
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

TOWARD THE PARALLEL DISTRIBUTED

CAMERA ARRAY - DESIGN OF A

RECONFIGURABLE FRAMEWORK

Pierre-Olivier Laprise

Department of Electrical and Computer Engineering

McGill University, Montréal

February 2004

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements of the degree of

Master of Engineering

© PIERRE-OLIVIER LAPRISE, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-612-98540-7
Our file Notre référence
ISBN: 0-612-98540-7

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

The remaining work to finish in or der to reach your goal increases as the deadline

approaches.

-Bave' s Theorem

The first 90% of the task takes 90% of the time, and the last 10% takes the other

90%

-Ninety-Ninety rule of task scheduling

It always takes longer than you expect - even when you take into account

Hofstadter's law.

-Hofstadter's Law

Abstract

Any attempt at extracting information about a three dimensional scene from an image

or image sequence is inherently ill-posed. This is due to the large amount of infor

mation that is lost in projecting a three-dimensional world onto a two-dimensional

sensor. One way to retrieve some of this lost information is to have many cameras

covering overlapping regions of the scene, in the hopes of retrieving complementary

information, which can be combined to form a more accurate whole. However, as

the number of cameras grows, it becomes infeasible to have aU the raw video feeds

treated by a central processor. Our solution to this problem is to have each of the

cameras do sorne local processing, sharing its results rather than its raw data.

This thesis describes the design of an FPGA-based reconfigurable computing

framework for a single no de in the camera array. Notions of the network architecture

insofar as it relates to each node are developed, along with the general framework upon

which applications will be built as inter-changeable modules. The framework is tested

by adapting and implementing a person detection algorithm [16]. Extrapolation from

simulation results suggests that the design, when running on a 100MHz dock, should

be able to run at 3 frames per second when a person is in the scene, and 40 frames

per second otherwise.

Résumé

Extraire de l'information sur une scène tri-dimensionnelle à partir d'une image ou

d'une séquence d'images mène nécessairement à une multitude de solutions possi

bles. Ceci est dû à la grande quantité d'information perdu dans la projection d'un

monde tri-dimensionnel sur un senseur bi-dimensionnel. Une méthode pour pallier

ce problème est d'avoir plusieurs caméras couvrant des régions chevauchées de la

scène, dans l'espoir d'en extraire des morceaux d'information complémentaires pou:'

vant mener à une compréhension accrue de la scène. Toutefois, à mesure que le nombre

de caméras augmente, il devient impossible de traiter l'ensemble de ces sources en un

point central. Notre solution est de déléguer à chaque caméra le traitement de ses

propres images, ne partageant que ses résultats plutôt que ses données brutes.

Ce mémoir décrit la conception d'une platforme pour le traitement d'images à

chaque noeud du réseau de caméras. Les notions de réseautage ayant un impact direct

sur la conception de la platforme sont explorées, de même que la marche à suivre

pour construire des applications pouvant être intégrées en modules interchangeables.

La plat forme est vérifiée par l'adaptation et l'implémentation d'un algorithme de

détection de personnes [16]. Une extrapolation des résultats en simulation suggère

que l'application roulant à partir d'une horloge de 100MHz devrait pouvoir traiter 3

images par seconde lorsqu'il y a une personne dans la scène, et 40 images par seconde

autrement.

Acknowledgments

1 would like to st art by thanking my supervisor, James J. Clark, without whom none

of this would have been possible. He provided my funding, but more importantly

he provided me with the freedom 1 needed to find my own solutions, and with the

guidance 1 needed to avoid going too far astray. 1 would also like to thank the

other members of the Motor Vision group, particularly Vinod Nair, for his help in

developing sorne of the algorithms contained in this thesis. Still at McGill, 1 would

like to thank the staff and crew of CIM, especially the people of 436 for making my

time here enjoyable, and specifically Stephen Spackman, resident guru, for teaching

me so much computer miscellany that didn't make it into this thcsis.

1 would also like to thank John McCluskey, our Xilinx FAE, for never letting

any of my questions go unanswered, and for always making sure 1 had access to the

latest and greatest from Xilinx. Thanks go out as well to the people at Celoxica, who

graciously provided us with both hardware and software, and to IRIS for funding

me both directly and indirectly, and more generally for encouraging research into

intelligent systems.

Last, but certainly far from least, 1 would like to thank my entire family for their

support, with a special thanks to my parents for instilling in me a thirst for knowledge

of all kinds, and to my sister Emmanuelle for listening to me describe my circuits,

and for offering the occasional bit of helpful advice.

TABLE OF CONTENTS

Abstract .

Résumé

Acknowledgments ..

LIST OF FIGURES

CHAPTER 1. Introduction

1.1. Project Overview

1.2. Thesis Overview .

CHAPTER 2. Literature Review

2.1. Parallel Image Processing .

2.1.1. History of Parallel Image Processing

2.2. Reconfigurable Image Processing .

CHAPTER 3. System Framework

3.1. Framework Description ..

3.1.1. Inter-Camera Communications.

3.1.2. On-Camera Processing Unit ..

CHAPTER 4. Proof of Concept Application

4.1. Algorithm Overview

ii

iii

VIl

1

3

4

5

5

5

7

11

12

12

15

18

19

TABLE OF CONTENTS

4.1.1. Algorithm Description 19

4.1.2. Suitability of the Algorithm to the Problem 21

4.2. Design Constraints 22

4.2.1. Intrinsic System Constraints Identification 23

4.2.2. Application Specifie System Constraints Identification. 24

4.3. Implementation Overview. . . 25

4.4. People Detection in Firmware 26

4.5. Calculating the Integral Image from JPEG 30

4.5.1. Extraction of DCT coefficients. 31

4.6. An Efficient Algorithm for Approximating the Integral Image 33

4.6.1. Interpolating From Exact Integral Image Values 36

4.7. Implementation of the Approximate Integral Image Computation. 38

4.8. Putting It AU Together 43

4.8.1. JPEG/Integral Image Decoding Module 44

4.8.2. Person Detection Module 46

4.8.3. DDR SDRAM Controller Module 47

4.9. Result Analysis 49

4.10. Recommended Design Flows .

4.10.1. Commercial Toois

4.10.2. Custom Tools ..

4.10.3. Design Flow Recommendations .

CHAPTER 5. Conclusion

5.1. Possible Extensions

5.1.1. Training in Firmware

5.1.2. Using People Detection in a Camera Network

5.1.3. Connecting the Network

52

52

56

58

61

62

62

63

64

v

TABLE OF CONTENTS

REFERENCES . 66

VI

LIST OF FIGURES

2.1

3.1

4.1

4.2

4.3

4.4

4.5

"Different levels of coupling in a reconfigurable system. reconfigurable

logic is shaded." [6] .. 8

Organization of IP Cores on the FPGA for a single chip solution.

The ASFW is directly connected to the video input and other

performance-critical 1/0, while the MicroBlaze communicates

with slower peripherals. 16

Set of aH possible feature types used in detection algorithm.

The detector is composed of multiple classifier stages, each of

increasing complexity. As soon as a stage is failed, the window is

20

declared negative. .. 21

The ASFW contains the people detector firmware, while the

MicroBlaze is only concerned with interactions with the outside

world. .. 25

Flowchart for the firmware implementation of the people detection

algorithm. 27

Once the JPEG image's DCT coefficient are decoded, the standard

method would be to perform an inverse DCT and integrate the

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

LIST OF FIGURES

resulting grayscale image. Instead, the integral image can be

extracted directly from the coefficients. 31

Simplified block diagram for Huffman decoding module.

Simplified block diagram for decoding JPEG DC coefficients.

Simplified block diagram for decoding JPEG AC coefficients.

A, B, C and D in (a) can be calculated directly from the DCT

DC coefficients, but more coefficients are needed if the desired

32

33

33

resolution is increased (b). 35

Calculating the exact half-block integrals (4x4 resolution) involves

computing the pixel sums for the shaded regions in an 8x8 block. 36

Integral image interpolation scheme for (a) 5x5 and (b) 3x3

neighborhoods 38

Result of differentiating integral images calculated with varying

resolutions. The lower resolutions require fewer DCT coefficients. 39

Simplified block diagram of calculation of half-block integral

points. 40

Illustration of integral image being constructed from 8x8 blocks.

The grayed-out portions are the blocks for which the integral

image has already been calculated, and the black squares are the

points which are extracted exactly from the DCT coefficients.. 41

Flow of data through functional modules - bold arrows are FSL

bus connections, thin arrows are single control lines, and bold

dashed arrows are module-specific interconnections. 45

Format of outgoing data words from the person detection module. 47

viii

LIST OF FIGURES

4.17 Format of incoming command words to the DDR SDRAM memory

controller module. .. 48

ix

CHAPTER 1

Introduction

Despite the seeming effortlessness with which our brain tackles the problem, vision

is not a simple thing. Vision can be loosely defined as extracting information about

a scene from optical eues. The difficulties, however, are numerous. To start with,

the scene in question is occurring in a three dimensional world, but the available

eues, in the form of an image, are intrinsically two-dimensional. Worse still, before

it is interpreted, an image is only a mass of seemingly uncorrelated points of light of

varying intensity and wavelength. It is up to the vision system to decidc which of these

points of light "belong" together, and what they might be doing. And therein lies

the second problem. Whether or not these points belong together not only depends

on their intensities and positions relative to each other and all the other pixels in the

image, which is already a non-trivial issue, but, worse still, it often depends on the

very information that needs to be extracted from the image, causing something of a

chicken and egg problem.

The problem is so complex, in fact, that it has been split into multiple subtasks,

such as depth recovery, object segmentation, and object recognition, that have been

solved repeatedly with varying degrees of success. One thing that can be learned from

this body of work is that computer vision involves a three-way tug-of-war between how

CHAPTER 1. INTRODUCTION

much is learned about a scene, the amount of detail contained in the world model

(sometimes referred to as hard-coded knowledge), and the amount of information

taken as input. For example the simplest motion detector looks at two consecutive

frames in time and determines that if they are not identical within certain noise

tolerances, something in the scene has changed. By augmenting the world-model

to know something about luminance, the same system can be made illumination

independent so that simple changes in lighting do not register as changes in the

scene. Alternately, by taking a longer sequence in time, the detector can be made

less sensitive to high frequency noise in the sensors. Unfortunately, every addition to

the world-model or the amount of input increases the system's complexity.

The Parallel Distributed Camera Array (PDCA) is an attempt to increase the

amount of input while keeping the increase in complexity manageable. As the name

indicates, it is composed of an array of cameras distributed over a certain area in

the scene. The standard method of processing this information would be to send

each camera's video data to one or more general purpose computers that digitize

and process the video feeds. If each computer only pro cesses a few feeds, this is

an adequate setup, but the true advantage of having an array of cameras is the

additional information that can be extracted from what they share. While processing

multiple feeds simultaneously in real-time is possible with a very high-end setup,

one quickly reaches the limits of a single processor's computing power and input

bandwidth as the number of feeds grows. To reduce this problem, a small processing

unit is attached to each camera. Instead of communicating raw video data, each

camera can now communicate higher level information about what it sees. What's

more, by networking the cameras together, they can cooperate in understanding the

scene by sharing their point of view.

2

1.1 PROJECT OVERVIEW

1.1. Project Overview

However, just as every journey begins with a single step, every network begins

with a single node. The goal of this project was to design a prototype framework

for the processing unit attached to the camera at each node. A proper balance had

to be found between flexibility, performance and cost, properties that tend to be

antagonistic.

A Field Programmable Gate Array (FPGA)-based solution offers very high flex

ibility in terms of design possibilities, as well as a reasonably low cost-per-unit, and

very attractive performance capabilities. However, the full potential of such a system

can only be achieved at significantly higher costs, in terms of application design man

hours, than an equivalent processor-based solution. This is largely due to the lack

of sufficiently powerful high-Ievel hardware design tools. Although these are coming

along ni cely, initial evaluation of the tools suggests that they are still far less effective

than even a moderately experienced firmware designer (see section 4.10.1.2).

Pursuant to common practice in reconfigurable computing applications, the sys

tem was organized as a microprocessor tightly cou pied with a reconfigurable processor.

However, the increasing densities available in commercial FPGAs have made it possi

ble to implement a "soft" processor side by si de with the reconfigurable co-processor

on the same FPGA chip. This increases system flexibility, since the pro cess or it

self can also be reconfigured according to system requirements, at the cost of a less

powerful processor. However, since most of the processing is to be done by the

application-specific reconfigurable co-processor, this is less of a disadvantage than it

might seem.

Although the main goal was to design a single node, the fact that it would fit

inside a network could not be ignored. To this end, the larger guidelines of the

communication protocols used in the network needed to be established in order to

3

1.2 THESIS OVERVIEW

ensure that the node could support these. Consequently, it was determined that the

network's flexibility and scalability constraints could be met using Ethernet links,

while higher bandwidth communications between near neighbors could be achieved

using a faster, point-to-point proto col such as LVDS.

Once the basic framework had been established, an application needed to be

developed for it in order to verify that it in fact fulfilled the initial requirements, as

well as to allow all the details to be ironed out in a real-world application. A person

detection algorithm based on [16] was therefore developed and implemented using

the framework.

1.2. Thesis Overview

This thesis describes the various steps from framework design to application im

plementation. Chapter 2 reviews sorne papers from several fields relating to the

present work. Chapter 3 describes the design of the framework, along with justifi

cations of the various design decisions. Chapter 4 describes in detail the application

that was chosen to test the framework. A description of the workings of each module

is given, as well as how they are combined to give the final application. The chapter

rounds off with an analysis of the resulting design. Finally, it wraps up with the

conclusion in chapter 5.

4

CHAPTER 2

Literature Review

Although this thesis is only concerned with the design of a single node, the fact that

it is but a node in a network cannot be ignored. The node's design will be constrained

in large part by the fact that it is targeted to be but one processing element in a large

network forming a large, distributed parallel processor. Consequently, it is important

to be aware of previous work in this field. This will be covered in section 2.1. On

the other hand, each node is an FPGA-based processing unit. Understanding the

challenges and opportunities that this implies requires that one be familiar with what

is being done in the field of reconfigurable computing. This is covered in section 2.2.

2.1. Parallel Image Processing

2.1.1. History of Parallel Image Processing. In developing a system,

it is important to be aware of what has come before, since it allows the designer

to avoid reinventing the wheel, and to avoid the pitfalls discovered by those that

came before him. With this in mind, Michael Duff's paper on the history of parallel

image processing [7] is a good place to start. He begins in the early 60's, when there

was much optimism about imminent successes in duplicating the main functionalities

of the human visual system. In anticipation of the algorithms that would soon be

2.1 PARALLEL IMAGE PROCESSING

developed, it became obvious that more processing power would be required. After

glossing over the problem of parallel processing taxonomy, the paper then proceeds

to coyer sorne of the more basic architectures.

First to be examined are SIMD pro cess or arrays. These are composed of mul

tiple processing elements (PE) running the same instructions on a small portion of

an image. The typical setup has the processors receiving their instructions from a

master controller, and have limited communication abilities with their nearest neigh

bors. Such architectures work well for low-Ievel processing requiring access to only a

small portion of the image, but the limited inter-processor communication lowers its

effectiveness for intermediate and higher level processing.

This is followed by a quick overview of pipeline processors, which can be useful

for processing sequences of images. In such a setup, a processor treats an image and

passes the result down the line to the next pro cess or in the chain, freeing itself up

for another image. While such an architecture can have an interesting throughput,

limited by the longest step in the chain, the latency is usually much too long to make

this an interesting option for real-time image processing.

Next to be covered are MIMD arrays, where each PE is executing distinct oper

ations on distinct portions of the image. These PEs are usually rather sophisticated,

with significant amounts of processing power and memory. However, it would seem

that the overhead quickly overtakes any gains from splitting the work. This is in

part due to the difficulty of programming such machines, and to the lack of compilers

capable of adequately balancing the load between the processors.

The remaining sections of Duff's paper describe the history of the attempts to

produce retina-inspired pro cess ors , with large arrays of extremely simple processing

elements implementing local processing on their assigned pixel and its neighbors. This

research culminated with development of the CLIP4 pro cess or in 1980.

6

2.2 RECONFIGURABLE IMAGE PROCESSING

2.2. Reconfigurable Image Processing

A reconfigurable computing system is, by the most general of definitions, any

system that uses reconfigurable devices as computational elements. This approach

has many advantages compared to other techniques, but also sorne additional pit

falls that a reconfigurable computing system designer must be aware of. Compton

and Hauck [6] have published a very comprehensive and complete survey of the work

done in reconfigurable computing. The authors begin by explaining how there is a

gap between the rigid but powerful Application Specific Integrated Circuit (ASIC),

and flexible but inefficient software, and that this gap can be filled by reconfigurable

computing platforms. Reconfigurable devices are made up of a large number of func

tional units whose exact function can be configured, interconnected by programmable

routing resources. By programming the various functional blocks and fixing how they

are interconnected, the designer can implement custom digital circuits. Of course,

this flexibility cornes at a cost in performance with respect to Aspics. By extension,

since microprocessors are ASICs, sorne functions will be more efficient running in mi

croprocessors than in reconfigurable devices. Consequently, reconfigurable computing

platforms are usually implemented using a combination of general-purpose micropro

cess ors and reconfigurable devices, with the parts that cannot be executed efficiently

with the reconfigurable logic mapped to the microprocessor, while the computational

cores are mapped to the reconfigurable logic.

A reconfigurable system's run-time can be separated into two distinct phases,

configuration and execution. The configuration phase consists of the host processor

loading a configuration into the reconfigurable device or devices. The processor can

then use the implemented circuits to speed its calculations. This pro cess can either be

done a single time at start-up, or can be done repeatedly throughout a task's lifetime

7

2.2 RECONFIGURABLE IMAGE PROCESSING

depending on the functions that need to be executed. The details of this sequence

vary from system to system, but usually follow this general pattern.

When integrating a microprocessor and reconfigurable hardware, many methods

can be used to couple the two, as shown in figure 2.1[6].

Workstation ... \.
i Attached Processing Unit ~

· ·

· · · · · · ·

· ,. ,.

Standalone Processing Unit

FIGURE 2.1. "Different levels of coupling in a reconfigurable system. recon
figurable logic is shaded." [6]

The gradation from functional unit, through coprocessor and attachcd processing

unit, to standalone processing unit, corresponds to an increasing amount of com-

munication overhead and cost, but also to an increase in the unit's complexity and

independence from the processor. At one extreme, the functional unit extends the

processor's instruction set, making its use extremely weIl integrated with the pro-

cessor, but limiting its operational complexity to something on par with the other

processor instructions. At the other extreme, the standalone processing unit is fully

independent of the processor, executing entire algorithms and returning only the re-

sults, but the communication between it and the processor tend to be more involved,

since such systems are more loosely integrated with the host processor, being full

computational entities in their own right.

8

2.2 RECONFIGURABLE IMAGE PROCESSING

Compton and Hauck then proceed to describe various FPGA architecture types.

However, this description is at a much lower level than is needed for this thesis, and

is therefore left to the interested reader to look into (see [19, 22]).

Multi-FPGA reconfigurable systems face the added complexity of interconnecting

the FPGAs and partitioning the system between them. The two basic methods of

interconnection are the mesh, in which each FPGA is connected to its neighbors, and

the crossbar, where each FPGA has access to every other FPGA. The advantage of

the mesh architecture is that communications between proximate chips is very effi

cient. However, intermediate chips need to serve as intermediaries for more distant

communications. The crossbar architecture, on the other hand, provides more uni

form chip-to-chip communication delays, but each delay is longer than for the mesh.

Another disadvantage of the crossbar is that it doesn't scale well.

On the flip side of reconfigurable hardware is the software that allows one to

use it. Part of the reconfigurable computing effort includes developing the methods

and tools that allow the hardware to implement the desired algorithm. In order for

an algorithm to run on a specifie system, it first has to be elaborated in functional

terms, for example using a programming language. Since most reconfigurable systems

have both a processor and reconfigurable hardware, a decision has to be taken about

which parts of the algorithm should go where. Once each of these parts have been

described in their respective languages, the software is ready to be compiled. A

structural description of the hardware must be extracted, after which these structural

components can be mapped to the specifie technology of choice, finishing with the

placement of the components and the routing of the connection signaIs. Of course,

any or an of these steps can be done automatically, but the general trend is that while

automating increases the ease with which new functionalities are developed, it comes

at a cost in system performance and resource-use efficiency.

9

2.2 RECONFIGURABLE IMAGE PROCESSING

It can happen that the amount of hardware required to accelerate a program

surpasses the amount of hardware that is available in the reconfigurable device. It is

in such cases that run-time reconfiguration becomes useful. Run-time reconfiguration

implies that the reconfigurable device will be reconfigured at least once during a task's

execution so as to maximize the device's use. The concept is based on that of virtual

hardware, which is analogous to virtual memory in traditional systems.

There are three basic models for reconfigurable computing: single context, multi

context, and partial reconfiguration. A context is a specific arrangement of functional

units on the reconfigurable device. Single context devices need to be completely

externally reloaded with a new configuration every time a change needs to be made.

Consequently, it is important to limit the number of changes, and to optimize each

configuration to have the combinat ion of functional units that will delay the next

configuration for the longest time. Multi-context devices can switch very rapidly

between two or more contexts, and can swap inactive contexts out while the active

context is running. This allows the user to "prefet ch" configurations, but the user

is still limited to swapping entire contexts. If this is required too frequently, new

configurations will not have time to be loaded and the system will stall. Partial

reconfiguration devices allow reconfiguration of only part of the device. This allows

a drastic reduction of configuration file sizes, and thus load times, in addition to the

fact that very often portions of the chip can continue running while other portions

are being reconfigured. However, real-time reconfiguration adds another dimension

of complexity to system design, since the functional units will now need to be placed

and routed not only in space, but in time as well.

10

CHAPTER 3

System Framework

Before the applications of distributed and reconfigurable computing to computer vi

sion can be explored, it is necessary to establish a basic system framework to sup

port higher level algorithms. The core ide a for the framework is to have a network

of cooperating camera-processors. Each camera-processor should be composed of a

camera unit tightly coupled to a processing unit. Each node in the network should

have enough processing power to implement moderately complex image processing

algorithms in real-time, with the true power coming from the networked interaction

between modules.

The system can in fact be divided into two subsystems, each relatively indepen

dent of one another, but both equally important to the overall performance of the

system. In order to take full advantage of the network processing, a proper network

architecture must be chosen. The basic idea in having a processor at each node is for

nodes to pre-process their information, transmitting higher level information instead

of raw data, thereby reducing bandwidth requirements. However, many computer

vision algorithms utilizing multiple images require large amounts of raw data to be

shared, and this must also be taken into account. More important than the band

width consideration, though, is the requirement of scalability. The proposed network

3.1 FRAMEWORK DESCRIPTION

should be able to accommodate from only a few nodes to as many as several hundred,

possibly spread out over large distances. This will be covered in detail in 3.1.1

The second subsystem is the camera-processor no de itself. It is important to have

the camera tightly coupled to the processing unit in order to permit high-bandwidth

communication between the two. These nodes need to be as flexible as possible in

order to provide for a large variety of algorithms. It is also important to get as much

"bang for the buck" as possible, since the algorithms will need to be functioning

in real-time, yet a network composed of a large number of nodes should still be

economically feasible. The methods used to fulfill these requirements are covered in

section 3.1.2

3.1. Framework Description

3.1.1. Inter-Camera Communications. The network architecture is sub-

ject to two seemingly exclusive constraints: one for scalable communication over long

distances, and one for high-bandwidth communication between nodes. However, high

bandwidth communications are mostly needed for transferring large amounts of raw

image data, and the further apart in space or time two images are, the harder it

is to find a direct correlation between their pixels. In addition to this, high-speed

communication becomes harder as the distance between the nodes grows. Therefore,

it becomes more advantageous as the cameras get farther apart to use higher level

constructs such as edges, shapes, or even object types instead of raw pixel data. Such

higher level constructs tend to require fewer bits to describe than the raw pixels they

are derived from.

This naturally leads to developing a two-level architecture with a limited num

ber of high-bandwidth, near-neighbor, dedicated links to transmit raw pixel data,

12

3.1 FRAMEWORK DESCRIPTION

supplemented by a standard, scalable network architecture for longer distance com

munication of higher level constructs.

3.1.1.1. Scalable Network Architecture. The most important factor in deciding

what architecture to use for the global network are those of flexibility and scalability.

Another important factor is that of ease of use and implementation. Although the

networking aspect is an important aspect of this project, it is not the main subject

of research and should be as transparent as possible, with integration as seamless as

possible.

Such restrictions led to choosing Ethernet as the base global communication pro

tocol. The Ethernet proto col provides for a sufficiently large number of nodes, theo

retically bounded by the size of the MAC address, a number which is unlikely to be

the true limiting factor in network size. Ethernet also provides for communication

between any two arbitrary nodes, and permits simple addition and removal of nodes.

It also simplifies connection to existing networks, allowing the use of existing infras

tructures. Ethernet thereby meets both the flexibility and scalability requirements.

It also satisfies ease of use and implementation due to the widespread support of the

protocol by the community at large. Innumerable commercial and free implemen

tations of the Ethernet protocol exist in many different formats, be it software or

hardware. It is also easy to find board layout examples of the implementation of the

Ethernet physical layer, simplifying the future physical implementation.

3.1.1.2. Near-Neighbor Network Architecture. High bandwidth communica-

tions on the network will most often be required between cameras located physically

close to one another. Few of these links should be required for each node, however.

This suggests that a simple point-to-point high speed bus proto col could be used to

reduce overhead.

13

3.1 FRAMEWORK DESCRIPTION

Many low-Ievel 1/0 standards lend themselves to such high-speed transfers, chief

amongst these being the many differential-signaling standards, such as the various

fiavors of Low Voltage DifferentiaI Signaling (LVDS), or Lightning Data Transport

(LDT). These specific standards have the added advantage ofbeing directly supported

by the family of FPGAs that was chosen for this project (Xilinx's Virtex-II, [19, 22]),

and it appears likely that they will continue to be supported in upcoming Xilinx

FPGAs as weIl.

Sinee the exact disposition of the modules is not known in advanee, it is important

to allow for multiple possible configurations using the same physical module. Using

the LVDS standard with Virtex-II FPGAs allows a large range of connection distances

using the same PCB by using output buffers of different drive strengths and voltage

swings [19, 23], for example using LVDS or LVDSEXT. It is coneeivable that using

this standard will allow each line to be driven by Double Data Rate (DDR) registers

at up to lOOMHz. This amounts to a raw data transfer rate of up to 25MBps for each

data line.

The LVDS standard can be used for high speed point-to-point inter-board com

munication, but a data layer proto col still needs to be chosen. Such a layer would

need to be very simple and have low overhead. One promising avenue of research is

to use the phase-Iocking or phase-shifting capabilities of the Virtex-II's Digital Clock

Manager (DCM) in an attempt to synchronize the sender and receiver, and dealing

with the internaI dock domain crossover using traditional methods.

Although LVDS is a point-to-point proto col, it would also be possible to orga

nize a small group of neighbors into simple sub-networks, for example using a ring

organization. Using a reconfigurable matrix such as the FPGA to control these com

munications also allows a lot of fiexibility in the trade-off between the number of

neighbors that each node has against the width of the bus. For example, if 64 pins

14

3.1 FRAMEWORK DESCRIPTION

were dedicated to LVDS communications, various applications could use these for

bi-directional communication on 32-bit buses, or split into smaller buses to form hy

percube sub-networks.

3.1.2. On-Camera Processing Unit. The des ire to have as many nodes

as possible, combined with the requirement that each node be capable of executing

moderately complex algorithms in real-time, were the gui ding constraints in node

design. This required the solution to be as cost-effective as possible, yet still be ca

pable of high-performance image processing. Reconfigurable computing architectures

have shown time and again an ability toward accelerating image processing tasks

[1, 4, 5, 8, 14], and are therefore ideally suited to this application.

Current advances in FPGA technologies are making it possible to envisage the

design of a System On a Programmable Chip (SOPC), in which all the components

which previously required separate components on a Printed Circuit Board (PCB),

can be fit onto a single FPGA chip. This allows embedding of a microprocessor onto

the FPGA itself instead of placing it alongside on a PCB. Xilinx providcs two avenues

to this effect, the MicroBlaze™soft processor for the Virtex-II™family of chips, and

the IBM PowerPC™processor embedded into the Virtex-II Pro™family of FPGA's.

Using such an approach, the microprocessor can be used to control the general

behavior of the system, as well as the complex network communication protocols.

In parallel, an Application Specific FirmWare (ASFW) module can be configured

to do the bulk of the processing, taking full advantage of the parallelism offered by

custom hardware designs. This permits a tight, optimized, coupling between the data

processing elements and the data source, such as the camera or memory.

The more conventional approach to a reconfigurable computing architecture is

to have a dedicated micro-processor ASIC using an FPGA as a reconfigurable co

processor. Such a configuration has many advantages, namely performance, but it

15

3.1 FRAMEWORK DESCRIPTION

sacrifices sorne of the flexibility and cost-effectiveness of a single-chip solution. In the

early stages of system design, flexibility is more important, but the exact physical

layout of the various components has minimal impact on application design and can

be decided on a case-by-case - or even node-by-node - basis as long as the interfaces

between the nodes are respected.

An example no de system architecture setup can be found in figure 3.1. If a two-

chip system were chosen, the MicroBlaze could be replaced by a separate processor,

and the Fast Simplex Link (FSL) [21] bus by whichever interface is required by the

processor.

LVDS

Video In ASFW - FSL bus
uBlaze

(Ethemet+
Control)

BRAM

UART OPIO Ethemet

FIGURE 3.1. Organization of IP Cores on the FPGA for a single chip so
lution. The ASFW is directly connected to the video input and other
performance-critical 1/0, while the MicroBlaze communicates with slower
peripherals.

However, several aspects of this layout should be conserved to allow for maximum

efficiency. Performance for most applications will possibly be limited by the speed at

which the data can be brought into and sent out of the FPGA chip, rather than by

internaI processing power, as illustrated by the test application described in chapter

4. Connecting the high-throughput data sources directly to the ASFW, instead of

routing the data through the processor, allows an optimization of these interfaces

on an application specifie basis, and helps in minimizing communication overhead,

increasing overall system performance. This also increases system flexibility since,

16

3.1 FRAMEWORK DESCRIPTION

shouid these signaIs be required by the processor instead, they can still be routed

through the FPGA with minimal delays, with the added opportunity of transforming

them into a more convenient form, for example by doing color space conversions,

illumination adjustments, noise reduction, etc, as they stream by.

The framework's implementation details, along with an analysis of its inherent

strengths and weaknesses, will be explored in the next chapter in the context of an

algorithm that was implemented to test the limits of the design.

17

CHAPTER 4

Proof of Concept Application

Although many problems can be predicted ahead of time and planned for in the

framework's initial design, many issues can only become apparent after it has been

used in a real-world problem. To this end, an application is required to test as many of

the system constraints as possible. The application in question needs to show that the

framework is capable of running useful image processing algorithms at high speeds.

Given the larger context in which the system will operate, it is also important that

the implemented algorithm's output be useful for other nodes implementing higher

level algorithms.

Although reconfigurable computing systems have often proved themselves for

use in image processing, the systems usually can only implement simple, low-Ievel,

algorithms [1, 15], or have access to a large amount of processing power [3, 13J. Until

recently [8J, many of the more complex algorithms were usually deemed unsuitable for

FPGA implementation due to the necessity for floating point operations or because

of the limited amount of rapid, on-chip, memory compared to the volume of data that

needs to be processed. However, this greatly limits the choice of algorithms, so it was

deemed more profitable in the long term to try to meet these problems head on and

4.1 ALGORITHM OVERVIEW

find methods to mitigate the impact of these problems on the overall performance of

the system.

An overview of the chosen algorithm is given in section 4.1, with a review of the

guiding constraints of the design in section 4.2, followed by an exploration of the

algorithm's implementation in sections 4.3 to 4.8. The results of this implementation

are examined in section 4.9.

4.1. Algorithm Overview

4.1.1. Algorithm Description. The original version of the algorithm that

is being adapted, developed by Viola and Jones, can be found in [16]. It is an object

detection algorithm allowing for efficient detection of objects of variable size, but

constant shape.

Objects are detected by examining rectangular regions of fixed aspect ratio, but

of variable scale and position in the image. The base aspect ratio is chosen to fit the

desired object. In the case of a person standing upright or walking down a corridor,

this is on the order of 1:3.

Each region is examined using a series of cascaded strong classifiers of increasing

complexity. Each strong classifier is composed of a number of weak classifiers, referred

to throughout this work as "features". Each feature is a scaled version of one of the

10 feature types from Figure 4.1. A feature's distinguishing characteristics are its

position in the window, its size, a feature threshold, and its weight. The weight of a

feature determines how much importance a given feature has in the final decision for

a stage. If the sum of the weights for all the positive features in a stage is greater

than a certain threshold, then the stage is positive.

The value of a feature is determined by the difference between the sum of the

pixels in the black regions and the sum of the pixels in the white regions. A feature

19

4.1 ALGORITHM OVERVIEW

5 7 9

2 4 6 10

FIGURE 4.1. Set of aH possible feature types used in detection algorithm.

is deemed positive if its value is beyond a certain threshold, and negative otherwise.

Once the sum of the positive features' weights surpasses a certain threshold, estab

lished in training, the window is declared positive for the current classifier stage, and

passed on to the next stage, where the pro cess is repeated with a greater number of

features. If the window fails in any stage, it is declared negative, and the subsequent

classifier stages do not need to be evaluated.

The efficient evaluation of features is achieved using an "integral image" encoding

format. In an integral image, the point in the Tth row and Cth column is 2:;=1 2:;=1 Pi,j,

where Pi,j is the the value of the pixel in the ith row and jth column of the original

image. This has the the advantage that once the integral image is calculated, the sum

of pixels inside any rectangular region in the image requires just 3 additions and a

subtraction, independently of the size of the region, which in turn allows an efficient

evaluation of the basic features at all sc ales required by the algorithm

As illustrated by figure 4.2, the first classifiers in the cascade only have a few

features, allowing them to be evaluated very rapidly. However, the features are chosen

so that the most "obvious" negative images are discarded in this stage. Any regions

20

4.1 ALGORITHM OVERVIEW

that pass this first stage are evaluated using the second stage, which has more features,

and therefore takes longer to compute, but will have fewer false positives. This

continues through a fixed number of stages, chosen before training, and any region

that passes through aU stages successfuUy is deemed a positive match.

1 st Classifier 2nd Classifier 3rd ClassifIer

FIGURE 4.2. The detector is composed of multiple classifier stages, each of
increasing complexity. As soon as a stage is failed, the window is declared
negative.

Of course, there are innumerable possible features when aU the possible combi

nations of scale, position, type, and threshold are taken into account. Selecting the

most suit able features for each classifier stage is done using the AdaBoost training

algorithm [16]. This algorithm is fed a large number of labeled training images in

two sets, one with cropped positive images of difIerent sizes, and one with cropped

negative images of various sizes taken from the scene. More ample details of the

decisions taken in training and in the implementation of the software version of this

algorithm can be found in [12].

4.1.2. Suitability of the Algorithm to the Problem. Even from such

a succinct description of the algorithm, it is possible to see how implementing this

algorithm using the framework will test the various system constraints.

21

4.2 DESIGN CONSTRAINTS

4.1.2.1. Usefulness. Object detection is a much studied and often used image

processing goal. More importantly, it can serve as a first step in many more complex

algorithms. For example, if power consumption is an issue, the arrivaI of an object in

a scene could be used as a trigger to wake other nodes in the network. Additionally,

the algorithm outputs the location of the object in its frame of reference, which

can often be translated to its position in the scene with a minimum of effort and

calibration. Such information can be used by neighboring nodes to focus exclusively

on this region, limiting the amount of processing necessary to accomplish their task.

4.1.2.2. Algorithm Complexity. Viola and Jones' algorithm requires multiple

passes over an image. Combined with the size of the source image, this forces inte

gration of an efficient method for communicating with off-chip memory. As will be

seen in following sections, the use of the integral image, although it forces us to use

32 bits per point, saves memory bandwidth by reducing the number of points that

need to be fetched per operation, and thereby the total number of bits.

The original algorithm uses floating point numbers for many of its operations. It

is possible to replace these by scaled integer operations without losing any generality.

Although these examples are specific to this algorithm, there are dccpcr principles

that can be extracted from these ex amples for use in future projects.

4.2. Design Constraints

Implementation of a design forces one to come face to face with reality, and all

the added constraints and problems that this implies. The added constraints can be

separated into two groups: those that are intrinsic to the system as a whole, which

should therefore recur from one problem to the next, and those more specific to the

current application.

22

4.2 DESIGN CONSTRAINTS

4.2.1. Intrinsic System Constraints Identification. The main constraint

faced by most FPGA-based image processing applications will be the small amount

of local memory. Although memory densities are constantly increasing, permitting

more and more local memory, even the largest member of the Virtex-II family of chips,

which at the time of this writing is one of the high-capacity families, only contains

3.4Mbits of memory distributed throughout the chip into. Even treating this memory

as a single block, it would only be enough to hold 432 8-bit pixels, barely enough for

a 20x20 grayscale image. Furthermore, the memory is actually divided into blocks

of memory are distinct entities distributed roughly evenly over the FPGA's lattice.

Feeding the data from a block of memory to a position on the chip which is far away

introduces significant routing delays that degrade the system's overall performance.

For all these reasons, the chip memory should not be used as a central cache available

to all modules on the chip, but should rather be used in a local manner by the various

functional units. The memory blocks in the Virtex families of chip are fully dual-port,

with each port having an independently variable word width [23], which permits the

use of a single block for storing two different types of data of varying width. However,

only certain widths are permitted, which means that much care should be taken in

choosing the width of data types to avoid wasting memory.

Unfortunately, most image processing algorithms require a lot more memory than

what is strictly available on an FPGA, which implies that sorne sort of off-chip storage

must also be available. Communication with such a memory will come at a significant

performance overhead, and the number of external memory accesses should therefore

be reduced to a minimum. Although not always practical, data compression tech

niques should be considered, as compression and decompression hardware can often

be implemented with minimal impact on the actual performance of the design. Any

preprocessing that can be done to the data to minimize the number of memory fetches

23

4.2 DESIGN CONSTRAINTS

(for example storing the image in integral format as described in section 4.4) can also

result in overall gains in the final design, and should thus be seriously considered.

4.2.2. Application Specifie System Constraints Identification. The

application specific constraints mostly stem from the prototyping platform that was

chosen for implementation of the initial phases. Although the video input will be

tightly coupled to the FPGA in future versions, no readily available commercial board

was found to satisfy this requirement along with all the others. The chosen proto

typing board was lnsight Memec's V2MBlOOO board, which provides support for a

large variety of 1/0, such as an Ethernet physicallayer and LVDS compliant traces,

which is useful for high speed board-to-board communication. lt was decided that

the actual source of the video feed had limited impact on the functionality of the

system, and that reasonable performance estimates could still be garnered from the

implementation.

For the example node application described in this paper, the source images

were gathered from a network camera with on-board JPEG compression and HTTP

server over Ethernet, the Axis Communication NetCam 200+. Unfortunately, the live

stream from this camera is limited to one 352x288 pixel frame per second. Having a

JPEG video source allowed exploration into the possibilities of integrating real-time

image compression and decompression into a standard computer vision algorithm.

lntegrating compression and decompression of a data stream into the application

(whether using JPEG or other means), is an important step toward reducing the

bandwidth required in transferring data between network nodes or even between

the FPGA and memory. In fact, hardware implementations of computer vision and

image processing algorithms are often limited by the speed of their 1/0 instead of the

speed at which they are able to pro cess data, which is why most of the algorithms

implemented in hardware are of the streaming filter variety, where memory demands

24

4.3 IMPLEMENTATION OVERVIEW

are limited. Compressing the data that is to be transferred therefore has the potential

of improving system performance by increasing the effective bandwidth as long as

compression and de compression of the data have a limited effect on the speed of the

overall system.

4.3. Implementation Overview

The global system organization can be se en in figure 4.3. Execution starts when

the MicroBlaze processor retrieves the JPEG image from the network camera using

HTTP over Ethernet. The JPEG data is separated from the header and passed to the

people detection module through the JPEG decoder, described in more detail in this

section. The integral image is stored in DDR SDRAM for the use of the application

specifie firmware. Since only a single node was implemented, the LVDS bus was not

required. Each of the hardware modules are often referred to as Intellectual Property

(IP) Cores. They are designed to be as independent as possible of one an other so as

to encourage module re-use.

ASFW

(People
Detector)

(Integral Image)

FSL bus

Data bus

uBlaze
(Ethemet +

Control)

BRAM

UART GPIO Ethemet

FIGUB,E 4.3. The ASFW contains the people detector firmware, while the
MicroBlaze is only concerned with interactions with the outside world.

25

4.4 PEOPLE DETECTION IN FIRMWARE

4.4. People Detection in Firmware

At first glanee, the implementation of Viola and Jones' detection algorithm is

rather straightforward. The module implementation's flow-chart is shown in figure

4.4. Having stored the image in integral image format, the sum of pixels in a rect

angular region of any size only requires the addition or subtraction of the region's

four corners. Therefore, all that is required to calculate a feature's value is a simple

accumulator circuit. Each accumulated point is either multiplied by ±1 or ±2, and

the features that were used can have either 6 or 8 points of interest. The only diffi

cult y stems from the limited amount of on-chip memory available. Sinee the integral

image is much too large to fit on-chip, it must be stored in an external memory,

which is neeessarily much slower to aceess. In the current implementation, the off

chip memory is a DDR SDRAM with a 16 bit data bus working at lOOMHz. This

allows for a transfer rate which can never surpass 32 bits per 10ns. With the targeted

FPGA system clock speed also at lOOMHz, the system would be reeeiving at most

one integral point per cycle, even without taking into account addressing overhead

and memory refresh times. Various methods were considered in order to compress

the integral image and allow greater throughput, but the neeessity to aceess widely

separate points in a pseudo-random order made this a difficult task. Given that we

have a priori knowledge of the patterns with which data points can be fetched, it

should be possible to optimize the memory controller for this application, for exam

pIe by inserting memory refreshes in natural pauses in the flow, but this would be far

from trivial and is therefore left as future work.

Classifier training determines the position, size, and type of features that are

required to detect a person. These values are all given with respect to a 16x48

template window, which is then shifted and scaled to detect people of different sizes

in varying places in the image. The address of a point in external memory therefore

26

4.4 PEOPLE DETECTION IN FIRMWARE

Calculate
Scale & Offset

Update
Prediction

Accumulate
Feature Point

no

Send Addr
toDDR

Reset
Accumulator

FIGURE 4.4. Flowchart for the firmware implementation of the people de
tection algorithm.

depends both on its position in the template window, and on the template's position

and scale in the image at any given point in the scan. Training also determines the

feature's threshold, its weight in the stage, and the global threshold for each stage. In

order to minimize delays, this information should aIl be stored on-chip, but this can

require a large amount of memory if one is not careful. Consequently, it is necessary

to organize the information so as to most tightly pack it into the available memory

formats. The first step toward accomplishing this is to realize that many pieces of

data are always accessed together. For example, aIl the information identifying a

specific feature will never be fetched separately. This means that they can also be

stored together in memory. Concatenating feature information elements into a single

memory word allows the designer to optimize memory use, and can have the added

advantage of allowing a more compact design by simplifying the routing of closely

27

4.4 PEOPLE DETECTION IN FIRMWARE

related datapaths. However, there is too much feature information to store into a

single memory word, which forces the feature information to be split into a total of

four memory blocks. In an effort to hi de the inner complexity of the memory map,

the memory blocks are encapsulated so as to show the functional data separations

instead of the physical ones. This has the added advantage of increasing inter-device

portability, since the same code could be kept by only changing the architecture of

the memory modules.

Once the width of the memory blocks is determined, a word addressing scheme

needs to be developed. The total number of classifier stages, as well as the number of

features in each stage, are determined in training, and vary widely depending on the

targeted detection and false positive rates, and can be used to tweak overall detector

performance. The need for flexibility, added to the need for a compact storage scheme

to maximize memory utilization, and given that features are evaluated in a fixed order,

naturally leads to storing feature words sequentially in memory in the order that they

are evaluated. However, this requires that the memory address of the first word in

each stage be accessible for when the predictor forces the preemptive end of a stage.

In order to avoid using external memory to store feature information, it is nec

essary to optimize internaI memory use by selecting the data width and formats for

the different feature data. While there is no restriction on the data width as there

is in a general processor, the FPGA can only allow certain addressing modes for its

high-density memory, which restricts the width of the fetched data word. This leads

to storing disparate pieces of information into the same data word, splitting it ac

cor ding to use in the hardware. The cri tic al choices at this juncture are the size of

data for the threshold and weight of a feature.

The feature threshold and weights are good examples of the two types of data

that can benefit from proper sizing, and a good opportunity to show the possible

28

4.4 PEOPLE DETECTION IN FIRMWARE

approaches to choosing a data width for a particular signal. The threshold is an

absolute value determined by the size of the template and the maximum value of a

pixel. Its maximum value can therefore be determined to fit inside 18 bits. However,

classifier training shows that no threshold ever requires more than 15 bits. Given

that the FPGA can be reconfigured if retraining ever changes this, the datapath can

be optimized to use this facto Judicious use of generics (in VHDL) or defparams (in

Verilog), and timing and placement constraints, can make changing the data path

width a simple matter of resynthesizing after a parameter .change, and can le ad to

improved performance and reduced area usage.

Unlike the thresholds, the weights only have importance in terms of their sizes

relative to one another. An analysis of the distribution of weights in the trained

classifiers shows that using 18 bits to represent the weight values uniformly distributed

from zero to the maximum allows all but 0.13% of the weights to have a unique value

compared to the full fioating point representation.

Despite all this, the main bottleneck for the people detection module is still

the external memory interface to the integral image values. This can be alleviated

somewhat by taking advantage of consecutive reads from a same row, but it do es not

eliminate the problem. The best way to further alleviate the bottleneck is to reduce

the number of memory accesses. The main method chosen to this effect is to detect

whether or not additional features are necessary to determine the success or failure of

a window. The maximum value that can be achieved by a window is equal to the sum

of all its features' weights, and since the features in a window are all known ahead

of time, this maximum can be precalculated for each classifier stage. As features are

calculated, they get resolved either into increasing the currently accumulated window

value, or into decreasing the maximum attainable value. If the window value surpasses

the target threshold, it is judged positive. Similarly, if the maximum attainable value

29

4.5 CALCULATING THE INTEGRAL IMAGE FROM JPEG

faIls below threshold, success becomes impossible and the window can immediately

be judged negative. Either way, the suc cess or failure of the window is known without

needing to calculate (and thereby fetch from memory) more features. However, it is

imperative that this prediction algorithm be outside the critical path to avoid slowing

down the algorithm. This can be achieved by implementing it in a separate module

running in paraIlel, which can be checked in a non-blocking manner to determine

whether or not the next feature point needs to be fetched.

4.5. Calculating the Integral Image from JPEG

Oomputing the integral image of a grayscale frame is simple (see [16] for details) if

the frame is not compressed. In our case, however, it is compressed, in JPEG format.

The JPEG decompression algorithm involves computing the inverse Discrete Oosine

Transform (DOT) [11], which requires nontrivial hardware resources and computa

tional effort. Therefore we seek to avoid computing the inverse DOT. It is possible

to obtain the integral image directly from the DOT coefficients because both the for

ward and inverse discrete cosine transforms are linear transformations, which means

that the coefficients are linear combinations of pixel values and vice versa. So the

pixel sums required in the integral image computation can be obtained through linear

combinations of the DOT coefficients.

Figure 4.5 shows how such a direct method would work, and for comparison the

gray box shows the indirect method of computing the integral image. But computing

the inverse DOT and computing the integral image from the DOT coefficients are

roughly equivalent since both the grayscale frame and its integral image contain the

same amount of information, and the conversion between the integral and grayscale

forms is trivial compared to the inverse DOT. Therefore calculating the integral image

directly from the DOT coefficients requires about as much effort as the inverse DOT

30

4.5 CALCULATING THE INTEGRAL IMAGE FROM JPEG

itself. However, it may be possible to directly compute an approximate integral image

with fewer computations.

JPEG Huffman
decoder

Dequantizer 1----..,
DCT

coefficients Inverse
nCT

Direct
method

1----t-.t Integrate
Grayscale

'--.....-----..' image ----'

Integral
image

FIGURE 4.5. Once the JPEG image's DCT coefficient are decoded, the stan
dard method would be to perform an inverse DCT and integrate the resulting
grayscale image. Instead, the integral image can be extracted directly from
the coefficients.

4.5.1. Extraction of DCT coefficients. The extraction of DCT coefficients

from a JPEG stream requires first that a Huffman encoded value be decoded, which is

then used to decode the bits in the stream which encode the coefficient's actual value.

This necessitates the use of a Huffman table which is transmitted with the image.

However, JPEG encoders (including the one used for this experiment) generally use

the same Huffman table for aIl the images that they generate. Having verified whether

this is the case for a particular encoder, and with knowledge that aIl future images

in the series will come from the same encoder, it is possible to only extract the table

from the first image received or, in a prototyping environment, to hardcode the tables

into the FPGA's configuration bit stream. The quantization tables used in section 4.7

may be treated in the same manner.

It was clear from the start that the speed at which the JPEG de co ding module

pro cesses data would be limited at the input by the fact that the data is being sent

over a 10/100 Ethernet line, which has a maximum transfer rate of lOns/bit, and at

the output by the integral image module, which needs to write its results to external

31

4.5 CALCULATING THE INTEGRAL IMAGE FROM JPEG

memory. Therefore, a simple seriallookup table approach to Huffman decoding, such

as the one described in [11], should be sufficient to meet data rate limitations at both

ends. Once the Huffman de co ding is complete, decoding the coefficient's value and

index is relatively simple to do in parallel at a small addition al cost in complexity.

Simplified block diagrams of these modules' implementations can be seen in figures

4.6, 4.7 and 4.8.

Shift Reg
E

[8]

[16]

CODE
-

rst

r---+H_CO_D_ErLE_N_G_TH_-.! Block
address BRAM

[4] [4]

FIRSTCODE
+

[16]
CODE +3num

[16] addlsub
MlNCODE

[16]

CODE
a

[16]
a<=b

MAXCODE
b

[161

data
[32]

[MAXCODE, MlNCODE]

[16
F+I+......;;=~ Block

[8] BRAM

enable

data
r~OY,ALUE

[8]
(DC_DeHuffed or AC_DeHuffed)

FIGURE 4.6. Simplified block diagram for Huffman decoding module.

Tests on a source image suggest that if the decoding hardware were only slightly

limited by input speed (overhead of 2 cycles per 16 bits of data), the hardware should

take approximately 75kcycles to treat a typical image, which translates to 1.5ms for

a worst case 20ns minimum period. However, as will be seen in section 4.7, most

of this time can be absorbed by the calculation of the integral image, with a simple

FIFO buffer to synchronize the modules.

32

4.6 AN EFFICIENT ALGORITHM FOR APPROXIMATING THE INTEGRAL IMAGE

en: Cnt::::::Mag Shift Reg

en: nt::::::17
ign

Cin: Sign

[16]

en: Cnt::::::17

[16]

DC_Coeff

FIGURE 4.7. Simplified block diagram for decoding JPEG DC coefficients.

en: Cnt==ACLo

ign
Shift Reg

p.C_DeHUffed

ACHi CLo
4] 4] ,...-____ --,

~Cin:
~A~DeHuffed==FO

~7 AC OoH""'" ~ 00

1 1 1 1 Il 1 1 1 1 1 1 1 1 1 1 'en: ent==!7

~Ac_coefClndex

FIGURE 4.8. Simplified block diagram for decoding JPEG AC coefficients.

4.6. An Efficient Algorithm for Approximating the Integral

Image

We have developed an algorithm for calculating an approximate integral image

that needs significantly fewer computations and hardware resources than the inverse

DCT. The basic idea is to compute the integral image exactly at sorne points in

the image and then approximate it everywhere else by interpolation. The JPEG

compression algorithm partitions a grayscale image into non-overlapping 8x8 pixel

33

4.6 AN EFFICIENT ALGORITHM FOR APPROXIMATING THE INTEGRAL IMAGE

blocks and computes the 64 DCT coefficients for each block. These coefficients can

be obtained from the JPEG data by Huffman decoding and dequantization [11]. Since

the DC coefficient of a block encodes the average pixel value of that block [17], the

sum of aU pixels in an 8x8 block can be calculated from its DC coefficient alone. U sing

all such local 8x8 block sums of an image, it is possible to compute the exact value

of the integral image at the bottom-right corner of every 8x8 block in the image, as

shown by the example in figure 4.9(a). Suppose that 8 1 , 82 , 83 and 84 are the 8x8

block sums for the four blocks shown in figure 4.9(a). The exact value of the integral

image at point Ais 81 , at point B is 81 + 82 , at point C is 81 + 83 , and at point D is

81 + 82 + 83 + 84 . The rest of the integral image can then be filled in by interpolating

these exact values, but the resulting approximate integral image may have a large

error compared to the true integral image.

The approximation error can be reduced, at a greater computational expense, if

we divide up each 8x8 block into four 4x4 blocks and calculate aU the 4x4 block sums

from the DCT coefficients. Then the exact integral image value can be obtained in

a similar manner as above at four times more points than before, as shown in figure

4.9(b). Reducing the error further by computing the exact integral image values even

more densely further diminishes the benefits of avoiding the inverse DCT. (Taken

to the extreme, reducing the error to zero by computing the exact integral image

values everywhere becomes roughly equivalent to the inverse DCT.) The amount of

approximation error which can be tolerated in the integral image should be determined

by how the error affects the detection accuracy of the people detector. As the results

in [12] show, the approximate integral image computed from 4x4 block sums provides

a reasonable balance of high people detection accuracy and low computational effort,

and is the approximation level that was used.

34

4.6 AN EFFICIENT ALGORITHM FOR APPROXIMATING THE INTEGRAL IMAGE

8

SI
~

S2
~

.'13 C .'14 .. I~

(a)

8

(b)

FIGURE 4.9. A, B, C and D in (a) can be calculated directly from the DCT
DC coefficients, but more coefficients are needed if the desired resolution is
increased (b).

Given an 8x8 block of DCT coefficients, how can the 8x8 and 4x4 block sums

be calculated for that block? If we consider the DCT coefficients in the block to

be a 64-dimensional vector d, and the corresponding 8x8 block of pixels to be a 64-

dimensional vector p, then we can write p = Ad, where A is the constant 64x64

matrix representing the inverse DCT. Computing the sum of an arbitrary set of

pixels within an 8x8 block is equivalent to taking the dot product of p with a 64-

D vector i whose components corresponding to the pixels included in the sum are

1 and all other components are o. 80 the sum S of the pixels can be written as

S = iT P = iT Ad = r T d. For a given i (i.e. a given set of pixels to add up in an 8x8

block), r is a constant vector that can be pre-computed independently of d.

For example, to find the sum of all pixels in any 8x8 block, we set all components

of i to 1 and then compute r T = iT A. The components of the resulting r turn out to

35

4.6 AN EFFICIENT ALGORITHM FOR APPROXIMATING THE INTEGRAL IMAGE

be all zeros except for the one that multiplies the DC coefficient, which has a value

of 8. This means that the sum of an 8x8 block can be computed by multiplying the

block's DC coefficient by 8. Once d is computed for a particular 8x8 DCT block, the

pixel sum is given by the dot product of rand d. Note that the number of additions

and multiplications needed to compute the dot product of r with any d is equal to

the number of non-zero components of r.

To find the four exact integral image values in an 8x8 block, the sums of the

shaded pixels denoted by Rl' R2' R3 and R4 in figure 4.10 are needed. The r vectors

for these sums contain respectively 25, 5, 5, and 1 nonzero components.

R4

FIGURE 4.10. Calculating the exact half-block integrals (4x4 resolution)
involves computing the pixel surns for the shaded regions in an 8x8 block.

4.6.1. Interpolating From Exact Integral Image Values. Once the exact

integral image values are obtained, the rest of the image is filled in by interpolation.

There are many different types of interpolation methods that can be used here, but

to keep the computation hardware-friendly, we assume that the integral image values

are approximately linear within a 4x4 neighborhood and use simple locallinear inter-

polation. This is equivalent to assuming that the pixel values in a 4x4 neighborhood

of the grayscale image are equal, since the derivation of a straight line gives its slope,

which is constant.

The interpolation can be done in two steps: initially the integral image consists

of 5x5 neighborhoods of the kind shown in figure 4.11(a). The black squares are the

points where the integral image values have already been computed and the white

36

4.6 AN EFFICIENT ALGORITHM FOR APPROXIMATING THE INTEGRAL IMAGE

squares are the missing points. In the first step, the gray squares in figure 4.11(a) are

obtained using the equations shown there. The four gray squares along the border of

the 5x5 neighborhood are computed by averaging the two nearest black squares, and

the middle gray square is computed by averaging a11 four black squares.

After the first interpolation step, the integral image consists of 3x3 neighbor

hoods of the kind shown in figure 4.11(b). The procedure for filling in the remaining

missing points in the 3x3 neighborhood is analogous to that of the 5x5 neighbor

hood, as shown by the equations in figure 4.11(b). A valid integral image must be

non-decreasing (since grayscale pixels are never negative), and it can be easily shown

that the interpolated values computed using the equations in figure 4.11 satisfy the

non-decreasing requirement, provided that the exact integral image values satisfy

them.

The interpolation scheme is suit able for hardware implementation because it only

requires additions and divisions by 2 and 4, which can be done with shifts. The

total work needed to fi11 in an 8x8 block is 27 multiplications, 64 additions and

20 shifts. On the other hand, the inverse DCT is an O(n1092n) algorithm, so it

requires 64 * 109264 = 384 multiplications and additions for an 8x8 block. Basica11y,

the savings in computational effort and hardware resources come from replacing the

multiplications in the inverse DCT algorithm with shift operations.

The algorithm for computing the approximate integral image is related to the idea

of decompressing a JPEG image by "scaled decoding". Scaled decoding is a feature

of the JPEG format that a110ws efficient decompression of an image at either 1/2,

1/4 or 1/8 of its original resolution. The algorithm is equivalent to first computing

a grayscale image by scaled decoding at a lower resolution, but still maintaining the

same dimensions as the original image by filling in the missing pixels with replicas.

37

4.7 IMPLEMENTATION OF THE APPROXIMATE INTEGRAL IMAGE COMPUTATION

This lower resolution grayscale image is then integrated to obtain an approximate

integral image.

Figure 4.12 shows the result of "differentiating" integral images computed at

different approximation levels. It illustrates the effect of increasing the approxima

tion error of an integral image on its corresponding grayscale image. Figure 4.12(a)

shows the grayscale image corresponding to an integral image computed without any

approximation. As the resolution decreases, the approximation error increases, thus

making the grayscale image increasingly blurry. This is because the effect of linear in

tegral image interpolation is to replace pixel neighborhoods in the grayscale image by

the neighborhood average. As the resolution decreases, the size of this neighborhood

increases, which is why the grayscale image becomes more blurry with decreasing

resolution.

(a)

as = (a, + a2)12
a6 = (a2 + a.)12
a7 = (a3 + a.)12
as = (a, + a3)12
a9 = (a, + a2 + a3 + a4)/4

bs = (b l + b2)/2
b6 = (b2 + b4)/2
b7 = (b3 + b4)/2
bs = (bl + bJ)/2
b9 = (b l + b2 + b3 + b4)/4

(b)

FIGURE 4.11. Integral image interpolation scheme for (a) 5x5 and (b) 3x3 neighborhoods.

4.7. Implementation of the Approximate Integral Image Com-

putation

The algorithm described in section 4.5 uses sums of DCT coefficients multiplied

by a constant to exactly calculate the half-block integral points. Since the coeffi

cients are fed sequentially to the module by the JPEG coefficient extractor, this can

38

4.7 IMPLEMENTATION OF THE APPROXIMATE INTEGRAL IMAGE COMPUTATION

(a) Full Resolution (b) 1/2 Resolution

(c) 1/4 Resolution (d) 1/8th Resolution

FIGURE 4.12. Result of differentiating integral images calculated with vary
ing resolutions. The lower resolutions require fewer DCT coefficients.

be implemented using a multiply and accumulate (MAC) circuit for each point, as

illustrated in the simplified block diagram in figure 4.13. Careful inspection of the

coefficient multipliers shows that their values are dependent on the index of the mul-

tiplied DCT coefficient rather than the position in the position of the point that it

is being accumulated for. This suggests that a single multiplier can be shared by an

the points. The MAC circuit also intrinsically takes advantage of zero runs in the

39

4.7 IMPLEMENTATION OF THE APPROXIMATE INTEGRAL IMAGE COMPUTATION

JPEG stream, since not accumulating these coefficients is the same as accumulating

o. This means that the time needed to calculate a point is dependent on the number

of non-zero coefficients in the image.

Coeff_ Value

Coeff Ind x
- Look-Up CoefCmodifier

Table

Control
Look-Up

Table

OCniC Offsetll----I

OCnit Offset~-+----i

FIGURE 4.13. Simplified block diagram of calculation of half-block integral points.

However, JPEG DCT coefficients only contain information about the 8x8 block

that they are in, and are totally independent of their position in the image. An

integral image point, on the contrary, is dependent on aIl the points above and to

its left in the image. It is therefore necessary to offset each block-integral point

extracted from the DCT coefficients by the integral image as it has been accumulated

so far. Referring to figure 4.14, where the grayed-out portions are the blocks that

have already been received, and the the black squares are the half-block integral

points that are extracted directly from the DCT coefficients, it is evident that going

40

4.7 IMPLEMENTATION OF THE APPROXIMATE INTEGRAL IMAGE COMPUTATION

from the block-integral points that are extracted from the coefficients to the final

image-integral points requires points from the blocks immediately above and to the

left of the current block. For any given 8x8 block decoded from JPEG, the desired

image-integral points, (r + 3, C + 3)i' (r + 7, C + 3)i, (r + 3, C + 7)i' (r + 7, C + 7)i'

where (r, C)i is the position of the upper-Ieft pixel of the block in the image, can be

calculated from the block-integral points (3,3h, (7,3h, (3,7h, (7, 7h, with the origin

at (0, Oh in the upper-Ieft corner of the block, according to equation 4.1.

(r + i, C + i)i = (i, j)b + (r - 1, C + j)i + (r + i, C - l)i - (r - 1, C - l)i (4.1)

This dependenee on previous points requires the use of sorne form of memory.

Although it would be possible to refer to the image stored off-chip, this would incur

significant delays, making on-chip caching preferable. Sinee JPEG blocks are read

from left to right and top to bottom, it is only necessary to keep the integral points

from a single row of the image, in addition to the final column of the previous block.

RI R2 R3 R4

FIGURE 4.14. Illustration of integral image being constructed from 8x8
blocks. The grayed-out portions are the blocks for which the integral image
has already been calculated, and the black squares are the points which are
extracted exactly from the DCT coefficients.

The astute reader will notice that no mention has yet been made of the quantiza

tion factor required by JPEG decompression. When a JPEG image is encoded, each

DCT coefficient is divided by a quantization factor chosen according to its index in

the block. The reason that this is not dealt with by the coefficient extractor is that,

similarly to the coefficient modifiers, the quantization factor is fixed for a particular

41

4.7 IMPLEMENTATION OF THE APPROXIMATE INTEGRAL IMAGE COMPUTATION

index value, and is known in advanee, which means that the two multiplicative factors

can be combined omine, so that only one multiplication is required online.

In an effort to minimize the memory taken up by the various tables, it is nec

essary to optimize the number of bits that need to be stored. A close study of the

JPEG standard reveals that 14 bits are needed to store all possible coefficient values.

Consequently, the largest useful quantization factor also requires 14 bits. Sinee the

coefficient modifiers' absolute values are alliess than 3 (excluding the DC modifiers,

which are powers of 2, and can be taken care of with shifts), 3 bits are required to

store the modifiers' whole parts in 2's complement notation. The number of bits re

served for the fractional part will increase precision, but will not otherwise limit the

range, and is therefore temporarily left undefined. The combined "quantized" mod

ifier consequently requires 17 bits to represent its who le part. Sinee multiplication

of the quantized coefficient by the quantization factor simply restores the original 14

bit coefficient, the final result should also fit in 17 bits for a properly encoded image.

These values are then accumulated to give a 32 bit integer, the value of the integral

image at that point. Sinee the result is expected to be an integer, the fraction al part

is only useful in intermediate results, and rounding off to the closest integer according

to the MSb of the fractional part should be enough to correct for any lack of precision

in intermediate calculations, as long as the accumulated error in the block is under

0.5.

Calculating the integral image directly from the JPEG coefficients has the obvious

advantage of eliminating the need for an explicit integrator. In fact, calculating the

integral image directly is equivalent to decompressing the image. One might wonder

why linear interpolation is used instead of simply storing a smaller image, sinee the

images are essentially equivalent. Although a high resolution image is not required by

this algorithm to detect people, the features will be misaligned at large sc ales unless

42

4.8 PUTTING IT ALL TOGETHER

they are placed at what is essentially sub-pixel resolution at small scales. The method

that was chosen to achieve this was to duplicate pixels to allow more precise placement

of features. Although this could have been achieved by fully decompressing a sm aller

image, it was evaluated that the bottleneck was more likely to be in storing the image

to memory rather than in receiving the compressed data. A trade-off can be achieved

between the size of the input stream and the complexity of the on-chip decompresser.

This is due to the observation that JPEG de compression does not scale linearly with

the resolution. While a full resolution de compression would require 64 accumulators,

one for each pixel in the block, a 1/4 resolution scan only requires 4 accumulators, or

1/16th of that needed for the full resolution. To give a feel for the amount ofresources

saved by this method, the module calculating the 4 exact points takes up 400 slices

in a Virtex-II FPGA (each slice contains 2 flip-flops and 2 four-input lookup tables).

The modules approximating the remaining 60 points take up collectively less than 100

slices. Even limiting estimates to the storage space required for the DCT coefficients'

accumulators, calculating the exact values of the 60 remaining integral image points

would require more than take 960 slices. This would have severe impacts on both

placement and routing efforts for the entire module, possibly resulting in a reduced

minimum period.

4.8. Putting It AH Together

Once the various modules have been designed, a method still needs to be chosen

to allow them to communicate. In an attempt to maximize flexibility and code re-use,

a single, common, interface protocol was required for all the modules so that they

could be swapped in and out easily without affecting adjoining modules. And, of

course, this must be achieved while minimizing the impact on system performance.

43

4.8 PUTTING IT ALL TOGETHER

The transport layer chosen to satisfy these various constraints was the Fast Sim

plex Link (FSL) uni direction al point-to-point bus protocol already used by Xilinx for

communication with its MicroBlaze processor. This protocol essentially boils down

to a 33-bit wide (32 bits of data and 1 of control) First In First Out (FIFO) buffer

with all of the traditionally associated synchronization flags. Using this protocol has

many advantages, namely that any module using it can be plugged directly into the

processor, is very low overhead, and most of the more complex proto col already use

FIFOs for synchronization of the different modules, making it a simple matter to

adapt them to simulate the FSL bus on one end. Figure 4.15 shows the layout of the

different modules in the data path, as well as the flow of data through them. The

JPEG stream is received by the MicroBlaze and sent to the JPEG decoding module

after the header has been stripped off. This stream is decoded, and the non-zero

JPEG coefficients are sent to the integral image module. The integral image points

are then sent to the memory controller through the person detection module. Once

the integral image is received, the person detection algorithm is started, and the size

and coordinates of the bounding boxes for any positive matches are sent back to

the MicroBlaze. Once the image has been scanned at all scales, the MicroBlaze is

informed so that it can start the process over.

As mentioned previously, and given in more detail in [21], the FSL bus is 33 bits

wide. This is split into 32 bits of data and 1 bit indicating whether the word is "data"

or "command". Following is a description of the data and command formats expected

by each of the major modules. All numbers are in bit-wise little-endian format.

4.8.1. JPEG/Integral Image Decoding Module.

4.8.1.1. Incoming Command Format. The JPEG/Integral Image module do es

not have any commands to receive, so any command word received on its input is

simply forwarded as-is to its output.

44

4.8 PUTTING IT ALL TOGETHER

JPEG
Module

1
IntIm T

Module

JPEG Stream

MicroBlaze

~ ILMatch
Integral Image Points

And Si
~

Person l'

Detection
Module •

IJ.. ... ,..

DDRSDRAM: JIll.

Controller • 1
1

1
1

1 • .
T •

DDRSDRAM
Memory

(Integral Image)

Coordinates
zes

FIGURE 4.15. Flow of data through functional modules - bold arrows are
FSL bus connections, thin arrows are single control lines, and bold dashed
arrows are module-specifie interconnections.

4.8.1.2. Incoming Data Format. Each incoming data word is a 32-bit slice of

the JPEG data stream. To correctly arder the data, one can imagine the JPEG data

being fed into a 32-bit shift register, with the next bit being fed into bit 0 of the

register. Every 32 bits, the register would then be loaded out in parallel into the FSL

bus. If the JPEG stream is not a multiple of 32 bits, then the final word should be

padded with zeros in the least significant bits.

4.8.1.3. Outgoing Command and Data Format. The command words sent by

the JPEG jIntegral Image module give the target memory address of the integral

image point sent in the subsequent data word in accordance with the format expected

by the DDR SDRAM controller module, as described in section 4.8.3.2, with the

exception that the memory flushing extension is not implemented.

The address in the command word should be immediately followed by the data

word to be written to that address. Each data word output by the JPEG jIntegral

45

4.8 PUTTING IT ALL TOGETHER

Image module is a 32 bit point in the integral image, output in the order they are

generated. This order is selected to minimize the latency with which points are

sent to memory. The upper-Ieft point in the image is stored in memory address O.

The mapping for integral image coordinat es to memory coordinates are as follows:

(x, Y)i = (2x, Y)m = (c, r)m, where (x, Y)i are the image coordinates starting at (0,0)

in the upper left, and (c, r)m are the memory coordinates. c maps directly into the

memory as the column address, while r is the concatenation of row and bank memory

addresses.

4.8.2. Pers on Detection Module.

4.8.2.1. lncoming Data and Command Formats. In general, the person detec

tion module forwards aU commands and data that it receives to the memory through

its FSL output. The only exception to this is that it watches for the end of the

image transfer by examining if bit 28 of a command word is '1'. Apart from this, the

commands and data should be formatted according to section 4.8.3.2.

4.8.2.2. Outgoing Command Format. Outgoing commands from the person

detection module are used to send status information. For the moment, the only

bits used are bits 31 to indicate a problem with the internaI digital dock managers

(DCM), and bit 30 to indicate that the image has been scanned at aIl scales.

4.8.2.3. Outgoing Data Format. Each data word output by the Person Detec-

tion module represents a single match, giving the row and column of its upper left

point, along with the scale, which is the number by which the 16x48 window was

multiplied, thereby giving the match's size. The data word is formatted as shown in

figure 4.16. The scale is in scaled integer format with an implied 2-3 multiplier. This

means that the the width of the match window is equal to scale * 16 * 2-3 , and the

height is equal to scale * 48 * 2-3
.

46

4.8 PUTTING IT ALL TOGETHER

Reserved 1 Scale 1 Row 1 Column
31 21 16 7 o

FIGURE 4.16. Format of outgoing data words from the person detection module.

4.8.3. DDR SDRAM Controller Module.

4.8.3.1. Protocol Extension. The design of the DDR SDRAM controller uses

FIFOs for synchronization purposes. This inserts a non-negligible latency between

the time that a read or write command is sent to the controller and the time that the

command is sent to memory. Given the long delays incurred by going to memory, it is

desirable that as few unneeessary memory aceesses as possible be executed. However,

in order to minimize overalllatencies, the person detection module sends out multiple

requests for point values that may turn out to be superfluous if the prediction module

finds an early match. A method for flushing the memory of undesired requests was

therefore added to the memory controUer. This option is not compliant with the FSL

protocol, however, and breaks across timing domains, requiring careful consideration

before being used.

A flush request is issued by asserting the 'flush...req' input. This input bypasses

the FSL bus. A command word (see 4.8.3.2) must then be written to the FSL bus to

execute the terminate flush extended command by asserting bits 31 to 29. This is to

separate the words that need to be flushed from the valid words that follow. Sinee

there might be sorne data words pending in the outgoing FSL, an outgoing command

with bit 30 set to 1 (see 4.8.3.4) is pushed into the queue following aIl the invalid

data to be flushed.

4.8.3.2. Incoming Command Format. Incoming commands must be formatted

as described in figure 4.17. The fields have the foUowing meanings:

• Cmd: Main command bits, which can take the following values:

- "00": no-op

47

4.8 PUTTING IT ALL TOGETHER

"01": read word

"la": write word

"11": extended command

• Ext Cmd: Extended Command space. Only valid if Cmd is "11". Format-

ted in the following manner:

- bit 29: terminate flush

- bit 28: transfer complete

- bits 27 to 24: reserved

• Row: Row address of target word in memory

• Bank: Bank address of target word in memory

• Column: Column address of target word in memory

Em~ Ext Cmd Row 1 Bankl Column
31 29 23 10 8 o

FIGURE 4.17. Format of incoming command words to the DDR SDRAM
memory controller module.

4.8.3.3. lncoming Data Format. Any incoming data word needs to be imme-

diately preceded by a write command to provide the destination address in memory.

Although the memory uses 16 bit words, the controller uses burst lengths of 2 to

always retrieve 32 bits at a time. Because of this, the memory should be read in a

word-aligned manner, exdusively using either odd or even addresses.

4.8.3.4. Outgoing Command Format. Outgoing commands from the DDR

SDRAM controller module are used to send status information. For the moment,

the only bits used are bits 31 to indicate a problem with the internaI digital dock

managers (DCM), and bit 30 to indicate that the flush command has been completed

and that following output data words come from read requests issued after the flush.

48

4.9 RESULT ANALYSIS

4.8.3.5. Outgoing Data Format. Outgoing data from the DDR SDRAM mem-

ory controller module is simply a sequence of 32-bit data words output in the same

order as the read requests were received.

4.9. Result Analysis

Given the primitive interfaces available for board-computer communications in

the prototyping setup, extensive tests could not be performed on the physical imple

mentation of this algorithm. However, a detailed analysis of the algorithms accuracy

was extracted from the full software implementation, and can be found in [12]. Given

the functional equivalence between these two approaches, the analysis found therein

should hold true for the hardware implementation as weIl. Exact timing numbers are

equally difficult to extract from the physical chip. However, synthesis tools are very

proficient at estimating the internaI delays with greater precision than might even

be achieved through direct measurement. Combining these estimates with functional

models and extrapolating using the statistical distributions observed in the software

implementation, it is possible to get an accurate measure of what the system's average

performance should be under various circumstances.

Sinee the design was made in a fully synchronous manner, it should be sufficient

to know whether or not aIl timing requirements have been met to know whether the

functional simulation is an accurate reflection of the actual implementation. This al

lows us to use a functional model of the memory provided with the memory controller

to get a cycle-accurate functional simulation. This is necessary since the exact time

taken in retrieving data from a given address depends on many memory dependent

factors. U sing an accurate functional module for the memory allows these delays

to be taken into account in functional simulations, and thus allows accurate timing

estimates to be extracted from these simulations. The average memory access time

49

4.9 RESULT ANALYSIS

was calculated by observing a large number of memory accesses during the person

detection module's normal operation. The mean access time per point was then cal

culated by dividing the total number of points fetched from memory by the total time

that it took to fetch these points. This spreads the memory overhead over the entire

operation, giving a more accurate estimate than using local measures. It is impor

tant to note that memory throughput cou Id be further optimized by customizing the

memory controller to take advantage of natural pauses in memory accesses to refresh

or activate the memory banks in view of future accesses. This would have the effect

of lowering the average memory access time, thereby increasing overall performance.

The creation and storage of the integral image to memory for a 352x288 image,

cropped to 216x288 by the hardware, is approximately 30 ms. This is governed by

the number of points written to memory, which is fixed from one image to the next,

and therefore should be relatively constant. Evaluation of the average frame rate

of the detector is complicated by the fact that the number of points that need to

be calculated varies according to the number of near-people windows in the image.

Using a sample space of 981 frames containing people, it is found that on average

40.43 features are required in each of the 3079 windows of an image. Assuming an

average of 7 points per feature, this means that there are approximately 870000 points

evaluated in an average frame. Given a memory access time hovering around 350ns

per point, it can be estimated that frames containing people can be treated at the

rate of approximately 1 frame every 0.3 seconds. In comparison, treating an image

that has very few false positives can take as little as 25ms once the integral image

has been written to memory.

Of course, this is assuming that the memory controller is able to run at 100

MHz. Although this should be possible, recent versions of the synthesis tools have

unexpectedly been unable to meet the timing constraints at such speeds. This forces

50

4.9 RESULT ANALYSIS

the use of the on-chip Digital Clock Managers (DCM) to synthesize a slower dock.

Although the DCMs allow synthesis of most rational number multiples of the input

dock, 75MHz is sufficiently slow and reduces complications in crossing dock domains.

With the design running at this speed, the frame rate with a subject in the image

should drop from around 3 fps to slightly under 2.5 fps. This constraint makes

running the design at full speed less of an issue. This turns out to be quite useful,

as the synthesis tools were not quite able to meet the 10 ns period requirement,

even using the highest effort level for placement and routing, due to sorne paths

of excessive length in the MicroBlaze processor. While careful floorplanning should

make it possible to run the design at 100MHz, the memory controller speed limitations

make this not worth the effort, especially considering that it would be significantly

more trouble.

Synthesizing the design without the MicroBlaze processor (leaving only the frame

work's ASFW) reveals that the 100MHz constraint could be satisfied if the MicroBlaze

were replaced by an off-chip processor. Given that the place and route tools abandon

their search for greater performance once the requirements are met, it is possible that

this design could run slightly faster still, but the trouble that the tools had in achiev

ing even this level of performance, hint that this would probably not be a significant

gain. The fact that system performance is limited by memory bandwidth makes any

possible speed optimizations unnecessary.

The place and route reports also show that the system has sorne space remaining

for extra logic, with the design only taking up 3438, or 67%, of all slices in the Virtex

II 2V1000 chip. In fact, exduding the MicroBlaze, the full system only takes 2233,

or 43%, of the available space. A more significant difference is in the usage of Block

SelectRAMs, and hardware multipliers. Although the ASFW only uses 7 blocks of

memory and 9 multipliers, the MicroBlaze requires an extra 18 blocks of memory,

51

4.10 RECOMMENDED DESIGN FLOWS

and an extra 3 multipliers. This means that while the ASFW accounts for 65% of

the logic used by the entire system, the MicroBlaze accounts for 72% of the memory

used.

4.10. Recommended Design Flows

Although the most concrete product of this project was the node's design, much of

the work that was done was in evaluating the various tools, design flows, and methods

available for no de design. Following are the impressions and recommendations that

came from working with the various tools.

Embedded designs are complex systems requiring that attention be given to a

large number of different abstraction levels, from low level hardware design all the

way up to high level software programming. Consequently, designing an embedded

system of any but the lowest complexity cannot be accomplished inside a reasonable

time frame without the support of appropriate tools.

While most of the necessary tools are available commercially, sorne are not quite

sufficient to the task, and the creation of sorne custom tools was required. This

section therefore reviews both the commercial tools that were used, and presents the

custom tools, explaining what need they fi.ll and giving an overview of their structure

to facilitate in their maintenance.

Finally, a recommended design flow is presented in an effort to provide a starting

point for future projects.

4.10.1. Commercial Tools.

4.10.1.1. Embedded Design Kit. The Embedded Design Kit (EDK) is a toolkit

provided by Xilinx to help in the design of embedded systems incorporating Mi

croBlaze or PowerPC processors. It allows the system designer to combine module

integration, system synthesis, and software integration into a single tool flow. In

52

4.10 RECOMMENDED DESIGN FLOWS

keeping with the Xilinx tool flow philosophy, each of the steps in the flow can be

executed from the command-line, allowing the designer to use his own scripting tools

instead of the Graphie User Interface (GUI) if so desired. Although the most recent

version of the toolkit (EDK 6.1) is approaching maturity, it still requires sorne manual

intervention from the user.

The EDK flow relies on a series of configuration files to determine how the system

should be built. These files can either be automatically or manually generated and

edited, and a full description of their functions and formats can be found in [20] along

with a description of the various utilities available for the generation of these files.

AlI of these tools can be centrally launched from the Xilinx Platform Studio (XPS)

program, which is the GUI interface for the EDK.

Generally, a designer will start out by designing the custom hardware to imple

ment the system's main functionality. The hardware should then be packaged as a

peripheral to be included in an EDK project. The packaging of "custom IP cores", as

Xilinx calls them, can be done manually or through the use of the "Import Peripheral

Wizard", accessible from XPS, or by manually generating the files described in the

Platform Specification Format (PSF) [20].

The EDK facilitates the incorporation of these user peripherals with the MicroB

laze (Virtex-II) or embedded PowerPC (Virtex-II Pro) microprocessors. The software

for these processors is written in standard C, and uses the GNU software flow for com

pilation. Xilinx provides MicroBlaze and PowerPC adaptations of the gcc compiler,

linker and debugger programs. Program compilation can be done through the use of

Makefiles or using the XPS user interface. The output executable can then be inte

grated using the 'data2bram' tool. The XPS interface provides a very user friendly

option for system generation, allowing the user to go from system building, through

software integration and debugging, to downloading to the FPGA in a seamless flow.

53

4.10 RECOMMENDED DESIGN FLOWS

More importantly though, it generates the configuration files that can be used for

batch processing if the user wishes to switch over.

One important clarification must be made with respect to peripherals. The "Load

Path" section of the "Platform Specification Format" chapter of [20] describes the

directory structure that is required for XPS to automatically recognize custom pe

ripherals and allow the user to integrate them into a design. Setting the "library

path" option is done through the "Project Options" dialog. However, it is unclear

how one is supposed to change the "Library Name" option, which seems to be set

by default to "my _peri phs" . Given that the words "my _periphs" seem to not appear

anywhere in Xilinx's documentation, it was felt that this should be explicitly noted.

Apart from this fact, the EDK has been found to be a very well designed tool,

which suffered from multiple format changes in its early versions, but seems to have

stabilized. It greatly simplifies system design by allowing integration of the various

steps into a single design fiow, and by automating the more tedious aspects of system

design.

4.10.1.2. Handel-C. Handel-C is a high level hardware description that uses

the 'C' programming language as its base, and adds certain constructs to allow the

description of parallel processes. The two main additions are the "par" construct

and the "chan" data type. A "par" construct groups together statements - such as

basic computations, function or macro calls, or even other "par" statements - that

should execute in parallel one with respect to the others. A "chan" variable is used

for communication and synchronization between two parallel pieces of code. When a

segment writes to a channel, execution of this segment is halted until the message is

read at the other end. Although there are more extensions to the language, the se are

the two principle ones for hardware support.

54

4.10 RECOMMENDED DESIGN FLOWS

The advantages of such an approach are evident. As with all higher level lan

guages (HLL), Handel-C allows a higher level of abstraction, which leads to the possi

bility of designing more complex systems in a shorter time frame. In fact, in situations

where resource use and circuit performance are not an issue, Handel-C and similar

HLLs win hands down over lower level hardware description languages (HDL).

Sorne comparative designs were done in both Handel-C and VHDL to gauge the

suitability of Handel-C to the system's design. While these tests were admittedly

quite incomplete, and severely biased in favor of VHDL by the experimenter's greater

experience in this language, the results showed consistently better performance and

resource use by VHDL designs. It can be expected that an experienced Handel-C

programmer would know how to tailor his statements to pro duce the desired hardware

and narrow the gap, but this could be expected to result in what HDL coders calI

"pushing the rope". This expression describes the phenomenon whereby a hardware

designer has a clear idea of the construct that is wanted, but is un able to transmit this

behaviorally to the hardware synthesis program. The only ways around this problem

is to find the exact wording which will cause the synthesis tools to implement the

correct construct, or to use direct structural instantiation. The first solution has a

tendency to create solutions which are not only tool-dependent, but often version

dependent, since modifications to the tools' inference engines can change how a piece

of code is interpreted. The structural instantiation of components, however, tends to

be device-dependent. Neither of these solutions is ideal, but one can expect that the

extra level of abstraction in HLLs can only exacerbate the problem.

This is not to say that HLLs should be discounted. As HLL compilers improve,

the gap with HDL coded designs will inevitably narrow. For large, complex designs,

the possibly small cost in area and performance from an HLL design can be more

than worth the reduced development cost. This is especially given that a wide variety

55

4.10 RECOMMENDED DESIGN FLOWS

of algorithms will be required for the PDCA to achieve its full potential. What will

remain true of hardware designs for sorne time yet, is that independently of the

language used, it is essential for the designer to have a clear idea of how the final

design should look.

4.10.2. Custom Tools.

4.10.2.1. Testbench Automation Tools. Testing is always one of the most time

consuming portions of any design. In hardware design, testing is generally a multi-step

process, with a synthesized design being verified as functionally correct in simulation

before it is implemented on-chip. Simulation testing of hardware is done through

the use of testbenches, which generate the type of inputs the device is expected to

see and compare the outputs to what is expected. The low level nature of hardware

means that testbenches are by their nature rather primitive, which makes verification

of complex functions such as JPEG decompression an arduous task.

Consequently, Perl scripts were written to partially automate testbench creation.

These scripts read in the VHDL source file for which the testbench should be generated

and output a testbench skeleton which can read in a vector file in a standard format,

and output a record of the results.

Of course, this simply transfers the task's complexity to the generation of the

test vector and expected results files. For this reason, Perl modules were written to

help in the creation of these files from readily available sources. For example, the

JPEG module was verified by inputing JPEG data in vector format and comparing

the module's output to the decompressed image corresponding to that data.

While the overhead of designing these tools would not be justified for limited use,

it can be expected that most computer vision tasks will require complex test data,

and that having these tools will allow more complete pre-implementation testing by

reducing the time required in organizing such data.

56

4.10 RECOMMENDED DESIGN FLOWS

4.10.2.2. Memory Management Tools. One ofthe most precious resources wh en

implementing image processing algorithms on an FPGA is the device's on-chip mem

ory. Images require large amounts of storage, and many transformations can be most

efficiently implemented using large look-up tables. And of course, as is the case

for any computer system, the farther the data is, the longer it takes to fetch, which

means that data should whenever possible be stored in the FPGA's on-chip dedicated

memory. However, the distance-delay relation has an additional meaning on FPGAs

than in more conventional computer architectures. Even on-chip, routing delays from

memory to logic can become non-negligible, reducing overall system performance, un

less care is taken to have the memory positioned close to where its data is used. The

organization of on-chip memory into distinct blocks of restricted widths and depths

cannot be ignored. Optimal system performance can only be achieved by carefully

considering exactly how various data structures are stored into memory.

For example, Xilinx's Virtex-II™family of chips, which was used in the proto

typing environment, has 18kb dual-port memories that can be configured for access

in words of 1, 2, 4, 9, 18, or 36 bits. If a look-up table consists of three 3-bit data

elements, one has the choice between concatenating these into a single 9-bit word,

which can be separated at no cost in hardware, or of storing them in three separate

blocks, causing additional routing delays and sub-optimal memory use. The better

choice in terms of system performance is obviously in combining them into a single

word.

However, the commercially available tools do not provide an easy way to convert

from the logical mapping (three 3-bit words) to the physical mapping (one 9-bit word).

It was therefore necessary to code my own tools for doing this. This was once again

done using Perl modules to improve code reusability.

57

4.10 RECOMMENDED DESIGN FLOWS

4.10.3. Design Flow Recommendations. The recommendations that fol-

Iow stem from my experiences with the various toois in the course of this project.

It goes without saying that the first step to a successful design is a thorough

conceptual design stage, in which the particulars of the system are established before

any tools are invoived. However, once this has been accomplished, there are multiple

paths that could be taken in pur suit of a fully functionai implementation of the design.

Part of the conceptuai design phase is in determining what the individu al func

tionai units are, and their interfaces. This will allow the proper partitioning between

software and hardware, as well as allow one to determine how partial reconfiguration

might be implemented.

Although no HLLs were used in the design of the current system, they should not

be discounted. HLLs can be a powerful tool in the initial conceptualization and design

of the system. A "first draft" in an HLL not only allows the design to crystallize in the

designer's mind, but also provides a rapid first attempt at the design. If performance

and area targets are achieved, then the design is done. Otherwise, it provides a

comparison point for the final design. Although it is possible, it is unlikely that both

systems will suifer from the same defects. Since the HLL-built system should be

easier to build and debug, it should be able to provide a functional reference for the

final design.

Irrespectively of whether the design is done with HDLs or HLLs, designing com

plex systems in a modular manner always simplifies design and verification. By thor

oughly testing individual modules before combining them to form the system, one

limits the depth that needs to be covered in chasing bugs, and limits the repercus

sions of fixing them. This implies that interfaces between modules should be defined

as well as possible before a module is coded. Of course, sorne issues may not have

been considered ahead of time, causing a change in the interface, but this should be

58

4.10 RECOMMENDED DESIGN FLOWS

kept to a minimum. Using a modular approach to design also encourages code reuse

between projects.

Using a modular approach and having partitioned hardware from software, the

hardware modules should be fully implemented and thoroughly tested using simu

lation tools and complete testbenches to verify that the code is functionally sound.

The hardware modules should then be synthesized using standard FPGA synthesis

tool flows (for example Xilinx's ISE toolflow). To ensure that the design will function

correctly, it is essential to set the proper timing constraints (of particular use for this

is the PERIOD constraint [18], which specifies the target dock period). If a properly

synchronous design meets timing constraints, it is almost guaranteed to correspond to

the functional simulations. One possible exception to this is in designs with multiple

dock domains. In such cases, the simulator might need timing information to know

the relationship between the docks and the signaIs they generate. In such cases, it

is possible to generate post-map and post-place-and-route simulation models to en

sure that the design works. Another possible exception to this is with designs that

communicate with separate devices. Given that the synthesis engine cannot know

the characteristics of these signaIs, it cannot take them into account in its design. To

help in this effect, one can use the OFFSET constraints [18] on input and output

nets.

The phase in which software implementation begins depends in large part on the

role of the software in the overall program flow. Minimizing software and hardware

interaction allows the two design phases to be decoupled, and simplifies debugging

of both parts. Independently of this, software design in the EDK flow is done using

the C programming language. However, it is important to always be aware of the

final executable's memory footprint. Although the amount of on-chip memory can

be increased to accommodate larger programs, the amount of available total on-chip

59

4.10 RECOMMENDED DESIGN FLOWS

memory is limited, and using more blocks can decrease overall system performance.

It is also possible to store the program in off-chip memory, but this cornes at a cost,

since it is much slower. Additionally, most rapid memories lose their contents when

power is cycled, forcing the program to be stored in a slower, persistent memory, and

transfered to a faster memory on power-up. This introduces an added complexity

to the design, requiring the use of linker scripts. However, the current design only

required a very simple program which fit in on-chip memory, so that such options

were not required and, consequently, not explored in detail.

Once the hardware has been proved to function according to the established spec

ifications, it can be integrated with the software components using the appropriate

tools (for example Xilinx's EDK). In the case of the EDK, the hardware modules

should be made into processor peripherals using the techniques described in section

4.10.1.1. Once the all the ports have been connected and the proper parameters set

to customize the peripherals, the software can be integrated into the processor, and

the system tested. If the system works, nothing more needs to be done. However,

debugging the internaI hardware can be tricky without the right tools. Debugging the

peripherals is probably easiest by generating simulation models of the entire system.

It is possible to generate behavioral, structural or timing models. The models from

behavioral to timing take more and more time to simulate, but are more and more

accurate in their reflection of the actual system. If the problem is instead with the

software, the system can be debugged as described in chapter 13 of [20]. This allows

the software to be stepped through while it is running in the actual hardware instead

of in a simulation. Comments from Xilinx employees on newsgroups suggest that

the preferred method is to use the "opb...mdm" module instead of the "xmd...stub"

approach to debugging, although it was not made clear why. It is assumed that this

willlead to fewer problems in the debugging process.

60

CHAPTER 5

Conclusion

This thesis described the design and test of a multiple camera image processing frame

work. The networking requirements were explored rapidly along with sorne possible

avenues of research, and anode framework designed. This framework's suitability

was then tested by implementing a person detection algorithm on it. This algorithm

is not only appropriate for testing the framework, but can also be used as a first level

of processing for more complex algorithms.

The chosen framework is in keeping with traditional reconfigurable computing

architectures, and could be classified as a micro-processor with a reconfigurable co

processor. However, unlike most reconfigurable computing designs, the pro cess or

was implemented within the same reconfigurable matrix as the application specifie

firmware. While this cornes at significant costs in terms of FPGA real-estate and

processor performance, it allows for significantly more flexibility in configuring the

processor, and a much tighter interface between processor and firmware.

The framework design was tested by implementing a person detection algorithm

on it. This algorithm took a JPEG encoded data source, from which an integral

image was extracted. This integral image, stored in off-chip memory, was then used

in a feature-based, cascaded classifier approach to identify the portions of the image

5.1 POSSIBLE EXTENSIONS

containing a person. Un der ideal conditions, which could not be achieved given the

available resourees, it is believed that the detector could run at 2.5 to 3 frames per

second when there is someone in the image, and at above 30 frames per second when

there are no close matches.

5.1. Possible Extensions

5.1.1. Training in Firmware. The current iteration of this project does

not have a hardware training module for the person-detector. However, given that

the FPGA-based detector will be operating on the same images as the software one,

the training can be done in software and the results loaded into hardware. Sinee the

training data is currently hardwired into the HDL code, it is necessary to resynthesize

the code whenever a new training set needs to be loaded. However, it is a relatively

simple matter to isolate the parts of the bitstream that correspond to this data and

modify them. This allows the creation of a partial reconfiguration bit stream which

oilly modifies the memory locations containing training data and leaves the rest of

the FPGA untouched. In fact, it should be possible to use the MicroBlaze itself to

reconfigure these sections using the Virtex-II's InternaI Configuration Aceess Port

(ICAP). For memory segments that only ever need to be changed in their entirety, or

that are seldom modified, partial reconfiguration of the memory segments permits the

read/write capabilities of RAM without the added complexity of providing a datapath

and control for writing to that memory.

Partial reconfiguration also offers interesting possibilities in view of on-line train

ing of the detector. A camera module could be configured to gather training data to

establish or refine the features that are needed by the detector. These feature points

could then be stored in the same format and physical location as will be used by the

detector itself. When training is complete, the FPGA can be partially reconfigured

62

5.1 POSSIBLE EXTENSIONS

to replace the trainer with the detector, but leaving intact the data written by the

trainer. The detector will then automatically be using the new training data, without

the need to explicitly load it. However, this requires a judicious use of hard macros

in both modules, and may lead to sub-optimal place and route in one or both mod

ules. Since real-time training is not required, sub-optimal performance in the trainer

can be accepted, which suggests that the detector be optimized first, and the trainer

implemented according to the restrictions this imposes.

5.1.2. Using People Detection in a Camera Network.

5.1.2.1. Homogeneous Detection Networks. The most obvious way of integrat

ing people detection into a cooperative networking is to have each of the cameras

detecting in their own region of a scene. After sorne inter-camera calibration, the

cameras could communicate the position of their objects in the scene. In this manner,

it would be possible to seamlessly track targets through a large scene, with cameras

passing detection from one to the next as the target moves around. This could also

be used to overcome occlusion problems by having overlapping camera regions, with

the camera that has the best view giving the object's location. If power consumption

is an issue, cameras could operate in a low power consumption mode until they are

awakened by a neighboring camera warning them of an object entering their field of

view.

5.1.2.2. Use of Detection Nodes in Heterogeneous Networks. The term "het-

erogeneous network" is used here to describe a network of cameras that are running

distinct applications that are nonetheless cooperating to achieve the final product.

It can be viewed as the equivalent of a Multiple Instruction Multiple Data (MIMD)

architecture compared to the Single Instruction Multiple Data (SIMD) organization

of the homogeneous network.

63

5.1 POSSIBLE EXTENSIONS

The principal use of a pers on detector in a heterogeneous network is to provide

"regions of interest" to the other nodes in the network. Using overlapping fields of

view and sorne inter-camera calibration, this would allow the other nodes to focus

in on those regions of their scenes that contain a person (or other object which the

node has been trained to detect), ignoring the rest of the scene. This allows the use

of algorithms that are more computationally intensive, since they are being applied

to a more restricted region.

5.1.3. Connecting the Network. Although simple in principle, the idea

of connecting multiple processing elements presents many problems in practice. The

field of wireless sensor networks provides sorne interesting insights into how this might

be done, however. Of particular interest are the works of Kulik et al [10], and

Intanagonwiwat et al [9].

In [10] Kulik et al. introduce the SPIN communication protocol, which has both

broadcast and point-to-point variants. This proto col is based on a simple three

phase handshake, where data is advertised by the sender, and only forwarded to

the nodes that specifically request it, minimizing superflous communications, and

optimizing bandwidth usage. Although the broadcasting protocol was meant for

wireless broadcast media, it can also readily be applied to wired ethernet. The point

to-point protocol can be used for local links.

The SPIN proto col was intended for full dissemination of data in a network. How

ever, this work can be combined with that of Intanagonwiwat et al [9], who introduce

directed diffusion, which describes how to optimize transmission of data from a source

to a sink through multiple hops in a network. This is done by disseminating a request

from the sink for a specifie type of data, which is routed from source to sink through

intermediate nodes in the network.

64

5.1 POSSIBLE EXTENSIONS

Of particular interest in both [9] and [10] is the tagging of data with "meta-data".

The meta-data contains information describing the type of data that is available, and

allowing other nodes to decide whether or not they are interested in receiving the

data. This is very close to the ide a of processing the image into higher levels of

abstraction in order to reduce consumed bandwidth.

65

REFERENCES

[1] A.B. Abdelali, L. Boussaid, A. Mtibaa, and M. Abid, Run-time reconfiguration

for real-time low-level image processing: architecture and algorithm architec

ture adequation (AAA), 2002 IEEE International Conference on Systems, Man

and Cybernetics, vol. 2, Oct. 2002, pp. 69-73.

[2] J. Arnold and K.L. Pocek (eds.), 10th annual IEEE symposium on field

programmable custom computing machines, IEEE, 2002.

[3] A. Benedetti and P. Perona, Real-time 2-d feature detection on a reconfig

urable computer, Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, June 1998, pp. 586-593.

[4] M.R. Boschetti, A.M.S. Adario, I.S. Silva, and S. Bampi, Techniques and mech

anisms for dynamic reconfiguration in an image processor, 15th Symposium

on Integrated Circuits and Systems Design, Sept. 2002, pp. 177-182.

[5] E. Cerro-Prada, S.M. Charlwood, and P.B. James-Roxby, Designing image

processing applications using reconfigurable computing, Seventh International

Conference on Image Processing And Its Applications, vol. 1, July 1999,

pp. 450-454.

[6] K. Compton and S. Hauck, Reconfigurable computing: A survey of systems

and software, ACM Computing Surveys 34 (2002), no. 2, 171-210.

REFERENCES

[7] M.J.B. Duff, Thirty years of parallel image processing, VECPAR (J.M.L.M.

Palma, Jack Dongarra, and V. Hernandez, eds.), Lecture Notes in Computer

Science, vol. 1981, Springer, 2001, pp. 419-438.

[8] T.W. Fry and S. Hauck, Hyperspectral image compression on reconfigurable

platforms, in Arnold and Pocek [2], pp. 251-260.

[9] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, Di

rected diffusion for wireless sensor networking, ACM/IEEE Transactions on

Networking Il (2002), no. 1, 2-16.

[10] J. Kulik, W.R. Heinzelman, and H. Balakrishnan, Negotiation-based protocols

for disseminating information in wireless sensor networks, Wireless Networks

8 (2002), no. 2-3, 169-185.

[11] J. Miano, Compressed image file formats: JPEG, PNG, GIF, XBM, BMP,

SIGGRAPH, Addison Wesley Longman, Inc., 1999.

[12] V. Nair, Learning-based detection of people for automated video surveillance,

Master's thesis, Electrical and Computer Engineering Department, Mc Gill

University, 2004.

[13] J.E. Scalera, III Jones C.F., M. Soni, M.B. Bucciero, P.M. Athanas, A.L. Ab

bott, and A. Mishra, Reconfigurable object detection in FLIR image sequences,

in Arnold and Pocek [2], pp. 284-285.

[14] N. Srivastava, J.L. Tr ah an , R. Vaidyanathan, and S. Rai, Adaptive image

filtering using run-time reconfiguration, International Parallel and Distributed

Processing Symposium, April 2003, pp. 180-186.

[15] M.A. Vega-Rodriguez, J.M. Sanchez-Perez, and J.A. Gomez-Pulido, Real time

image processing with reconfigurable hardware, The 8th IEEE International

67

REFERENCES

Conference on Electronics, Circuits and Systems, ICECS 2001, vol. 1, Sept.

2001, pp. 213-216.

[16] P. Viola and M. Jones, Robust real-time object detection, Second International

Workshop on Statistical and Computational Theories of Vision - Modelling,

Learning, Computing, and Sampling (2001).

[17] G. K. Wallace, The JPEG still picture compression standard, IEEE Transac-

tions on Consumer Electronics 38 (1992), no. 1, 18-34.

[18] Xilinx, Inc, Constraints guide, ISE 6.1.

[19] Xilinx, Inc, Virtex-II platfoTm FPGA user guide, December 2002.

[20] Xilinx, Inc, Embedded systems tools guide, October 2003.

[21] Xilinx, Inc, Microblaze processor reference guide, September 2003.

[22] Xilinx, Inc, Virtex-II platfoTm FPGAs: Complete data sheet, October 2003,

DS031.

[23] Xilinx, Inc, Virtex-II platform FPGAs: Detailed description, October 2003,

DS031-2.

68

Document Log:

Manuscript Version 0

Typeset by AMS-U\1EX-12 February 2004

PIERRE-OLIVIER LAPRISE

CENTRE FOR INTELLIGENT MACHINES, MCGILL UNIVERSITY, 3480 UNIVERSITY ST., MONTRÉAL

(QUÉBEC) H3A 2A7, CANADA, Tel. : (514) 398-8200

E-mail address:plapri<ilcim.mcgill.ca

Typeset by AMS-U\1EX

