchor point;

RTree, +— part of RTree whose vertices have y-coordiantes < y-coordinate of
the right anchor point;

search the tree LTree for the left anchor point of Upper;

LTree, +— part of LTree whose vertices have y-coordiantes < y-ceordinate of,
_ the left anchor point;

LTreey «— part of LTree whose vertices have y-coordiantes z y-coordinae of
thewlden ahchor point; ‘ -

A
Lo

fé‘%‘éh the montone component which contains the found chord, NEW-COMP;
Locate the vertex with the largest y-coordinate in NEW-COMP, NewExtreme;/

NEW-COMP, «~ part of NEW.COMP whose vertices have y-eoordinatu R
larger than that of Lower; . Y

SCAN-M1(NEW-COMP,,RTree L Tree, NewExtreme); T ‘.,,

»

ot

case £b: Upper y& cur-vertex (cur-venex is not weakly visible from ¢, )" - ;

terminate processing the subpolygon M; ' S

c'aoc £c: Upper = cur-vertex (cur-vertex is weakly visible from e, )

RTree +— RTree,; . oo
LTree +— LTree,; | T \
astore the vertex LTreeMax of Ltree and the vertex RTreeMin of) s,
the left and right anchor points of cur-vertex, respectively; -
snsert cur-vertex into the tree LTree; / ;
end ¢ } ) . .
clse . .

. case 2d: cur-vertex is a vertex in Mc
A

search the tree LTree for the left anchor point of cur-vertex; ‘ U

LTree ~ part of LTree whose vertices have y-coordla.nm < y-coordinate of.
the left anchor point;

store the vertex LTreeMax-of LTree as the lert— anchor point of cur-vertex;

N

O
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?
insert cur-vertex into the tree LTree;
. Eufe 2e: cur-vertex is s vertex in M, and lies to the right of the dtrected line LL
( - terminate processing the subpolygon M ,;

cass 2f cur-vertex is a vertex in M, and lies to the left of the directed line LL .
and to the right of the directed line RL

' search the tree RTree for the right anchor poln“t. of éur—verter, !
. RTree «— part of RTree whose vertices have y-coordiantes > y-coordinate of.
- ' the right anchor point; L

-/ _ search the tree LTree for the left anchor point of cur-vertex; °
§ LTree «— part of LTree whose vertices have y-coordiantes < rcoordiane of

the left anchor point;

5

store the vertex RTreeMin of Riree and the vertex LTreeMax of LTree a3 the
right and left anchor points of cur-vertex, respectively;

insert cur-vertex into the tree LTree; ‘.

~y )

,

cur-vertex + vertex of M with the smallest y-coorsinate larger than that of cur-vertex:
/0 e : .

. Until cur-vertex == Extreme ) S
i " eod SCAN-M1 e :
4, n ’ 1 —
, -~ ’ ‘ - R ! " T * B . -
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Figure 3.18
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4. Recognizing Visibility Graphs of Simple Polygons ,.

4.1. Introduction -

N

Embedding a graph in the plane is a mapping of its vertices into distinct points and its
edges into curves connecting the corresponding mapped vertices. f)su{uly the mapping must
satisfy some constraints. Examples are planar embedding where the mappings of edges must
meet Snly .at common mapped ;ertices,' and straight-line embgdding where edges must be

mapped to straight line segments.

.

In this chapter we study the problem of recognizing visibility graphs, i.e., determining
whether a graph can be embedded in the plane such that -
x AN )
(a) & gsven hamiltonian cycle of the graph fom;a the boundary of a esmple polygon,
(b) cdgea arc mapped into straight line scgmenta,

N .
(¢) the mapped vertices are visible if and only if they correspond to adjscent vertices in the graph.

In section 4.2 we show that mazimal outerplanar graphs are visibllity graphs, and give an
algorithm to draw the corresponding simple polygon. In section 4.3 we describe an a.lgorithm t3
recognize vislbmty graphs of a specialized class of simple polygons, the cla.ss of convez fans.
Section 4.4 is devoted to discussing the problem of recognizing visibility graphs of arbitrary

simple polygons.

4.2. Embedding Maximal Quterplanar Graphs as Visibility Graphs

+
[y

A graph which admits a planar embedding such that all the vertices lie on the exterior face

is said to be an outerplanar graph. A mazimal outerplanar graph, a mop for short, is an

/outerplanar graph such that @e addition of a single edge resuilts in a non-outerplanar graph

(since the existence of a cut-vertex will result in the graph being non-hamiltonian, graphs to be

dealt with through the rest of this section are assumed to be £-connected). The collection of

¢
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Recognizing Visibility Graphs of Simple Polygons 58

exterior cdges (l.e. edges that lie on the exterior face) defines a hamiltonian cycle in the graph.
B A

Beyer et. al. [B&J&M] showed that a £-connected mop has a unique tamiltonian cycle defined

by the collection of exterior edges and presented a line:;r time algorithm to repofc such cycle. In

this section we show that every £-connected mop is the visibility graph of a simple polygon and

give an algorithm to draw such a polygon in the plane.

Given a mop G==(V,E) of order n labelled such that the sequence (v,, v,,..., v,, v,) formsa
hamiltonian cyt;le, the algorithm locates and embeds one interior face of G at a time. The
removal of an interior face decomposes the graph into at most two companents of connected
faces, where two faces are sald to be connected if they share an edge. The algorithm then

proceeds to embed each component separately in a recursive fashion.
The key properties for locating interior faces efficiently are given in the following lemmas.

Lemma 4.1 For every exterior edge of G, there exists exactly one vertex in G that is adjacent

to both end- pointé

3
Ak

Proof Consider the edge of the hamiltonian cycle connecting v, to v,. Let vy be the vertex

with the largest label that is adjacent to v, and let v, &' % k, be the vertex with the

smallest label that is adjacent to 'v, (Refer to Figure 4.1 for illustration). It-is eaaﬁ to(see that

at least one extra edge can be added without violating the outerplanarity of G, contradicting

the assumption that the given.graph G is maximal’ Therefore & must be equal to k' . Tt

follows directly from Jordan curve theorem and the outerplanarity of G that only one such

vertex can exist. Thus the lemma follows.
QE.D.

Lemma 4.2 For every interior edge of G, there exists exactly two vertices in G that are

adjacent to both end-points.

Proof In a2 planar embedding of G, the given hamiltonian cycle is mapped into a closed curve

which partitions the plane into two disjoint regions. A mapping of an interior edge of G, say

b

e o o
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(v;, v;), decomposes the bounded region Into two bounded regions R, and R, as shown in,
Figure 4.2. Induced subgraphs on the vertices on the boundary of each one of the regions R;,
l== 1, 2, form smaller maximal outerplanar graphs with the edge (v;, v,) being an exterior edge.

From lemma 4.1, uherg exists only one vertex in each induced subgraph that is adjacent to both

v; and v; and thus the lemma follows.

BN ‘ Q.E.D.

‘We now describe the algorithm EMBED-A-MOP for embedding a mop G on the plane such

that t.he'zlven hamiltonian cycle forms the boundary of a simple polygon w'hoae visibility graph

o

is the mop G.

. procedure EMBED-A-MOP

procedure EMBED-A-FACE (Bottom, LeftPolnt, RightPoint)
local varigble Left, Right, NewBottom; —
local variable NewPoint, NewLeftPoint, NewRightPoint;

method:
Define )
{ ) Left + the vertical line passing through the vertex LeftPaint; -
. Right « the vertical line passing through the vertex RightPaint; i ®
(X.Y) + coordinates of the middle point of the line segment Bottom; : B

if there exists an uamarked vertex adjacent-to both LeftPoint and RightPolnt then
NewPolnt «+ the unmarked vértex adjacent to both LeftPolnt and RightPoint;
J if LeftPolnt »€ v, or RightPoint »& v, then
Y Erasc the line segment jolning the vertex LeftPoint and the vertex RightPoint;
elsc ' ‘ ) '
relurn

* Mop the vertex NewPolnt as the point (X.Y+e¢), where ¢ has a small positive value;
Mc:k the vertex NewPoint;

Drédw a line segment to jbin the vertex LeftPoint and the vertex NewPoint;

Draw a line segment to join the vertex NewPoint and the vertex RightPolnt;

Delete
LeftPoint and RightPoint from the list of adjacent _vcmces of NewPolnt; !
NewPoint from the list of adjacent vertices of LeftPoint; ’ i
NewPoint from the list of adjacent vertices of RightPoint;

Split the list of adjacent. vertices of NewPoint such thas one list contains the vertices* with ,lsbcls
less than that of NewPoint and the remaining vertices are contalned ln the other liat.

-
3
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NewBottom « the line segment joining the vertex NewPoint and the intersection polnt of the
half-line ““Left” with the directed line joining the vertex RightPoint to the yertex NewPoint;

EMBED-A-FACE (NewBottom, LeftPoint, NewPolnt);

NewBottom +«- the line segment joining the vertex NewPoint and the intersection point of the
half-line ‘“Right’" with the directed line joining the vertex LeftPoint to the vertex NewPoint;

EMBED-A-FACE (NewBottom, NewPoint, RightPoint);
end EMBED-A-FACE
Jor each vertex in G do ‘ '
sort labels of the adjacent verzlcq in increasing order;
Map the vc:nlces v, and v, as the two points (z,,0) and (z,,0) on the x-axis such that z, < z4
Mark the vertices v, and v, ; .
Define B as the line segment joining the points (zT,d) and (z,,0).

EMBED-A-FACE (B, vy, % );

end EMBED-A-MOP

a -

An éxample ta demonstrate the performance of the procedure is shown in Figure 4.3.
Using the following result (stated previously as lemma 3.1),

Lemma 4.3[E&ZA] Let POL be a simple polygon and ¢; be an edge In its bo°ungiary such
* that the vertices pol,_; and pol, ., lie on the same side of the line passing through ¢;. If
y is & point in the exterior of POL which {s collinear with the the edge ¢; , then the line

segment Jolning ¥ to a point In the interlor of POL intersects the chaln CN(pol; ., pol;).

’

-~

* we px’ove the correctness of the algorithm in the following theorem. We also give the complexity

-,

of the ?,lgorichm

-

. Theorem 4.4 Given a mop G of order n and the associated hamiltonian cycle. The procedure

EMBED-A-MOP embeds the graph G in the plane as the visibility graph of a simple polygon in

O_(nlogn)_time. *
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Proof At each call of the procedure Eh/fBED—,{t‘FACE, the following conditions are satisfled:
a) the embedded (marked) vertices form a simple polygon, denoted by IntPol, whose

visibility graph is the subgraph of G induced on the embedded vertices.

b) the chain CN(v,,v, ) of the polygon IntPol Is monotone with respect to the x-axis.

Y

The conditions a}b) are clearly satisfied when the procedure EMBED-A-FACE is called for
the first time. Now, assume that conditions a)-b) have always been satisfied prior to the call of
the procedure EMBED-A-FACE with the vertices v, and v, as the LeftPoint and RightPoint

respectively.

If no unmarked 'vertex that is adjacent to both v; a.n& v; exists, the procedure returns
immediately and conditions a}b) remain satisfled. Otherwise, the procedure embeds the vertex
that is adjac;nb to both u; a.%d v;, say vg, in the region that is the uiutersectiou of the half-
planes to the left of the line Right, to the right of the line Left and above the line passing
through Bottom. Extend the line segment connecting v, to v, until it intersects the boundary

, of IntPol ina po‘inc, say Z’, and extend the line segment connecting v, to v, until it intersects
the boundary of Ir;cPol in a point, say Z" (as shown in Figure 4.4). From lemma 4.2, exactly
one of the embedded vertices is adjacent to both v; and v;, and this vertex lies on theyllne
throuzh the line segment Bottbm. Therefore, no embedded vertex can lioe in the quadrilateral
(v ,v;,Z",2'). The region bounded by the chain CN(Z',v,} and the line gegment (v;,2’) together

“with the vertex v, satisfy the conditions of lemma 4.3. Also ‘the reyion bounded by the chain
CN(vj,Z") and the line segment (Z",v;) together with the vertex °v& satisfy the conditions of
lemma 4.3. Therefore, v, s not visible from any of the previously embedded vertices except v;

and v;, and thus condition a) Is satisfied after embedding v; . It Is easy to see that condition b)

[
is also satisfied, which completes the proof of correctness for each step and the algorithm.

v

At every call of the procedure EMBED-A-FACE, a vertex is mapped into a point in the
t
plane that is not changed during the following calls, To find an unmarked vertex that is

adjacent to both LeftPoint and Right?oipt, if ane exists, we only have to check the vertices

iy
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with the smallest and largest labels in the adjacency lsts of ,Lertl"oint. and nghti’oinc. A
process which can be performed in constant time. The time required to process the NewPoint is
proportional to logarithm of the number of its adjacent vertices. Since the number of ed&es.m

the graph G is Q(n), it follows that the total running time of the algorithm is O(nlogn).

- QED. .

= %
1 1

4.3. Recognizing the Visibility Graph of a Con{rex Fan

i
1

I4

In this section we use the decomposition strategy to check the feasibility of embeddinz ‘8

-

graph, with'a given hamiltonian cycle, in the plane as the visibility graph of a specialized class
of simple polygons, called convex fan:s. The algorithm is based on using a subset of edges of the

given graph, called mazimal diagonals, to-partition the graph into disjoint subgraphs which are

independently émbedded in non-overlapping regions of the plane. Each component is then

processéd in a similar fashion (i.e., its maximal diagonals are located and used to decomnpose the -

\

component further into smaller components which can be independently embedded in the
plane). The process is continued until all the vertices are embedded or the graph is found not
to be a visibility graph of a convex fan.

1 r . k) .
First we Tntroduce some additional terminology. A simple polygon is said to a convex fan if

)
? '

there exists a convez vertez (i.e., a vertex with an interior angle less than =) that is visible from

all the points in the interior of the polygon. Such a vertex will be called a kernel point of the

_polygon. It is easy to see that the vertices of the convex fan appear in sorted angular order

around the kernel pol;xt as the boundary of the polygon 1s traversed. Let P be a convex fan
with the vertices labeled such that p, is a point kernel. Two chords snterldce if their end’ points

alternate on BD(P) when the boundary of the polygon Is traversed. A chord connecting the

3

vertices p, and p;, 2<1 <j <n is said to be a mazimal diagonal in the CN(p,,p, ). if there is no

chord connecting p; and p, such that 2< [ <i<j <k<n, where either [557 or k3£ | p;

(pj) where i <7, is called the left (right) end point of the maximal diagonal connecting p; and

N

o
p; (Refer to Figure zs for an Illustration). Since the chain CN(p;,,, p,.,) together with the
. -

-

“

4

0 a

e —— R i it e S




58 Recognizing Visibility Graphs of Supple Polygons

o

kernel point p, [6rm a convex fan, we can similarly define mazimal diegonals in the chain

i v

CN(p; 1, Pj-1)

N In the l‘ollow‘gng lemma we introduce a key property of maximal diagonals in convex fans.

PRI |

P

[N

Lemma 4.5 Two maximal diagonals in a convex fan do not interlace.

are two interlacing

*Proof, (Refer t«o‘ Figure 4 6) Assume that CHORDAPI and CHORD, ,,

maximal diagonals 1n a convex fan P such that + < { Since the chord CHORDP_P) partitions
‘" t .

2 . the polygon P ir{to two components one contains p; and the othef contains p,. The two chords
must intersect in a point inside P, say X. [t is easy to see that the quadrilateral (p,, p;, X. ;i)

is convex and lies completely inside P. Therefore, p, and p; are visible contradicting the faet

4

that t;ot.h C"HORD,. ’, and CHORD,, y, 3r¢ maximal diagonals.
¥

. . ’ o Q.ED.

N °

A . l
Corollary 4.5.1 If CHORD, y, is & maximal diagonal in the chain CN(p 3,9, ). then a vertex in

CN(p, 41, P, ) is not visible from vertices in the chain CN(p,, p,_;) and a vertex in CN(p;, Pj1)

o

is not visible from vertices in the chain CN(p, .. p,) . - Ty

© Using the above property we can hierarchically describe a’ convex fan by recursively

L i identifying the maximal diagonals For the convex fan P (shown in Figure 4.7) whose vertices
g

< labeled such, that p, 15 1ts Xkernel point, the top of the hierarchy (level 0) répresenr,s the whole

polygon Nodes wn the first level represent the maximal diagpnals in the chain CN{p,.p,). In
. + (4 h
- the following levels, sons of the node corresponding to the maximal diagonal connecting p; to

pj represent the maximal diagonals in the chain CN(p,,,,p,_,).

e - In the lfollowing lemmas we scudyY the visibility between the end-points of a maximal

diagonal and the vertices stored In 1ts subhierarchy

-

Lemma 4.6 Let CHORD,',, be a maximal diagonal 1n the convex fan P and Q = (gy,, Gip--s

q¢ ) be the sequence of end-points of the maximal diagonals in the chain CN(p; 41. Py1)- Pi I8

( visible from‘a consecutive subsequence of Q L -

[ U R
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L7 ,
Proof (Refer to Figure 4.8) *From the definition of a maximal diagonal and from lemma 4.5, we

cah éasi!y, observe that the vertices of Q form a convex chain since the vertices of the chain

. <
CN(p 2.p, ) are sorted in angular order around p,. The vertex p; lies outside the region defined

. LB
by the intersection of the half-planes to the right' of the directed line connecting p, t0 qg, and

’ -

to the left of the directed line connecting p,-to ¢y , shown hashed in Figure 4.8, and is thus

visible from consecutive subsequence of Q.

‘ ‘ . QED.

i

Lemma 4.7%Let Q = (q,,‘, Qi p- O ) be the sequence of end-points of the maxifna'I diagonals

in the chain ‘CN(p,H, Py-y), and CHORD,I y, bea maximal diagonal stored as their ancestor in

the hierarchical description of the polygon. If k,, is the the largest label of a vertex in Q that is’

R

v'gsible‘rrom ;); , thén vertices. in ‘Q with larger labels are not visible from lvert.icw in the chain

QN(P: ' p‘k,—-l)'_

' - 2
r . =

Proof (Refer to Figyre 4.9.) . Extend the line segment joining p; to pk'_' until it intersects »

BD(P) in a poiilt, say X. The arm ARM,' x . which completely contains the vertices of Q with

~

k]

label larger than k, , together with the vertex p; satisfy the conditions of lemma 4.3. Therefore

.
»

p; is not visible from the vertices of Q with labels la.x;ger than k, . Vertices of “the chain

v -

CN(p; 41. Py, ) and vertices in the arm ARM,, x lie'on the same sid€ of-a stl}aight line. " It /

' \ - - ~

_ CL vl

o

follows rom lemma 4.3 that they are also-no} visible. - : ,

. QED.

)
! +

‘e

Lé,m‘mp. 4.8 Let Q = (qpy Qp,-G¢ ) 'be the sehuepce of end-points of the maximal diagonals

in' the chain CN(p,,,, p,.,). Let LEP(p, p,) be the sequence of left vertices of maximal
diagonals stored in the hierarchical description of the polygon on the path from the top node to

the node that corresponds to the maximal diagonal connecting p, to p,, and 7)) be the smallest

" label between the end-points in LEP(p, , p;) that is visible from o, (q)- If k; 1s greater than

»

*kji, then i is less than or equal to J. - ' . o

-~

v




— 0 . i
ﬂ 60 - Re\cognlzlng Visibility -Graphs of Simple Polygons -
o s

] *  Proof Similar to lemma 4.7.7 - ) ; i .

1 {‘T Lemma 4.9 Let Q =—(¢h,. Qiy-Q¢ ) De the sequence of end-p'olnts of the maximal diagonals

¥ ’ )

lh the chain CN(p, 1, Pi-1)- Let LEP(p, 1) be the sequence of left vertices of maximal .

[

§ dlazon&ls stored in the hierarchical descrlptfon of t.he polygon on the path from the top node to

r° .

the node that corresponds to the maximal diagonal connecting'p, to p;. If ¢ Is visible from

K
T '3 0
o

lep; , and lep;, and not visible from the vertices between them in the sequence LEP(p, ,p; ), then

- _ vertices of Q with labels smaller than k,, are not visible from vertices in CN(lep; +1 lepi ).

[
©

R

Proof® (Refer -to ll‘lgure 4.10 for Illustration.) Consider the convex fan P’ = {p 1,...,p‘,.q,,'l,

©

Qhge-sQ¥ Dtse .+Pn }- Extend the llng segment joining ¢, to Icp,, until it intersects BD(P’) in a .

P [}

_point, say x. The vertices in LEP(p, ,p;) with labels between ¢, and 1, lie completely in the

L u bR R g e gy

' arm ARMX",,,.’. Since vertices in the chain CN(lep; , lep; ) and vertices in Q with labels‘snlaller <
] than k,, lie on the same side of strafght'llne. It follows from lemma 4.3 that they ‘are nof
‘ ' .
) ( ) v:ible. L ; ' : ‘ ;
L R o e . "“Q,E.._l‘).
\\ ’ ,‘ Right en;l;po?nts of maximal dla;‘onal‘a satlsfy p‘roperties" similar ‘' to ' those: shown _ ’in..
_\ / lemmas 4.6-0. The proofs are on;ltied. B ' ) 1 . n'f?
a v " ‘ & - .
, . Algorithm RECOGNIZE-CONVEX-FAN e . L )

Let G=(V.E) be a graph or order n with the vemces labeled such that the sequence
(vyvg...,v,,v,) forms a hamllt.onlan cycle and the vertex v, has degree n1. Note that such a

H vertex must exist fpr the graph to be‘the vlslblllty graph of a convex fan, and-will be mapped as
its kernel point We now describe an algorithm for checklng whether G is the visibility graph of

. convex fan and producing an en;beddlng of -such ‘polygon, if one exists. The algorithm

proceeds as follows: - . ' ° o -
-‘ﬁ.* . o .
Step 1 Define G’ to be the subgraph of G,_induced on the set of vertices V-{v,}. The -
( ' ," . . 9 i “ ' ) I . j N ) R ‘:‘ ,.;
7 ' o ]\" ¥
T
: .,;:‘;3. ) \ . N
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S

'Y v
k) . )

algérithm computes, the maximal diagonals of G with iespect to the haxgiltbnia.n"psth
) Vg4Vs,..., U, . If the maximal diagonals do not lntei'la.ce, the algorithm partitions G’ by deleting
the end-points of $he maximal diagonals and progeeds to process each component in a recu';alve

" fashion. oOtherv;vise, the Eraph cannot be embedded as the visibility graph of a convex fan and

-

the algorithm t.erfnirfa.tw unsuccessfully. A detalled description of this scep' is zivqn':'ln‘

P
»

_ Figure 4.11. e, < . °

- ° r

i

Step 2 Define & graph G”=(V",E") such that V" is phe set of vertices V-{v,} and E” lé‘th;ﬂ:ut

of maximal diagonals reported in step 1 plus tJhe pair (v4,v,9), if it is-nat already lncludegl. The
algorithm uses the procedure BUILD-HIER-DESC,. described in. chapter 2, to compute a

h!erarchical description of G”. Such a hierarchical des¢ription can be built since the edges of G”

form a nested set of diagonals. The added edge (v, v, ) is stored at the top of the hierarchy and
will be handled as a special case in the mnext step. It will be mapped as a single point

correspohding to the node v,. ;

e
-

Step 3 First the algorithm embeds the veg‘tef v, &t an :arbitrary point in the plane, say o.

Starting at the root of the hierar;:hy, it embeds vertices of the maximal diagonals stored as its

sons in the hierarchy as a convex chain, as shown in Figure 4.12, and then proceeds to attempt

L3

embedding the corresponding subgraphs separately. To embed the sequence of end-points Q =

(v, vg,-.) Of the maximal diagonals stored in‘ the hierarchy as the sons of the maximal

.

diagonal connecting v; to v;, the salgorithm first checks that it satisfies the .properties in

3 . N .
lemmas 4.6-0. and then embeds the vertices as a convex chain such that every two connecteds

®

vertices are visible. Details ‘Br this step is given in the 'procedure‘EMBEDéA-CHAIN, shown in .

»
° o

Figure 4.13. o ~

4 - ! ~ ' \
We now give an overall description of the algorithm ' l C °
el » ™ * '
procedure RECOGNIZE-CONVEX-FANS (G) - I

inpyt: A graph G==(V.E) of order n and a permutation 7 of the vertices such that the sequence (v, v,, ...,
° Uy, ¥,) forms a hamiltonian cycle. N 2

v

. w0 ~

Y

s ' v *
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63 Recognizing Visibility Graphs of Simple Polygons .
0 oulput: An embedding of G fn the plané such that G s the vistbility graph of a convex }m; : *, ! '
globe! variables: . )

N
3

LEP(C) = {lep,, lepg,..., lepm ) lefv end-points of the maximal diagonals stored in ‘the hierarchy as C

and its ancestors lrnn;ed in order or increaslnt distance n'om the top. For each end point p, we
associate a pointef p-fep to the tunhest. entry m the list such that-the two points are connected by an
edge in the graph. Y

4

— i

REP(C) = (rcp " rep,. v TCPm ') of right end-polm.s of the maximal disgonals stored in the hierarchy |

s C and its hncestors.arranged In order of incressing distance from the top. For each end point p, we
associate a polnt.er p-fep to the-furthest entry in the list such that the two polnt.s arc connected by an
. edze in the zra.ph Lo~ .

- . ’
! ]

.
4

metlaod , S, o

.
! -,

‘L Compu:e the ma:dqd diagonals or the mph G using t«he proced\m REPORT— -DIAG

3

2. Buﬂd a hlcmchical description of G bmd on tbe tpaxima.l dlazonals reported in tfhc rlm mp usum

‘ N .
i I - v~ 1

_ the prdc_edure BIHLD-HIER-DESC ‘ . o o~

3 an ‘v.he t.op node of the hlerarchy intd an u-bit.nry point n the- phne, o. " .

¢ [

Embcd the vertlcea oft the mtxlma.l dlasonds st.ored as m SONS &S & convex clnln with. ehe polnt O on '

its concave side. . . L e,

.- [ . ¢

for each son "Current" of the top. nodé in the hiem'chy lau :
-LEP(Current) - 4; ‘

" REP(Current) «— A; . : ST S
y MED-AM (Current) .- : N L
cnl[cr i ‘ N .o . o
deECOGNIZE*CONVEX-FANS ', N ' L e

3

tcrmpnalca auccmfullylr and only lf Gis the visibility graph of a convex fan.

v

the rollowmx condmon at euh call of the procedure: I .

We now prove tge comctneas of the ymcedure RECOGNIZE—CONVEX-FANS&., / .

/

N

B " f’ . i :
A ‘\ B ; N 3 (-?\
Theo% 4.10 Given a mph G—(V E) with :heWbeled such that the sequence

(vl.v,, .v,. v,). Yorms a lmmiltonian cycle. “The pmcedure RECOGNIZE-CONVE(-FANS .

o

; Proof 1'ﬁre procedure terminates un.guqcmfully when bn} of the properties in lemt‘nas"lis-g ")

" not satisfied, and thus G with the given labelmz‘cu not be the visibility graph of a convex fan.

‘FQ ) '

L]

For the converse, one can easily see that the edges reported by cée procedure REPORT-

MAX-DIAG, after a sticcessrul'completlon, fbrm a sét of non—in%erlacln‘

.

of tbe procedure EMBED-A‘-CHMN la proved bx showing that the embedded vertices satiefy -

-

» . >

5

-

v
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't.he,cmbedaed vel]t.tcu rom; a convex fan with the kernel point ‘O. denoted by IntFan, whose
visibility graph is the subgraph of G induced on the embedded vertices.

@

At the Tirst call of the procedure EMBED-A-CHAIN only the noZe v, Is processed and ‘the
condition is satisfied. _Now, assume that the condition has been sat prior to considpﬂnx

the node of the hierarchy corresponding to the maximal diagonal coﬂnectinz vy and v,.

The procedure embeds the end~point.s:or Q as a convex cfn.ins in ;he rezk;n that is the
ﬁumtbn of the half-planes to the left of the 'h;u-une'con'nec:lng O to r, the right of the
h_;lt-ll'm connecting © to [ and the right of the h;lf-llne connecting r to /. The fact that their
lntqisecti/on is not empty follows from -the fact that the embedded vertices form a convex fan

! ' El
(Refer to Figure 4.14). After ¢, s embedded such that

s \

connectivities of the end-points ¢y ..., 7Y in the graph are satisfied, the procedure embeds the

end-point ¢; - in the’half-plane to the left of the directed line joining O to O, - -Sﬁch a mapping
: ‘ )

doés, not contradict the fact that the end-points of Q and of LEP(/,r) satisfy the condition of

lemma 4.6-9. Exsct mapping of ¢; _, is then selected to satisly its oonnectlvity in the graph.

The Ioons in the procedure EMBED-A-CHAIN, which check that lemmas 4.6-0 are satisfied,
oan be”in'tpbmented in quadratic running time. We can’ conclude that the procedure, u;d also
the algorithm RECOGNIZE-CONVEX-FANS, runs in O(n?*) time.

“ ) QED.

-

4.4. Discussion of the General Problem

7\, .
In the previous section we studied the problem of embedding a graph G, with a given

hamiltonian cycle, as the visibility graph of a convex fan and presented a polynomial aigorithm

for reporting such an embedding, if one exists. This problem generalizes naturally in two ways.

'

7 . 3 ’ . S
+
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One generalization is Given égraph, with a knowﬁl hamiltonian cycle, check whether it can
be embedded in the plane as the visibility graph of a simple polygon. Meisters [Mei] proved

that a simple polygon has at least two ears, an ear is 2 convex vertex with the extra property

F.

that its two neighbours on the boundary of the polygon are visible It follows directly from

Meisters’ result that every visibility graph of a simple polygon has at least one induced
R subgraph. which 1s the visibility graph of a convex lfan Therefore a necessary condition for
embedding a graph G of order n, with a given hamiltonian cycle, as the visibility graph of a
simx;le polygon is that there exists a lgbelling of of the vertices vy, v,..., v, and a

correiponding sequence of graphs G,, G,. ., G, such that:

WG, «G

(2) If Vis=(v, . v,z...' . vy ) is the sequence of nodes in G; adjacent to v, .mmxfd in the same
. ordle as they app,ea; in the given hamiltonian cycle, then ‘(v, \Vis,v; } is a hamiltonlan cycle in

(3) The induced subgraph on v, and Vis is the visibility graph of a conve;( fan.

i T { (4) The graph G, ,, is obtained from G by deleting v, together with all the incident edges.

Pl
Finding the sufficient condition(s) for a graph with a known hamiltonian cycle to be the

\{jsibility of a simple polygon, equivalently designing an embedding algorithrﬁ, is an open
roblem Unlike the procedure RECOGNIZE-CONVEX-FANS, where a decomposition criterion
has been devised for the case of .a convex fan, an algorithm for this generalization must be

capable of resolving the interaction between two ah:eady embedded simple polygons to form a

new polygon.

E ) A second generalization is: Given a graph ‘check whether it can be embec}ded in the plane as
the visibility graph of a convex fan One may attempt to find a subset of the vertices V'
whose deletion, together with the kernel point, decomposes the graph into ]V' |+1 components,
check ghe feasibility of embeddmg the nodes of V’ , and then proceed to process each

' ( ] component sepafately. Unflortunately, there may nof exist such subset of vertices in the "
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’

visibility graph of a convex fan. In this case, the end-points of any edge In the inph may be

(~ selected as the two neighbours of the kernel point on the boundary of the polygon. Using the

nine vertices graph shown in Figure 4.15-a as a building block, where at least two edges can be .

selected, a graph of order n with 2"/% choices can be constructed. An example of a graph of
order seventeen which has at least four such choices is given in Figure 4.15-b. Therefore an
algorithm for solvlni the problem based on attempting all possible choices requires O(2").

However It is still an open problem to find the complexity of the problem itself.
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Figure' 4.2
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®

Figure 4.3
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Figure 4.4
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Figure 4.5

(left poiny)pi

maximal diagénal

1

P, ( kernel point )

point)
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Figure 4.6
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)

S ' procedure REPORT-MAX-DIAG(G)

- REPORT-AND-CHECK ( G, k, RightLabel);
" else.
~ terminale unsuccessfully “the mph cannot be embodded as the visibility graph of a
‘ ( convex fan” ,
.} end REPORT-AND-CHECK . ' .

76 . Recogizing Visibility Graphs of Simple Polygons ~

sapul: A zriph G==x(V.E) of order n with the vertices’ labeled such that the sequence l(&,, g
& . vy, ¥,) is » hamiltonian cycle of G. :
. : S ’

oulput: Alist of the maximal diagonals of the graph G. |

’%
method: ) . !
procedure REPORT—AND-CHECK (G. Letthbel.RkhtLa.bol) . o
/
local vanablea o . \

"The largest isbel k of & vertex in the sequence (v,,,,w -+» UNiphtiabel ) CORREcCtOd
Vet taiel 5 % '

[
&

"The ln'duced subgraph G, on vertices of the sequence (YLeftLabad+2e - T ):

The induced subgraph G, on vertices of the sequence (v ... Upipherate );

!

if Do vertex in G 1xcept v, is connected to a vertex in G4 then

if G, is not empty then
R.E{PORT—AND—CHECK ( G, LeftLabel+1, k-1);
. if G4 is not empty then

Jori=2to n do :
arrange the adjacent vertices with labels greater than | in increasing Ofdel' of their labels;

) REPORT-AND-CHECK (G,2,n);

end REPORT-MAX-DIAG: : - , .

Figure 4.11
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/f\;.ﬁ: EMBED-A-CHAIN (C) -

?s
ter d; wa node in the hierarchy.

\ Membeddmcofmsseqnenceofend-pdnuonhcmumnldnmhaond-themotthc
Clnthehlermhy
’ locel verisbles. }
The sequénce Q = (44 G4y Qv ) Of end-points of the maximal diagonais stored as the sons of the
. node C in the hierarchy. — N

The left end-point 1 of the maximal diagonal stored in the node C.
The right end-point r of the maximal diagonal stored in the node C.

method: ‘ q
add i to the list LEP ' !
add r to the list REP

4

for each end-point p tn LEP(C) do

i p and end-points of Q do not satisfy lemmas 4.6-Tthen ' ) -
. terminate snswucceasfully ““the graph cannot be embedded as the visibility mh of a convex fan”
end for

Jor each end-point p in REP(C) do
s/ p and end-points of Q do not satisfy lemma 4.8-7then .
terminate wnsuccessfully ““the graph cannot be embedded as the visibility graph of a convex fan”
end for

Jor each vertex @ nQ do
m «~ smallest mdex between vertices in LEP(C) such that lep,, and g, are visible

' ifQ and lep |, lep,,. ., itp, do not satisfy lemma 4.8 n
or Q and lepy, ... lq)...l do not satisfy lemma 4.9 then |

[ terminate wnauccessfully ““the graph cannot be embedded as the visibility graph of a convex fan”
end for

Jor each vertex @, inQ do
' m + smallest index between vertices in REP(C) such that rep, and s, are visible
$fQ and rep,, rep,,..., rep, do not satisfy lemma 4.8
or Q and repy, , .., rtp,, do not satisfy lemma 4.9 then
terminate unsuccessfully “*the graph cannot be embedded as the visibility graph of a convex fan”
end for

Starting at ¢y , embed vertices of the sequence Q as a convex chain such that:
point O lies on ts concave side.
f" ~ ', svertex Is visible from previously mapped point If and only if they are connected in G.

for each son CSON of the node C in the hierarchy do
EMBED-A-CHAIN (CSON)
end for
remove | from the list LEP
remove r from the list REP
end EMBED-A-CHAIN ’

Figure 4.13
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Figure 4.14
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Figure 4.15-a

At least two

choices 1,1’

and 3,1'
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Figure 4.15-b \ .

s

81

Every vertex in the top row is connected to all the vertices in the bottom row, ,and

the vertex 0 is connected to

not drawn.

At least four choices for the first two maximal diagonals

1,1' 5,5'
1,1 ;5,77

we

3,1 ; 5,5'
3,1' 5’7'

we

the other sixteen vertices. However, those edges are

» ey
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5. Routing inside Simple Polygons
5.1. Introduction

The layout of a VLSI circuil is the specification of the posi.tlons of its components ami the
paths of wiresaon the chip. Due to the overwhelming sizes of ;ucb designs, a bottom-up
approach for solving the layout problem is usually adopted. At each level we are given
predesigned components of the circuit. Each component has terminals located along its
boundary, and each terminal is assoclated with a single network We have to place the

components (the placement problem) and paths of wires to interconnect the different networks

(the routing problem) on the chip, and form a component for the next level up

Szymanski [Szy] proved that the routing problem is NP-complete, and with Yannakakis -
[S&Y] showed that the problem remains NP-complete even in the special case of channel routing
and each network contains aly {we terminals. However, polynomial time optimal algorithms

¢

have been presented for restricted versions of the routing problem. Pinter [Pin] presented
polynomial algorithm for the restricted version or#:outing inside a T-shaped area, and with
Leiserson {L.&Pin] described polynomial algorithm for the river rouling problem, a special case of
the channel routing problem where networks are mapped into non-intersecting wires in the
channel. Other polynomial optimal algorithms for the river routing problem have been
described in [DZK&S&S&U,S&D,Tom)]. On the other hand, many provably good polynomial
approximation algorithms were designed for the channel routing problem (examples are
[B&B&L,R&ZB&M,R&F]), and used as a part‘dr a complete system for solving the routing

problem

)

In this chapter we use the hierarchical description of simple polygons, based on a

decomposition into rectangles, to design an efficient algorithm for solving & restricted version of
-

the routing problem, where the\terminals are located on the boundary of a closed region and

wires are to be mapped inside the closed region. The hierarchical description Is used to provide

an ordering for processing the rectangles and to efficiently report the networks to be-youted in

1

-~

i

\

AT
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Q
°

/
each rectangie, which are then processed using one of the existing heuristics.

’

5.2. Routing in a General Rectilinear Channel

Given a rectthnear simple polygon R (1¢e : the edges are either vertical or horizontal) with n
vertices, and a set of m networks Net [ Net, Net, connecting pairs of terminals (a,. b))
t= 1,2, ,m Each termmal 15 desceribed by its cartesian coordinates and the label of the edge
of the polygon R which contains it It 1s required to find a mapping of the networhs into the
interior of R as a collection « . horizontal and/or verlical line segments where direction-changes
occur only at end-points of the line seginents Horizontal (vertical) line segments should be
separated by a minimum distance imposed by the fabrication process However horizontal and
vertical ine segments of different networks can intersect at any interior point. An algorithm to

compute such a mapping proceeds in four distinct steps

)

Step 1 The oluect.,we of this step 1s to compute a set of non-intersecting chords which
decomposes the interior of the rectilinear polygon R 1nto a set of rectangles. We use the plane
sweep paradigm (refer to [S&H| and [N&P] for a detailed description) to report the required
(I;h’ords The algorithm sorts the vertices of the polygon in decreasing order with respect to th;nr
y-coordinates and then sweeps a horizontal hine 1n the vertical direction from top to bottom. At
each position of the sweeping line, the vertical edges intersecting 1t are kept in sorted order with
respect to the x-axis When the sweeping line encounters a horizontal edge, the algorithm
reports the necessary chord(s), if any, rqquxred to decompose the interior of R into rectangles

Aflter end-points of the chords are computed, the algorithm updates the list of vertical edges

l

- intersecting the sweeping plane

Step 2 The algorithm uses the procedure BUILD-HIER-DESC, described in chapter 2, to

3

compute the hierarchical description of R based on the chords computed 1n step 1.

Step 3 Starting at an arbitrary point on the boundary of R, the algorithm traverses the
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boundary and computes the distances of the terrmnals and end points of the decomposition
chords from the starting pomt When either a terminal or an end-point of a chord, say ¢, is
encountered the algorithm increments the traversed distance and assigns the new value to the

encountered point as a label, denoted by d This process maps the networks and the

]
decomposition chords mnto, a set of .mtvrvals on the real line which will be used i step 4 to
report éﬂ‘ic:ently the networks to be routed in each rectangle Using the distance from t,hé
starting pomt as the search key, the termnals and end points are stored 1n a data structure

SBD capable of performing concatenable gqueue operations |[AZH&U] efficiently A 2-3 tree is

an appropriate choice

Step 4 Each leaf node 1n the hierarchical representation of the polygon R, denoted by HIER-
DESC(R), represents a rectangle such that exactly one of its boundaries is one of the chords

. ¢
reported in step 1 During the process of routing networks in such a rectangle, termital

~

positions of the networks that cross the only chord are not fixed

The algorithm selects a leal node {t e, a node with degree one), extracts the networks to be
routed in the corresponding rectangle from the data structure SBD», and attempts to embed the
selected networks [t then deletes the leal node and the incident edge which results 1n a
hierarchical representation of a smaller polygon, and updates the data structure SBD to delete

the networks which have been completely embedded. The process 15 then repeated until all the

networks are completely routed

Let v be a leal node of the hierarchy and (q,. ¢4) be the chord corresponding to its

incident edge such that d,,l is less than d,,g To report the networks to be routed inside the

selected rectangle, the algorithm searches the data structure SBD and deletes the entries with

distances in the interval between dq‘ 4and dqﬁ. Using a 2-3 tree, such an operation can bhe

performed in time proportional to log(|SBD [). Let N = {Net, Net,, . , Net,, } be the set of

"networks to be routed completely in the selected rectangle, and let N'==

{Net' ,,Net' ,, .., Net! mn} be the set of networks with only one terminal on the boundary of
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»

the welected rectangle. ‘Using:thie crossing placer (Riv_pp. 479l we compute s fixed términal,

location on the chord (q,. ¢q4) for each network in the set N’, and then use a provably good
spproximate algorithm [R&F] for routing networks of N (U N’ inside the rectangular chaanel.
Finally, the newly fixed crossing points of the N' networks are inserted into the data structure

N

SBD .

-This algorithm provides an Interactive tool, for » human designer, which is capable of
efficiently performing the tedious and time consuming task of detailed routing in a rectilinear
channel. Decomposing the routing area on the chip into rectilinear channels and selecting the
petworks to be routed inside each channel depend on lnier—modules com'xnunicatlons and.\,h

usually performed by the circuit designer.
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8. Shortest Route inside Simple Polygons J -

8.1. Introduction . '

In this chapter we study the use of the decomposition strategy in reporting the shortest

i -

route between two points, s and ¢, inside a simple polygon P.

<

One method for solving the problem is to compute the required path one line-segment at-a-
time. First we compute the visibility polygon of s, VP(P,s). If { € VP(P,s), then the shortest
path is the line-segment joining s to & 'O't;herwise. we find the hiddlen region w‘hich contains the
point { together with the corresponding window (i.e., the chord which separates the hidden
region from the visibility polygon of s), gud then compute the visibility polygon of the point
window ,. Refer to Figure 6 1 for illustration 'The later step is then repeated until the point ¢
lies in the visible region Since the visibility polygon of a point can be computed in linear time
[E&A, Lee] The shortest route can be computed in time O(kn), where k i1s the number of line-

segments in the path However, k can be of O(n) which results in an O(n?) algorithm.

€

In section 6 2 we present a linear time, and thus optimal, algorithm for computing the
shortest route inside a monotone polygon For the case of a simple polygon with n vertices,
Chazelle [Cha2} and Lee and Preparata [L&P2| presented algorithms for computing the shortest
route between two pomnts After computing a triangulation of the polygon in O(nlogn) time,
both algorithms checks every triangulation edge to report the edges which 1nﬁersect. the shortest
route aqd then proceed to compute the shortest route In section 6.3 we describ’e a different

{
algorithm for computing the shortest route between two interior points After computing the

hierarchical description in O(nlogn) time, the algorithm searches 1t to report the sequence of

monotone components which contains the shortest route Compared to the previous algorithms

[Cha2,L&P2], the number of edges checked wher; searching the hierarchical description 1s much’

‘smaller than the number of edges in the triangulation of the polygon. The algorithm then uses

the method developed 1n section 6 2 to compute the shortest route 1n time proportional to the

number of vertices in the reported sequence of components. Applications of the shortest route

E)

-
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slgorithms to an optimization problem and to a separability problem are discussed in

section 6.4. ‘ \

V2 6.2. An Algorithm for Computing the Shortest Route inside a Monotone Polygon

I

Given a simple polyion M, of n ve\rtices, that is monotone with respect to the y axis and

two interior points s and ¢, it is required to compute the shortest route between them which lie

completely inside M. The algorithm proceeds as follows'

-

v -
»

e

‘The algorithm partitions the polygon M into two compbnents M, and M,, such that
vertices of M 1 lie above s and vertices of M, lie b.elow’ s, and computes the two corresponding
extreme points EXTREME, and EXTREMEg . It then selects the component which contains
‘the point ¢ Through the rollpwing descriptio'n, we will assume that M, has been selected. The

o case of t € M, is similar and its description 1s omitted. “The algorithm then scans the vertices in
order or'their y coordinates maintaining a planted tree SPTree (i.e, a rooted tree in which the
relative order of the subtrees of t;ach node is part of its structure) The root of SPTree
represents the point s, each node repres;nts a scanned vertex of t..he polygon and its path to the )
 root represents the shortest route from the point s to the corresponding vertex. The sons of

tx

~ each node in SPTree are stored in a doubly linked list i clock wise angular order around their

o Jather node. In add?ion the algorithm keeps a pointer T to the last reported turning point on

, a pointer to the node in the subtree rooted at T which corresponds to the

~

last, considered vertex of the chain CN(EXTREMEg, EXTREME, ), denoted by LastLeft, a

the route from s to

pointer to the node 1n the subtree rooted at T which correéponds to the last considered vertex

- }
of the chain CN(EXTREME, , EXTREMEg), denoted by LastRight, a pointer to the node in

N ‘

the subtree rooted at T with the most clockwise angle and correspdnds to a vertex of the chain

CN(EXTREMEy, EXTREME ), dpnoted by LEFT, and a pointer to the node in the subtree

rooted at T with the most counterclockwise angle and corresponds to a vertex of the chain

CN(EXTREvMEA, EXTREMEpR), denoted by RIGHT (an illustrative example is given in

Figure 8 2).
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When a new vertex In the chain CN(EXTREMEE, E;(TREWEA) is encountered, the

4

i dgomhm checks its position relative to the directed line joining LastLeft to its father. If it lies

to the right of the directed line, then the new vertex is added as the son of-Lastleft and”th'e’

pointer LastLelt is updated. Otherwise, the algorithm checks its position relative to the

E}

directed line Jjoining RIGHT to T. If it lies to the right of the directed line, then the algorithm -

the new vertex and updates the pointers LEFT and LastLeft. Otherwise, it searches the path.
from RIGHT to LastRight in the tree SPTree -for the appropriate position and updates the

polnters T, LEFT and LutLeft A vertex in the chain CN(EXTREWA, EXTREME,) is

processed in a similar rashlon Wlth the roles of ‘LEFT and RIGHT, and LastLeft and LastRi‘ght -

I
interchanged. The scanning process continues until the point ¢ is encountered. A complete

description of this step, procedure GenSPTree, iy shown in Figure 8.3.

— /

The shortest route can now be reported by climbing the tree back to the root.

4

Anl\ryah of the Algorithm T -

o

‘We first prove the correctness of the algorithm, and then discuss its time performq,nce :ln i

&

* B

Lemma 6.1 Let Q = ¢, ¢4,... be a simple chain that is monotone with respect to the y axis, as

shown in Figure 8.4. The shortest route from ¢, to ¢; which lies éo}npletély on the right (left)

‘hand side of Q is the sequence of convex hull edges which lie on the right (left) hand side of Q,

®

denoted by RCH(1,3) (LCH(1,9)).

|

Proof Straightforward. . } s

,/ . - - -
Lemma 6.2 During the scanning of/‘he“monocone subpolygon M ,, thé shortest route from the

point T to each vertex of- CN(EXTREMEp, LastLert) with y coordinates larger than that of the ~

point T consists of vertices which belong to that chain. |

a

searches the path from LastLeft 1o T in the tree SPTree for the appropriate position to insert -

-

o
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Proof By comstrection, RIGHT # & poiatar to the most counter-clockwiss of the processed
vertices of CN(LastRight, EXTREMER). Therefore, the procused vertices of CN{LastRight,
EXTREME, ) e t the kft of the directed Lse jolaing LEPT t the poiat T.. The lemma the
follows directly from this constraction and lemma. 8.1. '

J QE.D.
Lemms 4.3 Prior to the execution of each iteration in the procedure GenSPTree, the paths
from the root of the tree SPTree to the other nodes reprosent the shortest routes from the point

sto the ";ﬁc- of the polygon considered, 30 far.

Proof Initially the tree SPTree costains ome node, which corresponds to the poiat o, and the
statement of the lemmsa is correct. Now assume that the lemma is utimod prior to processing
the vertex m; € CN(HTRM;, EXTREME, ), we will show that the procedure GenSPTree
inserts s node in the tree SPTree such that the path rrozn its root to the new node represents
the' shortest route from s to the vertex my; inside the polygon M and correctly updates the
pointers.
o
If m; lies to the right of the directed line connecting RIGHT to T, then the shortest rom:;
. from m; to T consists of vertices of the chain CN(EXTREMEy;, EXTREME,) as shown in
lemma 8.2. If follows from the monotonicity of M and lemma 6.1, that shortest route from
Lastleft to T forms a convex chain which lies completely below the vertex m;. Therefore it
suffices to search the convex chain forming the shortest route from LastLeft to T for its point of

support corresponding to m; as the sppropriate father node of a new node corresponding to m; .

It is easy to see that the shortest route from m; to T is also a convex chain and that no new

turning point on the route to ¢ need be created. “Therefore the procedure does not change the

pointer to T, Iast reported turning point in the route from & to ¢ P

. If m; lies to the left of the directed line connecting RIGHT to T, then it suffices to search _ -

the convex chain forming" the shortest rohte from RIGHT to LastRight for its point of support

1

corresponding to m;, say w, as the appropriate father node of a new node correaponding to m;.

¥

NS ;
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° ]

Again it is clear that the shortest route from m; to T is also a convex chain and that the

shortest route from s to ¢ must pass through the vertex w. Therefore the procedu”re changes T

’

to point to ‘che vertex w before proceeding to process the next vertex.

-

The case:of 'm,~ € CN(EXTREME, , EXTREMERg) is similar and its analysis is omitted.
o B S

Theorem 8.4 Procedure GenSPTree.computes the shortest route from s to ¢ correctl} in linear

-

¥

2

running time-

L3

B .
Proof Correciness of the reported shortest route has been in lemmas 6.1-6.3. We analyze the

performance of the procedure by cdmputing the maximum‘number of times it processes each
., .

vertex of the polygon M.

* +
‘ Each vertex is added to the SPTree once. When GenSPTree processés a new vertex it
/
either climbs SPTree from a leal node (pointed to by LastLeft or LastRight) towards the
- ~
current turning point (pointed to by T) or descends from T towards a leal node until a node,

say W, is found to be the appropriate father node of the new vertex. In the first case, nodes in

the subtree rooted at w will not be examined by the procedure in the future iterations. In the
3

bl

second case only nodes in the subtree routed at w, which have not been examined in the current
iteration, will be examined in future iterations. Therefore we conclude that the procedure runs
in Ofn) time since each vertex is processed at most three times.

Q.E.D.

8.3. An Algorithm for Computing the Shortest Route inside a Simple Polygon

» 3

Given a simple polygon P of n vertices and two interior points s and {, we describe the use
of a hierarchical description of P based on a decomposition into monotone components to
develop an algorithm for computing the shortest internal path between two points in O(nlogn)

time. The algorithm proceeds as follows:

Pt
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3 b e —

Stgp 1 Preprocess the polygon P by decomposing it'into a set of componenti that are monotone

with respect to a vértical line JL&P1]. nrmnﬁ:mg the monotone chains for point location [L&P1],

»
’

and computing the hlerar?:h'ical description HIER_DESC(P) based on ths decomposition

-

Step 2 For each of the points s and f the algorithm searches the monotone chains for the

4

monotone component which contains i, a process which can be performed w O(log n;, and
marks the component which contains each point  The algorithm then searches the hierarchy for

the sequence of components which contains the shortest path from sto { and stores it i a deque,

~ -

data structure COMPS  Imitially the degue 1s empty  Starting al the top of HIER_DESC(P),
the algorithm checks whether the two marked componcnts are the same as the component

corresponding to the set difference between the current node and its sons, the current

] ,
component, or lie in the sub-hicrarchies of the current node  If the two components are the

same as the current component, then the algorithim inserts 1t in COAMPS and proceeds to
step 3. Il the two marked components lie in the same sub-lwerarchy, then the algorithm
descends to the corresponding son and repeats the process  Otherwise, 1t inseris the current

component into COMPS a the appropriate end (ie, such that the current component and the

()

component at that cnd share a chord). descends to the corresponding son(s) and repeat the

search process. . .
o : : -

Step 3:Let COMPS,, COMPS,, .. , COMPS, be the monotone components reporicd in the

previous step, where s lies on an edge of COAMPS, and ! hies on an edge of COMPS;, and let

Y

GATES be the set of chords separating the components i COMPS such that GAfE,

separates the componcnbs' COMPS; and COMPS, , .

i
The algorithm partitions COMPS, into two components Af, and M ,, such that vertices of

%

. 3
M, lie above s and vertices of M, e below s, and computes the two corresponding extreme
. @

points EXTREME, and EXTREMER 1 then selects the part which contams GATE | as an

' edge. and scan 1ts vertices in order of their y coordinates maintaining the shortest rouges from s

to the different vertices in a planted tree SPTree and the pointers T, LEFT, RIGHT, LastLeft

. '

°f



[N

o : CoC 7

. Shortest Internal Path . NI 03

J s // . , ,
and LastRight as described in the previous section’ ---- .

®
i}

. o | \ .

¥ When a new verteéx, say u, 15 the'end-point of a GA TE the algorithm first processes it as a
: o v .
vertex of the current component and inserts 1t in SPTree in the appropriate place. It then

partitions the new component into NM, and NM, such that vertices of NM, lie abovesu and
'S ° -
vertices of NAf, lie below u and sclects the sub-component which contains the gate to the
-~

v [y

foﬂowing component as an-edge. There are two cases to consider (Fefer.to Figure 6 5 for an
. 4 .1 o
illustration) . . , -

(1) if the selected sub-component together with the current %omponent form a \
'] N ¥
. monotone _ polygon, then the algorithm proceeds in scanning the vertices as

@ v
, -

previously described

[
-

. » .
° (2) if the selected sub-component together with the current component do not form a

5 o

-monotone polygon, then the algorithm changes the pointer T" to point to the vertex
. - . e}

u and also,updates the appropriate”pointers It then scans the vertices of the

¥
selected su*b-component as previously described

~

d )
-

€
The scanning process continues until the point ¢ is processed At this time, the shortest path
. = )
canh be reported by cimbing the tiee back to the root

-

We now state the main result of this chapte';' in theorem 6.5 , Tlhe proof lollows the same

steps of theorem 6.4, and is thus omitted. .

v

¢ @

.

"= L1 L

Theorem 8.5 After an O(nlogn) time preprocessing of the simple polygon P, the shdrtest route

between two points inside a simple polygon can be computed in linear runnihg time.

. > .
L} ' N

F o
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6.4..Applications .
“ . hel
. In this section we discuss the use of the shortest route procedures {n developing efficient -
algorithms for an optimization problem and for other geometric problems. ;o : ’ ,
- - \ ” ‘3 ;
. o i
" A) A Control Problem of Bellmnni L N !

Let z; be Bi;e quantity of some item on hard at time i. Due to stirition, the amount on

d

"hand at time & +1 will be ¢z, unless augmented or diminished by an amount ¥;- The objective /
I to minimize $y, subject to the constraints that:

g, <3 < b L=01,.,n With ag = by, a, = b,

it Sy~

Dantzig [Dan] presented a geometric interpretation .of the problem as follows (Refer to
5 R
Figure 6.8)! ) :
map each lower constraint int,oache point (c"' , & ¢ ). . .
5 . . I
* map_ each upper constraint into the point (¢, b 9\" ).

» [} g
- place a “‘striig” between the end points, (¢9, zq) anci (e, 1, ¢ ™), threading thrdugh the : ‘

- - . i
¢ -

constraints points and "dfa.w" tight.
X . s .

L4 -

Dantzig then proved that the valugs of z; | ==0,1,..,n uniquely deflne the optimal solution

and preésented an O(n?) algorithm for computing those values. Since the tight position of the
v , " 'ﬂo

string represents the shorteat route between the two end points which is threaded through the . ‘e

constraints points, we can use the procedure GenSP'T'ree to compute it O(n) time.
. 3 ~, [N

- ) } - i

B) Movable Separability of Simple Polygons : .

In chapter 3 we descrbed the use’ of the algorithm for computing the weak visibility

polygon from an edge In developing an efficient solution for the separability problem. We now

v

describe the use of the algorithm for computing the shorteat route in developing a simpler

-
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solution for the same problem. Toussaint [Tou3].showed that directions of t;zonotonlclgy of the

mlnimum-peri;.ne\ger polygon enclosing one of the polygens ai:d lying eomﬁleceiy outside the

‘o"ther define all possible directions for separating the two polygons with a single :nfnahtion.

[
a

-

To compute such a polygon, the following subproblem is _encountered (refer to
Figure 8.7(a)-(b) for illustration):

. -
«

Given two simple polygons, P and Q, such that Q'lies completely in the uw;rlor of P.

Compute the minimum-perimeter polygon which encloses Q, lies completely inside P

and has the edge (p;. pi,;) On its boundary., (i‘iou that some vertices may sppear

twice on the boundary of the resulting polygon.) ' - ’ A

»

A solution which uses the shortest internal route algorithm proceeds as follows:

r » 3

1) Find the vertex of Q, say g, furthest from the line passing through the edge (p;.

Pi+1), denoted by L v — . ’ ‘
"2) Find the closest intersection p&int of the half,-llne starting at ¢, and per‘pen'dicular to

L wi‘ih" the boundary of P, say X. . o ',
3) In the polygon (g,,, X Pis Pigpes X', q,,' q,,ﬂ),hcompute the shortest internal

-
-1
<

route from ¢q; to p; and from p; ., to qk' . The boundary of the required polygon is the
N -
unfon of the two routes together with the edge (p;, p; +1)-

r o

It is easy to see that the minimum-perimeter'polygon is computed in O((|P|+|Q]|) log (|P}+|Q}) ).

o
.

a2

’
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procedure GenSPTree (Ma,t) - o, v }
. -‘ ) . . . —y_ * .
, input . ' . - P .
A polygon M that is monotone with reapect to the y-axis, and two points, sand t, in M.
. ! o _
) oulput: g
A tree, SPTree, that contains the shortest patha from s to ¢ and to the vertices of M. ‘
method

q

«

Locate the two vertices with the maximum and minimum y-coordinates, EXTREME, and’
’ EXTREMEp respettively;

Decompose M into the two subpolygons:

M, whose
and*ng whose v

if tE M, then

rtices have y-coordinstes larger than that of ;
e3 have y-coordinates less than that of s;

I4

create a tree, SPTree, with s stored as its root;

®

)

cur-vertex «— the vertex of M, or the point ¢ ’ '
with the smallest y-coordinate '"‘"e than that of s;

“«r

_ Repeat ¥
case I: cur-vertex is a vertex of the chain CN(EXTREMEp EXTREME, ) a

. case la: cur-vertex lies to zﬁe right of the line connecting LastLeft to its father

tnsert cur-vertex as son of LastLeft;

-

cau' 15: cur-vercecx lies to the right of ;henllne connecting RIGHT to T

" search the path from LastLeft to T in the tree SPTree for a node such that cur-
vertex lies to the right of the line connecting the node to its father;
insert cur-vertex as son of the found node; v

’

, " . rcase lc: cur-verteX lies to the left of the line connecting RIGHT to T,

search the path ftom RIGHT to LastRight in the tree SPTree for a node such
that cur-vertex lies to the left of the line connecting the node to its father; .
insert cur-vertex as son of the found node;

- . % \
;

D

N
¥ e 3 g oot Sl isttid e n T st
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]

case £ cur-vertex is a vertex of the chain CN(EXTREME, EXTREMEp)

)

; case 2a: cur-vertex lies to the left of the line connecting LastRight to its father

snsert cur-vertex as son of LastRight; '

[

case 2: cur-vertex lies to the left of the line conneetln: LEFT to T

\\\ search the path from La.stRlzht to T in the tree SPTree for a node such that
\ cur-vertex lies to the left of the line connecting the node to its father: T
.tmcrt cur-vertex as son of the found node;

e

~

case f£¢: cur-vertex lies to the right of the line connecting LEFT to T
search the path from LEFT to LastLert in the tree SPTree for a node such that

cur-vertex lies to the right of the line connecting the node to its father:
snsert cur-verteX -as son of the found node;

cur-vertex «— vertex of M, or the point t with the next y-coordinate;

% t
Until cur-vertex == EXTREME 4 ) R
| o » (
clse {t € M;} . "
Details of these steps are similar to those of the ntepo for )zroce-lns M 1 and m thus
omitted. .

»

end GenSPTres .
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