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Abstract

A model is an abstraction of the real system. To design complex systems, modelling is preferred to
the traditional methods for its capability to analyse and simulate before implementation, and its tools
for code generation which allows for defect-free code. The domain specific modelling and metamodels
(the abstraction of models) provide the modellers domain specific syntax and environments. The meta-
metamodel (the abstraction of metamodels) defines a unified description of various domain metamodels.
Metamodelling architectures provide the guideline of organizing models and metamodels. So far, many
metamodelling standards and tools have been developed.

However, two drawbacks have prevented us from having a well-defined metamodelling tool. The first
is that current linear architectures fail to appropriately separate the views of different roles in meta-
modelling. The second is the missing executability at the root of metamodelling since most existing
meta-metamodels are designed to describe the structural information rather than the behavioural.

In this project, we used a two-dimensional metamodelling architecture with logical and physical classifi-
cations that separates the view of modellers and that of tool developers. We designed a general-purpose,
self-describable, executable meta-metamodel ArkM3 which includes an action language and thereby
enables executability. With this architecture and this meta-metamodel, we enabled a general-purpose,
comprehensive, bootstrapped metamodelling tool. To demonstrate our design, we built Ark, the kernel
of AToMPM (A Tool for Multi-Paradigm Metamodelling), an updated version of AToM3 (A Tool for
Multi-Formalism and MetaModelling). We also presented a case study that models a Readers/Writers
System Petri Net model.

Un modèle est une abstraction dun système réel. Pour la conception de systèmes complexes, la modélisation
est préférée aux méthodes traditionnelles, parce que la modélisation permet danalyser et de simuler avant
la mise en œuvre. De plus, les outils de génération de code fournis par la modlisation aident à produire
des codes sans défaut. La modélisation dans des domaines spécifiques et des méta-modèles (l’abstraction
des modèles) fournissent des syntaxes et des environnements spécifiques aux modélisateurs. Le méta-
métamodèle (l’abstraction de métamodèles) normalise la description des métamodèles. Les architectures
de métamodélisation fournissent les directives à suivre afin dorganiser les modèles et les métamodèles.
Jusqu’à ce jour, de nombreuses normes et doutils en métamodélisation ont été développés.

Cependant, deux inconvénients demeurent et préviennent la création dun outil de métamodélisation bien
défini. Le premier est que les architectures actuelles sont linéaires. Ceci qui ne les permettent pas de
différencier adéquatement l’aspect des différents rôles dans la métamodélisation. Le second est quelles
nont pas de caractère exécutable à partir de la racine de la métamodélisation, puisque la plupart des
méta-méamodèles sont conçus pour décrire des informations structurelles plutôt que comportementaux.

Dans ce projet, nous avons utilisé une architecture à deux dimensions avec la classification logique et
physique, séparant ainsi le point de vue des modélisateurs et celui des développeurs d’outils. Nous avons
conçu ArkM3, un méta-métamodèle universel, auto-descriptible et exécutable. Il inclut également un
langage d’action, ce qui le rend exécutable. En combinant cette architecture et ce méta-métamodèle rend
possible de mettre sur pied un outil universel damorçage de métamodélisation. Pour démontrer notre
conception, nous avons construit le noyau de AToMPM (A Tool for Multi-Paradigm Metamodelling),
une version mise à jour de AToM3 (A Tool for Multi-Formalism and MetaModelling). Nous présentons
également une étude de cas selon un système de Petri Net “Readers/Writers”.
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1
Introduction

As the functional requirements advancing quickly, the size and the complexity of systems, either physical
or software, grow significantly. The task of manual creation and maintenance of the source code becomes
hardly feasible. On the one hand, the personal programming preference prevents the developers from co-
operating with each other, and on the other hand, the difficulty in maintenance prevents the applications
from upgrading. Therefore, the methodology and technology to rapidly produce high-quality, defect-free,
and maintainable software became an important issue in software engineering [Kuh89]. In contrast with
the classic code-based development technique, the use of models is more and more recommended.

A model is an abstraction of physical or software systems. By building a counterpart of a system,
modelling makes design and analysis of complex systems possible. The designers can avoid the risk of
implementing the systems before they have nicely designed and fully tested the models, so that they
can produce the defect-free source code rapidly with automatic code-generation tools.

Figure 1.1: A Traffic Domain Specific Modelling Environment and a Traffic Model

Computer-Aided Software Engineering (CASE) tools dating back to the 1980s made the early attempts
to automatic software development. Unified Modeling Language (UML) proposed in 1990s integrates a
set of graphic notations that visually analyse and model system structure and behaviour1. Thereafter, the
Domain Specific Modelling (DSM) and the metamodelling concept emerged around 2000. DSM focuses
on the systems of a specific industry domain. The domain modellers define the syntax and semantics of

1General-purpose UML tools include both commercial tools such as Jude, Rose and free software such ArgoUML,
Fujaba, BoUML, MagicDraw and a few web applications. They provide convenient analysis and documentation functions,
as well as the code generation in different programming languages.
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2 Introduction

a domain (it is also called a domain specific language (DSL) or a formalism, usually graphical), whereby
the users build systems. Figure 1.1 shows an example of a domain specific model built in AToM3 (A
Tool for Multi-Formalism and MetaModelling) [MSD09]2. A traffic system is modelled in a Traffic DSM
environment. This system has connected road segments, one traffic light, an joint, two traffic generator
(source) and a traffic disposer (sink).

Generally speaking, the DSM supports an higher-level abstraction than that of general-purpose mod-
elling languages. It requires less efforts and fewer low-level details to specify a given system.

As a complex system often has components and aspects whose structure and behaviour could be modelled
and analysed via the most appropriate formalism, tools supporting Multi-Paradigm Modelling—that
models one system with many formalisms—become necessary [dLV02].

Metamodelling is an essential enabler of the domain specific modelling and multi-paradigm modelling.
A metamodel describes a DSL. It highlights the properties of the models, including the definition of the
abstract syntax, the concrete syntax, and sometimes the semantics, that are sufficient to automatically
generate a full domain- and problem-specific modelling, and possibly simulation, environment [MV02].

Figure 1.2: The Metamodel of the Traffic Formalism

A Traffic metamodel is as shown in Figure 1.2, which is modelled in a more general modelling formalism
called Entity Relationship Model3. We identify entity types such as the road segment and the traffic light.
Each of them has attributes and associates with other entity types, along with an icon to graphically
represent this type in the generated environment. This metamodel is compiled and generates the Traffic
metamodelliing environment in Figure 1.14.

2AToM3 developed at MSDL in 2002 is one of many tools that support Domain Specific Modelling. After loading the
formalisms into the environment, the users may draw models on the canvas. See Section 2.4

3Please refer to Section 2.1.3 for more information of ERM.
4We can find many other metamodelling tools emerged in the last two decades besides AToM3. There are

MetaEdit+ [SLTM91] (1990), DOME from Honeywell [SG08] (The official support of DoME provided by Honeywell
ended in 2000 with version 5.3.), Xactium XMF, Metacase, Eclipse EMF [emf], VMTS [vmt] , Kermeta [Ker09] from
INRIA. There are more to be mentioned in the following chapters of this thesis.

2



Introduction 3

Metamodels can also have an abstraction, which is called the meta-metamodel. A meta-metamodel mod-
els the metamodels. It describes the syntax and semantics of the metamodels. It provides the common
ground for model transformations. Many modelling standards and tools has defined the meta-metamodel
as part of their framework to uniformly manage the metamodels. The common meta-metamodel used
in AToM3 is the Entity Relationship formalism as in Figure 1.35.

Figure 1.3: The Meta-metamodel Models the Traffic Metamodel

The relationship between the model and the metamodel, and the metamodel and the meta-metamodel
is the “instance-of” relationship, or “typed-by” in the opposite. A metamodel is a model itself, while
its metamodel is the meta-metamodel. The notion of meta- is relative [LV07]. In principle, one could
continue the meta- hierarchy to infinity. Some meta-metamodel can be modelled by itself (indicating
ERM in Figure 1.3 is modelled by ERM). This valuable feature of meta-circularity allows modelling
tool and language compiler builders to bootstrap6 their systems and therefore leads to platform- and
programming language-independent models [VSB07].

Metamodelling architectures are the guidance to organize the models, metamodels and even meta-
metamodels in accordance to the researchers’ interpretation of model abstraction. There have been sev-
eral metamodelling architectures proposed so far. The class-object architecture (so called golden braid)
is the architecture used in the early research of SmallTalk [Coi87]. This nested metamodelling archi-
tecture is adopted in the Meta-Modelling Language (MML) [CEKI00] [Á01]. The Meta-Object Facility
(MOF) Four-Layered Architecture [MOF02] is proposed by the OMG’s (Object Management Group)

5There are also many meta-metamodel and metamodelling standards developed so far. Some of them are
EIA/CDIF [Fla02] that enables sharing information between CASE tools, MOF [MOF06] that models UML, Eclipse
EMF Ecore [BSME03] that customizes Java code generation, Kernel Meta-Metamodel (KM3) [JB06] that builds agile and
precise models of the source, target and transformation for model transformation. There are more to be mentioned in the
following chapters of this thesis.

6The term “bootstrap” is commonly used to describe the process by which a system starts up, which generally involves
loading a small portion of the system in order to support the loading and initialization of its remainder.

3



4 Introduction

Model-Driven Architecture (MDA) [mda03], a particular incarnation of MDE. MOF provides a layered,
linear metamodelling architecture that follows the strict meta-modelling principle in which an element
of a meta-layer is the instance of exactly one element at the upper meta-level. The layered architecture
has been widely accepted by metamodelling tools. EMF [BSME03] trims the MOF architecture whereas
VMTS [vmt] augments. AToM3 allows arbitrary number of layers.

Although the above developments ease the task of building systems, there are pending issue. 1. It is not
enough to merely model the structure of a system. Such models are not able to enforce more specific
constraints on model elements over invariants, variable ranges and alike. Consequently, it results in an
imprecise definition.

This problem was firstly attended in conceptual models for the information system using such as XML
schema and SQL. It did not drawn much attention until the modelling being introduced. In order
to have a well-formed model, modellers have made some attempts to include the constraints in the
modelling process. One approach is to insert pieces of narrative languages and another to use formal
language expressions. However, both approaches have their limitations. Narrative languages, or natural
languages, are flexible by nature but the practice shows that using them always results in ambiguities.
Formal language expressions are unambiguous, but they require the modellers to have solid mathematical
background, which makes it a so very demanding task for general business and system modellers [OCL06].
Finally, Object Constraint Language(OCL) [OCL97] was introduced by IBM in the late 1990s to fill the
gap. OCL is a specification language describing the rules and queries that apply to models and it is
possible to adapt to various modelling tools and scenario.

2. Besides the constraints, researchers [DG06], [MFJ05], [LLMC05], [KPG07], [SGJ02], etc. found it
important to capture the model behaviour. Adding executability to metamodelling is a natural evo-
lution towards executable modelling. It enables the modellers to completely describe and simulate a
system before implementation. It also allows for full code generation in desired programming languages.
Programs have been used to describe actions. OCL is sometimes used to describe expressions for condi-
tions. Executable formalisms such as Statecharts [Har87] and Petri Nets [CL08] can model the actions.
UML Action Semantics (AS) [UML03] uses the sequence diagram to specify the model behaviour.
Model transformation is used to analogue the change of model states. The above mentioned execu-
tion approaches have been proved to be useful in many applications. They have been adapted well in
specific domains while have problems in others. These implementations are platform-dependent, spe-
cific in domains or hard to modify and update once they are implemented. Nevertheless, none of the
above mentioned approaches include the executability in the meta-metamodel. The lack of a neutral
executable action language prevents the operations of a model from being understood by other models.
Including executability in the meta-metamodel is a trend in the metmaodelling researches. Some efforts
have been done. There are standards and tools such as OMG’s fUML [FUM08], Events and Properties
(EP) [KPG08], Kermeta [MFJ05], Xion [MSFB05], and XMF [CSW08], etc.

3. In spite of many metamodelling architectures and their good acceptance in respective domains, there
are some short-comings that limit their success.

Strict metamodelling principle is enforced to eliminate vagueness of the instance-of concept in the
organization of the level hierarchy [dLG10], but there are situations that require more flexibility. To al-
low the flexibility while pertain the strictness, Atkinson and Khüne [AK08] introduced the potency
to postpone the instantiation. This idea is further adapted by Juan de Lara and Esther Guerra’s
METADEPTH [dLG10].

However, the fact is that engineers often are forced to squeeze into two meta-modelling layers concepts
that would naturally span several layers, resulting in more complex and cluttered models [dLG10].
As a solution, a dual ontological and linguistic instantiation is proposed, by precise UML [Á01] and
Atkinson and Kühne [AK02], defining an element to be a linguistic instance and also an instance of
some ontological domain concept.

In this project, our intention is to design an elegant, comprehensive, complete metamodelling architec-
ture. Adapting the layered, strict architecture from MOF, and distinguishing the logical classification
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and the physical classification, we proposed a two-dimensional metamodelling architecture that leads
to general-purposed, platform-independent, comprehensive and bootstrapped metamodelling tools. The
first dimension of this architecture describes the logical classification of the models and the second the
internal physical representation. To increase the flexibility of the model while retain the strictness, in-
stead of using potency and deep instantiation, we let the model import the required elements from the
metamodel if it will not instantiate that element.

We also designed ArkM3, a self-describable meta-metamodel with executability. ArkM3’s object meta-
metamodel is inspired by the EMOF, the minimal set for metamodelling of MOF. To include advanced
modelling concepts such as constraints and executability, we further modified the object model constructs
to allow all the model elements to associate with Constraints and Actions. An action language meta-
metamodel extends the object meta-metamodel. This action language is influenced by OCL [OCL06],
Kermeta [DFV+09], and Modelica [CSW08] and some programming languages.

On the basis of the two-dimensional architecture and the meta-metamodel ArkM3, we then imple-
mented the kernel (Ark) of a metamodelling and transformation tool called AToMPM (A Tool for
Multi-Paradigms Metamodelling) to validate our design. It comprises of modules to support creating,
conformance checking of the models and the interpreter to interpret the action models. The hierarchi-
cal, attributed, directed, typed graph Himesis [Pro05] is adapted to represent the models in the physical
dimension of a model. The mapping between the logical model and the physical HADT graphs is also
specified.

Thesis Organization. Chapter 2 introduces the basic knowledge; Chapter 3 explains the design of
AToMPM’s two-dimentional architecture and meta-metamodel ArkM3; Chapter 4 presents the imple-
mentation of AToMPM kernel. Chapter 5 demonstrates an Petri Net model case study; and Chapter 6
draws the conclusion.
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2
Related Work

2.1 Metamodelling

In this section, we give an overview of metamodelling, including the properties of metamodels, the
metamodelling architecture, and the modelling of the constraint and the executability. We also discuss
the importance of adopting a graph-based foundation for the metamodel representation. Finally, we
will introduce the metamodelling tool AToM3 (A Tool for Multi-Formalism and MetaModelling), which
leads to our current work on AToMPM (A Tool for Multi-Paradigm Metamodelling).

2.1.1 Dissecting a Modelling Language

To explicitly model modelling languages, we will break down a modelling language into its basic con-
stituents. This is illustrated in Figure 2.1, which is inspired by the description by Harel and Rumpe [HR00],
taking common programming language concepts and putting them in a more general modelling context.

Figure 2.1: Modelling Language Breakdown, reproduced from [Pro05]

As explained in [Van08], the two main aspects of a model are its syntax (how it is represented) on
the one hand and its semantics (what it means) on the other. The syntax of modelling languages is
traditionally partitioned into concrete syntax and abstract syntax. In textual languages for example, the
concrete syntax is made up of sequences of characters taken from an alphabet. These characters are
typically grouped into words or tokens. Certain sequences of words or sentences are considered valid
(i.e., belong to the language). The (possibly infinite) set of all valid sentences is said to make up the
language. For practical reasons, models are often stripped of irrelevant concrete syntax information
during syntax checking. This results in an “abstract” representation which captures the essence of the
model. This is called the abstract syntax. A single abstract syntax may be represented using multiple
concrete syntaxes. In programming language compilers, abstract syntax of models (due to the nature
of programs) is typically represented in Abstract Syntax Trees (ASTs). Once the syntactic correctness
of a model has been established, its meaning must be specified. This meaning must be unique and
precise (to allow correct model exchange and code synthesis for example). Meaning can be expressed
by specifying a semantic mapping function which maps every model in a language onto an element in a
semantic domain. For practical reasons, semantic mapping is usually applied to the abstract rather than
to the concrete syntax of a model. Note that the semantic domain is a modelling language in its own
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right which needs to be properly modelled (and so on, recursively). In practice (in tools), the semantic
mapping function maps abstract syntax onto abstract syntax.

Languages will explicitly be represented as shown in Figure 2.2. In the figure, insideness denotes the
sub-set relationship. The dots represent models which are elements of the encompassing set(s). In the

Figure 2.2: Modelling Languages as Sets, adopted from [VSB07]

bottom centre of Figure 2.2 is the abstract syntax set A.

Metamodelling is a heavily over-used term. Here, we will use it to denote the explicit description (in
the form of a finite model in an appropriate metamodelling language) of the abstract syntax set A of
a modelling language. Often, metamodelling also covers a model of the concrete syntax. Semantics is
however not covered. In the figure, the set A is described by means of the model metamodel of A. On
the one hand, a metamodel can be used to check whether a general model (a graph) belongs to the set
A. On the other hand, one could, at least in principle, use a metamodel to generate all elements of A.
This explains why the term metamodel and grammar are often used inter-changeably.

A model m in the Abstract Syntax set (see Figure 2.2) needs at least one concrete syntax. This implies
that a concrete syntax mapping function κ is needed. κ maps an abstract syntax graph onto a concrete
syntax model.

Finally, a model m in the Abstract Syntax set (see Figure 2.2) needs a unique and precise meaning. This
is achieved by providing a Semantic Domain and a semantic mapping function [[.]].

The advantages of metamodelling are numerous. First, an explicit model of a modelling language can
serve as documentation and as specification. Such a specification can be the basis for the analysis of
properties of models in the language. From the metamodel, a modelling environment may be automati-
cally generated. The flexibility of the approach is tremendous: new, possibly domain-specific languages
can be designed by simply modifying parts of a metamodel. As this modification is explicitly applied
to models, the relationship between different variants of a modelling language is apparent. Above all,
with an appropriate metamodelling tool, modifying a metamodel and subsequently generating a possi-
bly visual modelling tool is orders of magnitude faster than developing such a tool by hand. The tool
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synthesis is repeatable and less error-prone than hand-crafting [VSB07].

2.1.2 Metamodelling Architecture

Among several metamodelling architectures, the so-called golden braid architecture and the MOF four-
layered metamodelling architecture are representative. By either trimming or developing the two ar-
chitectures, researchers have been proposing copious architectures to feature different industry domain.
Researchers have been proposed multi-dimensional metamodelling architecture so as to achieve a clean
separation of modellers’ and tool developers’ concerns in the term of describing model element[AK02].

Golden Braid

The golden braid architecture was inspired by the concept of bootstrapping discussed in [Hof99]. It was
first adopted in an open ended system supporting ObjVlisp [Coi87], an early Object Oriented extension
to SmallTalk [GR83].

Figure 2.3: The Golden Braid Architecture

Considering the fact that metamodels, models and instances are all relative concepts based on the
fundamental property of instantiation, the golden braid architecture describes the relationship between
a Class and an Object. As shown in Figure 2.3,

• A Class can be instantiated to create an Object.

• A Class is a subclass of Object.

• As a consequence, a Class can also be instantiated from another Class: its “meta Class”.

This architecture consists of two overlapping graphs, which are the instance-of graph (with Class as the
root) and subclass-of graph (with Object as the root). By combining the two graphs we can create mul-
tiple meta-classes. There will be a distinct Class that elements from both graph in the meta-architecture
are its instances. This class is effectively used to bootstrap the entire metamodel architecture. As shown
in Figure 2.4, from Class many meta-classes can be defined and the graph will extend. PolygonClass
class is an instance of Class and at the same time is a subclass of Class. Hexagon, Polygon and Square
are instances of PolygonClass. Hexagon and Square inherit from Polygon, which inherits from Object.

The golden braid architecture does not have limit on the number of times that the instantiation relation
is used, therefore offers great flexibility. This architecture provides the same structure to both the kernel
and the models, and as a result, it does not have clear boundary between the tool and the models. The
Golden braid architecture gives developers the access to the kernel and enables the modification of critic
process such as instantiate and inheritance. This feature is, on the one hand, provides convenience, but
on the other hand, increases the possibilities of users abusing the modelling environment.

Besides being used in SmallTalk [GR83] where the architecture was firstly proposed, the golden braid
architecture is also adopted in XMF [CSW08] for its simplicity.

MOF Four-Layered Metamodel Architecture

Originally devised for the ANSIs Information Resource Dictionary System [Ins89], heavily influenced
by EIA/CDIF [Fla02], the Meta Object Facility (MOF) [MOF06] is an adopted OMG (the Object
Management Group) standard in the Model-Driven Architecture (MDA) [mda03]. It provides a model
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Figure 2.4: Example of Extending the Golden Braid Architecture

Figure 2.5: MOF Four-Layered Metamodel Architecture

management architecture and a set of model services to enable the development and interoperability
of models and model driven systems. The metamodel architecture adopted in MOF is often called the
MOF Four-Layered Metamodel Architecture in OMG specifications. It separates the models into layers
in accordance to the “instance-of” relationship.

• M0 User-Data Level: contains the data of the application. For example, a computer game that is
object oriented or a finite state machine at run time. This level is also called the user-object level.

• M1 Model level: contains the abstraction of the application. For example, the class definitions of a
system, or Statecharts describes the behaviour of a finite state machine. This is the level at which
application modelling takes place.

• M2 Metamodel level: contains the metamodel that captures the modelling language. For exam-
ple, UML elements such as Class, Attribute, and Operation; definition of Statecharts State and
Transition. This is the level at which metamodelling tools operate.

• M3 Meta-metamodel level: The meta-metamodel that describes the properties of all meta-models
can exhibit.

10



2.1 Metamodelling 11

The root in this architecture is the meta-metamodel. It defines the smallest set of concepts required
to define meta-models, including itself. For example, as in the example in Section 1, a traffic system
simulation is M0, the traffic model in Figure 1.1 is M1, the ERM model describing traffic system in
Figure 1.2 is M2, and the ERM model that describes ERM itself in Figure 1.3 is M3.

Eclipse Modelling Framework (EMF) [BSME03] is a notable implementation of MOF. EMF, a “MDA
on training wheels”, sits in between programming and metamodelling. Instead of by general meta-
metamodels, EMF describes models in Java, XML or UML. Comparing to MOF, EMF has M0, M1
and M2 levels, but its M3 level is yet of “instance-of” relationship with M2, as M3 should have been
a finite representation of Java. EMF is truly integrated with and tuned for efficient programming since
it is designed especially for the Java developing environment Eclipse. EMF relates modelling concepts
directly to their implementations, thereby brings to Eclipse and Java developers the benefits of modelling
with a low cost of entry.

Kermeta [MFJ05] also adopts the MOF architecture to make use of its standard and fully developed
tools.

VMTS [LLMC05] uses an N-layered architecture. This architecture adds to the MOF architecture,
alongside the model, metamodel and meta-metamodel layers, one layer for the read-only metamodel
which specifies the metamodelling language(M4) and the other layer the internal structure (a labelled
directed graph) for model storage.

AToM3 [MSD09] has arbitrary number of metamodelling layers. Although the Entity Relationship for-
malism is often used as the meta-metamodel, there is not one formalism that is defined as the top level
metamodel. The user are free to include as many “instance-of” relationship as it is necessary. A newer
version of AToM3 (METADEPTH) [dLG10] considers more than two layers at a time by using the notion
of potency [AK08].

MOF Four-Layered Metamodelling Architecture and AToM3 architecture are somehow similar especially
after it claimed in MOF 2.0 Specification that, “Note that key modelling concepts are Classifier and
Instance or Class and Object, and the ability to navigate from an instance to its meta-object. This
fundamental concept can be used to handle any number of layers. MOF 2.0 with its reflection model
can be used with as few as two levels and as many levels as users define.”

MOF Four-Layered Metamodelling Architecture and the golden braid architecture are different in the
strictness 1. MOF enforces on the instance-of relation between layers. The models and instances are in
the different layers. It helps, in the industry, to separate responsibilities of modellers and metamodellers.
On the contrary, the golden braid architecture is flexible that the metamodels and models are not strictly
separated. The tools that build on this need extra mechanisms to prevent the users from accessing core
models of the tools.

Strict Metamodelling

The strict metamodelling principle is introduced to eliminate vagueness of the instance-of concept in
the organization of the level hierarchy [AK01].

Strict metamodelling distinguishes the relation of models at different metamodelling levels and that of
models at the same level. The relations of individual model elements are illustrated schematically in
Figure 2.6. All the elements in level N are strictly the instances of the elements in level N+1, that is the
models at some level must be typed by the model in the higher level, while all the elements in the lower
level must be an instance of some elements in the higher level. Any relation other than the instance-of
relation between two elements implies that it is the same level. As a result of applying this principle,
the metamodelling levels are formed purely by instance-of relation. Every modelling element can be
assigned its proper location. Without strict metamodelling, the multilevel hierarchy would collapse into
a single level [AK02].

1The concept of strictness is explained in Section 2.1.2
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Figure 2.6: Strict Metamodelling

The strict metamodelling also implies that there is no top level of the metamodelling hierarchy when
the top level metamodel can be described as an instance of itself. Therefore, a closed architecture can
be constructed based on this principle.

Since strictness appeared to provide a foundation upon which a sound metamodelling hierarchy could
be established, and offered a discipline for the development of metamodels, adherence to strictness has
been recommended since UML 1.4. It is also worth extending to future metamodelling architectures.

It is possible for a model to require metamodels on more than one metamodelling layers. Because of
the strict metamodelling, We can not simply instantiate those metamodels in different layers. Deep
instantiation and potency are introduced by Atkinson and Kühne [AK01] [AK08] to solve this dilemma.
Deep instantiation allows information to be carried over more than one instantiations. The potency is a
nature number. It indicates how many times they can be instantiate. We can assign a potency to model
elements. Each time when the model is instantiated and we go down a meta-level, the potency decreases
by 1. The element is not assigned a value (i.e. become a plain instance) until its potency equals to 0.
Deep instantiation is adopted by metamodelling tool METADEPTH [dLG10].

This approach ensures that the relationship between layers is purely “instance-of”. Nevertheless, to
correctly understand a model, one needs to know all the metamodels—they can span over several
metamodelling layers. This adds to the complexity for understanding the models. The model is hard to
exchange between tools as it requires transporting all the metamodels.

Multi-dimensional Metamodelling Architecture

The metamodelling architectures introduced in the previous section assume that metamodelling is a lin-
ear process, that is, a model can only have one metamodel. More recently, Atkinson and Khüne proposed
[AK02] the multi-dimensional metamodelling architecture. They analyse the different responsibility in
the modelling process, and suggest that the ambiguity of metamodelling is due to tool designers’ failure
to properly recognize and accommodate two fundamentally distinct forms of classification—the logical
classification and the physical classification.

The logical classification is from the viewpoint of a modeller who takes care of composition and asso-
ciation in a particular domain. The physical classification corresponds to how the model is represented
in the modelling tool. It is useful from the viewpoint of a tool builder who focuses on improving the
performance of the modelling tool such as accelerating the searching process, reducing memory cost, etc.
For example, we can consider the VMTS labelled graph layer mentioned in Section 2.1.2 as a physical
classification. It is suggested that explicitly identify the instance-of relation as being either physical or
logical is the first step to a coherent modelling framework. Figure 2.7 illustrates the two dimensions.

Along the logical axis, as we know from our daily experience, Shrek is a Film. We also know Film is
a certain type of commercial product. Film is an instance of ProductType, and Shrek is an instance
of Film. The hierarchy is based on the domain logic, but does not necessarily have any relation with
how we maintain this structure. Meanwhile, along the horizontal axis, the entities in the logic view are
considered instances of the Structural Element in P1. It is the projection from logical view to physical,
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Figure 2.7: Example of A Two-Dimensional Modelling Architecture, reproduced from [AK02]

implementation view. The software developer, different from the modellers, is not interested in the name
or the type of the domain entities. In the software, they are objects and connections with properties and
behaviours. Using such abstraction helps tool developers to focus on optimizing their implementation.

Figure 2.8: Add a Physical Representation between Model and Program Objects

Traditionally, as shown in Figure 2.8-a, the logical models (including metamodels and meta-metamodels)
can be represented directly by objects of an object-oriented programming language. In this case, the
meta-metamodel designers have to define the mappings between models and different programming
languages constructs respectively. This results in poor interoperability. Distinguishing the physical di-
mension adds an intermediate layer of neutral representation between the models and the code as
Figure 2.8-b. All the logical models and metamodels are represented by this physical representation
in the metamodelling tool. Although the tool maps the physical representation to various formats, the
modellers only need to define mappings from models to the physical representation.

A Multi-dimensional metamodelling framework conceptually adds a new aspect to metamodelling. It
improves the model portability as models in the logic classification are tool-independent for free. It is an
important step towards a conceptually clean and maintainable multi-paradigm modelling architecture.
The research into multi-dimensional architectures is not complete yet. Besides dividing the concerns
into logical and physical, it is also possible to add more dimensions or modify the meaning of the
dimension[AGK09].
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2.1.3 MOF, Ecore and Many Other Meta-Metamodels

On the third level of the MOF metamodelling architecture, the meta-metamodel level is located. The
meta-metamodel is the core model around which a metamodelling tool is built. It is the general, neutral
definition in which all the metamodels we can define. When a meta-metamodel can be typed by itself, it
enables the self-described, bootstrapped metamodelling tools. So far, both programming languages and
general, high-level meta-metamodels have been used for this purpose.

Programming languages are used for metamodelling in some tools. It is not as high level of abstraction
as that of a meta-metamodel, since the meta-metamodel should actually model a programming lan-
guage. Nevertheless, tool developers use programming language in favour of the performance. Popular
programming languages have efficient compilers and virtual machines. Modellers can also get assistance
from their IDE such as browsing, debugging, versioning, testing, refactorying, etc. Using programming
languages also lower the barrier for the modellers who have background in programming. Moreover,
describing models using a programming language naturally leads to executable models. A reflective
language makes it possible to query the representation of the language itself and to modify it [DG06].
MOOSE [DG06] is a meta-described re-engineering environment uses SmallTalk as the executable meta-
metamodel. EMF adopts Java as it provides a metamodelling environment based on Java development
environment.

Unfortunately, using programming languages has a few disadvantages. Firstly, programming languages,
including object-oriented programming languages, do not directly support associations, derived entities
and opposite properties. Secondly, the modelling has to depend on the features of a particular pro-
gramming language, and it results in non-portable tools. Therefore, a general, platform- and language-
independent meta-metamodel is preferable to transport and bootstrap a metamodelling environment.
Meta-metamodels use neutral descriptions, so that the models can transform between formalisms and
platforms. Meta-metamodel’s explicit, sometimes graphical, notations make it easier for general mod-
ellers to start with.

Among all these different meta-metamodels, we are going to introduce Entity Relationship Model,
MOF, and Ecore. Among them, Ecore and MOF have been well accepted by the industry, and Entity
Relationship Model formalism describes the fundamental composition of the object-oriented models.
These meta-metamodels have already had supporting tools. There are also other meta-metamodels
derived from these three meta-metamodels. We will introduce some of them later in Section 2.2.

Entity Relationship Model

Figure 2.9: The Entity Relationship Metamodel

Entity Relationship Model (ER) was conceived by Peter Chen [sC76] as a database modelling method
based on the set theory and relation theory, but the idea had also been used to produce conceptual
models.

The entity relationship model adopts the natural view that the real world consists of entities and
relationships. It is a simple formalism that, as shown in Figure 2.9, only has two types of elements:
entities and relations that links the entities. An entity is a “thing” which can be distinctly identified,
such as a car or a specific person. A relationship captures the relation between entities. Both entities
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and relationships have properties. A relationship has mapping multiplicity. The concrete syntax of ER
is usually expressed in a diagram.

Figure 2.10: An Entity Relationship Model Example

Besides describing data, ERM can serve as a basic model for object-oriented design. For example, we
can describe cars as shown in Figure 2.10, where a car consists of a body, wheels and an engine. The
body has two attributes, brand and year of production yr pro. The engine has manufacturer and power.
One car can have many (3..) wheels but only one engine (1).

Simple and general, ERM can describe any object-oriented models and even the syntax of the ERM
formalism itself. This makes ER a good candidate for a stand-alone, bootstrapped meta-metamodel.
ER is not expressive enough for very complex systems. The size of ER model would grow rapidly and
the speed of traversing and analysing very large models could be compromised. A number of extension
were introduced, such as EER (Extended ER) that introduced the generalization/specification relation-
ship [TYF86]2 and HERM (Higher-Order Entity-Relationship Model) [Tha00] that adopts the cluster
of types and higher-order relationship between entity types and clusters.

EMOF: Essential Meta-Object Facility

The MOF is a platform-independent mechanism that can model other MDA specifications as well as
itself. MOF 1.4 [MOF02] was introduced in 2002 and the current version is MOF 2.0 [MOF06]. MOF
builds on a subset of UML that provides the concepts and the graphical notations to the MOF model.
It consists of two main packages, the Essential MOF (EMOF) and the Complete MOF (CMOF), along
with the support for identifiers, additional primitive types, reflection and simple extensibility through
name-value pairs (they are defined in separate packages). EMOF is a subset of MOF. The primary
goal of EMOF is to allow simple metamodels to be defined using simple concepts. CMOF is built from
EMOF and the Core::Constructs of UML which defines basic metamodelling capabilities. EMOF could
be extended for more sophisticated metamodelling using CMOF. We, in this project, are more interested
in EMOF, as what we want is a minimal, yet enough set of definitions to model object-oriented languages.

EMOF merges the Core::Basic package from UML and includes additional language capabilities by
merging corresponding packages. EMOF merges the Reflection, Identifiers, and Extension capability
packages to provide support for discovering, manipulating, identifying, and extending models. EMOF
also provides a straightforward framework for mapping MOF models to implementations such as JMI
and XMI.

It is noteworthy that EMOF is a separate model that merges the above packages instead of extends
them. The goal is to ensure that EMOF has full support of itself. EMOF is completely specified in
itself after applying the package merge. Therefore, it can be used to bootstrap metamodelling tools
without requiring an implementation of CMOF and package merge semantics. Figure 2.12 shows the
class diagram of EMOF after merging Core::Basic and the MOF capabilities.

An Element is a constituent of the model. Element is abstract and does not have superclass. It is the

2ER modelling aims at natural application representation which means no artificial or abstract type should be used.
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Figure 2.11: EMOF Merges Packages

common superclass for all the classes in the UML infrastructure library. The Type defines an abstract
class that deals with naming and typing of elements. Names are required for all Types. A Class is a
subclass of Type that has objects as instances. Class have properties and operations. When a class is
abstract it cannot have any direct instances. A Class has attributes. The attributes are represented
by instances of Property. A Property is a TypedElement that represents the attribute of the class.
A property has a type and a multiplicity. When a property is paired with an opposite, they represent
two mutually constrained attributes. “Opposite” is equivalent to a by-directional association. Class has
operations. An Operation invokes on any object that is directly or indirectly an instance of the class. It
is a typed element and a multiplicity element. Operation has ordered parameters. It can be associated
with a set of types that represent possible exceptions this operation may raise during the invocation.

EMOF has characteristics that are essential to an object-oriented design: inheritance and encapsula-
tion. As for the inheritance, Class instances participate in inheritance hierarchies. A class can have
superClass. Any direct instance of a concrete (i.e., non-abstract) class is also an indirect instance of its
class’s super classes. An object permits the invocation of operations defined in its class and its class’s
super classes. Any direct instance of a concrete (i.e. non-abstract) class is also an indirect instance of its
super classes. Moreover, EMOF allows for multiple inheritance. As for the encapsulation, a class cannot
access private features of another class, or protected features of another class that is not its super type.

A Package is a container for types and other packages. Packages provide a way of grouping types and
packages, which can be useful for understanding and managing models.

The DataType define data types. EMOF supports PrimitiveType including Boolean, Integer, and
String, as well as the user defined Enumeration3.

Although MOF is a wide spread metamodelling standard, but however, despite its self-describable fea-
ture, EMOF is less used as the meta-metamodel. It is because many consider that EMOF is the minimal
set of model elements and does not have enough expressiveness.

Ecore

Ecore is the meta-metamodel of the Eclipse Modelling Framework (EMF) [BSME03]. EMF is an open
source and open standard modelling framework designed towards Eclipse developed in around 2002.
As introduced in Section 2.1.2, EMF is a powerful MOF-like framework that enables code generation,
model and metadata management. It unifies Java, XML, and UML technologies, so that they can be

3The definitions of Boolean, Integer, and String are consistent with the XML schema [MOF06] in
http://www.w3.org/TR/xmlschema-2/.
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Figure 2.12: EMOF Class Diagram

used together to build better integrated software tools [BSME03].

Ecore is the meta-metamodel in EMF. Ecore has its root in MOF and UML, and is designed to map
cleanly to Java implementations. Ecore is more or less aligned to OMG’s EMOF. An EMF model is
essentially the Class Diagram subset of UML [BSME03]. Ecore acts as its own metamodel. The users can
treat Ecore like any other EMF models and benefit from the EMF generator in creating and maintaining
Ecore implementation. The Ecore abstract syntax is as defined in Figure 2.13. EClass models classes.
A class is identified by the name and contains attributes and references. To support the inheritance,
a class can refer to a number of other classes as its eSuperTypes. EAttribute models attributes, the
components of an object’s data. An attribute is identified by name and has a type. EDataType models
the types of attributes. Note that the primitive types and object data types are defined, instead of
in EMF, in Java. EReference models associations between classes. Containment is a stronger type of
association and the reference specifies whether to enforce this semantics by containment.

There are three sets of concrete syntax to describe Ecore models: Java, XML and UML. An EMF model
can be created in any one of the three and the EMF tool can generate code in the others. Regardless of
which one is used to define it, an EMF model is the common high-level representation that ”glues” them
all together [BSME03]. Closely related to the Java environment, EMF has good performance on code
generation and model simulation. However, although EMF designers believe that the EMF represents
the right level of abstraction, Ecore is not a platform-independent meta-metamodel.

ER, MOF/EMOF and Ecore have been used widely as the basis of other meta-metamodels, and as the
composed object meta-metamodel in many other metamodelling architectures and tools. However, there
has been discussions on the limitations of these meta-metamodels [MFJ05]. The discussion mainly focus
on the fact that most meta-metamodels can not describe actions (the terms behaviour and executability
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Figure 2.13: Ecore: the EMF Meta-Metamodel

are also used). In the next section, we will introduce the current development in model executability.

2.1.4 Constraint Language

Object Constraint Language(OCL) [OCL97] is a specification language describing the rules and queries
that apply to models. The OCL Version 2.0 specification shares a common core with the UML Infrastruc-
ture and the MOF Core specifications that were developed in parallel. OCL is completely programming
language-independent, which makes it possible to adapt to various modelling tools and scenarios. It
serves as a complement to UML, MOF and QVT (Query/View/Transformation, a model transforma-
tion standard [QVT08]) to describe the constraints of models. It is easily used for specifying invariants
on classes and types for MOF classifiers. It is also adopted to describe pre- and post- conditions on
operations and specify the guards. It refers to model classifiers using a navigator which makes OCL a
navigation language for graph-based models. It is reusable and is used as sub-expressions for other OCL
expressions. Its primitives make it possible to describe constraints of query operations.

Being widely used and tested in describing operational behaviour, OCL types and operations have been
good references for a new meta-metamodel. OCL provides rich data types. It has the primitive data
types such as Integer, Read, Boolean, String and unlimited Integer, and the operations of these types.
It also supports collection-related data types that are Set, Ordered Set, Bag and Sequence and their
operations such as adding, deleting, union and intersection. To represent a type that conforms to all
types, OCL provides VoidType. To combine different types into a single aggregate type, OCL provides
TupleType.

OCL has provides a set of predefined iterator expressions which have a collection as their source. The
following expressions are available for all collection types.

operation description syntax

exists
Results is true if body4 evaluates to be true for at
least one element in the source collection

source->exists(iterators | body)

forAll
Results is true if the body expression evaluates to
be true for each element in the source collection

source->forAll(iterators | body )

isUnique
Results is true if body evaluates to be a different
value for each element in the source collection

source->isUnique (iterators | body)

forAll
Results is true if the body expression evaluates to
be true for each element in the source collection;

source->forAll(iterators | body )

any Returns any element in the source collection for
which body evaluates to true.

source->any(iterator | body)

collect
The Collection of elements that results from ap-
plying body to every member of the source set.

source->collect (iterators | body)

one Results in true if there is exactly one element in
the source collection for which body is true.

source->one(iterator | body)
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The following expressions are defined individually for Set, Bag and Sequence

operation description syntax

select The subset of set for which body is true. source->select(iterator| body)

reject
Return the subset of the source set for which body
is false.

source->reject(iterator | body)

sortedBy
Results is an OrderedSet containing all elements
of the source collection.

source->sortedBy(iterator | body)

collectNested
Return a bag of elements that results from apply-
ing body to every member of the source bag.

source->collect(iterators | body)

OCL’s close relation to the UML specifications provides powerful support of copious tools and a signif-
icant user base. Its navigation mechanisms are efficient, platform independent, and allow expression of
complex queries. The majority of contemporary model management languages and tools use a subset
of OCL for navigation and expressing constraints. However, OCL has its limitations as discusses in
[KPG07] [KPP06],etc. OCL does not support statement sequencing. This must be encoded using nested
and quantified expressions. In consequence, complex statements which are difficult to understand and
maintain. Although OCL expressions can refer to model classifiers, modellers cannot invoke processes
or activate non-query operations within OCL, which means evaluating these expressions will not change
the states of the model. OCL is insufficient to describe behavioural models.

2.2 Model Executability

In this section, we will use the following small example to illustrate the use of various approaches. This
example consists of query, constraint and model state modification, i.e, all the important features we
want to examine in a executable model.

Consider a model object A which is a Facebook account having a Boolean

attribute P indicating the popularity. When the number of friends N of A

is lower than 300, the account popularity A.P is set to False otherwise

it is not.

Traditional Approaches

One of the approaches is to insert pieces of programs into the models. Many modelling tools use this
strategy. The AToM3 Transformation formalism integrates Python programs and the modellers need
to understand how the model objects are stored in memory in order to access model elements. EMF
either generates Java source code or dynamically loads generated Java classes (as a JIT compiler does
in executing a Java program).

The Facebook example is as such if we expressed it in Python program,

if type(A) == ’Account’:

if A.N <300:

A.P = False

else:

A.P = True

The advantages of using code lie in that the speed of compiled binaries is much higher than interpreted
code; less memory is required; the models are type-safe as the code can be checked by the compilers.
Nevertheless, the disadvantages of this approach can not be ignored. It is platform- and language-
dependent. Programs are hard for general system and business user to understand. The languages
provide both too much and too few features. It is not an easy way to simultaneously restrict and extend
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such existing languages [MFJ05]. It is also hard to maintain when requirements change and exchange
models between tools.

OCL is often used to describe expressions for conditions. However, OCL only queries the status rather
than changes them. The Facebook example can not be described using OCL because OCL can only
check if A.N is larger than 300 but can not assign new value to A.P.

Although OCL can not express the action alone, it has been adapted by many recent implementations
in executable metalanguage. For example, Xion [MSFB05] extends OCL with imperative components to
describe actions in the web modelling context. The XMF [CSW08] mentioned in the next section also
modifies OCL by adding executability.

Executable formalisms have been developed to describe system behaviour. These formalisms are designed
to specify the actions for specific types of systems. They can be used by other formalisms. For example,
a Statecharts [Har87] model can be a class attribute. The Facebook example can be described by
Statecharts as in Figure 2.14. The green circle is the initial state and the transition is fired when the
condition A.N > 300 is true.

Figure 2.14: Change Model State using Statecharts

We can also choose other formalism such as the Discrete Event System (DEVS) [ZKP00] that models
the discrete system as a state machine; the Adaptive Object Models [YBJ01] that describes business
rules and view via the work flow diagram; the Event-Condition-Action Rule-based action specifica-
tion [GKD01] that is often used in the domain such as web and web semantics.

These formalisms are at a higher level of abstraction than that of imperative programming languages,
but this approach does not grant meta-metamodel and metamodelling tools the power of describing
general behaviour and executing the action in a language-independent manner.

The Action Semantics (AS) for the UML aims at integrating a precise, implementation-independent
action specification into the UML (thereby UML becomes xUML, or executable UML, or UML with
Action Semantics). UML Action Semantics [UML03](part of the UML 1.5) provides a complete set of
actions at a high level of abstraction. It is a platform-independent language for executing models. It
is a set of models represented by diagrams. It defines fine-grained general-purpose actions [MFJ05].
Figure 2.15 illustrates how to use activity diagrams to describe the example. Other UML diagrams may
also be used.

Action Semantics also has some drawbacks. It is a complex language which includes constructs that
are not relevant to metamodelling such as concurrent actions used in multi-threaded and distributed
systems. Moreover, UML Activity Diagrams become large very rapidly and it is intractable to draw and
hard to comprehend thereafter.

Model transformation is used to support model executability. The modellers can either transform the
model continuously as if they are executing (the source and target formalism are identical) or transforms
the model to an intermediate formalism that is executable.

Rule-based model transformation allows the modellers to specify the transformation as a set of transfor-
mation rules that is, again, at a higher level of abstract than that of a imperative programming language.
It comprises a set of transformation rules each with a certain priority. The model structure is changed
by these rules and so are the properties of the model elements.
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Figure 2.15: UML Action Semantics

A transformation rule can be expressed by either rewriting logic or graph transformation. Graph transfor-
mations have originally evolved in reaction to shortcomings in the expressiveness of classical approaches
to rewriting to deal with non-linear structures [Hec06]. There are a variety of graph model transfor-
mation tools as compared in Ehrig et. al. [EGdL+05]. A transformation rule matches the model with
a pre-condition, which is usually described with a left-hand side pattern that must be found in the
input modeland sometimes along with a negative application condition (NAC) [HHT96] that shall not
be present (as in triple graph grammar [K0̈5]). The found model part is transformed to what described
in the post-condition, which is imposed by the right-hand side pattern.

Figure 2.16 shows the visual representation of a transformation rule that updates value of P.A.

Figure 2.16: Graphical Transformation Rule

The approach is useful and explicit. However, the size of transformation rules may grow fast. In addition,
basic model manipulation operations such as Create, Update, Read and Delete [RK09] are yet to be
supported in the transformation. It is still a high level abstraction rather than a directly executable
action model.

Some model transformation tools improved the transformation by scheduling the rules to specify in
which order the rules are applied. The scheduling construct often takes the form of a control flow5.

Model transformation has been further developed with the introduction of Higher Order Transforma-
tion [TJF+09]. It means that transformations taking other transformations as input and/or transforma-
tions producing other transformations as output.

The above mentioned execution approaches have proven to be useful in many applications. However,

5Tools use graph transformation are, for example, PROGRES [Sch97], AGG [Tae00]and AToM3 that mentioned in the
Introduction. The graph transformation modelling tools with rule scheduling include ATL [JK06], FUJABA [GSZ04],
GReAT [AKN+06], MoTif [Syr09], VIATRA [VB07] and VMTS [vmt]. OMG has proposed Queries/Views/Transformations
(QVT) [qvt09] which ensure a transformation language that queries MOF models and defines transformation is declarative
and expresses complete transformations.

21



22 Related Work

these implementations are platform-dependent, specific to domains or hard to modify and update once
implemented. These problems lead to the researches in including actions in the root of the metamod-
elling architecture, the meta-metamodel. Since the meta-metamodel is platform-independent and self-
described, the action metamodel, as part of it, is platform-independent as well. At the same time,
modelling, instead of hand coding, gives developers much easier models to maintain. Simulating action
models and generating complete code is an attractive perspective.

Meta-Metamodel Approach

The following metamodelling approaches add an action metamodel to the meta-metamodel of choice in
order to support executability. This type of metamodelling tools facilitate tool-users with semantically
rich operations such as simulation, model evolution and execution.

fUML

OMG also notices the importance of including executability in metamodelling languages. They have
introduced a beta version foundational UML (fUML) [FUM08]. fUML is a subset of UML. It evolves
from UML’s modelling static model to describing both static, structural and dynamic, operational
behaviour information. fUML owes its executability to an execution model which specifies how UML
models are executed in an platform-independent manner.

Different from UML, fUML does not represent everything using graphics, whereas it supports various
way of describing model execution. fUML uses a notation similar to Java to describe the “activities”, the
basic component of actions. “Activity” is the only kind of user defined behaviour supported in fUML.
Therefore, all the actions in the execution model must be modelled as activities. Figure 2.17 shows an
example of fUML model.

Figure 2.17: fUML Example

The fUML execution engine is responsible for model interpretation. It is capable of concurrent execution.
The engine consists of three packages:

• Loci of executor (which provides abstraction of executing a fUML model) and locus (which is the
physical or virtual computer on which the model is executed),

• Class for UML constructs,

• Common Behaviour (which is the foundation for behavioural semantics).

EP: Events and Properties

Kelsen et al. [KPG08] developed a small behavioural modelling language. This language is based on two
main types of elements: Events and Properties (hence the name EP). Additional related elements and
OCL code snippets augment these basic elements in order to provide an executable specification of the
system.
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Figure 2.18: EP Behaviour(Action) Metamodel

The structural elements are defined by a modified UML diagram. EP considers a class has attributes and
operations. The operations are further divided into two groups: query operations that do not modify
state and modifying operations that do. EP adds a component of “events” as modifying operations
whose semantics will be detailed in the behavioural model. The EP executable language is as defined
in Figure 2.18. While query operations are defined in the structural model via OCL expressions, the
definition of the modifier operations is handled by the EP model.

EP has both the abstract syntax and the concrete syntax.

EP’s static semantics determines whether an EP model is well-formed. It also defines the dynamic
semantics (the actions). At the run time the system state comprises a set of instances, essentially the
object graph complying with the class diagram describing the static structure of the system. A state is
changed to another by triggering an event on an instance. The value impacted by this event is updated
by the OCL expressions attached to the “impact links”. EP recursively triggers the events on the target
states to execute the model.

Although EP can describe the full specification of the behaviour in a platform-independent manner,
EP’s use in a real system is restricted because of limited OCL types.

A first prototype supporting EP abstract modelling has been developed based on the DEMOS tool that
supports platform-specific executable modelling [KPG08] .

Kermeta

Kermeta [MFJ05] augments MOF with an action metamodel. It uses aspects to weave metamodels of
existing metadata languages with precise action specification metamodels. Multiple inheritance defines
the behaviour of objects and supports variability. In any case, they believe that the conflict resolution
mechanism should be explicitly stated by the programmer.

The action primitives provided in Kermeta includes:

1. Conditionals, loops and blocks.

2. Local variable declarations.

3. Assignment expressions for assigning variables and properties.

4. Literal expressions for primitive types,.
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5. Exception handling mechanism allowing exceptions to be raised and caught by rescue blocks. A
limited form of lambda expressions corresponds to the implementation of OCL-like iterators such
as collect, select or reject on collections.

Kermeta starts from the premise that providing programmers with understandable primitives is of great
importance considering many modellers have some programming experience. Kermeta primitives change
the syntax of formal methods to what is more familiar to programmers. Using the components mentioned
above, modellers are able to build action models in text and these model are thereafter interpreted by
the metamodelling tool Kermeta.

XMF

XMF is proposed by Tony Clark et al. [CSW08]. Although their belief on “modelling language is of the
same kind with programming language” is arguable, XMF proposes an executable meta-metamodel.

XMF has both abstract syntax and concrete syntax.

XMF is built on the basis of MOF and OCL. MOF supports the standard object-oriented modelling
concepts, while an augmented OCL, named XOCL (eXecutable OCL), provides necessary action prim-
itives to enable execution. In combination with a model querying and navigation language, XOCL is a
combination of executable primitives and OCL [CSW08].

The extensions to OCL primitives are as below.

• while, find, case, table;

• TypeCase expressions;

• of(), getStructuralFeatureNames(), get(), set() that access and manipulate object properties.

We have introduced several executable meta-metamodels in this section. Considering the primitives of
the above meta-metamodels, they all involve control flow, data types and supported operations, and the
primitives for modelling such as Create, Update, Read and Delete. Import is also an important operator
to enable re-usability.

2.3 Graph Representation

In software engineering, Graph is the common data structure used for internal representation due to
its algorithmic power and mathematics foundation [WKR01]. The graphs is an expressive, visual and
mathematically precise formalism for modelling of objects (entities) linked by relations; objects are
represented by nodes and relations between them by edges. Nodes and edges are commonly typed and
attributed [Hec06].

Using graphs makes model transformation, simulation and interoperability easier as the graph eliminates
the differences between different formalisms. Graph is useful to standardize the model serialization and
therefore ease the task of transporting models between different tools.

There are many different types of graphs, directed and undirected, cyclic and acyclic, etc. to meet dif-
ferent requirements. A tree is considered as a special kind of graph and is widely used. Hierarchical,
Attribute, Direct, Typed (HADT) graphs are of particular importance for metamodelling. As illustrated
in Figure 2.19, the labelled graph allows for typing of graph nodes; the directed graph allows directed
associations; the attributed graph considers graphs are not only distinguished ontologically but also
through the properties of each node; the hierarchical graph is the graph containing other graphs. The
combination of four graphs satisfactorily covers the features of object-oriented models and metamod-
elling.

Representing models with hierarchical graphs is useful for multi-paradigm tools. Firstly, many for-
malisms are hierarchical, such as Petri Net and Statecharts. Having a notation of hierarchy at the kernel
level eases the task of modelling such formalisms and also unifies the meaning of hierarchy within the
meta-modelling system [Pro05]. Hierarchy allows for modularity, reuse, encapsulation, abstraction and
boundary-crossing edges for free.
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Figure 2.19: Hierarchical, Attributed, Directed, Typed Graphs

There is great diversity in the implementation of graphs. There are graphic libraries in C++, Java and
other programming languages; the attributed, typed, directed graph such as ASG and TGraph [ERW08];
the hierarchical, attributed, directed graph such as GraphXML [HHMM00] and GML [Him96]; the
hierarchical, attributed, typed, directed graph such as GXL [HWS00] and Himesis [Pro05]. Careful
choice of the underlying graph model has significant influence on the compatibility and performance of
a metamodelling system.

2.4 AToM3: A Tool for Multi-Formalism and MetaModelling

AToM3 [dLV02] is the predecessor of AToMPM. It is developed in MSDL at McGill University in close
collaboration with Prof. Juan de Lara at the Universidad Autonoma de Madrid, Spain. In this section,
we will introduce some important features of AToM3.

AToM3 is developed in Python. Figures in Section 1 shows a few screen-shots of the AToM3 metamod-
elling environment.

AToM3 adopts a N-layer metamodelling architecture, where the number of layers is flexible so that mod-
ellers can add as many “instance-of” relationships as necessary. AToM3 usually uses Entity Relationship
Model as the meta-metamodel of the system. From a metamodel, AToM3 generates an environment
to visually manipulate (create, edit and analyse) models in the specific domain. AToM3 has a Button
Model to create user interface as shown in Figure 2.20.

Model transformations are performed by graph rewriting. The transformations themselves can thus be
declaratively expressed as graph-grammar models [MSD09]. By supporting the transformation, instead
of building a completely new formalism, it transforms the new formalism to a known formalism, so the
new formalism can use the semantics of the known one.

The main component of AToM3 is the Processor. It is responsible for loading, saving, creating and
manipulating models, as well as generating code. By default, a meta-metamodel is loaded when AToM3

is invoked. This meta-metamodel allows modelling metamodels to use a graphical notation. The Entity
Relationship formalism extended with constraints is available at the meta-metamodel level. The entities
must be specified together with their attributes/In the ERM model, it is also possible to specify the
graphical appearance of a type of entities in the lower metamodelling layer. This appearance is, in
fact, a special kind of generative attribute. We can specify how some semantic attributes are displayed
graphically [dLJVM03].

AToM3 supports automatic code generation, but these generators are not universal but depending on
the formalism. Code generation is respectively defined for metamodels. For example, from Statecharts
models, a compiler can generate C++, Java and Python code and the documentation.
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Figure 2.20: Button Model of a Formalism

AToM3 supports extensive types of properties. Besides the primitives types and the enumeration, in
specific formalism such as Class Diagram, it also accepts transformations, Statecharts and class diagrams
as attributes of the classes. AToM3 types are treated as models, and stored as graphs. This implies that
specifying customized types is easy and the well developed graph grammars can be constructed to specify
operations on types.

ASG: Abstract Syntax Graph

Figure 2.21: AToM3 Abstract Syntax Graph Definition

In AToM3, formalisms and models are stored as graphs. ASG (Abstract Syntax Graph) is chosen for
the graph model. Every model has a root that is an ASG node. This graph is attributed, directed, but
however, not hierarchical. Figure 2.21 shows the definition of an ASG Node.

When saving the models, the AToM3 Processor generates a Python class for each entity type along with
one Python file for the ASG graph. The former classes are called to instantiate these entities in the
lower metamodelling layer. The latter file is responsible for storing entities as the nodes of the graph,
the global constraints, and connectors that link the graphic entities.
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self.obj25=pacmanV3(self)

self.obj25.isGraphObjectVisual = True

if(hasattr(self.obj25, ’_setHierarchicalLink’)):

self.obj25._setHierarchicalLink(False)

self.obj25.graphClass_= graph_pacmanV3

if self.genGraphics:

new_obj = graph_pacmanV3(380.0,180.0,self.obj25)

new_obj.DrawObject(self.UMLmodel)

self.UMLmodel.addtag_withtag("pacmanV3", new_obj.tag)

new_obj.layConstraints = dict() # Graphical Layout Constraints

new_obj.layConstraints[’scale’] = [1.0, 1.0]

else: new_obj = None

self.obj25.graphObject_ = new_obj

# Add node to the root: rootNode

rootNode.addNode(self.obj25)

self.globalAndLocalPostcondition(self.obj25, rootNode)

self.obj25.postAction( rootNode.CREATE )

The above code shows an AToM3 class object represented in ASG. After constructing the ASG node
obj25 for the entity type pacmanV3, this object is drawn and positioned. At last, obj25 is added to the
root node of this model and rendered.

One drawback of ASG is that even for non-graphical formalisms, one must devise a graphical represen-
tation. Consequently, the abstract syntax and concrete syntax are not clearly distinguished.

Transformation and Executability

Model transformation refers to the (automatic) process of converting, translating or modifying a model
in a given formalism, into another model that might or might not be in the same formalism.

To do this, AToM3 specifies model transformations graphically (based on the ASG). As shown in Fig-
ure 2.22, to set up a transformation, the metamodel of source model, the metamodel of the target model
and the metamodel for transformation should be loaded beforehand. The designer creates transformation
rules which consist of priority, the precondition (LHS graph), the constraints associate with ASG nodes
(as in Figure 2.23), and the result of transformation (RHS graph). Sometimes an action is inserted when
modifications are required of an ASG node. The pattern matching engine explores the current model
for LHS graphical pattern and executes the transformation rule to one of the search results. Repeating
until no matching can be found, the source model is transformed to the target model.

The inconvenience is that AToM3 does not have a neutral, general-purposed action metamodel. AToM3

models are compile to Python modules for simulation. The actions and constraints of transformation
rules are also coded in Python. Therefore the developer has to have the knowledge of both Python and
how entities are organized in AToM3.
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Figure 2.22: Define a Graph Transformation Rule in AToM3

Figure 2.23: Define a Constraint in Model Transformation in AToM3
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This code-generating tool, developed in Python, relies on graph grammars and metamodelling techniques
and supports hierarchical modelling. AToM3 has the following features that will be changed in AToMPM.

1. AToM3 uses Python to define actions. It does not have neutral general-purpose action language.

2. AToM3 mixes the concrete syntax and abstract syntax, which makes models hard to maintain and
updates.

3. AToM3’s ASG graph node is not hierarchical, which limits the tools metamodelling and transfor-
mation ability.

It is also worth to extend the tool to allow collaborative modelling and version control in the future.

2.5 Summary

As introduced in this chapter, we have walked through all the relative concepts of metamodelling. We
have explained the common composition of metamodels;various metamodelling frameworks; existing
meta-metamodel; current approaches to enforce constraints; and current attempts to enable executabil-
ity. Also, many metamodelling tools have been developed in various domains. Despite their acceptance
in respective domains, there are some short-comings that limit their success as a conceptually elegant
metamodelling approach. The characteristics of a conceptually elegant tool, as we propose, are,

• there is a meta-metamodel as the basis of all the formalisms and metamodels being used;

• the metamodelling architecture is closed;

• the tool supports model executability from the very beginning, the meta-metamodel;

• the tool is platform- and language-independent.
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3
Two-Dimensional Metamodelling Architecture

and ArkM3

We have discussed in the last chapter the challenges of the existing metamodelling technologies. They
are the need for a cleanly classified metamodelling architecture and the need for a general and universal
meta-metamodel that describes all the aspects including executability and constraints.

The work in this project will be used in the AToMPM (A Tool for Multi-Paradigm Metamodelling)
project in the Modelling, Simulation and Design Lab at McGill University. Our contributions in this
work are listed below.

1. Design a two-dimensional metamodelling architecture that leads to general-purpose, comprehensive
and bootstrapped metamodelling tools. One dimension describes the logical classification of the
models and the second the physical classification.

2. Propose a universal hierarchical space, the metaverse, for model storage and model management
in a modelling environment.

3. Design a general-purpose, self-describable, executable meta-metamodel—ArkM3 (AToMPM reusable
kernel Meta-MetaModel).

4. Add an Action Language to ArkM3, so as to describe the actions and constraints through out the
modelling hierarchy.

5. Adapt the hierarchical, attributed, directed, typed (HADT) Graph Himesis, as the metamodel in
the physical dimension.

6. Define a strict mapping between the ArkM3 models and the Himesis models.

7. Implement the AToMPM reusable kernel (Ark) to validate the above design.

Chapter Organization. Section 3.1 talks about contribution point 1; Section 3.2 describes the meta-
verse at contribution point 2; Section 3.3 describes the meta-metamodel design decision at contribution
point 3; Section 3.3.3 describes the action language at contribution point 4; The remaining contributions
will be explained in the next Chapter 4.

3.1 Metamodel Architecture

A good metamodelling architecture is the basis of well-defined metamodelling tools. We believe that
a well-defined metamodelling tool should be completely platform-independent which indicates that the
metamodelling architecture can be bootstrapped. A well-defined metamodelling tool should be built in a
modular manner so that tool development and distribution do not interfere with each other. Therefore,
to build a tool that is bootstrapped, comprehensive, easily maintained, we propose a two-dimensional
architecture.

The AToMPM two-dimensional architecture comprises a logical dimension and a physical dimension. In
each dimension, models are organized in layers, which is inspired by the MOF Four-Layered Metamod-
elling Architecture. At the same time, in both dimensions, we adhere to the strict metamodelling.
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Figure 3.1: AToMPM Two-Dimensional Metamodelling Architecture: the Logical Dimension

The logical dimension describes the abstract syntax of models. It identifies the model layer, metamodel
layer and meta-metamodel layer as illustrated in Figure 3.1 which correspond to M1, M2 and M3 meta-
layer in MOF respectively (M0 for user object in MOF is out of the scope of the metamodelling tool).
The root of the logical dimension metamodelling hierarchy is the meta-metamodel. It is a self-described
meta-metamodel typed by itself. Models on each level are strictly typed by the immediate higher level
metamodel or metamodels. Three layers are usually enough for modelling, but the number of middle
layers is not rigid. As long as the models adhere to the strict metamodelling principle, modellers can
add as many layers between the metamodel layer and the model layer as necessary.

AToMPM allows a model to be typed by multiple logical metamodels. To adhere to the strict metamod-
elling, instead of potency, we allow importing the required parts. Once imported, these parts become
a part of the importing model. They are treated the same as other parts of this metamodel. Although
the size of the metamodel is expanded, the benefit of importation can not be ignored. The metamodel
contains all necessary information at one place. The complexity to maintain the consistency between
models and metamodels is reduced. The users should be free to explicitly instruct if the imported features
should be updated along with the source metamodels In the future.

Figure 3.2: AToMPM Two-Dimensional Metamodelling Architecture: the Physical Dimension

The physical dimension describes the internal representation of a metamodelling tool. HADT graphs
support the scoping of models, packages and encapsulation for free. At the same time, they also allows
for unique paths for all the models elements. So far, two layers is enough in the physical dimension,
which are the graph model (A) and graph metamodel (HADT ) as in Figure 3.2.

Eventually, we have a two-dimensional representation of models as that in Figure 3.3.Logically, A is
defined by DM and DM by R, and physically A is typed be HADT. A is a model whose abstract syntax
is defined by metamodel DM, and physical implementation is defined by HADT. The modellers are aware
of the hierarchy in the logical dimension, while the tools operate on the graph models. As a result, the
metamodelling tools can easily separate the responsibility of tool developers and that of modellers.

To integrate the two dimensions, a precise mapping is required. All the models in the logical dimension,
regardless of on which meta-layer in the metamodelling hierarchy, have projections onto the physical
dimension. As we can see, both R and DM are typed by HADT.
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Figure 3.3: AToMPM Two-Dimensional Metamodelling Architecture

3.2 Universal Hierarchical Modelling Space—the Metaverse

The metamodelling tools need to store and manage models in an efficient and organized manner. One
motivation is to conceptually draw a clear boundary between the modelling world and a computer or
a server, which are actually conceptually distinct: the former is the set of models, and the latter is
media to store models. Another motivation is to facilitate collaborative programming and modelling.
The run-time may store the models in local computers and cross the internet. Multiple concurrent users
may access to a model. Modellers may refer to other models, import model components from co-workers,
and even request remote resources across the Internet.

This adds to the metamodelling tool requirements. First, metamodelling contains models that was
modelled, being modelled and to be modelled. To a metamodelling tool, this enables automatic linking
and also allows for modelling resource to spread over different physical locations. Second, models are
organised in user accounts instead of by folders or by meta layers. Third, models are stored hierarchically
and the access is authorized. Last but not the least, models have a globally unique ID to assists the
importation, reference and internet request.

Figure 3.4: The Metaverse

We propose a universal hierarchical metamodelling space called ’Metaverse’—the combination of ‘METAmodelling’
and ‘uniVERSE’. Let us use the real universe as a analogy. As the universe, the metaverse is the uni-
versal storage space for all the known and unknown, existing and future models. As shown in Figure 3.4,
the metaverse does not distinguish models by their metamodelling layers but treats the all the models

33



34 Two-Dimensional Metamodelling Architecture and ArkM3

equally. The models may be clustered by user (user group), url address and so on. We consider that
compiled binaries may be modelled as well, hence binaries is saved in the metaverse. They are equally
accessed as the models. The metaverse overlooks the content of metamodelling tool and is able to assist
our modelling activities.

AToMPM takes a subsection of the metaverse, as if the known part of the universe, which we can call
a “work space”. Ark is a subsection AToMPM work space. It contains the meta-metamodel ArkM3 and
kernel function modules.

The size of work space is dynamic. A work space expands as more models are used. When the required
model is outside the work space, the user need to either add it to the work space or provides a reference.
It is like to discover an unknown constellation in the universe, our view of the universe grows via either
observing a new star or calculation from the related stars. An external resource is added to the workspace
as shown in Figure 3.5.

Figure 3.5: Extend the Work Space

As for the implementation of metaverse in AToMPM, we adopts the same HADT graph that is used to
represent models. The metaverse’s hierarchical structure is well supported by HADT graph. Furthermore,
using the same graph structure allows the model and groups of models to be treated uniformly.

3.3 ArkM3: the AToMPM reusable kernel Meta-metamodel

Instead of using AToM3’s Entity Relationship formalism as the meta-metamodel, AToMPM has ArkM3,
an executable, self-described, general-purposed meta-metamodel as the root of the logical dimension.
ArkM3 comprises of the Object Package, the Data Type and Value Package and the Action Language
Package, as shown in Figure 3.6. These packages collaborate to describe all the information of domain
specific models.

Figure 3.6: ArkM3 Packages

Section Organization. As for each package, we will introduce their abstract syntax, constraints and
operations, and the semantics respectively. Note that the concrete syntax is not part of ArkM3, although
mapping to Himesis graph node can be considered as the concrete syntax in some aspects. The mapping
between the logical models and the physical models will be explained in the Chapter 4, Section 4.3.
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3.3.1 The Object Package

The Object Package is based on OMG’s standard EMOF (Section 2.1.3). It is because that EMOF
is the minimal set of UML, so that using EMOF brings simplicity to the meta-metamodel and helps
minimizing the AToMPM kernel. It is also because EMOF is a well-recognized standard, so that using
EMOF thereby lowers the entry to ArkM3. Another reason is that the MOF standard is widely recognized
in the modelling world and the many tools have been developed to support MOF, so that using MOF-
like models helps to save the development time and allows models to immigrate to and from other tools
with least effort.

ArkM3 Object Package (Figure 3.7and 3.8) contains the definitions of package, class, association and
composition.

Figure 3.7: Meta-Metamodel of Object Package: the Element

In ArkM3, as shown in Figure 3.7, everything is a subclass of Element, the constituent of models.
Element is an abstract class and it has no super classes. It describes the common properties of all
the model objects. The attribute typedBy indicates that a model element should always be typed by
a metamodel element. Element have operations to clone itself, compare to others, reflect the content,
implement the accept visitor method. Element associates with V ersion, Comment and AccessControl,
which respectively implies that modellers can specify the model version, authorize access privileges and
comment the elements. Element also associates with Actions and Constraints, which implies that all
elements are eligible to have constraints and executable actions.

More specifically, we identify TypedElement, NamedElement and MultiplicityElement to represent
an element having type, name and multiplicity respectively. We also define Package, which inherits from
NamedElement, contains either elements or other packages. We enable hierarchy in ArkM3 models using
Package. It is a mechanism of grouping related model elements together in order to manage complexity
and facilitate reuse. It enables combining new or reusable metamodelling features to create extended
modelling languages. Package provides visibility for free. Package merge combines the features of the
merged packages with the merging package to define new integrated capabilities.

Figure 3.8 shows the rest of the Object Package. The definition and semantics are similar to that of
EMOF described in Section 2.1.3, though there still are some differences. A TypedElement has Type,
while Type is also a NamedElement. Its type is modelled by TypeType, a subclass of Type. ArkM3
defines both DataV alue that inherits from TypedElement, and DataType that inherits from Type. The
difference between DataV alue and DataType will be explained in Section 3.3.2.

Class have attributes and operations. An abstract class can not be instantiated. Class defines getters
and setters. The difference between the actions and the operations is that an action is implemented at the
current level of metamodelling, while operations is to be implemented when this model is instantiated.
We distinguish the inheritance relationship and the generalization relation of classes, although this is
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Figure 3.8: Meta-Metamodel of Object Package: Package, Class and Association
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not a usual approach. As discussed in [K0̈6], generalization and inheritance are conceptually different.
Distinguishing the two will bring clarity to the metamodelling process. Class also have corresponding
operations to access inherited attributes and methods.

ArkM3 supports multiple inheritance. If conflict occurs, the system would try to resolve the conflict in
the first place, otherwise it invokes an exception in the tool level and invites modellers to resolve the
conflict.

There is only one generalization for a class at most, since the subsets of a class is not likely the subset
of another.

Association inherits from Class and in this way it also has the ability to derive and specialize. The asso-
ciations can have subclass and even be connected by associations. Thus, this inheritance is of importance
for higher order transformation. isFrom and isT o are respectively the source and the destination of an
association. One association can only have one source. An association can have multiple destinations,
the multiplicity of isT o is set as “1..*”.

Composition inherits from Association. The inwards and outwards cardinalities of Association and
Composition are properties.

Generally speaking, Object Package defines the classes for structural metamodelling. It gets ready for
the excutability by adding plugs to action models and constraint models in the root class Element.
Inheritance and generalization are distinguished to clarify two different class relationships. Association

inherits from Class so as to facilitate the higher order transformation.

3.3.2 The Data Type and Data Value Package

Along with the Object Package, we define data types and data values in the Data Type and Value
Package. In ArkM3, everything is an object. Not only classes, but also an integer and a data type can
be instantiated.

Figure 3.9: Data Value Example: An Instance of IntegerV alue

To meet the philosophy of “modelling everything explicitly”, We modify the common type system.
Instead of having a data type class representing values and implicitly the type of these values, ArkM3
explicitly defines data’s type. AToM3 has both DataType and DataV alue classes. For each instance
of a specific value, there exists an explicit data type. DataV alue class—“data type” as commonly
called—comprises of a DataType instance called named “type” explicitly states the type. For example,
as illustrated in Figure 3.9, an integer 3 in ArkM3 will be represented as an instance of IntegerV alue

with value 3, and the type of this IntegerV alue instance is “INTEGER”, the instance of IntegerType.

The ArkM3 Data Value package, as shown in Figure 3.10, provides primitive data values and enumer-
ation. EnumerationV alue contains ordered StringV alue or StringLiteral. The package also inluded
and collection—set, sequence and dictionary, for user’s convenience, as listed in Table 3.1.

Shown in Figure 3.11 is the Data Type Package. Each class in this package corresponds to a class in the
Data Value Package. The type classes are singletons. We have a special type of AnyType, which implies
that a data value’s type is not determined. Instances of V oidV alue have the type “ANY”.

Comparing with AToM3, ArkM3 Data Type and Value Package supports fewer kinds of data values, as
ArkM3 only intends to provide the essential minimum. AToM3 does not explicitly define data types,
whereas ArkM3 does.
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Figure 3.10: Meta-Metamodel of Data Value Package
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Table 3.1: ArkM3 Collections

Data Structure Orderliness Uniqueness Type Operations

SequenceValue True False SequenceType get, add, delete, insert, pop

SetValue False True SetType has, add, remove, pop

MappingValue False key is Unique MappingType has, get, get keys, get values,
add, delete, set value

Figure 3.11: Meta-Metamodel of Data Type Package

3.3.3 The Action Language Package

The Action Language Package models a neutral, general-purposed action language. The Action Language
Package describes the syntax, semantics, constraints and execution of operational behaviour. The con-
straint is a subset of the action, therefore this package can also model constraints. With Action Language
Package, we can make domain models well-formed, complete, executable and platform-independent.

This package contains the following components,

• Action and Constraint;

• statements;

• expressions;

• literals;

• primitive operators.

The principle of choosing components are: 1. the number of primitives should be minimal; 2. the action
language should contain enough concepts of object-oriented programming languages; 3. basic transfor-
mation operations is needed. Thus, the first criterion is whether the action elements can be implemented
by the others; the second criterion is whether the action elements are used frequently (frequently used
elements should be more efficient). The selection may keep improving over time as the experience accumu-
lates. As mentioned in Section 2.2, other efforts towards implementation-independent action languages
are good reference to our work.

The Literal Package

Literal represents the literals of data values. Literal is used when data value can not be directly used
in the models. For example, when we want to have an integer as a member of a Enumeration, the
integer is converted to an integer literal. It is an abstract class. Different types of literals specialize the
Literal class. EnumerationLiteral, SequenceLiteral, SetLiteral, and MappingLiteral are composed
of TupleV alue. The TupleV alue instance contains two elements, the first of which is the reference to
the respective literal and the second is the index. The literal package is shown in Figure 3.12.
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Figure 3.12: Meta-Metamodel of Literals

The way to interpret a literal is coded rather than modelled. The relation between the literals and the
Literal class is specialization, because these subclass literals does not develop the general class but
rather restricts it.

Action and Constraint

Figure 3.13: Meta-Metamodel of Action Language Package: Action and Constraint

Action and Constraint are the roots of an action model and a constraint model respectively. As shown
in Figure 3.13, both of them are named and typed. An action models the operational behaviour that
may have an effect on the host model, while a constraint is a querying model to examine model status
rather than change model status .

An Action comprises of Statements. It uses a symbol table to maintain variables and a Boolean ex-
pression indicating if there is a return value. If a return value is required, a slot in the Action instances
stores that value. Constraint contains one Boolean expression and returns a Boolean value.
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Statements

ArkM3 provides notations for control flow such as branches, loops, expression sequences, return state-
ment and declaration. These classes specialize Statement, which is an Element.

Figure 3.14: Meta-Metamodel of Action Language Package: Statements

Statement
attributes and
compositions

Implementation constraint result

Expressions expr, ... expr traverse the content in or-
der.

n/a n/a

Conditional
expr, stat1,

stat2
if expr is true execute
stat1 otherwise stat2.

expr value is
boolean

n/a

Loop
var, init, term,

stat

initialise var, execute stat
and update var, iterate
until term expression is
true.

var is identifier,
init and term are

expressions
n/a

Declaration id, type
be suspended because of
dynamic typing.

n/a n/a

Return expr
return expr’s value or ref-
erence to obj referred by
expr.

n/a
expr’s val-
ue/object

Expressions

Figure 3.15 shows the class diagram of the expressions.
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Figure 3.15: Meta-Metamodel of Action Language Package: Expression

Expression Attributes and Compositions Constraint

identifier
name, type, value,
isReference, offset

if isRreference is true, it can contain a
reference

call module, called, dir module can be either model or
compiled classes

reference origin, sequence of strings,
value, type

n/a

The Operator Package

Operator is a subclass of Expression. They are the most basic elements in the Action Language. These
primitives are frequently used so that the efficiency becomes important. Since hard coded primitives
are usually faster than those by models, instead of modelled by other operators, the chosen operators
shall be implemented by tool developers using some programming languages. Defining an operator as
primitive will allow the tool developer to rewrite it when the system is ported to other platforms. These
operators are fundamental in describing actions and model transformation.

Figure 3.16shows the complete Operator package.

Arithmetic Operators, Comparative Operators, Boolean Operators and Type Conversion Operators

These operators are designed to represent basic operations, such as arithmetic operators, Boolean opera-
tors, comparison operators and type conversion operators. These operators are common in programming
languages. Since we want to design an action language that has minimal dependency on the implemen-
tation, we ought to have the smallest possible set of fine grained actions.

These basic primitive operators are implemented by directly applying the corresponding Python oper-
ators on the operands, such as the operators in the following table.

Operator
Operands
(in order)

Implemen-
tation

example
/meaning

constraint
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Figure 3.16: Meta-Metamodel of Operators

arithmetic ops

add
operand1,

operand2, ...
+ 1+2 => 3

op type: int, real or string
op #: infinite

division
dividend,
divider

/ 2.0/5.0 = 0.4
op type: int or real
op #: 2

boolean ops

and
operand1,

operand2, ...
&& false && false => false

op type: bool
op #: 2

type conversion op

2int operand int( ) int(“a”) => 96
op type: string, real or bool
op #: 1

comparison ops

lessthan
operand1,
operand2

< 4<3 => false
op type: int or real
op #: 2

Collection Operators

These primitives are used frequently to handle a collection of model elements. It includes mapping that
applies a common action on a set of objects; filter that scans a set and returns those that satisfy the
criteria; allInstanceOf that returns all the object of a certain type.
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Operator
Operands
(in order)

example/meaning constraint result

semantic ops (obj refer to a model element, model and metamodel refer to the entire definition)

allInstance
type,
model

get all the instances of a cer-
tain type

type is string or a model set of objects

exist
obj,

model
n/a obj is a string or a model true/false

isKindOf
obj,

metaobj
if a model is defined by
metaobj or its subclasses

n/a true/false

isInstanceOf
obj,

metaobj
if a model is defined by
metaobj

n/a true/false

isIdentical
obj1,
obj2

if obj1 and obj2 refer to the
same object

n/a true/false

mapping
expr,

set of objs
apply expr to each element
in obj set,

n/a none

filter
expr,

set of objs
select the obj that satisfy
the expr

result of expr is bool set of obj

Model Manipulation Primitives

We also include some operators especially to manipulate models. We use copy to duplicate a model
element and import to merge a model from an external source. merge is to integrate different models
and can be considered as a model transformation process.

We have included some operators that defined especially because of the use of Himesis hierarchical graph
nodes, such as connect and print. connect connects two Himesis graph nodes. print pretty prints the
model content. Nevertheless, strictly speaking, thses two operators should not be part of the primitives.

Some important primitives are provided for frequently used operations. The meaning and the composi-
tion of these operators are as below.

Operator
Operands
(in order)

example/meaning constraint result

manipulation ops (obj refer to a model element(ArkM3 values and types are also model elements), model
and metamodel refer to the entire definition)

copy obj duplicate obj n/a obj

update
/assignment

var, expr assign the result of expr to
var

var and expr should be same
type, otherwise the var type is

changed according to expr

value of
expr

delete obj delete obj n/a n/a

read obj value of obj n/a value of obj

navigate obj, path
the object refered by path

from obj
path is a string separated by

periods
n/a

merge model1,
model2

merge two models n/a model

import
model1,
models

import model2 to model1 n/a model1

connect node1, node2
connect to nodes in a Himesis

model
this is especially for Himesis

graph models
None

print graph
output the graph content in

console
this is especially for Himesis

graph models
strings
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Transformation Primitives

According to the discussion in [MG05], there are four basic required operations for the model transfor-
mation. These operations are called as CRUD, which are Create, Read, Update and Delete.

• read, reflect the content of the graph node and return the value of a node;

• update, equivalent to assigning a new value to certain model element, so that it is implemented in
the way of assignment expression;

• delete, delete an graph node and all the nodes in it;

• create, if the metamodel exists, create an model according to its definition. It calls the Create
Visitor in function package.

These operations can be applied on models and transformations. With these four operations, the mod-
ellers can define any transformation. We adopt CRUD as primitive operators. There is overlap be-
tween transformation primitives and other operators—for example, update can be implemented by
assignment—but it does not affect the syntax itself.

In this section, we introduced the meta-metamodel of AToMPM. ArkM3 is the root of the logical
metamodelling hierarchy. It is self-describable so that we can bootstrap the metamodelling tool. ArkM3
comprises of three packages—the Object Package, the Data Type and Value Package and the Action
Language Package. These packages help to describe every aspects of a model.
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Visitor

Ark

Object Package

Action Pakcage

M3

Create Checking Interpretion

ArkM3
Factory

Type
Chekcing

Constraint
Checking

Querying

operator
visitor

control
flow

expression

Himesis

Models

typed by

typed by typed by

1 1

*

operate on

definition

implemented by

Exceptions

Figure 4.1: The Ark Composition

Ark (AToMPM reusable kernel) is the minimal core of AToMPM—the metamodelling and transforma-
tion tool built on ArkM3—which provides fundamental support to metamodelling and transformation.
Figure 4.1 presents the composition of Ark. It includes a self-described, executable meta-metamodel
ArkM3 with which a tool can bootstraps, and a metamodel of HADT graphs that specifies models’
internal representation. Ark conforms to the two-dimensional metamodelling architecture. It has ArkM3
in the logical dimension, while it adopts Himesis in the physical dimension. Ark has modules that achieve
essential metamodelling functionality, including Create, Checking and Interpretation, and they can be
further specified.

Ark is implemented in Python 2.5. Since Python is a convenient programming language for fast proto-
typing; and both Himesis and AToM3 are implemented in Python, we held on to the same language.
Python is an interpreted language so that the performance is not as fast, which was not AToMPM’s
primary concern. Although, at the end, the performance did turn out to be an important issue.

4.1 The Implementation of ArkM3

ArkM3 is predefined, so that the first-level classes are compiled to Python classes and stored in .py files.
Whereas because ArkM3 is self-describable, it can be recreated from ArkM3 Python objects in the place
of files and therefore be represented by graphs in memory. A graph model can then be output to and
loaded from XML files using Himesis serialization tool.
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4.2 The HADT Graph Himesis

AToMPM supports hierarchical, thus the HADT Graph Himesis is chosen instead of ASG.

Himesis was developed by Provost [Pro05] at MSDL. There are two packages in Himesis, one of which
is for the hierarchical graph representation, and the other for graph utilities, such as graph matching
and serialization. Ark adapts Himesis to meet the need its characteristic. We gave up Himesis’ graph
matching package because Himesis’ matching is subgraph matching instead of pattern matching. It can
only match graph structure (nodes and connections) but not the properties of the graph nodes which
compromises Himesis’ ability to be useful in model transformation. We temporarily keep the Himesis’
serialization tool which exports models to and imports from XML and it uses folders to represent the
insideness. More efficient exporter and importers would be helpful in the future.

Figure 4.2: Modified Himesis Metamodel

The modified Himesis metamodel is shown in Figure 4.2. The constituent of Himesis models is the
abstract class Node. Its name is defined by id and its type (metamodel) by label. Graph enable the
hierarchy. Deriving from Node, Graph is the only object that can contain other graph. Graph also
provides useful actions such as add, remove, connect, etc.

we modify Himesis to respond to ArkM3 Values and Types. Originally, Himesis provides four primitive
types—Int, Float, String and Bool. The modified Himesis is in Figure 4.2. We define V alue and Type,
PrimitiveV alue for primitives and V oidV alue representing any value that is undefined. These classes
are all derived from Node but they can not contain other nodes. Besides name and label, they also have
value and type (a string explicitly indicating type).

In addition, Himesis maintains the connection information globally in the root node for the sake of
better performance.

Terminology. In the following sections, we will refer to the ”modified Himesis” as ”Himesis”.
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4.3 Mapping Between ArkM3 models and Himesis models

As discussed in Section 2.1.2, there is a projection between the logical dimension and the physical
dimension in a two-dimensional architecture. As for AToMPM, every model in AToMPM is physically a
graph, while at the same time, belongs to a logical domain. A strict mapping between graphs and logical
models is important for AToMPM automatic generation, updating, interpretation and trace-ability.

Different meta-metamodels could have different mappings. It is because a meta-metamodel defines the
syntax of a metamodel and the way to interpret and instantiate this metamodels. In this thesis, we only
defined the mapping for ArkM3. If a modeller would like to define a new meta-metamodel, he has to
define the specific mapping.

Mapping AToMPM logical models to Himesis is somehow similar to that of mapping from the abstract
syntax of a language to the concrete syntax. Himesis models, due to their indifference towards the
content, have to include the supplementary structure to indicate the role of a node. It shows the complete
structure so that the system can parse and analyse. The other way around, the concept model in the
logical dimension is smaller than the graph model because it only contains the human understandable
objects and does not have extra structure to assist software interpretation. For mappings please refer to
Appendix A. You may need to be aware of the mapping when reading the Chapter Case Study.

4.4 AToMPM Kernel Functionality

Ark demonstrates the use of the metamodelling architecture and the meta-metamodel with executability.
As introduced in the beginning of this chapter, Ark uses visitors to realize functions of creation, update
and deletion, conformance checking, interpretation, and serialization.

The Visitor Pattern

Ark uses Visitor Design Pattern to implement the functionality. Visitor Pattern is a way of separating
an algorithm from an object structure upon which it operates. In essence, the Visitor family allows
new methods to be added to existing constructs without modifying the constructs [Mar02]. Instead, one
creates a visitor class that implements all of the appropriate specializations of the function [GHJV95].

The idea is to use a structure of classes which has an accept method that takes a visitor object as an
argument as illustrated in Figure 4.3.

Figure 4.3: Objects Can Accept a Visitor

Nevertheless, because Python is a dynamic typing language, the visitor pattern is achieved using a
dispatch method as the following.

def dispatch(self, node, args=None): # lookup node type

self.node = node
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klass = node.getLabel()

meth = self._cache.get(klass, None)

if meth is None:

className = klass.split(".")[-1]

meth = getattr(self, "visit" + className, AttributeError)

return meth(node, args)

The self. cache is to reduce the overhead of searching and the meth is a function pointer that redirect
the execution to the right visitor function. Using the dispatch method is reasonable also because the
models are projected to graph nodes, whose type are stored in the attribute label and can not be deduced
by the compiler.

The visitors are aware of the metamodel. A visitor includes methods (as in Visitor V) for each class in
the metamodel level. Its traverses the graph model, and whenever they reach a graph node the dispatch
method redirects to the right visitor method according to the graph node label.

4.4.1 Search for a Model Element

Searching function is implemented via the Search visitor. As the models are internally represented in
graphs, this visitor searches the model on the base of graph and nodes.

The search function is invoked by calling search method in the module Ark.function.HmSearch.

1 from Ark . funct ion . HmSearch import HmSearch
2 HmSearch ( ) . s earch ( root , path )

It takes two parameters, one of which is the root of a Himesis model and the other a string divided by
‘.’ for the relative path, and the return value of this method is a graph node otherwise None.

1 def search ( s e l f , root , name ) :
2 s e l f . name l i s t = name . s p l i t ( ” . ” )
3 s e l f . match = None
4 s e l f . d i spatch ( root , None )
5 i f s e l f . match ==None :
6 p r in t ”Can not f i nd ”+ name +” in model ”+ root . ge tLoca l Id ( )
7 return s e l f . match

The search method firstly divide the path into items representing node local ids. The visitors traverse
the model and at every level of containment, find the node whose name matches the current level item
in path list. In line 4, we have dispatch(Node elem, List args) method redirects the execution to
corresponding visitor method.

Figure 4.4 shows an example search.

Require: elem is Himesis.V alue or Himesis.T ype

1: if elem local Id == pathList[depth]: then
2: save the reference to elem in self. match

3: return True

4: else
5: return False

6: end if
Require: elem is Himesis.Graph

7: if elem’s local Id == pathList[depth] then
8: if depth refers to the last item in the pathList then
9: save the reference to elem in self. match
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Figure 4.4: An Example of the Search Visitor

10: return True

11: else
12: depth++ to match next level
13: for all e in elem do
14: if dispatch(e, args) is True then
15: return True

16: else
17: depth– to match previous level
18: end if
19: end for
20: end if
21: end if
22: return False

The path are divided by ’.’. Each segment indicates searching is one step deeper inside the root. As the
visitor traversing the model, each time it compares the segment and the node id, only when they are
the same, the visitor traverses all the children and match with the next segment. A match is found only
when entire path are same with that of the destination.

4.4.2 Create Models and Metamodels

Ark creates a model in accordance to the metamodel definitions. It applies to any metamodel and model
pairs as long as the meta-metamodel is ArkM3. To create a model element, the modellers should first
get the metamodel definition via the Search visitor. Then they can instantiate this metamodel definition
by invoking the create method in HmHmFactory module in the function package.

1 from Ark . func t i on . HmHmFactory import HmHmFactory
2 d e f i n i t i o n = HmSearch ( ) . s earch (metamodel , template path )
3 HmHmFactory ( root ) . c r e a t e ( d e f i n i t i o n , metamodel , args , parent )

We first search for the definition in the metamodel, and then call the create method. The inputs to
this function are the metamodel element, the metamodel, args for list of value of model attributes,
and parent node of the created model. The created model element is add to the model (is referred to
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by root) automatically. Taking a Class instance as an example, the algorithm of visitClass method
is shown below,

Require: Creating a instance of first-class object, parameter: definition, args, parent

1: create Himesis node t as the root of this object
2: add t to parent

3: sups ⇐ all the super classes and general glasses of the definition
4: props ⇐ all properties from sups

5: compo ⇐ all composition from sups

6: for all m in props do
7: examine the cardinality, uniqueness and order

8: create proper DataV alue to the above attributes
9: repeat

10: dispatch: definition m, root t, arguments
11: until meet the cardinality requirement
12: end for
13: for all m in compo do
14: examine the cardinality, uniqueness and order

15: create proper DataV alue to the above attributes
16: repeat
17: dispatch: definition m, root t, arguments
18: until meet the cardinality requirement
19: end for
20: assoc ⇐ all named association ends from sups

21: for all a in assoc do
22: examine the cardinality, uniqueness and order

23: create proper DataV alue to the above attributes
24: repeat
25: add to t node named by the association end
26: until meet the cardinality requirement
27: end for

Creator first obtains all the meta information (properties, compositions, associations), including those
in inherited and specialized classes between line 3 and line 5, and in line 20. Then the creator goes
through all them and create Himesis graph. The created Class instance is added to the parent node if
it is given (line 2). Finally, the element is returned. There can not be two elements with same id in one
graph node. Therefore, in the creation visitor, the user should specify the id of an element, otherwise
the visitor name the object with a unique number.

For faster generation of ArkM3 models, we also provide a factory module named ModelCreator for
direct creation ArkM3 instances.

4.4.3 Conformance Checking and Constraint Checking

Model checking is used to check the conformance between model and the corresponding metamodel
(metamodels, if applicable). The input shall be the model and its metamodel(s). By the content of
checking and the way checking is performed, model checking has two parts. Type conformance check-
ing verifies if the model conforms to the properties and relations defined in the metamodel. Whereas
constraint checking checks if the model is consistent with the constraints defined in metamodel(s).

Type Conformance Checking

Type conformance checking is to check model elements according to the attributes, the compositions
and the associations that are defined in the metamodel. The checking function is invoked by calling
check method in the HmTypeCheck module, and returns the list of error messages encountered in the
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process of checking.

1 from func t i on . ArkCheck import ArkCheck
2 msg = ArkCheck ( ) . check (model , d e f i n i t i o n , metamodel )
3 pr in t msg

The code of check is as follows,

1 def check ( s e l f , model , d e f i n i t i o n=”” , metamodel=”” , wt=False ) :
2 s e l f . metamodel = s e l f . v a l i d a t e i npu t (metamodel , s e l f . metamodel )
3 s e l f .m = s e l f . v a l i d a t e i npu t (model , s e l f . c u r r en td i r )
4 s e l f .mm = s e l f . v a l i d a t e i npu t ( d e f i n i t i o n , s e l f . workspace )
5 i f s e l f .m == None or s e l f .mm==None :
6 return s e l f . msg
7 i f ! s e l f . matchmodels ( s e l f .m, s e l f .mm) :
8 s e l f . msg . append ( [ ”Metamodel o f ” , name to match , ” in ” , metamodel name , ”does not e x i s t ! ” ] )
9 else :

10 s e l f . d i spatch ( s e l f .mm, s e l f .m)
11 s e l f . c h e ckA l lA s so c i a t i on s ( s e l f . workspace , s e l f .m)
12 return s e l f . msg

In line 2, it validates the inputs in order to make sure that the model, its definition and the metamodel
actually exist and they are proper Himesis graph models. Then it examines if the model is actually typed
by the metamodel in line 7. In line 10, dispatch redirects to the visitor that inspects the properties of
model. Then checkAllAssociation verifies the connections and multiplicity between first-class objects.

1: model[′isAbstract′] should be false

2: mcontent ⇐ components in model

3: sups ⇐ all the super classes and general glasses of the definition
4: props ⇐ all properties from sups

5: compo ⇐ all composition from sups

6: assoc ⇐ all named association ends from sups

7: for all m in mcontent do
8: if m’s definition in props then
9: checkpair p ⇐ (props[m.getLocalId()],m)

10: else if m’s definition in compo then
11: checkpair c ⇐ (compo[m.getLocalId()], m)
12: else if m’s definition in assoc then
13: checkpair a ⇐ (assoc[m.getLocalId(]), m)
14: else
15: print self.msg.append([”ModelError”, m, ”is not defined.”])
16: end if
17: end for
18: if anything left in props then
19: print self.msg.append([”ModelWarning”, m, ”is not instanticated.”])
20: end if
21: for all elem in checkpair p, checkpair c, checkpair a do
22: self.dispatch(elem[0], elem[1])
23: end for

The checking visitor traverses the model packages in the depth-first order. When it finds a first-class
object, such as instances of Class, Association and Composition, The dispatch method directs the exe-
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cution to the corresponding visitor. Taking the Class instance as an example, similar to that in creation,
when a visitClass method is called, the visitor gets the actual content in the checked model (Line 2)
retrieves the corresponding metamodel element(s). In line 4, 5 and 6, we collect all the meta information
from metamodel, and each line returns a list. Between line 7 and line 17, the visitor compares these lists
and the model content list for mismatches. At last, the visitor checks each model and metamodel pair
to find inconsistency as in line 22.

1: associations ⇐ all the instances of Association
2: for all a in associations do
3: definition ⇐ metamodel of the object that a connect to
4: mfrom ⇐ incoming link of definition[′from′]
5: from ⇐ incoming link of a[′from′]
6: if mfrom’s id != from’s type then
7: print Report Connection Error
8: end if
9: mto ⇐ incoming link of definition[′to′]

10: to ⇐ incoming link of a[′to′]
11: if mto’s id != to’s type then
12: print Report Connection Error
13: end if
14: end for

The checkAllAssociations gets all the instances of Association of the model. For each of them, it finds
the definition in the metamodel. It examines the designated names that to and from are connected to
in line 4 and line 5, and examines the type of the actually connected object in line 6. If the name and
the type are not match, an error message is created.

Constraint Check

The constraint checking checks if a model is consistent with the constraints by interpreting the constraint
expressions attached to the model elements. The constraints can locate either in the metamodel or in
the model. It is invoked by the check method in the ConstraintCheck visitor.

1

2 from func t i on . ConstraintCheck import ConstraintCheck
3 msg = ConstraintCheck ( ) . check (model , d e f i n i t i o n , metamodel )
4 pr in t msg

The constraint checking visitor traverses the model. For each model object, it firstly examines the con-
straints of the object. Then the visitor searches for the metamodel definition and all related metamodel
elements classes) and exams the constraints defined for the model. Evaluating the constraints is im-
plemented by interpreting constraint models (as action models being interpreted in Section 4.4.4). It
returns either True or False.

1

2 from func t i on . HmActionInterpreter import HmActionInterpreter
3 i f HmActionInterpreter ( ) . execute ( expr , model , metamodel ) == fa l se :
4 s e l f . msg . append ( [ ”Consra intError” , expr , ” in ” , model , ”and” , metamodel ] )
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4.4.4 Interpretation

Executability is an important feature of Ark. Ark executes the action models so as to simulate, transform
models. Execution is also used when the status of models are queried.

Figure 4.5: An Action Model Example Describing var = a1 + a2.

The program is stored in a structure such as that in Figure 4.5. Because each graph node can have at
most one parent, therefore the action model is actually a tree. AToMPM executes action models is by
traversing and interpreting. An interpretation visitor is used to interpret the action models. To invoke
the interpretation, you can use the following lines,

from function.HmActionInterpreter import HmActionInterpreter

HmActionInterpreter().execute(actmodel, hostmodel, metamodel, parameters)

The Interpreter Visitor is set up as such,

1 class HmActionInterpreter ( V i s i t o r ) :
2 de f i n i t ( s e l f ) :
3 s e l f . model = None
4 s e l f . metamodel = None
5 s e l f . r e s u l t S t a ck = [ ]
6 s e l f . context = l i s t ( )
7 s e l f . h i s t o r y = d i c t ( )

The variables represent respectively: line 1, the host model of the constraint; line 2, the metamodel of
the action’s host model, added to enable the create function; line 3, a stack which stores the result of
evaluated expressions; line 4, the context of the executing, the root of constraint model get executed;
line 5, the stack for function call invoked. The system traverse the action model tree pre-orderedly. The
evaluation of expressions are pushed in the result stack, whose function is same with the runtime stack
in a compiler. The remained value in the stack after the execution is the return value of the action
model.

1 de f execute ( s e l f , actmodel , hostmodel , metamodel , parameters )
2 # record the curent a c t iva ted ac t i on model
3 s e l f . context . append ( act )
4

5 s e l f . metamodel
6 s e l f . actmodel
7 # c l e a r the stack , meaning the pr ev ious r e s u l t s tack
8 # need to be s to r ed once a execute func t i on i s c a l l e d .
9 s e l f . r e s u l t S t a ck = [ ]
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10

11 # begin to execute the ac t i on model
12 s e l f . d i spatch ( act , parameter )
13

14 # return the r e s u l t and c l ean the s tack
15 i f l en ( s e l f . r e s u l t S t a ck ) == 1 :
16 r e s u l t = s e l f . r e s u l t S t a ck [ 0 ]
17 else :
18 r e s u l t = s e l f . r e s u l t S t a ck
19

20 # remove the cur r ent a c t i on model from the context l i s t be fo r e r e turn ing the r e s u l t .
21 s e l f . context . pop ( )
22

23 return r e s u l t

execute method parameter include the action model, the hosting model and the metamodel of the
hosting model, as well as the parameters passes to the action model if any.

4.4.5 Transformation and Simulation

Transformation is not directly supported in AToMPM, as the pattern matching is not supported in Ark.
It belongs to AToMPM extension for transformation. The transformation rule actions model can be
built with these primitives. These actions are executable in the AToMPM interpreter. For a description
of the execution of action models refer to Section4.4.4. For the example of model transformation please
refer to the Case Study in the next chapter 5.

The case of simulation is similar. Please refer to the Case Study for the example.

In this chapter, we explained the implementation of the kernel of the metamodelling tool AToMPM.
The following chapter will present an case study, a Reader/Writer System described in Petri Net graph,
to illustrate the use of this kernel.
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5
Case Study: Readers/Writers System in

Petri Net

In this chapter, we present a Readers/Writers System Petri Net model to demonstrate the use of the
AToMPM kernel. This example shows the AToMPM approach to define metamodels, instantiate meta-
models, verify models and analyse models, as well as how the models are stored and retrieved in this
metamodelling system.

Chapter Organization. In Section 5.1, we introduce the Readers/Writers System and Petri Net for-
malism. In Section 5.2, We show ArkM3’s approach to create metamodels of two different kinds of
Petri Net formalism, which are Place/Transition Petri Net (PTPN) and Capacity Constraint Petri Net
(CCPN). In Section 5.1.2, we create an Constraint Capacity Petri Net model by instantiating CCPN
formalism. In Section 5.4, we check the conformance between the CCPN model and the CCPN meta-
model, transform this model to a equivalent PTPN model, and simulate the resulted model by executing
transformation rules in the AToMPM interpreter.

5.1 Background

5.1.1 Readers/Writers System

We reuses the Readers/Writers System example from [MBC+94] to explain the use of Ark. A Reader-
s/Writers System includes a set of processes that may access a common database either for retrieving
or updating. Any number of readers may access the database concurrently. A writer, however, requires
exclusive access to the resource. If one process is writing to the database, no other processes, including
readers, may have access to the database. There are three interesting aspects of this system making it
amenable to the Petri Net modelling.

• concurrency: two processes may be concurrently accessing the database for reading;

• choices: an access can either be a read or a write;

• mutual exclusion: only one process at a time may access the database for writing.

5.1.2 Petri Nets Formalism

The Petri Net was first developed by C. A. Petri in the early 1960s. It provides a set of graphical notation
and operational semantics well suited for modelling the concurrent systems as well as the discrete event
systems. A Petri net is a graph defined as such in [CL08],

(P, T, A, w)

• P = {p1, p2, . . . , pn} is a finite set of places;

• T = {t1, t2, . . . , tm} is a finite set of transitions;

• A ⊆ (P × T ) ∪ (T × P ) is a set of arcs from places to transitions and from transitions to places;

• w : A → N is a weight function on the arcs.
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A Petri net consists of places (are usually represented by circles) and transitions (are usually represented
by bars) which are connected by directed arcs. An arc connects a place to a transition or vice versa, but
never between places or between transitions. The places connected by arcs to a transition tj are called
the input places I(tj) of that transition and the arcs are called input arcs; the places connected by arcs
from a transition tj are called the output places O(tj) of that transition and the arcs are output arcs.
Each arc is accompanied by a weight representing the enabling condition.

A place may contain any non-negative number of tokens. When the number of the tokens is assigned to
the places, the places are marked and the Petri Net become a marked Petri Net. A state of a marked
Petri net, which is sometimes called marking, is the number of tokens in all the places, as such,

x = [x(p1), x(p2), . . . , , x(pn)]

Figure 5.1: Example of the Petri Net Enabling Rule and Firing Rule

The state transition mechanism is captured by the structure of the Petri Net graph. The operational
semantics of the Petri Net is related to the “enabling rules” and the “firing rules”. These rules are
associated with transitions. The enabling rules state the conditions under which transitions are allowed
to fire, while the firing rules define the marking modification induced by firing the transition. A transition
t is enabled if and only if each input place I(t) contains a number of tokens greater than or equal to
a given threshold w(p, t), the weight on that arc. Taking the Petri net in Figure 5.1 for example, t is
enabled if the number of tokens in the place P1 is not less than 2, and the number of tokens in the place
P2 is no less than 1.

Petri Net states are changed by firing of the enabled transitions. When a transition t fires, it consumes
from each place pi in its input places set I(t) as many tokens as the weight w(pi, t) on the arc connecting
pi to t, and puts to each place p′i in its output places set O(t) as many tokens as the weight w(t, p′i) of
the arc connecting the t to p′i.

x′(pi) = x(pi) + w(pi, tj) − w(tj , pi)

In the Figure 5.1, when t is fired, 2 tokens will be removed from P1 and 1 from P2, and then 2 tokens
are added to P3. A Petri net repeatedly fires the enabled transitions until there are no more.

Among the variances of the Petri Net formalisms, we choose the Place/Transition Petri Net (PTPN)
and the Capacity Constrained Petri Net (CCPN). They are both simple to understand and complex
enough to demonstrate ArkM3’s important features.

CCPN is different with PTPN in that CCPN places have an extra attribute maxToken indicating the
maximum number of the tokens in a place as well as a corresponding constraint to ensure the number
of tokens is smaller than maxToken. Whereas, PTPN nets express the same meaning in a different
manner, that is to add a reverse link in CCPN graph structure. Figure 5.2 shows a pair of equivalent
CCPN net and the PTPN net implying P may have 0 to 3 tokens.

In the CCPN net on the left, max = 3 indicates if P has 3 tokens at the most. Whereas, in the PTPN
net on the right, in place of the attribute max, we have a reversed link between t2 and t1. This link
consists of one place p′ with 3 tokens and two arcs with the same weight to their opposite counterparts.
When the number of token in p is smaller than 3, every time when t1 is activated, 1 token is sent to p

and at the same time, one removed from p′. When there are already 3 tokens in p, the number of tokens
in p′ is 0. Thus, t1 is deactivated until tokens are removed from p. We are going to demonstrate such
CCPN to PTPN transformation in the following sections.

58



5.2 Create Petri Net Metamodels 59

Figure 5.2: Equivalent CCPN and PTPN Models

5.2 Create Petri Net Metamodels

From this section, we start our metamodelling process. The first step is to create the metamodels for
both formalisms.

Figure 5.3: Place/Transition Petri Net Metamodel

Figure 5.3 shows the ArkM3 class diagram for the PTPN metamodel. Besides the Petri Net’s Place,
Transition, input arc Place2Transition and output arc Transition2Place, this metamodel also imports
two classes, Element and Package, from ArkM3. This importation, on the one hand, ensures the strict
metamodelling hierarchy—the two classes now belong to the PTPN metamodel rather than ArkM3, they
are instances of ArkM3’s Class and they are respectively inherited in PTPN metamodel and instantiated
in PTPN models. On the other hand, this approach includes ArkM3’s expressiveness in the metamodel.
By importing the class Element and inheriting from it, we not only import its attributes but also its
associations, so that we are able to describe useful informations of an PTPN metamodel element, from
model version to the constraints and the actions. By importing Package and instantiate it in the next
level, we have a container of PN models.

Comparing with PTPN, CCPN has an extra attribute indicating the maximum number of tokens in
a place. Correspondingly, Place has a constraint that the number of tokens in a place is less than
maxToken. Figure 5.4 shows the CCPN metamodel class diagram and highlights the difference.

To build such a metamodel in the kernel, the following steps are to be followed. You may need to refer
to Section 4.3 to understand the path of some elements. First of all, we load the meta-metamodel into
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Figure 5.4: Capacity Constrained Petri Net Metamodel

the metaverse and set up the environment:

workspace = METAVERSE

creates a local reference to METAVERSE which represent a subsection of it. It can be a subsection of
the metaverse, or a subsection of some workspace.

m3 = createArkM3_in_Hm()

loads ArkM3 into the memory.

workspace.add(m3)

adds loaded ArkM3 to the metaverse.

HashmapGenerator().createHashMap(METAVERSE, localroot=m3, metaverseid = "AToMPM_Workspace")

initialises the AToMPM hash table, loading frequently used ArkM3 components in to hash table.

We take the creation of the CCPN class Place as an example to show how the metamodel elements are
created and how they are connected using Python code.

1. Create the instance of Package to hold all the Petri Net elements and add it to the current
workspace in the METAV ERSE.

metamodel = ModelCreator().createPackage("PetriNet_META_Hm", None)

workspace.add(metamodel)

2. Create an abstract class Element as the super class of all the classes in this metamodel. This is
considered as importation from ArkM3. The same is for concrete class Package who inherits from
Element. root indicates the parent Himesis node of the created element.

superClass = factory.createClass("Element", root = metamodel["ownedElement.value.element"],

isAbstract=True, package=metamodel)

3. Place instantiates the metamodel Class and is added to the package referred by the variable
metamodel in Line 1. Place inherits from Element in Line 2 and 3. Increase the element counter
of the package by 1 in the last line. Transition is defined in the same way.
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place = f.createClass(’CCPetriNet.Place’, package=metamodel)

place.add_super_class(superClass)

metamodel.connect(place["super.value.element.1"], superClass)

metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].

getValue()+1)

4. Create the property token which is a property owned by Place (reside in the Himesis node
place["ownedProperty.value.element"]). Its default value is 0. There is one such property in
each Place. Similar process is to the property maxToken.

factory.createProperty("token", root=place["ownedProperty.value.element"], typ="INTEGER",

isComposite=True, lower=1, upper=1, default = 0,hostClass = place)

5. Define an association Place2Transition Line 1 connecting Place to Transition and its cardi-
nality Line 2 and 3, with a many to many relation. The same process for Transition2Place.

pl2tr = factory.createAssociation("Place2Transition", root=metamodel["ownedElement.value.element"],

package=metamodel, isFrom = place, isTo = trans)

factory.createProperty("inCardinality", root = pl2tr, isComposite=True, isUnique=True,

isOrdered=False, lower=1, upper=Inf(), hostClass=pl2tr)

factory.createProperty("outCardinality", root = pl2tr, isComposite=True, isUnique=True,

isOrdered=False, lower=1, upper=Inf(), hostClass=pl2tr)

We also need to insert the constraint to the Place.

1 Constra int maximumTokenConstraint :
2 s e l f . token <= s e l f . maxToken

The following code implements the maximumTokenConstraint. Line 1 instantiates the Constraint class,
which is associated with Place. Then we build the model for the expression from left to right. The left
hand identifier t refers to the “token” of the resided class while the right hand side identifier mt refers to
“maximumToken”. The last line create an instance of no greater than operator, whose two operand
is t and mt.

const1 = factory.createConstraint("maximumTokenConstraint", root=place["ownedConstraint.value.element"],

condition="CONDITION", isImplemented = True, hostElement = [place])

lhs = factory.createIdentifier("t", isRef = True, reference = factory.createReference(id="ref",

ref=["SELF","token"], meta="ArkM3.AL.IdentifierReference"))

rhs = factory.createIdentifier("mt", isRef = True, reference = factory.createReference(id="ref",

ref=["SELF","maximumToken"], meta="ArkM3.AL.IdentifierReference"))

factory.createNotGreaterThan(root = const1["expression"], child = [lhs,rhs])

For the complete CCPN metamodel code please refer to Appendix B.

Note that Element and Package are needed in all levels in the metamodelling hierarchy. Element is the
root of all the elements in a model. All classes are subclass of Element as allows model objects to have
constraints, actions, access control and version control. Package class indicates the elements belonging
to the same model and to be handled together. Element and Package is imported to the next level during
metamodelling, so that we can have their features without violating the strict metamodelling principle.

5.3 Create a Petri Net Model

Now we can create the Petri Net model. In Figure 5.5, we design the graphical representation of a CCPN
model for the Readers/Writers System.

It comprises nine places P = {p1, p2, . . . , p9} and seven transitions T = {t1, t2, . . . , t7}. Transition t1
is connected to p1 through an input arc, and to p2 through an output arc. Place p5 is both input and
output for transition t4. According to the definition of parametric initial marking, this initial situation
can be expressed with the vector x = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0}. p0 pertains one token so as to provide
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Figure 5.5: The CCPN Model of a Simple Readers/Writers System

infinite service request. p5 contains one token. It controls both route t4, p6, t6 and t5, p7, t7. It indicating
the system can accept multiple reading request but can only process on writing request at one time.

Similar to that of creating a metamodel, the process include searching for metamodel, instantiation and
connecting the models.

1. Use Factory visitor and Search visitor.

factory = HmHmFactory(root=workspace)

searcher = HmSearch()

2. Initialise the Search visitor for CCPN metamodel.

mm = searcher.search(root, directory)

3. Taking “CCPetriNet META Hm.Place” as an example, we search for the metamodel and the
class definitions in the workspace. The same procedure applies to Package, Transition, and the
associations.

mm = searcher.search(root, directory)

place_template = searcher.search(mm, "CCPetriNet_META_Hm.Place")

4. We instantiate the metamodel definition using factory.create, arrange its inheritance and spe-
cialization, add it to the package and increase the element counter. add properties to the class.
and define constraints and actions if any.

place1 = factory.create(place_template, mm, [pack["ownedElement.value.element"], ID1, None])

5. Assign value to the class property

place1["token.value"].setValue(8)

6. Connect the from of this association with the end classes represented by ID1 and ID5.

pack["ownedElement.value.element"].connect( IDp2t2+".from", ID1)

pack["ownedElement.value.element"].connect(IDp2t2+".to", ID5)

5.4 Use Ark Functionality

5.4.1 Model Checking

Having all the required models, we can do analysis and simulation in AToMPM.

First we want to know if our Petri Net model in the previous section is legal. We can use model checking
function. Model checking is to check the consistency between model and corresponding metamodel.
To check consistency between a Petri Net model with CCPN metamodel, we shall use the following
command:
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#Type check model against CCPN metamodel"

from function.HmHmTypeCheck import HmHmTypeCheck

print HmHmTypeCheck().check(model, meta)

# Type check model against CCPN metamodel"

from function.HmHmConstraintCheck import HmHmConstraintCheck

print HmHmConstraintCheck().check(model, meta)

The result of conformance checking is a list of all the errors and warnings found in the model, which
here are displayed in lines in the console.

5.4.2 Transform the CCPN model to PTPN model

Similar to that in AToM3 transformation, we defines rules consisted of conditions (LHS and RHS) and
transformation actions for model transformation. The rules have priority the only when the rules of
higher priority do not have any more matches, the next highest rule can fire. Executing transformation
rule involves two steps, first of which is to search for the patterns in the graph and the second is apply
the transformation action to the result of first step.

Note that because transformation is planned to be tended by a special formalism in AToMPM, the
kernel does not design special API for the transformation. So far, hard coded program based on Himesis
graph search is used for pattern matching; the rule actions are modelled by ArkM3 action model and
are executed by interpretation visitor.

As introduced in the previous Section 5.1.2, the main difference is between including a attribute and
having it restricted be structure. So we make this difference the first transformation rule. It identifies
the critical structure to change. This rule is of top priority.

def search_CCPN2PN_Pattern_A(model):

"""

print " CCPN2PNpattern == CCPetriNet_META_HmTransition.:b"

print " \ CCPetriNet_META_Hm.Transition2Place:c"

print " O CCPetriNet_META_Hm.Place:a"

print " / CCPetriNet_META_Hm.Place2Transition:d"

print " == CCPetriNet_META_Hm.Transition:e"

"""

After that it comes to the following rules to transform CCPN elements to PTPN elements. The rules
including the conditions and actions are list below. As in following code, the LHS and negative condition
is the pattern to be searched in the graph. Searching for pattern is written in Python as,

for i in model["ownedElement.value.element"].getElements(labels=["CCPetriNet_META_Hm.Transition2Place",]):

if not i["to"].getExternalConnTuples(): continue

for j in model["ownedElement.value.element"].getElements(labels=

["CCPetriNet_META_Hm.Place2Transition",]):

if not j["from"].getExternalConnTuples():

continue

if i["to"].getExternalConnTuples()[0][1].getGlobalId()

== j["from"].getExternalConnTuples()[0][1].getGlobalId()

and i["from"].getExternalConnTuples()[0][1].getLabel() == "CCPetriNet_META_Hm.Transition"

and j["to"].getExternalConnTuples()[0][1].getLabel() == "CCPetriNet_META_Hm.Transition"

and i["to"].getExternalConnTuples()[0][1].hasElement("maximumToken"):

# If the place is not already converted, add it to the return value.

tag = True

for o in i["to"].getExternalConnTuples()[0][1].getExternalConnTuples():

if o[1].getLabel().split(".")[0] == "PetriNet_META_Hm":
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tag = False

break

The result of pattern searching is returned as,

c = i

d = j

b = i["from"].getExternalConnTuples()[0][1]

e = j["to"].getExternalConnTuples()[0][1]

a = i["to"].getExternalConnTuples()[0][1]

return a, b, c, d, e

Figure 5.6: CCPN to PTPN Model Transformation Rule 1

The next set of transformation rules is to transform CCPN model elements to corresponding PTPN
model elements. As you can see in Figure 5.7, Generic Link is the link to assist the transformation
pattern searching. It is used to mark the correspondence of models in the source and the destination.

Figure 5.7: CCPN to PTPN model transformation Rule from 2 to 5

The last part is to delete the generic links and the original CCPN model elements. This rule is of least
priority, that it is fired only when no match can be found for rule 1 - 5. This is described as rule 6–9.

The transformation rules, including the pattern searching and rule action models are pre-defined in
python files named search CCPN Pattern X and rule X actioncode model.

Let’s take the first rule as an example to show how it is implemented.

from searchCCPN2PNPattern import search_CCPN2PN_Pattern_A

[a, b, c, d, e] = search_CCPN2PN_Pattern_A(model)

The above code call for a pre-defined, hand-coded search function that describe the graph structure on
the left-hand-side. Then it returns a list of the CCPN nodes that match the pattern. In the following
code, we load the pre-defined action models from rule A actionHm model, which takes the search
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result as input. We send this action model from the last step to the HmActionInterpreter. By applying
execute, this part the CCPN model is converted to PTPN.

from Example.ccpn2pn_hm_rule import rule_A_actionHm_model

from function.HmActionInterpreter import HmActionInterpreter

while a and b and c and d and e:

y = rule_A_actionHm_model(model, [a, b, e, d, c], meta2)

HmActionInterpreter().execute(y, model, meta)

[a, b, c, d, e] = search_CCPN2PN_Pattern_A(model)

Iteratively search and execute the transformation rules, the transformation from CCPN model to PTPN
model is implemented.

Figure 5.8: Transformation Result is a PTPN Model of the Readers/Writers System

After the transformation, the model in Figure 5.5 is changed to the one in Figure 5.8.

5.4.3 Simulate PTPN Dynamics

This section shows simulating the Readers/Writers model by the means of model transformation. The
simulation follows the Petri Net enabling and firing rules mentioned in Section 5.1.2.

Simulating a Petri Net model, slightly different from the transformation between CCPN to PTPN, the
input of the simulation is one metamodel (PTPN) along with one model (instance of PTPN). There is
only one rule needed which searches for enabled transitions and randomly fire one. The simulator scans
the whole model and returns the sets of enabled transition and the related model objects. Then, the
system randomly select one set and hands it over to firing, the simulator will then apply the action
model to this set of nodes and change their status.

To search for the enabled transition and its input places and output places, we can use some code
(pseudo code) as following.

def search_PN_Pattern_A(model):

"""

print " PNpattern == PetriNetTransition.:a"

print " \ PetriNet.Transition2Place:b"

print " O PetriNet.Place:c"

print " All the inputs to a need to satisfy place.token>p2t.weight"

"""

from ArkM3.visitor.Factory import Factory

f = Factory()

a =[]

c=[]

for i in model[’ownedElement’].getElements(labels=[’PetriNet.Transition’,]):
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tag = True

if i.getExternalConnTuples():

for n in model[’ownedElement’].getElements(labels=[’PetriNet.Place2Transition’,]):

if n[’isTo’].getExternalConnTuples()[0][1] is i:

if n[’isFrom’].getExternalConnTuples()[0][1] and n[’isFrom’]\

.getExternalConnTuples()[0][1].getLabel() == ’PetriNet.Place’:

t1 = n[’isFrom’].getExternalConnTuples()[0][1][’token.value’]\

.getValue().value

t2 = n[’weight.value’].getValue().value

if t1 <t2:

tag = False

break

else:

tg2 = True

for o in c:

if o.get(f.createIntegerValue(0)) is \

n[’isFrom’].getExternalConnTuples()[0][1] and \

o.get(f.createIntegerValue(1)) is n:

tg2 = False

break

if tg2 == True:

c.append(f.createTupleValue([n[’isFrom’]\

.getExternalConnTuples()[0][1], n]))

if tag == False:

a =[]

c =[]

continue

for m in model[’ownedElement’].getElements(labels=[’PetriNet.Transition2Place’,]):

if m[’isFrom’].getExternalConnTuples()[0][1] is i and\

m[’isTo’].getExternalConnTuples()[0][1] and\

m[’isTo’].getExternalConnTuples()[0][1].getLabel() == ’PetriNet.Place’:

a.append(f.createTupleValue([m[’isTo’].getExternalConnTuples()[0][1], m]))

break

return a,c

a and c represent the list of input places and output places respectively. They are the input to the firing
rule, which substracts tokens from each of the input set (using a mapping operator) and adds to the
output set. The exact action model please refer to Appendix C.

Summary

In this chapter, we presented a case study of the Readers/Writers system using Petri Net formalism. This
case study demonstrated how to use AToMPM interfaces to build metamodels, instantiate metamodels,
and check model conformance. It also showed the Ark’s temporary approach for model transformation.
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Conclusion

In this thesis, we adapted a two-dimensional metamodelling architecture that separates the view of mod-
ellers and that of tool developers. We presented the design of a general-purpose, self-describable, exe-
cutable meta-metamodel ArkM3. With both, we make a general-purpose, comprehensive, bootstrapped
metamodelling tool possible. We implemented the AToMPM kernel and presented the case study to
demonstrate the benefit of our design.

We discussed the importance of clearly separating the physical dimension and the logical dimension,
which allows tool developer and modellers work from on their own points of view without being distracted
by the responsibility of the other. Bearing this in mind, we proposed a two-dimensional metamodelling
architecture. We adopted the layered architecture for both dimensions. At the root of the logical dimen-
sion is ArkM3, while that of the physical dimension is Himesis, the metamodel for hierarchical, typed,
attributed, directed graphs.

We have explained why including executability in the meta-metamodelling level is useful. We designed
ArkM3 for such an meta-metamodel with executablility. ArkM3 is built on the basis of OMG’s EMOF
for its simplicity and popularity. To allow least dependence over the implementation, we also add Types
and Values. Then we introduce an Action Language to ArkM3 by carefully choosing the control structure
and a minimal set of primitive operators according to the need for the modelling and transformation.

We also introduce a hierarchical model management system, so called the “Metaverse”. The metaverse
contains all the models that are created, creating and to be created. AToMPM workspace is a subset
of the metaverse. The metaverse is hierarchical and every model in the metaverse has a unique path.
Models are visible to the authorised user.

With these design, we developed the kernel of AToMPM, called Ark. This tool is a new version for ArkM3.
It has basic modelling functionality such as model creation, searching, and conformance checking. Ark
also has an interpreter to execute action models. At last, we presented a case study of Readers/Writers
system Petri Net model.

6.1 Attemps to Improve the Performance

We run some performance tests on the Ark. Unfortunately, the speed was not satisfactory. When ArkM3
was load into memory as Himesis graph , it took the kernel 1 second to create a model of ten ArkM3
class instances. When ArkM3 was the compiled Python module, the speed was 100 time faster.

We used Python cProfile package to profile the program performance. After the profiling creating process,
we found that the speed was compromised for the following reasons.

1. Loading ArkM3 into memory is very time-consuming.

2. To create instances of one definition, Ark repeatedly traverses the same metamodel element.

3. Himesis has many string splits and joins operation when dealing with the paths.

4. An instance contains too many graph node because we represent everything, from a class to a data
as graph.

5. Processing graph node is slower than compiled modules because there are a lot checking and
comparisons in Himesis.
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6. The scripting language Python is not as efficient as that of C++ or C.

We have made some efforts to accelerate Ark.

Lazy instantiation

Lazy instantiation will not generate everything at the first place. Instead, an object is instantiated only
when it is being used. Creating an instance of the class A is to create an empty object a:A. Only when the
attributes name are assigned a value, should the system look up the metamodel and create the attribute
name and add it to the object a:A. This significant improved the speed of creation. However, it achieved
this at the cost of more traversing during model manipulation. For this reason, it is not a good solution
to our problem.

XML loader

To load a ArkM3 graph model in memory, we need to first using Python modules to create an ArkM3
in memory and then use this ArkM3 to bootstrap an ArkM3 graph model. This is very time-consuming.
We tried to use Himesis XML loader hoping it will make loading ArkM3 faster. XML loader did bring
us certain portability. However, Himesis XML serialization tool was not sufficient for our problem. The
depth of Himesis graph in a class model is deep and Himesis loader involved a large number of file I/O.
The loading process was even 100 times slower than the old approach.

Less Python string operation

After profiling the creation process, we found that five Himesis methods ( resolvePath which analyses
the string name and gets a sub node in a node using relative path, isDescendantOf which examines if
a node is the descendant of another, hasElement which examines if a node has a sub node, getParent
which gets the immediate parent of a node, and getElement) are heavily used. The time spent on
these methods is outstanding that they took almost half the execution time. The five are all related to
resolvePath, that splits the global id string into segments so as to traverse the model hierarchy.

In Python, string split is time-consuming. We have tried several ways to avoid it. Finally, we adopted
the hash table.

1. Using hash table: This method has improved the performance by 23̃ times.

2. Using list: Using list requires less splits but more concatenation and more memory is required for
lists.

3. Using pre compilation: This method resolve all the references before the model is executed. However
it is more useful for action interpretation, but not very helpful in creation.

Abandon the deep Himesis graphs

The profile shows that creating a Graph node is also time-consuming. Everything in AToMPM is im-
plemented as graph node from a package to a primitive type and value. Consequently, the model is
very deep and the number of nodes are large. Nevertheless, this is tolerable because this is the way how
AToMPM clearly and completely represents a model.

Himesis is well-defined and tested. To make sure the model is safe, it has many conditions statement in
the source code. To make the code more modular, it includes many function calls. This could be another
reasons why processing Himesis graph models is slow.

6.2 Future improvement on graph structure

Eventually there are no single method that can solve all the problems. Improving the performance by
hundred times mainly depends on upgrading underlying structure of Himesis.

At the same time, the action models are completely defined in Himesis graph. It also cause troubles in
implementing the action interpreter. The interpreter have to use compiler technique to work on the very
basic functionality such as maintaining symbol table of an action and managing the stack for function
calls. Consequently, AToMPM did not benefit from the up-to-date compiler technology. Therefore, we
need to find a better graph metamodel.
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6.3 Some Other Future Work

Further refining primitives would be useful. To do this, we will need to distribute the beta version of
AToMPM and receive feedbacks from the users. In addition, building complex operators using the simple
primitives will be very useful for a user-welcome interface.

AToMPM also allows library, as supported by its metaverse, so that developing bigger and more useful
functions would be important for modelling and transformation. Model importation and merge are
important for implemention of such a library system.

Serialization is an important function to make the models portable. Currently, we are using Himesis
XML generator and loader. However, as mentioned earlier, the loader is not suitable for large scale task.
We tend to find a widely used schema for serialization, so that we can ease distribution of AToMPM.

Besides improving the kernel performance, we have been discussing some further development of AToMPM.
Adding graphical concrete syntax could provide better API for the modellers. Running AToMPM on
a server and providing web modelling application is an interesting and welcoming development in the
future.
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[Sch97] A. Schfürr. Programmed Graph Replacement Systems, pages 479–546. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1997.

[SG08] Markus Stumptner and Steve Georg Grossmann. Introduction to domain modelling envi-
ronment at http://www.cis.unisa.edu.au/ cisgg/wiki/dome/index.html, 2008. last updated
2008-07-08.
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A
The Mapping Between ArkM3 and Himesis

We will show how ArkM3 instances are mapped to Himesis models.

DataType and DataValue to Himesis Node

DataType and PrimitiveValue are special classes in Himesis. They are the basic type of Node. They can
not contain any other nodes. The following graphs introduce the mapping of DataType and DataValue.

Figure A.1: Map ArkM3 Primitive Data Values to Himesis
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Figure A.2: Map ArkM3 Complex Data Values to Himesis
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Map Action Language Elements to Himesis Graph

This section shows how the action language models are mapped to Himesis.
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Figure A.3: Map ArkM3 Operators to Himesis. 1
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Figure A.4: Map ArkM3 Operators to Himesis. 2
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Figure A.5: Map ArkM3 Operators to Himesis. 3
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Figure A.6: Map ArkM3 Operators to Himesis. 4
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Figure A.7: Map ArkM3 Expressions to Himesis
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Map Class Diagram instances to Himesis

Figure A.8: Map ArkM3 Package to Himesis
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Figure A.9: Map ArkM3 Class to Himesis
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Figure A.10: Map ArkM3 Association to Himesis
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Figure A.11: Map ArkM3 Class Instances and their Associations to Himesis
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Figure A.12: Map ArkM3 Class Instances and their Compositions to Himesis
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B
Define CCPN Metamodel, Python Code

from Himesis.Value import Value

from Himesis.VoidValue import VoidValue
from Himesis.PrimitiveValue import PrimitiveValue

from Himesis.Type import Type
from Himesis.Graph import Graph
from Himesis.infinity import Inf

from Metaverse import METAVERSE

from function.HmHmFactory import HmHmFactory

from function.ModelCreator import ModelCreator

#private functions to create Himesis nodes

def _node(id,label):
return Graph(id, label)

def _value(id, label, value, type):
return Value(id, label, value, type)

def _voidvalue(id, label):

return VoidValue(id, label, None, "ANY")
def _type(id, label, value):

return Type(id, label, value)

# metamodel of CCPN
def createCCPN_META():

metamodel = ModelCreator().createPackage("CCPetriNet_META_Hm", None)
METAVERSE.add(metamodel)

factory = ModelCreator(root = metamodel)

#copy ArkM3.Element, abstract class

superClass = factory.createClass("Element", root = metamodel["ownedElement.value.element"], isAbstract=True, package=metamodel)
#the properties of the class instance are saved under the offset "ownedProperty.value.element"

factory.createProperty("ownedComment", root = superClass["ownedProperty.value.element"], lower=0, upper=Inf(), hostClass = superClass)
factory.createProperty("isAccessable", root = superClass["ownedProperty.value.element"], hostClass = superClass)

factory.createProperty("modelVersion", root = superClass["ownedProperty.value.element"], hostClass = superClass)
#increase the object counter in the package, the number is saved in graph node with the offset "ownedElement.value.size.value"
metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

#copy ArkM3.Package
pack = factory.createClass("Package", root = metamodel["ownedElement.value.element"], package=metamodel)
#the next two lines indicate Package inherits from Element

factory.add_to_set(pack["super.value"], _node("1", "Himesis.Graph"))
metamodel.connect(pack["super.value.element.1"], superClass)

factory.createProperty("metaInfo", root = pack["ownedProperty.value.element"], typ="STRING", default = "", hostClass = pack)
metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

#Package connects to Elements by a Composition instance, meaning Package can contain anything.
compo = factory.createComposition("pack2elem", root = metamodel["ownedElement.value.element"], isComposite=True, \

isUnique=True, isOrdered=False, package=metamodel, isFrom=pack, isTo=superClass, end1="package", end2="ownedElement")
factory.add_to_set(compo["super.value"], _node("1", "Himesis.Graph"))

metamodel.connect(compo["super.value.element.1"], superClass)
factory.createProperty("inCardinality", root = compo, isComposite=True, isUnique=True, isOrdered=False, lower=1, upper=1)
factory.createProperty("outCardinality", root = compo, isComposite=True, isUnique=True, isOrdered=False, lower=1, upper=Inf())

metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

#create CCPetriNet_META_Hm.Place Class
place = factory.createClass("Place", root = metamodel["ownedElement.value.element"], package=metamodel)

factory.add_to_set(place["super.value"], _node("1", "Himesis.Graph"))
metamodel.connect(place["super.value.element.1"], superClass)
factory.createProperty("token", root = place["ownedProperty.value.element"], typ="INTEGER", isComposite=True,lower=1, \

upper=1, default = 0, hostClass = place)

91



92 Define CCPN Metamodel, Python Code

factory.createProperty("maximumToken", root = place["ownedProperty.value.element"], typ="INTEGER", isComposite=True, \
lower=1, upper=1, default = Inf(), hostClass = place)

#
# Add constraint to the CCPetriNet.Place

const1 = factory.createConstraint("maximumTokenConstraint", root=place["ownedConstraint.value.element"], \
condition="CONDITION", isImplemented = True, hostElement = [place])

lhs = factory.createIdentifier("t", isRef = True, reference = factory.createReference(id="ref", ref=["SELF","token"], \
meta= "ArkM3.AL.IdentifierReference"))

rhs = factory.createIdentifier("mt", isRef = True, reference = factory.createReference(id="ref", ref=["SELF","maximumToken"],\

meta="ArkM3.AL.IdentifierReference"))
#print const1["expression"]

factory.createNotGreaterThan(root = const1["expression"], child = [lhs,rhs])
# Add constraint to the CCPetriNet_META_Hm.Place
# The process is in the other method called _create_Constraint1()

metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

#create CCPetriNet_META_Hm.Transition

trans = factory.createClass("Transition", root=metamodel["ownedElement.value.element"], package=metamodel)
factory.add_to_set(trans["super.value"], _node("1", "Himesis.Graph"))
metamodel.connect(trans["super.value.element.1"], superClass)

metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

#create association CCPetriNet_META_Hm.Place2Transition which connect from p1 to tr
pl2tr = factory.createAssociation("Place2Transition", root=metamodel["ownedElement.value.element"], isUnique=True, \

isOrdered=False, package=metamodel, isFrom = place, isTo = trans, end1="last", end2="next")

factory.add_to_set(pl2tr["super.value"], _node("1", "Himesis.Graph"))
metamodel.connect(pl2tr["super.value.element.1"], superClass)

factory.createProperty("inCardinality", root = pl2tr, isComposite=True, isUnique=True, isOrdered=False, lower=1, upper=Inf(), hostClass=pl2tr)
factory.createProperty("outCardinality", root = pl2tr, isComposite=True, isUnique=True, isOrdered=False, lower=1, upper=Inf(), hostClass=pl2tr)

factory.createProperty("weight", root = pl2tr["ownedProperty.value.element"], isComposite=True, lower=1, upper=1, typ="INTEGER",\
default=0, hostClass=pl2tr)

metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

#create association from tr to pl

tr2pl = factory.createAssociation("Transition2Place", root=metamodel["ownedElement.value.element"], isUnique=True,\
isOrdered=False, package=metamodel, isFrom =trans, isTo =place, end1="last", end2="next")

factory.add_to_set(tr2pl["super.value"], _node("1", "Himesis.Graph"))

metamodel.connect(tr2pl["super.value.element.1"], superClass)
factory.createProperty("inCardinality", root=tr2pl, isComposite=True, isUnique=True, isOrdered=False,lower=0, upper=Inf(), hostClass=tr2pl)

factory.createProperty("outCardinality", root=tr2pl, isComposite=True, isUnique=True, isOrdered=False,lower=0, upper=Inf(), hostClass=tr2pl)
factory.createProperty("weight", root=tr2pl["ownedProperty.value.element"], isComposite=True, lower=1, upper=1, typ="INTEGER",\

default=0, hostClass=tr2pl)
metamodel["ownedElement.value.size.value"].setValue(metamodel["ownedElement.value.size.value"].getValue()+1)

print metamodel["name.value"].getValue() + " created in the memory."

return metamodel
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Define the Action Model for PTPN Model

Simulation, Python Code

#PTPN Model Simulation Action Model
#Input: The nodes in the found pattern.

#Output: Action Model for simulation
from ArkM3.visitor.Factory import Factory

from ArkM3.DataType import * #IntegerType, RealType, BooleanType, StringType
from function.UniqueId import UniqueId

def rule_A_actioncode_model(root, x, seq):
f = Factory()

temp = f.createAction("rule_A", isImplemented = True, hostElement = root)
temp.parameter = f.createSequenceValue()
temp.parameter.add(x)

temp.parameter.add(seq)

temp.ownedStmt = f.createSequenceValue()
temp.ownedStmt.element = [f.createExpressionStmt()]

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr = f.createSequenceValue()
# FIXME: Here should use the Call operator.
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(rule_A_actioncode_model_imaptoseq\

(root, temp.parameter.element[0]))
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(rule_A_actioncode_model_dmaptoseq\

(root, temp.parameter.element[1]))
return temp

def rule_A_actioncode_model_imaptoseq(root, seq):
"""

print " O O PetriNet.Place:a"
print " \/ PetriNet.Transition2Place:c"

print " PNpattern == PetriNetTransition.:b"
print " All the inputs to a need to satisfy place.token>p2t.weight"
"""

f = Factory()
temp = f.createAction("maptoseq", isImplemented = True, hostElement = root)

temp.parameter = f.createSequenceValue()
temp.parameter.add(seq)

temp.ownedStmt = f.createSequenceValue()
temp.ownedStmt.element = [f.createExpressionStmt()]

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr = f.createSequenceValue()

a = f.createIdentifier("i")
b = f.createIdentifier("j")
tup = f.createTupleValue([a,b])

act = rule_A_actioncode_model_inc(root, tup)

expr_map = f.createMap()
expr_map.add_child(tup)

expr_map.add_child(temp.parameter.get(f.createIntegerValue(0)))
expr_map.add_child(act)

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr_map)
return temp

#updatetoken = rule_A_actioncode_model_updatetokenvalue(root, seq, model)

def rule_A_actioncode_model_inc(root, tup):
f = Factory()
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temp = f.createAction("rule_A_inc", isImplemented = True, hostElement = root)
temp.parameter = f.createSequenceValue()
temp.parameter.add(tup)

temp.ownedStmt = f.createSequenceValue()

temp.ownedStmt.element = [f.createExpressionStmt()]
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr = f.createSequenceValue()

a = f.createIdentifier("i")

i = f.createTupleLiteral([temp.parameter.get(f.createIntegerValue(0)), f.createIntegerValue(0)])
expr1 = f.createAssignmentExpr(a, i)

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr1)

b = f.createIdentifier("j")

j = f.createTupleLiteral([temp.parameter.get(f.createIntegerValue(0)), f.createIntegerValue(1)])
expr2 = f.createAssignmentExpr(b, j)

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr2)

tokenref = f.createReference(["token", "value"])

itokenvalue = f.createRead()
itokenvalue.add_child(a)

itokenvalue.add_child(tokenref)

weightref = f.createReference(["weight", "value"])

jweightvalue = f.createRead()
jweightvalue.add_child(b)

jweightvalue.add_child(weightref)

rhs = f.createPlus()
rhs.add_child(itokenvalue)
rhs.add_child(jweightvalue)

expr = f.createAssignmentExpr(itokenvalue, rhs)

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr)

return temp

def rule_A_actioncode_model_dmaptoseq(root, seq):

"""
print " PNpattern == PetriNetTransition.:b"
print " \ PetriNet.Transition2Place:c"

print " O PetriNet.Place:a"
print " All the inputs to a need to satisfy place.token>p2t.weight"

"""
f = Factory()
temp = f.createAction("maptoseq", isImplemented = True, hostElement = root)

temp.parameter = f.createSequenceValue()
temp.parameter.add(seq)

temp.ownedStmt = f.createSequenceValue()

temp.ownedStmt.element = [f.createExpressionStmt()]
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr = f.createSequenceValue()

a = f.createIdentifier("i")
b = f.createIdentifier("j")

tup = f.createTupleValue([a,b])

act = rule_A_actioncode_model_updatetokenvalue(root, tup)

expr_map = f.createMap()

expr_map.add_child(tup)
expr_map.add_child(temp.parameter.get(f.createIntegerValue(0)))

expr_map.add_child(act)
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr_map)
return temp

#updatetoken = rule_A_actioncode_model_updatetokenvalue(root, seq, model)

def rule_A_actioncode_model_updatetokenvalue(root, tup):
f = Factory()

temp = f.createAction("updatetokenvalue", isImplemented = True, hostElement = root)
temp.parameter = f.createSequenceValue()

temp.parameter.add(tup)
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temp.ownedStmt = f.createSequenceValue()
temp.ownedStmt.element = [f.createExpressionStmt()]

temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr = f.createSequenceValue()

a = f.createIdentifier("i")
i = f.createTupleLiteral([temp.parameter.get(f.createIntegerValue(0)), f.createIntegerValue(0)])

expr1 = f.createAssignmentExpr(a, i)
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr1)

b = f.createIdentifier("j")
j = f.createTupleLiteral([temp.parameter.get(f.createIntegerValue(0)), f.createIntegerValue(1)])

expr2 = f.createAssignmentExpr(b, j)
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr2)

tokenref = f.createReference(["token", "value"])
itokenvalue = f.createRead()

itokenvalue.add_child(a)
itokenvalue.add_child(tokenref)

weightref = f.createReference(["weight", "value"])
jweightvalue = f.createRead()

jweightvalue.add_child(b)
jweightvalue.add_child(weightref)

rhs = f.createMinus()
rhs.add_child(itokenvalue)

rhs.add_child(jweightvalue)

expr = f.createAssignmentExpr(itokenvalue, rhs)
temp.ownedStmt.get(f.createIntegerValue(0)).ownedExpr.add(expr)

return temp
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