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ABSTRACT

The perturbative regime of Quantum Chromodynamics (QCD) is considered
and certain aspects related with higher order corrections (HOC) are studied. Cer-
tain large correction terms in the perturbative expansion are determined, in par-
ticular for large transverse momentum (pr) direct photon production. The origin
of these terms is specified and simple forms, called K-factors, are provided (soft
gluon approach).

Furthermore, for processes initiated by 2 — 2 particle subprocesses the struc-
ture of the complete HOC is analyzed. It is shown that when structure functions
and/or fragmentation functions are involved, there is a gauge invariant part that
dominates HOC over a sizable kinematic range. Simple and general expressions
are derived allowing an easy calculation of this part. Also, it is shown that, under
certain approximations, this part reduces to the form of the simple K -factors.

Other aspects of HOC, in particular the dependence on the choice of scales,
are considered. Using complete HOC, detailed analysis of recent and old data on
large-pr direct photon production is carried out. The dependence of the form of
the gluon distribution on the choice of the scales (physical versus optimal scales)
is discussed and it is concluded that appreciable ambiguity in this distribution still

remains.
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RESUME

On considére le régime perturbatif de Chromodynamique Quantique (CDQ) et
on étudie quelques aspets des corrections de 'ordre supérieur (COS). On détermine
quelques grands termes des corrections de 'expansion perturbative, en particulier
pour la production des photons directs de grand moment d’impulsion (pr). On
précise la source des grands termes et on fournit des formes simples, ce qu'on
appele facteurs K (méthode des gluons mous).

En plus, pour des processus qui sont initiés par des sous-processus du type
particules 2 — 2, on analyse la structure des COS complets On montre que, pour
des réactions avec des fonctions de structure ou des fonctions de fragmentation, une
partie existe qui reste invariante sous des transformations de jauge et qui domine les
COS dans un domaine cinématique appréciable. On obtient des expressions simples
et générales qui permettent le calcul facile de cette partie. On montre aussi que,
avec quelques approximations, cette partie reproduit la forme simple des facteurs
K.

On considére aussi quelques autres aspets des COS, surtofit la dépendance sur
le choix des échelles. On fait en détail et avec des COS complets une analyse des
résultats d’expériences récentes et anciennes sur la production des photons directs
de grand pr. On considére la dépendance de la forme de la distribution des gluons
sur le choix des échelles (échelles physiques contre optimales) et on conclut qu'une

ambiguité appréciable sur cette distribution demeure.
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PREFACE

The first Part of the research in this Thesis was carried during 1979-82. After
having comnpleted, in 1979, my M.Sc. Thesis on large-pr hadron production in the
framework of Quantum Chromodynamics (QCD),(!) I continued working on other
problems of perturhative QCD, in particular large-pr direct photon production(®
as well as lepton-pair production.(®) At that time it was becoming evident that
large correction terins were present in the higher orders of the QCD perturbation
expansion. Part I 1s an effort to uuderstand the origin and the sources of certain
such terms, particularly in relation with large-pr direct photons.(#)=(8) It is based
on or makes some use of, Refs. (2)-(10).

At the beginning of 1983, because of personal reasons, I was obliged to in-
terrupt my research work, and I resumed research in 1988. During this period
complete higher order calculations had been carried for several processes. Still, in
many cases the resulting inclusive cross sections were very similar to those of Part i,
especially when physical renormalization and factorization scales (see Ch. 3) were
chosen. Then we set up to analyse certain of these cor.plete calculations and to
understand the structurc of higher order corrections (HOC). We realized that 1n a
very wide class of processes (those involving parton distribution and/or fragmen-
tation functions) there is a part that dominates the HOC (dominant part).(11101%
We have shown that this part is much easier to calculate than the complete HOC,
and we have provided simple and general expressions explicitly determining what
is perhaps the most dithcult portion (the gluon Bremsstrahlung contributions) to
this part. Finally, we have shown that with a certain approximation, this dominant
part reduces to the forms we have derived 1n Part I This research forms the Part
II of the Thesis.

Part III 1s also very recent work, but stems from a different motivation, which
we explain at the beginning of Ch. 8. Nevertheless, we make use of all the results
derived in Part II. Also, we indicate briefly the relation and relevance of certain
results and comparisons of Part I to the analysis of more recent experimental data

presented in Ch 8.




CHAPTER 1

INTRODUCTION

Quantum Chromoedynamics (QCD) is a theory of strong interactions. It is
the final outcome of two decades of continuous work and developments, both ex-
perimental and theoretical, in many areas of particle physics. QCD represents a
remarkable synthesis of 1deas and concepts developed about hadronic physics, like
quarks, gluons, color and asymptotic freedom. It emerges as a gauge theory of
quarks and gluons much as Quantum Electrodynamics (QED), the theory of elec-
tromagnetic interactions, 1s a guage theory of leptons and photons.

QCD has many common features with, as well as important differences from
QED The common features arise from the fact that both theories are renormaliz-
able guage theories. Their differences arise from the fact that QCD 1s a non-Abelian
guage theory, in contrast to QED which is an Abelian one. In fact, all the com-
plexity, subtletics and distinct properties of QCD arise either directly or indirectly
from its non-Abelian character This somehow includes the fact that only hadrons
composed of colored quarks and gluons are observed in nature and not their con-
stituents. Indeed, QCD implies that gluons can couple directly to other gluons,
whereas photons cannot couple directly to photons. Thus the strong forces trans-
mitted by gluons differ significantly from the electromagnetic forces transmitted by
photons. The most striking consequence is that the strength of the force between
constituents increases (decreases) as the distance increases (decreases).

This distinct feature of QCD suggests that only colorless states are allowed as
isolated particles, 1.e the observed hadrons. Neither quarks nor gluons can appear
in isolation; they can only exist within {(color-neutral) composites, the hadrons.
Then the strong forces between these hadrous are like the residual Van der Waals
forces between electrically neutral atoms, which are suppressed at large distances.
However, at shorter distances, they are strong enough to bind protons and neutrons

to form nuclei.
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The properties of hadrons and the dynamics of their constituents can be better
studied in high energy collisions, involving at least one hadron in the initial or
final state. In these collisions quarks and gluons can interact with themselves or
other particles, at very short distances. The strength of the force is described
by an effective coupling a, which becomes small at short distances. Otherwise
stated, with Q an energy scale characteristic of the collision, a, is a function of Q?,
(running coupling) such that a,(@*) — 0 for Q* — oco. This property of QCD has
been called asymptotic freedom; quarks and gluons appear as free when prompted

at very small distances or by large values of Q2.

The smallness of a,(Q?) at sufficiently large Q? offers the possibility of using
perturbation expansion n a,{Q?) to calculate physical quantities relevant to strong
interactions. Because of this possibility, much effort has been devoted by theorists
to determine corrections due to higher orders of the perturbation expansion, i.e. to
calculate inclusive cross sections beyond the leading order in the running coupling
as(Q?). Of course, because of asymptotic freedom, for very large values of the scale
Q. such higher order corrections (HOC) are expected to be unimportant. However,
for many of the presently available experimental data, a,(Q?) is not very small and
in many cases the next to leading order corrections are large, i.e. comparable to the
leading ocder (Born term). This situation arises in numerous processes, including

cases of paramount importance for testing QCD.

Thus calculations of QCD HOC were and remain an essential part of the theo-
retical effort to understand the physics of hadrons. These calculations, in particular
when the leading term is of O(a,) or higher, are very involved and the resulting ex-
pressions very coniplicated. Yet, in most of the cases, for a wide range of the
kinematic variables, the result is very simple: an overall cross section differing from

the Born by a slowly varying factor.

This fact suggests that perhaps there is a relatively simple part of the HOC
which dominates over a wide kinematic domain. Then it would be of interest to
look for such a part {dominant part), identify its origin and, if possible, determine

general procedures by which it can be calculated easily. Such a program could be
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useful in various directions. One direction is determining HOC for QCD subpro-
cesses of the type a+ b — ¢+ d+ e, where a,b,¢c,d, e stand for quarks, gluons or
photons; for such subprocesses, due to their complexity, HOC are hitherto com-
pletely unknown. Arother direction is 7oing beyond the next to leading order in
a,s(Q?). where HOC remain almost completely undetermined. Still another use of
determining the dominant part can be to check the results of existing calculations
of HOC; as we stated, these results are in general very complicated.

In the rest of this chapter we present in more technical terms some of the
basic features of Quantum Chromodynamics and in particular certain aspects of its
perturbative regime. We restrict our presentation to concepts and formulas which
may form a short framework for the work that follows. More details on these topics
and QCD in general can be found in several review articles('*)=(21} and textbooks

as e.g. of Refs. 22-25.
1.1 The QCD Lagrangian and its Main Features

The main idea leading to QCD has been the postulate that the symmetry
SU(N.) (N. =number of colors= 3) is a local rather than merely a global one. In
this way QCD emerges as a non-Abelian gauge theory.

The requirement of local SU(3) invariance is implemented by introducing
vector gauge fields A} (a = 1,...8) which correspond to the gluons, together
with the colored quark fermion fields ¢ (color index = 1,2.3 and flavor in-
dex 1 = 1,2,... Ny with Ny =number of flavors); the fields ¢; and A4}, transform
according to the defining (triplet) and adjoint (octet) representation of the SU(3)

group. With these fields one obtains the unrenormalized Lagrangian density

. 1 a a v
L = iy, Dby — mibapaf - JFmF. (1.1.1)

Here, and in the following, summation is understood over any type of repeated
indices (no matter whether they are Lorentz, quark flavor, quark or gluon color).

The constant my stands for the bare mass of the quark with flavor k.

11




P

In (1.1.1), the first term arises from the free fermion Lagrangian (without glu-
ons) by applying the principle of minimal coupling, according to which the ordinary

derivative, acting on the quark fields, is replaced by the covariant derivative:
Diy = 6apd” + ig(t*)ap A™; (1.1.2)

the second term corresponds to the “kinetic energy” of the gauge fields, with the

gluon feld tensor
F;:v = aqu - aVAZ - gfabcAzAf,- (1.1.3)
Both terms in (1.1.1) are invariant under local gauge transformations; their in-

finitesimal form is:

g7 — g™ = [6 — igea(t*)apla’ (1.1.4a)
AP 5 A = A 4 OPeq + g fapces AP, (1.1.4b)

where €, are arbitrary infinitesimal functions of the space-time point z.
In (1.1.2)- (1.1.4) the matrices (t*)as form the 3-dimensional representation
(defining) of the generators of the SU(3) group, and fgs. are the structure constants

of the associated algebra. The generators t?, satisfy the commutation relations
(82,8 = ¢ fape t°, (1.1.5)

and the matrices (¢%),g are normalized in the defining representation R by:

1

Trt*#’] = T(R)§°® , T(R) = 5 (1.1.6)

This trace appears in contributions of colored fermion loops.
Note that in Eqs. (1.1.2)—(1.1.4) there exists only one parameter g, owing to
gauge invariance. This is called the bare (unrenormalized) strong coupling constant.

Finally, in terms of £, the unrenormalized QCD Lagrangian density is:
Locp =L+ Lgs+ Lghost. (1.1.7)

Ly stands for the gauge fixing term, which :s required to insure a proper quantiza-

tion procedure. Lg4,5¢ stands for the Faddeev-Popov ghost term, which is required

12



to preserve unitarity (by completely eliminating the unphysical degrees of polariza-

tion of the gluon field).

For the class of covariant gauges, the gluon field is constrained by the Lorentz

condition 8% A3 = 0, or alternatively by the term

1
Lo = =5 (0" ALY (1.1.8)

where 1/¢ acts as a Lagrange multiplier. The parameter £ is called the gauge
parameter and can take any value. Particular important cases are { = 1 (Feynman
gauge) and { = 0 (Landau gauge). In the class of covariant gauges the ghost term

has the form

Lghost = ﬁc(apautsac + gfabcAZa“)"]a (119)

where 7® (a = 1, - - - 8) denotes a set of fictitious (unphysical) fields, called (Faddeev-
Popov) ghosts. They are scalar but anticommuting fields.

The necessity of introducing the above ghost fields and the associated term in
the Lagrangian is closely related to the non-Abelian character of the theory. E.g.
for an Abelian theory, fssc = 0 and thus Eq. (1.1.9) is independent of the gauge
fields; it simply describes free ghost propagation totally decoupled from the rest
of the theory. This means that in such theories, as e.g. in QED, the gauge fixing
term suffices to eliminate the unphysical degrees of freedom of the gauge boson. A
similar situation occurs also for non-Abelian theories, but for the class of physical
gauges which includes the important cases of axial and temporal ones. However,
calculations in these ghost free gauges are less straightforward than in the covariant
ones.

Unlike QED, where photons can interact with themselves only via electron
(charged fermion) loops, the QCD Lagrangian density gives rise to triple and qua-
tric gluon couplings. These gluon self-inte~actions are due to the presence of the
coupling constant g already at the level of the gluon ficld strength F}, in Eq. (1.1.3)
and they are due to the non-Abelian nature of the theory.

Starting from the total Lagrangian density, Locp, the Feynman rules can be

derived using standard techniques.(13):10:(22) The calculations of Feynman graphs
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in QCD is very similar to those in QED apart from certain more elaborate treat-
ments due to color (SU(3) group) factors and to the presence of new fields (ghosts)
and of new vertices (gluon self-interactions and gluon-ghost coupling).

Finally, we notice that the complete QCD Lagrangian density Eq. (1.1.7) al-
though not invariant under the transformations (1.1.4), is invariant under the gen-
eralized gauge transformations, or BRS (Becci-Rouet-Stora)(??) transformations, in
which the ghost fields are also transformed. This symmetry leads to the generalized
Ward-Takahashi or Slavnov-Taylor identities, which provide a powerful tool for the
demonstration of the renormalizability (to all orders) of QCD.(22):(23)

1.2 Asymptotic Freedom

As we stated, the QCD Lagrangian (1.1.7) describes a renormalizable field the-
ory. The renormalized coupling g() is a function of the renormalization scale y, at
which ultraviolet (UV) singularities appearing in loop contributions, are subtracted
and absorbed in the bare coupling g present in the Lagrangian.

We introduce the running coupling a,(u?) = ¢?(u?)/4m; its dependence on u
is described by a renormalization group equation (RGE). This equation attains a
simpler form when expressed in terms of the couplant «' = a,/7 (the expansion

parameter in perturbation theory). It is:

p@a_o;' = B(a') = —ba'*(1 + 0(a')) (1.2.1)

where the Callan-Symanzik beta function B(a') is perturbatively calculable. A one

loop calculation determines the coefficient b:
b= %[IICZ(A) — 4T(R)Ny] (1.2.2)

with T(R) as in Eq. (1.1.6). The other Casimir factor of the adjoint representation
of SU(N,) arises from gluon loops:

C2(A)bab = facafsca = C2(A) =N, (1.2.3)

14
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so that

1
b= Z(11N. - 2Ny) (1.2.4)

The solution of Eq. (1.2.1) is

aa(l‘g)
14 2 2\p 3
+ 2"(1,(/10) nﬁg

a,(1?) = (1.2.5)
From (1.2.4) it is evident that for Ny = 16, b is positive and hence a,(u?) decreases
with p?. In particular a,(y?) — 0 as u? — oo. This is the property of asymptotic

freedom.(2%)

Eq. (1.2.5) can be further simplified by introducing the parameter A:

A = po exp(— ) (1.2.6)

T
bors(p)
and setting u2 = @? where @ is a large momentum transfer. Then,

2

ay(@°) = L (1.2.7)

A is the fundamental scale of the theory and it is called the QCD parameter. The
value of A is a measure of the energy scale at which the running coupling becomes
large and the nonperturbative regime of QCD is entered. Since the strong inter-
actions must be strong enough to bind quarks inside the hadrons, A is expected
to be of the order of a typical hadron mass, i.e. between that of the pion and the
proton. Indeed experimental measurements give values in the range 0.15-0 5 GeV,
depending on the process, the renormalization scheme, and the order of the per-
turbation expansion used in fitting data.(?”) For momentum transfers much greater
than A, asymptotic freedom guarantees that perturbation theory applies. This in
turn justifies the expansion in Eq. (1.2.1) we started with

It should be noted that among all renormalizable field theories asymptotic
freedom is a unique property of the non-Abelian gauge theories For example in
the familiar gauge theory of QED the effective coupling a(y?) increases with p?.
To make this explicit, we consider Eq. (1.2.2) and for QED we take C2(A) = 0

15




(no analogue of gluon loops) and T(R)Ny — 3 € where summation runs over all

charged fermions (e, in units of electron charge':) with (2m,)? < u?. Then
bE’D=“‘2‘Ze2<O (1.2.8)
Q 3 : ' oo

in clear contradistinction with QCD and asymptotic freedom.

Now we present the solution of Eq. (1.2.1) with §(a) evaluated at two loops.
Thus with B(a’) == —ba"?(1 + ca') where

_ 17N2? — (5N, + 3CFr)Ny

c 195 (1.2.9)
with Cr = (N? — 1)/2N,, the solution is
2 n c Inln(u?/A?)
ay(p?) = 1 SRR 1.2.10
(W) ben%( b en(u/A) ) ( )

Here, A has been chosen so that there are no terms of 0(€nén(u?/A?)/n®(u/A));
it is:

s s
ca,(pf) bacs(p3)

Again A replaces the unknown «,(u?) and is determined from experiment. We

A= po(l+ )¢/® exp[— ]. (1.2.11)

notice that the coefficients & and ¢ in the expansion of #(«) are renormalization
scheme (and gauge) independent. In fact, this is only true for these two coefficients;

higher order terms in the expansion of #(a) do not share this property.
1.3 QCD Improved Parton Model

Asymptotic freedom provides a plausible justification for the successes of the
parton model (PM) and in particular for the approximate scaling observed in ep
deep inelastic scattering (DIS) and other experiments. In addition, perturbative
QCD predicts scale violations which have been observed in accurate DIS data over
a large domain of the kinematic variables. Also it modifies the original PM in such
a way that the resulting improved PM constitutes a self-consistent framework for

making definite predictions based on perturbative QCD.
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According to the PM, at high energy, collisions involving hadrons can be viewed
as due to incoherent elastic scattering of pointlike constituents, the partons, with
other partons (or elementary fields); in these collisions the partons are treated as

free particles.(28)

This picture is best illustrated by considering electron nucleonn DIS. Here an
energetic virtual photon 4*, with large momentum transfer squared Q?, interacts
with one of the quarks of the nucleon (Fig. 1(a)); this quark is considered as non
interacting with other constituents of the hadron. This behaviour is justified as
follows (impulse approximation): In the C.M. frame of the colliding particles, time
dilation slows down processes in the hadron, so that they typically occur on a rather
long time scale of 0(Q/m% ) where my is the nucleon mass. However, the scattering
takes place on a much shorter time scale of 0(1/Q). This implies that the hadron
may be regarded as an assembly of non interacting point like constituents.

Since the hadron in the C.M. frame is ultrarelativistic, partons are regarded
as massless and moving parallel to the hadron, each with a certaia fraction z of its
momentum. Then it follows that the structure function of the hadron is obtained by
the structure function of the parton and by summing over all parton types weighted
by their density.

Denote by f,/(z) the probability density to find within a hadron H a parton of

type 1, carrying a fraction z of hadron’s momentum (parton distribution function).
yp ying p

Then one obtains

1
do(P) = Z/da:f,/”(x)d&‘(:cP) (1.3.1)
Yo

where doff (do*) denotes the y*-hadron (—t type parton) differential cross section.
PM ideas as above are generalized and applied to other hard scattering pro-
cesses involving hadrons.(?®) The corresponding differential cross section is ex-

pressed in a factorized form as in Eq. (1.3.1). E.g. for the inclusive process of

Fig. 2(a)
Hy(Py) + Hy(P;) - H(P)+ X (1.3.2)

17
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one writes:

1
o3Py, Po,P) = 3 [ dzsdeadstiym, (22)fyyma (22467 (b1, o, )i ()

‘)Jyk 0

(1.3.3)

where dg}’ is the differential cross section for the subprocess i + j — k + z, with
partons 1, j, and k carrying momenta p; = z1.P,p2 = 2P, and p = P/z respec-
tively. Here, Dy /x(2) denotes the probability density for the scattered parton k
to fragment into a hadron H carrying a fraction z of parton’s mmomentum (parton
fragmentation function).

In the PM, distribution and fragmentation functions were assumed to scale
(independent of any energy scale ()). Also, partons were originally identified with
quarks.

Now, one identifies partons with quarks and gluons, and computes dé}’ of Eq.
(1.3.3) perturbatively in QCD. The simplest procedure is to take the QCD lowest
order parton-parton subprocesses (Born terms). Then 1n general, contributions will
arise corresponding to one or more of 1, 3, k being glions (Fig 2(b)). This is the
first QCD modification to the original PM. Next, one may calculate HOC of d&}’
in terms of the appropriate Feynman graphs (cf Figs. 1(b) and 2(c)).

However, the perturbative expansion of d&, in the running coupling constant
as(Q?), contains terms proportional to a,(Q?)€n(Q?/u?) at the next to leading
order, and terms ~ a?(Q?)n™(Q*/u?) with n < m < 1 at order n; here p is a
regularizasion mass scale. These terms. in the limit of interest, Q%/u? > 1 (or
p — 0), spoil the naive use of perturbation theory.

The key point in handling these terms was the observation that they arise from
kinematic configurations corresponding to collinear production of a parton from
another parton. Such configurations do not correspond to hard scattering, and,
in position space, lead to propagation of partons over long times and distances.
Therefore, the divergent pieces may be taken as parts of the distribution and/or
fragmentation functions describing long distance effects.

To this end, the following procedure, called factorization of mass singularities,

18
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is applied in QCD at any order of perturbation theory:(29)-(31)
First, consider a subprocess with only one incoming parton leg (Eq. 1.3.1).

Then the corresponding parton cross section d6* calculated at any order in a,(Q?)

is written in the form:

d5'(p) = 3 / dBT (8 )da" (Bp) (13.4)

where Iy /, includes all the leading and subleading logarithms of Q?/u?; the coef-
ficients of the corresponding divergent terms are process independent functions of
B. Then the cross section do'*’ is finite in the limit of massless partons (u — 0).
Thus the parton cross section factorizes into a finite plece times an infrared
divergent factor, which can be absorbed in the parton distribution function. Indeed,

using (1.3.4) the hadronic cross section, Eq. (1.3.1), is written

1
o (P) = Z/dmf,/n(:c,Qz)do"(xP) (1.3.5)
where

f:/H Q2) = Z/ 1/1 (.Bv )fl /H( ) (136)

In this way the singularities disappear into renormalized (i.e. physically measur-
able and finite) quantities which are the redefined distribution functions f(z,Q?).
This procedure has also introduced a Q?-dependence (scale breaking) into these
functions, and shows how scaling is violated in QCD.

A similar procedure is applied for a subprocess with an outgoing parton leg,

leading to a redefinition of the fragmentation function:
1
d z z
Dyi(z,Q%) = Z/j@DH/k’(B)Gk'/k(ﬂa %) (1.3.7)
kit

where the singular part of G/ (8, %;) 1s again process independent.
The above procedures are applied to each incoming or outgoing parton leg,
associated with observed hadrons, in any process for which HOC are taken into ac-

count. After factorization of the mass singularities, the final hadronic cross section
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is given by an expression similar to the PM one, but with now obvious modifica-
tions. E.g. referring to the process (1.3.2), the final result is given by Eq. (1.3.3)
with distribution and fragmentation functions replaced by the corresponding scale
violating ones and with d6,’ replaced by the finite d; 2. (W {Compare also (1.3. 5)
to (1.3.1)). This last cross section admits a well behaved series expansion in a,(Q?)
and can be extracted, at any order, from the corresponding dé in accord with the
above procedures.

At lowest order dé' = d&, and this is uniquely defined. At higher orders,
however, dé' involves some arbitrariness since a priori there is no way of defining
completely the non-divergent part of the infinite factors I'y/y and/or G /x ex-
tracted from dé (cf. Eq. (1.3.4)). This part may also be regularization prescription
dependent, reflecting a similar dependence in dé’.

To be more specific we consider the singular functions I,;,. At next to leading

order they have the form:

< -2 py @ buge)  (139)

(e, %) = 6,6(1 )
J7
where the coefficients P,,(z) of the singular terms are process and regularization
prescription independent. These are the Altarelli-Parisi split functions.(®?) The
non-diverging piece u,,(z) is arbitrary and, in general, regularization prescription
dependent. One way to fix it, is to define the HOC in dé’ to be zero in some reference
process used to extract the parton distribution f,,p (z, @?). Then, predictions made
with the same conventions, for any other process, are prescription independent. The
same procednure can be applied for fragmentation functions and/or higher order
terms.
Finally, we notice that in the leading logarithm approximation (and all or-
ders in a,(Q?)), the renormalized parton distributions satisfy the Altarelli-Parisi

evolution equations:(3?)

d' ’ 2 a d
f/;;f,zg )_ ¢ Z/ 2P,() f,/u(-— Q*) (1.3.9)
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where i denotes a quark or antiquark (of any flavor) or a gluon, and the summation
runs over all parton types. Notice that in this surnmation, terms corresponding
to 2, j being a ¢, ¢ pair, or a pair of quarks (or antiquarks) with different flavor,
give vanishing contributions; for such terms P,; = 0. The same is true for (1.3.8).
However, beyond the next to leading order, such terms also contribute(?.

Similar equations are valid for the evolution of the fragmentation functions.
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CHAPTER 2

DIRECT PHOTON PRODUCTION AND
THE SOFT GLUON APPROACH

In this Part we present a survey of some of our earlier work. This work is related
with our effort to understand some of the sources (origins), of large corrections in
higher orders of perturbative QCD; large in the sense that the overall next to leading
logarithm contribution is comparable to the leading logarithm one.

In various considerations we focus on the hadroproduction of large pr direct
photons. We often use this reaction as a pilot process in our effort to identify,
isolate and calculate HOC.

The above process presents much theoretical and experimental interest, be-
cause it provides a place where important predictions of perturbative QCD can
be tested, and helps to complete our overall picture about the structure of
hadrons.(3¥)~(49) Experiments first carried at ISR have brilhantly verified the pre-
dictions, and this has substantially enhanced our confidence in QCD.

The interest in direct photon production*!)+(42) originally stemmed from the
fact that, on a qualitative level, a substantial yield of photons at large transverse
momentum, would suggest the presence of pointlike charged constituents within
the hadrons.

Moreover, in perturbative QCD, direct photons at large pr can arise via hard
scattering subprocesses and to leading order in a, through the QCD Compton
subprocess

g+g—7+gq (2.1a)

(Fig. 3(a)), and the annihilation subprocess

g+3—-v+g (2.1b)

(Fig. 3(b)). In view of the small number of subprocesses and the well understood

electromagnetic coupling of a photon to a quark, direct photon production helps to
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unfold the underlying quark-gluon dynamics and hadron structure. In particular,
from Figs. 3(a), (b) we see that, to leading order, when a photon is produced, there
is a gluon either in the initial or in the final state. Therefore, if the contribution of
these subprocesses is isolated (by properly selecting certain physical processes), di-
rect v production can be used to extract information on both the gluon distribution
within hadrons and the gluon fragmentation function to hadrons.

Above all, as we stated, large pr direct photon production is known to provide
an important test of QCD. To briefly review a basic reason, consider the ratio of

the inclusive cross sections

, ’7)__ Eda/dap(A-’r-B - v+ X)

(o) = Edo/dp(A+ B — ° + X) (22)

7r0

where A and B denote hadrons. Notice that A+ B — 7% 4 X is a purely hadronic
process. In this, the observed m¥ carries only a fraction of the momentum of its par-
ent parton; Edo /d°p(A+ B — 7° + X) involves a fragmentation function Do .(z)
which behaves as (1 — z)™ with m > 1, and significantly suppresses this cross sec-
tion at large z (or pr). In contrast, n 4 + B -+ v+ X the photon carries away the
entire pr of the elementary collision. As a result, QCD predicts fairly large v/7°
ratio (20-50%); moreover it predicts that, at fixed s, v/7° increases rapidly with
Pr.

In addition, from the point of view of HOC and their structure, A+ B — v+ X
is less complex than e.g. A4+ B — 7%+X at large-pr, and therefore easier to analyze.

In this early part of the research, our work proceeded through certain steps
which can be summarized as follows: First, in the leading logarithm approxima-
tion (Born terms) we considered large pr pp — v + A and studied the effects
of scale violations. At that time the available data were too scanty to allow a
meaningful comparison (Figs. 4(a)(b)) Next, we considered the effect of photon
Bremsstrahlung (Brems) a< well as effects due to parton’s intrinsic transverse mo-
mentum (k1 effects). Then data of good quality became available, and detailed
comparisons (Figs. 9 and 10 dashed lines) indicated a significant discrepancy. This

suggested that we search for large correction terms in the next to leading order.
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Thus we were led to the soft gluon approach and the related 7%-terms arising from
loop graphs in the soft gluon limit and from collinear and soft gluon Brems.
The essential parts of this research, in particular our work on the soft gluon

technique, are presented in some detail in the present chapter.
2.1 Born Contributions and Photon Brems

2.1.1 Basic Formalism and Calculational] Details.

We consider the inclusive cross section for A + B — v + X where A, B are
hadrons and the photon v is produced at 90° in the C.M. of A and B, with (large)
transverse momentum pr. We are interested in the contribution of the subprocesses

(2.1) which are of the type
at+b—ct+y (2.1.1)

Then the inclusive cross section for A+ B — 4 + X is written (App. A)

daa
(PT’S) "Z/ 2z, a/A(:Ea,Q )Fb/B(:cb,Qz) b (2.1.2)
a¢bz1
where
_ 2pr _ . %Ta _ S
T= \/5 y Tb = xsza —z7 y T1 = Ta,muin = 2z (213)

and the summation runs over quarks, antiquarks and gluons.

The differential cross sections do,/df for the contributing subprocesses (2.1.1)

are given by(41):(42),(2),(10)

dogg 2raa, 1 8% +42

—F = e 2.1.4
g T 2N, - (21.4)
dogg  2rea, Cp £2 frﬁz (2.1.5)

— = €42 " - "
g " & N i
where e is the quark charge, « is the fine-structure constant, a, is the QCD running
coupling,
127

% = @)= g5 (@r7R)

(2.1.6)
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(4 flavors), and the color factors are:

N?-1
CF"ch

, Ne = 3 for color SU(3). (2.1.7)

With momenta as in Figs. 3(a),(b) the subprocess invariants are
s=(m+mp)f, t=(@-m)P d=(-p) (2.1.8q)

and neglecting quark masses

1

8§ =1Tq1p8, i = —Ea:a:cTs, = —'2--'L'b$TS (2.1.8b)

In (2.1.2) F,,/A(:ra,Qz) and Fb/B(:cb,Q2) denote parton momentum distributions
inside the hadrons A and B respectively.(43)—(46)

In our early work(?»(19) we carried calculations for pp — v + X using two dif-
ferent sets I and II of parton distributions, both satisfying exact QCD requirements
for their Q? evolution. The purpose of using two sets is to have a measure of the
sensitivity of our results regarding the input forms which, as always, involve some
arbitrariness.

Set Iis taken from Ref. 44. The input forms F(z,Q2) are in accord with
counting rules and their Q? dependence is provided by simple forms based on im-
proved parametrizations of the type presented in Ref. 45. Set II is taken from Ref.
46.

We present below the input gluon distribution F,/,(z, @), the reference point

Q = Qo and the QCD momentum scale A of each set.
SET I: Fy;p(z,Q%) = 2.4(1 — 2)° (weak or soft) (2.1.9a)

Q(z) =1.8 Gev?, A = 0.5 Gev.
SET Il : F,,(=, Q2) = 0.866(1 + 9z)(1 — z)* (strong or hard) (2.1.9b)

Q2 =4 Gev?, A =04 Gev.
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Finally, regarding the choice of the variable Q?, that enters the running coupling
constant o,(@?) and the functions F(z,Q?), we notice that it is not uniquely

determined. Usual choices are:

(a) Q*=-t b) @*=2 22 44?4 4?)

and even simpler:
(c) @*=pk or Q* = 2p% (2.1.10)

Notice that away from kinematic endpoints, roughly speaking, at fixed z1, most of
the contribution to the integral (2.1.2) comes from the region z, ~ z; ~ z7. In

this region, in view of Eq. (2.1.8b), all these choices amount to @ = ap% with «
of 0(1). We call:

Q* = p% physical scale

Q% =apk o =0(1) near — physical scale. (2.1.11)

2.1.2 Results and Discussion.

Now we present our results for the inclusive cross-section Eda/d3p(pp — v+ X)
and the ratio v/7% of inclusive cross sections of v to 7% production in pp collisions.
We present calculations at /s = 53 and 19.4 GeV with @2 = 2p%.(2).(10)

Our results using the QCD distributions of set I are presented in Fig. 4(a)
and of set II in Fig. 4(b). The upper parts of these figures present separately
contributions from the g+g — ¢+~ (denoted by qg) and the ¢+§ — g+ (denoted
by ¢g) subprocesses. The lower parts present the ratio y/7°. At each energy in
calculating v/7® we have used the experimental Edo/d*p(pp — 7° + X), which is
also presented in Figs. 4(a), (b) (dash-dotted lines, denoted by 7%(expt)).(/*)

Our first remark is that, as expected, direct ¥ production in pp collisions
is dominated by the ¢g subprocess; the ¢g contribution is typically one order of
magnitude smaller (upper parts of Figs. 4(a), (b)). It is also clear that set II (strong
gluon), of the QCD evolved parton distributions, predicts higher cross sections than

set I (soft gluon).
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Our second remark concerns the scale violating effects in the parton distribu-

tions. We notice that

a) at relatively low pr (<4 Gev) these effects are naturally not very important,

and

b) at high pr, inclusion of scale violations reduces the predicted v (and «/x%)
cross section by almost one order of magnitude.

The effects of scale violations are easy to understand. At low pr (<4 Gev),
z7<0.15 for /s =53 Gev, and Q* ~ p% is not much greater than QZ; in this range
of z and Q? the parton distributions do not appreciably differ from their input
values. At high pr (and fixed s), on the other hand, zr is large and both the quark
and the gluon distributions decrease with @* and hence with pr.

In addition we notice, that the Q% dependence is stronger in the gluon than
in the quark distributions. In view of the fact that the gluon initiated subprocess
dominates the cross section, we conclude that the fact that the presence of scale
violations decreases the cross section (relative to that corresponding to scaling

distributions{*1):(#2)) is essentially due to the gluon distribution.(2):(10)

2.1.3 Photon Brems.

Large pr photons also arise via Brems from hard parton scattering subprocesses

of the type(e)t(la)y(‘i”

atb—octd+n (2.1.12)

There are eight distinct quark and gluon initiated subprocesses of this form.

A typical case is
gtqg—q+q+y (2.1.13)

Fig. 3(c), which has been calculated completely to 0(a?). It was found(®):(19) that
its dominant part arises trom kinematic configurations in which the real photon
is produced collinearly with cne of the final quarks. This part factorizes to the
cross section for ¢ — gq scattering and the fragmentation function g — ~;(48):(49)

notice that this is proportional to fnQ? (see Eq. (2.1.17) below). The remaining
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part (“constant piece”), depends on the definition (beyond the leading logarithm
approximation) of the gluon density inside the quark(®) and it is very small through
the entire kinematic range.(8).(10)

Anticipating a similar situation for all Brems type subprocesses, and in view of
the fact that the factorized result corresponding to collinear photon configurationsis
of general validity (factorization theorem), we write for the contribution of (2.1.12)
to A+ B — v+ X, at 6 = 90° (see also App. A),

da d:r,l dn:b dolab-—ed)
(PT,S) == —

—_ a/A(za, )Fb/B(xbsQ ) t (510

lD.,/c(z,Qz) +(A o B) (2.1.14)

where do(*®—¢d) /df is the Born differential cross section for the 2 — 2 subprocess

a+b—c+d, (2.1.15)

and for § = 90°, z, is given by (2.1.3) while z; and z are:

Ta zp ., 1 1
Y , z = 2(——-{——) (2.1.16)

Iq Ty

T2 =IT

In (2.1.14), D,/ is the fragmentation function of the parton c to the photon 7,

which is of the form
2

Dyje(2,Q%) = -—d,,c(z) n? (2.1.17)

where A is some momentum scale (to be specified later). To the lowest nontrivial

order(8):(10),(48),(51)

,14(1—
Z

-l—a.,/q( ) = €g 2 = e';’P.,q(z) (2.1.18)

and

Py,(z) is the Altarelli-Parisi split function for ¢ — 7. There has been much work

regarding D.,/c(z,Qz) by summing leading logarithm contributions. The result
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is still proportional to ¢nQ?, Eq. (2.1.17). For d./.(z) one obtains the simple

approximate form(4#)
1.124:>

dr/a(2) = T 0.72¢n(1 - z)’
this has the right behaviour at 2 ~ 1, but for smaller z it significantly deviates from

(2.1.20)

the exact result. A better parametrization is provided by the forms(4?)

4
dyse(z) =227°° > alz" (2.1.21)

n=0
where the constants a,2 = 0,1---4 depend on the type of the fragmenting parton
c and are given in Ref. 49.

We note that in next to leading and higher orders in a,, a gluon can also
fragment into a photon as a result of the intermediate transition ¢ — ¢g. Hence
leading logarithm summations lead to d,/,(2) # 0, in contrast to the lowest order
result (2.1.19). Infact, the parametric form (2.1.21) determines also d.,;,. However,
contributions of this type are now known to be very small.(3):(51)

In our early work,(8)(19) in order to study the significance of the Brems sub-
processes (2.1 12) we evaluated the complete contribution arising from the typical
subprocess (2.1.13). As we stated, we concluded that most of the contribution is
due to collinear photon emission.

We carried calculations for pp — v+ X 8)(10) (55 well as for other reactions)(19)
using the parton distributions of Subsect. 2.1.1 (Egs. (2.1.9)), and taking again
Q? = 2p% and A = 0.5 GeV. In Eq. (2.1 17) we used A = A and the simple form
(2.1.18) which arises from the lowest order perturbative calculation; this form leads
to somewhat higher Brems contributions than the form (2.1.21).05V)

We also included effects due to partons’ intrinsic transverse momentum k7.
For this, as in previous work,1() we used for the parton distributions in (2.1.2)

and (2.1.14) the replacement F(z,Q?) — F(z, k., @?) and the factorized form
F(z,kr,Q%) = F(z,Q*)D(kr) , / d*krD(kr) =1 (2.1.22)
.3
with a Gaussian distribution function

b N

D(ET) = ’;r*exp(-—bzk%) , < kr>= —55- (2.1.23)
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and a moderate < kr >= 0.5 Gev.(1):(8),10)

In proton-proton collisions, the contribution of the subprocess (2.1.13) may be
comparable to the leading contribution in some kinematic range. The reason is
that (2.1.13) involves valence quark distributions F,/,, whereas the leading Born
term (2.1a) involves a gluon distribution F,,,. Indeed, Fig. 5(a) shows that, with
a soft distribution (Eq. (2.1.9a)), Brems gives an important contribution at large
z7 (Fig. 5(a) in particular for /s = 31 Gev). However, with a stronger gluon
distribution (Eq. (2.1.9b)), the subprocess (2.1.13) gives a small contribution.

Fig. 5(b) shows the effect of partons’ kp, where o(kr) denotes Edo/d®p with
< kr >= 0.5 Gev and ¢(0) the same with < k7 >=0. Asin pp — 7% + X, kp
effects are important only at low pr, where the cross section is steeper.

At the end of the next section (Subsect. 2.2.3) we compare with data our
predictions based on the Born and photon Brems contributions (with kp effects
included). In what follows we examine whether there are important contributions
from HOC terms to the leading subprocess (2.1a). The motivation 1s that, as it

will become clear, without significant HOC, the theoretical predictions lie below

the data.
2.2 Large Correcticn Terms in the Soft Gluon Limit

Here we look for large corrections from higher orders in the perturbation ex-
pansion. One class of such corrections are certain constant pieces, usually called
n2-terms, which were first observed in Drell-Yan dilepton production ®* We study
corrections of this nature and we show that they occur in large-pr direct photon

and dilepton production.(¥)=(®) Qur results are well supported by all available data.

2.2.1 The Soft Gluon Technique.

We present in this section the main results of our soft gluon technique,)~(®)
and try to make clear the origin of the resulting large corrections.

We begin by considering for gg — g the 0(a?) graphs which are infrared (IR)
singular; these are presented in Figs. 6(a)-(1). They arc formed by attaching a
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gluon to on-shell colored lines of the Born graphs shown in Figs. 6(A) and (B);
such graphs are referred to as A or B type graphs respectively. The attached gluon
with momentum k,, polarization p and color index c¢ is denoted by a dotted line.

The amplitude for the subprocess (2.1a), contributing to the cross section at
order af (£ = 1,2) is denoted by Mt(,?(P) for loop graphs, and by Méi‘),,(P,k) for
Brems graphs. Here P stands for the set {p1,p2, ¢} of 4-momenta of the incoming
partons and of the outgoing photon. The indices a and y stand for the polarization
of the incoming gluon and the photon. The color indices are suppressea.

The soft gluon technique consists of the following procedures:(4)~(6)

(a) setting k, — 0 and permuting the Dirac matrices in the numerator,

(b) setting k, — 0 in hard propagators only, leaving unchanged all other factors
in the denominator.

It follows from the procedure (a) that:

(i) a soft gluon attached to fermion lines does not change the Dirac structure of

the Born amplitude, and

(i1) the same is true for three-gluon attachments, provided a summation over
graphs is performed.
The above statement (i) can be easily derived and is known from soft photon
techniques in QED. To illustrate the statement (ii) we refer to Fig. 6{a) and in the

expression of the amplitude M )(P)™* we make the replacement
T(r)ay + ¥ — D@, + B r0u(p2)V 1 (k, p1)
= U(ryya(By — D)7 u(p2)2p2pV (0, p1) (2.2.1)
where the limit k&, — 0 was taken and the permutation
Boyou(p2) = (2p2p — Yoy )u(p2) = u(p2)2p2, (2.2.2)

was used. The tensor V*#* is associated with the three-gluon vertex which in the

limit k, — 0 becomes:

VA0, p;1) = 2p89°* — p}g®¥ — p¥g™*. (2.2.3)
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The first term in Eq. (2.2.3) replaced in (2.2.1) gives immediately a factorized result
with the Born Dirac structure. The last two terms in (2.2.3) give contributions
which cancel each other because of the Ward identity. We have explicitly verified
this cancellation for the set of graphs in Fig. 6. To simplify the calculation,
from now on we drop the last terms in Eq. (2.2.3). The result is that for either
three-gluon or QED-like graphs the soft gluon polarization is proportional to the
momentum of the line to which the gluon is attached.

Procedure (b) is crucial in preserving exactly the singularities and analytic
structure of the amplitude as k, — 0. In hard propagators the limit k, — 0 can

be safely taken. To illustrate this, we refer again to Fig. 6(a) and write

1 1 k2 42k, - (p2 — q) 1
— — _—
(p2—q-k)? (12—9? (P2—q)*(p2—q+k)?  (p2—q)?

(2.24)

Notice that the second term, which is of 0(k) compared to the first, can be dropped
as k, — 0. However, all other denominators of the form (p; £ k)? with p% = 0 are
left unchanged because there are regions of integration where |k?| > |2ps - k|, even
as k, — 0. (For example, when k is perpendicular to py).

Applying procedures (a) and (b) we find factorized expressions for the ampli-
tudes of either loop or Brems graphs. In these limiting expressions the analyticity

properties and singularity structure is preserved. We present our results in the

following.

2.2.1a Loop amplitudes and w2-terms.

Returning to Fig. 6(a) we obtain the factorized contribution to the amplitude
(2) ap 2 N . (1) ap
M (P)* =g —2‘4191 - p2iL(p1, —p2)M 4 *(P) (2.2.5)

where the integral

d"k 1

C2 2
(2m)" (k2 +1n)(p1 — k)% +in)((p2 — k)2 +in) ’ pi=p3=0
(2.2.6)

L(p1,p2) = #26

is characteristic of loop contributions.
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Performing the integration (App. B) we obtain:

; -1 1 1 —2p; -p2 —in._ T(1+ €)[%*(1 - €)
lL(pl’ P2) - (47!')2 €2 (—2P1 m)( 47‘,#2 ) F(l _ 26) (227)
so that
o ags Ne -2, —-3—1mp__
MG Py = L5 () UMD (P (2.2.8)
with § = (p; + p2)? and
2 —
ry(e= Gl =9 (2.2.9)

I'(1 - 2¢)

At this point we can already see the origin of a large correction, or 7% term:

Eq. (2.2.8) has a threshold for s = 0 and must be analytically continued. Thus,

(2) ap __ &_& 3
ReM(a)(P) = 4 92 L)

—c -2 a
el el Ut (2:2.10)

The other loop contributions from Fig. 6, including the B type graphs, are evalu-
ated in the same way. After restoring color matrices, the factors composing each
amplitude M(?)(P)** are summarized in Table I (upper part).

In the cross section, the 1/¢? singularity of Eq. (2.2.10) is cancelled by a
similar singularity in the Brems contribution. This is clearly shown in Subsect.
2.2.1b below.

As a final remark, concerning loop contributions, notice that the graphs (u)
and (v) of Fig. 6 are not infrared singular. For example, the amplitude of graph

(u) involves the integral

fo [ 4 (BB - vk +By)

= , 2.2.11
@r)" Bk + 72 - 0 (k + pa) (2211
which in the soft gluon limit becomes:
- d"k
1 - =Dty ! (2.2.12)

(p2—q) J (2m)" k*(p2 + k)P

It is well known that the last integral does not introduce a 1/¢? singularity. As a

result, no m2-term of the soft gluon type is generated.
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Similarly, in the Feynman gauge, self energy contributions are not 1/€? diver-

gent; the corresponding graphs are not presented.

2.2.1b Gluon Brems amplitudes.
Now we consider Brems graphs, Figs. 6(d)-(f) and 6(j)-(1), and apply proce-
dures (a) and (b) of the soft gluon limit.)~(6) Referring to Fig. 6(d) we obtain for

the corresponding amplitude
M(z)(P k) B = g1 [t M(l) Py ] 2.2 13
(d)y\*» gzpl.k € A() ( )

Thus, the amplitude factorizes into a vector and a color matrix and has the Dirac
structure of the lowest order graph. Notice that Brems amplitudes are real and
consequently no analytic continuation is required; no 72 term of the above type is
generated.

Similar results are obtained for each of the other Brems graphs of Fig. 6, either

of type A or B. Again, after restoring color matrnices, the factors composing each

amplitude M?) (P, k)*#? are listed in Table I (lower part).

2.2.2 The Differential Cross Section.

We are now ready to calculate the subpiocess differential cross section. We
denote it by godo‘® /d*q where é(= 1,2) means that it is evaluated at order a’.

We remarked the proportionality between the next to leading and the corre-
sponding leading order amplitude. Such a relationship shail also be valid between
the corresponding interference terms (unitarity graphs).(4~(6)

Figs. 7(a)—(d) show the four Born unitarity graphs arising from interference of
the graphs of Figs. 6(A) and 6(B). We denote by qodafl)/dsq the contribution to
the cross section of the (i) graph, with ¢ = a,b.¢,d. The interference terms of Figs.
7(b) and 7(d) are of 0(¢*) and consequently vanish for real photons. However we
keep them in our calculation so that our final result, Eq (2.2.22), can also be used
for lepton pair production with the replacement: ¢°do/d*q — q?da/d*q.

The other unitarity graphs in Fig. 7 show pairs of associated loop (primed)

and Brems (unprimed) graphs. They are associated in the following sense: they
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arise from the same Born graph by attaching a virtual or real gluon between two
on-shell parton legs. In this way, the resulting contributions to the cross section are
proportional to the same Born cross section with the same color factor; this permits
a pair-wise cancellation of the 1/¢? infrared divergencies. We present only those
graphs which introduce a large correction either directly or through their crossed
counterparts (see below).

To illustrate the pattern of cancellation of 1/e? singularities, we consider in
detail the effect of adding a particular Brems [Fig. 7(C)] and loop [Fig. 7(C')]
combination of contributions.

Referring to Table I and taking into account a factor of 2 for the Hermitian

conjugate graph, the contribution of Fig. 7(C) is written as

da(z)

%) _ o Ne odcr
&g = 29> > 4p1-ps B(p1,p2) Pq (2.2.14)
where
d*k  6(k)0(k
B(p1,p2) = * (E)6(ko) (2.2.15)

(27)"~1 2py -k 2po-k
'The integration in (2.2.15) is performed according to standard methods and gives
(see also App. B):

1 1 1 4kmaz | _,
B(p1,p2) = (4n)? -672})1 'WFB(C)(W) (2.2.16)
with
I'(l1-¢
Ip(e) = (1 = 26) (2.2.17)

In (2.2.16) kp,, is determined from the kinematics of the subprocess; for direct

photon production 4k2, . ~ 3, so that:

(2)
da'(c) a, N,

2 odol)
¢ d3g Tor 2

Tp(e)54q g (2.2.18)
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Twice the real part of the loop contribution from Fig. 7(C’) (accounting also

for the contribution of the Hermitian conjugate graph), gives with the help of Table

I:
(1)

(2) .
d"(cr) a,N 8 2] odO’

CBe = 2n2 \am) ‘FL(e)[———+ (2.2.19)
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Addition of Eqs. (2.2.18) and (2.2.19) cancels the 1/€? terms; the remainder
contains the large correction ~ (N./2)w?. This pattern of cancellation of 1/¢? terms
between primed (loop) and unprimed (Brems) graphs in Fig. 7 is as expected from
general properties of IR divergences.(*)~(6)

Table II lists the factors composing the equation corresponding to (2.2.18) or
(2.2.19) for each unitarity graph. Notice that graphs in the same row of Fig. 7
have identical factors multiplying the Born term (at the top of each column).

Although IR singulanties cance! in the sum of loop and Brems contributions,
there ref®hin subleading 1/ (collinear or mass) singularities which are process inde-
pendent; they only depend on the type of partons initiating the leading and the next
to leading order subprncess. However, the remaining non singular piece depends
on the regularization procedure (here dimensional regularization). For example,
Eqgs. (2.2.18) and (2.2 19) contain 1/e terms and 0(1) regularization dependent
pieces. To properly specify a correction one must remove both the singular and
the regularization dependent terms by absorbing them into the parton distribution
functions. This is done by a consistent definition of parton distributions through
another process using the same regularization procedure.

It is «onvenient, as emphasized by Altarelli et al,(322) to fix the definition of
parton distributions at a given order of a,, by defining corrections to a related deep
inelastic scattering (DIS) subprocess to be zero. This means that the expression
giving the DIS physical quantity in terms of parton distributions and the parton
scattering cross section, should retain at the given order of a, exactly the form it

has at the lowest order.

The quark distributions defined in Ref. 52(a), as measured 1n inclusive DIS,
have no large corrections to one loop order. For the gluon distribution, a DIS
subprocess must be chosen so that the gluon distribution 1s as directly mvolved as
possible and so that the soft gluon approximation 1s applicable. For example, the
inclusive (flavor singlet channel) DIS quantity Fp(z, Q%) lacks a large momentum
transfer scale, because 1t involves integrations over final state momenta;®) then the

soft gluon approximation, Eq. (2.2.4), is not directly applicable.
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Motivated by Ref. 52(a) we adopt the following definition of the correction:

we consider electroproduction of a large pr jet through the subprocess
Y +9-49+7 (2.2.20)

then we require that the correction to (2.2.20) at 0(a?) be zero. This means that
all the next to leading order perturbative contributions are absorbed in the gluon
distribution function. Notice that (2.2.20) is related to (2.1a) by crossing. The
Born unitarity graph and the subprocess momenta assigned to (2.2.20) are shown
in Fig. 8(a). Defining the z axis parallel to ¢ in the v*p C.M. frame and J the
jet axis, contributions to do/d’p can be obtained by crossing |M(p,p2,q)|? of
(2.1a) with p - —p2 = p and ¢ — —gq, followed by an analytic continuation
g* > 0 — ¢% < 0. For large p% ~ 0(|¢%|) the soft gluon approximation applies in
both cases; typical 0(a?) unitarity graphs are shown in Figs. 8(b)-8(c'). Defining
(soft) gluon corrections to (2.2.20) to be zero, we find corrections to (2.1a) by

subtracting terms at 0(a?) via

IM(p1,p2,9)1* = [M(p1,p2,0:4° > 0)* — [M(p1,~p2,—q;¢* <0)]®.  (2.2.21)

This means that from the contribution of each unitarity graph we subtract the
corresponding contribution of its crossed counterpart. In the difference, collinear
singularities associated with the incoming gluon p; cancel as well as the regulariza-
tion dependent pieces.

In Table II we have summarized the contributions giving a 72-term in accord
with the above definition of corrections. Adding these terms to the Born contribu-

tion, we finally obtain

do®
d3q

[1+ %r"-(NC — Cp)n?]g° (2.2.22)

¢ B

Clearly in Eq. (2.2.22) we have neglected terms of 0(én?(g%/s)) in the limit
g% ~ s (or z7 ~ 1); these terms, however, are easily available from Table II. Such

terms would be important only in the small g7 (or z7) region.
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Finally we remark that Eq. (2.2.22), corresponding to a nonuniversal definition

of corrections, can be easily transformed to that of Refs. 53 (universal definition).

2.2.3 Phenomenological Implications.

We close this section by briefly presenting certain phenomenological implica-
tions of the large 0(a?) correction of Eq. (2.2.22).

Fig. 9 presents all the ISR data on the inclusive cross section ¢°do /d®q (usually
denoted by Edo/d®p) available at the time of our calculation.(*)~(6) Whenever a
Collaboration gives only the ratio v/7° (Eq. (2.2)) we have multiplied by 7° data
of the same collaboration. Fig. 10 presents data of the A2 BC Collab. on the ratio
v/7°.

Figs. 9 and 10, dashed lines, show the results of the calculations of Sect. 2.1
(Born terms and photon Brems) with a strong gluon distribution Eq. (2.1.9b) and
< kp >= 0.5 Gev. Clearly a large correction is required.

Next, Figs. 9 and 10, solid lines, present predictions based on Eq. (2.2.22)
which includes the 0(a?) correction of this section. Clearly, inclusion of this cor-
rection significantly improves the agreement with the A2EC and the rest of the
data.

On the whole, the situation for large-pr direct photon production is very sim-
ilar to that for the Drell-Yan do/dqg* for dilepton production (see also Ch. 8, Sect.
8.4); it is well known that data require that the Drell-Yan cross section be multiplied
by a K-factor of magnitude K ~ 2.

2.3 Other Large Correction Terms

The soft gluon approach, which we presented and developed in the last section,
pinpointed a large correction term to the contribution of the subprocess gg — vg.
As we stated, this subprocess dominates pp — v + X at large pr. The available
data were well accounted for by the HOC of Eq. (2.2.22).

However, one can see that there must be other sources of large corrections, as

well. For example, consider the difference of the inclusive cross sections for large-pr
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£*¢~ production in 7~ p and 7*p collisions. This is dominated by the subprocess
qq — 7*y; and for this a complete calculation of next-to-leading order corrections
gives a large HOC (comparable to Born).(**) This is in accord with experimental
data. Now for ¢7 — v¥*g, the soft gluon limit technique of Sect. 2.2. does not give
a large correction; therefore one should look elsewhere.

An additional source of large correction terms was identified in Ref. 55, where
it was shown that such terms arise also from collinear and soft gluon Brems. In
fact, it was shown that addition of the large corrections from loops in the soft gluon
limit (Sect. 2.2) and from co'linear and soft gluon Brems, leads to HOC in good
accord with most complete calculations(®) and with experiments.(38):(39),(12),(57)

These two scurces of HOC lead to an approximate K-factor of the form:
2
K~14 2@ cp (2.3.1)

where

C=) Ci+ ) Cs (2.3.2)

loops Brems

C. are essentially color factors determined from graphs involving loops in the soft
gluon limit (soft gluon technique of Subsect. 2.2.1) and C} are d-termined from
graphs contributing to collinear and soft gluon Brems.(53):(36)

As an example of the effectiveness of the approximate K-factors, Eq. (2.3.1),
we present Fig. 11 (laken from Ref. 56). This compares predictious for pp —
v+ X based on Eq. (2.3.1) (solid lines)(3®) to the results of a complete calculation
(dash-dotted lines).(5%%) The two calculations use the same input distributions.(®)
Clearly the difference between them is small, much smaller than changing the gluon

distribution (dashed-lines).
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THE DOMINANT PART OF HIGHER ORDER CORRECTIONS

In our earlier work (Ch. 2), the procedure we followed can be briefly described
as follows: Working always at physical (or near-physical) scales we pinpointed
certain large terms in the perturbative expansion, specified their origin and provided
simple ways to determine their contribution. This resulted in the simple K-factors
of Eq. (2.3.1). Comparison with the then available data led to considerabl; success.

In our recent work (this and the next chapter) we follow a different procedure:
We start from the complete HOC, we analyse its structure, we show that there is
a part that dominates and we give reasons explaining the dominance. This part,
to be called dominant, 1s considerably simpler than the complete HOC; as a result,
we show that we can determine it more easily (Ch. 4).

The dominant part amounts to a correction of a much more complicated form
than that of the simple K-factors of Ch. 2. Nevertheless, we shall show (end of
Ch. 5) that, with certain approximations, the form of the simple K-factors does
arise, thus offering some insight into the reason of their success. We should note,
however, that the main motivation of the following work is to establish as much as
possible the existence of a dominant part and to explicitly demonstrate that it is

calculable with relative ease.
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CHAPTER 3

STRUCTURE OF HOC AND
THE EXISTENCE OF A DOMINANT PART

We proceed to analyze the structure of HOC and show with specific examples
that there is a relatively simple part that dominates the HOC. Also we discuss
the origin of this part, its gauge invariance and certain other aspects, as e.g. its

stability against changes of the scales.

3.1 The Structure of HOC

We consider the structure of HOC for a physical single inclusive process involv-
ing distribution and/or fragmentation functions, and initiated by 2 — 2 particle
hard scattering subprocesses.

To begin with and to be more specific, we consider large pr direct photon
production in hadronic collisions (our pilot reaction); in fact two of the examples
presented at the next section refer to this process, and are extensively studied in
the following chapters. We emphasize, however, results and statements of general
validity.

The contribution of the subprocess

a+b—vy+az, (3.1.1)

including HOC of order o2, to the inclusive cross section for A+ B — v + X can
be written:
t+a

3

d s .
Ed3—;'(PT,8,’7) = 9—7(;&/dxadzb{Fa/A(xa,M)Fb/B(xb,M)[UB5(1 + )

+a—’7(r—"lfo(1+ T

)+ Fysa(za, M)Fy (zs, M) & i)} (3.1.2)

73

where E (p) denotes the energy (momentum) of the observed photon with transverse
momentum pr and (pseudo-) rapidity . In (3.1.2), a,(u) is the QCD running cou-
pling, and F,/a(ze, M), Fy;p(xs, M) are parton momentum distributions; p (M)
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stands for the renormalization (factorization) scale. 6 g denotes the Born contribu-
tion and f the HOC. Both 6p and f are functions of the subprocess invariants 3,
{, and 4 introduced in Eq. (2.1.8a). In addition, f depends on the scales u and M;
however, to simplify the notation, we suppress this dependence.

We introduce the following dimensionless variables

¢ i
=1 = = - 3.1
v +3 w 13 (3.1.3)
so that
t=-51-v), & = —Svw (3.1.4)
and
§+i4+0 =351 -w) (3.1.5)

Thus regarding the z,, x4 integration in (3.1.2) the boundary corresponds tow =1,
the rest to w < 1. Clearly, the HOC arises by integrating over the whole hatched
region indicated in Fig. 12(a) for 7 = 0 and Figs. 12(b) and (c) for 5 # 0.

Now, it follows from a number of complete calculations, and will become clear

in the next chapter, that the general structure of HOC is as follows:(58)—(61),(11),(12)

fo,w) = fo(v,w) + fv,w) (3.1.6)

where the first part of the r.h.s. of (3.1.6) contains distributions in the variable w

and has the form

1 n(l —w)

fo(v,w) = a1(v)é6(1 —w) + bl(”)m +e) ")+

~

e et (3.1.7)

while the function f(v,w) contains the remaining terms of the HOC (no distri-

Hax(0)6(1 = ) + () 7

butions) and, in general, is very complicated; it is the most complicated part of
HOC(8)-(61) (See also Sect. 7.1 of this Thesis).

In the following section we demonstrate with specific examples that the con-
tribution of f,(v,w) dominates the HOC, and we present reasons explaining this

fact. Also, as we discuss in Sect. 3.3, fs(v,w) is a gauge invariant part.
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3.2 The Dominant Part of HOC

We denote by op and oo the contributions of the Born term and of the
complete HOC f to the inclusive cross section ¢; ¢ = og + oyo. Also, we denote

by o, the contribution of f,; thus oo — o, is the contribution of f We consider

the ratio
- OHO — O
Rr = T (3.2.1)
which determines the relative contribution of f to the total inclusive cross section
of the physical process.
We present results for this ratio as a function of pr at fixed s and for simplicity
at 1 = 0. Our results correspond to the choice of physical scales u = M = pr.
We consider the subprocess ¢¢g — ~vg, which dominates the difference of the

inclusive cross sections for A+B — y+ X and A+ B — y+X. Take A = B =proton

and let o in (3.1.2) to denote the nonsinglet cross section:

72 EG(5p = 7X) — B 3os(op — 1) (32.2)
then the structure function Fy/4(zq, pr) (Fy/ (s, pT)), entering Eq. (3.1.2), refers
only to valence quarks in p (antiquarks in p).

We carried calculations using set I of Ref. 62 for these distributions, and the
results of Ref. 59, for the terms in f (see also Ch. 7 and related discussion).

Fig. 13(a) presents, with solid line (corresponding to n = ngcp(pr)), the
ratio Ry as function of pr at /s = 63 GeV. We see that, this ratio is small, and
decreases rather fast with pr [e.g. for pr = 4 GeV (z7 ~ 0.13) this ratio is ~ 16%
and for pr = 16 GeV (z7 ~ 0.5) it is only ~ 3.5%)].

To understand the reason, we refer to Eq. (3.1.2) and consider fixed s and

rapidity n. With zr = 2pr/+/s and in view of App. A we have:

R 1 1
S+t+u=s(zary — §$a$T€—" - §:cbx'pe") (3.2.3)
In (3.1.2), in view of the § and 8 functions, the integration region is determined
from § 4+ + 4 > 0 together with the conditi;ms T, <1, 7 < 1; we obtain:
n -1 2
i< (3.2.4)
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where the sign of equality determines the (curved) boundary of the region.

To simplify matters we first consider n = 0. For this case the corresponding
region is indicated in Fig. 12(a). As we stated, the boundary of the region cor-
responds to w = 1; the rest to w < i. Clearly the Born contribution arises by
integrating over the boundary, while the HOC over the whole hatched region.

Now, a crucial observation is that in Eq. (3.1.2), with the choice of the physical
scale u = M = pr, Faja(za,pr) behaves like (1- :z:a)"(PT); with A =proton, n is
quite large (n = 3 ~ 4 if a =valence quark, n >~ 5 if a =gluon, n ~ 7 if a =a sea
quark). Notice also that the scale violations further enhance n as pr increases. The
same holds for Fy;p(zs,pr). Then, referring to Fig. 12(a), contributions arising
from the region away from w = 1 (large z, and/or z;), are suppressed by high
powers of 1 — z4, and/or 1 — zy.

The terms f,(v,w), Eq. (3.1.7), give their main contribution near w = 1
(cross hatched region of Fig. 12(a)); while the multitude of terms of f(v,w) do not
mainly contribute at w ~ 1 (we further substantiate these statements at the end
of this section). As a result, in the presence of the structure functions, f(v,w) is
suppressed.

Now notice that as pr increases for fixed s, (or as z increases) the boundary
of integration moves towards the point £ = z3 = 1 and the region shrinks; thus the
suppression of contributions from f increases with pr, and it is further enhanced
by the scale violations. Hence as pr increases for fixed s (or as zp increases) the
terms comprising f,, dominate more and more the HOC.

Notice also that in f(v,w) the multitude of terms contribute with almost ran-
dom signs; some of them are positive, others are negative, without any concrete
pattern (e.g. regarding the nonsinglet cross section (pp — pp) — ¥X, which is dom-
inated by the subprocess gg — vg, see the Appendix of Ref. 59(a) and Ch. 7 of
this Thesis). This reduces even more the overall contribution of these terms. This
point has been remarked long ago.(5):(55),(56)

As a further test of the above ideas we have carried calculations in the following

manner. We write the structure functions (in the present case, valence momentum
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distributions) in the form:

Fasalz,pr) = Fyp(z,pr) = (1 - 2)" (3.2.5)

and determine the ratio (3.2.1) for the fictitious values n = 20 (extremely soft
distribution) and n = 0.01 (extremely hard). As expected, in the first case (dashed
line in Fig. 13(a)) the ratio is significantly smaller than for n = ngcp(pr); in the
second case (long dashed line) it is significantly larger.

Clearly, the softness of the distribution plays a very important role in sup-
pressing the part f(v,w) of HOC.

In addition to the ratio (3.2.1) we have also determined the ratio

OHO — 0,
OHO

Ryo= (3.2.6)

which gives the relative contribution of f to that of the complete HOC f. Fig.
13(b) shows that this ratio is somewhat greater than (3.2.1) but shows the same
features for each of the cases considered (n = ngcp(pr) and the fictitious values
n = 20 and n = 0.01). Perhaps, it should be noted that the ratio Ry is a quantity

more important than RHO, since it is g +0oyo that corresponds to the measurable

cross section.

Now we consider other values of the rapidity n. In Figs. 12(b), (c) we indiczte
the integration region for [n| # 0 (~ 0.7) and for the same z7 as in Fig. 12(a)
(n = 0). Notice that as |n| increases, one of the asymptotes of the boundary moves
toward the point z, = zp = 1, while the other moves away from it; the integration
region shrinks on one side, and expands on the other. These two compensating
effects lead to an overall suppression of f (v,w) comparable to that discussed before
(n = 0). Hence, as long as z7 is not too small, the terms of f,(v,w) dominate the
HOC in a wide range of the rapidity 5.

Now, we consider the subprocess g¢g — vq. As we have seen in Part I, this
subprocess dominates the inclusive cross section for pp — v (large pr) +X. For
this subprocess results very similar to those for qg — ~vg (Fig. 13(a), Vs = 63
GeV, 7 = 0) have been obtained)(12), Again, the corresponding ratio Rr for
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= ngcp(pr) is small and decreases with pr. Similar results have been obtained
for the corresponding ratio Ryo.

Again, writing the parton (here quark and gluon) momentum distributions in
the form (3.2.5) and using the fictitious values n = 20 and n = 0.01 as in the
previous case, the ratio Ry is for the first valne significantly smaller, and for the
second significantly larger than that for n = ngcep(pr).(11(12

For qg — g, at fixed s and 7 and not too small zr, the ratio Ry is expected
to decrease with pr somewhat faster than the corresponding ratio for qg — ~g.
This, because ng is larger than ng, and consequently the suppression of the terms
f should be stronger for gg — ¢ than for ¢qg — v¢. This was indeed found to be
the case in detailed calculations.(11):(12)

Similar results we have obtained for the contribution of the subprocess yq —
vq, which dominates the cross section for the inclusive deep QED Compton process
(vp — v (large pr)+X); this we have also analyzed in detail using the results of Ref.
63. Figs. 14(a) and (b) present the ratios Ry and Ryo respectively, as functions of
pr at incoming photon lab energy E, = 100 GeV{®4); again for simplicity we work
at rapidity n = 0.

Finally, essentially similar results have been obtained for the contribution of
the subprocess vy — g¢g to the inclusive cross section for 44 — hadron (large
pr) + X; this involves the fragmentation function for ¢ — hadron.(!?

In the remaining part of this section we examine the contributions to f,(v,w)
from a different point of view. We believe that this will further elucidate the
importance of this part relative to the rest of the HOC. Moreover, it will help to
establish later (Sect. 5.5.) a connection between this Part of the Thesis and the
simple K-factor approach of Ch. 2, and thus, as we stated, to offer some insight
into the reasons of the success of that approach.

To this end we introduce the k** moment M (k) (Mellin transform) of the

function ¢(w)

M(k) = / w1 ¢(w)dw (3.2.7)
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The moments of some of the functions appearing in the complete HOC are given

in Table III; ¥(z) is the Euler function
I'(z) <
P(z)= <5 ¥k)=~v+ ) = 3.2.8
)= Ty M0 =1+ 33 (328)

Y'(z) its derivative, and v the Euler constant. In the last column of the Table we
give the asymptotic behaviour of M(k) as k — oo.

Now the point to remark is that, as ¥ — oo, for the three distributinns de-
termining f,(v,w), |M(k)| either equals a constant (= 1) or it increases with k.
In contrust, for all the functions contributing to f(v,w), |M(k)| decreases with k.
From Eq. (3.2.7) it is evident that the large moments control the behaviour of
#(w) near w = 1 and the small moments control the behaviour away from w = 1.
Conversely, if in absolute value the moments of a function increase with k, the
function is particularly prominent near w = 1, and if they decrease the function
is not particularly important near w = 1. As a result, due to the presence of the
structure functions Fy 4(z) and Fy,g(z), the part f(v,w) is suppressed.

Concluding this section we may make the following general statement: For
processes involving structure functions and/or fragmentation functions, as zr in-
creases, the relative contribution of the part f,(v,w) dominates more and more
the HOC; and the dominance increases with the softness of the structure and/or

fragmentation functions.
3.3 Remarks

We conclude this chapter with some remarks regarding the origin of the con-
tributions to the dominant part f,(v,w), as well as certain of its features.

The terms in f,(v,w) originate as follows:
(a) From loop graphs, i.e. 2 — 2 subprocesses involving virtual partons. Clearly,
these contribute part of the coefficient a;(v) of §(1 — w).
(b) From kinematic configurations of 2 — 3 subprocesses corresponding to soft and

collinear gluon emission. Also, in the case of ¢g¢§ — g additional contributions
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arise from similar configurations of the subprocess ¢§ — ~¢q. Such contributions
determine b;(v), c(v) and the remaining part of a;(v). These points become more
clear in Ch. 4 as well as in Ch. §.
(c) From leftover contributions after the factorization of mass singularities and
absorption in the parton distributions at scale M. Such contributions determine
az(v) and 52(v) (see Chs. 4 & 5).

Thus the nondominant part f (v, w) receives coneributions from kinematic con-
figurations corresponding to hard and noncollinear gluon Brems and more generally
such configurations of 2 — 3 subprocesses.

As a second remark, the fact that terms of the form (3.1.7) dominate the
HOC has been noted in Ref. 55 (see its Eq. (3.17) and the related discussion).
Later it was verified in Ref. 65, and was further stressed in Ref. 56. However, no
explanation or justification was provided. To our knowledge, only recently such an
explanation was advanced(!:(12) and this has essentially formed the first part of
Sect. 3.2.

As a third point, we wish to state that the dominant part is a gauge invariant
part of the HOC. To show this we proceed as follows:

We denote by M(v; k) the Mellin transform of the complete HOC f(v,w).
Clearly, to one loop order, M(v; k) contains terms which for ¥ — oo diverge at

most like ~ n?%. With (k) as in Eq. (3.2.8) the following limits are well dcfined:

v; k
klin;oMj(?(—’kn)—z = Fy(v) (3.3.1a)
. M(vik) — Fa(v)p?(k) _
kl_l_‘rgo 505 = Fi(v) (3.3.1b)
Jim {M(v; k) — F(v)p*(k) — Fy(v)y(k)} = Fo(v), (3.3.1¢)
Thus we can write:

M(v; k) = Fo(v) + Fy(v)p(k) + Fa(v)?(k) + M'(v; k) (3.3.2)

where M'(v; k) satisfies
klixr;o M'(v; k) = 0; (3.3.3)
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thus M'(v; k) contains terms decreasing in absolute value with k.

We notice that each of the functions Fy(v), Fy(v) and Fy(v) is gauge invariant,
because it is determined in a gauge independent way, by Eqs. (3.3.1a), (3.3.1b) and
(3.3.1c) respectively.

Now we consider the inverse Mellin transform of (3.3.2). Using Table III we

obtain

Flo,0) = AL = ) + B) 5=+ CONTTo D) + flo,w) (33.4)

where A(v), B(v), C(v) and f(v,w) are uniquely determined in terms of the func-
tions in (3.3.2):

72
A(v) = Fo(v) — yFi(v) + (7* - < F2(v)) (3.3.52)
B(v) = —F1(v) + 2yFy(v) (3.3.5b)
C(v) = 2F,(v) (3.3.5¢)
and
x fnw

f(v,w) = —F(v)

+ f'(v, w) (3.3.6)

1-w
where f'(v,w) is the inverse Mellin transform of M'(v;k). Thus, each of A(v),
B(v), C(v) and the function f(v,w) is gauge invariant.

A fourth point should be made in relation with possible changes of the renor-
malization and factorization scales g and M. As we stated, the calculations of Sect.
3.2 were carried with the choice of the physical scales p = M = pr. One may ask
whether f,(v,w) still gives the dominant contribution for a different choice of p
and M.

The answer to this question is affirmative. The key point is the presence of
certain terms(68)(87) proportional to ¢n(5/M?) and to bén(3/u?), where b is the
coefficient of the Callan-Symanzik beta function

b= N, - =

s 3y (3.3.7)

where Ny is the number of flavors and N, = 3 in color SU(3). The terms propor-
tional to £n(8/M?) comprise the functions ay(v) and by(v) of f,(v,w), Eq. (3.1.7).
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The term proportional to b6n(§/u?) will also be included in the expression of a;(v)
[see Eq. (4.5.7), end of Ch. 4]. Now we know that for u = M = pr the part
fs(v,w) dominates the HOC. Then the work of Ref. 67 immediately implies that
it will still dominate for wide variations of y and M away from pr.

The same also holds regarding optimization procedures, like the applica-
tion of the Principle of Minimal Sensitivity (PMS)(®®) or of Fastest Apparent
Convergence.(%?) Again Ref. 67 implies that, due to the presence of the above terms,
the dominant part f,(v,w) will give results similar to those of the complete HOC.
This means the same structure of the two-dimensional surface 0 = Edo/d’p (u, M)
considered as function of 4 and M, including fine details like the presence of a saddle
point related with the application of PMS.(66):(67 It also implies the same degree of
stability of Edo/d®p (i1, M) against changes of 4 and M. Finally, it is not difficult
to see(®”) that changes in the renormalization scheme (e.g. MS — M.S) can be
carried for f,(v,w) with very similar results as for the complete HOC.

A final remark is that all our conclusions apply also to supersymmetric QCD
at ultrahigh encrgies and large transverse momenta (so that the partons can be
treated as massless).(!Y) Very probably, they also apply to heavy quark production
(in conventional or supersymmetric QCD) provided that we consider subprocesses
initiated by massless partons. We have not studied, however, this case in any detail.

Now 1t 1s natural to ask the following question: Can one determine any sig-
nificant part of f,(v,w) without recourse to the full calculation of the complete
HOC? The purpose of the next chapter is to show that this is indeed possible, and
to provide simple and general expressions determining the contributions of 2 — 3

subprocesses to the dominant part.

52



CHAPTER 4

DETERMINATION OF THE DOMINANT PART

In this chapter we explicitly determine the dominant part of HOC for the
subprocess ¢§ — ~vg.

We show that the collinear and soft gluon Brems contribution to this part can
be determined with relative ease. In addition, this contribution and more generally
the contribution to the dominant part of HOC from 2 — 3 parton subprocesses, is
shown to arise from expressions remarkably simple ar.d general.(80):(61)

As in Part I, we work in the Feynman gauge, and to regulate the singularities
(infrared and collinear) we use dimensional regularization with n = 4 — 2¢ dimen-
sions (¢ < 0). Our results refer to the modified minimal subtraction (M S) renormal-
ization (and factorization) scheme, and to the universal definition of corrections.(5%

Our procedure for treating gluon Brems (here qg — 7vgg) is as follows: For
unitarity graphs involving emission only from the initial partons (here ¢ and g)
we use Sudakov variables. For unitarity graphs in which one or both amplitudes
involve gluon emission from the final parton (here ¢) we use the center of momentum

frame of the two final partons (here gg). This frame is also used for unitarity graphs
involving the split of a final gluon into a ¢7 pair.

4.1 Brems from Initial Partons

We consider gluon Brems from initial partons. We use Sudakov variables to
parametrize the momentum k of the emitted gluon. In this way we make manifest
the collinear as well as the soft gluon configurations.(1)-(61)

We write
k=ap; +Pp, +°¢ (4.1.1)
with
pr-€=p-£=0 £ = (0;4) (4.1.2)
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where p; and p; denote the initial parton momenta (Fig. 15(a)), and £ the compo-
nents of k perpendicular to p; and p;. In view of (4.1.1) and (4.1.2), the on-shell
condition k% = 0 implies

1€? = apBs (4.1.3)

where § = (p1 + p2)*.

With the other subprocess invariants { and @ defined by (2.1.8a), we introduce
the dimensionless variables v ana w as in Eq. (3.1.3). We are interested in the
leading contribution of the Brems graphs to the differential cross section, as w — 1.
Then in App. D, we show the following statement:(61)

For w — 1, the condition r? = 0 (on-shellness of the final parton) requires
both &« — 0 and # — 0. In view of (4.1.1)-(4.1.3) this implies that the emitted
gluon becomes soft (k — 0).

As it becomes clear below, the only unitarity graphs providing contributions
to the dominant part are those shown in Figs. 15(a) and 15(a’).

Consider the umtarity graph of Fig. 15(a) arising from the interference of the
Brems amplitudes M; and M.. With ¥ denoting summation over final and average

over initial spins and colors we find:

= S(Pl Pz'k)
SMiME = -C L 4.1.4
‘ 2 5ol (o = Y2z — K)2(a = pa ¥ B (#1.4)
where
_ 124 4CF . _ Ne
Cy2 = G (Cr 5 ) (4.1.5)

and the numerator in (4.1.4) is the trace:

S(p1, p2i k) = Tridva(d = B)vu(By = 0B 7" (d — B2 + ¥ - $)7"). (4.1.6)

As it is well known, the parameter y appearing in (4.1.5) is a mass scale introduced
via
_ 2¢
Jdim = gH (417)

To calculate S(p1,po; k) we first take a — 0 (i.e. k¥ ~ Bp,) and obtain
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where Sp(p1,p2) is the wrace of the corresponding Born term, given by

5B(p1,p2) = TriB,1a(d — ¥ )vuly v (d — $)7 7] (4.1.9)
Also, in view of (4.1.1) and (4.1.2):
(pr — k) =~B3, (p2 —k)* = —as (4.1.10)

Then, using expression (D.12) of App. D for the phase space integral, we find for
the contribution of T(M; M7 + M, M;t) to the cross section do /dvduw:

do? Neyw (=20 [,
T = (Cr = N P O/dﬂﬂ’ (1~ B)T(p1, (1 - B)p2)
-8
/daa'l"/dQT6+(r2) (4.1.11)
0
where
=g 47r)31"1()1 26)(4“" J2€[(1 = v)]~* (4.1.12)
and

2,2CF SB(P1P2)

TB(P] »p2) = -e N. [(q P2)2]
=2 g2CF(1 et - (4.1.13)

corresponds to the squared Born amplitude summed over final and averaged over
initial spins and colors. Notice that in (4.1.11) Tp appears with argument [p;, (1 —
B)p2] as it is pertinent to the emission of a gluon with k ~ fp,.

Now, App. D shows that for w — 1 the limiting behaviour of the integrals in
(4.1.11) leads to the following result:

dai';)
dvdw

N,
= g*(Cr~— 7)

_ -~1—-2¢ __]_'_ 271’_2
w) ( e)(1—+-e G)TB(PI,P2) (4.1.14)

Of course, an identical contribution is obtained bv taking first f = 0 (i.e. k ~ ap,)

and then repeating the above procedure.
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Adding the contribution of the graph Fig. 15 (a') and of the § « @ crossed
graphs, the overall contribution of Figs. 15(a) and 15(a’) to the differential cross

section do/dvdw is:

ot . v _ . e
jvdw = FTy(v,e)(Cr - N?)(—-%)(1 v) ‘(1-w) =21+ ez-g) (4.1.15)
where
_ 2na Cr a?(u) 41ry fv(l—v)]
F== N. 2 ( y T(1 - 2¢) (4.1.16)
and
2 — )2
To(v,e) = (1 —€)|(1 - e)vv-?l(——-—l_—#—- — 2¢] (4.1.17)

corresponds to the total squared Born amplitude. The superscript in do'" denotes
Brems from initial partons.
Eq. (4.1.15) is the key formula of this section.(¢?):(61) 1t is remarkable that it
depends on the particular subprocess only through the Born term and color factors.
Now we expand in powers of € to make transparent the various terms con-

tributing to the coefficient functions of the dominant part f,(v,w). We use

v v 62 v
(1 ‘=1—eEn(l_v)+—2—£n2(1_v)+0(es) (4.1.18)
and
(1= w12 = 51— w) + El_—}Tvﬁ 2e(‘i"—1(1_——)) +0(e), (41.19)
and obtain:
:;(;" = F(Cp - _){To(v o). 251 - w) - —( i w) + 20 —"-6(1 - w))]
- T2 w
(o) + nt T8 - w) + n e (T
(4.1.20)
we have introduced
2 JRY
To(v) = To(v,0) = 3—-%(—1:;;’—)— (4.1.21)
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The term %6(1 — w) is an infrared singularity and is cancelled by a similar term
in the virtual gluon (loop) contribution (Sect. 4.3). Regarding the term ~ 1/,
the part proportional to C'r is absorbed in the bare parton distributions (factoriza-
tion procedure, Sect. 4.4) and the part proportional to N, is cancelled by Brems
contributions from a final parton (Sect. 4.2) and loop contributions (Sect. 4.3).

The rest of (4.1.20), the finite piece at € = 0, is clearly a contribution to the
dominant part f,(v,w); as it can be seen (Eq. (4.5.7)), the last two terms exactly
determine parts of b;(v) and c(v). Of course, the term ~ §(1 — w) contributes to
ay(v).

It is important to note that in n = 4 dimensions the contribution (4.1.15)
amounts to a pole at w = 1. This pole arises because TM; M ~ 1/ (see (4.1.10))
and, in view of (D.15), 8 ~ 1 — w. The residue of this pole is calculated in the
soft gluon limit (&« — 0, k ~ Bp; ~ (1 — w)pz), e.g. the trace S(py,p2,k) is
taken at £ = 0. Thus the above procedure leads to the following statement: The
initial Brems contributions to the coefficients a;(v), b;(v) etc. of the dominant part
correspond to collinear gluon emissions and are determined by the residue of the
pole at w = 1; this residue is calculated in the soft gluon limit

Within the Sudakov procedure it can be seen that between QED-like graphs
(involving no 3-gluon couplings), Figs. 15(a) and 15(a’) are the only Brems uni-
tarity graphs contributing to the dominant terms. E.g. with k >~ fp;(a — 0) the
contribution of Fig. 15(b) is not proportional to 1/5 and introduces no pole at
w = 1. On the other hand, Fig. 15(c) gives a contribution ~ 1/, but the gluon is
not emitted by the parton p, in either of the amplitudes, so that k =~ fSp, implies
no collinear gluon emission.

Aside from this argument, we have found by detailed calculation and working
in the C.M. framc of the two final partons (App. C) that the graphs Figs. 15(b),

(c) introduce no terms ~ (1 —w)™ "% or ~ (1 — w)™' 7,
4.2 Brems from Final Partons

Now, we consider unitarity graphs in which one or both the ampiitudes repre-
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sent gluon Brems from a final parton (Figs. 16(a)—(g)). We also consider contri-
butions from the subprocess qg — v¢q (Figs. 16(a’'),(b')). Since in these cases an
intermediate transition of the form g — gg or ¢ — ¢q occurs, it is convenient to
work 1n the C.M. frame of the two final partons.(5®):(61) Some of the kinematics are
given in App. C and summarized in a compact form in Table IV.

Again to isolate and evaluate the contributions to the dominant part we de-
termine the residue of the pole in the squared matrix elements at w = 1. Denoting

by k and r the momenta of the two outgoing partons (Fig. 16(a)) we introduce

so = (k + 1) = 3v(1 —w). (4.2.1)

4.2.1 Evaluation of Matrix Elements.

Below we give in some detail our calculational procedures with the hope that
they can be extended to more complicated cases, as e.g. to determine the dominant
corrections for processes initiated by 2 — 3 parton subprocesses, for which HOC
are hitherto completely unknown.

The squared matrix element of the subprocess

a(p1) + b(p2) — v(q) + ¢(r) + d(k)

is, in general, a function of five independent variables.

In the rest {rame of the two outgoing partons it is convenient to choose the
invariants 3, t, % (or 3, v, w) and the two angular variables 8; (or y) and 6, used
to parametrize the vectors & and r (App. C, and Fig. 17). The scalar products of
P1, P2, ¢ With each of k and r are presented in Table V (upper part).

We distinguish unitarity graphs according to whether their contribution to
|M|? involves terms:(61)

(1) proportional to 1/s, (simple pole at w = 1)
(ii) proportional to 1/s2 (double pole at w = 1).
Case (i) [respectively (ii)] occurs in graphs where only one [resp. both] of the

amplitudes represents [resp. represent] the splitting of an off-shell parton into two
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final on-shell partons Figs. 16(a)-(c) [resp. Figs. 16(d)-(g) and 16(a’), (b")]; such
graphs provide a 1/s; [resp. 1/s2] factor due to the propagator of the parton which
splits. We proceed as follows:

case (i

In this case we have to evaluate the residue of the pole as w — 1, and we
consider the scalar products in Table V. For w — 1 their expressions become much

simpler and #; independent. Thus, e.g. in system S:
2py-r=-dy, 2pp-r=-fy, 2¢-r=4gy

2p; -k =—a(l —y), 20, -k =—i(1-19), 2¢-k=351-y) (4.2.2)

It is remarkable that

k k ko 1-
o R T2 "V (4.2.3)
pr'r parr gr oy

This relation suggests that the traces of the relevant unitarity graphs can be cal-

culated with the replacement:

r; (4.2.4)

this much reduces the number of terms.

In view of (4.2.1) and (C.3), w — 1 implies k¥ — 0 (and r — 0), i.e. that the
emitted gluon becomes soft. The replacement k¥ — l—;—lr 18 to be understood as
a soft gluon relation. We have checked in detail that for w — 1 this replacement
gives the correct result.(f1)

To demonstrate the efficiency of the simplified kinematics, Eq. (4.2.4), we
evaluate as example the contribution of the graph shown in Fig. 16(a) arising from

the amplitudes M, and Mj3. It gives

T ?(k,r)Vaop(k + 1, —1,—k)

_% + 4y — 2.
ta = L(M1 M + MM ) C'g 5282(py — F)? (4.2.5)
where
1 Cr
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The tensor T*?? is the trace associated with the incoming fermions and Viop the

tensor assigned to the three gluon vertex. They are given by

T = Tripy - bV B G — W A=l (427)

and

VAap = (27' + k)pgAa - (2k + T)ogAp + (k - r),\gap. (428)

Using the replacement (4.2.4) these tensors are rewritten as follows:

- 1- 4
T = ~2(1 = QTrly 7"t — — P (42.9)
and
1
Vaop = 211+ 9)rogre = 2= v)regs, + (1 = 20)ragesl (4.2.10)

Consider the first term in (4.2.10). Its contribution to (4.2.5) is easily evaluated to
be

1 i
taly) = 244(1 — e)I+y7 (4.2.11)
where we have introduced
Cr (1 — €)
e? 4 4e
A, = N.— Nc o (4.2.12)

Now, in view of Eq. (C.18) of App. C, we can symmetrize this result with respect
to y and 1 — y. Hence setting

z, = -;—[ta(y) +ta(1—y)] (4.2.13)
we find
. 1 3
ta = 24,4(1 — 6)('}7 - 1)5 (4.2.14)
where
Y=yl -y) (4.2.15)

Eq. (4.2.14) gives the total contribution of Fig. 16(a) to the matrix element.
Indeed, the second term in (4.2.10), when contracted with T*#°, is readily seen

to give a vanishing contribution. We also find that the last term of (4.2.10) gives
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a vanishing contribution to the symmetrized result (4.2.13). Hence only the first
term of the vertex tensor contributes, and its contribution is given by (4.2.14).

Finally adding to (4.2.14) the contribution arising from the same graph with
p1 + p2 (or equivalently { & @) we obtain the overall contribution of Fig. 16(a).
2 4+ 42

Ta S
tu

To+(f o @) = 24,(1 — e)(% —1) (4.2.16)

case (11

In this case, in view of the presence of the overall 1/s2 factor, the traces of the
contributing unitarity graphs must be calculated up to terms proportional to s,. It
turns out, as we shall see, that these are precisely the terms of interest.

Since in this case the limit w — 1 cannot be directly taken in the traces, to
determine the 0(1) and 0(s;) terms we proceed as follows. We first notice that
graphs belonging to this class are necessarily symmetric with respect to k and r
(Figs. 16(d)-(g) and 16(a'), (b')). In addition we notice that, apart from 1/s,,
no other propagator depends on k and/or r. We conclude that the traces must be
symmetric under k£ « r and that they must carry all the possible dependence on the
angular variables (6, and 6;). Consequently the traces of the unitarity graphs can
be expressed in terms of symmetric (under k « r) combinations of scalar products.
Such combinations, evaluated in the proper system of axes, become 8; independent
and have a particularly simple form. This much simplifies the calculations.

We present symmetric combinations of scalar products in a summary form in
Table V (lower part). They are expressed in terms of the subprocess invariants and

the symmetric (in y « (1 — y)) forms Y (Eq. (4.2.15)) and
Y, =y + (1 -y)? (4.2.17)

We employ these combinations in the calculations referred to the graphs of this
class.

To be more specific we consider as example the contribution to the squared
matrix element of the unitarity graph shown in Fig. 16(a’). We write

For = 29PNk, )T (K, 7) (4.2.18)

2
U“Sy

61




where

1
Cq = —6294;1“16\; Nf (4.2.19)

In (4.2.18), the first tensor is the trace associated with the incoming fermions

T** = Trlgy 1"y — "7 B2 ~ D)7l (4.2:20)

and the second tensor is the trace associated with the outgoing fermions

S
Tyx = Trlfvekn] = dlroks +rako — 5 gpal. (4.2.21)

Then (4.2.18) gives

- —16(1 -
ta = ———-—%—7—)—-9-[2p 120k +2p1 -k 2q-r+ etsy] (4.2.22)
2

Notice the symmetry in k « r. In view of Table V,
2p1-12q k+2p; - k2q-r=~—isyY, - 230Y (4.2.23)

where Y and Y, are given by (4.2.15) and (4.2.17). Clearly expression (4.2.23) is
independent of §;. Now, Eq. (4.2.22) immediately implies:

- it 23
fo = Ay(1- €)Y, — )= + -;fY] (4.2.24)

where

= 16C,~ (4.2.25)
32

Adding the contribution of the graph with ¢ « 4, we obtain for the overall contri-
ution of Fig. 16(a’):

P-{-u

+ ¥y (4.2.26)

$2

Tu = A1 - O|(Ys — ¢)

The first term in (4.2.26) comes from the terms ~ s in the numerator of (4.2.18)
arising from the evaluation of the traces. In view of the 1/s; factor included in A,

this term is the residue of the pole at w = 1. The second term in (4.2.26) gives a
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contribution ~ 1/s% (a double pole at w = 1). This contribution is cancelled by a

similar contribution of the graph Fig. 16(b'). Indeed, this graph gives
43 23
Ty = Aq[—2¢Y, — (1 - e)s—Y] + {(Aq32)FY,}; (4.2.27)
2 u
the terms ~ A,/s2 ~ 1/s% cancel in the sum Ty + Ty,
A point to remark here is that cancellation of such terms (~ 1/s2) is a general

feature of the graphs of this class. In fact, as it can be seen from Table VI, contri-

butions of this type cancel likewise in pairs of graphs; i.e. between Figs. 16(d) and

(e) or between 16(f) and (g).

Finally, we notice that the term in the curly bracket of (4.2.27) is a contribution
to the nondominant part f (a term regular for w — 1); we will consider again this
term in Ch. 7, and for this reason we have chosen to keep it.

Now we present the contributions of the graphs of Fig. 16. Only terms con-

tributing to the dominant part have been kept.

The graph Fig. 16(a) gives (see Eq. (4.2.16)):
T, = 24,(1 - e)(%,— — 1) (v) (4.2.28)

where 44, Y and To(v) are given by (4.2.12), (4.2.15) and (4.1.21) respectively.
Likewise, the graphs 16(b) and (c) belong to case (i) and give:

T, = A,{[% - 25(-}1; — 1B (v) + 2[% +2- 25 ~ )]} (4.2.29)

and
T.= A,{~(3 + 2)To(v) - 20 +2+ 2655 ~ 1))} (42.30)

The rest of the graphs of Fig. 16 belong to case (ii). Thus, we find that the graphs
16(d) and (e) give:

Ty = Ag{(3Y — 4 + 4¢(1 - Y)Ty(v) - 2[5Y + 1 — e(4Y — 1)]-3%} (4.2.31)

T. = A,{26(4— 5Y) + 2[5Y + 1 — (4Y 1)]%} (4.2.32)
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Notice the cancellation between the last terms (contributions ~ Ay /sy ~ 1/s3) of
these equations. Likewise the graphs 16(f) and (g), involving ghost contributions,
give:

Ty = Ag{=YTo(v) + 2(Y - i)%} (4.2.33)

s
T, = A, {2¢Y - 2(Y - Z)f—}. (4.2.34)
2

Again, contributions with double pole at w = 1 (s; = 0, last terms) cancel. Finally
regarding graphs 16(a’) and (b’), their contributions are obtained from (4.2.26) and
(4.2.27) respectively.

4.2 2 Total Contributions and General Expressions

Now we evalnate the total contribution to the squared amplitude and to the

differential cross section do/dvdw.

Regarding gluon Brems contributions we sum the results given in Egs.

(4.2.28)—(4.2.34) (see also Table VI). Denoting the sum To + Ty + - - - + T, by Ta-,

we obtain:
1

Ta..g = CNc;ng(y)To(v, 6) (4235)
where

(W)= 2+ — 2441~y (4.2.36)

Pog " 1 —y Y y &
and
C = 8elgipte—— Cr (4.2.37)
N.

The expression (4.2.35) is remarkably simple. Py,(y) is essentially the Altarelli-
Parisi split function for ¢ — gg at y < 1. Thus the residue of the pole at s; =0
(or w = 1) is proportional to Pyg(y) times the Born term. This result may be
anticipated.

We now introduce

Pyg(f)— f\gtl 26)/ ¥ (1 —y) " Pyg(y)dy (4.2.38)
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Then, in view of Eq. (C.18), the contribution of (4.2.35) to the differential cross-

section becomes:

daf'n —¢ ~1-¢p
= = FTo(v,)Nev™(1 — w) ™'~ Pyy (¢) (4.2.39)

where F is given by (4.1 16) and the superscript in do/*" is to denote Brems from

final partons. Calculating (4.2.38), and expanding the result in powers of € we

obtain:
Pyg(e) = —= ~ 5 " &€ (4.2.40)

Using (4.2.40) and expanding v™¢ and (1 — w)~!~¢ in powers of ¢ we rewrite

Eq. (4.2.39) in the form:

o.fm
((livdw = FNATy(v, e){ S6(L —w) + = ((-—1- - 2lnv)6(1 —w) — i ) )}
+To(v)[(——— - ——env + én?v)6(1 — w) + (26nv - Fl)-(—l-—;iu—;): 4ol w) (fn(l w) )
(4.2.41)

Here, the infrared singularity ~ 1/€? is cancelled by a virtual gluon contribution
(Eq. (4.3.1)). The term ~ (1/€)(2/(1 — w)4+) is cancelled by a similar term in
(4.1.15). The remaining part ~ 1/¢ is cancelled by contributions of (4.1.15) and
(4.3.1). As expected, no collinear singularities associated with (final state and)
unobserved partons remain.

The rest of (4.2.41), which is finite for € = 0, contributes to the dominant part
fs(v,w); as it can be seen, the last two terms ~ 1/(1—-w)4+ and (én(1-w)/(1-w))4
exactly determine parts of b;(v) and c(v) respectively (Eq. (4.5.7)).

Now we consider the subprocess ¢qg — vqq. We sum the (dominant) contribu-

tions in (4.2.26) and (4.2.27) and obtain:

Ny 1
To + Ty = C—éf- ;——qu(y, €)To(v, €) (4.2.42)
2
where ) \
+(1—y)—e
Pyy(y,e) =2 2(( — e)) (4.2.43)

and C is given by (4.2.37).
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We remark that Py(y,e = 0) is the split function P,y(y); the expression
(4.2.43) is its generalization in n = 4 — 2¢ dimensions. Note that the form of
P,4(y) remains unaltered in n dimensions. Both these results are in accord with
Ref. 70; and since that work refers to a completely different process (ete™ — 3
jets) the results establish the universality of the functions Py4(y,€) and Pye(y).

In view of this we note the similarity of Eqs. (4.2.35) and (4.2.42).

As in (4.2.38) we introduce

1
Py(e) = %%1__._—2% / Y~ (1 = y) " Pyy(y, €)dy. (4.2.44)
0

Then, in view of Eq. (C.18), the contribution of (4.2.42) to the differential cross-
section becomes:

dofr’
dvdw

= FTo(v, )Nso~ (1 —w) ™17 Py, (e). (4.2.45)

Calculating (4.2.44) and expanding the result in powers of ¢ we obtain

~ 1.2 10
Pry(e) = 52+ 22 (4.2.40
so that: s
do /'™ N: 1.2
oo = F5 {To(v,€)(-2)36(1 —w)+
- 10 2 2 1
+To(v)[(—§ + §£nv)6(1 -w)+ EET—_U)_).;]} (4.2.47)

Here, the term ~ 1/¢ is cancelled by a similar term of the loop contributions (Eq.
(4.3.1)).

The rest of (4.2.47) exactly determines parts of a;(v) and b;(v); namely the
parts of these coeflicients which are ~ Ny. (Eq. (4.5.7)).

Finally, notice the similarity of Eqgs. (4.2.39) and (4.2.45). These two equations

are the key formulas of this section.(69):(61)
4.3 The Virtual Contribution

In this section we present the contribution of virtual partons (loop graphs) to

the HOC of ¢g — ryg. The differential cross section do**"/df is determined in Ch.
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6; it is presented in Eq. (6.1.13) as a function of the subprocess invariants 3, £ and
#i. Using { = —3(1 — v) and & = —3v we easily transform Eq. (6.1.13) into the

following form:(61)

d uir 2C Nc 1 ) \
) = F{Tp(v, 6)[—— __Fe:_ — ;(3CF +b— Nebn(v(l —v))] + bTo(v)en%—
1 ] 2, ) ,
+——v(1 ~) 1CF[(§7T — 7)B(v) + (v* — 4v + 3)nv + (v* + 2v)en(1 - v)

+(1 + v®)en?v + (v? — 2v + 2)n*(1 — v)]
-—Nc[-"g-B(v) + (1 — v)fnv +v(1 — v)én(l — v) + €nvén(l — v)B(v)

1 1.
+§(1 +v*)en?y + §(v2 —2v +2)¢n*(1 - v)]}}. (4.3.1)

Here F, Ty(v,€) and Ty(v) are given by (4.1.16), (4.1.17) and (4.1.21) respectively.
b is the coefficient of the Callan-Symanzik beta function, Eq. (1.2.4), and

B(v) = v(1 — v)To(v) = v? + (1 — v)? (4.3.2)
is related to the squarad Born amplitude.
4.4 Factorization of Mass Singularities

The perturbative differential cross section

do do " da,real

dvdw _ dv 51 —w) + dvdw '’

(4.4.1)

where do™% /dvdw is the sum of (4.1.20), (4.2.41) and (4.2.47), and do"*"/dv is
given by (4.3.1), contains uncancelled terms ~ 1/e. As we stated in the introduc-
tion, these terms are associated in a process independent way with the external
(here incoming) partons. Together with accompanying logarithms of a large scale
M, they zre factored out of the parton cross section and absorbed in the bare par-
ton distributions. This (factorization) procedure redefines the parton densities and
introduces their M dependence. At the same time leftover terms depending on M

remain in the finite part do’ (Sect. 1.3) of the cross section.
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We denote by —do/2¢!/dvdw the part extracted from do/dvdw. This is given
by:

1 dofoct a, ,don . . o
sv dvdw _21r[/d‘”1qu($1,M )= (@13,0)6(21(8 + 1) + )
d
N / dz Hyglaz, M?)—72(228,0)8(22(5 + 4) + D). (4.4.2)

Then, the remaining part of the cross section is aenoted by do' /dvdw and is related

to do/dvdw by
do' dofoct do

dvdw ~ dvdw + dvdw’ (443)
In (4.4.2) Hyo(z, M?) is:
2 1 I(1-e€) 4mp®
HQQ(x’M ) = _-G_CFPQQ(:B)I‘(]. _ 26)( M?2 ) + u‘l?(m) (44‘4)

Here Py,(z) is the Altarelli-Parisi split function(®® (the color factor Cr has been

factored out)

1+ z?
(1-2)+
and the finite term ugq(z) specifies the definition of corrections. In Eq. (4.4.2)

Po(z) = + 35(1 _1), (4.4.5)

dop/dv (3,v) denotes the Born differential cross section which, for qg — ~g, is
given by:
d
278 (5,v) = k(8)To(v, ). (4.4.6)
dv
To(v,€) is given by Eq. (4.1.17) and the factor k(3) is:
1 2rma 25(41rp2
ST(1—-¢€¢) N, 3

Performing the trivial integrations in (4.4.2) we obtain:

k(3) =

) [w{1 — v)]*. (4.4.7)

dO’faCi (a4 v dUB
=2 M2\p=1-¢ 2\, —1—¢ A 4
Tod = "o HEL M) T T H (22, M2y T == (8,v) (448)
with
1-
T =w T = 1= vt:u (4.4.9)

We are interested in the leading terms as w — 1. In this limit, z; — 1 and
z3 — 1. Then, using the universal definition of corrections(®® (ug,(z) = 0), Egs.
(4.4.8) and (4.4.4) imply:

dofoct 1 v 1-v
dodw FTo(v,e)sz[qu(w) + 1_ quq(l —

N Ajz ) (4.4.10)

vw

68




For w — 1, the split function (4.4.5) yields,

2 3
Pgg(w) — T=w)s + 56(1 - w) (4.4.11a)
and using Eqs. (E.6a, b) of App. E,
—— Py L ) 2 2¢ (1
1—vq°1_vw'*(1_w)4% +2tn(7 )81 - w). (4.4.11b)

Then, expanding the factor (§/M?)¢ in powers of €, we find:(61)

dofact 1 v 4
dodw = FCF{T()(‘U, E)—e‘[(3 + 2En1 — v)&(]. —_ w) -+ m]
- 4 3
+To(v){(3 + 2tn - D8 =)+ gy ) (4.4.12)

This cross section must be added to the sum of real and virtual contributions,
to give a finite result in accord with (4.4.3). Indeed, the singular part (~ 1/¢)
of (4.4.12) exactly cancels corresponding terms in do/dvdw (Eq. (44.1)). As
we stated, this cancellation represents the factorization and absorption of mass
(collinear) singularities in the bare parton distributions

The finite part of Eq. (4.4.12) completely determines the coefficient functions
az(v) and bp(v). This part contains leftover terms from Brems contributions, of
which only a part is absorbed in the distribution functions, introducing an arbitrary
factorization scale M. To be more specific we consider the singular term — + F(Cp—
E:;‘)To(v, ) Teys w) present in Eq. (4.1.20). The part proportional to N, 1s cancelled
by a similar term in Eq. (4.2.41). The remaining singular part ~ Cpg 1s not
cancelled by any other contribution either real or virual; it is ar uncancelled mass
singularity and has to be absorbed in the quark distribution. Notice that this term

is proportional to:

1(4wu2( 4 1 4y 4 4 3

_; Z ) 1z w)+ - ( )6(1 - w) + = w)+€n 7R (4.4.13)

In the factorization procedure (corresponding to MS), only the first term of the
r.h.s. of (4.4.13) is absorbed in the bare distribution function. The leftover term
~ €n(3/M?) remains as part of the HOC (here it determines az(v)).
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4.5 The Dominant Part

To determine the dominant part we simply sum the contributions determined

in the previous sections. We consider the cross section

darcal N da.fact
dvodw = dvdw

do' d
dvdw

"5(1—w)+

(4.5.1)

where (do /dv)6(1~w) and do /" /dvdw as in (4.3.1) and (4.4.12), and do"**!/dvdw
denotes the sum of (4.1.20), (4.2.41) and (4.2.47). do'/dvdw is finite; all singular

terms ~ 1/e? and ~ 1/e¢ cancel. This cross section is related to the dominant part

fs(v,w) by

_ do' _ T8
filv, w) =25 == T (4.5.2)
Finally we introduce:
fo(v,v) = Hf ,(v,w) ; H-——EE—— (4.5.3)
LANCAY — a\Yy ) - ‘U(l — 'U) D,

To express the inclusive cross section o of Eq. (3.1.2) in terms of f(v,w) we change

integration variables from z,, z» to v, w; the relations are:

w 1—1)2
rq =—= — Ty =
w l1-v
and
v T T _
wy = ;1- v = —2-6" vp=1- —ZT—e ", (4.5.4)

HOC

Then the contribution o, of the dominant part f, is:

va

s = —'4;( - N, /dwf (v,w)Fy a(za,M)Fy;p(xs, M) (4.5.5)

un

Writing f,(v, w) in the form (3.1.7):

7o(00) = )31 — ) + (o) g + 3 o),
_ - 1 s
(3051 ~ w) + B2(0) 7= Mn 3 (4.5.6)
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and collecting the finite terms in Eqs. (4.1.20), (4.2.41) and (4.2.47) which con-

tribute to do’'/dvdw we easily determine the coefficient functions: (6%
@ (v) = Cr{n*B(v) + (v — 40 + 3)lnv + v(v + 2)n(1 — v) + (3v* — 20 + 2)fn?v

+(3v* — 4v + 3)n?(1 — v) — (2nvén(1 — v) + T)B(v)}

72
+N{ ?—; - ?)B(v) - (1—61B(v) +v(1 —v))nv — v(1 — v)fn(1 - v)

5 1 p?
+Nf('—'9“ + §€nv)B(v) + bB(v)fn—

PAREY
L

D

bi(v) = [4Cr(fnv — £n(1 — v)) + Nc(—lﬁl + 2¢n(1 - v)) + %’-]B(v)
&(v) = 2(4CF — N.)B(v)
@2 (v) = Cr(3 + 2nv — 20n(1 — v))B(v)
by(v) = 4CFrB(v). (4.5.7)

Now we compare our expressions with results of other related work.(5%)

First, expressions (4.5.7) are in agreement with computer outputs provided by
the authors of Ref. 59(b).(/2)

Now, we compare with the results published in Ref. 59(a) (Appendix). As they
state, the authors leave out the contributions from ¢g — v4¢g, so the terms N(— % +
3#nv)B(v) in @;(v) and } NyB(v) in b;(v) do not appear in their expressions. Also
in their expression of @;(v) a term 2N;(v(1 —v) ~ 1) is present, which is cancelled
in the final result.

We note that our expression of b;(v) contains the term (— 2 N, + 1 N;)B(v) =
—bB(v) where b is the coefficient of the Callan-Symanzik beta function, Eq.
(3.3.7); and the presence of such a term is related with the term bB(v)én(u?/s)
in the expression @;(v). The same holds for the sum of terms —-%NCB(v)fnv +

3NsB(v)énv = —bB(v)fnv appearing in a;(v).
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4.6 Concluding Remarks

Our first remark concerns the origin of the dominant part of HOC. The analysis
and the detailed calculations presented in this chapter make clear that this part
arises from soft and collinear gluon Brems as well as from virtual gluons. Hard and
non-collinear gluon Brems does not contribute.

Our second remark is that, as we have seen, the Brems contributions to the
dominant part can be calculated with relative ease. Clearly, the determination of
the dominant part is accomplished more easily than of the complete HOC.

As a third remark, we stress the simplicity of our final expressions, Egs. (4.1.15)
and (4.2.39), which determine practically all the Brems contributions to the dom-
inant part fs(v,w). The same holds for Eq. (4.2.45) which determines contribu-
tions from qg — vqq. The efficiency and usefulness of these expressions is further
demonstrated in ihe next chapter, in which we employ them and determine easily
the dominant part for the subprocess gg — ~q.

A final point to remark is that the dominant part determined in this chap-
ter, includes all the dominant contributions to the nonsinglet cross section; such

contributions do not arise from the subprocess g¢ — vqgq.
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CHAPTER 5

APPLICATION OF THE APPROACH OF CH. 4

In Ch. 4 it was shown that the Brems contributions to the dominant part
of HOC are determined from expressions remarkably simple and general, and we
presented in detail the determination of this part for the subprocess qg — ~¢.(60):(61)

Here, we employ the expressions derived in Ch. 4 and determine the dominant
part of the subprocess q¢ — ~¢.(") These two subprocesses, as we have seen,
control large-pr direct photon production in hadronic collisions. Thus this chapter
complements Ch. 4 Nevertheless, it also offers a good example of the efficiency
and usefulness of the general expressions. We also discuss certain additional points
like an estimate of the accuracy of keeping only the dominant part.

As before, we work in the Feynman gauge, and use dimensional regularization
with n = 4 — 2¢. We also use the universal defimtion of corrections,(33) and our

results refer to the M S renormalization (and factorization) scheme.

5.1 Generalization of the Results of Ch. 4

We consider the simple expressions of the previous chapter, which determine
the gluon Brems contributions, and more generally contributions from 2 — 3 sub-
processes, to the dominant part.

The Brems contributions from initial partons were determined from the expres-
sion (4.1.15). We noticed that this expression depends on the particular subprocess

only through the Born term and color factors. Hence it can be written in general

as:
1 2
47 _ paoTed(y, et (-2 Ny - w) T+ ) (5.10)
dvdw 6
where

2ra a (p) 41r,u [v(1 = v)]™
(ab) _ (ab) s 2¢
F 3 ¢ 27 ) I'(1 - 2¢)

(51.2)

and T('1 )(v, €) is essentially the Born cross section fora +b —+ v+ cinn =4 - 2¢

dimensions with its color factor C(%®) included in (5.1.2). In (5.1.1) the color factor

3




C(“b) is determined from a single unitarity graph, the one in which the radiated
gluon connects the legs of the two different initial partons (i.e. of the type of Figs.
15(a) and 18).

The contribution from unitarity graphs in which one or both amplitudes con-
tain gluon Brems from a final parton (or the split of such a parton to two on-shell
partons) were determined from expressions (4.2.39) and (4.2.45). As we remarked,
these expressions are similar and have the same structure. They depend on the
particular subprocess through the Born term, color factors, and the final parton

split function. Thus their sum can be written in general as:

dajtn

— (ab)labd) —€r1 _ ~1—¢ D
i = FO T (v, (1~ w) Zd:cdcp.,c(e) (5.1.3)
where
1
(1 — .
Pye) = F(é(——-; / ¥y~ (1 = y)7 Pac(y, €)dy (5.1.4)
0

and Pa.(y,¢) is the generalization in n = 4 — 2e dimensions of the split function
Py(y) at y < 1for ¢ — d. As usual, we have separated the Casimir factor Cy. from
the split function for convenience; it helps to keep track of color factors in specific
subprocesses. In (5.1.3), F(#® and T{**(v,¢) are as in (5.1.1).

Finally we consider the factorization procedure. It was implemented by intro-
ducing Eq. (4.4.10), which depends on the particular subprocess only through the
Born term and the split functions associated with initial partons. Clearly it can be

written in general as:

dojaci
dvdw

Cbbeb(

= FEOT{ (0, €)= {Cao Pas(w) + 1 N (5.19)

where again F(2%) and Tgab)(v,e) as in (5.1.1). Notice that only the diagonal el-
ements of the matrix P,, of split functions®¥ enter in Eq. (5.1.5). This because
only these elements (P, and/or P,y) contain distributions §(1 —w) and 1/(1 — w)4
resulting in contributions to the dominant part. The other split functions introduce

contributions to the nondominant part f of the HOC; hence they are neglected.
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Now we proceed to evaluate the Brems contributions to the dominant part for

a9 — 4.
5.2 Brems Contributions to the Dominant Part of ¢g — ~¢

We turn to the subprocess gg — v¢ and make use of the above results.("!) This
subprocess is a special case of a + b — v + ¢; we take a = g which corresponds to

the gluon carrying momentum p; (originating from the hadron 4). Then the Born

cross section equivalent to (4.1.17) is

1+ v?

TS (y,¢) = (1 - €)[(1 — ¢) + 2¢] (5.2.1)

Note that, in contrast to gg — ~g, for g¢g — g the Born cross section is not
symmetric in f and 4 (or v and 1 —v) as can be seen by comparing (5.2.1) to (4.1.17)
(or (2.1.4) to (2.1.5)); and the same is true for the HOC. Our final expression (Eq.
(5.4.1)) takes care of this.

The contribution to f,(v,w) from initial parton Brems is determined by em-
ploying Eq. (5.1.1). The Born color factor is C(49 = 1/2N, (see Eq. (2 1.4)), and
the color factor C',(:{g )= N, /2 is determined from the unitarity graph Fig. 18. Then
Egs. (5.1.1) and (5.1.2) imply:("V

do'" (q9) r 2y U, o\ —1-2¢ 27_’_2_
where
2ra 1 a?(u) 47rp [v(1 - v)]~¢
= f(99) — 2¢ 2.
e=F § 2N, 2« ( ) I'(1 - 2¢) (5.23)

and T{%9 (v,¢€) is given by (5.2.1).
Now, using the expansions (4.1.18) and (4.1.19), we obtain:

do'" @ A Leq oy Lo 2 B
dvdw - QNC{TO (D’ f)[62 6(1 w) €((1 _ 'U))+ + en’ 6\1 w))]
2 Zn(l
#(q9) (.9
+T, (v)[ ( +€n )6(1 w)+£n1 s (1 o) +4( - ) 1} 4)
where ,
799 (v) = TS (v,0) = ! +v” : (5.2.5)
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The contribution to f,(v,w) from unitarity graphs in which one or both am-
plitudes involve the split of a final parton is determined by employing Eq. (5.1.3).
We notice that, in this case, the split ¢ — d + d' occurs only in one mode, namely

g — ¢ + g (gluon Brems). Then to apply Eq. (5.1.3) we introduce(/?)

2
Pyq(y,€) = iy l-y—e(l-y) (5.2.6)
which for y < 1 is the generalization in n dimensions of the split function P,y (y)(")
(apart from the color factor Cr = C,, present in (5.2.7) below). Thus we obtain("!)

dofm
dvdw

= T (v,€)Crv™ (1 — w) 1B, (¢) (5.2.7)

where

D F(l 26) —¢ €
Pro®) = oy / (1= 9)™Pag(3, ) (528)
Integrating (5.2.8) and expanding in powers of ¢ we find:
P()—-3~——- (5.2.9)
aq(€) = —= 7€ 2.

so that Eq. (5.2.7) becomes

afm
jww=¢0ﬂkamm%a1-w4%«g-uwmu_wyifém:n
+T0(v)[(__§env+en 0)6(1~w)+(26nv— 2) 7 _lw) +2(£”§1_‘ “)),1) (5.2.10)

Finally, adding Eqs. (5.2.4) and (5.2.10) we find for the total Brems contribu-
tion to do/dvdw:

doBrems (49) 2Cr + N v
g = ®{T, (v,e)[[———-é——-—— + (Cp(-— — 2nv) — chnl — v)]6(1 - w)+
1 2
--(Cr+ NC)ZT”_U’):]
7(¢9) 7.3 2 _ _3 1 én(l — w),
+CrT, (v)[(2 2Env + n*v)é(1 — w) + (2énv 2)(1 —o); +2( ! —w )+]
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- ~(qg) l 7['_2 ¢ 2 v _ v 2 en(l - w)
+NCT0 (!))[2( 3 +£n 1 - 0)6(1 w) + enl —v (1 _ ‘UJ)+ +4( 1-w )+]}
(5.2.11)

The elimination of the singular terms ~ 1/¢? and ~ 1/e in (5.2.11) is discussed in

the next section.
5.3 Virtual Contributions and Factorization of Mass Singularities

We first present the contribution of virtual partons (loop graphs) to the HOC
of gqg — ~vg. For this subprocess the differential cross section do¥*"/dt can be
obtained from the corresponding result for the subprocess ¢ — vg (Eq. (6.1.13),
Ch. 6). This is done by § « ¢ crossing (including a factor (—1) for crossing a
fermion), and division by 2CF in order to transform the average over colors of an

initial quark to that of a gluon. After a straightforward but lengthy calculation

and using f = —3(1 - v), &4 = —8v we find:(")

do,vlr

dv

1—v
v

2Cr + N,
==

= (T (v, ¢)| - %(30,? +b—2Cren(1 - v) + Notn 2=2)]

e v){cp[(ﬁ-ffz—7)Bg(v)—w2v<1—v)(2~v)+(1—v)[(a—zv)env+4v€n(1—v)

v

+(1 — 2v + 2v?)en? T

- (2v - 1)fn?(1 — v)]]

+——Jg-c-[(-——7-r§2-)Bg(v) + 12v(1 ~ v)(2 = v) + (1 — v)[2vénv — dvén(1 — v)

—(1 — 2v + 2v%)én?

1 - =+ (20 - D)en’(1 - v)]] - Bg(v)bfnf;}} (5.3.1)

where b is given by (1.2.4) and
Bg(v) = v(1 - v)Téqg)(v) = (1 - v)(1 + v?) (5.3.2)

We have checked that the same expression is obtained from Eq. (2.28) of Ref. 66.

One can imnmediately observe that in the sum of doZr*™? /dvdw and (do**" /dv)

8(1 — w) the infrered singular terms ~ 1/ e? cancel.
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The singular terms ~- 1/¢ are eliminated via the factorization procedure. We
implement this by employing Eq. (5.1.5) with a = g, b = ¢ and hence introducing
the term("V):

dafnct
dvdw

w 8

Mgz (6:33)

1 v 1-
= 13" (v, €) - {2NcPyg () + 7= CFPyg(——

As we have explained in Ch. 4, this term must be added to the sum do 7™ /dvdw+
(do¥*" /dv)é(1 — w) to yield a finite cross section. In (5.3.3), Pyy(w) and P ,(w) are
the complete split functions (0 < w < 1);

w
1-w)y

b 51 — w) (5.3.4)

1-w
+— +w(1—w)+2Nc

Pye(w) = (

and Pyy(z) is given in Eq. (4.4.5). For w — 1 (contributions to the dominant part)

we use

R S
(I—U))+ 2NC

and Eq. (4.4.11b) for 12— P,,(7*5%). Then, expanding the factor (§/M?)¢ in powers

l—vw

Pyq(w) 5(1 - w) (5.3.5)

of €, we obtain:

da‘f““ (q9) 1 3 v 2
g = AT (0,6~ [(b+ Cr(5 + 28n—-))6(1 ~w) +(Cr + Nc)a—_—w—):]
-*-T('“’)(v){Cp[(§ + 2n—0 ¥6(1 —w) + ——2———]

0 2 1-v (1-w)s
2
+Ne———— + 06(1 — w)}}. 5.3.6
o+ 81— w))) (536)
In the sum
do’ do®'t da.Brema dafact
dvdw ~  dv 5(1-w)+ dvdw + dvdw (5.3.7)

all the singular terms cancel, making do'/dvdw finite. Then the dominant term, be-
ing proportional to this finite cross section, can be easily derived. This is presented

in the next section.
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5.4 The Dominant Part (gg — vq)

As in Ch. 4, we denote by 0F9C the contribution of the dominant part f, to

the inclusive cross section Eq. (3.1.2). This can be written (see Eqs. (3.1.2) and
(4.5.9)):

oHOC - .,(""("))2 ——{ / dv / dwF ,(v,w)Faya(za) M)Fy 5(zs, M)

n

+(A e B, n e -n)} (5.4.1)

where n denotes the rapidity and vy, v, wy, z, and z are given by Eqs. (4.5.4); in
Fy/a(za, M), a denotes a gluon. Note that the second term in (5.4.1) takes care of

the asymmetry in £ and % (discussed in Sect. 5.2) and involves the same function

f.(v,w) as the first term.
Writing f,(v,w) in the form (4.5.6) we obtain:("V)

& (v) = C’p{(%ﬁz——%)B(v)—rzv(l-—v)(2—v)+(1—v)[%(3—4v—3v2)€nv+4v£n(1—v)

+(2 = 2v + 3v?)en’v + 2(1 — v)2fn?(1 - v) — 2(1 — 2v + 20v*)envfn(l — v)}}

+~Jg£{7r2v(1 —v)(2 = v) 4 (1 — v)[2vénv — 4vfn(l — v) + v(2 — v)n’v+

—(1 — 4v + v})fn?(1 — v) — 20(2 — v)énvén(1 — v)]} + bB(v)en i

Ca)l:

Bi(v) = {Cr(2tn - 3) + 2Ntn ="~} B(v)
&(v) = 2(CF + 2N.)B(v)
a(v) = —=)}B(v)
b2(v) = 2(Cr + N.)B(v) (5.4.2)

Here, B(v) = B,y(v) = (1 — v)(1 + v?) (Eq. (5.3.2)).
The above results, are in agreement with corresponding results of computer

outputs provided by P. Aurenche et al.(5%®) (to our knowledge, for gg — vg there
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exist no published complete HOC). We notice that these outputs contain two sepa-
rate sets of HOC for gg — 7¢, corresponding to ¢ « # interchanged contributions.
We see no need for two sets (see Eq. (5.4.1)). In fact, regarding all the dominant
part f,(v,w), the results of the second set can be directly reproduced from those

of the first; this is also true for the complete HOC f(v,w).
5.5 Conclusions and Remarks

As a first remark, we would like to establish some contact between this work
and the K-factor approach of Ch. 2. As in most of our considerations, we take
@ = M = pr. Returning to Ch. 3, we have seen that in f,(v, w) which dominates
the HOC, the various terms contribute at w = 1 o1 mainly near w = 1. Thus,
in a rough sense, all the involved distributions act as ~ §(1 — w). Moreover, for
either qg — g or qg¢ — 7g, the functions by (v), ¢(v), a2(v), b2(v) and part of a;(v)
are proportional to the corresponding Born term To(v) (= B(v)/v(1 — v), see Eqs.
(4.3.2) and (4.5.7) of Ch. 4, or Egs. (5.3.2) and (5.4.2) of this chapter). Then,

for any subprocess, we proceed as follows: we neglect f (v,w) and approximately

write(00),(61)

flv,w) = C,%ifo(v)(f(l ~-w). (5.5.1)
Regarding C,, in view of the smoothness of B(v) and of @;(v) (Eqs. (4.5.7) or
(5.4.2)), it is a smooth function of v; also, to obtain the physical inclusive cross
section o, f(v,w) should be integrated over v (and w) [Eq. (4.5.5) or (5.4.1)]. Thus

as a first approximation we take C, ~ constant. Then the total c-oss section (Born

+ HOC) becomes:

do = as(pT) 2
Jodo "~ To(v)6(1 —w)[1 + . C,mr*] (5.5.2)
This leads immediately to the K-factor (at the physical scale u = M = pr)
.y as(pr) 2
K~1+ oy C,m*. (5.5.3)

Clearly, this is exactly of the form of Eqs. (2.2.22) and (2.3.1) of Ch. 2, and

offers significant insight into the reasons of the success of the approach of K-

factors.(4)—(6),(55),(56)
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We would like also to point out that the simple form of the last equation
arises from an approximation to the moments of certain of the terms of f,(v,w).
As we have stated, the moments M;(k), My(k) of 1/(1 — w)4, (én(1 — w)/(1 —
w))4 are slowly (logarithmically) varying functions of k (see Table I11). As a rough
approximation, setting M;(k) ~ c1, Ma(k) ~ ¢o (with ¢y and ¢, constants) amounts
to replacing 1/(1 — w)4 and (én(1 — w)/(1 —w))4+ by é-functions One then arrives
again to the expressions (5.5.1)—-(5.5.3).

As a second remark we notice the efliciency and usefulness of our expressions in
determining dominant parts of HOC to 2 — 2 subprocesses, as well as in providing
a partial check of the results of existing complete HOC calculations (in fact of the
dominant part of their HOC, as for example in Sects 4.5 and 5.4).

One may ask what 1s the accuracy of keeping only the dominant. part without
knowing in advance the complete HOC. As it is clear from Ch. 3, this depends
on z7 and on the softness of the parton distributions. To estimate a bound on
the contribution of the nondominant f(v,w), e.g. for parton distributions inside
a proton, we first consider the subprocess ¢qg — g which controls the difference
(pp = vX)—(pp — 7X) and involves quark valence distributions. Then Fig. 13(a)
shows that for not too small z7 (> 0.1) the contribution off i1s <20% of the total
inclusive cross section.(/¥ Now turning to rg — ~q, since for such z¢ the gluon
distribution is softer than that of valence we may anticipate at most a comparable
contribution.(/%)

Now we briefly consider the possible usefulness of our work towards other
directions.

We first mention the determination of HOC for inclusive reactions initiated
by 2 — 3 particle subprocesses of the type a + b — ¢ + d + ¢, for which (due
to their complexity) HOC are hitherto completely unknown. We believe that our
procedures in Ch. 4 and in this chapter will be useful in determining the next-to-
leading order terms comprising the de.nmnant part of such subprocesses as well. So
far, however, we have not carried any systematic study of such reactions

Furthermore, HOC beyond the next-to-leading order remain almost undeter-
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mined. Recently Refs. 72 and 73, by taking into account terms arising from soft
and collinear Brems, and virtual gluons, have been able to carry an approximate
determination of the 0(a?) correction to the K-factor of the Drell-Yan process. One
may hope that our approach will be useful in calculating next-to-next-to leading
order terms for other processes as well. In fact, in going beyond the next-to-leading
order, in addition to the terms of (3.1.7), there appear distributions of the form
(en™(1 — w)/(1 ~ w))s+ with m > 2.9 For k — oo, the corresponding moments
behave as ~ fn™%1k. Such terms further enhance the dominance of f,(v, w).

One may also ask whether our work is of any relevanc to new physics. We
believe that it is. In searches for new physics (e.g. Supersymmetry) it is very
important to have at least some idea on the size and sign of corrections. For, if
the corrections are large and negative, the signal will be much reduced.(f¢) Now
even in conventional QCD which contains fewer partons than supersymmetric QCD
(SQCD), complete calculations of corrections are, in general, very complicated and
lengthy; in SQCD they are even more. On the other hand, the dominant part of
HOC is easier to calculate. One may calculate this part to get an idea of the size

and sign of corrections.

82




PART III
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I

Wiy

ADDITIONAL CONTRIBUTIONS AND APPLICATION

In this Part, in Ch. 6 and 7, we determine HOC for the nonsinglet contribution
to AB — v+ X (i.e. contributions of the subprocess ¢,7, — 7¢); we use published

results on HOC for the nonsinglet contribution to AB — £+£4~ + X (i.e. of g,g, —
(54b)

7*9)

In particular, in Ch. 6 we determine the virtual contribution (loop graphs) to
qq — g, which has been used in Ch. 4; also with crossing symmetry, it has been
used in Ch. 5 to determine the virtual contributions to ¢¢ — 7v¢. Our results will
also provide a verification (check) of the correctness of our dominant contributions
to gqg — 7vg, determined in Ch. 4.

In Ch. 7 we continue the calculation and determine the complete HOC to the
nonsinglet part of gg — ~g. This was used in Ch. 3 (Fig. 13); in addition, it
serves to provide an estimate of the accuracy of the dominant contribution of other
subprocesses, as e.g. gg — vq (see Sect. 5.4). In the same chapter we study graphs
involving photon Brems and separate the collinear photon contribution.

The method we apply in Chs. 6 and 7 is also applicable to other QCD sub-
processes involving photons at a tree level; therefore it is of rather general use.

Finally, in Ch. 8 we use all the results of this Part and of Part II for a
phenomenological analysis of recent and old data on large pr pp — v + X and
pP — v+ X. In this analysis we use complete HOC. The motivation of this analysis
will be explained in Sect. 8.1.
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CHAPTER 6

VIRTUAL CONTRIBUTIONS AND CHECK OF
THE DOMINANT PART

In this chapter we begin by determining the virtual contribution (loop graphs)
to the subprocess qg — ~vg. For this, we use certain of the expressions of Ref.
54(b). This work determines HOC to the nonsinglet part of A + B — £+£~ (large
pr) +X, which 1s dominated by the subprocess gq§ — v*g. Denoting by Q the
4-momenturmn of v*, we show by a proper procedure that for Q2 — 0, in spite of the
presence of individually diverging terms, the limit of the aforementioned expressions
is finite; moreover, as expected from physical considerations, it determines the
virtual contribution to ¢g — v¢. In view of the success of the above procedure
we then continue and evaluate in the same way contributions arising from 2 — 3
subprocesses. Our results provide a further check of the dominant contribution to

qq — vg, cetermined in Ch. 4. They also lead to the nondominant contributions

which are determined in the next chapter.
6.1 HOC to do/di(q§ — 7g) from Loop Graphs

We present the derivation of the differeutial cross section do¥*" /df determining
the contribution of virtual partons to the HOC of the subprocess qg — vg¢.

First, we rewrite the relevant expressions (Eqs. (A2)-A(7) of App. A of Ref.
54(b)) in a slightly different form. With

- 2ma Cp a?(p) 41r;1 ge, t0 | 1
= ~ ‘ o 1.
F= 8 N, 2n ( ) ( 32 ) (1 - 2¢) (6.1.1)
and the Born matrix element denoted by
. 2 4 g2 2 200% —§ -
Jo(Q%1,4,¢) = (1 — e)|(1 — )t Q@ (Q{, i 2¢], (6.1.2)
ta a

the differential cross section da"”/df for qg — v*g to 0(a?) is written:

20?2
dovxr 2CF + N 1 B +b+1vcfﬂ 3Q

QZ {a

- F{JO(QZ,{"U, 6)( ) [—

)]
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2
+Jo(Q?,1 u)[( Cr - ——)1r — 8CF — Cpén? $

Q2+—-——(£ "'Q—Z—En Q“)+b€nQ2

+[F(Q%,5,t,8) + (f & 4)]}. (6.1.3)

The function F(Q?,3,1,1) is given by:

sy 3+t 8% 425t + 430+ fi i
F(Q*5,t,4) = )+Zn| I(CF (G+a) +N¢{+&)
B § 25 QP +4?)
HECr = Nolen o + o)~ star e 67
_@cr - N EFCHD b 02 5 0 b NIQLE D R(QE D) (6.14)
where
¢ Q2 1, ,,Q* -1 Q? Q?
Ri(Q%,5, ﬂ—an o i3 f ? §fn2(7)—ﬁiz(?)—ﬁu(52—_—t~)
(6.1.5)
and \
R@?,h) = g (L )+c.,( ), (6.16)

In (6.1.3) and (6.1.4), Jo is the function Jp of (6.1.2) at e = 0. £,,(x), in (6.1.5
and (6.1.6), is the Spence function introduced in Eq. (C.23) of App. C.

In the above forms we cannot set directly Q? = 0 because individual terms
diverge. We notice, however, that the photcn, which is emitted by initial quark
legs, is produced at fixed angle relative to the beam direction and collinear photon
emission cannot occur; no photon mass singularity should appear in the differen-

mr

tial cross-section do*" /df. Thus singularities arising in the individual terms, are
expected to cancel.

Therefore, we apply the following reduction procedure. We first set Q? = 0,
only in places where singularities do not arise. Then we combine terms to eliminate
the residual Q%-dependence. This procedure is presented below.

Applying the first step and using §+1t+ 4 = 0, we obtain the following reduced
forms of (6.1.3)-(6.1.6):

s = Fh(d, 2.0 (-2t

1
- ;(30[‘ — 2CF€n-Q‘5 + b+ N L’n———)]
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- a2 N, , 8 p?
+Io(t,u)[(§Cp - —é—)w — 8Cp — Cptn*=— Q2 + ——(e P— — fn? Q4 ) + b€nQ2
+[F(Q?,5,1,4) + (f & @)]}. (6.1.7)

The function F(Q?,3,1,4) is given by:

F(Q%5,1,4) = Cp +€n(——){Cp(3 +2) - N, —- (2Cp—-Nc)en6§;

—(2CF — No)To(f,4) + % + 2)R1(Q%,3,8) + N Io({, 4)Ry(Q%, 1) (6.1.8)

with
Ri(Q%,5,1) = tn— Zn(——) + = €112Q -l-enz(——t:—) (6.1.9)
Q? 2 § 2 Q? o
and
= 1
2 A _ 2p2
Ral@, ) = 5tn’(~ Qz) (6.1.10)
In writing the above equations we have introduced
t”’l ~2
Io = Jolgrmo = (1 — &)[(1 — €)% — 2¢] (6.1.11)
and
= 2 4 42
Iy = Iyle=o = ——:i- (6.1.12)
fu

Now we proceed to the second step. We expand the factor (5/Q?)¢ in powers
of ¢, we recollect terms and after some algebra we find that the final expression of
do [di is manifestly Q*-independent. Clearly in (6.1.7)-(6.1.10), Q* plays the role

of a subsidiary scale. Our final cross section is:

vir - . 2
i F{Io(t,a,e)[-?;c—%]—v—c - %(30,@ b Ncén—-) + bent]
7 (5 a2 Ney 2 2 Ey o pnze By Nepot,

+I0(t,t.)[(3C'p -5 yre = 7CF + Cr(€n®( §)+€n ( §)) 5 in s

i foot, u N, i
+SCF[?£n(—-§) + Efn(—;;)] +2(Cr — -z—-)fng-?

N., 1 i 4 i
+HCr - (7 + 2)en2(-—§-) +(z+ 2)€n2(——§)]}. (6.1.13)
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We remark that, since the final do/df is Q%-independent, the expressions
(6.1.7)-(6.1.10) must reduce to (6.1.13) for any particular choice of the subsidiary
variable Q2. A very convenient choice is @* = §; then the factor (§/Q?%)¢ and
many terms in Eqs. (6.1.7)-(6.1.10) are immediately eliminated and with a simple
rearrangement, Eq. (6.1.13) easily follows.

We have checked that the part of (6.1.13) proportional to C is in accord with
Ref. 77.

Expression (6.1.13) can also be obtained from Eq. (2.28) of Ref. 66 by inter-
changing § «» { and multiplying by —1/N..

6.2 Gluon Brems Contributions to the HOC

Here we apply the method of the previous section to obtain the HOC arising
from the graphs Figs. 20{a)-(e). For this we use the expressions of App. B of Ref.
54(b), giving corresponding contributions for ¢ — v* 4+ . We denote by do' /did4
the contribution of these graphs to the differential cross section. The prime in do’
is to denote that the mass singularities, associated with collinear gluon emission
from initial quark legs, have been factored out of the perrturbative cross section
do /didii, and absorbed in the (bars ) parton distribution functions.

To simplify the presentation we split Eq. (B.10) of Ref. 54(b) as follows:

LA (6.2.1)
T =0 a 2 L
dida 0 A
where 05 contains all the terms proportional to 6(sz) (here, s = § 4+ 1 + @ +
@*), and o4+ contains all the terms involving the distributions 1/(sz)4+ and

(én(sq/a)/s2) s+ which are defined by:

A A
1 1 ]
0/ oy f(sa) 5 — = 0/ doalf(sz) ~ SOV} (6.2.20)
and A A
[ dsarten L = [ dsalfen) - sio) 2 (6.2.2)
0 ' 0
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for any regular function f(s;) and any scale a. Finally in (6.2.1), o contains all
the other terms (not included in o5 or 04+). We remark that, in the expressions
of Ref. 54(b), each of the terms og, 04+ and o is a function of Q? (with Q the
4-momentum of the virtual photon).

Now, as in Sect. 6.1, we observe that in the relevant graphs (Figs. 20(a)-(e)),
the photon is emitted only by initial quark legs and collinear photon emission cannot
occur. As before, no photon mass singularity should appear in the differential cross
section do’/didi.

Again, as in Sect. 6.1, we first take the limit Q% — 0 everywhere that this

limit exists. In this way we obtain:

= F{Iy({,1, 6)(Q ) [2CF6+N + - (3Cp+b+20p€n-Q—+NL’n———]

F (5 o~ N, 2 2 2
+1o(¢, @)[(Cr — +p+ bin= + N, £n2Q +2(;ant_ugnM

3—) 3 A A Q?
M? )
—3cpen62— +(Cp ~ —~)en ( )}5(32) (6.2.3)
and
oA+ = FT()({, ﬁ){[—-b +4(Cfr — gﬁ)@n%} (821)A+
n 2 3
ralCe(PE ) op - Doy Ly (620

Here, as in Part II, M stands for the factorization scale In (6.2.4) we have not
included terms ~ 1/(s3) 4+ having a vanishing coeflicient as s; — 0. In such terms
the A* prescription can be removed from the relevant distribution; therefore these

terms naturally belong to . With these terms transferred into o, we obtain for

Q* =0

N 3 2 2 § 3(3sy — 4f) 2f 3
=F C ~ .NcT— ~ N N ~ ] — 0%
7 { F[(§+ﬁ)2+§+ﬁ+ﬁ]+ ta 2(8+ u)? s+u] bt&
st 389 839
-2(Cp — — - In +2(Cr - — 1,’ -
( )t(t — 8o )(1 — 32) e t ( ) (f - 82)(@t — s82)
44 — s, U u M?
C = - = — =)n(—
+Crl tu (3§ 4+ 1)? + Hs+ 1) t] g S92 )




.

Nc 1 ~ 1 {ﬁ
+(2CF — —)o(t,4)—bn—
(2Cp = )t ) (f - 52)(6 — s2)

In the above equations, F, Iy and I, are given by (6.1.1), (6.1.11) and (6.1.12)

+ (i & @)}. (6.2.5)

respectively. A is the upper integration limit appearing in the definitions (6.2.2). b
is introduced in (1.2.4), and we have set for convenience

1
— (67N, - 10Ny).

p= 18(

Now, only in the term o5 (Eq. (6.2.3)) there is a residual Q?-dependence. This
can be completely eliminated by expanding the factor (§/Q?)¢ in powers of ¢ and

recollecting terms, or by taking the convenient choice Q% = &, as in the virtual

contribution. Either way we obtain the Q?-independent expression:

. _2Cp+N. 5
o5 = F{Io(t,u,e)[—-—*"zt— +=(3Cp+b+ N, en =)l
- . 2
+I0(t,‘&)[(CF - %)7; +p+ bené -+ Ncen é <+ ZCpéfnpen—N—I—
~3Cptn=+(Cp - )tn* o ta 116(s2) (6.2.6)

In the last expression the singular terms ~ 1/¢? and ~ 1/e are cancelled by
corresponding terms in (8§do®'"/dt) é(sz), Eq. (6.1.13). Thus, from now on, we
shall consider only the finite contribution of (6.2.6), to be denoted by '™,

We observe that both af "'t and o4+ depend on the variable A. This de-
pendence is introduced by the distributions in (6.2.2), which are convenient in the
evaluation of the physical cross section Eq. (3.1.2), when the integration over either
parton’s momentum fraction z, or z; is transformed into an integration over s3. A
is precisely the upper limit of this integration and depends on the external variables
of the process. However, the perturbative result of the subprocess cross section can
be expressed always as a function of the invariants 3, { and & only. Therefore, A

1s another subsidiary variable and can be eliminated in the sum o;'" e

+ 04+, by
introducing distributions with the standard + prescription.
We proceed to show that this is indeed the case, and find the A independent

expression. We need such an expression in order to compare with our results of Ch.
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4. To this end we introduce the dimensionless variable

=v(l - w) (6.2.7)

(s2)a+ El(_gz)T — tn=4(52)] (6.2.84)
(Zn(32/a)) Ensz (= )__—1_ + (fngEn-‘i _ lgn2f}_)5(§2)] (6.2.8b)
°2 57 (32)+ 8§ § 2 3

Notice that, by introducing (6.2.7), the argument of any logarithmic function in
(6.2.8b) is dimensionless.

Now, using (6.2.8a) and (6.2.8b) with a = M? and a = A, the sum

finste

oD = 0y + oA+ (6.2.9)
becomes:
_Fo . N, 7? N.., ,& 2. 5.
op = §I o(t, 2){[(Cr - > )3 +p+(Cp—-5—)€n E+Cp(3+2€n{—a)€n}\—4—2—]6(32)
1 £n82
+[=b+4(CFr — —)€n~— +4CF€nM2](_ N + (8CFr — 2N, )( )+} (6.2.10)

This expression is manifestly A independent. It can also be obtained directly from

(6.2.6) and (6.2.4) by setting A = § and changing integration variable s; — 3;.
6.3 Verification of the Dominant Part

We have reduced the expressions of Ref. 54(b) to corresponding forms for
large pr real photon production. Our final expressions Eqs. (6.1.13), (6.2.6) and
(6.2 10) are functions of the subprocess invariants (and of the scales ¢ and M) only;
consequently, in view of Eqgs. (3.1.4), they can be expressed in terms of v and w.

The differential cross section do*" /dv, obtained from {6.1.13) was presented in
Sect. 4.3; its finite part has determined the virtual parton coniribution to the coef-

ficient a;(v). In the following, we shall consider the (finite) part op, Eq. (6.2.10),
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which involves distributions of the variable 3; and arises from 2 — 3 subprocesses.
This part mainly contributes to the dominant part f,(v,w) of the HOC.

We denote by (do/dvdw)p the cross section differential in v and w that arises
from (6.2.10). Using Eqs. (E.12) with A = v and £ =1 — w we obtain after some

calculations:
do F , Nc 7!'2 67 5 L, v
(dvdw )p = wo(l - v) {BO)(CF - XY EN - §N_f — bnv + Crin T
Ne,, o 9
+—2——(£n v — n(1 — v) + 2lnvén(l - v)))6(1 — w)+
’ 1-v : (1 —w)y ©
+Cr((3 + 2¢n et Yo(1 —w) + 4 )en 8
1-v’ (1-w)y” M?
nw
+Nc1_w]} (6.3.1)

where F' and B(v) are given by Eqs. (4.1.16) and (4.3.2) respectively. B'(v,w)

arises from the numerator of Ip(f, ) and it is
B'(v,w) = v2w? + (1 —v)%. (6.3.2)
This can be split as
B'(v,w) = B(v)+ AB ; AB = —v?(1 — w?). (6.3.3)

Now, contributions to the HOC f(v,w), introduced in Sect. 4.5, are obtained by
using the relation (see also Egs. (4.5.2) and (4.5.3))

1 do'
Fdd)

fv,w) = wo(l —v)( (6.3.4)

Regarding suvch contributions we make the following remarks:

(a) The first and second lines of Eq. (6.3.1) exactly reproduce the Brems contri-
bution (and more ge:.orally contributions arising from 2 — 3 subprocesses) to

the coefficient @ (v).
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(b) The part AB = —v%(1 — w?) of B'(v,w) removes the 1 — w pole of the dis-
tributions involved in the third and fourth lines of Eq. (6.3.1), and provides
contributions to the nondominant part ? of the HOC. The last term of (6.3.1)

also contsibutes to f.

(c) Therest of the terms, i.e. those ~ B(v), exactly reproduce the other coefficients

B, (v), c(v), @2(v) and by (v) of the dominant part.
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CHAPTER 7

NONDOMINANT CONTRIBUTIONS AND
COLLINEAR PHOTON BREMS

In this chapter we first consider the nondominant contributions to ¢g — v¢
continuing the calculation of Ch. 6. We then proceed to determine other contri-
butions to the nonsinglet part, which arise from graphs involving photon Brems.
Terms corresponding te collinear photon emission are present in the final expres-
sions and are separated. The rest of the terms contribute to the nondominant
part.

With these additional contributions the 0(a?) correction to the nonsinglet cross
section is completely determined. As we mentioned these results serve to provide
an estimate of the accuracy of the dominant contribution of other subprocesses,
like g — vq and g — g, concidered in Part II. Moreover we will use these results

in the analysis of the next chapter.
7.1 Nondominant Contributions

We proceed to determine the nondominant contributions arising from the set
of graphs considered in Sect. 6.2 of Ch. 6, namely the graphs Figs. 20(a)—(e).
These contributions are obtained from Eq. (6.2.5) and certain terms of Eq. (6.3.1)
which do not contribute to the dominant part f,(v,w).

We denote the nondominant part of f(v,w) (Eq. {6.3.4)) by ?(v, w) and write

it in the general form:
7(v,w) = al?nA—;-f +elnv + fin(l - vw) + §n(1 — v + vw) + kfn(1l = v) + ilnw

In(l — v+ vw) - bnw _On(E

1-w 1—-w 1-w

+7n(1 —w)+k+ 2 (7.1.1)

where the coefficients d, €, ...7 are, in general, functions of v and w.
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Now, we denote by ?1 contributions to ? arising from (6.3.1). Using (6.3.3) we

obtain after a straightforward calculation,

filv,w) = —v?(1 + w)[4Can——' +4CFptnv — 2(2CF — Nc)én(1 — v) + Nebnw

+2(4CF — N.)en(1 — w) — b] + N, B(u) fnw

(1.1.2)

Likewise, we denote by ?2 contributions arising from (6.2.5). After a lengthy csl-

culation we obtain:

?2(’0,10) =Cp[-1+4v-(1-2v)w— v(1l-v) + v(1 - 2v)

Xz X 1(én M2 +€nv)
~2(2CF — N)vln(l —vw) +{2Cf — N)[-1 —vw + li(—l)-{:—v—)z’-][ﬁn(l —v) + fnw)
+H{CrL+ 80 + (=1 + 40)w — v(lX—;v) N 4—51)’(+4v2]
+N[-1-2v —vw + }i(l—-—)ﬂ}f (1-w)
+Cr[—4v(1 - v) 4+ (1 + v - 40*)w + v(_lk—__vl(% +1)] — 2bv

+Nzﬁ[3 +(1—4v)w + v(1X—2 v) _ vl ;4U)] (7.1.3)
where
X=1-vw (7.1.4)

Egs. (7.1.2) and (7.1.3) have been written in accord with the decomposition of Eq.
(7.1.1). The coefficient functions d, ..., specifying the nondominant part ?(v, w)
are obtained by adding corresponding terms of (7.1.2) and (7.1.3). These functions
are presented in App. F.

We remark that the term —2bv in (7.1.3) can be obtained from the contribu-
tion (2 Nyv) of the curly bracket in (4.2.27) and a similar contribution (—28N.w)
arising from the ¢§ — ygg subprocess. Also, the term bv%(1 + w) in (7.1.2) can
be obtained from the dominant term —bB(v)/(1 — w)4 (see by(v) in Eq. (4.5.7))
and the replacement B(v) — B'(v,w) (Eq. (6.3.2)). Several other terms can be

similarly obtained. The above terms provide a test of the results of this section.
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7.2 Classification of the Remaining Nonsinglet Contributions

‘To make clear the type of contributions we consider in this section, we begin
with a brief discussion of the class of subprocesses contributing to the nonsinglet

cross section. Here it is convenient to express the inclusive cross section for AB —

v + X in the following form:
o8 = Z / d:cadxbfa/A(za,M)fb/B(mb,M)é'“b (7.2.1)
a,b

where 3% denotes the corresponding subprocess cross section for a+b — ~+z. Then
it is a simple matter to show that, assuming only charge conjugation invariance,

the nonsinglet cross section can be written:

oNS = gAB _ 5AB _ > / dz.dzsq)) 4 (za, M)g} p(z, M)A (24, 23) (7.2.2)
1,)

where the summation runs over quark flavors, and q:’/ y denotes the valence distri-

bution of quarks of flavor ¢ within the hadron H; it is
Gyu(e, M) = fo, 5 (2, M) — f3,,(z, M) (7.2.3)
In (7.2.2), AG(*?) is the difference of parton cross sections
A (z4,14) = 619 — 590 (7.2.4)

considered as a function of the momentum fractions z, and z;. We notice that to

any order in a,, only subprocesses of the type

a') -q:QJ =7+ b) Gq; = +z (725)

contribute to (7.2.2); contributions from gluon initiated subprocesses cancel out.

Of course, loop contributions refer to the subprocess
(a)  q7—7g;
the 2 — 3 subprocesses are of the type

(b)  q7— 99 qq — vqq
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or

() 99— 799 (7.2.6)

Among these subprocesses, (7.2.6), only (a) and (b) with ¢ and § of the same
flavor contribute to the dominant part. Subprocesses ¢.g, — v¢,g, with 2 # j or of
the type (c) do not contribute because they proceed via gluon exchange; thus they
involve neither collinear giuvon Brems configurations nor a ¢g pair in the final state
with ¢, 7 collinear.

Now, we briefly discuss and classify the remaining contributions to the nons-
inglet cross section Eq. (7.2.2). These contributions arise from graphs contributing
to (7.2.2), but not to its dominant part. Such graphs are those of Figs. 20(f), (g),
(h) for the subprocess g7 — vqq and of Figs. 21(a), (b) for ¢q — vqq.

We denote by My the sum of the amplitudes associated with the graph Fig.
20(f) (i.e. of the graph itself and the one with the photon emitted by the other final
quark leg). Similarly, for the graph (e) fsum of amplitudes: M.), graph (g) (sum:
M) and graph (h) (sum' Mj). Then, regarding g7 — 4@, contributions will arise
from |My|* and (M, + M) (M, + My).*

Now, we denote by M,(ps, ps) the sum of the amplitudes associated with the
graph Fig. 21(a) {i.e. of the graph itself and the one with the photon emitted
by the other initial quark leg). Similarly for the graph (b) (sum of amplitudes:
My(ps,ps)) Then, regarding q¢ — vqq, contributions will arise only for identical
incoming quarks from [Ma(ps,ps) + Ms(p3, ps)}[Ma(ps, p3) + Ms(pa,pa)).”

We note that contributions from M. - M} vanish because of charge conjugation.
Also contribution from |M,+M}|? cancel in the nonsinglet cross section Eq. (7.2.2),
with contributions either from |M,(ps,ps) + My(p3, ps)|* for nonidentical quarks,
or from %[|Ma(p3,p4) + M(p3,p1)|* + (p3 « p4)] for identical quarks.

A point to remark, is that contributions to the nonsinglet cross section arise
only when the incoming g and § or two quarks have the same flavor. As a result,

in Eq. (7.2.2), the double summation is reduced to a single one, and we may write:
oNS = Z/dmad:cbq;’/A(xa,M)q:/B(xb,M)A&(“) (7.2.7)
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with g7 4, nd A6(2%) given by (7.2.3) and (7.2.4) respectively.

Finally, we notice that the graphs providing the additional contributions con-
sidered above, contain kinematic configurations with the photon emitted collinearly
with a final quark. Such configurations lead to factorized contributions of the form

(2.1.14) discussed in Subsect. 2.1.3. The next section treats them in more detail.

7.3 Collinear Photon Bremns and its Separation

Here we discuss collinear photon Brems. We show how the corresponding
contributions arise and how they are separated. Such contributions are of 0(a,),
and after separation they leave a nondominant contribution of 0(a?).

We take as example the squared amplitude |M/|? and denote by do 4 /didi its
contribution to the differential cross section. We use Eq. (C.1) of Ref. 54(b) and
set Q% = 0 in places where a singularity does not arise. We write:

Sdo 4 Sdo 4 sdo 4
~ = sin m 7- .1
dida ~ Cdiaa e g ! (73.1)

where the first part contains all the terms which are singular for @2 — 0, while the

second those which are finite. We obtain:

sdoa

1 9.
( dtdA )amg FAxenf(Qz)

3 1 3,, " 82
i tad+3(g8+i-3)

a? 2 TR
/\2[3_8 (32— — %+ 5 = 28) + (200 - @ — 26} + 4iisy - 307 + 285, — )
1 33a%(a? — %) .
ta o, ted) (7.3.2)
and
§do 4 1 d 5 1, i L P
= Fp{e——(= -1) - =+ — ~28+ S =(i — @) + 44 — 2
G = Falgmin (G -V - gt mlsog 2+ g5 -0 rea -2
a ., . . 3a%(a - ﬂ 28 —d—1 5+,
+§§(2(3+32)+t—u)]+ IO Fva 1}
+i o @), (7.3.3)
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” v

where in (7.3.2) and (7.3.3) the overall factor F is given by(/7)

ora C
= —"ﬁ—“"[z T(R) (7.3 4)
and A is:
A =[(@+£)? —4Q%s,)} G it f| = —(f + @) (7.3.5)
We have set

§+Q*—s2+ ~(i + f)
—) —————————
§+4Q*—s2—2 @0 Q7

We notice that £n f(Q?) diverges for @2 — 0, and this is the reason we separated
in (7.3.1) the terms ~ ¢nf(Q?).

£(Q")

Now we introduce the variable

t" ~
p= 1Y (7.3.7)
3
in terms of which we write for Q% — 0
; L a A —an =(1 N 2 Z.§
t+4=-2§8, = 2§, 83 =(1—2)s, f(@°) = @ (7.3.8)
We also introduce
. 2 + 42
Ba(3,4,a) = ;;” (7.3.9)

which corresponds to the squared Born matrix element of the 2 — 2 parton graphs
arising from the graph Fig. 20(f) when the photon is removed.

Since (7.3.2) and (7.3.3) are symmetric with respect to ¢ « 1, they can be
expressed in terms of the symmetric variables z and B, introduced in (7.3.7)

and (7.3.9). After a lengthy but straightforward calculation we find the following

expressions:
(%3)“"9 2FA€ (zs Q=2 s,4,0) (7.3.10)
and
(éda" )fin = 4F" —[2(1-2) = (3= 3z + z*)Ba(3,{,1)] (7.3.11)

dtdi
We note that Eq. (7.3.10) includes contributions arisiug from configurations with
the photon emitted collinearly with the final quark. It is known (see Ch. 2 Subsect.
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2.1.3) thi.t such contributions factorize in accord with (2.1.14); here Q acts as a

regularization scale.
In (7.3.10) we separate the term ~ ¢nz and define the rest as the collinear

) (7.3.12)

Nl“)
N

photon Brems. Thus, we write
sda“” 2FA
= ( )P ve(2)Ba(3,

A

dida
Then Eq. (7.3.11), together with the term ~ #nz from (7.3.10), gives the nondom-
inant contribution to the HOC
sdé d 2F
224 24y + AanP.,q(z)BA( £,4) (7.3.13)

dida didd
In Egs. (7.3.12) and (7.3.13) P,,(z) is the split function for ¢ — v introduced in

Ch. 2, Eq. (2.1.18).
To obtain the final form of Eq. (7.3.12) we denote the regularization scale Q

by A and recall Egs. (2.1.17) and (2.1.18)
.i_ D.ye(2,8) = 20_"[2,:: ei]P-,q(z)En% (7.3.14)
Then Eq. (7.3.12) becomes:
sjfd';" = 2Dz, s)d""( f 2) (7.3.15)
(7.3.16)

where
dog,. ... walCp_*+14?
Y (3, t, u) = T3 ar ~
dt 52 N. 3
is the differential cross scction for the 2 — 2 subprocess ¢,§, — qxq; (the factor of

2 accounts for £ & ).

Similar results follow for the other contributions to the nonsinglet cross section
each contains a collinear photon term and a leftover contribution to the nondomi-
nant part f(v,w). Denoting by dog/didi and doc/didii the contributions arising

( .

from the amplitudes (M. 4+ M) (M, +Ma)* and [Ma(ps,ps)+ Mu(p3, ps)l[ps < 4]

respectively (Sect. 7.2), collinear photon Brems gives
§d0§3"(%) O'B(C) f i
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with
dop .. - ra? Cr N. 2 4?2
—(§,t,4) = =*4—(Cp — —=)[—= + = .3.18a)
22,0 = e o - T+ ) (assa
and
dO’C 7ra CF
— = 3.18%
22 (s, 5) = 75 (7.3.185)

The last two differential cross sections correspond to Born contributions of 2 — 2
subprocesses. In (7.3.17) the photon fragmentation function is given by (7.3.14)
with 3 €2 replaced by e (charge of the fixed final quark - see also Eq. (2.1.17)).

T’ixe contributions to the physical process AB — v + X of the above collinear
v Brems terms, are of the same form as Eq. (2.1.14) of Ch. 2.

7.4 Leftover Contributions from Photon Brems

Ncw we present the contributions which are left after extracting collinear
Brems (leftover contributions).
First, as we have seen the contribution arising from the squared amplitude

|Mg|? is determined by Eqs. (7.3.11) and (7.3.13); these lead to the following

expression:
g‘f&f —F[Z e2] = 2{2(1 ~2z)-[3-32+2% - —anP,,q(z)]p td } (7.4.1)
didii 2z
with
F = 20d’ ff : (1.4.2)

The leftover contributions, arising from the other combinations of amplitudes,

are obtained by applying the same procedures. The results are:

3dop e} Ne, 1 £2 a?
22 = PR - SN0+ ) - (1= 2 = SnaPy()) (55 + 57)

2 (s 2 an 22 ~2 2
“32+\u—82) i 132+s :s + (@ — 82)? ’ 7 338 1
a6y G sl fas, Maamny atVits

+3[f & 8]} (7.4.3)
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and

sdoc _
didi

e? N, it ] st u St
FA(Cp—=2){-2*+P bn————fn-2 - 2
tﬁ( F 9 ){ 2"+ '7‘7(2)[2 n§82 3 + ten ) R + ﬁen §t" ]} (74‘4)

where F is given by (7.4.2).

Eqs. (7.4.1), (7.4.3) and (7.4.4) can be expressed in terms of ¢ and the dimen-
sionless variables v and w introduced in (3.1.4). The procedure is straightforward.

Clearly, the leftover contributions have the same form as the nondominant con-
tribution f(v,w). Hence, in the presence of structure functions they are suppressed
(Sect. 3.2), and give a contribution to the physical cross section comparable to that
of the nondominant term considered in Sect. 7.1.

As a final remark, the leftover contributions are much smaller than the cor-

responding collinear photon Brems. This is known since some time (see Ch. 2,

Subsect. 2.1.3).(8),(10)
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CHAPTER 8

THE GLUON DISTRIBUTION AND PHYSICAL VERSUS
OPTIMAL SCALES IN DIRECT PHOTON PRODUCTION

In various calculations of the previous chapters (e.g. in the phenomenological

analyses of Ch. 2) we worked with scales u, M such that

pt = M? = apl

with o = 0(1). Other choices, like u> = M? = —¢,§ or 25t /(3% + {2 + 42), lead to
very similar results. We have called physical scale the choice 4 = M = pr; and we
shall call near-physical the other of the above scales. Most of the large-pr physics
has been developed with physical or near-physical scales.

Yet a different class of scales, called optimal, has been proposed.(68):t6%) Use
of such scales in analysis of large-pr data has been advocated in Refs. 59 and 78
and extensively applied to AB — v+ X.

However, as we discuss (Sect. 8.1), there are certain problems with optimal
scales. On the other hand, the answer to important questions affecting QCD phe-
nomenology like the shape of the gluon distribution depends on whether one uses
physical or optimal scales. Therefore, in this chapter, we carry an analysis of re-
cent data using physical scales and compare with the results of optimal ones; our
basic conclusion is that some ambiguity in the shape of the gluon distribution still

remains.
8.1 Problems of Optimal Scales

As a way out of the uncertainty in the choice of the scales, the procedures
of optimization have been proposed. According to these procedures the scales are
fixed by imposing extra conditions on the correction term.

Two of the most prominent optimization procedures are the Principle of Min-
imal Sensitivity (PMS)(®® and the criterion of Fastest Apparent Convergence
(FAC);(6% we briefly discuss them in the following.
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The FAC criterion amounts to determining a scale u = M = ug such that:

onoc(pe)=0 or  o(4G) = oBorn(kG) (8.1.1)

In imposing this condition the idea is that with 4 = yg one may hope that the
perturbation expansion converge fast.

According to the PMS convention one determines scales u = ugs and M = Mg

such that:

0 0
aa(“’M)lus Ms = 57\4—0(/‘» M)lus,Ms =0 (8.1.2)

The argument for this convention goes as follows: Take, for simplicity, u = M;
then the cross section is a function of M/pr. Suppose that the exact cross section

Oezet, 1.€. to all orders of a,, is finite; suppose also that it is known. Then o0,. is

independent of M (a straight line), and

aae:c{

oM

(M)=0 (8.1.3)

However in reality o is known only up to a finite order of a, (for AB — X up
to 0(a?)), call it o(?, and it is not independent of M (not a straight line, Fig.
22). Then PMS fixes M by choosing the point M = Mg at which o(?) satisfies the
condition (8.1.3) (where o(® shows “minimal sensitivity”, i.e. roughly speaking,
looks more like a straight line).

The weakness of the argument is evident: First it is highly questionable that to
all orders of a, the cross section is finite; in fact it has been argued that perturba-
tion series are asymptotic series.("® Second, even if 0., is finite, it is completely
unknown. If it corresponds to the dashed line of Fig. 22 the choice M = Mg is
good. But if it corresponds to the dash-dotted line of Fig. 22 the choice M = Ms
is poor, the best choice being M = M, or M = M,, where ¢(* does not satisfy Eq
(8.1.3).

Also, regarding the FAC criterion, suppose that p = M = pug has been de-
termined so that, to 0(a?), ag)oc(,uc) = 0. Nothing guarantees that, if oyoc is
calculated to 0(a2), for the same p = M = pug one will obtain ‘7(13)00(/‘0') ~0 (i.e.
C'g-?)OC(NG) < 0Born(KG))-
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In relation with this point as a nice feature of PMS optimization has been

considered the fact that in many cases it leads to cross sections

o(ps, Ms) ~ oporn(tis, Ms) ~ o(uc); (8.1.4)

again the hope is that this indicates rapid convergence. Clearly the same objection
as for the FAC solution can be raised.

Anyway, optimization is a possibility, and some test of it is very desirable. The
opportunity for a test has been offered by a recent calculation up to 0(a3) (three

loops) of the ratio(80)
oot{e” et — hadrons)

aR: a(e_e+ - #_#+) (8.1.5)
In the M S renormalization scheme the result is:
R=Ro(1+ 2% +141(52) 4 64.8(22)%) (8.1.6)

where Ry = 33 eg, the value in the parton model. This calculation extends by
q

one order of a, the existing ones(®)) and makes possible a test of the convergence
in the PMS and FAC procedures.

The test is as follows:(82) Determine the optimal R using first the old (0(a?))
calculations(®!) and second the new calculation:(®? call R(?) and R® the corre-
sponding ratios; then for each of PMS and FAC procedures consider the fractional
difference

R® _ R@

§= —R® (8.1.7)

If indeed PMS and FAC achieve rapid convergence, this difference should be small,
at least smaller than of usual renormalization procedures, like MS or MS (with
the physical scale y? = s).

This test led to a negative result.®®?) At /s = 34 Gev (and 5 flavors) it was
found for FAC: § = 0.27 and for PMS: § = 0.215, in contrast to the MS renormal-
ization scheme for which § = 0.144 and to M'S: § = 0.156. In view of the large
contribution of the last term in (8.1.6), optimization remains powerless; anyway,

the hope that it leads to rapid convergence is unsupported. (See also Refs. 83 and
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84, and the argument of Ref. 85 that the FAC and PMS procedures will inevitably
result in a zero limit of the perturbation series, if a limit exists.)

There are additional problems with optimization procedures as applied to
large-pr processes. In certain cases, values of the scales significantly smaller than
p = M = pr are obtained; then it is unclear that the result is physically sensible.(86)
In other cases, in certain kinematic domains (e.g. relatively low pr (pr < 3 Gev)),
optimization is impossible; yet, in the same domains, the choice g = M = py gives
very reasonable results. To all these one should add the complexity of the optimal
scales, i.e. the fact that their relation with pr is not explicit, but varies from one
point of phase space to another.

In recent comparisons of data with theory the scales u, M have been fixed
using PMS optimization.(®®) Usually, very similar resuits are obtained using the
FAC criterion. However, as we stated, various important conclusions, as e.g. the
softness of the gluon distribution, significantly depend on the choice of the scales.

In view of all this, in this chapter(®”) we present an analysis of recent (and
some old) data on pp — v+ X and pp — v+ X with the choice of physical scales
(0 = M = pr), and compare with that of Ref. 59. Ref. 59 uses complete HOC,
and a meaningful comparison requires that we also use complete HOC. In addition
we study the variation of the predictions for a change of the scales in the reasonable

interval pr/2 <p=M < 2pT.(87)
8.2 Higher Order Corrections

As we have stated the reaction A+ B — v (large pr) +X is dominated by the
subprocesses g¢ — v + z and ¢§ — < + z, subsequently referred to as ¢g and ¢g
respectively. The Feynman graphs determining the leading order and the next-to-
leading order (HOC) terms for the above subprocesses are presented in Figs. 19 and
20. Graphs with self-energy loops or: the initial or final partons are not presented.
Fig. 21 presents the remaining graphs contributing to large-pr AB — v+ X up
to 0(a?); they correspond to gg — q¢y and gg — ¢gy. As we indicate, in Figs. 20
and 21 graphs obtained by interchanging p; < p, (i.e. t « 1) and/or p; « py are
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not shown.

The contribution of either of the subprocesses ¢g and ¢g to the inclusive cross
section of AB — v + X is written in the genera! form of Eq. (2.1.2), in which the
HOC f is decomposed as in Egs. (3 1.6) and (3 1.7)

Regarding ¢g (Fig. 19), notice that the graphs 19(a), (b) and (¢) contain
kinematic configurations in which the final quark is produced collinearly with the
photon (collinear v Brems). These configurations, as we discussed, lead to a con-
tribution which 1s of 0(a, ); they will be further discussed in Sect 8.3 together with
related points. Then in Eq. (3 1.2) f(v,w) contains all the HOC arising from the
graphs of Fig. 19 (i.e. it contains no collinear vy Brems).

Regarding ¢g (Fig. 20), the graphs 20(f) anu (h) also lead to collinear v Brems;
again the corresponding contributions are of 0(a,). Then f(v,w) contains all the
HOC arising from Fig. 20.

For qq — qq7, the graph Fig. 21(b) contains a collinear v Brems configuration
leading, as before, to an 0(a,) contribution. The remaining part that contributes
to the HOC (of 0(a?)) 1s of the same nature as the nondominant parts f (i.e. 1t
contains no distributions é6(1 — w),1/(1 — w)4 or (4n(l — w)/(1 — w))4+. As we
stated in Sects. 2.1.3 and 7.3, compared with the corresponding collinear v Brems,
it is known since long ago(®(19 to be much less important.

Now we specify our procedures for obtaining the various contributions.

First, in Chs. 4 and 5 we have determined in all detail the dominant parts of
both ¢g and gg, and have provided explicit expressions of them in Eqgs. (4.5.7) and
(5.4.2).

For the nondominant part of ¢gg we have proceeded as follows: First we remind
that this part contains a nonsinglet piece (contributing to the difference of cross
sections e.g. for pp — v+ X and pp — v+ X) and a singlet piece (contributing tc
either pp — v+ X or pp — v+ X). Regarding the nonsinglet piece we have made
use of the results of Ch. 7; (Sects. 7.1 and 7.4). Regarding the singlet piece we have
determined it by using the matrix elements of previous work of our group, (819

and extending that work.
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For the nondominant part f of g¢ — 7q, we have used the results of the
computer outputs of Ref. 59(b). We have checked several of t} ~<e results by
various direct and indirect procedures.(f8)

Regarding q¢ — qqv (Figs. 21(a),(b)), we have determined the HOC (of 0(a?))
by extending previous work(®+(19) and, for identical quarks, by including the contri-
bution of Eq. (7.4.4). As stated before, compared with the corresponding collinear
v Brems, they are much less important; they are also less important compared with
several uncertainties discussed 1n the next section.

Similar remarks hold tor the HOC of gg — ¢gv (Figs 21(c), (d), (e)); see also

Ref. 88. We have taken them into account using computer outputs of Ref 59(b).

8.3 Photon Brems, Related and Other Uncertainties

In this section we discuss collinear v Brems and the uncertainties related with
it, as well as certain other uncertainties which necessarily beset any present theo-
retical calculation. We also specify certain points of our calculational procedures
in relation with these uncertainties.

As we discussed in Suhsect. 2.1.3 collinear v Brems configurations arise from
subprocesses of the type ab — cdvy, with v emitted by one of the partons ¢, d;
in all this work we consider vy ¢mitted by a quark. Denoting by p;, p; and g the
4-momenta of a, b and 7, we again define the subprocess invariants 3, , 4 as in Eq.
(2.1.8a). Then the result of the perturbative calculation includes certain terms of

the following factorized form (see Sects. 2.1.3 and 7.3):

~

2
dacoll ae f

8 ~
T #P.,q(z)fn;{ialg (8.3.1)

where &’ the leading order (Born, of 0(a?)) differential cross-section for the parton-
parton subprocess ab — cd, m a regularization mass, z = —(f + ©)/§ and P,y(2)
the split function ¢ — +, specified in Eq. (2.1.18).

A commonly accepted change in (8.3.1) is to replace m by a scale A. In fact, a
usual choice is A = A, the QCD parameter, but this choice is not compelling; any-

way, we work with this choice. Another usual change is to use for P.4(z) forms other
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than (2.1.18); as we stated, such forms have been derived on the basis of leading
logarithm summations./® Regarding P,,(z), cetailed studies using three different
forms have been carried, and show significantly different size of contribution.(51)
Subsequently, as in Ref. 88, we proceed with P,4{z) corresponding to Ref. 49,
(see Eq. (2121)) which leads to intermediate results.(5!) Refs. 51 and 88 also
show that collinear v Brems, although generally less important than the gg and ¢g
subprocesses (Sect. 8.2), gives a relatively large contribution at collider energies
(small z7) and a rather small at fixed-target energies (larger z1).

It should be clear by now that photon Brems involves significant uncertainty.
Yet, another serious uncertainty exists in relation with the isolation of the photon.
Expenimentally, an inclusive cross section for AB —+ v+ X can be determined only
if the photon is in some way isolated from accompanying hadrons. The isolation
criteria vary for different experiments. E.g. certain experiments employ the fol-
lowing acceptance criterion: Consider a hadron in the same hemisphere with the
photon (accompanying hadron), let An and A¢ be the difference in rapidity and

azimuthal angle between this hadron and the photon, and define the quantity
R={(An) +(4¢)]'/? (8.3.2)

Then the criterion is that for R < Ry, the hadronic energy E be less than Ey, where
Ry and £y fixed quantities,

To our knowledge, so far, no theoretical calcuiation satisfies exactly this crite-
rion (see also Ref. 86); this holds for the present calculation, as well. To simulate
the situation we proceed like Ref. 59(a), but in a somewhat modified way:(87)
Let p be the 4-momentum of the final quark emitting the photon. As p? — 0,

the Jeading squared matrix clement is ~ 1/p?; thus with a regularization cutoff

at p2 = m? one obtains f dp?/p® = fn(3/m?). Next, assuming that the final

quark produces a coilinear had1 on jet, to exclude hadrons inside R < Ry we require

p? > §R2 [4cosh® 1. Thus in Eq. (8 3.1) we replace(®”)

fn—r — 2%n 2ecsh 77

m? Ry
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clearly the singularity for m — 0 becomes a singularity for Ry — 0.(/19)

In the subsequent calculation, when we compare with data of experiments
imposing acceptance criteria similar to the above (collider and ISR data), we use
the replacement (8.3.3) with the experimental Ry; we repeat that we are well aware
that we do not exactly reproduce the experimental cuts. When we compare with
fixed-target data, we use (8.3.1) with the replacement m — A.

Another source of uncertainty is the following: Since 6% in (8.3.1) is of 0(a?),
with the factor €n(3§/m?) present, the overall contribution of (8.3.1) is of 0(a,).
Then a next-to-leading logarithm calculation should include next-to-leading loga-
rithm corrections (HOC) to the subprocess ab — cd. Such HOC have been recently
determined,(®®) and they involve additional uncertainties (e g. defimition of HOC
in relation with the gluon distribution); their complete expressions can be available
only as computer outputs. Although such HOC can be incorporated, 1n view of the
above discussion, the value of such an effort 1s highly questionable. Therefore, we
neglect HOC to ab — cd.

Finally we cousider the effect of parton’s intrinsic (primordial) transverse mo-
mentum k7. This is somewhat important at the lower pr (5 Gev) and at fixed-
target energies where the cross sections are relatively steep; 1t is a further source of
uncertainty. As in Subsect. 2.1.3, we take into account this effect using a Gaussian
kr distribution{?-G)(0) (Bq. (2 1.23)). Here we take < kr >= 0.7 GeV.(88).(87)

We discuss the uncertainty in the scales g, M in the next section.

8.4 Results and Discussion

We present results with three sets of parton distributions; EHLQ1 (dash-dotted
lines),(?%) DO1 (dashed) and DO2 (solid).(6?) Between them, DO2 contains the
hardest gluon distribution (biggest at large z) and QCD parameter A = 0.4 GeV.
DO1 and EHLQ1 contain softer gluon distributions (EHLQ1 the softest) and A =
0.2.

For the running coupling we use the 2-loop form, Eq. (1.2.10):

s cbnln(u?/A?)
a,(p) = W( - ZW)
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where
_33—2N; . — 153 10N,
-6 T 2(33 - 2Ny)

(see Eqgs. (1.2.4) and (1.2.9)) and work with Ny = 4 flavors.

b (8.4.1)

Most of the experiments present data averaged over a range of rapidities n; we

denote by Edo/d®p the averaged inclusive cross sections:

~ n2

do 1 do

Egs‘;(PT,S) = /dnEZﬁ;(PT,S,TI) (8.4.2)
LI3Y

Most of our results correspond to the physical scale p = M = prp.

Figs. 23-25 present results at pp collider energies. The point to remark is
the closeness of the predictions for the three sets; for the corresponding pr and zp
the gluon distributions differ little. Essentially the same holds at the ISR energy,
Fig. 26. Figs. 27-29 prcsent results at fixed-target energies; now the predictions
(corresponding to the same u = M = pr) differ, with the set DO2 giving the
largest.

Fig. 29(c) shows at /s = 24.3 GeV (UA6 experiment) the ratio of the cross-
sections Edo /d3p for pp — v + X and pp — v + X. As for n¥p — v + X,(®8) this
ratio is predicted to increase with prp.

Finally Fig 30 shows at two different energies (/s = 1.8 TeV and 23.75 GeV)
the effect of changing the scales; it presents the ratio of the cross sections calculated
with g = M = pr/2 and with p = M = 2py, using DO1. The point to remark is
that at collider energies the predictions arc very stable against changes of the scale,
but at fixed target energies they are rather unstable (see also Fig. 27). The reason
is the difference in the range of z7: At both energies, as the scale p increases, a,(u)
decreases However, at collider energies zr is very small (Fig. 30), and as M = g
increases, the parton distributions (in particular the gluon) increase; this almost
compensates the decrease of a,. At fixed target energies z7 is large, and as M = u
increases the parton distributions decrease, thus adding to the decrease of a,. The
presence of the stabilizing terms,(® included in our HOC (e.g. Egs. (4.5.7) and

(5.4.2)), does not prevent a significant variation.
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A comparison of our results for the physical scale pr to those obtained via
PMS(9) optimization is in order. For the same set of parton distributions opti-
mization generally predicts larger cross sections. This is particularly clear at ISR
and fixed target energies, as indicated for example in Figs. 26-28 by the dotted
line, which shows for DO2, results of Ref. 59 with optimal scales.

This effect is understood as follows: Take, for simplicity, u = M and write the

inclusive cross section calculated with the physical scale as follows:

o(pr) = o(pr)(1 + C(p1)) (8.4.3)

where og(pr) (C(pr)) stands for the Born term (HOC) calculated with M = pr. It

can be shown that the inclusive cross section calculated with the optimal M = M,

is, roughly:(67)(68%)

o(Mopt) = o p(pr)e?™) (8.4.4)

i.e. optimization amounts to exponentiating the HOC calculated at the physical
scale. At fixed-target and ISR energies this HOC is fairly large (comparable to the
Born contribution, see Subsect. 2.2.3), and exponentiation makes a considerable
difference. Also, we saw that at fixed-target energies, DO2 gives an appreciably
larger cross section; it also gives an appreciably larger HOC. Then, for DO2, opti-
mization predicts a very large cross section, well above all the data (I;‘igs. 26-28,
dotted line).(59),(102)~(104)

Using PMS optimization a recent detailed analysis of pp — v+ X data!™ has
concluded that the gluon distribution Fy/, should be very soft (softer than DO1).
It should be clear that use of the physical scale invalidates this conclusion.

To conclude we would like to remark that, within the above uncertainties, with
physical or near physical scales, the simple K-factors of Ch. 2(4)=(8),(55).(56) g¢]]
give a good account of the data. E.g. the ABC data of Fig. 26 are well accounted
for with Eq. (2.3.1):

K=1+22Cnr? (8.4.3)
27
(see Figs. 9 and 10). Also comparisons with data of predictions for mip - v+ X,
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were accounted for with (8.4.3) in Ref. 88, as well as UA2 data (fp — 7X) in Ref.
57.

8.5 Conclusions

First we consider our results for a fixed scale u = M = pp. Then the exist-
ing collider data cannot distinguish between gluon distributions. On the whole,
the fixed-target data, can be said to favor a distribution between DO1 and DO2.
Certainly a distribution softer than DO1 is disfavored.

Now we consider variations of the scale in the reasonable range pr/2 < u =
M < 2pr. Then we can see that with the proper choice of scale(s) any of the sets
EHLQ1, DO1 or DO2 can give reasonable fits to the data.

We conclude that recent collider and fixed-target data on large-pr direct pho-
ton production have nicely confirmed the success of perturbative QCD. However,
because of inherent uncertainties in the theory, some ambiguity in the form of the

gluon distribution still remains.
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OVERALL CONCLUSIONS

In this work we have studied several aspects of higher order corrections (HOC)
in perturbative QCD; we have also compared theoretical predictions with experi-
mental data, in particular for large pr direct photon production.

Our first conclusion is that, for several reactions and with the choice of physical
or near-physical scales, there are certain well defined sources of large correction
terms; such terms are indeed required by the data. These terms lead to simple
expressions called K-factors.

Our second conclusion is that, as suggested by the above terms, for processes
involving structure functions and/or fragmentation functions there is indeed a well
defined part, that dominates the cross section over a sizable kinematic domain, i.e.
not too small zr = 2pr/y/s (dominant part). This part is gauge invariant and its
dominance increases with the softness of the structure and/or fragmentation func-
tions. For processes initiated by 2 — 2 particle subprocesses, this part arises from
collinear and soft gluon Brems configurations and, more generally such configura-
tions of 2 — 3 subprocesses, as well as from virtual gluons. In addition we have
shown that the Brems contributions to this part (which comprises its most com-
plicated portion) can be efficiently determined from expressions remarkably simple
and general. Under certain approximations, the form of this part reduces to that
of the above simple K-factors. In this way we also offer significant insight into the
reasons of their success.

We hope that this work will be useful towards several other directions.

One direction is the calculation of HOC beyond the next to leading order. In
fact, recently Refs. 72 and 73, using similar procedures have been able to carry an
approximate determination of the 0(a?) correction to the Drell-Yan process. One
may hope that our approach will be useful in calculating next to next to leading
order terms for other subprocesses as well.

Another direction is the determination of HOC for inclusive reactions initiated

by 2 — 3 particle subprocesses of the type a + b — c+d + e; for such subprocesses,
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due to their complexity, HOC are hitherto completely unknown. In this respect
our procedures of Part II may prove particularly useful.

A third possible direction is the calculation of HOC for reactions involving
polarized particles and partons, a subject of great current interest in relation with
the spin of the proton and the way it is shared between proton’s constituents.
In fact, relevant experiments (on polarized beams and targets) are generally fixed
target experiments, at relatively low C.M. energies v/s. Thus the corresponding
z7's are not too small, and use of the dominant part has been shown to offer a
good approximation.

Our final conclusion is in relation with the ambiguity of the gluon distribution
in the nucleon. Using complete HOC we have carried a detailed analysis of recent
and old data on large-pr pp — v+ X and pp — v+ X and we have investigated the
dependence of the form of the gluon distribution on the choice of the scales (physical
vs optimal). Our conclusion is that significant ambiguity in this distribution still

remains.
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APPENDIX A

The one particle inclusive cross section Edo/d3p for the process

A(Pa)+ B(Pg) —» C(P) + X (A.1)

due to the 2 — 2 subprocess

a(pa) + b(py) — c(p) +d (A.2)
is written():
do dr, dzy dz 9 9 §dg(@b=ed)
EdTp = / za -;;';g a/A(-’Ba,Q )Fb/B(Z‘b,Q )DC/c(ZaQ2);'&'t= 6(8+t+1a)
+(A & B,n & —n) (A.3)
Here,
P
Pa = -'CaPaa Db = mbPB, p= ; (A4)
so that
8§ = x,2p8, t= iz:—“t, i=2ty (A.5)
z z
where
1
t = ——lz—:crpe_"s, u= —é-xTe”s; T = g% (A.6)

and n the pseudo-rapidity of the produced particle C; this is related to the angle 6
at which C emerges relative to the beam direction, in the C.M. frame of A and B,
by:
6
n = fncot 3 (A7)

In (A.3) F(z,Q?) [D(z, Q?)] denotes momentum distribution [fragmentation] func-

tion.
Eliminating the z integration with the §-function, we obtain:

1 1 da(ab—ocd)

do 1 [dz, [dz \ L1 2

&dp as ’ —D REA —_—

Ed3p 7r/ z, / - a/a(%a, @*)Foy8(z6, Q%) 5 Doye(2,Q )=
T

T2
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with
r= 2 4 (A.9)

The restriction z < 1 determines the lower limit of the z; integration,

_ _ T.zre™ "
T3 = Thymin = P ——— (A.10)
and then z; <1 determines the lower limit of the =, integration:
_ _ zrel
L1 = Za,mun = 5 -—-_ITe‘—" . (All)
Now, if the produced particle C (and ¢) is a photon, we take
DC/c(Za Qz) = D'y/'r(z’ Q2) = 6(1 - 2) (A.12)
and (A.8) leads to
d 2 f d d
ol =2 [ __9%%a 2 2y29ab
EGo(A+B = v+ X) =2 [ 5T, (20, Q) Foyn(an, @) 2
z,
+(A © B,n & —-1) (A.13)
where z, is given by (A.11) and
o = ZaZTe" (A.14)
b= 224 — TTET ’

For § = 90° (n = 0) and A = B, Eq. (A.13) is reduced into Eq. (2.1.2). Also if
C = v # ¢, then Eq. (A.8) leads to the (collinear) photon Brems contribution Eq.
(2.1.14).
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APPENDIX B

Here we present some details on the evaluation of certain integrals. We work

in n = 4 — 2¢ dimensions and refer to external momenta p,, p, such that:

P=p=0 | s,=(p+p,)" =2p-p, (B.1)
B. 1 The Loop Integral

In the soft gluon limit the following integral appears:

d"k 1
(2m)™ k2(k — p,)?(k — p,)?

L(pi,p,) = p / (B.2)

where the imaginary part of the propagators has been suppressed. Introducing

Feynman parameters and shifting the origin of the k integration, we obtain:

1 1
d"k 1
- ., 2¢
L(P;,PJ) =y F(3)/ydy/d$ (27(’)" (k2 __ 0)3 (B'3)
0 0
where
C=y(1-y)(1-2z)s, (B.4)
Performing the integration over k(®*) we obtain the (UV finite) value:
n —
/dk 1 _ = I(+9 1 (53)
(2r)" (k2 —cp  (4n)p— [(3) Ci*e

Then, in view of (B.4) and (B.5), Eq. (B.3) easily leads to the 1/¢?> IR divergent
result:

=t T1+eI*(1-¢) 1 1

L(pps) = (4m)2  T(1 — 2¢) 3, €2

(i)™ (B.6)

B.2 The Brems Integral

The following integral appears in Brems contributions:

fo=kmes dnk 2r6, (K2)
(2m)" (k + p)?(k + p,)?
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g T e

where the upper limit of the ko integration is determined from the kinematics of

the subprocess.

To carry the integrations in (B.7), we introduce spherical coordinates in n — 1

dimensions, and write in the C.M. frame of p, and p,:

k= ko(1,...,cos6) (B.8)

Here, 8 is the angle between p, and k and the dots denote n—2 unspecified momenta.

Then the denominators in (B.7) are written:

(k+p)? =2s5ky  ,  (k+p)? =2/55ko(1-y) (B.9)

with
1—cosé

2
In view of (B.9) the integral in (B.7) depends only on k, and 8 (or y). Therefore,

y= (B.10)
integrating over the other angles, we obtain with standard procedures(®V):

1
n— 4rm)l e ~2¢ —c -
/d = 1(_‘(1)~ 3 dkok?—? /dyy (1-y)"¢ (B.11)
0

Then the integral in (B.7) becomes

kmas

1
— 1 (7“‘2)‘E _1__ —1—-2¢ —1-¢ —~1—¢€
B = Gty | ke [awr -t (B2
0 1]

so that:
_ 1 TFl-¢) 11 4kfnu —
B(plspj) - (4,"_)2 F(l _ 26) 3“’ 62( 47ru2 (313)
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APPENDIX C

In much of the work presented in Ch. 4, (and particularly in Sect. 4.2) we
used the C.M. frame of the two final partons.(38) We present here some details of
the related kinematics, the three particle phase space (for 2 — 3 subprocesses) and

some basic integrals encountered in our calculations.

C.1 Kinematics

Consider the 2 — 3 subprocess a + b — v + ¢ + d with particles a, b, v, c,
d having momenta in a n space-time dimensions, pi, p2, ¢, 7 and k respectively.

These momenta satisfy the energy momentum equation:

pm+pr=q+r+k (C.1)

Now consider the C.M. frame of particles c and d. Clearly in this frame particles ¢
and d have no net spacial momentum, and consequently in view of (C.1) the spacial

momenta of the other particles must satisfy the relation

n+,m=q (C.2)

This relation implies that the three vectors p;, p» and ¢ are coplanar. Hence we
can choose a coordinate system so that the above vectors lie in the plane formed
by the (n — 2)** and (n — 1)** axes (yz plane).

In addition, we choose the (n — 1)** (z) axis to point along the direction of p)
and denote the resulting system by S; (Fig. 17). Referring to this system we write

V3
2

.,cosfy sinfy,cos8,) , k= (1,...,—cos8,sin by, —cosb;)

(C.3)

where s, is the invariant mass of the ¢, d particle system recoiling against particle

_ Vs,
r=-3 1,..

v (here a photon). The dots in (C.3) indicate n — 3 unspecified momenta exa- tly

cancelling in the sum k +r.

120




9

Now we write the momenta p,, p; and ¢ in the S; system (Fig. 17) as follows:
P = p1o(1,0,...,1)
p2 = p20(1,0,...,siny,cosy) , g = go(1,0,...,siné,cos §) (C.4)
and by teking the scalar product of each of (C.4) with (C.1) we obtain
i = 2p10V/s, , §+14 = 2py0v/s, ~(f +14) = 290v/3, (C.5)

Then, in view of (3.1.4), relations (C.5) yield:

_dv _3(1 —wvw) (1 —v+ww)
Pio = 2\/52 ’ P20 = 2‘[9'2 ’ qo = 2\/—2 (C’6)
and
2% 1-w é (1-v)(1-w)
sin® o = 7~ sin’ 5 T (C.7)

Similar expressions are obtained if we choose a coordinate system, denoted by S5,
with the (n — 1)** (2) axis pointing along the direction of p;. In Table IV we
present, in a summary form, the momenta parametrized according to S (left part)

or S (right).
C.2 Three Particle Phase Space Differential in v and w

The three particle phase space integral for a(p;) + b(p2) — ¥(q) + <(r) + d(k)
is defined by:

d" d"k d"
(27r)'('1‘1 (2m)n=1 (27r):—1 844" )84 (k*)b4 (r®)(2m)" 8™ (p1 +p2—gq—k~7)

(C.8)

The Lorentz invariant integral [d"gé(¢?) can be calculated in any frame; it is

(PS)s =

most easily computed in the C.M. frame of the incoming particles. Working in this

frame we find:

[ @b = s [ didach (€:9)

Using (C.9) and performing the integration over r with the help of the n-dimensional

6-function in (C.8) we obtain:

wl-c 1

(2m)5— 4‘2sI‘(1—e

(PS); = / dtdu(t“) k64 (k)64 [(pr +p2—g—k)?] (C.10)
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The integration over k can be easily worked out in the rest frame of k+r introduced

in the first part of this Appendix. To this end, we write:

_Yn
6(p1 +p2 — ¢ — k)? = 6(s2 — 2v/3,k0) = oko — 35%) (C.11)

275,
which is used to perform the integration of k. Introducing spherical coordinates

in n — 1 dimensions, and integrating over irrelevant angles, we find with standard

procedures(®1):

dr=1k n=¢ T(1 -
/ 2k0 5+[(p1 +p2—q—-k)2] 4 F((l 2) 2 /d@]/dez sm] —2e 01 sin —2e 92

(C.12)
Finally, using Eqgs. (C.10), (C.12) and relations (3.1.4) and (4.2.1), with

didi = §*vdvdw, (C.13)

we find for the 3-particle phase space differential with respect to v and w:

d(PS)3 _ $ —€ f f s 1—2¢ 126
o = N47r [vw(1 — w)) /d()l /d@z sin 6, sin™** 4, (C.14)

where N is given by Eq.(4.1.12) with g = 1.
C.3 The Differential Cross Section

To find the contribution of the squared Matrix element |M|? to the differential
cross section we first introduce the average value of |M|? over the angular variable

02, that iS,

"

! / df; sin~2¢ 8, | M |? (C.15)

o
M =

2

with the normalization factor Ny, defined by

Ng, = /d92 sin"2¢ 9, = 2%
0

(1 - 2¢)

STt (C.16)

so that |M|? coincides with |M|? when the latter is independent of 6.
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Finally, we introduce the variable
1
y= 5(1 — cosb) (C17)
and using (C.14)-(C.16) we obtain for the differential cross section do/dvdw:

R / dyy=(1 = y)~ M1 (C.18)

do _N_
dvdw ~ 4

where N is again given by (4.1.12) with p = 1.
C.4 Integrals Encountered in the Calculations

We make use of the integral over phase space of the invariant quantity:

1 1

Hd -
(Pl - k)2(P2 - k)z) 2P1'k 2P2’k

(C.19)

which is needed for the evaluation of the contribution of Fig. 15(a) to the differential
cross section.

Using (C.3)-(C.6), we obtain:

d[(PS)sI1%] _ N ¢ 7a
dvdw  wiu(l — vw) [l - w)] 7 T%(#) (€-20)
where
! p oy 2€ s a1—2€
agy — sin”““ @y sin ~°° 0,
Ty = /d02 /dol (1 + cos6,)(1 + cos b, sin b sinp + cos b, cos ) (€.21)
0 0

This double integral is given in Ref. 58 itz App. B. The result is :

J(y) = —%(sin2 %)—1—‘[1 + €2 L,2(cos? %)] (C.22)

where £,2(z) denotes the Spence function

cd@s—/ﬁma-w (C.23)

0

123



For w — 1 in view of {C.7) we find

™

JH () = — . (11—:%)““(1 + 52%2) (C.24)

so that Eq. (C.20) becomes in this limit (w — 1):

dPSWI] N v ye(q _yym1-2e Lyp g 62162.). (C.25)

dvdw v'l—-vw

We notice that (C.21) is the only integral, among those appearing in initial state
Brems contributions, which provides a factor (1—w)~!~¢ and hence a pole at w = 1
in n = 4 dimensions (e = 0).

For example consider the integral over phase space of the invariant quantity

1 1
(pr —)2(p2 — k)2 2pir 2p2k
encountered in the contribution of Fig. 15(b) to the differential cross section.
Using (C.3)—(C.6) we find that d[(PS)3I1*]/dvdw is given by Eq. (C. 20) with
J%(+) replaced by:

Hb

(C.26)

™

= 1o —2€ c1—2¢
b - sin” “¢ 8, sin 6,
J ) = /d02 /del (1 —cos,)(1 + cos 0, sinf; siny + cos by cosp) (€.27)
0 0

Changing in (C.27) integration variable,

91 — 9'1 =T — 01 (028)
and introducing
$=m—1, (C.29)
we find
T (@) = J*(¥) (C.30)
where J? is given by (C.22). Hence in view of (C.29) we immediately obtain:
T () = —-E—(cosZ %)-1-6[1 + €2L,y(sin’ 1;’-)] s (-%) (C.31)

Consequently this integral introduces no term ~ (1 —w)™ "2 or ~ (1 — w)™17 to

the associated differential cross section.

124




APPENDIX D

In this Appendix we present some details on the kinematics, the three particle
phase space and related integrations expressed in terms of Sudakov variables. These

variables were introduced in Egs. (4.1.1)-(4.1.3) and used in Sect. 4.1.
D.1 Kinematics

As in App. C, we refer to the general 2 — 3 subprocess a(p1) + b(p;) —
v(q) + ¢(r) + d(k). In the C.M. of the two initial partons we set

1 =—\g—;(1,0,.0,1) y P2=§(1,0’-0,‘1) (Dl)

and we specify the vectors ¢ (introduced in (4.1.1)) and ¢ as follows:
¢=(0;...,|¢ cos ¢, |€] sin $,0) (D.2)

= ¢o(1;0,...,sin~,0,cosv) (D.3)

where the dots in (D.1) denote n — 4 unspecified momentun components and go
and v in (D.3) are determined so that (4.1.2) are satisfied. It is
V3 ¥y l1l—w

=——(1- 2l , :
qo 5 (1-v+vw) , tan > - (D.4)

Usingr=p1+p2—g-k=(1-a)p1 +(1 — B)p2 — ¢ — ¢, Eqs. (D.1)-(D.4) imply:

r? = 5{v(1 — w) — av — A(1 — vw) — 2[af(1l — v)vw]? cos ¢}. (D.5)
We set:
A=(av)} ,  B=(B1-v)}; (D6)
then for w — 1:
r? — —3(A® + B® + 2AB cos ¢) (D.7)
so that
~(A+BP <r*/s < ~(A- B). (D5)
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Hence for general v, the on-shell condition r? = 0, for w — 1 implies

a-0, -0 (D.9)
and consequently in view of (4.1.1) and (4.1.3), ¥ — 0. We conclude that for w — 1

nonzero contributions to the cross section do/dvdw arise only from soft gluons.

D.2 Three Particle Phase Space Differential in v and w

We proceed to express the phase space integral, Eq. (C.10), in terms of inte-
grations over the Sudakov parameters. To this end, we find
1

1 -8
dn—lk §1—-c —e —e
/ o 6(ro) = — / dgp / daa / dQr (D.10)
0

0

where [ dQr denotes integration over a proper set of n — 3 angles, and #', in the
upper limit of the a integration, is determined from the condition ro > 0, which
gives:

B'=p+(1—w) — B (D-11)
Then using (D.10), (C.13) and (C.10), we find for the three particle phase space

differential in v and w:

1 1-8'
d(PS)3 _ 52F(1 —26) -—e/ —c / - 2
dodw = 2ai=eT(1 _E)Nw dgp dao /dQT6(r ) (D.12)
0 0

where the factor N is given by Eq. (4.1.12) with p =1, and r =p; + p, — g — k.

D.3 Certain Integrals

Now we consider the integral over phase space of the invariant

_ 1 1
= (o~ FP(ps KV~ FaB .

where the second equality in (D.13) is due to relations (4.1.1) and (4.1.2). Then

l'Ia

we obtain:

1 1-8'
d[(PS)3Ha] _ F(1—2€) —-€ —1—c / d -l-—-c/d ’) 2
dvdw  2n1-<T(1-—¢) Nw “hp o ().
0

0
(D.14)
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We are interested in the leading term as w — 1; we have seen that in this case
a — 0 and # — 0. We proceed by first taking o — 0; then in view of (D.5) the
argument of the é-function in (D.14) becomes ¢ independent and all the angular
integrations are easily carried out. Also the a integration is performed with 8’ in
the upper limit replaced by 8. Finally, the § function is used to perform the A
integration; this amounts to setting

v(1l —w)
1—-vw

A= : (D.15)

and dividing by 3(1 — vw). The final result (for w — 1) is proportional to (I'(1 —
2¢)/T?(1 — €))(v/(1 — v))~¢(1 — w)"1~¢(—1/e). For a more proper treatment we

write:

di(PS)sTI’] NTI(1-2¢), v e, 1
ddw Iy AT (= 0)e(ew) (D.16)
where g(v,w) a function to be determined. Using
(1 ~ 2¢) , T2
PA_eg T T (D.17)

and comparing with Eq. (C.25) we obtain g(v,w) = (1 — w)™¢.
Finally, instead of (D.13), consider
ca___FB) _ _F@®
(P — k) (p2 —k)*  §%aB’

where F(() a function smooth at # =0 (w = 1). The same treatment easily leads

(D.18)

to the following leading term for w — 1:
d(PS)l) N v

dvdw T svl —v

)¢l - w)""z‘(—%)(l + ez%i)F(O). (D.19)

This result is easily understood by observing that the smooth function F(f8) can

be expanded in powers of §:
F(B) = F(0)  BF'(0) +0(8°); (D.20)

then we notice that terms of order § and higher cancel the 8 in the denominator
of (D.18) and hence the corresponding integrals do not contain terms proportional

to B71¢ of (1 — w)~!~¢. Consequently, the leading contribution arises from F(0).
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APPENDIX E

In this Appendix we present the basic relations by which results for the domi-
nant part referred to the nonuniversal definition of corrections'®2%) are reduced to
corresponding results referred to the universal definition(®®) and vice versa. We also
consider some related and other properties of distributions.

We consider the subprocess g — yg. Our expressions [Eq. (4.5.7)], for the
coefficient functions of the dominant part f,(v,w), correspond to the universal
definition of corrections,*®) specified by ugq = 0 (Sect. 4.4). However, if corrections

are defined as in Ref. 52(a) then uge(z) is determined from (corrections to) DIS

and is given by(529):

tnle) = fun(2) = Col=(G + T80 - ) - Tt v ety 2D,

2
—”_z fnz +3 — 2] (E.1)

Then in view of Eq. (4.4.4) an additional term in dof*¢*/dvdw is included and, for
w — 1, given by:

dgfact v

7 = FTo(0)fag () + T faa )] (E.2)

We are interested in contributions to the dominant part. Omitting terms

regular at w — 1 the first term in (E.2) gives

7r2 n
f‘IQ(w) — CF["(% + —3—)6(1 — w) - g(_ltll;)_): + 2(€ (1

w

) (B3)
To treat the second term in (E.2) we need the expressions of the distributions
1/(1 - z)4+ and (¢n(1 — z)/(1 — z))4 with z = (1 — v)/(1 — vw). To this end, we

use the expansion

1 4n(l-1)
Aoy

(1-2)" " = =261 —2) + s +0() (B4

11—~z

and since for z = (1 — v)/(1 — vw)

(1 _ x)—l—( — (v(l—:’v:))—l—e = (1 v \—l—e(l _ w)-—l—-( (E5)

1 —vw’
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we obtain by expanding (1 — w)~1~¢ and (v/(1 — vw))~¢ in powers of €

1“”w{-%5(1-w)+[(1 ot tn 21— w)

(1-a)77 = w)4 1-

D= w)y 4o o

Comparing similar powers of € in (E.4) and (E.6), we obtain the identities (see also

Ref. 58):

_.5[(

+ = Zn.z(

)6(1 - w)]}. (E.5)

61— 2) = 222501 ~ w) (E.6a)
1 1 —vw 1 v

(1 ~o)y v [(1 —w)y +5"(1—:—,,)5(1 —w)] (E.6b)
(en1(1:x:c))+ [(en(l ))++€n(1 il w) +5 L2 zva(l_w)],
(E.6¢)

Now, using (E.6) we find for w — 1:

1?. qu( )—CF{[(——“f'—‘)--fn( )+€n ( iv)]g(l_.w)

H‘% +2n(r =l —1w)+ +2( en(1 ))+} (E.T)

Then, denoting by ?Nu(v, w) the HOC corresponding to the definition of corrections
in accord with Ref. 52(a) (Eq. (E.1)), and decomposing T?U(v, w) as in Eq. (4.5.6)
with @, (v) replaced by @y Y(v) etc., we find:

2n?

V(o) =@(v) + Crl9 + T) + Stn() ~ ()| E(o)
(v) =by(v) +Cr[3 - 2€n(1 — )] B(v)
"c’NU(v) = &(v) — 4CrB(v). (E.8)

Here, @;(v), b1(v), €(v) and B(v) refer to ¢g§ — ~g and are given by Eqs. (4.5.7)
and (4.3.2).
Similarly for gg9 — g (Ch. 5) with the definition of corrections corresponding

to the nonuniversal choice:

ugq(z) = foq(2) , ugg(z) =0 (E.9)
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we find:

_NU _ 9 =x2 3 v
a " (v) =@(v) + Crl5 + 5 + 5in(;—) — fn o(v)
1V(6) = Bi(v) + Crl3 — 26n( By (v)
VY (v) = 2(v) — 2CFB,(v). (E.10)

In (E.10), @(v), bi(v), €(v) and By(v) refer to gg — vq and are given by Eqs.
(5.4.2) and (5.3.2).

Finally, we provide some other relations among distributions which are helpful
in Ch. 6. First, for the distributions (én*z/z)4+ k = 0,1,... defined in the interval
(0, A) as in Egs. (6.2.2), we easily find the transformation

1
k+1

( n**t1 A6(z) (E.11)

which reduces them to the standard distributions defined in the interval (0,1).

Second, following a procedure similar to that leading to (E.6), we find for any

constant A:
1 1
DR = :\‘[;:_ + fné(z))
and,
(E2), = HER) + nd = + 3N (E.12)

Very similar relations are obtained under z < 1 — z.
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APPENDIX F

Here we present the coefficient functions of the terms comprising, as in Eq.

(7.1.1), the nondominant part ? of the HOC. In accord with Sect. 7.1 we find:

d(v,
(v,
?(v’

g(v,

h(v,
Yv,

(v,

k(v,

(v,
m(v,

n(v,

v(1 —v) + v(1 = 2v)

w) = Cp[—(1 - 2v)? = (1 — 20 + 4v?)w - %7 e ]
w) = d(v,w)
w) = 2Cpv(—1+v +vw) + Nv(2 — v —vw)

w)=0
w) = 2Cp[—-1 - vw+ 1—+—(—‘—1X_—v)2-] + N[l — 02 +9(1 —v)w ~ l—.*-—(-dlx_—vy]
w) = h(v,w)
w) = Cp[l + 8v(1 — v) — w(l — 4v + 8*) — v(lX-; v) 4= 5UX+ 4!)2]
+ Ne[-1-2v(1 —v)—v(1-2v)w+ }i—(ly_ﬁﬁ]
w) = Cp[-4v(1 = v)+ (1 +v - 40w + 2—(—1—};—1)2(—)1? +1)]
+ -1\-275[3 +(1-4v)w + ”(IX‘Z v) _ “(1;{4”)] + bu(v - 2 + vw)
w)=0
w) = N.B(v)
w) = (—4CF + N.)B(v) (F.1)

with X = 1 — vw and B(v) = v? + (1 — v)%. (Cf. Eqgs. (7.1.4) and (4.3.2)).
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TABLE 1. Soft gluon factors for graphs in Fig. 6. The entries give the factors

for A type (Figs. 6(a)-6(f)) and B type (Figs.

6(g)-6(1)) Born terms. Here

M(P)*# = M(P)*#t, and I'(€) =T(1 + €)T?(1 — €)/T(1 — 2e).

Graph Factor Dirac and Color Structure
a(g) o Be Do () () (2P
o - r™\—¢ _(l) o
b(h) | 2(Cr — )T L(e)(22)(22F) M0y (P)™ 1,
40 2 BT
d() 2 facs M ar (P24
J 9 50k acbM A(B) b
r D a
e (k) 9—22:4: M 4(py(P)*Htcta
2 T ap
£ 95%.%?: M gy (P)**tatc
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e e W, T T

TABLE II. Soft gluon factors for ¢°do(?) /d®q as multiples of the Born cross section.
Unitarity graphs in horizontal rows of Fig. 7 have identical factors multiplying the
Born term at the top of each column. To find the contribution of e.g. the set
(BB'FF') in Fig. 7, replace (CC'GG") respectively and ¢ with b in Table II. Here
Tp(e) = T(1 —€)/T(1 — 2¢) and T'i(e) = T(1 4 €)I'*(1 — €)/T(1 — 2¢)

Graph Factor Born Term
¢ Sx e ETB() !
¢ 53 5 (F +0(p - p2)m* )T (e) grier |~
qodagl)/daq
¢ 2+(Cr = 5)5Ta(e) |
G | 2(Cr— 5 )=5+06(—p1 - r)n?)Ti(e) 3BT~
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TABLE III. Moments of some functions in f(v,w), Eq. (3.1.6).
d(w) M(k) M(k) for large k
6(1 —w) 1 1
oy ~(7+ (k) —enk
(5D | Ho k) — (k) + 5 yen’k
1 : ¢
lnw —;13 -1
en(1 - w) —($(k) + 7+ D) — g
trw/(1 - w) —y'(k) ;
w = &
wlfnw — FH T ~ 3
w'(w) M(e+ ) M)
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TABLE 1V. Parametrization of the momenta p,, pz, q, r and k of the subprocess a(p1 ) + b(p2) — 7(q

)+ c(r) + d(k) in the

C.M. frame of ¢ and d. In this frame, system S,(: = 1,2) is defined by choosing p, along the z axis. See also App. C and
Fig. 17. The variables v,w and s, are defined in Egs. (3.1.3) and (4.2.1).

r= -‘/5,-;1(1, -+ ,cos 8y sin 0y, cos 0y) k= L.;-z(l,-- -, —cos #2 sin 6, — cos 6, )
SYSTEM S, SYSTEM S,
P = 5\1/-"’-;(1,0,---,0,1) ﬁ‘;—;(l,o,...,sin¢,cos¢)
P2 = ﬂ,;\;——:;"l(l,o,---,sinu’),cosz,b) “(—‘“)" 1ox(1,0,-
q= iL‘;\}";’;LQ(I,O,---,sinéS,cosIS) z(l;—:}-::"—wl(l,O,"',siné',cosé’)
1~ - 6' 1— 1~
. _ (1-v)
sin? & = =8 os? § - wllt




9¢T

TABLE V. Upper part: Scalar products of the momenta listed in TABLE IV. Lower part: Symmetric under k & r (or
¥ & (1 — y)) combinations of these products used in Sect. 4.2 case (ii). Each combination is histed under the proper system
51 or §; in which it is 8, independent. Of course, the integrated over phase space result 1s the same in any system.

SYSTEM S, SYSTEM S5,

§ 2p2 -7 = 3(1 — vw)y

2py -k =35v(1—y) 2p2 -k = 5(1 — vw)(1 —y)

2py - r = 8{w(l - v)y+ (1 — w)(1 — y) — A; cos 8] 2pr -7 = ==[v(1 — v)wy + v(1 — w)(1 — y) — Az cosb2]
2p2 - k = 3[w(1l - v)(1 - y) + (1 - w)y + A1 cos 62 2p: -k = =55 [0(1 = v)w(l - y) + (1 — w)y + A2 cos b2
2¢-7 = 3wy + (1 — v)(1 — w)(1 — y) — A, cos 8] 2¢-r = =E—[v?w(l — w)(1 — y) + (1 — v)y — Az cos 6]
2q -k = 3{w(l — y) + (1 — v)(1 — w)y + A; cos 6] 29 -k = 5[V w(l — w)y + (1 - v)(1 — y) + Az cos 02]

Ap = 2[y(1 - y)(1 — v)w(l - w)]% Az = 2v[y(1 - y)(1 — v)w(l - w)]%

A(pr )y - k) = (3+1)°Y A(p2 - T)(p2 - k) = (3 + 4)’Y

4{(pr - 7)(g - m) + (P - k)(q - k)] = —saY, — 25, Y 4{(p2 - m)(g - ) + (p2 - k)(q - k)] = —3{Y, — 24s;Y

4{(pr -r)g- k) + (p1 - k) g - 1)) = —1saY, — 254 4{(p2 -7)(q - k) + (p2 - k)(q - 7)) = —iis. Y, — 231Y

Hpr -r)p2 )+ (pr - k) (p2 - k)] = faY, + 23s, Y

H(pr-ripz k) 4+ (pr-k)(p2 - 1) = 3s0Y, + 28aY

Hg-r)g-k) =+ )Y




JANT

TABLE V1. Contributions to the squared amplitude of gg — vgg, from final Brems Figs. 16(a)-16(g). Terms with simple and double poles at
w =1 (32 = 0) are presented. The latter cancel in pairs of graphs, while the former sum up to a contnibution proportional to the Born squared

amplitude times the split function Py (y) = + —2+ Y (Y = y(1 — y)). For the expressions defining Ag, To(v), To(v, €), 32 etc. see Sect. 4.2.

Y
AgTo(v) 2Ag 2Ags/s2

Graph

of 1 € 1 € 1 €
Fig. 15

¥ 1 Y ¥ 1 Y | 5 1 Y + 1 Y | 1 Y + 1 Y

(a) 2 -2 -2 2

(b) 3 -2 2 1 2 -2 2

(c) -1 =2 -1 -2 -2 2

(d) —4 5 4 -4 -1 -5 -1 4

(e) 4 -5 1 5 1 —4

(f) ~1 __1, 1

(8) 1 : -1
Total 4 -8 4 —4 8 -4 0 0 0 -4 8 -4 0 0 0 0 0 0
(a)-(g) 4(1 — €)Py(y) ~4ePgy(y) 0

Ta-g = 4AgPye()(1 - f)rfo(v) — 2¢] = C%Ncpgg(y)Tﬂ(”af)




(0)

(1)

(2)
(3)

(14)

(£5)

(16)

(f7)

(8)

(9)

FOOTNOTES

Subsequent more accurate determinations of the experimental Edo/d®p for
pp — 7 4 X led to lower cross sections. Use of them results in v/7° ratios
higher than those shown in Figs. 4(a), (b). (see Fig. 10).

For w — 1, the replacement (4.2.4) is equivalent with the replacements: k —
(1-y)ps, r — yps, where p; = k +r and p? — 0. These are equally effective in
reducing the number of terms. Also they dictate that in any other frame, for
w — 1, the partons with 4-momenta k& and r become collinear to the parton
with 4-momentum ps.

We thank P. Aurenche et al. for providing us with their computer outputs.
One may equally well use the split function Pyy(y, €); then in view of Pg,(y, €) =
Py(1 — y,¢€) the integral in Eq. (5.2.8) leads to the same results.

For z7 0.1 the contribution of f to the HOC is £45%, and decreases with zr
with the same rate as the contribution of f to the total inclusive cross section
(cf. Fig. 12(b)). We have verified many of the results of Ch. 3 and of Ref. 11,
using the complete HOC which we have determined in Ch. 7 and used in Ch.
8.

This is indeed found to be the case in our subsequent calculations (Ch. 8). For
smaller z, f contributes more, in pacticular since gg¢ — ¢ involves a gluon
distribution which is large at small z7.

An example of large and negative HOC is provided by the decay ¥ — H +
.(75),(76)

Referring to Eq. (7.3.4), the corresponding expression of Ref. 54(b) involves a
color factor Cr instead of T(R). We have checked, however, that (7.3.4) leads
to the correct results for the collinear photon Brems contributions.

Several nondominant terms, arising from the implementation of factorization,
can be directly tested. An example of such a term is the coefficient d(v, w) of
£n(3/M?) (see Eq. (7.1.1)).

Use of leading logarithm summation leads also to a contribution from g — 7.
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As we stated in Subsect. 2.1.3 contributions of this type are known to be

o 4

small;(39):(1) here they are neglected.

(f10) For not too large An, A¢ one finds R ~ 2 coshnsin(é/4), where § is the angle
opening of a cone with the photon as its axis.

(fl11) By some misunderstanding, in this publication the presented predictions of

their Ref. 10 correspond to a different rapidity range.

et ¥
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

FIGURE CAPTIONS

(a) DIS in the original PM. The blob represents the fragmentation of
the nucleon to a parton (here quark or antiquark), which interacts with
the virtual photon. Parallel solid lines denote the other fragments of
the nucleon (spectator partons). (b) Next to leading order Feynman
graphs, considered in the QCD improved PM, and giving rise to scale
violations and HOC. Solid lines: quarks or antiquarks; dashed: gluon;

wavy: virtual photon.

(a) Large-pr hadron production in hadronic collisions according to the
PM. Blobs in the initial (final) state represent the fragmentation of a
hadron (parton) to a parton (hadron). Here the subprocess ¢¢ — qq
(or ¢gq¢ — ¢g) is considered. (b) Typical Feynman graphs for other
subprocesses (involving gluons in the initial and/or final state), con-
sidered in the QCD improved PM and contributing to leading order.
(c) Certain next to leading order Feynman graphs, for the subprocess
in (a), giving rise to scale violations and HOC. HO graphs for other

subprocesses are not shown. Lines as in Fig. 1.

Certain Feynman graphs of QCD subprocesses contributing to A +
P — v+ X. (a), (b) Born terms. (¢) Photon Brems. Solid lines:

quarks; dashed: gluon; wavy: photon.

(a) Predicted Edo/d®p for pp — v + X and ratios v/7° using the

parton distributions of set 1.(44)

~ gqg denotes the contribution of ¢ +
g — ¢+ and g7 of ¢+7 — g +7; v/7 correspond to the sum of these
two contributions. Dashed lines: scaling parton distributions. Solid
lines: nonscaling (Q?-dependent) distributions. Dash-dotted lines: the
adopted experimental Ede/d®p for pp — 7° + X. Experirnental data
on v/m: U Ref. 92, A Ref. 93, | Ref. 94, O Ref. 95. (b) Same as in

(2) using the parton distributions of set J1.(46)
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Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

(a) Contributions of Born terms and of photon Brems to the inclu-
sive cross section for pp — v+ X at 8.m = 90°. Solid lines: total
contribution of 0(a,) (i.e., g¢ — ¢y and ¢¢ — g¢7). Dashed lines:
contribution of photon Brems (i.e. gg — ¢g7). For comparison at
each energy we give the range of the experimental pp — 7° + X. (b)
The effect of parton’s intrinsic transverse momenta calculated with a
Gaussian k7 distribution of < k >= 0.5 GeV. We denote by o(kT)
the p 4+ p — v + X inclusive cross section with k7 effects and by o(0)

the same cross section calculated without kp effects (< kr >=0).

(A), (B) The Born graphs associated with subprocess (2.1a). Solid
lines: quarks; dashed: gluons; wavy; photons. (a)-(1) Doubly loga-
rithmic IR divergent graphs in Feynman gauge at 0(a?) shown below
the corresponding Born graphs. Gluons in the soft approximation are

shown by dotted lines. (u), (v) Some non IR divergent graphs at 0(a?).

(a)~(d) Unitarity (transition probability) graphs at lowest order de-
scribing subprocess (2.1a). (A)-(H') IR divergent unitarity graphs
giving 7% at 0(a?), from Fig. 6, shown below the corresponding uni-

tarity Born graphs.

(a) One of the lowest order unitarity graphs describing v* +g = ¢+4.
(b)-(c') Unitarity graphs illustrating crossing of soft gluon corrections

to ¥* + g — q + § discussed in Subsect. 2.2.2. Lines as in Fig. 6.

Comparison of the differential cross section q°do/d®q = Edo/d’p for
real photon production in pp collisions at ¢, = 90° with data. Dashed
lines are the QCD predictions with a strong gluon distribution from
Ref. 46; solid lines include the correction (2.2.22). Circles are data of
Ref. 96, squares of Ref. 97, triangles of Ref. 98.

Predictions for the ratio of inclusive cross sections v/m® (6cm = 90°)

compared with data of Ref. 96. Dashed lines: lowest order prediction
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R

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

with & strong gluon distribution.(48) Solid lines: including the correc-
tion of Eq. (2.2.22). In calculating v/7° we use 7° data of the same

Collaboration.

Inclusive cross sections for 5+ p — ~ + X.(56) Solid and dashed lines:
predictions using the K-factors of Eq. (2.3.1) and two sets of parton
distributions (see caption of Fig. 5 of Ref. 56). Dash-dotted lines:
predictions of the complete calculation of Ref. 65(b) with parton dis-

tributions as for solid line.(5%) Everywhere Q2 = p%.(56)

The kinematic region of the z, — xp integration in the expression
(3.1.2). The boundary corresponds to § +f+ % = 0 (or w = 1),
the hatched region to § + £ + @ > 0 (or w < 1), and the cross-hatched
region denotes the neighborhood of the boundary. (a) Corresponding
to rapidity n = 0; (b), (c) for |n| ~0.7.

(a) The ratio (05 —opo)/(0B + onn) for the contribution of ¢§ — ~g
10 the difference of cross sections for pp - v+ X and pp —» v+ X
at rapidity n = O (in this case 0, > opyo). Solid line: Results for
the d-quark distribution (Duke-Owens set 1). Dash-dotted: Results
for a fictitious distribution of the form (3.2.5) with n = 20. Dashed:
the same with n = 0.01. (b) The ratio (o, — ogo)/oHo for the same

contribution. Lines as in (a).

(2) The ratio (oo — 05)/(0B + ono) for the contribution vg — vq
to yp — v (large pr) +X at n =0 (here 0, < ono). Lines as in Fig.
13(a). (b) The ratio (0o —0,)/ono for the same contribution. Lines

as in Fig. 13(a).

Unitarity graphs contributing to (pp — pp) — ¥X and considered
in Sect. 4.1 (Brems from initial partons). (o) Corresponding to

a Born contribution. (a),(a’) Contributing to the dominant part of
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Fig. 16

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

17

18

19

20

21

22

23

HOC. (b),(c) Giving nondominant contributions. Solid lines: quarks;

dashed: gluons; wavy: photons.

Unitarity graphs contributing to (pp — pp) — vX and considered in
Sect. 4.2 (Brems from final partons). They contribute to the domi-
nant part of HOC. (a)—(g) Associated with the subprocess ¢4 — vgg;
(a'),(b') with the subprocess g7 — v¢q Lines as in Fig. 15. In graphs
(f) and (g) the dash-dotted line stands for a Faddeev-Popov ghost.

Configuration of the 3-momenta of the 2 — 3 subprocess a(p;) +
b(p2) — v(q) + ¢(r) + d(k) in the center of momentum frame of the
two final partons ¢ and d, with the z axis chosen along p) (system S5)).

Unitarity graph determining the contribution to the dominant part
fs(v, w), for the subprocess qg — 7¢, from initial parton Brems (Sect.

5.2). Solid lines' quarks; dashed: gluons; wavy: photon.

Feynman graphs determining the contributions of the subprocess gg —

7+ up to 0(a?). Solid lines: quarks; dashed: gluons; wavy: photons.

Feynman graphs determining the contributions of ¢g — 4 + z up to
0(a?). Solid, dashed and wavy lines as in Fig. 19. Dash-dotted line:
Faddeev-Popov ghost.

Feynman graphs determining the contributions of g¢ — ¢¢y and gg —

qqv. Lines as in Fig. 19.

Example illustrating the variation of the cross section ¢, of some physi-
cal process, with the scale ¢ = M. The solid line represents the second
order approximant 0(?) of . The dashed and dashed-dotted horizontal

lines represent possible values of the (unknown) exact cross section.

Predictions at /s = 1.8 TeV for op — v + X. Inclusive cross sections
averaged in the rapidity range 0 < || < 0.8;(9%) acceptance cut (Eq.

150




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

24

25

26

28

29

30

(8.3.3)) Ro = 0.7 Dash-dotted line: with the parton distributions
of EHLQ1.0® Dashed: DO1. Solid: DO2.(62) All predictions for y =
M = pr.

Inclusive eross sections at /s = 630 GeV for pp — v+ X, averaged in
the rapidity range 0 < || < 0.8; acceptance cut Ry = 0.7. Lines as in
Fig. 23. Data: open squares, Ref. 100; closed squares, Ref. 101.

Asin Fig. 25 ... 1.0 < || < 1.8 and Ry = 0.35. Data: Ref. 101.

Inclusive cro.s sections at /s = 63 GeV for pp - v+ X at n = 0.
Ry of Eq. (8.3.3) determined from the difference in the polar and
azimuthal angles Ay = £35° and A¢y = £40° (Ref. 102(a)). Dash-
dotted, dashed and solid lines as in Fig. 23. Dotted: Results of Ref.
59 with DO2 and optimal scales. Data: closed circles, Ref. 102(a);
open circles, Ref. 102(b); triangles, Ref. 102(c).

Inclusive cross sections at /s = 23.75 GeV for pp — v + X averaged
over —0.62 < n < 0.55. Strong dash-dotted, dashed and solid lines:
EHLQ1, DO1 and DO2, all with g = M = pr. Dotted: as in Fig.
26.(193) Upper thin line: DO2 with 4 = M = pr/2. Lower thin line:
DO1 or EHLQ1 with 4 = M = 2py. Data: Ref. 103.

Inclusive cross sections at /s = 22.9 GeV for pp — v + X. Lines
as in Fig. 26. (a) Averaged over —0.35 < zp < —0.15 (b) Over
—-0.15 < zp < 0.15. Data from Ref. 104.

Inclusive cross sections at /s = 24.3 GeV averaged over —0.4 < n <
1.2. Lines as in Fig. 23. (a) for pp = v+ X. (b) For pp — v+ X. (c)
The ratio of averaged cross sections for pp — v+ X and pp — v+ X.
Data from Ref. 105.

Variation of the predictions with the scale u = M. The ratio of the
cross sections calculated with g = M = pp/2 and with p = M = 2pp,
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for the distributions DO1. (a) At /s = 1.8 TeV for pp — v + X,
averaged over 0 < |n| < 0.8; Ry = 0.7. (b) At /s = 23.75 GeV for
pp — v+ X, averaged over —0.62 < n < 0.55.
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