
Short title:- MULTIPROGRAMMING OF IBM 360
COMPUTER OPERATING SYSTEMS

AUTHOR: Alan Greenberg

TITLE: A HARDWARE-SOFTtvARE TECHNIQUE FOR
MULTIPROGRAMMING ~iO UNRELATED
OPERATING SYSTEMS ON AN IBM 360 COMPUTER

DEPARTMENT: Computer Science

DEGREE: Master of Science

A BST RAC T

A method of multiprogramming two discrete operating

systems simultaneously on one IBM System/360 computer is

presented. This hardware-software combination is called a

HYPERVISOR.

The growth of computer technology which led to the

need for such a system is traced. A variety of solutions

are proposed. The paper then presents one of these, the

Hypervisor, from its initial planning stages, through to its

implementation and testing. An evaluation of the Hypervisor

is made. A discussion of the future of the Hypervisor

concludes the paper.

AUTHOR: Alan Greenberg

TITLE: A HARDWARE-SOFTWARE TECHNIQUE FOR
MULTIPROGRAMMING TWO UNRELATED
OPERATING SYSTEMS ON AN IBM 360 COMPUTER

DEPARTMENT: Computer Science

DEGREE: Master of Science

A B R E G E

Cet ouvrage presente une methode de multiprogram

mation utilisant deux systemes d'exploitation distincts

simultanement sur un meme ordinateur IBM/360. Cette

combinaison d'equipement et de programmerie s'appelle

l'HYPERVISOR.

L'evolution rapide des techniques de l'ordinateur

conduisant vers cette combinaison est decrite. Une variete

de solutions y sont proposees. Puis les phases de

planification, de developpement et de mise en marche sont

presentees en detail pour une solution specifique, nommement

l'HYPERVISOR. La these se termine par une evaluation de la

solution decrite et une discussion de son application

future.

A HARDWARE-SOFTWARE TECHNIQUE FOR MULTIPROGRAMMING

TWO UNRELATED OPERATING SYSTEMS ON AN IBM 360 COMPUTER

Master of Science Thesis

Alan Greenberg

COMPUTER SCIENCE

McGILL UNIVERSITY

MONTREAL, CANADA

AUGUST, 1973

©
10"111

PREFACE

A basic requirement in the management of a large

scale computing facility is to provide the complete range of

services which the user community requires. Often, even if

the desired facilities could be obtained, it is impractical

due to cost, machine configuration, or incompatibility with

existing software.

This paper describes the development of a means by

which two discrete operating systems, each of which normally

operates on a dedicated IBM 8/360 or 8/370 computer, can be

multiprogrammed to operate on the same machine. Results of

the project are described, and future implementations are

discussed.

The reader is assumed to have some knowledge of

modern digital computer internals, but not necessarily of

IBM computers. Chapter 3 includes a description of all the

features of 8/360 architecture which are required by the

rest of the paper.

The author wishes to express his thanks to

Professor W.D. Thorpe, Director and Professor A.M. Valenti,

Associate Director of the McGill University Computing

Centre, for their encouragement and confidence throughout

the development of both the McGill-RAX System and the

Hypervisor described in this paper.

Special thanks are due to Mr. Roy Miller, who

worked together with the author during the past several

years developing the HcGill-RAX Time-sharing System, which

formed the base for the Hypervisor project. The assistance

of Mr. Peter Mann, the IBM representative at McGill, in

satisfying the author's many requests for information is

greatly appreciated.

The project to be described was carried out by the

McGi11 University Computing Centre, under contract to The

Illinois Bell Telephone Company, Chicago, Illinois. Without

their complete faith and confidence in the McGi11 Computing

Centre, this whole project would never have existed.

Specific thanks are due to Madelon Clymo, Ken Hahn and Janie

Melzor of Illinois Bell.

This thesis was prepared using the Administrative

Terminal System (ATS) running on the IBM S/360 Model 75

computer at the McGi11 University Computing Centre.

ii

TABLE OF CONTENTS

Chapter

1 • COMPUTER SYSTEM DEVELOPMENT • 	 1

2. ILLINOIS BELL TELEPHONE • . 	 7

3. SYSTEM/360 COMPUTER ARCHITECTURE •• 	 16

4. l1cGILL-RAX - OS/360 HYPERVISOR DESIGN • 29

5. HYPERVISOR IMPLEMENTATION • . • • • • 	 35

6. HYPERVISOR INTERNAL DESIGN AND OPERATION. 41

7. 	 OPERATING SYSTEM MODIFICATIONS •• 54

8. 	 HYPERVISOR PERFORMANCE ••••• 61

9. 	 OVERALL RESULTS AND

THE FUTURE OF THE HYPERVISOR. • • 73

10. CONCLUSIONS • 	 79

APPENDIX A • 	 80

BIBLIOGRAPHY 	 91

iii

CHAPTER 1

COMPUTER SYSTEMS DEVELOPMENT

The methods by which large scale digital computers

are operated have changed drastically in the last fifteen

years. l The first computers were relatively slow and little

support programming was available. To solve a problem, the

user would have to reserve the machine for his exclusive

use, and debug and run his job at the computer console.

Although this was not a very satisfactory approach, since

the machine was idle during the programmer's "think time",

it was still an acceptable method of operation. System

time, even on a large configuration, was often worth only

twenty five to fifty dollars per hour.

As machine speed and cost increased, one man

sitting at the computer console could not in general keep

the machine busy even a small percentage of the time.

Obviously, for a computer worth perhaps four hundred dollars

per hour, some other method of operation had to be devised.

The initial solution involved several new develop

ments. The first of these was the introduction of HIGH

LEVEL LANGUAGES. A high level language such as FORTRAN or

COBOL enables the computer user to present the problem that

1

he wants solved in terms familiar to him. A program called

a COMPILER translates this representation into instructions

that the machine can execute. One instruction in these new

languages might be translated into many machine instruction.

The programmer could now generate his programs much more

efficiently, no longer having to deal with the actual

details of the computer. Also, since the size (in source

language statements) of each program was usually greatly

reduced, the number of logical errors made by a programmer

would be similarly reduced.

The other significant development was that of

OPERATING SYSTEMS or PROGRAMMING SYSTE.f\1S. Their purpose was

two-fold. Firstly, operating systems provided subroutines

to perform repetitive or intricate operations for the

programmer. Many of these subprograms did routine

mathematical calculations (such as square roots,

exponentials, etc.). Often they related to input/output

(I/O) operations. The programmer could now simply tell the

operating system to read a block of data from a tape. The

system would issue all the necessary commands to perform

this and also initiate any error recovery which might be

needed. The availability of all these routines freed the

programmer from much of the tedious coding, leaving him free

to do more creative work. Also worth noting is that since

these routines were supplied, the user no longer had the

2

opportunity to make errors which might have occurred if he

had to write the routines himself.

The second facility which operating systems

provided on medium to large computers was the ability to

BATCH jobs. A whole set of jobs could be made available to

the computer at one time. When one job was complete, the

operating system would start processing the next one. All

information needed to process the job was supplied on the

punched cards included in the job. This included such

information as the type of language processor (Fortran or

Cobol, etc.) and the external facilities needed (tape

drives, etc.). Eliminating operator intervention between

jobs cut out much machine idle time. The next step was to

allow the operating system to actually run more than one job

concurrently. This was done by having several jobs reside

in memory at the same time. If one job could not execute

any more instructions until an I/O operation was complete,

the operating system would let one of the other jobs run for

a while. This technique of running more than one job at a

time is called J:.IDLT I PROGRAMMING •

These advances all helped to make more efficient

use of the computer resources and, consequently, improved

service and reduced the cost to the computer user.

3

'I'he newer higher speed computers with their

advanced software had many advantages over older models.

Due to their speed, these machines could be used to tackle

problems, which previously simply could not be handled. The

new programming languages also helped as the effort needed

to create a large program was often much reduced. The

11 cost/performance 11 ratio, the cost to perform a given amount

of computing, tended to go down as the size of the machine

increased. Of course since the number of applications using

the computer increased, the overall cost often increased as

well.

For many applications, the type of operating system

just described was and is quite suitable. However, for some

applications, specifically program development and execution

of short jobs, and information retrieval (inquiry)

operations, this environment was far from perfect. In many

computer installations, a job requires a minimum length of

time from the moment it is submitted for running until the

output is available to the programmer. This time is seldom

less than two hours and often as long as a day. This is

true even if the actual job is very short. A programmer

working on a project often needs many short runs to complete

his work. The batch operating system cannot usually satisfy

this type of need while at the same time provide the very

sophisticated facilities needed by other users.

4

The dilen~a of providing short turn-around for

simple jobs was answered by the development of TI~1E-SHARING

or TELEPROCESSING SYSTEMS. These systems usually work on

the following principle. Instead of giving each programmer

a ten minute time slot each day as a batch system might,

this system might give him a one second slice of time every

minute (on the average). To accomplish this feat, a number

of typewriter-like terrninals are connected to the computer.

The operating system apportions the computer's time among

all the active users at terminals. The user, instead of

punching his programs on cards and submitting them to be

run, now types the programs directly into the computer via

his terminal. The operating system keeps track of what each

user is doing. Since the average terminal user does not

make very large demands on a powerful computer, the

operating system, if properly designed, can keep a number of

users satisfied simultaneously. Ideally, each user's

requests or jobs can be completed quickly and while he is

thinking about what to do next, many other user's requests

are processed.

It is not inconceivable to imagine an operating

system which could provide a wide range of computing

facilities to the batch users, and at the same time, provide

a comprehensive, efficient means of programming via a remote

terminal. However, despite several valiant attempts, this

5

had not been accomplished (at the time of the study to be

discussed) for an IBM S/360 computer at a reasonable cost to

the installation and user.

6

CHAPTER 2

ILLINOIS BELL TELEPHONE

The developments in computer technology coupled

with a changing set of data processing requirements

necessitated a re-evaluation of the computer facilities at

the Illinois Bell Telephone Company during 1969. At that

time the processing at the company headquarters was being

done on several relatively small Honeywell computers, an IBM

7074 and two IBM System/360's, a Model 30 and 40. The

8/360-40 was running an interactive teleprocessing system

(RAX}t during the day and doing batch processing in non-

prime time using the IBM DOS (Disk Operating System). The

S/360-30 was also running DOS. DOS is an operating system

providing reasonably good facilities for business oriented

applications on small to medium sized machines (the Model 30

and 40 fit this category). RAX is an independent system

providing basic language and data management facilities for

use from a number of remote terminals concurrently. Its

facilities were (at that time) satisfactory for many

applications particularly in the fields of engineering and

data collection. At Illinois Bell, the largest application

was collection from remote locations. There was also a

tRAX IBl-1 program 360A-CX-17X. It was originally
called "RACS" for Remote Access Computing System.

7

large amount of general interactive program execution and

program development. Both the RAX and DOS IBM S/360's were

quite heavily loaded.

There were several criteria and aims concerning

modifications to and expansion of the computing facility.

It was desirable to provide a better time-sharing service

than the standard IBM RAX system. Also, it was necessary to

be able to handle a much larger workload on this system.

The intended plan was to replace the DOS system with the

S/360 Operating System (OS). This would provide a much more

versatile system featuring virtually all the batch oriented

processing facilities which could be needed. OS is better

suited than DOS to take advantage of a large computer

configuration and to provide the users with a sophisticated

set of facilities. This was needed since it was planned to

eventually shift much if not all of the work of the

Honeywells and the IBM 7074 to the S/360 computer(s). It

should be remarked in passing that OS, because of its

flexibility and wide range of services offered, has a much

larger overhead than DOS, and thus generally requires a more

powerful machine.

It seemed necessary to run both systems (or similar

ones) since, at the time, no single system existed for an

IBJl.1 S/360 which would provide the high level services and

8

through-put of os and the teleprocessing facilities of RAX.

Even such a system had existed for another manufacturer's

machines, the conversion effort would have been enormous.

The criterion of a better time-sharing system was

met by acquiring the rights to utilize the McGILL-RAX

operating system. This system is a version of the standard

IBM RAX system 2
, highly modified by the McGill University

Computing Centre to provide a much improved set of language

and terminal facilities for users.t

The requirements now evolved into the following.

McGILL-RAX (or an equivalent system) must be run during the

daytime hours (7AM-5PM) _ Its machine must be powerful

enough to support a much larger workload than the current

Model 40. The OS system must have the capability of

processing a large amount of work relative to the current

DOS Model 40 setup. It must be possible to process at

least test jobs and certain production jobs on OS during the

day_ This would allow programmers who are developing and

testing programs to use their time more productively. Both

systems should have some surplus power at the time of

installation and must be expandab without any unreasonably

high jump in cost.

tThroughout the rest of this paper, the name RAX will be
used to refer to the McGill-RAX operating system.

9

Several proposals were made. They are outlined

below.

Configuration one consisted of two S/360 Model

50's. During the day, RAX would be run on one and OS on the

other. At night, both machines could be used for OS. One

great advantage of this setup would be due to the fact that

the CPU and much of the I/O equipment would be duplicated.

The online RAX system would thus have excellent backup in

case of the failure of some piece of the primary RAX

machine. For several reasons however, this was not a very

satisfactory configuration. Running two individual OS

systems at night would be inconvenient since it implies

maintaining two versions of the operating system, two sets

of libraries, and so forth. A prime disadvantage of this

configuration would be the very high cost of upgrading one

or both of the l1:odel 50s to a S/360 I'lodel 65 (the next

larger size CPU). The two 1-1odel 50s would be able to cope

easily with the immediate workload, but should a larger

machine be needed for either system, the cost increase would

be large indeed.

Proposal two called for one S/360 Model 65. Such a

system would run RAX during the day and OS for the remaining

time. This hardware setup would give both RAX and OS plenty

of room for expansion and also happens to be the least

10

expensive of the suggestions. There were two major

drawbacks. A large amount of hardware, necessary to run OS,

would be idle while RAX was running. RAX simply had no use

at that time for all the core storage and I/O devices needed

by OS. Also, and more important, no OS jobs could be

processed during the day. This could not be accepted.

Solution three was to use one large S/360 Model 65

running OS. Although not utilizing RAX, this proposal quite

nearly met all the requirements. Under the Operating

System, a program called CALL/360 could be used. This is a

system similar to RAX, the major difference being that it is

not a stand-alone operating system but is part of OS. It is

not quite as versati as RAX, but it would fit the

requirements at Illinois Bell. The major deterrents to this

implementation were the higher hardware cost and the large

amount of conversion effort (and thus cost) needed to modify

all the RAX jobs to run under CALL/360.

'1'he fourth solution was to use a Model 65 using the

"Hypervisor" shared storage feature. This hardware

enhancement, when coupled with the appropriate software,

could allow two independent operating systems to coexist in

the same machine, each operating system running as if it had

complete control over its own computer. The Hypervisor

software basically controls the two supervisors, thus the

11

name HYPERvisor. If RAX and OS could be Hypervised

efficiently, this proposal would be quite attractive. At

this point the McGill University Computing Centre was

contacted concerning the feasibility of such a program.

After the matter had been studied, it was decided that such

a Hypervisor could be written. The Hypervised Model 65

could run RAX and a small OS system during the day and one

large OS system at night. In this configuration, OS jobs

could be processed during the day. Also, the large 65

configuration at night could, if properly used, be more

powerful that two Model 50 CPUs. There were disadvantages

of the Hypervised 65. Because of the hardware/software

implementation, duplication of some hardware for RAX and OS

would be necessary. When both systems were running, each

must have control of its own channels and I/O devices. The

possibility of a failure in one system impacting the other

system also had to be considered.

An overall consideration was the fact that any

Model 50 CPUs acquired would be rented while a Model 65

could be purchased. The economics are such that in the long

run, it would be less expensive to purchase than lease, but

it would not be worthwhile to purchase a machine which might

soon be outgrown (i.e. a Model 50). Because of this, the 65

configurations were even more attractive than the rental

prices indicate.

12

One other proposal was considered. This involved

the use of a System/360 Model 67 CPU running an operating

system called CP/67. A Model 67 is a special variety of

S/360 with full relocation hardware.t The CP/67 system

allows several conventional S/360 operating systems to run

simultaneously. The system is very generalized. Because of

this, it requires a large amount of hardware to support it.

Also, the software was extremely inefficient (at least at

the time this decision had to be made). This system would

be able to run RAX and OS simultaneously but the overhead

would tend to decrease performance by too much, especially

considering the high cost of the hardware involved.

Table I summarizes the various configurations with

respect to cost and features.

Based on the preceding data, all solutions but the

OS-CALL/360 and the OS-RAX Hypervisor were ruled out. The

final decision was to use the Hypervised Model 65 concept.

The decision was made partly because of the conversion

effort which would be necessary to use CALL/360. A large

factor in the decision, however, was that Illinois Bell was

tFull relocation hardware allows any section of physical
memory to be assigned any reasonable address (in 2048 byte
blocks) by the the operating system supervisor. This allows
the programmer to think he has contiguous storage, and
permits the system to fully utilize fragmented storage. 3

13

TABLE I

ILLINOIS BELL TELEPHONE

COMPUTER PROPOSAL SUMMARY

RAX OS COST ADVANTAGES

50 50 $74,182 Backup hardware

50 65 $92,652

65 50 $88,682

65 $66,013 Inexpensive
more power
two 50's

than

Hyp 65 $73,642 OS during day

67 $81,903 Versatile

65
CALL/OS

$77,148 One standard
machine/

software

DISADVANTAGES

Upgrade cost high

Upgrade cost
from two 50's

Not a likely
configuration

No OS during day

Two systems on
CPU affects
reliabili ty

Expensive, slow
extra versatility
not needed.

Conversion
effort, etc.

14

extremely pleased with the RAX system which they had

obtained from McGill. It was felt that if a Hypervisor were

to be obtained from McGill, it would be of similar quality.

The Hypervisor would effectively give a full 8/360 Model 65

to RAX during the day, a large Model 65 to OS at night, and

a "slow" Model 65 to OS during the day. Since both systems

would have a rather powerful machine available, there should

be no need to upgrade CPUs in the near future. The McGill

Computing Centre agreed to write the software needed to

Hypervise RAX and OS on the 65 (under contract to the

Illinois Bell Telephone Company) .

15

CHAPTER 3

8Y8TEM/360 CO~~UTER ARCHITECTURE

To understand the Hypervisor implementation, it is

first necessary to have a good background in the 8ystem/360

internal architecture and operation. 4

The main components of a 8/360 computer are a main

storage (memory), a central processing unit (CPU), channels

and various input/output (I/O) devices.

The NEHORY of a computer is a device capable of

storing binary information. The unit of storage in a 8/360

is eight bits and is called a BYTE. Bytes in the memory are

consecutively nlli.mered starting at zero. Each number is

considered to be the address of the corresponding byte. The

memory is used for storing programs consisting of

instructions to the computer, and data related to the

problem being solved. On a 8/360, the storage device is

composed of magnetic ferrite cores. The term CORE has become

synonymous with the term memory and will be used

interchangeably.

The CPU is responsible for executing instructions

stored in the memory. It can also establish communication

16

with the I/O devices under control of the program being

executed. Associated with the CPU is the Program Status

Word {PSW}. The PSW contains eight bytes of information

completely describing the status of the CPU in relation to

the running program, at any given time (Fig. 1). It

contains, among other things, bits of data specifying

whether the CPU is running or waiting (in WAIT state), what

type of occurrences may interrupt the current instruction

sequence, and the address of the next instruction to be

executed.

Under normal conditions, the CPU performs the

operation requested by each instruction. When this is

complete, it goes on to the next sequential instruction.

This process continues until the instruction executed is a

branch. In this case, the next and successive operations are

fetched starting from the address pointed to by the branch

instruction. The normal instruction sequence can also be

disrupted by interrupts, as described in the following

sections.

The channels interface the I/O devices to the CPU.

When a program wishes to do some input or output, the CPU

sends data to the channel concerning the type of operation

to be done (read, write, etc) and the adresses in memory

where the data is located or is to be placed. The channel

17

FIGURE 1

PROGRAM STATUS HORD

SYSTEf.l NASK KEY A M vi P INTERRUPTION CODE

0 7 8 11 12 15 16 31

ILC CC PGM MSK INSTRUCTION ADDRESS

32/ 34/ 36 39 40 63
33 35

SYSTEM MASK
Bits 0-6 If on, allows I/O interrupts on channels 0-6

respectively
Bit 7 If on, allows external interrupts

KEY
Specifies memory fetch and store limitations. If all zeros,
current program can fetch or store anywhere in memory

AMWP
A not used
M If on allows machine error interruptions
W If on machine is not running, but in "WAIT" state
P If on machine is in "PROBLEH" state and may not perform

any supervisor functions.

INTERRUPTION CODE
After an interruption, the reason for the interrupt is
stored here .

ILC
Instruction Length Code - length of the last instruction
executed (in a 8/360, instructions can be 2,4, or 6 bytes
long)

CC
Condition Code - two bits which may be set by one
instruction and tested by later one

PGM MSK
Program mask - four bits related to interruptions which can
occur during arithmetic operations

INSTRUCTION ADDP~SS
Address of next instruction to be executed (this and the ILC
can be used to compute the address of the last executed
instruction.

18

then operates independently and the CPU is free to continue

other processing. When the I/O operation is complete, the

channel signals the CPU that it is finished. The mechanism

used to signal the CPU of a completed channel operation is

the I/O interrupt. When an operation is complete, and the

current PSW allows this channel to cause an interruption

(Fig. 1 System Mask), the current PSW is stored in a

special location (Fig. 2) in the memory (I/O OLD PSW loc

56).t Next, a new PSW is loaded from another specified

location (I/O NEW PS~ij - loc 120). This new PSW contains an

instruction address pointing to a section of program

designed to handle completed input/output operations. This

routine can take whatever action is necessary and then

resume what the CPU was doing before the interrupt by

loading the PSW that was stored at location 120. The

channel address is a number (usually from 0-7) by which the

channel is identified. If when an I/O operation completes,

the current system mask disallows this channel's interrupts,

the interrupt remains "PENDING" until the system mask is

changed to allow it. The interrupt then occurs just as

described.

The principles employed in performing an

input/output operation are quite straight forward. The main

tAll memory locations referenced in this paper are
expressed in decimal.

19

FIGURE 2

SYSTEM/360 LOW CORE MAP

IPL PSW
0 • • • • • • •

IPL CCW 1
8 • • • •

,

• • •

IPL CCW 2
016 • • • • • •

EXTERNAL OLD PSW
24 • • • • • •·

SVC OLD PSW
32 • • • • • •·

PROGRAM CHECK OLD PSW
40 • • • • • • •

MACHINE CHECK OLD PSW
48 • • • • • • •

I/O OLD PSW
56 • • • • • •·

CHANNEL STATUS WORD
64 • • • • • • ·

CAW UNUSED
72 • • • · • •

TnmR UNUSED
80 • • • · •·

EXTERNAL NEl-V PSlv
88 • • • • • • •

SVC NEW PSW
96 • • • • · · •

PROGRAM CHECK NEW PSW
104 • • • • • •·

MACHINE CHECK NEW PSW
112 • • • • • • •

I/O NEW PSW
120 · • • • ·· ·

20

means of communication from the CPU to the channel is the

Channel Command Word (CCW) _ This consists of eight bytes of

information including the type of operation to be done, the

storage address of the data involved, and the number of

bytes of data to be transferred. To initiate an I/O

operation, the software constructs one or more CCWs and

places the address of the first one in the Channel Address

Word (CAW) at loc 72 of the memory_ The program then issues

a Start I/O (SIO) instruction specifying the unit number of

the device to be used. The channel looks at the pointer in

the CAW and from this location (Le. the location of the

CCW) gets its instructions. Assuming that the CAW and CCW

are valid, the SIO instruction is now complete and the CPU

is free to go on to the next instruction. The channel

performs the operation(s) described in the CCW{s).

As soon as it is finished, and as soon as the CPU

System Mask allows interrupts from this channel, an I/O

interrupt occurs. The unit number of the device which was

addressed is stored in the interrupt code of the I/O OLD

PSW. Also, a Channel Status Word (CSW) is stored at

location 64. The CSVV indicates whether or not the operation

was successful. If it was not, the CSW also gives

information pertaining to the error conditions.

21

The interval timer is another feature available on

most 8/360 computers. This device allows the program to

measure and keep track of time. The interval timer consists

of four bytes of storage starting at location 80 in the

memory. Every 1/60 of a second, this location is

decremented. The amount of each decrement is 1380. This is

equivalent to 1/60 second, since the interval timer is in

units of about 13 microseconds. If this value should become

negative, a timer interrupt occurs (assuming the current P8W

system mask allows it).

This timer interrupt is a specific type of EXTERNAL

interruption. It operates in a way similar to the I/O

interrupt; in this case however, the machine stores the

current P8~v in the EXTERNAL OLD PSW (loc 24) and fetches the

new one from the EXTERNAL NE~v P8W (loc 88). This new P8W

points to a routine written to handle timer interrupt

conditions.

To use the timer to measure elapsed time, the

program need only initialize the timer to some value. At

any later time, the difference between this original value

and the current contents of the timer is a measure of how

much time has passed.

22

To limit a function to a specific length of time, a

program places in the timer location a value equal to the

allowed time (in timer units). When the period has expired,

a timer interrupt will occur.

The last feature of the S/360 machines which is

relevant to the Hypervisor design is the method in which a

program or operating system is first loaded into the

computer. To begin operation, the address of the device

where the progra~m resides is placed in a set of dials. The

"LOAD" button is then pressed. This causes the INITIAL

PROGRAM LOAD (IPL) procedure to take place within the

machine. This procedure is equivalent to doing a SIO on the

selected device, using a CCW which contains a read command.

This reads 24 bytes of information into locations starting

at location zero of memory (Fig. 2). This 24 bytes of data

from disk contain more CCWs and a PSW (Fig. 2). The channel

program continues after the read, using the CCWs now at

location zero. When the I/O operation has been successfully

completed, the PSW at location 16 is loaded. This PSW

normally points to the program loaded by the I/O operation

just performed.

The Hypervisor hardware modification allows the

memory of the computer to be divided into two independent

sections from the viewpoint of the programs. In the

23

following explanations and examples, for simplicity, we will

assume that the computer has a memory of 20000 bytes (in

reality, the core sizes of machines on which this paper is

centred are from 256K to 1024K (K = 1024 bytes». When it

is divided, there will be two segments, each of 10000 bytes.

Note that the memory addressing starts at zero, so that the

20000 byte memory is addressed from 0 to 19999 and the 10000

byte segments as 0-9999. When the Hypervisor feature is

active, the memory is partitioned into two logically

separate core storage boxes. As far as the CPU and channels

are concerned, the addressing of each box starts at location

zero and increments by one until its highest address. Thus

there are now two locations "0", two locations "1", etc.

Since there are now two low core areas, all special

locations (e.g. OLD, NEW PSW's) are duplicated. It is the

joint function of the Hypervisor hardware and software to

control which of the core boxes is to be used for which

purposes.

This control is achieved via the PREFIX CONTROL

REGISTER (PCR). The PCR is an extra hardware register

consisting of eight bits numbered 0-7. Bits 0-6 refer to

I/O channels 0-6. Bit 7 to the CPU itself. If all

the bits are zeros, the machine operates as a normal S/360.

No memory partitioning take place. Once any of the bits are

on, core storage is divided into two segments. If the bit

24

corresponding to a channel is on, then any time that channel

references the computer memory, 10000 will be added to the

address specified by the channel. What this means is that

if the channel is instructed to read some data into location

100, and its PCR bit is on, the data will really be placed

at location 10100 of the real memory_ Note also that when

this channel stores its CSW and fetches it's CAW, although

it is referring to locations 64 and 72 respectively, the

real memory locations used will be 10064 and 10072. As far

as this channel is concerned, its memory starts at byte zero

and goes as far as 9999. In reality, it is using locations

10000 to 19999.

Similarly if bit 7 of the PCR is on, any storage

reference made by the CPU is relocated. This is true for

storage references to get instructions as well as data. A

branch to location 500 will cause the next instruction to be

fetched from real core location 10500 if PCR bit 7 is a one.

If the bit for any channel or the CPU is off, it

can refer to memory locations 0-9999. If the bit is on,

apparent addresses are also from 0 to 9999, but these latter

references will actually address physical locations 10000

19999. It can be seen that a program written to work in a

normal machine can work in the upper core box of a

Hypervised machine without any modification. All that is

25

necessary is to make sure that the relevant PCR bits are set

to ones.

Table 11 gives examples which illustrate these

rules. Instead of the 20000 byte machine used in the

previous examples, the table assumes a machine of 50000

bytes partitioned at byte 20000.

Note that the bit 7 for the CPU can be turned on or

off at will. However, if the channel bits are changed while

data is being transferred, the results could be disastrous.

Data would start in one of the memory boxes and suddenly

jump into the other one. The channel bits could be changed

if all channel activity could be quiesced first. However,

this would require much co-ordination and synchronization

between the two programming systems. In most cases, it is

simply not practical. It also follows that since the

channel bits should not be set to zero during normal

mUltisystem operation, once the memory is partitioned, it

must remain so. This means that while running, a program

residing in one part of the memory cannot access the core of

the other.

Remember also that the interval timer is at

location 80 of the TItemory and is decremented every 1/60 of a

second by the CPU. If the CPU PCR bit (bit 7) is on at the

26

TABLE 11

HYFERVISOR SHARED STORAGE FEATURE

PREFIX CONTROL REGISTER EXAMPLES

PCR REFERENCE RELOCATED ADDRESS ACTUAL
FROM ADDRESS

10100001 Channel 0 YES 100 20100

10100001 Channel 1 NO 100 100

10100001 Channel 2 YES 200 20200

10100001 CPU YES 300 20300

10100001 CPU YES 20400 40400

10100001 CPU YES 30400 invalid
50400>49999

10100001 Channel 0 YES 20100 40100

10100001 Channel 1 NO 20100 invalid
20100>19999

11000000 CPU NO 201 201

11000000 CPU NO 30003 invalid
30003>19999

00000000 Channel 0 NO 100 100

00000000 Channel 1 NO 30004 30004

00000000 CPU NO 45777 45777

27

time, the location that gets decremented is the location 80

in the high core box. The machine is now running with two

timers. One of them being decremented part of the time and

the other active the remainder of the time.

One new instruction is added to the System/360 with

the Hypervisor feature. It is the SET PREFIX and BRANCH

(SPB) instruction. The operands of the SPB instruction are

one 8 bit byte and a memory address. The PCR is first set

according to the 8 bit code. Then the CPU branches to the

address specified in the instruction. If the new PCR

contains a zero in bit 7, the address is used as is.

However, if bit 7 is a one, the address will refer to the

upper core box since relocation is now in effect for all CPU

storage references. This instruction therefore gives the

ability to set the Prefix Control Register and to transfer

program control from one of the core boxes to the other.

28

CHAPTER 4

McGILL-RAX - 05/360 HYPERVISOR DESIGN

The concept of Hypervising two operating systems

was first developed to allO\v a 5/360 computer to run both

OS/360 and a 7074 Emulator program simultaneously. An

emulator is a hardware assisted program which simulates

another type of computer. The 7074 emulator runs on certain

S/360 CPUs. It is a stand-alone system, that is, it

normally runs on a machine all by itself, not depending on

any other operating system. Hhen a computer installation

converts from an older type of computer such as an IBM 7074

to a newer S/360, the emulator allows old jobs to be run

without any modification or conversion. As time passes,

less of the workload is emulated and more becomes S/360

progranuning. To run this type of job mix the computer must

alternatively run OS and the emulator program. The

Hypervisor hardware and software allowed these systems to be

run concurrently.

Since the initial impl6aentation, the Hypervisor

has been used to run several other combinations of operating

systems. Examples of these are 7074 emulator/DOS, two 7074

emulators, and two DOS systems. 5 It has so been reported

that a modified IBM RAX and OS/360 have been Hypervised

29

before, but documentation relating to this has not been

available. A short paper6 was obtained (from IBM) giving

an implementation plan for Hypervising RAX and OS. Because

of different design criteria, this paper's ideas were not

followed very closely, however, it was useful in the initial

planning stage. It was never established whether this paper

described an existing system or was simply a possible

implementation specification.

Once the decision was made to use the Hypervised

8/360-65, the software specifications were set. There were

two sets of guide lines established. The first set were

criteria which it was felt must be met for the Hypervisor to

work as planned. The other set were desirable attributes

which were to be included if possible. That is, the first

criteria must be met, the second were to be satisfied but

not at the cost of any of the first set.

Major criter

A-1 	 The RAX system must have priority over the 08/360

system. Any time RAX needs the CPU, it must get control

over it quickly (i.e. within a period of time measured

in microseconds). There must be a minimum of

degradation in RAX due to OS.

30

A-2 While running under the Hypervisor with OS, RAX

reliability should not suffer appreciably. This means

RAX should be able to keep running even if OS crashes

{stops dead}.

A-3 	RAX time charges must be accurate both for execution and

connect time. This means RAX's timer must be running

(logically if not physically) at all times. RAX must be

able to keep track of time used for CPU work, time in

wait state, and time of day, all reasonably accurately.

A-4 	OS must be able to maintain job timing. OS charges are

by CPU time and a measure of how long the job utilizes

system resources (core, I/O units, etc). Time of day

accuracy is desirable but not mandatory.

A-5 	The OS system will have only 256K memory during the day.

This is not a very large configuration and therefore the

amount of core occupied by the Hypervisor on the OS core

box should be kept to a minimum.

31

Minor Criteria

B-1 The Hypervisor should depend as little as possible on

ther control blocks or coding within 08/360. A new

version or release of OS should necessitate a minimum of

changes in the Hypervisor.

B-28imilarly, the number of changes to 08/360 itself should

be kept small, preferably zero.

B-3 	The Hypervisor coding should be efficient, particularly

the sections which are executed often (up to several

million times per day). It should not appreciably

degrade either RAX or 08 operation.

B-4 	The same system residence disk packs for both 08 and RAX

should be able to be used on a Hypervised system or

stand-alone. It would not be desirable to have to

maintain two almost identical systems.

B-SThe Hypervisor should keep internal usage statistics.

These are useful to measure its performance and help

indicate areas where design improvement might be needed.

B-6 	It should be easy to modify the Hypervisor to reflect

hardware configuration changes.

32

After the initial installation of tile Hypervisor, a

new requirement developed. In the original design, if OS

failed catastrophically during the day, it was felt that it

would be satisfactory to leave OS off until the end of the

RAX day. This seemed reasonable at the time for several

reasons. First, it was not expected that OS would fail very

often. Second, since before the Hypervisor was used, no OS

production was processed during the day, it was felt that to

occasionally revert to this condition would not hurt

greatly.

In practice, OS did fail with some regularity due

to both hardware and software problems. Also, once the

programmers were used to having OS jobs run during the day,

it was not very satisfactory to suddenly withdraw this

facility. The new criteria all related to increasing the

reliability and availability of both systems, but

particularly OS.

Additional Criteria

C-1 	 The Hypervisor must be able to re-IPL OS during

production hours with minimal effect on RAX and its

users.

33

C-2 Either system can run without the other. That , RAX

can run under the Hypervisor without 08/360 running, and

08 can run if RAX is inactive.

C-3 Either system can be stopped or started at any time.

These additions vJ'Ould not only allow either sys tern

to be re-IPL'd during the day, but due to the second and

third specifications, one of the systems could not be

started due to either hardware or software malfunctions, the

other system could still be run. When the errors had been

corrected, it would be very likely that the first system

could now be IPL'd without affecting the work being

processed on the running system.

34

CHAPTER 5

HYPERVI80R IMPLEMENTATION

The Hypervisor program to be described was written

in accordance with the specifications laid out in the

previous section. It corresponds to the McGILL-RAX - 08/360

Hypervisor currently installed at the Illinois Bell

Telephone Company.

External Implementation

FroIa the machine operator's point of view, the

Hypervisor operation consists of the following procedures.

To start, the Hypervisor is loaded from a magnetic tape or a

deck of cards. Once it is in core, a command can be typed

in on one of the console typewriters. This command should

instruct the Hypervisor to IPL either OS or RAX. The

specified system will be loaded. When its initialization is

complete, the console of that system can be used to instruct

the Hypervisor to load the other operating system. After

that, commands can be entered on either the systems

consoles.

35

Theory of Operation

When both the systems are running, RAX has ultimate

control of the machine. When RAX has no computing to do,

and it would normally go into wait state, it now transfers

control to the Hypervisor. The Hypervisor restarts OS/360

at the place where it was last interrupted. When an I/O

interrupt occurs, it is handled by a Hypervisor routine. If

it is for OS, a branch is taken to the OS I/O First Level

Interrupt Handler (I/O FLIH). If it is from a RAX device,

the information pertaining to the interrupt is passed back

to the RAX machine for processing. That in principle is all

the Hypervisor does. In practice, there are many

complications.

The aim of the implementation is to give OS as much

time as possible without degrading RAX. That is, any time

during which RAX would normally go into wait state, let OS

use the CPU. However, often when RAX wishes to go into wait

state, its PSW system mask does not allow interrupts on all

channels. If it were in real wait state and an I/O

operation on one of the masked out channels completed, the

interrupt would remain pending until RAX changed its system

mask to allow this channel to interrupt the CPU. That is,

the interrupt would not occur until RAX wanted it, and then

it would occur immediately. With the Hypervisor, when

36

control is passed to OS, this interrupt will occur

immediately, as OS allow interrupts on all channels. To

stop OS from accepting interrupts on some channels some of

the time would have necessitated extensive (if not

impossible) modifications to OS. This was completely ruled

out. Thus this interrupt will occur and be intercepted by

the Hypervisor I/O interrupt routine. It cannot be passed

on to RAX, since RAX does not want now. This problem is

solved by means of the Hypervisor being able to remember

interrupt information until RAX is ab to accept it. These

interrupts are said to be queued or STACKED. The stacks are

really First-In-First-Out (FIFO) queuest, one being

maintained for each channel.

The other major bottleneck in the Hypervisor

implementation has to do with the interval timer management.

RAX is required to be able to keep track of time accurately.

The timer at location 80 of the RAX memory, however, is only

running when RAX is actually using the CPU. Somehow, RAX

must keep track of the rest of the time when OS is in

control. Basically this is done by noting OS/360's time of

day (TOD) whenever OS is given the CPU, and again before RAX

is to get The difference is subtracted from the

tThe term STACK normally refers to a first-in-last-out
list, but it is used in this paper to mean a FIFO list to
coincide with the terminology used within the actual
Hypervisor module.

37

original value at RAX's location 80. This effectively lets

RAX know about all the time that passes while it is not

running. Of course, it is not that simple. If the

subtraction cause the interval timer to go from a positive

value to a negative one, an external (timer) interrupt

should occur. This is what would happen on the real hardware

if the timer became negative. Similarly, if the Hypervisor

finds that the value of the timer becomes negative, it

simulates an external interrupt just as it normally sends

I/O interrupts to RAX. If RAX is not currently allowing

timer interrupts to occur, it is stacked on a special queue.

Another problem which occurs is that on a real

machine, if an interrupt is pending but not allowed due to

the PSW system Bask, and later the system mask is changed to

allow interrupts on this channel, the I/O or external

interrupt is automatically taken. However in our case, this

interrupt may have been accepted while OS was running and

queued in the Hypervisor's stacks. When control is given to

RAX, the information remains queued. Later, RAX may execute

a SET SYSTEM MASK (SSM) or LOAD PROGRAM STATUS WORD (LPSW)

instruction to change the system mask. The physical channel

at this time would pass the interrupt on to RAX. Since it

is pending in the Hypervisor stacks now, not the channel,

RAX is not informed of its presence automatically. The

Hypervisor has to tell RAX about it. The solution taken, is

38

to modify RAX so that any time it executes a critical SSM

or LPSW instruction, it calls a subroutine in the Hypervisor

program to inquire whether any pending interrupts can now be

taken. If any are available, they will be presented to RAX

at this time.

The next set of problems centre around the IPL of

OS/360 while RAX is running. The actual IPL is simulated

rather simply and will be described in the detailed program

description. The main point worth noting concerns the timer

management. When control is first given to the os IPL

program, the OS timer routines are not yet loaded into core

yet. This makes it difficult to calculate the os TOD. This

time is needed to maintain the RAX clock. Fortunately, it

is known that OS will very quickly set its time of day to

00:00:00 (i.e. zero hours, zero minutes, zero seconds).

This gets over the first hurdle of the actual IPL. Later,

(perhaps several seconds or minutes), the computer operator

issues a SET CLOCK command to os to tell it the real clock

time. When the Hypervisor next gets control, it finds that

the OS TOD has jumped by a large amount (from 00:00:00 to

some large value). In reality, only a fraction of a second

has gone by. The Hypervisor cannot show this jump to RAX.

39

Yet, it must be capable of passing large increments to RAX

at other times.t The solution is that the Hypervisor ignores

a large jump (greater than 30 minutes) only if it occurs

when the previous time was small (less than zero hours, ten

minutes) • This method is not fool-proof. If OS is IPL'd

under the Hypervisor between midnight and 12:30 AM, it will

not work properly. However since the Hypervisor is normally

working only during the day shift, the method outlined above

will work quite satisfactorily.

tThis would be necessary if RAX was on the air, but not
very busy for a long period of time.

40

CHAPTER 6

HYPERVISOR INTERNAL DESIGN AND OPERATION

Following is a detailed description of the

Hypervisor control program. Emphasis will be placed on

logic flow within the software rather than coding

techniques. The text closely follows the Hypervisor

flowcharts found in Appendix A. Capitalized names within

the text usually refer to labels used within the flowcharts.

Hypervisor Initialization

After the Hypervisor is loaded, it takes complete

control of the machine by setting all the new PSWs in OS's

low core to point to its own interrupt handlers. At the

same time, the location 80 timer is initialized. A read

command is started on the console typewriter. When the

operator has finished typing something in, control is given

to the standard Hypervisor console command handler. If this

message is a request to IPL either RAX or OS/360, it is

carried out. If any other reply is made, the initialization

process must be re-done (i.e. IPL the Hypervisor again).

41

I/O Interrupt Supervisor

When an I/O interrupt occurs while OS is running

the Hypervisor IOINT routine is entered. If the interrupt

is from an OS/360 device other than the console typewriter,

the os I/O FLIH is given control. For the typewriter, tests

are made to determine the interrupt concerns a Hypervisor

message. It could be either a Hypervisor command from the

operator or an indication of the completion of a Hypervisor

message to the operator. If it is, the correct processing

routine is called. Otherwise, a transfer is made to the os

interrupt handler.

If the interrupt is from a RAX device, the

information must be passed on to RAX or stored for future

use. First though, the amount of time since RAX last had

the CPU is calculated and subtracted from the RAX interval

timer value. If this causes it to become negative, and

external interrupts are allowed by RAX, the I/O interrupt is

stacked and control is returned to RAX signalling a timer

overflow. If it goes negative but external interrupts are

not wanted, it is stacked. In all cases except when the

timer interrupt is taken, a decision must be made concerning

the original I/O operation (and any other ones which may

already be stacked). The queues are inspected and if an

42

interrupt can be passed on to RAX, it is done. If none can

be found, control of the CPU is returned to 08/360.

Interrupt Queue ~1anagement Routines

All pending interrupt data is stored in queues (or

stacks). A queue exists for every channel used by RAX and

for external interrupts. If a queue is non-empty, it

consists of pointers to queue elements which contain the

relevant information. There is also a dummy queue

consisting of unused (free) queue elements. All the queues

are managed on a first-in-first-out (FIFO) basis. Each

queue control block contains data relating to the start and

end of its stack. Also maintained is the count of elements

currently on the queue and several usage statistics.t Each

queue element has room for the device address where the

interrupt originated, the CSW, and a pointer to the next

element on the queue.

A set of subroutines is used to maintain the

queues. The STACKIO routine will transfer information

relating to the current I/O interrupt to the appropriate

channel queue. During this operation, a call is made to a

tStatistics maintained are; the number of times the queue
is used, and the all-time minimum and maximum number of
elements in the queue.

43

subroutine within the RAX supervisor to fetch the contents

of the RAX CSW. Since this was a RAX I/O interrupt, the

channel PCR bit is on and the CSW is stored in the upper

core box. The Hypervisor, which resides in the lower core

box cannot access the CSW itself.

The STACKEXT routine notes that a timer interrupt

has occurred. This routine will only allow one element in

the stack. Two pending external interrupts is a condition

which cannot occur on a real machine and should never occur

within the Hypervisor.

The UNSTACK module inspects the pending interrupt

stacks and returns with the best one which can be taken.

Consideration is given to the current RAX PSW system mask,

the relative priority of the channels and the order in which

the original interrupts occurred.t

There is also a small function to simply empty out

all the interrupt stacks (CLEANSTK). It is equivalent to a

IISYSTEl1 RESET II on a CPU as it removes all traces of pending

interrupts. It is used by the IPL simulator to obtain a

IICLEAN" machine.

tExternal interrupts have the highest priority. Channels
come next, the higher the channel number, the lower the
priority. Elements within each queue are processed FIFO.

44

The queue utility subroutines GETQEL, PUTQEL are

used by all the above functions to perform the actual queue

element additions and deletions.

RAX Interface Routine

This section of the Hypervisor is entered from RAX

to perform a variety of services. All communication from

RAX to the Hypervisor is done via this path. There are

three reasons for coming here.

The first is a request to inspect the stacks for

pending interrupts which can now be taken. It is called

after RAX executes a SSM or LPSW instruction which may

change the system mask. Return is made to RAX with the

information requested.

The second entry is used to pass to the Hypervisor

a message from the RAX console. Control is given to the

console command processor.

The third type of entry is used when RAX has

nothing to do and therefore wishes to go into wait state.

If any stacked interrupts can be returned immediately, they

are. If not, the machine will normally be given to os.

First however, a check is made to see that the interval

45

timer has not gone negative since external interrupts were

last allowed by RAX. If it had and control were given to

OS, OS would at once receive a timer interrupt which

rightfully belongs to RAX. The check is made by momentarily

allowing external interrupts. If one occurs, it is either

stacked or passed on to RAX RAX is currently allowing

externals). If this is the first time the wait routine has

been called, the opportunity is taken to send an IPL

COMPLETE message back to the OS console, assuming it was OS

that IPL'd RAX. In all other cases, OS is given the CPU.

It keeps it until the next I/O interrupt occurs at which

time IOINT takes over.

OS/360 - Hypervisor Interfaces

There are three Hypervisor routines that have

contact with OS/360 directly.

The first of these is the OSTIME module. Its

function is to give the I/O interrupt handler the time of

day according to OS/360. Is OS is active at the time, the

OS timer control blocks are inspected to determine what OS

thinks the time is. Note that this will normally not be the

correct time since the OS clock is not running while RAX is

active. If OS is not being used, a fake time of day is

produced. This is just the negative of the interval timer

46

(divided by 256 to obtain 300th of a second). Both of

these times are not true clock times although the former is

slightly better than the latter. However, on two successive

inspections, with os using the CPU in between, they both

give accurate elapsed time. This is their true purpose and

both are quite satisfactory.

The next two routines are used only once each

during normal operation. One is IOCATCH. Its purpose is to

intercept the first I/O interrupt when OS starts running

after an IPL and perform patches to the OS nucleus. When OS

is loaded, the I/O HEW PsvJ points to its own I/O FLIH. The

first instructions of the interrupt handler however are

modified to branch to IOCATCH. This routine replaces the

modified instructions in the I/O FLIH, saves the original

I/O NEW PSW and stores a new one at location 120 to give

control to IOINT on all following interruptions. Also

modified is the PROGRAM CHECK NEVv PSW so that if the

Hypervisor accidentally gets a program error, it will be

noted as such instead of being attributed to some user

program running under OS.

The last OS interface module is OSWAIT. Its

function is to intercept OS/360 wait states. That is, when

OS intends to go into a wait state, it instead goes to

OSWAIT. The first time it is entered after start-up, if the

47

IPL request had been from RAX, a message is sent back to the

RAX console saying IPL COMPLETE. This effectively returns

control of the CPU back to RAX, since the OS IPL was done

only as an exit to the RAX console handler. Under any other

conditions, OSWAIT simply goes into wait state by loading a

PSW with the wait bit set to one. This PSW, like the normal

os wait state PSW has a system mask of all ones to allow all

interrupts.

Hypervisor Message Handler

If an operator command for the Hypervisor is typed

in, control is given to the appropriate analysis section.t

Either RAXMSG or OSMSG is entered, depending on which

console the message was typed. Through the RAX console, the

operator can drain (stop dead) RAX, drain OS, and IPL OS.

From the OS console, the operator can drain and IPL RAX, and

ask for a display of the Hypervisor internal counts

(statistics). Also, at initial Hypervisor IPL time, this

console can be used to IPL OS. When a valid command is

recognized, the message scanner transfers to the correct

command processor. If an invalid command is entered, an

error message is returned.

tAll commands for the Hypervisor are prefixed by two
equal signs, as in '==IPL OSI.

48

RAX IPL Simulator

The purpose of the IPL simulator is to load RAX

into the upper section of the memory, set the PCR correctly

and transfer to RAX. It basically simulates the "LOAD"

button with additional functions necessitated by the shared

storage feature. Since there is no RAX I/O active at this

time, the simulator sets the PCR to zero so that all core

may be addressable. After clearing RAX's core, it moves

into it a small IPL program. The CLEANSTK routine is called

to discard any pending interrupts. Switches are set to say

that RAX is being started. The PCR is set for all RAX

channels and the CPU. At the same time, a branch is taken

to the IPL program in the RAX core box. This program starts

a read request on the RAX system residence disk. After the

read, the CCWs just read into core at location zero are

executed. On successful completion, the PSW at location 16

is loaded. This completes the IPL of RAX. If the I/O had

not been without error, the IPL program would go back to the

Hypervisor and an error message would be sent.

Once RAX completes its normal system

initialization, when it would normally go into wait state

(waiting for work to do), it returns to the Hypervisor via

the normal RAX wait processor. At this time, it passes to

49

the Hypervisor, addresses within the RAX supervisor of

several service routines to be used by the Hypervisor.

OS/360 IPL Simulator

The program to load OS/360 is similar to the RAX

loader but a bit more complicated. Since both the

Hypervisor and OS reside in the lower core box(es) , there is

no need to set the PCR here. Channel programs are set up

similar to those for loading RAX, and the I/O performed. If

an error occurs, a message is issued. the I/O is good,

several patches are made to the OS IPL-TEXT program before

it can be given the CPU. First, a byte is set to say it

should load an alternate nucleus instead of the standard

one. This secondary OS nucleus contains patches which cause

branches to the OSWAIT and IOCATCH routines. Next a

modification is made to limit os to the memory below where

the Hypervisor resides. If left on its own, OS would

compute how much core was available. Since the space where

the Hypervisor exists is physically availab , OS would use

it, thereby destroying the Hypervisor. The last set of

patches is made so that if the IPL-TEXT program finds any

serious errors (I/O or otherwise), where it would normally

go into a dead wait state, it will now go back to the

Hypervisor. Thus if RAX is active, it can keep on running.

When all this has been completed, the IPL-TEXT will be

50

entered. OS will have complete control of the CPU until it

first enters into its normal wait state. Then OSWAIT will

be used to give CPU control back to the Hypervisor. The

whole IPL procedure normally takes only a few seconds. It

is not unusual for RAX to lose control of the machine for

only about five seconds if the computer operators perform

their jobs well.

Display Hypervisor Statistics

The HCOUNTS routine types on the OS console a

series of lines each containing the name of an internal

counter and its value. Both systems continue running while

this is being done. OS however cannot access its console

during this time. As it might take up to one minute for all

the information to type, os could stop due to this if it had

some urgent message to type or needed an operator reply to

continue. It is not a major problem since the counts are

not normally produced very often.

Drain Processing

If the Hypervisor is instructed to shut down either

operating system (via the n==DRAIN OS" or "==DRAIN RAX"

commands), appropriate switches are set to ensure that the

referenced system will not be made active again (unless it

51

is re-IPL'd). If OS has gone into a dead wait state or a

loop, and the console typewriter cannot be used, the PSW

RESTART button on the CPU control panel can be depressed.

This causes a branch to KILLOS which has the same effect as

entering a II==DRAIN OSII command.

Console Exit Processing

After processing any operator command, the

Hypervisor exits back to the system which originated the

message. If it was RAX, the RAX console processor is

returned to; if OS, after any reply has been typed, the

following subterfuge is carried out. Since the original

command was intercepted by noticing that an OS/360 console

read operation had completed, OS still thinks the read is

active. To satisfy the OS console manager, an I/O interrupt

is simulated. A 11 DISPLAY TIME" command is placed in the

original buffer in place of the line the operator really

typed. The I/O PSW and the C8W is set up to indicate the

completed read operation. This simulated I/O interrupt is

handled as if it were a real one. This method logically

completes the read which 08/360 initiated and when 08

responds to the message, it effectively time-stamps the

Hypervisor command.

52

Hypervisor storage Requirements

One of the major criteria in the Hypervisor design

was that it occupy as small a region of main storage as

possible. The final version of the Hypervisor described

here requires only 5500 bytes of memory. Since the value

must be rounded up to 2K (2048) segments, the final storage

requirements are 6K. This was well within the original

specifications.

53

CHAPTER 7

OPERATING SYSTEM MODIFICATIONS

OS/360 Modifications

The design criteria called for the Hypervisor to be

as independent of OS/360 and its internal workings as

possible. It was of course necessary to assume that the

basic operations of a S/360 CPU would not change. The first

version of the Hypervisor was very OS independent. To

maintain TOD, a small routine accessed the relevant OS

control block. 7 If the format of these would be changed in

the future (quite unlikely), the Hypervisor subroutine could

easily be rewritten. In general however, it was most

unlikely that future versions of OS/360 would not work

properly with the Hypervisor.

In the final Hypervisor, due to the need to IPL

OS/360 and yet still retain control of the machine, much

more knowledge of OS had to be built into the Hypervisor

logic. Also, OS itself had to have several changes made

(although none very large or complicated). There are two

areas of problems.

54

1. 	 When OS is IPL'd, it brings into core its own set of new

PSWs. This cannot be stopped easily as this is only a

minor result of the necessary loading process. Thus I/O

interrupts no longer go to the Hypervisor but to the OS

I/O FLIH. To retain control, the Hypervisor must

inspect ALL I/O interrupts.

2. 	 During initial loading, if some sort of error is found,

the load routine simply loads a PSW to put itself into

wait state with no interrupts allowed (Dead Wait). This

lack of any activity acts as a signal to the computer

operator that something is wrong. If this would happen

under Hypervisor control, RAX would be dead also. This

condition not desirable.

The solution to both these problems is not

difficult. In the first case, the initial instructions of

the OS I/O FLIH are modified to transfer to the Hypervisor.

This Hypervisor routine saves the OS new PSWs and replaces

the with Hypervisor PSWs. At the same time it replaces the

original instructions in the OS I/O FLIH. All I/O

interrupts now go to the Hypervisor and then are passed on

to the I/O FLIH in the appropriate system as described

previously.

55

The second problem also has a relatively simple

solution. After the Hypervisor reads into core the OS/360

initial load program, it modifies it to go to a Hypervisor

error routine instead of stopping dead in the event of any

serious error. At the same time, the IPL program is

modified to make it seem that the amount of core available

to OS/360 ranges from the bottom of memory up to but not

including the Hypervisor program.

All of the actual changes to OS are made in an

extra copy (secondary nucleus) and are only loaded into core

when the Hypervisor IPLs OS. When OS is loaded normally by

the computer operator, an unmodified 08 is used.

RAX Hodifications

Just as in the case of 08/360, some changes to the

RAX system were necessary for the operation of the

Hypervisor. It was desired to minimize these modifications

to make conversion to any future version of RAX easy, but

this was not as pressing a need as with OS.t

tThe installation at Illinois Bell of a new McGill-RAX
version would be infrequent, and even then, it would be done
by people fully qualified to do the necessary Hypervisor
modifications.

56

There were three major design features whose

implementation required changes to RAX. In addition, there

were several relatively minor facilities also added.

1 • 	 The first change in RAX is the one around which the

whole system revolves. The RAX routine which normally

loads a wait state PSW to put RAX into wait state

(during idle moments), now trans control to the wait

routine in the Hypervisor. This coding gives the CPU

back to OS/360 at the place where it was last

interrupted.

2. 	 A standard RAX system, during most of its running time,

allows interrupts (via PSW system mask) on all channels.

If an interrupt from an OS device were to occur, an

ordinary RAX system, knowing that this device does not

belong to it, would simply discard this interrupt. This

is certainly not an acceptable method from OS's

viewpoint. There are three possible alternatives to

this. First RAX, on recognizing an interrupt from OS,

could pass it on to OS, thus giving up the CPU. This

would violate the rule that of RAX having ultimate

priority. OS should only get control of the machine

when RAX can no longer do any processing. The second

solution is for RAX to queue this interrupt for OS just

as the Hypervisor does for RAX interrupts (those which

57

cannot be accepted immediately). The complications of

this method (particularly with regard to dequeueing

these interrupts) ruled it out. The third method is

quite simple and it is the one used. While RAX is

running, it now, never sets a system mask to allow

interrupts on the channels belonging to OS. Since OS's

interrupts are never allowed during RAX operation, they

bother no one. When OS gains control of the CPU next,

it sets a system mask of all ones and any pending

interrupts fall through.

3. 	 The third problem and its solution is by far the most

complicated. When running on a regular machine, any

interrupt which attempts to occur while the machine is

in wait state with the system mask disallowing this

channel's signals (or external interrupts), will remain

pending. Whenever the system mask is changed to allow

this type of interrupt, it will occur immediately.

Under the Hypervisor, RAX does not go into wait state

but goes to OS/360. This interrupt just mentioned

actually happens (OS allows all interrupts), but since

RAX does not want it, it is stacked. Some time later,

RAX again starts running. Soon it normally changes its

system mask, expecting any pending interrupts to occur.

Now however, there are none. The Hypervisor has one

stacked, but if it does not know about the change in the

58

RAX system mask, it can do nothing. The answer is, at

these critical times, to ask the Hypervisor if it has

any pending interrupts to pass on to RAX. The mechanism

used is as follows. All critical instructions in RAX

which can change the system mask are replaced by

specific, invalid, S/360 operation codes. When these

are executed, they cause a PROGRAM CHECK to occur

specifying an invalid operation code. The program check

handler contains programming to recognize these special

lIerrorstl. On finding one, it goes to the Hypervisor to

check if any pending interrupts are allowed by the new

system mask. none are found, the program check

routine goes back to the program (after setting the

system mask as the original instruction would have

done). If an interrupt is found, PSWs in RAX's low core

are set up to make it look as if the normal instruction

had been executed, and immediately, the pending

interrupt had occurred. To RAX this looks identical to

what would have happened on the real machine.

4. 	 Several other small changes exist. There is a routine

to get the current CSW (Fig. 2) and return it to the

Hypervisor. The Hypervisor, when it wants to stack an

I/O interrupt for RAX must save the CSW, but as the

channel stores it in RAX's core box, the Hypervisor

(residing in the OS section), cannot get it itself.

59

The RAX console handler recognizes console commands

starting with n=;;:n and passes them on to the Hypervisor.

It also allows for a reply from the Hypervisor to be

printed.

It should be noted that all these changes only take

effect when the Hypervisor IPLs RAX. All these

modifications contains checks to make sure that if RAX is

running as a stand-alone system, no branch is ever made to

the various Hypervisor routines (which do not exist)!

60

CHAPTER 8

HYPERVISOR PERFOID1ANCE

The main purpose of the Hypervisor as described

here is to allow RAX to operate on an IBM 360 Model 65

unencumbered, while allowing a S/360 operating system to use

any CPU time that is left over. The implementation just

detailed seems to do this quite well.

Tests were run to obtain some measure of how well

the Hypervisor works and to find out how different OS job

types were affected by running under the Hypervisor. The

general approach was to process a certain job (or jobs)

using OS/360 without RAX running, and observe their

performance. The same jobs were also run while RAX was

operating (during production hours- i.e. a loaded system) •

During this run, the performance of the OS jobs was again

monitored. Also, some statistics from RAX with respect to

its CPU usage were obtained.

Ideally, these tests should have been run in a

carefully controlled, reproducible manner. Unfortunately

this was not possible since it would have required a

dedicated machine for a relatively long stretch of time.

Also, at least thirty people at terminals (or another

61

computer to simulate them) would have been needed to place a

realistic load on the RAX machine. Neither of the above

machine configurations nor the people were at the disposal

of the author. This necessitated performing most of the

tests in a 'live' enviror~ent during normal production time.

Several restrictions as to the exact kind of tests run and

the statistics available from them were thus introduced.

The first problem was that no control whatever

could be exercised over exactly how busy the RAX system was

during the tests, or just what kind work it was doing.

Care was taken to ensure that RAX was not virtually idle, or

completely saturated while most of the tests were run.

Little could be done however to ensure that erratic things

(such as sudden RAX compute bound jobs being run, or sudden

lulls) did not occasionally occur.

Another bottleneck was that it was often hard to

make the sampling of the RAX statistics coincide exactly

with the start and end of the OS test runs. However, as the

test runs lasted as much as thirty minutes, and the error in

fetching the RAX statistics was not usually more than

several seconds, the error is hopefully minimal.

Extrapolation allows a quite accurate figure to be

estimated.

62

The set of test jobs took about an hour to run from

start to finish. Since these tests had to be run on the

machine at Illinois Bell Telephone, which was heavily

utilized, tile number of test runs was naturally limited.

Many of the tests had to be run while RAX was active, but

these prime day-time hours were the time when they could

least afford to give up the OS side of their machine for any

length of time. iifevertheless, it is felt that enough tests

were performed to give a good picture of the Hypervisor

performance. As will be seen later, despite all these

problems, the tests do seem to show that the RAX/OS

Hypervisor does behave as an intuitive approach would

indicate.

There are several effects which will tend to alter

how much work OS can get done in a given period of time.

The parameters which affect OS/360 are, the amount of CPU

time it is given, and how this time is partitioned. If OS

gets on the average, x percent of the total CPU time, a

compute bound job normally taking t seconds will now run in

(100/x)*t seconds, with an apparent time with respect to OS,

of t seconds. If a very I/O bound job with a stand-alone

elapsed time of t seconds is run, and it can get the CPU

from RAX whenever necessary to restart I/O, the job will

take only t seconds of real time with an apparent time to OS

of anywhere from (x/100)*t to t seconds. In this case, the

63

apparent time to OS will depend upon how much of the I/O

time is overlapped with RAX CPU work. It can be seen that

in these simple cases, the apparent time to OS will never

exceed t. In the case of real jobs, however, the RAX/OS

interaction can increase apparent job times in addition to

real clock time. This can be particularly important for

jobs performing much disk input/output.

Consider the case of os wanting to initiate a disk

read for a record that is just about to pass under the read

head of the drive. If the CPU is taken from os before the

request can be initiated, and RAX runs for long enough for

this record to pass by, os will now have to wait a full

revolution of the disk (1/60th second) before its read

request can be completed. Of course this same type of

happening can lessen the apparent time of a disk request to

OS by delaying action so that the request happens to

complete sooner. The effect and frequency of this type of

occurrence will be highly dependent on the job

characteristics of both the os and RAX tasks.

It must be remembered that the RAX job mix at

Illinois Bell tended to be highly I/O bound (averaging only

25% CPU utilization). That is, much of the time, it is

initiating I/O requests and attempting to go into wait state

(i.e. go to OS/360). As soon as the I/O completes, it takes

64

control back from OS. The 05/360 job mix is also similarly

I/O bound. As a result, it is quite likely that OS, during

its time slot, will initiate an I/O request of its own and

place the machine in a real wait state. Whichever request

completes first, will cause control to be given to the

appropriate supervisor. The devices (and thus their

timings) for the two systems are basically the same. That

is, one can expect the typical I/O request on either system

to be of the same duration. Thus, if the situation just

described is a correct picture, it is not unreasonable to

expect OS to gain control often enough (at small enough

intervals) to maintain a high I/O activity rate. This is

true, except when the RAX machine goes into a solid CPU

bound activity, completely locking OS out. The RAX job mix

at Illinois Bell on the Model 65 tended to be either highly

I/O bound, or completely CPU bound (momentarily at least).

During the I/O times, OS should be able to do almost as much

work as on a bare machine, and during the CPU time, it

should do nothing. Thus, the overall efficiency of the

05/360 machine should be approximately equal to the

percentage of I/O bound time (non CPU time) of the RAX

machine.

The basic performance bench marks consisted of a

set of 05/360 jobs. These were Fortran-G and Cobol jobs.

The stream was largely I/O bound, although sections were

65

compute bound. It was It that they would closely resemble

the type of jobs normally run on the machine while RAX was

active. TWo versions of the job stream were run. The

second version was different from the first in that it

allowed the jobs to allocate more buffer memory than the

others. This allowed I/O requests to be blocked and thus

tended to make the stream slightly less I/O bound. Each

stream was run once on a machine without RAX present, and

twice while RAX was active.

The method used to determine the effects of running

these jobs under the Hypervisor was to note the time of day

(both real TOD and TOD according to the os clock) at the

start of the first job and also at the end of the stream.

When RAX was not running, these two elapsed times were

course the same. When RAX was active, the OS clock only

runs when RAX is not actively using the CPU and so it

reflects only the time that OS has control of the whole

machine.

The results in all cases were similar (Table Ill).

The clock time to run the jobs under RAX was always greater

than the time needed on a stand-alone system. The amount of

extra time varied depending on how busy RAX was. However,

the OS elapsed time was always less than on a stand-alone

machine (the OS timer does not run while RAX is doing

66

TABLE III

OS/360 BENCH MARK TEST RESULTS

JOB MODE ELAPSED OS/360 TIME RAX CPU OS/360 RAX RAX
STREAM TIME (RAX WAIT) TIME EFFICIENCY CPU WAIT

,

1 S/A 1464 1464 - 100% -
1 HYP 1803 1376 427 81% 24% 76%

1 HYP 1760 1366 394 83% 22% 78%

2 S/A 1176 1176 - 100% -
2 HYP 1745 1123 622 67% 36% 64%

2 HYP 1593 1104 489 74% 31% 69%

Cl All times are in seconds.
'"

I

computing) • Therefore, as far as OS/360 was concerned, the

jobs ran faster. Using the first set of tests as an

example, the jobs took 1464 seconds to run on the bare

machine. The time under the Hypervisor and RAX was 1803

seconds. During the second run, the OS clock increased by

only 1376 seconds. That is, during the 1803 seconds real

time, RAX was running as if it were alone on a 5/360 model

65 CPU. Simultaneously, the OS side was performing 1464

seconds worth of work. In the surplus time discarded by

RAX, the OS system was working at the rate of

(1464/1803)*100% of that possible on a stand alone machine.

This produces an efficiency of 81% for the OS/360 side of

the machine. The extra 81% is not quite free of course.

Additional hardware is needed to support this configuration,

but it only increases the system cost by about 12%.

It should be noted that the RAX CPU utilization

while the second set of jobs were being processed was

appreciably higher than during the first set of jobs. This

had nothing to do with the OS job stream characteristics.

The RAX system was simply more heavily loaded (with compute

bound jobs) during the latter tests.

As expected, the efficiency of the 05/360 partition

is roughly the same as the percentage of wait time available

to it. If anything, it is slightly higher, indicating that

68

it is taking advantage of RAX CPU time to allow I/O to

complete (essentially "free" time).

Another type of test was also run. This program

vlrote records on a magnetic tape while concurrently

performing CPU bound work. It was designed to find the

maximum amount of CPU work that could be done without

slowing down the tape I/O. That is, it was to find the

maximum number of times it could execute a given arithmetic

operation without increasing the elapsed time needed to

write 100 records on tape. This test was done for a variety

of record lengths. On a stand-alone system, the test gives

the expected results; the number of loops varies linearly

with the tape record size. When run under the control of

the Hypervisor, it was hoped that the test would give some

insight into the type of interference that the RAX system

caused.

The results certainly did this, but not quite in

the analytical way expected. The type of interference found

could best be described as 'erratic'. Some of the tests,

which happened to be run during a quiet spell on RAX, were

virtually indistinguishable from those run on a bare

machine. Another set not only showed completely different

results, but showed that the program logic was not really

able to cope with the situation it encountered. It became

69

quite confused when the RAX machine would alternate between

being completely compute bound, and then almost completely

idle. This fluctuation (between CPU and I/O bound work)

happened too slowly to average itself out over a period of

several seconds, and too fast to allow a complete run of the

test to complete (20 seconds or so) without seeing some

fluctuations • ~vhen running without RAX, the program could

reliably use the logic that if, for example, 50 CPU loops

during a I/O request saturated the computer, then certainly

100 loops would also. This was no longer true under the

RAX-influenced Hypervisor. The bench mark tests produced

reasonable results in this same environment because they

average out all the system interactions over a period of 20

30 minutes. The tape test program, tries to compare results

on a second by second basis, and this is simply not

practical. 'l'11e program could have been modified to average

performance over a longer period of time, but then its

overall running time would have been too long to execute

during the available test period.

An important contributing factor to overall

Hypervisor performance was the degradation to either or both

operating systems due to the Hypervisor itself. If the

Hypervisor, in performing its switching task was using too

much of the CPU resources, it could never be a success. In

order to estimate how much CPU time was being used by the

70

Hypervisor itself in performing its functions, a number of

counts were kept within the Hypervisor module. These counts

produced a record of exactly how many times all the key

routines within the Hypervisor were entered, and the

decision paths followed within these routines. The counts

could be printed at any time by means of a console command.

From the counts, it was determined which sections of the

Hypervisor code were executed with some regularity. It must

be remembered that many of the routines were programmed to

handle 'special' case occurrences. It was not originally

known exactly how often (if ever) these things happened.

The counts showed that, in fact, all these special cases did

happen at some time or another. Some counts were as high as

400,000 per hour of operation.

Execution times for most sections of the Hypervisor

were calculated using the values for instruction execution

times published by IBM. s Counts for a typical period of

time were analyzed and combined with the times calculated

above. For the 7 1/2 hour period sampled, the Hypervisor

coding evaluated would have taken 171 seconds to execute.

This works out to be only about 25 seconds per hour. Even

if a generous allowance is made for sections of coding not

included in this analysis (not often executed, but perhaps

longer in length), the overhead due to the Hypervisor is

still likely to be under 1%. This figure is quite low. It

71

is especially good when it is remembered that the CP/67

system mentioned earlier as possible alternative to the

Hypervisor, typically had overheads of 30-50% in this type

of environment.

The overhead attributable to maintaining the counts

themselves was calculated to be 27 seconds during the same 7

1/2 hour period, or only 4 seconds per hour.

72

CHAPTER 9

OVERALL RESULTS AND THE FUTURE OF THE HYPERVISOR

All the essential requirements set forth in Chapter

2 were satisfied by the RAX-OS/360 Hypervisor. In addition,

the Hypervisor met virtually all the criteria discussed in

Chapter 4. Perhaps even more important, it has been found

to be truly usable in a real production environment. Once

the systems are IPL'd (a simple task), the Hypervisor is

virtually invisible to the operations staff. They are

running normal OS/360 and RAX systems. The RAX users rarely

notice any difference from running on a bare machine.t The

OS machine processes a reasonable number of both production

and test jobs during the day. The Hypervisor, at Illinois

Bell Telephone, is quite certainly a success.

The only major disadvantage of the Hypervised

system is that the user is tied down to a particular piece

of equipment. The Hypervisor feature is available only on

the S/360 Model 50 and 65 CPUs. the capacity of the

Model 65 were to be reached, there is no machine to upgrade

to (if the Hypervised approach is to be maintained). A

tThe only real impact upon the RAX user was that the
overall system failure rate was higher due to OS/360 crashes
bringing RAX down with it.

73

possible solution will be brought forth, but first it is

relevant to review several new computer models that IBM has

made available since this project was first undertaken.

The System/370 line of IBM computers is a series of

central processors and peripherals designed to be upward

compatible with the 8/360. That is, most S/360 programs

(except very CPU model dependent ones like the

Hypervisor), will run on the new machines without

modification. The new models offer certain economies over

the older ones due to technological advances. In addition,

they possess several facilities and features not normally

found on 8/360 computers.

Relocation memory is standard on most S/370 models.

It was formerly available only on the S/360 Model 67. It

has been argued that the ability to dynamically relocate

programs within rnain storage is a valuable asset to a well

designed time sharing system. However, a time sharing

system, which offers the economies, versatilities, and

OS/360 compatibilities of RAX was still not available from

IBM. This fact has been emphasized by the fact that IBM has

recently acquired the rights to market (on a royalty basis)

the McGill-RAX operating system.t RAX would appear to still

tIBM is currently marketting the system under the name
MUSIC (McGill £niversity ~stem for Interactive £omputing).

74

be the best time sharing system running on IBM machines for

use in many medium to large installations. However, as was

the case with Illinois Bell, many of these same installation

have a need to be able to run either OS/360 or its newly

announced successor OS/VS2. A follow-on to the CP/67

system, W4/370 is available. It does allow several

operating systems to be run on the same machine. It would

seem that its performance is far better that was CP/67,

however the overhead needed to multiprogram RAX and OS would

still appear to be the 30% range.

No Hypervisor function is currently available from

IBM for any of the S/370 computers. However, several

features of the 8/370s make the concept very attractive.

The new central processors have, in addition to the interval

timer, several other means of maintaining both time of day

and elapsed time. These new timers do not reside in main

storage, and this would eliminate many of the problems

experienced with the Model 65 Hypervisor implementation.

The timers are designed to be used in multiprogramming

systems and so would be better suited for use in the

Hypervisor (a multisystem system) than the older interval

timer. Secondly, and perhaps most important, all the 8/370

processors currently available are highly microprogrammed

machines. 9 That is, assembler instructions coded by

programmers are not executed directly by the electronics of

75

the CPU, but rather are interpretively executed by a program

written in a much more primitive language. This more basic

instruction set varies with each machine, according to its

internal design. The set of basic instruction needed to

perform the S/370 operations are called the microprogram,

and reside in a special storage within the cPU.

Most of the S/360 models were microprogrammed also.

However, the newer machines tend to have two unique

characteristics. The microprogram can be changed easily

(sometimes even under the S/370 program control). This is

as opposed to the 8/360 implementation where a complicated

engineering and/or manufacturing process was often needed to

change the microprogram.

Secondly, the type of microprogram 10 used within

the S/370s tends to lend itself to making relatively small

modifications to the way in which instruction are performed.

It is also easy (relatively speaking) to add special new

machine functions. All this can often be done without any

hardware (electronics or wiring) change to the computer. It

would seem that the functional characteristics changes to

most S/370s to implement a Hypervisor could be accomplished

relatively easily and inexpensively (by IBM engineers at

least) by means of microprogram changes. Such changes could

even be designed to enable the Hypervisor to perform certain

76

of its functions very efficiently by providing specially

designed CPU operations.

Lastly, it is worth noting that the parts of the

Model 65 configuration required by the Hypervisor over and

above a 'normal' configuration, were extra memory and

channels. In the S/370 series, both of these have tended to

come down in price. The new machines tend to be priced so

that the bulk of the cost is for the CPU itself. If adding

some extra memory and channels yields an 75% increase in

production, (as it seems to have done at Illinois Bell),

then it is indeed a good bargain.

The McGill University Computing Centre is currently

operating an IBM 8/360 Model 75 computer system running

OS/360, and a S/370 Model 155 running MUSIC (RAX). The

Model 75 is heavily loaded. The next larger machine in the

current IBM product line is a 8/370 Model 168. The Model

168 is considerably faster than the Model 75 and it also

provides facilities (such as memory relocation hardware)

which make it a very attractive machine. However, it is

also considerably more expensive than the Model 75. If

MUSIC could be run on this same machine, it would mean that

the Model 155 would no longer be needed. This cost saving

would help to finance the Model 168.

77

There are several ways of running MUSIC on the same

machine as OS. One is to use VM/370. This would easily

provide the function, but the estimated cost in terms of

overhead seems to be very high (currently over 50% with

OS/VS2) • Perhaps in a few years, when VM/370 becomes more

efficient, this could be a reasonable approach. Another way

is to modify MUSIC so as to run as a program under OS

instead of as a dedicated system. This is possible, but it

is felt that to do so would remove most of the ficiencies

that are among MUSIC's best assets.

The most promising method seems to be to Hypervise

the two systems. IBM is currently considering a McGill

request to provide a Hypervisor shared storage feature for

the 8/370 Model 168.

78

CHAPTER 10

CONCLUSIONS

The l-icGill-RAX - OS/360 Hypervisor was proposed as

a vehicle for providing a wide range of computing services

using a single computer. Since its installation in 1970,

the Hypervisor has proven to be extremely practical,

efficient and reliable.

The new IBM System/370 line of computers contain

many desirable features. Several of these would make it

very much easier to write a Hypervisor program, others would

enable the Hypervisor to be more sophisticated and general

than the one described ln this paper. It is reasonable to

expect that the overhead of this expanded Hypervisor would

still be in the order of 1-3%. All that is needed is for

the Hypervisor hardware feature to become available for

large scale System/370 computers.

79

APPENDIX A

HYPERVISOR FLOWCHARTS

80

Q!X - 05/36) HYPERVrSoR PAGe 001

It,UG 2), 1913

B-lX'l'ASK

..·**a2*······ ••.. LOAf) OASE ..
" BEGISl'£.RS *' ·................

I

: ••••C2••••••• •• :

*Sl-;l' flYPr-;RVrS)R ..
• I~ C01"rnOL (S"SIi*
... PSiI$ ErCj *'· .
••••••••*••••••••

1:*•••::>2 ••••••••• :

.. READ FRO!'! ,?S

.. COKS01.E ·..................

I

I1<----------.
v I

.". I
£2 *. I

.* *.. I
.. " R !:t.O *. NO*. CQ,";PLF.TE .*-- *. YET? ...

*. .**.....
.. YES

1
GO TO CONSOLE ····p'2···**····

: fUdWLER :

.....!

1

*002·
• £1·..

RYPEaVISOR ISITIA!.IZ 'l'tON :'LLOWS THE
THE OPERAtOR TJ START tITAr;a: lUX OR
OS/360.

i~e~;::~G{.~~g ~i'\ !;ir~5~~?:HSOf5ROL
p;.r:-:l LO;':-C:);;z SO l'H;,.r rH!-:
f!'!~£Rvr;'Ot~ n:r:c~r:;vts ALL fURtHER
I/'J l:;1'P.r!RUP"1'S.

THE FraST TI~E: os Goes INTO WAr.,:,

~~~t~l1L "g~. i ~~"11 i~H ¥~~f:~~~K;~oG~~~ 
HYf'l';;;H\'Isoa {At'O ruos fCAl If IT rs 
RUNN lUG) • 

'"IJlEN Eifln::t ;'l:.rEM 1:< liP AN!) 

~~N~i~~i' l~~ $ :;~gt~¥h~ g~~d:es~~f~r1. 

http:ISITIA!.IZ
http:CQ,";PLF.TE
http:BEGISl'�.RS


SAX - OS/JGO HrP£RVISOR PlG£ 002 

AlIG 2J. 1973 

...... . 
.. AS ... . .... 

I 
lOINT .....,,') ...........
•• ONS'i'~CK '):)),1;*... -_ .... _---_ .. _.. "' ..... 

r.tT ~rZT 
CANDIDlU 

:ST~gKR~fu~~f1R :. . 
......! . 
.. A5 •. ..... 



lUX - 05/360 IiYPER!/I SO!1 PACf. ~Ol 

lUG 23. 197) 

INt£igUPT QUEUE l'lAUGEMEN'l' ROOTINES 

STJ,CKIO STACK£xr • o. VNSl'ACK".*•• A1............ Al·• 

• GEtQEL 0041\1. .' . ··"-A4*········•-.. _----_.. _-----* fES ... SO~E'i'Hr~G ... • SAn: t.I~i!<kGE • 
• C&1' Fn~E QUEUE. .---.......--- ..- ....----•• ALR::I.D¥ ON .« : lUG ISl'r;!t 

.. £t.EME~-r • I· •• :tU EU£ ... ................
·..................,. ! "."... ~;' 

I 

I 

1I ! .....83.1........ ." 
84 ••..····a1········*· ••••82 ..•••.. •••• "Gtt;tEL b01tr.1'" ... ..· • FILL IN UNIr .• • CATASTClOf'HI: • .--- ....... ------- ... -. ,. N::lNE: 

.AOnaESS AHO CSw. • E!{ROR .GEt fb'EE OUP.UE .. ., ANYTHING ON' ......--.. ----....... ------. 


• -DEAi'l-ilA.Il'- .. • ELEl'1e:;r • *. QUEUE'S .* I· . .................. . • .. 


...................• *.
• ................. .*

··.";ES I 
I II I .....~..L....... !
·····C1·········· ·····C)···*······.• "'U1'Ol:t 001",)- '" {fr.! COUNi JP • ·.--C'1 .. "'·.· ... ••.... _-........._--.. _---. · • SAVE rIMER lliYO • .. )ilt!lP.S * *R£1'IJan WUI! NO .. 

-PUT ELt:!"iENT ON .. • lli IT • :(CHAN~~Ff ... Exr: : INrEifl'l.i?! : 
• AP'PiWPRIA.'l'E • . · .. .................
:.;~;:~~;.i~~2~.: •••••• *•••••••••• 

I 

1I 
. 

,I 
: ••••04 ••••••••• :••••..D1·····..·••• ·····.03······..···.PUTQEL 0041.3* 

• • POI~1' •• Il'CREASE 0 •....-------------* • T) F.1.T 
• QU£U&CH'1' BY 1 • • PUT fT or; Exr • • !)i'I' Qoeuf. .. 
o 0 • INt QUEUE .. . .................
·................... - . .........."'."...... 


I 
1< -- -.-.-.- --••--- ---.-----••------.--,1 ·1 I 

NEXTCH,-. J. I 
£1 •• ! £u *. It* •• 

..... 0.1(. 

: C:"!.L~R : *.. SYsr1':f\ •• -- ..... --------... ---.... I 
.. yl:'S ····£'3··"'······RETURN • t. *. N3 I.. - RETURN • TO ................ ." ... ~:.SK'!'..... 1 I
;;;;::::;:;::.•:•.,.------------jI 

•• •• f I

i YeS I I 
• • I 

OSRET Y J I IF4 •• I·····F1········... · ·.. 52'!' STARTOS •... • ····P2·········RETURN '1':1 ... ~~!~~~- .......~~~;~ NO I 

......---.. ----->1 I 

• TIME TO NOiol • • CALLER " •• As'tTHn:r: ON ....---· I·*' ..- *'...............• •• ...~UEUE?..•• I
................... 

• .... "iES I I 

:og~ ... __ » 
I I I·..... 

OSII.!Tl V .....~".L....... NOT~~:;.Gs.!........ I
···.. ··C1·········· '" .... • I 
• GET I~T~RQOPt • • I1'OI~r 1'0 BElT. l 

.at~OA.D OS HEG-S • • INFO· • OVEIJE .. l · ..· · ... . I
• .. l1li • ·................... .................... ................... 


I I I I 
1 ! .!. I"-•••HU ••••••**.. HS *. 

*"UT::;tEL O~It'A3· .. *.*··.!Jl.·····.... I 
• I..pSW: 1/0 OLO .. ...------ .. ------.... •• l)';'( .. *. ttS 
,ps~ (RETUR~ to • .ReTnf<;J r:LEl1ewr • *.. I'IOffE ••_ .... 
• OS) • TO fPi':E OIJIW£ • •• QUIWP.S? ..................• *' .. ..... ..
................. ... ,. 


• Nose 

1 
••••,14*.......... .:r~ •••••••••

I ..*•* RE'l'UR:i to • • RETURN SA'I!N:n • 

• CALL!R • ·NO IHT PtNIHNG .•.·................. ................ 


http:NOT~~:;.Gs
http:DEAi'l-ilA.Il


••••••••••••••••• 

RH • 05/360 HYPEPVISO. PAGE 004 

lUG 21. 19B 

liTE RRUPl' OU EU E :'iA iL'f.a:~ti'1' Rour 1 NES 

GnQEL CLEA"STKP(J1'!r-~ .... A) .......... : .....;.';............
·····Al·..·•••···· ·· • POINT TO QUEUE ... *GE'T !H'AP,. .. Eno .. • LOU; :mINT OF . .. 
• STAll'!' • ... o-P QlJZLlE .. .. JNTf':n4lJl'T • 

• QUEUES :. · ..................* * .· ..........,..."...... .................. 

.*.i ! 
I 

I
B1 "'. ·····9J··""·· ..··•· -.* ··n5*··· ..•.•..* *. •.S£1' OUR El!~f.NT· * · .POINt TO 'lasr .*l'". PTR=O •• =0 

.. AS LAS':' OF •*. IF' E~P:rY ... -----------------. :QUEUElJfifERNAL: 
: aUf.UE : 

...... ...... ]1 •••••*••••••••••• ·.................... 

• ... 0 

.....Cl.!........ . 1'.
e3 ••• . ····c2*····.,··· ... 
.. 

.AS 
.. 

••:JuR It):g~~f(f~~ES~¥E2fL: : R~6u~~E~~i~~c : 
~ 

.TI!SE LO;; It NEe." .. *. *. E~~~~~ ••• ·---"'---"-"---"'---~I 
• .. ."'...*••• "' •••• "'. .. .".......... "'..."'...."'. .... 


• yes 

QALREADY 
: •••• 0) ••••••"' •• : : ••••D4 ••••••••• : .·•·····D1··

.PIC~ UP 

I ..·"'·*··· 
TO • .lDD oua 

i 
EI.Er-Enr. .SET OUR 

i 
PTR EU:MtNl'· 


.. NEXT ELE~ENr • • 1;) CHAIN" • AS START,')1 .. 

• • QUEUe '"
·· .. · ........."' ...."'..... *................ . •••••••••••**•••• 


I I 
1< ---------------- ________11 II 

CHA ISO!( v.'.tl '. .'ZERO PTf! It; OUR • 

,," IS to. NO • ,U:~t;}; r TO ~n:x!'· 


•* ... ·····E3·········· 
• 011£ O!JHS IS '" 
1(1 lAST} •"."!:~::i:;::.". ~--------------I ·••••*............ .,.. 


I;~-~--...----_.~~:~:~----:!:__ W~ .-----.1 
I!I"UI ~ v 

: ••••rl •••••••••: : ••••12 •• "' ......·: ••••• F4.~•••••••• ps ••·····F)·*INCtlEt.SE 

I ..·.······• .PUTQEL n~411.1. o E'l'Q Et.. 

I 
OJ4J.1U51<.G2 

.. SAt QUEUE NOW *' '* CAt: ASSOLurE • • COtHa AND SE£ • .----- ... - ... - ....... --. YES ••--......... _ .. ---.. I 

• er.rty... .ADDRESS OF NEX,?· .. ALL rI!',S HIGii ., .BEPLACF. ON PReE.<....... "'----.~ A~'i F:tE!'!E:S7S ... l .. $o" EtEl'!EN'T • • IF ~;t~C • : OUEOE: ..... H?,:RE?..... f· ......."'................................ ·................... *. r;o I
I 

1<-------- -- ------------ __II 
QStru v v I······G1··········. ·····G5·········..* * I 

• SET .lit START. • POINT to "NEXl' • 
• COg ZERo If • • QU &UE • I·• EMPTY) ................ .. .
..................... .................. I 

I 1 ! 
I 

us' *. *. I······81··········. ARE YESI• GET RELAtIVe • ...... .' •• 
• ,DDRf;SS or OUR· •• TfH~·P? ~OfH~ • *--
• EL1HttNT • •• QueUES? ~.·.................. *....... • 


I I 
• NO 

·····.11·········. ·····Js·········.-. RETURN •·................ *.................• 


http:INCtlEt.SE
http:El!~f.NT


SAX - OS/360. tflf'£B'lI$on PkG" J05 

AQC 23 .. 1973 

SAX ••HT aourn:!!: r~1'EI.H'ACe 

liAIT 

IOW lIT 

I 
~·····f'1···.·.··...UN$'TACf; C;)JA4..-.....------ ... -----. 

'tEST FOR 
p&:mING INr 

I 
.••••**............. 


••••c 1.*.'-.-••. 
.- RS1'URN .I7H • 
.- UIOICA'rIO~ ::>F • 
• ANt IN'r P£SI)ING*................ 


1 
p)- "'... EXT;~; •• F'4.1o •••"... I

•• *. ·STACK!X,. 0:':)1\3. I",. .~ res .---- ... --- .....--...... - •*. A~Y?? ••------... ->~S'l'A::K Tfns ex,: -fI--
•• ... • INr •....* • " *. ... •.... of" •••••••••••• 

• NO 

Q5GO· . t•••· ... G3"········· 
• SE1' T::l G:.1 BACK • 
• '1':::; 0$ •· · .................... 


I 

! 
I 

WAIT15W ••• .....Tt) *. .••...·H~····· .... 
•• fIRS'!' *. yes * RESET •*. WAIT? • *-----_ .. ->* "iiAIT1SIi" •.. .. . ...... .*•. '" ............... 


• NO 

.oos· I 

.. JJ .->1 
• • I 

UIT1 t 1·· ..··J3········,,· "····.,,4·.···.'-·.'
· • lle"LOAD os ... ·*BeS1'OilE os Loe ... 
.. ENV::B:O:H~ENr • .. 50 TIrtEil: .. 
: (I<EGS" Tn~~H) : · .
••••• *••••••••••• ·.................. 


1*•••• 
·liCS • 
• 84·I ..

•LPS_ - RESO::E •• ·.··Kl········· 
• OS WORK .. ·................ 




liAX - OS/36:.'1 HYPEnV!SOR PJ.G! ~~6 

JUG 23, 197) 

OSWUT 

.....A1 ••••••••• 
• SET UP BASE" .. 

R£GIStES$ '*. 

I 

~ 

OSWAITSli • *. 
81 *" 

• '" FIRST *" 
,,* II1IE *. NO*. 'rKJOUGtI ........----------........ --. 

*" HERE? ,."
* ~ ~ .. I 

*•• * 
.. 'rES 

1 I 
Cl'·'., I


•• *••* WAS IPL .~ NO*. COMf\At;l) •• - .... _>. --------""-
*.l"rt01l RA);:? * 1 

• " ." I *•• ".*. ,,* I *OC6. .. n;s t .. D2* 
I I •• 

I •II 1..••...._.> I 

•••••t)1.!••• u BORMIlAIl'! 


• .. **·*:)2"',.;···· .. •• 
.. lU:ST *' ., GO rt:rn '" 
.. HO Sii Atl'S,jlt .. ilAI't'51',,\TE ..·., .. ................
.............. 


·····£:1 "'1........ ..
·.. SAVE OS ... 
:9f:GISi~~~, PS.,,:·.•................ 


I····f1··.···..· .. S&ND IPL OK '" 

.. l'ltSS&GC;
·............... 


......1 

• OOq*
• 8S- OS1'IOE••. .·.·G2······...... 
.. CALCULATE .. 

*05/360 THiS ;)" "'
.. DAY................. 


1 ." H2 * • 
.. * *" 

•• IS OS *. NO 
." ....~CTrV£~ .. " .. ~ .--.... • ..---------- ....1 ..... 


• YES I 
I 

I I
I 

1 t 
•••••J2.**.... .... .... ..J,l ............
'" 
• •• CAiCOtA'I'E • 
• C.U.C:ULATE. .. HYPf:ftV!SOR .. 
• OS/360 l'If'lE IF '" .I?SEUt)O 'TIME Of * 
.. DA'l. '" DAY •· .......................................... 


I I
«••••1\3· ..........
•····1{2····.···.• 

• BS'!aRN • : REfU9lf :·................. ............... 


IOCATCH

•·· .. Aq····*···•• SET UP e,..sE • 
• f<:::G151'~RS •·................. 


I 
·••.··tH.·······.'" PATCfi UP • 
• 05/.160 • 
.. IO-FtIH •·............... .,. 

! 
! 

••• .. ·C4••••••••••· .
.SAVE. OS IOK£W, '" 
• PG~NeW PSii'S •· .
·................... 


I 

~·····04.·· 
I 

..····· *swr f!Y?ERVrS~R • 
'" IO~:W, PG~N":. '" 
• £'15·,1'15 1:i LJiI .. 
• CORE· 

I 

I 
I 
V 

• ••• 'C't; "' ........ . 


• '-;0 PROCESS 'I'lUS" 
., I~TEa;tOl?T •· .
••••••••••*•••• 

I,
..... 

*~"2·
• 82·..
. 




RAX - O~;;)60 uY('!';llVrSOl( PAGE ~01 

~eS51.Ge liANOLI!i\,"; ROUr!!LfS AUG 23, 19'11 

COSSOLl:: CO:"1l'!.U:P A!fALYSrS 

..... 

·001· ,.. al·. . 


RAIMSG 1 .·····62·······.

• su ~ESSAGE • 

rRO~ RAX •. 

...... 
·001· 
• B14·.. 

I · I 
os.se······S!4.·~ .. ••·•••·•.• SA V! OS .,

*lIEGISTERS, P~\II •· .·................... 

!
·····Cll········.. SET l'IRSSAr.r.... 

• FROM OS/36:) •- . 
••••••••*••••• · , 

! 
, -,

Oil ••"'. ..•• "==IPL •• YES 
•• PAX" .*--_.. -.. -. 

... COIU;AUO ,. v.. .......
*. •• 

~. 

-C(lR • 
• NO .~1. 
I •• 
! • 

1 
,-,

E4 ••
• * ••• * "==tH'A.IS *. YES

•• PAx" .... "'-_ ......... 

... C01t~ANO •• ,•• •• ••••* 

*.• " ·~11'\· 
• NO • A).

1 ... 
.',

f4 *. 
~. ... 


•• •• YES 
*, "==COUS'1'S" •• ---"'--- • 

• ~ CO~";fdf!) .* V.,. .. .....•. .• ·C1'· 
"'!iO .A'.I ..'* 

,',
C4 ••.. ~ .. 

"' '" "=zII?L *. YES'*. OS" COtieAl"D •• - ... - ...... --.•• ,*' v*'. ,. •••••
*•• '" ·,oq·

• MO *.4;. 

1 · 
·····84······ .. ·· .• lltJeCT C0:11'IANO •·.................. 


.....1 

·0"·• D5·..· 



lUX 

aESSAGE 

lUX 

........ 

·\)OS· 
....A1'" . 

I 

~ 
RAXI,L .. " ~ 

A1 .. ~ 
.* *•

• " IS SAX .. 'iES .... ·::~i:;:···:··.........·_··--1 


·•·· ..B1··········'" !.. ·"'··s2··.,··· ... ·· 
:setlrt~CgR~SE'I' : :atJS::T COMr.AHf) : 
"AODRESSAeL~}"" .. · . ............... 
.........,......... 1 


...... 

'0 ,? 
.. DS·······Cl··········. .....*CLEAg SAX: CORE 1 " 


.. "OVt: IN 1FL " 


.. ~ROGRUI ..·................*.. 

I 

*CLEASSTK (;04 AS"·**··01*······***•-------_...... -----+ 
"EMPTY INT1-:RaU(lT* 
:STAC~~si~ySTe;>l :
••••••••••L•••••• 

······E1·I ..••••·... SET 

N:ali~~~~t. .. '" 

I 

1 
: ••••P1 •••• "" •• 1II 

.. SET BA-X AS '" 
: StING ACTIVZ ."·................ 


I 
t . .·····Gl·····*..····.. SAVE OS "rIMES ..

.. YU.D?: •· .·.................. 

I 

SET PC a TO GO • 

.. TO IeL P.:i!'i .. 

..···"al··········................ 


OS/360 H:(rERVIsOR 

flAUDtING aCHJ1'l}fES 

IPL Srr.:U.ATOl 

ERRE! 

"'···63""'··**···· .
• SAX IPL 2HR;)R •·•••••••*.......... 


I

·····~3 .. ··.. *·.. · .

• RESeT *' 
: n!~~i¥~;~t. •*·*.................. 


I

••• .. *1)]····*· ... · SET lUX NOT'...

A::rrv£ • ................• 


I 
. 

: ••••EJ .......... : 

• SET Ut>' 1/0 • 
• ERR03 l'lt:S5AGE ..· .
· .
*.................. 


I ..... 

*J1"·• E"·.. 

~ 

. 


PAG~ ) 08 

AUG 23, 1973 

..... 
*0("9·
• Sq·... 

nnrLD I 
• ····134·········£IJ\X!?L " 
: COl'tPLETED 

•••*•••••••*•• ., 

I
C'4 •••• ~ .. ".

•• IS;)5 •• Nj 


*••.• :CTJVE. *,. *. ----.. ------------- ..1 


*.... 
.. YES , 

1 I
: ••••Oct ••••**•••: ••••0S.*....... . 


• SET UP !~L - .. GO !S!'O '.. AIr • 

• :OK?Lsrt: - STATE • 
• I'U:ssAGf: .. •· . ........."' ..... 
········r..····· I 

•••.• *.t •• 
• ;)1 ,.. .:>(15 • ..•t:. •.. J~. 

• 



~AX - 0:./36;) HYPERnSO!( HCE ~09 

~ESS,\GE ff/doiDLIKr. ROUTIt>ES AUC: 23 .. '913 

CS/)60 I?L SI~ilLh'l'Or 

.*••• 
-009'" 
.. 11·... 

IP~OS 1····Al··.·"'·..•.. OS/J6J 1<'1. .. 
.. srr.UL;.'l'UU•........ "' .....".. .*... 


·O(\1h
• ss•I ... 

1 I 
• <. IPLOSe3 OSIPL~SG 

B1 *. :.··.85...... v ••••• : 
.* *. • .. ·*a3········· • ····R4"'········ • 1.21.•* 15 05 *. yeS .... DF'AD-WAI'{' SF.T •

*. ALBE.\D't •• --- ... -------... -- ... --------- ......... --- .. ---).lu:JECr CClHl.AtH> • ·nErURN !xo:1 I?t* CO~Pl.F.:r~ • 
T}~Xl'*. ACTIVE? .'- .. fliES SAGE :................ ................ • 


*. .... .." ..................
'

j"0 !1 I..... 

*:l1J* !~ .... D~.······Cl· ..···.. ···· . • ······:::4·······. 

I 
• PUSH LOAD • SET OS HOT • 

« ACT1V& •:nUTl'o~NJifA SIO:·.................. ............... 

I 

.0.t [ 
D1 * ..•* *. .. .. ··*··04· ..·•· .. ·•··. 
I i 

.POT 

I 

•:" O:~~A t{gu .. :.~~- ... _.________ .._--.. ___...____.. _.. _.. _>: i~T cgr~~b~!~g~.,,: · !-lYpf:~·H$OR • 
"'IN CON1'!WL (NEt.:"


*. OK .. " '" PSOlI S ErC) ... : PSjj'S Z:1'C) :
*. *. ... .., •.... .. "' ............. '" ................ "" .. 

! I 

YES 

~ ~ 
•• .. **1::4··· ..•••••• .. SELECT •·····f;1······*···

• ······E3····**····
I/O Ei!R::lU . · • ilATT-C:>DESECO,SOARY *' SET * SET .• 

.. tHJCLEtlS .. tH~SSAG E • • 5eSSAGE '" 
• (IEANUC02l · . · · .· ·....."' ............. ..................... 


! 
I I 

1 
*"'* ••p 1·····"+"' .• I 
• PATCH IPL TEXT .
.. FOR !'tAXlr;lJ!'l. .. 
• STORAGE ADoaESS* 

.. FOil: 05/361 .. 
 I
·..............., ... 

.....,..1........ I
11 I 
-'PATCH IPL I;:?ROR* 

.ROtlTI~:E TO CJ~~* 

.TO R I PI-OS E3 11 ON" 
• tIUl.OiI: .. I
:······T······: ! 

t ------------------------'1 . 

R1···.. IPL~.H?HJ........... I 


.. *.- VER£: *. *. NO .SET U'{~rmvISoR .. 

*••!~~ t:tC~:~ ....... ---.----.. --.. --------~ .. --... --- ... ---->:n;p~~:~tl~~ctlZW: I
II 
"r;as ········r······· . I 
! ! --------------~:~::=~:--)i 

•••••31....... •.... '" J 3*...... ....... ..,. .. *JS*.*"" •••*. 
.. '" .... .. .. 
stT 0$ ... .. SEt Bi\O IPL .. ... SEt FoR 01\LY " 

""Qt~iI~f'ft .. " : 1'J::xr KE;SSAGE :-.... --- .. - .. - .. --- ........... - ....--....----,.. ......"'>:ou~ Rf;ttLY LINE:

•.•....•...• 

I 
*. .. ....•....•...•....... •......•........•... 


1 
·GO to I PL TEXT *' SEND FEPLY TO •····Kl········· .. ····KS·····.··· 
• VII t.~s~ « .. APPFOP?'!ArE: ... 

• 
- ••I.. SYSTE~ ·.................. 
 ................ ...... t. 


*)10* 
.. £4... 



nu ... 05/3:6:> HU'l.;R 'II son PAGE 010 

r..E:SS:\CE HAIWL!:tG BOU1'rN;;;S AUG 23, 1973 

I'Ils:SLtAKEOUS COt/SOL:: !H:U':'I!:SS ..... ..*.-. •••• * 
·~1:i· .;:1 10 • .;) 1"· 

.. A)* • 1\1.<.•....A'· .. ...
" 
I I! 

HCOt:N'l'S ~ Hel RAxnp.AIN v OSD~AIN v KILLOS 
:;i~;Aa~.~~;,;~;.: :".'IP~:A2" ••*U"'.: :."'••A~;;;~; ••".: :•••• A.4 ..........: 
 ····AS .. •.. ····¥·.Of C'ous';:'ERS A:lO. .. pour: !"3 sexr " .u!lAXt-:}3;';". s::r .. .. SET OS :101' .. ·PS'o/"P£S7AflT KF. V· 
.. PTR TO flR51' .. .. COU:lT!::r{.. .;0 Gt'IE SA)\ !iO * • ACTIVE .(- .. ~ : WAS i.>RESSP,O : 
• ONE". • "~oet !N7r;:nWPTS. • I 
• ... ..... • I .**•••••••••••••..,.•. ,...••.*.... ** •••*••"........... ..*....."'......... ................. l 


I J ! I
: ••••81 ••••••••• : ••82 •••• : ..... £lI.i •• ,.,. ••••• : I : ••••&5·.... • .. • •• : 

• SET UP COUNf. NO.. HAVE iolt.: *. ·PUT HYf'f:{l'VI!':Oe· J • SET UP 8ASt .. 
: FOR PRINTIN:; :<-_..._----•.•. ~Z~~A5i~1'.• "· :rNP~~~~U~fC)(NE.: "' .. _--: ReGISTERS : .. .. .*." ..... .................... ·5 ... •••••••••••••••.• •.•••*.*.......... .


I IrES 
*••••C1........... I
*.*·*C2'''.*'' ••• •*. 
• ... ar.pf.A'I' lOH3LE • I 
:sEIo~~i~~-faNr:tf: : ~i8g~5ciEfogr : I 
• ~'HC1n.. ... COU~'rS • ..... 
: ............." •• : 'If.......... 011 •••••• : I J *1)1C>*


• 05...
I :.....,.1.......: L...........;;:;;;;::::!.......: !
SI. DC,".··· ..·ns··········. . SET TO f'RlN~ • .. SET UP D:JN? '" *SE1' BA!:l CO!'!XAND'"I-------------~ .. DONE XSr. • .. rn.::SSACt! .. : ~tSSAGE : ....... I·: : .. . . 


·010* I .......*.......... .....*••••••••••• ........"'."'...".'" 

'.E!' Ii L _________>II II I 

GO-OS1 I1I :Oi3: COS:H1' t<~-- ..----- .. ---------..--- .. · 
•• *.£1.!"'...... I ..... :"' ••• ?4*........... : 


: nEC~~r.r~'f~[(Jn : I l .. _........ >:¥~N~y~,~~~rlO~~~~: 

*C'OXSfH.!-; /'I;;~~SAr.::;. f '" G,\I1r; CD111'1fdtD • 
..............,.. J • *
I L_______________________ v •••••"T....... 

.... ::;0-0$ " ... • *. 
f1 •• F 3 .... f"q •• 

••5·,\,:iYMORE.. • •• NO NO •• -. ~::Y ••• ~ os .*** W"!:n:FlE •••• t.E'f •••;.;Fi;;; .. ~; .. ••• 
•• IU:SSAGES? ••- ...--- ...... ---... ------.<--..------..----...... ?'EPLY ••<- .. -- ... --- .. ~ foIA,S CmOtAND ."" ... ---- .. --). WAITS1'ATE .. 

• ~~.. I •• l'ifSSAGE ~. •• rROI't' •• .. .. 
*5 .* I *.~. ..." ................. 


"'v',';£5 ! 'TiES "(u ..1.. 
GO-OSfN! 1 ~ GO-j". ~ :ogi:

: ••••Gl ••••••••*: ;••••G2••••••••• : : .....C3 ........... : : •••• :;4 ••••••••• : .... 


: "Nc;~¥-I¥NE" : : n6:i ..'t~o~~5tf:." .: ,.. NE~~!tlt;E« : : SE'!' ~ii~rY {If: 
: RaUTltil;:. : CtH) to OS/3&0 : :ROO'L'UE ADDRESS:: .. .................. ............"'. "'.. .............*... ................. 


.....! . 1 

U4·"~ * ..... 1. ·····02·1 ..·*····..· ······!-i3····"'·.····ST/d'i1' t!SE 

os. .. * RA X · • SET ro co to . ftPI:-;;j os ~. IS ,*. ... HJ *····as···..··.... •
*' IQ-P'LIH OU .. OS/360 •• ACTIVE ... - .. - ....- ....). GO 1"0 os THEN .. 
• Rt:-E~TRr • CONSOLe *. ... • '" iIt..* •••••••••••••• '"·.................. .............. 
 ...' 1 

1 " IES :;;;:
*•••• 
*J03· I

• G1- v .. !3*... 1 ..•••• ..J3· ••••••. . 
 ••••J4•••"'..... ill 

.. SET spr:.::r,A1•• • RE70RN TO RAI '" 
I/:J ZUT • .. Vll SPS IIIST~ .. 

1'::0: ss:) ft ... ................. 
............... 

.....! 

·~OJ· 
• G1 •..


• 



BIBLIOGRAPHY 


1. 	 R.F. Rosin, "Supervisory and Monitor Systems," Computing 

Surveys, Vol. 1, No. 1, 37-54, (March 1969). 

2. 	 IBM System/S60 Remote Aaaess Computing System (RAX) 

Version 4 Program Desaription Manual, GH20-0354. 

3. 	 P.J. Denning, "Virtual memory," Computing Surveys, Vol. 

2, No. 3, 153-189, (September 1970). 

R.P. Parmalee, T.I. Peterson, e.c. Tillman, and D.J. 

Hatfield, "Virtual storage and virtual machine 

concepts," IBM Systems Journal, Vol. 11, No. 2, 99-130. 

4. 	 IBM System/S60 Prinaiples of Operation, GA22-6821. 

5. 	 J.M. Chiarello, IBM Simultaneous Use of Operating 

Systems and/or Emulators under Hypervisor Shared Storage 

RPQ, Z77-9086. 

6. 	 IBM, Internal paper - only identification "Appendix D". 

91 



7. IBM System/s60 Operating System 

Logic Manual, GY28-6659 

MVT Supervisor Program 

8. IBM System/360 

GA22-6884. 

Model 65 Functional Characteristics, 

9. S.S. Hussen, Microprogramming: Principles and Practices, 

Prentice-Hall, Englewood Cliffs, N.J., (1970). 

10. IBM An Introduction to j~icroprogramming, GF20-0385 

92 








