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Abstract 

Parkinson’s disease (PD) is an increasingly prevalent neurodegenerative disorder with the global 

burden of disease expected to double in the next few decades. L-3,4-dihydroxyphenylanaline 

(L-DOPA) remains the mainstay symptomatic treatment for motor features. Despite its benefit 

in early disease, long-term L-DOPA therapy is accompanied by side effects, with most patients 

eventually developing L-DOPA induced dyskinesia. Our lab has focussed on the investigation 

of new therapeutic targets for treatment-related complications in neurotoxin-based animal 

models of PD. Preclinical and clinical studies have implicated an aetiological role for the 

dysregulated release of striatal dopamine in dyskinesia. Evidence from in vitro and in vivo 

studies has found that blockade of the serotonin type 3 (5-HT3) receptor dampens the release of 

striatal dopamine, which may provide anti-dyskinetic benefit. Recent behavioural studies 

suggest that the 5-HT3 antagonist ondansetron alleviates dyskinesia in the hemi-parkinsonian 

rat model. The objective of the current thesis was to examine the efficacy of 5-HT3 blockade 

and its mechanism of action in treatment-related complications in PD, as well as to develop the 

methodology to construct a new animal model of PD to evaluate disease-modifying therapies. 

Neurotoxin-based experimental models of PD have led to the failure of several high-profile 

clinical trials that examined the effect of therapeutics at slowing disease progression, in part 

because they do not replicate the processes at play in the human disease, e.g., the abnormal 

propagation of alpha-synuclein within the brain. Chapter 1 describes brain and plasma levels of 

ondansetron associated with doses that provide therapeutic effects in the rat, contextualising the 

literature over a range of indications. Chapter 2 expands the profile of 5-HT3 blockade in 

dyskinesia with granisetron, another 5-HT3 antagonist, which also significantly improved 
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dyskinesia in the hemi-parkinsonian rat without impairing the therapeutic efficacy of L-DOPA. 

Chapter 3 extends the anti-dyskinetic findings of ondansetron obtained in the rat to the 

parkinsonian non-human primate, while also demonstrating an improvement in global 

parkinsonism and psychosis-like behaviours severity. In Chapter 4, novel psychosis-like 

behaviours are described in L-DOPA treated parkinsonian marmosets, enriching the existing 

behavioural paradigm to characterise the anti-psychotic potential of experimental drugs. Chapter 

5 provides the first investigation into the mechanism underlying the anti-dyskinetic efficacy of 

5-HT3 antagonists. Compared to sham-lesioned animals, there was a regional selective 

upregulation of 5-HT3 receptors in L-DOPA treated hemi-parkinsonian rats, predominantly in 

the subthalamic nucleus, and to a lesser extent in the globus pallidus and ventral anterior/ventral 

lateral thalamus. Moving away from symptomatic therapies in toxin-based models and towards 

models that permit the evaluation of disease-modifying therapies, Chapter 6 describes the 

methodology that couples subject-specific registration with frameless stereotaxic 

neuronavigation to localise and inject alpha-synuclein fibrils in the putamen of two marmosets. 

Evidence of nigrostriatal denervation suggestive of accurate targeting was obtained, with a novel 

procedure that enhanced the accuracy of stereotaxic neurosurgeries in marmosets. Taken 

together, these results provide support for the therapeutic potential of 5-HT3 antagonism in L-

DOPA induced dyskinesia and PD psychosis, providing compelling data to move such drugs to 

clinical trials. Moreover, the development of a new alpha-synuclein based model in the 

marmoset represents an important step towards the testing of experimental molecules with 

disease-modifying potential in PD with higher chance of success upon translation to the clinic.  
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Résumé 

La maladie de Parkinson (MP) est un trouble neurodégénératif de plus en plus répandu avec un 

fardeau global qui doublera au cours des prochaines décennies. La L-3,4-

dihydroxyphénylanaline (L-DOPA) reste le principal traitement symptomatique des troubles 

moteurs. Malgré ses bénéfices, le traitement à long terme à la L-DOPA est accompagné d’effets 

secondaires et les patients présentent des dyskinésies. Notre laboratoire se concentre sur des 

nouvelles cibles visant à réduire les complications liées au traitement de la MP. Des études ont 

mis en évidence le rôle étiologique de la libération dérégulée de dopamine striatale dans la 

dyskinésie. Des données ont montré que le blocage du récepteur de la sérotonine de type 3 (5-

HT3) atténue la libération de dopamine striatale, ce qui pourrait apporter un effet anti-

dyskinétique. Des études suggèrent que l'antagoniste des récepteurs 5-HT3 ondansétron soulage 

la dyskinésie dans le rat hémi-parkinsonien. L'objectif de cette thèse était d'examiner l'efficacité 

du blocage des récepteurs 5-HT3 et son mécanisme d'action dans les complications liées au 

traitement de la MP, ainsi que de développer la méthodologie pour construire un modèle animal 

de la MP afin d'évaluer les thérapies modificatrices de la maladie. Les modèles neurotoxiques 

de la MP ont mené à l'échec des essais cliniques qui examinaient des médicaments pour ralentir 

la progression de la maladie, en grande partie parce qu'ils ne reproduisent pas les processus en 

jeu observés chez les patients, telle que la propagation anormale de l'alpha-synucléine dans le 

cerveau. Le chapitre 1 décrit les niveaux de l'ondansétron associés aux doses qui procurent des 

effets thérapeutiques chez le rat, mettant en contexte la littérature. Le chapitre 2 élargit le profil 

du blocage des récepteurs 5-HT3 dans la dyskinésie avec l'antagoniste des récepteurs 5-HT3 

granisétron qui a amélioré la dyskinésie chez le rat hémi-parkinsonien sans diminuer l'efficacité 
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thérapeutique de la L-DOPA. Le chapitre 3 étend les résultats anti-dyskinétiques de 

l'ondansétron obtenus chez le rat au primate non-humain, tout en démontrant une amélioration 

de la sévérité du parkinsonisme et des comportements de type psychose. Le chapitre 4 décrit de 

nouveaux comportements de type psychose chez des ouistitis parkinsoniens traités à la L-

DOPA, enrichissant le paradigme comportemental pour caractériser le potentiel antipsychotique 

des médicaments. Le chapitre 5 présente la première étude sur le mécanisme qui sous-tend 

l'efficacité anti-dyskinétique des antagonistes des récepteurs 5-HT3. Par rapport aux animaux 

ayant subi une lésion factice, on observe une augmentation régionale sélective des récepteurs 5-

HT3 chez les rats hémi-parkinsoniens traités à la L-DOPA, principalement dans le noyau sous-

thalamique et, dans une moindre mesure, dans le globus pallidus et le thalamus ventral 

antérieur/ventral latéral. S'éloignant des thérapies symptomatiques dans les modèles basés sur 

les toxines et s'orientant vers des modèles qui permettent l'évaluation de thérapies modificatrices 

de la maladie, le chapitre 6 décrit la méthodologie qui couple l'enregistrement spécifique au 

sujet avec la neuronavigation stéréotaxique sans cadre pour localiser et injecter des fibrilles 

d'alpha-synucléine dans le putamen de deux ouistitis. La preuve de dénervation nigrostriatale 

suggère un ciblage précis avec cette nouvelle procédure qui a amélioré la précision des 

neurochirurgies stéréotaxiques chez les ouistitis. Dans l'ensemble, ces résultats soutiennent le 

potentiel thérapeutique de l'antagonisme des récepteurs 5-HT3 dans la dyskinésie et la psychose 

dans la MP, fournissant des données convaincantes pour amener ces médicaments jusqu’aux 

essais cliniques. Le développement d'un nouveau modèle basé sur l'alpha-synucléine chez le 

ouistiti représente une étape importante vers l'essai de molécules ayant un potentiel de modifier 

la MP, avec de meilleures chances de succès lors de leur passage en clinique. 
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1. General Introduction 

1.1.  Parkinson’s disease 

1.1.1. Epidemiology  

1.1.1.1. Prevalence and incidence 

Depending on the design of epidemiological studies, measures of the incidence and 

prevalence of Parkinson’s disease (PD) have varied. The prevalence of PD is estimated between 

100 to 300 current cases per 100,000 persons, whereas the incidence of PD is estimated at 10 to 

50 new cases per 100,000 persons 1, 2. By 2040, the global burden of PD is projected to exceed 

17 million due to growth of the aging population and environmental factors 3.   

 

1.1.1.2. Age and sex 

The risk of developing PD increases sharply around the age of 65 with a mean age of 

onset of 60 years of age 4, although some patients under 50 also develop the disease 5, termed 

young-onset PD. In general, epidemiological studies have found an increased male to female 

ratio incidence of 1.5:1 of developing PD 6-8. There is some evidence suggesting that biological 

sex differences, such as neuroprotective effects of oestrogen in women 9, 10 and sex chromosome 

genes 11, 12, may underlie differences in disease susceptibility. These findings remain 

controversial, however, as other studies reported an absence of sex-linked effects 1, 13 or female 

predominance 14, 15, and as such, the precise nature of sex differences in PD remains unclear. 

 

1.1.1.3. Geographical variation  
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Studies have reported geographical differences in the frequency of PD with a slightly 

lower prevalence rate in Asia and Africa compared to Western countries 2, 16, 17, whereas other 

studies obtained similar estimates 18, 19. Moreover, the prevalence rate of PD was higher for 

African Americans than Africans in Nigeria 20, which was similarly observed in Japanese 

Americans compared to Japanese 21, and suggests a role for environmental factors. Due to the 

inconsistent findings, it remains difficult to parcellate whether differences are due to genetic 

factors, environmental factors or methodological differences in sampling population or patient 

characteristics.  

 

1.1.1.4. Risk factors  

Environmental risk factors 

Smoking and caffeine intake are well-established protective factors that are inversely 

associated to the risk of PD 22, 23, while pesticide exposure is closely linked 24; the mechanism 

of action underlying their effects are unclear. Brain injury, urate levels and consumption of dairy 

products are also associated with risk of PD 25-27, whereas results from studies on intake of 

dietary fats and body mass index have been inconsistent 28-30.  

 

Genetic risk factors 

Although the majority of PD cases are sporadic, a positive family history has been 

reported in 10% of patients 31 and is associated with a 3-4% increased risk of developing PD 30. 

These findings suggest a genetic contribution to the disease, which is further supported by the 

discovery of monogenic forms of PD 32. The gene that encodes alpha-synuclein, SNCA, was the 
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first gene associated with inherited PD 33. Mutations in the leucine-rich repeat kinase 2 (LRRK2) 

gene are the most frequent cause of dominantly inherited PD, whereas parkin gene mutations 

are the most common cause of recessively inherited PD 34. Mutations in GBA, which encodes 

β-glucocerebrosidase, the lysosomal enzyme deficient in Gaucher disease, are the greatest 

genetic risk factor for developing PD 35. Despite advances in genome-wide association studies 

involving large case-control cohorts of PD and control patients that have led to the identification 

of robust association signals 32, 36, including SNCA, microtubule-associated protein tau (MAPT) 

37 and LRRK2 loci 38, the associated loci do not account for all the genetic variance underlying 

PD 39, which suggests that gene-environment interactions may also contribute to disease 

susceptibility 36, 40. 

 

1.1.2. Genetics  

Over the last two decades, significant strides in the genetics of PD have led to an 

enhanced understanding of the pathogenesis of PD and new therapeutic approaches. Several 

genes have been proposed to mediate autosomal dominant and recessive forms of PD, however, 

convincing evidence only links SNCA, LRRK2, VPS35, PRKN, PINK1, GBA and DJ-1 with 

typical PD 36. The role of these genes extends beyond the scope of the present review and has 

been excellently presented previously 41, 42. Age of onset of autosomal dominant PD is 

comparable to sporadic PD 32, 43, whereas recessively inherited parkinsonism is more frequently 

associated with early onset (before age 40 years) 44. Analysis of genes linked to PD has 

consistently implicated several biological pathways in disease pathogenesis, including 

autophagy, mitochondrial quality control, endocytosis, lysosomal function and immune 

response, although the pathogenesis of PD likely culminates from multiple dysfunctional 
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pathways 41. Whereas the majority of PD genetics research have studied European populations 

38, it is unclear whether findings of genetic risk can be extended across populations 36, and 

concerted efforts to build genetic databases with participants from diverse ancestry will be 

informative for genetic risks associated with diverse populations 36.    

 

1.1.3. Neuropathology 

 At the macroscopic level, reports have revealed mild atrophy of frontal lobe 45 and 

ventricular dilation 46 in some PD patients. In contrast, morphological changes are more 

apparent in the brainstem with the loss of dark pigment in the substantia nigra (SN) pars 

compacta (SNc) and locus coeruleus 47, an effect that correlates with the death of dopaminergic 

neurons in the SNc and noradrenergic neurons in the locus coeruleus 48. Neuronal loss in the SN 

also correlates with severity of motor symptoms and disease duration 49-51; while 30% of 

dopamine neurons in the SNc are lost by the onset of motor symptoms 52-54, neuronal loss 

increases to 60% or higher after the appearance of motor features 50, 55. This neuronal loss leads 

to the denervation of the nigrostriatal pathway and reduced striatal dopamine levels 56, and this 

diminished dopaminergic signaling is a likely cause for the manifestation of motor features in 

PD, particularly bradykinesia and rigidity 57. In addition to degeneration of dopaminergic 

neurons in PD, cell loss has been reported in the pedunculopontine nucleus, locus coeruleus, 

dorsal motor nucleus of the vagus, nucleus basalis of Meynert, and to a lesser extent the raphe 

nucleus 58. This widespread neurodegeneration implicates a role for cholinergic, glutamatergic, 

γ-aminobutyric acid (GABA)-ergic, and serotonergic systems, and may explain the appearance 

of non-motor symptoms in PD 59, 60.  
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At the microscopic level, a hallmark of PD pathology is the presence of Lewy bodies, 

which consist of abnormal deposits of the protein alpha-synuclein in the cytoplasm of neuronal 

cell bodies 56, 61. Lewy bodies are often accompanied by dystrophic neurites, termed Lewy 

neurites, which are mainly found in axons 62. Lewy pathology can also extend outside of the 

brain and has been found in the spinal cord and peripheral nervous system 32, including the vagus 

nerve, enteric nervous system, and cardiac plexus 63-66. From observation of post-mortem brains 

of PD subjects, Braak and colleagues formalised a hypothesis to describe the stereotypical 

spreading of Lewy body pathology based on the correlation between neuropathological findings 

with pre-clinical and clinical phases of the disease 67, 68. The Braak hypothesis was revised to 

propose that Lewy pathology may be initiated in the olfactory bulb and enteric cell plexuses and 

enter the brain through nasal and gastric routes, respectively, forming the dual-hit hypothesis 69. 

In early stages, Lewy bodies were confined to the brain stem and olfactory bulb, before 

spreading to the midbrain, and by later stages, throughout the lower forebrain and cortex. 

Evidence in support of the Braak hypothesis came from clinical trials where embryonic 

dopaminergic neurons were grafted into the brains of PD patients 70, 71. Post-mortem analysis of 

the brains of PD patients revealed pathological inclusions in the healthy donor neurons over 10 

years after transplantation, which suggests that Lewy pathology can spread from host to donor 

and that aggregated alpha-synuclein can seed the misfolding of endogenous alpha-synuclein 72. 

However, Braak staging has also been controversial for a few reasons 56: 1) some PD brains do 

not follow the stereotyped caudo-rostral propagation of alpha-synuclein pathology 73, 74; 2) the 

lack of correlation in clinico-pathologic studies 75; and 3) poor link between Lewy pathology 

and neuronal loss 75, 76. 
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1.1.4. Pathophysiology 

Several mechanisms have been proposed to underlie the pathophysiology of PD, 

including the misfolding and aggregation of alpha-synuclein, mitochondrial dysfunction, 

impairment of protein clearance, and neuroinflammation. Although all these mechanisms may 

promote apoptosis or necrosis 77, a remaining issue that warrants further investigation is the 

relationship between these pathogenic factors. It remains unclear whether they converge on a 

common downstream pathway to neuronal death 78 or more controversially, if they represent 

separate pathogenetic pathways that define separate forms of PD 79. 

 

1.1.4.1. Alpha-synuclein  

Although the function of alpha-synuclein is unclear, studies implicate its involvement in 

synaptic plasticity and neurotransmitter release 80, 81. Under physiological conditions, the native 

structure of alpha-synuclein is in dynamic equilibrium between unfolded monomers and -

helical folded tetramers 82, 83 but in PD, it adopts a -sheet rich structure that is prone to 

aggregation into oligomers, protofibrils, and insoluble fibrils that accumulate in Lewy bodies 84. 

Moreover, post-translational modifications, including serine 129 phosphorylation 85 and 

ubiquitination 86, as well as mutations, imbalance between synthesis and degradation of alpha-

synuclein, and environmental factors, lead to conformational changes in alpha-synuclein that 

render it more prone to aggregation 84. Although the mechanisms underlying the initiation and 

spreading of pathological alpha-synuclein in PD are not well understood, converging evidence 

suggests that a prion-like propagation may explain this phenomenon 87. Once monomeric alpha-

synuclein becomes misfolded, it can act as a seed to recruit endogenous synuclein, convert it 

into insoluble pathological polymers and, ultimately, Lewy bodies 88. This pathological alpha-
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synuclein then spreads throughout the brain in interconnected and neighbouring areas, 

eventually propagating to the entire brain 89. As discussed in Section 4.3, paradigms that involve 

injection of fibrillar alpha-synuclein in the brain or gut produced Lewy-like pathology in the 

brains of rodents and non-human primates, similar to Braak staging observed in post-mortem 

PD brains 67. 

 

1.1.4.2. Mitochondrial dysfunction 

Defective mitochondrial function plays a crucial role in the pathogenesis of sporadic and 

familial forms of PD 90. In particular, deficiency of mitochondrial complex I has been reported 

in the SNc 91 and skeletal muscle 92 of PD subjects. In further support for the role of 

mitochondrial dysfunction in PD, compounds that inhibit mitochondrial complex I activity, such 

as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 93, the prodrug to the neurotoxin 1-

methyl-4-phenylpyridinium (MPP+) 94, and the pesticide rotenone 95, 96, have caused 

parkinsonian features in animal models 97, 98 and humans 99, 100. Genetics research also confirms 

the importance of mitochondrial dysfunction in PD 32; mutations in genes involved in 

mitochondrial health, such as PRKN and PINK1 101, lead to impaired mitochondrial quality 

control and cause autosomal recessive forms of PD 102.  

 

1.1.4.3. Dysfunctional protein clearance 

The ubiquitin-proteasome system and the autophagy-lysosomal pathway are two protein 

degradation systems that may be compromised in PD 103, 104. Studies have found that inhibition 

of proteasomal activity 105, 106 leads to the accumulation of alpha-synuclein or production of 

ubiquitinated alpha-synuclein aggregates 107-109, and results in inefficient degradation of 
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misfolded proteins in sporadic PD 103. Protein quality control is also regulated by autophagy 104 

and studies have revealed an accumulation of autophagy-related proteins with alpha-synuclein 

pathology in PD 110-112.  

 

1.1.4.4. Neuroinflammation 

Both abnormal innate and adaptive immunity responses have been implicated in PD 77, 

including increased levels of proinflammatory cytokines 113, presence of lymphocyte infiltrates 

114 and microglial activation 115 in the brains of PD subjects. Moreover, rodent models of PD 

demonstrated that suppressing microglial activation inhibited degeneration of the SNc 116, 117. 

These results implicate the contribution of microglial-induced inflammation to 

neurodegeneration in PD 56; consistent with reports that alpha-synuclein can trigger 

neuroinflammation 118, 119. Considering the importance of the cross talk between brain 

parenchyma and peripheral immune system in underlying the disease 120, regulation of aberrant 

neuroinflammatory processes may provide opportunities for the development of new immune-

targeted therapies for PD 121.  

 

1.1.5. Diagnosis 

Clinical diagnosis of PD has been classically based on a defined motor syndrome, i.e., 

bradykinesia, in combination with rest tremor, rigidity, and postural instability 32. However, 

motor symptoms are often preceded by prodromal and nonmotor phases of the disease 122, which 

has led to the identification of prodromal, preclinical, prodromal and clinical stages of PD 123 

and ensuing changes to the diagnostic criteria of the disease 124. Dopaminergic imaging with 

positron emission tomography (PET) or single-photon emission computed tomography 
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(SPECT) imaging is a validated non-invasive approach to measure reductions in striatal 

dopamine levels 32. However, neither are required for PD diagnosis as they cannot distinguish 

causes of dopamine deficiency and cannot differentiate the disease from other disorders that 

present with degeneration of the SNc (e.g., progressive supranuclear palsy, multiple system 

atrophy and dementia with Lewy bodies) 32, 125. The gold standard of PD diagnosis remains 

neuropathological confirmation of neuronal loss in the SNc with Lewy bodies in surviving 

neurons 126. The high misdiagnosis rate of PD 127, as well as the delayed diagnosis and lack of 

disease-modifying therapies, underscore the urgent need to develop validated biomarkers 128. 

The discovery of diagnostic and prognostic biomarkers in PD would facilitate distinguishing it 

from other conditions, monitoring disease progression, or provide an indicator of a positive 

response to a therapeutic intervention 129, 130. Recent advances in PD biomarker research include 

clinical prodromal biomarkers, biochemical fluid biomarkers, and imaging biomarkers, which 

are comprehensively reviewed 128, 129, 131. 

 

1.1.6. Symptoms 

1.1.6.1. Motor symptoms 

First recognised by James Parkinson and later refined by Jean-Martin Charcot 132, the 

cardinal motor features of PD consist of bradykinesia and at least one or more of the following: 

rigidity, rest tremor, and postural instability 133. Compared to other motor symptoms, postural 

instability is more commonly associated with advanced disease 134. Nonetheless, evidence from 

neuroimaging and pathological studies suggest that motor symptoms of PD appear only when 

degeneration of the SN reaches 50% to 70% 135. PD symptoms are progressive but clinical 

presentation and the rate of motor progression are highly variable 136, 137. Evidence from clinical 
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observations propose three motor subtypes of PD where tremor, rigidity or postural impairment 

dominate but there remains a lack of consensus on the classification of PD subtypes 138. 

Importantly, subtypes may have distinct prognoses and aetiologies 32, 139, for example, tremor-

dominant PD is linked to slower progression and less functional disability 140. While motor 

symptoms are managed with symptomatic therapies, with disease progression, patient outcome 

is encumbered by issues such as treatment-resistant therapies 32 as well as the development of 

treatment-related complications 141, 142. 

 

1.1.6.2. Non-motor symptoms 

During their disease course, as many as 90% of patients with PD present with a wealth 

of non-motor symptoms 143 and the burden of these symptoms has a superior impact on quality 

of life compared to the burden associated with motor symptoms 144, 145. Some non-motor 

symptoms often precede the onset of motor symptoms 146, including olfactory dysfunction, 

constipation, and sleep disorders, and have been grouped together to form the prodromal phase 

123. Identification of patients during this stage when the nigrostriatal pathway is relatively intact 

may provide an ideal window for disease-modifying therapies that prevent or delay disease 

progression 147. On the other hand, some autonomic symptoms, such as constipation and urinary 

incontinence, are common features of late stage PD 141, 148. Dementia and psychosis are also 

highly prevalent in PD patients and 20 years after disease onset, 83% and 74% of patients were 

afflicted with these conditions, respectively 148. Unlike motor symptoms, non-motor symptoms 

(e.g., neuropsychiatric symptoms and sleep disorders) are often unresponsive to dopaminergic 

therapy, which implicates the involvement of other neurotransmitter systems in their aetiology 

149.  



16 

 

 

1.1.7. Management 

Pharmacological treatment is the most common therapy for PD and drugs that correct 

the dopamine deficiency causing motor symptoms 150 by enhancing intracerebral dopamine 

concentrations or stimulating dopamine receptors, remain the mainstay treatment 32. While there 

are no disease-modifying therapies available, current treatments provide relief for the 

management of both motor and non-motor symptoms 151.  

 

1.1.7.1. L-DOPA   

The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is the most effective 

therapy for PD 152 and often administered with decarboxylase inhibitors such as benserazide or 

carbidopa 153. When administered alone, L-DOPA is mainly decarboxylated peripherally and 

little remains available to cross the blood-brain barrier and penetrate the central nervous system 

154. Moreover, several side effects associated with L-DOPA, including nausea, vomiting, and 

orthostatic hypotension 155-157, are related to its peripheral conversion by DOPA decarboxylase 

154. Thus, the addition of peripherally acting decarboxylase inhibitors to L-DOPA prevents its 

peripheral conversion to dopamine and reduces both undesirable effects and dosage of L-DOPA 

158, 159. Nonetheless, long-term L-DOPA therapy is accompanied by the development of 

complications, such as L-DOPA-induced dyskinesia (discussed in Section 2) and motor 

fluctuations 160, 161. These complications may be related to pulsatile stimulation of dopamine 

receptors in the striatum 32, which has led to efforts to develop long-acting formulations 162 and 
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other modes of delivery of L-DOPA 163 to provide more stable dopamine concentrations and, 

consequently, improved clinical benefit 164.  

 

1.1.7.2. Dopamine agonists 

Dopamine agonists act directly on dopamine receptors and are classified as ergot 

(bromocriptine, pergolide, lisuride, and cabergoline) and non-ergot derivatives (apomorphine, 

pramipexole, and ropinirole) 165. They offer several advantages over L-DOPA: 1) longer 

duration of action 166-168; 2) no requirement for enzymatic activation 169; 3) no production of 

toxic metabolites 170; 4) no competition for active transport into blood and to cross blood-brain 

barrier; 5) no dependence on functional capacities of nigrostriatal neurons 150. Although studies 

have reported a lower incidence of dyskinesia with dopamine agonists compared to L-DOPA 

171-175, once L-DOPA was added, rate of dyskinesia development was comparable between both 

groups 176. Compared to dopamine agonists, L-DOPA provides superior benefit for the treatment 

of motor symptoms, as well as fewer side effects 177-179. Therefore, the practice guideline by the 

American Academy of Neurology (AAN) recommends L-DOPA as the initial preferential 

dopaminergic therapy for motor symptoms in patients with early PD 179. Furthermore, dopamine 

agonists are also associated with impulse control disorders, which occur in 15% to 20% of PD 

patients taking dopamine agonists 177, 178. Other adverse events include hallucinations, nausea 

and vomiting, and dry mouth 179-182; dopamine withdrawal syndrome is another condition 

associated with PD patients that undergo a dopamine agonist taper 183.  

 

1.1.7.3. COMT inhibitors 
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Catechol-O-methyltransferase (COMT) mediates a significant proportion of peripheral 

L-DOPA metabolism 184, 185 and the addition of a COMT inhibitor as an adjunctive therapy to 

L-DOPA and a decarboxylase inhibitor extends L-DOPA duration of action by prolonging its 

half-life and its delivery to the brain 186. COMT inhibitors are often prescribed as adjunctive 

therapy 153 because they offer limited to no benefit for motor features when administered as 

monotherapy 151. COMT inhibitors include entacapone and tolcapone 153 but entacapone is 

preferred due to rare cases of fatal hepatotoxicity 187. Moreover, the third-generation COMT 

inhibitor opicapone was developed to lower the risk of liver toxicity and improve peripheral 

tissue selectivity 188, even significantly enhancing L-DOPA bioavailability, and as such, has 

been approved in Europe since 2016 as an adjunct to L-DOPA/dopa decarboxylase inhibitor 

(DDCI) for motor fluctuations 189. In fact, a meta-analysis found that opicapone treatment was 

associated with fewer adverse events than both tolcapone and entacapone but its therapeutic 

effect was slightly inferior to that of tolcapone 190. Adverse events associated with COMT 

inhibitors include potentiation of dyskinesia, nausea, and sleep disturbances 191-193. 

 

1.1.7.4. MAO-B inhibitors 

Monoamine oxidase B (MAO-B) is one of the main enzymes involved in the breakdown 

of dopamine to dihydroxyphenylacetic acid and hydrogen peroxide 194; MAO-B inhibitors 

preserve endogenous levels of dopamine to increase dopaminergic activity within the striatum 

151. MAO-B inhibitors are beneficial during early PD in delaying the need for L-DOPA and are 

also used as an adjunct to L-DOPA for motor fluctuations 195-197 but most patients eventually 

require L-DOPA therapy 198. Selegiline and rasagiline are the more frequently administered 

MAO-B inhibitors 161; they are well tolerated and when administered with L-DOPA, the most 
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frequently reported adverse effects include nausea, dizziness, and insomnia 199, 200. Furthermore, 

safinamide is a more recently developed MAO-B inhibitor approved as an adjunctive therapy to 

L-DOPA in mid- to late-stage PD with fluctuations 201. In addition to its ability to inhibit MAO-

B, safinamide also inhibits glutamate release by blocking voltage-gated sodium channels and 

modulating calcium channels 202, 203. This dual mechanism of action is unique compared to other 

MAO-B inhibitors and may be responsible for its safety and tolerability in patients with few 

adverse events 201, 204.  

 

1.1.7.5. Anticholinergic agents 

Contrary to other drugs discussed so far that act on increasing striatal dopaminergic 

activity 151, anticholinergic drugs inhibit binding of acetylcholine through antagonism of 

cholinergic receptors 205, 206. While studies reported that anticholinergic drugs (e.g., benzhexol 

and benztropine) improved rigidity and tremor in PD 207, evidence is lacking from randomised 

trials 161, likely because most studies were conducted prior to the introduction of randomised 

controlled trials in therapeutics 207. Although the mechanism underlying anticholinergic drugs 

in PD is unclear, they may be restoring an imbalance between dopaminergic and cholinergic 

transmission 208. 

  

1.1.7.6. Amantadine 

Amantadine, initially developed as an anti-viral, has been used in PD for over 50 years 

209. The only drug approved to treat dyskinesia in PD by the Food and Drug Administration 

(FDA) 210, evidence for its use in controlling parkinsonian features has been mixed, while a 
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review found insufficient evidence for efficacy due to poor study quality 208, reports from the 

International Parkinson and Movement Disorders Society (IPMDS) and European Federation of 

Neurological Societies found that amantadine is likely efficacious for symptomatic 

monotherapy and adjunct therapy 152, 153. The broad spectrum pharmacological profile of 

amantadine includes its action as a weak non-competitive NMDA receptor antagonist 214, 

sigma1 receptor agonist 214, 215, as well as modulation of dopamine release and reuptake 216. On 

the other hand, despite its lack of anticholinergic activity in preclinical studies, in the clinic, 

amantadine exhibited anticholinergic side effects 217, such as dry mouth, blurred vision, and 

constipation 211, 218. Nevertheless, the multiple pharmacologic actions of amantadine render it 

difficult to comment on the precise mechanism of action underlying its anti-parkinsonian and 

anti-dyskinetic effects 211, 212. Side effects associated with amantadine include hallucinations, 

confusion and impaired concentration, and insomnia, which are more common with high doses 

213. 

 

1.1.7.7. Surgical treatment  

 Deep brain stimulation is an established treatment for motor features of PD 32 and largely 

favoured over lesioning procedures 214. Two of the most common targets are subthalamic 

nucleus (STN) and globus pallidus (GP) pars interna (GPi) 215. Randomised controlled trials 

have revealed that similar benefits are obtained with both targets 216-218 but subthalamic 

stimulation is associated with reductions in doses of dopaminergic drugs, while pallidal 

stimulation is accompanied by fewer mood and cognitive adverse effects 219. Nonetheless, the 

restrictive patient selection criteria, variable risk for surgical complications, and development 
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of psychiatric and cognitive comorbidities limit the potential of deep brain stimulation as the 

treatment of choice for PD 214. 

 

 

1.2.  L-DOPA-induced dyskinesia 

Since its initial usage in PD patients over 50 years ago 220, L-DOPA remains the most 

effective symptomatic therapy. With disease progression and chronic administration, its benefit 

is hindered by the development of complications, such as L-DOPA-induced dyskinesia and 

motor fluctuations. In a pivotal study, dyskinesia was first recognised after nearly 10 years of 

L-DOPA use in PD 220. Thus, after 15 years of L-DOPA administrations, 94% of PD patients 

become afflicted with dyskinesia 141. The reported incidence of dyskinesia in PD has varied 

from 3% to 94% 221-223, likely stemming from differences in demographic and clinical 

characteristics, including age, duration of disease and treatment, medical history, as well as 

changes in clinical practice and other methodological differences 224-226. Dyskinesia is 

associated with impaired quality of life (e.g., activities of daily living, emotional wellbeing, 

bodily discomfort) 227-229 and increased socioeconomic burden 230-233. 

 

1.2.1. Risk factors  

1.2.1.1. L-DOPA dosage 

The effect of L-DOPA on inducing dyskinesia appears to be dose-dependent 234 with 

higher cumulative dose of L-DOPA as a risk factor for the development of dyskinesia 235. Earlier 

studies administered relatively higher doses of L-DOPA to patients compared to the modern era, 

which may explain the earlier appearance of dyskinesia 236. Moreover, in a randomised, double-
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blind, placebo-controlled trial, 16.5% of PD patients who received 600 mg of L-DOPA daily 

after 40 weeks developed dyskinesia, whereas only 2.3% of patients receiving 300 mg of L-

DOPA daily developed dyskinesia 237. A retrospective study reported that higher initial L-DOPA 

dose was a risk factor for dyskinesia 238, consistent with findings from a cross-sectional study 

239. On the other hand, the DATATOP study revealed that while PD patients with dyskinesia 

were administered higher L-DOPA doses at the time dyskinesia appeared, cumulative daily dose 

of L-DOPA was comparable to patients without dyskinesia 240; similar findings were obtained 

in a smaller retrospective study 241. 

 

1.2.1.2. Timing of L-DOPA 

The prevalence of dyskinesia increases with duration of disease and treatment 242, 

although the latter may reflect, in part, disease duration 221, 240 and severity 243, 244, which are 

highly correlated with dyskinesia rate 245, 246. Nevertheless, dyskinesia occurs less often during 

early treatment 223, 247 and incidence increases with longer duration of treatment 141. Prospective 

randomised controlled trials reported that 40% to 50% of PD patients developed dyskinesia after 

5 years of L-DOPA treatment 173, 221, 248. Similarly, retrospective analyses of clinic samples 

found that 54% to 56% of patients developed dyskinesia after 3 to 6 years of L-DOPA therapy 

241, 249. Long term studies found that after 10 years of L-DOPA, the incidence of dyskinesia 

reached 52% to 78% 250, 251, and after 15 years, 94% of patients in the Sydney Multicentre study 

of PD had developed dyskinesia 141, 222. 

The optimal treatment strategy for PD has been contentious the past few decades 252. The 

association between prolonged L-DOPA treatment and increased incidence of dyskinesia led to 

“L-DOPA phobia” in the 1990s to 2000s 253 and the practice of prescribing dopamine agonists 
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instead of L-DOPA early in the disease 254. This was supported by large randomised trials 172, 

255, 256 that reported delays in the development of dyskinesia with initial treatment of dopamine 

agonists over 3 to 5 years 252, 254. Later studies, however, challenged the notion that delayed L-

DOPA therapy had a protective role 257. Post hoc analysis of the CALM-PD trial 256 revealed 

that after adjusting for disease duration and L-DOPA dose, the incidence of dyskinesia was 

comparable whether the initial treatment was L-DOPA or the dopamine agonist pramipexole 

258. An open-label trial 197 and a follow-up study of up to 14 years 259 also reported that 

dyskinesia prevalence and long-term outcomes were similar irrespective of L-DOPA or L-

DOPA sparing therapies. Moreover, further evidence against withholding L-DOPA therapy 

comes from a recent study that found dyskinesia was associated with disease duration and 

levodopa daily dose but not with the duration of L-DOPA therapy 257. This body of evidence, 

coupled with side effects associated with dopamine agonists, including pathological behaviours 

260 and psychosis 173, 256, 261, led to a shift in treatment approach towards early use of L-DOPA 

254, 262, 263.  

 

1.2.1.3. Sex differences 

Whereas male sex is a risk factor for PD, some studies have found that female sex is 

associated with an increased risk for dyskinesia 264-266 but not in other reports 239, 245. 

Furthermore, a prospective study found that the latency until the onset of dyskinesia in females 

was significantly shorter than in males 267. The higher prevalence in females may be confounded 

by their relatively lower body weight 268 and adjusting for body weight revealed that females 

are exposed to significantly higher L-DOPA plasma levels than males 269-271. Moreover, 

pharmacokinetic parameters of L-DOPA are inversely correlated with body weight 269, 270, which 
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may affect the onset of dyskinesia 272. Logistic regression analysis of the REAL-PET trial found 

that a higher L-DOPA dose per kilogram body weight was the most significant factor for 

developing dyskinesia, whereas female gender, absolute L-DOPA dose and body weight were 

not significant 273.  

 

1.2.1.4. Age of onset of Parkinson’s disease 

Younger age of onset of PD (< age 50) is a risk factor the development of dyskinesia 245, 

274 that also tends to result in a more severe phenotype 222. In patients with onset before 40 years 

of age, up to 90% develop dyskinesia after 5 years of treatment 275, whereas the risk is 26% with 

an age of onset in the 60 to 69 years group and 16% in the 70 years group 274. Although it is 

unclear why younger age of onset is associated with a higher propensity for dyskinesia 224, 

genetic expression may contribute, in part, to this susceptibility 222, 276. Autosomal recessive 

forms of PD associated with early onset of the disease are linked to earlier 277, 278 and a higher 

risk for developing dyskinesia 279-282. Age-related differences in L-DOPA dynamics, such as 

alterations in dopamine turnover and consequent fluctuations in synaptic levels, may also be 

implicated 283. A retrospective study also found that for PD patients with onset < 50 years, the 

increased risk for dyskinesia was concentrated in the first few years of L-DOPA therapy, which 

suggests that underlying disease progression is a primary determinant of dyskinesia risk rather 

than cumulative L-DOPA exposure 284.  

 

1.2.1.5. Comorbidities 

Dyskinesia and motor fluctuations may be interrelated as a retrospective study found that 

presence of one is linked to the earlier development of the other 285. In contrast, PD patients that 
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present with resting tremor during early disease have a lower probability of developing 

dyskinesia 235, 286. 

 

1.2.2. Disease subtypes 

Based on the timing of symptoms with L-DOPA dosage, dyskinesia can be generally 

classified as on or peak-dose dyskinesia, diphasic dyskinesia and off dyskinesia 226. Peak-dose 

dyskinesia is the most common form of dyskinesia, accounting for 75% to 80% of cases 287, and 

occurs during peak plasma L-DOPA levels 288. Symptoms manifest as restless and continuous 

involuntary movements and frequently affect the extremities, although the head and respiratory 

muscles can be affected as well 289. Peak-dose dyskinesia resolves with dose reduction but often, 

at the expense of worsening parkinsonism 224. Diphasic dyskinesia occurs when L-DOPA levels 

are rising or falling 224, and usually manifests as dystonia or ballism 226. Diphasic dyskinesia 

occurs more often in the legs than arms 290 and involves repetitive rapidly alternating dystonic 

foot movements or stereotyped leg kicking 289, 291. Off dyskinesia accounts for the remainder of 

cases 292, 293 and occurs when L-DOPA levels are low (e.g. at night or prior to the first morning 

dose) or the patient is transitioning from the off to on period 289. Predominantly manifesting as 

dystonia, it is also referred to as off dystonia 294, and tends to affect the lower limbs, usually 

ipsilateral to the side first affected by PD 295. On time refers to the period of time where patients 

are receiving optimal benefit from medication 161 and symptoms have been reduced or abated 

by treatment 296, whereas off time refers to the period where medication is not optimally 

effective and a patient is exhibiting parkinsonian symptoms 161. With disease progression, the 

progressive loss of dopaminergic terminals leads to suboptimal levels of L-DOPA between 
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doses 289 and the duration of the therapeutic benefit of each successive L-DOPA dose becomes 

shorter 297.  

 

1.2.3. Symptomology  

Dyskinesia is heterogeneous in manifestation and encompasses chorea, ballism, 

dystonia, and athetosis 287; in clinical practice, it most often presents as chorea and dystonia but 

ballism, athetosis, and myoclonus also occur occasionally 288. Dyskinesia tends to afflict the side 

of the body where PD first occurs and symptoms are often more severe on this side but with 

disease progression, symptoms eventually affect both sides of the body 289. Chorea refers to 

involuntary, irregular and purposeless movements that appear to flow from one body part to 

another 298. Chorea often involves the extremities and tends to occur ipsilateral to the side of the 

body where PD first occurs 226. Dystonia is the second most common form of dyskinesia and 

consists of sustained, involuntary and patterned muscle contractions that cause twisting 

movements and/or abnormal postures 224, 289, including great toe extension, toe curling and 

inversion of the foot at the ankle 226. Dystonia accounts for greater disability than chorea 224 and 

is associated with functional disabilities and pain 225. Less commonly reported forms of 

dyskinesia include ballism, which refers to movements performed with maximal velocity and 

acceleration, mainly affecting proximal muscles 299 as well as athetosis, slow writhing 

movements of the extremities 289.  

 

1.2.4. Pathophysiology 

1.2.4.1. Basal ganglia circuitry 
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The basal ganglia comprise a group of interconnected subcortical nuclei that include the 

striatum, GP pars externa (GPe) and GPi, STN, as well as SNc and SN pars reticulata (SNr) 300. 

These structures form a highly organised and complex network and are engaged in control of 

movement, executive functions and behaviour, and emotions 301. The classical model of basal 

ganglia was developed in the late 1980s and early 1990s 302-304 and has been used to explain 

movement disorders, including PD and dyskinesia 300. Input to the basal ganglia primarily arises 

from glutamatergic afferents from the cortex and thalamus to the striatum 305-307, whereas output 

is sent to the thalamus and brainstem 308-310.  

The striatum is the main input structure of the basal ganglia and predominantly consists 

of medium spiny neurons (~ 90% to 95%) with relatively fewer interneurons (~ 5% to 10%) 311-

313. However, the ratio of striatal projection neurons to interneurons varies between species, for 

instance, in rats, it is 9:1 and in non-human primates, it is 3:1 314, 315. In the classical model, 

striatal medium spiny neurons are divided into the direct and indirect pathways, based on their 

projection targets 316. Direct pathway medium spiny neurons express D1-like dopamine 

receptors 317-319 and project to output structures of the basal ganglia, the SNr and GPi 320. 

Medium spiny neurons of the indirect pathway medium spiny neurons express D2-like 

dopamine receptors 317-319 and indirectly project to the SNr and/or GPi via the GPe and STN 320. 

Activation of the direct pathway decreases basal ganglia output, which disinhibits the thalamus, 

stimulates the cortex, and facilitates movement, whereas activation of the indirect pathway 

increases basal ganglia output, which inhibits the thalamus and cortex, and inhibits movement 

321. 

Dopamine has opposing actions on the pathways, increasing the activity of the direct 

pathway while decreasing the activity of the indirect pathway 320. In physiological conditions, 
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dopaminergic signalling in the classical model dampens output from the GPi to favour 

movement. In PD, degeneration of SNc dopaminergic neurons disrupts the equilibrium between 

the two pathways, leading to hypoactivity of the direct pathway and hyperactivity of the indirect 

pathway 320. The excessive GPi output results in inhibition of the thalamus and cortex that causes 

a hypokinetic state, which may account for the appearance of parkinsonian symptoms 320. In 

contrast, dyskinesia 303 may be mediated by changes in basal ganglia activity that are 

functionally opposed to PD 322, 323. Thus, L-DOPA administration enhances striatal dopamine 

levels and favours activity of the direct pathway over the indirect pathway 316. This reduction in 

GPi output results in disinhibition of the thalamus and cortex and induces the expression of 

dyskinesia 316.  

 

1.2.4.2. Models of basal ganglia dysfunction  

Three major hypotheses have been proposed to underlie the pathophysiology of L-

DOPA-induced dyskinesia: 1) firing rate model, 2) firing pattern model, and 3) ensemble model 

316. The firing rate model suggests that decreased firing of the GPi and SNr may induce 

dyskinesia by disinhibition of the thalamic-cortical pathway 324. Indeed, in PD patients, firing 

rate in GPi and STN shifted to a hypoactive state during dyskinesia expression 325; similar results 

were obtained in animal models 326, 327. However, a few inconsistencies with the firing rate 

model are difficult to reconcile, including its failure to account for some types of neural 

dynamics 328, the strong connection between the basal ganglia and motor cortex 329, and contrary 

findings on GPi lesions or stimulation 322. Thus, the firing pattern model proposes that changes 

in bursting firing and neuronal oscillations within cortico-basal ganglia-thalamic loop may 

underlie dyskinesia 316. Reports found that L-DOPA application increased the number of 
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bursting cells in the GPi and SNr of hemi-parkinsonian rats 330, 331; increased bursting in the GPi 

and STN has also been reported in PD patients with dyskinesia 332. However, it has been difficult 

to directly link bursting with dyskinesia 316 as only a single study has found that increased 

bursting alleviated dyskinesia in hemi-parkinsonian rats 333; further research is required to 

clarify this relationship. In general, dyskinesia is also associated with reductions in  oscillations 

334 but enhanced  oscillations 335-337; the link remains controversial 338-340. Last, the recent 

ensemble model posits that distributed impairment in neurons across multiple brain regions may 

mediate dyskinesia expression 316. A study demonstrated an association between neurons in the 

primary motor cortex and striatum with dyskinesia 341, while another found that a subpopulation 

of medium spiny neurons of direct pathway correlated with dyskinesia 342. These results suggest 

that regulating the ensemble neural activity of the direct and indirect pathways may be another 

target for therapies that treat dyskinesia rather than correcting activity imbalances 328.  

 

1.2.4.3. Molecular mechanisms  

The pathophysiology of dyskinesia has predominantly focused on changes that occur at 

the striatum, including pulsatile stimulation of dopamine receptors 343, excessive swings in 

synaptic dopamine concentrations that lead to increased receptor occupancy 344, discordance 

between low levels of dopamine in the striatum and high plasma levels of L-DOPA 345, 

downstream changes in post-synaptic signalling, and changes in non-dopaminergic systems 329. 

The majority of these processes are related to the dopaminergic system and are discussed in 

Section 2.6.1. but have also been reviewed previously 346, 347. Nonetheless, these events lead to 

alterations in the firing and oscillatory activity in the basal ganglia circuitry that culminate in 

disinhibition of the thalamic-cortical pathway 329 and appearance of dyskinetic symptoms.  
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1.2.5. Imaging  

In addition to evidence of structural changes in the brains of PD patients 348-350 and 

parkinsonian animals 351-353, dyskinesia may also be linked to structural and functional changes 

in the brain. One group reported that alterations in the inferior frontal cortex and supplementary 

motor area 354-356, both implicated in executive motor control 357, 358, were associated with 

dyskinesia development. These findings were consistent with those obtained by other imaging 

studies 359-361. Moreover, the localisation of brain abnormalities appears dependent on the age 

of onset of L-DOPA-induced dyskinesia, whereby nigral pathology is observed in early onset, 

while cortical pathology is observed in late onset dyskinesia 362. Reports of altered connectivity 

between the frontal lobe and striatum in dyskinesia in PD patients 360, 361, 363 and animal models 

of PD 364, 365 collectively provide support for the involvement of cortico-striatal projections in 

dyskinesia pathogenesis 366. Besides changes in grey matter structure and activity in the 

dyskinetic brain, there is evidence of changes in white matter. A magnetic resonance imaging 

(MRI) study in PD patients revealed that increased white matter structural integrity and 

connectivity within the fronto-striato-pallido-thalamic regions was predictive of dyskinesia 

development and that the left superior frontal gyrus is a potential hub for neural substrates 367. 

A previous study also linked the superior frontal gyrus and dyskinesia 368 and its role in 

inhibitory control 369, 370 may imply a similar role in the pathophysiology of dyskinesia 367. 

Moreover, a recent diffusion tensor imaging study that assessed white matter in PD detected 

less microstructural white matter impairment in dyskinetic patients than non-dyskinetic patients, 

especially in the temporal lobe 366. These novel results may suggest that the relative fibre 

preservation in young onset PD patients 371 may contribute to enhanced plasticity 372, which is 
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implicated in the pathophysiology of dyskinesia 373. Finally, PET molecular imaging studies 

have predominantly implicated abnormalities in the dopaminergic and serotonergic systems in 

L-DOPA-induced dyskinesia 374-376 but other neurotransmitter systems, such as the 

glutamatergic, adenosinergic, and cholinergic systems, may also play a role in its development 

374, 377.  

 

1.2.6. Neuropharmacology 

1.2.6.1. Dopaminergic system  

Once dyskinesia is induced by L-DOPA therapy, it is irreversible or at least persistent 

378 and subsequent administration of dopaminergic drugs will elicit its expression 379, 380. This 

phenomenon suggests that dopaminergic drugs have modified the brain’s response to dopamine 

378. Dopaminergic receptors are divided into five different subtypes of G protein-coupled 

receptors that regulate cyclic adenosine monophosphate (cAMP)-protein kinase A 381. D1 class 

(D1 and D5) receptors mainly couple to Gαs/Gαolf and stimulate cAMP production and protein 

kinase A activity, while D2 class (D2, D3 and D4) receptors couple to Gαi/Gαo and negatively 

regulate cAMP production 382. D1 and D2 receptors are the most studied in PD and dyskinesia 

378, so the present review will focus on these subtypes. Both D1 and D2 receptors are highly 

expressed on striatal medium spiny neurons but lowly expressed in the cortex 383, 384. D1 

receptors are localised to dopaminergic neurons that contain substance P and dynorphin that 

project to the SNr and GPi, which form the direct pathway 385. On the other hand, D2 receptors 

are mainly found on dopaminergic neurons that express enkephalin, which project to the GPe, 

forming the indirect pathway 386, 387. D2 receptors are also localised on presynaptic nigrostriatal 

dopaminergic terminals 388, 389, presynaptic cortico-striatal terminals 390 and SNc neurons 391. 
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Two factors crucial for the development of dyskinesia are related to the dopaminergic 

system: 1) dopaminergic denervation in the nigrostriatal pathway 392-394; 2) short half-life of oral 

L-DOPA 395. The condition of severe nigrostriatal denervation is independent of duration of L-

DOPA therapy; if denervation is severe, an initial dose of L-DOPA can trigger dyskinesia 346, 

380, 396, 397 but the converse does not, i.e., chronic administration of L-DOPA does not generally 

lead to dyskinesia if the nigrostriatal pathway is intact 321, 397-399. Another factor that contributes 

to dyskinesia development is related to the pharmacokinetics of oral L-DOPA 168, 400, 401 as its 

short half-life leads to non-physiological pulsatile stimulation of dopamine receptors 395. Along 

with the progressive neuronal loss of dopaminergic terminals in PD 51, 402, this leads to altered 

dynamics in dopamine conversion, release, and uptake 329. Indeed, PET studies revealed that PD 

patients with dyskinesia showed larger swings in dopamine levels compared to their non-

dyskinetic counterparts 344, 403. Further support arises from the observation that long-acting 

dopamine agonists 172, 173, 248 and continuous infusion of L-DOPA 404-406 are generally associated 

with a lower incidence of dyskinesia, although a recent meta-analysis found that continuous 

dopaminergic stimulation was linked to increased incidence of dyskinesia (Xie et al., 2014a). 

The combination of severe nigrostriatal denervation in PD and short half-life of L-DOPA cause 

changes in dopamine signalling and cortico-striatal synaptic plasticity 329. 

Denervation-induced supersensitivity of D1-like and D2-like dopamine receptors has 

been posited as a mechanism underlying dyskinesia 407. This supersensitivity may be attributed 

to changes in receptor levels and cellular distribution or changes in downstream signalling 407. 

Autoradiographic binding studies have revealed increased striatal D2 receptor binding sites in 

the post-mortem brains of parkinsonian animals 408-410 and untreated PD patients 411. Although 

hypersensitivity of D2 receptors would be expected in drug naïve PD patients 378, dyskinesia is 
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not induced with the first dose of L-DOPA but rather, it develops progressively with chronic 

administration of L-DOPA 224. D2 receptor expression does not mimic this pattern 407 as some 

studies found that chronic L-DOPA administration led to decreased levels in PD patients 411 and 

MPTP-lesioned non-human primates 410, 412 but remained unchanged in 6-hydroxydopamine (6-

OHDA)-lesioned rats 317. PET studies also found that the initial upregulation of striatal D2 

receptors was normalised by L-DOPA treatment 413, 414. On the other hand, studies on D1 

receptor binding have been highly variable 412, 415-417 but no change in striatal D1 density has 

been reported 411, 413. While the association between D1 receptor expression and dyskinesia has 

been unclear, D1 receptor sensitivity as measured by GTPγS binding is linearly related to 

dyskinesia severity 418. Moreover, this relationship appears dependent on subcellular 

localisation 419 as D1 receptors are internalised into the cytoplasm of PD patients previously 

treated with L-DOPA compared to healthy controls 420; similar results were found in the hemi-

parkinsonian rat 419. The inconsistencies with the hypersensitivity hypothesis suggest that 

dyskinesia is more complex than an upregulation in striatal dopamine receptors 378. Other 

mechanisms are likely at play, including L-DOPA-induced sensitisation to dopaminergic 

response 421 and changes in the activity and expression of dopamine receptors in the basal 

ganglia and downstream signalling 407, 422. 

 

Therapeutic agents 

Compared to L-DOPA, dopamine agonists have a lower propensity to induce dyskinesia 

172, 173, 248 but at the expense of providing less relief for parkinsonian symptoms 423. Furthermore, 

even if PD patients are initially treated with dopamine agonist monotherapy, with disease 

progression, they will require L-DOPA 32; over the long term, motor complications appear 
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similar to PD patients initially treated with L-DOPA 197. As mentioned earlier, there is also a 

dose-dependent effect of L-DOPA on dyskinesia development, where higher doses are 

associated with increased incidence 424, 425, whereas duration of therapy is also predictive of 

dyskinesia 245. 

 

D1 class receptors 

Compared to D2 agonists, D1 agonists have demonstrated comparable efficacy in 

alleviating parkinsonian symptoms but a lower propensity to trigger dyskinesia in non-human 

primate models 426-429. Furthermore, inhibition of D1 receptor activity by pharmacological 

blockade reduced dyskinesia severity in hemi-parkinsonian rats 430-432 while genetic knockout 

in mice completely suppressed dyskinesia 433. At odds with results obtained in preclinical 

studies, in the clinic, the D1 agonist prodrug ABT-431 produced similar anti-parkinsonism 

action and dyskinesia as L-DOPA 434. However, D1 agonists are not in clinical use because of 

dose-limiting effects reported in studies conducted in PD patients with dyskinesia, including 

low bioavailability, poor tolerability, and short half-life 437-439. At the post-mortem level, chronic 

treatment with No new investigation of D1 agonists was undertaken in PD for over 20 years 440, 

441 until a Phase I study published in 2018 found that the D1/D5 agonist PF-06649751 was safe 

and well tolerated in PD patients 442, further investigation is required to determine its anti-

parkinsonian potential. 

Studies have found that D5 receptors are also expressed in the striatum, albeit to a lesser 

extent than D1 receptors 435, 436. Thus, in a hemi-parkinsonian rat model, dyskinesia correlated 

with abnormal expression of D5 receptors in the striatum, whereas genetic knock down of 
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striatal D5 receptors downregulated D5 receptor expression and reduced dyskinesia 437. 

Moreover, a D5 receptor mouse knockout model revealed elevated dyskinesia scores and 

impairments in locomotion in response to L-DOPA 438. These recent findings may implicate a 

role for D5 receptor in dyskinesia, mediated in part by activity in the striatum or on cholinergic 

interneurons.    

 

D2 class receptors 

Once dyskinesia has been induced by L-DOPA, D2 receptor agonists can trigger 

dyskinesia in rat 439, 440 and non-human primate models of PD 441, 442 as well as in patients with 

PD 443. Moreover, in parkinsonian monkeys with established dyskinesia, administration of D2 

agonists led to more severe dyskinesia than D1 agonists 426; D2 agonists also accelerated the 

development of dyskinesia in the same animal model 444. While the D2 agonists bromocriptine 

175, 259, ropinirole 173, 251, 445, and pramipexole 248, 446 induced less dyskinesia in PD patients within 

the first 2 to 5 years, in the long-term (10 to 14 years follow-up), the rate of dyskinesia was 

similar once L-DOPA was added 447. Furthermore, the long-acting D2 agonist cabergoline is 

associated with similar rates of dyskinesia as shorter-acting dopamine agonists 171, 448, which 

suggests that longer duration of action cannot fully account for its ability to reduce dyskinesia 

development 447.  

The role of the D3 receptor in L-DOPA-induced dyskinesia has been less studied 

compared to D1 and D2 receptors 378, in part due to the low expression in the striatum 449, and 

behavioural studies report conflicting results. Administration of a D3 agonist in parkinsonian 

monkeys elicited dyskinesia that was comparable in severity to that induced by apomorphine 

450. Moreover, blockade of the D3 receptor with the antagonist S33084 reduced the development 
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of dyskinesia but had no effect on established dyskinesia 451. In contrast, the D3 antagonist 

nafadotride attenuated established dyskinesia but at the expense of impairing L-DOPA anti-

parkinsonian action 452. These inconsistencies suggest that further work is required to unravel 

the contribution of the D3 receptor in the development and expression of dyskinesia 378. 

Although the D3 receptor has not been studied in dyskinetic PD subjects, a PET study found 

reduced D3 receptor binding in the ventral striatum and GP of drug naïve PD patients compared 

to healthy controls 453.  

D4 receptors have been comparatively neglected in dyskinesia but there is evidence that 

they are located in the striatum 454 and GP 455, key structures implicated in PD and dyskinesia 

324, 385. The selective D4 receptor antagonist L-745,870 significantly reduced dyskinesia severity 

in a monkey model of PD at brain levels suggestive of D4 antagonism 456. Similar results were 

obtained with L-745,870 in a rat model but at the cost of worsening L-DOPA anti-parkinsonian 

benefit 457, which suggests a narrow therapeutic window for the compound 458. A more recently 

developed D4 antagonist VU6004461 was also effective at improving dyskinesia in a mouse 

model of PD 459. These promising results encourage further research into the mechanism of 

action underlying D4 receptor blockade and the development of drug candidates for clinical 

testing.  

 

1.2.6.2. Serotonergic system 

The serotonergic system innervates virtually all regions of the central nervous system 

460, including modulation of the cortico-basal ganglia-thalamic circuitry, notably by providing 

serotonergic inputs to the striatum, SNr and GP 461, 462. Despite evidence showing a loss of 

serotonergic markers or terminals in the frontal cortex, hippocampus, and caudate nucleus 463, 
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464, there is a lack of correlation with dyskinesia 465. 5-hydroxytryptamine (5-HT) receptors 

comprise seven subfamilies (5-HT1-7) with at least 14 subtypes 466 and are all G protein-coupled 

receptors 467 except for the 5-HT type 3 (5-HT3) receptor, which is a ligand-gated cation channel 

468. These G protein-coupled receptors couple to Gαi, Gαq/11, and Gαs to mediate excitatory or 

inhibitory neurotransmission 469. The present review will be limited to those studied in the 

context of dyskinesia: 5-HT type 1A (5-HT1A), type 1B (5-HT1B), type 2A (5-HT2A), type 2C 

(5-HT2C), and 5-HT3 receptors 460. 

In early stages of PD, the remaining dopaminergic terminals mediate the conversion of 

L-DOPA to dopamine and its physiological release 470. Dopamine levels are well regulated by 

D2 autoreceptors and the dopamine transporter (DAT), which leads to optimal and sustained 

therapeutic responses with L-DOPA 470. However, by late stages of PD, nigrostriatal denervation 

becomes more severe, which leads to reliance on non-dopaminergic terminals to convert and 

release dopamine 471. Serotonergic neurons possess the same enzymatic machinery as 

dopaminergic neurons (i.e., aromatic amino acid decarboxylase enzyme and vesicular 

monoamine transporter 2), and are also able to synthesise, store, and release dopamine 472-474. 

Whereas the contribution of serotonergic terminals may be beneficial during early disease due 

to the presence of spared dopaminergic terminals, by late disease stages, this contribution may 

become detrimental 460. Unlike dopaminergic neurons, striatal 5-HT neurons lack the regulatory 

mechanisms to finetune dopamine release mediated by D2 autoreceptors 475. The uncontrolled 

release of dopamine from serotonergic terminals leads to fluctuations in synaptic dopamine 

levels 476, 477, and in turn, pulsatile stimulation of postsynaptic receptors and the development of 

dyskinesia 478. The ability of 5-HT neurons to convert L-DOPA to dopamine extends beyond 

the lesioned striatum and occurs in other brain regions that receive 5-HT innervation 479, 480. 
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Consistent with microdialysis studies in the rat 481, 482, a PET study in patients with PD found 

that one hour after L-DOPA administration, [11C]raclopride binding was higher in dyskinetic 

patients compared to non-dyskinetic ones, which is indicative that changes in extracellular 

dopamine levels were more pronounced in the former group 344. Similarly, a subsequent study 

also found that [11C]raclopride binding was markedly higher in PD patients with dyskinesia but 

administration of the 5-HT1A agonist buspirone reduced increased [11C]raclopride binding 403. 

Importantly, this effect was accompanied by a reduction in dyskinesia severity, suggesting that 

PD patients exhibit greater striatal synaptic dopamine levels, and activation of 5-HT1A receptors 

restores their synaptic dopamine levels to those observed in patients with stable responses to L-

DOPA, improving their dyskinesia 403.    

 

Therapeutic agents 

5-HT1A and 5-HT1B receptors 

In line with these studies, lesion to the 5-HT system attenuated dyskinesia in rat 481, 483 

and non-human primate 484 models of PD. Moreover, decrease in 5-HT neuron activity by 

activation of 5-HT1A and 5-HT1B autoreceptors, which control glutamate and GABA release 485-

487, also significantly reduced dyskinesia in animal models of PD 488-491. These results are in line 

with a study conducted in the post-mortem macaque brain that found changes in 5-HT1A levels 

in the cortex and striatum of dyskinetic parkinsonian animals 504, which is suggestive that 

alterations in cortico-striatal 5-HT1A-mediated neurotransmission underlie dyskinesia 505. On the 

other hand, for the less studied 5-HT1B receptor, chronic L-DOPA treatment to 6-OHDA-

lesioned rats increased receptor levels and the adaptor protein p11 but selective activation of the 

receptor attenuated dyskinesia expression in 6-OHDA-lesioned animals 506. Similarly, a 
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subsequent study found that MPTP-lesioned macaques treated with L-DOPA had elevated 

binding levels in the caudate nucleus, putamen, GPi, and SNr but co-administration of the 

kynurenine hydroxylase inhibitor Ro 61-8048 attenuated this increase in binding 507. However, 

some studies also found that the anti-dyskinetic efficacy of 5-HT1 agonists was accompanied by 

worsening L-DOPA anti-parkinsonian action in preclinical models 492-495 as well as in patients 

with PD 496, 497. Of note, 5-HT1A or 5-HT1B receptor binding levels have not been examined at 

the post-mortem level in PD dyskinesia. Contrary to its success in an open-label trial 498, two 

large-scale placebo-controlled trials with the 5-HT1A agonist sarizotan failed to demonstrate 

improvements in dyskinesia compared to placebo 499, 500, although there was a strong placebo 

response 501. The discrepancy in findings may be related to the antagonist action of sarizotan at 

the D2 receptor 502, while others argue that trial design, continued administration of adjunct 

therapy or the predictive validity of the hemi-parkinsonian rat model contributed to the 

discrepancies 503. On the other hand, therapeutic agents with improved pharmacological profile, 

such as agonists with dual 5-HT1A and 5-HT1B affinity without antagonism of dopamine 

receptors, may be more suited for clinical development 475. Combined activation of 5-HT1A and 

5-HT1B receptors with 8-OH-DPAT and CP-94253, respectively, had a synergistic effect on 

reducing dyskinesia in rat 481 and monkey models 504. Furthermore, the mixed 5-HT1A/5-HT1B 

agonists eltoprazine and anpirtoline significantly reduced dyskinesia severity in preclinical 

models but worsened L-DOPA anti-parkinsonian action at higher doses 492, 495, 505. Nonetheless, 

a double-blind randomised placebo-controlled trial revealed that eltoprazine improved 

dyskinesia without interfering with the therapeutic benefit of L-DOPA 506. Despite these 

promising findings, the clinical development of eltoprazine remains unclear; the status of a 

Phase II trial is unknown and has not been updated since 2016 (NCT02439125) 507. These 
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studies collectively suggest that while 5-HT1A and 5-HT1B agonists have demonstrated anti-

dyskinetic efficacy, the narrow therapeutic window may encumber further clinical development 

of these therapeutic agents.  

 

5-HT2A receptor 

Evidence from preclinical and clinical studies provides support for the involvement of 

the 5-HT2A receptor in dyskinesia. An autoradiographic binding study revealed an increase in 

5-HT2A binding in the motor cortex and striatum of dyskinetic primates compared to non-

dyskinetic animals 508; another study only found an increase in the striatum 509. These findings 

suggest that the dyskinetic state may be mediated by altered 5-HT2A neurotransmission 510 and, 

in turn, it can be inferred that targeting the 5-HT2A receptor can treat dyskinesia 460. Thus, 

blockade of 5-HT2A receptors with clozapine and quetiapine significantly improved dyskinesia 

in the hemi-parkinsonian rat 511 and parkinsonian primate 512, 513. Contrary to these findings, 

selective antagonism of 5-HT2A receptors with volinanserin and EMD-281,014 failed to 

attenuate dyskinesia in hemi-parkinsonian rats 514, 515. Whereas EMD-281,014 led to a reduction 

in dyskinesia severity in the parkinsonian marmoset 516, there was a ceiling to its anti-dyskinetic 

efficacy as higher doses failed to confer greater therapeutic benefit 517. The discrepancy between 

studies may be related to: 1) the selectivity of 5-HT2A antagonists – volinanserin and EMD-

281,014 are both highly selective antagonists that demonstrate ≈ 300 to 2000-fold selectivity for 

the 5-HT2A receptor 518, 519, respectively, while clozapine and quetiapine demonstrate affinity 

for other serotonergic and non-serotonergic receptors 478 and, consequently, it is difficult to 

conclude the exact contribution of these targets to the anti-dyskinetic benefit of these 

compounds 510; 2) differences in species neurochemistry and striatal anatomy may account for 
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variable findings between rat and monkey models 515 – expression of the 5-HT2A receptor differs 

in the 6-OHDA-lesioned rat 520 compared to the MPTP-lesioned marmoset 508, as well as the 

organisation of striatal neurons between species 314. On the other hand, the 5-HT2A partial 

agonist R-3,4-methylenedioxymethamphetamine 521 and inverse agonist pimavanserin 522 both 

led to reductions in dyskinesia in the parkinsonian non-human primate. Although it remains 

unclear how the variable actions of these 5-HT2A ligands contribute to anti-dyskinetic efficacy 

517, the association of high doses with ceiling effects may point to a limit of the therapeutic 

potential of 5-HT2A receptor blockade. Compared to 5-HT1 agonists, 5-HT2A antagonists have 

not been well-studied for dyskinesia-related endpoints in clinical settings. Open-label trials in 

PD subjects found a modest anti-dyskinetic benefit of pimavanserin 523 and a significant anti-

dyskinetic effect of ritanserin 524. A single double-blind placebo-controlled study found that 

clozapine was effective in the treatment of dyskinesia in severe PD 525, whereas one single-blind 

crossover study revealed that ritanserin improved peak dose dyskinesia in PD 526. Importantly, 

the anti-dyskinetic benefit conferred by 5-HT2A antagonists was at the cost of worsened 

parkinsonian symptoms 524, 526, which suggests that the use of 5-HT2A antagonists may have a 

narrow therapeutic window in the clinic. For example, ritanserin significantly reduced 

dyskinesia severity but at the expense of exacerbating parkinsonian symptoms in clinical trials 

524, 526. Given its strong affinity for D2 receptors 527, it is possible that blockade of D2 receptors 

may be responsible, in part, for its anti-dyskinetic efficacy 516. Of note, no autoradiographic 

binding study has assessed 5-HT2A binding levels in the post-mortem PD brain, and as such, 

alterations in binding levels or the mechanism of action underlying the anti-dyskinetic efficacy 

of 5-HT2A antagonists remain largely unexplored 505. Nonetheless, further clinical testing of 

selective 5-HT2A antagonists in L-DOPA-induced dyskinesia, particularly regarding ceiling 
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effects with high doses and L-DOPA anti-parkinsonian action, will clarify the therapeutic 

potential of their utility.  

5-HT2A receptors are abundantly expressed in the neocortex, striatum, and nucleus 

accumbens 528, 529. The mechanism underlying the anti-dyskinetic efficacy of 5-HT2A antagonists 

is unclear but may be related to their localisation in the basal ganglia, notably by modulation of 

nigrostriatal dopamine release and corticostriatal glutamate release 508, 530. Thus, an in vivo 

microdialysis study found that activation of the 5-HT2A receptor increased dopamine release in 

the rat striatum 531. As blocking the 5-HT2A receptor with antagonists would be expected to 

decrease nigrostriatal dopamine release, this effect could lead to impaired L-DOPA anti-

parkinsonian action 510. Indeed, quetiapine 532 and ritanserin 524, 526 interfered with the 

therapeutic benefit of L-DOPA in patients with PD. On the other hand, 5-HT2A-mediated 

neurotransmission increased presynaptic glutamate release 510, an effect that was blocked by the 

selective antagonists volinanserin and SR 46549B 533. Furthermore, local perfusion of 

volinanserin into the dorsal striatum of MPTP-lesioned mice reduced striatal glutamate levels 

534. It remains to be demonstrated whether reductions in striatal glutamate levels induced by 5-

HT2A antagonists is a mechanism whereby they improve dyskinesia 510.  

 

5-HT3 receptor 

Compared to other 5-HT receptors, the 5-HT3 receptor has received considerably less 

interest as a therapeutic target in L-DOPA-induced dyskinesia in PD. As the sole ionotropic 

receptor in the 5-HT family, the receptor is a hetero-pentamer that forms a cation channel 

permeable to Na+ and K+ 535, 536. Largely localised to pre-synaptic terminals, activation of the 5-

HT3 receptor modulates the release of neurotransmitters such as dopamine 537, glutamate 538 and 
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5-HT 539. The role of the 5-HT3 receptor in controlling the release of dopamine, which plays 

aetiological roles in the development of dyskinesia 540, suggests that it can exert an anti-

dyskinetic effect. Thus, in rat striatal slices, application of the 5-HT3 agonists 2-methyl-5-HT 

and phenylbiguanide stimulated endogenous release of dopamine 541, 542, an effect that was 

attenuated with application of 5-HT3 antagonists 537, 543. At the behavioural level, blockade of 

the 5-HT3 receptor has diminished dopaminergic transmission-mediated motor responses such 

as rotations 544, stereotypies 545 and oro-facial dyskinesias 546. Moreover, in PD subjects and 

animal models, ligands with antagonistic action at the 5-HT3 receptor 547-554, including clozapine 

511, 525, 555, mirtazapine 556, quetiapine 512, AQW051 557, and AZD0328 558, alleviated dyskinesia. 

Although these ligands are non-selective, it is conceivable that blockade of the 5-HT3 receptors 

may have contributed to their anti-dyskinetic action, although the extent is unclear.  

Only two recent studies have assessed the anti-dyskinetic efficacy of selective 5-HT3 

receptor blockade. In the 6-OHDA-lesioned rat, treatment with the antagonist ondansetron (0.04 

and 0.08 mg/kg) led to a ≈ 27% and ≈ 54% reduction of dyskinesia compared to vehicle 559. In 

the same animal model, a similar magnitude of reduction in dyskinesia severity (≈ 64%) was 

obtained with administration of ondansetron 0.0001 mg/kg 560. Of note, both studies 

administered the 5-HT3 antagonist ondansetron, and as such, it is unclear whether its therapeutic 

benefit can be attributed to blockade of the 5-HT3 receptor or the specific effect of ondansetron. 

Moreover, as several selective 5-HT3 antagonists are clinically available as anti-emetics with 

variable pharmacokinetic profiles, it would be of interest to assess whether these differences 

may alter the anti-dyskinetic efficacy of these ligands (see Chapter 2). While in vitro and in vivo 

studies provide indirect support the role of the 5-HT3 receptor in L-DOPA-induced dyskinesia, 

results of the behavioural studies with ondansetron in parkinsonian animal models are 
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compelling, although insight into possible mechanism(s) of action remains lacking. Indeed, only 

two autoradiographic binding studies investigated 5-HT3 receptors in PD but neither have 

focused on dyskinesia. One study using post-mortem putamen tissue failed to detect a significant 

difference in 5-HT3 binding between PD patients and healthy controls 561. The medical history 

of patients including medication, co-morbid conditions (i.e., dyskinesia) was not disclosed, 

which precludes drawing conclusions about a specific involvement of 5-HT3 receptors in PD. 

In another study performed in the 6-OHDA-lesioned rat, 5-HT3 binding levels were reduced in 

the entorhinal and prefrontal cortices ipsilateral to lesion 562. However, this study was limited 

for two reasons: 1) measurement of binding levels was limited to limbic forebrain and cortical 

regions and excluded basal ganglia; and 2) animals were not administered L-DOPA to induce 

expression of dyskinesia. Therefore, studies that investigate altered 5-HT3-mediated 

transmission L-DOPA-induced dyskinesia may further our understanding about the relationship 

between the 5-HT3 receptor and the condition (see Chapter 5). 

 

5-HT transporter 

The 5-HT transporter (SERT) has also been implicated in the pathophysiology of 

dyskinesia, notably by studies that assessed SERT binding as a measure of 5-HT innervation in 

the basal ganglia 475. Compared to non-dyskinetic subjects, SERT binding was increased in 

dyskinetic PD patients, rats, and macaques 563. Following these studies, PET imaging revealed 

increased SERT to DAT binding ratio in the putamen 564 and GP 565, 566 of dyskinetic PD patients. 

In support of these findings, inhibition of SERT with selective 5-HT reuptake inhibitors (SSRIs) 

suppressed dyskinesia in rodent and non-human primate models. Both acute 567 and chronic 568, 

569 administration of the SSRIs citalopram and paroxetine improved dyskinesia in the hemi-
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parkinsonian rat without compromising L-DOPA anti-parkinsonian action. Contrary to these 

positive results, a single study found that acute administration of fluoxetine failed to 

significantly reduce dyskinesia in the same animal model 570. The clinical benefit of SSRIs on 

dyskinesia remains unclear as the few studies that were conducted reported conflicting results. 

Daily administration of fluoxetine over 2 weeks improved apomorphine-induced dyskinesia 

compared to baseline 571, whereas a 4-week randomised controlled trial revealed that paroxetine 

had no significant effect on intravenous L-DOPA-induced dyskinesia 572. While a retrospective 

study found that exposure to SSRIs may delay the onset and severity of dyskinesia in PD 

subjects 573, further clinical investigations assessing the use of SSRIs in dyskinesia as an end-

point are warranted 460.  

The findings described above provide evidence of striatal 5-HT hyperinnervation in the 

dyskinetic state, which may contribute to the dysregulated release of L-DOPA-derived 

dopamine 403, 563. However, the lack of selectivity of SSRIs raises questions about the 

mechanism mediating the anti-dyskinetic efficacy of SSRIs; some suggest that it may be a 

combination of mechanisms 460. Therefore, SERT modulation by SSRIs may alleviate 

dyskinesia by: 1) activation of presynaptic 5-HT1 receptors to reduce dopamine release 510, 574; 

2) reduced fluctuations in synaptic dopamine levels by blocking dopamine reuptake in 

serotonergic neurons 575; and 3) activation of postsynaptic 5-HT1 receptors 460.  

 

1.2.6.3. Glutamatergic system 

Evidence suggests that both dopamine depletion and dopaminergic replacement therapy 

with L-DOPA can contribute to secondary changes in glutamatergic transmission within the 

basal ganglia 576. Changes in corticostriatal plasticity have been reported in animal models of 
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PD and dyskinesia, notably the 6-OHDA-lesioned rat and MPTP-lesioned macaque 380, 577-579, 

culminating in an inability to form long-term depression 580 and to reverse previously induced 

long-term potentiation 581. Furthermore, dyskinesia is associated with increased extracellular 

glutamate levels in the striatum 487 and SNr 582, 583, as well as altered expression of glutamate 

transporters in the same structures 583-585. 

Glutamate receptors are divided into two major types: ionotropic and metabotropic 

receptors. Ionotropic glutamate are ligand-gated ion channels that mediate fast excitatory 

synaptic transmission and consist of N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors 586. On the other hand, 

metabotropic glutamate (mGlu) receptors are divided into three subtypes of G-protein coupled 

receptors based on sequence homology, G-protein coupling, and selectivity for ligands 587, 588. 

Group I includes mGlu 1 and 5 receptors, which mainly couple to Gq and stimulate 

phosphoinositide hydrolysis 579, 589. Group II includes mGlu 2 and 3 receptors and Group III 

includes mGlu 4, 6, 7, receptors 587; both groups couple to Gi/o and inhibit adenylate cyclase 579, 

589. 

 

Therapeutic agents 

Ionotropic glutamate receptors 

Amongst ionotropic glutamate receptors, NMDA receptors have been the most 

extensively studied therapeutic target for dyskinesia and, particularly, converging evidence 

provides support for the role of the NR2B subunit. Indeed, autoradiographic binding studies 

have reported increased levels of NR2B subunit-containing NMDA receptors in the striatum of 

dyskinetic monkeys 590, as well as PD patients with dyskinesia 591. Moreover, altered subcellular 
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distribution of NMDA receptor subunits has been associated with the development of dyskinesia 

in the hemi-parkinsonian rat 592-594 and the parkinsonian monkey 595. Further support for 

enhanced glutamatergic activity in dyskinesia arises from a study that found that, following L-

DOPA administration, dyskinetic PD patients showed high striatal uptake of [11C]CNS 5161, a 

PET tracer that binds to activated NMDA receptors 596. Consistent with these post-mortem 

studies, behavioural studies have demonstrated the anti-dyskinetic efficacy of the NMDA 

antagonists amantadine and memantine in rodents 511, 570, 597 and monkeys 598, although the 

benefit was modest 576. This preclinical success has been reproduced in the clinic as amantadine 

alleviated dyskinesia without interfering with L-DOPA anti-parkinsonian action 599-601, which 

led to the approval of extended-release amantadine as the sole medication approved for 

dyskinesia in PD by the FDA 602-604. However, the efficacy of amantadine was moderate 605, 606 

and associated with the development of hallucinations 602-604, and tolerance also mitigates its 

long-term therapeutic efficacy 607, 608. For their part, NR2B-selective NMDA antagonists 

demonstrated inconsistent efficacy in preclinical models, including exacerbating dyskinesia 609, 

610, no improvement 611, and alleviating dyskinesia 612-615. Although a randomised placebo-

controlled trial found that the NR2B-selective antagonist CP-101,606 improved dyskinesia 

without affecting anti-parkinsonism 616, there has been no further clinical investigations of 

NR2B-selective antagonists in dyskinesia.  

In contrast, the involvement of AMPA and kainate receptors in dyskinesia remains 

uncertain 510. While one study found an increase in AMPA binding levels in the posterior 

striatum but a decrease in the anterior striatum of L-DOPA naïve and L-DOPA treated MPTP-

lesioned macaques 632, another study reported that AMPA binding levels remained unchanged 

in dyskinetic MPTP-lesioned macaques compared to non-parkinsonian and non-dyskinetic 
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MPTP-lesioned animals 633. In PD patients with dyskinesia, there was a decrease in AMPA 

binding levels in the caudate nucleus but not the putamen, when compare with healthy controls 

606. On the other hand, there is evidence of altered distribution of AMPA receptor subunits 

within glutamatergic synapses of dyskinetic animals 617, which may suggest abnormal insertion 

of GluR2 subunit lacking AMPA receptors at corticostriatal synapses 618. Moreover, a greater 

anti-dyskinetic effect was obtained by combination of AMPA and NMDA antagonists in the 

MPTP-lesioned primate 598, 619, although ligands also demonstrated considerable affinity for 

other targets 620, 621. Despite the anti-dyskinetic efficacy of AMPA/kainate antagonists reported 

in preclinical studies 622, 623, the selective AMPA antagonist perampanel failed to alleviate 

dyskinesia in a Phase II trial 624. Similarly, the AMPA antagonist topiramate worsened 

dyskinesia and was poorly tolerated in a randomised placebo-controlled trial with PD subjects 

625. Another AMPA antagonist, talampanel, also underwent testing for safety and efficacy in 

dyskinesia in Phase I and II trials, respectively, but results have not been updated since 2011 

(NCT00036296).  

 

Metabotropic glutamate receptors 

In addition to ionotropic glutamate receptors, an increasing body of literature has 

examined the role of mGlu receptors in L-DOPA-induced dyskinesia. Targeting mGlu receptors 

offers notable advantages over ionotropic receptors 579: 1) mGlu receptors have a more limited 

anatomical distribution, which may lead to more specific activity of ligands and less adverse 

effects, and 2) they modulate glutamatergic signalling without affecting the excitatory action of 

glutamate on synaptic transmission. Amongst mGlu receptors, mGlu5 receptor antagonists have 

demonstrated the most therapeutic potential for dyskinesia 579. Post-mortem studies in the 
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macaque found that mGlu5 binding levels were unaltered in the caudate nucleus, putamen, GPi, 

and GPe when parkinsonian animals were compared to control ones 643-645. However, L-DOPA 

administration led to an increase of mGlu5 binding levels in these brain regions, and receptor 

levels even correlated with dyskinesia scores 643, 646. On the other hand, the upregulation of 

mGlu5 binding levels in the caudate nucleus, putamen, GPi, and GPe was absent when 

parkinsonian macaques were co-administered L-DOPA and the mGlu5 NAM 2-nethyl-6-

(phenylethynyl)pyridine 643, 647. In line with these promising results obtained in post-mortem 

studies, the therapeutic potential of modulating mGlu5 receptors was evidenced by the anti-

dyskinetic efficacy of mGlu5 antagonists in rodent and non-human primate models of PD 626-629 

models as well as in patients with PD 630. Following these favourable data, a Phase IIb/III trial 

with 140 PD patients is currently ongoing that will assess the effect of the mGlu5 receptor 

negative allosteric modulator dipraglurant on the Unified Dyskinesia Rating Scale 

(NCT04857359). The lack of further clinical investigation may be partly explained by the 

findings of a meta-analysis, which was unable to conclude if mGlu5 antagonists were beneficial 

for dyskinetic PD patients, in part due to discrepancies in the anti-dyskinetic efficacy depending 

on the primary outcome measure 631. 

The mGlu4 receptor is the most studied target amongst Group III receptors 579 but its 

therapeutic potential is unclear. Whereas the mGlu4 positive allosteric modulators both 

ADX88178 and VU0364770 were devoid of anti-dyskinetic efficacy in the 6-OHDA-lesioned 

rat 632, 633, the orthosteric agonist LSP1-2111 attenuated the development of dyskinesia in the 6-

OHDA-lesioned mouse, although it did not reduce established dyskinesia 634. Contrary to the 

reported reduction in dyskinesia severity in the MPTP-lesioned macaque 635, foliglurax, an 

mGlu4 positive allosteric modulator, failed to demonstrate anti-dyskinetic efficacy in a Phase 
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IIa randomised placebo-controlled study (NCT03162874), which led to the termination of its 

clinical development 636. For the mGlu2/3 receptor, results from autoradiographic binding 

studies are not suggestive that changes to binding levels in the caudate nucleus, putamen, GPi 

or GPe contribute to the development of dyskinesia in PD 659; similar findings were obtained in 

a post-mortem examination of the macaque brain 660. Despite an earlier report that mGlu2/3 

activation with the agonist LY-379,268 did not improve dyskinesia 611, administration of another 

orthosteric agonist, LY-354,740 significantly reduced dyskinesia in the 6-OHDA-lesioned rat 

and MPTP-lesioned marmoset 637, although differences in experimental design may explain the 

discrepancies. Furthermore, mGlu2 positive allosteric modulation with LY-487,379 alleviated 

dyskinesia in rat and non-human primate models 638, 639, which suggests that the anti-dyskinetic 

efficacy of Group II compounds may be attributed to selective mGlu2 activation. Although there 

has been no clinical development of mGlu2/3 activation in dyskinesia, preclinical findings have 

been encouraging and await confirmation in PD subjects. 

 

1.2.6.4. Other neurotransmitter systems 

Evidence also implicates abnormalities in adenosinergic 640, opioid 641, cholinergic 642, 

noradrenergic 643, and cannabinoid 644 transmission in dyskinesia, which have been reviewed 374, 

510, 645-647. 

 

1.2.7. Management  

According to an evidence-based report by the IPMDS, the only treatments considered 

efficacious for dyskinesia are: amantadine, clozapine, bilateral STN or GPi deep brain 

stimulation, and unilateral pallidotomy 153. Management strategies for dyskinesia target either 
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continuous drug delivery, L-DOPA sparing or halting nigral loss 399. Whereas these approaches 

are associated with a lower rates of dyskinesia 648-650, it is difficult to uncouple the effect of 

lowered total dosage of L-DOPA 651-654 as cumulative L-DOPA dose is a known risk factor for 

dyskinesia development 235.   

 

1.2.7.1. Amantadine 

The low-affinity and uncompetitive NMDA receptor antagonist amantadine 655 is the 

sole anti-dyskinetic agent approved by the FDA 210. Whereas it demonstrated moderate efficacy 

in placebo-controlled trials 656, doses of immediate-release amantadine (100-200 mg daily) that 

conferred anti-dyskinetic benefit were associated with adverse events 399 including 

hallucinations, blurred vision, and dry mouth that affected 19% to 29% of subjects 657, 658, as 

well as tachyphylaxis 654. These concerns led to the development of an extended-release 

formulation of amantadine (ADS-5102) that has been approved by the FDA 653, which 

effectively reduced dyskinesia at 12 weeks in two randomised double-blind placebo-controlled 

trials 602, 603, an effect that was maintained at 14 weeks 602. An interim report from an open-label 

study found that at 64 weeks, ADS-5102 was well tolerated and was effective in reducing 

dyskinesia but adverse events including falls, hallucinations and constipation, led 14% of 

patients to discontinue the study 607. However, insight into the mechanism of action governing 

the anti-dyskinetic efficacy of amantadine is still lacking 212. Other NMDA receptor antagonists 

failed to demonstrate anti-dyskinetic efficacy 659-662 and/or compromised the therapeutic benefit 

conferred by L-DOPA 663. Therefore, the action of amantadine at additional sites 211, including 

antagonism at nicotinic acetylcholine receptors 664, 665 at therapeutically relevant concentrations 

211, may contribute to its anti-dyskinetic efficacy 212, 666.  
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1.2.7.2. Clozapine 

The atypical antipsychotic clozapine is designated “clinically useful” for the treatment 

of dyskinesia in PD but requires specialised monitoring due to the risk (<2%) of agranulocytosis 

153, 667. In a single randomised double-blind placebo-controlled trial, clozapine (39.4 ± 4.5 

mg/daily) treatment led to a significant reduction in on time with dyskinesia at 10 weeks 

compared to placebo 525. Whereas agranulocytosis was not reported as an adverse event, 12% 

of patients developed eosinophilia 525, and the risk of serious adverse events has limited the use 

of clozapine in clinical practice 399.  

 

1.2.7.3. Delivery of L-DOPA 

Based on the hypothesis that pulsatile administration of L-DOPA triggers dyskinesia 343, 

several treatments that change L-DOPA formulation to deliver a more sustained release and/or 

administration of dopamine have been developed 668. These novel formulations seek to improve 

the pharmacokinetics of L-DOPA and bypass the gastrointestinal tract 669, 670 and some are 

currently under investigation 399. Whereas open-label studies reported a reduction of off time 

and dyskinesia with continuous dopaminergic stimulation 404-406, 671, a recent meta-analysis 

found that continuous dopaminergic stimulation therapies provided benefit for both on and off 

time but at the expense of increased incidence of dyskinesia 672. It remains unclear whether this 

approach can reduce the development of dyskinesia 672 as additional factors, such as young age 

of onset, higher L-DOPA dose, and low body weight, also contribute to pathogenesis 266.    

 

1.2.7.4. Device-assisted therapies 
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Apomorphine was first used in PD in 1951 to treat tremor and rigidity 673, 674 but its use 

was limited by its low bioavailability, cost and side effects (e.g. nausea and hypotension) 675. 

However, changes to the formulation of apomorphine to continuous subcutaneous 

administration via a pump system has led to more rapid bioavailability by avoiding gastro-

intestinal transit time and first pass hepatic metabolism 653, 676. The therapeutic benefit conferred 

by apomorphine may be attributed to its profile as a broad spectrum dopamine agonist on D1-

like and D2-like receptors 652, 677. In addition, apomorphine exhibits affinity as an antagonist to 

5-HT2A, 5-HT2B, 5-HT2C receptors and adrenergic α2A, α2B and α2C receptors and agonist to 5-

HT1A receptors 652, 677, which have also been implicated in the pathogenesis of dyskinesia 510. 

Continuous apomorphine infusion may reduce dyskinesia induction compared to oral 

dopaminergic therapy 678-680 by providing continuous delivery of drug to the basal ganglia 652, 

681. A substantial number of open-label trials have assessed the efficacy of apomorphine infusion 

and while most reported that apomorphine reduced off time 682-686, the effect on dyskinesia was 

variable. Studies reported that dyskinesia was attenuated by 14% to 65% 678, 687, 688 but two 

studies failed to detect a significant benefit 674, 689. The discrepancy in results may be attributed 

to differences in clinical pattern of dyskinesia across studies, as well as the observation that 

dyskinesia reduction is associated with dose reduction of dopaminergic medication 652. The 

TOLEDO study was the first randomised, placebo-controlled, double-blind multi-centre trial to 

assess apomorphine infusion in PD 690. Conducted in 107 patients, subcutaneous infusion of 

apomorphine (3-8 mg/h) significantly increased on time without troublesome dyskinesia at 12 

weeks. This benefit was maintained up to 64 weeks in the open-label addition of the TOLEDO 

study 691. In line with these findings, multicentre observational studies also reported that 

subcutaneous apomorphine infusion reduced dyskinesia measured by the Unified PD Rating 
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Scale (UPDRS) part IV 692, 693. The good long-term results of apomorphine infusion, however, 

are marred by high drop-out rates related to adverse events 222, such as skin nodules that affected 

44% of patients, as well as nausea and somnolence 674. In addition, subcutaneous and sublingual 

administration of apomorphine are indicated for the treatment of off episodes in subjects with 

PD, often for those with more advanced stages of disease 694, 695.  

The development of gastro-intestinal infusion of L-DOPA has permitted its continuous 

delivery into the intestine, which avoids the erratic absorption of L-DOPA in PD 696. In the form 

of an intestinal gel, L-DOPA is administered continuously via a pump system into the proximal 

jejunum 696, the principal site of L-DOPA absorption 697. In a randomised placebo-controlled 

double-blind trial in PD subjects, gastro-intestinal infusion was superior to immediate release 

oral L-DOPA in increasing ON time without troublesome dyskinesia at 12 weeks 698. In the 

open-label extension that followed 258 PD patients, intestinal gel L-DOPA led to sustained 

improvements in dyskinesia over two years 699. Moreover, observational studies found that 

gastro-intestinal L-DOPA infusion alleviated dyskinesia 692, 693. However, treatment is 

associated with concerns about polyneuropathy (5% of patients) 696, 700, as well as additional 

adverse events such as impulse control disorders and procedure or device related adverse events 

701. While a pooled analysis initially reported that the incidence of device or procedure related 

adverse events was ~75% of patients 702, a more recent study only reported an incidence of 16% 

703; this may be suggestive of improvements in device positioning and follow-up. Nonetheless, 

efforts are underway to develop new delivery modes of L-DOPA 669, a few are under 

investigation, including subcutaneous L-DOPA infusion 704 and an intestinal gel that contains 

entacapone with L-DOPA 705. 
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1.2.7.5. Surgical interventions  

Non-pharmacological treatments that have demonstrated efficacy for dyskinesia only 

include deep brain stimulation of the bilateral STN, GPi and unilateral pallidotomy in an 

evidence-based medicine report by the IPMDS taskforce 153. The choice of target for deep brain 

stimulation, however, remains contentious. A meta-analysis found that while STN deep brain 

stimulation was associated with a greater reduction in L-DOPA equivalent daily dose than 

targeting the GPi, at 12-months follow-up, the latter led to superior reductions in dyskinesia 706. 

While dyskinesia severity improved by 21% to 70% with STN deep brain stimulation in PD 

patients 707, 708, there were also significant reductions in L-DOPA equivalent daily dose 653. As 

L-DOPA dosage is a risk factor for the development of dyskinesia 709, it is difficult to parcellate 

the extent of the anti-dyskinetic action of targeting the STN. In contrast, deep brain stimulation 

of the GPi is thought to reduce dyskinesia directly 226. Despite its success as a therapeutic 

approach in dyskinesia, the mechanism of action underlying the efficacy of deep brain 

stimulation is unclear 710, 711. Moreover, the procedure is invasive, and limited by post-operative 

and long-term hardware-related complications, affecting approximately 8% of patients 712, 713, 

and adverse events that affect up to 25% of patients 711. 

Amongst lesion surgeries, only unilateral pallidotomy is “efficacious” and “clinically 

useful” for dyskinesia 153 but it is seldom performed in clinical practice, due to the risks 

associated with surgical lesion and the availability of deep brain stimulation 399.  

 As iterated above, despite effective treatment options for dyskinesia in PD, efficacy is 

partial and associated with undesirable side effects. Thus, there remains a significant unmet need 

in the treatment of L-DOPA-induced dyskinesia. 
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1.3.  Parkinson’s disease psychosis 

Psychosis is recognised as one of the most common and disabling neuropsychiatric 

disorders encountered in PD 141 and associated with impaired quality of life, caregiver burden 

714, and early mortality 715. Present in 26% to 74% of PD patients 148, 716-718, the large variation 

in prevalence may be attributed to differences in sample populations, symptom definition, and 

study design across studies 719. PD psychosis tends to manifest during late disease stages 720, 

which suggests a multifactorial interplay between underlying disease and pharmacology of 

drugs 719, 721. 

 

1.3.1. Risk factors for PD psychosis  

Amongst risk factors associated with developing psychosis in PD, disease duration, 

disease severity, and presence of other co-morbidities are the most established 719. Longer 

disease duration is associated with increased risk for PD psychosis 722, 723 with prevalence of 

visual hallucinations increasing from <4% in the first 5 years 724 to 74% by 20 years of follow-

up 725. Moreover, longer disease duration also implies greater disease severity 719, particularly 

with respect to deficits in motor symptoms and daily living 722, 726. While PD psychosis is more 

frequently linked with late stages of disease, it has also been reported in 16% to 42% of drug 

naïve PD patients, although most experience minor hallucinations 727-729. On the other hand, it 

is difficult to parcellate the contribution of medication to the development of psychotic 

symptoms in PD as psychosis is more common in advanced stages, when patients are treated 

with dopaminergic drugs 719. Importantly, PD patients that exhibit visual hallucinations have a 

similar total daily dosage of dopaminergic drugs compared to those without hallucinations 722, 

730-732. In a prospective outpatient study with PD patients, there were stronger associations 
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between visual hallucinations and patient characteristics, such as disease severity and dementia, 

than with dopaminergic medication dosage 733. These results collectively suggest that 

dopaminergic drugs alone are insufficient to induce psychosis 734, 735 but may facilitate milder 

forms of psychosis 736. The risk of developing PD psychosis is variable with dopaminergic 

medication type – dopaminergic agonists are associated with a higher propensity to induce PD 

psychosis than L-DOPA 261, a discrepancy that was also revealed by two meta-analyses 737, 738.  

The presence of co-morbidities, particularly rapid eye movement sleep behaviour 

disorder (RBD) and cognitive impairment, has been identified as a risk factor for PD psychosis. 

Longitudinal studies have found higher risks of developing visual hallucinations in PD patients 

with RBD after 2 739 and 12 years 718 follow-up. The interplay between RBD and visual 

hallucinations may explain the presence of visual hallucinations in early PD 719, as well as a 

common neurobiological process that underlies both conditions 740. Since the association 

between visual hallucinations and subsequent emergence of PD dementia was first reported 741, 

cognitive impairment has been regarded as one of the most important independent risk factors 

for developing psychotic symptoms in PD 722, 742-744. In addition to increased prevalence of 

psychosis in PD dementia 730, 731, 745 to as high as 5-fold in 12 years 718, the severity and types of 

symptoms also differ 745 with more frequent reports of complex hallucinations in PD dementia 

746. On the other hand, two studies failed to find a significant association between cognitive 

dysfunction and development of PD psychosis 718, 747; visual hallucinations have also been 

reported in untreated PD patients without dementia 748. The discrepancy in findings may suggest 

that hallucinations and cognitive decline are conditions that share common neuropathologic 

processes that exist on a continuum rather than separate phenomena 719. Mood disorders, 

particularly depression 726, 744, have been correlated with psychotic symptoms in PD, although 
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multivariate analyses found that the effect was inconsistent 722, 749. While there is evidence that 

links visual disorders 746, 750, autonomic 732 and olfactory dysfunction 751 as risk factors for PD 

psychosis, the effect is weak to moderate and lacks support as independent risk factors 719.  

 

1.3.2. Symptomology 

The National Institute of Neurological Diseases and Stroke (NINDS)/National Institute 

of Mental Health (NIMH) working group proposed a unified diagnosis criteria set for PD 

psychosis that includes 1) presence of at least one psychotic symptom; 2) a primary diagnosis 

of PD that fulfils the United Kingdom brain bank criteria; 3) the symptoms occur after the onset 

of PD and are either recurrent or continuous for 1 month; 4) exclusion of other causes (i.e., 

dementia with Lewy bodies, psychiatric disorders, mood disorders with psychotic features, or a 

medical condition including delirium); 5) can occur with or without insight, dementia, or 

treatment for PD 752. PD psychosis comprises a broad spectrum of symptoms, including 

hallucinations, delusions, illusions, and false sense of presence; presentation of symptoms is 

heterogeneous and idiosyncratic 752. Amongst the psychotic features, visual hallucinations are 

the most common, affecting 14% to 50% of PD patients 753-755 but auditory, olfactory, gustatory 

and tactile hallucinations can also be present 717, 727, 754. Multimodal hallucinations have also 

been reported in some patients but they receive comparatively little attention 756. Minor 

symptoms, including feeling of presence and passage hallucinations 757, develop during early 

disease course and have gained interest as a possible biomarker for PD psychosis progression 

to more severe symptoms 727. To date, the lack of a widely used and validated scale to evaluate 

psychotic features in PD has impeded understanding of the condition 719. Scales have often been 

adopted from non-PD conditions, which do not represent actual symptomology, and no scale 
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has comprehensively covered the entirety of PD symptoms 758, 759. Efforts to characterise the 

complete repertoire of psychotic symptoms in PD with validated scales will enhance our 

understanding and the development of therapies.  

 

1.3.3. Pathophysiology 

The pathophysiology of PD psychosis is poorly understood, as it is difficult to unravel 

the interaction between the underlying disease and drug-induced factors. Overall, functional 

MRI (fMRI) studies revealed that PD subjects with visual hallucinations showed greater 

activation of frontal and subcortical areas 760 but lower activation in the parietal lobe, lateral 

occipito-temporal cortex 760, and occipital cortex 761, 762, compared to those without 

hallucinations. In line with these results, PET and SPECT studies found that PD patients with 

visual hallucinations showed hypometabolism 763, 764 and hypoperfusion 765, 766 of occipito-

parieto-temporal brain regions. The overlap with areas of reduced activation in MRI studies may 

be suggestive of similar functional changes or even a causal link 767. In addition, structural MRI 

studies have reported atrophy in visual areas, such as the occipito-temporal and visual parietal 

cortices of PD patients with psychosis 768-770. While these results provide support for the role of 

visual deficits in PD psychosis, symptoms were defined by visual hallucinations in most studies 

767, and studies encompassing other psychotic symptoms are required to clarify the link. On the 

other hand, MRI and voxel-based morphometry studies of patients with visual hallucinations 

have revealed atrophy in the frontal and parietal cortices 770-772 and hippocampus 773, which is 

consistent with the association between cognitive deficits and visual hallucinations in PD 748. 
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1.3.4. Neuropathology 

PD patients with visual hallucinations have increased accumulation of Lewy bodies in 

the superior and lateral frontal, inferior parietal and cingulate cortices, as well as in the amygdala 

and parahippocampal gyrus 774-777. Moreover, higher densities of Lewy bodies in 

parahippocampal and inferior temporal cortices have been linked to shorter latency between 

time of PD onset and appearance of visual hallucinations 774. In contrast, PD subjects with visual 

hallucinations but without dementia had increased Lewy body load in the amygdala but only 

sparse Lewy bodies in the cortex and hippocampus, compared to those with both visual 

hallucinations and dementia 775. This discrepancy in Lewy body burden may indicate that 

distinct neuropathological changes may underlie visual hallucinations and dementia 778. The 

paucity of studies assessing Lewy pathology and psychotic symptoms other than visual 

hallucinations 776, 777, 779 limits a more comprehensive understanding of Lewy bodies 

dissemination in PD psychosis and warrants further study. 

 

1.3.5. Explanatory models 

More recent models have proposed possible mechanisms underlying PD psychosis, 

particularly for visual hallucinations 780. Whereas previous models have focused on 

neurotransmitter systems 781, 782, newer models integrate how multiple processes, such as 

modulation of attention by attentional and resting state brain networks 783-785, can contribute to 

deficits in perceptions, and lead to the presence of visual hallucinations. Dysfunction of these 

networks may have a biological basis, possibly related to neuropathological and structural 

changes in the brains of PD patients 776, 786. The hypotheses put forth by these models have been 

reviewed elsewhere 780.  
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1.3.6. Neuropharmacology 

1.3.6.1. Dopaminergic system  

Early studies posited the role of the dopaminergic system in the pathogenesis of PD 

psychosis, notably the use of dopaminergic therapy 719. In the majority of cases, psychotic 

symptoms in PD are induced by dopaminergic agents, such as L-DOPA and dopamine agonists 

787, 788, as well as selective MAO-B inhibitors 789-791. Moreover, psychotic symptoms in PD 

improved after lowering or withdrawal of dopamine stimulation 792, 793. The “kindling” model 

proposed that chronic stimulation of mesolimbic dopamine receptors by dopaminergic drugs 

causes hypersensitivity of receptors 781, 794. These changes result in the dysfunction of 

dopaminergic signalling within limbic structures that leads to a permissive environment for the 

development of psychosis 781, 793, 794. Indeed, imaging studies revealed that drug naïve PD 

patients had a higher risk of developing visual hallucinations when they had a greater extent of 

caudate dopaminergic denervation 752, 795 or reduced DAT binding in the ventral and dorsal 

striatum 796. These findings collectively suggest that damage to frontal-striatal circuits may be 

involved in the development of PD psychosis 784, possibly related to dysfunction in brain 

network activity 797, 798.  

A few inconsistencies with the “kindling” model suggest that the relationship between 

dopaminergic therapy and PD psychosis is more complicated 721. Psychotic symptoms have been 

reported in 16% to 42% drug naïve PD patients 727-729 and the dose of dopaminergic therapy is 

not associated with severity of PD psychosis 730, 799, 800. While dopaminergic therapy is a risk 

factor for the development of PD psychosis, it does not appear to be a requirement, especially 

considering the patients that exhibit psychotic symptoms without being on any medication. 
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Therefore, later models posited that the interaction between multiple neurotransmitter systems 

801 or the serotonergic-dopaminergic imbalance 802 may also be implicated in the complex 

aetiology of PD psychosis 803. 

 

1.3.6.2. Serotonergic system  

Evidence provides support for the involvement of the serotonergic system in PD 

psychosis 375, 719. In addition to dopaminergic denervation in PD 48, there is also degeneration of 

the serotonergic system 804, 805, including a 56% loss of median raphe nucleus serotonergic 

neurons 806. A model for psychotic symptoms in PD suggests that they are related to the 

compensatory upregulation of cortical 5-HT2A receptors 782. The link between the serotonergic 

system and PD psychosis was further supported by a PET study that revealed PD patients with 

visual hallucinations had increased 5-HT2A receptor binding in the infero-lateral temporal 

cortex, ventral visual pathway, and dorso-lateral prefrontal cortex, compared to those without 

visual hallucinations 807. In line with these results, an autoradiographic binding study also found 

increased 5-HT2A receptor binding in the infero-lateral temporal cortex in PD patients with 

visual hallucinations 808. While these studies provide evidence of increased 5-HT2A receptor 

levels in PD psychosis, preclinical behavioural studies also found that 5-HT2A ligands 

demonstrated antipsychotic efficacy. Agents with 5-HT2A antagonist activity, such as clozapine 

809, mirtazapine 810, and EMD-281,014 519, significantly alleviated psychosis-like behaviours in 

the MPTP-lesioned marmoset 513, 516, 556. The 5-HT2A inverse agonist pimavanserin also 

attenuated spontaneous head twitches, amphetamine-induced hyperactivity, and prepulse 

inhibition deficits in the 6-OHDA-lesioned rat 811.  
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Despite their success in animal models, few 5-HT2A ligands have been recommended by 

the IPMDS evidence-based medicine report for the treatment of PD psychosis 812. Clozapine 

significantly improved psychotic symptoms without worsening parkinsonism in randomised 

placebo-controlled clinical trials 813-815 and is considered clinically useful but the need for 

specialised monitoring for agranulocytosis makes it unsuitable for some patients 812, 816. Whereas 

quetiapine showed promising results in open-label 532, 817 and clozapine comparison studies 818, 

819, only one out of five randomised controlled trials reported antipsychotic efficacy with a 

modest sample size of 16 patients 820-824. Based on these conflicting findings, the antipsychotic 

efficacy of quetiapine is inconclusive 825 and it is considered possibly useful for the treatment 

of PD psychosis 812. Mirtazapine and EMD-281,014 have not undergone testing in randomised 

placebo-controlled trials, although case reports found that mirtazapine reduced psychosis 

severity in PD subjects has been documented for both Mirtazapine 826, 827. In contrast, 

pimavanserin demonstrated efficacy in a Phase III randomised, placebo-controlled trial 828, 

which led to its approval treat PD psychosis by the FDA 829 and its designation as clinically 

efficacious with an acceptable safety profile 812.  

The increase in 5-HT2A receptors in the infero-lateral temporal cortex of PD patients 

with psychosis 807, 808, along with overstimulation of these receptors by dopaminergic drugs may 

contribute to the development of visual hallucinations 830. In PD psychosis, atypical 

antipsychotics may exert antipsychotic efficacy by blockade of 5-HT2A receptors in these brain 

areas 831. In contrast, the therapeutic benefit obtained with pimavanserin may be through its 

action as a 5-HT2A inverse agonist 719, which leads to additional dampening of 5-HT2A receptor-

mediated neurotransmission in the same brain areas 832. Despite the efficacy of atypical 

antipsychotics in PD psychosis, their use is hindered by concerns of agranulocytosis and long-
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term monitoring with clozapine 667, 812, 833, and mild to no efficacy for pimavanserin 828, 834 and 

quetiapine 820-822. 

 

1.3.6.3. Other systems 

Evidence suggests that cholinergic deficits favour the emergence of visual hallucinations in 

PD 803, as well as a role for anticholinergic therapies in triggering them 207. These studies remain 

outside the scope of the present review but have been comprehensively reviewed by others 835-

837. Emerging therapies for PD psychosis include targets in glutamatergic, GABAergic, and the 

cannabinoid system (EudraCT: 2019-003623-37) 55. 

 

1.4.  Animal models of Parkinson’s disease 

Animal models are crucial to preclinical research in drug discovery 840 and in PD 

research, they are broadly categorised as neurotoxic, genetic, and alpha-synuclein based models 

841, 842. Neurotoxin-based animal models reproduce the extensive dopaminergic denervation of 

the human condition, behavioural deficits but fail to produce Lewy body pathology 843; these 

models have been reviewed previously 841, 844, On the other hand, genetic approaches, such as 

viral vector-mediated and transgenic models, allow the study of some key features of PD – 

alpha-synuclein pathology, cell loss and motor symptoms, and genes linked to monogenic 

causes of the disease 845. Genetic models of PD extend beyond the scope of this review but 

comprehensive reviews have been published 845, 846.  
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1.4.1. 6-OHDA-lesioned rat 

Amongst neurotoxin-based models in PD, the 6-OHDA-lesioned rat is amongst one of 

the most frequently used, partly due to its cost-effectiveness and minimal labour requirements 

847. Following intracerebral injection of the neurotoxin 6-OHDA 848, an analogue of dopamine, 

it is transported into cell bodies and fibres of both dopaminergic and noradrenergic neurons, 

where it accumulates in mitochondria 849. Inhibition of mitochondrial respiratory enzymes 850 

causes oxidative stress and mitochondrial damage 851, which is thought to be responsible for the 

neurotoxic effect of 6-OHDA 852. A common strategy in studies using the 6-OHDA-lesioned rat 

model includes administration of desipramine, a noradrenaline transporter blocker, prior to 6-

OHDA lesion 851. This allows selective destruction of dopaminergic neurons by preventing 

uptake of the neurotoxin by noradrenergic fibres 853, 854. 6-OHDA has poor penetration across 

the blood brain barrier, so it is typically injected intra-cerebrally into one of three target sites: 

the SNc, median forebrain bundle or the striatum 855, where it induces variable dopaminergic 

denervation 851. Injection of 6-OHDA into the median forebrain bundle produces >97% 

dopamine depletion lesions 856, 857, which resembles more advanced stages of PD 50, whereas 

injection of 6-OHDA into the SNc results in more moderate dopamine depletion (88% 

dopaminergic cell loss in the SNc) 858. In contrast, injections in the terminal field of the 

nigrostriatal pathway only produce a partial lesion that progresses more slowly 856, 857; such a 

model more closely resembles earlier stages of the disease, and allows the investigation of 

neuroprotective interventions in PD. In addition to tissue injection, intracerebroventricular 

administration of 6-OHDA also induces both degeneration of mesencephalic dopaminergic 

neurons 859, 860 and deficits in motor behaviour 861-863. However, this model has been seldomly 

used since the late 1970s 863, possibly due to the high risk of mortality associated with aphagia, 
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adipsia 864, 865, and epileptic seizures 866. Furthermore, the 6-OHDA-lesioned rat model has been 

pharmacologically validated to assess dyskinesia 511, 867, which provides a paradigm to test drug 

candidates for symptomatic therapies. 

 

1.4.1.1. Behavioural assessment 

Tests of physiological motor behaviour have been performed to estimate the extent of 

dopamine-denervating lesions in the 6-OHDA-lesioned rat and are described below. 

 

Cylinder test 

First described by Schallert and Tillerson, the cylinder test measures rat forepaw use 

during spontaneous exploration 868, taking advantage of the rearing behaviour exhibited by rats 

in a novel environment, i.e., standing on their hindlimbs and using their forepaws to make wall 

contacts 869. Forelimb asymmetry is based on the number of independent weight bearing 

contacts an animal makes with each forelimb (ipsilateral, contralateral and both) and the score 

is expressed as the performance of each limb as a percentage of total wall contacts 849. Whereas 

intact rats use both forepaws indiscriminately, rats subjected to a unilateral 6-OHDA lesion only 

use the forepaw contralateral to lesion in 10% to 30% of total contacts 511. Moreover, use of the 

paw ipsilateral to lesion in ≥ 70% of rears is indicative of 88% striatal dopamine deficit 868 and 

has been used as a threshold to select animals for further behavioural analyses 457, 515. Compared 

to other tests of physiological motor activity, the cylinder test offers several advantages 869, 

including: 1) a measure of spontaneous forelimb use in the testing cylinder that is identical to 

behaviour exhibited in its home cage; 2) the inter-rater reliability is very high (r > 0.95) 868; 3) 

it is a simple and objective test that does not require pre-training or extensive manipulation of 
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animals; and 4) the cylinder test uses a drug-free paradigm to assess the extent of nigrostriatal 

lesion, which is crucial for study designs assessing the effects of therapies on the development 

of treatment-related complications 637, 870.  

For paradigms assessing anti-dyskinetic therapies, it is crucial to determine whether their 

mode of action is due to suppressing motor behaviour, which would limit their value in PD 

because of further deterioration of parkinsonian symptoms 869. Therefore, using forelimb 

asymmetry measured by the cylinder test, we can determine whether the benefit conferred by 

anti-dyskinetic agents compromises L-DOPA anti-parkinsonian action. However, while L-

DOPA administration improves forelimb asymmetry to restore use of the forepaw contralateral 

to lesion in 6-OHDA-lesioned rats, the development of dyskinesia interferes with physiological 

limb use 511. To limit the disruptive effect of dyskinesia on cylinder test performance, a 

subtherapeutic dose of L-DOPA is often administered, which is sufficient to assess forelimb 

asymmetry in animals without triggering dyskinesia 515, 637, 870.  

 

Drug-induced rotations 

Unilateral lesion of 6-OHDA in rats leads to asymmetrical motor behaviour, generally 

evidenced by preferential turning ipsilateral to lesion 848, 871. If dopaminergic depletion is nearly 

complete, then there is slight recovery of this motor asymmetry 849. When administered with 

dopamine agonists, rats rotate contralateral to lesion 872, 873 but when administered with drugs 

that increase dopamine levels, such as amphetamine, they exhibit ipsilateral rotations 871, 874. 

Although the mechanism underlying rotational behaviour in unilateral 6-OHDA-lesioned rats 

has not yet been elucidated 874, the predominant hypothesis proposes that turning is the result of 
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an imbalance in striatal dopaminergic activity, whereby animals rotate away from the side of 

greater dopaminergic activity 875. 

The relationship between rotation rates and degree of striatal denervation or 

dopaminergic cell loss in the SN has been well documented 858, 876 and consequently, drug-

induced rotations are commonly used to assess the extent of nigrostriatal dopamine depletion in 

unilateral 6-OHDA-lesioned animal models 849. Drug-induced rotations offer some notable 

advantages, including objective outcome measures, automation, and no pretraining of animals 

is required 869. However, use of these tests is also hampered by their lack of clinical relevance 

877, failure to distinguish between dyskinetic and anti-akinetic effects of drugs 511, and 

behaviours that are dependent on mesolimbic systems 878-880, which are not the primary brain 

regions involved in the pathophysiology of PD motor symptoms 881. Moreover, some critics 

have argued that drug-induced rotations lack reliability as an estimator of dopaminergic 

denervation 882-884, for instance, when there is possibility of damage to the striatum 885.  

 

Amphetamine 

As mentioned earlier, when amphetamine is administered to unilateral 6-OHDA-

lesioned rats, animals demonstrate ipsilateral rotational behaviour, which has been shown to 

correlate with the extent of dopamine denervation 858, 886, 887. A cut-off of 6 turns/min over 90 

min after amphetamine administration has often been used for inclusion in studies 396, 888. Unlike 

rotations induced by apomorphine that require maximal lesion, those induced by amphetamine 

only require submaximal lesion (75-90%) 889, suggesting a relatively higher sensitivity to detect 

nigrostriatal dopamine depletion. While a single study found a positive correlation between 

amphetamine-induced rotation and development of dyskinesia, the study administered a 
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dextro(d)-amphetamine dose of 5 mg/kg 890 but most dyskinesia studies use a dose of 2.5 mg/kg 

to limit side effects 888, 891, 892. When amphetamine-induced rotation used a d-amphetamine dose 

of 2.5 mg/kg, it demonstrated poor correlation with dyskinesia, as well as no correlation between 

amphetamine-induced rotations and tyrosine hydroxylase (TH) positive cell loss in the SNc 888. 

These findings led the authors to conclude that the amphetamine-induced rotation test is a poor 

predictor of 6-OHDA-lesion success and dyskinesia development based on the d-amphetamine 

dose often used in studies. The test also has important pitfalls that limit the conclusions drawn 

from rotational data, such as non-linear recovery of rotations, overcompensation in rotational 

behaviour contralateral to lesion, and behavioural conditioning, emphasising the constraints of 

employing amphetamine-induced rotation test in the 6-OHDA-lesioned rat 893.  

 

Apomorphine 

In the 6-OHDA-lesioned rat, the dopamine agonist apomorphine induces rotational 

behaviour contralateral to lesion 872. This phenomenon was first hypothesised as the result of 

the supersensitivity of postsynaptic dopaminergic receptors of the lesioned striatum 872, and was 

later corroborated by pharmacokinetic, gene expression, and receptor binding studies 894, 895. Of 

note, partial dopamine denervating lesions do not result in apomorphine-induced rotations 896 as 

extensive lesions of the striatum (>90% loss of dopamine fibre density) and concomitantly SNc 

(>50% loss of dopaminergic neurons) are required for such turning behaviour 889. While the cut-

off value for apomorphine-induced rotations varies amongst studies in terms of the number of 

turns/min and timing of assessment 895, 897, 898, 60 turns/30 min in the test negatively correlated 

with survival of TH+ SNc neurons, suggesting that these parameters are appropriate as inclusion 

criteria for studies 898.  
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Rotarod 

The rotarod test is widely used to assess physiological motor function in the rat 899, 900 

and measures its ability to maintain itself on a rod that rotates with accelerated speeds 869. The 

test can be used to detect deficits induced by 6-OHDA lesion, whereupon administration of 

dopamine agonists, e.g., L-DOPA, leads to improvements in performance 580, 899, 901. The main 

disadvantages of the rotarod test are that it is dependent on the willingness of the animals to 

perform the task, which can be compromised by stressors, as well as the relatively lower 

accuracy and consistency of the investigator compared to other tests 869. Moreover, 

improvements in rotarod performance induced by anti-parkinsonian treatments are 

compromised with the development of dyskinesia 580, 901. Nonetheless, the test exhibits a wide 

dynamic range and demonstrates the sensitivity to detect subtle changes in motor function 

following interventions 869.    

 

Abnormal involuntary movements 

Preclinical studies on L-DOPA-induced dyskinesia were previously only conducted in 

non-human primates because of the belief that only these species could demonstrate the 

repertoire of movement disorders exhibited by patients with PD 407. It was only in the late 1990s 

that a dyskinesia rating scale was published in the 6-OHDA-lesioned rat 902, the efforts of Cenci 

and collaborators to characterise the rat equivalent of dyskinesia, termed abnormal involuntary 

movements (AIMs). When hemi-parkinsonian rats are treated with L-DOPA, they exhibit 

abnormal postures and movements that affect the trunk, limbs, and orofacial muscles 

contralateral to lesion 902, and present functional and phenomenological analogies to dyskinetic 
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behaviour in PD patients 570. Phenotypically, AIMs are complex movements that involve 

multiple muscle groups, including repetitive head movements and rapid flexion of the forelimb, 

which are similar to choreiform observed in PD patients 869. Functionally, AIMs are disabling 

and involuntary movements 396, 511, 869, as are dyskinesia in subjects with PD 903. Importantly, 

assessment of AIMs in the 6-OHDA-lesioned rat model has been pharmacologically validated 

with drugs of varying dyskinesiogenic potential 511. Whereas non-dopaminergic compounds that 

demonstrated anti-dyskinetic efficacy in PD patients and/or non-human primates also attenuated 

AIMs, anti-parkinsonian therapies with low dyskinetic potential in primates also failed to induce 

AIMs in rodents 511, 904. These studies demonstrated that clinically-relevant measures of akinesia 

and dyskinesia could be obtained in rats 511, 904; a later study affirmed the high predictive value 

of the AIMs rating scale as a preclinical screen for novel anti-dyskinetic drugs 570. Indeed, 

treatments with anti-dyskinetic effects in PD subjects and/or non-human primates, such as 

amantadine 600, clozapine 525, and buspirone 497, also improved AIMs severity in the 6-OHDA-

lesioned rat 570.  

During AIMs assessment, rats are placed in individual transparent cylinders and 

observed for two minutes every twenty minutes for three hours following L-DOPA 

administration 511, 570, 905. AIMs are grouped into four subtypes based on their topographic 

distribution: 1) axial AIMs: dystonic postures or choreiform twisting of the neck and body 

towards the side contralateral to lesion; 2) limb AIMs: purposeless and abnormal movements of 

the forelimb and digits contralateral to lesion; 3) orolingual AIMs: empty jaw movements and 

tongue protrusions contralateral to lesion; and 4) locomotive AIMs: hyper locomotion with 

contralateral side bias 869. Whereas locomotive AIMs are expressed by dyskinetic 6-OHDA-

lesioned rats, they do not provide a specific measure of dyskinesia 511, 904, and instead, correlate 
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with contralateral turning behaviour 511. In fact, locomotive AIMs may result from enhanced 

locomotor activity in rats with sensorimotor asymmetry as treatments that induce low dyskinesia 

severity may still induce marked contralateral rotations, and thus, high locomotive AIMs scores 

in 6-OHDA-lesioned rats 869. Therefore, studies often evaluate the severity of axial, limbs, and 

orolingual AIMs but omit locomotive AIMs 906-908.  

Presentation of AIMs subtypes is heterogeneous between animals but is fairly consistent 

in the same animal upon repeated testing 869. In the original scale, the duration of AIMs severity 

was rated on a scale from 0 to 4, where 0 = absent and 4 = continuous and not suppressible by 

external stimuli (Table I, page I) 902. However, by only assessing the frequency of AIMs, 

investigators failed to consider their intensity, which along with dyskinesia frequency, increases 

over time in PD patients with long-term L-DOPA therapy 407, 909. This led the authors of the 

original AIMs rating scale to include an additional scale based on the amplitude of AIMs (Table 

II, page II) rated on a scale from 0 to 4 for each AIMs subtypes (axial, limbs, and orolingual) 

396, 905, which allowed, for instance, differentiation between small forelimb movements and 

dystonic-like movements that involved shoulder muscles 396, 905, 909. In fact, L-DOPA treatment 

in animals with partial dopaminergic denervation resulted in lower AIMs amplitude severity 396, 

905. Importantly, the duration and amplitude rating scales are scored simultaneously but the 

expression and analysis of AIMs scores varies depending on experimental design 905. Lastly, 

large fluctuations in striatal dopamine levels following L-DOPA administration result in 

supersensitive dopamine receptors in the denervated striatum 330, 910, leading to the upregulation 

of immediate early genes and neurotransmitter-related genes 578, 851. Rat AIMs severity 

correlates with the upregulation of genes and signalling molecules downstream of dopamine 

receptors 432, 902, 911, 912, which has also been reported in non-human primate models 441, 913 and 
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PD patients 914, 915, demonstrating the construct validity of AIMs rating in the 6-OHDA-lesioned 

rat 874.  

 

1.4.2. 6-OHDA-lesioned mouse 

Another neurotoxic model is the 6-OHDA-lesioned mouse model, although it is less 

commonly used than the 6-OHDA-lesioned rat and MPTP-lesioned non-human primate models 

939. Initial attempts to establish this model were challenging as animals were prone to high 

mortality rates and weight loss post-surgery 940, 941, as well as difficulty targeting smaller 

structures, such as the median forebrain bundle or SN 864. Moreover, 6-OHDA-lesioned mice 

showed variable degrees of dopamine depletion 942 and expression of dyskinesia 943. But 

modification of injection protocols 944 and more rigorous post-operative care and monitoring 939 

have enhanced the survival rate of animals 945. While 6-OHDA is typically injected in the mouse 

medial forebrain bundle, striatum or SN to induce parkinsonian motor deficits 939, 941, 943, 946, 947, 

each lesion site is associated with a distinct profile of degeneration in the nigrostriatal pathway 

941. Nonetheless, intrastriatal injection is the most common lesion site in mice and the slow 

retrograde degeneration of the nigrostriatal pathway in this model renders it suitable for 

investigation of neuroprotective therapies 948. 

 

1.4.3. MPTP-lesioned non-human primates 

MPTP-induced parkinsonism was first reported in 1983 when four drug addicts injected 

themselves with a derivative of meperidine and presented with severe bradykinesia and rigidity 

916. Although a case report of a man who injected himself with 4-propyloxy-4-phenyl-N-

methylpiperidine and subsequently developed parkinsonism was likely the first report of MPTP-
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induced parkinsonism in humans as the injection may have contained MPTP as an impurity 844, 

917. Following these case reports, it was demonstrated that MPTP administration in both Old 

World primates, e.g.,  Macaca mulatta (rhesus macaque) 918 and Macaca fascicularis 

(cynomolgus macaque) 919 and New World primates, e.g., Saimiri sciureus (squirrel monkey) 

920 and Callithrix jacchus (marmoset) 921, induced a parkinsonian syndrome, see 844 for a more 

extensive review.  

Injection of the neurotoxin MPTP in non-human primates resulted in the selective loss 

of dopaminergic neurons in the SNc with a concomitant deficit of striatal dopamine 918. The 

mechanism underlying cell death is the conversion of MPTP to its toxic metabolite MPP+, 

which after uptake into dopaminergic neurons, induces toxicity by interfering with neuronal cell 

activity 93. For instance, MPP+ impairs mitochondrial function 922, 923 by inhibition of Complex 

I 924, 925, leading to the production of reactive oxygen species 926, 927 and deficits in adenosine 

triphosphate formation 928. Furthermore, MPTP-induced neurotoxicity is associated with 

microglial activation 929, 930, which furthers inflammatory processes through increased 

production of proinflammatory or neurotoxic factors 931, including nitric oxide 932, reactive 

oxygen species 933, chemokines 934, and cytokines 935. In addition to neuropathological 

similarities, MPTP-lesioned non-human primates also exhibit a repertoire of motor symptoms 

reminiscent of PD, such as bradykinesia, rigidity, and postural abnormalities, and that is 

responsive to dopamine replacement therapy 936, 937. Moreover, MPTP-lesioned non-human 

primates also develop motor complications associated with chronic L-DOPA administration, 

namely dyskinesia 938-940.  
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Amongst non-human primates species, cynomolgus and rhesus macaques, marmosets, and 

squirrel monkeys are the most frequently employed in studies assessing the anti-parkinsonian, 

anti-dyskinetic, and antipsychotic potential of drugs 941 and are further discussed below.  

 

1.4.3.1. MPTP-lesioned macaque 

The first MPTP-lesioned non-human primate model of PD was developed in the rhesus 

macaque in 1983 918 and a few years later, MPTP-induced parkinsonism was reported in the 

cynomolgus macaque 919. A range of regimens of MPTP administration have been described in 

the macaque, such as subcutaneous injection, intravenous, and intracarotid, leading to varying 

degrees of parkinsonism 844, although the severity of parkinsonian features depends on the 

individual sensitivity of animals 844, as well as the dose and frequency of administration 937. 

Post-mortem analyses have revealed greater than 95% striatal dopamine depletion and reduction 

in DAT binding in MPTP-lesioned macaques 508, 942, 943. Different scales have been developed 

to assess parkinsonism severity in MPTP-lesioned macaques 944-950 and despite some variation 

in the number of items scored, virtually all scales evaluate bradykinesia, rigidity, and postural 

abnormalities 951. A review of the records of MPTP-lesioned macaques also found pronounced 

discrepancies in the behavioural phenotype across animals, which led to recommendations to 

optimise MPTP administration paradigms to produce consistent and stable parkinsonian features 

952. MPTP-lesioned macaques are sensitive to the main factors of dyskinesia 953, including loss 

of nigrostriatal dopaminergic projections 939, L-DOPA dosage 345, 510, 954, and increased 

dyskinesia incidence following long-term L-DOPA therapy 407, 851. Accordingly, the repertoire 

and severity of dyskinesia in this model are reminiscent from clinical practice 452, 955 with 

animals exhibiting choreic-athetoid, dystonic, and ballistic movements 953. Although rating 
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scales to assess dyskinesia severity have been developed in macaques 955-957, quantitative 

evaluation of dyskinesia has been lacking 626, 958. This gap led to efforts to develop a highly 

sensitive and quantitative method to evaluate dyskinesia 959 but this novel scale has not been 

adopted by other groups, limiting its value. Whereas the MPTP-lesioned macaque is largely 

considered the gold standard animal model for dyskinesia with a higher positive predictive value 

than the MPTP-lesioned marmoset 941, its use is hampered by ethical and economic issues 960. 

Although a single study has assessed psychosis-like behaviours in the MPTP-lesioned macaque, 

the rating scale was developed in the marmoset and lacked pharmacological and predictive 

validation 961. Given that the behavioural repertoire of macaques does not permit the evaluation 

of antipsychotic drugs, it restricts the translational potential of this model as PD psychosis 

affects a significant proportion of patients 754, 962.  

 

1.4.3.2. MPTP-lesioned squirrel monkey 

In 1984, a parkinsonian syndrome was described in squirrel monkeys for the first time 

following systemic MPTP administration 920. In addition to animals exhibiting akinesia, rigidity, 

and hypophonia, post-mortem examination of their brains revealed selective cell loss in the SNc 

920. In the squirrel monkey, MPTP is most frequently administered subcutaneously 963-965 and 

less commonly intraperitoneally 920. Depending on the region of the striatum examined, 

traditional MPTP regimens generally lead to greater than 80% reduction in DAT binding levels, 

while milder regimens lead to more moderate reductions in striatal DAT binding with relative 

presentation of striosomes 844, 963. Moreover, the role of monoamine oxidase (MAO) in the 

conversion of MPTP to MPP+ was also discovered in the squirrel monkey 844, as concomitant 

administration of the MAO inhibitor pargyline with MPTP prevented the parkinsonian 
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phenotype to develop 966. This effect of pargyline may be related to its action opposing the 

neurotoxic effects of MPTP as squirrel monkeys co-treated with pargyline and MPTP did not 

show evidence of nigral cell loss 966. In addition to a rating scale for assessment of parkinsonism 

in squirrel monkeys, a simple, sensitive and validated instrument has also been developed for 

assessment of dyskinesia 957. However, compared to the macaque and marmoset, only a few 

pharmacological targets have been investigated in a limited number of studies in the squirrel 

monkey for their effects on parkinsonism and dyskinesia 967-970, and anti-psychotic drugs have 

not been examined at all, see review by 941. Therefore, it is difficult to calculate its predictive 

value for these endpoints 941.  

 

1.4.3.3. MPTP-lesioned marmoset 

 In recent years, the common marmoset has attracted interest as a model for neuroscience 

research, in part due to their closer genetic and anatomical relationship to humans and are 

preferred over rodent species 971. In 1984, a parkinsonian syndrome was first reported in the 

common marmoset following MPTP administration 921. Different MPTP regimens in the 

marmoset have led to varying degrees of nigrostriatal denervation 844. For instance, a mild dose 

of MPTP injected subcutaneously twice a week over 5 to 10 months led to greater than 95% 

dopamine depletion within the striatum 972, while a mild dose of MPTP injected subcutaneously 

daily over 9 days also led to more than 95% striatal dopamine depletion 973, 974. At the 

behavioural level, the MPTP-lesioned marmoset exhibits deficits that resemble clinical features 

of PD including bradykinesia, rigidity and postural instability 921. Accordingly, rating scales to 

assess parkinsonism severity have been developed in the marmoset 623, 940, 975, 976. Moreover, 

following dopamine replacement therapy, MPTP-lesioned marmosets also develop dyskinesia 
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940 and psychosis-like behaviours 513, 977, suggesting that the species is suitable to model both 

dyskinesia and PD psychosis. Thus, variations of clinical rating scales for PD have also been 

established and validated to assess the severity of dyskinesia and psychosis-like behaviours in 

the marmoset 556, 977. Dyskinesia encompasses both chorea and dystonia, which are both 

evaluated on a 0-4 severity gradient that distinguishes between disabling and nondisabling 

movements 517, 556, which is in accordance with part IV of the Movement Disorders Society 

(MDS)-UPDRS 978. On the other hand, psychosis-like behaviours consist of visual 

hallucinations, hyperactivity, stereotypies, and excessive grooming, where each element is rated 

on a 0-4 severity gradient 513, 977. The MPTP-lesioned marmoset demonstrates high face validity 

that has led to high predictive value in assessing clinical efficacy for dyskinesia, psychosis, and 

parkinsonism 941, 979, supporting its therapeutic value as a paradigm to test drugs for several 

conditions.  

Compared to macaques, marmosets are evolutionarily further to humans 1009, 1010, and as 

phylogenetic differences increase between species, they are generally accompanied by 

behavioural, physiological and anatomical differences as well 970, 1011. For instance, the brain 

volume of a marmoset is about 12 times smaller than that of the rhesus macaque, and 180 times 

smaller than the human brain 1012, 1013. Furthermore, in terms of anti-dyskinetic efficacy of drugs, 

the macaque has higher positive predictive value than the marmoset, although both species are 

limited when predicting detrimental effects of drugs on dyskinesia 974. In general, systemic 

MPTP treatment is also associated with a greater need for post-op care for animals and increased 

risk of inadvertent toxic exposure to researchers compared to local 6-OHDA administration 1014-

1016. Nonetheless, despite these drawbacks, as iterated above, the MPTP-lesioned marmoset has 
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demonstrated construct, face, and predictive validity for PD and therapeutic complications of 

the disease. 

 

1.4.4. Limitations of toxin-based animal models 

Despite their important contribution to the understanding and treatment of PD, there are 

limitations to the MPTP-lesioned non-human primate. For instance, neurotoxin-based animal 

models do not generally harbour alpha-synuclein inclusions in the form of Lewy bodies 980, 

which are a pathological hallmark of PD 56, 61, as seen above (Section 1.3). In addition, 

differences in the temporal profile of cell death, where toxin models produce acute severe 

nigrostriatal denervation 849 compared to the progressive neurodegeneration that occurs in the 

human condition 981, may also explain failures in the clinical development of disease-modifying 

therapies that showed benefit in toxin-based animal models. Whereas PYM50028, an inducer 

of brain trophic factors, provided neuroprotection against MPTP damage in mice 982 and 

macaques 983, 984, it failed to demonstrate beneficial effects in a Phase II clinical trial with PD 

subjects (NCT 18364399). For this reason, neurotoxin models may be more suited for  the 

evaluation of symptomatic therapies 844, whereas development of disease-modifying therapies 

for PD may require an animal model that recapitulates core pathological processes of the human 

disease 147, 985.  

 

1.4.5. Pre-formed fibrils injection models 

Paradigms that involve the injection of fibrillar alpha-synuclein in the brain or gut also 

produce Lewy-like pathology in the brain of rodents and non-human primates, similar to Braak 

staging observed in post-mortem PD brains 67, 68. Several lines of evidence suggest that 
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recombinant alpha-synuclein pre-formed fibrils (PFFs) act as seeds to template and induce the 

pathological conversion of endogenous alpha-synuclein, resulting in the propagation of PD 986, 

987. The accumulation of phosphorylated alpha-synuclein inclusions ultimately leads to neuronal 

dysfunction and degeneration 988. Importantly, the toxicity can be directly linked to the 

recruitment of endogenous alpha-synuclein into inclusions 988 as PFFs fail to induce toxicity 

when applied to alpha-synuclein knockout primary neurons 986, 989. Moreover, the PFF model 

demonstrates several advantages compared to other alpha-synuclein models 842, 988. For instance, 

PFFs induce the conversion of endogenous alpha-synuclein into pathological aggregates 986, 990, 

while viral vector-based and transgenic models rely on the overexpression of human wild-type 

or mutated alpha-synuclein 991-993, leading to alpha-synuclein expression levels 2 to 20 times 

higher than normal endogenous expression 994 and exceeding those observed in the human 

condition. In addition to its physiological relevance, the time course of neurodegeneration and 

alpha-synuclein pathology induced by PFFs is similar to that in PD 842, whereby dysfunction of 

dopaminergic neurons precedes the presentation of motor symptoms 50. Last, the PFF model 

allows the investigation of the progression of alpha-synuclein aggregation from their formation 

to neuronal death 842. Taken together, the PFF model provides both high temporal and spatial 

resolution 990.  

Towards this end, several models have been established to study the propagation of 

alpha-synuclein in rodents. In a seminal study by Luk et al., injection of PFFs in the mouse 

striatum resulted in the accumulation of pathological alpha-synuclein pathology in neural 

circuits ipsilateral to injection site, including SNc and amygdala, loss of dopaminergic neurons 

of the SNc accompanied by motor deficits after 6 months 995. Importantly, the authors found 

that alpha-synuclein pathology was mainly limited to anatomical sites connected to the injection 
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site, suggesting that interneuronal connectivity and cell-to-cell propagation of pathogenic alpha-

synuclein are major determinants of Lewy body pathology dissemination 987, 989, 995, 996. Similar 

results have also been obtained following intrastriatal injection of PFFs in the rat 997-999. In 

addition to the striatum, intracerebral PFF injection models also include the mouse SN 987, cortex 

989, 1000 and hippocampus 1001, with variable patterns of aggregation spreading depending on the 

injection site. In line with Braak’s hypothesis 1002, several PFF models have injected into the 

olfactory bulb and peripheral regions 842. Injection of PFFs into the olfactory bulb of wild-type 

mice led to widespread propagation of pathological alpha-synuclein aggregates to more than 40 

brain regions after 12 months 1003, as well as neuronal loss in the anterior olfactory nucleus and 

deficits in olfaction 1003, 1004. Furthermore, PFF injection in the mouse enteric nervous system, 

such as the gastric wall 1005 and colon 1006 resulted in alpha-synuclein pathology in enteric 

neurons and brainstem after 12 months, although the brainstem pathology was minor and only 

observed at a single time point (1 month), suggesting clearance of pathological alpha-synuclein 

and lack of significant propagation 1006. A later study that injected PFFs in the mouse muscularis 

layer of the pylorus and duodenum found widespread alpha-synuclein pathology in the brain, 

including the brainstem, amygdala, and SNc that was associated with both motor and nonmotor 

symptoms 1007. Importantly, this pathological propagation of alpha-synuclein was prevented by 

truncal vagotomy and absent in alpha-synuclein knockout mice, modelling the gut to brain 

transneuronal propagation observed in PD 1008, 1009. 

Considering the need for animal models to have closer neuro-anatomical and genetic 

proximity to humans, PFFs have also been injected in non-human primates. A pilot study in the 

common marmoset showed evidence of bilateral spreading of pathological alpha-synuclein 

following mouse PFF injection in the striatum after 3 months 1010. A recent study found that 
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intrastriatal injection of PFFs in the macaque led to ipsilateral dissemination of pathological 

alpha-synuclein to the SNc with significant reduction of dopaminergic neurons after 15 months 

1011. Moreover, inoculations of PD-derived Lewy body extracts into the SN or striatum of 

macaques also led to progressive nigrostriatal degeneration after 14 months 1012. However, Lewy 

body extracts were purified from post-mortem PD brains, and it remains unclear whether other 

components in the fractions other than alpha-synuclein were also present and possibly 

contributed to the pathology that was observed. In addition to intracerebral injections of PFFs, 

one study injected in the gastric walls and colon of macaques and after 12 months post-injection 

and reported uptake of recombinant alpha-synuclein and aggregate formation in enteric neurons 

1006. Contrary to findings obtained in mice 1005, 1006, alpha-synuclein pathology failed to spread 

to the central nervous system, which raises doubts about the gut to brain prior hypothesis of PD, 

at least in a non-human primate model 1006.  

Important research avenues were also opened by these previous studies. For instance, 

while some PFF models characterised behavioural deficits, they were generally lacking 

regarding imaging biomarkers, which provide a measure of lesion development. Therefore, 

complementing in vivo monitoring of the rate of striatal denervation with behavioural analysis 

could facilitate greater understanding of what is occurring during early stages of the pathological 

process and remains to be performed. In addition, most studies have injected mouse alpha-

synuclein PFFs and, given that the mouse sequence has an aggregation-prone mutation in 

familial PD 33, this may affect interpretation of their findings. Therefore, constructing a model 

that addresses these concerns could further understanding of the pathological processes 

occurring in PD. Developing the methodology that allows for accurate identification of the 

surgical target and subsequent injection of PFFs would be crucial first steps in establishing this 
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novel animal model of PD. Compared to neurotoxic models, alpha-synuclein based models 

show modest nigral dopaminergic cell loss. For instance, transgenic alpha-synuclein 

overexpression models rarely show significant degeneration despite widespread alpha-synuclein 

pathology 1050. While PFF models only lead to modest impairments in neuronal function and 

survival 1051, these modest effects are more consistent with the slow progression of disease in 

patients 1050. Moreover, in non-human primates, there is a lack of motor impairment following 

injection of alpha-synuclein PFFs 1047, 1048, although these studies did not include motor-related 

endpoints. Nonetheless, the relationship between neuropathology and behavioural dysfunction 

in rodent models becomes clearer with longer follow-up (e.g., 12 months follow-up) 1052. 

Despite the more complex methods employed in PFF and viral injection models compared to 

neurotoxin-based ones, efforts to improve the reproducibility of the former models have led to 

publication of guidelines and standard practices 1053. 
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2. Objectives and hypotheses  

As presented earlier, there is accumulating evidence that implicates the involvement of 

the 5-HT system in the development of dyskinesia and PD psychosis. We sought to expand upon 

earlier findings on the anti-dyskinetic efficacy of the 5-HT3 antagonist ondansetron obtained in 

the 6-OHDA-lesioned rat. The present thesis seeks to examine the effect of 5-HT3 receptor 

blockade on treatment-related complications in PD using the 6-OHDA-lesioned rat and the 

MPTP-lesioned marmoset. In addition to symptomatic therapies, efforts to engineer a novel 

alpha-synuclein propagation model in the marmoset led to the development of a frameless 

stereotaxic approach to localise and inject into brain structures, which is also described in the 

thesis. More specifically, we hypothesised that: 

1. Ondansetron plasma and brain levels inform upon its behavioural effects reported in 

literature 

2. 5-HT3 receptor blockade reduces the severity of established L-DOPA-induced AIMs in 

the 6-OHDA-lesioned rat without compromising L-DOPA anti-parkinsonian action 

3. 5-HT3 receptor blockade reduces the severity of dyskinesia and psychosis-like 

behaviours in the MPTP-lesioned marmoset without impairing the therapeutic efficacy 

of L-DOPA  

4. Characterisation of novel psychosis-like behaviours in the MPTP-lesioned marmoset are 

idiosyncratic and stereotyped  

5. 5-HT3 receptor levels are altered in the brains of post mortem dyskinetic 6-OHDA-

lesioned rats  

6. Co-registration of imaging modalities localises a surgical target in the marmoset brain 

for injection of biological material  
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To validate these hypotheses, we met the following aims: 

1. To determine the rat pharmacokinetic profile of ondansetron in plasma and brain 

following administration of small doses to contextualise the literature on its behavioural 

effects.  

2. In the 6-OHDA-lesioned rat: 

2.1. To determine the effect of acute challenges of the 5-HT3 antagonist granisetron at 

alleviating established L-DOPA-induced AIMs; 

2.2. To assess whether the anti-dyskinetic benefit conferred by granisetron is achieved 

without hindering L-DOPA anti-parkinsonian action. 

3. In the MPTP-lesioned marmoset: 

3.1. 5-HT3 receptor blockade alleviates the severity of dyskinesia; 

3.2. 5-HT3 receptor blockade alleviates the severity of psychosis-like behaviours; 

3.3. 5-HT3 receptor blockade alleviates the severity of parkinsonism. 

4. To expand upon the existing behavioural repertoire of psychosis-like behaviours in 

MPTP-lesioned marmosets following L-DOPA administration. 

5. To determine the distribution of the 5-HT3 receptor in brain areas implicated in L-

DOPA-induced dyskinesia, including the motor loop of the basal ganglia, using 

autoradiographic binding in 6-OHDA- and sham-lesioned rats.  

6. Test for correlations between the severity of L-DOPA induced dyskinesia and specific 

[3H]GR65630 binding levels in different brain areas. 

7. To describe the co-registration of imaging modalities (CT, MRI, and PET) to precisely 

locate a target in the marmoset brain for injection of alpha-synuclein pre-formed fibrils.  
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3. Contributions to Original Knowledge 

The current thesis presents data that consist of original contribution to knowledge including: 

1. The pharmacokinetic profile of ondansetron in the rat was determined following 

subcutaneous administration. This was the first report of ondansetron plasma and brain 

levels (e.g., primary motor cortex, striatum) in the rat following a subcutaneous 

administration regimen, providing some contextualisation of the vast preclinical findings 

on the central effects of ondansetron in this species. 

2. Granisetron alleviated the severity of both the duration and severity of L-3,4-

dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) 

in the 6-hydroxydopamine (6-OHDA)-lesioned rat. Importantly, this therapeutic benefit 

was achieved without hindering L-DOPA anti-parkinsonian action. Taken together with 

previous results obtained with ondansetron, these findings suggest that the anti-

dyskinetic efficacy of selective serotonin type 3 (5-HT3) antagonists may be attributed 

to 5-HT3 blockade and support the development of a new therapeutic strategy to manage 

dyskinesia in Parkinson’s disease (PD).  

3. Ondansetron significantly improved the severity of dyskinesia, psychosis-like 

behaviours, and parkinsonism in the gold standard model of PD, 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. These results provide further 

support for the role of 5-HT3 blockade in the treatment of dyskinesia and are amenable 

to the clinical testing of 5-HT3 antagonists. Moreover, it was demonstrated that 

ondansetron effectively reduced psychosis-like behaviours in a randomised paradigm 

with controls, reaffirming findings reported in open-label trials and broadening the value 

of 5-HT3 blockade to the treatment of PD psychosis.   
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4. Expanded the behavioural repertoire of psychosis-like behaviours in the MPTP-lesioned 

marmoset by characterising novel stereotyped behaviours that varied depending on the 

environment and animal. These behaviours in marmosets are reminiscent of punding 

observed in PD patients and illustrate the value of the MPTP-lesioned marmoset as a 

validated model to understand stereotypical behaviours.  

5. 5-HT3 receptor levels were upregulated in the subthalamic nucleus, and ipsilateral 

entopeduncular nucleus and motor thalamus of post-mortem dyskinetic 6-OHDA-

lesioned rats but remained unaltered in five other brain regions studied, i.e., the primary 

motor cortex, dorsolateral striatum, globus pallidus, and substantia nigra pars reticulata. 

The severity of AIMs also negatively correlated with 5-HT3 binding levels in the 

ipsilateral dorsolateral striatum and contralateral subthalamic nucleus. These results 

collectively suggest that a regionally selective upregulation of 5-HT3 binding may 

contribute to the pathophysiology of L-DOPA-induced dyskinesia and potentially 

provide insight to the anatomical substrate(s) for the anti-dyskinetic efficacy of 5-HT3 

antagonists in PD. 

6. Developed a frameless imaging-guided stereotaxic system by registering computed 

tomography, magnetic resonance imaging, and positron emission tomography (PET) 

data to identify the putamen, in two marmosets. After localisation, alpha-synuclein pre-

formed fibrils were injected into the putamen using a robotic arm and four months post-

injection, a PET scan found evidence of nigrostriatal denervation. This approach 

improves upon traditional methods to localise surgical targets in non-human primates 

and can also be used for studies that assess longitudinal endpoints.  
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 The current thesis provides support for the translational potential of 5-HT3 blockade in 

treatment-related complications in PD, namely L-DOPA-induced dyskinesia and PD psychosis. 

In addition to work conducted in neurotoxin-based animal models, the methods to develop an 

alpha-synuclein propagation-based model in the marmoset were also described, which will 

facilitate the discovery and advancement of disease-modifying therapies in PD.  
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Chapter 2 Abstract 

The availability of agonists and antagonists to modulate the activity of the 5-hydroxytryptamine 

(5-HT) type 3 (5-HT3) receptor has renewed interest in its role as a therapeutic target. Ondansetron 

is a highly selective 5-HT3 receptor antagonist that is well tolerated as an anti-emetic for patients 

undergoing chemotherapy. Preclinical studies in rat have shown the effects of small doses of 

ondansetron on cognition, behavioural sensitisation, and epilepsy. However, the pharmacokinetic 

(PK) profile of ondansetron in rat has not been described, which limits the translational relevance 

of these findings. Here, we aim to determine, in the rat, the PK profile of ondansetron in the plasma 

and to determine associated brain levels. The plasma PK profile was determined following acute 

subcutaneous administration of ondansetron (0.1, 1, and 10 µg/kg). Brain levels were measured 

following subcutaneous administration of ondansetron at 1 µg/kg. Plasma and brain levels of 

ondansetron were determined using high-performance liquid chromatography-tandem mass 

spectrometry. Following administration of all three doses, measured ondansetron plasma levels 

(≈30–3000 pg/mL) were below levels achieved with doses usually administered in the clinic, with 

a rapid absorption phase and a short half-life (≈30–40 min). We also found that brain levels of 

ondansetron at 1 µg/kg were significantly lower than plasma levels, with brain to plasma ratios of 

0.45 and 0.46 in the motor and pre-frontal cortices. We discuss our findings in the context of a 

minireview of the literature. We hope that our study will be helpful to the design of preclinical 

studies with therapeutic end-points. 

Key words: rat, ondansetron, pharmacokinetics, 5-HT3 receptor antagonist, HPLC-MS/MS. 
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La disponibilité d’agonistes et d’antagonistes permettant de moduler l’activité des récepteurs de la 

5-hydroxytryptamine (5-HT) de type 3 (5-HT3) a renouvelé l’intérêt dans son rôle comme cible 

thérapeutique. L’ondansétron est un antagoniste très sélectif des récepteurs 5-HT3 avec une bonne 

tolérabilité en tant qu’antiémétique chez les patients sous chimiothérapie. Des études précliniques 

chez le rat ont montré les effets de l’ondansétron à faibles doses sur l’état cognitif, la sensibilisation 

comportementale et l’épilepsie. Cependant, le profil pharmacocinétique (PK) de l’ondansétron n’a 

pas été décrit chez le rat, ce qui limite la pertinence translationnelle de ces résultats. Ici, nous 

cherchons à établir le profil PK de l’ondansétron dans le plasma chez le rat et à établir les niveaux 

cérébraux associés. Le profil PK plasmatique a été établi après l’administration d’ondansétron (à 

0,1, 1 et 10 µg/kg) par voie sous-cutanée. Nous avons mesuré les niveaux cérébraux à la suite de 

l’administration sous-cutanée d’ondansétron à 1 µg/kg. Nous avons établi les niveaux 

plasmatiques et cérébraux d’ondansétron à l’aide de la chromatographie liquide à haute 

performance couplé à la spectrométrie de masse en tandem. Après l’administration de chacune des 

trois doses, nous avons mesuré des niveaux plasmatiques d’ondansétron inférieurs à ceux obtenus 

avec des doses habituellement utilisées en clinique (≈30–3000 pg/mL), avec une phase 

d’absorption rapide et une courte demi-vie (≈30–40 min). Nous avons aussi observé que les 

niveaux cérébraux d’ondansétron administré à 1 µg/kg étaient nettement moins élevés que dans le 

plasma, avec des ratios cerveau à plasma de 0,45 et de 0,46 dans les cortex moteur et préfrontal, 

respectivement. Nous discutons de nos observations dans le contexte d’une courte synthèse de la 

littérature. Nous espérons que notre étude sera utile pour la conception d’études précliniques avec 

des paramètres d’évaluation thérapeutiques. [Traduit par la Rédaction] 

Mots-clés: rat, ondansétron, pharmacocinétique, antagoniste des récepteurs 5-HT3, 

chromatographie liquide à haute performance en tandem avec la spectrométrie de masse.  
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Chapter 2 Introduction 

 Initially described as the “M receptor” in the guinea pig ileum, the 5-hydroxytryptamine 

(5-HT) type 3 (5-HT3) receptor is uniquely positioned in the 5-HT receptor family as the only 

ionotropic receptor (Barnes and Sharp, 1999). Along with the nicotinic acetylcholine and glycine 

receptors, the 5-HT3 receptor is a member of the Cys-loop superfamily of ligand-gated ion 

channels that mediates fast synaptic neurotransmission and is thought to be involved in diverse 

functions (Sugita et al., 1992, Thompson, 2013). Autoradiographic binding studies using selective 

radioligands for the 5-HT3 receptor have led to the identification and characterisation of 5-HT3 

receptor binding sites to discrete areas of the rat central nervous system, including the area 

postrema, lower brainstem nuclei and the substantia gelatinosa (Kilpatrick et al., 1987, Barnes et 

al., 1990a, Hewlett et al., 1998). 

Ondansetron, a potent and selective antagonist of the 5-HT3 receptor, is used in the clinic 

to treat nausea and vomiting induced by chemotherapy, radiotherapy, and surgery (Marty  et al., 

1990, Butcher, 1993, Macor et al., 2001, Mujtaba et al., 2013) and is well tolerated with minimal 

side effects. The pharmacokinetic (PK) profile of ondansetron has been previously characterised 

in young and elderly healthy volunteers (Colthup et al., 1991, Pritchard et al., 1992). In addition 

to its anti-emetic effect, pre-clinical studies in the rat have also assessed the efficacy of ondansetron 

in paradigms such as cognition and behavioural sensitisation (Costall and Naylor, 1992, Hodges 

et al., 1996, Davidson et al., 2002). However, because the PK profile of ondansetron in the rat has 

not been disclosed, the clinical relevance of these findings is unclear. 

 In the present study, we have determined the PK profile of ondansetron in the plasma and 

associated brain levels following administration of small doses in the healthy adult rat. We then 
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discuss our findings in light of the pharmacological literature reporting behavioural effects of 

ondansetron in rats.  

 

 

Chapter 2 Materials and methods 

Chemicals 

Ondansetron hydrochloride was obtained from MilliporeSigma (Oakville, Canada) and 

2H3-ondansetron was purchased from Toronto Research Chemical (Toronto, Canada). Drug-free 

rat plasma containing K3-EDTA as anticoagulant was purchased from BioIVT (Westbury, USA). 

Formic acid was purchased from MilliporeSigma. Other chemicals, including, ammonium 

formate, methanol, acetonitrile and water were purchased from Fisher Scientific (Fair Lawn, 

USA). 

 

Animals 

Female Sprague-Dawley rats (225–250 g) (Charles River, Saint-Constant, Canada) were 

group-housed under conditions of controlled temperature (21 ± 1ºC), humidity (55%) and light 

(12h light/dark cycle, 07:00 lights on) environment with unlimited to food and water. Upon arrival, 

rats were left undisturbed to acclimatise for one week before experiments. All procedures were 

approved by the Montreal Neurological Institute Animal Care Committee in accordance with the 

regulations defined by the Canadian Council on Animal Care. 

 

Plasma pharmacokinetic study 
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Twelve rats (N = 4 per dose) were used for these studies. Following sub-cutaneous (s.c.) 

administration of ondansetron hydrochloride (0.1, 1 and 10 µg/kg free base), blood samples (150 

μL) were collected from animals by jugular vein puncture at each of the following time points: 

baseline, 2 min, 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, and 6 h, as previously described (Gaudette et 

al., 2017, Gaudette et al., 2018) and subsequently transferred to K3-EDTA-coated tubes (Sarstedt, 

St-Leonard, Canada). An additional sample was collected 3 h following s.c. injection of 

ondansetron 0.1 µg/kg. To calculate derived PK plasma parameters, following intravenous (i.v.) 

administration of ondansetron 1 µg/kg, blood was collected at these time points: baseline, 2 min, 

5 min, 15 min, 30 min, 1 h, 2 h, 3 h, 4h, and 6 h. Samples were gently inverted and centrifuged at 

1500g for 10 min at 4°C and plasma aliquots were stored at -80°C until analysis. Ondansetron 

plasma levels were determined by high-performance liquid chromatography-tandem mass 

spectrometry (HPLC-MS/MS). A separate paper detailing the methodology has been published 

(Gaudette et al., 2019). 

 

Brain concentrations 

Fifteen rats (N = 5 per time point) were used. Following administration of ondansetron 1 

µg/kg s.c., blood and brain were collected 10 min, 30 min, or 1 h after drug administration. Blood 

samples were collected and processed as described above for plasma extraction. For brain 

collection, animals were quickly euthanised (10 min, 30 min, or 1 h after drug administration) by 

isoflurane anaesthesia (2%-4%; MilliporeSigma) and perfused trans-cardially with 0.9% NaCl. 

Then, brains were rapidly removed from the skull and pre-frontal cortex, motor cortex, striatum 

and cerebellum were dissected, flash-frozen in 2-methyl-butane at -56C and stored at -80°C into 
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separate 1.5 mL sterile microcentrifuge tubes. The blood and brain of a control, ondansetron-naïve, 

animal was also collected. 

 

Sample preparation 

Ondansetron was extracted from rat plasma using protein precipitation as the sample 

preparation technique. Two hundred and fifty microlitres of internal standard solution (5 pg/mL 

2H3-ondansetron in methanol) were added to an aliquot of 25 µL of rat plasma. The sample was 

vortexed for approximately 5 s and left to stand for 10 min, then centrifuged at 16,000 × g for 10 

min. The supernatant was transferred into a clean 13 × 100 mm borosilicate tube and evaporated 

to dryness at 40°C under a gentle stream of nitrogen. The dried extract was re-suspended with 50 

µL of methanol and transferred to an injection vial for analysis. 

For brain, tissue was rinsed with phosphate-buffered saline, and immediately frozen and 

stored at -80°C until further sample preparation. The frozen brain samples were accurately 

weighed into Precellys Tissue grinding CKMix tubes equipped with ceramic beads (Cayman 

Chemical, Ann Arbor, USA). Homogenates were prepared by adding PBS to the tissue sample at 

a ratio of 4:1 v/w (buffer/solid tissue). A Precellys-24 homogeniser (Bertin Technologies, 

Montigny-le-Bretonneux, France) was used to grind up samples. The temperature of samples was 

maintained between 0 and 10°C during homogenisation using a homogeniser equipped with the 

Cryolys cooling option. The program used to homogenise the samples consisted of two cycles of 

25 s at a frequency of 6000 rpm with a 15 s pause between cycles. Ondansetron was extracted from 

brain tissue homogenates by adding 500 µL of internal standard solution (10 pg/mL 

2H3-ondansetron in methanol) to an aliquot of 100 µL of rat brain homogenate. The sample was 

vortexed for approximately 5 s and left to stand for 10 min and then centrifuged at 16 000g for 10 
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min. The supernatant was transferred into a clean 13 × 100 mm borosilicate tube and evaporated 

to dryness at 40°C under a gentle stream of nitrogen. The dried extract was re-suspended with 50 

µL of methanol and transferred to an injection vial for analysis. 

 

HPLC-MS/MS conditions 

A Thermo Scientific TSQ Quantiva Triple Quadrupole mass spectrometer (San Jose, USA) 

was interfaced with a Thermo Scientific UltiMate 3000 XRS UHPLC system (San Jose, USA) 

using a pneumatic assisted heated electrospray ion source. MS detection was performed in positive 

ion mode, using multiple reaction monitoring (MRM). The MRM transitions were set to 294 → 

170 + 184] and 297 → 173 + 187] for ondansetron and 2H3-ondansetron, respectively. Isocratic 

elution was used with a Thermo Scientific Aquasil C18 analytical column (100 × 2.1 mm I.D., 5 

m) operating at 40°C. The mobile phase consisted of acetonitrile and 10 mM ammonium formate 

pH 3 at ratio 30:70, respectively. The flow rate was fixed at 300 µL/min and ondansetron and the 

internal standard eluted at 2 min. Five microlitres of the extracted sample was injected and the 

total run time was set to 4 min. The method met all requirements of selectivity, sensitivity, 

linearity, precision and accuracy, and stability generally accepted in bioanalytical chemistry (U.S. 

Department of Health and Human Services et al., 2018) 

 

Statistical Analysis 

Ondansetron plasma and brain levels are presented as the mean ± standard deviation (SD). 

Plasma PK parameters and brain concentrations were determined from the mean concentration 

value at each time point by non-compartmental analysis using PKSolver (Rowland M and TN., 

1995, Zhang et al., 2010). The area under the curve (AUC) was calculated using the linear and log-
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linear trapezoidal rule. AUC0-t, AUC0-, maximal plasma concentration (Cmax), time to Cmax (Tmax), 

terminal half-life (T1/2), clearance (CL), bioavailability (F), volume of distribution (Vz) and mean 

residence time (MRT) were all calculated. For i.v. injection, the extrapolated concentration at T = 

0 (C0) and steady-state volume of distribution (Vss) were also determined. The brain to plasma 

ratio of ondansetron was calculated by dividing the mean AUC of each brain region by the mean 

AUCplasma after administration. Statistical analyses were performed using GraphPad Prism 8.0d 

(GraphPad Software Inc., San Diego, California, USA). 

 

 

Chapter 2 Results 

Pharmacokinetic profile 

Plasma PK parameters obtained following i.v. administration of ondansetron 1 µg/kg in the 

rat are summarised in Table 1. As shown in Figure 1, ondansetron 1 µg/kg i.v. was rapidly detected 

in the plasma, with a C0 of 898.3 pg/mL. The mean AUC0–t values represented 93% of mean AUC0–

∞; thus, the extrapolated AUC was relatively small compared to AUC0–∞. The T1/2 and mean 

calculated MRT values were 42 min and 0.81 h, respectively. CL was 2.46 L·h–1·kg–1, while Vz 

and Vss values of 2.58 L/kg and 2.08 L/kg were obtained, respectively, which suggests an 

interesting drug tissue distribution since the larger the Vz, the more likely that the drug will be 

found in the peripheral tissue of the animal (Urso et al., 2002).  

Plasma PK parameters of ondansetron in the rat following s.c. injection are summarised in 

Table 2. As displayed in Figure 2, ondansetron (0.1, 1, and 10 µg/kg) was detected in the plasma 

as early as 5 min after s.c. administration. The Tmax occurred 15 and 10 min after administration 
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of ondansetron (0.1 and 1 µg/kg) and 7 min after administration of ondansetron at 10 µg/kg, while 

T1/2 was 39 and 32 min after administration of ondansetron (0.1 and 1 µg/kg) and 43 min after 

administration of ondansetron at 10 µg/kg. There was a dose-dependent concentration profile 

leading to a Cmax of 30.6, 525.0, and 2987 pg/mL following administration of ondansetron at 0.1, 

1, and 10 µg/kg, respectively. The mean AUC0–∞ values calculated in plasma were comparable to 

the mean AUC0–t values, suggesting that the extrapolated AUC was relatively small. The MRT 

calculated was 0.87 h, 0.79 h, and 0.85 h, respectively, following injection of ondansetron (0.1, 1, 

and 10 µg/kg). The calculation of CL/F and Vz/F was estimated. The F observed was 94% when 

comparing s.c. and i.v. administration of ondansetron at 1 µg/kg, suggesting an almost complete 

drug absorption. 

 

Brain to plasma ratio 

Plasma and brain concentrations obtained following s.c. administration of ondansetron at 1 

µg/kg to assess brain penetrance are presented in Table 3 and Fig. 3. Ten min after s.c. 

administration of ondansetron, plasma levels reached 260.0 ± 44.8 pg/mL, while brain tissue levels 

were 173.8 ± 160.6 pg/g in the pre-frontal cortex, 161.0 ± 68.7 pg/g in the motor cortex, 51.3 pg/g 

± 15.07 in the cerebellum, and 56.6 ±12.4 pg/g in the striatum.  

Plasma and brain tissue levels started to decline 30 min after administration of ondansetron, 

where the plasma concentration was 193.4 ± 29.4 pg/mL, while the concentration was 56.7 ± 21.1 

pg/g in the pre-frontal cortex, 58.2 ± 19.2 pg/g in the motor cortex, 45.9 ± 30.9 pg/g in the 

cerebellum, and 59.4 ± 26.7 pg/g in the striatum. Finally, 1 h post-ondansetron administration, 

plasma levels had further declined to 98.0 ± 10.8 pg/mL. Brain tissue levels were 42.2 ± 13.7 pg/g 
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in the pre-frontal cortex, 45.7 ± 14.5 pg/g in the motor cortex, 16.6 ± 5.1 pg/g in the cerebellum 

and 26.0 ± 10.4 pg/g in the striatum.  

 

 

Chapter 2 Discussion 

In this study, we have assessed the plasma PK profile of ondansetron and determined its 

brain penetrance in the healthy female rat. We must emphasise that, because the experiments were 

conducted solely in female rats, our results, or part thereof, may not be applicable to male rats. 

To the best of our knowledge, this is the first study reporting the plasma PK profile of 

ondansetron following s.c. or i.v. administration in the rat, as well as brain levels following s.c. 

administration, although the PK profiles following i.v. and oral administration were previously 

reported in human (Blackwell and Harding, 1989, Colthup et al., 1991, Roila and Del Favero, 

1995, Simpson and Hicks, 1996).  

A single s.c. administration of ondansetron (0.1, 1 and 10 µg/kg) showed rapid absorption 

with Tmax values between 7 and 15 min and rapid elimination with T1/2 that ranged from 28 to 43 

min. Moreover, we observed that Cmax values were dose-dependent, ranging from 30.6 to 2,987.2 

pg/mL. These findings are coherent with clinical studies that administered a single 8 mg oral dose 

to healthy volunteers, in which Cmax of 26.4-42.0 ng/mL was obtained within 1.25-2.1 h (Colthup 

et al., 1991, Baber et al., 1992). After a single i.v. administration of 8 mg ondansetron in subjects, 

T1/2 ranged between 3.2 and 5.0 h, while plasma CL was approximately 0.26-0.44 L·h–1·kg–1 and 

Vz was 1.71-1.94 L/kg (Colthup et al., 1991, Baber et al., 1992, Roila and Del Favero, 1995). 

Thus, the PK profile of i.v. administration of ondansetron at 1 µg/kg described in our study is in 
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line with clinical studies that administered higher doses of ondansetron. In fact, we found that T1/2 

is shorter in rat than in humans, while CL and Vz values seem larger in rat than in humans, which 

suggests that this dose of ondansetron is efficiently eliminated and highly distributed in peripheral 

tissue in the healthy female rat compared to humans (Urso et al., 2002).  

Moreover, our results indicate that ondansetron penetrates into the brain (Hitchcock and 

Pennington, 2006, Shaffer, 2010). The mean concentration-time profiles exhibited similar patterns 

of distribution, with a rapid peak within 15 min and brain levels below the limit of detection 

threshold after 1 h. In addition, the distribution of ondansetron in brain tissue may be consistent 

with its reported effects on cognition, behavioural sensitisation and sleep disorders discussed 

below (Barnes et al., 1990b, King et al., 1998, Radulovacki et al., 1998). However, the 

mechanism(s) underlying the different concentrations in different brain areas is unclear. A possible 

explanation may be the higher density of 5-HT3 receptors in cortical areas compared to sub-cortical 

structures, as found in autoradiographic binding studies (Kilpatrick et al., 1987, Barnes et al., 

1990a). 

 

Minireview of the central effects of ondansetron in the rat 

We will now discuss our findings in the broad context of previous pre-clinical and clinical 

studies conducted with ondansetron. The principal findings of pre-clinical studies assessing the 

central effects (excluding drug- and radiation-induced nausea and vomiting) of ondansetron in the 

rat are presented in Table 4. This minireview was conducted to compare plasma and brain 

concentrations of ondansetron obtained in the present study with previous studies that administered 

ondansetron with a similar dose range. Indeed, as we will see, a U-shaped dose-response curve has 

consistently been obtained in studies where a wide dose range of ondansetron was administered. 
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This U-shaped dose response curve does not appear to be specific to ondansetron and has also been 

described with other 5-HT3 antagonists (Jones et al., 1988, Faerber et al., 2007). 

To conduct this brief literature review of ondansetron in the rat, we limited the search for 

its behavioural effects on the brain following parenteral administration (intraperitoneal (i.p.) or 

s.c.)). It is noteworthy that few rat studies with ondansetron have been published recently and that, 

for this reason, several of the articles cited here were published in the 1980s or 1990s. 

Cognition 

As mentioned above, the effects of ondansetron are often depicted by a U-shaped dose-

response curve, notably on learning and memory, where low (0.001 µg/kg – 1 mg/kg) (Barnes et 

al., 1990b, Fontana et al., 1995, Hodges et al., 1996), but not high (> 1 mg/kg) (Costall and Naylor, 

2000), doses enhance performance. Thus, in studies where low doses were administered, an 

improvement in cognitive performance was generally observed, specifically in spatial navigation 

tasks where, following ondansetron administration (0.1 µg/kg – 1 mg/kg), animals spent less time 

searching for the platform in the Morris water maze task (Fontana et al., 1995, Hodges et al., 1996, 

Diez-Ariza et al., 2003) and had improved performance in object recognition tests (Staubli and 

Xu, 1995, du Jardin et al., 2014). Moreover, ondansetron (0.001–1 mg/kg) prevented deficits in 

spatial discrimination tasks (Carli et al., 1997), decreased working memory deficits in the runway 

apparatus (Kumar and Kela, 2004) and reversed latencies in the passive avoidance task 

(Balakrishnan et al., 2000). However, some studies reported that ondansetron (0.001 µg/kg – 0.3 

mg/kg) did not attenuate or non-significantly improved cognitive impairments in learning and 

memory paradigms (Bratt et al., 1994, Boast et al., 1999, Diez-Ariza et al., 2003, du Jardin et al., 

2014), notably the impairments induced by scopolamine in the Stone maze task (Bratt et al., 1994), 

which suggests that the cognitive effect of ondansetron may be task specific (Costall and Naylor, 
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2000). In contrast with preclinical studies, ondansetron did not elicit procognitive effects in healthy 

subjects (Little et al., 1995) and patients with Alzheimer’s disease (Dysken et al., 2002). 

Sleep apnoea 

Ondansetron (0.01–1 mg/kg) also attenuated apnoea in rats during nonrapid eye movement 

(REM) and REM sleep, more so in the latter sleep stage (Radulovacki et al., 1998), as well as in 

anaesthetised rats (Carley and Radulovacki, 1999). To the best of our knowledge, the effects of 

ondansetron on sleep apnoea in human have not been reported. 

Behavioural sensitisation 

The action of ondansetron on behavioural sensitisation is unclear, with some groups finding 

that doses of 0.0 –1 mg/kg resulted in reductions of cocaine self-administration (King et al., 1997, 

King et al., 1998, King et al., 2000, Davidson et al., 2002), while others did not find any effect on 

such behaviour with doses of 0.001–3.3 mg/kg (Peltier and Schenk, 1991, Lane et al., 1992, 

Depoortere et al., 1993). The discrepancies may perhaps be attributed to the period of ondansetron 

administration and possibly relate to the rapid absorption and short T1/2 of ondansetron, as 

sensitisation was inhibited when ondansetron was administered during acute or chronic cocaine 

withdrawal (Costall et al., 1990, King et al., 1998, King et al., 2000, Davidson et al., 2002), but 

not if ondansetron was administered 30 min prior to cocaine self-administration (Peltier and 

Schenk, 1991, Lane et al., 1992, Depoortere et al., 1993). 

Anxiety 

The effect of ondansetron on anxiety has varied across studies and differences in treatment 

regimen, methodology and evaluation of behavioural criteria, which may all have accounted for 

this variability (Olivier et al., 2000). For this reason, the anxiolytic potential of ondansetron is still 

undetermined, as no effects were obtained in the ultrasonic vocalisation model (0.001–0.1 mg/kg) 
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(Molewijk et al., 1995, Sanchez, 1996, Olivier et al., 1998, Schreiber et al., 1998), while increased 

activity was generally reported in the social interaction test with doses ranging from 0.01 µg/kg to 

1 mg/kg (Costall et al., 1989a) and 0.3–3 µg/kg decreased latency to eat in the modified open-field 

test (Rex et al., 1998). Contradictory results were obtained in the light/dark exploration test with 

ondansetron 0.0001–1 mg/kg (Costall et al., 1989a, Morinan, 1989, Young and Johnson, 1991). 

Conflicting evidence surrounds the efficacy of ondansetron on benzodiazepine dependence and 

withdrawal, with reports ranging from no effect (0.01–1 mg/kg) (Goudie and Leathley, 1992, 

Prather et al., 1993) to  symptom attenuation (0.01–0.1 mg/kg) (Goudie and Leathley, 1990, 

Valdman et al., 1996). It is possible that these various effects depend on the stage of withdrawal 

(Nowakowska et al., 1998), and further studies are required to clarify this possibility. In agreement 

with the conflicting reports in pre-clinical models of anxiety, mixed results have also been found 

in clinical studies. Earlier clinical trials demonstrated that the anxiolytic profile of ondansetron is 

comparable to diazepam (Greenshaw and Silverstone, 1997); however previous studies had 

reported that ondansetron did not reduce anxiety in patients with generalised anxiety (Mathew and 

Wilson, 1991, Wilde and Markham, 1996). 

Pain 

Inconsistent findings have been reported regarding the effect of ondansetron on pain, 

ranging from interference with antinociceptive response to drugs (0.5–2 mg/kg) (Bhargava and 

Saha, 2001, Baek et al., 2005, Scott et al., 2006), no effect (0.5–1 mg/kg) (Lopes et al., 2009, 

Erthal et al., 2013, Turtay et al., 2015) to (0.4 – 3 mg/kg) alleviating pain (Ye et al., 1997, Shen et 

al., 2013, Akiba et al., 2017). The studies reviewed here have been limited to systemic 

administration of ondansetron, while the majority of the literature employed intra-thecal 

administration of ondansetron to target 5-HT3 receptors in the brain, without necessarily providing 



109 

 

corresponding plasma levels, which precludes comparison with the results we gathered here. 

Nonetheless, inconsistencies in antinociceptive effects have also been reported across these studies 

(Oatway et al., 2004, Peters et al., 2010). A possible reason for the variable results may be the 

numerous animal models of pain available as the source and mechanism underlying pain 

conditions differs (Mogil, 2009), such as between inflammatory pain and neuropathic pain, 

rendering it difficult to make comparisons between studies. Mixed results have also been reported 

in the clinic. A randomised placebo-controlled trial found that irritable bowel syndrome patients 

treated with ondansetron had fewer painful episodes (Goldberg et al., 1996). Likewise, i.v. 

injection of ondansetron had an analgesic effect on neuropathic pain (McCleane et al., 2003). 

However, a more recent trial found that ondansetron did not have a significant effect on pain but 

produced adequate relief for irritable bowel syndrome, suggesting a therapeutic effect independent 

of an antinociceptive process (Garsed et al., 2014). The variability in findings highlights the 

challenges posed by grouping diverse conditions of pain under one term (Raffaeli and Arnaudo, 

2017) and emphasises the need for further studies to assess the efficacy, or lack thereof, of 

ondansetron in treating different subtypes of pain.  

Epilepsy 

A possible anticonvulsant activity has also been reported, with ondansetron (0.5–2 mg/kg) 

potentiating protection against maximal electroshock-induced seizures in a rat model of epilepsy 

(Balakrishnan et al., 2000). Contrary to this finding, single case reports indicated an association 

between ondansetron and seizures in humans (Sargent et al., 1993, Sharma and Raina, 2001, 

Mason et al., 2007) and a later study suggested that ondansetron administration could be rarely 

associated with seizures in humans (Singh et al., 2009). Due to the small sample size and 
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differences in medical history of patients, it is unclear if confounding factors contributed to the 

findings of these reports. 

Considering the reported influence of relatively low doses of ondansetron on cognitive 

performance, behavioural sensitisation, and anxiety in the rat, we assessed the PK profile of such 

doses. The Cmax observed in animals following s.c. administration of ondansetron (0.1, 1 and 10 

µg/kg) ranged from 30.6 to 2,987.2 pg/mL, which was at least one order of magnitude below those 

observed in the clinic after oral administration (26.4 – 42.0 ng/mL) (Colthup et al., 1991, Baber et 

al., 1992). From this, we may infer that the PK plasma profile described may not reach target 

concentrations needed to obtain a pharmacological effect in the rat, which may explain some of 

the controversy surrounding the effects of ondansetron on behavioural sensitisation, anxiety, and 

pain. However, this possibility is mitigated by the fact that the brain to plasma ratio of ondansetron 

in human is unknown and may be higher than the one we found here, especially in areas where it 

was lower, such as the cerebellum and the striatum. Studies are thus warranted to assess the PK of 

s.c. administration of ondansetron in non-human primates to provide a better proxy of the brain to 

plasma ratio in human.   

The mechanism underlying the U-shaped dose-response curve is not known and the 

questions remains as to whether it is due to a shared characteristic of 5-HT3 antagonists or the 

pharmacology of individual compounds (Farber et al., 2004). The most favoured mechanism 

proposes that, at high concentrations of 5-HT3 antagonists, there is mutual steric hindrance at the 

receptor (Faerber et al., 2007), which could inhibit binding of ondansetron to the receptor. 

Furthermore, ondansetron may exert additional effects due to low-affinity binding to other 

receptors to 5-HT1A, 5-HT1B, α-adrenergic and opioid receptors, although this appears negligible 

compared its binding to high-affinity 5-HT3 receptor sites that is about 250- and 500-fold higher 
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that of the other receptors (Van Wijngaarden et al., 1990b). Alternatively, the density of 5-HT3 

receptors varies between different brain regions, so one density type may be completely inhibited 

at low concentrations while another type requires high concentrations of 5-HT3 receptor 

antagonists (Faerber et al., 2007). This could explain contrary effects, for example, where blockade 

of 5-HT3 receptors within the cortex that confers therapeutic benefit is offset when 5-HT3 receptors 

from another brain region are completely antagonised, which could explain the lack of efficacy of 

higher doses of ondansetron. 

We found that s.c. administration of small doses of ondansetron did not have a linear dose-

dependent effect on T1/2 and plasma levels, which suggests that elimination of ondansetron cannot 

solely explain the dose-response curve. Rather, we speculate that the U-shaped dose-response of 

ondansetron in this minireview, where maximum response is observed in the microgram dose 

range while higher doses are ineffective (Faerber et al., 2007), may be explained, in part, by the 

distribution of 5-HT3 receptors in the brain. In addition to high levels of 5-HT3 receptor binding in 

the area postrema and solitary tract nucleus (Kilpatrick et al., 1987, Waeber et al., 1988), the 5-

HT3 receptor has been localised to cortical and limbic regions by autoradiographic binding studies 

(Waeber et al., 1990, Gehlert et al., 1991), which suggests that the cognitive and anxiolytic effects 

of ondansetron may be mediated at these sites (Costall et al., 1989b, Hodges et al., 1996). Thus, 

relatively low doses of ondansetron may preferentially block 5-HT3 receptors in these regions to 

suppress the excitation of gamma-aminobutyric acid (GABA)-ergic neurons (Morales and Bloom, 

1997) and disinhibit pyramidal cells (Staubli and Xu, 1995) to provide therapeutic benefit. 

However, intermediate doses of ondansetron may saturate binding to 5-HT3 receptors in cortical 

and limbic regions and lead to a compensatory response of GABAergic neurons that translates to 

an absence of response at the behavioural level. At high doses, ondansetron may be reach sufficient 
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levels in the brain to antagonise 5-HT3 receptors present in regions of lower densities such as the 

nucleus accumbens and striatum (Kilpatrick et al., 1987), and may underlie its efficacy in 

inhibiting sensitisation to drugs of abuse (King et al., 2000). Moreover, the variable efficacy of 

ondansetron obtained with higher doses may be attributed to its low affinity for 5-HT1A, 5-HT1B, 

α-adrenergic and opioid receptors, which suggests that its action is not limited to blockade of the 

5-HT3 receptor. As these mechanisms have not been demonstrated experimentally and remain the 

subject of speculation, further studies are required to elucidate the mechanisms governing the U-

shaped dose-response curve to guide attempts to determine optimal dosage of ondansetron.  

Collectively, these results in preclinical models are encouraging the administration of 

ondansetron as a therapeutic compound in a variety of central nervous disorders. However, despite 

these promising preclinical results, the efficacy of ondansetron needs to be demonstrated in 

randomised-controlled clinical trials prior to its off-label for new indications. 

 

 

Chapter 2 Conclusion 

 In summary, we have determined the plasma PK and associated brain concentrations of 

ondansetron in the rat. Ondansetron levels reported in the motor cortex, pre-frontal cortex, 

cerebellum and striatum provide support for its action on 5-HT3 receptors in these brain regions. 

Further studies are required to confirm that these levels of ondansetron are sufficient to bind to 

and antagonise 5-HT3 receptors and mediate its central effects. Moreover, the mechanism 

underlying its therapeutic efficacy remains to be elucidated, as its U-shaped dose-response curve 

still lacks explanation. 
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Chapter 2 Tables and Figures 

Table 1. Derived PK plasma parameters following i.v. administration of ondansetron at 1 µg/kg 

in the rat. 

Note: AUC, area under the curve; C0, extrapolated concentration at T = 0; CL, clearance; F, 

bioavailability; MRT, mean residence time; T1/2, terminal half-life; Vss, steady-state volume of 

distribution; Vz, volume of distribution. N = 4 per dose. 

  

Parameter 

1 µg/kg 

(mean  SD) 

AUC0-t (pg·mL-1·h-1) 384.152.4 

AUC0-∞ (pg·mL-1·h-1) 411.149.3 

C0 (pg/mL) 898.3163.5 

T1/2 (min) 4216 

CL (L·h-1·kg-1) 2.460.30 

Vz (L/kg) 2.581.29 

MRT (h) 0.810.45 

Vss (L/kg) 2.081.42 

F (%) 100 
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Table 2. Derived PK parameters in the plasma following s.c. administration of ondansetron in the 

rat. 

AUC, area under the curve; CL, clearance; Cmax, maximal plasma concentration; F, bioavailability; 

MRT, mean residence time; T1/2, terminal half-life; Tmax, time to maximal plasma concentration; 

Vz, volume of distribution. N = 4 per dose. 

 

 

Parameter 

0.1 µg/kg 1 µg/kg 10 µg/kg 

(mean  SD) (mean  SD) (mean  SD) 

AUC0-t (pg/mL•h) 32.67.9 432.043.8 2,891.3115.7 

AUC0-∞ (pg/mL•h) 35.28.4 435.543.7 2,911.0128.1 

Cmax (pg/mL) 30.65.5 525.0293.0 2,987.2764.7 

Tmax (min) 150 106 76 

T1/2 (min) 393 327 4320 

CL/F (L/h/kg) 2.950.6 2.310.24 3.40.15 

Vz/F (L/kg) 2.70.4 1.790.48 3.51.5 

MRT (h) 0.870.1 0.790.10 0.850.20 
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Table 3. Plasma and brain PK parameters following s.c. administration of ondansetron at 1 µg/kg in the rat. 

 

Note: AUC, area under the curve. 

 

  

 

Parameters 

1 µg/kg (mean  SD) 

Plasma Motor cortex Pre-frontal cortex Cerebellum Striatum 

AUC0-t (pg· h-1·mL-1)  170.0 27.7 75.932.4 77.632.4 36.1 32.4 45.4 32.4 

Ratio (vs. plasma) 
 

0.45 0.46 0.21 0.27 
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Table 4. Literature review of the central effects of ondansetron in the rat. 
Indication Administered dose(s) 

(mg/kg) 

Effective dose(s) 

(mg/kg) 

Route of 

administration 

Effect Reference 

Drug sensitisation 0.01, 0.1, 1 0.01, 0.1, 1 s.c. Inhibited locomotor and behavioural 

sensitisation to cocaine withdrawal 

King et al. 1997 

0.01, 0.1, 1 0.01, 0.1, 1 s.c. Inhibited sensitisation and tolerance to cocaine 

withdrawal 

King et al. 1998 

0.01, 0.1, 1 0.01, 0.1, 1 s.c. Blocked sensitisation to cocaine King et al. 2000 

0.2 0.2 s.c. Inhibited sensitisation and self-administration of 

cocaine sensitisation 

Davidson et al. 2002 

0.01, 0.1, 1  i.p. No effect on cocaine self-administration Peltier and Schenk 

1991 

0.001–3.3  i.p. No effect on cocaine self-administration Lane et al. 1992 

0.001–1  i.p. No effect on cocaine self-administration Depoortere et al. 1993 

Cognition 

 
1  10-5 a 1  10-5 a i.p. ↑ Correct responses in T-maze reinforced 

alternation task 

Barnes et al. 1990b 

0.003–3 0.03–1 i.p. ↓ Latency to find platform in the Morris water 

maze in young rats 

Fontana et al. 1995 

0.1 0.1 ↓ latency to find platform in the Morris water 

maze in age-impaired rats 

0.01-5 0.01, 0.5, 1 i.p. ↑ Frequency of hippocampal theta rhythm Staubli et al. 1995 

0.1 and 0.5 0.1 and 0.5 ↑ duration and intensity of LTP 

0.1 0.1 i.p. ↑ Correct choices in olfactory delayed match-to-

sample task 

↑ Correct entries and ↓ re-entry errors in the 

radial maze (spatial task) 

0.001, 0.01, 0.1 0.001, 0.01, 0.1 s.c. ↓ Latency to find platform in the Morris water 

maze 

Hodges et al. 1996 

↓ Searching time for correct quadrant and 

circling periphery 

↑ Retention of platform position during probe 

trial 

0.0001, 0.001 0.001 s.c. Prevented deficits in the spatial discrimination 

task 

Carli et al. 1997 

0.25–4 0.25 and 0.5 i.p. ↑ Retention latencies in the passive avoidance 

task 

Balakrishnan et al. 

2000 
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Table 4 (continued) 
Indication Administered dose(s) 

(mg/kg) 

Effective dose(s) 

(mg/kg) 

Route of 

administration 

Effect Reference 

Cognition 0.0001 0.0001 i.p. Reversed learning and retention deficits in the 

Morris water maze when administered in 

combination with flumazenil or tacrine b 

Diez-Ariza et al. 2003 

0.01 – 1 1 i.p. ↓ Working memory deficits in the runway 

apparatus 

Kumar and Kela 

2004 

1  10-6, 0.003, 0.3 1  10-6, 0.003, 0.3 s.c. Reversed memory deficits in novel object 

recognition test 

du Jardin et al. 2014 

1  10-6 a – 0.001 a  i.p. Did not attenuate impairments in the Stone maze 

task 

Bratt et al. 1994 

1  10-6, 0.003, 0.3  s.c. No effect on Y-maze spontaneous alternation 

(spatial working memory) 

du Jardin et al. 2014 

0.3 0.3 i.p. Attenuated impairment in radial maze 

performance in rats 

Boast et al. 1999 

0.0001 0.0001 i.p. Partially prevented learning deficit in the Morris 

water maze 

Diez-Ariza et al. 2003 

Pain 0.4, 0.8, 1 0.4, 0.8, 1 s.c. ↑Tail flick latency Ye et al. 1997 

3 3 i.p. Potentiates anti-nociceptive response to 

duloxetine and morphine c 

Shen et al. 2013 

3 3 i.p. ↓Duodenal injury Akiba et al. 2017 

0.5  i.p. Did not interfere with anti-nociceptive effect of 

topiramate in formalin test d 

Lopes et al. 2009 

1  i.p. Did not interfere with laser acupuncture-induced 

anti-nociception 

Erthal et al. 2013 

1  i.p. Attenuated analgesic effect of apelin-13 e Turtay et al. 2015 

0.5  i.p. ↓Anti-nociceptive response to imipramine f Bhargava and Saha 

2001 

0.5  i.p. Blocked analgesic effect of electroacupuncture Baek et al. 2005 

2  i.p. ↑Pain sensitivity in P-glycoprotein knockout 

mice g  

Scott et al. 2006 

Anxiety 

 

0.01, 0.1, 1 a 0.01 and 0.1 a i.p. ↓Tolerance to diazepam or benzodiazepine 

withdrawal 

Goudie and Leathley 

1990 

0.05 0.05 i.p. ↓Tolerance to diazepam or benzodiazepine 

withdrawal 

Valdman et al. 1996 

0.0001–0.003 0.0003–0.003 i.p. ↓Latency to eat in the modified open-field test Rex et al. 1998 
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Table 4 (concluded) 
Indication Administered dose(s) 

(mg/kg) 

Effective dose(s) 

(mg/kg) 

Route of 

administration 

Effect Reference 

Anxiety 1  10-5–0.001 1  10-5–0.001 i.p. Increased social interaction Costall et al. 1989 

Costall et al., 1989 0.001–0.1 0.001–0.1 i.p. Increased light/dark exploration 

0.0001–1 0.0001–1 i.p. Increased light/dark exploration Young and Johnson 

1991 

0.01, 0.1, 1  i.p. No effect on benzodiazepine dependence or 

withdrawal 

Goudie and Leathley 

1992 

0.01, 0.1, 1  i.p. No effect on benzodiazepine dependence or 

withdrawal 

Prather et al. 1993 

0.08  i.p. No effect on foot shock-induced ultrasonic 

vocalisation in adult male rats 

Sanchez 1996 

0.001, 0.01, 0.1  i.p. No effect on ultrasonic vocalisation in adult male 

rats 

Molewijk et al. 1995 

0.1  i.p. No effect on ultrasonic vocalisation in adult rats Schreiber et al. 1998 

0.001, 0.01, 0.1  i.p. No effect on ultrasonic vocalisation in rat pups Olivier et al. 1998 

0.001–1  i.p. No effect on light/dark exploration Morinan 1989 

Sleep 1 1 i.p. Suppressed non-rapid eye movement (REM) and 

REM sleep apnoea in freely moving rats 

Radulovacki et al. 

1998 

0.1 0.1 i.p. Attenuated REM sleep apnoea in freely moving 

rats 

Carley and 

Radulovacki 1999 

Epilepsy 0.25–4 0.5–2 i.p. ↑Protection against maximal electroshock-

induced seizures 

Balakrishnan et al. 

2000 

abis in die (b.i.d.). 

bFlumazenil: benzodiazepine receptor antagonist (Hoffman and Warren, 1993); tacrine: anticholinesterase drug (Nair and Hunter, 2004). 

cDuloxetine: noradrenaline and 5-HT transporter inhibitor (Wong et al., 1993); morphine: mu opioid receptor agonist (Bowen et al., 

2002).   

dTopiramate: anticonvulsant; sulfamate-substituted monosaccharide {Perucca, 1997 #4048}.  

eApelin-13: endogenous ligand of the orphan G protein-coupled receptor APJ (Tatemoto et al., 1998). 
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fImipramine: tricyclic antidepressant (Klerman and Cole, 1965). 

gP-glycoprotein: drug efflux pump (Sharom, 1997). 
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Fig. 1. Mean ± SD plasma concentration time profile of ondansetron at 1 µg/kg (N = 4) following 

i.v. administration in the rat. [Colour online.] 
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Fig. 2. Mean ± SD plasma concentration time profile of ondansetron (0.1, 1 and 10 µg/kg) 

following s.c. administration in the rat (N = 4 per dose). [Colour online.] 
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Fig. 3. Mean ± SD plasma and brain concentration time profile of ondansetron at 1 µg/kg (N = 4 

per timepoint) following s.c. administration in the rat. Time course of ondansetron levels in 

plasma, cortical and sub-cortical areas of the brain. [Colour online.]
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Transition 1: Expanding the profile of 5-HT3 receptor 

antagonists in L-DOPA induced dyskinesia  

Recent behavioural studies in the 6-OHDA-lesioned rat have demonstrated 5-HT3 

receptor blockade with the prototypical antagonist ondansetron diminished the severity of 

established dyskinesia by 25% and attenuated the development of dyskinesia by as much as 64% 

559, 870. However, it is unclear whether the anti-dyskinetic benefit obtained with ondansetron 

represents a class effect and may also be elicited by other 5-HT3 antagonists.  

In addition to ondansetron, there are several highly-selective 5-HT3 receptor antagonists 

such as granisetron, dolasetron and palonosetron that are clinically-available as anti-emetics 1013. 

Besides a shared mechanism of action, these antagonists exhibit different receptor binding 

affinities and pharmacokinetic profiles 1014, which may potentially translate to varied anti-

dyskinetic potential.  

In Chapter 3, we evaluated the anti-dyskinetic efficacy of granisetron in the 6-OHDA 

rat and found that granisetron significantly reduced dyskinesia parameters by as much as 45%. 

Moreover, its anti-dyskinetic effect did not compromise L-DOPA anti-parkinsonian action, 

which is consistent with reports that investigated the effects of ondansetron in the same model 

559, 870. Taken together, these results suggest that the anti-dyskinetic benefit conferred by 

ondansetron and granisetron may be attributed to blockade of 5-HT3 receptors. Moreover, the 

clinical availability of 5-HT3 receptor antagonists may facilitate testing in Phase II clinical trials 

for repositioning as an adjunct therapy to L-DOPA in the treatment of dyskinesia in PD.  
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Chapter 3 Abstract 

Administration of L-3,4-dihydroxyphenylalanine (L-DOPA) provides Parkinson’s disease patients 

with effective symptomatic relief. However, long-term L-DOPA therapy is often marred by 

complications such as dyskinesia. We have previously demonstrated that serotonin type 3 (5-HT3) 

receptor blockade with the clinically available and highly selective antagonist ondansetron 

alleviates dyskinesia in the 6-hydroxydopamine (6-OHDA)-lesioned rat. Here, we sought to 

explore the antidyskinetic efficacy of granisetron, another clinically available 5-HT3 receptor 

antagonist. Rats were rendered hemi-parkinsonian by 6-OHDA injection in the medial forebrain 

bundle. Following induction of stable abnormal involuntary movements (AIMs), granisetron 

(0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) or vehicle was acutely administered in combination with 

L-DOPA and the severity of AIMs, both duration and amplitude, was determined. We also 

assessed the effect of granisetron on L-DOPA antiparkinsonian action by performing the cylinder 

test. Adding granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) to L-DOPA resulted in a significant 

reduction of AIMs duration and amplitude, with certain parameters being reduced by as much as 

38 and 45% (P < 0.05 and P < 0.001, respectively). The antidyskinetic effect of granisetron was 

not accompanied by a reduction of L-DOPA antiparkinsonian action. These results suggest that 5-

HT3 blockade may reduce L-DOPA-induced dyskinesia without impairing the therapeutic efficacy 

of L-DOPA. However, a U-shaped dose-response curve obtained with certain parameters may 

limit the therapeutic potential of this strategy and require further investigation. 

Keywords: dyskinesia, granisetron, Parkinson’s disease, 5-HT3 receptor, 6-hydroxydopamine-

lesioned rat  
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Chapter 3 Introduction 

Parkinson’s disease is the second most common neurodegenerative disorder, and in the next few 

decades, prevalence is expected to grow with an increasingly ageing population (Manson et al., 

2012). The main treatment to provide symptomatic relief for Parkinson’s disease is the dopamine 

precursor L-3,4-dihydroxyphenylalanine (L-DOPA) (Tarakad and Jankovic, 2017). However, with 

prolonged administration of L-DOPA, as many as 95% of patients become encumbered by 

abnormal involuntary movements (AIMs), dyskinesia (Hely et al., 2005). Current pharmacological 

management of dyskinesia includes modification of dopaminergic therapy and the N-Methyl-D-

aspartate (NMDA) receptor antagonist amantadine, but the efficacy achieved is partial and often 

marred by side effects (Kong et al., 2017, Oertel et al., 2017). 

The serotonin (5-HT) system has received considerable interest in the pathophysiology of 

dyskinesia (Huot and Fox, 2013), particularly through the role of serotonergic terminals in 

converting exogenous L-DOPA into dopamine and controlling its release in the denervated 

Parkinson’s disease striatum (Carta et al., 2007). Much of the focus has been directed towards 5-

HT type 1A (5-HT1A) and type 1B (5-HT1B) agonists and 5-HT type 2A (5-HT2A) antagonists, 

which effectively reduced dyskinesia in the 6-hydroxydopamine (6-OHDA)-lesioned rat and 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned non-human primate models 

(Bibbiani et al., 2001, Iravani et al., 2006, Hamadjida et al., 2018d, Kwan et al., 2019). In light of 

these promising results, clinical trials tested the 5-HT1A agonists tandospirone and sarizotan in 

treating dyskinetic Parkinson’s disease patients, but these agents only produced modest 

antidyskinetic efficacy and/or worsened parkinsonian symptoms (Kannari et al., 2002a, Olanow et 

al., 2004, Goetz et al., 2008a).  
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The 5-HT type 3 (5-HT3) receptor is the only ligand-gated receptor amongst 5-HT receptors and 

several clinically-available antagonists used to treat chemotherapy-induced nausea can modulate 

its activity (Walstab et al., 2010). It was previously shown that blockade of 5-HT3 receptors with 

ondansetron diminished dopamine release within the basal ganglia (Koulu et al., 1990), which 

suggests that antagonising 5-HT3 receptors may alleviate dyskinesia, by dampening the excessive 

release of L-DOPA-derived dopamine that occurs in the dyskinetic state (Carta et al., 2007). 

Moreover, although we acknowledge that this is not their primary mechanism of action, some 

compounds that alleviated dyskinesia in animal models of Parkinson’s disease (Durif et al., 2004, 

Hamadjida et al., 2017) also antagonise the 5-HT3 receptor (Ashby and Wang, 1996, Anttila and 

Leinonen, 2001), which suggests that 5-HT3 blockade may play a minor role in their antidyskinetic 

effect.  

Two recent studies in the hemi-parkinsonian rat found that the 5-HT3 receptor antagonist 

ondansetron diminished the severity of established, and prevented the development of, dyskinesia 

(Aboulghasemi et al., 2018, Kwan et al., 2020c). However, it is unclear if the antidyskinetic 

efficacy obtained with ondansetron represents a class effect and might also be elicited by other 5-

HT3 antagonists. Indeed, 5-HT3 antagonists exhibit different pharmacokinetic profiles and affinity 

for various receptors (Gan, 2005), which could potentially translate to varied antidyskinetic action. 

Ondansetron displays low affinity for 5-HT1A, 5-HT1B, α-adrenergic and opioid receptors (van 

Wijngaarden et al., 1990a), whereas the 5-HT3 receptor antagonist granisetron has minimal to no 

affinity for other receptors (Blower, 1990). In the present study, we evaluated the antidyskinetic 

efficacy of 5-HT3 blockade with the highly selective antagonist granisetron in the hemi-

parkinsonian rat. 
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Chapter 3 Methods 

Subjects  

Experiments were conducted on adult female Sprague-Dawley rats (225–250 g, Charles River, 

Canada). Rats were group housed in three under temperature (21± 1°C), humidity (55%), light 

(12-h light/dark cycle, lights on at 07:00) controlled conditions with ad-libitum access to food and 

water. Upon arrival, rats remained undisturbed to acclimatise to housing conditions for at least 5 

days before experiments. All procedures were approved by the Montreal Neurological Institute 

Animal Care Committee, in accordance with the Canadian Council on Animal Care guidelines.  

 

Drug treatments 

Desipramine hydrochloride, pargyline hydrochloride, 6-OHDA hydrobromide, L-DOPA methyl 

ester hydrochloride, benserazide hydrochloride were purchased from MilliporeSigma, Canada 

(Etobicoke, Ontario, Canada). Granisetron hydrochloride was purchased from Cedarlane 

Laboratories, Canada (Burlington, Ontario, Canada). All drugs were dissolved in 0.9% NaCl 

unless otherwise specified. 6-OHDA was dissolved in 0.9% saline with 0.02% ascorbic acid, L-

DOPA was dissolved in 0.9% NaCl with 0.1% ascorbic acid. All solutions were administered sub-

cutaneously (s.c.) in a volume of 1.0 mL/kg body weight.  

All drug doses are expressed as free base weights. 

 

Induction of parkinsonism 
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Rats (N=35) were pre-treated with desipramine (10 mg/kg subcutaneously) and pargyline (5 mg/kg 

subcutaneously) to protect noradrenergic neurons (Ungerstedt, 1968). Then, they were deeply 

anaesthetised and placed into a stereotaxic frame (David Kopf Instruments, Tujunga, California, 

USA) 30 min later, after which they were injected with 2.5 μL of 6-OHDA (7 μg/μL) in the right 

medial forebrain bundle, as previously described (Huot et al., 2015, Frouni et al., 2018), at the 

following coordinates: antero-posterior: − 2.8 mm, medio-lateral: − 2.0 mm, dorso-ventral: − 9.0 

mm) relative to Bregma, with the incisor bar set 3.3 mm below ear bars (Paxinos and Watson, 

2007). Throughout surgery, rats were anaesthetised with isoflurane (2-4%; MilliporeSigma, 

Canada) in 100% oxygen (1 L/min).   

 

Evaluation of parkinsonism  

Three weeks after 6-OHDA injection, the degree of parkinsonism was assessed using the cylinder 

test (Schallert et al., 2000, Frouni et al., 2018, Frouni et al., 2019). Rats (N=22) were placed in a 

transparent cylinder (14 cm diameter  28 cm height), recorded for 10 min and behaviours were 

analysed post hoc. Only animals that demonstrated preferential use of the un-lesioned forelimb in 

≥70% of the rears were selected for inclusion in behavioural studies, a score that is indicative of 

≥88% dopamine depletion in the striatum (Schallert et al., 2000, Frouni et al., 2018, Frouni et al., 

2019). 

 

Assessment of axial, limbs and oro-lingual abnormal involuntary movements 

Axial, limbs and oro-lingual (ALO) abnormal involuntary movements (AIMs) were assessed by 

an observer blinded to treatment, according to a scale previously described (Cenci and Lundblad, 

2007), which encompasses both time-based, ‘duration,’ and severity-based, that is ‘amplitude,’ 
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assessment of abnormal movements. The scales utilised are presented in Supplementary Tables 1 

and 2, Supplemental digital content 1, http://links.lww.com/BPHARM/A61. Briefly, axial AIMs 

affect the neck and upper trunk of the animal and results in torsional movement towards the side 

contralateral to lesion (Cenci and Lundblad, 2007). Limbs AIMs are defined by hyperkinetic 

and/or sustained contraction of muscles of the forelimb contralateral to lesion, whereas oro-lingual 

AIMs affect facial, tongue and masticatory muscles. On days of behavioural scoring, following 

administration of L-DOPA/granisetron or L-DOPA/vehicle, rats were put in individual glass 

cylinders and ALO AIMs were rated for 2 min starting at baseline (prior to treatment 

administration) and every 20 min over a 3 h testing session thereafter. Both ALO AIMs duration 

and amplitude were rated on a scale from 0 to 4 in each monitoring interval, as we have previously 

done (Frouni et al., 2018, Frouni et al., 2019, Kwan et al., 2020c). The maximum obtainable axial, 

limbs or oro-lingual AIMs score per session was 36. The 3 AIMs subtypes were summed to obtain 

the cumulative ALO AIMs score with a maximum score of 108 per session.  

 

Acute challenge study 

Rats (N=22) that displayed severe rearing asymmetry following assessment of parkinsonism 

underwent daily priming with L-DOPA/benserazide (10/15 mg/kg) for 14 days to induce ALO 

AIMs (Frouni et al., 2018, Frouni et al., 2019) and animals (N=13) that exhibited stable and 

reproducible AIMs were retained for further testing. On days of behavioural testing, rats were 

administered L-DOPA (6/15 mg/kg, hereafter referred to as L-DOPA) in combination with 

granisetron (0.0001, 0.001, 0.01 0.1 and 1 mg/kg) or vehicle, and the severity of ALO AIMs was 

assessed as described above. Treatments were randomised according to a within-subjects design, 
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in which all animals received all treatments, in a random order and behavioural testing sessions 

were separated by at least 72 h of drug washout.  

After a 3-day washout period, rats were administered a low dose of L-DOPA/benserazide (3/15 

mg/kg subcutaneously), sufficiently high to produce an antiparkinsonian effect but without 

triggering AIMs, in combination with granisetron (0.0001 0.001, 0.01, 0.1, 1 mg/kg) or vehicle. 

Forty-five minutes later, corresponding to peak antiparkinsonian action, animals underwent the 

cylinder test to determine whether granisetron compromised the therapeutic action of L-DOPA.  

 

High-performance liquid chromatography-tandem mass spectrometry  

At the end of the experiments, rats were anaesthetised with isoflurane (2-4%; MilliporeSigma, 

Canada) prior to trans-cardial perfusion with 0.9% NaCl. Brains were then removed, flash frozen 

in isopentane at -56 °C and the left and right striata were dissected from the rest of the brain and 

stored at -80ºC until further analysis. High-performance liquid chromatography-tandem mass 

spectrometry (HPLC-MS/MS) was performed to quantify the striatal levels of dopamine, 5-HT, 

and their metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-

hydroxyindoleacetic acid (5-HIAA), according to previous protocols (Huot et al., 2012b, Frouni 

et al., 2018, Frouni et al., 2019). Tissue monoamine concentrations of are expressed as ng/mg wet 

tissue. The dopamine turnover rate was calculated from DOPAC/dopamine and 

(DOPAC+HVA)/dopamine ratios, whereas the 5-HT turnover rate was calculated from the 5-

HIAA/5-HT ratio (Smith et al., 2003). 

 

Statistical Analysis 
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Data from the cylinder test to assess hemi-parkinsonism are graphed as the mean ± SEM: standard 

error of the mean and were analysed using one-way analysis of variance (ANOVA) with the 

Greenhouse-Geisser correction; post hoc comparisons were performed using Tukey’s post hoc test. 

Tissue concentrations of the biogenic amines dopamine, 5-HT and their metabolites DOPAC, 

HVA, 5-HIAA are presented as the mean ± SEM and were analysed by unpaired Welch’s unequal 

variances t test. The turnover rates of dopamine and 5-HT were assessed for significant differences 

using unpaired Welch’s unequal variances t test. Cumulative AIMs scores are expressed as the 

median with semi-interquartile interval and were analysed using nonparametric Friedman test 

followed by Dunn’s post hoc test. AIMs time course data are presented as the median and, 

following data ranking in ascending order, were analysed by two-way repeated measures (RM) 

ANOVA followed by Dunnett’s post hoc test (Howell, 2011). The effect of granisetron on L-

DOPA antiparkinsonian action is presented as the mean ± SEM and was analysed using one-way 

RM ANOVA followed by Tukey’s post hoc test. Statistical significance was assigned when P ˂ 

0.05. Statistical analyses were performed with GraphPad Prism 8.2.0 (GraphPad Software Inc, San 

Diego, California, USA). 

 

 

Chapter 3 Results 

Extent of dopaminergic lesion 

In the cylinder test, animals demonstrated a mean of 48 ± 14 rears over the 10 min observation 

period. As shown in Fig. 1a, animals selected for inclusion in behavioural studies exhibited rearing 

asymmetry (F(2, 36) = 155.9, P < 0.001, one-way ANOVA), with markedly higher use of the right 



 

143 

 

forepaw in 81% of wall contacts, while the left forepaw and both forepaws accounted for 0.7 and 

19% of contacts, respectively (both P < 0.001 compared to the right forepaw, Tukey’s post hoc 

test). In line with these results, HPLC-MS/MS analysis of striatal tissue revealed significant 

diminutions of dopamine, DOPAC and HVA in the lesioned striata when compared to the 

unlesioned striata, by 97% (t(9.036) = 6.940, P < 0.001), 70% (t(9.267) = 6.160, P < 0.001) and 82% 

(t(9.580) = 6.416, P < 0.001), respectively as displayed in Fig.1b. In contrast, 5-HT (t(15.45) = 0.6997, 

P > 0.05) or 5-HIAA (t(16.35) = 0.2436, P > 0.05) levels were comparable between both 

hemispheres. As presented in Table 1, the 6-OHDA lesion induced a significant increase in the 

turnover rate of dopamine in the ipsilateral striata (t(9.051) = 4.238, P < 0.01) for DOPAC/dopamine 

and (t(9.015) = 3.578, both P < 0.01) for (DOPAC+HVA)/dopamine, respectively, whereas the 

turnover rate of 5-HT was unaltered (t(16.58) = 1.096, P > 0.05). Thus, the lesioned striata showed a 

14.9-fold-increase in the DOPAC/dopamine ratio and a 10.1-fold-increase in 

(DOPAC+HVA)/dopamine ratio, respectively.  

 

Effect of granisetron on L-DOPA-induced dyskinesia 

Axial, limbs and oro-lingual abnormal involuntary movements AIMs 

As shown in Fig. 2a, administration of granisetron in combination with L-DOPA had a significant 

effect on ALO AIMs duration throughout the 3 h observation period (Ftime (6.52, 469.5) = 0, P > 0.05; 

Ftreatment (5, 72) = 9.405, P < 0.001; and Finteraction (45, 648) = 1.520, P < 0.05; two-way RM ANOVA 

following ranking of data). Thus, as presented in Supplementary Table 3, Supplemental digital 

content 1, http://links.lww.com/BPHARM/A56, at 60 min, granisetron (0.0001, 0.001, 0.01 mg/kg) 

significantly decreased ALO AIMs duration, by 29%, 40% and 45%, respectively, when compared 

to vehicle (P < 0.05, P < 0.001 and P < 0.001, Dunn’s post hoc test). At 140 min, granisetron 
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(0.0001, 0.001, 0.01 mg/kg) significantly decreased ALO AIMs duration by 34%, 26% and 34%, 

respectively, when compared to vehicle (P < 0.001, P < 0.05 and P < 0.001, Dunn’s post hoc test). 

Combining granisetron with L-DOPA also significantly diminished the severity of cumulative 

ALO AIMs duration (Friedman Statistic [FS] = 15.99, P < 0.01) as illustrated in Fig. 2b. Thus, 

administration of granisetron (0.0001, 0.001 and 0.01 mg/kg) with L-DOPA attenuated ALO AIMs 

duration by 25%, 29% and 27%, (P < 0.05, P < 0.01 and P < 0.05, Dunn’s post hoc test), when 

compared to L-DOPA/vehicle. 

Figure 2c shows that administration of granisetron in combination with L-DOPA also had a 

significant effect on ALO AIMs amplitude throughout the 3 h observation period (Ftime (4.89, 352.3) = 

0, P > 0.05; Ftreatment (5, 72) = 7.250, P < 0.001; and Finteraction (45, 648) = 1.327, P > 0.05; two-way RM 

ANOVA following ranking of data). Thus, as presented in Supplementary Table 4, Supplemental 

digital content 1, http://links.lww.com/BPHARM/A56, at 60 min, granisetron (0.001, 0.01, 0.1 and 

1 mg/kg) significantly decreased ALO AIMs amplitude, by 30, 27, 26 and 29%, respectively, when 

compared to vehicle (each, P < 0.05, P < 0.001, P < 0.05 and P < 0.01, Dunn’s post hoc test). At 

140 min, granisetron (0.0001, 0.001, 0.01 and 0.1 mg/kg) significantly decreased ALO AIMs 

amplitude, by 38, 31, 35 and 26%, respectively, when compared to vehicle (P < 0.01, P < 0.01, P 

< 0.01 and P < 0.05, Dunn’s post hoc test). Granisetron significantly diminished the severity of 

cumulative ALO AIMs amplitude (FS = 20.85, P < 0.001). Thus, administration of granisetron 

(0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) with L-DOPA attenuated ALO AIMs amplitude by 28, 29, 

29, 27 and 24%, (P < 0.01, P < 0.001, P < 0.001, P < 0.05, and P < 0.05, Dunn’s post hoc test), 

when compared to L-DOPA/vehicle, as shown in Fig. 2d. 

 

Abnormal involuntary movement subtypes 
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As displayed in Fig. 3a, granisetron significantly diminished the severity of cumulative axial AIMs 

duration (FS = 11.38, P < 0.05). Administration of granisetron 0.0001 mg/kg with L-DOPA 

attenuated axial AIMs duration by 32% (P < 0.01, Dunn’s post hoc test), when compared to L-

DOPA/vehicle. In contrast, granisetron 0.001, 0.01, 0.1 and 1 mg/kg did not significantly reduce 

the severity of cumulative axial AIMs duration. Granisetron also significantly reduced the severity 

of cumulative axial AIMs amplitude (FS = 15.76, P < 0.01, Fig. 3b). Thus, after administration of 

granisetron 0.0001, 0.001, 0.01, 0.1 and 1 mg/kg, the severity of axial AIMs amplitude was 

reduced by 21, 28, 29, 24 and 25%, respectively, when compared to L-DOPA/vehicle (P < 0.05, 

P < 0.01, P < 0.01, P < 0.05 and P < 0.05, Dunn’s post hoc test).  

As shown in Fig. 3c, granisetron significantly diminished the severity of cumulative limbs AIMs 

duration (FS = 24.95, P < 0.001). Administration of granisetron 0.0001, 0.001 and 0.01 mg/kg 

with L-DOPA attenuated limbs AIMs duration by 30, 45 and 42%, (P < 0.05, P < 0.001 and P < 

0.001, Dunn’s post hoc test), when compared to L-DOPA/vehicle. As displayed in Fig. 3d, 

granisetron significantly reduced the severity of cumulative limbs AIMs amplitude (FS = 14.21, P 

< 0.05). Thus, after administration of granisetron 0.0001, 0.001 and 0.01 mg/kg, the severity of 

limbs AIMs amplitude was reduced by 25, 27 and 24%, respectively, when compared to vehicle 

(P < 0.05, P < 0.05 and P < 0.01, Dunn’s post hoc test).  

Finally, as displayed in Fig. 3e, granisetron did not diminish the severity of cumulative oro-lingual 

AIMs duration (FS = 9.645, P > 0.05). In contrast, as shown in Fig. 3f, granisetron significantly 

reduced the severity of cumulative oro-lingual AIMs amplitude (FS = 13.48, P < 0.05). Thus, after 

administration of granisetron 0.0001, 0.1 and 1 mg/kg, the severity of oro-lingual AIMs amplitude 

was reduced by 38, 27 and 27%, respectively, when compared to vehicle (all P < 0.05, Dunn’s 

post hoc test). 
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Granisetron does not compromise L-DOPA antiparkinsonian action 

We assessed the effect of granisetron on L-DOPA antiparkinsonian action using the cylinder test. 

As shown in Fig. 4, L-DOPA alone or in combination with granisetron resulted in an improvement 

in motor performance with less dependence on the right forepaw when making wall contacts 

(F(4.067, 48.80) = 8.384, P < 0.001, one-way RM ANOVA). Thus, L-DOPA/vehicle-treated rats 

displayed a marked decrease in the number of rears using the unlesioned side, by 49% (P < 0.05, 

Tukey’s post hoc test), when compared to L-DOPA-untreated 6-OHDA-lesioned animals. The 

addition of granisetron (0.001, 0.01, 0.1 or 1 mg/kg) did not affect this decrease in rears with the 

unlesioned forepaw, which was 50, 44, 45and 43%, respectively (each, P < 0.01, P < 0.05, P < 

0.05 and P < 0.05, Tukey’s post hoc test), when compared to L-DOPA-untreated 6-OHDA-

lesioned rats. Forepaw use with the unlesioned side was similar between L-DOPA/vehicle and L-

DOPA/granisetron, for all doses of granisetron except for the dose of 0.0001 mg/kg (P < 0.05, 

Tukey’s post hoc test).  

 

 

Chapter 3 Discussion 

In the present study, we have shown that acute administration of granisetron alleviated established 

L-DOPA-induced AIMs in the hemi-parkinsonian rat. Moreover, the therapeutic benefit was 

achieved without worsening L-DOPA antiparkinsonian action. Our results confirm previous 

findings that blockade of the 5-HT3 receptor may be a promising therapeutic intervention to reduce 

dyskinesia in Parkinson’s disease.  
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A limitation of our study is that it was performed in female rats only. We elected to conduct the 

experiments in female animals, as their weight remains stable over time, in contrast to their male 

counterpart. Recent clinical trials did not find any difference between individuals from both sexes 

to the antidyskinetic effect of amantadine (Hauser et al., 2017, Pahwa and Hauser, 2017), which 

may suggest that the response to an antidyskinetic agent may not be affected by gender variables. 

However, this potential explanation is speculative with 5-HT3 antagonists and requires further 

evaluation. 

A recent study in the 6-OHDA-lesioned rat found that administration of the 5-HT3 antagonist 

ondansetron commenced concurrently with the first dose of L-DOPA elicited an antidyskinetic 

effect by decreasing AIMs scores by 54% when compared to vehicle (Aboulghasemi et al., 2018). 

In line with these findings, in the same model, we reported that 6-OHDA-lesioned rats that were 

started on ondansetron treatment concurrently with the first dose of L-DOPA during the dyskinesia 

induction phase exhibited less severe ALO AIMs amplitude, by 64%, compared to rats treated 

with L-DOPA alone from the beginning (Kwan et al., 2020c). In addition, in that previous study, 

we found that ondansetron diminished the severity of established ALO AIMs, by 25%, which is in 

agreement with the magnitude of the ALO AIMs reduction that we obtained here. Our data, 

therefore, support that 5-HT3 blockade may alleviate dyskinesia, although the antidyskinetic 

benefit conferred by this approach appears to be partial.  

Prior to our current experiment, it was unclear whether the antidyskinetic efficacy of ondansetron 

was due to a class effect (blockade of the 5-HT3 receptor) or solely limited to the action of 

ondansetron. Granisetron and ondansetron are highly potent 5-HT3 antagonists with receptor 

binding affinities (pKi) of 8.42 and 8.07, respectively (van Wijngaarden et al., 1990a). Ondansetron 

demonstrates low affinity binding to 5-HT1A, 5-HT1B, α-adrenergic and opioid receptors but its 
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binding to high-affinity 5-HT3 receptor sites is about 250- to 1000-fold higher that of other 

receptors (Kilpatrick et al., 1987, van Wijngaarden et al., 1990a, Gregory and Ettinger, 1998). In 

contrast, granisetron displays 4000 to 40000 times higher affinity for 5-HT3 receptors than other 

receptors, with negligible affinity for other 5-HT and dopamine receptors, which suggests that 

granisetron mediates its effects through selective 5-HT3 interaction (Blower, 1990). The duration 

of action of both compounds appears relatively similar as, following intra-venous (i.v.) 

administration of granisetron to humans (40-300 µg/kg), the mean plasma half-life ranged from 

4.1 to 10.6 h (Carmichael et al., 1989, Allen et al., 1994), whereas intravenous administration of 

ondansetron in human (109- 115 µg/kg) resulted in mean plasma half-life of 3.2-5.5 h (Blackwell 

and Harding, 1989, Colthup et al., 1991, Baber et al., 1992). To date, no study has assessed the 

plasma pharmacokinetics of granisetron following subcutaneous or intraperitoneal administration 

in rat, but intravenous administration of granisetron (3-6 mg/kg) in rat led to a plasma half-life of 

51-52 min, which is similar to the plasma half-life of 39- 43 min with subcutaneous administration 

of ondansetron (0.1-10 µg/kg) (Kwan et al., 2020a). Interestingly, we found that the slightly longer 

half-life of granisetron did not translate to a superior reduction in ALO AIMs duration. Other than 

differences in half-life, pharmacokinetic parameters are comparable between these 5-HT3 

antagonists (Gregory and Ettinger, 1998). Given that granisetron alleviated dyskinesia in the hemi-

parkinsonian rat to a similar magnitude and shares the same mechanism of action as ondansetron 

(5-HT3 receptor blockade), we may infer that the benefit obtained by both ondansetron and 

granisetron is mediated by antagonism of the 5-HT3 receptor. 

In contrast to the inverse U-shaped dose-response curve ascribed to the 5-HT3 receptor antagonist 

ondansetron (Goudie and Leathley, 1990), studies reported that granisetron exhibits a curvilinear 

dose-response profile that is linear until subsequent increases in dose do not result in equivalent 
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increases in response in animal models (Gregory and Ettinger, 1998). Here, the dose-response 

curve of granisetron does not appear to have a distinct shape, although the therapeutic benefit 

conferred by granisetron was limited to doses < 0.01 mg/kg and was reminiscent of a U-shaped 

dose-response curve. Of note, a similar loss of antidyskinetic effect was also encountered in our 

studies with ondansetron (Kwan et al., 2020c). A recent notion suggests that the efficacy of 

pharmacological action of neurotransmitter receptor antagonists requires 67-97% occupancy of 

the target receptor at therapeutically effective doses (Grimwood and Hartig, 2009). Thus, it is 

possible that, at the dose of granisetron 0.01 mg/kg, receptor occupancy is maximal and receptor 

occupancy is saturated with higher doses (> 0.01 mg/kg), which does not produce superior 

antidyskinetic efficacy. To the best of our knowledge, no study has measured plasma or brain 

levels of granisetron following subcutaneous administration of small doses in rat, so it is difficult 

to comment on the correlation between the pharmacokinetic profile of granisetron and its effect on 

dyskinesia. However, a microdialysis experiment in the rat found that following intravenous 

administration of granisetron (3 and 6 mg/kg), half-life in the brain is significantly longer than in 

plasma, which suggests appreciable blood-brain barrier penetrance (Huang et al., 1999). In light 

of these results, additional studies are required to clarify the relationship between the 

pharmacokinetics of granisetron and its antidyskinetic benefit and to determine whether 

therapeutically effective doses are clinically relevant. 

The link between L-DOPA-induced dyskinesia and fluctuations in dopamine levels in the striatum 

has been well established and notably, a PET study found that dyskinetic patients show greater 

changes in striatal dopamine levels than stable responders (de la Fuente-Fernandez et al., 2004). 

Thus, the ability of 5-HT3 receptors to modulate dopamine release within the basal ganglia may 

underlie the antidyskinetic action of antagonists. In fact, in-vivo microdialysis studies found that 
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5-HT (Benloucif et al., 1993) or the 5-HT3 agonist phenylbiguanide (Santiago et al., 1995) 

facilitated dopamine release in the striatum, which is consistent with effects of 5-HT3 agonists on 

dopamine levels in rat (Benuck and Reith, 1992) and mouse (Sershen et al., 1995) striatal slides. 

Although these results are difficult to reconcile with the relatively low density of 5-HT3 binding 

in the rat striatum (Kilpatrick et al., 1989), evidence supports a role of the 5-HT3 receptor in 

altering dopaminergic transmission-mediated behaviours. Pharmacological studies in the rat found 

that administration of the 5-HT3 antagonist MDL 72222 (20 g/kg) suppressed locomotor and 

motor activity (Kriem et al., 1995), while low doses (0.001- 0.1 mg/kg) of the antagonist 

GR38032F attenuated amphetamine-induced hyperactivity to control levels (Costall et al., 1987). 

In spite of the favourable data that supports a possible role of 5-HT3 receptor activation in 

controlling dopamine release in the striatum, additional studies that would determine the 

neuroanatomical substrate of 5-HT3 receptor blockade (Barnes et al., 1992) will provide further 

evidence of the mechanism underlying its antidyskinetic benefit. 

Abnormalities in glutamatergic transmission have been reported in animal models of L-DOPA 

induced dyskinesia, which result in high levels of peri-synaptic and extra-synaptic glutamate 

receptor stimulation (Sgambato-Faure and Cenci, 2012). To this end, following chronic L-DOPA 

administration in 6-OHDA rats, dyskinesia expression coincided with a surge of extracellular 

glutamate levels in the substantia nigra pars reticulata and striatum (Robelet et al., 2004, Mela et 

al., 2012). Recently, we demonstrated that activation of metabotropic glutamate 2/3 (mGlu2/3) 

receptors with the orthosteric agonist LY-354,740 alleviated dyskinesia in the 6-OHDA rat and 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset models (Frouni et al., 

2019). Taken together, these findings suggest that reducing glutamatergic hyperactivity may 

confer an antidyskinetic effect. In the rat, autoradiographic binding studies have consistently 



 

151 

 

reported moderate 5-HT3 binding in the cortex (Kilpatrick et al., 1987, Kilpatrick et al., 1988, 

Laporte et al., 1992), while 5-HT3 receptor messenger ribonucleic acid (mRNA) has been found in 

motor, pre-limbic and cingulate cortices (Morales and Bloom, 1997). Moreover, single cell 

recording studies in the rat have demonstrated that activation of 5-HT3 receptors modulate 

glutamatergic synaptic transmission in brain regions such as the hippocampus (Zhang et al., 1994) 

and area postrema (Funahashi et al., 2004), possibly by suppressing neuronal activity (Ashby et 

al., 1991, Edwards et al., 1996). Considering the distribution and role of 5-HT3 receptors in 

controlling glutamate release, we speculate that blockade of 5-HT3 receptors, possibly localised on 

cortico-striatal axons, with granisetron may dampen glutamatergic transmission to achieve its 

antidyskinetic benefit. Further studies are required to examine whether the antidyskinetic efficacy 

attributed to 5-HT3 receptor blockade coincides with reduced glutamatergic neurotransmission.  

In general, granisetron did not compromise the antiparkinsonian benefit of L-DOPA, which is 

consistent with studies that administered ondansetron in the same model (Aboulghasemi et al., 

2018, Kwan et al., 2020c). However, the dose of 0.0001 mg/kg did not significantly alter 

dependence on the unlesioned forepaw compared to drug-naïve animals, which suggests that such 

a low dose of granisetron may interfere with the therapeutic action of L-DOPA. Importantly, this 

result was not obtained with ondansetron and further validation is required to clarify this 

discrepancy. Nevertheless, this apparent reduction of L-DOPA antiparkinsonian action was not 

encountered with higher doses of granisetron, which may indicate that future studies should 

administer higher doses of granisetron (> 0.0001 mg/kg) to obtain antidyskinetic efficacy without 

compromising the therapeutic benefit conferred by L-DOPA.  

The mechanism underlying the action of granisetron on cylinder test performance and AIMs 

severity has not been studied so our explanations remain speculative. One possibility for worsened 
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performance in the cylinder test with granisetron 0.0001 mg/kg that was associated with improving 

AIMs severity is the time interval for behavioural analysis. Cylinder test performance is evaluated 

at 45-55 min post L-DOPA administration, which corresponds to peak L-DOPA plasma levels 

(Huot et al., 2012a) and correlates with peak AIMs severity. However, when looking at the effect 

of this dose on AIMs, as shown in Supplementary Tables 3 and 4, Supplemental digital content 1, 

http://links.lww.com/BPHARM/A56, its antidyskinetic effect at 40 or 60 min is milder compared 

to doses such as 0.001 and 0.01 mg/kg, while at later time points (i.e. 100 or 140 min), the effect 

is more pronounced. Thus, we may infer that during the cylinder test with granisetron 0.0001 

mg/kg, animals may be more dyskinetic, which may inhibit their ability to make wall contacts and 

as a result, increases dependence on the right (unlesioned) forepaw. On the other hand, looking at 

cumulative AIMs severity or time course, behaviour was assessed over the 3 h observation period, 

so we could still capture the antidyskinetic benefit of this dose. These seemingly contradictory 

results may be due to the different time duration of behavioural tests.    

An alternative explanation is based on the fact that blockade of the 5-HT3 receptor has been shown 

to inhibit release of dopamine in the striatum (Koulu et al., 1990). The erratic release of striatal 

dopamine has been linked to the development of AIMs in the 6-OHDA rat (Carta et al., 2007), so 

we hypothesised that the antidyskientic effect of granisetron may be mediated through dampening 

abnormal striatal dopamine release. It is possible that the low dose of granisetron (0.0001 mg/kg) 

might interfere with striatal dopaminergic transmission in such a way that reduces AIMs but at the 

expense of impairing the therapeutic efficacy of L-DOPA and worsening performance in the 

cylinder test. It is unclear why higher doses of granisetron do not hinder the antiparkinsonian action 

of L-DOPA but it may be related to the possibility that granisetron reaches concentrations that 

target 5-HT3 receptors in different brain areas or may interact with other receptor subtypes, also 
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leading to a loss of antidyskinetic efficacy. Future studies should address the mechanisms 

underlying the antidyskinetic efficacy of granisetron and other 5-HT3 antagonists, as well as 

possible interaction(s) with L-DOPA. 

Gastro-intestinal dysfunction occurs in the majority of Parkinson’s disease patients with 

constipation (Sung et al., 2014) and gastroparesis (Heetun and Quigley, 2012) as common 

symptoms. Autoradiographic binding studies have localised 5-HT3 receptors in the human colon 

and rectum, where they are predominantly found on myenteric neurons (Sakurai-Yamashita et al., 

1999a, Sakurai-Yamashita et al., 1999b), and from the receptor distribution, we may infer that 5-

HT3 antagonists are well situated to modulate gastrointestinal function. Two case reports have 

suggested that 5-HT3 antagonists ameliorated constipation and gastrointestinal tract motility in 

Parkinson’s disease patients (Liu et al., 2005, Ogawa et al., 2012). However, these studies recruited 

a small number of patients, lacked randomisation and placebo controls, and the compounds also 

exhibited affinity for other receptor subtypes, so we cannot conclude that the prokinetic effect on 

colorectal motility is solely attributed to blockade of the 5-HT3 receptor. Contrary to these 

findings, open-label trials that assessed the antipsychotic efficacy of ondansetron reported that half 

of patients experienced increased constipation as the major adverse effect (Zoldan et al., 1995). 

These previous studies suggest that Parkinson’s disease patients may be susceptible to constipation 

following ondansetron administration. Thus, if granisetron and other 5-HT3 antagonists advance 

to the clinic, attention should be paid to their effects on the gastrointestinal tract. 

The present study adds to the results of previous studies that found that blockade of the 5-HT3 

receptor may represent a new therapeutic strategy to alleviate dyskinesia in Parkinson’s disease. 

Along with other 5-HT3 antagonists, granisetron is clinically available, which may facilitate 

repositioning as an adjunct therapy to L-DOPA in the treatment of dyskinesia in Parkinson’s 
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disease. Further studies are required to assess whether tolerance to the antidyskinetic effect of 

granisetron would develop following prolonged administration and whether the antidyskinetic 

benefit observed here would also be obtained in the parkinsonian non-human primate.  
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Chapter 3 Tables and Figures 

Table 1 Dopamine and 5-HT turnover rates in the striatum of 6-hydroxydopamine lesioned 

rats 

6-OHDA lesion significantly increased the turnover rate of dopamine in the ipsilateral striatum, 

while the turnover rate of 5-HT remained unchanged compared to the contralateral striatum.  

5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin, 6-OHDA, 6-hydroxydopamine; DOPAC, 

3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid.  

Data are presented as the mean ± SEM ng/mg of wet tissue. **: P < 0.01. 

 

 
DOPAC dopamine 

DOPAC+HVA 

dopamine  
5-HIAA 5-HT  

Unlesioned striatum 
0.48 ( 0.06) 1.15 ( 0.14) 1.89 ( 0.26) 

Lesioned striatum  
7.61 ( 1.99) ** 12.72 ( 2.73) ** 2.24 ( 0.19) 
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Fig. 1 
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Extent of striatal dopaminergic denervation. (a) Rats selected for behavioural studies displayed 

preferential use of the un-lesioned (right) forepaw in 81% of rears compared to 0.7% and 19% of 

rears using the lesioned (left) forepaw and both forepaws, respectively. Data are presented as the 

mean ± SEM.  ***: P < 0.001. (b) High-performance liquid chromatography-tandem mass 

spectrometry (HPLC-MS/MS) analysis showed that striatal levels of dopamine and metabolites 

3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) are significantly reduced 

in the right striata (lesioned) when compared to the left (un-lesioned, by 97%, 70% and 82% 

respectively). In contrast, levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) 

were similar in both striata. N=13. Data are presented as the mean ± SEM. ***: P < 0.001. 
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Fig. 2 
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Effect of acute challenges of granisetron on established L-DOPA induced ALO AIMs. (a) Time 

course of ALO AIMs duration during the 3 h monitoring period following administration of 

granisetron and L-DOPA. (b) Treatment with granisetron 0.0001, 0.001 and 0.01 mg/kg in 

combination with L-DOPA alleviated ALO AIMs duration by 25%, 29% and 27%, respectively. 
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(c) Time course of ALO AIMs amplitude during the 3 h observation period after administration of 

granisetron and L-DOPA. (d) Adding granisetron 0.0001, 0.001, 0.01, 0.1 and 1 mg/kg to L-DOPA 

resulted in a marked reduction in ALO AIMs amplitude by 28%, 29%, 29%, 27% and 24%, 

respectively, compared to vehicle. N=13. Data are presented as the median (a, c) and median with 

semi-interquartile interval (b, d). *: P < 0.05; **: P < 0.01, ***: P < 0.001. AIMs, abnormal 

involuntary movements; ALO, Axial, limbs and oro-lingual; L-DOPA, L-3,4-

dihydroxyphenylalanine. 
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Fig. 3 
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Effect of acute challenges of granisetron on established L-DOPA induced AIMs. (a) Granisetron 

0.001 mg/kg significantly diminished axial AIMs duration by 32%. (b) Axial AIMs amplitude was 

reduced by 21%, 28%, 29%, 24% and 25%, following administration of granisetron 0.0001, 0.001, 

0.01, 0.1 and 1 mg/kg, when compared with vehicle. (c) Compared to vehicle, adding granisetron 

0.0001, 0.001 and 0.01 mg/kg to L-DOPA attenuated the severity of limbs AIMs duration by 30%, 

45% and 42%. (d) Treatment with granisetron 0.0001, 0.001 and 0.01 mg/kg in combination with 

L-DOPA resulted in reduced limbs AIMs amplitude by 25%, 27% and 24%. (e) Granisetron had 

no significant effect on oro-lingual AIMs duration. (f) Administration of granisetron 0.0001, 0.1 

and 1 mg/kg attenuated oro-lingual AIMs amplitude by 38%, 27% and 27%. N=13. Data are 

expressed as median with semi-interquartile interval. *: P < 0.05; **: P < 0.01, ***: P < 0.001. 

AIMs, abnormal involuntary movements; ALO, Axial, limbs and oro-lingual; L-DOPA, L-3,4-

dihydroxyphenylalanine.  
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Fig. 4 
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Right forepaw rears across treatment conditions. 6-OHDA-lesioned rats used the right (unlesioned) 

forepaw in 81% of rears. Administration L-DOPA (3/15 mg/kg) decreased the number of rears 

with the unlesioned forepaw by 49%. This decrease in rears with the unlesioned forepaw was 

maintained when granisetron 0.001, 0.01, 0.1 or 1 mg/kg was combined with L-DOPA (reductions 

of 50%, 44%, 45% and 43%, respectively, when compared to the L-DOPA-untreated parkinsonian 

state). N=13. Data are graphed as mean ± SEM. *: P < 0.05; **: P < 0.01. 
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Supplementary Table 1 Evaluation of axial, limbs and oro-lingual abnormal involuntary 

movements (AIMs) duration in the 6-OHDA lesioned rat model (Cenci and Lundblad, 2007) 

parameter score 

axial 

0: no dyskinesia 

1: occasional signs of dyskinesia, present less than 50% of the 

observation period 

2: frequent signs of dyskinesia, present more than 50% of the 

observation period 

3: dyskinesia present during the entire observation period, but 

suppressed by external stimuli 

4: continuous dyskinesia not suppressed by external stimuli 

limbs 

0: no dyskinesia 

1: occasional signs of dyskinesia, present less than 50% of the 

observation period 

2: frequent signs of dyskinesia, present more than 50% of the 

observation period 

3: dyskinesia present during the entire observation period, but 

suppressed by external stimuli 

4: continuous dyskinesia not suppressed by external stimuli 

oro-lingual 

0: no dyskinesia 

1: occasional signs of dyskinesia, present less than 50% of the 

observation period 

2: frequent signs of dyskinesia, present more than 50% of the 

observation period 

3: dyskinesia present during the entire observation period, but 

suppressed by external stimuli 

4: continuous dyskinesia not suppressed by external stimuli 
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Supplementary Table 2 Evaluation of axial, limbs and oro-lingual abnormal involuntary 

movements (AIMs) amplitude in the 6-OHDA lesioned rat model (Cenci and Lundblad, 2007) 

parameter score 

axial 

0: no dyskinesia 

1: sustained deviation of the head and neck at approximately 30º angle 

2: sustained deviation of the head and neck at less than or equal to 60º 

angle 

3: sustained twisting of the head, neck and upper trunk, angle greater 

than 60º but less than or equal to 90º 

4: sustained twisting of the head, neck and trunk, angle greater than 

90º, causing the rat to lose balance from a bipedal position 

limbs 

0: no dyskinesia 

1: tiny movements of the paw around a fixed position 

2: movements leading to a visible displacement of the whole limb 

3: large displacement of the whole limb with visible contraction of 

shoulder muscles 

4: vigorous limb displacement of maximal amplitude, with 

concomitant contraction of shoulder and extensor muscles 

oro-lingual 

0: no dyskinesia 

1: twitching of facial muscles accompanied by small masticatory 

movements without jaw opening 

2: twitching of facial muscles accompanied by masticatory movements 

which occasionally result in jaw opening 

3: movements with broad involvement of facial muscles and 

masticatory muscles, with frequent jaw opening and occasional tongue 

protrusion 

4: involvement of all of the above muscles to the maximal possible 

degree 
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Supplementary Table 3 Time course of ALO AIMs duration in 6-OHDA-lesioned rats  

*: P < 0.05 vs L-DOPA/vehicle; **: P < 0.01 vs L-DOPA/vehicle; ***: P < 0.001 vs L-DOPA/vehicle; ns: not significant 

  

  L-DOPA/vehicle vs 

  time (min) 

 
granisetron 

(mg/kg) 
20 40 60 80 100 120 140 160 180 

L-DOPA 

0.0001 ns * * ** ** ns *** ns * 

0.001 ns ns *** *** ** * * * * 

0.01 ns *** *** ns ns ns *** * ns 

0.1 ns ns ns ** ns ns ns ns *** 

1 ns * ns ** ns ns ns ns ** 
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Supplementary Table 4 Time course of ALO AIMs amplitude in 6-OHDA-lesioned rats  

   L-DOPA/vehicle vs 

  time (min) 

 
granisetron 

(mg/kg) 
20 40 60 80 100 120 140 160 180 

L-DOPA 

0.0001 ns ns ns * ns ns ** * ** 

0.001 ns ns * ** ns * ** ** ** 

0.01 ns * *** * ns ns ** *** ** 

0.1 ns * * ns * ns * * *** 

1 ns ns ** * ns ns ns * *** 

*: P < 0.05 vs L-DOPA/vehicle; **: P < 0.01 vs L-DOPA/vehicle; ***: P < 0f.001 vs L-DOPA/vehicle; ns: not significant
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Transition 2: Assessing the anti-psychotic and anti-

dyskinetic efficacy of ondansetron in the gold standard 

model of PD  

In the hemi-parkinsonian rat model of PD, we have previously demonstrated that 

selective blockade of the 5-HT3 receptor with the antagonists ondansetron 870 and granisetron 

(Chapter 3) diminished the severity of dyskinesia. Building on these findings, we sought to 

examine the anti-dyskinetic efficacy of ondansetron in the MPTP-lesioned marmoset, which 

exhibits high predictive validity in assessing the therapeutic potential of compounds on 

parkinsonism, dyskinesia, and psychosis 941, 1015. 

 A few open-label trials in PD patients found that ondansetron treatment significantly 

improved psychosis symptoms, particularly visual hallucinations without worsening motor 

function 1016-1018. However, these trials did not address the use of concomitant medication and 

the results of a single placebo-controlled trial assessing the anti-psychotic efficacy of 

ondansetron have not been disclosed 1019. Here, we used a randomised controlled paradigm to 

evaluate the effect of ondansetron on the severity of dyskinesia, psychosis-like behaviours, and 

parkinsonian disability in the parkinsonian marmoset. We also determined the pharmacokinetic 

profile of ondansetron in the marmoset to assess the clinical relevance of administered doses. 

In Chapter 4, we found that selective blockade of the 5-HT3 receptor with ondansetron 

in the MPTP-marmoset alleviated the severity of dyskinesia and psychosis-like behaviours, an 

effect that was accompanied by significantly reducing the duration of on-time with disabling 

dyskinesia and psychosis-like behaviours. Moreover, the therapeutic action of ondansetron even 

potentiated the anti-parkinsonian effect of L-DOPA. Ondansetron demonstrated a safe profile 

with therapeutic plasma levels similar to well tolerated levels obtained in clinical studies. These 



 

173 

 

favourable results are timely as there is an ongoing double-blind, randomised controlled Phase 

II trial that is assessing whether ondansetron treatment (8-24 mg dose range) alleviates PD 

psychosis (EudraCT T: 2019-003962-41).  
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Chapter 4 Abstract 

 In Parkinson’s disease (PD), management of L-3,4-dihydroxyphenylalanine (L-DOPA)-related 

complications, such as L-DOPA induced dyskinesia and psychosis, remains inadequate, which 

poses a significant burden on the quality of life of patients. We have shown, in the hemi-

parkinsonian rat model of PD, that the selective serotonin type 3 (5-HT3) receptor antagonists 

ondansetron and granisetron decreased the severity of established dyskinesia, and ondansetron 

even attenuated the development of dyskinesia. Here, we seek to confirm these favourable data on 

dyskinesia and to explore the effect of ondansetron on the severity of psychosis-like behaviours 

(PLBs) in the gold standard model of PD, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP)-lesioned non-human primate. We first determined the pharmacokinetic profile of 

ondansetron in the marmoset. Subsequently, six MPTP-lesioned marmosets were administered L-

DOPA chronically until they exhibited stable and reproducible dyskinesia and PLBs upon each 

administration of L-DOPA. On behavioural assessment days, ondansetron (0.01, 0.1 and 1 mg/kg) 

or vehicle was administered in conjunction with L-DOPA, and the severity of dyskinesia, PLBs 

and parkinsonism was evaluated. Ondansetron 0.1 mg/kg alleviated global dyskinesia severity by 

73% (P < 0.0001) and decreased duration of on-time with disabling dyskinesia by 88% (P = 

0.0491). Ondansetron 0.1 mg/kg reduced the severity of global PLBs by 80% (P < 0.0001) and 

suppressed on-time with disabling PLBs (P = 0.0213). Ondansetron enhanced the anti-

parkinsonian action of L-DOPA, reducing global parkinsonism by 53% compared to L-DOPA (P 

= 0.0004). These results suggest that selective blockade of the 5-HT3 receptor with ondansetron 

may be an effective approach to alleviate L-DOPA-related complications. 
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Keywords: 5-HT3 receptor, Ondansetron, Parkinson’s disease, Dyskinesia, Psychosis, MPTP-

Lesioned marmoset 

Chapter 4 Introduction 

 With a global burden of 6.1 million patients in 2016 (Dorsey et al., 2018a), Parkinson’s 

disease (PD) is the second most common neurodegenerative disease and, amongst the neurological 

disorders examined, it was the fastest growing in deaths, disability and prevalence (Feigin et al., 

2017). Although L-3,4-dihydroxyphenylalanine (L-DOPA) confers benefit for motor symptoms, 

long-term use is marred by complications including L-DOPA induced dyskinesia and psychosis, 

which can affect nearly 95% and 75% of patients (Hely et al., 2005, Hely et al., 2008). 

Management of these complications with currently available drugs remains inadequate. Thus, 

amantadine treatment for dyskinesia may be limited by side effects and development of tolerance 

(Thomas et al., 2004), while treatment of psychosis with clozapine raises concerns about long-

term safety and monitoring (Zahodne and Fernandez, 2010, Seppi et al., 2019) and pimavanserin 

appears to only be mildly effective (Cummings et al., 2014, The Lancet, 2018).  

 Recent studies in the 6-hydroxydopamine (6-OHDA) lesioned rat found that administration 

of the selective serotonin (5-HT) type 3 (5-HT3) antagonist ondansetron started concurrently with 

the initial dose of L-DOPA attenuated the dyskinesia induction process (Aboulghasemi et al., 

2018, Kwan et al., 2020d). In the same animal model, ondansetron and another selective 5-HT3 

antagonist, granisetron, both alleviated established dyskinesia by a similar magnitude, ≈ 25% 

(Kwan et al., 2020d, Kwan et al., 2021a). These results suggest that selectively antagonising 5-

HT3 receptors might represent a novel anti-dyskinetic strategy. Here, following determination of 

its pharmacokinetic (PK) profile, we sought to confirm the anti-dyskinetic effect of 5-HT3 receptor 
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blockade in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset, a non-

human primate with high predictive validity in assessing clinical efficacy for dyskinesia, psychosis 

and parkinsonism (Veyres et al., 2018, Beaudry and Huot, 2020b). We also explored the effect of 

ondansetron on psychosis-like behaviours (PLBs) and parkinsonism. 

 

 

Chapter 4 Materials and Methods 

 Animals  

 Twelve common marmosets (Callithrix jacchus, N = 6 of each sex) weighing 300-450 g 

and aged 4-6 years old at the time of the experiments were pair housed under conditions of 

controlled temperature (24 ± 1°C), humidity (50 ± 5%) and a 12 h light/dark cycle (07:15 a.m. 

lights on). Animals had ad libitum access to water and were provided with food (Mazuri® 

Marmoset Jelly, boiled eggs, nuts, yoghourt, pasta and fresh fruits) twice daily. Their home cages 

were enriched with perches and primate toys. Animals were acclimatised to handling, transfer to 

observational cages for behavioural recordings and sub-cutaneous (s.c.) injections prior to the start 

of studies. All procedures were approved by the McGill University and the Montreal Neurological 

Institute Animal Care Committees, in accordance with guidelines established by the Canadian 

Council on Animal Care. 

 

 Pharmacokinetic study 

 Six marmosets (N = 3 of each sex) were used and, employing a sparse sampling technique, 

a minimal volume of blood was collected from animals, as we have previously done (Gaudette et 

al., 2017, Gaudette et al., 2018). Based on a PK study we conducted in the rat (Kwan et al., 2020b), 
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ondansetron 0.01 mg/kg was administered s.c. at the following time points: baseline, 2 min, 5 min, 

15 min, 30 min, 1 h, 2 h, 4 h, 6 h and 8 h. Ondansetron 0.1 mg/kg was administered s.c. with three 

samples collected at 5 min, 30 min and 1 h. Samples were gently inverted and centrifuged to 

generate plasma aliquots and stored at -80°C until analysis. The analytical method to determine 

plasma levels of ondansetron using high-performance liquid chromatography and tandem mass 

spectrometry (HPLC-MS/MS) was developed in rat (Gaudette et al., 2019) and cross validated in 

marmoset.  

 Plasma PK parameters were determined from the mean concentration value at each time 

point by a non-compartmental analysis method using PKSolver (Rowland M and TN., 1995, Zhang 

et al., 2010). Area under the curve (AUC) was calculated using the linear trapezoidal rule. AUC0-

t, AUC0-, maximal plasma concentration (Cmax), time to Cmax (Tmax), terminal half-life (T1/2), 

clearance (CL), bioavailability (F), volume of distribution (Vz) and mean residence time (MRT) 

were all calculated.  

 

 Induction of parkinsonism, dyskinesia and psychosis-like behaviours 

 Six marmosets (N = 3 of each sex) were rendered parkinsonian by daily injections of MPTP 

hydrochloride (2 mg/kg, s.c., MilliporeSigma, Canada) over 5 days (Hamadjida et al., 2017, 

Hamadjida et al., 2018c). Following a month recovery period to allow parkinsonian symptoms to 

stabilise, animals were administered L-DOPA/benserazide (15/3.75 mg/kg, orally, 

MilliporeSigma) once daily for a minimum of 30 days until the expression of dyskinesia and PLBs 

was stable and reproducible. 

 

 Experimental design 
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 On days of behavioural assessment, marmosets were administered ondansetron (0.01, 0.1, 

1 mg/kg free base or vehicle, s.c., MilliporeSigma) in combination with L-DOPA. Ondansetron 

hydrochloride was dissolved in dimethyl sulfoxide at 100 mg/ml and then diluted to appropriate 

concentrations in 0.9% NaCl. Drug administration was randomised according to a within-subjects 

design. Following administration of treatment, each marmoset was placed in individual 

observation cages (36 × 33 × 22 in) that contained water, food and a wooden perch, and left 

undisturbed for the 6 h observation period. Treatments were separated by at least 72 h, allowing 

for complete drug clearance. Behaviours were recorded via webcam for post hoc analysis. 

 

 Behavioural analysis 

 The severity of dyskinesia, PLBs and parkinsonism was rated according to previously 

validated scales (Fox et al., 2010, Kwan et al., 2019, Sid-Otmane et al., 2020). Dyskinesia 

consisted of chorea and dystonia, which were both rated on a scale from 0 to 4, where 0 = absent, 

1 = mild, present less than 70% of the observation period and animal is able to eat and perform 

normal activity, 2 = moderate, 3 = marked and 4 = severe, present more than 70% of the 

observation period and animal is unable to perform normal activity. PLBs consisted of 

hyperkinesia, response to non-apparent stimuli (tracking and staring), repetitive grooming and 

stereotypies. PLBs were rated on a scale from 0 to 4, where 0 = absent, 1 = mild, present less than 

30% of the observation period and animal is able to eat and perform normal activity, 2 = moderate, 

3 = marked and 4 = severe, present more than 30% of the observation period and replacing normal 

activity. Parkinsonian disability comprised range of movement, bradykinesia, posture and 

attention/alertness. Range of movement was rated on a scale from 0 to 9, where 0 = running, 

jumping and use of limbs for different activities, whereas 9 = no movement. Bradykinesia was 
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rated from 0 to 3, where 0 = normal initiation and speed of movement, whereas 3 = prolonged 

freezing, akinesia and immobile. Postural abnormality was rated 0 or 1, where 0 = normal balance 

with upright body posture and head is held up, whereas 1 = impaired balance, prone body posture 

with head down. Attention/alertness was rated 0 or 1, where 0 = normal head checking and 

movement of neck is smooth in different directions and in small movements, whereas 1 = less or 

no head checking and head is in one position for more than 50% of the time. Dyskinesia, PLBs 

and parkinsonian disability were simultaneously scored post hoc by a trained evaluator blinded to 

treatment conditions. Over a 6 h observation period, behaviour was assessed for 5 min every 10 

min and respective dyskinesia, PLBs and parkinsonian disability scores were summed for each 

hour over the entire observation period and during the peak period (90-150 min following L-DOPA 

administration). The duration of anti-parkinsonian benefit, hereafter referred to as “on-time”, 

corresponded to the number of minutes for which bradykinesia was absent, whereas on-time with 

disabling dyskinesia and/or PLBs was defined as the number of minutes where dyskinesia and/or 

PLBs was either marked or severe (scores of 3 or 4). 

 

 Statistical Analysis 

 Dyskinesia, PLBs and parkinsonism scores are presented as the median and were analysed 

using Friedman test followed by Dunn’s post hoc test to compare between the four treatment 

conditions. Time courses of dyskinesia, PLBs and parkinsonism are presented as the median and 

were analysed by computing the AUC, after which Welch’s one-way analysis of variance 

(ANOVA) followed by Dunnett’s T3 post hoc test was performed (Dunnett, 1980). On-time data 

and AUCs are presented as the mean ± standard error of the mean (SEM) and were analysed using 

one-way repeated measures (RM) ANOVA with Greenhouse-Geisser correction (Greenhouse and 
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Geisser, 1959) followed by Tukey’s post hoc test. Statistical significance was assigned when P ˂ 

0.05 and statistical analyses were performed with GraphPad Prism 8.4.3 (GraphPad Software Inc., 

USA). 

 

 

Chapter 4 Results 

 Pharmacokinetic profile 

 Plasma PK parameters of ondansetron in the marmoset following s.c. administration are 

presented in Table 1. Briefly, ondansetron 0.01 mg/kg led to a Cmax of 1.96 ng/mL that was detected 

at 30 min, while ondansetron 0.1 mg/kg led to a Cmax of 18.9 ng/mL. The T1/2 following 

administration of ondansetron 0.01 mg/kg was 49 min. 

 

 5-HT3 blockade alleviates L-DOPA induced dyskinesia 

As shown in Fig. 1A, ondansetron significantly reduced the severity of dyskinesia. By 

computing the AUC of the 6 h dyskinesia time course, we found that ondansetron significantly 

altered global dyskinesia severity (F(3, 11.08) = 28.25, P < 0.0001, Welch’s one-way ANOVA, Fig. 

1B). Ondansetron 0.01, 0.1 and 1 mg/kg decreased the severity of dyskinesia when compared to 

L-DOPA alone, by 68%, 73% and 71% (P = 0.0002, P < 0.0001 and P < 0.0001, Dunnett’s T3 

post hoc test). In line with these results, ondansetron had a significant effect on peak dyskinesia 

severity (Friedman Statistic [FS] = 11.40, P = 0.0040, Fig. 1C). Ondansetron 0.1 and 1 mg/kg 

diminished peak dyskinesia severity when compared to L-DOPA, by 64% and 59% (P = 0.0219 

and P = 0.0219, Dunn’s post hoc test), whereas ondansetron 0.01 mg/kg non-significantly 
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diminished peak dose dyskinesia severity, by 55% (P = 0.1521, Dunn’s post hoc test). We also 

found that ondansetron produced a significant effect on the duration of on-time during which 

dyskinesia was disabling (F(1.267,6.336) = 12.53, P = 0.0002; one-way RM ANOVA with 

Greenhouse-Geisser correction, Fig. 1D). Thus, after treatment with L-DOPA alone, duration of 

on-time with disabling dyskinesia was 42 min, while after administration of L-DOPA in 

combination with ondansetron 0.01, 0.1 and 1 mg/kg, it was 2 min (96% reduction), 5 min (88%) 

and 8 min (80% reduction), respectively (P = 0.0519, P = 0.0491, P = 0.0321, Tukey's post hoc 

test). 

 

 5-HT3 blockade alleviates psychosis-like behaviours 

 As presented in Fig. 2A, ondansetron significantly reduced the severity of PLBs. By 

computing the AUC of the 6 h PLBs course, we found that ondansetron significantly altered global 

PLBs severity (F(3, 11.04) = 38.37, P < 0.0001, Welch’s one-way ANOVA, Fig. 2B). Ondansetron 

0.01, 0.1 and 1 mg/kg decreased PLBs intensity when compared to L-DOPA alone, by 71%, 80% 

and 79% (each P < 0.0001, Dunnett’s T3 post hoc test). In line with these results, ondansetron had 

a significant effect on peak PLBs severity (FS = 13.40, P = 0.0006, Fig. 2C). Ondansetron 0.01, 

0.1 and 1 mg/kg diminished peak PLBs severity when compared to L-DOPA, by 59%, 76% and 

72% (P = 0.4418, P = 0.0048, P = 0.0219, Dunn’s post hoc test). Ondansetron also produced a 

significant effect on the duration of on-time during which PLBs was disabling (F(1.067, 5.337) = 20.53, 

P = 0.0050; one-way RM ANOVA with Greenhouse-Geisser correction, Fig. 2D). Thus, after 

treatment with L-DOPA alone, duration of on-time with disabling PLBs was 78 min, while after 

administration of L-DOPA in combination with ondansetron 0.01 mg/kg, it was 3 min (96% 



 

184 

 

reduction, P = 0.0223), whereas it was suppressed with ondansetron 0.1 and 1 mg/kg (both P = 

0.0213, Tukey's post hoc test). 

 

 5-HT3 blockade enhances L-DOPA anti-parkinsonian benefit 

 As illustrated in Fig. 3A, adding ondansetron to L-DOPA resulted in a significant additional 

anti-parkinsonian effect. By computing the AUC of the 6 h parkinsonian disability time course, 

we found that ondansetron significantly altered global parkinsonism severity (F(3, 10.99) = 15.49, P 

= 0.0003, Welch’s one-way ANOVA, Fig. 3B). Ondansetron 0.01, 0.1 and 1 mg/kg decreased 

parkinsonism severity when compared to L-DOPA, by 49%, 46% and 53% (P = 0.0008, P = 0.0048 

and P = 0.0004, Dunnett’s T3 post hoc test). This reduction of parkinsonism was not accompanied 

by any significant change in the duration of L-DOPA anti-parkinsonian action (F(1.757, 8.786) = 2.634, 

P = 0.1303; one-way RM ANOVA with Greenhouse-Geisser correction, Fig. 3C). 

 

 

Chapter 4 Discussion 

 In the present study, we demonstrated that the selective 5-HT3 antagonist ondansetron 

significantly alleviated both the severity of dyskinesia and PLBs acutely in the MPTP-lesioned 

marmoset. Ondansetron was well tolerated by animals and sedation was not observed. In addition, 

ondansetron enhanced L-DOPA anti-parkinsonian action. Our results suggest that selective 

blockade of the 5-HT3 receptor may be an effective therapeutic approach to treat L-DOPA related 

complications and amenable to the testing of clinically-available 5-HT3 antagonists in Phase II 

clinical trials. 
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 Acute administration of ondansetron 0.01 mg/kg in marmosets produced a Cmax of 1.96 

ng/mL, which is comparable to the Cmax of 2.99 ng/mL obtained with the same dose in rats (Kwan 

et al., 2020b). The Cmax associated with the higher dose of 0.1 mg/kg, 18.9 ng/mL, is close to the 

lower range of Cmax values reported in clinical studies (26.4 to 42.0 ng/mL) where healthy 

volunteers received a single 8 mg oral dose of ondansetron (Colthup et al., 1991, Baber et al., 

1992). Although we did not determine the PK of ondansetron 1 mg/kg in the marmoset, based on 

data from the other two doses, we may infer that the Cmax would approximate the higher range 

reported in clinical trials, similar to the Cmax of 94.6-194.4 ng/mL obtained following a single 24 

mg oral dose of ondansetron in healthy subjects (Novartis Pharmaceuticals Corporation, 1999, 

VanDenBerg et al., 2000). Thus, characterisation of ondansetron PK parameters in marmosets 

suggests that doses of ondansetron associated with a therapeutic effect would be safe and well 

tolerated by patients. 

 Here, in the MPTP-lesioned marmoset, the addition of ondansetron to L-DOPA led to a ≈ 

73% reduction in global dyskinesia severity, whereas in the same animal model, the clinically 

efficacious anti-dyskinetic agent amantadine led to a ≈ 45% to ≈ 63% reduction (Hill et al., 2004, 

Kobylecki et al., 2011). However, it is unclear whether these doses would be well tolerated in the 

clinic, as the PK profile of amantadine has not been described in the marmoset. In PD patients, 

significant reduction of dyskinesia was achieved with amantadine plasma concentrations of ≈ 

1,500 ng/mL (Pahwa et al., 2015), which corresponds to an effective plasma concentrations of ≈ 

1,400 ng/mL in macaque (Brigham et al., 2018). In the MPTP-lesioned macaque, clinically 

relevant plasma levels of amantadine are achieved with doses of 10 to 20 mg/kg (Brigham et al., 

2018) and generally lead to a reduction of dyskinesia severity by ≈ 23% to ≈ 29% (Grégoire et al., 

2013, Ko et al., 2014), although one study found an absence of anti-dyskinetic efficacy (Bezard et 
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al., 2013). From our results, we may therefore infer that ondansetron compares favourably to a 

clinically efficacious treatment of dyskinesia (Fox et al., 2018).  

 In the current experiments, ondansetron 0.01-1 mg/kg conferred similar levels of anti-

dyskinetic efficacy in the MPTP-lesioned marmoset, suggesting that maximal anti-dyskinetic 

efficacy is achieved with ondansetron 0.01 mg/kg and plasma concentrations of  2 ng/mL. To the 

best of our knowledge, the effects of selectively antagonising 5-HT3 receptors on dyskinesia and 

PLBs in PD have only been assessed in studies employing behavioural methodology. The paucity 

of reports on the possible mechanism(s) of action(s) that govern 5-HT3 antagonists’ effects limits 

our understanding of these drugs. Nevertheless, there is support in the literature to speculate on 

the benefit of 5-HT3 blockade in L-DOPA induced dyskinesia. A predominant hypothesis suggests 

that the dysregulated release of striatal dopamine triggers dyskinesia (Iravani et al., 2006, Carta et 

al., 2007), as evidenced by the large fluctuations in dopamine levels in dyskinetic PD patients 

compared to those who do not exhibit dyskinesia (de la Fuente-Fernandez et al., 2004). In rat 

striatal slices, application of 5-HT3 agonists enhanced dopamine release (Zazpe et al., 1994), an 

effect that was blocked by 5-HT3 antagonists (Blandina et al., 1989), which is in line with findings 

in in vivo microdialysis studies that reported increased dopamine levels following administration 

of 5-HT (Benloucif et al., 1993) or of the 5-HT3 agonist phenylbiguanide (Santiago et al., 1995). 

Furthermore, at the behavioural level, 5-HT3 antagonists diminished dopaminergic transmission-

mediated motor behaviours such as amphetamine-induced hyperactivity (Costall et al., 1987), 

rotations (Bachy et al., 1993) and stereotypies (Shankar et al., 2000). Collectively, these studies 

suggest that 5-HT3 receptors modulate striatal dopamine release and we may infer that ondansetron 

exerted its effect by regulating the erratic dopamine release that occurs in the dyskinetic state, but 

further investigation is warranted.  
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 Modulation of the 5-HT system has been implicated in PD psychosis (Chang and Fox, 

2016). An autoradiographic binding study using post-mortem tissue showed increased 5-HT2A 

receptor binding in the infero-lateral temporal cortex in PD patients with visual hallucinations 

(Huot et al., 2010), which suggests that alterations in 5-HT transmission in visual processing 

pathways may be involved in PD hallucinations (Chang and Fox, 2016). Autoradiographic binding 

studies have detected moderate levels of 5-HT3 receptor binding in the human limbic system 

(Waeber et al., 1989), while moderate densities of 5-HT3 receptors in mesolimbic structures also 

receive input from the ventral tegmental area (Kilpatrick et al., 1996), which lend support to the 

role of the 5-HT3 receptor in regulating mesolimbic dopaminergic activity. Ondansetron and other 

5-HT3 antagonists have been shown to attenuate dopamine-induced motor hyperactivity and 

reduce adverse behaviour associated with a hyperactive dopaminergic state in rodent and non-

human primate models (Costall et al., 1987, Hagan et al., 1990). Moreover, ondansetron reduced 

neuropeptide-induced hyperactivity in the rat, an effect that was accompanied by a decrease in 

dopamine metabolism in the nucleus accumbens (Hagan et al., 1987). Thus, 5-HT3 receptor 

antagonists such as ondansetron may modulate the facilitatory role of 5-HT on dopaminergic 

transmission, which would dampen dopaminergic hyperactivity and alleviate psychotic symptoms.  

In line with these findings, three open-label clinical trials conducted by the same group 

with PD patients found that ondansetron (mean 17- 20 mg/day) reduced the severity of psychosis 

by ≈ 19-24% (Zoldan et al., 1993, Zoldan et al., 1995, Friedberg et al., 1998). Ondansetron was 

particularly effective against visual hallucinations, paranoid delusions and confusion, and was well 

tolerated by patients, without worsening motor symptoms. In addition, an improvement in visual 

hallucinations in PD patients was achieved with daily doses of ondansetron of 4-8 mg/day 

(Kazunori et al., 1999), while another trial reported a lack of anti-psychotic efficacy and tolerance 
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with daily doses that ranged from 8 to 24 mg/day (Eichhorn et al., 1996). Based on the doses 

administered in these trials, ondansetron plasma levels associated with anti-psychotic efficacy may 

be within the range of 26.4-42.0 ng/mL, according to the published, albeit partial, PK profile of 

ondansetron in human (Colthup et al., 1991, Baber et al., 1992, Novartis Pharmaceuticals 

Corporation, 1999). Importantly, an issue that these studies did not address was the concomitant 

use of medication (e.g. L-DOPA, dopamine agonists and amantadine), which may have 

confounded results given their potential role in psychosis (Carey et al., 1995, Diederich et al., 

2009, Ecker et al., 2009). In the present study, we addressed this limitation by assessing the effect 

of ondansetron (0.01. 0.1 and 1 mg/kg) in a randomised controlled paradigm in the parkinsonian 

primate and found a similar reduction in PLBs severity, without compromising L-DOPA 

therapeutic action. To the best of our knowledge, the outcome of the single randomised-controlled 

trial assessing the anti-psychotic efficacy of ondansetron in PD patients (Melamed et al., 1999) has 

not been disclosed. Nevertheless, these favourable data provide support for testing the anti-

psychotic efficacy of ondansetron in PD patients in larger randomised-controlled studies. The 

expense of ondansetron was previously regarded as cost prohibitive (Eichhorn et al., 1996) and 

deterred such studies, but the availability of generic forms of ondansetron has quelled price-related 

issues (Kwan and Huot, 2019). 

 In the current study, we found that all doses of ondansetron potentiated the anti-

parkinsonian action conferred by L-DOPA to a similar extent, with a ≈ 50% improvement, without 

extending the duration of on-time. In contrast to these results, in the 6-OHDA-lesioned rat, 

ondansetron did not alter L-DOPA anti-parkinsonian action (Aboulghasemi et al., 2018, Kwan et 

al., 2020d, Kwan et al., 2021a), an effect that was also reported in clinical trials in PD patients that 

had found ondansetron conferred anti-psychotic efficacy, without worsening motor symptoms 
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(Zoldan et al., 1993, Zoldan et al., 1995, Friedberg et al., 1998). The lack of antagonistic action of 

ondansetron at dopamine D2 receptors (van Wijngaarden et al., 1990a) may explain why the anti-

dyskinetic and anti-psychotic action of ondansetron is not accompanied by a deterioration in motor 

function. Understanding of the additional L-DOPA anti-parkinsonian benefit encountered with 

ondansetron administration could be improved upon with studies that would determine whether it 

is mediated through changes in metabolite concentrations, neuronal activity or a yet to be explored 

mechanism of action. 

 In summary, we demonstrated the acute anti-dyskinetic and anti-psychotic effects of the 5-

HT3 antagonist ondansetron in the MPTP-lesioned marmoset. Subsequent studies are required to 

determine whether these effects are maintained in a chronic administration paradigm. Ondansetron 

conferred these benefits while also enhancing the anti-parkinsonian action of L-DOPA. The doses 

of ondansetron administered were well tolerated by animals and reached plasma levels comparable 

to those encountered in clinical practice. Potent and selective 5-HT3 antagonists with diverse 

pharmacological profiles are clinically available and these promising data support their transition 

to testing in Phase II clinical trials for PD-related endpoints.  
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Chapter 4 Tables and Figures  

Table 1 

Derived PK parameters in the plasma following s.c. administration of ondansetron in the marmoset  

AUC: area under the curve; CL: clearance; Cmax: maximal plasma concentration; F: bioavailability; 

MRT: mean residence time; T1/2: terminal half-life; Tmax: time to maximal plasma concentration; 

Vz: volume of distribution.  

  

parameters  0.01 mg/kg  0.1 mg/kg 

 mean ( SD)  mean ( SD) 

Cmax (ng•mL-1)  1.96 ( 0.47)  18.9 ( 2.05) 

Tmax (min)  30 ( 8.66)   

T1/2 (min)  49 ( 7.96)   

AUC0-t (ng•h•mL-1)  3.25 ( 0.19)   

AUC0-∞ (ng•h•mL-1)  3.27 ( 0.18)   

CL/F (L•h-1• kg-1)  3.06 ( 0.17)   

Vz/F (L•h-1• kg-1)  3.58 ( 0.70)   

MRT (h)  1.39 ( 0.08)   
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Fig. 1. Ondansetron alleviates L-DOPA induced dyskinesia. 

In MPTP-lesioned marmosets, administration of ondansetron (0.01, 0.1 and 1 mg/kg) in 

combination with L-DOPA significantly alleviated global dyskinesia severity as evidenced by the 

time course of dyskinesia (A) and AUC of dyskinesia time course, by 68%, 73% and 71%, 

respectively, compared to L-DOPA treatment (B). Ondansetron 0.1 and 1 mg/kg also decreased 

peak dose dyskinesia severity, by 64% and 59%, compared to L-DOPA/vehicle (C). The anti-
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dyskinetic effect of ondansetron (0.01, 0.1 and 1 mg/kg) was accompanied by a decrease in the 

duration of on-time with disabling dyskinesia, by 96%, 88% and 80%, compared to 

LDOPA/vehicle (D). Data are expressed as the median (A), the mean ± SEM (B), median with 

individual values (C) and the mean ± SEM (D). *: P < 0.05, ****: P < 0.0001. 
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time course of PLBs
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Fig. 2. Ondansetron alleviates psychosis-like behaviours. 

In MPTP-lesioned marmosets, administration of ondansetron (0.01, 0.1 and 1 mg/kg) in 

combination with L-DOPA significantly alleviated global PLBs severity as evidenced by the time 

course of PLBs (A) and AUC of PLBs time course, by 71%, 80% and 79%, respectively, compared 

to L-DOPA treatment (B). Ondansetron 0.1 and 1 mg/kg also decreased peak dose PLBs severity, 

by 76% and 72%, compared to L-DOPA/vehicle (C). The anti-dyskinetic effect of ondansetron 
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0.01 mg/kg was accompanied by a decrease in the duration of on-time with disabling PLBs, by 

96%, whereas it was completely suppressed with doses of 0.1 and 1 mg/kg, compared to L-

DOPA/vehicle (D). Data are expressed as the median (A), the mean ± SEM (B), median with 

individual values (C) and the mean ± SEM (D). *: P < 0.05, **: P < 0.01, ****: P < 0.0001. 
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time course of parkinsonism
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Fig. 3. Ondansetron enhances the anti-parkinsonian benefit of L-DOPA. In MPTP-lesioned 

marmosets, administration of ondansetron (0.01, 0.1 and 1 mg/kg) in combination with L-DOPA 

significantly alleviated global parkinsonism severity as displayed by the time course of 

parkinsonism (A) and the AUC of parkinsonism time course, by 49%, 46% and 53%, respectively, 

compared to L-DOPA/vehicle (B). This reduction of parkinsonism was not accompanied by any 

significant alteration to duration of on-time (C). Data are expressed as the median (A), the mean 

± SEM (B) and the mean ± SEM (C). **: P < 0.01, ***: P < 0.001.
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Transition 3: Characterising novel behaviours in the 

parkinsonian marmoset 

PD psychosis is one of the most frequent and debilitating nonmotor symptoms that afflicts 

as many as 60% of PD subjects 718, 753 and is associated with increased nursing home placement 

1020 and mortality risk 715. The MPTP-lesioned marmoset model of PD exhibits high positive 

predictive value in assessing the clinical efficacy of drug candidates to treat PD psychosis 941, 1015. 

In this model, psychosis-like behaviours span four categories including hallucinations, 

stereotypies, hyperkinesia, and grooming, which are idiosyncratic but are reproducible with each 

administration of L-DOPA 977. Here, we sought to expand on the existing repertoire of psychosis-

like behaviours in the MPTP-lesioned marmoset, to enrich the testing paradigm for antipsychotic 

candidates in PD (Chapter 5).   

In the MPTP-lesioned marmoset, we found stereotypical behaviours that were not 

previously described. For instance, whereas initial findings limited circling behaviours to the cage 

floor, we report and provide visual support that circling behaviours occurred in different 

environments (e.g., floor, wall, perch, and ceiling) that were specific to each animal. The time 

course and severity of these novel behaviours is similar to other psychosis-like behaviours 

evaluated using the original rating scale, whereas the profile of psychosis-like behaviours was 

variable depending on the animal. We proposed that these stereotypical behaviours should be 

amended to the original scale. We also found that each animal had its own distinctive repeated 

patterns of behaviours. Moreover, we discovered that the stereotypical behaviours described in the 

MPTP-lesioned marmoset are reminiscent of punding in PD patients, which are stereotyped, 

purposeless and repetitive behaviours, and are often derived from occupations and hobbies 1021. 

Although the aetiology of punding is unclear, there is evidence to support an association with 
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dopaminergic neurotransmission and the transition from voluntary control to habitual routines 1022, 

1023. Thus, further characterisation of psychosis-like behaviours in the MPTP-lesioned marmoset 

may improve our understanding of the mechanisms underlying punding and PD psychosis, and in 

turn, the clinical development of new therapeutic targets for these conditions. 
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Chapter 5 Abstract 

Parkinson’s disease (PD) psychosis afflicts over half of patients and poses a significant burden on 

quality of life. The aetiology of PD psychosis is multifactorial and likely arises from the complex 

interaction between dopamine replacement therapy and disease state. The 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset is a validated model to predict the 

efficacy of therapeutic compounds for treatment-related complications, including PD psychosis. 

In this model, psychosis-like behaviours (PLBs) encompass stereotypies that are idiosyncratic in 

nature and reproducible with each L-3,4-dihydroxyphenylanaline (L-DOPA) administration. In the 

present study, we sought to expand upon the existing repertoire of PLBs through the 

characterisation of novel stereotypical behaviours that appear dependent on the environment. We 

then discuss our findings in the context of clinical reports on stereotypical behaviours termed 

“punding” in subjects with PD, which consists of stereotypical repetitive and senseless behaviours. 

The poor understanding of the pathophysiology governing punding and consequent lack of 

effective therapies stand to benefit from enhanced characterisation of these stereotypical 

behaviours in a validated pre-clinical model. We hope that further characterisation of PLBs in the 

MPTP-lesioned marmoset will be helpful in the evaluation of interventions that seek to alleviate 

PD psychosis symptoms. 

Keywords Psychosis · Parkinson’s disease · MPTP-lesioned marmoset · Punding · L-DOPA 
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Chapter 5 Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease that afflicts approximately 6 million 

individuals worldwide and the global burden of PD is expected to double in the next few decades 

(Dorsey et al., 2018a). The main treatment, L-3,4-dihydroxyphenylanaline (L-DOPA), provides 

relief for motor symptoms during early stages of disease. However, with disease progression and 

long-term therapy, its utility is marred by complications such as L-DOPA-induced dyskinesia and 

psychosis (Hely et al., 2005, Hely et al., 2008). In addition to the dopaminergic system, there is 

evidence that serotonergic, acetylcholinergic and glutamatergic systems are implicated in PD 

psychosis (Powell et al., 2020). Psychotic symptoms are a frequent occurrence in PD, with over 

50% of subjects eventually affected (Fénelon et al., 2010), and management is limited (Seppi et 

al., 2019), which underscores that PD psychosis is a clinical unmet need. PD psychosis 

predominantly present as hallucinations, with visual hallucinations being the most common 

(Fénelon and Alves, 2010), but also encompasses delusions, illusions and false sense of presence 

(Fernandez et al., 2008, Zahodne and Fernandez, 2010).  

Upon administration of dopaminergic agents, the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-lesioned marmoset exhibits behaviours that are reminiscent of PD 

psychosis (Fox et al., 2006, Visanji et al., 2006, Fox et al., 2010) and can reliably predict the anti-

psychotic efficacy of compounds in the clinic (Veyres et al., 2018). Psychosis-like behaviours 

(PLBs), the equivalent of PD psychosis in the MPTP-lesioned marmoset, span four general 

categories including response to non-apparent stimuli (visual hallucinations and tracking), 

stereotypies, hyperkinesia and repetitive grooming (Fox et al., 2010). In particular, stereotypical 

behaviours (e.g. repetitive side-to side jumping, fiddling with the cage and running in circles) are 
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idiosyncratic and reproducible with each administration of L-DOPA (Fox et al., 2010). These 

features may be reminiscent of punding behaviours described in PD patients, which is defined as 

complex stereotypical behaviours that consist of excessive, repetitive and non-goal-oriented 

behaviours and may occur following L-DOPA treatment (Evans et al., 2004). The animal specific 

stereotypies encountered in MPTP-lesioned marmosets are therefore reminiscent of the 

heterogeneous manifestations of psychotic symptoms in PD patients.  

Here, we sought to expand on the existing behavioural repertoire of PLBs in the MPTP-

lesioned marmoset, to help with the evaluation of future potential anti-psychotic agents in the 

treatment of PD psychosis.  

 

 

Chapter 5 Methods 

Animals  

Six common marmosets (Callithrix jacchus, N=3 of each sex), weighing 300-450 g were pair 

housed under conditions of controlled temperature (24 ± 1°C), humidity (50 ± 5%) and a 12 h 

light/dark cycle (lights on at 07:15 a.m.). Animals had unrestricted access to water and were fed 

twice daily (Mazuri® Marmoset Jelly, fresh fruits, boiled eggs, pasta, nuts, etc.) and were provided 

with enrichment in home cages (perches and primate toys). Marmosets were acclimatised to 

handling, transfer to observational cages for behavioural recordings and sub-cutaneous (s.c.) 

injections prior to the start of studies. All procedures were approved by the McGill University and 

the Montreal Neurological Institute Animal Care and Use Committees, in accordance with 

guidelines established by the Canadian Council on Animal Care.  
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Induction of parkinsonism and psychosis-like behaviours 

Animals were rendered parkinsonian by administration of MPTP hydrochloride (2 mg/kg, s.c., 

MilliporeSigma, Canada) once daily or every other day for a total of 3 to 5 doses, tailored to the 

animals’ reaction (Hamadjida et al., 2017, Hamadjida et al., 2018b, Frouni et al., 2019, Kwan et 

al., 2019). Following recovery, animals were administered L-DOPA/benserazide (hereafter L-

DOPA, 15/3.75 mg/kg, orally, MilliporeSigma) once daily for a minimum of 30 days until the 

severity of PLBs was stable and reproducible.  

 

Behavioural analysis 

On experimental days, L-DOPA (15/3.75 mg/kg, s.c., MilliporeSigma) was administered to 

animals. The severity of PLBs and parkinsonism was rated according to previously published 

scales (Fox et al., 2010, Huot et al., 2011, Hamadjida et al., 2017, Hamadjida et al., 2018a, Frouni 

et al., 2019, Kwan et al., 2019). The PLB rating scale is detailed in Table 1. Briefly, PLBs consisted 

of hyperkinesia, response to non-apparent stimuli (tracking and staring), repetitive grooming and 

stereotypies. PLBs were rated on a scale from 0 to 4, where 0 = absent, 1 = mild, present less than 

30% of the observation period and animal is able to eat and perform normal activity, 2 = moderate, 

3 = marked and 4 = severe, present more than 30% of the observation period and replacing normal 

activity. The parkinsonian disability rating scale is presented in Table 2. Parkinsonian disability 

comprised of range of movement, bradykinesia, posture and attention/alertness. Range of 

movement was rated on a scale from 0 to 9, where 0 = running, jumping and use of limbs for 

different activities, 6 = on the wall of cage, perch or ceiling, whereas 9 = no movement. 

Bradykinesia was rated from 0 to 3, where 0 = normal initiation and speed of movement, whereas 
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3 = prolonged freezing, akinesia and immobile. Postural abnormality was rated 0 or 1, where 0 = 

normal balance with upright body posture and head is held up, whereas 1 = impaired balance, 

prone body posture with head down. Attention/alertness was rated 0 or 1, where 0 = normal head 

checking and movement of neck is smooth in different directions and in small movements, whereas 

1 = less or no head checking and head is in one position for more than 50% of the time. Over a 6-

h observation period, PLBs and parkinsonian disability were simultaneously assessed post hoc for 

5 min every 10 min. PLBs and parkinsonian disability scores were summed for each half hour over 

the entire observation period.  

 

Statistical Analysis 

This article expands the repertoire of previously described behaviours that occur following the 

administration of L-DOPA to marmosets. The analysis was performed in a qualitative fashion. 

 

 

Chapter 5 Results 

In MPTP-lesioned marmosets, following administration of L-DOPA, animals exhibited PLBs over 

a 6-h observation period (Fig. 1). The PLBs displayed by animals encompassed hyperkinesia, 

hallucinatory-like behaviours, scratching and stereotypies, with the majority of the PLB severity 

score attributed to hallucinatory-like behaviours and stereotypies (Fig. 2A). Moreover, the profile 

of PLBs varied between the six animals (Fig. 2B). From the analysis of the PLBs, we also observed 

that animals displayed stereotypical behaviours that had not previously been described (Table 1). 

Thus, whereas circling behaviour was initially reported, it was incorporated in the scale only when 
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it occurred on the cage floor. Here, we report, along with visual support, that the circling behaviour 

is not restricted to the cage floor. Different marmosets circled in environments that were specific 

to each animal, e.g. on the floor for animal 1, on the cage wall for animal 2, on the perch for animal 

3, and on the ceiling for animal 4 (see Video, Online Resource 1, which demonstrates circling 

behaviours in different environments). Moreover, circling behaviours were expanded to 

encompass 360° rotations around a fixed point or object. Consistent with other PLBs, there was 

considerable variation in the amplitude of these stereotypies that ranged from mild to disabling 

and the severity was scored according to the original scale. Stereotypies displayed by animals were 

idiosyncratic in nature, such as repetitive and distinct patterns of movements (see Video, Online 

Resource 2, which demonstrates unique patterns of repetitive behaviour).  

 The time course of parkinsonism in MPTP-lesioned marmosets is presented in Fig. 3. In 

terms of range of movement that is evaluated under parkinsonism severity, we observed that some 

animals hung from the ceiling without any locomotion, which could not be scored using the 

traditional rating scale. We propose that this behaviour is reminiscent of hanging on the cage wall 

or perch without movement. As shown in Table 2, we have amended the scale for range of 

movement to include hanging from the ceiling, wall or perch as equivalent behaviours. 

 

 

Chapter 5 Discussion 

In the present study, we presented novel PLBs, namely stereotypies, in the MPTP-lesioned 

marmoset, to expand the behavioural repertoire encountered in the model and hopefully increase 

the translational potential of studies conducted in this small primate. These additions to the existing 
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scale appear dependent on the environment and may be analogous to punding behaviours presented 

by PD patients, which reinforces the importance of further characterising pre-clinical models.   

 Amongst the spectrum of psychotic symptoms in PD, visual hallucinations predominate in 

the clinic, afflicting as many as 60% of patients (Fénelon et al., 2010). Consistent with these 

findings, we found that in MPTP-lesioned marmosets administered L-DOPA, the most common 

PLBs were response to non-apparent stimuli, the marmoset equivalent to visual hallucinations (Fox 

et al., 2010), followed by stereotypies. As iterated by the authors of the original PLB rating scale, 

stereotypies are idiosyncratic and can be reproduced with administration of L-DOPA (Fox et al., 

2006, Visanji et al., 2006, Fox et al., 2010). Here, stereotypies represented the second most severe 

subtype amongst the four PLBs subtypes, which further supports the importance of accurately 

detecting and quantifying these behaviours. Importantly, although animals may also exhibit chorea 

and/or dystonia, stereotypies are clearly distinct from them. Indeed, dystonia consists of abnormal 

posture, while chorea consists of random and non-stereotypical movements (Pearce et al., 1995, 

Henry et al., 1999). The novel behaviours described here, i.e. circling in 360° rotations on the 

ceiling, cage wall and wooden perch, as well as sequential patterns of behaviour, are also specific 

to each animal and occur with each L-DOPA administration. Based on the description of the 

original scale, we believe that these behaviours correspond to stereotypies. We propose that they 

should be rated according to the previously published scale, where 0 corresponds to the absence 

of such behaviours and 4 is the most disabling and occurs > 30% of the assessment period.  

 In addition to the wide phenotypical repertoire of these stereotypical behaviours, an 

intriguing feature of these is that they appear to manifest differently depending on the environment. 

The circling behaviour, for example, is not limited to the cage floor but for some animals, may 

occur on the cage wall, perch or ceiling. Of note, such an environmental-dependence of behaviours 
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induced by L-DOPA was previously reported in the 6-hydroxydopamine-lesioned rat (Lane et al., 

2011) but, to the best of our knowledge, not in the MPTP-lesioned non-human primate.  

We previously suggested that these repetitive, exaggerated and driven gross motor 

behaviours, may represent behavioural correlates of neuropsychiatric symptoms in PD (Fox et al., 

2010). Indeed, the complex stereotypies exhibited by these animals are reminiscent of punding, 

which may occur in PD patients (Fasano and Petrovic, 2010) and subjects with psychostimulant 

addiction (Rylander, 1972, Brady et al., 1991, Fasano et al., 2008). Punding is described as a 

stereotyped behaviour characterised by senseless and repetitive activity that often arises from 

prepotent idiosyncratic habits and hobbies (Evans et al., 2004). The similarities between 

stereotypical behaviours in the MPTP-lesioned marmoset and clinical features enhances the value 

of the model and would benefit from pharmacological validation, although there is currently no 

efficacious treatment to address punding in PD (Seppi et al., 2019).  

First described in PD patients in 1994 (Friedman, 1994), the prevalence of punding 

behaviours ranges from 1.4 to 14% of PD population (Evans et al., 2004, Miyasaki et al., 2007), 

but due to its poor characterisation, punding is likely underreported in clinical practice (Lawrence 

et al., 2007). Punding in the PD population correlates with poorer disease-related quality of life 

(Lawrence et al., 2007) and devastating psychosocial consequences (Voon, 2004). Evidence 

supports a strong association between dopaminergic transmission and punding, particularly with 

high doses of L-DOPA (Evans et al., 2004), as well as a few reports with dopamine agonists 

(Miyasaki et al., 2007, Fasano and Petrovic, 2010, Vargas et al., 2019), and symptoms improve 

after reduction or cessation of L-DOPA or dopamine agonists (Fernandez and Friedman, 1999, 

Miwa and Kondo, 2008, Fasano and Evans, 2013). Although some studies found cases of punding 

in PD patients with exceedingly high doses of L-DOPA (1,350 to 7,500 mg) (Fernandez and 
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Friedman, 1999, Serrano-Dueñas, 2002, Kurlan, 2004, Kumar, 2005, Kummer et al., 2007), there 

were also cases of punding in PD patients associated with relatively lower doses of L-DOPA (300 

to 500 mg) (Fernandez and Friedman, 1999, Miwa et al., 2004, Miwa and Kondo, 2005, Fasano et 

al., 2006, Miwa and Kondo, 2008, Wingo et al., 2009, Kulisevsky and Pagonabarraga, 2010, 

Spencer et al., 2011). It is noteworthy that the doses of L-DOPA discussed represent the total daily 

dose, not the dose administered during a single intake, which rarely exceeds 250-300 mg. In 

addition, another study did not report a significant difference in the Levodopa Equivalent Daily 

Dose (LEDD) between PD patients that exhibit punding and those who do not, average of 464 mg 

and 431 mg, respectively (Pettorruso et al., 2016). Moreover, similar behaviours are exhibited in 

users of cocaine and amphetamine (Rylander, 1972), both of which enhance dopaminergic 

transmission (dela Peña et al., 2015). In contrast to these findings, an isolated case report found 

that two PD patients exhibited punding behaviours following an improvement in psychosis with 

the anti-psychotic quetiapine, which adds complexity and could suggest an interaction between 

serotonin and stereotypies (Miwa et al., 2004). However, as only a subset of PD patients develop 

punding, it is possible that it arises from a complex interaction between pharmacological and non-

pharmacological clinical features (Fasano et al., 2011).   

The pathophysiology of punding remains unclear but high co-morbidity rates with L-

DOPA-induced dyskinesia (Miwa et al., 2004, Silveira-Moriyama et al., 2006), behavioural 

addictions and psychosis lend support to a shared neural substrate. Thus, both punding and 

dyskinesia require chronic drug administration to induce behavioural sensitisation, such that once 

established, a single dose of drug can trigger the behaviour (Fasano et al., 2011). Moreover, 

punding behaviours share phenotypical similarities with stereotypical behaviours in animals after 

administration of L-DOPA or amphetamine (Robbins et al., 1990). However, while dyskinesia 
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(Cotzias et al., 1967), impulse control disorders (Garcia-Ruiz et al., 2014), behavioural addictions 

(Rusyniak, 2011) and punding (Fasano et al., 2011) are all associated with dopaminergic 

medication, future studies are required to discern the exact contribution of dopaminergic 

medication to these conditions.   

The predominant hypothesis for the pathophysiology underlying punding in PD is based 

on plastic changes in the dorsal and ventral striatum (Ikemoto and Panksepp, 1999), whereby 

dopaminergic projections to the dorsal striatum are progressively lost while those to the ventral 

striatum are relatively spared (Kish et al., 1988). It has been proposed that dopamine replacement 

therapy results in the overstimulation of the dorsal striatum and facilitates the transition from goal-

oriented actions to automated behaviour with loss of voluntary control (Beaulieu-Boire and Lang, 

2015). This is consistent with reports that individuals cannot control automatic response (Evans et 

al., 2004) and the dissociation between knowledge and behaviour (Toates, 1998). Furthermore, 

variation in individual susceptibility to develop punding may be linked to frontal cortex projections 

that inhibit dopamine-induced stereotypical behaviours (Ridley, 1994). Dysfunction of this process 

may underlie conditions that involve abnormal expression of stereotypical behaviours (Mink, 

1996), as evidenced by lesions to the frontal cortex (Volle et al., 2002) and basal ganglia (Laplane 

et al., 1984, Laplane et al., 1989) sometimes leading to stereotypical behaviours reminiscent of 

punding. However, this theory is difficult to reconcile with relatively sparing of cognitive function 

in PD patients who exhibit punding behaviours (Fasano et al., 2011), which underscores the need 

to study cognitive profile in these patients.  

 The MPTP-lesioned marmoset model has previously demonstrated its value in evaluating 

the therapeutic potential of L-DOPA related side effects such as impulse control disorders and 

dopamine dysregulation syndrome (Johnston et al., 2011). Here, we have expanded the PLB 
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repertoire in the MPTP-lesioned marmoset by describing novel behaviours that are idiosyncratic 

and dependent on the environment. Characterisation of these behaviours will be beneficial in 

identifying mechanisms to target pharmacologically PD psychosis. Lastly, in light of similarities 

with punding behaviours in PD patients, moving towards more comprehensive understanding of 

PLBs may aid drug development of therapies for punding.  
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Chapter 5 Tables and Figures  

Table 1 Proposed new psychosis-like behaviour rating scale in the MPTP-lesioned common marmoset 

Parameter Score 

Hyperkinesia Locomotor activity: running, jumping or climbing, that is faster than normal and/ or inability 

of animal to remain in one position for > 5 seconds without exhibiting locomotion 

0: activity absent 

1: present for < 30% of assessment time and not disabling (animal can walk, run, and eat) 

2: present for > 30% of assessment time and not disabling 

3: present for < 30% and disabling (interferes with walking, running, eating – takes over 

normal activity) 

4: present for > 30% and disabling 

Hallucinatory-like response to appar-

ent non-stimuli 

Tracking: head movements following non-apparent stimuli (> 10 seconds/min) and/ or  

Staring: head still, looking in one direction at non-apparent stimulus for extended period (> 

10 seconds/min) 

0: activity absent. 

1: present for < 30% of assessment time and not disabling (animal can walk, run, and eat). 

2: present for > 30% of assessment time and not disabling. 

3: present for < 30% and disabling (interferes with walking, running, eating – takes over 

normal activity). 

4: present for > 30% and disabling 

Obsessive grooming Grooming or scratching repetitively (> 5 times/min) 

0: activity absent. 

1: present for < 30% of assessment time and not disabling (animal can walk, run, and eat). 

2: present for > 30% of assessment time and not disabling. 

3: present for < 30% and disabling (interferes with walking, running, eating – takes over 

normal activity). 

4: present for > 30% and disabling 
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Stereotypies a) Side-to-side repetitive whole body jumping movements on floor of cage (> 2 times/ min) 

b) Head checking movements that are repetitive, quick, side-to-side, exaggerated large 

amplitude, often with associated body movements (> 3 times/ min) 

c) Circling behaviour – whole body turning in circles (or 360° rotations) on floor, cage 

wall, perch or ceiling (>2 times/ min)  

d) Fiddling with and/ or repetitively grasping at cage bars with forearms (> 2 times/ min) 

0: activity absent 

1: present for < 30% of assessment time and not disabling (animal can walk, run, and eat). 

2: present for > 30% of assessment time and not disabling. 

3: present for < 30% and disabling (interferes with walking, running, eating – takes over 

normal activity). 

4: present for > 30% and disabling 

For each of the behavioural parameters tested, the score assigned is the most representative of psychosis-like behaviour over a 5-min 

period. The psychosis-like behaviour score attributed was the most disabling of any of the four behavioural parameters observed during 

the 5-min period (Fox et al., 2010). Adapted from S. H. Fox, N. Visanji, G. Reyes, P. Huot, J. Gomez-Ramirez, T. Johnston and J. M. 

Brotchie. Neuropsychiatric behaviors in the MPTP marmoset model of Parkinson's disease. Can J Neurol Sci, 2010, 37(1): 86-95. 

Copyright (2020) and reproduced with permission from Cambridge University Press. Changes to the original scale are emboldened. 
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Table 2 Proposed new parkinsonian disability rating scale in the MPTP-lesioned common marmoset 

Parameter Score 

Range of movement 0: running, jumping between roof, walls, perch, using limbs through a wide range of activity 

1: climbing up and down the walls of the cage or along perch 

2: climbing onto wall of cage or perch 

3: hopping on floor of cage 

4: walking around floor 

5: on ceiling, wall of cage or perch, movement of limbs, but no locomotion 

6: on ceiling, wall of cage or perch, movement of head or trunk 

7: on the floor of the cage, movement of limb, but no locomotion 

8: on the floor of the cage, movement of head 

9: no movement 

Bradykinesia 0: normal initiation and speed of movement 

1: slight slowing of movement 

2: moderate slowing of movement, marked freezing, difficulty initiating and maintaining 

movement 

3: prolonged freezing, akinesia, inability to move 

Postural abnormality 0: normal balance, upright posture, head held up 

1: impaired balance, crouched posture, head down 

Attention/alertness 0: normal head checking movements, movement of neck in variable directions, smooth, small 

movements 

1: reduced or absent head checking, head in one position for more than 50% of observation period 

For each behavioural parameter tested, the score attributed is the most representative over a 5-min period. A global parkinsonism score 

is calculated according to the following formula: [(bradykinesia  3) + (posture  9) + (range of movement  1) + (alertness  9)]. The 

maximal disability score for any given observation period is 36, while normal animals score under 6 (Huot et al., 2011). Reprinted from 
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Experimental Neurology. 188(1). M. A. Silverdale, S. L. Nicholson, P. Ravenscroft, A. R. Crossman, M. J. Millan and J. M. Brotchie. 

Selective blockade of D3 dopamine receptors enhances the anti-parkinsonian properties of ropinirole and levodopa in the MPTP-lesioned 

primate. 128-138. Copyright (2020) with permission from Elsevier. Changes to the original scale are emboldened. 
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Fig. 1 Time course of PLBs in MPTP-lesioned marmosets. L-DOPA administration in MPTP-

lesioned marmosets elicited PLBs. Median and individual time course of PLBs of the six animals 

over the 6-h observation are presented. Data are expressed as the median. The maximal PLB score 

at any time point is 12 
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Fig. 2 Distribution of PLB scores in MPTP-lesioned marmosets. The severity score of PLB 

subtypes (hyperkinesia, hallucinatory-like behaviours, scratching and stereotypies) of the six 

MPTP-lesioned marmosets are presented in a. The distribution of PLB scores for each individual 

animal is presented in b. Data are expressed as the median. hyper, hyperkinesia; hallu, response to 

non-apparent stimuli (tracking and staring, i.e. visual hallucinations); scratch, scratching; stereoty, 

stereotypies 
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Fig. 3 Time course of parkinsonism in MPTP-lesioned marmosets. Median and individual time 

course of parkinsonism of six MPTP-lesioned marmosets over the 6-h observation is presented. 

All animals were administered L-DOPA. Data are expressed as the median. The maximal 

parkinsonian disability score at any time point is 108 
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Supplementary Video 1 

https://doi.org/10.1007/s00210-021-02090-6  
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Supplementary Video 2 

https://doi.org/10.1007/s00210-021-02090-6
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Transition 4: Altered 5-HT3 receptor levels underlie L-DOPA 

induced dyskinesia in the hemi-parkinsonian rat 

Investigation of blockade of the 5-HT3 receptor as an approach to alleviate dyskinesia in 

PD is a very recent development and, to date, studies have been limited to behavioural 

pharmacological experiments. In the hemi-parkinsonian rat, the 5-HT3 receptor antagonists 

ondansetron 559, 870 and granisetron (Chapter 3) both alleviated the severity of established 

dyskinesia, and ondansetron even prevented the development of dyskinesia 870. Building upon 

these findings, ondansetron treatment in the parkinsonian marmoset also reduced the severity of 

established dyskinesia (Chapter 4). Altogether, these behavioural studies suggest that the anti-

dyskinetic efficacy of these selective antagonists may be attributed to blockade of the 5-HT3 

receptor. However, insight into possible mechanism(s) of action that govern the anti-dyskinetic 

efficacy of 5-HT3 antagonists is lacking, which limits the translational potential of these well 

tolerated and clinically available compounds. Thus, a better understanding of brain areas where 5-

HT3 receptor levels are altered may shed light onto the possible mechanism of action governing 

these drugs. 

Using autoradiographic binding, we examined the relationship between L-DOPA induced 

dyskinesia and 5-HT3 receptor levels in the hemi-parkinsonian rat by comparing [3H]GR65630 

binding levels between control and experimental subjects (Chapter 6). The distribution of 5-HT3 

receptors was examined in brain areas implicated in L-DOPA-induced dyskinesia, i.e., the motor 

loop of the basal ganglia, as well as the primary motor cortex and ventral anterior/ventral lateral 

(VA/VL) nuclei of the thalamus. We found a regionally selective upregulation of [3H]GR65630 

binding in 6-OHDA-lesioned rats that were either L-DOPA naïve or dyskinetic due to chronic L-

DOPA administration. While this upregulation was predominantly observed in the bilateral 
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subthalamic nucleus, it was also observed, to a lesser extent, in the ipsilateral entopeduncular 

nucleus and VA/VL thalamus. [3H]GR65630 binding remained unchanged in the other brain 

regions studied, including the primary motor cortex, striatum, and substantia nigra pars reticulata. 

Lastly, dyskinesia severity scores negatively correlated with binding levels in the ipsilateral 

striatum and contralateral subthalamic nucleus. Taken together, our findings suggest that the 5-

HT3 receptor may contribute to the pathophysiology of L-DOPA-induced dyskinesia and provide 

some insight into the brain regions worth further study. Further studies are warranted to unravel 

the role that 5-HT3 receptors in the subthalamic nucleus, entopeduncular nucleus and VA/VL 

thalamus may play in the development or expression of L-DOPA induced dyskinesia. 
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Chapter 6 Abstract 

L-3,4-dihydroxyphenylalanine (L-DOPA) is the mainstay treatment for Parkinson’s disease, but 

its effectiveness during early disease is marred by the eventual development of L-DOPA induced 

dyskinesia. In hemi-parkinsonian rats, the serotonin type 3 (5-HT3) antagonists ondansetron and 

granisetron alleviated dyskinesia induced by L-DOPA without impeding its anti-parkinsonian 

action; in parkinsonian marmosets, ondansetron alleviated dyskinesia and enhanced L-DOPA anti-

parkinsonian action. Here, we sought to gain insight into the mechanisms governing the anti-

dyskinetic action of 5-HT3 antagonists and measured 5-HT3 receptor levels across different brain, 

using [3H]GR65630 autoradiographic binding. Brain sections were chosen from 6-

hydroxydopamine (6-OHDA)-lesioned rats exhibiting abnormal involuntary movements (AIMs), 

as well as L-DOPA-naïve 6-OHDA and sham-lesioned animals. [3H]GR65630 binding increased 

in the ipsilateral subthalamic nucleus of 6-OHDA-lesioned rats with mild and severe AIMs, (3-

fold changes, P < 0.001). [3H]GR65630 binding also increased in the ipsilateral entopeduncular 

nucleus and thalamus of 6-OHDA-lesioned rats with severe AIMs (75% and 88%, P < 0.05). AIMs 

scores negatively correlated with [3H]GR65630 binding in the ipsilateral dorsolateral striatum and 

contralateral subthalamic nucleus (P < 0.05). These results suggest that alterations in 5-HT3 

mediated neurotransmission may contribute to the pathophysiology of L-DOPA induced 

dyskinesia. 
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Chapter 6 Introduction 

By 2040, Parkinson’s disease (PD) is projected to affect over 17 million people worldwide 

(Dorsey et al., 2018b). Since its introduction (Cotzias et al., 1967), L-3,4-dihydroxyphenylalanine 

(L-DOPA) has remained the most effective symptomatic treatment for PD. However, with chronic 

L-DOPA treatment and disease progression (Fox and Lang, 2008), patients develop debilitating 

complications, such as L-DOPA-induced dyskinesia, which affects nearly 95 % of patients after 

15 years of treatment (Hely et al., 2005). To date, the non-selective N-methyl-D-aspartate (NMDA) 

antagonist amantadine is the sole pharmacological agent approved by the United States Food and 

Drug Administration to alleviate dyskinesia, but its use is hampered by the development of 

hallucinations and loss of efficacy with repeated administration (Hauser et al., 2017, Pahwa and 

Hauser, 2017).  

Preclinical studies have implicated the raphe-striatal serotonin (5-HT) system as a 

modulator of L-DOPA-induced dyskinesia (Carta and Tronci, 2014). Notably, anti-dyskinetic 

efficacy has been demonstrated both for 5-HT type 1A (5-HT1A) receptor agonists and 5-HT type 

2A (5-HT2A) receptor antagonists in rodent and non-human primate models of PD (Bibbiani et al., 

2001, Hamadjida et al., 2018d). However, in clinical trials, 5-HT1A receptor agonists failed to 

alleviate dyskinesia and/or compromised L-DOPA therapeutic efficacy (Ludwig et al., 1986, 

Kannari et al., 2002b, Goetz et al., 2007, Goetz et al., 2008b). Furthermore, the efficacy of 5-HT2A 

receptor antagonists in dyskinetic patients has been mixed and limited to small trials (Maertens de 

Noordhout and Delwaide, 1986, Meco et al., 1988) and requires further study in placebo-controlled 

trials.  
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Modulation of the 5-HT type 3 (5-HT3) receptor provides another potential approach to 

alleviate L-DOPA induced dyskinesia. In particular, the 5-HT3 receptor antagonists ondansetron 

and granisetron were observed to reduce the severity of dyskinesia in the 6-hydroxydopamine (6-

OHDA) lesioned rat (Aboulghasemi et al., 2018, Kwan et al., 2020c, Kwan et al., 2021a). An anti-

dyskinetic efficacy of ondansetron was also demonstrated in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-lesioned marmoset (Kwan et al., 2021b); the latter is a model with 

high positive predictive value in forecasting clinical efficacy for dyskinesia, psychosis and 

parkinsonism (Veyres et al., 2018, Beaudry and Huot, 2020a).  

To date, the anti-dyskinetic effects of 5-HT3 receptor blockade have been investigated only 

at the behavioural level; mechanistic studies are lacking. Thus, a better understanding of brain 

areas where 5-HT3 receptor levels are altered may shed light onto the possible mechanism(s) of 

action governing these drugs. Autoradiographic binding studies in the intact rat have reported high 

levels of 5-HT3 receptor binding in the brainstem and limbic areas (Kilpatrick et al., 1988), with 

lower levels in the striatum and thalamus (Kilpatrick et al., 1987). However, to the best of our 

knowledge, 5-HT3 receptor expression has not been studied in L-DOPA-induced dyskinesia. 

Therefore, in the present study, we determined the distribution of the 5-HT3 receptor in brain areas 

implicated in L-DOPA-induced dyskinesia, including the motor loop of the basal ganglia, by 

performing autoradiographic binding with the highly selective antagonist [3H]GR65630 in 6-

OHDA- and sham-lesioned rats. We also tested for correlations between the severity of L-DOPA 

induced dyskinesia and specific [3H]GR65630 binding levels in different brain areas. 
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Chapter 6 Material and methods 

 Animals  

 Adult female Sprague-Dawley rats (225–250 g, Charles River, Saint-Constant, Canada) 

were used. Rats were housed in groups of three under controlled temperature (21± 1°C), humidity 

(55%), light (12-h light/dark cycle, lights on at 07:00) conditions, with unlimited access to food 

and water. Upon arrival, rats remained undisturbed to acclimatise to housing conditions for at least 

5 days. All procedures were approved by the Montreal Neurological Institute-Hospital (The Neuro) 

Animal Care Committee, in accordance with the guidelines established by the Canadian Council 

on Animal Care.   

 

 Induction of hemi-parkinsonism 

 Rats were rendered hemi-parkinsonian by unilateral injection of 6-OHDA, as previously 

described (Kwan et al., 2020c). Briefly, animals were administered desipramine (10 mg/kg s.c., 

MilliporeSigma, Canada) and pargyline (5 mg/kg s.c., MilliporeSigma) and, once anaesthetised 

with isoflurane (2-4 %; MilliporeSigma) in 100 % oxygen (1 L/min), they were placed into a 

stereotaxic frame (David Kopf Instruments, USA). Thirty minutes later, they were injected with 

2.5 μL of 6-OHDA hydrobromide (7 μg/μL, MilliporeSigma) in the right medial forebrain bundle 

at the following coordinates: antero-posterior: − 2.8 mm, medio-lateral: − 2.0 mm, dorso-ventral: 

− 9.0 mm) relative to Bregma, with the incisor bar set 3.3 mm below ear bars (Paxinos and Watson, 

2007). Sham-lesioned animals were injected with 2.5 μL of 6-OHDA vehicle (0.9 % saline with 

0.02 % ascorbate) using the same stereotaxic coordinates. Following the lesion, animals entered a 

21-day recovery period. 
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 Assessment of hemi-parkinsonism 

 After the recovery period, animals underwent the cylinder test to determine the extent of 

hemi-parkinsonism (Schallert et al., 2000, Frouni et al., 2018). Rats were placed in a transparent 

cylinder (14 cm diameter  28 cm height) and recorded for 10 min, following which video 

recordings were viewed in order to count the number of wall touches that each rat made during a 

rearing movement, i.e. using the forelimb contralateral and ipsilateral to the lesion side, as well as 

simultaneous placement of both forelimbs. Only animals that displayed use of the forelimb 

ipsilateral to the lesion in ≥ 70 % of rears were selected for further study, a score that is indicative 

of approximately 90 % striatal dopamine tissue content depletion (Schallert et al., 2000). 

 

 Experimental design 

 Animals were randomly allocated into four groups. Group A (sham-vehicle, N = 8) animals 

were intracranially injected with 6-OHDA vehicle and then primed with a daily s.c. injection of L-

DOPA/benserazide vehicle (0.9 % saline with 0.1 % ascorbate) for 14 days. The remaining rats 

were unilaterally injected with 6-OHDA and were allocated to groups B, C and D, as follows. 

Animals in group B (lesion-vehicle, N=7) received the L-DOPA/benserazide vehicle daily for 14 

days The remaining lesioned animals instead underwent priming with L-DOPA/benserazide 

(10/15 mg/kg s.c.) daily for 14 days. Following the 14-day treatment period, the severity of AIMs 

was assessed, with each animal receiving a cumulative abnormal involuntary movements (AIMs) 

score, based on axial, limbs and oro-lingual (ALO) subtypes of dyskinesia. Based on AIMs scores, 

the lesioned rats that had received L-DOPA were subdivided into Groups C (lesion-L-DOPA-mild, 

N=5) and D (lesion-L-DOPA-severe, N=6). Animals with cumulative ALO AIMs scores (sum of 
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duration and amplitude components) of 50 and above were assigned to Group D, while those that 

scored below the cut-off score were assigned to Group C. 

 

 Assessment of AIMs severity 

 Following the 14-day priming period, ALO AIMs severity was assessed by an observer 

blinded to treatment, according to a scale previously described, which encompasses both duration 

and amplitude (Cenci and Lundblad, 2007). On the day of behavioural scoring, following 

administration of L-DOPA/benserazide (10/15 mg/kg, s.c.), ALO AIMs were rated for 2 min every 

20 min over a 3-hour observation period. Both ALO AIMs duration and amplitude were rated on 

a scale from 0 to 4 in each monitoring interval. Each AIMs subtype (i.e. axial, limbs and oro-

lingual) provided a maximum possible score per session of 36; hence, the maximum possible 

cumulative ALO AIMs duration and amplitude score was 108 per session.   

 

 Tissue preparation 

 Animals were administered their usual treatment based on group assignment and were 

anaesthetised with 4% isoflurane in 100 % oxygen (1 L/min) 45 min later, to allow trans-cardial 

perfusion with 0.9 % saline. Brains were collected and flash frozen in 2-methyl-butane at -56°C. 

Brains were set in optical cutting temperature (OCT) compound and cut into 12-µm thick coronal 

sections using a cryostat (Leica CM3050 S, Canada). Sections were thaw-mounted on SuperFrost 

Plus slides (ThermoFisher, Canada) and then dried at room temperature before being stored at -

80°C until use.  

 

 [3H]GR65630 autoradiographic binding 
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 Regions of interest selected for processing were based on their role in the motor loop of the 

basal ganglia, which is implicated in the pathophysiology of dyskinesia (Wichmann and 

Dostrovsky, 2011, Lanciego et al., 2012). These regions were identified according to a rat brain 

atlas (Paxinos and Watson, 2007) and comprised the primary motor cortex, dorsolateral striatum, 

globus pallidus, entopeduncular nucleus, subthalamic nucleus, ventral anterior/ventral lateral 

(VA/VL) nuclei of the thalamus, and substantia nigra pars compacta and pars reticulata. 5-HT3 

receptor levels were determined by autoradiographic binding adapted from a previously-published 

protocol (Kilpatrick et al., 1988). Sections were removed from storage at -80°C, and then thawed 

to dry at room temperature overnight. Sections were pre-incubated by washing twice in HEPES 

buffer (50 mM, pH 7.4) for 15 min at room temperature. Sections were then incubated in HEPES 

buffer (50 mM, pH 7.4) containing 2.0 nM [3H]GR65630 (American Radiolabeled Chemicals, 

USA; specific activity: 60 Ci/mmol) for 30 min at room temperature to define total binding. Non-

specific binding was defined by the addition of 10 µM of the 5-HT3 antagonist granisetron 

(Cedarlane Laboratories, Canada). Sections were then washed twice in HEPES buffer at 4 ºC for 

30 s. Subsequently, sections were dipped in 4 ºC distilled water for 2 s and air dried at room 

temperature. Sections were apposed to [3H]-sensitive Biomax MR films (MilliporeSigma, Canada) 

for 6 weeks at 4 ºC with [3H]-microscale standards (ART0123B and ART0123C, American 

Radiolabeled Chemicals, 5 mm  7 mm), after which they were developed for densitometric 

analysis.  

Autoradiograms were analysed using optical densitometry with ImageJ software (NIH, 

version 1.52p). The [3H]-microscale standards were used to calculate a reference curve of 

radioactivity versus grey-level values of autoradiograms (Zilles et al., 2002) and used to quantify 

signal intensity as nCi per mg of tissue. For each brain area, four consecutive sections were 
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processed to determine total binding, and four to evaluate non-specific binding. To calculate 

specific binding, non-specific binding was subtracted from total binding. Signal intensity (nCi/mg) 

was divided by the specific activity of the radioligand (Ci/mmol) to obtain fmol of receptor per 

mg of tissue (fmol/mg) (Huot et al., 2012b).  

 The autoradiographic signal generated by tritiated ligands is quenched to variable degrees, 

depending on the brain region (Herkenham and Sokoloff, 1984, Geary et al., 1985). Binding values 

were therefore corrected by applying empirically derived regional quenching coefficients (Geary 

and Wooten, 1985, Happe and Murrin, 1990). Exceptionally, no such correction was applied to 

the subthalamic nucleus, as its quenching coefficient has not been published. In Tables S1 and S2, 

quenching-corrected [3H]GR65630 binding levels are presented for brain regions ipsilateral and 

contralateral to the lesion; these values are for information only, and no statistical analysis was 

performed. 

 

 Immunohistochemistry 

 Immunohistochemical staining was performed on striatal brain sections that were thaw-

mounted on slides. Slides were dried overnight at room temperature and post-fixed by immersion 

in pre-cooled (-20°C) acetone for 10 min and left to air dry for 20 min (Matsumoto, 1985). Sections 

were then subjected to the following incubations, with 3  5 min rinses in Tris buffered saline 

(TBS; 100 mM Tris-Cl, pH 7.40, containing 240 mM NaCl) between each incubation: (1) 

quenching in 0.5 % H2O2 for 10 min, (2) block for 1 h in 10 % normal goat serum (NGS) and 5% 

bovine serum albumin (BSA) in TBS containing 0.3 % Triton X-100, (3) mouse monoclonal 

antibody raised against tyrosine hydroxylase (TH) (1:1000, MilliporeSigma, MAB318) in 5% 

NGS and 2% BSA in TBS containing 0.1 % Triton X-100 (TBS-T) overnight at 4 °C, (4) goat 
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anti-mouse biotinylated secondary antibody (1:200, Invitrogen, USA, 31800) in 5% NGS and 2% 

BSA in TBS-T for 1 h, (5) avidin-biotin complex detection kit (ABC; Vector Laboratories, USA, 

PK-6100) for 2 h. Sections were developed in TBS-T containing 1.25 mg/mL nickel ammonium 

sulphate hexahydrate (MilliporeSigma, 574988), 0.25 mg/mL 3,3’-diaminobenzidine 

(MilliporeSigma, D5637) and 0.015% H2O2 (Patterson et al., 2019). After washing in TBS, 

sections were dried, rehydrated in water and dehydrated in graded alcohols, cleared with xylene 

and coverslipped using Permount mounting medium (Fisher Scientific, USA, SP15-100). 

 TH-immunoreactivity was quantified by densitometry in sections containing the 

dorsolateral striatum (Bregma ~ +1.20 mm). Images were captured by a Nikon Eclipse E800 

microscope (The Neuro Microscope Core Facility) using Stereo Investigator software (MBF 

Bioscience, USA, version 11). Optical density was measured in the ipsilateral and contralateral 

dorsolateral striatum of four adjacent brain sections in ImageJ software (NIH, version 1.53c) 

(Linkert et al., 2010, Schindelin et al., 2012, Schneider et al., 2012). Relative TH-

immunoreactivity of each section was calculated as a percentage of the contralateral (non-lesioned) 

hemisphere. Mean relative TH optical density was calculated for each subject.  

 

 Statistical Analysis 

Assessment of hemi-parkinsonism  

Relative striatal TH optical density values are presented as a percentage of the contralateral 

hemisphere. Combining TH data of 6-OHDA-lesioned animals did not violate the Brown-Forsythe 

test of homogeneity of variance assumption. In addition, a 1-way Welch’s ANOVA (W(2, 9.554) = 

1.369, P > 0.05) found no significant differences in mean dopaminergic denervation across 6-

OHDA-lesioned groups, i.e., between group B (lesion-vehicle), group C (lesion-L-DOPA-mild), 
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and group D (lesion-L-DOPA-severe). Based on these analyses, TH data were pooled and then 

compared with sham-lesioned animals by Student’s t test.  

 

Assessment of AIMs severity 

AIMs data are discrete and discontinuous values that do not follow a normal distribution, 

therefore, non-parametric statistical analyses were performed because they do not rely on the 

assumption of normality (Corder and Foreman, 2014). ALO AIMs scores of mild and severe AIMs 

6-OHDA-lesioned animals are presented as median ± semi-interquartile range and were analysed 

by Mann-Whitney U test. 

 

Autoradiographic binding levels 

In contrast to AIMs data, autoradiographic binding levels data follow a normal distribution, 

so parametric statistical analyses were performed (Sheskin, 2011). For each region of interest, 

specific binding levels are presented as the mean ± standard error of the mean (SEM). Multiple 

Student’s t tests (Hsu, 1999, Ruxton and Beauchamp, 2008) were performed to compare each 6-

OHDA-lesioned group with the sham-lesioned one, as well as between the mild and severe AIMs 

groups, and P values were corrected using the Holm-Sidak multiple comparisons test. Correlations 

between ALO AIMs scores and specific [3H]GR65630 binding were analysed using Pearson 

correlation coefficient. 

 Statistical analyses were performed with GraphPad Prism 8.4.3 (GraphPad Software Inc., 

USA). Statistical significance was assigned when P ˂ 0.05.  
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Chapter 6 Results 

 Parkinsonism and lesion severity 

 Animals subject to 6-OHDA displayed use of the forelimb ipsilateral to the lesion in 72.5 

± 3.3 % of rears, which is indicative of extensive deficit of striatal dopamine. In agreement with 

preferential forelimb use, densitometric analysis revealed reduced TH immunoreactivity in the 

dorsolateral striatum of 6-OHDA lesioned animals (Fig. 1A-1C). When TH data of L-DOPA naïve, 

mild and severe AIMs 6-OHDA animals was combined, the Brown-Forsythe test of homogeneity 

of variance was valid (F(2, 13.03) = 1.957, P > 0.05), and consequently, data were pooled. As shown 

in Fig. 1A and 1C, the extent of striatal TH immunoreactivity in sham-lesioned rats was 

comparable between hemispheres. In rats administered 6-OHDA, TH striatal immunoreactivity 

was significantly reduced, by 90 %, compared to sham-lesioned rats (t(24) = 22.52, P < 0.0001; Fig. 

1B and 1C). As shown in Fig. S1, amongst 6-OHDA-lesioned animals, TH striatal 

immunoreactivity was comparable between those administered L-DOPA vehicle and those that 

received L-DOPA and expressed mild or severe AIMs (W(2, 9.554) = 1.369, P > 0.05, 1-way Welch’s 

ANOVA).  

 

 ALO AIMs severity 

 As shown in Fig. S2, the severely dyskinetic group of lesioned animals had approximately 

3-fold higher ALO AIMs scores than the mildly dyskinetic group (median ± semi-interquartile 

range ALO AIMs scores for Groups C and D, respectively: 32.0 ± 6.25 and 82.5 ± 18.0; U = 0, 

P < 0.01). In contrast to the literature (Cenci and Lundblad, 2007), no 6-OHDA-lesioned animal 

treated with L-DOPA was completely devoid of ALO AIMs, as some animals exhibited mild oro-
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lingual AIMs, although axial and limbs AIMs were not present. Importantly, the expression of oro-

lingual AIMs was not evocative of stereotypies, so 6-OHDA-lesioned animals treated with L-

DOPA that exhibited mild AIMs were included in Group C. 

 

 Specific [3H]GR 65630 binding is altered in the brains of 6-OHDA-lesioned rats 

 Fig. 2 shows examples of autoradiograms of [3H]GR65630 binding in the rat subthalamic 

nucleus, substantia nigra, striatum and primary motor cortex. Specific binding comprised 25 % of 

total binding across all regions of interest. 

 

Specific [3H]GR 65630 binding in the ipsilateral hemisphere  

In Table 1 and Fig. 3A-3H, [3H]GR65630 binding in the ipsilateral hemisphere of normal 

and 6-OHDA-lesioned rats is presented. Detailed statistical results of multiple Student t tests are 

presented for each region of interest in Table S3. In the absence of L-DOPA treatment, the 6-

OHDA lesion exerted little or no effect, except possibly in the subthalamic nucleus where binding 

was higher in the L-DOPA naïve versus sham group (t(33) = 2.275, uncorrected P = 0.0295). The 

combination of 6-OHDA lesion and L-DOPA treatment significantly increased binding in three 

brain regions (Fig. 3A-3C). This increase was most marked in the subthalamic nucleus, with a 

large effect (≈3-fold increase) seen in both the mild and severe AIMs groups (Fig. 3A). In the other 

two regions, VA/VL thalamus and entopeduncular nucleus (Fig. 3B and 3C), only the severe AIMs 

group showed a significant increase. In the five other brain regions, [3H]GR65630 binding 

appeared unaltered by the combination of 6-OHDA/L-DOPA treatments. 

 

Specific [3H]GR 65630 binding in the contralateral hemisphere  
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 In Table 2 and Fig. 4A-4H, [3H]GR65630 binding in the contralateral hemisphere of brains 

of normal and 6-OHDA-lesioned rats is presented. Detailed statistical results of multiple Student 

t tests are presented for each region of interest in Table S4. In general, 6-OHDA lesion alone did 

not significantly alter [3H]GR65630 binding, except for in the subthalamic nucleus, where there 

was an ≈ 2-fold increase in the L-DOPA naïve group compared to sham (Fig. 4A). Moreover, 6-

OHDA lesion in combination with L-DOPA treatment also resulted in increased (≈ 3- to 5-fold) 

binding in the subthalamic nucleus in both mild and severe AIMs groups (Fig. 4A). In the 

substantia nigra pars compacta, binding significantly decreased by ≈ 58% in the severe AIMs 

group compared to the mild AIMs group (Fig. 4E). Contrary to these findings, [3H]GR65630 

binding remained unaffected by the combination of 6-OHDA/L-DOPA treatments in the other 

brain regions assessed (Fig. 4B-4D, 4F-4H).  

 

 Correlation between ALO AIMs scores and [3H]GR 65630 binding in 6-OHDA-lesioned 

 As shown in Fig. 5A, [3H]GR65630 binding in the ipsilateral dorsolateral striatum and 

ALO AIMs scores of 6-OHDA-lesioned animals were negatively correlated (r = -0.6028, P < 

0.05). Similarly, [3H]GR65630 binding in the contralateral subthalamic nucleus was negatively 

correlated with ALO AIMs scores of 6-OHDA-lesioned rats (r = -0.6133, P < 0.05) (Fig. 5B). As 

displayed in Fig. S3, [3H]GR65630 binding in the ipsilateral subthalamic nucleus, entopeduncular 

nucleus, and thalamus was not correlated with ALO AIMs scores of 6-OHDA-lesioned animals (r 

= 0.1368, r = 0.2061, r = 0.2685, all P > 0.05). In the contralateral entopeduncular nucleus and 

thalamus of 6-OHDA-lesioned animals, [3H]GR65630 binding did not correlate with ALO AIMs 

scores (r = -0.08538, r = 0.1111, both P > 0.05). Similarly, [3H]GR65630 binding in other brain 

regions was not correlated with ALO AIMs scores. 
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Chapter 6 Discussion 

 This is the first study to assess the distribution of the 5-HT3 receptor in animals displaying 

L-DOPA induced dyskinesia. The main novel finding was a regionally-selective upregulation of 

[3H]GR65630 binding in 6-OHDA-lesioned rats that were either L-DOPA naïve or exhibiting 

AIMs due to chronic L-DOPA administration. This upregulation was largely confined to the 

subthalamic nucleus, where it manifested bilaterally; a smaller degree of ipsilateral-only 

upregulation was also seen in the VA/VL thalamus and entopeduncular nucleus. In the 

contralateral hemisphere, binding was downregulated in the substantia nigra pars compacta of 6-

OHDA-lesioned rats exhibiting severe AIMs compared to those with mild AIMs. In contrast, 

[3H]GR65630 binding appeared unaltered in the five other brain regions examined: i.e. primary 

motor cortex, dorsolateral striatum, globus pallidus, and substantia nigra pars reticulata. Finally, 

ALO AIMs score were negatively correlated with binding levels in the ipsilateral dorsolateral 

striatum and contralateral subthalamic nucleus. These results suggest that increased 5-HT3 receptor 

levels may contribute to the pathophysiology of L-DOPA-induced dyskinesia and potentially 

provide an anatomical basis for the anti-dyskinetic efficacy of 5-HT3 antagonists in PD. 

Brain 5-HT3 receptors are generally expressed at low levels (De Deurwaerdère and Di 

Giovanni, 2017), and distinguishing specific receptor binding can thus be challenging, with low 

signal-to-noise ratios reported across a variety of radioligands and unlabelled displacing ligands, 

in rodents (Kilpatrick et al., 1987, Ge et al., 1997) and primates (Barnes et al., 1990a, Jones et al., 

1992). In line with previous reports, specific binding in our study represented only 25 % of total 



 

251 

 

binding, but by using a minimal number of animals to conduct valid statistical analysis while 

abiding by the 3R principles for ethical use of animals in research results, we were able to measure 

a reliable autoradiographic signal.  

Our results reveal similarities with, and differences from, previously published work. For 

example, in sham-lesioned animals, we found high specific binding in the cerebral cortex, 

concurring with previous studies using the same radioligand (Kilpatrick et al., 1987, Kilpatrick et 

al., 1988). We also observed relatively high levels of radioligand binding in the basal ganglia and 

thalamus, which was consistent with earlier studies using either the same radioligand (Chen and 

Lawrence, 2000) or radiolabelled (R)-zacopride (Ge et al., 1997), although a few studies failed to 

detect binding in these structures (Kilpatrick et al., 1987, Barnes et al., 1990a). The stronger 

binding signal that we observed possibly reflects our decision to use a higher concentration of 

[3H]GR65630 (i.e. 2 versus 0.2 nM in the earlier studies by Kilpatrick et al.). Another possible 

explanation would be that the ligand chosen for the excess cold condition, granisetron, shared off-

target binding sites with [3H]GR65630, such that our calculated displaceable binding 

overestimated binding to 5-HT3 receptors. However, this explanation seems very unlikely: first, 

granisetron has negligible known affinity for other receptors (Blower, 1990) and, second, any 

additional binding sites would probably not be shared with the radioligand given that the two drugs 

are structurally unrelated (van Wijngaarden et al., 1993). In contrast, several published 

autoradiographic 5-HT3 binding studies have employed cold ligands such as metoclopramide that 

exhibit considerable affinity for non-target receptors (Kilpatrick et al., 1988, Kilpatrick et al., 1989, 

Jones et al., 1992). 

In the present study, the most pervasive upregulation of [3H]GR65630 binding occurred in 

the subthalamic nucleus. Upregulation in this structure was large, bilateral, and detectable in 
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lesioned animals even without subsequent L-DOPA treatment. Although 6-OHDA-lesion/L-

DOPA treatment resulted in both [3H]GR65630 binding upregulation and AIMs, AIMs severity 

was not significantly correlated with [3H]GR65630 binding in the ipsilateral subthalamic nucleus. 

Instead, a negative correlation was observed in the subthalamic nucleus contralateral to the lesion. 

It is unclear whether this contralateral elevation in [3H]GR65630 binding is functionally related to 

dyskinesia, either as a contributor or as a compensatory mechanism. More generally, our findings 

add to previous evidence implicating the subthalamic nucleus in L-DOPA induced dyskinesia. 

Notably, injection of the 5-HT1A agonist sarizotan into the subthalamic nucleus abolished 

dyskinesia induced by L-DOPA in the same animal model (Marin et al., 2009), and bilateral deep 

brain stimulation of this nucleus in PD patients is a clinically efficacious therapy for dyskinesia 

(Fox et al., 2018). These finding point towards key roles of the subthalamic nucleus and of 5-HT 

in the pathophysiology of dyskinesia in PD. Thus, it can be suggested that blockade of 5-HT3 

receptors in the subthalamic nucleus may contribute to the anti-dyskinetic efficacy of 5-HT3 

antagonists. In addition to the subthalamic nucleus, [3H]GR65630 binding was also upregulated in 

the ipsilateral entopeduncular nucleus and VA/VL thalamus of severely dyskinetic rats. These 

brain regions form part of the cortico-basal ganglia-thalamo-cortical loop (Parent and Hazrati, 

1995, Wallace et al., 2017), and hence may be well positioned to mediate dyskinesia in PD 

(Lanciego et al., 2012). Further studies are required to elucidate the role that 5-HT3 receptors in 

these three brain areas may play in the development or expression of L-DOPA induced dyskinesia.  

Behavioural studies in the parkinsonian rat and non-human primate provide support for the 

role of 5-HT3 receptor antagonists in alleviating L-DOPA-induced dyskinesia (Aboulghasemi et 

al., 2018, Kwan et al., 2020c, Kwan et al., 2021a, Kwan et al., 2021b), but insight into possible 

mechanism(s) of action remains largely lacking. Prior to the current experiments, only two 
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autoradiographic binding studies had determined 5-HT3 receptor levels in PD but they were limited 

in relation to dyskinesia as a complication experienced by patients: in one, medication and co-

morbidities (i.e. dyskinesia) were not disclosed (Steward et al., 1993), and in the other, the cortico-

basal ganglia network was not studied (Cicin-Sain and Jenner, 1993). Whereas [3H]GR65630 

binding significantly decreased in the pre-frontal and entorhinal cortices of 6-OHDA-lesioned 

animals compared to control animals (Cicin-Sain and Jenner, 1993), we did not observe any 

significant differences in binding in the primary motor cortex between 6-OHDA L-DOPA naïve 

and L-DOPA treated rats with sham-lesioned ones. The discrepancy in findings may be explained 

by differences in cortical areas studied as an immunohistochemical study of the mouse brain 

reported variations in 5-HT3 receptor expression across cortical areas, with weak to moderately 

high signal intensity in the pre-frontal and entorhinal cortices but strong signal intensity in the 

primary motor cortex (Koyama et al., 2017). Moreover, there were notable methodological 

differences between the studies, including the dose of 6-OHDA administered, strain of rats, as well 

as the affinity of the cold ligand used (metoclopramide versus granisetron). Future studies 

examining the cortical distribution of 5-HT3 receptors in the 6-OHDA-lesioned rat model are 

warranted. 

Considerable evidence in vitro and in vivo has implicated the role of the 5-HT3 receptor in 

mediating dopamine release in the striatum (Costall et al., 1987, Blandina et al., 1989, Santiago et 

al., 1995, Yoo et al., 2008). Given that dysregulated dopamine release is thought to play an 

aetiological role in L-DOPA-induced dyskinesia (Carta et al., 2007, Muñoz et al., 2009), 

modulation of the 5-HT3 receptor may alleviate dyskinesia by dampening the erratic release of 

striatal dopamine that occurs in the dyskinetic state (Carta et al., 2006). Contrary to expectations, 

[3H]GR65630 binding was comparable between 6-OHDA-lesioned animals and sham-lesioned 
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animals, irrespective of treatment or dyskinesia severity. These findings are consistent with a 

membrane binding study in rats that found 5-HT3 receptor levels in the striatum were not 

significantly affected by 6-OHDA lesion (Kidd et al., 1993). Moreover, a post-mortem study in 

humans demonstrated that 5-HT3 receptor levels were comparable in PD patients to controls 

(Steward et al., 1993). These results collectively suggest that 5-HT3 receptors may not be located 

on dopaminergic terminals of the striatum, but may point to a localisation of 5-HT3 receptors on 

striatal interneurons (Steward et al., 1993) or on non-dopaminergic afferents to the striatum.  

The rating scale used to assess AIMs in the 6-OHDA-lesioned rat is well established and 

validated (Monville et al., 2005, Dekundy et al., 2007). Compared to the 6-OHDA rat model, the 

MPTP-lesioned non-human primate model of PD bears greater similarities with the human 

condition (Philippens et al., 2010) and could be the next step in assessing levels of 5-HT3 receptor 

binding in dyskinesia. Recent efforts in the development of positron emission tomography (Mu et 

al., 2016) and fluorescent probes (Jack et al., 2015) that target the 5-HT3 receptor may further 

characterise alterations in 5-HT3 receptor levels in L-DOPA induced dyskinesia. Specific ligands 

with nanomolar affinity demonstrated a high signal to noise ratio (Jack et al., 2015, Mu et al., 

2016), unlike the high non-specific binding reported in autoradiographic binding studies with the 

5-HT3 receptor, may enable studying the distribution of the receptor in vivo (Lochner and 

Thompson, 2015). Lastly, receptor binding levels were corrected by regional brain quenching 

coefficients derived from a different paradigm (Herkenham and Sokoloff, 1984, Geary et al., 

1985). To our knowledge, no study has directly studied the effects of 6-OHDA lesion or L-DOPA 

treatment on lipid distribution – a known factor of quenching (Zilles et al., 1990); further studies 

are warranted to shed light on their effects on tritium quenching. 
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 In summary, the present study suggests that alterations in 5-HT3 receptor levels in the 

subthalamic nucleus, as well as the ipsilateral entopeduncular nucleus and VA/VL thalamus may 

modulate L-DOPA induced dyskinesia in the 6-OHDA rat at the post-mortem level. Taken 

together, these findings provide insight into the brain regions worth further study, in an attempt to 

better understand the role of 5-HT3 receptors in L-DOPA induced dyskinesia and how 5-HT3 

antagonists alleviate dyskinesia in PD.   
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Chapter 6 Tables and Figures 

Table 1 

[3H]GR65630 binding levels in the rat brain ipsilateral to lesion 

 [3H]GR65630 binding levels (fmol/mg) 

 
sham 6-OHDA 

L-DOPA naïve 

6-OHDA 

mild AIMs 

6-OHDA 

severe AIMs 

primary motor cortex 2.083 ± 0.096 2.110 ± 0.130 2.142 ± 0.149 1.902 ± 0.111 

basal ganglia     

   dorsolateral striatum 17.943 ± 5.025 14.628 ± 1.547 28.086 ± 5.716 16.055 ± 2.947 

   globus pallidus 23.390 ± 4.03 25.648 ± 4.883 15.679 ± 4.193 13.41 ± 2.064 

   entopeduncular nucleus 12.027 ± 1.981 13.636 ± 2.544 15.784 ± 0.932     21.017 ± 2.953 * 

   subthalamic nucleus 7.478 ± 2.863 19.465 ± 2.607         31.159 ± 1.965 ***         31.368 ± 6.163 *** 

   substantia nigra     

      pars compacta 27.741 ± 1.994 22.065 ± 5.454 19.684 ± 6.594 20.967 ± 2.507 

      pars reticulata 18.326 ± 5.005 11.076 ± 1.996 19.377 ± 2.906 19.718 ± 5.552 

VA/VL thalamus 14.726 ± 3.088 17.44 ± 2.594 19.462 ± 3.418    27.643 ± 3.997 * 

Data are presented as mean ± standard error of the mean (SEM) specific binding (fmol/mg of tissue). 6-OHDA, 6-hydroxydopamine; 

AIMs, abnormal involuntary movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N=5-8 per group. *: P < 0.05 compared to sham-

lesioned group. ***: P < 0.001 compared to sham-lesioned group. 
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Table 2 

[3H]GR65630 binding levels in the rat brain contralateral to lesion 

 [3H]GR65630 binding levels (fmol/mg) 

 sham 
6-OHDA 

L-DOPA naïve 

6-OHDA 

mild AIMs 

6-OHDA 

severe AIMs 

primary motor cortex 2.108 ± 0.129 2.128 ± 0.139 2.154 ± 0.144 1.912 ± 0.140 

basal ganglia     

   dorsolateral striatum 24.352 ± 3.693 22.843 ± 3.437 21.827 ± 2.827 23.036 ± 3.129 

   globus pallidus 25.571 ± 3.146 31.587 ± 5.909 14.183 ± 4.988 17.907 ± 3.343 

   entopeduncular nucleus 18.012 ± 2.332 16.71 ± 2.647 16.693 ± 1.579 17.836 ± 3.175 

   subthalamic nucleus 5.922 ± 2.573       20.377 ± 2.544 ***       34.376 ± 1.799 ****    25.243 ± 2.541 **** † 

   substantia nigra     

      pars compacta 27.025 ± 2.503 23.467 ± 4.587 34.498 ± 7.93  14.62 ±5.298 † 

      pars reticulata 15.719 ± 4.306 19.691 ± 3.678 19.667 ± 3.907 13.623 ± 3.139 

VA/VL thalamus 18.739 ± 3.831 15.04 ± 3.651 21.926 ± 3.251 23.11 ± 2.246 

Data are presented as the mean ± SEM specific binding (fmol/mg of tissue). 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary 

movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N=5-8 per group. *: P < 0.05 compared to sham-lesioned group. ****: P < 0.0001 

compared to sham-lesioned group. †: P < 0.05 compared to mild AIMs 6-OHDA-lesioned group.  
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Fig. 1. Relative TH optical density in the rat striatum.  

Representative photomicrographs of TH immunoreactive fibres in the striatum of sham-lesioned 

(A) and 6-OHDA-lesioned (B) animals. Relative TH densitometry was significantly reduced by 

90% in the dorsolateral striatum of animals administered 6-OHDA compared to sham-lesioned 

animals (C). Data are presented as the mean ± SEM. Relative optical density measurements are 

presented as a percentage of the contralateral (non-lesioned) hemisphere. 6-OHDA, 6-
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hydroxydopamine; TH, tyrosine hydroxylase. N = 8 in the sham-lesioned vehicle group; N = 18 in 

the pooled 6-OHDA-lesioned group. ****: P < 0.0001. Scale bar: 400 μm.  
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Fig. 2. Autoradiograms of [3H]GR65630 binding across different brain regions of interests in the rat.  

Representative autoradiograms of total [3H]GR65630 binding in the rat subthalamic nucleus (A), substantia nigra (B), striatum (C) and 

primary motor cortex (D) are presented. All autoradiograms were selected from sham-lesioned animals. The region of interest 

contralateral to lesion is outlined in red. Scale bar: 400 μm. 
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Fig. 3. Autoradiography with [3H]GR65630 binding shows an increase in 5-HT3 receptor 

levels in the ipsilateral hemisphere of 6-OHDA-lesioned rats. There was a 3-fold increase in 

[3H]GR65630 binding in the ipsilateral subthalamic nucleus of both mild and severe AIMs 

animals, when compared to sham-lesioned ones (A). There was also a 27% decrease in binding in 

severe AIMs animals compared to mild AIMs ones. [3H]GR65630 binding in the ipsilateral 

VA/VL thalamus in severe AIMs 6-OHDA-lesioned rats increased by 88% compared to sham-

lesioned ones (B). Whereas [3H]GR65630 binding increased by 75% in the ipsilateral 

entopeduncular nucleus of severe AIMs 6-OHDA-lesioned animals, compared to sham-lesioned 

ones (C), it was similar across treatment groups in the ipsilateral globus pallidus (D). 

[3H]GR65630 binding in the ipsilateral substantia nigra pars compacta (E) and pars reticulata (F) 

was comparable between 6-OHDA-lesioned animals and sham-lesioned ones. There were no 

significant differences in [3H]GR65630 binding in the ipsilateral dorsolateral striatum (G) and 

primary motor cortex (H) between 6-OHDA-lesioned and sham-lesioned animals. Data are 

presented as the mean ± SEM. [3H]GR65630 binding of L-DOPA naïve, mild and severe AIMs 

animals was calculated as a percentage of sham-lesioned animals. 6-OHDA, 6-hydroxydopamine; 

AIMs, abnormal involuntary movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N = 5-8 per 

group. *: P < 0.05 compared to the sham-vehicle group. ***: P < 0.001 compared to sham-vehicle 

group.  
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Fig. 4. Autoradiography with [3H]GR65630 binding shows an increase in 5-HT3 receptor 

levels in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats. There were 2-fold, 

5-fold and 3-fold increases in [3H]GR65630 binding in the contralateral subthalamic nucleus of L-

DOPA naïve, mild and severe AIMs 6-OHDA-lesioned rats, compared to sham-lesioned controls 

(A). [3H]GR65630 binding in the contralateral VA/VL thalamus was similar across treatments 

groups (B). In contrast, [3H]GR65630 binding in the contralateral entopeduncular nucleus and (C) 

and globus pallidus (D) was comparable across treatment groups. [3H]GR65630 binding in the 

contralateral substantia nigra pars compacta of severe AIMs 6-OHDA-lesioned rats decreased by 

58% compared to mild AIMs animals (E). Neither 6-OHDA lesion or AIMs severity had a 

significant effect on [3H]GR65630 binding in the contralateral substantia nigra pars reticulata (F). 

There were no significant differences in [3H]GR65630 binding in the contralateral dorsolateral 

striatum (G) and primary motor cortex (H) between 6-OHDA-lesioned rats and sham-lesioned 

ones. Data are presented as the mean ± SEM. [3H]GR65630 binding of L-DOPA naïve, mild and 

severe AIMs animals was calculated as a percentage of sham-lesioned animals. 6-OHDA, 6-

hydroxydopamine; AIMs, abnormal involuntary movements; L-DOPA, L-3,4-

dihydroxyphenylalanine. N = 5–8 per group. *: P < 0.05 compared to sham-vehicle group. ***: P 

< 0.001 compared to sham-vehicle group. ****: P < 0.0001 compared to sham-vehicle group. †: 

P < 0.05 compared to lesion-L-DOPA-mild AIMs group.  
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Fig. 5. Correlation between mean ALO AIMs scores and [3H]GR65630 binding levels in 6-

OHDA-lesioned rats. [3H]GR65630 binding in the ipsilateral dorsolateral striatum (A) and 

contralateral subthalamic nucleus (B) were negatively correlated with mean ALO AIMs scores of 

6-OHDA-lesioned animals. 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary 

movements; ALO, axial, limbs and oro-lingual. N = 11. 
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Table S1.  

[3H]GR65630 binding levels corrected by regional tritium coefficients in the rat brain ipsilateral to lesion 

 [3H]GR65630 binding levels (fmol/mg) 

 sham 
6-OHDA 

L-DOPA naïve 

6-OHDA 

mild AIMs 

6-OHDA 

severe AIMs 

primary motor cortex 2.75 ± 0.126 2.785 ± 0.171 2.827 ± 0.196 2.511 ± 0.147 

basal ganglia     

dorsolateral striatum 24.42 ± 6.839 19.909 ± 2.106 38.225 ± 7.78 21.851 ± 4.011 

globus pallidus 37.565 ± 6.472 41.19 ± 7.841 25.181 ± 6.734 21.536 ± 3.314 

entopeduncular nucleus 19.182 ± 3.159 21.749 ± 4.058 25.175 ± 1.487 33.522 ± 4.71 

substantia nigra     

pars compacta 37.451 ± 2.331 29.788 ± 7.363 26.573 ± 8.902 28.306 ± 3.385 

pars reticulata 28.717 ± 7.842 17.356 ± 3.128 30.364 ± 4.553 30.898 ± 8.70 

VA/VL thalamus 19.718 ± 4.135 23.352 ± 3.474 26.059 ± 4.577 37.014 ± 5.352 

Data are presented as the mean ± SEM specific binding (fmol/mg of tissue). Regional tritium coefficients for all regions of interest 

except for the subthalamic nucleus were obtained from (Geary and Wooten, 1985), while the coefficient for the entopeduncular nucleus 

was obtained from (Happe and Murrin, 1990). Corrected binding levels in the subthalamic nucleus were omitted because the 

corresponding regional tritium coefficient has not been published. 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary 

movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N=5-8 per group. 
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Table S2.  

[3H]GR65630 binding levels corrected by regional tritium coefficients in the rat brain contralateral to lesion 

 [3H]GR65630 binding levels (fmol/mg) 

 sham 
6-OHDA 

L-DOPA naïve 

6-OHDA 

mild AIMs 

6-OHDA 

severe AIMs 

primary motor cortex 2.782 ± 0.171 2.809 ± 0.183 2.843 ± 0.19 2.524 ± 0.184 

basal ganglia     

dorsolateral striatum 33.143 ± 5.026 31.089 ± 4.677 29.707 ± 3.847 31.353 ± 4.259 

globus pallidus 41.068 ± 5.052 50.729 ± 9.489 22.778 ± 8.011 28.759 ± 5.368 

entopeduncular nucleus 28.729 ± 3.72 26.652 ± 4.223 26.625 ± 2.518 28.449 ± 5.064 

substantia nigra     

pars compacta 36.483 ± 2.927 31.68 ± 6.192 46.572 ± 10.706 19.737 ± 7.152 

pars reticulata 24.632 ± 6.748 30.856 ± 5.763 30.818 ± 6.122 21.347 ± 4.918 

VA/VL thalamus 25.091 ± 5.129 20.138 ± 4.888 29.359 ± 4.354 30.944 ± 3.008 

Data are presented as the mean ± SEM specific binding (fmol/mg of tissue). Regional tritium coefficients for all regions of interest 

except for the subthalamic nucleus were obtained from (Geary and Wooten, 1985), while the coefficient for the entopeduncular nucleus 

was obtained from (Happe and Murrin, 1990). Corrected binding levels in the subthalamic nucleus were omitted because the 

corresponding regional tritium coefficient has not been published. 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary 

movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N=5-8 per group. 
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Table S3.  

Summary of Student t tests for [3H]GR65630 binding levels ipsilateral to lesion 

 group comparisons degrees of freedom t ratio P value 

primary motor cortex sham – L-DOPA naïve 41 0.1573 0.9299 

 sham – mild AIMs 41 0.3406 0.9299 

 sham – severe AIMs 41 0.9734 0.7073 

 mild AIMs – severe AIMs 41 1.330 0.5712 

basal ganglia     

   dorsolateral striatum sham – L-DOPA naïve 40 0.4811 0.8654 

 sham – mild AIMs 40 1.550 0.3411 

 sham – severe AIMs 40 0.2740 0.8654 

 mild AIMs – severe AIMs 40 1.689 0.3411 

   globus pallidus sham – L-DOPA naïve 38 0.3734 0.9164 

 sham – mild AIMs 38 1.397 0.5240 

 sham – severe AIMs 38 1.401 0.5240 

 mild AIMs – severe AIMs 38 0.3185 0.9164 

   entopeduncular nucleus sham – L-DOPA naïve 42 0.5710 0.5710 

 sham – mild AIMs 42 1.281 0.3715 

 sham – severe AIMs 42 2.912    0.0227 * 

 mild AIMs – severe AIMs 42 1.639 0.2918 

   subthalamic nucleus sham – L-DOPA naïve 33 2.275 0.0582 

 sham – mild AIMs 33 4.365          0.0005 *** 

 sham – severe AIMs 33 4.237          0.0005 *** 
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 group comparisons degrees of freedom t ratio P value 

   subthalamic nucleus mild AIMs – severe AIMs 33 0.04124 0.9674 

   substantia nigra     

      pars compacta sham – L-DOPA naïve 29 0.9302 0.5903 

 sham – mild AIMs 29 1.689 0.3494 

 sham – severe AIMs 29 1.290 0.5018 

 mild AIMs – severe AIMs 29 0.2208 0.8268 

      pars reticulata sham – L-DOPA naïve 30 1.080 0.7441 

 sham – mild AIMs 30 0.1566 0.9957 

 sham – severe AIMs 30 0.2074 0.9957 

 mild AIMs – severe AIMs 30 0.04638 0.9957 

VA/VL thalamus sham – L-DOPA naïve 41 0.5965 0.5541 

 sham – mild AIMs 41 1.041 0.5157 

 sham – severe AIMs 41 2.697    0.0398 * 

 mild AIMs – severe AIMs 41 1.652 0.2860 

Paired t tests were performed for each region of interest. To correct for multiple Student t tests, the Holm-Sidak correction was applied 

to adjust P values. AIMs, abnormal involuntary movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N=5-8 per group. Sham: sham-

vehicle (Group A); L-DOPA naïve: lesion-vehicle (Group B); mild AIMs: lesion-L-DOPA-mild (Group C); severe AIMs: lesion-L-

DOPA-severe (Group D). *: P < 0.05 compared to sham-lesioned group. ***: P < 0.001 compared to sham-lesioned group. 
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Table S4.  

Summary of multiple Student t tests for [3H]GR65630 binding levels contralateral to lesion 

 group comparisons degrees of freedom t ratio P value 

primary motor cortex sham – L-DOPA naïve 41 0.1048 0.9643 

 sham – mild AIMs 41 0.2407 0.9643 

 sham – severe AIMs 41 0.9425 0.7272 

 mild AIMs – severe AIMs 41 1.203 0.6588 

basal ganglia     

   dorsolateral striatum sham – L-DOPA naïve 38 0.3253 0.9838 

 sham – mild AIMs 38 0.5443 0.9716 

 sham – severe AIMs 38 0.2704 0.9838 

 mild AIMs – severe AIMs 38 0.2486 0.9838 

   globus pallidus sham – L-DOPA naïve 35 1.015 0.5489 

 sham – mild AIMs 35 2.016 0.1907 

 sham – severe AIMs 35 1.214 0.5489 

 mild AIMs – severe AIMs 35 0.5897 0.5592 

   entopeduncular nucleus sham – L-DOPA naïve 41 0.3938 0.9910 

 sham – mild AIMs 41 0.3990 0.9910 

 sham – severe AIMs 41 0.05054 0.9910 

 mild AIMs – severe AIMs 41 0.3177 0.9910 

   subthalamic nucleus sham – L-DOPA naïve 30 3.951        0.0009 *** 

 sham – mild AIMs 30 7.589       <0.0001 ****  

 sham – severe AIMs 30 4.990         0.0001 **** 
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 group comparisons degrees of freedom t ratio P value 

   subthalamic nucleus mild AIMs – severe AIMs 30 2.845   0.0079 † 

   substantia nigra     

      pars compacta sham – L-DOPA naïve 31 0.5881 0.5607 

 sham – mild AIMs 31 1.235 0.4009 

 sham – severe AIMs 31 1.862 0.2009 

 mild AIMs – severe AIMs 31 2.696    0.0442 † 

      pars reticulata sham – L-DOPA naïve 29 0.6236 0.8769 

 sham – mild AIMs 29 0.6790 0.8769 

 sham – severe AIMs 29 0.3606 0.8769 

 mild AIMs – severe AIMs 29 0.9490 0.8220 

thalamus sham – L-DOPA naïve 42 0.7874 0.8709 

 sham – mild AIMs 42 0.6517 0.8709 

 sham – severe AIMs 42 0.8493 0.8709 

 mild AIMs – severe AIMs 42 0.2225 0.8709 

Paired t tests were performed for each region of interest. To correct for multiple Student t tests, the Holm-Sidak correction was applied 

to adjust P values. AIMs, abnormal involuntary movements; L-DOPA, L-3,4-dihydroxyphenylalanine. N=5-8 per group. Sham: sham-

vehicle (Group A); L-DOPA naïve: lesion-vehicle (Group B); mild AIMs: lesion-L-DOPA-mild (Group C); severe AIMs: lesion-L-

DOPA-severe (Group D). ***: P < 0.001 compared to sham-lesioned group. ****: P < 0.0001 compared to sham-lesioned group. †: P 

< 0.05 compared to mild AIMs 6-OHDA-lesioned group.
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Supplementary Fig. 1. Comparable relative TH optical density in the striatum of 6-OHDA-

lesioned rats 

There were no significant differences in relative TH densitometry between 6-OHDA-lesioned 

animals treated with L-DOPA vehicle and those treated with L-DOPA and exhibiting mild or 

severe AIMs. TH, tyrosine hydroxylase. N=7 in the lesion-vehicle group; N=5 in the lesion-L-

DOPA-mild group; N=6 in the lesion-L-DOPA-severe group. 
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Supplementary Fig. 2. Scatter diagram of cumulative AIMs scores of 6-OHDA-lesioned 

animals administered L-DOPA. 

Animals in the severe AIMs group (median = 82.5) exhibited significantly higher AIMs scores 

than those in the mild AIMs group (median = 32.0). AIMs: abnormal involuntary movements; L-

DOPA: L-3,4-dihydroxyphenylalanine. N=5 in the lesion-L-DOPA-mild group; N=6 in the lesion-

L-DOPA-severe group. **: P < 0.01.
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Supplementary Fig. 3. No correlation between mean ALO AIMs scores and [3H]GR65630 binding levels in the ipsilateral 

subthalamic nucleus, entopeduncular nucleus, and thalamus. 
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[3H]GR65630 binding in the ipsilateral subthalamic nucleus (A), entopeduncular nucleus (B), and thalamus (C) was not correlated with 

mean ALO AIMs scores of 6-OHDA-lesioned animals. Similarly, binding in the contralateral entopeduncular nucleus (D) and thalamus 

(E) of 6-OHDA-lesioned animals did not correlate with ALO AIMs scores. 6-OHDA, 6-hydroxydopamine; AIMs, abnormal involuntary 

movements; ALO, axial, limbs and oro-lingual. N=11.
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Transition 5: Coupling co-registration of imaging data with 

frameless stereotaxic navigation to localise surgical targets in 

the common marmoset  

The previous chapters have focussed on the evaluation of symptomatic treatments in PD 

using neurotoxin models that induced the rapid degeneration of nigrostriatal dopaminergic neurons 

to reproduce the sporadic form of the disease 1024. Whereas these models have enhanced our 

understanding of disease processes (e.g., oxidative stress, inflammatory responses, cell death), they 

fail to recapitulate the processes that are involved in the neurodegeneration of the disease. For 

instance, the 6-OHDA-lesioned rat 1025 and MPTP-lesioned non-human primate 1026 models do not 

produce the formation of Lewy-like inclusions that are observed in PD 1027, 1028. As a result, 

neurotoxin-based models provide little utility to assess disease-modifying treatments. Genetic 

models are also inadequate as they induce little to no loss of dopaminergic neurons and Lewy 

pathology 1029.   

As iterated above, the development of animal models that can faithfully reproduce key 

features of PD will aid the development of therapies that can mitigate PD. Selection of the animal 

species is paramount in this endeavour. Rodent models may not be good predictors of clinical 

success, considering the failure of clinical development of drug candidates, such as BIIB054 

(NCT03318523) and nilotinib 1030. In contrast, non-human primates share greater genetic, 

neuroanatomical, and neurophysiological similarity to humans over rodents 1031, and these 

characteristics lend to the superior translational potential of these species as relevant models of 

PD. Therefore, we have elected to use the common marmoset, a non-human primate species, to 

establish a new animal model of PD that recapitulates the degeneration that occurs in patients.    
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The common marmoset is an increasingly popular model in neuroscience research 1032. 

Whereas the success of stereotaxic procedures depends upon accurate localisation of surgical 

targets, traditional two-dimensional stereotaxic brain atlases of marmosets compromise accuracy 

due to the small sample size employed 1033-1035. To address the heterogeneity in skull and brain 

size between marmosets, co-registration of imaging data of individual subjects allows for more 

precise surgical targeting. Coupled with frameless stereotaxic navigation, this paradigm shift 

improves upon limitations of traditional frame-based approaches 1036, while demonstrating 

equivalent accuracy and improving upon safety and patient outcomes 1037, 1038. 

In Chapter 7, subject-specific registration of imaging modalities, i.e., from computed 

topography, magnetic resonance imaging and positron emission topography, was coupled with 

frameless stereotaxic navigation to localise the putamen in two common marmosets for injection 

of alpha-synuclein pre-formed fibrils. Importantly, this was the first time that the methodology of 

frameless stereotaxic navigation, particularly generation of the laser point cloud and unique 

coordinate system, was described in non-human primates. Subsequent registration of the point 

cloud to corresponding CT images generated a three-dimensional reconstruction of the marmoset 

skull surface, which helped to determine the optimal path to the putamen. Previous studies reported 

nigro-striatal denervation following intra-striatal injection of alpha-synuclein pre-formed fibrils in 

rodents and non-human primates 995, 998, 1010, 1011. In lines with these results, four months following 

surgery, there was evidence of degeneration of the nigro-striatal system, which suggests that the 

marmoset putamen was accurately targeted during surgery. In contrast to other methods, our 

approach considers the unique characteristics of each marmoset’s skull and brain; the detailed 

descriptions here, may be beneficial in enhancing the accuracy of stereotaxic procedures and to 
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assess endpoints for longitudinal studies. Our results are timely given the increasing popularity of 

marmosets to model neurological and neurodegenerative diseases.
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Short title: Stereotaxy in the marmoset 
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Chapter 7 Abstract 

The common marmoset has emerged as a popular model in neuroscience research, in part due 

to its reproductive efficiency, genetic and neuroanatomical similarities to humans and the 

successful generation of transgenic lines. Stereotaxic procedures in marmosets are guided by 

2D stereotaxic atlases, which are constructed with a limited number of animals and fail to 

account for inter-individual variability in skull and brain size. Here, we developed a frameless 

imaging-guided stereotaxic system that improves upon traditional approaches by using subject-

specific registration of computed tomography (CT), magnetic resonance imaging (MRI) and 

positron emission tomography (PET) data to identify a surgical target, namely the putamen, in 

two marmosets. The skull surface was laser-scanned to create a point cloud that was registered 

to the 3D reconstruction of the skull from CT. Reconstruction of the skull, as well as of the brain 

from MR images, was crucial for surgical planning. Localisation and injection into the putamen 

was done using a 6-axis robotic arm controlled by a surgical navigation software (BrainsightTM). 

Integration of subject-specific registration and frameless stereotaxic navigation allowed target 

localisation specific to each animal. Injection of alpha-synuclein fibrils into the putamen 

triggered progressive neurodegeneration of the nigro-striatal system, a key feature of 

Parkinson’s disease. Four months post-surgery, a PET scan found evidence of nigro-striatal 

denervation, supporting accurate targeting of the putamen during co-registration and subsequent 

surgery. Our results suggest that this approach, coupled with frameless stereotaxic 

neuronavigation, is accurate in localising surgical targets and can be used to assess endpoints 

for longitudinal studies. 
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Chapter 7 Introduction 

In recent years, the New World primate common marmoset (Callithrix jacchus) has emerged as 

a popular model in neuroscience research over Old World monkeys (Hashikawa et al., 2015, 

Mitchell and Leopold, 2015). This interest can be attributed to its smaller size, a lissencephalic 

cortex that permits a wider variety of manipulations, and advances in genetic engineering 

technologies (Silva, 2017, Sasaki, 2019). Marmosets also have a rapid developmental cycle with 

a gestation period of 5 months and sexual maturity reached by 18 months (Abbott and Hearn, 

1978, Tardif et al., 2003). These features offer key advantages over Old World monkeys in 

studies on development and ageing (Ross and Salmon, 2019) and have led to insights into the 

development of the primate neocortex (Homman-Ludiye and Bourne, 2017, Homman-Ludiye 

and Bourne, 2021). Moreover, the marmoset is an excellent model for studies on the visual 

cortex (Solomon and Rosa, 2014, Mitchell and Leopold, 2015), motor cortex (Bakola et al., 

2015, Walker et al., 2017), auditory cortex (Philibert et al., 2005), as well as somatosensory 

cortex (Kaas, 2021). Owing to its highly developed prefrontal cortex, the marmoset is also a 

suitable model for neuropsychiatric disorders (Kaasinen et al., 2000, Miller et al., 2016, 

Oikonomidis et al., 2017). Recent efforts towards characterising cortico-cortical (Majka et al., 

2020) and cortico-subcortical anatomical connections (Hori et al., 2020b) of the marmoset brain, 

as well as network and functional connectivity (Liu et al., 2019a, Hori et al., 2020a, Theodoni 

et al., 2021), implicate their utility for neuroinformatics. 

 Stereotaxic procedures in the marmoset, including electrophysiological recordings 

(Debnath et al., 2018, Pomberger and Hage, 2019), lesion, and tracer mapping studies 

(Liebetanz et al., 2002, Abe et al., 2017) have been guided by two-dimensional (2D) brain 

atlases. However, the majority of atlases have collected data from a restricted number of animals 
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(Stephan et al., 1980, Tokuno et al., 2009, Paxinos et al., 2012) or a single sex (Stephan et al., 

1980), which fail to account for the variable skull and brain size between animals. Whilst recent 

atlases of the marmoset brain have employed relatively larger sample sizes (N = 5-20) to address 

individual variability (Liu et al., 2018, Risser et al., 2019, Majka et al., 2021), some templates 

only collected data from a single subject (Liu et al., 2018, Risser et al., 2019), a common practice 

of stereotaxic atlases. Moreover, most of these marmoset brain atlases have only localised 

cortical areas (Majka et al., 2016, Risser et al., 2019, Majka et al., 2020, Majka et al., 2021), 

which offers limited use for targeting subcortical structures. Therefore, the success of 

procedures that depend upon accurate localisation of targets and replication in different animals 

may be compromised by the use of traditional stereotaxic atlases and requires a more reliable 

and robust approach to identify target structures.  

 The paradigm shift from frame-based stereotaxic approaches to frameless stereotaxic 

neuronavigation in research and clinical settings (Moorthy et al., 2016) has improved upon 

limitations of traditional approaches such as difficulty to access large areas of the brain, 

particularly, subcortical targets, scanning with a frame in place, and the lack of flexibility to 

change target coordinates without modifying the target approach (Frey et al., 2004). Moreover, 

frameless stereotaxic neuronavigation, as seen in humans, has demonstrated equivalent accuracy 

to frame-based stereotaxy (Mascott, 2006) and allowed for real-time feedback during 

procedures (Gempt et al., 2012), which has resulted in improved safety and patient outcome by 

reducing surgical time (Dorward et al., 2002) and associated morbidity and mortality (Golfinos 

et al., 1995, Carvalho et al., 2009). The Brainsight™ neuronavigation (Vet Robot) system uses 

imaging data of an individual animal for precise anatomical brain targeting. Briefly, a 3D 

reconstructed skull surface of the marmoset, derived from the MRI or CT, is used along with a 
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laser light source to identify homologous points on the actual skull of the animal in surgery 

within a common coordinate space (Orringer et al., 2012). By using 3D coordinates that are 

unique to each animal, precision in localising targets is enhanced, which is crucial in procedures 

that use marmosets, whereas conventional stereotaxic atlases fail to address inter-individual 

variation between animals (Tokuno et al., 2009, Paxinos et al., 2012).  

 In the present study, we sought to describe the co-registration of imaging modalities to 

precisely locate a target in the marmoset brain for injection of alpha-synuclein pre-formed 

fibrils. This is the first time that the methodology behind frameless stereotaxic neuronavigation 

is presented in non-human primates. Moreover, generation of the skull point cloud and 

subsequent registration to CT allowed 3D reconstruction of the skull surface, which facilitated 

surgical planning to determine the approach to entry point and to optimise accurate reaching of 

surgical coordinates. The alpha-synuclein pre-formed fibrils model is an emerging model of 

Parkinson’s disease and intra-striatal injection of these fibrils in rodents and non-human 

primates has induced progressive degeneration of the nigro-striatal system (Luk et al., 2012, 

Shimozawa et al., 2017, Chu et al., 2019, Patterson et al., 2019). Four months following the 

surgery, the extent of nigro-striatal denervation was assessed to provide a proxy of accurate 

target localisation.  

 

 

Chapter 7 Experimental Procedures 

Animals  

Male common marmosets (Callithrix jacchus, N = 2, identified individually as subjects A and 

B) weighing 376 g and 454 g, respectively, were housed in pairs under conditions of controlled 
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temperature (24 ± 1°C), humidity (50 ± 5%) and a 12 h light/dark cycle (07:15 a.m. lights on). 

Age during surgical procedure was 2 years and 11 months for subject A and 5 years and 5 

months for subject B. Animals had unlimited access to water and were fed twice daily with food, 

including fresh fruits, nuts, boiled eggs, boiled pasta, etc. Their home cages were enriched with 

perches and primate toys. Animals were acclimatised to handling and transfer to observational 

cages prior to the start of studies. All procedures were approved by the McGill University and 

Montreal Neurological Institute-Hospital (The Neuro) Animal Care and Use Committees, in 

accordance with guidelines established by the Canadian Council on Animal Care.  

 

Computed topography scan 

Animals were sedated with ketamine [20 mg/kg, intra-muscular (i.m.)] and scanned in a supine 

position in the sagittal plane using a Vimago L computed tomography (CT) scanner (Epica 

Medical Innovations, USA) according to a standard protocol: helical scanning, reconstructed 

slice thickness of 0.99 mm, 80 kV, 60 mA and 7 ms exposure with a voxel size of 0.30 mm  

0.30 mm  0.30 mm. 398 CT images were acquired over 3 min.  

 

Magnetic resonance imaging 

 Acquisition. Marmosets were lightly sedated with ketamine (20 mg/kg, i.m.). High-

resolution T1-weighted 3D images were obtained from a 3 Tesla Siemens PrismaFit Scanner 

(Siemens Medical Systems, Germany) using a Magnetisation Prepared Rapid Acquisition 

Gradient Echo (MPRAGE) sequence (Mugler III and Brookeman, 1990) with the following 

parameters: 0.36 mm isotropic resolution (interpolated to 0.18 mm isotropic), repetition time 

(TR) = 2.2 s, echo time (TE) = 2.58 ms, inversion time (TI) = 706 ms, flip angle = 8 degrees, 
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matrix size = 256  324  384, three averages, time ~ 18 min (Hayashi et al., 2021). Images 

were collected using a marmoset-specific 16-channel receive-only marmoset head coil 

(Takashima Seisakusho Corporation, Japan) (Hori et al., 2018) with the marmoset positioned in 

an MRI-compatible testing chair that was designed specifically for the above coil (Rogue 

Research Inc, Canada). 

 

Fixation of marmoset for MRI scanning. As illustrated in Fig. 1A, a 16-channel receive 

coil (inner diameter 38 mm  48 mm  28 mm) was placed over the head of the animal while 

the body was supported in the MRI-compatible chair. The chair (Fig. 1B, 1C) consisted of a 

polycarbonate frame and a plastic cradle to hold the head in place. Additional elastic straps were 

used to hold the forehead, arms and legs in place within the chair. The chair was then positioned 

into an MRI-compatible sled that fit into the bore in front of the MRI bed. This system allowed 

the animal to be oriented 15º from supine while the head of the animal remained at isocentre.  

 

Processing. CT and T1-weighted MR images were converted to MINC format and then, 

MRI and CT data were overlaid using MINC tools (V2; https://bic-mni.github.io). 

 

Positron Emission Tomography 

Radioligand synthesis. The radiotracer was synthesised according to standard methods 

with a radiochemical purity of 98.57 to 99.72%. [11C]-labelled carbon dioxide ([11C]CO2) was 

produced via the 14N(p, α)11C reaction by proton bombardment of a 150 mL nitrogen gas target 

(gas mixture is 0.5% oxygen in nitrogen, research grade 99.9999%). The target gas was released 

to a methyl iodide (MeI) synthesis module in a closed hotcell where it was captured on a column 

https://bic-mni.github.io/
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of activated molecular sieves and transformed to MeI gas method. After delivery of the 

radioactivity in the synthesis box, the hydrogenation process was started using H2 gas and Ni-

catalyst at 425 °C. The produced methane was transferred to the iodination unit where iodination 

was accomplished in the presence of I2 at 740 °C. The produced MeI was transferred to the 

reactor. The reactor contained 0.5 mg desmethyl dihydrotetrabenazine (DTBZ) and 5 μL 5N 

sodium hydroxide (NaOH) in 0.5 mL dimethyl sulfoxide (DMSO). The reaction vessel was kept 

at room temperature for 5 min to form [11C]DTBZ. 1.5 mL of high-performance liquid 

chromatography (HPLC) solvent mixture (0.01 M NH4COONa/AcCN 65/35) was then added 

to this vessel and the resulting mixture was transferred into the injector loop of the HPLC system 

and purified on a Luna 10 µm C-18 column (250 mm  10 mm, Phenomenex Inc, USA) at a 

flow rate of 5 mL/min. The desired product eluted at a retention time of 12-14 min (gamma 

peak). Unreacted MeI and reaction by-products eluted at earlier retention times, and were 

transferred into the waste container. The product peak was collected into a vial containing 15 

mL of water. The solution was passed through a C18 Sep-Pak cartridge (Waters Corp, Canada). 

The cartridge was washed with an additional 10 mL of water and the product was then eluted 

from the cartridge into a product vial with 0.5 mL of ethanol followed by 9.5 mL of sterile 

phosphate buffer. 

 

Acquisition. Positron emission tomography (PET) scans were performed using a CTI 

Concord R4 micro-PET scanner (Siemens CTI, USA) with a spatial resolution at the centre of 

the field of view of 1.84 mm full width at half maximum (FWHM) in the axial direction. Under 

anaesthesia with 2% isoflurane inhalation at 0.5 L/min oxygen flow, animals were placed on the 

PET scanner bed in a supine position. The brain was positioned in the centre of the field of view. 
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Animal A was injected with 15.614 MBq of [11C]DTBZ for the baseline scan with a molar 

activity of 27.983 GBq/µmol, while animal B was injected with 23.569 MBq for the baseline 

scan with a molar activity of 25.386 GBq/µmol and 16.391 MBq for the 4 months post-op scans 

with a molar activity of 62.112 GBq/µmol, respectively. 90-minute dynamic PET scans were 

acquired with a concomitant bolus injection of [11C]DTBZ via the tail vein. Then, 10-min 

transmission scans with a 57Co rotating point source were acquired. All PET data were 

reconstructed using a maximum a posteriori (MAP) algorithm into 8  30 s, 6  60 s, 5  2 min, 

and 14  5 min frames with voxel size equal to 0.6 mm  0.6 mm  1.2 mm and 128  128  63 

X, Y, and Z dimension size. Dead time, decay, scatter, random, and attenuation corrections were 

applied.  

 

Processing. To aid the registration between the individual MRI and online template 

(http://www.marmosetbrain.org/reference) (Majka et al., 2016), we first generated a group 

averaged MRI template (Nitzsche et al., 2015). This group averaged template was then 

registered and transformed to the online template via affine and nonlinear transformations based 

on Advanced Normalisation Tools (ANTs). Following MRI registration to the online template, 

the individual PET was registered to the individual MR image based on a rigid body 

transformation using ANTs and then normalised to the online template based on the 

aforementioned transformations. Regions of the online template atlas such as the caudate 

nucleus and putamen were subsequently transformed back into the native PET space. Using 

Logan reference region graphical analysis with the cerebellum as a reference region (Logan et 

al., 1990), the outcome measure, distribution volume ratio (DVR) was calculated in the target 

regions (Doudet et al., 2006). The final PET images were smoothed using 1.4 mm FWHM 

http://www.marmosetbrain.org/reference
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gaussian kernels. T1-weighted MR images were processed using the ANTs pipeline and 

reconstructed PET images were processed using the MINC-toolkits and PMOD 3.9 software. 

 

Surgical planning 

To assist with surgical planning, targets and trajectories to reach within the putamen were 

identified and saved in the Brainsight™ Vet neuronavigation software prior to surgery. In Fig. 

2A, C, the injection trajectory through the putamen in reference to the caudate nucleus of 

subjects A and B was reconstructed in 3D from MR images. As shown in Fig. 2B, D, T1-

weighted coronal MR images of subjects A and B are presented with the injection trajectory 

through the putamen. All regions of interest, including the brain, skull, and striatum were 

reconstructed in 3D and visualised in the software. A 3D printed model of the skull of each 

animal was constructed to scale from CT scans prior to surgery to go through the surgical 

rehearsal of the planned trajectories to ensure compatibility of the stereotaxic frame with the 

robotic arm and the attachments to the robotic arm such as the injector system (Fig. 3A-C). 

 

Synthesis of alpha-synuclein pre-formed fibrils 

Recombinant human alpha-synuclein was expressed using the Clearcoli™ BL21 (DE3) strain 

to minimise the presence of endotoxins because marmosets are highly vulnerable to endotoxins 

(unpublished observations). The pre-formed fibrils were generated from the purified alpha-

synuclein based on a protocol (Jin et al., 2021, Tavassoly et al., 2021). The morphology, size 

and uptake of the fibrils were validated by electron microscopy, dynamic light scattering and 

immunofluorescence.  
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Surgical procedure 

On the day of surgery, brains of animals were displayed as a 3D reconstruction in all anatomical 

planes along with the original DICOM MRI data, while the target site and trajectory into the 

putamen were also visualised. The path to target was determined using the neuronavigation 

software as previously described and displayed on the computer screen in real-time. The setup 

of the frameless stereotaxic neuronavigation system on the day of surgery is displayed in Fig. 

3A-C. 

Prior to surgery, animals were injected with ketamine (20 mg/kg, i.m.), atropine (0.5 

mg/kg, i.m.) and midazolam (0.5 mg/kg, i.m.). After intubation, anaesthesia was maintained 

with 2-3% isoflurane inhalation with 100% oxygen administered at a rate of 1 L/min and animals 

were positioned in a custom stereotaxic frame that accompanies the Brainsight™ Vet Robot 

system. The physiological state (oxygen saturation, respiration rate and volume, pulse rate, 

temperature and end-tidal carbon dioxide) of animals was assessed by a monitoring system 

(Lifewindow LW9xVet monitor, Digicare Biomedical Technology, USA). A midline scalp 

incision was made to expose the skull, and soft tissue and muscle were retracted from the skull 

surface. The skull was then scanned with a red laser light source of 635 nm that was attached to 

the end of a robotic arm. The laser points reflected off the skull formed a point cloud that was 

then co-registered to the 3D reconstruction of the skull from the CT, as shown in Fig. 4, based 

on techniques similar to profilometry, using a least squares optimisation algorithm (Levenberg, 

1944, Marquardt, 1963). Two landmarks were identified on the 3D reconstructed skull in 

Brainsight™ and the same homologous points were later identified with the laser source during 

registration of the animal’s skull in the operating theatre. These points were considered the 

initial guess for the start of the iterative process of finding the true fit between the two data sets 
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(3D reconstruction and point cloud) using the Levenberg-Marquardt algorithm (Levenberg, 

1944, Marquardt, 1963). 

Based on the alignment of the skull with the scan, the trajectory path to the injection 

sites was determined in the software. The tip of the syringe and shaft were calibrated in the 

software. A 1 mm hole was drilled through the skull surface with a power drill (Foredom, USA), 

operated by a foot pedal that attached to the end of a robotic arm. Subsequently, the attachment 

to the robotic arm was exchanged for an adaptor that held a 100 µL Hamilton Syringe connected 

to a Quintessential Stereotaxic Injector (Stoelting Co, USA). Animals received 3 injections of 

alpha-synuclein pre-formed fibrils (1 mg/mL) into the left putamen at three depth levels (15 L, 

20 L, 15 L) for 50 g of total protein. The syringe was left in place for an additional 5 min 

between injections and prior to slow retraction of the needle to minimise reflux along the needle 

track. Throughout surgery, animals received cephazolin (22 mg/kg, intra-venously) as antibiotic 

treatment, as well as one injection the next day. At the end of surgery, the incision was closed 

with staples and sprayed with OpSite Spray and animals were administered dexamethasone (1 

mg/kg, i.m.) to prevent brain swelling and buprenorphine (0.01 mg/kg, i.m.) to minimise post-

surgical pain.  

 

 

Chapter 7 Results 

Differences in skull and brain size of marmosets 

From CT images of the skull, subject A and B measured 34.77 mm and 23.59 mm in length 

from the rostral end of the frontal bone to the caudal end of the parietal bone; the width between 
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the zygomatic arches measured 24.99 mm and 22.23 mm, respectively. As shown in MR images 

of subject A in Fig. 5A and subject B in Fig. 5CB, the bilateral volume of the putamen measured 

104.0 mm3 and 97.2 mm3, respectively, a 7% difference.  

 

Overlay of CT and T1-weighted MR images of marmosets 

In Fig. 6A, 6C, CT scans superimposed with the MRI scans of the marmoset skulls of subjects 

A and B are displayed. Co-registration was verified by investigators as the CT images matched 

well to MR images. In Fig. 6B, 6D, MR images of subjects A and B are shown.  

 

Overlay of T1-weighted MRI and [11C]DTBZ images of marmosets  

In Fig. 7A, the averaged para-sagittal and coronal PET scans of marmosets A and B to vesicular 

monoamine transporter 2 (VMAT2) using the radiotracer [11C]DTBZ are presented. Following 

co-registration of MR images to PET images, the superimposed images are presented in Fig. 

7B, which demonstrates high uptake of [11C]DTBZ that is specific to the striatum. 

 

PET assessment of nigro-striatal denervation 

Four months following the surgery, a PET scan of subject B was performed to assess the extent 

of nigro-striatal denervation. In Table 1, changes in DVR of the ipsilateral putamen, ipsilateral 

caudate nucleus, midbrain, 4 months post-op compared to baseline are presented. 
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Chapter 7 Discussion 

In the present study, we have demonstrated that frameless stereotaxic neuronavigation using 

Brainsight™ is a promising approach to localise and perform injections in the target structure, 

the putamen, of two different marmosets. In particular, this is the first time that 3D 

reconstruction of the skull based on registration of the 3D point cloud of the skull to 

corresponding CT images has been described in non-human primates. Based on the co-

registration of CT and MR images, the path to target in the putamen was calculated specifically 

for each individual animal. The 6-axis BrainsightTM robotic arm also automated stereotaxic 

guidance to localise and inject alpha-synuclein pre-formed fibrils into the putamen with minimal 

human intervention. Moreover, by co-registering MRI and PET images, the degree of nigro-

striatal denervation was assessed at 4-months post-op. 

 Renewed interest in marmosets for neuroscience research, including large-scale 

initiatives to map their brain (Okano et al., 2016, Liu et al., 2020), depends on accurate 

localisation of brain structures. While these endeavours have largely relied on 2D stereotaxic 

atlases of the marmoset brain (Stephan et al., 1980, Tokuno et al., 2009, Paxinos et al., 2012), 

they fail to account for the variability in brain and skull size amongst animals due to a limited 

sample size (François et al., 1996, Deogaonkar et al., 2005, Miocinovic et al., 2007). These 

issues have led to the advent of averaged templates of the marmoset brain (Liu et al., 2018, 

Risser et al., 2019, Majka et al., 2021), which incorporate individual variability and 

consequently, provide a more accurate localisation of brain structures. However, they are less 

informative about subcortical structures and as such, a deviation of a few mm can significantly 

alter accurate localisation of targets, especially for small and deep nuclei (Basso et al., 2021). 

While we found a 32% and 11% difference in skull length and width between the two marmosets 
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studied, these findings are at odds with an earlier study that reported a lack of significant 

difference in skull measurements between female and male marmosets (Casteleyn et al., 2012). 

On the other hand, we reported a 7% difference in putamen volume between the two animals, 

which was consistent with other groups that found variations in marmoset brain sizes (Liu et al., 

2021), as well as significant discrepancies in individual compartment size from template brain 

(Lin et al., 2019). It is important to note that our results were obtained from a small number of 

animals (N = 2) and await validation with a larger sample size and by independent groups. 

However, the paucity of studies on the marmoset skull and brain renders it difficult to comment 

on the relevance of our results. Nonetheless, an approach that takes into consideration the unique 

characteristics of a marmoset’s skull and brain, could greatly enhance the accuracy and success 

of stereotaxic procedures.  

Accurate identification of target coordinates may be compromised by individual 

variability in stereotaxic coordinates of landmarks in the marmoset skull (Hikishima et al., 

2011), as well as operator-induced errors (Henderson et al., 2014). Multi-modality medical 

image registration of subjects to MR images is an established method to localise surgical targets 

in rodents and humans (Vaquero et al., 2001, Liu et al., 2019b). Extending its use in non-human 

primates may correct for individual skull and brain variability and achieve a higher degree of 

accuracy and precision than traditional stereotaxic atlases. An imaging-guided stereotaxic 

system to localise anatomical brain structures based on MR images has been published in the 

macaque (Frey et al., 2004) and marmoset (Mundinano et al., 2016). However, there are notable 

methodological differences from these previous studies, which highlight the contribution of our 

findings. While these studies relied on implantation of fiducial markers on the skull and a cranial 

marker on the sagittal suture, our approach was less invasive by using skull landmarks. 
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Moreover, the marmoset study required animals to be placed in an MRI-compatible stereotaxic 

frame during scans and subsequent surgical procedure (Mundinano et al., 2016). In addition to 

a frame-based system, other differences include calculation of stereotaxic coordinates, which 

becomes more complicated for trajectories that are not perpendicular to the skull or imaging 

plane (Basso et al., 2021), manual alignment of MR images with the animal’s position in the 

stereotaxic frame based on fiducial markers. Due to the considerable time investment and 

limited ease of use of frame-based imaging, this system may not be favourable for some 

stereotaxic procedures and study endpoints; these shortcomings are improved upon with a 

frameless stereotaxic system.  

 The approach of a frameless imaging-guided stereotaxic system avoids targeting 

inaccuracies and inconveniences of manual alignment used in frame-based approaches. Thus, 

by using a laser to scan the marmoset skull and then construct a 3D skull point cloud to co-

register with CT images, we obtained high-resolution imaging to accurately localise brain 

structures for surgical targeting. Importantly, subject-specific registration of imaging data 

circumvented issues of individual variability in skull and brain size of the two animals. 

Moreover, integration of BrainsightTM with imaging modalities permitted automatic stereotaxic 

guidance, as well as injections from virtually any angle with the 6-axis robot. Due to the 

availability of 3D reconstructed putamen and 3D scale model of the skull, we determined a 

lateral approach to entry point would be optimal because it maximised targeting of the putamen. 

In contrast, other motorized systems offer a more limited range of motion with only 3 axes of 

movement. These systems also face reliability concerns due to their reliance on external skull 

landmarks to co-register a stereotaxic atlas to imaging data of individual animals. On the other 

hand, our system allowed adequate surgical planning as the optimal trajectory was verified for 
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feasibility and compatibility between the different components (vet robot, injector system, 

syringe, target and trajectory) of the setup prior to surgery. Thus, frameless imaging-guided 

systems allow surgical planning to surgical targets and trajectories with greater ease (Basso et 

al., 2021) and are associated with improvements in outcomes in non-human primates (Dubowitz 

and Scadeng, 2011) and in clinical practice (Käppler et al., 2015, Galvez et al., 2018). 

 Here, we have used subject-specific registration of CT, MRI and PET data to reliably 

target the putamen, as well as to determine the degree of nigro-striatal denervation. PET scans 

obtained four months post-op provide evidence of nigro-striatal denervation that reaches a ≈ 

11% reduction in [11C]DTBZ binding in the marmoset putamen. This is consistent with results 

obtained in the mouse, rat and non-human primate (Luk et al., 2012, Shimozawa et al., 2017, 

Chu et al., 2019, Patterson et al., 2019), and the extent of dopaminergic denervation specific to 

the putamen is likely induced by the injection of alpha-synuclein pre-formed fibrils in the 

putamen, which suggests that the marmoset putamen was accurately targeted during surgery. 

However, PET data only provides suggestive evidence of accurate surgical targeting and 

validation of the approach is still required, whether by means of using histology or CT imaging 

to visualise the needle track. On the other hand, co-registration of CT, MRI and PET images 

provides essential information for longitudinal studies that require precise localisation of targets 

at distant time points from initial imaging acquisition without the need for markers. Thus, by 

monitoring the progression of changes in brain innervation, this technique can be informative 

about selection of endpoints for terminal studies or for determining a timeline for pilot studies, 

and subsequently, the frequency of imaging acquisition could be modified. Moreover, 

procedures such as cranial implantation of electrodes or deep brain stimulation in marmosets, 

where targets are not reliably identified by stereotaxic atlases, might benefit from the enhanced 



 

306 

 

accuracy of this approach. Furthermore, once an experimental paradigm has been established, 

imaging may be used as a biomarker to assess the efficacy of therapies (Okano et al., 2016, Liu 

et al., 2020). In addition, procedures that target subcortical structures or targets that are smaller 

in volume can be more reliably targeted than when relying upon 2D stereotaxic atlases, as the 

variation in skull and brain size may lead to misidentification of target and compromise the 

success of procedures.  

 In summary, we have used an approach that integrates multi-modality medical imaging 

registration using CT, MRI and PET images with frameless stereotaxic neuronavigation to target 

the marmoset putamen. This approach may be beneficial for longitudinal studies to monitor 

endpoints at distal time points without the need of markers. Whereas 2D stereotaxic atlases and 

frame-based stereotaxic methods are limited in accuracy for procedures in non-human primates, 

the improved accuracy achieved by subject-specific registration and frameless stereotaxic 

neuronavigation may present a more reliable approach to procedures in non-human primates.   
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Chapter 7 Tables and Figures 

Table 1. Regional changes in VMAT2 PET scan 4 months postsurgery. The VMAT2 PET scan 

of Subject B performed 4 months postop revealed declines in DVR in the ipsilateral putamen, 

caudate nucleus, and midbrain. 

region % change from DVR of baseline 

ipsilateral putamen -11% 

ipsilateral caudate nucleus -20% 

midbrain -6% 

cerebellum (reference region) - 
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Fig. 1. Marmoset coil and MRI-compatible chair and sled. The 16-channel receive coil was 

placed over a head and body cradle that attached to the MRI-compatible chair (A). The MRI-

compatible chair was positioned into the MRI-compatible sled that fit into the bore in front of 

the MRI bed (B). The chair consisted of a polycarbonate frame and a plastic cradle to hold the 

head of the animal in place. Elastic straps were used to hold the forehead, arms, and legs in place 

within the chair. A side view displaying how the MRI-compatible chair was fitted into the MRI-

compatible sled (C). 
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Fig. 2. Surgical planning. 3D reconstruction of the surgical target, putamen (blue), in reference 

to the caudate nucleus (red) in subject A from MR images (A). T1-weighted MR images of 

subject A with planned trajectory into the putamen in the coronal (left) and para-sagittal (right) 

planes (B). 3D reconstruction of the surgical target, putamen (blue), in reference to the caudate 

nucleus (red) in subject B from MR images (C). T1-weighted MR images of subject B with 

planned trajectory into the putamen in the coronal (left) and para-sagittal (right) planes (D). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 3. Frameless stereotaxic neuronavigation surgical setup. Setup of the frameless stereotaxic 

neuronavigation system on the day of surgery. Stereo-cameras were positioned above the 

operative field on each side of the animal to obtain a view of the marmoset skull used for co-

registration of the animal, as well as tool and robot calibrations (A). The BrainsightTM vet robot 

is versatile and is compatible with multiple attachments such as the handpiece of the drill (B) 

and syringe of the injector system (C). 
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Fig. 4. Laser scanning of the skull surface. On the day of surgery, the animal was placed in the 

stereotaxic frame. After a midline incision was made, the bone was scraped and cleaned, and a 

red laser light source attached to the end of the robotic arm scanned the skull, generating a point 

cloud data set. The data from the laser were then superimposed onto the 3D reconstruction of 

the skull from MR/CT images, and homologous points were matched leading to the 

coregistration of the animal to the MR/CT volume. 
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Fig. 5. Differences in putamen volume between marmosets. 3D reconstruction of the bilateral 

putamen of marmosets A (A) and B (B). 
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Fig. 6. Overlay of CT and T1-weighted MR images of marmosets. CT scan superimposed with 

the MR image of marmoset A with coronal (left) and para-sagittal (right) views (A). T1-

weighted MR images of marmoset A with coronal (left) and para-sagittal (right) views (B). CT 

scan superimposed with the MR image of marmoset B with coronal (left) and para-sagittal 

(right) views (C). T1-weighted MR images of marmoset B with coronal (left) and para-sagittal 

(right) view (D). The intersection of the green lines illustrates the anterior commissure. The jet 

colourmap was selected as the colour scheme to illustrate the skull. 

  



 

323 

 

 

Fig. 7. Overlay of T1-weighted MR and [11C]DTBZ images of marmosets. Averaged 

[11C]DTBZ PET images of marmosets A and B with coronal (left) and para-sagittal (right) views 

(A). Averaged [11C]DTBZ PET images were registered to averaged MR images of marmosets 

A and B and the superimposed coronal (left) and para-sagittal (right) images are presented (B). 

Areas of strong ligand uptake are indicated by yellow and red, whereas areas of lower ligand 

uptake are indicated by blue and green. There is high uptake of [11C]DTBZ PET that is specific 

to the striatum. The arrowheads illustrate the surgical target. 
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1. Recap of findings 

 In the 6-OHDA-lesioned rat, the 5-HT3 antagonist granisetron alleviated the severity of 

dyskinesia without hindering L-DOPA anti-parkinsonian action. Taken together with favourable 

results obtained with the 5-HT3 antagonist ondansetron, these results suggest that the family of 

5-HT3 antagonists represent an effective approach to alleviate L-DOPA-induced dyskinesia. 

Moreover, the anti-dyskinetic efficacy of ondansetron reported in the 6-OHDA-lesioned rat was 

confirmed in the MPTP-lesioned marmoset, although it enhanced L-DOPA anti-parkinsonian 

action in the latter model. Consistent with the antipsychotic efficacy of ondansetron reported in 

open-label clinical trials with PD subjects, it also suppressed psychosis-like behaviours in the 

MPTP-lesioned marmoset. Following these behavioural studies, an autoradiographic study 

determined that 5-HT3 binding levels were significantly increased in the subthalamic nucleus, 

entopeduncular nucleus and thalamus of dyskinetic hemi-parkinsonian rats. These findings 

provide insight into the brain areas that may govern the anti-dyskinetic efficacy of 5-HT3 

antagonists, which may also be implicated in L-DOPA-induced dyskinesia. While these data 

support the translational potential of ondansetron and other 5-HT3 antagonists in treatment-

related complications in PD, they offer limited value as curative therapies in PD. Thus, 

preclinical models that recapitulate key features of the human condition, notably the propagation 

of abnormal alpha-synuclein, are crucial to the development and evaluation of disease-

modifying therapies in PD. In order to establish non-human primate models based on intra-

cerebral injection of alpha-synuclein PFFs, the methodology behind localisation and injection 

into a surgical target was developed in the marmoset. By relying on co-registration of imaging 

modalities, it was possible to determine stereotaxic coordinates unique to each animal, which 

circumvented issues of variability in skull and brain size between marmosets.  
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The results presented in the thesis were previously discussed in each individual chapter. 

This general discussion seeks to reconcile the results together and to offer a critical appraisal of 

their limitations and future directions.  

 

2. Dose response curve of ondansetron 

The U-shaped dose-response curve has often been ascribed to ondansetron (reviewed in 

Chapter 1) and some 5-HT3 antagonists 1039, 1040 in preclinical paradigms of cognition, drug 

sensitisation, anxiety, and dyskinesia. In general, a higher magnitude of therapeutic benefit is 

achieved by relatively lower doses of antagonists in the microgram range 1041. Contrary to these 

findings, we did not observe this shape of dose-response curve for the effects of ondansetron on 

dyskinesia or psychosis-like behaviours in the MPTP-lesioned marmoset. While a satisfactory 

explanation for the U-shaped dose-response curve of ondansetron is still lacking, speculative 

hypotheses put forth include mutual steric hindrance at 5-HT3 receptors or varied distribution 

of 5-HT3 receptors in the brain 1042. Furthermore, dyskinesia and psychosis-like behaviours had 

not been previously studied, so it is difficult to comment on whether these mechanisms are also 

at play in these conditions. Nonetheless, we speculate that the discrepancy between the literature 

and our present findings may be attributed to the variety of indications, interspecies differences 

or the range of doses administered. Preclinical paradigms, such as cognition and dyskinesia, are 

mediated by different brain regions (e.g., frontal lobe vs. cortico-basal ganglia-thalamo-cortical 

loop) with varied expression of the 5-HT3 receptor. Therefore, it is conceivable that regional 

differences in 5-HT3 receptor binding may translate to varied dose-response curves depending 

on the endpoint studied. Indeed, whereas the pro-cognitive effect of ondansetron in the rat 

resembled a U-shaped dose-response curve 1043, its effect on anxiety-related behaviours was 
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dose-dependent in the mouse, rat, and marmoset 1044, 1045. Of note, both the 6-OHDA-lesioned 

rat and MPTP-lesioned marmoset exhibit severe nigrostriatal denervation induced by 

neurotoxins 841, and these conditions may alter dose-response curves compared to others that 

employ healthy or drug naïve aged animals. Moreover, interspecies differences between the rat 

and marmoset, such as in the distribution of 5-HT3 receptors and pharmacokinetics 1046-1048 may 

also contribute to altered dose-response curves of ondansetron between the two species. Last, 

the range of ondansetron doses examined in the MPTP-lesioned marmoset may have obscured 

capturing the full dose-response curve by presenting the upper limits of ondansetron doses. 

Although the effects of lower ondansetron doses on dyskinesia and psychosis-like behaviours 

in this model are unknown, dose selection was informed by pharmacokinetic analyses and 

translational potential.  

The phenomenon of a U-shaped or inverse U-shaped dose-response curve is not unique 

to 5-HT3 antagonists and has also been attributed to phytoestrogens 1049, antidepressants 1050, 

and antipsychotic drugs 1051, 1052. The therapeutic implication of such a dose-response curve of 

ondansetron may be a narrow therapeutic window for PD that will be dependent on the endpoint. 

If treating dyskinesia is the primary concern, then lower doses of ondansetron should be 

administered, but if treating parkinsonian disability is the primary concern, then slightly higher 

doses of ondansetron may be more desirable. Furthermore, this type of dose-response curve may 

also have implications on the method of drug delivery of ondansetron wherein continuous 

infusion is preferred over bolus administration, in an attempt to ensure that the concentration of 

ondansetron is maintained within the therapeutic range 1053. On the other hand, another 5-HT3 

antagonist, granisetron, did not present a U-shaped dose-response curve for its effect on 

dyskinesia in the hemi-parkinsonian rat. Although it remains unclear what features of the drug 
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contribute to this discrepancy with ondansetron, they may be related to its pharmacological 

differences, including its longer terminal half-life in humans (6.23 h for a 1 mg oral dose of 

granisetron vs 3.2-5.0 h for an 8 mg oral dose of ondansetron) 1054, 1055 and minimal binding to 

off-target receptors 1056, although both antagonists demonstrate high selectivity for the 5-HT3 

receptor considering the doses administered. Based on these considerations, granisetron may 

possess greater translational potential than ondansetron for PD and dyskinesia, as its more 

predictable dose-response curve would facilitate frequent adjustment of doses to determine the 

optimal dose for individual patients, a common practice in both conditions 399. The mechanism 

underlying the dose-response curve of ondansetron and 5-HT3 antagonists remains largely 

speculative due to the paucity of studies. Moreover, to our knowledge, they have not been 

studied in the context of PD or dyskinesia, and further developments in these research areas 

would inform dose selection of 5-HT3 antagonists. 

Pharmacokinetic studies found that ondansetron plasma levels associated with anti-

dyskinetic efficacy doses in the rat and marmoset are below or within the same order of 

magnitude as plasma levels observed in the clinic 1055, 1057, 1058. It remains difficult, however, to 

comment on whether plasma levels are a good indicator of ondansetron at its site of action, 

which is presumably in the central nervous system. Several brain regions have been implicated 

in dyskinesia, notably the striatum 578, globus pallidus 1059 and subthalamic nucleus 1060; this 

involvement suggests that brain ondansetron levels may provide a more accurate measurement 

of its anti-dyskinetic efficacy instead of plasma levels. While we detected ondansetron in the rat 

striatum and primary motor cortex, they were only obtained in healthy animals at a single 

timepoint, i.e., peak L-DOPA action. Considering the time for drug distribution to tissues, as 

well as the time to cross the blood brain barrier 1061, it is conceivable that the time of maximal 



 

329 

 

ondansetron plasma levels may not fully correlate with maximal brain levels. By obtaining a 

more comprehensive brain-time concentration profile of ondansetron, it would be possible to 

determine whether brain levels correlate with its anti-dyskinetic activity and, as such, would 

serve as a better proxy for its anti-dyskinetic action than plasma levels. In terms of clinical 

relevance, measurements of ondansetron in vivo have been hampered by the lack of PET or 

SPECT radiotracer for the 5-HT3 receptor 1062, as ligands had poor brain uptake and high 

nonspecific binding 1063-1065. Therefore, clinical development of a radioligand could lead to the 

investigation of whether anti-dyskinetic or antipsychotic doses of ondansetron are associated 

with target engagement with the 5-HT3 receptor. Based on the high selectivity of ondansetron 

(250-fold higher) for the 5-HT3 receptor 1066 and the relatively low doses administered, it is 

unlikely that its therapeutic action might be attributed to binding to other receptors but further 

studies are required to clarify target engagement of ondansetron in vivo.  

 

3. 5-HT3 receptor blockade in treatment-related complications: 

a new therapeutic avenue 

3.1.  5-HT3 receptor blockade in dyskinesia 

 Blockade of the 5-HT3 receptor represents a new therapeutic approach in L-DOPA-

induced dyskinesia and, prior to the work presented in this thesis, only the 5-HT3 antagonist 

ondansetron has been examined for its anti-dyskinetic potential in experimental parkinsonism. 

The current thesis has also demonstrated that another 5-HT3 antagonist, granisetron, alleviated 

dyskinesia severity without worsening L-DOPA anti-parkinsonian action; these results provide 

support for a class effect of 5-HT3 receptor blockade as both compounds are potent and 

structurally distinct 5-HT3 antagonists. Intriguingly, the longer half-life of granisetron did not 
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translate to a longer duration of anti-dyskinetic benefit, which may suggest a limit to the benefit 

conferred by blockade of the 5-HT3 receptor. Nonetheless, the magnitude of anti-dyskinetic 

efficacy of granisetron in the 6-OHDA-lesioned rat was ~ 25%-45%, comparable to that 

obtained with clinically-relevant doses of the anti-dyskinetic agent amantadine 1067, which may 

indicate a plateau to the therapeutic benefit that can be obtained in this model. For further 

demonstration of the selectivity of our therapeutic approach, it would be expected that 5-HT3 

receptor activation would likely worsen dyskinesia severity in these neurotoxin-based models 

of PD. However, due to the lack of selective and potent 5-HT3 agonists 1068 and positive allosteric 

modulators 1069, as well as ethical concerns, these experiments have not been performed.  

 During the evaluation of potential anti-dyskinetic therapies in PD animal models, it is 

also necessary to determine whether their efficacy is attributed to interference with the action of 

L-DOPA 1070. In the MPTP-lesioned marmoset, we found that ondansetron exerted anti-

dyskinetic efficacy while enhancing L-DOPA anti-parkinsonian action at clinically relevant 

doses. These results are at odds with studies conducted in the 6-ODHA-lesioned rat, which 

found that ondansetron and granisetron had no significant effect on L-DOPA anti-parkinsonian 

action. Although it is unclear what is underlying the discrepancy between the two models, it 

may be related to differences in the characterisation of parkinsonism. Whereas forepaw use in 

the cylinder test is used as a measure of parkinsonism severity in the rat 868, in the marmoset, 

the rating scale for parkinsonism is more reminiscent of the scale used in PD patients 1071. In 

fact, clinical characteristics of parkinsonism, such as bradykinesia, postural abnormalities, and 

range of movement, are incorporated into the behavioural repertoire of the MPTP-lesioned 

marmoset 623. Moreover, pharmacological validation of the MPTP-lesioned non-human primate 

513, 971 may afford it superior sensitivity to assess parkinsonism sensitivity 979. In the clinic, 
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ondansetron did not alter the therapeutic benefit of L-DOPA, although the primary endpoint of 

these open-label trials was to assess its effect on PD psychosis and not dyskinesia 1016-1018. 

Reconciling these results with those obtained in the parkinsonian marmoset, differences in the 

methodology (e.g., dosage, timing of administration, assessment of behaviours) may have 

contributed to the reported variability in the anti-parkinsonian action of ondansetron. Further 

research into the effects of ondansetron and other 5-HT3 antagonists on the therapeutic efficacy 

of L-DOPA, particularly the mechanism governing these agents, will clarify the dearth of 

literature.  

 Based on the classic models of the cortico-basal ganglia-thalamo-cortical networks 323, 

324, in dyskinesia, the subthalamic nucleus provides less glutamatergic innervation to the output 

nuclei, which disinhibits thalamo-cortical circuits 346. Following administration of quipazine in 

rats, which exhibits affinity as a 5-HT3 agonist 548, glucose use was significantly increased in 

the subthalamic nucleus and VL thalamus amongst several other brain areas 1072. We speculate 

that in the subthalamic nucleus of dyskinetic animals, increased 5-HT3 receptor densities due to 

enhanced inhibitory afferents 1073 may lead to further inhibition of the subthalamic nucleus and, 

in turn, disinhibit thalamo-cortical circuits, resulting in dyskinesia. These results, however, are 

at odds with those obtained with the 5-HT3 antagonist ondansetron 1074, which failed to 

demonstrate a correlation between glucose metabolism and anatomical distribution of 5-HT3 

receptors. The discrepancy between the studies may be related to differences between activation 

and antagonism of 5-HT3 receptors, or the relatively lower affinity of quipazine for 5-HT2 

receptors 1075 than for 5-HT3 receptors 1076, 1077, although the functional effects of quipazine are 

not those expected of 5-HT2 agonists 1072. Nonetheless, further investigation will provide insight 

into the largely unknown role of the 5-HT3 receptor in the subthalamic nucleus.  
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 The paucity of literature on 5-HT3 receptors in the thalamus renders it difficult to 

reconcile how an increase in 5-HT3 receptor densities in the VA/VL thalamus may mediate 

dyskinesia. Surgical lesion of the motor thalamus has been successful in the treatment of 

dyskinesia in PD patients 1078, which provides support for the increased activity of the VA/VL 

thalamus in producing hyperkinetic movements 324, 346. Studies found that a subpopulation of 

cortical 5-HT3 receptor-expressing interneurons receive monosynaptic input from the thalamus 

that leads to strong depolarisation 1079-1081. Based on the cortico-basal ganglia-thalamo-cortical 

circuitry 323, 324, it is possible that enhanced 5-HT3 receptor-mediated GABAergic transmission 

may reduce the excitation of cortical interneurons. In turn, this may result in less inhibitory 

output to cortico-striatal neurons, and consequently, upregulated activity of output nuclei that 

contribute to the expression of dyskinesia. Therefore, administration of 5-HT3 antagonists to 

dyskinetic animals may correct for the enhanced GABAergic activity in cortical neurons, 

culminating in an anti-dyskinetic benefit. As this theory remains speculative, further studies 

examining the functional significance of these 5-HT3 receptor-expressing interneurons in 

relation to PD are warranted. Similarly, the anti-dyskinetic effect of pallidotomy and deep brain 

stimulation of the globus pallidus pars interna 1082, 1083 may be related to aberrations in its output 

signal that disrupt the activity of thalamo-cortical circuits 346, 1084. To date, only two other studies 

have examined 5-HT3 receptors in the globus pallidus. While one study failed to detect 5-HT3 

receptor mRNA 1085 in the mouse globus pallidus, an autoradiographic binding study reported 

moderate 5-HT3 receptor densities in the rat entopeduncular nucleus and globus pallidus 1086. 

Taken together, we speculate that the upregulation of 5-HT3 receptors observed in the 

entopeduncular nucleus, the rodent homologue of the globus pallidus pars interna 1087, may 

contribute to alterations in its patterned activity, leading to enhanced thalamo-cortical output, 
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and the appearance of dyskinesia. As mentioned for the subthalamic nucleus and VA/VL 

thalamus above, the limited studies on the 5-HT3 receptor in the entopeduncular nucleus, 

especially in the context of PD, hinder interpretation of our results and await further 

investigation.   

The present thesis uncovered differences in 5-HT3 receptor binding in the subthalamic 

nucleus, entopeduncular nucleus and thalamus that may underlie dyskinesia in the 6-OHDA-

lesioned rat. As this was the first attempt to uncover the mechanism mediating the action of 5-

HT3 antagonists, the biological significance of these findings remains unclear as the role of the 

5-HT3 receptor has not been studied in these regions of interest. Nonetheless, using the same 

model, it would be intriguing to examine whether administration of 5-HT3 antagonists to 

dyskinetic rats can prevent the upregulation of 5-HT3 binding in the subthalamic nucleus, 

entopeduncular nucleus, or thalamus that is induced by L-DOPA treatment. Furthermore, brain 

ondansetron levels have not been assessed in the dyskinetic state but only in health animals, and 

studies undertaken to examine ondansetron levels in these brain regions would complement data 

obtained in the autoradiographic binding study.  

An important consideration is that this is the sole study that examined the mechanism of 

action underlying 5-HT3 antagonists in dyskinesia. While region-specific upregulation of 5-HT3 

binding has been linked to dyskinesia, it does not necessarily preclude the possibility of other 

processes that also mediate the anti-dyskinetic action of 5-HT3 antagonists. For instance, the 

technique employed does not provide sufficient anatomical deta to be informative on the 

subcellular localisation of receptors 1088. Under physiological conditions, 5-HT3 receptors are 

largely present on the membrane surface 1089 but perhaps, in the dyskinetic state, 5-HT3 receptor 

distribution is altered due to increased internalisation, and as a result, fewer receptors might be 
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present on the membrane to participate in downstream signalling. Indeed, administration of 5-

HT3 agonists significantly reduced membrane 5-HT3 receptor expression, in part due to 

internalisation of receptors 1089 but this effect was blocked by the 5-HT3 antagonist ondansetron 

1090. Therefore, beyond the regional changes in 5-HT3 receptor binding observed in dyskinesia, 

alterations in the cellular localisation of the receptor may also contribute to the pathophysiology 

of the dyskinetic state. Furthermore, autoradiographic receptor labelling does not assess receptor 

function 1088 and consequently, cannot determine downstream processes that may be affected by 

changes in 5-HT3 receptor signalling. Although there were no changes in the total number of 5-

HT3 receptors in the striatum of dyskinetic animals, there may have been changes in the 

regulation of receptor function, such as phosphorylation 1091, that may result in altered 5-HT3 

receptor activity. In turn, this may have shifted the balance between the direct and indirect 

pathways to favour disinhibition of the thalamus and cortex 316, leading to the development of 

dyskinesia 324, 1092. Moreover, specific electrophysiological changes in the striatum have been 

reliably associated with dyskinesia, such as the inversion of firing rate changes in striatal 

medium spiny neurons 1093, 1094. It remains to be ascertained whether 5-HT3 receptor blockade 

in dyskinetic animals is associated with the stabilisation of dysregulated striatal activity 1095.  

 

3.2.  5-HT3 receptor blockade in PD psychosis 

 The behavioural repertoire of MPTP-lesioned marmosets chronically administered with 

L-DOPA also permits the evaluation of PD psychosis, another condition that affects a significant 

proportion of PD subjects 718, 753. To address the lack of controls and concomitant medication in 

open-label studies conducted with ondansetron on PD psychosis, which may have confounded 

findings due to their role in psychosis 261, 1096, 1097, we assessed the effects of ondansetron on 
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psychosis-like behaviours using a randomised and blinded design in the MPTP-lesioned 

marmoset. Our results were in accordance with prior findings, having demonstrated a significant 

reduction in psychosis-like behaviours with ondansetron at doses associated with well tolerated 

plasma levels in the clinic. Furthermore, these results are timely as there is an ongoing double-

blind, randomised, placebo-controlled Phase II trial assessing the efficacy of ondansetron 

treatment for visual hallucinations in PD (NCT04167813). While the primary outcome measure 

is visual hallucinations evaluated using the Scale for Assessment of Positive Symptoms, 

delusions will also be included as a secondary outcome measure using the same scale. The 

results of this trial will be enlightening as it will be the first large randomised placebo-controlled 

clinical trial to assess the antipsychotic benefit conferred by ondansetron in PD. Whereas 

positive findings from open-label trials were primarily conducted by the same group 1018 and 

replicated by another group 1098, one trial reported a lack of antipsychotic efficacy and tolerance 

to ondansetron in some subjects 1099. Therefore, based on these promising data and the 

specificity of ondansetron for the 5-HT3 receptor, clinical testing of ondansetron and other 5-

HT3 antagonists for the treatment of PD psychosis will be informative and either used to support 

the repurposing of clinically available 5-HT3 antagonists or demonstrate the lack of translational 

potential for these agents.  

A large body of evidence has implicated a role for the 5-HT system in PD psychosis 1100 

that may be related to an imbalance in dopaminergic and serotonergic transmission 830. Despite 

the antipsychotic efficacy of ondansetron encountered in PD psychosis, the underlying 

anatomical substrate(s) remains to be elucidated as no study has sought to understand its 

mechanism of action. Based on the antagonistic role of atypical antipsychotics at 5-HT3 

receptors, we speculate that their benefit in PD psychosis may be mediated, at least in part, by 
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blockade at this site of action. The atypical antipsychotic clozapine has demonstrated 

antipsychotic efficacy in two randomised placebo-controlled trials 1101, 1102 and is considered 

“clinically efficacious” in the treatment of PD psychosis 812. Amongst its actions at multiple 

receptors 809, therapeutic doses of clozapine have also displaced binding of the 5-HT3 antagonist 

[3H]GR65630 in human embryonic kidney 293 cells, as well as reduced inward current mediated 

by 5-HT3 receptors 1103, 1104, suggesting it acts as a functional antagonist at 5-HT3 receptors 1105. 

Moreover, the atypical antipsychotic risperidone, which significantly improved psychotic 

symptoms in PD 1106, also demonstrated activity as a 5-HT3 antagonist 1104. Given the ability of 

5-HT3 receptors to modulate dopaminergic mesolimbic activity 1104, 1107, the inhibitory action of 

atypical antipsychotics at 5-HT3 receptors may be responsible, at least in part, for their efficacy 

in the treatment of PD psychosis.  

The dopamine hypothesis of PD psychosis posits that chronic stimulation of dopamine 

D2 receptors by dopaminergic drugs causes a hypersensitisation of dopaminergic receptors, 

particularly in limbic structures, which may increase susceptibility to develop psychotic 

symptoms in PD 781, 801. As iterated above, the mechanism underpinning the antipsychotic action 

of ondansetron has not been studied in the context of PD psychosis but there is evidence 

suggesting that it may be related to modulation of dopaminergic mesolimbic activity. Indeed, 

autoradiographic binding studies conducted in post mortem human tissue have detected 

moderate to high levels of 5-HT3 binding in the ventral tegmental area and nucleus accumbens 

1108-1111. Furthermore, 5-HT3 receptors in mesolimbic structures also receive input from 

dopamine neurons in the ventral tegmental area 1112. In line with 5-HT3 expression in limbic 

areas, stimulation of 5-HT3 receptors in either the ventral tegmentum or nucleus accumbens 

enhanced dopaminergic output 1113, 1114, suggesting that the effect of 5-HT3 receptors may be 
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related to modulation of mesolimbic dopamine release. For instance, ICS 205-93, a 5-HT3 

antagonist, suppressed morphine-induced dopamine release in the nucleus accumbens in awake 

freely-moving rats 1115; similar results were obtained by other groups 1116, 1117. Reduced 

mesolimbic dopamine transmission following blockade of 5-HT3 receptors 1118 has also been 

reported following intraperitoneal injections of alcohol 1113, 1119 and cocaine 1120, and 

subcutaneous injection of morphine 1116, 1117. At the cellular level, electrophysiological studies 

have found that chronic application of the 5-HT3 antagonists LY 277359, MDL 75147EF, 

zatosetron and DAU 6215 decreased the number of spontaneously active nigrostriatal 1121, 1122 

and ventral tegmental dopamine neurons 1123, 1124, which may be predictive of antipsychotic 

action 1125, 1126. However, granisetron, another 5-HT3 antagonist failed to alter the number of 

spontaneously active dopamine neurons in both regions 1127. Although the reason for the 

discrepancy is unknown, it may be related to differences in doses of 5-HT3 antagonists 1124, but 

potency differences are unlikely as the drugs studied exhibit similarly high affinity for the 5-

HT3 receptor 1056, 1121, 1123.   

 The functional role of 5-HT3 receptors on dopaminergic mesolimbic activity is 

substantiated by evidence from behavioural studies. Amphetamine-induced locomotor 

hyperactivity is enhanced by application of the 5-HT3 agonist 2-methyl-5-hydroxytryptamine in 

the nucleus accumbens 1128 but attenuated by ondansetron and other 5-HT3 antagonists in rat and 

non-human primate models 1128-1130. Moreover, injection of ondansetron into the nucleus 

accumbens also inhibited cocaine-induced stimulation of locomotion in rats 1131. These results 

collectively suggest that 5-HT3 receptor antagonists such as ondansetron may dampen the 

mesolimbic dopaminergic transmission, possibly by decreasing dopamine release, to alleviate 

psychosis symptoms. The localisation of 5-HT3 receptors to the mesolimbic dopamine areas 1112 
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and lack of antagonistic action at dopamine D2 receptors 1066 may explain why the antipsychotic 

action of ondansetron in PD patients did not worsen motor symptoms 1017. Alternatively, 5-HT3 

antagonists may exert antipsychotic efficacy by inhibition of dopamine binding at the 5-HT3 

receptor. In fact, dopamine displays affinity for the 5-HT3 receptor in the micromolar range, 

acting as a partial agonist at the receptor 1132-1135. For instance, in oocytes expressing human 5-

HT3 receptors, dopamine induced fast inward currents but this effect was blocked by the 5-HT3 

antagonist LY-278584 1135. Based on the action of dopamine as a partial agonist at 5-HT3 

receptors, we speculate that potent 5-HT3 antagonists with nanomolar affinity 1136, 1137 

outcompete and prevent dopamine binding in mesolimbic dopamine areas. In turn, this leads to 

attenuation of dopamine hyperactivity in these brain areas and improvement on the severity of 

psychosis symptoms. However, the potency and efficacy of dopamine effects are highly variable 

1135, and further research is required to determine whether they mediate the antipsychotic 

efficacy of 5-HT3 antagonists in neurotoxic models of PD.  

 The MPTP-lesioned non-human primate is a well-established model to understand the 

underpinnings of behavioural and symptomatic components of PD 1138, in part due to its 

neuroanatomical and behavioural similarities to the human condition 1139, 1140. Moreover, key 

features of the disease are recapitulated, such as marked degeneration in the substantia nigra 

pars compacta 1141, oxidative stress, and mitochondrial dysfunction 99. Amongst the frequently 

used different MPTP-lesioned non-human primate series, the marmoset has the highest 

predictive value for antipsychotic efficacy in PD 941. Agents that demonstrated clinical 

effectiveness (clozapine, mianserin, mirtazapine, and quetiapine) 818, 819, 823, 826, 827, 1101, 1102, 1142 

also showed antipsychotic efficacy in the MPTP-lesioned marmoset 513, 556, 1143, as well as 

findings on ondansetron presented in this thesis. Of note, psychosis-like behaviours were absent 
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in marmosets induced with a partial MPTP lesion 1138, suggesting that more extensive 

nigrostriatal denervation may be required for their appearance. This is line with our current 

understanding of the aetiology of PD psychosis 803, whereby the underlying disease and 

dopaminergic therapy act in concert 721, 752. As the MPTP-lesioned marmoset demonstrates high 

construct, face, and predictive validity, it plays a crucial role as the translational bridge between 

early preclinical research and clinical testing 971. In fact, we described novel stereotypical 

behaviours in this model that shared features reminiscent of punding in PD patients 1021. 

Although punding may affect nearly 14% of subjects with PD 1021, 1144, this number is likely 

underreported due to poor characterisation and awareness 1145. Further characterisation of these 

behaviours in the MPTP-lesioned marmoset, particularly in a more quantitative manner, may 

advance our understanding of the mechanisms underpinning punding, as well as testing the 

efficacy of pharmacological agents. Given the poor outcomes and quality of life associated with 

PD psychosis and neuropsychiatric symptoms in general 1145, 1146, there is a crucial need to 

address this knowledge gap, and the extensive behavioural repertoire of the MPTP-lesioned 

marmoset model provides the opportunity to do so.  

 

4. Towards a new alpha-synuclein propagation-based animal 

model of Parkinson’s disease 

4.1.  Limitations of neurotoxic models of PD  

Neurotoxic models of PD, such as the 6-OHDA-lesioned rat and MPTP-lesioned non-

human primate are well-established and pharmacologically validated models for the assessment 

of parkinsonism and dyskinesia 511, 938. Furthermore, the MPTP-lesioned marmoset has the 

additional advantage of exhibiting a larger repertoire of behaviours, which enables the study of 
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psychosis-like behaviours 513. Using these models, we have demonstrated the high translational 

potential of ondansetron and 5-HT3 antagonists for treatment-related complications in PD. 

However, our results are limited to the context of advanced PD as we modelled severe 

nigrostriatal denervation and drug sensitisation 841, 844. As iterated earlier in Section 4.2, these 

models have shortcomings in understanding the mechanistic processes underpinning PD as they 

fail to reproduce some key features of the human conditions, particularly the progressive nature 

of the disease and Lewy pathology. A major impediment in the clinical development of disease-

modifying therapies in PD is that current animal models do not allow the simultaneous study of 

pathological mechanisms underlying the disease and assessment of symptomatic therapies. This 

may explain, in part, the failure of neuroprotective drug candidates in clinical trials despite their 

initial success in preclinical studies 1147. Therefore, development of an animal model that 

recapitulates core pathogenic processes in the human condition 147, 985, and has closer genetic 

and anatomical proximity to humans, will be crucial in the quest to develop disease-modifying 

therapies for PD.  

 

4.2.  Alpha-synuclein propagation-based models of PD 

In the brain of patients with advanced PD, there is widespread dissemination of inclusion 

bodies 67, and the main constituent of these inclusions is the protein alpha-synuclein 1027. 

Although its role is not well understood, emerging evidence suggests that alpha-synuclein is 

crucial to the development of PD. From observations of post mortem brain tissue of PD subjects, 

Braak and colleagues formalised a hypothesis to describe the spreading of Lewy pathology 

based on the correlation between neuropathological findings with preclinical and clinical phases 

of the disease 67, 68. In early stages, Lewy bodies are confined to the brain stem and olfactory 
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bulb, before spreading to the midbrain, and by later stages, throughout the lower forebrain and 

cortex. Further evidence in support of the Braak hypothesis came from clinical trials that grafted 

embryonic dopaminergic neurons into the brains of PD patients 70, 71. Over 10 years after 

transplantation revealed the presence of pathological inclusions in the healthy donor neurons of 

these patients, which suggests that Lewy pathology can spread from host to donor and 

aggregated alpha-synuclein seeded the misfolding of endogenous alpha-synuclein 72.  

Although the mechanisms underlying the initiation and spreading of pathological alpha-

synuclein in PD are not well understood, converging evidence suggests that a prion-like 

propagation may explain this phenomenon 1148. Studies in cultured neurons have demonstrated 

that alpha-synuclein can be secreted and taken up from the extracellular space 1149, 1150. Once 

inside a neuron, alpha-synuclein can oligomerise with endogenous alpha-synuclein and seed the 

formation of aggregates 88, 1149. Once healthy monomeric alpha-synuclein becomes misfolded, 

it acts as seeds to recruit endogenous synuclein, converting the latter into insoluble pathological 

polymers, and, ultimately, Lewy bodies 88. This pathological alpha-synuclein then spreads 

throughout the brain in interconnected and neighbouring areas, eventually propagating to the 

entire brain 89. Moreover, Lewy pathology requires the expression of endogenous alpha-

synuclein as propagation does not occur in in vitro 986 and in vivo alpha-synuclein knockout 

cells 995, providing further support for a prion-like propagation.  

Models that reproduce the abnormal propagation of pathological alpha-synuclein have 

been developed in rodents and non-human primates (reviewed in Section 4.3). We sought to 

address some limitations of these previous studies by developing a model in the marmoset based 

on injection of human alpha-synuclein PFFs, followed by characterisation of the model using in 

vivo and post mortem techniques. An important step in establishing this novel animal model 
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was to develop the methodology to accurately identify the surgical target for PFF injection in 

the marmoset brain. In Chapter 6, we described the co-registration of imaging modalities to 

reliably identify and inject PFFs into the putamen of two marmosets. This was the first time that 

the frameless stereotaxic neuronavigation procedure was described in non-human primates and 

it addressed the shortcomings of traditional approaches, such as limited sample size and 

restricted sex of animals 1033-1035 and limited regions of interests 1151-1154, that relied upon 

stereotaxic atlases. Whereas PET imaging revealed nigrostriatal denervation 4-months after PFF 

injection, these results only provide suggestive evidence that surgical targeting was accurate and 

await further confirmation by histology or CT imaging.  

Once this marmoset model has been well-established, it may be used as a paradigm to 

evaluate the efficacy of disease-modifying therapies in PD, either by preventing or mitigating 

alpha-synuclein toxicity 1155, to address the translational gap of neurotoxic models. Indeed, 

current therapies in the PD pipeline targeting alpha-synuclein use a range of approaches 

including inhibition of alpha-synuclein misfolding and aggregation (NCT04685265), clearance 

of aggregates using antibodies 1156, and prevention of cell to cell transition within the brain 

(NCT03858270) 1155. An additional advantage of using subject-specific registration data is that 

it permits image acquisition at distal time points. Therefore, in our model, we can monitor the 

progression of nigrostriatal denervation in vivo, which will allow us to determine endpoints for 

studies on disease-modifying therapies. Moreover, ongoing efforts in the lab are dedicated to 

characterisation of the behavioural deficits exhibited by these marmosets, particularly motor 

activity, providing a more detailed and clinically relevant analysis of the manifestation of 

parkinsonism in the model. Along with initiatives to develop biomarkers in PD, richer 

characterisation of the model will improve monitoring of disease progression, as well as the 
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evaluation of the efficacy of potential therapies 1157. Last, our approach takes into consideration 

the unique features of a marmoset’s skull and brain, and can thus be used to localise and inject 

into surgical targets in the brain besides the putamen, which may be especially beneficial for 

small and deep nuclei 1158. Braak staging suggests that PD is unlikely to start within the striatum 

(our injection site) but more likely in the dorsal motor nucleus of the vagus nerve or the olfactory 

bulb 67. Injection of alpha-synuclein PFFs into these brain regions and subsequent monitoring 

of the synucleinopathy will be informative on the mechanisms underpinning PD. The 

development of such a PFF-induced synucleinopathy model would enhance our understanding 

of critical pathogenic features of the disease and permit the assessment of novel disease-

modifying therapies 988. As patients with PD continue to live with the progressive nature of their 

disease, establishment of an excellent preclinical model, accompanied by efforts to fulfil 

knowledge gaps of the disease, represent important strides towards developing therapies with 

curative potential and improving their quality of life.  

 

5. Impact and conclusion 

The present thesis presented data that contributed to original knowledge in PD research 

and met the objectives iterated earlier. First, ondansetron plasma and brain levels were 

determined following subcutaneous administration in the rat for the first time. These data 

enhanced understanding of the central effects of ondansetron in the rat, including its anti-

dyskinetic efficacy in the hemi-parkinsonian rat, as the literature did not examine the therapeutic 

relevance of relatively small doses of ondansetron. Second, in the 6-OHDA-lesioned rat, the 5-

HT3 antagonist granisetron significantly improved dyskinesia without worsening the therapeutic 

efficacy of L-DOPA. When taken together with results obtained with the 5-HT3 antagonist 
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ondansetron, these data suggest that the anti-dyskinetic efficacy of 5-HT3 antagonists is a class 

effect that is mediated by selective blockade of the 5-HT3 receptor. Furthermore, the efficacy of 

this approach was confirmed in the MPTP-lesioned marmoset, wherein ondansetron alleviated 

dyskinesia severity while also enhancing L-DOPA anti-parkinsonian action. Considering the 

higher face and predictive value of this model, these favourable data support the translation of 

clinically available 5-HT3 antagonists, namely ondansetron, to clinical testing for L-DOPA-

induced dyskinesia in PD. In addition to parkinsonism and dyskinesia, the MPTP-lesioned 

marmoset model also permits the assessment of psychosis-like behaviours. Thus, ondansetron 

treatment led to the suppression of psychosis-like behaviours in this model, which aligns with 

findings on the antipsychotic efficacy of ondansetron in open-label trials with PD subjects. 

These results are timely as there is an ongoing Phase II trial examining the effect of ondansetron 

on visual hallucinations in PD (NCT04167813), indicating that ondansetron, and possibly other 

5-HT3 antagonists, may be repurposed for the treatment of PD psychosis. In addition, the 

existing behavioural repertoire of psychosis-like behaviours in MPTP-lesioned marmosets was 

expanded, suggesting that they are idiosyncratic and stereotyped, reminiscent of punding 

observed in some PD patients. Further characterisation of the MPTP-lesioned marmoset 

enhances the value of the model for the evaluation of symptomatic therapies in PD, which is 

especially crucial for PD psychosis as it is the sole validated model.  

Whereas these behavioural studies have suggested evidence of anti-dyskinetic efficacy 

of 5-HT3 antagonists, they failed to reveal the mechanisms underlying their effects. In an attempt 

to uncover possible mechanisms of actions, an autoradiographic study found a selective 

upregulation of [3H]GR65630 binding in the subthalamic nucleus and ipsilateral entopeduncular 

nucleus and motor thalamus of dyskinetic 6-OHDA-lesioned rats but no significant alterations 
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in other brain regions examined. This was the first time that the role of the 5-HT3 receptor was 

assessed in the context of L-DOPA-induced dyskinesia, and these results provide insight into 

the brain regions that mediate the efficacy of 5-HT3 antagonists in dyskinesia that are worth 

further investigation. Current management of L-DOPA-induced dyskinesia remains inadequate 

and uncovering its molecular underpinnings as well as those of new therapies will facilitate the 

clinical development of these agents.  The data presented in this thesis provide support for the 

potential of ondansetron and other 5-HT3 antagonists in L-DOPA-related complications in PD, 

namely L-DOPA-induced dyskinesia and PD psychosis. Considering the substantial costs and 

barriers to drug discovery and development, the approval of several 5-HT3 antagonists as anti-

emetics may greatly accelerate their transition to clinical testing, leading to lower expenditures 

for repurposing in the treatment of PD.  

On the other hand, the findings on 5-HT3 antagonists and the role of the 5-HT3 receptor 

in PD are limited to symptomatic therapies. As iterated previously, toxin-based models of PD 

fail to recapitulate key molecular processes, particularly Lewy pathology, and consequently, 

lack disease-modifying potential. Development of an animal model that reproduces critical 

features of the human condition, particularly the abnormal propagation of alpha-synuclein, is 

instrumental to the development of disease-modifying therapies in PD. A step in that direction 

is the establishment of an intra-cerebral injection of alpha-synuclein PFFs model in the 

marmoset to model the progression of PD. To address issues of inter-individual variability in 

the brain and skull size of marmosets, the methodology to localise and inject into a surgical 

brain target was described. This was the first time that such a frameless stereotaxic approach 

was described in non-human primates, which relied on co-registration of multiple imaging 

modalities to determine unique stereotaxic coordinates of individual marmosets. Publishing the 
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methodology of such an approach facilitates development of an animal model with greater 

translational potential as well as accurate targeting of brain structures for other procedures, such 

as deep brain stimulation or electrophysiology. It is the ultimate hope that data presented in this 

thesis will help fill knowledge gaps of PD, in the quest to develop curative therapies for patients 

to alleviate their suffering.  
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Chapter 10 - Appendix



 

I 

 

Table I: Duration rating scale of ALO AIMs in the 6-OHDA-lesioned rat  

Parameter Score 

axial 

0: no dyskinesia 

1: occasional signs of dyskinesia, present < 50% of observation time 

2: frequent signs of dyskinesia, present > 50% of the observation 

time 

3: dyskinesia present during the entire observation period, but 

suppressible by external stimuli 

4: continuous dyskinesia not suppressible by external stimuli 

limbs 

0: no dyskinesia 

1: occasional signs of dyskinesia, present < 50% of observation time 

2: frequent signs of dyskinesia, present > 50% of the observation 

time 

3: dyskinesia present during the entire observation period, but 

suppressible by external stimuli 

4: continuous dyskinesia not suppressible by external stimuli 

orolingual 

0: no dyskinesia 

1: occasional signs of dyskinesia, present < 50% of observation time 

2: frequent signs of dyskinesia, present > 50% of the observation 

time 

3: dyskinesia present during the entire observation period, but 

suppressible by external stimuli 

4: continuous dyskinesia not suppressible by external stimuli 

Table adapted with permission from Cenci and Lundblad 2007 905.  



 

II 

 

Table II: Amplitude rating scale of ALO AIMs in the 6-OHDA-lesioned rat  

Parameter Score 

axial 0: no dyskinesia 

1: sustained deviation of the head and neck at about a 30º angle 

2: sustained deviation of the head and neck between an angle of 30º 

and 60º 

3: sustained twisting of the head, neck and upper trunk, at an angle 

between 60º and 90º 

4: sustained twisting of the head, neck and trunk at maximal 

amplitude, causing the rat to lose balance from a bipedal position 

limbs 0: no dyskinesia 

1: tiny movements of the paw around a fixed position 

2: displacement of the whole limb (horizonal or up-and-down) 

3: large displacement of the limb with visible contraction of shoulder 

muscles 

4: vigorous limb displacement of maximal amplitude, with 

contraction of both shoulder groups and extensor muscles 

orolingual 0: no dyskinesia 

1: twitching of facial muscles accompanied by small masticatory 

movements without jaw opening 

2: twitching of facial muscles accompanied by masticatory 

movements, occasional jaw opening 

3: movements involving facial muscles and masticatory muscles, 

frequent jaw opening and occasional tongue protrusion 

4: involvement of all of the above muscles to the maximal possible 

degree 

Table adapted with permission from Cenci and Lundblad 2007 905.  

 

 


