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Abstract

Freehand 3D ultrasound imaging usually involves moving a conventional tracked 2D ultra-

sound probe over a subject and combining the images into a volume to be interpreted for

medical purposes. Tracking devices can be cumbersome; thus, there is interest in inferring

the trajectory of the transducer based on the images themselves. This thesis focuses on new

methods for the recovery of the out-of-plane component of the transducer trajectory using

the predictive relationship between the elevational decorrelation of ultrasound speckle pat-

terns and transducer displacement. To resolve the directional ambiguities associated with

this approach, combinatorial optimisation techniques and robust statistics are combined to

recover non-monotonic motion and frame intersections. In order to account for the vari-

ability of the sample correlation coefficient between corresponding image patches of fully

developed speckle, a new probabilistic speckle decorrelation model is developed. This model

can be used to quantify the uncertainty of any displacement estimate, thereby facilitating

the use of a new maximum likelihood out-of-plane trajectory estimation approach which

fully exploits the information available from multiple redundant and noisy correlation mea-

surements collected in imagery of fully developed speckle. To generalise the applicability of

these methods to the case of imagery of real tissue, a new data-driven method is proposed

for locally estimating elevational correlation length based on statistical features collected

within the image plane. In this approach, the relationship between the image features and

local elevational correlation length is learned by sparse Gaussian process regression using a

training set of synthetic ultrasound image sequences. The synthetic imagery used for learn-

ing is created via a new statistical model for the spatial distribution of ultrasound scatterers

which maps realisations of a 1D generalised Poisson point process to a 3D Hilbert space-

filling curve. In experiments with imagery of animal tissue, the learning-based approach is

shown to give distance estimates more accurate than those obtained using a speckle detec-

tion filter and comparable to the state-of-the-art heuristic method. Remaining modelling

imperfections are accounted for by a new iterative algorithm which extends the proposed

maximum likelihood measurement fusion approach. In this algorithm, probabilistic mea-

surement fusion and measurement selection steps based on statistical hypothesis testing

alternate in order to establish a trajectory estimate based on measurements which agree

with each other. This approach succeeds in avoiding distance under-estimates arising from

image structures exhibiting significant but uninformative correlation over long distances.
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Sommaire

L’échographie 3D main-libre consiste habituellement à déplacer et à mesurer le déplacement

d’une sonde échographique 2D conventionnelle au-dessus d’un sujet et à créer un volume

à partir des images qui sera ensuite interprété dans un but médical. Puisque les capteurs

de position externes peuvent être encombrants, il y a un intérêt à calculer la trajectoire de

la sonde à partir des images elles-mêmes. Cette thèse se penche sur de nouvelles méthodes

pour le calcul de la composante hors-plan de la trajectoire de la sonde utilisant la relation

prédictive entre la décorrélation hors-plan du speckle échographique et le déplacement de

la sonde. Afin de résoudre les ambigüıtés directionnelles associées à cette approche, un

nouveau cadre d’opérations est proposé. Ce cadre combine des techniques d’optimisation

combinatoire et des techniques statistiques robustes pour détecter les mouvements non-

monotones et les intersections entre les images. Pour tenir compte de la variabilité du

coefficient de corrélation échantillonnaire entre deux portions d’images de speckle pleine-

ment développé correspondantes, un nouveau modèle probabiliste de la décorrélation du

speckle est développé. Ce modèle permet de quantifier l’incertitude associée à l’estimé

d’un déplacement, facilitant ainsi l’utilisation d’une nouvelle approche de maximisation

de la vraisemblance pour l’estimation de la trajectoire hors-plan qui exploite pleinement

l’information rendue disponible par des mesures de corrélation multiples et redondantes ac-

quises dans des images de speckle pleinement développé. Afin de généraliser l’applicabilité

de ces méthodes au cas d’images de tissus véritables, un nouvel algorithme guidé par

les données est proposé pour l’estimation de la longueur de corrélation hors-plan locale

à partir d’attributs statistiques acquis à même le plan image. Dans cette approche, la

relation entre les attributs de l’image et la longueur de corrélation hors-plan locale est

établie par régression selon un processus gaussien parcimonieux en utilisant des données

d’apprentissage tirées de séquences échographiques synthétiques. L’imagerie synthétique

utilisée pour l’apprentissage est créée via un nouveau modèle statistique pour la distribu-

tion spatiale de diffuseurs échographiques qui transforme les réalisations d’un processus

ponctuel de Poisson généralisé 1D selon une courbe de Hilbert remplissant l’espace en 3D.

Lors d’expériences avec de l’imagerie de tissus animaux, il est démontré que le modèle

adaptif de décorrélation du speckle basé sur l’apprentissage permet d’estimer les distances

de façon plus exacte qu’un filtre de détection de speckle et de façon comparable avec la

méthode heuristique qui constitue l’état de l’art. Des imperfections subsistant dans cette
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modélisation sont prises en compte par un nouvel algorithme itératif développé à partir

de l’approche proposée se basant sur la maximisation de la vraisemblance. Dans cet algo-

rithme, des étapes de fusion probabiliste et de sélection de mesures par test d’hypothèse

se succèdent afin d’établir un estimé de la trajectoire fondé sur des mesures qui s’appuient

mutuellement. Cette approche permet d’éviter les sous-estimés de distance obtenus en

présence de structures d’images exhibant une corrélation significative mais non informative

sur de longues distances.
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Chapter 1

Introduction

Ultrasound imaging systems have been used for medical purposes since the mid 1950s

(see [241] for a fascinating account of the invention, early evolution and impact of medical

ultrasound technology). Since then, they have continued to find widespread use in both

diagnostic and interventional applications. Ultrasound is, in many respects, a highly prac-

tical medical imaging modality. Unlike X-ray imaging or computed tomography, it does not

emit harmful ionising radiation. Ultrasound image acquisition protocols are very flexible

and quick compared to computed tomography or magnetic resonance imaging. Ultrasound

imaging equipment is also highly portable and comparatively cheaper than most imaging

modalities. These features make it the imaging modality of choice in a broad variety of

clinical situations.

In the last two decades, there has been considerable interest in systems allowing the

acquisition of 3D ultrasound data [62]. 3D ultrasound imagery is useful in a variety of

clinical applications requiring quantitative assessment of 3D structures and physiological

phenomena, such as surgical navigation [233, 216, 23, 239, 40], measurement and modelling

of organs [56, 217, 175, 39, 77] as well as diagnosis and assessment of pathologies [25,

144, 187, 58]. By re-slicing a 3D ultrasound data set (i.e. interpolating the pixel values

of an arbitrarily oriented hypothetical image plane passing through the acquired volume),

it becomes possible to visualise 2D images which could otherwise not have been acquired

from the patient because of anatomical constraints. Without 3D imagery, such visualisation

could only be achieved mentally, through a substantial intellectual effort on the part of the

physician.



2 Introduction

Freehand 3D ultrasound is the oldest technique allowing the acquisition of 3D ultrasound

imagery. It involves sweeping a conventional 2D ultrasound probe over the area of interest

while the scanner acquires and stores images in real-time. This yields a set of irregularly

positioned 2D images which must be automatically processed and combined to form a 3D

image on a regular lattice or to extract other forms of 3D data. Much of the literature

on freehand 3D ultrasound has focused on the development of new image interpolation

techniques for this purpose [14, 153, 165, 179, 190, 144, 76, 191, 189, 99, 98, 208, 42]. A

crucial assumption underlying the use of any of these image reconstruction techniques is

that the position and orientation of the individual 2D ultrasound images with respect to

each other are known. Such knowledge is typically gained by tracking the motion of the

ultrasound probe using an external sensing device, usually an electromagnetic or optical

tracker. As will be discussed in in Section 1.1.2, there are important trade-offs between

accuracy and clinical practicality. For example, optical trackers are very accurate but also

quite cumbersome to use compared to electromagnetic ones. The necessity of such trade-offs

is most unfortunate in a context where both criteria may be of critical importance.

As an alternative or, perhaps more realistically, a complement to such tracking tech-

nologies, this thesis considers an approach whereby positional information is inferred from

ultrasound image content. This is possible because the ultrasound imagery carries informa-

tion about the relative motion between the probe and the scanned object. As might be ex-

pected with any 2D imaging modality, motion occurring within the ultrasound image plane

can be recovered using conventional, widely used 2D image registration techniques [89, 140].

Interestingly, it is also possible to recover out-of-plane motion from conventional 2D ultra-

sound image data. This is because ultrasound images separated by a small out-of-plane

displacement have correlated texture patterns owing to the finite width of the ultrasound

beam from which they originate. The extent to which the images are correlated is predic-

tive of the magnitude of this displacement, thereby allowing the estimation of one from the

other [31]. A more detailed physical explanation of this remarkable phenomenon, called

speckle decorrelation, is given in Chapter 2.

This thesis focuses on the use of speckle decorrelation for the recovery of out-of-plane

transducer trajectories. The image correlation-based estimation of out-of-plane image dis-

placements required for trajectory recovery is subject to many sources of uncertainty and

ambiguity. This thesis is particularly concerned with the following issues:
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• Only the magnitude of an out-of-plane displacement can be estimated from a cor-

relation measurement, leaving an ambiguity as to the direction (or sign) of this dis-

placement. This causes problems when attempting to recover trajectories that are

not monotonic or where image frames intersect.

• A correlation measurement computed over a pair of finitely sized windows of image

data is subject to sampling noise, which may in turn add considerable uncertainty to

a distance estimate.

• Even when ignoring the variability arising from finite sample size effects, the exact

relationship between image correlation and displacement cannot be considered to be

one-to-one except in very specific conditions known as Rayleigh scattering, which

impose strong constraints on the possible structure of the scanned medium. Outside

these conditions, the relationship depends strongly on the micro-structure of the

scanned medium, whose characteristics are usually not well known. This seriously

limits the accuracy of the approach when imaging real tissue (as opposed to so-called

speckle phantoms).

• As with any tracking system based on differential measures of displacement (as op-

posed to the absolute measurements of position that might be provided by a track-

ing device), distance estimation errors arising from the above mentioned sources in-

evitably accumulate over the course of a long trajectory, resulting in significant drift.

In this thesis, these issues are addressed using new methods which favour the translation

of redundant and noisy data extracted from ultrasound images into robust knowledge about

the trajectory of the ultrasound probe. The methods developed are generally probabilistic

in their formulation, but combinatorial data fusion is explored as well. In the latter case,

the application is that of finding an ordering and angulation of the ultrasound images in

the sequence which accounts for the set of observed correlation measurements between

and within frame pairs. This allows for the detection of non-monotonic probe motion and

frame intersections, which could not be done by considering each correlation measurement

individually.

In the case of probabilistic methods, these were applied to model the effects of sampling

error in the measurement of the correlation between images of a phantom with known

micro-structure. By modelling the relationship between correlation and displacement as a
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set of probability distributions, it becomes possible to quantify the uncertainty attached to

any distance estimate associated with a correlation measurement. This, in turn, leads to the

development of a probabilistic measurement fusion approach whereby distance estimates

arising from redundant but noisy correlation measurements are combined to obtain a more

precise estimate of the out-of-plane probe trajectory.

In order to track the motion of the ultrasound probe in scans of real tissue, the measure-

ment model must be generalised to the case of unknown medium structure. The ultrasound

physics literature does not provide any satisfactory model relating medium structure to

changes in speckle decorrelation rate. Therefore, a new model which accounts for change

in tissue micro-structure is derived from a set of synthetically generated ultrasound im-

ages from virtual phantoms of varied micro-structure using a statistical machine learning

method. In order to create the synthetic imagery required for training, a new statistical

model of medium micro-structure is also proposed. The probabilistic data fusion approach

outlined earlier is then extended for use with the learned medium-independent speckle

decorrelation model. This extension detects and circumvents the remaining imperfections

of the learned speckle decorrelation model through a measurement selection strategy based

on statistical hypothesis testing.

The remainder of this chapter is structured as follows. Section 1.1 discusses the relevance

of the research presented in this thesis in light of the other approaches that could have been

chosen. Section 1.2 lists and details the technical contributions made by this thesis. Finally,

Section 1.3 provides a chapter by chapter outline of the document.

1.1 Motivation

In light of the difficulties involved with accurately tracking out-of-plane transducer motion

using speckle decorrelation, it is both legitimate and reasonable to ask whether the ultimate

goal of quantitative 3D ultrasound imaging might not be better achieved by other means.

This section discusses the relevance of the research presented in this thesis by answering

three commonly expressed concerns. First, one may question the relevance of the freehand

3D imaging protocol in an age where both corporate and academic research in medical

imaging are increasingly focused on the development and use of 3D ultrasound probes.

Another legitimate question is whether the study of speckle decorrelation-based transducer

tracking is justified in the context of freehand 3D ultrasound given the difficulties associated
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with this approach and the availability of other tracking methods. Finally, the relevance

of probabilistic methods in the context of image-based tracking may also be questioned.

These issues are discussed in turn below.

1.1.1 Why freehand 3D ultrasound?

Freehand 3D ultrasound is an established protocol for acquiring 3D ultrasound data and

until recently, it was the only practical protocol for doing so, as the image quality and res-

olution afforded by the first 3D ultrasound probes were simply not satisfactory. Since their

invention [203, 225], however, 3D ultrasound probes based on 2D ultrasound transducer

arrays have dramatically improved in terms of achievable image quality and resolution,

clinical practicality, frame rate and monetary cost [135, 160]. Almost instantaneous acqui-

sition of volumetric imagery also makes these probes suitable for 4D ultrasound scanning,

which is at best very difficult using the traditional freehand technique. In spite of this,

freehand 3D ultrasound still offers a number of important advantages over the use of 3D

probes:

• It offers a wider, nearly unlimited, field of view;

• It allows more control over the spatial sampling and angulation of the images that

are used to create the volume;

• The structure of the acquired data makes it easy to discard or add image data if

required;

• The 2D probe it uses is comparatively cheap and ubiquitous.

In addition, innovations which facilitate or enhance the use of 2D ultrasound probes are

highly relevant because 2D ultrasound is, and will remain for some time, part of the stan-

dard instrumentation for many diagnostic and interventional protocols. Image-based trans-

ducer tracking is a likely candidate for such an innovation.

1.1.2 Why is speckle decorrelation-based ultrasound probe tracking relevant?

In order to understand the appeal of this approach, it is important to understand the

strengths and limitations of alternative transducer tracking methods, most of which rely

on external optical or electromagnetic tracking devices. Other types of devices, such as
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mechanical or robotic arms [88, 105, 18], acoustic trackers [80] and vision-based systems [6]

have also been used in this context, but because of operating restrictions, cost and accuracy

considerations, they are not as widespread as optical or electromagnetic tracking technolo-

gies. More elaborate comparisons of the tracking technologies currently in use within the

medical context are provided in [201, 21]. The present discussion focuses on the more

ubiquitous optical and electromagnetic technologies.

Optical tracking typically involves an infra-red stereo camera which tracks the 3D po-

sition of markers attached to the ultrasound probe. These may be active infra-red LEDs

or passive markers which reflect infra-red light emitted by sources attached to the stereo-

camera. Because of their high accuracy [114], optical trackers have become very popular in

the operating room [233, 23]. The most serious limitation of optical trackers is that they

require an unobstructed line of sight between the markers and the camera, which can re-

strict the scanning protocol and be very cumbersome, particularly when the environment is

cluttered or crowded [21]. This shortcoming also rules out using the technology for imaging

inside the body, as with protocols requiring transrectal or intra-vascular ultrasound probes.

Electromagnetic trackers work by generating a magnetic field through a stationary set

of emitting coils. The motion of the ultrasound probe is then inferred from measurements

of the electrical current induced in a set of receiving coils rigidly attached to it as it moves

within this field. Electromagnetic trackers do not have any line-of-sight requirements and

miniaturisation has recently made them suitable for interventions where imaging takes

place inside the body [239, 40]. However, readings from such trackers are highly vulnerable

to electromagnetic field distortions caused by the presence of metal or interference with

other devices in the environment [22, 156]. Even under ideal circumstances, their accuracy

is considerably worse than that of optical trackers [21].

The choice between these two tracking technologies then becomes a matter of optimising

the trade-off between accuracy and clinical practicality, which inevitably leads to sacrifices

one way or the other. In addition, the use of any tracking device for freehand 3D ultrasound

acquisition requires that two important calibration problems be solved:

1. Temporal calibration: the stream of data output by the base unit of the position

sensor must be synchronised with the ultrasound data acquisition device (e.g. a

frame-grabber) in order to establish the correct associations between image frames

and position data. This synchronisation is generally achieved by finding the time
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delay which best maps observed changes in the moving ultrasound image plane to

the changes in position recorded by the tracker [169, 165, 78, 181].

2. Spatial calibration: the spatial transformation between the tracked beacon and

the image-centred reference frame must be estimated in order to track the motion

of the image plane (as opposed to that of tracking device). This problem is more

complicated than temporal calibration and has been the subject of vast amounts

of literature [146, 182, 97, 96]. Typical techniques for solving the problem involve

the acquisition of ultrasound imagery of a phantom with a special, perfectly known

geometry, with the phantom and scanning protocol designed in such a way that the

imagery can be used to infer the complete set of transformation parameters relating

the image-centred reference frame to that of the position tracking device.

These calibration procedures are necessary, and often times tedious, time-consuming and

error-prone, though much effort has been invested in simplifying them.

From this discussion, it transpires that the use of position tracking devices has many

shortcomings. All technologies exhibit noise (mainly high frequency jitter) to some degree,

require careful calibration, and each one also exhibits a different, serious set of limitations

which can have an impact on the quality of the 3D information extracted from the imagery.

In addition, none of these devices can recover motion that occurs within the scanned object,

arising from physiological phenomena or from the pressure of the ultrasound probe on the

target of interest. For all these reasons, there has been interest in image-based tracking

techniques which do not rely on, or do not rely solely on, external devices.

As described earlier, image-based tracking of motion within the image-plane can be

achieved using conventional image registration methods. These have often been used for

freehand 3D ultrasound in conjunction with position tracker data in order to overcome

accuracy limitations arising from noise, physiological motion and probe pressure induced

tissue deformations [180, 118, 218, 192]. Hossack et al. [91, 71] also proposed a rather

unique system which exploits conventional image registration techniques for both in-plane

and out-of-plane motion tracking. The system is based on a modified 2D ultrasound probe

which, in addition to the usual imaging array, has two small “tracking arrays” positioned

perpendicularly to the central one, resulting in three images being acquired at any given

time. Image registration applied to the images acquired by the tracking arrays achieves

out-of-plane motion tracking. While this solution requires no external tracking device, it
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does require substantial modifications to standard 2D imaging instrumentation.

In contrast, out-of-plane transducer tracking using speckle decorrelation does not im-

pose any special hardware requirements on the imaging system. Used in conjunction with

image registration techniques for in-plane motion tracking, it makes possible acquisition

of freehand 3D ultrasound data without resorting to an external tracking device [166, 94].

While such image-based tracking approaches are vulnerable to many sources of cumulative

error and may not, in practice, share the same large scale accuracy as optical, or even mag-

netic trackers, they are not vulnerable to the type of high-frequency noise that corrupts

measurements from such trackers. Because of this, and because their use is not restricted by

the same constraints, image-based tracking and device-based tracking can also be seen as

complementary to each other, leading to the development of hybrid systems which exploit

their respective strengths [95, 92, 124].

It is with these motivating ideas in mind that the research presented in this thesis was

conducted. The focus of the thesis is on the estimation of the out-of-plane component of

transducer trajectories using speckle decorrelation. In order to facilitate experimentation

with the novel components developed in this research, it was assumed throughout this thesis

that all imagery was aligned in-plane and that no source of positional data other than the

ultrasound imagery was available. While these assumptions may seem somewhat restrictive

in the context of the applications envisioned for this research, it was felt that they were

necessary in the context of this work. The first assumption (in-plane image alignment)

allowed the proposed out-of-plane displacement estimation techniques to be evaluated un-

der well controlled conditions, independently of an error-prone image registration process,

which was essential for understanding their behaviour and comparing them with alterna-

tives. The second assumption (no outside source of positional data) was made because it

was felt that the limits of the image-based approach should be explored in detail before

attempting to broaden them. For these reasons, loosening these assumptions falls outside

the scope of this thesis, but can most certainly be envisaged in the context of developing a

more complete tracking system.

1.1.3 Why is statistical modelling a good idea in this context?

While some of the difficulties concerning the speckle decorrelation approach have been the

subject of scientific research over the last five years or so [133, 204, 86, 72, 94, 121], this
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thesis is unique in exploring and addressing them from a statistical standpoint. This par-

ticular perspective was heavily inspired by the field of mobile robotics, where trajectory

estimation problems of a similar nature to that explored in this thesis are common and

statistical modelling is ubiquitous. In that context, it has been shown that the effects of

motion estimation errors arising from measurement errors may be alleviated, or at least

evaluated, by careful statistical modelling, paying particular attention to the distribution of

errors arising from the measurement process and the transformations leading from sensory

measurements to trajectory recovery [202]. This thesis does just this by proposing a prob-

abilistic model for the relationship between image correlation and out-of-plane transducer

displacement.

Over the years, the mobile robotics community has developed a thorough methodol-

ogy for leveraging the power of such probabilistic models, allowing the data fusion process

which combines the (possibly redundant) measurements to place more weight on accurate,

precisely acquired measurements and less weight on error-prone ones, thereby minimising

the risk and magnitude of error [202, 139, 49, 150]. This thesis borrows a proven measure-

ment fusion methodology proposed by Lu and Milios [139] in the context of mobile robot

localisation in order to integrate redundant noisy correlation measurements into a single,

precise trajectory estimate.

One difficulty with the speckle decorrelation approach is that ultrasound physics do not

provide any satisfactory model relating image correlation to displacement for the case of

arbitrary tissue structure. In similar scenarios, the mobile robotics literature has turned

with great success towards statistical learning-based approaches which automatically infer

an empirical measurement model from examples [200, 55]. Similarly, this thesis proposes

to use statistical machine learning to build a new measurement model which accounts for

change in tissue micro-structure from a set of synthetically generated ultrasound images of

virtual phantoms with varied micro-structure.

Another advantage of statistical modelling is that it allows for the application of prin-

cipled hypothesis testing strategies in order detect incompatibilities between two existing

models of the same quantity and reject candidate measurements when this occurs. In mo-

bile robotics, this idea is frequently applied to the problem of data association, where the

correctness of a correspondence between a recently measured landmark and landmarks in

an existing environmental map must be established [28]. Similarly, this thesis uses hy-

pothesis testing in order to assess whether a distance estimate derived from an imperfect
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correlation model is compatible with an existing uncertain estimate of the probe trajectory.

1.2 Contributions

As a result of the design choices outlined in the above section, this thesis (and related

peer-reviewed publications) makes the following contributions (in order of appearance in

this document):

1. An approach based on combinatorial optimisation and robust statistics

for recovering non-monotonic motion and frame intersections in an ultra-

sound scan [126]. Correlation measurements between localised image patches in

an ultrasound image sequence are subject to two constraints: (i) the set of pair-

wise distance estimates obtained among any triplet of image frames must agree with

each other geometrically and (ii) image planarity implies that the set of distances

between all pairs of corresponding image patches of two frames must define a rigid

transformation. This thesis proposes a new frame ordering algorithm based on the

solution to a travelling salesman problem combined with a robust least-median-of-

squares rigid transformation fitting method to enforce these constraints. This allows

the detection of direction reversals and frame intersections in the ultrasound scan

under consideration.

2. A speckle decorrelation model which explicitly accounts for the stochas-

ticity of the relationship between the sample correlation coefficient and el-

evational separation [125, 126]. Because correlation measurements are collected

over finitely sized image windows, they are inevitably subject to some variability

caused by sampling error. This error, in turn, propagates to the distance estimates

derived from the measurements. While the existence of such errors has been recog-

nised by others [133, 204], this thesis proposes the first speckle decorrelation model to

explicitly account for them. For a given transducer, this new model can be estimated

from ultrasound imagery of a speckle phantom using a maximum entropy approach.

It does not require any more data than its deterministic counterparts but provides

a richer representation of the relationship between image correlation and transducer

displacement.
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3. A probabilistic measurement fusion approach for out-of-plane trajectory

estimation [125, 126]. Given the wealth of pairwise image correlation measure-

ments that can be computed from an ultrasound image sequence, finding an optimal

way to combine them into a trajectory estimate is an important problem. For this

purpose, previous work has mostly focused on selecting a minimal number measure-

ments which are least error-prone [204, 85, 94]. Instead, this thesis proposes that the

uncertainty associated with each available measurement be quantified by a probabilis-

tic speckle decorrelation model and that a trajectory then be computed by weighting

the contribution made by each measurement according to its associated uncertainty.

In addition to potentially improving the accuracy of the tracking process, this prob-

abilistic approach can be used to quantify the uncertainty associated with the end

result (the estimated trajectory) and therefore lends itself well to extensions involving

fusion with other sources of data or decision making processes.

4. A fractal multi-dimensional point distribution model for simulating ultra-

sound scatterer distributions representative of the micro-structure associ-

ated with a variety of media [128, 129]. Many point processes used to model the

spatial organisation of ultrasound scatterers in the context of ultrasound simulation

work are 1D [123, 43, 195] whereas ultrasound image processing tasks require a 2D

or 3D signal. The few existing models which provide multi-dimensional modelling

capacity tend to be limited in the breadth of spatial organisations they can represent

or else are difficult to tune or sample [220, 152, 193, 194]. This thesis builds on an

existing 1D model which has an intuitive and flexible parameterisation [123, 43] by

mapping its output to multiple dimensions using a Hilbert space-filling curve. It is

shown that this preserves the desired spatial organisation characteristics of the sample

with no changes to model parameterisation. The approach is used in the simulation

of 3D ultrasound image sequences of varied media whose characteristics are reliably

predictable from the model parameters and agree with predictions from ultrasound

physics. Such synthetic imagery can be used for the validation of algorithms for

various ultrasound image processing tasks, including segmentation and motion esti-

mation. A further application of the model is demonstrated in the context of the

next contribution.

5. A learning-based approach for the discovery of a tissue invariant speckle
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decorrelation model driven by synthetic imagery [127]. Most speckle decor-

relation models in the literature are only valid under Rayleigh scattering conditions,

i.e. when the micro-structure of the medium under consideration contains a large

number of randomly positioned ultrasound scatterers. Outside these conditions, the

correlation length of the imagery (the rate at which imagery decorrelates over dis-

tance) changes. Because of this, estimation of out-of-plane transducer displacement

from imagery of real tissue has relied strongly on filters which discard image data

where the Rayleigh scattering assumption is not met [219, 86, 177, 178]. This thesis

proposes instead that the speckle decorrelation model be dynamically adapted to the

local characteristics of the medium, resulting in a much denser and more accurate set

of displacement estimates. Adaptation to local medium characteristics is achieved

through a learning process whereby synthetic image sequences of a variety of me-

dia with known out-of-plane transducer trajectory are used to establish a regressive

relationship between observable statistical image features and local out-of-plane cor-

relation length. The resulting regressor can then be applied to statistical features

measured in new imagery from a real ultrasound transducer. This approach is one

of only two existing methods for dynamically adapting a speckle decorrelation model

to the local characteristics of the medium; the other is a heuristic method proposed

by Gee et al. [72]. The approach proposed in this thesis offers two unique advantages

over the state-of-the-art: (i) the resulting regressor provides an estimate of the vari-

ance associated with the predicted correlation length and (ii) it is data-driven rather

than heuristic, making its behaviour easier to analyse and eventually improve.

6. An iterative measurement selection and fusion approach for the recov-

ery of out-of-plane transducer trajectories from scans of real tissue. The

probabilistic measurement fusion approach labelled as contribution 3 is extended to

allow for the detection and principled rejection of erroneous distance estimates arising

from unavoidable imperfections in the proposed tissue invariant speckle decorrelation

model. The proposed strategy begins with a highly uncertain trajectory estimate

derived from a small number of correlation measurements. Subsets of the remaining

measurements are iteratively tested for compatibility with the current trajectory esti-

mate via a statistical hypothesis test and either integrated to the trajectory estimate

or discarded. Though measurement selection has been discussed in the context of
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decorrelation based transducer tracking [94], the case of model failure has never been

explicitly addressed before.

1.3 Thesis structure

While the application domain of this thesis is biomedical engineering, some of its readers will

likely be electrical engineers and computer scientists. Much of the work presented in this

thesis relies on phenomena related to ultrasound image formation process which may not be

familiar to such readers. Therefore, Chapter 2 begins this thesis by providing the necessary

technical and contextual background. In this chapter, the fundamental principles governing

the formation of ultrasound images are described, with emphasis on the phenomenon of

backscattering which leads to the formation of speckle patterns. A simple mathematical

model of speckle pattern formation, as well as its consequences on the statistics of such

patterns, are described. This, in turn, leads to the reasoning behind the use of speckle

decorrelation for the estimation of out-of-plane transducer motion. Following the technical

discussion, this chapter also provides a short literature review describing the challenges and

advances resulting from the study of this approach. More detailed and focused literature

reviews will be presented as part of every other chapter.

Chapter 3 introduces the global framework that will be used throughout this thesis for

the image-based recovery of out-of-plane transducer motion. In particular, it explains how

image correlation measurements are combined within each pair of image planes and across

different pairs of frames in order to recover intersections between frames and changes in the

direction of transducer motion using methods from combinatorial optimisation and robust

statistics. A short simulation experiment is presented, showing that the proposed combi-

natorial frame ordering approach is highly robust to noise. More extensive demonstrations

of the validity of these techniques are implicitly given in Chapters 4 and 7 where they are

used as part of the experimental framework for the contributions presented therein.

Chapter 4 presents a novel probabilistic speckle decorrelation model which accounts for

the variability of correlation measurements associated with a given elevational displacement.

It also describes an approximate maximum likelihood data fusion approach for estimating

the relative poses of a set of corresponding image patches from redundant and uncertain

distance estimates obtained from the correlations measured between an arbitrary number

of pairs in the sequence. Combined with the global framework presented in Chapter 3, this
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allows the estimation of the out-of-plane trajectory of the ultrasound probe from speckle

phantom imagery. Trajectory estimation experiments conducted on synthetic and real

imagery of speckle phantoms are described where the probabilistic approach is compared to

two deterministic base-line approaches and found to give good results in terms of accuracy.

Furthermore, the effects of variations in the type and speed of the trajectory undergone by

the probe on the accuracy of the recovered trajectory are examined in detail.

The rest of the thesis focuses on generalising the ideas presented in Chapter 4 to imagery

of arbitrary tissue. In this context, the relationship between image correlation and probe

displacement can no longer be expected to be static. The approach taken is to automatically

discover a relationship between a set of image statistics computed within the image-plane

and variations in elevational decorrelation rate by observing a pool of synthetic imagery

representing a variety of different tissue types with associated ground truth trajectories.

In order to enable the creation of this pool of synthetic imagery, Chapter 5 describes a

new approach for simulating the micro-structure of a 3D virtual imaging target whereby

the density and spatial organisation of ultrasound scatterers can be tuned in an intuitive

and highly flexible manner. The synthetic imagery generated from these virtual targets is

shown to display a broad range of first and second order statistics which are predictable

from the model parameters and in agreement with ultrasound physics.

Chapter 6 then describes a machine learning approach for establishing a probabilistic

transducer-invariant regression model of the relationship between out-of-plane correlation

length and locally observable image statistics using the pool of varied synthetic data gen-

erated using the method outlined above. Through distance estimation experiments on

synthetic and real animal tissue imagery acquired from different types of transducers, the

approach is shown to generalise well across changes in transducer specifications and to yield

results of accuracy comparable to the state-of-the-art.

In Chapter 7, correlation length estimation is integrated within the probabilistic speckle

decorrelation model of Chapter 4. Modelling inaccuracies arising from persistent image

features such as specular reflections and boundaries between different tissue types are ad-

dressed through a new trajectory estimation algorithm which begins with a highly uncertain

trajectory estimate based on a minimal number of distance estimates and progressively in-

tegrates new measurements into its maximum likelihood estimate as they are approved by

a measurement selection process based on statistical hypothesis testing. The effectiveness

of the measurement selection approach is illustrated by experiments on imagery of animal
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tissue in the context of monotonic and non-monotonic transducer trajectories. Chapter 8

concludes the thesis with a summary and discussion of the aforementioned research and

discusses numerous directions for future work.
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Chapter 2

Background and literature review

This thesis is about the estimation of out-of-plane ultrasound transducer motion through

the exploitation of an imaging phenomenon known as speckle decorrelation. A basic under-

standing of the physics governing this phenomenon is necessary in order for the reader to

follow the discussions presented in further chapters of this thesis, and for this, the reader

should also be initiated to the fundamental principles of ultrasound image formation and

interpretation. This chapter is meant to provide the technical and contextual backgrounds

necessary for understanding the contributions made through this thesis.

The first three sections of this chapter briefly describe how ultrasound images like that

shown in Figure 2.1 are formed and how their textural appearance relates statistically to

the underlying structure of the target. They are not intended to provide an exhaustive

treatment of ultrasound physics or ultrasound image interpretation (for this, the interested

reader is referred to textbooks such as [117, 36]), but rather to provide an introduction

to ultrasound imaging for the uninitiated reader. The emphasis is on the principles of

ultrasound imaging physics and interpretation which are directly relevant to this thesis.

Specifically, Section 2.1 describes the flow of data within a modern ultrasound machine,

from ultrasound transmission to display. Section 2.2 describes how acoustic waves interact

with the scanned medium and how these interactions are manifested in the received echo

signals, paying particular attention to backscattering phenomena and the formation of

speckle patterns that results. Section 2.3 discusses the mathematics of backscattering, the

resulting first order statistics of ultrasound speckle and speckle decorrelation phenomenon

of interest in this thesis. Following this technical discussion, Section 2.4 explains how
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speckle decorrelation has been exploited in the context of freehand 3D ultrasound research,

outlines the current state of the art and provides a context for the work presented in this

thesis through a short literature review. Aspects of related work which are of particular

relevance to the contributions made in this thesis are discussed in more detail in each

chapter.

2.1 Ultrasound imaging: instrumentation and data flow

Consider the ultrasound image shown in Figure 2.1. This particular image depicts a cross

section of a 12 week human embryo. It was produced by sending short ultrasound signals

from different starting points and/or in different directions through the body and collecting

the ultrasound signals echoed by the different structures in the organs. Assuming that the

speed of sound is known and constant through the imaged tissues, the time delay between

the initial transmission of an ultrasound pulse and a given echo determines the location of

the structure which caused it. This information is displayed to the user as the location of

a pixel in the image whose brightness is indicative of the strength (amplitude) of the echo.

The type of ultrasound image shown in Figure 2.1 is sometimes called a B-scan, where the

“B” refers to the fact that “brightness” is used to visually quantify echo strength.

Figure 2.1 Example ultrasound image depicting a 12 week old human em-
bryo [37]. White arrows point to areas of specular reflection. Black arrows
point to areas of speckle. The significance of these different types of ultrasound
echo patterns is discussed in Section 2.2.

The diagram shown in Figure 2.2 illustrates the data flow which leads to the formation
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of such a B-scan. Modern ultrasound transducers (Figure 2.2(a)) consist of an array of

piezoelectric crystals (called elements) which can be electrically stimulated to produce an

acoustic wave or, conversely, mechanically stimulated to produce an electrical signal. The

transmit beam former (Figure 2.2(b)) produces a focused ultrasound beam by stimulating a

group of adjacent transducer elements to produce short ultrasound pulses at slightly differ-

ent times, allowing them to meet at a single point. Similarly, the echoes received by groups

of adjacent transducer elements can be delayed by slightly different amounts of time and

summed by the receive beam former (Figure 2.2(d)) to obtain a strong signal representative

of the interaction between the pulse and the medium at a particular point in space. As

such, ultrasound imaging systems belong to the family of coherent imaging systems, along

with laser and synthetic aperture radar imaging systems. Linear transducer arrays produce

focused beams using groups of transducer elements centred about different locations, for

an image geometry that is rectangular. Linear phased arrays use the same group of trans-

ducer elements with different pulse delay patterns in order to produce ultrasound beams

that travel in different directions, yielding a sector shaped image (or a rectangular shaped

image on a polar coordinate grid).

The echo signals thus created are known as radio-frequency (RF) vectors. Here, the term

“radio-frequency” is used in analogy with short wave radio communications to denote the

fact that these signals are essentially an amplitude signal modulated by a carrier wave of fre-

quency similar to the emitted ultrasound pulse. The RF vectors are subsequently envelope

detected (Figure 2.2(e)) (i.e. demodulated), yielding signals called A-lines which can be

interpreted in terms of the echogenicity (or the propensity to reflect sound waves) of struc-

tures in the scanned medium, at the cost of losing phase information. A post-processing

module (Figure 2.2(f)) compresses the dynamic range of the envelope detected signal for

display purposes. This is done by taking the logarithm of the envelope and is sometimes

preceded by other non-linear mappings selected by the user ((Figure 2.2(h)). The scan

converter (Figure 2.2(g)) then produces a single image by combining the log-compressed

A-lines according to their different starting points and directions of acquisition. Essentially,

the scan converter carries out the spatial shifting, sub-sampling and interpolation opera-

tions necessary to form a geometrically meaningful image on the rectangular pixel grid of

the ultrasound machine’s display monitor (Figure 2.2(i)). In the case of linear phased array,

for example, the scan-converter is reponsible for mapping the image originally acquired in

polar coordinates to the Cartesian pixel grid of the display.
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Figure 2.2 Data flow for B-scan formation and display in a modern ultra-
sound machine. This diagram is an adaptation of similar diagrams found in
textbooks such as [117, 159].

2.2 Reflection, backscattering and speckle

Echoes are produced when the transmitted acoustic pulse encounters inhomogeneities in

the medium across which it is travelling. In this context, inhomogeneities, or scatterers,

refer to structures whose compressibility or mass density differ significantly from those of

the surrounding medium. When the acoustic wave hits such a structure, the latter responds

to the oscillatory pressure by compressing and expanding and/or by moving back and forth

with respect to the homogeneous medium [7, 101]. In this process, some acoustic energy is

lost (or absorbed) by the scatterer, some is transmitted further along the original path of

the incident wave to hit further scatterers, and some is reflected in the form of echoes.

When the size of the scatterer is much larger than the ultrasound pulse wavelength,

sound is reflected back to the transducer in a single direction, producing specular reflection.

This often occurs at organ boundaries, such as illustrated by the embryo head and neck

structures pointed to by the white arrows in Figure 2.1, or when the sound hits a man-

made structure such as the bottom of a water bath or a biopsy needle. When the scatterer

is smaller than the pulse wavelength, the echo is backscattered in all directions. Because

the ultrasound beam has a finite spatial extent, many such scatterers can be imaged in a

given location. The echoes backscattered from all these scatterers interfere positively and

negatively with one another, creating a pattern called speckle, which becomes the grainy

texture characteristic of ultrasound B-scans (see the areas indicated by black arrows in

Figure 2.1).
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The geometry of ultrasound speckle does not correspond to that of any existing macro-

structure in the scanned object. As such, speckle is often considered to be a type of noise,

as evidenced by the continued abundance and variety of methods proposed for “speckle

reduction” and “de-speckling” of ultrasound imagery in the last two or three decades [12,

214, 138, 115, 53, 250, 83, 2, 244, 147]. De-speckling is often considered to be a necessary

step towards the improvement of image contrast for visualisation [44, 137] or in carrying out

other image processing tasks which rely on macroscopic geometry, such as multi-modality

image registration [131], delineation of organ boundaries [209] or interpolation of freehand

3D ultrasound data [190].

Though it can make image interpretation difficult, speckle is not random noise in the

conventional sense: if a given transducer scans a given target in a given spatial configuration

twice, the speckle patterns in the two images should be the same. In that sense, speckle

is a repeatable signal which conveys information about the micro-structure of the target

medium and the physical characteristics of the transducer. Although speckle patterns

cannot be used to recover the exact spatial configuration of the underlying scatterers,

their textural appearance and statistics are useful cues with respect to the general spatial

organisation of the scatterers. Since the spatial organisation of scatterers varies across

different types of tissue, speckle patterns actually have diagnostic value. Textural analysis

of speckle was first exploited by physicians [116, 34, 20, 172] and, subsequently, using

computer algorithms for diagnostic tissue characterisation tasks [16, 198, 212, 29, 211, 238]

and image segmentation tasks [185, 245]. Likewise, in this thesis, speckle is treated as

a meaningful signal, not as noise. Statistical analysis of speckle will be used for both

tissue and transducer characterisation. The mathematical justification and fundamental

assumptions underlying the particular type of analysis used are provided in the next section.

2.3 The statistics of ultrasound speckle

This section discusses a simple mathematical model of ultrasound image formation and its

theoretical consequences on the first and second order statistics of ultrasound speckle. Since

the formation of speckle patterns is common to all coherent imaging modalities, it comes

as no surprise that many of these considerations were first addressed outside the realm of

ultrasonics. Therefore, many of the works cited in this section concerning the statistics of

speckle patterns originate from the optical systems literature. In what follows, let x, y and
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z denote the three dimensions of Cartesian space, as illustrated in Figure 2.3. The axial

direction is defined as the direction of ultrasound wave propagation. For images acquired

with a linear transducer array, this corresponds to the y direction. For other geometries

(such as the sector images produced with linear phased arrays), the axial direction varies as

a function of the location within the image. The lateral direction is defined as the direction

perpendicular to the axial direction, within the image plane. For images acquired with a

linear transducer array, this corresponds to the x direction. The z direction is called the

elevational direction and is perpendicular to the image plane. In the remainder of this

thesis, out-of-plane rotations about the x axis will be referred to as tilt and out-of-plane

rotations about the y axis will be referred to as yaw.

Figure 2.3 The chosen coordinate system illustrated with respect to an
ultrasound image frame.

In ultrasound imaging, echoes generated by a given scatterer sometimes hit other scat-

terers before returning to the transducer. When the reflections are strong, this multiple

reflection phenomenon is responsible for reverberation artefacts sometimes observed in B-

mode imagery. Throughout this thesis, it is assumed that the amplitude of such multiply

reflected signals is negligible. This assumption corresponds to weak scattering conditions.

Under the assumption of weak scattering conditions, the ultrasound imaging process can

be modelled as a linear system. If, without loss of generality, it is assumed that the probe
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is linear, the wave travels in the y direction and the RF signal is given by

̺(x, y, z) = (h ∗ ς)(x, y, z), (2.1)

where h is the transducer’s point spread function (PSF) and ς is a map of acoustic inhomo-

geneities, or scatter function describing the medium. Thorough physical justification for

the validity of this linear systems model, as well as in-depth treatment of the computation

of the PSF h for given transducer specifications are provided in [107, 155]. For the purpose

of the current discussion, h is a pulse which can be qualitatively approximated as a sinu-

soidal wave with zero mean modulated by a Gaussian envelope. The envelope of the PSF

is often referred to as the resolution cell. The scatter function ς is defined as a collection

of Ns point scatterers such that

ς(x, y, z) =

Ns
∑

i=0

eiDirac(x− x(i), y − y(i), z − z(i)), (2.2)

where Dirac denotes the Dirac impulse function and ei, x
(i), y(i) and z(i) denote the strength

(or echogenicity) and x, y, z location of scatterer i, respectively.

The first order statistics of ̺ are determined by how densely the scatterers occupy the

resolution cell and how they are organised spatially with respect to the incident wave. If

the scatterers are located randomly (according to a uniform distribution) in space with

strengths independent of location, ̺ will, on average, have zero mean. This is because

the ultrasound pulse is zero mean and the echoes emitted by the individual scatterers

have uniformly distributed phase as a result of their random spatial locations, resulting

in random positive and negative interferences. If, in addition, the number of scatterers

located within the resolution cell is large, ̺ will have a (zero-mean) Gaussian distribution

as a consequence of the central limit theorem [79]. These asymptotic conditions are known

as Rayleigh scattering conditions and the resulting speckle pattern is called fully developed

speckle.

Let us now consider the envelope detected (or echo amplitude) signal A(x, y, z) =

|̺(x, y, z) +
√
−1˘̺(x, y, z)|, where ˘̺ denotes the Hilbert transform of ̺ along the direc-

tion of wave propagation (y). Under Rayleigh scattering conditions, A can be shown to be
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Rayleigh distributed [79] with probability density function

p(A) =
A

ψ2
exp

(

− A2

2ψ2

)

, A ≥ 0, (2.3)

where ψ2 depends on the average signal energy determined by the distribution of scatterer

strengths. The echo intensity signal I = A2, which will sometimes be used in this thesis,

has an exponential distribution [79] with probability density function

p(I) =
1

2ψ2
exp

(

− I

2ψ2

)

, I ≥ 0. (2.4)

Notice how the distributions of A and I depend only on ψ2, which is a function of the

echogenicity of the scatterers. An important consequence of this is that first order statistics

of these distributions, when normalised to account for different signal energy levels, are

constants. Estimates of such quantities obtained from a patch of ultrasound imagery thus

lend themselves well as features for tissue characterisation tasks. Examples of first order

statistical identities commonly used to detect fully developed speckle (or departures from

it) are [27, 229, 167]:

E{A}
√

V AR{A}
=

√

π

4 − π
≈ 1.91, (2.5)

E{I}
√

V AR{I}
= 1, (2.6)

E{I − E{I}}3

V AR{I} 3
2

= 2. (2.7)

The distribution of echo envelope samples changes outside Rayleigh scattering condi-

tions. Many models have been suggested to describe the statistical distribution of the echo

envelope in more general settings [102, 52, 195, 196, 197, 57, 112, 19], most of which can

be described as mathematical generalisations of the Rayleigh probability density function

of (2.3). Rather than describing those models in mathematical detail, Figure 2.4 illustrates

the qualitative behaviour of the echo envelope distribution in different physical conditions.

The Rayleigh probability density function corresponding to fully developed speckle is shown

along with the three commonly used generalisations discussed in [52], all using the same

signal energy related parameter ψ: the K distribution, the Rician distribution and the
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homodyned K distribution. The so-called K distribution [103] models the decrease in the

distribution’s mode and the fattening of its tail with decreasing numbers of scatterers per

resolution cell, or their tendency to cluster in space. The Rician distribution [102], with its

larger mode and decreased skewness, corresponds to the case of non-random, positive inter-

ference between backscattered signals caused by periodic arrangements of scatterers along

the direction of wave propagation. Combining the two types of non-Rayleigh phenomena

accounted for by the K and Rician distributions leads to the homodyned K distribution

model [103, 104].

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A

f A
(A

)

 

 
Rayleigh
K
Rician
Homodyned K

Figure 2.4 Probability density functions which are members of the homo-
dyned K distribution family and have been used to model the first order statis-
tics of envelope detected ultrasound signals.

So far, this discussion has been limited to first order statistics, i.e. the distribution

of the individual samples of ultrasound signals. In the context of ultrasound speckle,

second order statistics, which describe the distribution of the differences between ultrasound

signal samples as a function of their respective locations, are very important because these

samples cannot be treated as statistically independent. Indeed, the finitely sized resolution

cells centred about two neighbouring points overlap in space and therefore image much of

the same scatterers, causing the signals sampled at either point to be mutually correlated.

Correlation decreases with the amount of overlap as a function of distance; this phenomenon

is known as speckle decorrelation.

The second order statistics of ultrasound speckle are described in terms of autocorrela-

tion functions. For simplification, the imaging system’s PSF h is assumed to be separable,
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i.e.

h(x, y, z) = hx(x)hy(y)hz(z), (2.8)

an assumption which is very reasonable for ultrasound imaging [229]. Since this thesis

focuses precisely on motion estimation in the out-of-plane (elevational) direction, further

analysis in this section will be carried out using the z axis as the direction of interest, but

similar results apply to the lateral (in this case, x) and, assuming slow changes in beam

shape, to the axial (in this case, y) directions. Following classical linear systems theory, the

autocorrelation function of the RF signal ̺ along the elevational direction is given by [161]

R̺(z1, z2) = E{̺(z1)̺(z2)} (2.9)

= Rς(z1, z2) ∗ hz(z1) ∗ hz(z2), (2.10)

where Rς is the autocorrelation function of the random point process which generated

the scatter function ς. If it is assumed that the PSF is shift invariant (or slowly shift

variant if the analysis is done in the axial direction [155]), that the strength of scatterers

is independent of their spatial position, and that the average scatterer strength is given by

ē, then this point process is shift invariant and [229]

R̺(z1, z2) = R̺(δ)

= ē2h(−δ) ∗ R
′
ς(δ) ∗ h(δ), (2.11)

where δ represents a displacement along the z direction, R
′
ς(δ) describes the autocorrelation

of the micro-structure of the medium independently of scatterer strength. Under Rayleigh

scattering conditions, the positions of the scatterers are uncorrelated with each other, and

R
′
ς becomes a Dirac impulse so that the autocorrelation function of the RF signal becomes

R̺(δ) = ē2h(−δ) ∗ h(δ). (2.12)

Noting that under these conditions ̺ is zero-mean, the normalised correlation coefficient

ρ̺ of fully developed speckle patterns as a function of elevational displacement is given by

ρ̺(δ) =
R̺(δ)

R̺(0)
. (2.13)
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(2.12) and (2.13) show that under Rayleigh scattering conditions, the second order statis-

tics of speckle patterns depend exclusively on the transducer’s characteristics, i.e. the

PSF h [229]. Clearly, this remains true of the normalised autocorrelation functions of

the envelope and echo intensity signals deterministically derived from the RF signal. Fur-

thermore, it can be shown that in these conditions, if the resolution cell is approximately

Gaussian in shape, the normalised autocorrelation function, henceforth also to be referred

to as the decorrelation curve, of the echo intensity signal I is a Gaussian function of dis-

tance [166, 155]. An example of such a decorrelation curve is shown in Figure 2.5. Chen

et al. [31] have shown that this is a very good approximation even for more realistic PSFs.

The decorrelation curve associated with the envelope signal A takes a more complicated

mathematical form, but for practical purposes, is very similar in shape to that of the echo

intensity signal [227, 72].

2.4 Transducer motion estimation using speckle decorrelation

The independence of the decorrelation curves from the medium under Rayleigh scattering

conditions suggests that empirical second order statistics of fully developed speckle pat-

terns can be used to estimate the unknown elevational separation between two different

ultrasound images acquired in close proximity by the same transducer. A typical scheme

for doing this is illustrated in Figure 2.5. In a calibration step, a speckle phantom, i.e. an

object which approximates Rayleigh scattering conditions and contains a large number of

randomly located ultrasound scatterers, is scanned at known regular elevational intervals

and a transducer-specific decorrelation curve is fitted to the set of resulting correlation

measurements. This curve can then be used to estimate distances from correlation mea-

surements.

This idea is the foundation block of the research presented in this thesis and was initially

developed by Chen et al. [31]. In their seminal paper, the authors derive the normalised

elevational autocorrelation function of the echo intensity signal in the focal zone of a typical

clinical transducer from first principles and show that it is well approximated by a Gaussian

curve. Failing the availability of exact transducer specifications, they propose that a speckle

phantom be scanned at regular elevational intervals and a Gaussian decorrelation curve be

computed from the resulting ultrasound imagery. Chen et al. then propose to estimate

the spacing between two frames by fitting this transducer dependent Gaussian curve to a
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(a) Calibration step. The circles rep-
resent the average of correlation mea-
surements collected among images sep-
arated by known distance intervals.
A decorrelation model, shown by the
dashed line, is fitted to this collection
of measurements. In this case, the
model is a Gaussian curve, but other
types of curves, including piecewise lin-
ear models, can also be used.
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(b) Distance estimation step. Correla-
tion between two images is measured
and the corresponding elevational sep-
aration is read off the decorrelation
curve estimated during calibration.

Figure 2.5 A typical scheme for estimating elevational displacement from
speckle decorrelation.

local estimate of the normalised autocorrelation function based on a neighbourhood of 10

frames, assuming locally constant probe velocity.

Following Chen et al.’s study, several researchers proposed useful generalisations of their

work. Tuthill et al. [219] generalised their approach for application outside the focal zone

of the transducer by allowing the standard deviation of the Gaussian decorrelation model

to vary as a function of depth. By computing local image correlations at different locations

in the image plane, they also allowed for the estimation of transducer yaw (rotation about

the y axis) and tilt (rotation about the x axis). Their paper describes the first experiment

using speckle decorrelation to estimate out-of-plane transducer motion in vivo, using a

rudimentary filter to find regions of fully developed speckle. Prager et al. [166] use the

Pearson correlation coefficient between pairs of image patches (which they reformulate

as a linear regression parameter) in order to estimate distance using a single correlation

measurement (as in the example shown in Figure 2.5(b)). Unlike Chen et al.’s original

strategy which fits the decorrelation model to the local autocorrelation function of the data

over multiple frames, this strategy does not make any assumption about the local regularity

of frame spacing and allows trajectory estimation in a broader range of conditions. They
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combined this approach with a conventional image registration technique to obtain good

qualitative 3D reconstructions of ultrasound imagery acquired using the freehand technique,

demonstrating the potential of image-based tracking as an alternative to external position

sensors. Chang et al. [29] proposed a unique, calibration-free, transducer independent

approach where speckle decorrelation is used to infer the ratios of different displacements

with respect to each other in a linear sweep of the transducer. In this approach, the global

scale of the scan is estimated by registering the images to an additional ultrasound frame

acquired perpendicularly to the linear sweep. This approach has the disadvantage that it

significantly complicates the image acquisition process.

In spite of the promising results obtained in these early works, a paper by Li et al. [133]

criticises the suggestion that quantitatively accurate transducer tracking may be achieved

using image content only. The paper argues that speckle decorrelation arises from causes

other than elevational translation, such as transducer rotation, and that it is difficult, if not

mathematically impossible, to express the observed decorrelation as a combination of the

decorrelations caused by the different types of motion. Through simulation experiments,

the authors show that even very small rotations, which are very likely to occur in freehand

scans, can cause substantial errors in the estimation of elevational motion. They also show

that even when there is no transducer rotation, sample correlation coefficients can exhibit

substantial variability, limiting the accuracy of the speckle decorrelation approach. Work

by Smith et al. [204] and Hassenpflug et al. [85] further studied the accuracy of distance

prediction made from correlation measurements and found that accuracy is not uniformly

obtained over all distances; very short distances, corresponding to high correlation, in

particular, were found to give rise to large errors. Chapter 4 takes the results of these

studies one step further by explicitly modelling the stochasticity of the relationship between

the sample correlation coefficient and elevational separation, leading to a new probabilistic

approach for combining such measurements in the context of trajectory estimation.

Additional difficulties arise from the fact that the transducer-specific decorrelation

model obtained during calibration is only accurate for imagery of fully developed speckle,

i.e. when Rayleigh scattering conditions hold. Outside the context of Rayleigh scatter-

ing, the width of the decorrelation curve increases depending on the micro-structure of the

medium, as described by R
′
ς in (2.11). Though there have been attempts to model such

variations in the decorrelation curves of the echo envelope and intensity signals as a function

of changes in the micro-structure of the medium, the results have been asymptotic [228] or
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empirical [158] rather than algebraic and also lack generality.

This lack of directly applicable models for the spatial decorrelation of the ultrasound

echo envelope outside Rayleigh scattering conditions poses serious challenges when it comes

to estimating the elevational separation between two images of real tissue based on their

correlation. This issue has most commonly been tackled by filtering the imagery to detect

regions of fully developed speckle where the model applies and ignoring the rest [219,

166, 177, 178]. However, Hassenpflug et al. [86] demonstrated that Rayleigh scattering

conditions occur rarely in real tissue, limiting the use and accuracy of this approach. A

more effective approach which heuristically estimates the shape of the local elevational

decorrelation curve based on the axial and lateral decorrelation curves was proposed by

Gee et al. [72]. These methods and other related work will be discussed in a more detailed

fashion in Chapter 6, which proposes an alternative, data-driven approach to the problem.

A further difficulty with the speckle decorrelation approach is that a single correlation

measurement can only provide an absolute estimate of distance. This creates ambiguities

when the trajectory of the probe is not entirely monotonic, or when there are intersections

between the frames. In the absence of external sensors, these ambiguities must be resolved

using correlations between three or more pairs of frames, exploiting the physical constraint

that images must be planar. Housden et al. [94] were the first to propose a method for doing

this (their approach as well as alternate ones [121, 126], are discussed in detail in Chapter 3).

Combining this with the adaptive speckle decorrelation method of [72] and in-plane image

registration [93], their work produced the first (and currently, the only) system capable of

entirely image-based transducer tracking in a truly unconstrained setting. Though this is

a most remarkable achievement, the lack of constraints on the possible probe trajectories

implies that the system is vulnerable to the sources of ambiguity predicted by Li et al. [133].

In particular, the authors note that the use of speckle decorrelation techniques for the

estimation of elevational translation loses some of its accuracy in the presence of in-plane

probe motion, even when the latter is corrected for by registration [93]; this is the result

of speckle decorrelation arising from the in-plane motions themselves as well as inevitable

interpolation errors in the registration process. Furthermore, the results presented in [94]

clearly show that the accuracy of trajectory estimates is diminished by rotations with

an axial component (tilt, in the case of a linear array transducer) because the rotations

themselves introduce speckle decorrelation which is not well modelled or accounted for by

a translational speckle decorrelation model.
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Recent research has thus investigated methods for combining the information provided

by position tracking devices and that provided by the imagery, exploiting not only image

registration techniques as was done in earlier work [180, 118, 218, 192], but out-of-plane

speckle decorrelation as well [95, 124], leading to both small and large scale accuracy.

A further development, which builds on the strengths of such hybrid systems, is the in-

troduction of a rotational speckle decorrelation model [92]. Combined with orientation

information from a position tracking device, such a model allows the speckle decorrelation

arising from translations and rotations to be disambiguated and exploited for more accurate

trajectory recovery, as originally predicted by Li et al. [133]. Hybrid systems such as these

are a promising context for the exploitation of the new statistical models and techniques

proposed in this thesis, as discussed in Chapter 8.

2.5 Summary

This chapter summarised the fundamental physical principles of ultrasound B-mode image

formation, with an emphasis on the phenomena studied in this thesis. In particular, the

formation of speckle patterns was described mathematically and some important first and

second order characteristics of speckle in the limit of Rayleigh scattering conditions were

derived. This leads to the important idea that the correlation between neighbouring speckle

images provides an indication of spatial separation. A brief overview of research exploiting

this idea within the context of freehand 3D ultrasound was given, providing a context

for the contributions made in the next chapters of this thesis. The literature on speckle

decorrelation-based out-of-plane transducer trajectory estimation is relatively scarce and

represents the work of only a small number of individuals. As a result, is much room for

innovation in this domain. For instance, while the variability of correlation measurements

associated with a given elevational separation under Rayleigh scattering condition has been

recognised, there have been no attempts to model it explicitly. Also, while the inadequacy

of the Rayleigh scattering assumption in real tissue has also been recognised, the field

definitely lacks methods which address the problem in a manner that is effective, principled

and tied, if only indirectly, to ultrasound physics. Methods for resolving the directional

ambiguity of correlation measurements in the case of non-monotonic probe motion and

image sequences with intersecting frames has only begun to be addressed by others through

the use of multiple redundant measurements and the full range of possibilities for achieving



2.5 Summary 31

this has not yet been explored. These are all questions which will be addressed in this

thesis, beginning with the resolution of directional ambiguities in the next chapter.
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Chapter 3

Discovering structure from

redundant correlation measurements

The previous chapter explained how, under Rayleigh scattering conditions, the correlation

between speckle patterns in two ultrasound images is predictive of the magnitude of the

elevational displacement undergone by the probe. This is because the ultrasound beam

has a finite extent and images much of the same micro-structure when moved between

neighbouring locations. An elevational speckle decorrelation model thus provides a means

of estimating the absolute elevational separation between two parallel ultrasound image

windows from the correlation between them. However, in general, a single correlation

measurement between two arbitrarily positioned ultrasound images is of very little use by

itself, as there are many different types of motion which could give rise to this measurement.

In freehand ultrasound data sequences, there can be in-plane motion and out-of-plane

rotations of the transducer, non-rigid deformations of the target, intersections between

frames as well as changes in the direction of the scan. Even if the images are assumed to be

parallel, there remains an ambiguity as to the direction of the translational motion because

the distance estimate obtained from the speckle decorrelation is not signed. In order to

recover the transducer trajectory under general conditions, it is necessary to exploit multiple

correlation measurements and to establish useful constraints describing the relationship

between the different measurements. This chapter presents a method for recovering rigid

out-of-plane probe motion by exploiting such constraints, assuming that there is no in-plane

motion or that it has otherwise been accounted for by an image registration process.
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Correlation measurements between two images can be sampled at many pairs of cor-

responding locations in the respective image planes. Because the samples are known to

lie on a plane for any given image, the distance estimates resulting from these redundant

measurements provide a means of estimating out-of-plane rotations as well as translations

between pairs of images. Additionally, one can exploit correlation measurements between

any two images in the sequence, not just consecutive pairs. The geometric consistency of

distance measurements thus obtained can be used to establish the local directionality of

the scan in the presence of non-monotonic motion patterns. Combined, the two types of

constraints also allow the detection of intersections between frames.

This chapter presents a framework for recovering the out-of-plane trajectory of an ul-

trasound transducer based on multiple redundant correlation measurements whose general

form will be used throughout this thesis, with small variations which will be discussed

in the relevant chapters. The chapter begins with a discussion of existing approaches for

the image-based recovery of the structure of ultrasound scans (Section 3.1). Section 3.2

then describes the new framework in its globality, explaining the role of each of its compo-

nents in recovering the structure of ultrasound scans. Sections 3.3 and 3.4 describe some of

these components in detail, explaining how intersections between frames and non-monotonic

transducer motion are recovered using methods from combinatorial optimisation and robust

statistics. A short validation experiment with artificially generated distance measurement

data is described in Section 3.5. More complete experiments involving image data will

be presented in later chapters. The majority of the work presented in this chapter was

published as part of [126].

3.1 Related work

One of the first attempts at exploiting multiple correlation measurements between pairs of

ultrasound images is described by Prager et al. [166]. Their approach is to break each image

frame into a number of non-overlapping patches. Distances between corresponding patches

of a pair of images are then used to robustly estimate the rigid transformation between the

images, exploiting the image planarity constraint. Similar ideas were proposed in patents

filed by Siemens and General Electric [132, 67, 68, 32, 149, 74]. These approaches account

for non-parallel images but assume that the probe motion is monotonic and that there are

no intersections between frames.
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Building on the ideas of [166], Housden et al. [94] introduced the first system for the

image based recovery of unconstrained transducer trajectories. Their approach robustly av-

erages a small number of independent, coarse reconstitutions of the probe trajectory based

on interleaved subsets of image frames. The image planarity constraint is first enforced by

robustly fitting a rigid transformation between all pairs of consecutive frames in the coarse

data sequences, based on the elevational separations estimated from correlations between

corresponding image patches. Outlying distance estimates are treated as an indication that

the two frames intersect. Non-monotonic probe motion is then detected in each coarse se-

quence by treating consecutive entire frames planes in triplets and estimating the motion

parameters which best explain the estimated patch-wise elevational separations between

the three pairs of frames involved (in the least squares sense). Coarse trajectories which

are in agreement with each other regarding the total length of the scan are then averaged

to obtain a refined trajectory estimate.

The directional ambiguity of correlation-based estimates of elevational displacement was

also addressed by Krupa et al. [119, 120] for a visual servoing application. In this context, a

robot is used to perform image acquisition and stabilisation. The goal is to make the robot

manipulate the ultrasound probe such that, as the scanned medium undergoes motion, it

acquires images that are as close as possible to a certain target image (previously tagged

as such). For this task, the relative position of the robot held probe to the target is

estimated from the correlation between the current image and the target, combined with

information from the robot’s joint encoders. The application requires that sign ambiguities

in the elevational distance estimates be resolved so that the image-based servoing guides

the robot in the correct direction. To this end, the authors’ approach first copes with the

possibility of intersections between successive frames using a random sampling algorithm.

Starting from randomly assigned displacement signs, this iterative algorithm tentatively

reverses the sign of one randomly chosen patch and greedily accepts sign changes that

reduce the least squared error criterion arising from the image planarity constraint until a

convergence criterion is reached. This yields two solutions (with the target lying on one or

the other side of the current frame). These are disambiguated by tracking the sign of the

displacements, starting from a controlled negative displacement from the target image at

the beginning of the procedure.

In more recent work, Krupa et al. [121] also developed a different algorithm for esti-

mating the sign of elevational displacements which is robust to target motion exceeding
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the range of ultrasound elevational speckle correlation. This algorithm also depends on an

initial controlled elevational displacement of the ultrasound probe in the negative direc-

tion with respect to the target image. Over the course of this displacement, a number of

reference ultrasound image frames are acquired and the pairwise displacements (of known

sign) between these frames are measured using speckle decorrelation. After this control

step, the scanned object is allowed to move and the visual servoing algorithm begins its

search for the target image. The signs of the patch-wise displacements required to ob-

tain the target image are obtained by estimating the absolute patch-wise distances of the

currently observed image to each of the reference frames acquired during the controlled

displacement step and finding the set of signs which minimises the squared error between

the inter-reference distances stored during the control step and those computed using the

current observation. The search is rendered tractable by the strong constraints imposed by

the known order of the reference frames. Once the optimal sign sequence is found, a plane

is fitted to the resulting distance offset and used to control the motion of the probe-bearing

robotic manipulator.

Though the methods proposed by Krupa et al. [119, 120, 121] do tackle the issue of

directional ambiguity in speckle decorrelation based distance measurements, their approach

requires that strong prior constraints be established through controlled data acquisition

steps. In contrast, the approach suggested by Housden et al. [94] and that proposed in this

thesis do not require any modifications to the scanning protocol, though such modifications,

if helpful, can always be incorporated. The next section gives an outline of the proposed

approach and compares it with the approach of Housden et al [94], its closest relative.

3.2 Overview of the proposed framework

To account for the variation of elevational ultrasound speckle decorrelation length with axial

depth, this work adopts the approach used by the group of medical ultrasound researchers at

Cambridge University [166, 72, 94]. That is, the ultrasound image is divided into Q equally

sized non-overlapping patches. Each patch has its own associated speckle decorrelation

model. This subdivision implies that for each frame pair, there are as many correlation

measurements as there are patches, allowing yaw and tilt angles to be estimated in addition

to elevational translation. A possible such subdivision is illustrated in Figure 3.1.

During a calibration step, a speckle phantom is scanned at regular elevational intervals.



36 Discovering structure from redundant correlation measurements

Figure 3.1 The images are divided into non-overlapping patches. Corre-
sponding patches (e.g. grey patches labelled q) in different images are used to
build local decorrelation models and are treated as mini-frames when estimat-
ing elevational positions.

The correlation coefficients between corresponding image patches in different frames are

then measured. A speckle decorrelation model is then estimated for each of the Q image

patches. For the moment, let us assume a deterministic, piecewise linear decorrelation

curve relating the sampled distance intervals to the average of corresponding correlation

coefficients. An alternative probabilistic speckle decorrelation model which describes the

distribution of these sample coefficients will be introduced in Chapter 4. The speckle

decorrelation model obtained through this calibration process can be used to estimate

transducer displacements in a new ultrasound image sequence.

Subdividing the n + 1 image frames in the ultrasound data set into Q patches corre-

sponding to those used to define the speckle decorrelation model breaks the data set into

Q individual smaller ultrasound data sets consisting of n + 1 “mini-frames” the size of an

individual image patch (see Figure 3.1). The sample correlation coefficients between all the

pairs of mini-frames corresponding to the same image location are computed. Using these

measurements, the relative positions of the full ultrasound image frames are then recovered

in three steps:

1. For each image patch, a consistent ordering of the associated mini-frames along the

elevational direction is derived from the redundant correlation measurements using

the TSP-sort algorithm, a combinatorial optimisation approach based on the solution

of the traveling salesman problem described in Section 3.3. This accounts for reversals

in the direction of motion and intersections between frames.
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2. For each image patch, a trajectory is estimated based on the ordering found by TSP-

sort and the elevational separation estimates provided by the speckle decorrelation

model. Different methods for doing this will be investigated in Chapters 4 and 7.

3. A rigid transformation bringing the patch centres of the first frame to each of the

other frames in the sequence is robustly estimated, allowing the recovery of elevational

translation, yaw and tilt.

The overall approach is illustrated and explained in more detail by a step-by-step example

in Figure 3.2. This general framework most closely resembles that proposed by Housden

et al. [94]. At the coarse level, their approach begins with the enforcement of the image

planarity constraint (violations of which allow for the detection of frame intersections) and

detects non-monotonic motion based on the relative positioning of entire image frames.

This thesis proposes an orthogonal approach: non-monotonic motion is first detected at

the image patch level using combinatorial optimisation through the TSP-sort algorithm

(see Figure 3.2(b)). The image planarity constraint is only enforced at the very end. The

result is that frame intersections need not be detected explicitly (according to Housden et

al. [94], the most error-prone step of their method): they are already reflected in the mini-

frame orderings found by the TSP-sort algorithm. The final rigid transformation fitting

stage identifies patches with incorrect mini-frame orderings as outliers and takes care of

reversing some of these orderings for the case where the first and second frame of the

sequence intersect, as illustrated in Figure 3.2(d). In the next sections, the computational

mechanisms required for carrying out the steps illustrated in Figure 3.2 are described in

detail, beginning with the combinatorial patch-wise mini-frame ordering algorithm.

3.3 Mini-frame ordering through the TSP-sort algorithm

For each each pair of mini-frames i and j in a test ultrasound data set, a correlation mea-

surement ρij is used to read an absolute distance estimate δij off the average decorrelation

curve for the corresponding image patch, as illustrated in Figure 2.5(b) of the previous

chapter. Assuming that the images are aligned in-plane, the centres of corresponding mini-

frames in any section of the scan approximately lie along a line and the absolute elevational
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(a) The ground truth geometry
of a 5 frame sequence. The cir-
cled numbers indicate the frame
acquisition order. The frames
have been divided into 5 patches.
Correlations between all pairs of
corresponding image patches are
computed to obtain a distance es-
timate from the speckle decorre-
lation model.

(b) The distance estimates are
processed by the TSP-sort algo-
rithm. By convention, the dis-
placement between frames 0 and 1
is treated as positive, leading to a
reversed ordering for patch 5. The
shuffled ordering found for patch 4
is due to a poor fit of the speckle
decorrelation model at the inter-
section of many frames.

(c) The trajectory associated
with each set of mini-frames is
calculated using estimated pair-
wise elevational displacements
between mini-frames, respecting
the orderings found by TSP-sort.
Each dot is the inferred location
the patch centre, and its shade
indicates which frame it belongs
to.

(d) Patches 4 and 5 are labelled
as outliers (as indicated by the
hatched rectangles) because they
do not fit the image planarity con-
straint. The TSP-sort orderings
for these patches are tentatively
reversed.

(e) After a second attempt, patch
4 is found to give worse results
than before and is set back to its
original ordering.

(f) Patch 4 is labelled as a per-
manent outlier, and all corre-
sponding data are discarded. A
least-squares rigid transformation
maps each frame to the first, im-
plying the image planes repre-
sented by the dotted lines.

Figure 3.2 A step-by-step example depicting how the proposed out-of-plane
motion recovery approach works.
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separations of the mini-frames should satisfy the constraint

δik =



















δij + δjk sij = sjk

δij − δjk sij 6= sjk ∧ δij > δjk

δjk − δij sij 6= sjk ∧ δij < δjk

(3.1)

for any three mini-frames i, j and k ∈ {0, . . . n}, where sij denotes the sign (or direction)

of the elevational displacement between mini-frames i and j. The constraint is illustrated

in Figure 3.3. This suggests a simple algorithm for determining the signs of elevational

displacements between consecutive mini-frames. Initialising s01 = 1, the signs of all other

displacements could be determined as follows: for each set of three consecutive mini-frames

i, j = i+ 1 and k = i+ 2, consider the measured absolute distances δij , δjk and δik. Then,

for i ∈ 0, . . . n− 2,

sjk =







sij δik ≥ δij + δjk

−sij otherwise.
(3.2)

sij = sjk = sik = 1 sij = −sjk = sik = 1 −sij = sjk = sik = −1
δik = δij + δjk δik = δij − δjk δik = δjk − δij

Figure 3.3 An illustration of the collinearity constraint described by the
three cases of (3.1).

In reality, the estimated elevational offsets are noisy and most likely do not satisfy (3.1),

leading to the failure of this overly simplistic algorithm. In order to achieve the robustness

required in the presence of noise, more elevational separation measurements must be taken

into account.

Consider again the noiseless case where all correlated mini-frames corresponding to the

same image patch lie approximately along a straight line, satisfying (3.1) for all triplets

of mini-frames, consecutive or not. This line trivially corresponds to the shortest possible

path which includes every mini-frame centre only once. In the noisy case, one can think of

the direction assignment problem as that of finding an ordering of the mini-frame centres

which minimises the total travelling distance among them, where the distance between
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each pair of mini-frames i and j is given by the estimate δij , thus choosing elevational

displacement signs to make the trajectory as close as possible to the ideal straight line.

Posed this way, the problem is very closely related to the symmetric travelling salesman

problem (TSP), a classical problem in combinatorial optimisation. Given a set of cities

and the distances between all pairs of cities, the TSP consists in finding the shortest tour

which visits each city only once and returns to the originating city.1

While the TSP is NP-hard, it is very well studied and clever methods exist which reduce

the computational burden of finding an optimal solution in most cases. Such methods are

implemented in the free, state-of-the-art Concorde software [8] designed for the solution of

the TSP with symmetric distances. Briefly, Concorde performs a branch-and-bound search

across possible tours. Increasingly tight lower bounds on the length of the optimal tour

are found by solving increasingly tight linear programming relaxations of the TSP. This

technique, known as the cutting plane method, is rooted in the seminal work of Dantzig,

Fulkerson and Jonhson [45], but the modern version of the algorithm uses stronger cutting

planes than the original paper, coupled with a highly sophisticated software implementa-

tion. Concorde alternates its search for lower bounds with the generation of near-optimal

candidate tours, which are iteratively improved using a variety of very effective algorithms

(such as variants of the Lin-Kernighan heuristic [136, 87]). The length of these tours pro-

vide ever tighter upper bounds on the length of the optimal tour. The search ends when

the upper and lower bounds on the length of the optimal tours coincide. The details of

algorithmic components of the software, as well as an excellent discussion of the TSP, are

available in [8].

In this work, Concorde was used to determine a mini-frame ordering for each patch.

By convention, the elevational displacement between the first and second mini-frames is

considered to be positive. Solving the TSP then provides a set of mutually consistent signs

for the elevational displacements between pairs of mini-frames corresponding to one image

patch. The approach, henceforth be referred to as the TSP-sort algorithm, was validated

empirically (see Section 3.5 for details).

1Note that in the problem at hand, no such round trip is required. To match the TSP description
exactly, a fictional point is added whose (non Euclidean) distance to all others is set to zero. A round trip
can then be obtained without changing the shortest path among all other points.
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3.4 Enforcing the image planarity constraint

The TSP-sort method described above and the subsequent patch-wise trajectory estima-

tion step (illustrated in Figure 3.2(c) and discussed in Chapters 4 and 7) provide consistent

elevational pose estimates for individual sets of mini-frames. These must then be combined

to obtain an estimate of each frame’s elevational translation, yaw and tilt. Context natu-

rally provides an additional constraint to the problem of estimating frame positions: image

patches belonging to the same image frame must lie on a plane. The final position of each

full frame can be calculated from the rigid transformation parameters φ∗ which best map

the centres of the image patches belonging to the first frame to the set of elevational pose

estimates obtained for the centres of all image patches belonging to every other frame. In

the preliminary work presented in [125], it was assumed that there were no frame intersec-

tions and that probe motion was monotonic. Thus, the point-wise registration was carried

out according to a standard least-mean-squared error criterion; that is, for frame i,

φ∗
i = argmin

φ

Q
∑

q=1

||R(x̃
[q]
0 , φ) − x̃

[q]
i ||2, (3.3)

where Q is the number of image patches in each frame, x̃
[q]
i denotes the 3D position of the

centre of patch q in frame i as inferred from image-based measurements (speckle decorre-

lation for out-of-plane displacements) and R(x, φ) denotes the 3D position obtained when

applying the rigid transformation with parameter vector φ to point x. In this case, φ∗
i

can be computed using the standard methods described in [221, 65]. This technique is

problematic when non-monotonic probe motion and frame intersections are present, and is

extended here in order to account for such circumstances.

The mini-frame orderings found by the TSP-sort algorithm follow the convention that

the displacement between the first and second mini-frames corresponding to a given image

patch is always positive. If the first and second image frames intersect, orderings must be

reversed for a certain set of image patches on one side of the intersection. Intersections

between frames may also cause the TSP-sort algorithm to fail in another way: for image

patches where intersections occur, the estimated elevational separation should be close to

zero. This will generally not be reflected in the corresponding correlation measurements due

to significant speckle decorrelation arising from the rotations which caused the intersections.
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This decorrelation will be incorrectly interpreted as resulting from elevational translation.

In areas where multiple frames intersect, this may lead to meaningless mini-frame orderings.

Image patches with shuffled or reversed TSP-sort orderings create outliers with respect to

the image planarity constraint.

Outliers are accounted for by replacing the least-mean-squares fit with a robust fit-

ting approach. This thesis adopts the robust least-median-of-squares (LMedS) fitting

paradigm [183, 184], though any of several other robust methodologies could have been

used instead [63, 243, 230, 186, 248, 59]. In a LMedS rigid transformation fit for frame i,

the optimal rigid transformation parameters φLMedS
i are given by

φLMedS
i = argmin

φ

med
q

||R(x̃
[q]
0 , φ) − x̃

[q]
i ||2, (3.4)

where med is the median operator. Under certain conditions (including the normality of the

noise and uniform spatial distribution of outliers), the LMedS definition of optimality can

handle up to 50% of the data points being outliers [183, 184]. An exhaustive search for the

best fitting rigid transformation parameters φLMedS
i in the LMedS sense is computationally

prohibitive. Exhaustive search is avoided by a Monte-Carlo sampling strategy similar to

that used in the well known Random Sample Consensus (RANSAC) algorithm [63], as

described in [184, 145]. The sampling procedure consists in sampling minimal subsets of

data points (samples of 3 pairs of matching points in the case of a rigid transformation fit)

and fitting the required primitive (in this case, a rigid transformation) to those. The quality

of the fit is then evaluated based on the entire point set (theQ image patch centres belonging

to the frame under consideration). In the case of RANSAC, the quality of the fit is usually

quantified in terms of the number of data points which satisfy the hypothesis according to

some outlier detection threshold. In the LMedS case, the quality of a fit is instead quantified

using the median of the squared residual error, as described by (3.4). The fit implied by the

new sample is temporarily adopted as the correct one if its quality is better than that of a

previously adopted fit. This sampling procedure is repeated enough times to guarantee a

high probability of selecting an outlier free minimal subset of points. The required number

of such trials is determined based on simple probabilistic arguments [183]. The LMedS

approach was preferred over RANSAC because it does not require any parameter tuning.
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A robust standard deviation is defined as [184]

χi = 1.4826

(

1 +
5

Q− 3

)

med
q

||R(x̃
[q]
0 , φ

LMedS
i ) − x̃

[q]
i ||, (3.5)

where the factor
(

1 + 5
Q−3

)

is used to correct for small Q (number of image patches). This

robust standard deviation is used to determine a set of outlier points which do not agree

well with the estimated rigid transformation parameters. Patch q of frame i is deemed an

outlier if

||R(x̃
[q]
0 , φ

LMedS
i ) − x̃

[q]
i || > 2.5χi. (3.6)

Three passes of the robust fitting algorithm are carried out. Every pass consists in finding

the rigid transformation from the first frame to all other image frames based on their patch-

wise elevational pose estimates. After the first pass, a number of image patches (and their

set of corresponding mini-frames) are identified as candidates for having their order (and

elevational pose signs) reversed. Image patches which are considered to be outliers by (3.6)

for 5% or more of the frames are sign reversal candidates. During the second pass, the

LMedS fitting algorithm is run again for every frame, this time with tentatively reversed

orderings for the previously flagged image patches. The effect of this is evaluated after

the second robust fitting pass: image patches which are found to be outlying more often

than before the sign reversal are returned to their original positions. A final pass identifies

permanent outliers as image patches which are considered to be outliers by the LMedS

fitting procedure for more than than 20% of the frames. Final least-mean-squares rigid

transformation fits (described by (3.3)) are then carried out on the inlier patches using

the standard methods given in, e.g. [221, 65], for all frames in the sequence. This yields

a set of rigid transformation fits φ∗ relating each frame to the first which accounts for a

possible intersection between the first two frames as well as possible large-scale failures of

the TSP-sort algorithm.

3.5 Experiments with the TSP-sort algorithm

In order to assess the validity and robustness to noise of the TSP-sort algorithm, a short

simulation study was conducted. In this study, 30 sequences (trajectories) of 500 1D points

from the real line were artificially generated, with consecutive points drawn randomly within
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2.0 units of each other in the direction of travel, with a 5% probability of direction reversal

at every point. The true distances between all pairs of 1D points were computed by simple

subtraction and corrupted with varying levels of Gaussian noise. The standard deviation

of the noise varied from 0 to 50% of the true distances measured. Distances larger than

5.0 units were assigned a large constant value (to reflect the fact that elevational distances

between ultrasound images cannot be estimated below a certain level of correlation). The

TSP-sort algorithm was applied to the noisy distance values in order to recover the signs

of the measured distances. The vast majority of runs took under 10 seconds on a regular

PC using the Concorde software.2 The TSP-sort algorithm was compared with the simplis-

tic algorithm introduced at the beginning of Section 3.3, which only exploits constraints

between triplets of consecutive points and whose operation is described by (3.2).

The accuracy of the two algorithms was evaluated by comparing the recovered order of

the points on the real axis with the ground truth using the Kendall rank correlation defined

as [38]

τ =
2(Nc −Nd)

n(n + 1)
, (3.7)

where n + 1 is the number of points and Nc and Nd denote the number of concordant

and discordant pairs of points in the ground truth and automatically ordered points. A

pair of points i and j is called concordant if the sign of the difference between the rank

of point j and the rank of point i in the inferred ordering is the same as that found for

the ground truth ordering. τ takes the value 1 when the and inferred point orderings are

identical, 0 when they are uncorrelated and -1 when they are the exact opposite of each

other. There remains an overall, unavoidable sign ambiguitiy in the assignment of signs to

unsigned distances, which was resolved by adopting the convention that the displacement

between the first two points is positive. Therefore, Table 3.1 reports |τ | as a performance

measure since both the true ordering and its opposite are considered correct.

In the noiseless case, both algorithms exhibit ideal behaviour. However, whereas the

smallest amount of noise causes the base-line ordering algorithm to fail, the TSP-sort

2It should be noted that the Concorde TSP solving functionalities work exclusively in integer arithmetic
whereas the simulated data as well as data to be gathered from ultrasound imagery later in this thesis
are more naturally expressed in floating point representation. In order to use Concorde, a scale factor
must be applied to the distance estimates in order to get a fixed point representation of the distances. An
inadequately chosen scale factor causes a loss of precision which in turn can cause inaccurate comparisons
and (very occasional) ordering errors even when there is no noise. For the experiments presented in this
chapter, the scale factor was tuned to ensure that there were no errors in the noiseless case.
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Noise level (%) |τ |
Base-line TSP-sort

0% 1.000 ± 0.000 1.000 ± 0.000
1% 0.243 ± 0.190 1.000 − 3 × 10−5 ± 2 × 10−5

2% 0.270 ± 0.217 1.000 − 6 × 10−5 ± 2 × 10−5

3.5% 0.267 ± 0.193 1.000 − 10−4 ± 4 × 10−5

5% 0.285 ± 0.188 1.000 − 2 × 10−4 ± 8 × 10−5

10% 0.261 ± 0.174 1.000 − 4 × 10−4 ± 8 × 10−5

20% 0.336 ± 0.186 0.999 ± 10−4

35% 0.279 ± 0.170 0.986 ± 0.009
50% 0.329 ± 0.193 0.908 ± 0.163

Table 3.1 Kendall rank correlation (|τ |± 1 standard deviation) between
the true point ordering and those inferred by the base-line sign assignment
algorithm and the TSP-sort algorithm, as a function of measurement noise
level.

algorithm remains extremely robust even at high noise levels. Whereas a single sign error

early in the data sequence can completely derail the simplistic base-line algorithm, the TSP-

sort algorithm is generally able to maintain a globally correct ordering of the points, with

noise causing only localised incorrectly ordered segments in short parts of the sequence.

The average performance of the TSP-sort algorithm at the 50% noise level may seem

surprisingly good. This is partly because large distances were treated as unmeasurable

and were thus not corrupted by noise, allowing the TSP-sort algorithm to operate on the

partial information provided by the smaller distances which were inherently less corrupted

by noise in the absolute sense.

While the base-line algorithm based on triplets of consecutive points clearly failed in this

experiment, it is important to realise that this base-line approach is very naive. Constraints

between distance measurements within triplets of coarsely spaced, consecutive image frames

(not mini-frames) can, and have been used very effectively and robustly for frame ordering,

as exemplified by the work of Housden et al. [94]. The important feature of robust frame

ordering algorithms is the regularisation afforded by the simultaneous use of multiple,

redundant constraints. To achieve regularisation, the TSP-sort approach proposed in this

chapter exploits all available triplets of corresponding patches at once. In Housden et al.’s

work [94], regularisation arises from the fact that triplets of frames are treated as a collection

of distance measurements which are not only constrained by elevational collinearity, but
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also by image planarity. Whether one approach is superior to the other in terms of accuracy

remains to be experimentally assessed. Housden et al. implement additional regularisation

by independently computing frame orderings for distinct interleaved subsets of the frames

and deriving a consensus from these. This robust averaging approach is independent of

the frame ordering strategy and could easily be implemented in the context of the methods

presented in this thesis for their further improvement.

3.6 Summary and discussion

This chapter described a new framework for discovering the structure of ultrasound scans,

focusing on the recovery of directional changes in the trajectory and frame intersections.

In particular, a new algorithm for recovering the spatial ordering of aligned image patches

was proposed based on the solution to the well known travelling salesman problem. The

algorithm was validated through a short simulation study whereby it was shown to be very

robust to the corruption of distance estimates by random noise. This robustness stems from

the ability of the algorithm to simultaneously exploit elevational collinearity constraints

within a large number of redundant triplets of points. In addition, a least-median-of-squares

approach was introduced for obtaining the rigid transformation parameters relating every

frame of an ultrasound image sequence to the first using the elevational distance offsets

computed from speckle decorrelation. This approach allows the identification of outlying

patch-wise pose estimates symptomatic of inverted or shuffled patch-wise frame orderings.

The framework as a whole has yet to be validated in experiments with ultrasound image

data. Such experiments will be presented in Chapters 4 and 7, which describe new methods

for the estimation of patch-wise trajectories based the fusion of multiple noisy correlation

measurements. These new methods integrate naturally within the framework proposed in

this chapter, so the experiments presented later will provide implicit validation for it.
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Chapter 4

Probabilistic fusion of noisy

correlation measurements

The previous chapter showed how correlation measurements between redundant triplets of

image patches, or mini-frames, combined with the image planarity constraint, could be used

to recover the general structure of an ultrasound scan in the presence of non-monotonic

probe motion and frame intersections. This chapter addresses the problem of obtaining a

refined trajectory estimate for each set of corresponding mini-frames in the sequence using

the ordering provided by the TSP-sort algorithm of the previous chapter and correlation

measurements between pairs of mini-frames, as illustrated in Figure 3.2(c) of the schematic

example presented in the previous chapter. There is much choice when it comes to methods

for doing this as every single frame can be correlated to multiple other frames in the image

sequence; each correlation measurement in turn provides a potentially informative distance

estimate, but each of these estimates is also corrupted by error.

This chapter describes a new approach for modelling the relationship between the sample

correlation coefficient measured between two image patches and the elevational separation

between them. Whereas all previously published work considers this relationship to be

deterministic, this thesis proposes instead that it be modelled as a probability density

function. This representation is useful because it allows the uncertainty attached with any

correlation-based distance estimate to be quantified. This feature is then exploited in a

maximum likelihood data fusion algorithm inspired from the mobile robotics literature for

estimating the position of each mini-frame relative to the others for a given image location.
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Section 4.1 opens the chapter with a discussion of previous research findings which are

relevant to the trajectory estimation problem under consideration as well as other attempts

to solve it. Section 4.2 then presents the new probabilistic speckle decorrelation model and

describes how to estimate its transducer-specific parameters using ultrasound images ac-

quired from a speckle phantom. Section 4.3 explains how this new model can be used

to combine multiple redundant correlation measurements in a principled way in order to

recover the relative positions of mini-frames corresponding to a single image patch. Ex-

periments on synthetic and real ultrasound imagery of speckle phantoms are presented in

Section 4.4. These experiments use the global framework discussed in the previous chapter

for the recovery of scan structure, thereby demonstrating its strengths and weaknesses. In

these experiments, the proposed probabilistic data fusion strategy is compared to two de-

terministic methods and the effect of certain trajectory parameters (monotonicity, presence

of rotations and speed) on the results is evaluated. The theoretical framework and some of

the experimental results presented in this chapter were published in [125, 126].

4.1 Related work

Classical correlation-based estimation of elevational separation between ultrasound images

proceeds by first modelling the relationship between correlation and distance as a mono-

tonically decreasing curve and by subsequently measuring correlation between images and

reading the corresponding distance off the curve. The accuracy of this process depends on

the statistical variability of sample correlation measurements as well as on the true and

hypothesised functional forms of the relationship between correlation and distance. Li et

al. [133] have shown that the sample correlation coefficient between pairs of ultrasound

images of fully developed speckle can exhibit substantial variability. This variability arises

from two types of finite sample size effects. The first of these stems from the finite number

of pixels from which the correlation coefficients are computed. The second stems from the

finite size of the physical portion of the medium represented in the image patches, which

may change the local second order statistics of the medium even under Rayleigh scattering

conditions.

The shape of the decorrelation curve determines how this variability in the sample

correlation coefficient can affect the distance estimate. For a transducer with a Gaussian

resolution cell, theory predicts that the normalised correlation of the echo intensity (squared
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envelope) signal is a Gaussian function of distance [166]. Using the echo amplitude signal

yields a very similar shape, i.e. a curve that is nearly flat but concave and highly non-

linear for small distances, nearly linear for moderate distances, and non-linear, convex, and

asymptotically flat for large distances. The accuracy of the distance estimate read off a

reasonable approximation of such a curve largely depends on the value of the correlation

coefficient used as input. This relationship was first studied by Smith and Fenster [204],

and subsequently by Hassenpflug et al. [85]. Both studies concluded that distance estimates

were most accurately obtained for moderate correlation values lying in the nearly linear

portion of the decorrelation curve, and that large relative error was obtained in the high

and low correlation portions of the curve.

Several factors explain the findings of [204, 85]. Assuming a perfectly accurate decorre-

lation curve (obtained from equally accurate and exhaustive transducer specifications, for

example), the high and low correlation portions of the curve are error prone because they

are nearly flat, implying that a slight change in the measured correlation coefficient can

lead to a large change in the distance estimate read off the curve. In practice, decorrelation

curves are obtained empirically [31, 219, 166, 72, 94] by fitting some monotonically decreas-

ing function to the points defined by elevational separation intervals and the average of the

corresponding correlation coefficients measured in imagery of a speckle phantom. In the

high correlation region of the curve, the statistical distribution of the sample correlation

coefficient is highly skewed (see Figure 4.1 in Section 4.2) and sample measurements are

more likely to be larger than the average than lower, thereby leading to skewed distance

estimates as well. If a piecewise linear decorrelation model is chosen [72, 94], then it is

also likely that the first few linear segments of the curve very poorly represent the true

underlying curve, leading to biased distance estimates.

The naive strategy of using only correlation measurements between consecutive frames,

which will form the basis for the “nearest-neighbour” approach used in the experiments at

the end of this chapter, is therefore highly error prone. Not only are the relative errors in

each distance estimate large, but the bias and uncertainty associated with these estimates

also accumulate over a large number of frames. In order to avoid such accumulation of

errors, Gee et al. [72] have devised a strategy whereby a given frame is chosen as a reference

and a number of subsequent frames are positioned with respect to it rather than their

immediate predecessor. The reference frame changes over the course of the process in

order to ensure a sufficient level of correlation between the pairs of frames considered.
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This approach inspired the “shifting reference” approach used a second base-line in the

experiments of this chapter.

Housden et al. [94] have developed a more sophisticated approach to the data fusion

problem, which involves computing a robust average of coarsely sampled trajectories com-

puted from independent interleaved subsets of the image frames. The composition of the

interleaved subsets of frames is optimised in such a way as to make triplets of consecutive

frames in a given subset as widely spaced as possible but correlated enough to recover

non-monotonic motion. In other words, the subsets of frames are selected so that all or

most correlation measurements actually used for trajectory estimation lie on the linear,

well-behaved part of the decorrelation curve.

The above discussion demonstrates that there has been interest in understanding the

errors that arise from the use of a speckle decorrelation model to estimate out-of-plane

displacements and exploiting what knowledge there is about these errors to avoid tracking

inaccuracies. However, there have been very few attempts to explicitly model these errors

or derive any principled data fusion approaches based on such formal models. The hybrid

tracking system of Lang et al. [124] is perhaps an exception, in that it explicitly accounts

for the relative accuracies of image-based and electromagnetic tracker based measurements

within the well-known Kalman filtering framework. However, the noise models used in

the paper for each data source were tuned by trial and error and are not firmly rooted in

physical models nor in the systematic analysis of observations. The work presented here

innovates by deriving a probabilistic model of the relationship between correlation measure-

ments and elevational displacements using data acquired during calibration. Furthermore,

a data fusion approach is described which can exploit an arbitrary number of correlation

measurements for each image patch while quantifying the statistical relationship of these

measurements to the distances being inferred.

4.2 Probabilistic speckle decorrelation model

The first necessary step in using speckle decorrelation to estimate out-of-plane transducer

trajectory is to characterise the imaging instrument in terms of the relationship that can

be expected between correlation measurements and elevational displacement. This is done

through a calibration process whereby a phantom with Rayleigh scattering properties is

scanned at regular elevational intervals. Recall from the previous chapter that in order
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to account for axial variations in transducer beam-width and to be able to recover out-

of-plane rotations, correlation measurements will be gathered from pairs of corresponding

image patches (or mini-frames) lying on a pre-defined grid. During calibration, a speckle

decorrelation model is established for each patch in the grid.

For each image patch, the calibration scan provides sample mini-frames separated by

known, regular elevational distance intervals. The sample correlation coefficient between

corresponding image patches u and v of size Npix is given by

ρ(u, v) =
Npix

∑Npix

i=1 uivi −
∑Npix

i=1 ui

∑Npix

i=1 vi
√

[

Npix

∑Npix

i=1 u
2
i −

(

∑Npix

i=1 ui

)2
] [

Npix

∑Npix

i=1 v
2
i −

(

∑Npix

i=1 vi

)2
]

, (4.1)

where ui and vi denote the value of pixel i in image patches u and v, respectively. An

assumption underlying the speckle decorrelation methodology is that the image patches

u and v can be treated as finite size realisations of correlated random signals U and V

with nominal correlation coefficient ρ0. For large Npix, the sample correlation coefficient

ρ(u, v) given in (4.1) should, on average, tend towards the nominal value ρ0 which is

indicative of elevational separation between the image patches. However, the individual

sample correlation coefficients do exhibit some variability due to the finite size Npix of the

image patch realisations. This variability depends on ρ0 and on the statistical distributions

of U and V .

Previous approaches build a decorrelation curve by averaging the sample correlation co-

efficients obtained from the calibration data, in effect estimating ρ0 for given patch location

and elevational separation. This chapter argues that it is possible to extract more infor-

mation than this from the wealth of available calibration data. The statistical variations

intrinsic to correlation measurements can be explicitly represented by a probability density

function p(ρ|δ, q) relating the sample correlation coefficient ρ to elevational separation δ in

image location q. Assuming that the relationship between elevational separation and the

nominal correlation coefficient ρ0 is one-to-one (as would theoretically be the case for fully

developed speckle), p(ρ|δ, q) ≡ p(ρ|ρ0, q). The probability density function p(ρ|δ, q) cap-

tures several statistics of ρ other than the mean (such as variance and skewness) which can

be exploited for the estimation of elevational separations based on multiple measurements.

Theory does not provide many indications as to a suitable parametric form for p(ρ|δ, q),
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except in certain contrived cases [64, 148]. One approach which could be used to estimate

p(ρ|δ, q) is to model the density using Parzen windows [50]. One well known difficulty

with this approach is that it requires that a window size parameter be tuned. Automatic

window size selection algorithms based on cross-validation have been suggested (e.g. [51])

and were experimented with for this work, but it was found that in practice, the approach

leads to over-fitting for this particular density estimation problem. Here, p(ρ|δ, q) is instead

estimated using a general purpose maximum entropy density estimation method introduced

by Baker [10]. The method has interesting theoretical foundations and is applicable to a

broad variety of problems [10, 157, 60, 11], but has been largely ignored by the imaging

community. The method is described in detail below, as it is applied to the problem of

estimating p(ρ|δ, q).

4.2.1 Density estimation by Baker’s method

Baker’s method [10] is a general method for estimating a continuous parametric probability

density function from a set of data samples lying on a finite domain. In this work, the

method is applied to the set ofNρ sample correlation coefficients {ρi}, i = 1, . . . , Nρ acquired

between frames separated by a distance δ in patch q. These data are defined on the closed

interval [−1, 1], and therefore, Baker’s method applies.

At the core of Baker’s method is the idea that the estimation of a statistical distribution

from data should depend on as few assumptions as possible; in other terms, the process

should follow the principle of maximum entropy [106]. This principle states that in order

to make as few additional assumptions about the statistics of the data as possible, the

probability distribution must be chosen so as to maximise entropy given known statistics

of the distribution. A common assumption is that the moments of the sought distribution

are known exactly; in this case, the maximum entropy probability density function is known

to take the form [106]

p(ρ|δ, q; µ) = p0(ρ) exp

(

ζ0(µ) +

Ω
∑

ω=1

ζω(µ)ρω

)

, (4.2)

where p0 is a uniform probability density function over the range D of the data (here,

D = [−1, 1]), Ω is the known number of moments of the distribution and µ is the known
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vector of these moments. The normalisation constant ζ0(µ) is given by

ζ0(µ) = − ln

{

∫

D

p0(ρ) exp

(

Ω
∑

j=1

ζj(µ)ρj

)

dρ

}

, (4.3)

and the parameters ζ(µ) verify the following system of non-linear equations:

∫

D
ρωp0(ρ) exp

(

∑Ω
j=1 ζj(µ)ρj

)

dρ

∫

D
p0(ρ) exp

(

∑Ω
j=1 ζj(µ)ρj

)

dρ
= µω, ω = 1, ...,Ω. (4.4)

This form satisfies the maximum entropy constraint because it minimises the Kullback-

Leibler divergence to the uniform density p0,

D(p(ρ|δ, q; µ)||p0(ρ)) = ζ0(µ) +
Ω
∑

ω=1

ζω(µ)µω. (4.5)

In reality, the moments of the sought distribution are unknown and must be inferred

from data. Baker’s intuitive choice is to replace the moment vector µ with the vector µ̂ of

sample moments of the data in (4.2):

µ̂ω =
1

Nρ

Nρ
∑

j=1

ρω
j . (4.6)

This yields a family of probability density functions

pΩ(ρ|δ, q; µ̂) = p0(ρ) exp

(

ζ0(µ̂) +
Ω
∑

ω=1

ζω(µ̂)ρω

)

(4.7)

whose maximum likelihood parameters ζ(µ̂) can be obtained either by solving (4.4) or

by directly minimising (4.5) (with µ̂ substituted for µ), the implementation chosen in

this work.1 The required multi-dimensional non-linear optimisation was carried out using

the Fletcher-Reeves conjugate gradient algorithm [66] and the integral required for the

computation of (4.3) was computed by Gaussian quadrature [162].2

1An alternative approach for finding ζ(µ̂) based on the method of moments was proposed by Urzúa [222].
2All numerical computations were carried out using the GNU Scientific Library [70].
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This leaves the matter of choosing the unknown model order parameter Ω. Large Ω

permits more flexibility and better fit to the data, but increases model complexity. It is

well known that the quality of sample moment estimates depends on the amount of data

available and high order sample moment estimates (which will be needed with large Ω)

are notoriously unreliable. Therefore, high model complexity will likely lead to poor model

generalisation. Baker’s suggestion for selecting Ω is to minimise the Akaike Information

Criterion (AIC) [5],

AIC = 2Ω − 2

Nρ
∑

j=1

ln pΩ(ρj|δ, q; µ̂). (4.8)

Using (4.7) and dividing (4.8) by 2Nρ, notice that this is equivalent to minimising

AIC

2Nρ

=
Ω

Nρ

−
(

ζ0(µ̂) +
Ω
∑

ω=1

ζω(µ̂)µ̂ω

)

, (4.9)

where the second term is already available for different Ω from the minimisation of (4.5)

required for finding ζ(µ̂). Interestingly, minimising (4.9) (and therefore, minimising the

AIC) also has a maximum entropy interpretation because it turns out that (4.9) is an unbi-

ased estimate of the Kullback-Leibler divergence between the true (unknown) distribution

of the data and that predicted by the model [10]. The end result is that a good compromise

between goodness of fit and model complexity is achieved without tuning any parameters.

Using Baker’s method, conditional probability density functions p(ρ|δj , q) are obtained

from sample correlation coefficients measured at patch q at elevational separation δj =

jδ0, j ∈ N
∗. Here, δ0 is the elevational separation between consecutive frames of the

calibration data set. Figure 4.1 shows an example set of these distributions obtained from

ultrasound phantom data.

4.2.2 Computing the log-likelihood for arbitrary δ

Given a correlation measurement ρ, it is desirable to obtain an estimate of the likelihood

p(ρ|δ, q), or, for practical purposes, of the log-likelihood L(ρ|δ, q) = ln p(ρ|δ, q). The cal-

ibration data, together with Baker’s density estimation method, provide samples of the

(log-)likelihood function at discrete values of δ corresponding to the regular elevational

spacings where images were sampled during calibration. Some form of interpolation is thus
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Figure 4.1 The probabilistic speckle decorrelation model for patch location
q, obtained from ultrasound speckle phantom data. Each plot is a probability
density function p(ρ|δj , q), estimated using Baker’s method, of the sample
correlation coefficient ρ corresponding to elevational separation δj , with δj

starting at 0.05 mm and increasing at a rate of 0.05 mm per plot from left to
right and top to bottom.

needed to evaluate p(ρ|δ, q) or L(ρ|δ, q) at arbitrary δ.

First, the number of samples of δ at which p(ρ|δ, q) can be evaluated is increased l−fold

(for all experiments in this thesis, l = 10). For some elevational separation δ
[k]
j = (1 −

k
l
)δj + k

l
δj+1, k = 1, . . . , l, corresponding to no calibration data, a set of synthetic sample

correlation coefficients are interpolated linearly between sample correlation coefficient data

obtained during calibration at δj and δj+1. Baker’s method is then applied to the artificial

samples, yielding a finely sampled likelihood function p(ρ|δ[k]
j , q). Increasing the resolution

of the discretised likelihood function in this manner allows L(ρ|δ, q) to be subsequently

interpolated at arbitrary δ using cubic splines without much undue oscillation.

4.3 Maximum likelihood mini-frame pose estimation

Once a speckle decorrelation model has been obtained through calibration, it can be used to

estimate the elevational displacements between pairs of correlated image patches in a new

ultrasound scan. In the trajectory recovery framework proposed in the previous chapter,

an elevational trajectory must be estimated for the set of mini-frames corresponding to

each image patch within the pre-defined calibration grid. Thus, the noisy, redundant cor-
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relation measurements between mini-frames and the signs corresponding to the directions

of elevational displacements between them (as found by the TSP-sort algorithm) must now

be merged as accurately as possible into a set of consistent elevational pose estimates for

each of the mini-frame centres. This problem is very similar to those of automatic robot

localisation [202, 139, 173] or sensor network calibration [100, 141], as it may be thought of

inferring the maximum likelihood positions of points related by a network of uncertain pose

relationships (in this case, provided by correlation measurements). The solution proposed

here draws inspiration from these domains. Mathematically, the objective is to estimate the

ML positions z
[q]
i , i = 1, . . . , n along the elevational direction of n mini-frames correspond-

ing to patch q with respect to the first mini-frame with position z
[q]
0 . For the remainder of

this section, it will be assumed that all computations take place for a particular patch q;

thus, for convenience, the superscript [q] will temporarily be dropped from all mathematical

notation. Without loss of generality, it is assumed that z0 = 0. A correlation measure-

ment ρij between mini-frames i and j provides an estimate of their elevational separation

δij = |zi − zj | via the log-likelihood function L(ρij |δij, q). For every mini-frame, there will

be many such correlation measurements, and therefore, many available uncertain distance

relationships involving its own pose.

Let z denote the position vector formed by concatenating the zi, i = 1, . . . , n. The

output of the TSP-sort algorithm provides the signs sij of each elevational separation

between mini-frames i and j, so that zj − zi = sijδij , j > i. Assuming that the correlation

measurements are mutually independent of each other given the relative configuration of

the frames, the maximum likelihood position vector z is given by

z∗ = argmax
z

∏

j>i

p(ρij | |zi − zj |, q) = argmax
z

∑

j>i

L(ρij | |zi − zj |, q). (4.10)

Finding z∗ is a difficult multi-dimensional non-linear optimisation problem for arbitrary L,

as the objective function is bound to have many local minima. For the problem studied here,

it was observed empirically that L often has a strong maximum in the vicinity of (though

not necessarily co-located with) the δ corresponding to the correlation measurement input

on the average decorrelation curve, suggesting that a quadratic approximation to L is both

meaningful and useful. This quadratic approximation amounts to treating δij = |zi − zj |
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as a Gaussian random variable with mean δ̄ij given by

δ̄ij = argmax
δij

L(ρij |δij, q) (4.11)

and variance σ2
ij given by

σ2
ij =

−1
d2

dδ2
ij

L(ρij |δ̄ij, q)
. (4.12)

(4.11) is solved easily by a standard 1D optimisation algorithm (Golden Section search was

used in the experiments) using, for example, the δ read off an average decorrelation curve

as an initial guess. The denominator of (4.12) is simply the second derivative of the cubic

spline used to interpolate L (see Section 4.2), evaluated at the previously found value of

δ̄ij . Occasionally, the 1D optimiser fails to solve (4.11) (this can happen if the approximate

L has no local maximum, for example) and σ2
ij is calculated as negative. In such cases, the

measurement is discarded.

Using this Gaussian approximation, the original multi-dimensional optimisation prob-

lem amounts to that of minimising a sum of Mahalanobis distances. That is,

z̃∗ = argmin
z

∑

j>i

(zj − zi − sij δ̄ij)
2

σ2
ij

, (4.13)

where the sign sij of the displacement between mini-frames i and j is provided by the TSP-

sort algorithm of Chapter 3. This is a much simpler optimisation problem than (4.10), and

was solved analytically for the context of mobile robot localisation by Lu and Milios [139].

The following steps are direct adaptations from their work. Re-expressing (4.13) in matrix

form yields

z̃∗ = argmin
z

(STSP δ̄ −Hz)⊤Σ−1(STSP δ̄ −Hz), (4.14)

where STSP is a diagonal matrix containing the sij, the signs found by the TSP-sort,

algorithm, δ̄ is the vector of distance estimates obtained from (4.11), H is a matrix whose

entries consist exclusively of the values 0, 1 and -1, expressing the linear relationships

between distances and absolute positions (of the form sijδij = zj − zi), and Σ is a diagonal

matrix of the variances computed using (4.12). The analytical solution to the problem

of (4.14) is [139]:

z̃∗ = (H⊤Σ−1H)−1H⊤Σ−1STSP δ̄. (4.15)
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Because Σ is diagonal, the large matrix inversions involved in (4.15) can be avoided and

the problem reduced to the solution of n linear equations, independently of the number of

correlation measurements involved. Let G denote the n×n matrix H⊤Σ−1H and b denote

the n-dimensional vector H⊤Σ−1Sδ̄. Then, the non-zero entries of G are given by [139]

Gij =







∑n
k=0

1
σ2

ik

i = j

− 1
σ2

ij

otherwise
(4.16)

and the entries of b are given by

bi =

n
∑

j=0,j 6=i

sij δ̄ij
σ2

ij

. (4.17)

The minimum variance solution z̃∗ is then found by solving the linear system of equations

Gz̃∗ = b. (4.18)

In addition, this weighted least-squares methodology allows one to obtain a covariance

matrix for z. This covariance matrix, denoted by C, is simply given by [139]

C = G−1. (4.19)

This covariance matrix captures the relative uncertainties in the inferred positions of the

mini-frames; in particular, the main diagonal gives the variance in the position of each

mini-frame with respect to the reference point and in this respect, it shows how uncertainty

accumulates over frame acquisitions. Though it will not be exploited in this chapter, the

covariance matrix C can provide useful information in the context of tasks which use the

output of the mini-frame pose estimation framework or make decisions based on it. This

idea will be explored in Chapter 7, where the uncertainty information will condition the

inclusion or exclusion of new distance estimates via hypothesis tests in the context of

possible speckle decorrelation model failures.

The maximum likelihood estimation framework described above theoretically allows for

the fusion of any number of correlation measurements of arbitrary quality. On the one hand,

the use of multiple measurements should increase precision by reducing the variance in z
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as measurement noise is averaged out. This is particularly appealing where non-monotonic

probe motion is present as it allows for later measurements of a given area to confirm earlier

measurements of the same area and forces all measurements in between to be consistent

with both (a phenomenon known as “loop closing” in the robot localisation literature).

It may not, however, be desirable to use all possible measurements. Even in the context

of Rayleigh scattering, slight local variations in speckle correlation length can be observed

in finitely sized windows, as the random distribution of the scatterers in the target leads

to slightly different local statistical properties for finite sample sizes. This is illustrated by

Figure 4.2, which shows three different local decorrelation curves from synthetic imagery of

fully developed speckle. While one of the curves follows the average curve well, the others

show noticeable, though slight, differences in behaviour. While variations in the value

of individual sample correlation coefficients are well modelled by the probabilistic model

of Section 4.2, the maximum likelihood estimation framework presented above makes the

useful, but not entirely valid assumption that these variations are spatially independent of

each other. In fact, if the correlation ρik between mini-frames i and k is higher than average

given their elevational separation and mini-frame j lies between them, then ρij and ρjk will

also likely be higher than average given the configuration of the mini-frames. In regions

where the correlation length increases, more frames correlate to each other, creating an

over-abundance of measurements suggesting shorter inter-frame distances than is accurate.

These measurements tend to dominate the data fusion process due to their number.

A suitable compromise is obtained by introducing three adjustable parameters into the

proposed scheme, ϕmin, ρmin and ρnew. The first adjustable parameter, ϕmin, determines the

minimum number of consecutive correlation measurements per mini-frame. ρmin determines

the minimum correlation required between a pair of mini-frames for the measurement to

be used. A derived parameter ϕmax determines the maximum number of consecutive cor-

relation measurements per mini-frame. ϕmax is simply calculated as the average number of

consecutive mini-frames needed to reach ρmin from a reference mini-frame in the sequence

at hand. The second adjustable parameter, ρnew is a minimum correlation value for which

new measurements should be taken into account even if the ρmin or ϕmax thresholds have

previously been violated and is useful for exploiting meaningful correlation measurements in

sequences with non-monotonic probe motion. In the experiments presented here, ϕmin = 2

and ρnew = 0.7. This value of ρnew was selected empirically on the basis of performance in

monotonic and non-monotonic synthetic ultrasound scans. In practice, it was found that
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Figure 4.2 The average decorrelation curve constructed from 150 mini-
frames of synthetic ultrasound imagery of a speckle phantom (thick solid line)
and three local decorrelation curves estimated from 10 frames each in three
non-overlapping 1.0 mm windows of the same phantom (squares, circles and
crosses).

allowing ρnew < 1 marginally improves performance in non-monotonic scans, but that the

algorithm is not overall very sensitive to this parameter. ρmin was defined for each patch

by cutting off the lowest 20% of the range of correlation values observed during calibration.

4.4 Experiments

The trajectory recovery approach proposed in this chapter was tested on synthetic and real

ultrasound imagery of speckle phantoms. The ML data fusion algorithm was compared

to two alternative algorithms based on a deterministic piecewise linear model of speckle

decorrelation. Section 4.4.1 describes these base-line approaches and the error measure that

will be used for comparisons. Sections 4.4.2, 4.4.3 and 4.4.4 describe the image acquisition

protocols and discuss the results of the experiments for different kinds of synthetic and real

ultrasound image sequences.

Experimental results for the techniques described in this chapter were originally pre-

sented in [126]. Since the publication of this article, the experiments were substantially

revised. Some minor software bugs in the implementation of the methods were corrected;

others, which primarily arose from third-party libraries, were circumvented. The method-

ology was also tested on additional synthetic ultrasound data sequences which were still

being generated at the time of article submission. More importantly, the experiments with
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real imagery were conducted anew in their entirety.

4.4.1 Base-line algorithms and accuracy assessment

The ML elevational pose estimation component of the proposed approach (Section 4.3)

was experimentally compared to two base-line algorithms which have the same function:

given correlation measurements and the signs of the displacements between pairs of mini-

frames corresponding to the same image patch, estimate the elevational position of each

mini-frame centre with respect to the first. Both these base-line algorithms use a single

correlation measurement per mini-frame in order to achieve this.

The first of these base-line algorithms positions each mini-frame using only its corre-

lation measurement to its immediate predecessor. With some abuse of terminology, this

approach is dubbed the “nearest-neighbour” (NN) algorithm and is illustrated in Fig-

ure 4.3(a). This approach is not expected to do very well because when the elevational

motion is slow, it infers distances based only on error-prone high correlation measurements

lying in a flat section of the average decorrelation curve, leading to the accumulation of

a large number of inaccurate distance estimates and causing drift. The method is also

expected to show strong variability in the accuracy of its reconstructions because each pose

estimate is based on the accumulation of many uncertain measurements, leading to steadily

increasing uncertainty along the chain.

The second base-line strategy used for comparison positions each mini-frame using its

correlation to a certain reference mini-frame until the correlation coefficient falls below a

minimal value ρmin or a maximum number of frames ϕmax is exceeded, at which point the

last mini-frame positioned becomes the reference. ρmin and ϕmax were chosen as described

in Section 4.3 for the ML approach. The method, henceforth referred to as the shifting

reference (SR) method, is illustrated in Figure 4.3(b). A similar method (applied to entire

frames) was used in [72] to avoid the accumulation of errors intrinsic to the NN method.

The SR method reduces both drift and increases in uncertainty over time by using fewer

highly biased distance measurements and by preferring direct distance measurements over

the accumulation of several uncertain distances. Unlike the ML approach (illustrated in

Figure 4.3(c)), the NN and SR methods use the deterministic average decorrelation curves

and a single measurement per mini-frame.

After computing the deterministic and probabilistic elevational speckle decorrelation
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(a) NN method (b) SR method (c) ML method

Figure 4.3 Schematic illustration of the three competing measurement fu-
sion approaches in the case of a monotonically acquired scan (so that the
geometric order of the frames is the same as their acquisition order in this
example). The arrows depict the correlation measurements between pairs of
mini-frames which are used by each method. The ML method is the only one
to use multiple measurements referring to every mini-frame.

models from a calibration scan of a speckle phantom, each experimental trial amounts to

computing the trajectory of the probe from an ultrasound image sequence using the global

framework introduced in chapter 3. That is,

1. Correlations between pairs of corresponding mini-frames are calculated;

2. The signs of the elevational pose estimates are found using the TSP-sort algorithm

of the previous chapter;

3. For each image patch location, the z positions of all mini-frames are estimated using

the ML estimation approach described in Section 4.3 as well as the NN and SR

algorithms;

4. The image planarity constraint is enforced using the three step robust rigid transfor-

mation fitting scheme described in the previous chapter, thereby correcting inverted

mini-frame orderings that may have been given by the TSP-sort algorithm.

Since there remains an unresolvable direction ambiguity as to the overall scanning direc-

tion (which is chosen by convention only), a trajectory with reversed z positions is also

computed. For all experiments, the reported results correspond to the estimated trajectory

that best matches the ground truth.
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For most experiments in this thesis, the accuracy of the recovered transducer trajectory

is evaluated in terms of the mean target registration error (mTRE). Let φ∗
i denote the rigid

transformation parameters obtained for frame i after the final rigid transformation fitting

step described in Chapter 3 and x
[q]
i denote the ground truth coordinates of the centre of

patch q in frame i. Then, the mTRE at frame i is given by

mTREi =
1

Q

Q
∑

q=1

||x[q]
i −R(x

[q]
0 , φ

∗
i )|| (4.20)

This method of evaluating the accuracy of inferred geometrical transformations was advo-

cated by van de Kraats et al. [224]. It has several advantages over other approaches (such

as directly comparing the parameters of the recovered trajectory to those of the ground

truth):

• The mTRE does not depend on the choice of a particular centre of rotation;

• It is easy to compute;

• It reflects the spatial distribution of locations where accuracy is desirable. For exam-

ple, in a sector shaped ultrasound scan, there are more image data at the bottom of

the image than at the top. This is reflected in the chosen grid of image patches for

these scans and implies that rotational errors that mainly affect the position of the

bottom of the image will be penalised more heavily than those which affect mainly

the position of the top of the image.

In the context of this research, the mTRE was useful in quantifying the comparative

accuracy of the different data fusion algorithms. For the purpose of statistical analysis, the

accuracy of an entire trajectory will also often be summarised by the mTRE averaged over

all its n+1 frames. Where accuracy is being compared between trajectories of significantly

different lengths, the average mTRE will also be normalised by the total length of the

trajectory (along the z direction) in order to allow for more meaningful comparisons. One

disadvantage of the mTRE is that it does not provide an indication of the type of error

which exists between geometrical transformations. As this is sometimes useful in order to

understand the behaviour of a particular algorithm, the inferred out-of-plane transducer

trajectory, expressed as displacement, yaw and tilt (calculated using the centroid of the
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image patches as the centre of rotation), is also provided along with the mTRE in the full

experimental results shown in Appendices A and B.

4.4.2 Experiments with synthetic ultrasound imagery

As a first step towards experimental validation, the probabilistic measurement fusion ap-

proach proposed in this chapter was first tested on synthetic ultrasound imagery obtained

using the Field II ultrasound simulator [110, 108]. These experiments allowed verification

of the theory in ideal imaging conditions with complete control and flexibility in the choice

of transducer trajectories, with uncorrupted ground truth. This flexibility allowed for ex-

ploratory experimentation with controlled out-of-plane rotational motion, which was not

possible with the setup used in the experiments with the real ultrasound scanner.

4.4.2.1 Generation of synthetic ultrasound data and trajectories

The synthetic imagery was generated using the Field II ultrasound simulator with a virtual

3.5 MHz linear array probe and a virtual speckle phantom scanned at a depth of 6 cm with

a focus at 3 cm and a sampling frequency of 50 MHz. The virtual speckle phantom was cre-

ated by randomly positioning a very large number of point scatterers within the scanning

volume. The resulting RF vectors were envelope detected using the Hilbert transform. In

order to demonstrate the feasibility of the proposed approach with RF scans, the synthetic

data were not scan-converted or log-compressed.3 The synthetic images were divided into

64 non-overlapping patches of 14 A-lines laterally by 490 samples axially (Figure 4.4(a)),

for each of which a probabilistic speckle decorrelation model and an average speckle decor-

relation curve were obtained by scanning the virtual phantom at 0.1 mm intervals.

In addition to the calibration scan, 38 synthetic image sequences of fully developed

speckle were generated using the Field II simulator with random probe trajectories in new

virtual speckle phantoms. All these trajectories were constrained to remain purely out-of-

plane, reflecting the assumption made throughout this thesis that any in-plane motion has

already been accounted for. Different types of trajectories were considered:

1. Pure monotonic translations by exponentially distributed random steps with a mean

of 0.15 mm (8 data sets);

3Scan-converted log-compressed synthetic data were used in earlier versions of this work [125] with very
similar results.
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(a) Synthetic imagery (interpo-
lated laterally, sub-sampled ax-
ially to correct scale and log-
compressed for illustration)

(b) Real imagery of a speckle
phantom

Figure 4.4 The chosen subdivision of ultrasound images into non-
overlapping patches.

2. Pure non-monotonic translations, where parallel frames were generated in the same

manner, with the direction of the probe reversed with a probability of 2% at any step

(10 data sets);

3. Monotonic translations (randomly generated as before) with rotational noise. At

every step, the rotational noise consists of additional yaw and tilt motions drawn

from zero mean normal distributions with a standard deviation of 0.1 degree (6 data

sets).

4. Non-monotonic translations with rotational noise, with changes of direction occurring

with a probability of 2% at any step (7 data sets);

5. Rotations about the vertical axis by exponentially distributed random steps with

a mean of 0.2 (slow) or 0.3 (fast) degree and translational noise. At each step, an

elevational translation is drawn from a zero mean normal distribution with a standard

deviation of 0.15 mm (7 data sets: 2 slow, 5 fast). The first two frames in all these

sequences were intersecting. In order to ensure that this was the case (so as to test

the behaviour of the algorithms in such circumstances), a few non-intersecting frames
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at the beginning of each sequence were sometimes deleted manually, as needed.

The rotations were applied using the centre of the transducer surface as the centre of

rotation. Except in the case of the rotational sequences, all data sequences consisted of 150

frames.

Experiments on these different types of scans will evaluate several aspects of the methods

proposed in this and the preceding chapter. The pure translational sequences will enable

comparison of the different measurement fusion strategies under ideal circumstances. In

noisy translational sequences, the addition of small amounts of rotational noise to otherwise

translational sequences introduces a source of speckle decorrelation which is not captured

by the speckle decorrelation models (deterministic or probabilistic) during calibration. Ro-

tational noise, can thus be confused for translational motion and decrease the accuracy of

the trajectory recovery process. These noisy translational sequences will also test how well

small amounts of yaw and tilt can be recovered implicitly from the elevational translations

measured at different locations. Experiments on non-monotonic trajectories will show how

well the TSP-sort mini-frame ordering approach can perform under the ideal and less than

ideal cases corresponding to pure and noisy translational motion. Experiments with non-

monotonic noisy translational sequences and rotational sequences will test the ability of

the framework proposed in the previous chapter to correctly recover intersections between

frames, as well as the ability of the entire framework to recover large yaw motions.

4.4.2.2 Preliminary assessment of results and choice of statistical analysis

To avoid clutter, the complete set of results for these experiments on synthetic data were

placed in Appendix A rather in the body of this chapter. The appendix provides plots com-

paring the progression of the mTRE over time as well as plots comparing the displacement,

yaw and tilt components of the estimated trajectories to those of the true trajectory for

the ML, NN and SR approaches. When appropriate, selected examples from this complete

set will be discussed for illustrative purposes.

In order to guide the interpretation and statistical analysis of these results, the accu-

racy of each trajectory estimate was first summarised and quantified by the average mTRE

calculated over all its frames. These results are presented in boxplot form, grouped by

algorithm and trajectory type, in Figure 4.5.4 From this boxplot, it is evident that all al-

4The boxplots presented in this thesis were generated using the SPSS statistical package, which explicitly
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gorithms yielded smaller average mTREs in the (both pure and noisy) translational image

sequences than in the primarily rotational ones. However, this observation is not partic-

ularly meaningful because the overall displacements undergone by any part of the image

in the rotational sequences are very different, leading to a very different mode of error

accumulation over time. The average mTREs obtained for the pure and noisy translational

cases lend themselves much better to quantitative comparisons as the total displacement

undergone by any part of the ultrasound image over an entire trajectory, and hence the

potential for accumulating error, is, by design, very similar from one image sequence to the

next.

Motion type
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Figure 4.5 Boxplot of the average mTRE between the true and estimated
trajectories for the NN, SR and ML algorithms, grouped by trajectory type.

A more meaningful observation is that the mTREs recorded for non-monotonic noisy

translations appear to be more variable across cases than those recorded for the other

types of translational trajectories, and that one of these cases produced an extreme outlier

when the NN algorithm was used. It was found that the increased variability in the case

of noisy non-monotonic translations was the result of frame ordering errors committed

by the TSP-sort algorithm which arose because of misinterpretations of the unmodelled

speckle decorrelation introduced by the rotational noise. Such frame ordering errors were

not observed in the case of pure translations.

Based on these observations, a decision was made to carry out a formal statistical anal-

displays outlying data points as round dots or stars (for extreme outliers). The numbers shown next to
these outliers are simply the unique identifier associated with the data in the software.
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ysis based on a restrained portion of the results. The goal of this statistical analysis is to

compare the performance of the NN, SR and ML measurement fusion algorithms and the

direct effects of trajectory type on each of them under the assumption of correct input data

from the frame-ordering portion of the framework. Because the average mTREs obtained

with the rotational sequences could not be meaningfully compared to those of the pure

and noisy translational ones, they were left out of this analysis. Among the translational

sequences, three cases were also excluded from the analysis because they showed evidence

of errors at the level of the TSP-sort algorithm. A case was labelled as showing evidence

of frame ordering errors if at least one of the three algorithms tested reported a different

number of direction reversals in its displacement estimation plot than existed in the ground

truth. The remaining cases were grouped by motion type (pure or noisy translation) and by

directionality (monotonic or non-monotonic) and analysed using a mixed between/within-

subject factor analysis of variance (ANOVA) [199]. The effects of algorithm choice for any

given sequence, motion type and directionality were evaluated, as well as all combinations

of these. Where statistically significant effects were detected, pairwise comparisons be-

tween algorithms or combinations of algorithms and motion types were carried out, using

the Bonferroni correction to adjust the results for multiple comparisons [199]. Statistical

significance was evaluated at the 5% level. In the following sections, the main findings of the

study in terms of the effects of algorithm choice, motion type and motion directionality will

be interpreted in light of this quantitative analysis. Where relevant, cases which were ex-

cluded from the analyis will also be discussed as they provide important insights about the

interaction between the different measurement fusion algorithms, the TSP-sort algorithm

and the robust enforcement of the image planarity constraint discussed in Chapter 3.

4.4.2.3 Translational sequences and choice of measurement fusion algorithm

Overall, for the set of (pure, noisy, monotonic and non-monotonic) translational sequences

considered in the statistical analysis, the SR and ML methods achieved the best results

and significantly outperformed the NN method (p < 0.001 in both cases). An overall

significant difference was also found between the SR and ML approaches, with the latter

outperforming the former (p = 0.006), confirming that the probabilistic decorrelation model

and measurement fusion approach proposed in this chapter are effective at quantifying and

reducing error under controlled conditions.
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The NN method generally did poorly because it uses distance estimates arising from high

correlation measurements, which correspond to a region of the decorrelation curve which

was poorly represented by its deterministic piecewise linear model. In these simulations,

this meant that distances were generally underestimated by the NN method, as illustrated

by an example in Figure 4.6.
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Figure 4.6 An example illustrating the tendency of the NN method to un-
derestimate distances in the simulation study. In this example, the trajectory
of the probe was purely translational and monotonic. From left to right: mean
target registration error, estimated displacement, estimated yaw, estimated
tilt using the centroid of the grid of image patches as the centre of rotation.
Dashed-line: ground truth, blue: NN method, green: SR method, red: ML
method. Note how the NN method’s estimate of displacement lies beneath
the ground truth.

Another noteworthy finding concerns the variability of the error across trials. Figure 4.7

shows the average, minimum and maximum mTRE as they evolve over 150 frames in the 8

monotonic, purely translational sequences, chosen for their comparable underlying ground

truth trajectories. Essentially, the plot is an average of the 8 individual mTRE plots given

in Appendix A. The plot shows that, for such cases, the ML method reduces the average

error, but also how it limits the variability of this error, leading to generally more accurate

and more repeatable results compared to the NN and SR methods.

4.4.2.4 Monotonic versus non-monotonic translations

Another interesting finding is that in the purely translational case (i.e. in the absence

of rotational noise), the average mTRE is significantly reduced when the trajectory is

non-monotonic (p = 0.01). This is particularly dramatic in the case of the NN method

(p < 0.001). This improvement in overall accuracy is readily apparent when comparing the

progression of the mTRE over time for monotonic and non-monotonic trajectories. Illus-
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Figure 4.7 The average mTRE (in mm) incurred at each frame by the NN
(blue), SR (green) and ML (red) approaches for pure monotonic translational
sequences Synthetic 2-9. The top and bottom of the error bars indicate the
maximum and minimum mTRE.

trative cases are shown in Figure 4.8. Whereas in the monotonic case, the mTRE incurred

by the NN method continually increases over time, this error starts decreasing when there

is a change in scanning direction for the non-monotonic case. The reason for this is that

when the probe trajectory changes direction, any systematic drift intrinsic to the inference

method also changes direction, thereby cancelling, to an extent, the drift accumulated prior

to the direction change. From results such as those shown in Figure 4.8(b), it seems likely

that direction changes might similarly affect the SR and ML methods, but that because of

the slow drifting behaviour of these methods, more samples would be required to detect a

statistically significant effect in these specific cases. Should this be true, it would suggest

the possibility of devising new scanning protocols including such direction reversals in order

to optimise accuracy.

4.4.2.5 Pure versus noisy translations

As already mentioned, rotational noise introduces speckle decorrelation in the data which

is not accounted for by the elevational speckle decorrelation model obtained during cali-

bration. For the SR and ML approaches, this resulted in significant decreases in accuracy

(p = 0.003 in the SR case, p < 0.001 in the ML case), even when excluding cases asso-

ciated with frame ordering errors. All algorithms had difficulty correctly estimating the

small amounts of rotational motion present in these sequences, more so with tilt than with

yaw. This is not very surprising since only translation is modelled at calibration time:

rotations are only inferred implicitly through the calculation of elevational translation at
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(a) Pure monotonic translation example
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(b) Pure non-monotonic translation example

Figure 4.8 Comparison of results for monotonic and non-monotonic trajec-
tories in the purely translational case. From left to right: mean target regis-
tration error, estimated displacement, estimated yaw, estimated tilt. Dashed
line: ground truth, blue: NN method, green: SR method, red: ML method.
For all methods, but especially NN, the mTRE undergoes a decrease when
there is a change in direction.

different image locations. The scheme does not account for speckle decorrelation caused by

rotational motion itself. Tilt estimates are particularly sensitive to this because the shape

of the resolution cell varies significantly along the axial (in this case, vertical) direction,

causing fast changes in the spatial distribution of the scatterers actually imaged by the

transducer as it rotates, thereby substantially changing the way speckle decorrelates over

distance [151, 111, 92]. Speckle decorrelation caused by small amounts of tilting is largely

misinterpreted by the proposed model as part of the translational displacement, yielding

poor tilt estimates as a result. This is evident in the examples shown in Figure 4.9.

While the SR and ML algorithms saw their respective accuracies decreased in the pres-

ence of rotational noise, statistical analysis revealed that, to the contrary, the unmodelled

rotational speckle decorrelation significantly improved the accuracy of the NN algorithm

in comparison to the purely translational case when the probe trajectory was monotonic

(p = 0.001). This surprising result could be explained by the fact that the additional

speckle decorrelation (implying larger distances) introduced by the rotations compensates
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(a) A noisy translation example with poorly estimated tilt

0 100 200
0

0.5

1

1.5

2

Frame number

m
T

R
E

 (
m

m
)

50 100 150
0

5

10

15

20

Frame number

Z
 d

is
pl

ac
em

en
t (

m
m

)

50 100 150

−0.5

0

0.5

1

Frame number
Y

aw
 (

de
gr

ee
s)

50 100 150

0

0.5

1

1.5

2

Frame number

T
ilt

 (
de

gr
ee

s)

(b) Another noisy translation example with poorly estimated tilt

Figure 4.9 Samples showing how tilt is poorly accounted for by a trans-
lational speckle decorrelation model. Left to right: mean target registration
error, estimate of displacement, estimate of yaw, estimate of tilt using the
centroid of the image patches as the rotation centre. Dashed line: ground
truth, blue: NN method, green: SR method, red: ML method. In assessing
the results presented in this figure and all others, the reader should keep in
mind that different examples may have their axes scaled differently.

for the tendency of the NN algorithm to underestimate distances in the purely transla-

tional case. There was no such significant effect in the case of non-monotonic trajectories,

possibly because non-monotonicity already compensates for drift, as discussed earlier. The

case shown in Figure 4.9(a) is a particularly interesting one because for this case, the NN

method did unusually well in terms of average mTRE and outperformed both the SR and

ML methods. The plot of estimated tilt angles for this case provides an explanation for

the atypical competitiveness of the NN method: on average, its estimated tilt component

is closest to the ground truth, whereas the tilt curves for the SR and ML methods show

strong evidence of drift error. However, the shape of the NN tilt curve is not at all similar

to the ground truth, whereas the SR and ML curves do share features with it (hills and

valleys in similar locations).

Another, indirect, effect of rotational noise is that the misinterpretation of tilt induced

speckle decorrelation can lead the TSP-sort algorithm to commit mini-frame ordering errors

in non-monotonic trajectories. As mentioned before, cases where this occurred were not
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included in the formal statistical analysis, but they are still worthy of interest. Figure 4.10

shows a few examples of successful and unsuccessful frame ordering for pure and noisy

non-monotonic translational sequences.

The behaviour of the different measurement fusion algorithms in the presence of frame

ordering errors is interesting. The example shown in Figure 4.10(c) corresponds to the

extreme outlier recorded for the NN case of the non-monotonic, noisy translational trajec-

tories in the boxplot of Figure 4.5. From the displacement estimates shown in the second

plot of Figure 4.10(c), it transpires that the source of the large average mTRE obtained for

the NN method is that it completely missed the change in scanning direction near frame 20,

implying that the mini-frame orderings found by the TSP-sort algorithm were incorrect,

probably due to the considerable tilting motion occurring at that time. The SR and ML

methods, in spite of not perfectly following the ground truth near the direction change, did

not altogether miss it, even though they used the exact same TSP-sort output. The likely

cause of this difference is that the sorting error probably involved a very small number

of closely located frames in the vicinity of frame 20. Displacement sign errors therefore

mostly occurred between frames close in acquisition order (those likely to be used by the

NN approach), leaving the signs of larger displacements intact for use by the more robust

SR and ML algorithms.

Figure 4.10(d) shows a more subtle case of frame ordering error. The displacement

estimates obtained in the case of the NN algorithm in the second plot show that there

was some shuffling of mini-frames for at least some of the image patches near frame 80.

Once again, the SR and ML algorithms were more robust to these errors than the NN

algorithms. However, note how between frames 80 and 140, all three data fusion algorithms

show tilt estimates which are the reverse of the ground truth, with substantial error in

the yaw component of the trajectory for exactly the same frames. This suggests that

locally incorrect but consistent mini-frame orderings were obtained for laterally clustered

patches in that part of the scan. In all but the NN case shown in Figure 4.10(c), all three

algorithms were able to recover well enough from localised sorting errors to begin following

the translational component of the trajectory reasonably consistently. This illustrates the

strength of the TSP-sort algorithm: the errors it does make are generally local ones and

do not completely change the global structure of the inferred trajectory.



74 Probabilistic fusion of noisy correlation measurements

0 100 200
0

0.1

0.2

0.3

0.4

0.5

Frame number

m
T

R
E

 (
m

m
)

50 100 150

−5

0

5

Frame number

Z
 d

is
pl

ac
em

en
t (

m
m

)

50 100 150

−0.1

0

0.1

0.2

0.3

0.4

Frame number

Y
aw

 (
de

gr
ee

s)

50 100 150

−0.2

−0.1

0

0.1

0.2

Frame number

T
ilt

 (
de

gr
ee

s)

(a) Pure translation case with successful frame ordering
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(b) Noisy translation case with successful frame ordering
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(c) Noisy translation with a frame ordering error
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(d) Noisy translation with a frame ordering error

Figure 4.10 Sample non-monotonic translational trajectory results in the
absence and presence of frame ordering errors. From left to right: mean target
registration error, estimated displacement, estimated yaw, estimated tilt using
the centroid of the grid of image patches as the centre of rotation. Dashed-line:
ground truth, blue: NN method, green: SR method, red: ML method.
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4.4.2.6 Rotational trajectories

The results obtained for rotational image sequences were left out of the statistical anal-

ysis because they cannot be compared to those obtained for the translational results in

any meaningful way. Trajectory recovery results for these sequences are thus interpreted

separately in this section. Sample results are shown in Figure 4.11. The rotational image

sequences presented a particular challenge to the approach proposed in this thesis because

they violate its implicit assumption that displacements occur along a single direction. That

is, the yaw motion which dominates these image sequences causes individual image patch

displacements in both the lateral and elevational directions, the former of which are not

explicitly accounted for by the fusion algorithms, but rather left for inference by the robust

rigid transformation fitting step described in the previous chapter. As the magnitude of

the rotation between a given frame and the first frame in the sequence increases, the fitting

process becomes more difficult because of the increase in the size of the residuals caused

by incorrect distribution of the estimated displacement over the elevational and lateral

directions. In the case depicted in Figure 4.11(a), all methods managed to recover the

true trajectory in spite of this, though this was achieved with varying levels of accuracy —

the NN method once again yielded considerably poorer performance than its competitors,

with ML generally outperforming SR slightly. More typically, errors become significant for

very large yaw angles, as in the example shown in Figure 4.11(b), which displays relatively

low error for most of the trajectory but a steep increase in the mTRE towards the end.

While this leaves much room for conceptual improvement of the proposed approach, rea-

sonably good results were still obtained for non-trivial rotation angles in most cases. The

case shown in Figure 4.11(c) was particularly challenging because its first two frames were

positioned so that there were nearly the same number of patches on either side of their

intersection line. Thus, the LMedS fitting component described in Chapter 3 had to cope

with a large number of inverted mini-frame orderings at relatively high noise levels. The

robust standard deviation of (3.5) was too large to distinguish inliers from outliers, leading

to highly inaccurate positioning for all methods. The ML approach was the one to fail most

gracefully, giving results substantially closer to the ground truth than its competitors.
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(a) Excellent trajectory recovery for fast yaw motion with noisy translation
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(b) Typical trajectory recovery for fast yaw motion with noisy translation
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(c) Poor trajectory recovery for fast yaw motion with noisy translation

Figure 4.11 The results obtained for three rotational data sequences gener-
ated using the same random trajectory parameters. From left to right: mean
target registration error, estimate of displacement, estimate of yaw, estimate
of tilt. Dashed line: ground truth, blue: NN method, green: SR method, red:
ML method. Note the extreme differences in accuracy between the top and
bottom cases for all methods.

4.4.3 Experiments with real imagery: controlled monotonic trajectories

In order to assess the validity of the proposed probabilistic speckle decorrelation model

and measurement fusion approach in a more realistic scenario, experiments were also per-

formed on real ultrasound imagery of a speckle phantom. This section presents the results

of controlled experiments with monotonic translational trajectories for which the ground

truth was well-known. Qualitative results obtained in the less constrained scenario of non-

monotonic motion will be presented in Section 4.4.4.
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4.4.3.1 Controlled phantom imagery acquisition

Real speckle phantom imagery was acquired one frame at a time using the Stradx soft-

ware [165, 164] on a PC equipped with a video frame grabber connected to an Acuson Cy-

press clinical ultrasound machine with a 7V3C 5 MHz linear phased array probe at a depth

setting of 2.7 cm. The phantom was a multi-modality vascular imaging phantom [35] made

at and purchased from the Laboratory of Biorheology and Medical Ultrasonics, Montreal.

The phantom contains a tubular structure which mimics a blood vessel and is surrounded

by Rayleigh scattering material. For the experiments described in this thesis, the phantom

was scanned at such a shallow depth that only speckle, not the tubular structure, appeared

in the images. The real images were divided into 26 non-overlapping patches of 50 × 30

pixels (Figure 4.4(b)). The logarithmic dynamic range compression parameter was recov-

ered by applying the algorithm described in [168] to one of the data sequences and used to

obtain the echo intensity signal associated with all imagery.

The motion of the probe was restricted to the elevational direction and controlled to a

0.01 mm resolution using a manual positioning device based on a linear stage (Figure 4.12).

The stage was mounted (with adjustable height) on a metallic stand and a metallic arm

was attached to it in order to hold the transducer above the target. The device was custom

designed and assembled by the departmental mechanical workshop. Several steps were

taken in order to ensure the best possible accuracy of the ground truth measurements

acquired using this device:

• The table where the experiments were carried out was purposely reinforced with a

heavy, rigid, redundant steel frame.

• The positioning device was solidly secured to the table by way of a clamp.

• To avoid friction between the probe and the phantom, the latter was scanned in a

water bath.

• Brass plates were affixed to the casing of the phantom with double sided tape in order

to counter its natural buoyancy and ensure that it always remained submerged.

• Motion of the phantom within the water bath was further prevented by placing a

sheet of water resistant sandpaper at the bottom of the bath and avoiding contact

with the phantom, the bath or the table during the acquisition of data.
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In similar conditions, single displacement measurements were found to repeatably match

independent displacement measurements of the tip of the transducer bearing arm reported

by a solidly anchored dial indicator with a 0.0005” (approximately 0.01 mm) resolution,

supporting the use of the measurements reported by the device as ground truth.

Figure 4.12 The real imagery acquisition setup. (1) Polaris tracker beacon
(2) Probe bearing arm (3) Sub-millimetre linear stage (4) Tip of ultrasound
transducer (5) Water resistant sandpaper (6) Reinforced table (7) Phantom
(8) Clamp (9) At the time the data for the experiments of Section 4.4.4 were
acquired, a mechanical wedge could be inserted or removed in this location to
create chaotic or controlled monotonic trajectories, respectively.

The probe was attached to the beacon of a Polaris optical tracking device spatially

calibrated using the algorithm presented in [169] and implemented in the Stradx soft-

ware [165, 164] so that the tracker readings could be compared against when needed. The

Polaris data could have been used as ground truth; however, its position measurements,

though driftless, are corrupted by noise often more substantial than the smallest distance

intervals travelled in the experiments, and it was felt that, in light of the results obtained

with synthetic data, a less noisy data source would be required for comparison of the

proposed algorithm to the SR algorithm, which can exhibit similar accuracy.

A note on experiment duplication When conducting the original quantitative phan-

tom experiments presented in [126], some data sets were acquired for which the NN method

gave more accurate results than the SR or ML methods. In light of the results obtained
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with synthetic imagery, this was assumed to be anomalous. Upon visual inspection, irreg-

ularities were found in these image sequences which suggested that unwanted mechanical

vibrations in the experimental setup had contaminated the ground truth measurements.

These image sequences were thus excluded from the study. It was later discovered that sev-

eral of the image sequences which had been included in the original analysis [126] were also

affected by motion artefacts. As a result of this finding, the decision was made to duplicate

the experiments in more carefully controlled conditions for the quantitative assessment of

the different approaches in this thesis.

For the new experiments, mechanical adjustments were made to the positioning device

in order to improve its stiffness and all image sequences were inspected for vibrations before

running the trajectory recovery algorithms (few problems were encountered). The new set

of experiments also provided an opportunity to carry out a more rigourous analysis and to

test the algorithms more evenly over a broader range of transducer motion speeds than was

originally done for [126]. Namely, 10 phantom image sequences were acquired for each of

6 different inter-frame spacings (0.03, 0.04, 0.05, 0.06, 0.08 and 0.1 mm), yielding 60 data

sequences of at least 161 frames each (three of them had 171). This permits an analysis of

the effects of transducer speed on the different algorithms.

4.4.3.2 Preliminary assessment of results and choice of statistical analysis

Since all image sequences consist of regularly spaced frames, any of them could be used as

a calibration scan to build the speckle decorrelation model of Section 4.2. Over the course

of preliminary evaluations, it was unexpectedly discovered that the choice of calibration

scan was a source of substantial variability in the accuracy of the trajectories recovered

by the SR and ML algorithms. Figure 4.13 illustrates the cause of this variability: upon

analysis of the speckle decorrelation models obtained from different data sequences, it

appears that there were sizeable variations in overall correlation length in different parts of

the phantom. Given that the decorrelation curves and probabilistic decorrelation model are

calculated from averages over large numbers of correlation measurements, these variations

across different data sets suggest that the phantom may not have perfectly homogeneous

Rayleigh scattering properties, or that the image patches were too small to warrant the

repeatability of the average decorrelation curves observed in the case of synthetic data. The

choice of image patch size was not investigated heavily in the context of this thesis, but there
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most likely exists a trade-off between the repeatability of the observed correlation-distance

relationship and the regularisation afforded by a large number of patches in enforcing the

image planarity constraint. Preliminary evaluation also suggested that the speed at which

the calibration scan was acquired (i.e., the resolution of the speckle decorrelation model)

might affect the different algorithms in various ways.

In light of these preliminary observations, a decision was made to evaluate the accuracy

of each algorithm on every possible pair of calibration and test image sequences, thereby

providing as thorough and detailed an assessment of the different approaches as possible.

The complete set of detailed results for these experiments is too large to include in this

thesis in its entirety, owing to the thousands of possible pairings between image sequences.

Appendix B provides a subset of these results, consisting of one case for each different com-

bination of calibration and test sequence inter-frame spacings, for a total of 36 examples.

In order to give a fair impression of the proposed method’s performance, the examples were

selected by finding, for each combination of calibration and test sequence inter-frame spac-

ings, the image sequence which gave the median mTRE (averaged over the entire sequence)

associated with the proposed ML measurement fusion scheme. The results presented in the

appendix are plots comparing the mTRE, elevational displacement estimates, yaw and tilt

estimates (using the centroid of the image patches as the centre of rotation) for the NN,

SR and ML algorithms in the selected median cases. Illustrative examples from this subset

of the results will be discussed here when relevant. Figure 4.14 summarises the results by

showing, for a variety of calibration and test sequence inter-frame spacings, the progression

of the mTRE over time averaged over all pairs of relevant image sequences.

4.4.3.3 Statistical analysis

Figure 4.14 suggests that the average accuracy of the different algorithms, and possibly

their respective rankings, can vary substantially depending on the inter-frame spacing of

the test and calibration image sequences. In light of this, a formal statistical analysis

was conducted to assess and compare the accuracy of the recovered transducer trajectories

under the influence of three factors:

1. The choice of measurement fusion algorithm (NN, SR or ML);

2. The inter-frame spacing of the image sequence for which trajectory is recovered;
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Figure 4.13 The decorrelation curves collected from two different data sets
(corresponding to the solid and dashed lines) of speckle phantom imagery over
the grid of image patches defined in Figure 4.4. Note how the decorrelation
curves from the two data sets are in close agreement for some locations but
have sizeable discrepancies in others. Large discrepancies are not expected in
the context of pure Rayleigh scattering.
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Figure 4.14 The progression of the average mTRE (in mm) over time for
the NN (blue), SR (green) and ML (red) approaches in real phantom data se-
quences. The error bars represent plus and minus one standard deviation. For
legibility, results for calibration inter-frame spacings of 0.04 mm and 0.06 mm
were omitted and in each plot, the data points and error bars were sub-sampled
at interleaved locations for the NN, SR and ML algorithms.
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3. The inter-frame spacing of the image sequence used to obtain the speckle decorrelation

model at calibration time.

Ideally, this analysis would have taken place over all possible pairings of calibration and test

image sequences. This, however, introduces important statistical dependence relationships

between the subjects of the analysis and, as a result, the raw data cannot be treated

properly using conventional statistical analysis tools (i.e. the various flavours of analysis of

variance and other standard linear models).5 In order to eliminate problematic statistical

dependencies between different pairs of subjects while accounting for the variability of the

results obtained with different calibration data sequences, the image sequences were divided

into a test set and a calibration set and analysed as follows:

1. For each level of inter-frame spacing, 3 sequences were randomly chosen to become

part of the calibration data set, leaving 7 for the test data set. There were therefore

18 calibration sequences and 42 test sequences.

2. In order to keep the analysis manageable, the effect of calibration inter-frame spacing

was evaluated at 3 levels instead of the original 6. This was done by collapsing pairs

of consecutive levels of inter-frame spacing. The resulting three levels were labelled

as dense (0.03 or 0.04 mm spacing), moderate (0.05 or 0.06 mm spacing) or sparse

(0.08 or 0.1 mm spacing).

3. For each test sequence, measurement fusion algorithm and calibration sequence within

a given calibration spacing level, the accuracy of the recovered trajectory was sum-

marised as the mTRE averaged over all the frames of the test sequence and normalised

by the true length of the sequence. This allows meaningful comparison of relative

accuracy between test sequences acquired at different inter-frame spacings. These

normalised average mTRE scores were then averaged over all calibration sequences

within each level of calibration spacing, yielding one score for each test sequence,

algorithm and calibration spacing combination. This last averaging process is meant

to account for some of the observed variability arising from the use of different cali-

bration sequences.

5This type of experimental design (involving multiple redundant pairs of subjects) is sometimes encoun-
tered in psychological research which considers relationships between and within pairs of individuals. It
is known as the round-robin experimental design and while statistical methods for analysing data which
arise from this type of design exist [113], they are somewhat difficult to use and are not available as part
of commercial statistical analysis packages.
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4. A mixed effects linear model [235] was fitted to these data, treating the identity of

test sequences as a random effect, and algorithm and calibration inter-frame spacing

as fixed, repeated effects and test sequence inter-frame spacing as a between-subject

fixed effect.

5. The effects of test sequence inter-frame spacing, calibration sequence inter-frame spac-

ing (in terms of the 3 above defined levels), choice of measurement fusion algorithm

and combinations thereof were tested for statistical significance at the 5% significance

level. Multiple comparisons were then carried out between the different algorithms

using the Bonferroni correction.

This statistical analysis revealed that the test and calibration sequence inter-frame spacings,

not the just the choice of measurement fusion algorithm, had an important influence on the

accuracy of the recovered trajectories. These results are discussed in more detail below.

The effect of test sequence inter-frame spacing The inter-frame spacing of the test

sequence was determined to have a statistically significant effect on the accuracy of the NN

algorithm (p < 0.001). In fact, the behaviour of the NN algorithm varies tremendously

with the inter-frame spacing of the test image sequence and this effect is also highly de-

pendent on the spacing of the sequence used for calibration. This is readily apparent from

some of the plots shown in Figure 4.14, as well as Figure 4.15. The latter figure shows

how the normalised average mTRE score varies with different combinations of test and

calibration sequence inter-frame spacing. It is evident from this plot that the NN approach

had difficulty accurately recovering trajectories with very tight (0.03 mm) inter-frame spac-

ing. Excluding this extreme case, there were also noticeable variations in accuracy among

the other test sequence inter-frame spacings, with a tendency to achieve better accuracy

at moderate (0.05, 0.06 mm) rather than extreme spacings; in such cases, it sometimes

outperforms the SR and ML approaches, as shown in Figure 4.14. The source of these

somewhat strange results is investigated in Section 4.4.3.4.

The test sequence inter-frame spacing also had a statistically significant effect on the

accuracy of the SR algorithm (p = 0.037). The effect of test sequence inter-frame spacing

on the SR algorithm manifests itself through more accurate results in the case of wide

inter-frame spacings, irrespective of calibration sequence inter-frame spacing. Recall from

Figure 4.3(b) that for a given set of corresponding mini-frames, the SR algorithm uses
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Figure 4.15 Normalised average mTRE obtained with the NN algorithm for
different combinations of calibration and test sequence inter-frame spacings.

some of the same distance estimates and commits the same distance estimation errors

as the NN approach. In most cases, these errors are worst at small inter-frame spacings

(e.g. 0.03 mm). When the inter-frame spacing is wider, these NN-type distance estimates

improve and the accuracy of the SR approach improves correspondingly. In contrast, test

sequence inter-frame spacing was not found to have a statistically significant effect on the

performance of the proposed ML approach (p = 0.558), implying that in image sequences

with irregularly spaced frames, this approach would exhibit more consistent performance

than the others over changes in transducer speed.

The effect of calibration inter-frame spacing The inter-frame spacing of the image

sequence used for calibration was found to have a statistically significant effect on the ac-

curacy of all three measurement fusion algorithms (p < 0.001 in all cases). In the case

of the NN algorithm, this effect is dependent on the inter-frame spacing of the test se-

quence under consideration, as discussed earlier. For the SR and ML algorithms, this effect

manifests itself through smaller normalised average mTRE in the case of widely spaced

calibration scans (i.e. sparsely sampled speckle decorrelation models) than in the case of

densely spaced calibration scans, irrespective of the inter-frame spacing of the test sequence

under consideration. This trend may seem counterintuitive: one might expect displacement

readings from the piecewise linear decorrelation curve to become more accurate as the curve
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is more densely sampled. However, the opposite was observed. One possible explanation

is that in these experiments, widely spaced image sequences sampled a larger portion of

the speckle phantom target than densely spaced ones as they all had similar numbers of

frames. Because the widely spaced sequences covered a larger distance, the micro-structure

imaged in the different frames may have been more varied than in densely spaced sequences

and the speckle decorrelation models derived from the imagery may thus have been more

representative of scattering conditions encountered elsewhere in the phantom.

The effect of the choice of measurement fusion algorithm Overall, the SR and ML

fusion algorithms were found to yield significantly lower normalised average mTRE than

the NN algorithm (p < 0.001 in both cases). No statistically significant overall normalised

average mTRE difference was found between the SR and ML algorithms. However, for

some specific combinations of calibration and test sequence inter-frame spacings, differences

between the SR and ML algorithms were found which approached statistical significance

(p−values ranging between 0.05 and 0.1). In light of the small sample sizes used (7 cases for

each combination of spacing levels) and of the increases in Type II error rates which arise

from the use of the Bonferroni correction in multiple comparisons, these results should be

considered as ambiguous rather than decisive, and interpreted with caution. These nearly

statistical significant results mostly reflected the information conveyed by Figure 4.14, i.e.

that for dense spacings in both test and calibration sequences, ML might outperform SR,

whereas SR might outperform ML in the opposite situation (sparse inter-frame spacing for

both the calibration and test sequences).

4.4.3.4 Further analysis: source of errors

What neither the statistical analysis nor Figure 4.14 convey is the types of errors committed

by the NN, SR and ML approaches under different combinations of test and calibration

sequence inter-frame spacings. For this information, one must refer to full trajectory re-

covery data such as the sample results given in Appendix B. For the purpose of discussion,

sample results are reproduced in Figure 4.16.

One detail that is immediately apparent from the plots shown in Figure 4.16 (and the

more extensive set of results in Appendix B) is that for the real speckle phantom image

sequences acquired in these experiments, the NN measurement fusion algorithm gener-

ally tended to overestimate transducer displacement in sequences with small (especially
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.03 mm
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(b) Calibration spacing = 0.1 mm, Subject spacing = 0.03 mm
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(c) Calibration spacing = 0.08 mm, Subject spacing = 0.04 mm
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(d) Calibration spacing = 0.08 mm, Subject spacing = 0.05 mm
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(e) Calibration spacing = 0.1 mm, Subject spacing = 0.1 mm

Figure 4.16 Sample trajectory recovery results for real phantom imagery
illustrating the types of errors committed by each algorithm (in particular, the
NN algorithm) for different test and calibration sequence inter-frame spacing
combinations. From left to right: mean target registration error, estimated
displacement, estimated yaw, estimated tilt using the centroid of the grid of
image patches as the centre of rotation. Dashed-line: ground truth, blue: NN
method, green: SR method, red: ML method.
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0.03 mm, but often 0.04 mm) inter-frame spacing and underestimate it for sequences with

large (mostly 0.1 mm, but also 0.08 mm) spacing, with continuous variation in between

these extremes. This is a somewhat surprising result which deserves an explanation. The

theoretical shape of the true speckle decorrelation curve is Gaussian like, with a maxi-

mum normalised correlation value of 1, concave but nearly flat for high correlation values.

In theory, a piecewise linear representation of this curve would therefore tend to provide

underestimates of distance for large correlation values rather than overestimates, as illus-

trated in Figure 4.17(a). In the case of real data (such as the imagery considered in these

experiments), however, highly correlated imagery may see its correlation reduced because

of uncorrelated noise in the images arising from the data acquisition process (in these ex-

periments, it is believed that interlacing artefacts from the video frame grabber might be

at fault). The consequence of this is that the maximum average normalised correlation

value may be smaller than 1, which will not be properly reflected by the speckle decorrela-

tion model inferred from the calibration scan. An illustration of this scenario is shown in

Figure 4.17(b). In this case, displacement over-estimates may be observed for very small

distances, with the displacement estimation process reverting to its theoretical behaviour

for larger inter-frame separations. More accurate displacement estimates can be observed

where the true decorrelation curve is close to the piecewise linear model, explaining the

relatively good performance of the NN method in cases like that shown in Figure 4.16(d).

The location of optimal inter-frame spacings depends on the inter-frame spacing of the

calibration data sequence. Different results may also have been obtained if the echo am-

plitude signal had been used instead of the echo intensity signal. In realistic scenarios,

freehand ultrasound image sequences are unlikely to have regularly spaced frames. The

NN approach is thus unlikely to perform well as the empirical decorrelation model ob-

tained from the calibration phantom is nearly always a very poor representation of the

true, non-linear decorrelation behaviour in the high correlation range, as previously noted

by others [204, 85].

Whereas the NN approach tends to either over-estimate or under-estimate transducer

displacement, the mTREs observed for the SR and ML approach more often tend to arise

from errors in the rotational components of the trajectory. This can be seen in several of

the examples given in Figure 4.16. It seems likely that these rotational errors arise from

local differences in the micro-structure of the phantom which lead to discrepancies between

the predictions made by the speckle decorrelation model obtained from the calibration scan
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(a) Theoretical true and sampled aver-
age decorrelation curves
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(b) True and sampled decorrelation
curves in the presence of noise

Figure 4.17 Illustration of the discrepancies between the piecewise linear
speckle decorrelation model used by the NN approach (solid line, with samples
represented by circles) and the “true” average decorrelation curve (dashed line)
for short distances. In the absence of noise, the maximum achievable average
correlation coefficient is 1 and the NN approach underestimates distance for
large correlation values. When noise is present, the true curve can begin with
an average correlation lower than 1, leading to distance over-estimates in the
case of very short distances.

and the model that would have been obtained if the test scan had been used for calibration

instead. Such discrepancies were already illustrated in Figure 4.13. The rotational errors

arise when these discrepancies cause displacement estimation errors in image patches at

the periphery of the grid (i.e. those which have the strongest influence on the yaw and tilt

estimates when enforcing the image planarity constraint).

4.4.4 Experiments with real phantom imagery and non-monotonic trajectories

In order to test the ability of the proposed scheme to recover non-monotonic trajectories

in real data (with the help of the TSP-sort algorithm introduced in the previous chapter),

another set of experiments was conducted. At the time the experiments were carried out,

the probe bearing arm of the sub-millimetre positioning device could be loosened or tight-

ened by inserting or removing a mechanical wedge between the stage and its supporting

metallic frame (see Figure 4.12). With the setup thus loosened, 9 data sets of 101 frames

of phantom imagery were acquired for which the probe exhibited chaotic elevational dis-
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placement patterns with brief direction changes. The speed of displacement varied between

approximately 0.03 mm/step and 0.08 mm/step. One or two frames were deleted from the

beginning of three of these image sequences because the chaotic probe displacement caused

the correlation between these frames to be too low for motion recovery.

In these experiments, the motion of the probe was measured using a Polaris optical

tracker spatially calibrated according to the wall-phantom method presented in [169], pro-

viding a noisy source of ground truth measurements. Upon comparison of the Polaris data

gathered from controlled (i.e. without arbitrary direction changes) experiments with posi-

tioning device measurements, it transpired that whether due to a physical imperfection of

the setup or errors in the tracker calibration process, the axis of motion of the positioning

device was not perfectly perpendicular to what the tracker calibration output determined

to be the image plane. The orientation of the positioning device’s motion axis within the

reference frame inferred by calibration was estimated by fitting a line to the Polaris data

associated with the calibration scan. This information was used to adjust the trajectories

estimated from image data for comparison with the Polaris measurements.

A single calibration scan with 0.08 mm inter-frame spacing was chosen among the data

sets used in the experiments of the previous section, and the probabilistic speckle decorre-

lation model obtained from it was used in the recovery of the non-monotonic trajectories.

Figures 4.18 to 4.19 show the results of these experiments. The plots compare the tra-

jectory inferred using the proposed image-based approach to that recorded by the Polaris

in terms of displacement, yaw and tilt (using the centroid of the grid of image patches

as the centre of rotation). The displacement plots show that the proposed approach was

generally able to recover the structure of the true trajectory quite well, including abrupt

direction changes (the results shown in Figure 4.18(b) and 4.18(d) are very illustrative of

this). These appear as sharp spikes or deep valleys in both the Polaris and image-based

trajectories, among smaller noise-induced fluctuations in the Polaris data for which the

image-based trajectory remains smooth.

In some cases, the image-based approach appears to produce overly smooth results.

Consider, for example, some of the valleys in the Polaris trajectory in Figure 4.18(c). Such

over-smoothing may occur because such deep valleys or sharp spikes in the trajectory force

the ML fusion algorithm to rely on very few correlation measurements, which are close

to zero (corresponding to large distances) and highly uncertain, in order to estimate the

position of the mini-frame corresponding to the spike or valley. The distance estimates for
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Figure 4.18 ML trajectory recovery results for real phantom imagery and
chaotic trajectories, part 1. From left to right: estimated displacement, yaw
and tilt angles, measured using the centroid of the grid of image patches as the
centre of rotation. Dashed line: Polaris optical tracker measurements, solid
line: trajectory recovered by the proposed approach.
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Figure 4.19 ML trajectory recovery results for real phantom imagery and
chaotic trajectories, part 2. From left to right: estimated displacement, yaw
and tilt angles, measured using the centroid of the grid of image patches as the
centre of rotation. Dashed line: Polaris optical tracker measurements, solid
line: trajectory recovered by the proposed approach.
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pairs of mini-frames surrounding the spike or valley are much more numerous and much

more reliable, and may easily dilute the contribution of these uncertain estimates if they

disagree with the rest.

In some cases (e.g. Figures 4.18(d) and 4.19(c)), there was significant rotational error,

considering the shortness of the trajectories. These errors, as with the previous exper-

iments, may have arisen due to localised discrepancies between the decorrelation model

established at calibration time and the local properties of the phantom area under consid-

eration. Another important source of error was the fact that very little effort was made to

control the quality of the imagery in these experiments, so that some data sequences were

corrupted by substantial blurring and interlacing artefacts arising from motion of probe

during the acquisition of data by the video frame-grabber. The image sequence corre-

sponding to Figure 4.18(d) had noticeably poor quality in this respect. These may have

decreased inter-frame correlations in localised parts of the image plane, leading to yaw and

tilt errors.

4.5 Summary and discussion

This chapter presented a novel speckle decorrelation model which accounts for the vari-

ability of the sample correlation coefficients measured between finitely sized image patches.

This model captures the uncertain and somewhat skewed relationship that exists between

elevational separation and the measured correlation coefficient and allows for the predic-

tion of distance estimates with associated uncertainty information, making it a richer model

than the deterministic approaches used in all previous literature. This chapter also showed

how the probabilistic speckle decorrelation model can be exploited for the probabilistic

fusion of correlation measurements between any number of correlated mini-frames in an

ultrasound data set.

Out-of-plane transducer trajectory recovery experiments were carried out to assess the

performance of the proposed probabilistic measurement fusion scheme with speckle phan-

tom imagery. The proposed approach was compared to two different deterministic tra-

jectory recovery approaches which use a minimal number of measurements, the naive NN

algorithm and the better behaved SR algorithm.

Experiments with synthetic ultrasound data allowed evaluation of the three algorithms

under different conditions with respect to the type of trajectory undergone by the trans-
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ducer, including monotonic and non-monotonic versions of pure translational trajectories

and translational trajectories with mild rotational noise, as well as rotational trajectories.

These experiments also allowed implicit validation of the TSP-sort mini-frame ordering

algorithm and robust rigid transformation fitting approaches described in the previous

chapter. Assuming that there are no frame ordering errors, it was found that, in synthetic

imagery, for the types of trajectories analysed, the SR and ML approaches both signifi-

cantly outperform the NN approach and that the ML approach significantly outperforms

the SR approach as well. The presence of rotational motion in the trajectory, in partic-

ular rotations with an axial component (tilt), is detrimental to accuracy because neither

the deterministic nor the probabilistic speckle decorrelation models considered here ac-

count for the speckle decorrelation caused by motion other than elevational translation.

Under general conditions, improved results might be obtained by using rotational speckle

decorrelation models [92] or prior knowledge about the probe trajectory.

The same three algorithms were also evaluated in experiments on real ultrasound im-

agery with monotonic translational trajectories of constant speed. The role played by

transducer speed (inter-frame spacing) at calibration and trajectory recovery time was also

evaluated for each algorithm. It was found that the accuracy of the NN algorithm is highly

dependent on the particular combination of calibration and test inter-frame spacings un-

der consideration, making it a poor choice in realistic conditions where transducer speed

is not constant. The ML approach was found to be the most stable of the three over

changes in test sequence inter-frame spacing, whereas the SR approach appears to have

a preference for wide inter-frame spacings. Both the SR and ML approaches were found

to be sensitive to the calibration inter-frame spacing, with a preference for widely spaced

calibration sequences. It is hypothesised that this preference is due to the broader set

of scattering conditions sampled and embedded in the speckle decorrelation model. The

ability of the proposed approach to recover non-monotonic transducer motion using the

TSP-sort algorithm was also demonstrated.

There remains some ambiguity as to whether there are significant differences in accuracy

between the SR and ML algorithm in real speckle phantom imagery and whether some

scanning conditions favour one over the other. Qualitatively speaking, the results suggest

that the ML approach might be better at slow transducer speeds and that the SR approach

might be best with fast transducer speeds. This analysis may have been obscured by the

variations observed in the speckle decorrelation rates measured in different scans of the
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phantom (as illustrated in Figure 4.13). While these variations were not expected in the

context of experiments with speckle phantom imagery, they certainly arise in more realistic

scenarios. In imagery of real tissue, variations in speckle decorrelation rate can be far more

pronounced and the speckle decorrelation models derived from speckle phantom imagery

become insufficient for accurate trajectory recovery.

The remainder of the work presented in this thesis aims at generalising the trajectory

recovery approach presented in this chapter to the case of real tissue. This begins in the

next chapter with the study of a new model for the spatial distribution of ultrasound

scatterers. In Chapter 6, this model will be used to generate synthetic imagery from

which the characteristics of different tissue types can be learned and exploited for the

extension of the proposed probabilistic decorrelation model to arbitrary tissue types. In this

context, Chapter 7 will show that the probabilistic approach presented here has a conceptual

advantage over deterministic approaches (such as the NN and SR approaches considered

here). This advantage stems from the fact that it preserves uncertainty information that

can be used to make informed decisions regarding the inaccuracy of distance measurements

arising from model failure. This powerful feature will be demonstrated in the context of

an iterative measurement selection and fusion strategy.
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Chapter 5

Modelling the spatial distribution of

ultrasound scatterers in 3D

The previous chapter showed how the correlation between two image patches could be used

to estimate the elevational displacement between them, and how many redundant such dis-

tance estimates could be combined to estimate the out-of-plane trajectory of an ultrasound

transducer from speckle phantom imagery. In validating this approach, synthetic ultra-

sound imagery was used profusely. The synthetic validation platform allowed trajectory

recovery algorithms to be tested for arbitrarily constrained but perfectly known transducer

trajectories, which was not possible using the 1 degree of freedom sub-millimetre position-

ing device or the noisy data from the Polaris position tracker. The rest of this thesis focuses

on the estimation of elevational displacement and the recovery of transducer trajectories

from ultrasound imagery of real tissue. This is difficult because the micro-structure of

real tissue differs considerably from that of speckle phantoms and also varies considerably,

leading to the failure of the elevational speckle decorrelation models derived from speckle

phantom imagery, as illustrated in Figure 5.1. The figure compares the average elevational

decorrelation curves obtained from imagery of a speckle phantom to those obtained from

imagery of a sample of beef brisket. The decorrelation curves associated with the phantom

could clearly not be used directly to accurately estimate transducer motion from the beef

imagery.

In doing research on the theme of medium invariant speckle decorrelation-based out-of-

plane trajectory estimation, synthetic ultrasound imagery has continued to be an invaluable



97

(a) Speckle phantom image di-
vided into 26 patches for the
computation of decorrelation
curves

(b) Image of beef brisket
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(c) Decorrelation curves for the speckle phantom (dashed lines) and the beef brisket
(solid lines)

Figure 5.1 Comparison of the average elevational decorrelation curves ob-
tained from a speckle phantom imagery to those obtained from imagery of
beef brisket.
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tool, both for validating algorithms and for designing new ones. In this thesis, the synthetic

imaging platform allowed fine grained control not only on the parameters of the transducer

trajectory, but also on the micro-structure of the virtual medium. This is particulary useful

for studying the statistics of ultrasound signals for different hypothetical tissue types, and

was used in the development and validation of the tissue-invariant speckle decorreation

model of Chapter 6. This chapter describes how the simulation of such varied media was

achieved.

The synthetic imagery used in this work was generated using the well-known ultrasound

simulator software Field II [110, 108]. Field II takes as input a list of spatial coordinates

corresponding to the location of point ultrasound scatterers along with their echogenicity.

It is up to the user to specify these parameters in order to reflect the echogenic structure

of the types of media to be “scanned”, which will in turn determine the texture of the

resulting image. The medium structure can be characterised by, among many parameters,

the strength of the scatterers, their density and their spatial organisation. In the context

of artificial ultrasound imagery used for the validation of image processing algorithms,

most studies have focused on the first two of these parameters [109, 134]. Models for

the spatial organisation of ultrasound scatterers in multi-dimensional images exist, but

have been geared mostly towards the study of specific physiological phenomena, such as

the agglomeration of red blood cells [193, 194], rather than towards the development of a

general purpose platform for the development and validation of ultrasound image processing

algorithms. This context is different because it requires a model which can cover a broader

set of spatial configurations and is not subject to special physiological constraints, though

such constraints could still be enforced later, as a post-processing step, if needed.

This chapter describes a novel method for generating lists of multi-dimensional scatterer

positions with variable strength, density and spatial organisation ranging from tightly clus-

tered to nearly regular in order to mimic a broad range of tissue types. The method extends

a previous 1D scatterer distribution model [123, 43] with a simple and intuitive parame-

terisation by mapping its output to a multi-dimensional space filling curve. The mapping

isotropically preserves the characteristics of the original 1D model while providing a fast

means of generating multi-dimensional data for the simulations required to validate image

processing algorithms such as the transducer motion recovery methods introduced in this

thesis. These features are demonstrated by comparing the first and second order statistics

of synthetic images produced using the model with theoretical predictions from ultrasound
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physics. The majority of the work presented in this chapter was published as [128, 129].

The rest of this chapter is organised as follows. Section 5.1 describes alternative models

of spatial organisation in the field of ultrasonics and elsewhere. Section 5.2 presents the

chosen adaptation of the 1D model of [123, 43] to multiple dimensions. Section 5.3 describes

the pool of synthetic ultrasound data that was generated using this model in conjunction

with the Field II ultrasound simulator. The first and second order statistics of this imagery

are analysed in Section 5.4 and found to be reliably predictable from the model parameters

and also agree with theoretical predictions based on ultrasound physics.

5.1 Other point distribution models

The spatial distribution of scatterers can be thought of abstractly in terms of random

point processes. A very simple and ubiquitous point process is one which distributes points

randomly in space according to a uniform distribution with a tunable density parameter.

Such a process is known in statistics as a Poisson point process. In natural media, the spatial

distribution of ultrasound scatterers can exhibit non-random structure, with clustered or

periodic arrangements.

In order to generate more structurally varied point patterns, various alternatives and

generalisations to the Poisson point process are possible and have been suggested in the

literature. For example, clustered data points can be generated in multi-dimensional spaces

according to the Neyman-Scott point process [154]. Using this method, an intermediate

set of points to be used as cluster centres is generated according to a Poisson process. The

final data points are then generated from some other spatial distribution centred about

the cluster centres, whose parameters control the extent to which the points are clustered

in space. This approach was taken by Savéry and Cloutier to study the characteristics of

ultrasound signals in relation to red blood cell aggregation [193].

At the other end of the spatial organisation continuum, the computer graphics literature

has been concerned with the generation of random point distributions with high regularity

for the creation of random, yet visually pleasing, scene layouts consisting of multiple replicas

of the same graphical primitive. In particular, considerable effort has been invested in

developing efficient algorithms for generating points according to the so-called Poisson disc

distribution [142, 122], which ensures a minimal distance between neighbouring points.

Alternately, ultrasound physics research has suggested that quasi-regular data points can
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be generated by randomly jittering a lattice of regularly spaced points by varying amounts.

This approach was taken by Narayanan et al. [152]. This is similar to the approach taken by

Tuthill et al. [220], who used contributions from both a Poisson point process and a regular

point lattice to generate scatterer configurations yielding a backscattered ultrasound signal

with a mixture of diffuse and coherent components.

None of the approaches described so far is able to model the full continuum of spa-

tial organisations ranging from tightly clustered to nearly regular that might describe the

distribution of ultrasound scatterers in different types of tissue. This can be achieved us-

ing a Gibbs-Markov pairwise area interaction process. Similar to the Poisson disc model,

but more general in scope, this model describes both repulsive and attractive stochastic

constraints within pairs of neighbouring points. Current implementations of such models

are typically based on random sampling algorithms which begin with a random point dis-

tribution (sampled from a Poisson point process) and iteratively perturb the positions of

points until the constraints are satisfied. Such an implementation is described by Savéry

and Cloutier [194] for the study of the ultrasound signal backscattered by aggregates of

red blood cells. In this study, the Gibbs-Markov model was particularly useful because

the red blood cells could not be modelled as points scatterers due to the relatively high

frequency (and small beam width) of the transducer used. The model was able to account

for the fact that such objects with finite spatial extent cannot overlap. This method is

computationally demanding and it is difficult to quantitatively assess when and whether it

converges towards to the specified model behaviour. The parameters of the model are also

much more difficult to tune than the more limited alternatives described earlier.

Interesting alternatives were developed for the field of ecology, where the goal is to

model the spatial distribution of plants in an ecosystem [47]. Particularly relevant is the

model of Wu et al. [237], a modification of the Poisson point process incorporating an

additional parameter which tunes the regularity of points in space such that their spatial

organisation varies from clustered to regular. Unfortunately, the parameterisation of the

model is somewhat inconsistent in that generating points according to this model involves

two different sampling processes, depending on whether the desired effect is clustering

or regularity. Wu et al.’s idea of adding a regularity parameter to an ordinary Poisson

point process remains intuitively appealing. This idea has led to a flexible and elegantly

parameterised 1D point process model, developed independently by Winkelmann the field

of economic statistics [236] and by various authors in the field of ultrasonics [123, 43]. The
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model, described in more detail in Section 5.2, is a straightforward extension of the 1D

Poisson point process whereby the distribution of inter-event interval lengths is modified

to reflect the possibility of different spatial organisations. This model embodies most of

the characteristics desired for the parametric description of an ultrasound point scatterer

spatial distribution model. Namely,

• It can model spatial organisations ranging from tightly clustered to nearly regular;

• Its parameterisation is simple and intuitive;

• It can be sampled efficiently.

The main caveat of this model is that it is one-dimensional and does not have a straight-

forward analytical extension to the multi-dimensional case of interest for ultrasound image

processing. A contribution of this thesis is a simple, yet effective, heuristic extension of

this model to multiple dimensions, allowing simulation of 2D and 3D ultrasound data.

5.2 Multidimensional scatterer distribution model

Consider a Poisson point process with rate 1
β
. One can mathematically define this random

process in terms of statistics on the number of points (or, eventually, scatterers), Ns,

counted in non-overlapping areas of unit size. These statistics are Poisson distributed with

probability mass function

P (Ns) =
exp(−1/β)

Ns!βNs
, β > 0, Ns ≥ 0, (5.1)

so that there are on average 1
β

points per unit space.

In 1D, there exists an equivalent mathematical definition of the Poisson point process

in terms of statistics on the amount of space, d, between two consecutive points, often

referred to as the waiting time. These statistics are exponentially distributed [161], with

probability density function:

p(d) =
exp(−d/β)

β
, β, d > 0. (5.2)
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5.2.1 Tuning regularity

The approach taken in [236, 123, 43] is to generalise (5.2) by making the waiting time d

Gamma distributed instead of exponentially distributed.1 This leads to

p(d) =
dα−1 exp(−d/β)

Γ(α)βα
, α, β, d > 0, (5.3)

where α is often referred to as a “shape parameter” and Γ denotes the standard Gamma

function such that Γ(α) =
∫∞

0
tα−1 exp(−t)dt. This distribution can be reparameterised in

terms of the mean and variance in waiting time:

E{d} = αβ, (5.4)

V AR{d} = αβ2 =
E{d}2

α
, (5.5)

where E{.} and V AR{.} respectively denote the expected value and variance operators.

The parameter α may then be viewed as a regularity parameter which, given a certain point

density, controlled by γ = 1
E{d}

, tunes the variance in point spacing [43]. For α = 1, (5.3)

reduces to (5.2), and the points are randomly distributed in space, according to a Poisson

point process. For α < 1, the point spacing has high variance and the points tend to group

in clusters, whereas for α > 1, the point spacing has low variance, yielding more regularly

spaced points, as illustrated in Figure 5.2. Should a minimal spacing be required between

consecutive points, it is straightforward to include it as a constant term added to the right

hand side of (5.3), as proposed in [43].

While no closed form for p(Ns) analogous to (5.1) exists for this generalised Poisson

point process, the model described by (5.3) does lead to an asymptotic equivalent in terms

of statistics on the point count Ns within an interval of fixed length. Indeed, it has been

shown [236] that as the interval length grows toward infinity,

E{Ns}
V AR{Ns}

→ α. (5.6)

This equivalence will be used to empirically demonstrate the validity of the proposed multi-

dimensional extension to the model in the next section.

1A similar generalisation based on Weibull distributed waiting times was recently proposed [143].
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Figure 5.2 Realisations of the 1D generalised Poisson point process with
Gamma waiting times. The three realisations were generated using the same
point density (γ = 1) but three different values of the regularity α. Points
are randomly placed for α = 1, more regularly spaced for α = 10, and tightly
clustered for α = 0.1. In the latter case, the apparently smaller number of
points is due to the strong overlap of multiple tightly clustered points, which
cannot be visually discriminated from each other at the chosen visualisation
scale.

5.2.2 Fractal extension to multiple dimensions

The generalised Poisson point process described above is intrinsically one-dimensional.

Therefore, sampling this model becomes difficult in two or more dimensions, except in

the case α = 1 (Poisson), which amounts to sampling points randomly (according to the

uniform distribution) over space. A simple heuristic to generate 2D points with a different

spatial organisation would be to sample points according to the 1D generalised Poisson

process model along several short segments mapped to a 2D grid of arbitrary precision

in a raster scan fashion. This mapping is a poor reflection of what is really desired, as

it only preserves the spatial organisation of the original 1D points along one direction.

The raster scan mapping is but one of many possible continuous mappings of a line onto

a finite multi-dimensional space. Such mappings, which have the property of traversing

every cell of a discrete m-dimensional grid of a given precision, are known as discrete

space-filling curves. More isotropic preservation of spatial organisation can be achieved

by using a different kind of space filling curve. Ideally, distances measured along the

original line should correlate well with distances measured in the multi-dimensional space,

a property known as preservation of locality. The Hilbert curve (illustrated in Figure 5.3)

is a recursively defined fractal curve which exhibits excellent preservation of locality and is

therefore a good choice [226, 81].
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Figure 5.3 Top: discrete approximations of the 2D Hilbert curve [232],
with the level of precision kH of the curves increasing from 1 (left) to 5 (left).
Bottom: Discrete approximations of the 3D Hilbert curve [1], with the level
of precision kH of the curves increasing from 1 (left) to 3 (right).

The algorithm introduced in [15] can be used to determine the mapping of 1D points

onto a Hilbert curve of precision kH . This algorithm takes as input a mkH bit fixed point

representation of the position of a 1D point along a line segment. It then iteratively removes

m bits off the left of this number and uses them as an index to one of 2m equally sized

sub-cells within the current cell of the m-dimensional space. The algorithm outputs m

coordinates in binary fixed point representation with a kH bit precision. In 2D or 3D, the

process is equivalent to decoding the index of cells in a quadtree or octree, respectively. The

amount of time required to map a point from 1D to m-D is proportional to the precision kH .

As a result of applying a Hilbert curve mapping to the output of the 1D point process,

a set of 2D or 3D points is obtained whose spatial organisation displays characteristics

analogous to that of the original 1D points. A dimensionality independent mathematical

description of the desired spatial characteristics is given by (5.6). Thus, in order to verify

the ability of the Hilbert curve mapping to preserve spatial organisation, the following steps

were taken:

1. Different realisations of the 1D point process (with varying density and regularity

parameters) over large intervals were generated.
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2. These point process realisations were mapped to 2D and 3D spaces of equivalent size

using the Hilbert curve.

3. The 1D, 2D and 3D spaces were divided into an equal number of equally sized non-

overlapping bins.

4. The ratio of mean to variance in point count over these bins was calculated and

compared to the value of the regularity parameter α used to generate the points.

Predictably, the agreement between the empirical data and (5.6) was excellent in the

1D case. More interestingly, in 2D and 3D, this agreement was also very good for bin sizes

corresponding to full sub-cells of the Hilbert curve (which themselves are lower precision

Hilbert curves). The agreement between the theory and the data is illustrated in Fig-

ure 5.4, where the statistics were collected over a 262,144 unit sized space divided into 64

equally sized bins. Similar results hold irrespective of point density, demonstrating that the

proposed multi-dimensional generalisation of the 1D point process preserves its asymptotic

statistical properties.
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Figure 5.4 Ratio of mean to variance in point count versus regularity pa-
rameter α. Solid line: theory, squares: 1D model samples, circles: 2D model
samples, crosses: 3D model samples.

The proposed multi-dimensional generalisation approach also preserves the qualitative

characteristics of the 1D point process realisations, as shown in Figure 5.5, which shows
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example 2D point distributions obtained with the proposed model, compared to those ob-

tained with other point process models used in ultrasonics. Figure 5.5(a) shows the output

of a Neyman-Scott point process [193] whose clusters have a Gaussian spatial distribution

with variance ε2
NS controlling their tightness. In these examples, the density of the cluster

centres was taken to be the square root of the point density. Figure 5.5(b) shows examples

sampled from a jittered lattice model [152], where the lattice points are perturbed by Gaus-

sian noise with variance ε2
JL. Figures 5.5(c) and 5.5(d) show examples from two different

Gibbs-Markov pairwise interaction processes. Figure 5.5(c) was obtained using a model

very similar to that of Savéry and Cloutier [194] to model aggregates of non-overlapping

blood cells: a fixed, strong repulsive potential was used to make pairwise distances below

the diameter of a cell virtually impossible, while another more moderate potential was used

to draw the scatterers towards a clustered or regular (depending on the sign of the poten-

tial) configuration for a range of larger distances within each scatterer’s pre-defined zone

of influence. The latter moderate potential was proportional to a user-tuned parameter ǫ

and to the area of overlap between the influence zones of the two scatterers involved in

the relationship. Note how, for clustered configurations, the strong short-range repulsive

potential introduces regular structure within the clusters. This same repulsive potential

also prevents the formation of truly random point configurations. Figure 5.5(d) shows what

happens when the short-range repulsive potential is set to zero: for negative (attractive)

long-range potentials, the point configuration abruptly goes from random to extremely clus-

tered, limiting the diversity of available clustered patterns. This shortcoming is well known

and documented in the statistics literature [9]. Figure 5.5(e) shows example 2D point

distributions obtained using the proposed multi-dimensional generalised Poisson process

model for a fixed point density and different values of α. In the Poisson case (α = 1), the

obtained configuration of points exhibits no particular structure: clusters of points occur

by chance and so do areas where points are more uniformly spaced. As α decreases below

1, the 2D point configuration contains more and tighter clusters, following the predictions

made by the original 1D model [236, 123, 43]. Similarly, as α grows greater than 1, there

are fewer clusters and points more evenly cover the sampling area. Table 5.1 summarises

the features of the different models compared in Figure 5.5. Compared to the other mod-

els, the proposed generalised multi-dimensional Poisson point process has few parameters

(thereby making it easy to tune) and covers a broad range of spatial organisations. It can

also be sampled reasonably quickly: the Hilbert curve mapping process is much faster than
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the iterative sampling procedure required for Gibbs-Markov models. It is therefore a good

candidate for the large scale generation of virtual phantoms representing different media

in the context of ultrasound simulation.

Model # parameters Clusters Regularity Sampling speed
Poisson 1 No No Fast

Neyman-Scott 3 Yes No Fast
Jittered lattice 2 No Yes Fast
Gibbs-Markov 5 Yes Yes Slow

Generalised Poisson 2 Yes Yes Moderate

Table 5.1 Comparative summary of different point process models used in
ultrasonic simulations.

5.3 Synthetic ultrasound data sets

This section describes how the synthetic ultrasound data sets needed for the experiments of

Section 5.4 were created. The method described in Section 5.2 was used to generate lists of

3D scatterer positions for all combinations of six scatterer density values ranging from 0.5

to 16 scatterers/mm3 and ten regularity parameter values ranging from 0.01 to 300, with

logarithmic increments, as suggested in [43]. The precision of the 3D Hilbert curve used

was 32 bits. The scattering strength of each scatterer was chosen according to a log-normal

distribution, as suggested by [43], with mean standard deviation parameters equal to 0.1

and 0.3, respectively.2 Generation of synthetic ultrasound data from these lists of scatterers

was carried out using the realistic ultrasound simulator Field II [110, 108] using a virtual

linear array transducer with a central frequency of 3.5 MHz, a depth of 6 cm, a focus at

3 cm and a sampling frequency of 50 MHz. For each combination of scatterer density and

regularity parameters, a 3D ultrasound image was obtained by generating 100 2D image

slices separated by 0.1 mm increments and consisting of 128 radio-frequency (RF) vectors

covering a width of 4 cm. The scatterers occupied a cubic volume of 6 × 6 × 6 cm3 2 mm

below the virtual transducer’s surface.

2By abuse of terminology, this thesis takes the “mean” and “variance”/“standard deviation” parameters
of the log-normal distribution to refer to the mean and variance/standard deviation of the logarithm of
the random variable under consideration.
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εNS = 0.03 εNS = 0.1 εNS = 0.3 εNS = 1 εNS = 3

(a) Neyman-Scott process with varying cluster width εNS

εJL = 3 εJL = 1 εJL = 0.3 εJL = 0.1 εJL = 0.03

(b) Regular lattice with varying jitter noise εJL

ǫ = −30 ǫ = −10 ǫ = 0 ǫ = 10 ǫ = 30

(c) Gibbs-Markov process with short-range repulsion and varying long-range po-
tential ǫ

ǫ = −0.28 ǫ = −0.25 ǫ = 0 ǫ = 10 ǫ = 30

(d) Gibbs-Markov process with no short-range repulsion and varying long-range
potential ǫ.

α = 0.1 α = 0.3 α = 1 α = 3 α = 10

(e) Proposed generalised Poisson process with varying regularity parameter α.
The parameter β was adjusted according to the fixed density γ = 1

E{d} and

desired α using (5.4) .

Figure 5.5 Example 2D point distributions obtained using different models
with fixed point density. The apparently smaller number of points for some
of the more clustered configurations is due to the overlap between multiple
tightly clustered points at the visualisation scale presented.
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While the generation of scatterer lists is quick, the generation of synthetic 3D ultrasound

scans using Field II is not. Thus, the simulations were carried out on parallel processing

clusters, thereby exploiting the parallelism-friendly characteristics of Field II. Other less

time consuming simulation methods could have been used instead. For example, the pre-

liminary version of this work [128] used a simplistic linear shift invariant model, and recent

work by Dillenseger et al. [48] also exploits the current framework within a shift-variant

adaptation of Bamber and Dickinson’s classical simulation model [13]. The tissue model is

completely independent of the type of ultrasound simulator used. The synthetic RF data

were envelope detected using the Hilbert transform.

Sample slices from the 3D synthetic data sets, log-compressed for visualisation, are

shown in Fig. 5.6, illustrating how the image texture varies from a very grainy to a relatively

smooth aspect as scatterer density and regularity parameters increase. It is straightforward

to combine different types of micro-structure in the same data set to simulate a non-

homogeneous medium such as an area containing different types of tissue. For example, the

image in Fig. 5.7 was taken from a 3D data set generated from 20 different combinations

of scatterer density, regularity and strength distributions. For this purpose, the volume

was segmented into 20 regions by selecting 20 3D points at random and dividing the space

according to the corresponding Voronoi diagram. More anatomically realistic arrangements

can be achieved using real segmented magnetic resonance or computed tomography images

as a starting point, as recently proposed by Dillenseger et al. [48].

5.4 Speckle statistics of synthetic data

In order to be useful in the context of ultrasound image simulation, the proposed scatterer

distribution model must be able, in combination with some process which models the

propagation of ultrasound waves, to produce speckle images reflective of a broad variety of

media. It is also essential that given transducer parameters, the statistics of these images

be reliably predictable from the scatterer distribution model parameters and agree with

theoretical considerations drawn from previous ultrasound imaging research. This section

examines the first and second order statistics of the synthetic imagery obtained using the

proposed model.
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Figure 5.6 Sample synthetic ultrasound images obtained for different com-
binations of density and regularity.

5.4.1 First order statistics

There is an abundance of parametric models for the first order statistics of ultrasound

speckle [229, 102, 52, 195, 196, 197, 57, 112, 19]. The different models account for different

sets of assumptions regarding the micro-structure of the scanned object and the imaging

process. Older models focused on modelling the local statistics of an ultrasound image

patch under different scattering conditions, leading to the well known Rayleigh, K and Rice
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Figure 5.7 A slice through a 3D ultrasound data set containing 30 different
tissue types.

distribution models [52] briefly discussed in Chapter 2. Recent models (in particular, so-

called compound distribution models [197, 57, 112]) try to model the statistics of an entire

ultrasound image while taking into account large-scale factors like variations in scattering

conditions, signal energy and beam shape which create more or less continuous variations

in local speckle statistics across the image.

The present analysis is concerned with two important local speckle statistics, namely

the squared signal to noise ratio R2 and the skewness S of the echo intensity signal, defined

as

R2 =
E{I}2

V AR{I} (5.7)

and

S =
E{(I −E{I})3}

V AR{I} 3
2

, (5.8)

where I is the echo intensity signal equal to the square of the envelope. These statistics,

or transformations thereof, appear as meaningful parameters in many of the probability

distributions commonly used to describe local speckle amplitude statistics, including the

Rayleigh, K, Rician and homodyned K distributions [52] as well as the Nakagami distribu-

tion [196]. They will also be used in the next chapter for tissue characterisation purposes.

Theoretically, for Rayleigh scattering (high density and randomly placed scatterers), R = 1

and S = 2. Lower density or tighter clustering of scatterers lead to lower values for R and

higher values for S whereas the opposite may hold true when the scatterers are periodically
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placed along the direction of ultrasound wave propagation.

In order to verify whether these predictions were met when using the proposed scatterer

distribution model realisations, the synthetic ultrasound data sets described in Section 5.3

were treated as collections of 100 2D image frames each. Each frame was divided into 8×8

equally sized non-overlapping windows measuring 14 A-lines laterally and 490 samples

axially. For each of these windows, R2 and S were estimated.

Fig. 5.8 shows how R2 and S vary according to scatterer density, regularity and axial

depth. As the scattering conditions approach those required for fully developed speckle

formation, the value of R2 approaches 1 and S approaches 2, as predicted by theory.

For a given depth and a random arrangement of the scatterers (α = 1), these conditions

are obtained most closely for high scatterer densities (i.e. closer to 16 scatterers/mm3).

Clustering (low values of α) leads to so-called sub-Rayleigh conditions, with R2 < 1 and

S > 2, with low scatterer densities enhancing the effects of clustering. Also note the changes

in R2 and S with depth; these are especially noticeable for low scatterer densities and small

values of α. Near the focus (fourth row), the local resolution cell size is at its smallest,

thereby reducing the number of scatterers per resolution cell and leading to sub-Rayleigh

conditions.

High values of α, corresponding to more regularly placed scatterers, do not generally

appear to lead to conditions very different from Rayleigh scattering, with R ≈ 1 and S ≈ 2.

This result is different from those presented in [43], where, for certain scatterer densities,

the original 1D model with high regularity led to systematic positive interference patterns

and Rician statistics (R > 1 and S < 2). Such statistics were sometimes observed with the

model proposed here; indeed, the bottom row of Figure 5.8 shows that for the bottom row

of the images and α > 1, the average value of R2 was slightly greater than 1 and the average

value of S was slightly below 2. This suggests that positive interference patterns did occur,

but not in a systematic fashion. The lack of systematic positive interference effects in the

multi-dimensional model is due to the isotropy of the Hilbert curve mapping which was

chosen. While the model preserves regularity, there is no guarantee that this regularity

will be aligned with a particular direction. That being said, some of the 2D results in [128]

show that this may occur. For positive interference effects to invariably take place, the

scatterers must be placed quasi-periodically in the direction of wave propagation in a way

that favours constructive interference, which requires a certain degree of anisotropy in the

model. Such anisotropy may be achievable through the choice of a different space filling
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Figure 5.8 Backscattered echo intensity statistics as functions of scatterer
density, regularity α and axial depth. Left column: Depth within the ultra-
sound image. Middle column: squared signal to noise ratio R2. Right column:
skewness S. In these plots, the different shades of grey convey information
about scatterer density (see the legend at the top of the figure). The dashed
lines in the plots mark the R2 = 1 and S = 2 case representative of Rayleigh
scattering conditions.
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curve to map the 1D point process to 3D. The Hilbert curve mapping nonetheless provides

a useful and efficient multi-dimensional extension to the original 1D point process on the

basis of which a broad range of synthetic ultrasound image textures can be generated.

5.4.2 Second order statistics

The second order statistics of ultrasound imagery are of paramount relevance to the research

presented in the other chapters of this thesis, as elevational image correlation is used as

a cue for the estimation of out-of-plane transducer motion. As described in Chapter 2,

under Rayleigh scattering conditions, the relationship between image correlation and the

transducer’s elevational displacement depends entirely on the transducer characteristics and

can be described in a simple parametric form for the focal region of the transducer [229],

or estimated from imagery of a speckle phantom. Fig. 5.9 shows the average correlation

coefficient between pairs of image windows centred near the transducer focus as a function

of their elevational separation for selected synthetic data sets. These are compared to

the autocorrelation function for a data set consisting of fully developed speckle obtained

by placing scatterers at high density according to a plain Poisson process (without the

Hilbert curve mapping). Note how the elevational second order statistics of the synthetic

data sets of Section 5.3 can be reliably predicted from the parameters of the proposed

scatterer distribution model. It was not difficult to find conditions for which the Rayleigh

case decorrelation model fails to represent the behaviour of the data, reflecting the results

of [86, 72] and the illustrative example shown in Figure 5.1 on imagery of real tissue. A

broader range of decorrelation curve shapes can be achieved with virtual phantoms made of

a combination of different scatterer distributions, such as the one illustrated in Figure 5.7.

5.5 Summary

This chapter presented a scatterer distribution model for which the strength of individual

scatterers as well as their density and spatial organisation can be tuned for the generation

of a broad variety of synthetic ultrasound imagery. Spatial organisation of the scatter-

ers can be tuned along the continuum from clustered to regular in an intuitive manner,

making the model suitable for the cross-tissue validation of image-based transducer mo-

tion estimation. The synthetic platform provides fine grained control over ground truth

and target parameters which is at best difficult to achieve in phantom studies, thereby
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Figure 5.9 Average elevational decorrelation curves at the transducer focus
for a variety of combinations of scatterer density and regularity parameters.

providing a useful complementary validation tool. This tool is applicable to a variety of

other image processing contexts, a potentially very relevant one being that of texture based

image segmentation. It was shown that the model is able to produce imagery with varied

first and second order statistics. In particular, it is able to create imagery with elevational

decorrelation curves which differ substantially from those obtained under Rayleigh scatter-

ing conditions. With this in mind, the framework can also be used to generate training

data for automated learning of new ultrasound image processing algorithms which adapt

to local tissue structure. This will be illustrated in the next chapter, which describes how

a new tissue-invariant speckle decorrelation model was estimated from a pool of synthetic

imagery.
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Chapter 6

Learning a tissue invariant speckle

decorrelation model

Chapter 4 showed how an empirical elevational speckle decorrelation model determined

from speckle phantom imagery could be used to recover the elevational motion of a given

ultrasound transducer from similar phantom imagery. This worked reasonably well because

all scans were acquired under similar scattering conditions, i.e. the phantom was composed

of a large number of sub-wavelength scatterers more or less randomly distributed in space,

with scattering strengths uncorrelated to spatial location, approximating Rayleigh scat-

tering conditions. Considering the ultrasound imaging system to be a linear system, the

autocorrelation function of the output is the convolution of the autocorrelation function as-

sociated with the transducer and that associated with the target, as discussed in Chapter 2.

Because of the random distribution and large number of scatterers, the autocorrelation func-

tion of a speckle phantom is essentially an impulse function, so that the autocorrelation

of the output RF ultrasound signal is essentially the transducer’s autocorrelation function.

In real tissue, scatterers take on spatial configurations that differ from those encountered

in a speckle phantom; Chapter 5 showed how to model a variety of such spatial organi-

sations. There are also structured variations in scatterer strength which cause brightness

differences in the image, as well as scatterers larger than transducer wavelength, leading

to specular reflections. In such conditions, ultrasound signals decorrelate at a slower rate

over distance and the transducer specific speckle decorrelation model empirically obtained

from the reference phantom fails, as illustrated in Figure 5.1 of the previous chapter.
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This chapter presents a novel approach for establishing the local elevational decorrela-

tion rate in imagery of real tissue using the local first and second order statistics of the

imagery and a model learned from synthetic ultrasound imagery. This synthetic imagery is

first generated from a set of virtual phantoms with varied characteristics using the meth-

ods described in Chapter 5 with known elevational trajectories. Sparse Gaussian process

regression is then used to establish a relationship between the in-plane first and second

order statistics of these images and their elevational correlation lengths. The result is an

adaptive speckle decorrelation model which can be applied to new imagery of arbitrary me-

dia, synthetic or real. The approach and preliminary experimental results were published

as [127].

Section 6.1 discusses other approaches to this problem in the literature. Section 6.2

presents a simplified parametric speckle decorrelation model that is used in this chapter to

ease learning, along with a description of the statistical image features used as predictors

of elevational correlation length. Section 6.3 then describes the sparse Gaussian process

regression method that was chosen for learning the tissue invariant speckle decorrelation

model from image features. Section 6.4 describes the experimental methodology adopted

in this chapter. Namely, it explains how a training set and test sets of synthetic imagery

were generated, how real test imagery of animal tissue samples was acquired and how al-

ternative approaches were implemented for experimental comparison. Experimental results

are presented and analysed in Section 6.5, showing the proposed approach to allow accu-

rate distance estimation between image frame pairs. Unexplored ideas which emerged from

those results are discussed in Section 6.6.

6.1 Previous work

The literature proposes two main families of approaches for estimating the out-of-plane

transducer motion between correlated ultrasound images of real tissue without a position

tracker. The first approach is to detect regions of fully developed speckle in the imagery and

to obtain distance estimates for those regions exclusively by directly invoking the nominal

speckle decorrelation model obtained during calibration. Such speckle detection techniques

are discussed in Section 6.1.1. The second approach is to adapt the nominal correlation

model to the type of tissue scanned based on the local characteristics of the imagery. Image-

based tissue characterisation approaches are discussed in Section 6.1.2. The learning based
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approach discussed in this chapter belongs to the latter category.

6.1.1 Speckle detection approaches

Most work on image-based out-of-plane motion estimation assumes that all processed ul-

trasound image data consist of fully developed speckle. This allows the nominal correlation

model (theoretical or empirical) to be used directly for the estimation of distances, but re-

quires a method for reliably identifying regions of fully developed speckle in an image. Many

such methods have been developed in the last three decades, often for the purpose of visual

image enhancement (speckle removal). For brevity, and because most of these techniques

operate on similar principles, only those techniques used in the context of decorrelation

based out-of-plane motion estimation will be discussed here.

As discussed in Chapter 2, fully developed speckle is a texture pattern which arises in

very narrowly defined theoretical conditions and whose first and second order statistics are

simple and very well understood [229]. Namely, the RF signal has a Gaussian probability

density function; the envelope of the RF signal is therefore Rayleigh distributed, making

its square, the echo intensity signal, exponentially distributed. The exact derivation of the

second order statistics (the autocorrelation functions in all three dimensions) of fully devel-

oped speckle is substantially more involved and is both transducer and location dependent,

but, as demonstrated in this thesis and elsewhere, can be estimated empirically from scans

of a speckle phantom. This holds true in the axial and lateral directions as well as in the

elevational direction. All the methods described in this section rely on first or second order

statistics of ultrasound imagery for the identification of fully developed speckle patterns in

imagery.

Tuthill et al. [219] were the first to present experimental image-based motion estima-

tion results on imagery of real tissue. Their approach to speckle detection is based on the

fact that the echo intensity signal in fully developed speckle patterns is exponentially dis-

tributed [229] and therefore has a theoretically constant mean to standard deviation ratio

value of 1. Their paper suggests a simple filter which selects image pixels in whose neigh-

bourhood the ratio of echo intensity signal mean to signal standard deviation is between

0.8 and 1.2. Using this filter in imagery of breast tissue, the authors found that only 4.5%

of the data were retained for processing. They also noted that there is an important trade-

off between the ability to reliably reject non-speckle data and the availability of enough
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image samples for distance estimation using correlation. Similar conclusions were reached

by Chang et al. [29].

Georgiou and Cohen [75] proposed a speckle detector based on the Gaussianity of raw

RF ultrasound signals. The detector measures how well the Gaussian assumption fits the

data in a given region using a non-parametric Kolmogorov-Smirnov test, which compares

the empirical cumulative distribution function of the data to that of the normal distribution.

The statistical test rejects data samples which have strongly non-Gaussian characteristics

as not consisting of fully developed speckle and otherwise accepts the null hypothesis of

fully developed speckle. This detector was tested in the context of image-based out-of-plane

distance estimation by Hassenpflug et al. [86].

In early work, Dutt and Greenleaf [52] introduced a tissue characterisation methodology

based on first order statistics (specifically signal-to-noise ratio R and skewness S defined

in Chapter 5) of ultrasound imagery. While these statistics could, in theory, be directly

used to carry out a tissue characterisation task, such as determining whether an image

patch consists of fully developed speckle or not, the authors found that they require a

large sample size to be computed reliably using the envelope detected or echo intensity

signal [54]. Based on these findings, they investigated the use of fractional powers of the

envelope detected signal in order to reduce the sample size required for stable estimation

of these first order statistics. This approach was followed upon by Prager et al. [167],

with the specific goal of finding an optimal fractional power to which to raise the data for

optimal detection of fully developed speckle patterns, for which they developed a simple

elliptical discriminant classifier. Prager et al.’s speckle detector was subsequently tested by

Hassenpflug et al. [86] and found to be among the most useful for image-based out-of-plane

motion estimation. Rivaz et al. [176] improved upon Prager et al.’s speckle detector [167] by

using different, jointly optimal, fractional powers of the ultrasound signal for computation

of R and S. Prager et al.’s version of the detector will be used as a base-line approach for

the experiments presented in this chapter and is therefore described in more mathematical

detail in Section 6.4.3.

Hassenpflug et al. [86] compared a number of speckle detection techniques, including the

aforementioned [75] and [167], in the context of their use in obtaining accurate correlation

based measurements of elevational separation between two image patches. Their study

also included a novel speckle detector based on second order statistics. This detector works

by measuring the discrepancy between the axial correlation curve of the data and that
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obtained for imagery of a speckle phantom at the same depth; fully developed speckle is

detected when the two curves match. The different speckle detectors were applied to non-

overlapping patches of a pre-defined grid in images of synthetic data, as well as to images

of animal tissue. The findings of the study are mixed: effective and reliable rejection of non

fully developed speckle imagery is indeed possible with the detectors studied. However, it

must also be noted that effective speckle detectors in fact reject so much image content

that obtaining the three corresponding image patches required for estimating full out-of-

plane transformations (including translation, yaw and tilt) becomes problematic for realistic

subjects.

One limitation of the approach described in [86] is that its application of the various

speckle detectors under study was limited to non-overlapping image patches with pre-

defined locations, corresponding to the tessellation of the phantom imagery used for the

calibration of elevational (and axial) speckle decorrelation curves. Using this approach,

substantial areas of fully developed speckle whose extent is smaller than the patch size or

does not coincide well with the pre-determined grid are easily missed due to surrounding

non-speckle imagery. Rivaz et al. [177] propose an approach which allows tissue classifi-

cation (using their own detector [176]) in irregularly shaped and located image regions,

thereby recovering more regions of usable fully developed speckle from the image data.

The intuition behind the approach is that while reliably labelling an image region as fully

developed speckle may require a large number of pixels, only a small number of pixels are

needed to reject image regions which clearly do not match the model for fully developed

speckle. This leads to a two-step robust meshing approach. In the first step, small image

regions which are clearly not fully developed speckle are detected and rejected. The second

step then looks for larger image patches which contain few rejected pixels and are accepted

as fully developed speckle by the classifier. The result is a set of irregularly shaped image

patches deemed to contain fully developed speckle. These patches may not be aligned with

the calibration grid, which means that the spatially discretised elevational speckle decorre-

lation model must be interpolated to match the location of detected fully developed speckle

regions. The authors demonstrate that the approach is able to recover more usable image

data than an approach based on a fixed grid and also yields more accurate correlation

based distance estimates. A further improvement of the approach is discussed in [178],

where the number of available independent pixels for classification is increased by using

two ultrasound images with different beam steering angles at each point in the trajectory.
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6.1.2 Tissue characterisation approaches

A major disadvantage of the speckle detection approach to correlation-based out-of-plane

motion estimation in real tissue is that it discards a lot of potentially informative image

data. Given the very small amounts of fully developed speckle in imagery of animal and

human tissue [219, 86, 72], this is a rather serious shortcoming. This section discusses an

alternative class of methods which aim at inferring the unknown elevational correlation

length of ultrasound signals in the local medium from the associated image data.

As described in Chapter 2, a block of RF ultrasound imagery can be taken to be the

output of a (locally) shift-invariant linear system, so that its autocorrelation function in a

given direction is the convolution of the transducer specific autocorrelation function (the

nominal speckle decorrelation curve) with the autocorrelation function of the scattering

medium in the same direction. Under certain conditions, Chen et al. [33] show that it is

possible to recover the autocorrelation function of the scattering medium from that of the

image by a naive deconvolution process. The authors do not mention the applicability of

this approach to the out-of-plane motion estimation problem, but it is easy to see how it

could be put to use in predicting the elevational decorrelation behaviour of the RF ultra-

sound signal. Assuming that the structure of the medium is isotropic, its autocorrelation

function could be estimated from axial and lateral decorrelation curves and convolved with

the nominal elevational speckle decorrelation curve to obtain the local, medium dependent,

elevational decorrelation curve. Such an approach would require the full RF ultrasound

signal, which is not available to the user for most clinical ultrasound scanners. It is also

likely that important adjustments would be needed in order to overcome the numerical

instability which notoriously plagues deconvolution algorithms.

Gee et al. [72] were the first to propose and validate a method for predicting the ele-

vational decorrelation behaviour of the ultrasound echo envelope signal in real tissue. In

order to cope with departures from Rayleigh scattering, they augment the traditional cal-

ibration procedure by computing nominal axial and lateral speckle decorrelation curves

from phantom data in addition to the elevational one. In order to adapt elevational dis-

tance estimation to images of arbitrary tissue, their method estimates medium dependent

elevational decorrelation curves from the image data by correcting the calibration curve

according to observed discrepancies between the in-plane (axial and lateral) calibration

curves and the ones observed in the imagery. The correction process is based on a heuristi-
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cally defined measure of scattering coherence and by the authors’ admission, is not tied to

ultrasound physics. In spite of this, this adaptive method was shown to be very effective

in yielding accurate and dense out-of-plane transducer motion estimates in high-resolution

envelope detected (but not scan-converted) RF scans of animal tissue and as such, rep-

resents the state-of-the-art. An adaptation of this approach is used as a base-line in this

study; mathematical and implementation details are given in Section 6.4.3.

Rivaz et al. [177] put forward the idea that variations in elevational correlation length of

the echo envelope could be predicted from first order image statistics. They recognise the

potential of an alternative calibration procedure whereby an object with varied internal

structure, such as a piece of meat, is scanned instead of a speckle phantom and a set

of elevational decorrelation curves is established, parameterised by the local first order

statistics (signal to noise ratio and skewness) of the imagery, presumably by establishing

some sort of regression model. The idea is neither fully formalised (no regression model is in

fact established) nor tested in the context of distance estimation in the paper. The approach

presented here is closely related to this proposal and the first concrete embodiment of it, in

that controlled (synthetic) scans of varied media are used as basis to establish a regression

model between locally observable image features and the elevational decorrelation behaviour

of the ultrasound signal.

6.2 Features and simplified decorrelation model representation

This chapter considers the adaptation of a nominal, deterministic elevational speckle decor-

relation model to imagery of arbitrary media. It is assumed for the moment that this

nominal model is a set of piecewise linear curves (one for each image patch in the tessella-

tion defined by calibration) obtained by finding the average sample correlation coefficient

ρ between pairs of image patches separated by distance δ. The nominal piecewise linear

elevational decorrelation curve associated with patch q will be referred to as ρ̂q(δ). Within

the limitations already discussed in Chapter 4, such a curve can be used to obtain reason-

ably accurate estimates of the distance between corresponding image patches containing

fully developed speckle.

Ultrasound imagery of real tissue typically decorrelates over distance at a slower rate

than imagery of a speckle phantom. The approach presented in this chapter is to learn from

examples how the nominal decorrelation curve stretches along the δ axis depending on the
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characteristics of the medium observable in the image. In order to ease this learning process,

a more concise speckle decorrelation model will be used. For most transducers, the nominal

decorrelation curve of the echo amplitude (or echo intensity) signal is qualitatively well

represented by a Gaussian function of δ [31, 72]. Thus, for learning purposes, decorrelation

curves will be summarised by the standard deviation ŵe (henceforth termed the correlation

length) of the Gaussian curve which best fits (in the least-squares sense) the (ρ, δ) pairs

observed during calibration. The local elevational correlation length of the target medium

will be referred to as we and is computed as the standard deviation of the Gaussian curve

which best fits the local elevational decorrelation curve.

Assuming that the micro-structure of the target is not completely anisotropic, statistical

changes in the ultrasound signal should be observed within the image plane as well as

out-of-plane. This assumption is central to all adaptive speckle decorrelation methods,

including [72, 177]. The proposed approach monitors these changes using four features.

The first two are the squared signal to noise ratio R2 and the skewness S of the echo

intensity signal I, used in Chapter 5 for image characterisation, and redefined here for

convenience:

R2 =
E{I}2

V AR{I} (6.1)

S =
E{(I − E{I})3}

V AR{I} 3
2

. (6.2)

The other two features are the Gaussian approximators of the axial and lateral decorrelation

curves, wa and wl. The axial and lateral decorrelation curves associated with a given image

patch are obtained by calculating the average correlation between (potentially overlapping)

sub-windows of the image patch offset by known numbers of pixels. The size of the sub-

windows was chosen to be two-thirds the size of the original patch in the direction for which

the decorrelation curve is computed. The axial and lateral correlation lengths wa and wl

are found by fitting Gaussians to these curves. Nominal axial and lateral decorrelation

curves are also computed for the calibration scan; in this case, the decorrelation curve for

a given patch is the average of the decorrelation curves obtained for that patch in each

frame.

The features R2, S2, wa and wl were chosen because they are conceptually simple and

relatively easy to calculate, and because these and similar features (e.g. full piecewise
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linear descriptions of axial and lateral decorrelation curves) have previously been used

in the context of speckle detection and characterisation for speckle decorrelation based

distance estimation [54, 167, 176, 177, 72]. Other textural features, such as Haralick’s co-

occurrence matrices [84, 16, 223, 247], which are also commonly used for ultrasonic tissue

characterisation, could have been used instead or in conjunction with the chosen statistics.

The key hypothesis underlying the work presented in this chapter is that a transducer

independent statistical relationship between the measurable statistical features of ultra-

sound images and the target local we can be established in a data-driven manner from a

pool of varied synthetic ultrasound imagery with even elevational spacing. In such imagery,

we can be measured locally for each image patch using a set of elevationally neighbouring

image patches by fitting a Gaussian curve to the local average correlation values observed

for different elevational separations.

In order to enforce transducer independence of the regression model, the features and

target are normalised with respect to the equivalent features as measured from the calibra-

tion data set. That is, the learning method uses correlation length ratios defined as

rl =
wl

ŵl

, (6.3)

ra =
wa

ŵa

, (6.4)

re =
we

ŵe

. (6.5)

It is assumed that changes in correlation length along any direction depend entirely on the

structure of the medium so that these ratios do not depend on the characteristics of the

transducer. Ratios of R2 and S with respect to equivalent features R̂2 and Ŝ measured in

imagery of the calibration phantom,

rR2 =
R2

R̂2
, (6.6)

rS =
S

Ŝ
, (6.7)

are also used, even though the features R̂2 and Ŝ should theoretically exhibit no dependence

on transducer characteristics in imagery of fully developed speckle. Doing this allows the

density of the scatterers in the calibration phantom to be slightly less than that required for
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perfect Rayleigh scattering conditions without compromising the accuracy of the method

too much.

6.3 Learning with sparse Gaussian process regression

Each image patch in the pool of synthetic imagery provides an observation, i.e. an associ-

ation between a feature vector f = {rR2 , rS, ra, rl} and the local re. Given a training set D
containing N such observations, i.e. a set F = {fi}, i = 1 . . . N of feature vectors and the set

re of their associated normalised elevational correlation lengths, the purpose of regression

is to establish a relationship between feature vectors and re so that re can subsequently

be predicted for new input feature vectors. There are many methods for doing this. A

textbook approach is parametric regression, where a parametric form is fitted to the data

using a least-squares error criterion. The main difficulty with this approach is the selection

of an appropriate parametric model among an infinity of possibilities.

So-called kernel-based regression methods are more promising. In kernel-based regres-

sion, a kernel function with semi-finite support (such as a Gaussian function) is chosen

and centred about every data point in the training set. The regressor is simply a linearly

weighted sum of the resulting ensemble of kernels, with the weights optimised to minimise

some error criterion. Machine learning research has shown that a cleverly designed error

measure leads to very few non-zero weights and hence very sparse regression models, which

are highly desirable in order to avoid over-fitting and to limit the computational expense of

making a prediction. Two famous examples are support vector regression, which attempts

to minimise the mean squared error associated with data points outside a regularisation

margin close to the regressor [82, 205], and relevance vector regression, a Bayesian approach

which maximises the probability of the data under the assumption of uninformative prior

distributions on the weights [213].

Support vector regression was briefly considered for this work, chiefly because its better

known classifier form, the support vector machine, has had successful computer assisted

diagnosis applications based on ultrasound tissue characterisation [30, 245, 246]. Relevance

vector regression, which has also been used successfully in (non ultrasound) image interpre-

tation tasks [234, 249, 3, 210], was more seriously considered and initially experimented with

as a regression model for this work. It has two important advantages over support vector

regression: (1) it generally yields sparser regressors and (2) provides probabilistic outputs,
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i.e. the output is given as a mean and variance. The latter feature seemed particularly

desirable because the correlation length estimates to be derived from the regressor would

eventually be used in higher level inference tasks (e.g. trajectory estimation) involving

additional data. In this context, uncertainty information can help in correctly weighting

evidence from different sources of data. Unfortunately, it turns out that the behaviour

of the predictive variances output by relevance vector regression is counter-intuitive: the

predictive uncertainty decreases as the input feature distance itself from the training set,

whereas common sense dictates that uncertainty should be lowest when the features match

a training datum exactly. This caveat is well documented and is an undesirable effect of

excessive sparsity [213, 174, 170, 171].

Gaussian process regression is an approach closely related to kernel-based regression. In

fact, a traditional Gaussian process regressor can be described as a kernel-based regressor

with an infinite set of weights associated with an infinite set of kernel functions placed at

every point in observation space. As such, it is a non-parametric method and does not yield

a sparse regressor in its traditional form. In the context of elevational correlation length

estimation, the aim of Gaussian process regression is to create a mapping between any

feature vector ftest to a Gaussian distribution with mean r̄e(ftest|D) and variance ξ(ftest|D).

Let K denote a 4-dimensional Gaussian kernel function parameterised by hyper-parameter

vector θ, i.e.

K(f1, f2) = θ0 exp

(

−1

2

4
∑

i=1

θi(f
(i)
1 − f

(i)
2 )2

)

. (6.8)

The mathematics in the rest of this section were reproduced from [207]. Using their

notation, let us define

[KN ]ii′ = K(fi, fi′) (6.9)

[kf ]i = K(fi, f) (6.10)

Kff = K(f , f). (6.11)

It is assumed that the target values re are corrupted by Gaussian noise of variance

given by additional hyper-parameter η2. In traditional non-parametric Gaussian process

regression, the probabilistic prediction for a new input feature vector ftest, obtained from
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the entire training set D, takes the form

p(re|ftest,D, θ, η2) = N (r̄e, ξ), (6.12)

where N (r̄e, ξ) denotes a normal probability density function with mean r̄e and variance ξ.

For Gaussian process regression,

r̄e = k⊤
ftest

(KN + η2I)−1re (6.13)

ξ = Kftestftest − k⊤
ftest

(KN + η2I)−1kftest + η2, (6.14)

where I denotes the identity matrix. In this traditional approach, the hyper-parameters θ

and η2 are estimated by maximising the likelihood of the training data,

p(re|f , θ, η2) = N (0,KN + η2I). (6.15)

Because traditional Gaussian process regression accounts for observed correlations be-

tween all pairs of training inputs, it requires O(N3) operations for training and O(N2)

operations for a single mean and variance prediction, and also requires O(N3) units of stor-

age. These requirements make the method impractical for large data sets, such as the large

pool of statistical features that this chapter proposes to derive from synthetic ultrasound

imagery. Not surprisingly, researchers in the fields of statistics and machine learning have

developed a number of useful approximations which aim at reducing the computational

requirements of training and prediction by sparsely parameterising the regressor. Loosely

speaking, sparsification is achieved by representing the training set by a smaller, represen-

tative set of data points1. The manner in which these data points are selected, and the

assumptions that are subsequently made regarding the manner in which they can be used

to represent the full data set determine the particular flavour of the approximation. An

excellent overview and comparative mathematical analysis of such approximation methods

is given in [170].

In order to achieve reasonable computation times, this thesis adopts the sparse Gaussian

process regression method introduced by Snelson and Ghahramani [207]. In this approach,

it is assumed that the training samples included in D are mutually independent of each

1In fact, the relevance vector regression method discussed earlier can be described as such and its
shortcomings understood from this description [170].



128 Learning a tissue invariant speckle decorrelation model

other given a set of M << N pseudo-input feature vectors F̃ = {f̃j}, j = 1 . . .M and

associated pseudo targets r̃e, whose locations are inspired, but not directly drawn from the

set of training samples. Let us define

[KM ]jj′ = K(f̃j, f̃j′) (6.16)

[kf ]j = K(f̃j, f) (6.17)

[KNM ]ij = K(fi, f̃j) (6.18)

[KMN ]ji = K(f̃j, fi) (6.19)

Λ = diag(λ) (6.20)

λi = Kfifi
− k⊤

fi
K−1

M kfi
. (6.21)

Under the assumption of a Gaussian prior distribution over the pseudo-targets r̃e, Snelson

and Ghahramani’s sparse Gaussian process regressor takes the form

p(re|ftest,D, F̃, θ, η2) = N (r̄e, ξ), (6.22)

where the pseudo-targets do not appear as a result of clever marginalisation and

r̄e = k⊤
ftest

Q−1
M KMN(Λ + η2I)−1re, (6.23)

ξ = Kftestftest − k⊤
ftest

(K−1
M − Q−1

M )kftest + η2, (6.24)

with

QM = KM + KMN(Λ + η2I)−1KNM . (6.25)

The set of pseudo-inputs F̃ as well as the hyper-parameters θ and η2 are estimated

simultaneously by numerically maximising the marginal likelihood of the training data

p(re|F, F̃, θ, η2) = N (0,KNMK−1
M KMN + Λ + η2I) (6.26)

with respect to F̃, θ and η. The important mathematical manipulations leading to the

absence the pseudo-targets from (6.23) and (6.24) and the computations required for the

optimisation of (6.26) are discussed in more detail in [207] and [206].

The computational requirements associated with the approach are far more modest

than for full Gaussian process regression: O(M2N) for training and O(M2) for prediction.
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The authors have shown that this approach finds very good pseudo-input set and hyper-

parameter values when the desired size M of the pseudo-input set and the dimensionality

of the data are fairly small. These conditions are well met by the application described

here. This particular sparsification approach was found to have several advantages over

some of its more naive counterparts [170]: it represents the training set well and sparsely

without being prone to over-fitting; furthermore, the possibility of selecting pseudo-inputs

that are outside the training set gives it the power to capture non-stationary (i.e. input

dependent) noise in the training set, which even full Gaussian process regression cannot

generally do.

Given two corresponding image patches whose elevational separation must be estimated,

each patch i, i = 1, 2, provides a feature vector fi = {rR2
i
, rSi

, rai
, rli}, which sparse

Gaussian process regression associates with an estimate r̄ei
of the scaling factor rei

(re-

quired to compute the local correlation length we from the nominal correlation length ŵe

as wei
= reŵe) and an associated variance ξi. A global estimate r∗e of re for the pair of

image patches is obtained by variance-weighted averaging, i.e.

r∗e =

r̄e1

ξ1
+
r̄e2

ξ2
1

ξ1
+

1

ξ2

, (6.27)

where heavier weight is given to values of re associated with small variance. A locally

adapted piecewise linear decorrelation curve for patch q is obtained by stretching the nom-

inal transducer specific decorrelation model along the δ axis by the inferred ratio r∗e of local

to nominal correlation lengths (see (6.5)) according to

ρq(r
∗
eδ) = ρ̂q(δ), (6.28)

or, equivalently,

ρq(δ) = ρ̂q

(

δ

r∗e

)

. (6.29)

6.4 Experiments

The proposed learning-based approach to elevational correlation length estimation was

tested by first creating a pool of varied synthetic imagery from which to learn the rela-
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tionship between elevational correlation length and image statistics. The sparse Gaussian

regressor obtained from this imagery was then applied to new sequences of both synthetic

and real ultrasound imagery of varied media, including animal tissue. The resulting accu-

racy of out-of-plane motion estimates for pairs of images was then evaluated and compared

against those obtained using three different base-line approaches. This section describes

how these experiments were carried out. Section 6.4.1 explains how the synthetic training

imagery was created and how the sparse Gaussian regressor was learned. Section 6.4.2

describes the acquisition of synthetic and real test imagery. Section 6.4.3 describes the

base-line approaches and provides the implementation details for Prager et al.’s speckle

detector [167] and Gee et al.’s heuristic adaptive method [72].

6.4.1 Training

The Field II ultrasound simulation software [108] was used to create a varied set of synthetic

training examples of ultrasound data sequences from which to learn a tissue invariant

decorrelation model. The synthetic ultrasound data sets were generated with a virtual

3.5 MHz linear transducer with a scanning depth of 6 cm and a focus at 3 cm. The synthetic

images were acquired at 0.1 mm elevational intervals. The resulting RF vectors were log-

compressed and scan-converted (using a linear interpolator) to mimic the acquisition of data

by a clinical ultrasound scanner. The nominal transducer dependent decorrelation curves

were estimated from scans of a virtual speckle phantom made of a large number of scatterers

distributed randomly according to a Poisson point process model. Additional synthetic

ultrasound data sets were generated from 15 virtual phantoms consisting of point scatterers

whose echogenicity distribution, density and spatial organisation were tuned differently

using the fractal model of Chapter 5. Thirteen of these phantoms had a homogeneous

micro-structure, with fixed density and regularity parameters and a log-normal echogenicity

distribution. The other two virtual phantoms were multi-region phantoms obtained by

generating 20 random seed points in a cube of 60 mm × 60 mm × 60 mm and breaking

the cube into the corresponding 20 Voronoi regions. The scatterers in each of these regions

were then assigned random density, regularity and echogenicity characteristics, as indicated

in Table 6.1. The parameters of the simulations were chosen so as to represent a variety of

scatterer organisations yielding a broad range of elevational decorrelation lengths. Sample

training images are shown in Figure 6.1.
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# Type Density
(scatt./mm3)

Regularity Echogenicity # Frames

1 Homogeneous γ = 0.5 α = 0.01 e ∼ ℓ(0.1, 0.09) 100
2 Homogeneous γ = 0.5 α = 0.1 e ∼ ℓ(0.1, 0.09) 100
3 Homogeneous γ = 0.5 α = 10 e ∼ ℓ(0.1, 0.09) 100
4 Homogeneous γ = 1 α = 0.03 e ∼ ℓ(0.1, 0.09) 100
5 Homogeneous γ = 1 α = 0.3 e ∼ ℓ(0.1, 0.09) 100
6 Homogeneous γ = 2 α = 0.01 e ∼ ℓ(0.1, 0.09) 100
7 Homogeneous γ = 2 α = 0.03 e ∼ ℓ(0.1, 0.09) 100
8 Homogeneous γ = 2 α = 0.1 e ∼ ℓ(0.1, 0.09) 100
9 Homogeneous γ = 2 α = 0.3 e ∼ ℓ(0.1, 0.09) 100
10 Homogeneous γ = 4 α = 0.01 e ∼ ℓ(0.1, 0.09) 100
11 Homogeneous γ = 4 α = 0.03 e ∼ ℓ(0.1, 0.09) 100
12 Homogeneous γ = 4 α = 0.1 e ∼ ℓ(0.1, 0.09) 100
13 Homogeneous γ = 16 α = 100 e ∼ ℓ(0.1, 0.09) 100
14 Multi-region γ ∼ |N (2, 4)| α ∼ ℓ(0, 16) e ∼ ℓ(ē, ε2

e), 150
ē ∼ U(0.01, 1),
log εe ∼ U(0.3, 1)

15 Multi-region γ ∼ |N (2, 4)| α ∼ ℓ(0, 16) e ∼ ℓ(ē, ε2
e), 150

ē ∼ U(0.01, 10),
log εe ∼ U(0.3, 1)

Table 6.1 Simulation parameters for the 15 virtual phantoms used to gen-
erate the pool of synthetic training ultrasound imagery. ℓ(a1, a2) denotes the
log-normal distribution with mean parameter a1 and variance parameter a2.
U(a1, a2) denotes the uniform distribution on the interval [a1, a2]. The (abu-
sive) notation γ ∼ |N (a1, a2)| conveys the fact that γ is the absolute value of
a normally distributed random variable with mean a1 and variance a2.

The training images were divided into 56 windows of 34 × 52 pixels, as shown in Fig-

ure 6.1(a). The statistical features R2, S, wl, wa, and local elevational correlation length

we were measured for each window and normalised by the transducer dependent values

measured in the calibration scan. The local elevational correlation length associated with

any image patch was computed from correlations between pairs of corresponding image

patches located within 20 frames of it.

The synthetically generated pool of observations was first pruned to remove extreme

outliers from the training set. A small number of these arose because of failed Gaussian fits

to the decorrelation curves. Pruning was achieved by computing the median and median
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(a) Speckle phantom (b) Homogeneous phan-
tom

(c) Multi-region phan-
tom

Figure 6.1 Sample synthetic images used for training. The speckle phantom
image also shows the subdivision of the synthetic linear transducer images into
56 patches.

absolute deviation of the values obtained for each feature and discarding data points for

which any of the features lay more than 7 median absolute deviations from its median.

N = 3000 {rR2 , rS, rl, ra, re} tuples were chosen at random from the remaining observations

to learn the sparse Gaussian process regressor. The size of the pseudo-input set was M = 10

and sparse Gaussian process regression was carried out by the publicly available Gaussian

Process Toolbox for Matlab [130]. Although the repeatability of this learning process

over different combinations of input data points was not formally evaluated for the sparse

Gaussian process model, informal experiments with a related relevance vector regressor

proved its estimation be very repeatable, yielding similar regression models regardless of

which 3000 data points were used. It is conjectured that this result extends to the sparse

Gaussian process model that was ultimately chosen.

6.4.2 Test imagery

The regressor obtained during training was tested on a variety of synthetic and real ultra-

sound data sets. The synthetic data sets were generated like the training examples using

Field II. One group of synthetic data sets was generated using the same virtual linear trans-

ducer as for the training images, whereas a second group of data sets was generated using
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a virtual 7.5 MHz linear phased array (sector) transducer with a depth setting of 4 cm and

a focus at 3 cm. Scan conversion for the envelope detected RF vectors from these simu-

lations was carried out using a Matlab routine provided along with the Field II software.2

These images were divided into 22 patches of 50 × 50 pixels, as shown in Figure 6.2(a)

and back-converted to polar coordinates using a bi-cubic interpolator. This conversion was

done because the axial and lateral directions in the proposed algorithm and Gee et al.’s

heuristic (which was used as a base-line) are defined in terms of the direction of ultrasound

signal propagation and that perpendicular to it, which do not correspond to the principal

directions defined by the pixel grid in the case of scan-converted sector imagery.3 The tar-

gets were virtual phantoms of varied homogeneity and micro-structure and were scanned

at intervals of 0.1 mm. Sample synthetic sector scans are shown in Figure 6.2.

(a) Speckle phantom (b) Homogeneous phan-
tom

(c) Multi-region phan-
tom

Figure 6.2 Sample synthetic imagery obtained using the virtual linear
phased array. The speckle phantom image also shows the subdivision of the
synthetic sector imagery into 22 patches.

The real data were acquired using an Acuson Cypress ultrasound system with a 7V3C

linear phased array transducer at a depth setting of 2.7 cm. The imagery was divided

into 26 patches of 50 × 30 pixels, as illustrated in Figure 6.3(a), back-converted to polar

coordinates and the echo amplitude signal was recovered after reversing the log-compression

process using the compression parameter estimated for the experiments of Chapter 4.

One of the speckle phantom data sets from the experiments described in Chapter 4

with regular elevational spacing of 0.05 mm was used to obtain a nominal decorrelation

2http://server.oersted.dtu.dk/personal/jaj/field/examples/ftp_files/kidney/
3In practice, it was found that both algorithms still work well without this back-conversion to polar

coordinates.
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model. Ultrasound imagery of pork tenderloin, turkey breast and beef brisket samples

purchased at the local grocery store was acquired at regular intervals of 0.03 mm, 0.04 mm,

0.05 mm, 0.06 mm, 0.08 mm and 0.1 mm using the manual sub-millimetre positioning

device described in Chapter 4 (see Figure 4.12). In order to preserve the ground truth

quality of the measurements obtained from the positioning device, friction between the

probe and the highly deformable targets was prevented by scanning the samples through a

thick layer of ultrasound coupling gel. It was found throughout series of similar experiments

that poor or uneven coupling of the ultrasound signal, whether due to large air bubbles

in the coupling gel or natural air pockets in the target, tends to create fast decorrelating

patterns in the imagery. To ensure good and even coupling of the ultrasound signal, the

layer of gel was carefully spread onto the target so as to destroy most of the air bubbles

present in it. Scans displaying signs of poor coupling were rejected and re-acquired. Three

scans of 161 frames each4 were obtained from each tissue sample for each of the 6 scanning

speeds. Exceptionally, no data were obtained for the pork tenderloin at 0.1 mm intervals

due to the difficulty encountered in finding a surface that was flat enough with respect to

the transducer’s fixed height over the required distance. Figure 6.3 shows sample images

from the phantom and different animal tissue samples.

(a) Reference phantom (b) Pork tenderloin (c) Turkey breast (d) Beef brisket

Figure 6.3 Sample real ultrasound imagery of the phantom and animal
tissue samples used in the experiments. The phantom image shows the sub-
division of the imagery into 26 patches. The pork, turkey and beef imagery
were acquired using a higher overall gain setting than that used to acquire
the phantom imagery in order to enhance visualisation. Note how the signal
level is generally lower in the turkey image than in the pork and beef images,
reflecting its the lower echogenicity of this medium.

4Some had a few extra frames.
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6.4.3 Base-line methods

The accuracy of out-of-plane motion estimates obtained with the learning based approach

proposed in this chapter was experimentally compared against three base-line approaches.

The first approach is the direct use of the nominal elevational speckle decorrelation curves

obtained during calibration at all points in the image, without any form of adaptation

to the local characteristics of the tissue. The mean target registration errors obtained

using this unadapted approach can be thought to quantify how much the imagery of a

given data set deviates from fully developed speckle and how much adaptation was needed

to accurately recover out-of-plane motion from correlation measurements. The two other

base-line approaches were based on Prager et al.’s speckle detection method [167] and on

Gee et al.’s heuristic method for adapting elevational decorrelation curves to local image

properties [72], respectively. While efforts were made to keep the implementation of these

methods as faithful as possible to the intent of the original publications, it is likely that there

are implementation differences due to imperfect interpretation of the papers. Moreover,

minor adaptations were made, in particular, to Gee et al.’s method, in order to use the

methods with the instrumentation available for the experiments. The following sections

describe how these base-line methods were implemented and adapted to the proposed

experiments.

6.4.3.1 Prager et al.’s speckle detector

Prager et al.’s speckle detector [167] was used to determine whether any given pair of

corresponding image patches would be used in the estimation of out-of-plane motion. The

implementation of this detector mostly follows that described in [86], where it was numbered

as “D3”. The classifier uses the signal to noise ratio R1.8 and skewness S1.8 of the echo

envelope A raised to the power of 1.8 as features:

R1.8 =
E{A1.8}

√

E{(A1.8)2} −E{A1.8}2
(6.30)

S1.8 =
E{(A1.8 − E{A1.8})3}

(E{(A1.8)2} − E{A1.8}2)
3
2

. (6.31)

R1.8 and S1.8 were computed for each image patch.

An ellipse in (R1.8, S1.8) space was used as a discriminant function, with the inside of the
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ellipse describing the expected statistics of fully developed speckle. Exactly as described

in [86], the ellipse was centred at R1.8 = 1.031, S1.8 = 1.837 with semi-major and semi-

minor axes of 0.41 and 0.036, respectively. The major axis of the ellipse was oriented at

an angle of 81.9 degrees with respect to the positive R1.8 axis. This elliptical discriminant

function is shown in Figure 6.4. For each candidate image patch, the distance d between the

R1.8, S1.8 statistics of the image patch to the centre of the ellipse was calculated. The degree

of membership ϑ of the image patch to the class of fully developed speckle patterns was

determined by calculating the ratio of d to the radius r of the ellipse in the direction of the

line joining its R1.8, S1.8 position to the centre of the ellipse. A pair of corresponding image

patches with membership values ϑ1 and ϑ2 was automatically accepted as fully developed

speckle if max(ϑ1, ϑ2) ≤ 7.5.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

←Fully developed speckle

←Candidate image patch statistics
←d and r computed along this line

R
1.8

S
1.

8

Figure 6.4 Elliptical discriminant function used for speckle classification.
The combinations of values of R1.8 and S1.8 which lie inside the ellipse are
considered characteristic of fully developed speckle. The degree of membership
of a candidate image patch to the class of fully developed speckle image patches
is measured by the ratio of the distance d from its position in R1.8, S1.8 space
to the centre of the ellipse, to the radius r of the ellipse measured along the
same direction as d.

This simplistic thresholding procedure often failed to leave enough data to compute the

full rigid transformation between two image frames (three matching non-collinear patches

are required for this). Therefore, patch pairs with the smallest ϑ values below a second

threshold of 9 were greedily added to the usable set until a non-degenerate configuration

was obtained for rigid transformation estimation. In a minority of cases this also failed; it

should be noted that the statistics presented in Section 6.5 and appendix C do not include
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results from these cases.

6.4.3.2 Gee et al.’s adaptive heuristic

Gee et al.’s approach [72] centres around a measure of scattering coherence 0 ≤ c ≤ 1

which is used to modify the shape of the elevational speckle decorrelation curve established

during calibration using the axial and lateral decorrelation curves measured at a particular

location in imagery of real tissue. In this approach, it is assumed that any two patches of

echo envelope data can be expressed as A1+cA2 and A2+cA1. Here, A1 and A2 are two echo

envelope signal patches consisting of fully developed speckle with correlation coefficient

ρ̂ predicted by the nominal (Rayleigh) speckle decorrelation model and the elevational

separation between the image patches. When the coherence measure c = 0, the correlation

between the two images is that predicted by the nominal model, ρ̂. For c = 1, the two

image patches are identical and are therefore fully correlated. For intermediate values of c,

the correlation coefficient of the two image patches as a function of ρ̂ is given by [72]

ρ =
(1 + c2)ρ̂+ 2c

(1 + c2) + 2cρ̂
. (6.32)

Conversely, c can be determined from the nominal correlation value ρ̂ and the measured

correlation ρ:

c =











0 ρ = ρ̂

(1 − ρρ̂)

(ρ− ρ̂)
±
√

(1 − ρ2)(1 − ρ̂2)

(ρ− ρ̂)
otherwise.

(6.33)

These equations provide a means of predicting the elevational decorrelation curve from the

axial and lateral decorrelation curves measured within the image plane. An image patch

thus provides two coherence functions via (6.33), ca(δa) and cl(δl), derived from the axial

and lateral decorrelation curves, respectively. These are averaged over the two correspond-

ing patches. Here, δa and δl denote the known axial and lateral distances (counted in

pixels, or converted to millimetres or radians, depending on the geometry of the scan) used

to calculate the in-plane decorrelation curves. To account for the anisotropy of the nominal

decorrelation model (due to the ultrasound beam having different thickness in the eleva-

tional, lateral and axial directions) and possible differences in the units used to measure

distances in elevational, axial and lateral directions, the coherence ce of the signal in the



138 Learning a tissue invariant speckle decorrelation model

elevational direction, as a function of ca, is given by

cae

(

ŵe

ŵa

δa

)

= ca(δa), (6.34)

and a similar expression is derived for cle expressed as a function of cl, with ŵe, ŵa and ŵl

respectively defined as the nominal elevational, axial and lateral correlation lengths as in

the rest of this chapter.5 The final ce(δ) is then given by

ce(δ) =
1

2
(cae(δ) + cle(δ))(1 − g1(y − g2)), (6.35)

where the first factor is simply an average of functions cae and cle, and the second factor is

an ad hoc correction factor which the authors introduced in order to compensate for the

tendency of their approach to underestimate distances in the near field of the transducer,

and overestimate them in the far field. Here, y is the axial depth of the image patches

under consideration, and g1 and g2 are adjustable parameters to be tuned empirically for

each transducer; the paper suggests that in the case of a linear transducer, a good value for

g2 would be the approximate depth of the transducer’s focal point. The local elevational

decorrelation curve is then estimated from the new elevational coherence function ce and

the nominal speckle decorrelation model using (6.32).

For the experiments presented here, the values of g1 and g2 were tuned empirically for

both synthetic transducers and the real transducer. For the synthetic transducers, g2 was

set to the known depth of the transducer’s focus and a suitable value for g1 was determined

by trial and error. This process was found to be much easier in the case of the linear

transducer, which may be related to the fact that Gee et al.’s algorithm was originally

designed and tested for one such linear transducer. Since the location of the focus was

unknown for the real transducer, both g1 and g2 had to be tuned by trial and error for this

case, and it is likely that the selected combination, though it gave reasonable results most

of the time, is sub-optimal. The selected values are given in Table 6.2.

5The way in which this adjustment is performed constitutes a minor departure from the original pa-
per [72], where the adjustment factor was approximate, was only provided in the case of the axial direction
and corresponded to the particular linear transducer used in the experiments.
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Transducer g1 g2 (mm)
Virtual linear transducer -0.04 30.0
Virtual linear phased array (sector) transducer 0.01 30.0
Real 7V3C transducer 0.1 30.0

Table 6.2 The values of adjustable parameters g1 and g2 of Gee et al.’s
adaptive algorithm [72] empirically selected for the two virtual transducers
and the real transducer considered in this study.

6.5 Results

The accuracy of the out-plane-motion estimates resulting from the use of the method

proposed in this chapter (or any of the base-line methods) was evaluated by estimating the

elevational distances between pairs of corresponding image patches using the chosen speckle

decorrelation model and fitting a rigid transformation to these patch-wise distance estimates

for each pair of frames separated by less than 20 times the step size used to obtain the

calibration imagery (0.1 mm for the synthetic imagery and 0.05 mm for the real imagery).

The rigid transformations were fitted using the least-median-of-squares criterion [183, 184]

already described in Chapter 3 (see (3.4)). The rest of this section presents and analyses

the results.

6.5.1 Results on synthetic imagery

In order to verify that the learning process was effective, out-of-plane motion estimation

was first attempted on synthetic ultrasound data sequences obtained using the same virtual

transducer as was used to generate the training data, but using different virtual phantoms.

Figures 6.5 and 6.6 show the distribution of the pairwise motion estimation error as a

function of elevational separation for such cases. Figure 6.5 shows the results obtained

for phantoms of homogeneous composition, including a fully developed speckle phantom,

whereas Figure 6.6 shows the results obtained for multi-region phantoms. The error is

quantified in terms of (1) the ratio of the mean target registration error (mTRE) to the

true elevational separation; (2) the ratio of the difference between the estimated separation

and the true one to the true elevational separation; (3) the estimated yaw and (4) the

estimated tilt, using the centroid of the grid of image patches as the centre of rotation.

Both the yaw and tilt should be zero if correctly estimated in these experiments.
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(a) Linear scan of homogeneous fully developed speckle phantom: 100 frames. Gener-
ated using the fractal model of Chapter 5 with γ = 16 scatt./mm3 and α = 1.
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(b) Homogeneous linear 1: γ = 0.5 scatt./mm3, α = 0.03, 100 frames
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(c) Homogeneous linear 2: γ = 0.5 scatt./mm3, α = 0.3, 100 frames

Figure 6.5 Out-of-plane motion estimation error between pairs of synthetic
linear array images of homogeneous phantoms. All image sequences were
acquired at 0.1 mm intervals in the elevational direction. From left to right:
the ratio of the mTRE to the true displacement, the ratio of the estimated
displacement error to the true displacement, the yaw error and the tilt error
measured using the centroid of the grid of image patches as the centre of
rotation. Dark blue circles: using the nominal decorrelation model without
adaptation. Green stars: using Prager et al.’s speckle detector [167]. Red
triangles: using Gee et al.’s heuristic adaptive method [72]. Cyan squares:
using the learning based approach. The error bars represent one standard
deviation.
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(a) Multi-region linear 1: 50 frames
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(b) Multi-region linear 2: 150 frames
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(c) Multi-region linear 3: 150 frames
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(d) Multi-region linear 4: 150 frames

Figure 6.6 Out-of-plane motion estimation error between pairs of synthetic
linear array images of multi-region phantoms. All image sequences were ac-
quired at 0.1 mm intervals in the elevational direction. From left to right:
the ratio of the mTRE to the true displacement, the ratio of the estimated
displacement error to the true displacement, the yaw error and the tilt er-
ror measured using the centroid of the grid of image patches as the centre of
rotation. Dark blue circles: using the nominal decorrelation model without
adaptation. Green stars: using Prager et al.’s speckle detector [167]. Red tri-
angles: using Gee et al.’s heuristic adaptive method [72]. Cyan squares: using
the learning based approach. The error bars represent one standard deviation.
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From these results, it can be seen that all algorithms succeeded in correctly estimating

out-of-plane motion in the case of the homogeneous fully developed speckle phantom (Fig-

ure 6.5(a)). This is not surprising since this the nominal decorrelation model was derived

from a scan of a very similar phantom and did not require significant adaptation. Nonethe-

less, it is a good sign for the new approach that distance estimates did not deteriorate.

The results obtained for non fully developed speckle virtual phantoms (Figures 6.5

and 6.6) are, predictably, quite different. In these cases, using the nominal speckle decor-

relation model often yields large errors. For multi-region phantoms (Figure 6.6), there is

often some error in the yaw and tilt components of the estimated rigid transformation.

This is explained by the non-uniformity of the error in the individual patch-wise distance

estimates caused by the different amounts of adaptation needed in different regions of the

phantom.

The speckle detection approach most often succeeded in reducing motion estimation

error somewhat, but, as was found by Hassenpflug et al. [86], the trade-off between accurate

rejection of non speckle patches and the collection of sufficient data for rigid transformation

estimation means that these results are still unsatisfactory. In some cases, such as that

shown in Figure 6.5(b) the motion estimate obtained using the speckle detector is even

worse than that obtained using the nominal speckle decorrelation model directly. This

probably owes to the poor spatial distribution of the greedily selected set of “best” image

patches.

In contrast, both the proposed learning-based approach and Gee et al.’s heuristic ap-

proach [72] were generally able to reduce the motion estimation error to levels comparable

to that obtained for the calibration phantom. This is a very encouraging result as it shows

that the learned relationship between in-plane image statistics and elevational correlation

length generalises to imagery outside the training set.

The next set of experiments was carried out on the synthetic imagery generated using

the virtual linear phased array transducer. The aim of these experiments was to find out

whether the learned model also generalises to imagery acquired using a transducer with

characteristics and geometry different from that used to generate the pool of training data.

Figures 6.7 and 6.8 show the distribution of motion estimation error over all pairs of frames

considered in these experiments. The virtual phantoms were mostly homogeneous ones, but

two multi-region phantoms were also used (the last two cases of Figure 6.8).

As with the linear transducer results, accurate distance estimation was achieved by
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(a) Sector calibration scan: 140 frames
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(b) Homogeneous sector 1: γ = 0.5 scatt./mm3, α = 10, 140 frames
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(c) Homogeneous sector 2: γ = 1 scatt./mm3, α = 0.3, 140 frames
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(d) Homogeneous sector 3: γ = 2 scatt./mm3, α = 0.1, 140 frames

Figure 6.7 Out-of-plane motion estimation error between pairs of synthetic
sector scan images of homogeneous phantoms. All image sequences were ac-
quired at 0.1 mm intervals in the elevational direction. From left to right:
the ratio of the mTRE to the true displacement, the ratio of the estimated
displacement error to the true displacement, the yaw error and the tilt er-
ror measured using the centroid of the grid of image patches as the centre of
rotation. Dark blue circles: using the nominal decorrelation model without
adaptation. Green stars: using Prager et al.’s speckle detector [167]. Red tri-
angles: using Gee et al.’s heuristic adaptive method [72]. Cyan squares: using
the learning based approach. The error bars represent one standard deviation.
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(a) Homogeneous sector 4: γ = 2 scatt./mm3, α = 0.3, 140 frames
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(b) Homogeneous sector 5: γ = 4 scatt./mm3, α = 0.1, 140 frames
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(c) Multi-region sector 1: 140 frames
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(d) Multi-region sector 2: 140 frames

Figure 6.8 Out-of-plane motion estimation error between pairs of synthetic
sector scan images of homogeneous and multi-region phantoms. All image
sequences were acquired at 0.1 mm intervals in the elevational direction. From
left to right: the ratio of the mTRE to the true displacement, the ratio of the
estimated displacement error to the true displacement, the yaw error and the
tilt error measured using the centroid of the grid of image patches as the centre
of rotation Dark blue circles: using the nominal decorrelation model without
adaptation. Green stars: using Prager et al.’s speckle detector [167]. Red
triangles: using Gee et al.’s heuristic adaptive method [72]. Cyan squares:
using the learning based approach. The error bars represent one standard
deviation.
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all methods for the calibration phantom (Figure 6.7(a)). Outside the context of Rayleigh

scattering, the speckle detection approach was even less successful for the sector scans than

for the linear scans. There are two likely reasons for this:

1. The scatterer density parameters (defined in scatterers/mm3) used to generate the

virtual phantoms for the synthetic sector scans were drawn from similar distributions

to those used in the case of the virtual linear transducer. However, the size of the

resolution cells in the sector imagery was much smaller than for the linear transducer

imagery owing to the higher frequency of the ultrasound pulse. This means that the

scatterer density in terms of scatterers per resolution cell was also generally lower

than for the linear transducer cases, leading to fewer image patches whose content

approached fully developed speckle.

2. There was a large difference between the number of patches in the two types of data:

the linear scans were divided into 56 patches, whereas the sector imagery only had

22. This means that the speckle detection approach had less choice when collecting

image patches suitable for the estimation of a rigid transformation.

The results obtained with the proposed method and with Gee et al.’s method were once

again better than for the other alternatives, but not as good as those obtained with the

linear transducer data. This is quite possibly a consequence of the smaller numbers of

scatterers per resolution cell in those simulations. This hypothesis is supported by the fact

that the worst results in the linear transducer case were obtained for the lowest density

(Figure 6.5(b)) and the best results in the sector imagery case were obtained for the largest

density (Figure 6.8(b)).

Another notable difference concerns the shape of the error curves. For the linear trans-

ducer cases, the ratio of the error to the true distance is nearly constant, whereas it appears

to be a fast increasing and highly curved function in the case of the linear phased array

cases. The reasons for this are not entirely clear, though in some cases, it may have to

do with the persistence of image features across the scan, arising from the presence of

structured components in the virtual phantom. Nevertheless, it can be observed that the

shape of the error curves obtained for the learning based approach tends to follow that

obtained using the nominal decorrelation model. This is because the learned model is, by

construction, simply a scaled version of the nominal decorrelation curve. The shape of
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the error curves obtained for Gee et al.’s method is quite different, reflecting the fact that

this approach reshapes the nominal decorrelation curve at every sample, allowing for more

complex adaptations.

Though they are by no means perfect, the results on synthetic sector scan imagery

suggest that the proposed approach generalises reasonably well to data acquired using

transducers different from that used to generate the training set. The similarly less than

perfect performance of the state-of-the-art method on these cases suggests that the errors

encountered are somehow related to the parameters of the artificially generated data sets

rather than symptomatic of major flaws in the adaptation algorithms.

6.5.2 Results on real imagery

The generality of the learned adaptive decorrelation model was further verified on the real

ultrasound scans of animal tissue. Since the experiments with animal tissue involved 51

distinct data sets, it is impractical to include the full set of results in this chapter. Therefore,

these are made available in Appendix C. For the purpose of this discussion, Figures 6.9, 6.10

and 6.11 show sample representative results for the reference phantom and pork tenderloin,

turkey breast, and beef brisket data sets respectively. The animal tissue data sets selected

for discussion were the ones acquired at 0.03 mm intervals, allowing dense performance

assessment of the different algorithms over the correlation range of the imagery. As with the

results on synthetic data sequences, the plots show (1) the ratio of mean target registration

error to true elevational separation; (2) the ratio of the difference between the estimated

elevational separation and the true one to true elevational separation, evaluated using the

centroid of the grid of image patches as the centre of rotation; (3) yaw evaluated using the

centroid of the grid of image patches as the centre of rotation; (4) tilt evaluated using the

centroid of the grid of image patches as the centre of rotation.

As with the synthetic scans, the pairwise distance estimation results obtained for the

reference phantom scan were good for all methods considered. The speckle detection ap-

proach did slightly worse than the others. This implies that the speckle detector did not

accept all image patches as fully developed speckle, or the results would have been identical

to those obtained for the unadapted case. This may be explained by a combination of three

factors:

1. The size of the image patches was quite small, making the computation of first order
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(a) Calibration scan: 161 frames, 0.05 mm intervals

0 0.5
0

0.2

0.4

0.6

distance (mm)

m
T

R
E

/d
is

ta
nc

e

0 0.4 0.8
−0.5

−0.3

−0.1

0.1

0.3

0.5

distance (mm)

di
sp

la
ce

m
en

t e
rr

or
/d

is
ta

nc
e

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

ya
w

 e
rr

or
 (

de
gr

ee
s)

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

til
t e

rr
or

 (
de

gr
ee

s)

(b) Pork tenderloin 1: 163 frames, 0.03 mm intervals
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(c) Pork tenderloin 2: 161 frames, 0.03 mm intervals
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(d) Pork tenderloin 3: 161 frames, 0.03 mm intervals

Figure 6.9 Out-of-plane motion estimation error between pairs of speckle
phantom and pork tenderloin images. From left to right: the ratio of the
mTRE to the true displacement, the ratio of the estimated displacement error
to the true displacement, the yaw error and the tilt error measured using the
centroid of the grid of image patches as the centre of rotation. Dark blue
circles: using the nominal decorrelation model without adaptation. Green
stars: using Prager et al.’s speckle detector [167]. Red triangles: using Gee et
al.’s heuristic adaptive method [72]. Cyan squares: using the learning based
approach. The error bars represent one standard deviation.
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(a) Turkey breast 1: 161 frames, 0.03 mm intervals
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(b) Turkey breast 2: 161 frames, 0.03 mm intervals
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(c) Turkey breast 3: 161 frames, 0.03 mm intervals

Figure 6.10 Out-of-plane motion estimation error between pairs of speckle
phantom and turkey breast images. From left to right: the ratio of the mTRE
to the true displacement, the ratio of the estimated displacement error to
the true displacement, the yaw error and the tilt error measured using the
centroid of the grid of image patches as the centre of rotation. Dark blue
circles: using the nominal decorrelation model without adaptation. Green
stars: using Prager et al.’s speckle detector [167]. Red triangles: using Gee et
al.’s heuristic adaptive method [72]. Cyan squares: using the learning based
approach. The error bars represent one standard deviation.
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(a) Beef brisket 1: 161 frames, 0.03 mm intervals
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(b) Beef brisket 2: 161 frames, 0.03 mm intervals
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(c) Beef brisket 3: 161 frames, 0.03 mm intervals

Figure 6.11 Out-of-plane motion estimation error between pairs of beef
brisket images. From left to right: the ratio of the mTRE to the true displace-
ment, the ratio of the estimated displacement error to the true displacement,
the yaw error and the tilt error measured using the centroid of the grid of
image patches as the centre of rotation. Dark blue circles: using the nominal
decorrelation model without adaptation. Green stars: using Prager et al.’s
speckle detector [167]. Red triangles: using Gee et al.’s heuristic adaptive
method [72]. Cyan squares: using the learning based approach. The error
bars represent one standard deviation.
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statistics R1.8, and particularly S1.8, required by the detector susceptible to noise

arising from the finite sample size. This may have caused the detector to incorrectly

reject fully developed speckle patches.

2. The dynamic range compression parameter may not have been recovered perfectly

by Prager et al.’s algorithm [168]. Slightly inaccurate decompression may thus have

altered the first order statistics of the decompressed signal compared to those of the

original, unavailable envelope detected signal produced by the ultrasound machine.

3. The phantom itself is probably not perfect and exhibits some spatial variations in

micro-structure, as already discussed in Chapter 4.

The more interesting results are those obtained for the animal tissue samples. At first

glance, the results obtained with the virtual linear transducer imagery appear to have gen-

eralised very well to the real data. Without adaptation, results were very poor in most

cases, confirming that the tissue samples scanned significantly differed in structure from

the reference phantom and justifying the application of adaptive approaches. Generally,

the speckle detection method was, again, able to improve on these results somewhat signif-

icantly, but did not approach the error levels reached in the case of the phantom. In most

cases, Gee et al.’s method and the learning-based approach proposed in this chapter were

both much more successful, with mean target registration errors typically neighbouring the

10% mark at their lowest point in the range of elevational separations considered, and er-

rors considerably smaller than for the alternatives elsewhere.6 The learning-based approach

achieved excellent performance, indicating that the regressor learned from synthetic data

generalised well across the transition to real ultrasound data and the change in transducer

specifications and geometry.

The shape of the error curves (mainly the mTRE and distance estimation error) obtained

with the proposed method merits attention, as it generally differs substantially from that

of the curves that were obtained with the synthetic linear transducer imagery. In the latter

case, the mean target registration error curve was generally flat, except for very short

distances corresponding to the region of the decorrelation curve most poorly modelled

6The poor behaviour of Gee et al.’s heuristic method on the first turkey data set of Figure 6.10 is the
exception rather than the rule, as corroborated by the full set of results presented in appendix C. It is
possibly the result of a misunderstood implementation issue, or might be corrected by a different choice
for the adjustable parameters g1 and g2.
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by the piecewise linear approximation. For the real data, however, there is typically a

considerable increase in the error for larger elevational separations. The onset and rate of

this deterioration in accuracy differ from one data set to the next. Compare, for instance,

the error curves obtained for the two beef data sets of Figures 6.11(a) and 6.11(b). The

increase in error happens more slowly and for larger distances in the former than in the

latter.

A plausible explanation for this error increase for larger distances is illustrated in Fig-

ure 6.12 and initially suggested itself in an exploratory experiment on a sample of pork

flank. The figure shows an elevational decorrelation curve obtained for imagery of the

speckle phantom, which follows a Gaussian-like shape, and the elevational decorrelation

curve obtained from a scan of pork flank at the same image location. The adaptive method

presented in this chapter essentially re-scales the nominal decorrelation curve along the δ

axis according to the local statistics of the image, yielding an adapted decorrelation curve

which is still Gaussian-like and tends towards zero correlation. This prediction follows the

true decorrelation curve closely for shorter distances; however, as illustrated in Figure 6.12,

for this particular image location, the imagery never decorrelates completely, instead reach-

ing a correlation plateau value near 0.5 or 0.6. Notice that the image location corresponding

to this curve (Figure 6.12) contains highly specular features due to the presence of a thick

layer of fat in the tissue sample. This layer of fat continues to exist over large elevational

displacements. Such features also appear in the data sets considered in this thesis, though

they are not always as visually blatant.
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Figure 6.12 Illustration of correlation plateaux caused by persistent struc-
tures in the imaged medium. From left to right: speckle phantom image; pork
flank image; decorrelation curves associated with the image patches inside the
white rectangles; mean target registration error obtained for the pork flank
data set without adaptation and using the learning-based approach.
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Elevationally persistent structure causing correlation plateaux also arises from bound-

aries between regions of significantly different echogenicity or micro-structure, such as the

random Voronoi regions contained in the virtual multi-region phantoms used in simulation.

Upon investigation, it was found that such correlation plateaux did indeed occur for image

patches containing region boundaries in the case of the linear transducer simulations pre-

sented in this chapter. However, the phenomenon did not occur at enough locations within

the image plane to have a sizeable effect on the overall rigid transformation fit between

pairs of frames. In fact, image patches where this occurred were often rejected as outliers

by the least-median-of-squares fitting algorithm, which was overwhelmed with data from

image patches with uniform structure.

Overall, the experimental results suggest that Gee et al.’s heuristic approach [72] is

slightly more immune to the effect of structures persisting over large distances than the

learning-based approach, with error curves which remain somewhat flatter and increase at

slower rates. This is likely because this approach applies a more complex transformation

to the nominal decorrelation model than the simple scale factor used by the learning-based

method, which means that the shape of the adapted decorrelation curve does not have to

follow that of the nominal model. It would seem that the shapes of the axial and lateral

decorrelation curves used by the heuristic approach provide some useful information in this

respect which the proposed method does not exploit. Nonetheless, neither method can

be said to model elevational decorrelation extremely well at larger distance intervals when

persistent structures are present.

In a few cases, the learning-based approach, Gee et al.’s approach, or both, had diffi-

culty modelling elevational speckle correlation for short distances as well, leading to over-

estimates of elevational separation. Such a case, occurring with one of the turkey breast

data sets, is illustrated in Figure 6.13. In this case, both of the adaptive approaches substan-

tially over-estimated the elevational separation between pairs of frames. It was observed

that such cases tended to occur more commonly when the signal level was comparatively

low, i.e. when the scanned tissue sample had low echogenicity properties, as is the case

with lean meat samples like turkey breast (see Figure 6.3 for an illustrative example). This

suggests the hypothesis that the inaccuracies are caused by noise in the image acquisition

process, whose relative contribution to the image content increases when the initial ultra-

sound signal level is low. Sources of such noise include electronic noise from the ultrasound

scanner, quantisation noise arising from the conversion of the analog envelope signal to a
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coarsely sampled set of log-compressed 8-bit grey scale pixels as well as potential interlacing

artefacts introduced by the video frame grabber.

Turkey breast 9: 161 frames, 0.05 mm intervals
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Figure 6.13 Example of out-of-plane motion over-estimation in turkey
breast imagery. From left to right: the ratio of the mTRE to the true displace-
ment, the ratio of the estimated displacement error to the true displacement,
the yaw error and the tilt error measured using the centroid of the grid of
image patches as the centre of rotation. Dark blue circles: using the nominal
decorrelation model without adaptation. Green stars: using Prager et al.’s
speckle detector [167]. Red triangles: using Gee et al.’s heuristic adaptive
method [72]. Cyan squares: using the learning based approach. The error
bars represent one standard deviation.

These types of noise were not modelled in the construction of the training set (though

they certainly could be in an improved version of the approach) and may have a variety of

effects on the accuracy of correlation-based distance estimation:

• The true elevational decorrelation curve may be altered. The maximum achievable

correlation value likely decreases, and the global shape of the curve (local slope and

curvature) most likely change as well, with the severity of the change depending on

the signal-to-noise ratio. It was observed that occasionally, the unadapted nomi-

nal speckle decorrelation model itself yielded displacement over-estimates, which is

possibly a result of such changes.

• The in-plane image statistics used by the speckle detector, Gee et al.’s algorithm

and the learning-based approach may also be significantly altered. In particular, the

signal-to-noise ratio statistic R may undergo a systematic decrease due to a noise-

induced increase in the variance of the pixel values. Axial and lateral decorrelation

curves may be altered in ways more or less similar to the elevational one and become

less predictive of its behaviour.
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The behaviour of the speckle detection approach does not change much in such con-

ditions, as it only uses the image statistics to determine whether or not an image patch

should be used, a binary decision whose tolerance to noise may be quite high. Alteration

of the input and output signal statistics most strongly affects adaptive algorithms such as

Gee et al.’s or the approach proposed in this chapter, because these approaches are the

ones which most strongly rely on the relationship between these statistics. In particular,

the accuracy of the learning-based approach depends entirely on the assumption that the

training set from which the regression model was established was representative of the data

samples to be processed later. Since noise was not modelled at all in the simulations that

led to the creation of the synthetic ultrasound training set, it would not be surprising if

predictions deteriorated in the presence of noise. This is not a fatal limitation, however,

as many sources of noise could easily be modelled as part of the simulation process and an

improved elevational correlation length predictor derived from the more realistic training

set. In this respect, the proposed learning-based approach is more adaptable than that of

Gee et al.

Another potential source of error for the learning-based approach is that the axial

and lateral decorrelation curves may not always be well represented by Gaussian curves.

The features wa and wl computed from the least-squares Gaussian curve fit may thus not

always be very representative of the local axial and lateral decorrelation rates, particularly if

correlation plateaux similar to that shown in Figure 6.12 appear in the axial and/or lateral

directions. These were not observed very often (probably because of the small distance

ranges considered in the axial and lateral directions), but in such cases, a least squares

Gaussian fit would tend to over-estimate decorrelation rate for small distances, and might

lead the regressor to output over-inflated values of we, causing distance over-estimates. It is

not yet known whether this is in fact a significant problem, but if it is, a potential solution

might be to carry out the Gaussian curve fits using a criterion other than the least mean

squared error. A fitting approach which assigns less weight to correlation measurements

associated with large separations might be more appropriate.

6.6 Summary and discussion

This chapter described a novel approach for adapting a nominal elevational decorrelation

model obtained from speckle phantom data to imagery of different media using local image
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statistics. In this approach, the relationship between the in-plane first and second order

statistics of the image and elevational correlation length is established by applying sparse

Gaussian process regression to a large pool of associations between in-plane image statis-

tics and elevational correlation length obtained from varied synthetic ultrasound data sets

generated using the method described in Chapter 5.

Experiments on synthetic data and real ultrasound data of animal tissue samples showed

that the learned regressor generalises well across transducer and medium changes, achieving

significantly lower distance estimation errors than an approach based on the detection and

exclusive use of fully developed speckle patches [167, 86]. The approach was also compared

against the state-of-the art heuristic method developed by Gee et al. [72]. Quantitative

statements regarding this comparison are probably unwise given that the implementation

and tuning of Gee et al.’s approach used in this work may differ from what was intended

by the authors and are likely sub-optimal. A fair statement would be that, qualitatively,

the proposed method exhibited accuracy comparable to the state-of-the-art.

A unique feature of the learning-based method presented in this chapter is that the

estimates of correlation length provided by the sparse Gaussian regressor are probabilistic

in nature as they are given in terms of a mean and variance. The variance component of

the estimates was not fully exploited in this work, but certainly warrants further research

interest as it may provide useful quantification of uncertainty or reliability in tasks which

require distance measurements. The analysis of the experimental results with imagery of

animal tissue also suggests a number of avenues for research. Though it is satisfactory

in many respects, the adaptive decorrelation model used in this chapter is perhaps overly

simplistic as it assumes that the true decorrelation curve of ultrasound in an arbitrary

medium is merely a scaled version of the nominal, transducer specific decorrelation curve.

Experimental results show that this is clearly not the case and it seems plausible that

the violation of this assumption in the axial and lateral cases might the cause of some of

the observed distance estimation inaccuracies. Accuracy might be improved by describing

changes in shape of the axial, lateral and elevational decorrelation curves by more than a

single scaling parameter. Finally, generalisation of the learned regressor to real ultrasound

data can most probably be improved by creating more realistic synthetic training sets.

Important unmodelled variables are electronic and frame-grabber noise as well as signal

attenuation. The latter would be a very relevant variable to model if data were to be

acquired at larger depths. Another modelling parameter of interest would be medium
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anisotropy, i.e. the propensity of ultrasound scatterers to have spatially oriented spatial

organisations in certain types of tissue (e.g. the muscle fibers imaged in the animal tissue

experiments of this chapter). This might be achieved by modifying the scatterer distribution

model proposed in Chapter 5. That such variables can eventually be integrated into the

construction of the training set to obtain more accurate models is another unique strength

of the proposed approach.

In spite of the very simple modelling assumptions it relies on, the learning-based ap-

proach presented in this chapter was quite successful in providing accurate distance esti-

mates and its formulation makes it highly adaptable in terms of the imaging conditions

that can be accounted for. As such, it is a promising new component within a system for

inferring the trajectory of an ultrasound transducer in real-tissue. That is precisely what

will be discussed in the next chapter.
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Chapter 7

Probabilistic out-of-plane trajectory

estimation in ultrasound imagery of

real tissue

The goal of the work presented in this thesis was to make possible the accurate estimation

of out-of-plane ultrasound transducer trajectories from imagery of arbitrary media. This

chapter shows how the different components already presented in this thesis can be modified

and integrated within a single framework in order to achieve this and how the limitations

of each of these components can be circumvented or overcome when they are used in

combination. In what follows, the most important components of the system are reviewed

and their limitations identified. A solution which accounts for these limitations through a

novel measurement selection process will then be introduced.

Chapter 6 introduced a method for dynamically adapting a nominal, transducer specific

elevational speckle decorrelation model to the characteristics of the scanned medium. This

is done by learning from images of synthetic phantoms of varied micro-structure created

using the scatterer distribution model of Chapter 5. Experimental results showed that

this approach was successful, in that relatively accurate elevational separation estimates

were generally obtained over a moderate range of true elevational separations. However,

it was also found that the accuracy of the dynamically adapted model did not typically

extend to the full range of elevational separations originally included in the nominal speckle

decorrelation model. The main reason for this is that the locally adapted decorrelation
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model is simply a rescaled version of the nominal model and as such, it predicts a Gaussian-

like curve which tends towards zero correlations for large distances, thereby failing to model

the effect of some elevationally persistent structures in the medium (such as the layer of

fat in the pork flank example given in Figure 6.12 of the previous chapter).

Chapter 4 introduced a probabilistic methodology for modelling the uncertainty of dis-

tance estimates derived from the sample correlation coefficients between pairs of image

patches and obtaining a maximum likelihood trajectory estimate from a set of redundant

probabilistic distance estimates. In the development of this approach, it was assumed that

the scanned medium exhibited Rayleigh scattering conditions, precluding its direct use in

recovering transducer trajectories from imagery of real tissue. Simulations and experiments

on speckle phantom data showed that this approach holds promise in terms of reducing

possible biases and uncertainty compared with approaches using a single correlation mea-

surement per patch, provided an accurate speckle decorrelation model exists. Chapter 3

also showed how combinatorial optimisation could be used to resolve directional ambigu-

ities in a robust manner given an elevational speckle decorrelation model and multiple

distance estimates derived from it. To different extents, these approaches rely on the as-

sumption that the elevational speckle decorrelation model is unbiased over the entire range

of elevational separations for which it is defined.

The aim of the research presented in the current chapter was to integrate the ideas pro-

posed in the rest of the thesis in order to perform the estimation of out-of-plane transducer

motion from imagery of arbitrary media. The generalisation of the probabilistic data fusion

approach of Chapter 4 to imagery of real tissue is non-trivial because currently available

adaptive speckle decorrelation models, including the one presented in the previous chapter,

present imperfections which lead to biased distance estimates in certain portions of the

distance domain. Thus, some sort of automated measurement selection process is needed

in order to avoid including these biased measurements in the estimation of trajectory.

Measurement selection in the context of image-based ultrasound trajectory estimation

from imagery of real tissue is a problem that has previously been discussed by Housden

et al. [94]. They proposed a method for recovering transducer trajectory which calculates

a robust average of trajectory estimates obtained from interleaved subsets of the image

frames. Considerable effort was invested in optimising the unique assignment of frames to

independent interleaved subsets. In particular, consecutive frames in a given subset are

required not to lie too close to each other in order to avoid the biases which arise from a
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poorly represented area of the decorrelation curve [204, 85] (see Chapter 4). Consecutive

frames are also required not to lie so far from each other that they would be uncorrelated and

thereby not convey any positional information. This approach does not explicitly account

for cases like that illustrated in Figure 6.12 of the previous chapter, where widely separated

image patches exhibit significant but uninformative correlation. This issue is never, in fact,

discussed by the authors, and so it seems that they might not have encountered the problem

in their experimental work, or that their robust averaging approach somehow compensates

for it.

In order to address such cases where correlation is uninformative and to compensate for

some of the inaccuracies in the adaptive speckle decorrelation model of the previous chapter,

this chapter builds on the probabilistic speckle decorrelation model and data fusion scheme

of Chapter 4 and proposes an iterative algorithm based on statistical hypothesis testing for

incrementally integrating new distance estimates to a conservative initial estimate of the

trajectory. The hypothesis testing approach is inspired by the mobile robotics literature on

the topic of automated map construction. In that context, it is often the case (e.g. [61, 150])

that updates to positional information about a particular landmark are conditional on the

statistical agreement between a model established through prior measurement cycles and

newly acquired measurements, which ensures that the new measurements indeed correspond

to the hypothesised landmark. In the ultrasound trajectory recovery problem addressed

here, it is not the identity of particular landmarks (frame pairs) which is called in question,

but rather the accuracy of the potentially biased measurement model.

The remainder of this chapter is structured as follows. Section 7.1 explains how the

probabilistic speckle model of Chapter 4 can be extended to exploit the learning-based

correlation length estimation approach of Chapter 6 and how to use this extension of the

model for data fusion. Section 7.2 shows how this adaptive probabilistic data fusion ap-

proach can be further extended to allow for principled measurement selection based on an

incremental hypothesis testing scheme. Section 7.3 discusses the order in which measure-

ments are considered for integration in the trajectory estimate and presents three different

ways of creating the initial trajectory estimate required by the incremental hypothesis

testing scheme. Section 7.4 presents the results of trajectory recovery experiments on the

animal tissue data sets introduced in the previous chapter. It also describes additional re-

sults on further imagery of animal tissue acquired along non-monotonic probe trajectories,

thereby verifying the robustness of the combinatorial frame ordering approach proposed in
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Chapter 3. The results of these experiments show that the proposed approach generally

succeeds in avoiding biased distance estimates resulting from correlation plateaux, leading

to more accurate trajectory estimates than a nearest-neighbour approach or the original

probabilistic fusion approach of Chapter 4 without measurement selection.

7.1 Probabilistic correlation measurement fusion in real tissue

Consider the problem of estimating the relative elevational positions of a set of otherwise

aligned ultrasound image patches. In the terminology introduced in Chapter 3, these cor-

responding image patches constitute a set of mini-frames whose estimated elevational posi-

tions will, at a later stage, be combined to those associated with different image patches by

enforcing the image planarity constraint. Chapter 4 introduced a probabilistic elevational

speckle decorrelation model which describes the statistical properties of the relationship

between the sample correlation coefficient ρij measured between mini-frames i and j corre-

sponding to image location q and the distance δ between them. This model assumes that

the reference and test targets exhibit similar, near Rayleigh, scattering conditions. The

variations in ρ captured by this model are those arising from the finite size of the image

patches when computing the value of the sample correlation coefficient. In this chapter,

this nominal probabilistic speckle decorrelation model is treated as a special case of a more

general model which accounts for variations in correlation length arising from non-Rayleigh

scattering conditions.

As in the previous chapter, let ŵe denote the nominal elevational correlation length of

the transducer, and let re denote the scale factor which must be applied to ŵe in order to

obtain the local elevational correlation length we of the medium under consideration, i.e.

we = reŵe. (7.1)

Let p(ρij |δij, reij
, q) denote the conditional probability density function of the sample cor-

relation coefficient ρij measured between mini-frames i and j separated by distance δij =

|zi − zj | at image location q for a local elevational correlation length weij
= reij

ŵe. As in

Chapter 4, zi denotes the elevational position of mini-frame i and z0 = 0. By construction,

p(ρij |δij, reij
, q) = p

(

ρij

∣

∣

∣

δij
reij

, reij
= 1, q

)

, (7.2)
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where the case reij
= 1 on the right hand side corresponds to the nominal probabilistic

speckle decorrelation model originally presented in Chapter 4. This nominal model is esti-

mated using Baker’s maximum entropy approach [10] using the correlation measurements

obtained from the calibration scan of a speckle phantom.

In the case of real tissue, the elevational correlation length of the medium for any

mini-frame i is unknown. It is estimated from the normalised statistical features of the

image patch, fi = {rR2
i
, rSi

, rai
, rli} using the sparse Gaussian process regressor introduced

in Chapter 6. Recall that this regressor provides a probabilistic estimate for the local

normalised elevational correlation length rei
. This estimate is a normal probability density

function with mean r̄ei
and variance ξi:

p(rei
|fi) = N (r̄ei

, ξi), (7.3)

where the dependence of rei
on the synthetic training set D used to learn the relationship

is henceforth made implicit for the sake of notational simplicity.

Let n + 1 be the number of frames in the image sequence and z denote the vector

obtained by concatenating the zi, i = 1, . . . , n. Let {δ(z)} denote the set of pairwise

distances between corresponding mini-frames, which are deterministically related to their

absolute positions by

δij = |zi − zj|. (7.4)

Finally, let {ρ} denote the set of pairwise sample correlation coefficients, {f} denote the

set of normalised statistical image feature sets and {re} denote the set of local normalised

elevational correlation lengths, obtained for each mini-frame or pair of corresponding mini-

frames.

Very much as in Chapter 4, the problem to be solved is to maximise the likelihood of

z for the correlation measurements obtained at image location q given the observed image

features {f}:
z∗ = argmax

z

p({ρ}|{δ(z)}, q, {f}). (7.5)

To solve this problem, one must account for the unknown local elevational correlation

lengths which are estimated from {f}. This is done by expressing the likelihood function
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in the above equation as the result of marginalisation over {re}:

z∗ = argmax
z

∫ ∞

0

. . .

∫ ∞

0

p({ρ}|{δ(z)}, {re}, q, {f})p({re}|{f}, q, δ(z}))d{re}. (7.6)

It is reasonable to assume that the correlation measurements are independent of the sta-

tistical image features {f} given the local normalised elevational correlation lengths {re}
and that the {re} are independent of the probe trajectory and image location. Therefore,

z∗ = argmax
z

∫ ∞

0

. . .

∫ ∞

0

p({ρ}|{δ(z)}, {re}, q)p({re}|{f})d{re}. (7.7)

If it is further assumed that the elevational correlation length at any given mini-frame i in

the trajectory is independent of the elevational correlation length at all other mini-frames

j 6= i given the set of measured statistical image features {f}, then

z∗ = argmax
z

∫ ∞

0

. . .

∫ ∞

0

p({ρ}|{δ(z)}, {re}, q)
n
∏

i=1

p(rei
|fi)d{re}. (7.8)

The marginalisation integral required to account for the uncertainty in the re in (7.8)

above makes this maximum likelihood estimation problem quite difficult. One possi-

ble solution would be to use the expectation-maximisation algorithm [46], an iterative

approach which was specifically designed to handle optimisation problems of this kind.

However, this approach would require an analytical expression for the expected value of

p({ρ}|{δ(z)}, {re}, q) with respect to p({re}|{f}), which cannot easily be obtained. For

simplicity, the following approximation is instead adopted:

∫ ∞

0

. . .

∫ ∞

0

p({ρ}|{δ(z)}, {re}, q)p({re}|{f})d{re} ≈ p({ρ}|{δ(z)}, {r∗e}, q), (7.9)

where

r∗ei
= argmax

rei

p(rei
|fi) = r̄ei

. (7.10)

This approximation is valid when the variances in the elevational correlation lengths, ξi,

are small. The maximum likelihood estimate z∗ for z can then be approximated as

z∗ ≈ argmax
z

p({ρ}|{δ(z)}, {r∗e}, q). (7.11)
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If it is assumed that the correlation measurements are conditionally independent of each

other given the spatial configuration of the image frames, the local elevational correlation

lengths {re} and the image patch location q, then

z∗ ≈ argmax
z

∏

i>j

p(ρij | |zi − zj |, r∗eij
, q). (7.12)

The variable r∗eij
was created by slight notational and mathematical abuse: indeed, the

learning-based approach of Chapter 6 assigns a correlation length estimate to single mini-

frames, not pairs of mini-frames. Thus, for a pair of corresponding mini-frames, there are

two such estimates. In practice, r∗eij
is thus taken to be the variance weighted average of

the mean elevational correlation lengths estimated for mini-frames i and j, as previously

done for the distance estimation experiments of Chapter 6:

r∗eij
=

r̄ei

ξi
+

r̄ej

ξj

1
ξi

+ 1
ξj

. (7.13)

For the purpose of optimising z, the log-likelihood L(ρij | |zi − zj |, r∗eij
, q) = ln p(ρij | |zi −

zj |, r∗eij
, q) is preferred as the objective function, leading to

z∗ ≈ argmax
z

∑

i>j

L(ρij | |zi − zj |, r∗eij
, q), (7.14)

where

L(ρij | |zi − zj|, r∗eij
, q) = L

(

ρij

∣

∣

∣

|zi − zj |
r∗eij

, reij
= 1, q

)

. (7.15)

Here, the elevational correlation length r∗eij
is simply used to stretch the nominal likelihood

function obtained for speckle phantoms (see Chapter 4) along the δ dimension.

The methodology used to obtain an optimal estimate for z then closely follows that

described in Chapter 4. Namely, a Gaussian estimate of distance δij = |zi − zj | is first

obtained for each correlation measurement ρij such that its mean δ̄ij and variance σ2
ij are

respectively given by

δ̄ij = argmax
δij

L

(

ρij

∣

∣

∣

δij
r∗eij

, reij
= 1, q

)

(7.16)
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and

σ2
ij =

−1

d2

dδ2
ij

L

(

ρij

∣

∣

∣

δ̄ij

r∗eij

, reij
= 1, q

) . (7.17)

By the weighted-least-squares reasoning adapted from [139] and already detailed in Chap-

ter 4 (see section 4.3 for a reminder), an approximate maximum likelihood estimate z̃∗ for

z is obtained by solving the system of linear equations

Gz̃∗ = b, (7.18)

where

Gij =







∑n

k=0
1

σ2
ik

i = j

− 1
σ2

ij

otherwise
(7.19)

and

bi =

n
∑

j=0,j 6=i

sij δ̄ij
σ2

ij

, (7.20)

and sij denotes the sign of the elevational displacement between mini-frames i and j,

obtained from the TSP-sort algorithm described in Chapter 3, such that zj − zi = sijδij ,

j > i. Also recall that the methodology provides a covariance matrix C for z:

C = G−1. (7.21)

This covariance matrix expresses the relative uncertainties in the inferred positions of the

mini-frames. The main diagonal of C captures the amount of uncertainty associated with

the position of each individual mini-frame while the (covariance) off-diagonal entries of C

represent the degree to which knowledge about the position of each mini-frame would be

helpful in reducing the uncertainty in the position of every other mini-frame. This covari-

ance matrix can be used to determine whether a new uncertain measurement of distance

between two mini-frames could reasonably have arisen from the particular distribution of

z established from other measurements, as described in the next section.
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7.2 Iterative selection and fusion of measurements

In principle, the maximum likelihood approach described in the previous section could be

used to combine any number of correlation measurements into a trajectory estimate at a

given image patch location. In practice, using all available correlation measurements was

found to be highly error prone. This is because the probabilistic data fusion methodology

assumes that the speckle decorrelation model is accurate over its entire range. However,

as noted before, the adaptive speckle decorrelation model developed in Chapter 6 to ac-

count for variations in elevational correlation length is unable to account for the correlation

plateaux which are observed for large distances in the presence of elevationally persistent

structures (recall the pork flank example of Figure 6.12 from the previous chapter). De-

pending on the actual micro-structure of the medium, this model can therefore systemat-

ically underestimate large distances. Measurements arising from such biased portions of

the model must be excluded from the data fusion process in order to accurately recover the

transducer trajectory.

In Chapter 4, small biases introduced by unmodelled variations in the elevational cor-

relation length of ultrasound in speckle phantoms were addressed by explicitly imposing

thresholds on the minimal acceptable correlation between two mini-frames and the max-

imum acceptable number of correlation measurements involving a particular mini-frame.

Such thresholds are very difficult to tune and generally quite ineffective in the case of real

tissue scans because the displacement range over which the adaptive model is biased and

the extent to which it is biased are highly subject dependent. In order to be effective in

this context, the measurement selection strategy must dynamically adapt to the data.

Suppose for a moment that an unbiased estimate z̃∗ of the trajectory for patch q, along

with its covariance matrix C were available. Then, the decision to exploit any correlation-

based distance estimate δij, normally distributed with mean δ̄ij and variance σ2
ij respectively

given in (7.16) and (7.17), could be made by carrying out a simple statistical hypothesis

test. Namely, let the H0 denote the null hypothesis that the new distance estimate δij

is consistent with the estimate of z, i.e. sijδij = zj − zi, j > i, and let Ha denote the

alternative hypothesis that it is biased, i.e. sijδij 6= zj −zi. H0 should be rejected in favour

of Ha at significance level αH if

|sij δ̄ij − (z̃∗j − z̃∗i )| ≥ Φ−1(1 − 0.5αH, ν
2), (7.22)
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where Φ−1(1 − 0.5αH, ν
2) is the inverse cumulative distribution function of a Gaussian

random variable with variance ν2 evaluated at probability 1 − 0.5αH, and

ν2 = σ2
ij + Cjj + Cii − 2Cij. (7.23)

Should H0 be accepted, an updated and more precise probabilistic trajectory estimate could

then be computed that includes the information contained in the newly accepted distance

estimates by solving (7.18) and (7.21). This suggests an incremental, iterative approach to

the fusion of correlation measurements. Given an initial trajectory estimate z[0], iteration

t proceeds as follows:

1. A new subset of the available correlation measurements are tested against the current

estimate of the trajectory, rejecting candidate distance estimate δij , j > i, if

|sij δ̄ij − (z̃∗[t−1]j
− z̃∗[t−1]i

)| ≥ Φ−1(1 − 0.5αH, ν
2
[t−1]),

ν2
[t−1] = σ2

ij + C[t−1]jj
+ C[t−1]ii

− 2C[t−1]ij
. (7.24)

2. The measurements accepted by the above test are fused with all other previously ac-

cepted measurements to obtain the trajectory estimate z[t] by solving (7.18) and (7.21),

thereby forming the basis for the null hypothesis to be tested at iteration t+ 1.

Through such an iterative approach, it can be hoped that a robust, increasingly accurate

and increasingly precise estimate of the trajectory will be obtained for every set of mini-

frames. This will depend on the limitations intrinsic to the adaptive speckle decorrelation

model, but also on three controllable factors:

1. The order in which the measurements are tested and integrated to the trajectory

estimate (hereafter called the testing schedule).

2. The initial probabilistic trajectory estimate z[0].

3. The choice of significance level αH.

The choice of significance level is the most trivial of these parameters. It was found empiri-

cally that, for a given initial estimate of trajectory combined with a given testing schedule,

αH = 0.1, αH = 0.05 and αH = 0.01 all gave similar results, though these seemed slightly
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more accurate for αH = 0.01. Therefore, αH = 0.01 was retained for the experiments

presented in this chapter. The other two factors, testing schedule and initial estimate, are

of more consequence, and are discussed in more detail in the next section.

7.3 Testing schedule and initial trajectory estimate

At a given iteration t, measurements are tested against the current trajectory estimate

using (7.24) and, if accepted as consistent, integrated into the model, thereby creating

a new trajectory estimate for iteration t + 1. The order in which different subsets of

measurements are tested, or testing schedule, influences the outcome of the procedure

through the evolution of the hypothesis tests and model updates over time. In this thesis,

a very simple testing schedule is adopted: the first iteration of the process considers only

those correlation measurements which concern consecutively acquired mini-frames (if they

are not already included in the initial trajectory estimate). The second iteration then

considers correlation measurements between frames which are two acquisition steps apart,

and so on until no new measurements are accepted by the hypothesis test. This testing

schedule is illustrated schematically in Figure 7.1. Aside from its ease of implementation,

this testing schedule has two advantages:

1. Assuming an adequate initial trajectory estimate, an accurate and reasonably certain

estimate of z has already been formed by the time distance underestimates arising

from correlation plateaux are processed, allowing the hypothesis test to reject them

with high probability. This is because these frames are quite widely spaced and

widely spaced frames can be assumed not to be acquired within a small number of

acquisition steps of each other. In contrast, unbiased distance estimates between

mini-frames which are far apart in order of acquisition, but close in space (such as

may occur after a change in the direction of the trajectory) are more likely to agree

with the current estimate of z and be included in the next probabilistic trajectory

update.

2. The variance and covariance terms associated with each mini-frame are updated at

a similar rate to those associated with other mini-frames, thereby preventing the

outcome of the data fusion process to become entirely dependent on a tiny subset of

mini-frame positions that were prematurely constrained by multiple measurements
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referring to them. The proposed testing schedule favours even updating across mini-

frames because at any given iteration t > 1, any particular mini-frame can only be

referred to by a single new measurement. For t = 1 there can be a maximum of two

measurements per mini-frame (one leading to it and one departing from it).

The iterative measurement selection and data fusion scheme described in this chapter

was derived assuming that a probabilistic trajectory estimate z[0] was available as a starting

point. In the absence of an external source of data (such as an external position tracking

device, or prior knowledge concerning the type and speed of the transducer trajectory), this

initial estimate must be obtained from a subset of the correlation measurements derived

from the images. An initial trajectory estimate for a set of n + 1 mini-frames requires a

minimum of n correlation measurements which must relate every mini-frame to at least one

other such that there is a connected measurement path from any mini-frame to every other.

An example of a minimal initial set of measurements is given in Figure 7.1 (for t = 0). More

formally, one can think of the mini-frames and available correlation measurements as form-

ing the vertices and edges of a graph G. In this context, a minimal subset of measurements

allowing the estimation of a trajectory among the mini-frames is a spanning tree of G. A

minimal spanning tree of G, obtained easily using any of the classic algorithms (Kruskal’s

algorithm was used here) [26], thus represents an optimal initial trajectory estimate with

respect to some cost function κ defined over the edges (i.e. pairs of connected vertices) of

G.

In developing the iterative measurement selection and fusion scheme of Section 7.2, an

imaginary, unbiased initial trajectory estimate was assumed. The question of which cost

function to use in order to obtain such an unbiased initial trajectory estimate is a difficult

one in a context where there is little formal information regarding the correctness of the

dynamic speckle decorrelation model over the range of correlation or distance. In this

thesis, three alternative cost functions are considered. The first of these is given by

κ1(i, j) = |i− j|. (7.25)

When a valid Gaussian distance estimate (i.e., with a positive value of σ2
ij in (7.17)) ex-

ists for all ρij between consecutively acquired mini-frames, the minimum spanning tree

associated with this cost function yields a nearest-neighbour description of the trajectory.

The correlation measurements corresponding to this nearest-neighbour reconstitution can
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Figure 7.1 Schematic illustration of the chosen testing schedule. The planes
represent a set of corresponding mini-frames and the numbers next to each
one represent the order in which they were acquired (in this example, the
trajectory is not monotonic). The top row shows the distance estimates which
are considered as candidates for measurement selection and the bottom row
shows the set of distance estimates which are used (solid arrows) or not used
(hollow arrows) in each data fusion step. A minimal subset of the available
distance estimates is used to initialise the iterative algorithm at iteration t = 0.
At iteration t = 1, distance estimates between mini-frames separated by one
acquisition step become candidates for fusion to this trajectory estimate. The
hatched distance estimate relating mini-frame 3 to mini-frame 4 is not tested
because it was already used to build the initial estimate at t = 0. All but one
of the candidate distances for t = 1 are accepted by the hypothesis test. The
estimate that was discarded is shown as an empty arrow in the measurement
fusion step. At iteration t = 2, distance estimates separated by two acquisition
steps are considered. Most of them were already used, but one is tested and
accepted. Candidates are selected in the same fashion for iterations t = 3 until
t = 5 (the maximum number of acquisition steps between any two frames) or
until no new measurements are accepted.
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be probabilistically fused by solving (7.18) and (7.21). This choice of cost function may

at first appear to be a poor one because the initial trajectory estimate it provides is, in

general, not unbiased owing to the measurements lying on a poorly represented area in the

decorrelation model (see Chapter 4). However, it should be noted that in practice, the ini-

tial trajectory estimate need not necessarily be unbiased for the proposed iterative scheme

to work well. This is because the outcome of the first hypothesis test of (7.22) depends

not only on the mean trajectory estimate, but also on its covariance matrix C[0]. In the

case of the nearest-neighbour trajectory estimate, this covariance matrix is assigned very

large entries by (7.17) owing to the flatness of the log-likelihood function for these high

correlation measurements. The initial model then remains heavily biased but is also highly

uncertain. This makes the hypothesis test of (7.24) a very conservative one, in the sense

that it will not often reject H0, allowing more certain, less biased measurements to dilute

the contributions made by the initial trajectory estimate early on in the data fusion pro-

cess. As unbiased measurements are added and constrain the range of possible trajectories,

the entries on the main diagonal of C[t] should decrease and the hypothesis test of (7.24)

should become more discriminative.

While this simple cost function can work reasonably well in the context of the proposed

testing schedule, it can certainly be improved upon. For one thing, the feature which

renders it effective, i.e., the small distance to variance ratio of the measurements it uses,

can be made explicit in the mathematical definition of the cost function. This would

allow measurements arising from frames which are very distant in terms of acquisition

time, but very close in terms of location (which may occur in non-monotonic scans), to be

advantageously included in the initial trajectory estimate.

More importantly, there can be serious problems with the cost function κ1 in that it

allows overestimates of distance, which sometimes occur for short to moderate distances

(whether due to higher noise content in the presence of low signal levels or to otherwise

inadequate modelling assumptions), to enter the model too easily, due to the almost invari-

ably large variance of the initial reconstruction. Once such overestimates are integrated into

the trajectory estimate, the variance decreases and unbiased or underestimated distance

measurements arising from pairs of mini-frames separated by longer distances, considered

later in the testing schedule, tend to be rejected by the hypothesis test. As a result, the

speed of the transducer may be severely over-estimated in some areas, causing substantial

drift. The two other cost functions considered in this thesis attempt to address this issue.
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They are defined as:

κ2(i, j) = sgn(r∗eij
− 1)δ̄ij, (7.26)

κ3(i, j) = sgn(r∗eij
− 1)

δ̄ij
σ2

ij

, (7.27)

where

sgn(a) =







−1 a < 0

1 otherwise.
(7.28)

For areas of the scan where the estimated local elevational correlation length is larger

than the nominal correlation length estimated from the reference phantom, these cost

functions act in a very similar way to κ1, preferring short distance measurements, or mea-

surements with a small distance to variance ratio. This preference changes for areas where

the local elevational correlation length is estimated to be shorter than the nominal one.

In an ideal world, this ought to be a very rare occurrence since theory dictates that the

nominal decorrelation model should represent the minimal amount of correlation between

neighbouring imagery caused only by the finite elevational beam-width of the transducer.

However, as noted in the previous chapter, the lower signal levels obtained when imaging

certain types of tissue can imply decreases in the measured correlation, sometimes yielding

correlation levels below those predicted by the nominal model, leading to over-estimation

of distances. As discussed in Chapter 6, the learning-based adaptive speckle decorrelation

model is not entirely able to compensate for such effects because they are not well repre-

sented in the training imagery used to build it. Nonetheless, it was observed that when

the true correlation length is smaller than the nominal one, it is often able to partially, if

not accurately, correct the discrepancy, yielding re < 1. While such small values of re are

generally not very accurate, they do provide an indication that distance over-estimates are

likely to occur in the corresponding region of the scan. In these cases, the κ2 and κ3 cost

functions select edges from the graph which correspond to larger distances or larger dis-

tance to variance ratios. The effects of this choice are twofold: (1) the very large distance

measurements chosen are less likely to be over-estimates than moderate ones and (2) the

large distance measurements (or larger distance to variance ratios) chosen are likely to be

associated with a smaller variance than the short distance measurements privileged by κ1,

which prevents the hypothesis test from accepting many measurements, especially distance
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over-estimates, related to such error-prone areas of the scan.

7.4 Experiments

The proposed iterative measurement selection and fusion scheme was tested on ultrasound

imagery of animal tissue. A nominal probabilistic speckle decorrelation model was esti-

mated from one of the phantom ultrasound image sequences described in Chapter 4 with

frames regularly spaced at 0.05 mm intervals and the sparse Gaussian regressor obtained

in the experiments of the previous chapter was used to determine the mapping between

statistical image features and elevational correlation length. For each of the animal tissue

sequences, the probe trajectory was estimated following an adaptation of the basic scheme

described in Chapter 3. Readers may find useful to remind themselves of this scheme by

consulting the schematic example given in Figure 3.2 of Chapter 3. According to this

scheme, trajectory recovery proceeded as follows:

1. For every image patch, the local elevational correlation length was estimated using

the learning-based model described in Chapter 6.

2. The correlation coefficients between all pairs of corresponding image patches were

computed, and a deterministic estimate of distance was obtained for all correlation

values greater than 0.1 using the piecewise linear deterministic elevational speckle

decorrelation model, scaled to account for the local elevational correlation length.

3. The signs of these distance estimates were estimated using the TSP-sort algorithm

described in Chapter 3.

4. An elevational trajectory associated with each image patch location was estimated

using the iterative measurement selection and fusion scheme proposed in this chapter,

allowing the algorithm to select measurements among the set of all distance estimates

deemed shorter than weij
= r∗eij

ŵe by the adapted piecewise linear speckle decorre-

lation model. For comparison, patch-wise trajectories were also estimated using the

two base-line algorithms to be described shortly.

5. Because the algorithms described in this and the previous chapters generally gave a

noisier cloud of positional data than was the case for the speckle phantom experiments
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of Chapter 4, the data corresponding to the estimated positions of each patch centre

were smoothed using a median filter (as suggested in [72]) in order to ease the task

of fitting rigid transformations from each frame to the first.

6. Rigid transformations relating every frame to the first were computed using the three

step robust fitting approach presented in Chapter 3. In order to prevent spurious

mini-frame ordering reversals due to the increased level of noise, the number of times

that an image patch can be labelled as an outlier without there being an attempt to

reverse its ordering was raised to 10% of the number of frames instead of the 5% used

in the phantom experiments.

Three versions of the proposed approach were considered in these experiments, corre-

sponding to each of the cost functions defined in (7.25), (7.26) and (7.27) used to build

the initial trajectory estimate for each image patch. These three versions of the proposed

approach are henceforth respectively labelled HYP-K1, HYP-K2 and HYP-K3. These were

compared to two different base-lines. The first is the nearest-neighbour (NN) approach,

which uses only deterministic distance estimates from consecutive pairs of mini-frames and

has already been used as a base-line algorithm in Chapter 4. The second base-line algo-

rithm is the result of applying the probabilistic fusion approach of Section 7.1 to all distance

estimates deemed shorter than weij
= r∗eij

ŵe by the adapted piecewise linear speckle decor-

relation model, without any further measurement selection. This approach will henceforth

be labelled NMS (no measurement selection).

Two distinct sets of experiments were carried out. The first set of experiments, whose

results are described in Section 7.4.1, involved the 51 ultrasound image sequences of animal

tissue already described in Chapter 6 and used to validate the theory therein. These image

sequences were acquired along purely monotonic trajectories. The second set of experiments

involved additional ultrasound image sequences of animal tissue samples acquired along

chaotic, non-monotonic translational trajectories. The test data and results for this second

set of experiments are discussed in Section 7.4.2.

7.4.1 Results for monotonic trajectories

In order to quantitatively evaluate the accuracy of the proposed iterative measurement

selection and fusion algorithms, this first set of experiments was carried out on the 51

ultrasound image sequences of pork tenderloin, turkey breast and beef brisket from the
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previous chapter. The acquisition of these image sequences was performed using the same

sub-millimetre positioning device as was used in the rest of this thesis (see Figure 4.12 in

Chapter 4) to control the spacing between the images with high precision; these spacing

measurements are used as ground truth for the evaluation of the accuracy associated with

the different methods tested. A complete set of results for these experiments can be found in

Appendix D, which provides plots comparing the progression of the mean target registration

error over time as well as plots comparing the displacement, yaw and tilt components of

the estimated trajectories (using the centroid of the grid of image patches as the centre of

rotation) to those of the true trajectory for the three versions of the proposed approach

as well as the two base-line approaches. Relevant examples from this complete set will be

discussed over the course of this section for illustrative purposes.

For the purpose of statistical analysis, the accuracy of the different trajectory estimates

was summarised by the mean target registration error measured at the mini-frame centres,

averaged over all the frames and normalised by the length of the trajectory. The latter

normalisation enabled meaningful comparisons of algorithms across results obtained for

trajectories of differing lengths. As a coarse summary of the results, Figure 7.2 shows a

boxplot of this error measure, with cases grouped by tissue type (pork, turkey or beef)

and by algorithm. From this boxplot, it is immediately apparent that the probabilistic

measurement fusion approach did very poorly when no measurement selection (NMS) was

applied. This is because the trajectory estimates obtained by this approach were most often

overwhelmed with distance underestimates arising from correlation plateaux. Accuracy

differences between the other algorithms are not as obvious in the boxplot because accuracy

varied substantially across the different image sequences. Note, however, that for the three

types of tissue, the median of the normalised average mTRE is consistently smaller for the

HYP-K2 and HYP-K3 algorithms than for the NN algorithm, and that it is always smaller

than, or else very similar to, the median error for the HYP-K1 algorithm.

In order to properly quantify the effect of the choice of algorithm (or cost function) and

tissue type on the accuracy of trajectory recovery, a mixed within/between-subject factor

analysis of variance (ANOVA) was carried out. The data were grouped by transducer speed

(0.03, 0.04, 0.05, 0.06, 0.08 or 0.1 mm/step) and by tissue type (pork tenderloin, turkey

breast or beef). The effects of algorithm choice and tissue type were evaluated, as well as

all combinations of these. Where significant effects were detected, pairwise comparisons

between algorithms or combinations of algorithms and tissue types were carried out us-
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Figure 7.2 Boxplot of the normalised average mTRE between the true and
estimated trajectories for imagery of animal tissue for the NN, NMS, HYP-
K1, HYP-K2 and HYP-K3 approaches. The statistics were grouped by tissue
type.

ing the Bonferroni correction to adjust the analysis for multiple comparisons. Statistical

significance was evaluated at the 5% level.

Not surprisingly, the NMS approach was significantly outperformed by all alternatives

tested (p < 0.001 in all cases). Overall, the HYP-K2 and HYP-K3 versions of the proposed

measurement selection approach outperformed both the NN approach and the HYP-K1

approach (p < 0.001 in all cases). The overall accuracy of the HYP-K1 approach was

slightly better than that of the NN approach, but the difference was not found to be

statistically significant (p = 0.251).

These results are well illustrated by the examples shown in Figure 7.3, which displays

the mean target registration error, displacement, yaw and tilt estimates obtained for scans

of beef brisket and pork tenderloin. In both examples, the HYP-K2 and HYP-K3 versions of

the proposed algorithm gave excellent results. Though the NN and and HYP-K1 algorithms

may exhibit similar overall accuracy in terms of the mTRE, these examples show that they

behave quite differently. Indeed, the trajectories they have estimated are qualitatively very

different from one another: the NN method underestimated the displacement of the probe

whereas the HYP-K1 approach overestimated it. In both cases, this is a general tendency,

as can be assessed from the full set of results given in Appendix D.

The tendency of the NN algorithm to underestimate distances stems from the fact that
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(a) Beef brisket 7: 161 frames, 0.05 mm intervals

0 100 200
0

0.2

0.4

0.6

0.8

1

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

2

4

6

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−8

−6

−4

−2

0

2

Frame number
Y

aw
 (

de
gr

ee
s)

0 100 200
−4

−2

0

2

4

Frame number

T
ilt

 (
de

gr
ee

s)

(b) Pork tenderloin 3: 161 frames, 0.03 mm intervals

Figure 7.3 Examples illustrating the typical behaviour of the NN, NMS,
HYP-K1, HYP-K2 and HYP-K3 algorithms. From left to right, the mTRE,
and estimated displacement, yaw and tilt evaluated using the centroid of the
grid of image patches as the centre of rotation. Dashed line: Ground truth;
Blue: NN method, green: NMS method, red: HYP-K1 method; cyan: HYP-
K2 method; magenta: HYP-K3 method. Note how the HYP-K1 and NN
methods have similar mTREs over time, but qualitatively different trajectories
associated with them. Also note how the HYP-K2 and HYP-K3 algorithms
are able to compensate for the flaws of each.

it uses measurements from an area of the decorrelation model which is poorly represented

by a piecewise linear curve, as already discussed in Chapter 4. The tendency of the HYP-K1

algorithm to overestimate distances comes from the fact that it easily allows overestimates of

distance into its model of the trajectory because its initial estimate of it is under-constrained

(large variances). The overestimates of distance are due to limitations in the current version

of the adaptive elevational speckle decorrelation model described in Chapter 6, whereby

unmodelled noise and variations in the shape of decorrelation curves can affect both the

elevational correlation length and the in-plane statistical image features. Algorithms HYP-

K2 and HYP-K3, which used more sophisticated cost functions to compensate for this

limitation, both gave more accurate results.

Statistically significant differences in accuracy were also found in relation to the type of

tissue under observation. Overall, trajectory recovery results were less accurate for turkey
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breast data sets than for beef brisket data sets (p = 0.042). This is possibly related to the

comparatively small amount of echogenic tissue (such as fat) in many of the turkey breast

scans, which increased the importance of the contributions made by noise to the image

and degraded the accuracy of the learning-based speckle decorrelation model. There was

generally more echogenic structure to be seen in the beef and pork scans, possibly because

of the higher fat content of the meat.

The HYP-K1 version of the proposed approach was particularly sensitive to differences

in tissue type, with significantly worse performance for the turkey data sets than for the

beef (p = 0.044) or the pork (p = 0.020) data sets. Its best performances were achieved

with pork data, where it often approached the performance of the HYP-K2 and HYP-

K3 algorithms, and occasionally outperformed them, as illustrated by the examples of

Figure 7.4. In such cases, the κ2 and κ3 cost functions yielded very similar initial trajectory

estimates to the κ1 cost function. The HYP-K2 and HYP-K3 approaches were generally

able to maintain competitive performance across different types of tissue, whereas the HYP-

K1 approach broke down when the adaptive speckle decorrelation model overestimated

correlation length, as often happened with some of the turkey and beef scans. The examples

of Figures 7.3 and 7.5 illustrate this. Pork tenderloin was the only one of the three tissue

types for which the HYP-K1 approach significantly outperformed the NN approach (p =

0.013).

Though they generally gave good results, there were, nonetheless, cases where algo-

rithms HYP-K2 and HYP-K3 were not completely able to overcome the inaccuracies of

the adaptive speckle decorrelation model. One such case is illustrated in Figure 7.6. Dis-

tances were quite severely over-estimated for this scan. Whether this was due to the low

echogenicity properties of the sample or to the lack of fit of the Gaussian model to the axial

and lateral decorrelation curves, the κ2 and κ3 cost functions probably failed to protect

the trajectory estimate against distance overestimates because there were not many image

patch pairs for which re < 1. re < 1 is a good indicator that the decorrelation model might

overestimate distances because it implies that the true elevational correlation length was

probably shorter than the nominal one, a case poorly modelled by the training set. How-

ever, it is not always the case that re < 1 in the presence of such modelling inaccuracies,

precisely because there were few cases where re < 1 from which to learn in the training

set. When re is overestimated and is also greater than 1, the cost functions κ2 and κ3 fail

to compensate for the problem. In the example of Figure 7.6, this effect is quite extreme.
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(a) Pork tenderloin 7: 161 frames, 0.05 mm intervals
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(b) Pork tenderloin 11: 161 frames, 0.06 mm intervals

Figure 7.4 Pork tenderloin cases where the HYP-K1 approach gave very
good results, as did the HYP-K2 and HYP-K3 approaches. From left to right,
the mTRE, and estimated displacement, yaw and tilt using the centroid of
the grid of image patches as the centre of rotation. Dashed line: Ground
truth; Blue: NN method, green: NMS method, red: HYP-K1 method; cyan:
HYP-K2 method; magenta: HYP-K3 method.

Turkey breast 12: 161 frames, 0.06 mm intervals
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Figure 7.5 Turkey breast case where the HYP-K2 and HYP-K3 approaches
gave very good results and outperformed the HYP-K1 approach. From left to
right, the mTRE, and estimated displacement, yaw and tilt at the centroid of
all image patches. Dashed line: Ground truth; Blue: NN method, green: NMS
method, red: HYP-K1 method; cyan: HYP-K2 method; magenta: HYP-K3
method.

All algorithms overestimated displacement except the NMS algorithm, which did unchar-

acteristically well, compensating for the overestimates of moderate distances by including

in its trajectory estimate a large number of underestimates of large distances.
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Turkey breast 13: 161 frames, 0.08 mm intervals
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Figure 7.6 Example result where the HYP-K2 and HYP-K3 approaches
failed to compensate for distance overestimates and were outperformed by the
NMS approach. The example is from a linear scan of turkey breast with 0.08
mm frame intervals. From left to right, the mTRE, and estimated displace-
ment, yaw and tilt measured using the centroid of the grid of image patches as
the centre of rotation. Dashed line: Ground truth; Blue: NN method, green:
NMS method, red: HYP-K1 method; cyan: HYP-K2 method; magenta: HYP-
K3 method.

A less extreme example of displacement over-estimation by algorithms HYP-K2 and

HYP-K3 is shown in Figure 7.7. This time, elevational correlation length was overes-

timated, giving the NN approach, which tends to underestimate distance, an advantage.

An interesting observation regarding this example is that although algorithms HYP-K2

and HYP-K3 overestimated transducer speed at the beginning of the image sequence, they

eventually adjusted to the correct speed near frame 85. This can be seen by the flatness

of the mTRE curves for HYP-K2 and HYP-K3 thereafter, as well as in their displacement

curves which finish very nearly parallel to the ground truth. In this case, the κ2 and κ3

cost functions were partially able to overcome the limitations of the κ1 cost function and

gave better, though certainly not perfect, results.

A final remark about the results of these experiments concerns the angular errors (yaw

and/or tilt) incurred by the various trajectory recovery algorithms. In general, the NN and

NMS methods appear to yield the worst rotational errors, with the HYP-K2 and HYP-K3

algorithms being better behaved. There are, however, a few of cases where large angular

errors are incurred by all approaches, such as in the example given in Figure 7.8. Such

examples illustrate the fact that the accuracy of the mini-frame trajectories corresponding

to different image locations is uneven. The accuracy of the proposed algorithms might

depend on the local characteristics of the ultrasound signal in the different image patches.

The scheme devised in Chapter 3 to enforce the image planarity constraint is somewhat
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Beef brisket 5: 161 frames, 0.04 mm intervals
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Figure 7.7 Example result from a scan of beef brisket where the NN method
outperforms the iterative measurement selection approaches. From left to
right, the mTRE, and estimated displacement, yaw and tilt measured using
the centroid of the grid of image patches as the centre of rotation. Dashed
line: Ground truth; Blue: NN method, green: NMS method, red: HYP-K1
method; cyan: HYP-K2 method; magenta: HYP-K3 method.

vulnerable to non-uniformities in accuracy because it merely fits rigid transformations from

a set of patches at z = 0 to the z values obtained by patch-wise trajectory estimation over

the entire scan. The accumulation of error in a cluster of neighbouring patch-wise trajectory

estimates can lead to rotational errors in the estimated rigid transformations. The approach

might be improved by re-adjusting the z values for frames i + 1, . . . , n to account for the

z positions implied by the rigid transformation fitted to frame i, thereby more strongly

coupling the image planarity constraint to the patch-wise trajectory estimates.

Turkey breast 14: 167 frames, 0.08 mm intervals
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Figure 7.8 Turkey breast case for which all algorithms yielded large angular
errors. From left to right, the mTRE, and estimated displacement, yaw and
tilt measured using the centroid of the grid of image patches as the centre of
rotation. Dashed line: Ground truth; Blue: NN method, green: NMS method,
red: HYP-K1 method; cyan: HYP-K2 method; magenta: HYP-K3 method.
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7.4.2 Results for non-monotonic image sequences

This chapter described a methodology to discard biased distance estimates caused by in-

accuracies in the adaptive elevational speckle decorrelation model of Chapter 6 within the

probabilistic patch-wise trajectory estimation method described in Chapter 4. The ex-

periments of the previous section showed that this measurement selection methodology

was necessary: indeed, the original formulation of the probabilistic trajectory estimation

method (i.e., the NMS approach) did not work well at all on image sequences of real tissue.

However, these experiments were limited in that the probe motion was always monotonic

and so the assumption that the correct signs for displacement estimates would be available

from the TSP-sort algorithm was not tested. This assumption is quite a strong one, given

that the TSP-sort algorithm itself relies on the speckle decorrelation model to estimate

these signs. This section describes the results of further experiments which show that this

assumption holds true in the case of chaotic probe trajectories.

At the time these experiments were carried out, the probe bearing arm of the sub-

millimetre positioning device could be loosened or tightened by inserting or removing a

mechanical wedge between the stage and its supporting metallic frame (see Figure 4.12).

With the setup thus loosened, 9 ultrasound image sequences of each of pork and beef

tenderloin samples were acquired for which the motion of the transducer was constrained

to remain along the elevational axis but was punctuated by chaotic, uncontrolled direction

changes. The speed of the transducer varied between approximately 0.03 mm/step and

0.08 mm/step. The trajectory of the probe was estimated for each of the 18 resulting

image sequences using the NN, NMS, HYP-K1, HYP-K2 and HYP-K3 approaches and

compared to the trajectory measured by a Polaris optical tracker attached to the probe.

Appendix E provides the full set of results for these experiments by showing plots of the

mean target registration error and of the estimated displacement, yaw and tilt evaluated

using the centroid of the image patches as the centre of rotation. Sample results are

duplicated in Figure 7.9.

The first observation that can be made about the results shown in Figure 7.9 (and

all those of Appendix E) is that the TSP-sort algorithm has worked very well. For all

trajectory recovery algorithms, the estimated displacement curves display dips and spikes

at the same locations and these most often correspond very well to similar dips and spikes in

the measurements made by the Polaris optical tracker. Thus, it appears that the TSP-sort
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(a) Chaotic pork tenderloin 5
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(b) Chaotic pork tenderloin 6
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(c) Chaotic beef tenderloin 1
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(d) Chaotic beef tenderloin 2
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(e) Chaotic beef tenderloin 8
Figure 7.9 Sample trajectory estimation results for non-monotonic image
sequences of pork and beef tenderloin. From left to right, the mTRE, estimated
displacement, yaw and tilt using the centroid of the grid of image patches as
the centre of rotation. Dashed line: Polaris tracker measurements; Blue: NN
method, green: NMS method, red: HYP-K1 method; cyan: HYP-K2 method;
magenta: HYP-K3 method.
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algorithm is very robust to the effects of the unmodelled correlation plateaux which occur

at large distances and is able to provide correct mini-frame orderings even in the presence

of this modelling inaccuracy. This suggests that the combinatorial optimisation algorithm

draws most of the information relevant to ordering from constraints between sets of shorter

distance estimates.

It also appears from the results that once again, the NMS approach, which does not

implement any form of measurement selection, is much less accurate than the other al-

ternatives tested. In order to quantitatively compare the performance of the different

algorithms, the mean target registration errors obtained for each algorithm were averaged

over all frames and normalised by the approximate length of each sequence (evaluated

by multiplying the number of increments by the nominal increment size). A boxplot of

the resulting data, grouped by algorithm, is shown in Figure 7.10. A repeated measures

analysis of variance (ANOVA) was carried out on these normalised average mTRE data,

revealing that the choice of algorithm had a statistically significant effect on the accuracy

of trajectory recovery. Pairwise comparisons between the different algorithms were then

performed using the Bonferroni adjustment to correct for the multiple comparisons and

statistical significance was evaluated at the 5% level. These comparisons found the NMS

approach to be significantly less accurate than the other algorithms tested, but found no

statistically significant differences between the normalised average mTREs incurred by the

other algorithms.

The lack of statistically significant results is not particularly surprising given that the

Polaris tracker measurements were much noisier than those provided by the sub-millimetre

positioning device in the experiments of Section 7.4.1. This is evident when comparing the

oscillatory shape of the mTRE curves in Figure 7.9 to the much smoother shape of the

mTRE curves obtained using the positioning device measurements as ground truth (e.g.

Figure 7.4). The noise in the ground truth measurements may thus have obscured subtle

accuracy differences between the algorithms. Much of the noise in the optical tracker mea-

surements is due to quantisation effects caused by the finite size of the pixels of the tracker’s

stereo camera. Such quantisation effects manifest themselves in the form of oscillatory pat-

terns in the measurements. These patterns are particularly evident in the displacement

and yaw measurements for the pork tenderloin example of Figure 7.9(b). These effects

sometimes make it ambiguous to decide visually which algorithm is most accurate, such as

in the beef tenderloin case of Figure 7.9(d).
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Figure 7.10 Boxplot of the normalised average mTRE between the optically
tracked and estimated chaotic trajectories for imagery of animal tissue for the
NN, NMS, HYP-K1, HYP-K2 and HYP-K3 approaches.

Noise aside, it seems that accuracy differences between the different algorithms may

also have shrunk due to the non-monotonicity of the trajectories considered in the experi-

ments. Indeed, whereas the NN algorithm tended to underestimate displacement in most

of the monotonic trajectory experiments, its accuracy appears improved in the case of

non-monotonic trajectories and more often approaches that of the iterative measurement

selection and fusion approaches HYP-K1, HYP-K2 and HYP-K3. The non-monotonic

cases where the NN algorithm still significantly underestimated displacements seem to be

ones where the trajectory remained relatively smooth, such as in the beef tenderloin cases

shown in Figures 7.9(c) and 7.9(d). The NN approach seems more accurate where the

probe undergoes many direction reversals, such as in the two pork tenderloin cases shown

in Figure 7.9(a) and 7.9(b), where the NN curves for mTRE and displacement are difficult

to see because of their overlap with the other curves. It seems likely that the reason for this

relative improvement in performance of the NN algorithm is that the direction reversals

also reverse the direction of any biases intrinsic to the method, so that direction changes

enable the cancellation of the drift that would otherwise occur for the NN algorithm. The

reader may remember that a similar phenomenon was noted in Chapter 4, in results from

synthetic ultrasound imagery. Curiously, there are also a few experimental cases where the
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NN approach overestimates displacement, such as the beef tenderloin example shown in

Figure 7.9(e). These may have resulted partially from the same phenomenon.

A final remark concerns the error variability across experimental trials. Though the

error variability associated with the different algorithms was not the object of a formal

statistical analysis in this study, further scrutiny of the boxplot of Figure 7.10 suggests

that the variants of the proposed iterative measurement selection and fusion approach

may exhibit less variability in their ability to accurately recover non-monotonic transducer

trajectories than the NN approach. This difference may be explained by the fact that there

is less variability in the bias associated with the measurements they use and by the fact

that they exploit a broader set of distance estimates whose uncertainties are averaged out

by probabilistic fusion.

7.5 Summary and discussion

This chapter proposed a new approach for image-based recovery of out-of-plane ultrasound

transducer trajectories from scans of real tissue. The approach generalises the probabilistic

data fusion method first introduced in Chapter 4 in two distinct ways: (1) it dynamically

adapts to the local characteristics of the scanned medium by exploiting the learning-based

correlation length estimation of Chapter 6 and (2) it is able to overcome some limitations of

this imperfect, but useful adaptive speckle decorrelation model by incrementally building a

reconstitution of the unknown trajectory through the iterative selection and probabilistic

fusion of distance measurements which agree with each other. In particular, the approach

effectively avoids using distance estimates from uninformative, but significant correlation

measurements arising from the correlation plateaux caused by elevationally persistent struc-

tures in the scanned medium.

Experimental results showed that, given a well constructed initial estimate of the tra-

jectory, the proposed approach is significantly more accurate than a base-line deterministic

approach which uses only distance estimates between consecutive pairs of images and that

measurement selection yields significant improvements over the blind use of the probabilis-

tic measurement fusion approach without measurement selection. It was also shown that

the approach can be used in the case of non-monotonic (chaotic) probe trajectories without

any modification to the TSP-sort frame ordering algorithm of Chapter 3 (beyond scaling

the nominal decorrelation curve to account for the local elevational correlation length).
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Despite these encouraging results, difficulties remain. Indeed, while distance under-

estimates resulting from correlation plateaux were generally avoided using the proposed

measurement selection approach, distance overestimates resulting from the inaccuracy of

the adaptive speckle decorrelation model in the case of moderately low input signal levels

were more difficult to control. Though the HYP-K2 and HYP-K3 versions of the proposed

algorithm were able to overcome this problem to a certain extent by better controlling the

set of measurements which enter the initial trajectory estimate, experimental results show

that displacements are still overestimated in some cases. There are many potential solu-

tions to this problem; this chapter has only considered one of them (i.e. using knowledge

about the behaviour of the adaptive speckle decorrelation model in the design of cost func-

tions for the initial trajectory estimate). Another solution would be to design better testing

schedules. However, these solutions seem somewhat ad hoc and perhaps less efficient than

solutions that directly address the modelling inaccuracies in the adaptive correlation length

estimation scheme. Several ideas for improving the adaptive speckle decorrelation model

were already given in the previous chapter.

Further improvement of the proposed probabilistic data fusion approach might be

achieved by exploiting the variance information output by the adaptive correlation length

estimator of the previous chapter. In the present implementation, this information was,

for all intents and purposes, eliminated from the computations through the coarse approx-

imation of (7.9). Though the maximum likelihood problem of (7.8) might not be solvable

using the original expectation-maximisation algorithm of [46], it may be solvable through

other forms of expectation-maximisation with more realistic mathematical requirements

(e.g. [231]).

Another interesting avenue for future research would be to exploit the measurement se-

lection approach presented in this chapter in the context of a hybrid freehand 3D ultrasound

imaging system of the kind described by Lang et al. [124], where positional information

would be available from an external, potentially highly imprecise, position tracking device.

Such a setup would eliminate the need for establishing an initial trajectory estimate from

the ultrasound data themselves as the position tracker measurements, along with an ap-

propriate instrument noise model, could be used for this purpose. The initial trajectory

estimate thus obtained would stand a much better chance of being unbiased, which ought

to improve the achievable accuracy to a great extent.

The results obtained for the chaotic trajectory experiments also suggest another avenue
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for research. These results suggest that the accuracy of the NN approach is improved in

the presence of non-monotonic motion due to drift cancellation effects which occur with

direction reversals. It seems likely that such drift cancellation effects would also occur for

other trajectory estimation algorithms (e.g. HYP-K2 or HYP-K3). The development of

optimal scanning protocols which exploit similar ideas might help reduce the drift associated

with displacement overestimation in the case of media with low echogenicity properties or

overcome other modelling inaccuracies.
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Chapter 8

Conclusions

The motivating context for the research presented in this thesis was that of freehand 3D

ultrasound image acquisition. In this context, image-based transducer tracking can provide

an alternative or a complement to measurements obtained from an external position track-

ing device, thereby eliminating or loosening the constraints associated with their use. This

thesis focused on the problem of estimating the out-of-plane trajectory of an ultrasound

imaging transducer from the spatial decorrelation of the speckle patterns in the acquired

imagery.

Correlation between the speckle patterns of ultrasound images acquired at neighbouring

locations arises from the finite beam-width of the ultrasound transducer. Under so-called

Rayleigh scattering conditions, the relationship between the absolute elevational displace-

ment of the transducer and the correlation of images theoretically depends only on the

characteristics of the imaging instrument. Through a calibration step, a transducer specific

elevational speckle decorrelation model can thus be obtained from imagery of a phantom

with Rayleigh scattering properties sampled at known elevational displacement intervals.

This model can then be used to estimate the elevational transducer displacement between

pairs of correlated ultrasound images of objects with similar scattering properties with

respect to ultrasound.

In practice, out-of-plane transducer tracking based on speckle decorrelation is much

more difficult. One reason is that for any single correlation measurement between a pair of

ultrasound image patches, there is an ambiguity as to the direction of the transducer dis-

placement that caused it. When the trajectory of the probe is allowed to be non-monotonic
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or lead to intersections between image frames, the trajectory cannot be recovered without

somehow resolving this directional ambiguity. Another difficulty is that for a fixed eleva-

tional separation, there is significant variability in the sample correlation coefficients that

might be measured between finitely sized image windows, even under Rayleigh scattering

conditions. These issues become even more problematic when Rayleigh scattering con-

ditions do not hold, which is most of the time when it comes to imagery of real tissue.

In imagery of real tissue, the rate at which speckle patterns decorrelate over distance is

no longer determined solely by the characteristics of the transducer and the (unknown)

properties of the medium must be taken into consideration as well. This thesis exam-

ined these difficulties from a unique probabilistic perspective and proposed novel solutions

which aimed at minimising the impact of measurement noise and maximising the use of

the information present in the data. The resulting technical contributions are reviewed in

Section 8.1 below. Section 8.2 discusses the limitations of this work and suggests avenues

for future research.

8.1 Summary of research contributions

Chapter 3 presented a framework for recovering the structure of an ultrasound scan us-

ing elevational correlation measurements between multiple pairs of corresponding image

patches. A novel combinatorial optimisation approach based on the solution to a travel-

ling salesman problem was proposed for ordering corresponding image patches along the

elevational direction. This approach enforces consistency in the displacement estimates ob-

tained for every triplet of corresponding correlated image patches in the scan. Simulation

experiments showed that the combinatorial approach exhibits considerable robustness to

noise. Another important constraint is that of image planarity, which implies that the set

of elevational displacements estimated at different locations of two image frames must de-

fine a rigid transformation. Combining the results of combinatorial frame ordering with a

robust least-median-of-squares rigid transformation fitting approach allows for the implicit

discovery of non-monotonic motion and frame intersections. These methods were used

successfully in several of the experiments presented in subsequent chapters of this thesis.

Chapter 4 investigated the accuracy of different strategies for the recovery of out-of-

plane transducer trajectory under the assumption of Rayleigh scattering. Of particular

interest to this study were the variability of the correlation measurements between image
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patches which arises from finite sample sizes as well as its consequences on the accuracy

and precision of associated displacement estimates. A new probabilistic transducer spe-

cific speckle decorrelation model was proposed in order to reflect the variability of sample

correlation coefficients measured between finite ultrasound image patches. Like its deter-

ministic counterpart, the probabilistic speckle decorrelation model is obtained through a

calibration scan of a reference phantom object with Rayleigh scattering properties. The

model takes the form of a probability density function over sample correlation coefficients

whose parameters vary with elevational displacement and are estimated through a maxi-

mum entropy approach. One advantage of this new model is that it allows quantification of

the uncertainty attached to the displacement estimate associated with a correlation mea-

surement. It was shown that this, in turn, allows for the probabilistic fusion of multiple

redundant correlation estimates within a maximum likelihood estimation framework. This

new approach was compared to two distinct deterministic approaches to trajectory esti-

mation in synthetic and real ultrasound imagery. The experiments on synthetic imagery

showed that under ideal conditions, the probabilistic strategy is significantly more accurate

than the deterministic ones. These experiments also examined the accuracy of the different

measurement fusion strategies as a function of transducer speed, both at calibration and

test time. It was found that the inter-frame spacing of the calibration scan had an effect

on all algorithms tested and that the proposed approach has a preference for widely spaced

(and therefore longer and more diverse) calibration scans. It was also found that while the

speed of the transducer motion had a statistically significant effect on the accuracy of both

deterministic approaches tested, it did not have a significant impact on the performance of

the proposed probabilistic technique, implying that its behaviour is more stable across the

range of possible trajectories with varying speed. The experiments on real phantom im-

agery also showed that even tightly controlled experimental conditions are not ideal in this

context, giving rise to unmodelled local variations in speckle correlation length for different

locations in the phantom object. As a result, the proposed strategy was able to perform

well but did not consistently outperform the best of the two deterministic alternatives.

Key to the practical relevance of speckle decorrelation approaches to out-of-plane trans-

ducer motion tracking is the necessity of generalising their application to the case of arbi-

trary media (e.g. biological tissues) where Rayleigh scattering conditions are not met. Most

related work in the literature tackles this issue by filtering the imagery to detect regions

of fully developed speckle where the nominal speckle decorrelation model applies; however,
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this approach is limited because Rayleigh scattering conditions do not occur frequently

in real tissue. Non-Rayleigh scattering conditions arise in a medium as the concentration

of ultrasound scatterers in the medium decreases or when these scatterers exhibit non-

random spatial organisation. As a first step towards understanding the consequences of

these changes in the hypothesised structure of the medium on elevational speckle decor-

relation, Chapter 5 introduced a new approach for simulating a broad range of spatial

point scatterer distributions. The new method is used for the purpose of creating syn-

thetic ultrasound imagery and studying its properties in relation to known micro-structure

parameters. The approach is based on an existing 1D generalised Poisson point process

model [123, 236, 43] whose two parameters control the density and spatial organisation

(ranging from clustered to regular) of the ultrasound scatterers. The novelty of the pro-

posed approach lies in the generalisation of this 1D model to the multiple dimensions

required for the simulation of realistic ultrasound images. This generalisation is achieved

by mapping the output of the 1D point process to a Hilbert space-filling curve, thereby

preserving its original characteristics in terms of spatial organisation as well as the intu-

itive parameterisation of the original 1D model. Synthetic ultrasound imagery of virtual

phantoms with varying micro-structure was generated using this approach and its first and

second order statistics were found to be reliably predictable from the model parameters

and in agreement with predictions from ultrasound physics. This makes the proposed scat-

terer distribution model a useful tool for the validation of ultrasound image processing

algorithms at large as well as a means of generating data from which to empirically study

phenomena related to ultrasound image formation.

Chapter 6 showed how to leverage the power of the aforementioned simulation method

in the context of establishing a new speckle decorrelation model which dynamically adapts

to the local characteristics of the imaged medium. The key to this dynamic adaptation

is the fact that changes in medium micro-structure affect in-plane first and second order

image statistics as well as out-of-plane speckle decorrelation, so that changes in elevational

correlation length can be predicted from local image statistics. An important contribution

of this thesis is the demonstration that the relationship between the characteristics of

the transducer, in-plane and out-of-plane image statistics can be learned by studying a

pool of varied synthetic ultrasound imagery with known elevational correlation length. A

sparse Gaussian process regressor was established to represent this relationship and was

shown to generalise very well to imagery of varied media acquired from virtual and real
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transducers with different technical specifications. Displacement estimation experiments

carried out on imagery of different types of animal tissue showed that the learning-based

adaptive speckle decorrelation model was generally quite accurate, outperforming a speckle

detection approach [167] and giving results of accuracy comparable to the state-of-the-

art method of Gee et al. [72]. The proposed learning-based approach offers important

advantages over the state-of-the-art: it is data driven rather than heuristic and provides a

measure of uncertainty along with its output. There are nonetheless circumstances where

the proposed approach fails to correctly predict the correlation of images as a function

of distance. One such circumstance arises from physical structures whose presence in the

medium persists over a long distance in the elevational direction (such as a highly echogenic

layer of fat), leading to imagery which remains significantly correlated over long distances,

but not in a way that is predictive of transducer motion. Another kind of model failure

occurs when the statistics of imagery under consideration fall in an area of the input space

that is not well modelled by the training data extracted from the synthetic imagery. This

can happen in the presence of image acquisition noise or other artefacts which were left

unmodelled in the simulation process.

In Chapter 7, the contributions made in all previous chapters were combined into a sin-

gle experimental framework for the estimation of out-of-plane ultrasound probe trajectories

in imagery of real tissue. The probabilistic speckle decorrelation model of Chapter 4 was

generalised to embed the elevational correlation length information provided by the adap-

tive learning-based method of Chapter 6. In order to circumvent the inevitable inaccuracies

intrinsic to the new adaptive speckle decorrelation model, a new iterative algorithm was

introduced which robustly recovers increasingly precise trajectory estimates by gradually

incorporating the set of available correlation measurements to an initial, highly uncertain

trajectory estimate. The chosen approach is to iteratively alternate measurement selection

steps with probabilistic measurement fusion steps. During the measurement selection step,

candidate distance estimates obtained from the adaptive speckle decorrelation model are

evaluated for consistency with the current trajectory estimate using a statistical hypoth-

esis test. Measurements which fail the consistency test are deemed to be biased and are

discarded; those which pass the test are integrated to the model of the trajectory. The

complete framework, including the frame ordering and robust rigid transformation fitting

approaches of Chapter 3, was evaluated in monotonic and non-monotonic trajectory re-

covery experiments with imagery of animal tissue. While the results varied in terms of
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quality, they showed very good promise for the new iterative measurement selection and

fusion approach. Indeed, it was found that given a suitable initial trajectory estimate,

this method was, overall, significantly more accurate than the original probabilistic mea-

surement fusion approach (which does not perform measurement selection) as well as a

base-line deterministic approach.

8.2 Current limitations and future work

Throughout this thesis, an effort has been made to point out the limitations of the proposed

technical contributions as well as their strengths. Many possible improvements to the pro-

posed methods have already been discussed as a result and not all of them need repeating

in detail here. Among these suggestions, two stand out as most productive. The first is the

idea of improving the learning-based adaptive speckle decorrelation approach of Chapter 6

by introducing realistic imaging artefacts into the simulation process used to create the

training set. Important such artefacts which were not modelled in this thesis include signal

attenuation, electronic noise, spatial and grey level quantisation as well as frame-grabber

interlacing artefacts. Another factor which could be interesting to model is anisotropic

tissue micro-structure. This could be done by generalising the multi-dimensional scatterer

distribution model of Chapter 5 which mostly generates isotropic scatterer configurations

because of the Hilbert space-filling curve it uses to achieve the mapping of scatterer dis-

tributions from 1D to 3D. Different space-filling curves could be used to generate media

with different levels of anisotropy. As a result of modelling these new effects, it is expected

that the sparse Gaussian process regressor which currently models the relationship between

in-plane statistical image features and elevational correlation length would change substan-

tially and yield improved distance estimation accuracy in situations where these imaging

artefacts make significant contributions to image content. This, in turn, would probably

improve the robustness of the iterative measurement selection and fusion scheme proposed

in Chapter 7.

The other suggestion that was previously made has to do with improving the overall

trajectory recovery framework of Chapter 3. As was demonstrated in the experiments

presented in Chapters 4 and 7, this framework suffers from a few limitations which were

unforeseen at the time of its development. One is that in the presence of modelling inaccu-

racies, which appear to be almost inevitable in the case of real tissue imagery, elevational
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displacement drift error which is localised to a few image patches in the pre-defined grid

can cause important rotational errors in the overall trajectory estimate because the im-

age planarity constraint is enforced directly on the complete set of elevational mini-frame

trajectories associated with each patch. As already suggested at the end of Chapter 7,

trajectories might be recovered more robustly if the image planarity constraint were more

tightly coupled to the result of probabilistic measurement fusion and used to incrementally

correct the elevational trajectories associated with each mini-frame.

A more fundamental limitation of the framework described in Chapter 3 is its implicit as-

sumption that the trajectory is mostly translational. Indeed, the combinatorial mini-frame

ordering and probabilistic mini-frame trajectory estimation approaches are only optimal if

the mini-frames associated with one image patch location are aligned along the elevational

direction. In situations where they are not, such as in the experiments of Chapter 4 on

synthetic rotational image sequences, the burden of correcting the errors resulting from

the violation of the assumption falls entirely on the robust rigid transformation fitting ap-

proach which enforces the image planarity constraint. While reasonably good results were

achieved with synthetic data using this approach in the presence of relatively large rota-

tions, it is probably worthwhile to investigate measurement fusion approaches which do not

rely on this implicit assumption. One possibility would be to enforce the image planarity

constraint after mini-frame ordering, but before probabilistic data fusion, thereby estimat-

ing rigid transformations between every pair of frames. Using a probabilistic methodology

similar to that presented in this thesis, one could obtain a covariance matrix describing the

uncertainty in the rigid transformation parameters relating pairs of entire frames rather

than the single distance values between pairs of mini-frames considered in this thesis. The

maximum likelihood data fusion approach described in this thesis and derived from Lu and

Milios’s work [139] could readily be generalised to such rigid transformation data, as has

recently been done in the field of mobile robotics [4].

By far, the most significant limitation of the research presented in this thesis is the very

narrow range of trajectory types it focuses on. From the outset, it was assumed that probe

motion only occurred out-of-plane, or that any in-plane motion was already accounted for

by some external image registration process. While preliminary work was carried out which

touched the possibility of out-of-plane transducer rotations (the robust rigid transforma-

tion fitting approach of Chapter 3 was designed for this purpose and tested in synthetic

ultrasound imagery in Chapter 4), the emphasis throughout most of this thesis has been
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on purely translational trajectories. This facilitated the development and evaluation of the

medium independent approaches of Chapters 6 and 7, which represent a major contribution

of this work.

Generalisation of the methods presented in this thesis to arbitrary trajectories is thus an

extremely important direction for future work and would certainly raise the level of clinical

applicability of the research presented here. A number of problems must be solved in order

to achieve this. First, the recovery of in-plane transducer motion must be made part of

the overall trajectory recovery framework. There exist a multitude of methods for in-plane

image registration [140, 89], including some ultrasound specific speckle motion tracking

techniques [215, 24, 240, 73, 93, 242]. These techniques are all based on the following general

idea: the in-plane motion which occurred between the acquisition of one image and that of

another is recovered by finding the motion parameters (two translations and one rotation

for rigid motion) which maximise a similarity measure (such as normalised correlation)

between the first image and the transformed version of the second image. Once this optimal

in-plane transformation is determined, the value of the normalised correlation coefficient

at the optimum can, in theory, be used to estimate out-of-plane probe translation [93].

One difficulty with this approach pertains to the use of frame-grabbed, scan-converted

B-mode ultrasound data (which were the only data available in the context of the present

thesis) as opposed to the (envelope detected) high resolution RF signals preferred by sev-

eral research groups in this line of work [94, 124]. During scan-conversion, image content

is interpolated at display locations not covered by the original RF vectors. This interpo-

lation process, combined with the interpolation processes involved in many conventional

image registration algorithms, is likely to undermine the accuracy of both in-plane and

out-of-plane motion estimates [93]. Using B-mode data also precludes the direct use of

theoretical knowledge regarding the properties of envelope detected RF signals to enhance

the registration process [93]. A partial solution to this difficulty would be to simply use RF

data (or envelope detected RF data), but these are not readily available from most clin-

ical ultrasound scanners. Although this situation is beginning to change within research

environments with the recent advent of open ultrasound scanner architectures [69], real-

time RF data acquisition is still not entirely trivial. B-mode remains the chief ultrasound

imaging modality in use within the clinical setting and it is not yet realistic to pretend

otherwise. Furthermore, while the use of RF data eliminates the interpolation artefacts

introduced by the scan conversion process, it does not eliminate the interpolation artefacts
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caused by the image registration process itself [163, 188]. Therefore, there is still much

room for algorithmic improvements in resolving the issue of interpolation artefacts for the

in-plane registration of ultrasound imagery; one possible approach is described in [188].

Another major difficulty with image registration in the context of freehand 3D ultra-

sound imaging is the speckle decorrelation which is expected to arise from out-of-plane

motion (and used to estimate it). In fact, elevational speckle decorrelation reduces the

accuracy and reliability of in-plane motion tracking and as such, it is considered to be a

hindrance in the speckle tracking literature [90]. Conversely, in-plane image motion which

has an axial component causes speckle decorrelation which is not accounted for by eleva-

tional speckle decorrelation models, leading to out-of-plane motion estimation errors. Sim-

ilar issues arise when out-of-plane rotations are taken into consideration as well [133, 92].

A rotational speckle decorrelation model has already been proposed by Housden et al. [92].

An interesting challenge would be to statistically model or characterise the interaction be-

tween in-plane motion, out-of-plane rotations and out-of-plane translation in terms of the

observed speckle decorrelation and develop measurement fusion techniques which minimise

the impact of the resulting ambiguities. The work presented in this thesis on the topic of

tissue invariant speckle decorrelation models has shown that synthetic ultrasound imagery

is a powerful tool for empirically modelling textural phenomena arising from the image

formation process. It is believed that this strategy may prove advantageous in studying

the effects of complex motions on ultrasound image correlation and motion estimation

algorithms that use it.

One way to resolve ambiguities in motion type would be to introduce some form of prior

knowledge about the image acquisition process in the trajectory recovery algorithm. This

prior knowledge would also help in improving the behaviour of the measurement fusion

algorithm proposed in this thesis in the presence of speckle decorrelation model failure.

This prior knowledge might be obtained from a position tracking device, leading to hybrid

freehand 3D ultrasound acquisition systems like those developed by Housden et al. [95, 92]

and Lang et al. [124]. The iterative measurement selection and fusion approach presented

in Chapter 7 would lend itself very well to this type of multi-sensor fusion. In this context,

a 6 degree-of-freedom position tracker would provide the trajectory estimate necessary to

initialise the proposed iterative algorithm, eliminating the need to create such an initial es-

timate from potentially biased measurements. The tracking device in such a hybrid system

need not even provide 6 degree-of-freedom motion tracking; it has been demonstrated that
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many ambiguities can be resolved using 3 degree-of-freedom orientation sensors, which offer

many practical advantage over optical trackers [133, 95, 92]. Combination of image-based

and tracker-based information also opens the door to the proper treatment of cases where

the tissue under observation undergoes deformations as the transducer moves. Discrep-

ancies between the motions reported by the two sources of data would provide valuable

information about physiological motion. This idea has been investigated in the context of

in-plane image deformations [118, 218] but out-of-plane deformations have not yet been

considered. A statistical hypothesis testing approach similar to the one presented in Chap-

ter 7 would provide a good starting point for automatically detecting the discrepancies

between tracker-based and image-based motion estimates.

Tracking devices are not the only possible source of useful prior knowledge. Indeed,

prior knowledge may also arise from constraints which are intrinsic to the clinical context

in which freehand 3D ultrasound imagery is acquired. For instance, in some examina-

tion protocols, it may be entirely reasonable to assume that the motion of the probe is

mostly translational, and a statistical model could be developed which describes the likely

magnitude of deviations from this assumption. This could be achieved by systematically

studying sets of position tracker measurements associated with multiple scans acquired by

single clinicians or groups of clinicians who carry out similar procedures. Prior knowledge

may also arise out of anatomical necessity. One remarkable example of this is the case of

interventional procedures which use transrectal ultrasound probes, such as prostate biopsy,

where 3D ultrasound can be used to establish a reference model of the prostate to guide

needle insertion [40]. In this context, the space of possible trajectories taken by the ul-

trasound probe is heavily limited by anatomical constraints. These anatomical constraints

have been used successfully to improve trajectory estimates derived from position tracker

measurements [41] and constrain image registration [17]. Similarly, in combination with a

good probabilistic model describing the interactions between the different motion parame-

ters, they might prove very useful in reducing or eliminating any ambiguities in the source

of the observed speckle decorrelation.

A final note on these suggestions for future research directions concerns the important

issue of experimental validation. In the course of the work leading to this thesis, this issue

has been the focus of increasing attention and effort, leading to more solid primary research

findings as well as some secondary, but interesting research findings which might otherwise

have been overlooked. In this context, quantitative experimental validation entails finding
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ways of obtaining reliable and accurate ground truth trajectory data and measures for

comparing the trajectory recovered algorithmically to the ground truth in a way that

allows meaningful statistical comparisons with alternative approaches. Improvements in

these areas will be needed should this research be extended in any of the ways described

in this chapter.

While ground truth measurements can be obtained from a position tracker, these mea-

surements are noisy and this, as shown by the statistical analysis of the non-monotonic

trajectory recovery results of Chapter 7, can obscure some subtle differences between alter-

native approaches. The need for other sources of ground truth data is even more evident

when the evaluation of hybrid image acquisition systems is considered, as the position

tracking device is, in this case, part of the framework being tested. Optical trackers have

been used for ground truth purposes in the validation of a hybrid system based on less

precise electromagnetic tracking [124]. Another way of facilitating validation of such a sys-

tem would be to design phantoms containing fiducial markers or other artificial structures

(along with animal tissue, for instance) whose relative locations and geometry are known

with high accuracy and which can be localised reliably and precisely in ultrasound imagery.

The accuracy of the recovered trajectory could then be evaluated by comparing the true

geometry of the set of markers to that implied by the estimated trajectory.

Research in image-based transducer tracking would also benefit from the development

of new measures to summarise trajectory accuracy for the purpose of statistical analysis.

This thesis used the mean target registration error, averaged over the entire image sequence,

as a measure of accuracy for this purpose. While this measure does, in some respect,

quantify accuracy, it does so only in a very narrowly-defined way. It quantifies the average

deviation between the estimated location of any point of interest in the set of images

and its true, absolute position. As a result, a large average error may be reported when

significant errors occur in the first few frames of the scan, even if the rest of the trajectory

follows the shape of the true one perfectly. An error measure which accounts for relative

displacement estimation errors over different scales might provide more refined and highly

valuable insights into the strengths and weaknesses of different trajectory recovery strategies

and lead to more meaningful comparisons. In clinical applications, relevant error measures

could be devised based on the task at hand. Indirect measures, such as the accuracy

of needle insertions or other instrument manipulations with respect to specific targets in

phantom trials, may in fact provide the most meaningful assessments of the framework
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proposed in this thesis, with regards to its usefulness.
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Appendix A

Full set of results for trajectory

estimation in synthetic imagery of

speckle phantoms

This appendix contains the full set of results obtained for the experiments relating to the

recovery of transducer trajectories in synthetic imagery of fully developed speckle described

in Chapter 4. Every row of each figure represents the results obtained for a single scan.

From left to right, the plots in a given row show (1) the progression of the mTRE over frame

acquisition steps, (2) the estimated displacement, (3) the estimated yaw (should be zero)

and (4) the estimated tilt (should be zero) evaluated using the centroid of the image patches

as the centre of rotation. The dashed line corresponds to the ground truth measurements.

The blue line corresponds to the NN method. The green line corresponds the SR method.

The red line corresponds to the ML measurement fusion approach of Chapter 4.



201

0 100 200
0

0.2

0.4

0.6

0.8

1

Frame number

m
T

R
E

 (
m

m
)

50 100 150
0

5

10

Frame number

Z
 d

is
pl

ac
em

en
t (

m
m

)

50 100 150

−0.1

0

0.1

0.2

0.3

Frame number

Y
aw

 (
de

gr
ee

s)

50 100 150

−0.4

−0.3

−0.2

−0.1

0

Frame number

T
ilt

 (
de

gr
ee

s)

(a) Synthetic 1: Calibration scan
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(b) Synthetic 2: Pure monotonic translation
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(c) Synthetic 3: Pure monotonic translation
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(d) Synthetic 4: Pure monotonic translation
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(e) Synthetic 5: Pure monotonic translation

Figure A.1 Results for pure monotonic translational trajectories in syn-
thetic speckle phantom data, part 1
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phantoms
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(a) Synthetic 6: Pure monotonic translation
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(b) Synthetic 7: Pure monotonic translation
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(c) Synthetic 8: Pure monotonic translation
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(d) Synthetic 9: Pure monotonic translation

Figure A.2 Results for pure monotonic translational trajectories in syn-
thetic speckle phantom data, part 2
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(a) Synthetic 10: Pure non-monotonic translation
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(b) Synthetic 11: Pure non-monotonic translation

0 100 200
0

0.2

0.4

0.6

0.8

1

Frame number

m
T

R
E

 (
m

m
)

50 100 150
−10

−5

0

Frame number

Z
 d

is
pl

ac
em

en
t (

m
m

)

50 100 150

−0.4

−0.2

0

0.2

Frame number

Y
aw

 (
de

gr
ee

s)

50 100 150
−0.6

−0.4

−0.2

0

Frame number

T
ilt

 (
de

gr
ee

s)
(c) Synthetic 12: Pure non-monotonic translation
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(d) Synthetic 13: Pure non-monotonic translation
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(e) Synthetic 14: Pure non-monotonic translation

Figure A.3 Results for pure non-monotonic translational trajectories in syn-
thetic speckle phantom data, part 1
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(a) Synthetic 15: Pure non-monotonic translation
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(b) Synthetic 16: Pure non-monotonic translation
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(c) Synthetic 17: Pure non-monotonic translation
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(d) Synthetic 18: Pure non-monotonic translation
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(e) Synthetic 19: Pure non-monotonic translation

Figure A.4 Results for pure non-monotonic translational trajectories in syn-
thetic speckle phantom data, part 2



205

0 100 200
0

0.2

0.4

0.6

0.8

Frame number

m
T

R
E

 (
m

m
)

50 100 150
0

5

10

15

20

Frame number

Z
 d

is
pl

ac
em

en
t (

m
m

)

50 100 150

−1

−0.5

0

0.5

Frame number

Y
aw

 (
de

gr
ee

s)

50 100 150

0

0.5

1

Frame number

T
ilt

 (
de

gr
ee

s)

(a) Synthetic 20: Monotonic translation with noisy yaw and tilt
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(b) Synthetic 21: Monotonic translation with noisy yaw and tilt
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(c) Synthetic 22: Monotonic translation with noisy yaw and tilt

Figure A.5 Results for noisy monotonic translational trajectories in syn-
thetic speckle phantom data, part 1
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Full set of results for trajectory estimation in synthetic imagery of speckle
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(a) Synthetic 23: Monotonic translation with noisy yaw and tilt
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(b) Synthetic 24: Monotonic translation with noisy yaw and tilt
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(c) Synthetic 25: Monotonic translation with noisy yaw and tilt

Figure A.6 Results for noisy monotonic translational trajectories in syn-
thetic speckle phantom data, part 2
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(a) Synthetic 26: Non-monotonic translation with noisy yaw and tilt
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(b) Synthetic 27: Non-monotonic translation with noisy yaw and tilt
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(c) Synthetic 28: Non-monotonic translation with noisy yaw and tilt
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(d) Synthetic 29: Non-monotonic translation with noisy yaw and tilt

Figure A.7 Results for noisy non-monotonic translational trajectories in
synthetic speckle phantom data, part 1
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(a) Synthetic 30: Non-monotonic translation with noisy yaw and tilt
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(b) Synthetic 31: Non-monotonic translation with noisy yaw and tilt
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(c) Synthetic 32: Non-monotonic translation with noisy yaw and tilt

Figure A.8 Results for noisy non-monotonic translational trajectories in
synthetic speckle phantom data, part 2
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(a) Synthetic 33: Fast yaw motion with noisy translation
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(b) Synthetic 34: Slow yaw motion with noisy translation
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(c) Synthetic 35: Slow yaw motion with noisy translation
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(d) Synthetic 36: Fast yaw motion with noisy translation

Figure A.9 Results for rotational trajectories in synthetic speckle phantom
data, part 1
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(a) Synthetic 37: Fast yaw motion with noisy translation
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(b) Synthetic 38: Fast yaw motion with noisy translation
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(c) Synthetic 39: Fast yaw motion with noisy translation

Figure A.10 Results for rotational trajectories in synthetic speckle phantom
data, part 2
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Appendix B

Selected results for monotonic

trajectory estimation in real imagery

of speckle phantoms

This appendix contains a subset of results obtained for the experiments relating to the

recovery of monotonic transducer trajectories in real speckle phantom imagery described in

Chapter 4. Since results were obtained for all possible pairings of calibration and test scans,

yielding thousands of results, it was impractical to include them all. This appendix shows

the results obtained for a single example for each combination of calibration sequence

inter-frame spacing test sequence inter-frame spacing. The example was selected as the

one which gave the median average mTRE (using the ML measurement fusion approach of

Chapter 4. Every row of each figure represents the results obtained for a single scan. From

left to right, the plots in a given row show (1) the progression of the mTRE over frame

acquisition steps, (2) the estimated displacement, (3) the estimated yaw (should be zero)

and (4) the estimated tilt (should be zero) evaluated using the centroid of the image patches

as the centre of rotation. The dashed line corresponds to the ground truth measurements.

The blue line corresponds to the NN method. The green line corresponds the SR method.

The red line corresponds to the ML measurement fusion approach of Chapter 4.
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Selected results for monotonic trajectory estimation in real imagery of speckle

phantoms
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(a) Calibration spacing = 0.03 mm, Subject spacing = 0.03 mm
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(b) Calibration spacing = 0.04 mm, Subject spacing = 0.03 mm
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(c) Calibration spacing = 0.05 mm, Subject spacing = 0.03 mm

Figure B.1 Speckle phantom trajectory recovery results for 0.03 mm test
sequence inter-frame spacing, part 1
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.03 mm
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(b) Calibration spacing = 0.08 mm, Subject spacing = 0.03 mm
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(c) Calibration spacing = 0.1 mm, Subject spacing = 0.03 mm

Figure B.2 Speckle phantom trajectory recovery results for 0.03 mm test
sequence inter-frame spacing, part 2
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Selected results for monotonic trajectory estimation in real imagery of speckle

phantoms
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(a) Calibration spacing = 0.03 mm, Subject spacing = 0.04 mm
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(b) Calibration spacing = 0.04 mm, Subject spacing = 0.04 mm
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(c) Calibration spacing = 0.05 mm, Subject spacing = 0.04 mm

Figure B.3 Speckle phantom trajectory recovery results for 0.04 mm test
sequence inter-frame spacing, part 1
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.04 mm
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(b) Calibration spacing = 0.08 mm, Subject spacing = 0.04 mm
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(c) Calibration spacing = 0.1 mm, Subject spacing = 0.04 mm

Figure B.4 Speckle phantom trajectory recovery results for 0.03 mm test
sequence inter-frame spacing, part 2
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Selected results for monotonic trajectory estimation in real imagery of speckle
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(a) Calibration spacing = 0.03 mm, Subject spacing = 0.05 mm
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(b) Calibration spacing = 0.04 mm, Subject spacing = 0.05 mm
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(c) Calibration spacing = 0.05 mm, Subject spacing = 0.05 mm

Figure B.5 Speckle phantom trajectory recovery results for 0.05 mm test
sequence inter-frame spacing, part 1
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.05 mm
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(b) Calibration spacing = 0.08 mm, Subject spacing = 0.05 mm
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(c) Calibration spacing = 0.1 mm, Subject spacing = 0.05 mm

Figure B.6 Speckle phantom trajectory recovery results for 0.05 mm test
sequence inter-frame spacing, part 2
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(a) Calibration spacing = 0.03 mm, Subject spacing = 0.06 mm
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(b) Calibration spacing = 0.04 mm, Subject spacing = 0.06 mm
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(c) Calibration spacing = 0.05 mm, Subject spacing = 0.06 mm

Figure B.7 Speckle phantom trajectory recovery results for 0.06 mm test
sequence inter-frame spacing, part 1
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.06 mm
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(b) Calibration spacing = 0.08 mm, Subject spacing = 0.06 mm
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(c) Calibration spacing = 0.1 mm, Subject spacing = 0.06 mm

Figure B.8 Speckle phantom trajectory recovery results for 0.03 mm test
sequence inter-frame spacing, part 2
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(a) Calibration spacing = 0.03 mm, Subject spacing = 0.08 mm
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(b) Calibration spacing = 0.04 mm, Subject spacing = 0.08 mm
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(c) Calibration spacing = 0.05 mm, Subject spacing = 0.08 mm

Figure B.9 Speckle phantom trajectory recovery results for 0.08 mm test
sequence inter-frame spacing, part 1
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.08 mm
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(b) Calibration spacing = 0.08 mm, Subject spacing = 0.08 mm
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(c) Calibration spacing = 0.1 mm, Subject spacing = 0.08 mm

Figure B.10 Speckle phantom trajectory recovery results for 0.08 mm test
sequence inter-frame spacing, part 2
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(a) Calibration spacing = 0.03 mm, Subject spacing = 0.1 mm
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(b) Calibration spacing = 0.04 mm, Subject spacing = 0.1 mm
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(c) Calibration spacing = 0.05 mm, Subject spacing = 0.1 mm

Figure B.11 Speckle phantom trajectory recovery results for 0.1 mm test
sequence inter-frame spacing, part 1
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(a) Calibration spacing = 0.06 mm, Subject spacing = 0.1 mm
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(b) Calibration spacing = 0.08 mm, Subject spacing = 0.1 mm
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(c) Calibration spacing = 0.1 mm, Subject spacing = 0.1 mm

Figure B.12 Speckle phantom trajectory recovery results for 0.03 mm test
sequence inter-frame spacing, part 2
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Appendix C

Full set of results for tissue invariant

distance estimation

This appendix presents the full set of results obtained for the estimation of elevational

separation between pairs of frames in real ultrasound scans of animal tissue during the

experiments carried out for chapter 6. Every row of each figure represents the results

obtained for a single scan. From left to right, the plots in a given row show (1) the ratio of

the mTRE to the true displacement, (2) the ratio of the estimated displacement error to

the true displacement, (3) the yaw error and (4) the tilt error measured using the centroid

of the grid of image patches as the centre of rotation. The blue circles represent the

results obtained using the nominal speckle decorrelation model derived from the speckle

phantom. The green stars represent the results obtained using the speckle detector of

Prager et al. [164]. The red triangles represent the results obtained using an adaptation of

the heuristic approach of Gee et al. [72]. The cyan squares represent the results obtained

using the learning based approach of chapter 6. The error bars represent one standard

deviation.
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(a) Pork tenderloin 1: 163 frames, 0.03 mm intervals
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(b) Pork tenderloin 2: 161 frames, 0.03 mm intervals
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(c) Pork tenderloin 3: 161 frames, 0.03 mm intervals

Figure C.1 Distance estimation results for pork tenderloin, 0.03 mm inter-
vals
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(a) Pork tenderloin 4: 161 frames, 0.04 mm intervals

0 0.5 1
0

0.2

0.4

0.6

distance (mm)

m
T

R
E

/d
is

ta
nc

e

0 0.4 0.8
−0.5

−0.3

−0.1

0.1

0.3

0.5

distance (mm)

di
sp

la
ce

m
en

t e
rr

or
/d

is
ta

nc
e

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

ya
w

 e
rr

or
 (

de
gr

ee
s)

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

til
t e

rr
or

 (
de

gr
ee

s)

(b) Pork tenderloin 5: 161 frames, 0.04 mm intervals
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(c) Pork tenderloin 6: 161 frames, 0.04 mm intervals

Figure C.2 Distance estimation results for pork tenderloin, 0.04 mm inter-
vals
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(a) Pork tenderloin 7: 161 frames, 0.05 mm intervals
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(b) Pork tenderloin 8: 161 frames, 0.05 mm intervals
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(c) Pork tenderloin 9: 161 frames, 0.05 mm intervals

Figure C.3 Distance estimation results for pork tenderloin, 0.05 mm inter-
vals
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(a) Pork tenderloin 10: 161 frames, 0.06 mm intervals
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(b) Pork tenderloin 11: 161 frames, 0.06 mm intervals
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(c) Pork tenderloin 12: 161 frames, 0.06 mm intervals

Figure C.4 Distance estimation results for pork tenderloin, 0.06 mm inter-
vals
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(a) Pork tenderloin 13: 161 frames, 0.08 mm intervals
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(b) Pork tenderloin 14: 161 frames, 0.08 mm intervals

0 0.5
0

0.2

0.4

0.6

distance (mm)

m
T

R
E

/d
is

ta
nc

e

0 0.4 0.8
−0.5

−0.3

−0.1

0.1

0.3

0.5

distance (mm)

di
sp

la
ce

m
en

t e
rr

or
/d

is
ta

nc
e

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

ya
w

 e
rr

or
 (

de
gr

ee
s)

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

til
t e

rr
or

 (
de

gr
ee

s)

(c) Pork tenderloin 15: 161 frames, 0.08 mm intervals

Figure C.5 Distance estimation results for pork tenderloin, 0.08 mm inter-
vals



230 Full set of results for tissue invariant distance estimation

0 0.5
0

0.2

0.4

0.6

distance (mm)

m
T

R
E

/d
is

ta
nc

e

0 0.4 0.8
−0.5

−0.3

−0.1

0.1

0.3

0.5

distance (mm)

di
sp

la
ce

m
en

t e
rr

or
/d

is
ta

nc
e

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)
ya

w
 e

rr
or

 (
de

gr
ee

s)
0 0.4 0.8

−3

−2

−1

0

1

2

3

distance (mm)

til
t e

rr
or

 (
de

gr
ee

s)

(a) Turkey breast 1: 161 frames, 0.03 mm intervals
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(b) Turkey breast 2: 161 frames, 0.03 mm intervals
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(c) Turkey breast 3: 161 frames, 0.03 mm intervals

Figure C.6 Distance estimation results for turkey breast, 0.03 mm intervals
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(a) Turkey breast 4: 161 frames, 0.04 mm intervals
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(b) Turkey breast 5: 161 frames, 0.04 mm intervals
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(c) Turkey breast 6: 161 frames, 0.04 mm intervals

Figure C.7 Distance estimation results for turkey breast, 0.04 mm intervals
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(a) Turkey breast 7: 161 frames, 0.05 mm intervals
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(b) Turkey breast 8: 161 frames, 0.05 mm intervals
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(c) Turkey breast 9: 161 frames, 0.05 mm intervals

Figure C.8 Distance estimation results for turkey breast, 0.05 mm intervals
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(a) Turkey breast 10: 161 frames, 0.06 mm intervals
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(b) Turkey breast 11: 161 frames, 0.06 mm intervals
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(c) Turkey breast 12: 161 frames, 0.06 mm intervals

Figure C.9 Distance estimation results for turkey breast, 0.06 mm intervals
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(a) Turkey breast 13: 161 frames, 0.08 mm intervals
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(b) Turkey breast 14: 167 frames, 0.08 mm intervals
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(c) Turkey breast 15: 161 frames, 0.08 mm intervals

Figure C.10 Distance estimation results for turkey breast, 0.08 mm inter-
vals
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(a) Turkey breast 16: 161 frames, 0.1 mm intervals
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(b) Turkey breast 17: 161 frames, 0.1 mm intervals
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(c) Turkey breast 18: 161 frames, 0.1 mm intervals

Figure C.11 Distance estimation results for turkey breast, 0.1 mm intervals
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(a) Beef brisket 1: 161 frames, 0.03 mm intervals
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(b) Beef brisket 2: 161 frames, 0.03 mm intervals
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(c) Beef brisket 3: 161 frames, 0.03 mm intervals

Figure C.12 Distance estimation results for beef brisket, 0.03 mm intervals
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(a) Beef brisket 4: 161 frames, 0.04 mm intervals
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(b) Beef brisket 5: 161 frames, 0.04 mm intervals
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(c) Beef brisket 6: 161 frames, 0.04 mm intervals

Figure C.13 Distance estimation results for beef brisket, 0.04 mm intervals
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(a) Beef brisket 7: 161 frames, 0.05 mm intervals
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(b) Beef brisket 8: 161 frames, 0.05 mm intervals
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(c) Beef brisket 9: 161 frames, 0.05 mm intervals

Figure C.14 Distance estimation results for beef brisket, 0.05 mm intervals
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(a) Beef brisket 10: 161 frames, 0.06 mm intervals
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(b) Beef brisket 11: 161 frames, 0.06 mm intervals
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(c) Beef brisket 12: 161 frames, 0.06 mm intervals

Figure C.15 Distance estimation results for beef brisket, 0.06 mm intervals
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(a) Beef brisket 13: 161 frames, 0.08 mm intervals
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(b) Beef brisket 14: 161 frames, 0.08 mm intervals
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(c) Beef brisket 15: 161 frames, 0.08 mm intervals

Figure C.16 Distance estimation results for beef brisket, 0.08 mm intervals



241

0 0.5 1
0

0.2

0.4

0.6

distance (mm)

m
T

R
E

/d
is

ta
nc

e

0 0.4 0.8
−0.5

−0.3

−0.1

0.1

0.3

0.5

distance (mm)

di
sp

la
ce

m
en

t e
rr

or
/d

is
ta

nc
e

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

ya
w

 e
rr

or
 (

de
gr

ee
s)

0 0.4 0.8
−3

−2

−1

0

1

2

3

distance (mm)

til
t e

rr
or

 (
de

gr
ee

s)

(a) Beef brisket 16: 161 frames, 0.1 mm intervals
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(b) Beef brisket 17: 161 frames, 0.1 mm intervals
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(c) Beef brisket 18: 161 frames, 0.1 mm intervals

Figure C.17 Distance estimation results for beef brisket, 0.1 mm intervals
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Appendix D

Full set of results for monotonic

trajectory estimation in real tissue

This appendix contains the full set of results obtained for the experiments relating to the

recovery of monotonic transducer trajectories in animal tissue scans described in Chapter 7.

Every row of each figure represents the results obtained for a single scan. From left to right,

the plots in a given row show (1) the progression of the mTRE over frame acquisition

steps, (2) the estimated displacement, (3) the estimated yaw (should be zero) and (4)

the estimated tilt (should be zero) evaluated using the centroid of the image patches as

the centre of rotation. The dashed line corresponds to the ground truth measurements

obtained from the sub-millimeter position tracking device. The blue line corresponds to the

NN method. The green line corresponds the NMS method (probabilistic fusion approach

without measurement selection). The red, cyan and magenta lines represent the HYP-

K1, HYP-K2 an HYP-K3 methods, i.e. the iterative measurement selection and fusion

approach of Chapter 7 using the κ1, κ2 and κ3 cost functions, respectively, to compute an

initial estimate of the trajectory.
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(a) Pork tenderloin 1: 163 frames, 0.03 mm intervals
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(b) Pork tenderloin 2: 161 frames, 0.03 mm intervals
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(c) Pork tenderloin 3: 161 frames, 0.03 mm intervals

Figure D.1 Pork tenderloin trajectory recovery results, 0.03 mm intervals.
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(a) Pork tenderloin 4: 161 frames, 0.04 mm intervals
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(b) Pork tenderloin 5: 161 frames, 0.04 mm intervals
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(c) Pork tenderloin 6: 161 frames, 0.04 mm intervals

Figure D.2 Pork tenderloin trajectory recovery results, 0.04 mm intervals.



245

0 100 200
0

0.5

1

1.5

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

2

4

6

8

10

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−4

−2

0

2

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
0

5

10

15

Frame number

T
ilt

 (
de

gr
ee

s)

(a) Pork tenderloin 7: 161 frames, 0.05 mm intervals
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(b) Pork tenderloin 8: 161 frames, 0.05 mm intervals
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(c) Pork tenderloin 9: 161 frames, 0.05 mm intervals

Figure D.3 Pork tenderloin trajectory recovery results, 0.05 mm intervals.
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(a) Pork tenderloin 10: 161 frames, 0.06 mm intervals
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(b) Pork tenderloin 11: 161 frames, 0.06 mm intervals
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(c) Pork tenderloin 12: 161 frames, 0.06 mm intervals

Figure D.4 Pork tenderloin trajectory recovery results, 0.06 mm intervals.
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(a) Pork tenderloin 13: 161 frames, 0.08 mm intervals
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(b) Pork tenderloin 14: 161 frames, 0.08 mm intervals
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(c) Pork tenderloin 15: 161 frames, 0.08 mm intervals

Figure D.5 Pork tenderloin trajectory recovery results, 0.08 mm intervals.
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(a) Turkey breast 1: 161 frames, 0.03 mm intervals
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(b) Turkey breast 2: 161 frames, 0.03 mm intervals
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(c) Turkey breast 3: 161 frames, 0.03 mm intervals

Figure D.6 Turkey breast trajectory recovery results, 0.03 mm intervals.
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(a) Turkey breast 4: 161 frames, 0.04 mm intervals

0 100 200
0

0.5

1

1.5

2

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

2

4

6

8

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−1

0

1

2

3

4

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
−5

0

5

10

15

Frame number

T
ilt

 (
de

gr
ee

s)
(b) Turkey breast 5: 161 frames, 0.04 mm intervals
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(c) Turkey breast 6: 161 frames, 0.04 mm intervals

Figure D.7 Turkey breast trajectory recovery results, 0.04 mm intervals.
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(a) Turkey breast 7: 161 frames, 0.05 mm intervals
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(b) Turkey breast 8: 161 frames, 0.05 mm intervals
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(c) Turkey breast 9: 161 frames, 0.05 mm intervals

Figure D.8 Turkey breast trajectory recovery results, 0.05 mm intervals.
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(a) Turkey breast 10: 161 frames, 0.06 mm intervals
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(b) Turkey breast 11: 161 frames, 0.06 mm intervals
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(c) Turkey breast 12: 161 frames, 0.06 mm intervals

Figure D.9 Turkey breast trajectory recovery results, 0.06 mm intervals.
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(a) Turkey breast 13: 161 frames, 0.08 mm intervals
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(b) Turkey breast 14: 167 frames, 0.08 mm intervals
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(c) Turkey breast 15: 161 frames, 0.08 mm intervals

Figure D.10 Turkey breast trajectory recovery results, 0.08 mm intervals.
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(a) Turkey breast 16: 161 frames, 0.1 mm intervals
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(b) Turkey breast 17: 161 frames, 0.1 mm intervals
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(c) Turkey breast 18: 161 frames, 0.1 mm intervals

Figure D.11 Turkey breast trajectory recovery results, 0.1 mm intervals.
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(a) Beef brisket 1: 161 frames, 0.03 mm intervals
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(b) Beef brisket 2: 161 frames, 0.03 mm intervals
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(c) Beef brisket 3: 161 frames, 0.03 mm intervals

Figure D.12 Beef brisket trajectory recovery results, 0.03 mm intervals.
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(a) Beef brisket 4: 161 frames, 0.04 mm intervals
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(b) Beef brisket 5: 161 frames, 0.04 mm intervals
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(c) Beef brisket 6: 161 frames, 0.04 mm intervals

Figure D.13 Beef brisket trajectory recovery results, 0.04 mm intervals.
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(a) Beef brisket 7: 161 frames, 0.05 mm intervals
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(b) Beef brisket 8: 161 frames, 0.05 mm intervals
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(c) Beef brisket 9: 161 frames, 0.05 mm intervals

Figure D.14 Beef brisket trajectory recovery results, 0.05 mm intervals.
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(a) Beef brisket 10: 161 frames, 0.06 mm intervals
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(b) Beef brisket 11: 161 frames, 0.06 mm intervals
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(c) Beef brisket 12: 161 frames, 0.06 mm intervals

Figure D.15 Beef brisket trajectory recovery results, 0.06 mm intervals.
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(a) Beef brisket 13: 161 frames, 0.08 mm intervals
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(b) Beef brisket 14: 161 frames, 0.08 mm intervals
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(c) Beef brisket 15: 161 frames, 0.08 mm intervals

Figure D.16 Beef brisket trajectory recovery results, 0.08 mm intervals.



259

0 100 200
0

0.5

1

1.5

2

2.5

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

5

10

15

20

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−4

−2

0

2

4

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
−2

0

2

4

6

8

Frame number

T
ilt

 (
de

gr
ee

s)

(a) Beef brisket 16: 161 frames, 0.1 mm intervals
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(b) Beef brisket 17: 161 frames, 0.1 mm intervals
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(c) Beef brisket 18: 161 frames, 0.1 mm intervals

Figure D.17 Beef brisket trajectory recovery results, 0.1 mm intervals.
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Appendix E

Full set of results for chaotic

trajectory estimation in real tissue

This appendix contains the full set of results obtained for the experiments relating to the

recovery of chaotic transducer trajectories in animal tissue scans described in Chapter 7.

Every row of each figure represents the results obtained for a single scan. From left to right,

the plots in a given row show (1) the progression of the mTRE over frame acquisition steps,

(2) the estimated displacement, (3) the estimated yaw (should be zero) and (4) the esti-

mated tilt (should be zero) evaluated using the centroid of the grid of image patches as the

centre of rotation. The dashed line represents the measurements recorded by the Polaris

optical tracker and used as ground truth for the computation of the mTRE. The blue line

corresponds to the NN method. The green line corresponds the NMS method (probabilistic

fusion approach without measurement selection). The red, cyan and magenta lines repre-

sent the HYP-K1, HYP-K2 an HYP-K3 methods, i.e. the iterative measurement selection

and fusion approach of Chapter 7 using the κ1, κ2 and κ3 cost functions, respectively, to

compute an initial estimate of the trajectory.
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(a) Chaotic pork tenderloin 1
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(b) Chaotic pork tenderloin 2
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Figure E.1 Pork tenderloin chaotic trajectory recovery results, part 1.
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Figure E.2 Pork tenderloin chaotic trajectory recovery results, part 2.
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Figure E.3 Beef tenderloin chaotic trajectory recovery results, part 1.



264 Full set of results for chaotic trajectory estimation in real tissue

0 100 200
0

0.5

1

1.5

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

2

4

6

8

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−15

−10

−5

0

5

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
−5

0

5

10

Frame number

T
ilt

 (
de

gr
ee

s)

(a) Chaotic beef tenderloin 6

0 100 200
0

0.2

0.4

0.6

0.8

1

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

2

4

6

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−6

−4

−2

0

2

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
−4

−2

0

2

4

6

Frame number

T
ilt

 (
de

gr
ee

s)
(b) Chaotic beef tenderloin 7

0 100 200
0

0.5

1

1.5

2

2.5

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

5

10

15

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−8

−6

−4

−2

0

2

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
−5

0

5

10

Frame number

T
ilt

 (
de

gr
ee

s)

(c) Chaotic beef tenderloin 8

0 100 200
0

0.5

1

1.5

Frame number

m
T

R
E

 (
m

m
)

0 100 200
0

2

4

6

Frame number

D
is

pl
ac

em
en

t (
m

m
)

0 100 200
−4

−2

0

2

Frame number

Y
aw

 (
de

gr
ee

s)

0 100 200
−4

−2

0

2

4

6

Frame number

T
ilt

 (
de

gr
ee

s)

(d) Chaotic beef tenderloin 9

Figure E.4 Beef tenderloin chaotic trajectory recovery results, part 2.
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[219] T. A. Tuthill, J. F. Krücker, J. B. Fowlkes, and P. L. Carson. Automated three-
dimensional US frame positioning computed from elevational speckle decorrelation.
Radiology, 209(2):575–582, 1998.

[220] T. A. Tuthill, R. H. Sperry, and K. J. Parker. Deviations from Rayleigh statistics in
ultrasonic images. Ultrasonic Imaging, 10:81–89, 1988.

[221] S. Umeyama. Least-squares estimation of transformation parameters between two
point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(4):376–380, 1991.
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Standardized evaluation methodology for 2-D—3-D registration. IEEE Transactions
on Medical Imaging, 24(9):1177–1189, 2005.

[225] O. T. von Ramm, S. W. Smith, and H. G. Pavy Jr. High-speed ultrasound volumetric
imaging system. ii. parallel processing and image display. IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 38(2):109–115, 1991.

[226] D. Voorhies. Space-filling curves and a measure of coherence. In J. Arvo, editor,
Graphics Gems II, pages 26–30. Academic Press, 1991.

[227] R. F. Wagner, M. F. Insana, and D. G. Brown. Statistical properties of radio-
frequency and envelope-detected signals with applications to medical ultrasound.
Journal of the Optical Society of America A, 4(5):910–922, 1987.

[228] R. F. Wagner, M. F. Insana, and S. W. Smith. Fundamental correlation lengths of
coherent speckle in medical ultrasonic images. IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, 35(1):34–44, 1988.

[229] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez. Statistics of speckle in
ultrasound B-scans. IEEE Transactions on Sonics and Ultrasonics, 30(3):156–163,
1983.

[230] H. Wang and D. Suter. MDPE: a very robust estimator for model fitting and range
image segmentation. International Journal of Computer Vision, 59(2):139–166, 2004.



284 References

[231] G. C. G. Wei and M. A. Tanner. A Monte Carlo implementation of the EM algo-
rithm and the poor man’s data augmentation algorithms. Journal of the American
Statistical Association, 85(411):699–704, 1990.

[232] E. W. Weisstein. Hilbert curve. From Mathworld – A Wolfram Web Resource
http://mathworld.wolfram.com/HilbertCurve.html, 1999.

[233] J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi. A real-time
freehand 3D ultrasound system for image-guided surgery. In Proceedings of the IEEE
Ultrasonics Symposium, pages 1601–1604, 2000.

[234] O. Williams, A. Blake, and R. Cipolla. Sparse Bayesian learning for efficient vi-
sual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(8):1292–1304, 2005.

[235] B. J. Winer, D. R. Brown, and K. M. Michels. Statistical Principles in Experimental
Design. McGraw-Hill, 3rd edition, 1991.

[236] R. Winkelmann. Duration dependence and dispersion in count-data models. Journal
of Business and Economic Statistics, 13(4):467–474, 1995.

[237] H. Wu, K. W. J. Malafant, L. K. Pendridge, P. J. H. Sharpe, and J. Walker. Simula-
tion of two-dimensional point patterns: application of a lattice framework approach.
Ecological Modelling, 38:299–308, 1987.

[238] W.-J. Wu and W. K. Moon. Ultrasound breast tumor image computer-aided diagnosis
with texture and morphological features. Academic Radiology, 15:873–880, 2008.

[239] S. Xu, J. Kruecker, P. Guion, N. Glossop, Z. Neeman, P. Choyke, A. K. Singh, and
B. J. Wood. Closed-loop control in fused MR-TRUS image-guided prostate biopsy. In
Proceedings of the 10th International Conference on Medical Image Computing and
Computer Assisted Intervention, Part I, pages 128–135, 2007.

[240] F. Yeung, S. F. Levinson, and K. J. Parker. Multilevel and motion model-based ultra-
sonic speckle tracking algorithms. Ultrasound in Medicine and Biology, 24(3):427–441,
1998.

[241] E. Yoxen. Seeing with sound: a study of the development of medical images. In
W. E. Bijker, T. P. Hughes, and T. J. Pinch, editors, The Social Construction of
Technological Systems: New Directions in the Sociology and History of Technology,
pages 281–303. MIT Press, 1987.

[242] W. Yu, P. Yan, A. J. Sinusas, K. Thiele, and J. S. Duncan. Towards pointwise motion
tracking in echocardiographic image sequences - comparing the reliability of different
features for speckle tracking. Medical Image Analysis, 10:495–508, 2006.



References 285

[243] X. Yu, T. D. Bui, and A. Krzyzak. Robust estimation for range image segmentation
and reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 16(5):530–538, 1994.

[244] Y. Yu and S. T. Acton. Speckle reducing anisotropic diffusion. IEEE Transactions
on Image Processing, 11(11):1260–1270, 2002.

[245] Y. Zhan and D. Shen. Deformable segmentation of 3-D ultrasound prostate images
using statistical texture matching method. IEEE Transactions on Medical Imaging,
25(3):256–272, 2006.

[246] J. Zhang, Y. Wang, Y. Dong, and Y. Wang. Ultrasonographic feature selection
and pattern classification for cervical lymph nodes using support vector machines.
Computer Methods and Programs in Biomedicine, 88:75–84, 2007.

[247] S. Zhang, W. Yang, R. Yang, B. Ye, L. Chen, W. Ma, and Y. Chen. Noninvasive
temperature monitoring in a wide range based on texture of ultrasound images. In
Proceedings of the 9th International Conference on Medical Image Computing and
Computer Assisted Intervention, 2006.
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