Short title:- MULTIPROGRAMMING OF IBM 360
COMPUTER OPERATING SYSTEMS

AUTHOR: Alan Greenberg
TITLE: A HARDWARE-SOFTWARE TECHNIQUE FOR
MULTIPROGRAMMING TWO UNRELATED
OPERATING SYSTEMS ON AN IBM 360 COMPUTER
DEPARTMENT: Computer Science

DEGREE : Master of Science

ABSTRACT

A method of multiprogramming two discrete operating
systems simultaneously on one IBM System/360 computer is
presented. This hardware-software combination is called a

HYPERVISOR.

The growth of computer technology which led to the
need for such a system is traced. A variety of solutions
are proposed. The paper then presents one of these, the
Hypervisor, from its initial planning stages, through to its
implementation and testing. An evaluation of the Hypervisor
is made. A discussion of the future of the Hypervisor

concludes the paper.

AUTHOR: Alan Greenberg
TITLE: A HARDWARE-SOFTWARE TECHNIQUE FOR
MULTIPROGRAMMING TWO UNRELATED
OPERATING SYSTEMS ON AN IBM 360 COMPUTER
DEPARTMENT: Computer Science

DEGREE: Master of Science

A BREGE

Cet ouvrage présente une méthode de multiprogram-
mation wutilisant deux systémes d'exploitation distincts
simultanément sur un méme ordinateur IBM/360. Cette
combinaison d'équipement et de programmerie s'appelle

1"HYPERVISOR.

L'évolution rapide des techniques de l'ordinateur
conduisant vers cette combinaison est décrite. Une variété
de solutions y sont proposées. Puis 1les phases de
planification, de développement et de mise en marche sont
présentées en detail pour une solution spécifique, nommément
1'HYPERVISOR. La th@&se se termine par une &valuation de 1la
solution décrite et wune discussion de son application

future.

A HARDWARE-SOFTWARE TECHNIQUE FOR MULTIPROGRAMMING

TWO UNRELATED OPERATING SYSTEMS ON AN IBM 360 COMPUTER

Master of Science Thesis

Alan Greenberg

COMPUTER SCIENCE
McGILL UNIVERSITY
MONTREAL, CANADA

AUGUST, 1973

TNn7a

PREFACE

A basic requirement in the management of a large-
scale computing facility is to provide the complete range of
services which the user community requires. Often, even if
the desired facilities could be obtained, it is impractical
due to cost, machine configuration, or incompatibility with

existing software.

This paper describes the development of a means by
which two discrete operating systems, each of which normally
operates on a dedicated IBM 5/360 or S/370 computer, can be
multiprogrammed to operate on the same machine. Results of
the project are described, and future implementations are

discussed.

The reader 1is assumed to have some knowledge of
modern digital computer internals, but not necessarily of
IBM computers. Chapter 3 includes a description of all the
features of S/360 architecture which are required by the

rest of the paper.

The author wishes to express his thanks to
Professor W.D. Thorpe, Director and Professor A.M. Valenti,

Associate Director of the McGill University Computing

g

Centre, for their encouragement and confidence throughout
the development of both the McGill-RAX System and the

Hypervisor described in this paper.

Special thanks are due +to Mr. Roy Miller, who
worked together with the author during the past several
years developing the McGill-RAX Time-sharing System, which
formed the base for the Hypervisor project. The assistance
of Mr. Peter Mann, the IBM representative at McGill, in
satisfying the author's many requests for information is

greatly appreciated.

The project to be described was carried out by the
McGill University Computing Centre, under contract to The
Illinois Bell Telephone Company, Chicago, Illinois. Without
their complete faith and confidence in the McGill Computing
Centre, this whole project would never have existed.
Specific thanks are due to Madelon Clymo, Ken Hahn and Janie

Melzor of Illinois Bell.

This thesis was prepared using the Administrative

Terminal System (ATS) running on the IBM S/360 Model 75

computer at the McGill University Computing Centre.

ii

TABLE OF CONTENTS

Chapter
1. COMPUTER SYSTEM DEVELOPMENT
2. ILLINOIS BELL TELEPHONE . . . « « ¢ « o« &
3. SYSTEM/360 COMPUTER ARCHITECTURE.
4, McGILL-RAX - 05/360 HYPERVISOR DESIGN . .
5. HYPERVISOR IMPLEMENTATION« « « .
6. HYPERVISOR INTERNAIL DESIGN AND OPERATION.
7. OPERATING SYSTEM MODIFICATIONS. . « « «
8. HYPERVISOR PERFORMANCE. & « » o o o o o &
9. OVERALL RESULTS AND)
THE FUTURE OF THE HYPERVISOR.
10. CONCLUSIONS v v o o o o o o s o o o o o«
APPENDIX A v ¢ o 4 s o & s o o o o o o o o o o o o
BIBLIOGRAPHY . v & ¢ & o o v o o o o o o « o o o «

iii

16

29

35

41

54

61

73

79

80

91

CHAPTER 1

COMPUTER SYSTEMS DEVELOPMENT

The methods by which large scale digital computers
are operated have changed drastically in the last fifteen
yvears.! The first computers were relatively slow and little
support programming was available. To solve a problem, the
user would have to reserve the machine for his exclusive
use, and debug and run his job at the computer console.
Although this was not a very satisfactory approach, since
the machine was idle during the programmer's "think time",
it was still an acceptable method of operation. System
time, even on a large configuration, was often worth only

twenty five to fifty dollars per hour.

As machine speed and cost increased, one man
sitting at the computer console could not in general keep
the machine busy even a small percentage of the time.
Obviously, for a computer worth perhaps four hundred dollars

per hour, some other method of operation had to be devised.

The initial solution involved several new develop-
ments. The first of these was the introduction of HIGH
LEVEL LANGUAGES. A high level language such as FORTRAN or

COBOL enables the computer user to present the problem that

he wants solved in terms familiar to him., A program called
a COMPILER translates this representation into instructions
that the machine can execute. One instruction in these new
languages might be translated into many machine instruction.
The programmer could now dgenerate his programs much more
efficiently, no longer having to deal with the actual
details of the computer. Also, since the size (in source
language statements) of each program was usually greatly
reduced, the number of logical errors made by a programmer

would be similarly reduced.

The other significant development was that of
OPERATING SYSTEMS or PROGRAMMING SYSTEMS. Their purpose was
two-fold. Firstly, operating systems provided subroutines
to perform repetitive or intricate operations for the
programmer. Many of these subprograms did routine
mathematical calculations (such as square roots,
exponentials, etc.). Often they related to input/output
(I/0) operations. The programmer could now simply tell the
operating system to read a block of data from a tape. The
system would issue all the necessary commands to perform
this and also initiate any error recovery which might be
needed. The availability of all these routines freed the
programmer from much of the tedious coding, leaving him free
to do more creative work. Also worth noting is that since

these routines were supplied, the user no longer had the

opportunity to make errors which might have occurred if he

had to write the routines himself.

The second facility which operating systems
provided on medium to large computers was the ability to
BATCH jobs. A whole set of jobs could be made available to
the computer at one time. When one job was complete, the
operating system would start processing the next one. All
information needed to process the job was supplied on the
punched cards included in the job. This included such
information as the type of language processor (Fortran or
Cobol, etc.) and the external facilities needed (tape
drives, etc.). Eliminating operator intervention between
jobs cut out much machine idle time. The next step was to
allow the operating system to actually run more than one job
concurrently. This was done by having several jobs reside
in memory at the same time. If one job could not execute
any more instructions until an I/0 operation was complete,
the operating system would let one of the other jobs run for
a while. This technigue of running more than one job at a

time is called MULTIPROGRAMMING.

These advances all helped to make more efficient
use of the computer resources and, consequently, improved

service and reduced the cost to the computer user.

The newer higher speed computers with their
advanced software had many advantages over older models.
Due to their speed, these machines could be used to tackle
problems, which previously simply could not be handled. The
new programming languages also helped as the effort needed
to create a large program was often much reduced. The
"cost/performance" ratio, the cost to perform a given amount
of computing, tended to go down as the éize of the machine
increased. Of course since the number of applications using
the computer increased, the overall cost often increased as

well.

For many applications, the type of operating system
just described was and is quite suitable. However, for some
applications, specifically program development and execution
of short Jjobs, and information retrieval (inquiry)
operations, this environment was far from perfect. In many
computer installations, a job requires a minimum length of
time from the moment it is submitted for running until the
output is available to the programmer. This time is seldom
less than two hours and often as long as a day. This is
true even if the actual job is very short. A programmer
working on a project often needs many short runs to complete
his work. The batch operating system cannot usually satisfy
this type of need while at the same time provide the very

sophisticated facilities needed by other users.

The dilemma of providing short turn-around for
simple jobs was answered by the development of TIME-SHARING
or TELEPROCESSING SYSTEMS. These systems usually work on
the following principle. Instead of giving each programmer
a ten minute time slot each day as a batch system might,
this system might give him a one second slice of time every
minute (on the average). To accomplish this feat, a number
of typewriter-like terminals are connected to the computer.
The operating system apportions the computer's time among
all the active users at terminals. The user, instead of
punching his programs on cards and submitting them to be
run, now types the programs directly into the computer via
his terminal. The operating system keeps track of what each
user is doing. Since the average terminal wuser does not
make very large demands on a powerful computer, the
operating system, if properly designed, can keep a number of
users satisfied simultaneously. Ideally, each user's
requests or jobs can be completed quickly and while he is
thinking about what to do next, many other user's requests

are processed.

It 1is not inconceivable to imagine an operating
system which could provide a wide range of computing
facilities to the batch users, and at the same time, provide
a comprehensive, efficient means of programming via a remote

terminal. However, despite several valiant attempts, this

Sl

had not been accomplished (at the time of the study to be

discussed) for an IBM S/360 computer at a reasonable cost to

the installation and user.

CHAPTER 2

ILLINOIS BELL TELEPHONE

The developments in computer technology coupled
with a changing set of data processing requirements
necessitated a re-evaluation of the computer facilities at
the Illinois Bell Telephone Company during 1969. At that
time the processing at the company headquarters was being
done on several relatively small Honeywell computers, an IBM
7074 and two IBM System/360's, a Model 30 and 40. The
S/360-40 was running an interactive teleprocessing system
(RAX)+ during the day and doing batch processing in non-
prime time using the IBM DOS (Disk Operating System). The
5/360-30 was also running DOS. DOS is an operating system
providing reasonably good facilities for business oriented
applications on small to medium sized machines (the Model 30
and 40 fit this category). RAX 1is an independent system
providing basic language and data management facilities for
use from a number of remote terminals concurrently. Its
facilities were (at that time) satisfactory for many
applications particularly in the fields of engineering and
data collection. At Illinois Bell, the largest application

was data collection from remote locations. There was also a

tRAX - IBM program 360A-CX-17X. It was originally
called "RACS" for Remote Access Computing System.

large amount of general interactive program execution and
program development. Both the RAX and DOS IBM 8/360's were

quite heavily loaded.

There were several criteria and aims concerning
modifications to and expansion of the computing facility.
It was desirable to provide a better time-sharing service
than the standard IBM RAX system. Also, it was necessary to
be able to handle a much larger workload on this system.
The intended plan was to replace the DOS system with the
$/360 Operating System (0S). This would provide a much more
versatile system featuring virtually all the batch oriented
processing facilities which could be needed. 0S is better
suited than DOS to take advantage of a large computer
configuration and to provide the users with a sophisticated
set of facilities. This was needed since it was planned to
eventually shift much if not all of the work of the
Honeywells and the IBM 7074 to the S/360 computer(s). It
should be remarked in passing that O0S, because of its
flexibility and wide range of services offered, has a much
larger overhead than DOS, and thus generally requires a more

powerful machine.

It seemed necessary to run both systems (or similar
ones) since, at the time, no single system existed for an

IBM S/360 which would provide the high level services and

through-put of 0S and the teleprocessing facilities of RAX.
Even if such a system had existed for another manufacturer's

machines, the conversion effort would have been enormous.

The criterion of a better time-sharing system was
met by acquiring the rights to wutilize the McGILL~-RAX
operating system. This system is a version of the standard
IBM RAX system?, highly modified by the McGill University
Computing Centre to provide a much improved set of language

and terminal facilities for users.T

The requirements now evolved into the following.
McGILL~-RAX (or an equivalent system) must be run during the
daytime hours (7AM-5PM). Its machine must be powerful
enough to support a much larger workload than the current
Model 40. The O0S system must have the capability of
processing a large amount of work relative to the current
DOS - Model U40 setup. It must be possible to process at
least test jobs and certain production jobs on 0OS during the
day. This would allow programmers who are developing and
testing programs to use their time more productively. Both
systems should have some surplus power at the time of
installation and must be expandable without any unreasonably

high jump in cost.

TThroughout the rest of this paper, the name RAX will be
used to refer to the McGill-RAX operating system.

Several proposals were made. They are outlined

below.

Configuration one consisted of +two §/360 Model
50's. During the day, RAX would be run on one and 0S on the
other. At night, both machines could be used for 0S. One
great advantage of this setup would be due to the fact that
the CPU and much of the I/0 equipment would be duplicated.
The online RAX system would thus have excellent backup in
case of the failure of some piece of the primary RAX
machine. For several reasons however, this was not a very
satisfactory configuration. Running two individual OS
systems at night would be inconvenient since it implies
maintaining two versions of the operating system, two sets
of libraries, and so forth. A prime disadvantage of this
configuration would be the very high cost of upgrading one
or both of the Model 50s to a §/360 Model 65 (the next
larger size CPU). The two Model 50s would be able to cope
easily with the immediate workload, but should a larger
machine be needed for either system, the cost increase would

be large indeed.

Proposal two called for one 5/360 Model 65. Such a
system would run RAX during the day and 0S for the remaining
time. This hardware setup would give both RAX and 0S plenty

of room for expansion and also happens to be the least

10

expensive of the suggestions. There were two major
drawbacks. A large amount of hardware, necessary to run 0S,
would be idle while RAX was running. RAX simply had no use
at that time for all the core storage and I/0O devices needed
by 0S. Also, and more important, no O0S jobs could be

processed during the day. This could not be accepted.

Solution three was to use one large S/360 Model 65
running 0S. Although not utilizing RAX, this proposal quite
nearly met all the requirements. Under the Operating
System, a program called CALL/360 could be used. This is a
system similar to RAX, the major difference being that it is
not a stand-alone operating system but is part of 0S. It is
not quite as versatile as RAX, but it would £fit the
requirements at Illinois Bell. The major deterrents to this
implementation were the higher hardware cost and the large
amount of conversion effort (and thus cost) needed to modify

all the RAX jobs to run under CALL/360.

The fourth solution was to use a Model 65 using the
"Hypervisor" shared storage feature. This hardware
enhancement, when coupled with the appropriate software,
could allow two independent operating systems to coexist in
the same machine, each operating system running as if it had
complete control over its own computer. The Hypervisor

software basically controls the two supervisors, thus the

11

name HYPERvisor. If RAX and OS could be Hypervised
efficiently, this proposal would be quite attractive. At
this point the McGill University Computing Centre was
contacted concerning the feasibility of such a program.
After the matter had been studied, it was decided that such
a Hypervisor could be written. The Hypervised Model 65
could run RAX and a small OS system during the day and one
large OS system at night. In this configuration, 0S jobs
could be processed during the day. Also, the 1large 65
configuration at night could, if properly used, be more
powerful that two Model 50 CPUs. There were disadvantages
of the Hypervised 65. Because of the hardware/software
implementation, duplication of some hardware for RAX and O0S
would be necessary. When both systems were running, each
must have control of its own channels and I/0 devices. The
possibility of a failure in one system impacting the other

system also had to be considered.

An overall consideration was the fact that any
Model 50 CPUs acquired would be rented while a Model 65
could be purchased. The economics are such that in the long
run, it would be less expensive to purchase than lease, but
it would not be worthwhile to purchase a machine which might
soon be outgrown (i.e. a Model 50). Because of this, the 65
configurations were even more attractive than the rental

prices indicate.

12

One other proposal was considered. This involved
the use of a System/360 Model 67 CPU running an operating
system called CP/67. A Model 67 is a special variety of
S/360 with full relocation hardware.t The CP/67 system
allows several conventional S/360 operating systems to run
simultaneously. The system is very generalized. Because of
this, it requires a large amount of hardware to support it.
Also, the software was extremely inefficient (at 1least at
the time this decision had to be made). This system would
be able to run RAX and O0S simultaneously but the overhead
would tend to decrease performance by too much, especially

considering the high cost of the hardware involved.

Table I summarizes the various configurations with

respect to cost and features.

Based on the preceding data, all solutions but the
0S-CALL/360 and the 0S-RAX Hypervisor were ruled out. The
final decision was to use the Hypervised Model 65 concept.
The decision was made partly because of the conversion
effort which would be necessary to use CALL/360. A large

factor in the decision, however, was that Illinois Bell was

tFull relocation hardware allows any section of physical
memory to be assigned any reasonable address (in 2048 byte
blocks) by the the operating system supervisor. This allows
the programmer to think he has contiguous storage, and
permits the system to fully utilize fragmented storage.?

13

TABLE I

ILLINOIS BELL TELEPHONE

COMPUTER PROPOSAL SUMMARY

RAX 05 CcosT ADVANTAGES DISADVANTAGES
50 50 $74,182 Backup hardware Upgrade cost high
50 65 $92,652 Upgrade cost

from two 50's
65 50 $88,682 Not a likely
configuration
65 $66,013 Inexpensive No 0S during day
more power than
two 50's
Hyp 65 $73,642 0S during day Two systems on
CPU affects
reliability
67 $81,903 Versatile Expensive, slow
extra versatility
not needed.
65 $77,148 One standard Conversion
CALL/OS machine/ effort, etc.
software

14

extremely pleased with the RAX system which they had
obtained from McGill. It was felt that if a Hypervisor were
to be obtained from McGill, it would be of similar quality.
The Hypervisor would effectively give a full S/360 Model 65
to RAX during the day, a large Model 65 to OS at night, and
a "slow" Model 65 to 0S during the day. Since both systems
would have a rather powerful machine available, there should
be no need to upgrade CPUs in the near future. The McGill
Computing Centre agreed to write the software needed to
Hypervise RAX and 0OS on the 65 {(under contract to the

Illinois Bell Telephone Company) .

15

CHAPTER 3

SYSTEM/360 COMPUTER ARCHITECTURE

To understand the Hypervisor implementation, it is
first necessary to have a good background in the System/360

internal architecture and operation.’

The main components of a S$/360 computer are a main
storage (memory), a central processing unit (CPU), channels

and various input/output (I/0) devices.

The MEMORY of a computer is a device capable of
storing binary information. The unit of storage in a S/360
is eight bits and is called a BYTE. Bytes in the memory are
consecutively numbered starting at 2zero. Each number is
considered to be the address of the corresponding byte. The
menory is used for storing programs consisting of
instructions to the computer, and data related to the
problem being solved. On a S/360, the storage device 1is
composed of magnetic ferrite cores. The term CORE has become
synonymous with the term memory and will be used

interchangeably.

The CPU is responsible for executing instructions

stored in the memory. It can also establish communication

16

it

with the I/O0 devices wunder control of the program being
executed. Associated with the CPU is the Program Status
Word (PSW). The PSW contains eight bytes of information
completely describing the status of the CPU in relation to
the running program, at any given time (Fig. 1). It
contains, among other things, bits of data specifying
whether the CPU is running or waiting (in WAIT state), what
type of occurrences may interrupt the current instruction
sequence, and the address of the next instruction to be

executed.

Under normal conditions, the CPU performs the
operation requested by each instruction. When this is
complete, it goes on to the next sequential instruction.
This process continues until the instruction executed is a
branch. In this case, the next and successive operations are
fetched starting from the address pointed to by the branch
instruction. The normal instruction sequence can also be
disrupted by interrupts, as described 1in the following

sections.

The channels interface the I/0 devices to the CPU,.
When a program wishes to do some input or output, the CPU
sends data to the channel concerning the type of operation
to be done (read, write, etc) and the adresses in memory

where the data is located or is to be placed. The channel

17

FIGURE 1

PROGRAM STATUS WORD

SYSTEM MASK KEY AMWEP INTERRUPTION CODE
0 7 8 1T 12 15 16 37
ILC| CC|PGM MSK INSTRUCTION ADDRESS
327 347 36 39 B0 63
33 35

SYSTEM MASK
Bits 0-6 If on, allows I/0 interrupts on channels 0-6
respectively
Bit 7 If on, allows external interrupts

KEY .
Specifies memory fetch and store limitations. If all zeros,
current program can fetch or store anywhere in memory

AMWP
A not used
M If on allows machine error interruptions
W If on machine is not running, but in "WAIT" state
P If on machine is in "PROBLEM" state and may not perform

any supervisor functions.

INTERRUPTION CODE
After an interruption, the reason for the interrupt is
stored here

ILC
Instruction Length Code - length of the last instruction
executed (in a S/360, instructions can be 2,4, or 6 bytes

long)

cc :
Condition Code = two bits which may be set by one
instruction and tested by later one

PGM MSK

Program mask - four bits related to interruptions which can
occur during arithmetic operations

INSTRUCTION ADDRESS
Address of next instruction to be executed (this and the ILC
can be used to compute the address of the last executed
instruction.

18

gt

then operates independently and the CPU is free to continue
other processing. When the I/0 operation is complete, the
channel signals the CPU that it is finished. The mechanism
used to signal the CPU of a completed channel operation is
the I/O0 interrupt. When an operation is complete, and the
current PSW allows this channel to cause an interruption
(Fig. 1 - System Mask), the current PSW is stored in a
special location (Fig. 2) in the memory (I/O OLD PSW -~ loc
56) .* Next, a new PSW 1is loaded from another specified
location (I/O0 NEW PSW - loc 120). This new PSW contains an
instruction address pointing to a section of program
designed to handle completed input/output operations. This
routine can take whatever action 1is necessary and then
resume what the CPU was doing before the interrupt by
loading the PSW that was stored at location 120. The
channel address is a number (usually from 0-7) by which the
channel 1is identified. 1If when an I/O operation completes,
the current system mask disallows this channel's interrupts,
the interrupt remains "PENDING" until the system mask is
changed to allow it. The interrupt then occurs just as

described.

The principles employed in performing an

input/output operation are quite straight forward. The main

TAll memory Ilocations referenced in this paper are
expressed in decimal.

19

FIGURE 2

SYSTEM/360 LOW CORE MAP

IPL PSW
0 °
IPL CCW 1
8 [] L] [] ® L]
IPL CCW 2
16 * [] [] * *
EXTERNAL OLD PSW
2“ L] ® L] [] o
SVC OLD PSW
32 ® o L] [] .
PROGRAM CHECK OLD PSW
40 s . - - .
MACHINE CHECK OLD PSW
48 . ® L] . L]
I/0 OLD PSW
56 [] * [] [] []
CHANNEL STATUS WORD
Gu L] [] [] * L]
CAW UNUSED
72 L]] [] [)
TIMER UNUSED
80 [] * [] e
EXTERNAL NEW PSW
88 -
SVC NEW PSW
96 L] L] - L] L]
PROGRAM CHECK NEW PSW
104 [] * L] [) L]
MACHINE CHECK NEW PSW
112 [] [] L] L] L]
I/0 NEW PSW
120 L] [] L] L] L]

20

means of communication from the CPU to the channel is the
Channel Command Word (CCW). This consists of eight bytes of
information including the type of operation to be done, the
storage address of the data involved, and the number of
bytes of data to be transferred. To initiate an I/O
operation, the software constructs one or more CCWs and
places the address of the first one in the Channel Address
Word (CAW) at loc 72 of the memory. The program then issues
a Start I/O (SIO) instruction specifying the unit number of
the device to be used. The channel looks at the pointer in
the CAW and from this location (i.e. the location of the
CCW) gets its instructions. Assuming that the CAW and CCW
are valid, the SIO instruction is now complete and the CPU
is free to go on to the next instruction. The channel

performs the operation(s) described in the CCW(s).

As soon as it is finished, and as soon as the CPU
System Mask allows interrupts from this channel, an I/0
interrupt occurs. The unit number of the device which was
addressed is stored in the interrupt code of the I/0O OLD
PSW, Also, a Channel Status Word (CSW) 1is stored at
location 64. The CSW indicateg whether or not the operation
was successful. If it was not, the CSW also gives

information pertaining to the error conditions.

21

The interval timer is another feature available on
most S/360 computers. This device allows the program to
measure and keep track of time. The interval timer consists
of four bytes of storage starting at location 80 in the
memory. Every 1/60 of a second, this location is
decremented. The amount of each decrement is 1380. This 1is
equivalent to 1/60 second, since the interval timer is in
units of about 13 microseconds. If this value should become
negative, a timer interrupt occurs (assuming the current PSW

system mask allows it).

This timer interrupt is a specific type of EXTERNAL
interruption. It operates in a way similar to the I/O
interrupt; in this case however, the machine stores the
current PSW in the EXTERNAL OLD PSW (loc 24) and fetches the
new one from the EXTERNAL NEW PSW (loc 88). This new PSW
points to a routine written +to handle timer interrupt

conditions.

To use the timer to measure elapsed time, the
program need only initialize the timer to some value. At
any later time, the difference between this original value
and the current contents of the timer is a measure of how

much time has passed.

22

To limit a function to a specific length of time, a
program places in the timer location a value equal to the
allowed time (in timer units). When the period has expired,

a timer interrupt will occur.

The last feature of the S$/360 machines which is
relevant to the Hypervisor design is the method in which a
program or operating system 1is first loaded into the
computer. To begin operation, the address of the device
where the program resides is placed in a set of dials. The
"LOAD" button is then pressed. This causes the INITIAL
PROGRAM LOAD (IPL) procedure to take place within the
machine. This procedure is equivalent to doing a SIO on the
selected device, using a CCW which contains a read command.
This reads 24 bytes of information into locations starting
at location zero of memory (Fig. 2). This 24 bytes of data
from disk contain more CCWs and a PSW (Fig. 2). The channel
program continues after the read, wusing the CCWs now at

location zero. When the I/0 operation has been successfully

completed, the PSW at location 16 1is loaded. This PSW

normally points to the program loaded by the 1I/0 operation

just performed.

The Hypervisor hardware modification allows the
memory of the computer to be divided into two independent

sections from the viewpoint of the programs. In the

23

following explanations and examples, for simplicity, we will
assume that +the computer has a memory of 20000 bytes (in
reality, the core sizes of machines on which this paper 1is
centred are from 256K to 1024K (K = 1024 bytes)). When it
is divided, there will be two segments, each of 10000 bytes.
Note that the memory addressing starts at zero, so that the
20000 byte memory is addressed from 0 to 19999 and the 10000
byte segments as 0-9999. When the Hypervisor feature is
active, the memory is partitioned into two logically
separate core storage boxes. As far as the CPU and channels
are concerned, the addressing of each box starts at location
zero and increments by one until its highest address. Thus
there are now two locations "0", two 1locations "1", etc.
Since there are now two low core areas, all special
locations (e.g. OLD, NEW PSW's) are duplicated. It 1is the
joint function of the Hypervisor hardware and software to
control which of the core boxes is to be used for which

purposes.

This control is achieved wvia the PREFIX CONTROL
REGISTER (PCR). The PCR 1is an extra hardware register
consisting of eight bits numbered 0-7. Bits 0-6 refer to
I/0 channels 0-6. Bit 7 refers to the CPU itself. If all
the bits are zeros, the machine operates as a normal S/360.
No memory partitioning take place. Once any of the bits are

on, core storage is divided into two segments. If the bit

24

corresponding to a channel is on, then any time that channel
references the computer memory, 10000 will be added to the
address specified by the channel. What this means 1is that
if the channel is instructed to read some data into location
100, and its PCR bit is on, the data will really be placed
at location 10100 of the real memory. Note also that when
this channel stores its CSW and fetches it's CAW, although
it is referring to locations 64 and 72 respectively, the
real memory locations used will be 10064 and 10072. As far
as this channel is concerned, its memory starts at byte zero
and goes as far as 9999. 1In reality, it is using locations

10000 to 19999.

Similarly if bit 7 of the PCR is on, any storage
reference made by the CPU is relocated. This 1is true for
storage references to get instructions as well as data. A
branch to location 500 will cause the next instruction to be

fetched from real core location 10500 if PCR bit 7 is a one.

If the bit for any channel or the CPU is off, it
can refer to memory locations 0-9999, If the bit is on,
apparent addresses are also from 0 to 9999, but these latter
references will actually address physical 1locations 10000-
19999. It can be seen that a program written to work in a
normal machine can work in the wupper core box of a

Hypervised machine without any modification. All that is

25

necessary is to make sure that the relevant PCR bits are set

to ones.

Table II gives examples which illustrate these
rules. Instead of the 20000 byte machine wused in the
previous examples, the table assumes a machine of 50000

bytes partitioned at byte 20000.

Note that the bit 7 for the CPU can be turned on or
off at will. However, if the channel bits are changed while
data is being transferred, the results could be disastrous.
Data would start in one of the memory boxes and suddenly
jump into the other one. The channel bits could be changed
if all channel activity could be quiesced first. However,
this would require much co-ordination and synchronization
between the two programming systems. In most cases, it 1is
simply not practical. It also follows that since the
channel bits should not be set to =zero during normal
multisystem operation, once the memory is partitioned, it
must remain so. This means that while running, a program
residing in one part of the memory cannot access the core of

the other.

Remember also that the interval timer is at
location 80 of the memory and is decremented every 1/60 of a

second by the CPU. If the CPU PCR bit (bit 7) is on at the

26

TABLE II

HYPERVISOR SHARED STORAGE FEATURE

PREFIX CONTROL REGISTER EXAMPLES

PCR REFERENCE | RELOCATED | ADDRESS | ACTUAL
FROM ADDRESS
10100001 | Channel YES- 100 20100 o
10100001 | Channel NO 100 100
10100001 | Channel YES 200 20200
10100001 | CPU YES 300 20300
10100001 | CPU YES 20400 40400
10100001 | CPU YES 30400 invalid
. 50400>49999
10100001 | Channel YES 20100 40100
10100001 | Channel NO 20100 invalid
20100>19999
11000000 | CPU NO 201 201
11000000 | CPU NO 30003 invalid
30003>19999
00000000 | Channel NO 100 100
00000000 | Channel NO 30004 30004
00000000 | CPU NO 45777 45777

time, the location that gets decremented is the location 80
in the high core box. The machine is now running with two
timers. One of them being decremented part of the time and

the other active the remainder of the time.

One new instruction is added to the System/360 with
the Hypervisor feature. It is the SET PREFIX and BRANCH
(SPB) instruction. The operands of the SPB instruction are
one 8 bit byte and a memory address. The PCR is first set
according to the 8 bit code. Then the CPU branches to the
address specified in the instruction. If the new PCR
contains a =zero in bit 7, the address is used as is.
However, if bit 7 is a one, the address will refer to the
upper core box since relocation is now in effect for all CPU
storage references. This instruction therefore gives the
ability to set the Prefix Control Register and to transfer

program control from one of the core boxes to the other.

28

e

CHAPTER 4

McGILL-RAX = 0S/360 HYPERVISOR DESIGN

The concept of Hypervising two operating systems
was first developed to allow a S/360 computer to run both
0S/360 and a 7074 Emulator program simultaneously. 2an
emulator is a hardware assisted program which simulates
another type of computer. The 7074 emulator runs on certain
S/360 CPUs. It 1s a stand—-alone system, that is, it
normally runs on a machine all by itself, not depending on
any other operating system. When a computer installation
converts from an older type of computer such as an IBM 7074
to a newer S/360, the emulator allows old Jjobs to be run
without any modification or conversion. As time passes,
less of the workload is emulated and more becomes S/360
programming. To run this type of job mix the computer must
alternatively run O0S and the emulator program. The
Hypervisor hardware and software allowed these systems to be

run concurrently.

Since the initial implementation, the Hypervisor
has been used to run several other combinations of operating
systems. Examples of these are 7074 emulator/DOS, two 7074
emulators, and two DOS systems.® It has also been reported

that a modified IBM RAX and 0S/360 have been Hypervised

29

before, but documentation relating to this has not been
available. A short paper® was obtained (from IBM) giving
an implementation plan for Hypervising RAX and OS. Because
of different design «criteria, this paper's ideas were not
followed very closely, however, it was useful in the initial
planning stage. It was never established whether this paper
described an existing system or was simply a possible

implementation specification.

Once the decision was made to use the Hypervised
$/360-65, the software specifications were set. There were
two sets of guide 1lines established. The first set were
criteria which it was felt must be met for the Hypervisor to
work as planned. The other set were desirable attributes
which were to be included if possible. That is, the first
criteria must Dbe met, the second were to be satisfied but

not at the cost of any of the first set.

Major Criteria

A-1 The RAX system must have priority over the 0S/360
system. Any time RAX needs the CPU, it must get control
over it quickly (i.e. within a period of time measured
in microseconds). There must be a minimum of

degradation in RAX due to O0S.

30

A-2

While running under the Hypervisor with 0S, RAX
reliability should not suffer appreciably. This means
RAX should be able to keep running even if OS crashes

(stops dead).

RAX time charges must be accurate both for execution and
connect time. This means RAX's timer must be running
(logically if not physically) at all times. RAX must be
able to keep track of time used for CPU work, time in

wait state, and time of day, all reasonably accurately.

0S must be able to maintain job timing. O0OS charges are
by CPU time and a measure of how long the Jjob utilizes
system resources (core, I/0 units, etc). Time of day

accuracy 1is desirable but not mandatory.

The 0S system will have only 256K memory during the day.
This is not a very large configuration and therefore the
amount of core occupied by the Hypervisor on the 0S core

box should be kept to a minimum,

31

Minor Criteria

B-1 The Hypervisor should depend as little as possible on
either control blocks or coding within 0S/360. A new
version or release of 0S should necessitate a minimum of

changes in the Hypervisor.

B-2Similarly, the number of changes to 0S/360 itself should

be kept small, preferably zero.

B-3 The Hypervisor coding should be efficient, particularly
the sections which are executed often (up to several
million times per day). It should not appreciably

degrade either RAX or OS operation.

B-4 The same system residence disk packs for both OS and RAX
should be able to be used on a Hypervised system or
stand-alone. It would not be desirable to have to

maintain two almost identical systems.

B~5The Hypervisor should keep internal usage statistics.
These are useful to measure 1its performance and help

indicate areas where design improvement might be needed.

B-6 It should be easy to modify the Hypervisor to reflect

hardware configuration changes.

32

After the initial installation of the Hypervisor, a
new requirement developed. 1In the original design, if OS
failed catastrophically during the day, it was felt that it
would be satisfactory to leave 0S off until the end of the
RAX day. This seemed reasonable at the time for several
reasons. First, it was not expected that 0S would fail very
often. Second, since before the Hypervisor was used, no 0S
production was processed during the day, it was felt that to
occasionally revert to this condition would not hurt

greatly.

In practice, O0S did fail with some regularity due
to both hardware and software problems, Also, once the
programmers were used to having 0S jobs run during the day,
it was not very satisfactory to suddenly withdraw this
facility. The new criteria all related to increasing the
reliability and availability of both systems, but

particularly OS.

Additional Criteria

C-1 The Hypervisor must be able to re-IPL O0S during

production hours with minimal effect on RAX and its

users.

33

C-2 Either system can run without the other. That is, RAX
can run under the Hypervisor without 0S/360 running, and

0OS can run if RAX is inactive.

C-3 Either system can be stopped or started at any time.

These additions would not only allow either system
to be re-IPL'd during the day, but due to the second and
third specifications, if one of the systems could not be
started due to either hardware or software malfunctions, the
other system could still be run. When the errors had been
corrected, it would be very likely that the first system
could now be IPL'd without affecting the work being

processed on the running system.

34

CHAPTER 5

HYPERVISOR IMPLEMENTATION

The Hypervisor program to be described was written
in accordance with the specifications laid out in the
previous section. It corresponds to the McGILL-RAX - 0S/360
Hypervisor currently installed at the Illinois Bell

Telephone Company.

External Implementation

From the machine operator's point of view, the
Hypervisor operation consists of the following procedures.
To start, the Hypervisor is loaded from a magnetic tape or a
deck of cards. Once it is in core, a command can be typed
in on one of the console typewriters. This command should
instruct the Hypervisor to IPL either O0S or RAX. The
specified system will be loaded. When its initialization is
complete, the console of that system can be used to instruct
the Hypervisor to load the other operating system. After
that, commands can be entered on either of the systems

consoles.

35

Theory of Operation

When both the systems are running, RAX has ultimate
control of the machine. When RAX has no computing to do,
and it would normally go into wait state, it now transfers
control to the Hypervisor. The Hypervisor restarts 0S/360
at the place where it was last interrupted. When an I/O
interrupt occurs, it is handled by a Hypervisor routine. If
it is for 0S8, a branch is taken to the 0S8 I/0 First Level
Interrupt Handler (I/0 FLIH). If it is from a RAX device,
the information pertaining to the interrupt is passed back
to the RAX machine for processing. That in principle is all
the Hypervisor does. In practice, there are many

complications.

The aim of the implementation is to give 0OS as much
time as possible without degrading RAX. That is, any time
during which RAX would normally go into wait state, let 0OS
use the CPU. However, often when RAX wishes to go into wait
state, 1its PSW system mask does not allow interrupts on all
channels. If it were in real wait state and an I/0
operation on one of the masked out channels completed, the
interrupt would remain pending until RAX changed its system
mask to allow this channel to interrupt the CPU. That is,
the interrupt would not occur until RAX wanted it, and then

it would occur immediately. With the Hypervisor, when

36

control 1is passed to 0S, this interrupt will occur
immediately, as OS allow interrupts on all channels. To
stop 0OS from accepting interrupts on some channels. some of
the time would have necessitated extensive (if not
impossible) modifications to 0S. This was completely ruled
out. Thus this interrupt will occur and be intercepted by
the Hypervisor I/0 interrupt routine. It cannot Dbe passed
on to RAX, since RAX does not want it now. This problem is
solved by means of the Hypervisor being able to remember
interrupt information until RAX is able to accept it. These
interrupts are said to be queued or STACKED. The stacks are
really First-In-First-Out (FIFO) queuest, one being

maintained for each channel.

The other major bottleneck in the Hypervisor
implementation has to do with the interval timer management.
RAX is required to be able to keep track of time accurately.
The timer at location 80 of the RAX memory, however, is only
running when RAX is actually using the CPU. Somehow, RAX
must keep track of the rest of the time when O0S 1is in
control. Basically this is done by noting 0S/360's time of
day (TOD) whenever OS is given the CPU, and again before RAX

is to get it. The difference 1is subtracted from the

+The term STACK normally refers to a first-in-last-out
list, but it is used in this paper to mean a FIFO list to
coincide with the terminology used within the actual
Hypervisor module.

37

original value at RAX's location 80. This effectively lets
RAX know about all the time that passes while it is not
running. Of course, it 1is not that simple. If the
subtraction cause the interval timer to go from a positive
value to a negative one, an external (timer) interrupt
should occur. This is what would happen on the real hardware
if the timer became negative. Similarly, if the Hypervisor
finds that the value of the timer becomes negative, it
simulates an external interrupt just as it normally sends
I/0 interrupts to RaX. If RAX is not currently allowing

timer interrupts to occur, it is stacked on a special gueue.

Another problem which occurs is that on a real
machine, if an interrupt is pending but not allowed due to
the PSW system mask, and later the system mask is changed to
allow interrupts on this channel, the I/0 or external
interrupt is automatically taken. However in our case, this
interrupt may have been accepted while 0S was running and
queued in the Hypervisor's stacks. When control is given to
RAX, the information remains queued. Later, RAX may execute
a SET SYSTEM MASK (SSM) or LOAD PROGRAM STATUS WORD (LPSW)
instruction to change the system mask. The physical channel
at this time would pass the interrupt on to RAX. Since it
is pending in the Hypervisor stacks now, not the channel,
RAX 1is not 1informed of its presence automatically. The

Hypervisor has to tell RAX about it. The solution taken, is

38

to modify RAX so that any time it executes a critical SSM
or LPSW instruction, it calls a subroutine in the Hypervisor
program to inquire whether any pending interrupts can now be
taken., If any are available, they will be presented to RAX

at this time.

The next set of problems centre around the IPL of
0$8/360 while RAX is running. The actual IPL is simulated
rather simply and will be described in the detailed program
description. The main point worth noting concerns the timer
management., When control is first given to the 0S IPL
program, the OS timer routines are not yet loaded into core
yet. This makes it difficult to calculate the 0S TOD. This
time is needed to maintain the RAX clock. Fortunately, it
is known that OS will very gquickly set its time of day to
00:00:00 (i.e. z2ero hours, zero minutes, zero seconds).
This gets over the first hurdle of the actual IPL. Later,
(perhaps several seconds or minutes), the computer operator
issues a SET CLOCK command to OS to tell it the real clock
time. When the Hypervisor next gets control, it finds that
the 0S5 TOD has jumped by a large amount (from 00:00:00 to
some large value). In reality, only a fraction of a second

has gone by. The Hypervisor cannot show this jump to RAX.

39

Yet, 1t must be capable of passing large increments to RAX
at other times.t The solution is that the Hypervisor ignores
a large Jjump (greater than 30 minutes) only if it occurs
when the previous time was small (less than zero hours, ten
minutes) . This method 1is not fool-proof. If 0S is IPL'A
under the Hypervisor between midnight and 12:30 AM, it will
not work properly. However since the Hypervisor is normally
working only during the cday shift, the method outlined above

will work quite satisfactorily.

tThis would be necessary if RAX was on the air, but not
very busy for a long period of time.

40

CHAPTER 6

HYPERVISOR INTERNAL DESIGN AND OPERATION

Following is a detailed description of the
Hypervisor control program. Emphasis will Dbe placed on
logic flow within the software rather than coding
techniques. The text closely follows the Hypervisor
flowcharts found in Appendix A. Capitalized names within

the text usually refer to labels used within the flowcharts.

Hypervisor Initialization

After the Hypervisor is loaded, it takes complete
control of the machine by setting all the new PSWs in O0S's
low core to point to its own interrupt handlers. At the
same time, the location 80 timer is initialized. A read
command 1is started on the console typewriter. When the
operator has finished typing something in, control is given
to the standard Hypervisor console command handler. If this
messadge is a request to IPL either RAX or 0S/360, it is
carried out. If any other reply is made, the initialization

process must be re-done (i.e. IPL the Hypervisor again).

41

st

I/0 Interrupt Supervisor

When an I/0 interrupt occurs while 0S is running
the Hypervisor IOINT routine is entered. If the interrupt
is from an 05/360 device other than the console typewriter,
the 0S5 I/0 FLIH is given control. For the typewriter, tests
are made to determine if the interrupt concerns a Hypervisor
message. It could be either a Hypervisor command £from the
operator or an indication of the completion of a Hypervisor
message to the operator. If it is, the correct processing
routine is called. Otherwise, a transfer is made to the 0S

interrupt handler.

If the interrupt is from a RAX device, the
information must be passed on to RAX or stored for future
use. First though, the amount of time since RAX last had
the CPU is calculated and subtracted from the RAX interval
timer wvalue. If this causes it to become negative, and
external interrupts are allowed by RAX, the I/0 interrupt is
stacked and control is returned to RAX signalling a timer
overflow. If it goes negative but external interrupts are
not wanted, it 1is stacked. 1In all cases except when the
timer interrupt is taken, a decision must be made concerning
the original I/0 operation (and any other ones which may

already be stacked). The queues are inspected and if an

42

interrupt can be passed on to RAX, it is done. If none can

be found, control of the CPU is returned to 0S/360.

Interrupt Queue Management Routines

All pending interrupt data is stored in queues (or
stacks). A queue exists for every channel used by RAX and
for external interrupts. If a queue 1is non-empty, it
consists of pointers to queue elements which contain the
relevant information. There is also a dummy gueue
consisting of unused (free) gqueue elements. All the queues
are managed on a first-in-first-out (FIFO) basis. Each
queue control block contains data relating to the start and
end of its stack. Also maintained is the count of elements
currently on the queue and several usage statistics.t Each
queue element has room for the device address where the
interrupt originated, the CSW, and a pointer to the next

element on the queue.

A set of subroutines 1is used to maintain the
queues. The STACKIO routine will transfer information
relating to the current I/0 interrupt to the appropriate

channel queue. During this operation, a call is made to a

tStatistics maintained are; the number of times the queue
is used, and the all-time minimum and maximum number of
elements in the queue.

43

subroutine within the RAX supervisor to fetch the contents
of the RAX CSW. Since this was a RAX I/0 interrupt, the
channel PCR bit 1is on and the CSW is stored in the upper
core box. The Hypervisor, which resides in the lower core

box cannot access the CSW itself.

The STACKEXT routine notes that a timer interrupt
has occurred. This routine will only allow one element in
the stack. Two pending external interrupts is a condition
which cannot occur on a real machine and should never occur

within the Hypervisor.

The UNSTACK module inspects the pending interrupt
stacks and returns with the best one which can be taken.
Consideration 1is given to the current RAX PSW system mask,
the relative priority of the channels and the order in which

the original interrupts occurred.t

There is also a small function to simply empty out
all the interrupt stacks (CLEANSTK). It is equivalent to a
"SYSTEM RESET" on a CPU as it removes all traces of pending
interrupts. It is used by the IPL simulator to obtain a

"CLEAN" machine.

tExternal interrupts have the highest priority. Channels
come next, the higher the channel number, the lower the
priority. Elements within each queue are processed FIFO.

b4y

The gueue utility subroutines GETQEL, PUTQEL are
used by all the above functions to perform the actual queue

element additions and deletions.

RAX Interface Routine

This section of the Hypervisor is entered from RAX
to perform a variety of services. All communication from
RAX to the Hypervisor is done via this path. There are

three reasons for coming here.

The first 1is a request to inspect the stacks for
pending interrupts which can now be taken. It is called
after RAX executes a SSM or LPSW instruction which may
change the system mask. Return is made to RAX with the

information requested.

The second entry is used to pass to the Hypervisor
a message from the RAX console. Control 1is given to the

console command processor.

The third type of entry is used when RAX has
nothing to do and therefore wishes to go into wait state.
If any stacked interrupts can be returned immediately, they
are. If not, the machine will normally be given to O0S.

First however, a check is made to see that the interval

45

timer has not gone negative since external interrupts were
last allowed by RAX. 1If it had and control were given to
0S, 0S5 would at once receive a timer interrupt which
rightfully belongs to RAX. The check is made by momentarily
allowing external interrupts. If one occurs, it 1is either
stacked or passed on to RAX (if RAX is currently allowing
externals). If this is the first time the wait routine has
been called, the opportunity is taken to send an IPL
COMPLETE message back to the 0S console, assuming it was OS
that IPL'd RAX. In all other cases, 0S is given the CPU.
It keeps it until the next I/0 interrupt occurs at which

time IOINT takes over,

0S/360 ~ Hypervisor Interfaces

There are three Hypervisor routines that have

contact with 0S/360 directly.

The first of these 1is the OSTIME module. Its
function is to give the I/O interrupt handler the time of
day according to 0S5/360. 1Is OS is active at the time, the
0S timer control blocks are inspected to determine what O0S
thinks the time is. Note that this will normally not be the
correct time since the 0S clock is not running while RAX is
active. If 0S is not being used, a fake time of day is

produced. This is just the negative of the interval timer

46

(divided by 256 to obtain 300th of a second). Both of
these times are not true clock times although the former is
slightly better than the latter. However, on two successive
inspections, with 0OS using the CPU in Dbetween, they both
give accurate elapsed time. This is their true purpose and

both are quite satisfactory.

The next two routines are used only once each
during normal operation. One is IOCATCH. Its purpose is to
intercept the first I/0 interrupt when OS starts running
after an IPL and perform patches to the OS nucleus. When 0S
is 1loaded, the I/O WEW PSW points to its own I/0 FLIH. The
first instructions of the interrupt handler however are
modified to Dbranch +to IOCATCH. This routine replaces the
modified instructions in the I/0 FLIH, saves the original
I/0 NEW PSW and stores a new one at location 120 to give
control to IOINT on all following interruptions. Also
modified is the PROGRAM CHECK NEW PSW so that if the
Hypervisor accidentally gets a program error, it will be
noted as such instead of being attributed to some user

program running under OS.

The last O0S interface module is OSWAIT. Its
function is to intercept 0S/360 wait states. That is, when
0OS 1intends to go into a wait state, it instead goes to

OSWAIT. The first time it is entered after start-up, if the

47

IPL request had been from RAX, a message is sent back to the
RAX console saying IPL COMPLETE. This effectively returns
control of +the CPU back to RAX, since the 0S5 IPL was done
only as an exit to the RAX console handler. Under any other
conditions, OSWAIT simply goes into wait state by loading a
PSW with the wait bit set to one. This PSW, like the normal
0OS wait state PSW has a system mask of all ones to allow all

interrupts.

Hypervisor Message Handler

If an operator command for the Hypervisor is typed
in, control is given to the appropriate analysis section.t
Either RAXMSG or OSMSG 1s entered, depending on which
console the message was typed. Through the RAX console, the
operator can drain (stop dead) RAX, drain 0S, and IPL OS.
From the OS console, the operator can drain and IPL RAX, and
ask for a display of the Hypervisor internal counts
(statistics). Also, at initial Hypervisor IPL +time, this
console can be used to IPL 0S. When a valid command is
recognized, the message scanner transfers +to the correct
command processor. If an invalid command is entered, an

error message 1is returned.

tAll commands for the Hypervisor are prefixed by two
equal signs, as in '==IPL 0S'.

48

RAX IPL Simulator

The purpose of the IPL simulator is to load RAX
into the upper section of the memory, set the PCR correctly
and transfer to RAX. It basically simulates the "LOAD"
button with additional functions necessitated by the shared
storage feature. Since there is no RAX I/0 active at this
time, the simulator sets the PCR to zero so that all core
may be addressable. After clearing RAX's core, it moves
into it a small IPL program. The CLEANSTK routine is called
to discard any pending interrupts. Switches are set to say
that RAX is being started. The PCR 1is set for all RAX
channels and the CPU. At the same time, a branch is taken
to the IPL program in the RAX core box. This program starts
a read request on the RAX system residence disk. After the
read, the CCWs just read into core at 1location zero are
executed. On successful completion, the PSW at location 16
is loaded. This completes the IPL of RAX. If the I/O had
not been without error, the IPL program would go back to the

Hypervisor and an error message would be sent.

Once RAX completes its normal system
initialization, when it would normally go into wait state
(waiting for work to do), it returns to the Hypervisor via

the normal RAX wait processor. At this time, it passes to

49

the Hypervisor, addresses within the RAX supervisor of

several service routines to be used by the Hypervisor.

05/360 IPL Simulator

The program to load 0S/360 is similar to the RAX
loader but a bit more complicated. Since both the
Hypervisor and OS reside in the lower core box{(es), there is
no need to set the PCR here. Channel programs are set up
similar to those for loading RAX, and the I/O performed. If
an error occurs, a message is issued. If the I/0 is good,
several patches are made to the 0S IPL-TEXT program before
it can be given the CPU. First, a byte is set to say it
should 1load an alternate nucleus instead of the standard
one. This secondary O0S nucleus contains patches which cause
branches to the OSWAIT and IOCATCH routines. Next a
modification is made to limit 0S to the memory below where
the Hypervisor resides. If left on its own, 0S would
compute how much core was available. Since the space where
the Hypervisor exists is physically available, 0S would use
it, thereby destroying the Hypervisor. The 1last set of
patches 1is made so that if the IPL-TEXT program finds any
serious errors (I/O0 or otherwise), where it would normally
go 1into a dead wait state, it will now go back to the
Hypervisor. Thus if RAX is active, it can keep on running.

When all +this has been completed, the IPL-TEXT will be

50

entered. O0S will have complete control of the CPU until it
first enters into its normal wait state. Then OSWAIT will
be used to give CPU control back to the Hypervisor. The
whole IPL procedure normally takes only a few seconds. It
is not unusual for RAX to lose control of the machine for
only about five seconds if the computer operators perform

their jobs well.

Display Hypervisor Statistics

The HCOUNTS routine types on the O0S console a
series of lines each containing the name of an internal
counter and its value. Both systems continue running while
this is being done. 0SS however cannot access 1its console
during this time. As it might take up to one minute for all
the information to type, OS could stop due to this if it had
some urgent message to type or needed an operator reply to
continue. It is not a major problem since the counts are

not normally produced very often.

Drain Processing

If the Hypervisor is instructed to shut down either
operating system (via the "==DRAIN O0S" or "==DRAIN RAX"
commands), appropriate switches are set to ensure that the

referenced system will not be made active again (unless it

31

is re=-IPL'4d). If O0S has gone into a dead wait state or a
loop, and the console typewriter cannot be used, the PSW
RESTART button on the CPU control panel can be depressed.
This causes a branch to KILLOS which has the same effect as

entering a "==DRAIN 0S" command.

Console Exit Processing

After processing any operator command, the
Hypervisor exits back to the system which originated the
message. If it was RAX, the RAX console processor is
returned to; if 0S, after any reply has been typed, the
following subterfuge is carried out. Since the original
command was intercepted by noticing that an 0S/360 console
read operation had completed, 0S5 still thinks the read is
active. To satisfy the 0OS console manager, an I/0 interrupt
is simulated. A "DISPLAY TIME" command is placed in the
original buffer in place of the 1line the operator really
typed. The I/0 PSW and the CSW is set up to indicate the
completed read operation., This simulated I/O0 interrupt is
handled as if 1t were a real one. This method logically
completes the read which 0S/360 initiated and when 0S8
responds to the message, it effectively time~-stamps the

Hypervisor command.

52

Hypervisor Storage Requirements

One of the major criteria in the Hypervisor design
was that it occupy as small a region of main storage as
possible. The final version of the Hypervisor described
here requires only 5500 bytes of memory. Since the wvalue
must be rounded up to 2K (2048) segments, the final storage
requirements are 6K. This was well within the original

specifications.

53

CHAPTER 7

OPERATING SYSTEM MODIFICATIONS

05/360 Modifications

The design criteria called for the Hypervisor to be
as independent of 0S/360 and its internal workings as
possible. It was of course necessary to assume that the
basic operations of a §/360 CPU would not change. The first
version of the Hypervisor was very O0S independent. To
maintain TOD, a small routine accessed the relevant O0S
control block.’ If the format of these would be changed in
the future (quite unlikely), the Hypervisor subroutine could
easily be rewritten. In general however, it was most
unlikely that future vexsions of 0S/360 would not work

properly with the Hypervisor.

In the final Hypervisor, due to the need to IPL
0S/360 and yet still retain control of the machine, much
more knowledge of O0S had to be built into the Hypervisor
logic. Also, OS itself had to have several changes made
(although none very large or complicated). There are two

areas of problems.

54

1. When OS is IPL'd, it brings into core its own set of new
PSWs. This cannot be stopped easily as this is only a
minor result of the necessary loading process. Thus I/0
interrupts no longer go to the Hypervisor but to the 0S
I/0 FLIH. To retain control, the Hypervisor must

inspect ALL I/0O interrupts.

2., During initial loading, if some sort of error is found,
the load routine simply lcoads a PSW to put itself into
wait state with no interrupts allowed (Dead Wait). This
lack of any activity acts as a signal to the computer
operator that something is wrong. If this would happen
under Hypervisor control, RAX would be dead also. This

condition is not desirable.

The solution to both these problems is not
difficult. 1In the first case, the initial instructions of
the O0S I/0 FLIH are modified to transfer to the Hypervisor.
This Hypervisor routine saves the 0S new PSWs and replaces
the with Hypervisor PSWs. At the same time it replaces the
original instructions in the 0S 1I/0 FLIH. All I/0
interrupts now go to the Hypervisor and then are passed on
to the I/O0 FLIH in the appropriate system as described

previously.

55

The second problem also has a relatively simple
solution. After the Hypervisor reads into core the 05/360
initial 1load program, it modifies it to go to a Hypervisor
error routine instead of stopping dead in the event of any
serious error. At the same time, the IPL program is
modified to make it seem that the amount of core available
to 0S/360 ranges from the bottom of memory up to but not

including the Hypervisor program.

All of the actual changes to OS are made in an
extra copy (secondary nucleus) and are only loaded into core
when the Hypervisor IPLs O53. When OS is loaded normally by

the computer operator, an unmodified OS is used.

RAX Modifications

Just as in the case of 0S/360, some changes to the
RAX system were necessary for the operation of the
Hypervisor. It was desired to minimize these modifications
to make conversion to any future version of RAX easy, but

this was not as pressing a need as with 0S.¥

T?he installation at Illinois Bell of a new McGill-RAX
version would be infrequent, and even then, it would be done

by people fully qualified to do the necessary Hypervisor
modifications.

56

There were three major design features whose

implementation required changes to RAX. 1In addition, there

were several relatively minor facilities also added.

The first change in RAX 1is the one around which the
whole system revolves. The RAX routine which normally
loads a wait state PSW to put RAX into wait state
(during idle moments), now transfers control to the wait
routine 1in the Hypervisor. This coding gives the CPU
back to 0S/360 at the place where it was last

interrupted.

A standard RAX system, during most of its running time,
allows interrupts (via PSW system mask) on all channels.
If an interrupt from an O0S device were to occur, an
ordinary RAX system, knowing that this device does not
belong to it, would simply discard this interrupt. This
is certainly not an acceptable method from 0S's
viewpoint. There are three possible alternatives to
this. First RAX, on recognizing an interrupt from OS,
could pass it on to 0S, thus giving up the CPU. This
would violate the rule that of RAX having ultimate
priority. 0OS should only get control of the machine
when RAX can no longer do any processing. The second
solution 1is for RAX to queue this interrupt for 0S just

as the Hypervisor does for RAX interrupts (those which

57

cannot be accepted immediately). The complications of
this method (particularly with regard to dequeueing
these interrupts) ruled it out. The third method is
guite simple and it is the one used. While RAX is
running, it now, never sets a system mask to allow
interrupts on the channels belonging to 0S. Since O0S's
interrupts are never allowed during RAX operation, they
bother no one. When OS gains control of the CPU next,
it sets a system mask of all ones and any pending

interrupts fall through.

The third problem and its solution is by far the most
complicated. When running on a regular machine, any
interrupt which attempts to occur while the machine is
in wait state with the system mask disallowing this
channel's signals (or external interrupts), will remain
pending. Whenever the system mask is changed to allow
this type of interrupt, it will occur immediately.
Under the Hypervisor, RAX does not go into wait state
but goes to 0S/360. This interrupt Jjust mentioned
actually happens (0OS allows all interrupts), but since
RAX does not want it, it is stacked. Some time later,
RAX again starts running. Soon it normally changes 1its
system mask, expecting any pending interrupts to occur.
Now however, there are none. The Hypervisor has one

stacked, but if it does not know about the change in the

58

RAX system mask, it can do nothing. The answer is, at
these «critical times, to ask the Hypervisor if it has
any pending interrupts to pass on to RAX. The mechanism
used 1is as follows. All critical instructions in RAX
which can change the system mask are replaced by
specific, invalid, S/360 operation codes. When these
are executed, they cause a PROGRAM CHECK to occur
specifying an invalid operation code. The program check
handler contains programming to recognize these special
"errors". On finding one, it goes to the Hypervisor to
check if any pending interrupts are allowed by the new
system mask. If none are found, the program check
routine goes back to the program (after setting the
system mask as the original instruction would have
done). If an interrupt is found, PSWs in RAX's low core
are set up to make it look as if the normal instruction
had Dbeen executed, and immediately, the pending
interrupt had occurred. To RAX this looks identical to

what would have happened on the real machine.

Several other small changes exist. There is a routine
to get the current CSW (Fig. 2) and vreturn it to the
Hypervisor. The Hypervisor, when it wants to stack an
I/0 interrupt for RAX must save the CSW, but as the
channel stores it in RAX's core box, the Hypervisor

(residing in the O0S section), cannot get it itself.

59

The RAX console handler recognizes console commands
starting with "==" and passes them on to the Hypervisor.
It also allows for a reply from the Hypervisor to be

printed.

It should be noted that all these changes only take
effect when the Hypervisor IPLs RAX. All these
modifications contains checks to make sure that if RAX is
running as a stand-alone system, no branch is ever made to

the various Hypervisor routines (which do not exist)!

60

CHAPTER 8

HYPERVISOR PERFORMANCE

The main purpose of the Hypervisor as described
here is to allow RAX to operate on an IBM 360 Model 65
unencumbered, while allowing a S/360 operating system to use
any CPU time that is left over. The implementation just

detailed seems to do this quite well.

Tests were run to obtain some measure of how well
the Hypervisor works and to find out how different 0SS job
types were affected by running under the Hypervisor. The
general approach was to process a certain job (or jobs)
using 05/360 without RAX running, and observe their
performance. The same jobs were also run while RAX was
operating (during production hours- i.e. a loaded system).
During this run, the performance of the 0S8 jobs was again
monitored. Also, some statistics from RAX with respect to

its CPU usage were obtained.

Ideally, these tests should have been run in a
carefully controlled, reproducible manner. Unfortunately
this was not possible since it would have required a
dedicated machine for a relatively long stretch of time.

Also, at least thirty people at terminals (or another

61

Fhggeor

computer to simulate them) would have been needed to place a
realistic load on the RAX machine. Neither of the above
machine configurations nor the people were at the disposal
of the author. This necessitated performing most of the
tests in a 'live' environment during normal production time.
Several restrictions as to the exact kind of tests run and

the statistics available from them were thus introduced.

The first problem was that no control whatever
could be exercised over exactly how busy the RAX system was
during the tests; or just what kind of work it was doing.
Care was taken to ensure that RAX was not virtually idle, or
completely saturated while most of the tests were run.
Little could be done however to ensure that erratic things
(such as sudden RAX compute bound jobs being run, or sudden

lulls) did not occasionally occur.

Another Dbottleneck was that it was often hard to
make the sampling of the RAX statistics coincide exactly
with the start and end of the 0S test runs. However, as the
test runs lasted as much as thirty minutes, and the error in
fetching the RAX statistics was not wusually more than
several seconds, the error is hopefully minimal.
Extrapolation allows a quite accurate figure to be

estimated.

62

The set of test jobs took about an hour to run from
start to finish. Since these tests had to be run on the
machine at Illinois Bell Telephone, which was heavily
utilized, the number of test runs was naturally limited.
Many of the tests had to be run while RAX was active, but
these prime day-time hours were the time when they could
least afford to give up the 0S5 side of their machine for any
length of time. WJdevertheless, it is felt that enough tests
were performed to give a good picture of the Hypervisor
performance. As will be seen later, despite all these
problems, the tests do seem to show that the RAX/0S
Hypervisor does behave as an intuitive approach would

indicate.

There are several effects which will tend to alter
how much work 0S can get done in a given period of time.
The parameters which affect 0S/360 are, the amount of CPU
time it is given, and how this time is partitioned. If oS
gets on the average, x percent of the total CPU time, a
compute bound job normally taking t seconds will now run in
(100/x) *t seconds, with an apparent time with respect to 0S,
of t seconds. If a very I/0 bound job with a stand-alone
elapsed time of t seconds is run, and it can get the CPU
from RAX whenever necessary to restart I/0, the job will
take only t seconds of real time with an apparent time to 0OS

of anywhere from (x/100)*t to t seconds. In this case, the

63

AR

apparent time to O0S will depend upon how much of the I/0
time is overlapped with RAX CPU work. It can be seen that
in these simple cases, the apparent time to 0S will never
exceed t. In the case of real Jjobs, however, the RAX/0S
interaction can increase apparent job times in addition to
real clock time. This can be particularly important for

jobs performing much disk input/output.

Consider the case of 0S wanting to initiate a disk
read for a record that is just about to pass under the read
head of the drive. If the CPU is taken from OS before the
request can be initiated, and RAX runs for long enough for
this record to pass by, OS will now have to wait a full
revolution of the disk (1/60th second) before its read
request can be completed. 0Of course this same type of
happening can lessen the apparent time of a disk request to
0S by delaying action so that the request happens to
complete sooner. The effect and frequency of this type of
occurrence will be highly dependent on the job

characteristics of both the 0S and RAX tasks.

It must be remembered that the RAX job mix at
Illinois Bell tended to be highly I/O bound (averaging only
25% CPU wutilization). That is, much of the time, it is
initiating I/O requests and attempting to go into wait state

(i.e. go to 0S/360). As soon as the I/0 completes, it takes

64

control back from 0S. The 0S/360 job mix is also similarly
I/0 bound. As a result, it is quite likely that 0OS, during
its time slot, will initiate an I/O request of its own and
place the machine in a real wait state. Whichever request
completes first, will cause control to be given to the
appropriate supervisor. The devices (and thus their
timings) for the two systems are basically the same. That
is, one can expect the typical I/O request on either system
to be of the same duration. Thus, if the situation just
described is a correct picture, it is not unreasonable to
expect 0OS to gain control often enough (at small enough
intervals) to maintain a high I/0 activity rate. This is
true, except when the RAX machine goes into a solid CPU
bound activity, completely locking 0OS out. The RAX job mix
at Illincis Bell on the Model 65 tended to be either highly
I/0 bound, or completely CPU bound (momentarily at least).
During the I/0 times, 0S should be able to do almost as much
work as on a bare machine, and during the CPU time, it
should do nothing. Thus, the overall efficiency of the
0S/360 machine should be approximately equal to the
percentage of I/0 bound time (non CPU time) of the RAX

machine.

The basic performance bench marks consisted of a
set of 05/360 jobs. These were Fortran-G and Cobol jobs.

The stream was largely I/O bound, although sections were

65

compute bound. It was felt that they would closely resemble
the type of jobs normally run on the machine while RAX was
active. Two versions of the job stream were run. The
second version was different <from the first in that it
allowed the jobs to allocate more buffer memory than the
others. This allowed I/0 requests to be Dblocked and thus
tended to make the stream slightly less I/0 bound. Each
stream was run once on a machine without RAX present, and

twice while RAX was active.

The method used to determine the effects of running
these jobs under the Hypervisor was to note the time of day
(both real TOD and TOD according to the 0S clock) at the
start of the first job and also at the end of the stream.
When RAX was not running, these two elapsed times were of
course the same. When RAX was active, the O0S <clock only
runs when RAX 1is not actively wusing the CPU and so it
reflects only the time that 0S5 has control of the whole

machine.

The results in all cases were similar (Table III).
The clock time to run the jobs under RAX was always dJreater
than the time needed on a stand-alone system. The amount of
extra time varied depending on how busy RAX was. However,
the O0S elapsed time was always less than on a stand-alone

machine (the OS timer does not run while RAX is doing

66

L9

TABLE IIT

0S/360 BENCH MARK TEST RESULTS

JOB MODE ELAPSED 0S/360 TIME RAX CPU 0Ss/360 RAX RAX
STREAM TIME (RAX WAIT) TIME EFFICIENCY CPU WAIT
1 S/A 1464 1464 - 100% - -

1 HYP 1803 1376 427 81% 247% 76%

1 HYP 1760 1366 394 83% 22% 78%

2 S/A 1176 1176 - 100% - -

2 HYP 1745 1123 622 67% 36% 64%

2 HYP 1593 1104 489 74% 31% 69%

All times are in seconds.

computing) . Therefore, as far as 05/360 was concerned, the
jobs ran faster. Using the first set of tests as an
example, the Jjobs took 1464 seconds to run on the bare
machine. The time under the Hypervisor and RAX was 1803
seconds. During the second run, the 0S5 clock increased by
only 1376 seconds. That is, during the 1803 seconds of real
time, RAX was running as if it were alone on a S/360 model
65 CPU. Simultaneously, the 0S5 side was performing 1464
seconds worth of work. In the surplus time discarded by
RAX, the 0S5 system was working at the rate of
(1464/1803)*%100% of that possible on a stand alone machine.
This produces an efficiency of 81% for the 0S5/360 side of
the machine. The extra 81% is not quite free of course.
Additional hardware is needed to support this configuration,

but it only increases the system cost by about 12%.

It should be noted that the RAX CPU utilization
while the second set of jobs were being processed was
appreciably higher than during the first set of jobs. This
had nothing to do with the 0S job stream characteristics.
The RAX system was simply more heavily loaded (with compute

bound jobs) during the latter tests.

As expected, the efficiency of the 05/360 partition
is roughly the same as the percentage of wait time available

to it. If anything, it is slightly higher, indicating that

68

it is taking advantage of RAX CPU time to allow I/O to

complete (essentially "“free"™ time).

Another type of test was also run. This program
wrote records on a magnetic tape while concurrently
performing CPU bound work. It was designed to find the
maximum amount of CPU work that could be done without
slowing down the tape I/0. That is, it was to find the
maximum number of times it could execute a given arithmetic
operation without increasing the elapsed time needed to
write 100 records on tape. This test was done for a variety
of record lengths. On a stand-alone system, the test gives
the expected results; the number of loops varies linearly
with the tape record size. When run under the control of
the Hypervisor, it was hoped that the test would give some
insight into the type of interference that the RAX system

caused.

The results certainly did this, but not quite in
the analytical way expected. The type of interference found
could best be described as 'erratic'. Some of the tests,
which happened to be run during a quiet spell on RAX, were
virtually indistinguishable from those run on a bare
machine. Another set not only showed completely different
results, but showed that the program logic was not really

able to cope with the situation it encountered. It became

69

S

quite confused when the RAX machine would alternate between
being completely compute bound, and then almost completely
idle. This fluctuation (between CPU and I/0 bound work)
happened too slowly to average itself out over a period of
several seconds, and too fast to allow a complete run of the
test to complete (20 seconds or so) without seeing some
fluctuations. When running without RAX, the program could
reliably use the logic that if, for example, 50 CPU loops
during a I/0O request saturated the computer, then certainly
100 loops would also. This was no longer true under the
RAX-influenced Hypervisor. The bench mark tests produced
reasonable results in this same environment because they
average out all the system interactions over a period of 20-
30 minutes. The tape test program, tries to compare results
on a second by second basis, and this 1is simply not
practical. The program could have been modified to average
performance over a longer period of +time, but then its
overall running time would have been too long to execute

during the available test period.

An important contributing factor to overall
Hypervisor performance was the degradation to either or both
operating systems due to the Hypervisor itself. If the
Hypervisor, in performing its switching task was wusing too
much of the CPU resources, it could never be a success. In

order to estimate how much CPU time was being used by the

70

Hypervisor itself in performing its functions, a number of
counts were kept within the Hypervisor module. These counts
produced a record of exactly how many times all the key
routines within the Hypervisor were entered, and the
decision paths followed within these routines. The counts
could be printed at any time by means of a console command.
From the counts, it was determined which sections of the
Hypervisor code were executed with some regularity. It must
be remembered that many of the routines were programmed to
handle 'special' case occurrences. It was not originally
known exactly how often (if ever) these things happened.
The counts showed that, in fact, all these special cases did
happen at some time or another. Some counts were as high as

400,000 per hour of operation.

Execution times for most sections of the Hypervisor
were calculated using the values for instruction execution
times published by IBM.? Counts for a typical period of
time were analyzed and combined with the times calculated
above. For the 7 1/2 hour period sampled, the Hypervisor
coding evaluated would have taken 171 seconds to execute.
This works out to be only about 25 seconds per hour. Even
if a generous allowance is made for sections of coding not
included 1in this analysis (not often executed, but perhaps
longer in length), the overhead due to the Hypervisor 1is

still 1likely to be under 1%. This figure is quite low. It

71

is especially good when it 1is remembered that the CP/67
system mentioned earlier as possible alternative to the
Hypervisor, typically had overheads of 30-50% in this type

of environment.

The overhead attributable to maintaining the counts

themselves was calculated to be 27 seconds during the same 7

1/2 hour period, or only 4 seconds per hour.

72

CHAPTER 9

OVERALL RESULTS AND THE FUTURE OF THE HYPERVISOR

All the essential requirements set forth in Chapter
2 were satisfied by the RAX~-0S5/360 Hypervisor. In addition,
the Hypervisor met virtually all the criteria discussed in
Chapter 4. Perhaps even more important, it has been found
to be truly usable in a real production environment. Once
the systems are IPL'd (a simple task), the Hypervisor 1is
virtually invisible to the operations staff. They are
running normal 0S/360 and RAX systems. The RAX users rarely
notice any difference from running on a bare machine.t The
0S machine processes a reasonable number of both production
and test jobs during the day. The Hypervisor, at Illinois

Bell Telephone, is quite certainly a success.

The only major disadvantage of the Hypervised
system is that the user is tied down to a particular piece
of equipment, The Hypervisor feature is available only on
the S$/360 Model 50 and 65 CPUs. If +the capacity of the
Model 65 were to be reached, there is no machine to upgrade

to (if the Hypervised approach is to be maintained). A

TThe only real impact wupon the RAX user was that the
overall system failure rate was higher due to 05/360 crashes
bringing RAX down with it.

73

possible solution will be Dbrought forth, but first it is
relevant to review several new computer models that IBM has

made available since this project was first undertaken.

The System/370 line of IBM computers is a series of
central processors and peripherals designed to be upward
compatible with the 8/360. That is, most S/360 programs
(except very CPU model dependent ones - like the
Hypervisor), will run on the new machines without
modification. The new models offer certain economies over
the older ones due to technological advances. In addition,
they possess several facilities and features not normally

found on $/360 computers.

Relocation memory is standard on most S/370 models.
It was formerly available only on the S/360 Model 67. It
has been argued that the ability to dynamically relocate
programs within main storage is a valuable asset to a well
designed time sharing system. However, a time sharing
system, which offers the economies, versatilities, and
0S/360 compatibilities of RAX was still not available from
IBM. This fact has been emphasized by the fact that IBM has
recently acquired the rights to market (on a royalty basis)

the McGill-RAX operating system.t RAX would appear to still

TIBM 1s currently marketting the system under the name
MUSIC (McGill University System for Interactive Computing).

74

be the best time sharing system running on IBM machines for
use in many medium to large installations. However, as was
the case with Illinois Bell, many of these same installation
have a need to be able to run either 0S/360 or its newly
announced successor 0S/VS2. A follow-on to the CP/67
system, VM/370 is available. It does allow several
operating systems to be run on the same machine. It would
seem that its performance is far better that was CP/67,
however the overhead needed to multiprogram RAX and 0S would

still appear to be in the 30% range.

No Hypervisor function is currently available from
IBM for any of the S/370 computers. However, several
features of the 8/370s make the concept very attractive.
The new central processors have, in addition to the interval
timer, several other means of maintaining both time of day
and elapsed time. These new timers do not reside in main
storage, and this would eliminate many of the problems
experienced with the Model 65 Hypervisor implementation.
The timers are designed to be wused in multiprogramming
systems and so would be better suited for wuse in the
Hypervisor (a multisystem system) than the older interval
timer. Secondly, and perhaps most important, all the S/370
processors currently available are highly microprogrammed
machines.? That is, assembler instructions coded by

programmers are not executed directly by the electronics of

75

the CPU, but rather are interpretively executed by a program
written in a much more primitive language. This more basic
instruction set varies with each machine, according to its
internal design. The set of basic instruction needed to
perform the S/370 operations are called the microprogram,

and reside in a special storage within the CPU.

Most of the S/360 models were microprogrammed also.
However, the newer machines tend to have two unigue
characteristics. The microprogram can be changed easily
(sometimes even under the S/370 program control). This 1is
as opposed to the 5/360 implementation where a complicated
engineering and/or manufacturing process was often needed to

change the microprogram.

Secondly, the type of microprogram!® used within
the 5/370s tends to lend itself to making relatively small
modifications to the way in which instruction are performed.
It is also easy (relatively speaking) to add special new
machine functions. All this can often be done without any
hardware (electronics or wiring) change to the computer. It
would seem that the functional characteristics changes to
most S/370s to implement a Hypervisor could be accomplished
relatively easily and inexpensively (by IBM engineers at
least) by means of microprogram changes. Such changes could

even be designed to enable the Hypervisor to perform certain

76

of its functions very efficiently by providing specially

designed CPU operations.

Lastly, it is worth noting that the parts of the
Model 65 configuration required by the Hypervisor over and
above a 'normal' configuration, were extra memory and
channels. In the S/370 series, both of these have tended to
come down in price. The new machines tend to be priced so
that the bulk of the cost is for the CPU itself. If adding
some extra memory and channels yields an 75% increase in
production, (as it seems to have done at Illinois Bell),

then it is indeed a good bargain.

The McGill University Computing Centre is currently
operating an IBM 5/360 Model 75 computer system running
0S/360, and a S8/370 Model 155 running MUSIC (RAX). The
Model 75 is heavily loaded. The next larger machine in the
current IBM product 1line is a S/370 Model 168. The Model
168 is considerably faster than the Model 75 and it also
provides facilities (such as memory relocation hardware)
which make it a very attractive machine. However, it 1is
also considerably more eXxpensive than the Model 75. If
MUSIC could be run on this same machine, it would mean that
the Model 155 would no longer be needed. This cost saving

would help to finance the Model 168.

77

There are several ways of running MUSIC on the same
machine as 0S. One is to use VM/370. This would easily
provide the function, but the estimated cost in terms of
overhead seems to be very high (currently over 50% with
0s/vs2). Perhaps in a few years, when VM/370 becomes more
efficient, this could be a reasonable approach. Another way
is to modify MUSIC so as to run as a program under OS
instead of as a dedicated system. This is possible, but it
is felt that to do so would remove most of the efficiencies

that are among MUSIC's best assets.

The most promising method seems to be to Hypervise
the two systems. IBM 1is currently considering a McGill
request to provide a Hypervisor shared storage feature for

the S5/370 Model 168.

78

CHAPTER 10

CONCLUSIONS

The McGill-RAX - 0S/360 Hypervisor was proposed as
a vehicle for providing a wide range of computing services
using a single computer. Since its installation in 1970,
the Hypervisor has proven to be extremely practical,

efficient and reliable.

The new IBM System/370 line of computers contain
many desirable features. Several of these would make it
very much easier to write a Hypervisor program, others would
enable the Hypervisor to be more sophisticated and general
than the one described in this paper. It is reasonable to
expect that the ovefhead of this expanded Hypervisor would
still be 1in the order of 1-3%. All that is needed is for
the Hypervisor hardware feature to become available for

large scale System/370 computers.

79

APPENDIX A

HYPERVISOR FLOWCHARTS

80

8AX - 05/363 HYPERVISOR PAGE 201
AUG 23, 1973

INITIALIZATION
BAXTASK
REERDDERRRTEEN
* LOAD BASE M
: REGISTERS :
EEFFERFBERR RS
BYPERVISOR INITXALIZATION ALLOWS THE
gg?sggERATOR TO START EITHER RAX OR

I b 2T S T]
- ORTROL 1S

. D, €
*SET HYPERVISOR * BYPERTTSOR VIA

I¥ COKNTROL (NZW
* PSWS ETC) :
EERER SRR RENERE A TED, COXTROL
CATCH" TO
HAT THE
ALL FURTHER
OBS INTO WALT
ERTERED TO GIVE
EEAEFDD MR ERERERNR HINE BACK TO THE
* S RAX IF IT IS

M
* READ FR0M 05
* CONSOLE -
- -
L]
.

.
BAENBHRA ST I EN

STEM IS TP AND
5 CONSOLE MAY BE USED
STOP? THE OTHER SYSTEN

(ommrm—mcan .
|
g2" e, i
o *,
*" READ . §O
*. COMPLETE ,%=--
« YET? .
.. . *
. L, *
* YES

EXERPQRA MRS A
* GO TO CONSOLE *
* HANDLER
*

EREEARIEE ISR kS

*e

http:ISITIA!.IZ
http:CQ,";PLF.TE
http:BEGISl'�.RS

RAX - 05/360 HYPERVISOR PAGE 002
AUG 23, 1973
170 INTHERRUPT ROUTINE
(212
- L3
* A5 «
* .
cEEE

IOINT
FERRBAG RN R T SRR
SERBAIRFERRRCSE *0KSTACK 703\“‘
* IW 'ERCEPT PP ety »
- 5/360 . * GET BREST L3
* INTERRUPTS . * CANDIDATE :
.

AAERRRSEFRERENE

EEN
*)Q2+«
* B2 *->
» * i
EEKR v
o', IOINTX o, RAXIOINT
B ., 52 CEERKBIRBERURORED
L * L
HO ." FROX OS5 . NO *, YES * SAVE 25 REGS, *
--=~%, CONSOLE? s ¥ oy, L bad esw »
*, . . . * *
., " *, Ll * *
¥, X Pa_— FEEREEEPRE RN RRTED
* YES *
o,
<1 L
" .,
«% CHANNEL *.
-=-=-%, END, DEVICE .*
. kwpr e
. o ¥
*, ¥
. *"YES
)
v
CaNso o,
D1 *, PEXEADIREERRFEENE HREEADNI RS R RE NN E
. . * ‘OSIIHE J36u2‘
+% FAON & *, * SAVE OS REGS, * iRt Dbt ebbebd
*, HYPERVISOR ,%~=-=w===D% Psu * * *
%, HS5G? . M * GET 3S T.O.D, *
=, W - - * *
, L, “."‘t*t‘.“t,‘ “l*""lt“‘l“*
Pl : -
TEEX) o
*032%
* E1 *->
- L3 | |
sawn v !
CONSINT o %, v
E1 *, FEFREC2RERERES ti."z]! .*‘ttl“
- « L *
. BEAD *, = RESET * ‘ CALC TIME OS '
===%, CONNAND? ¥ * "COKSO" Al * WAS RUNNING *
. E * * * *
*, . - - * *
%, L, * WEREREATRRERSE BHSFEEEARNE S SRR ER
* YES '
o %
U‘*‘l’}‘ “*‘t“‘ P3 .,
ERARFIERE KRR k& . .,
‘SAVE SOXE REGS, ‘ * GO TO MISSAGE * ..
& GET KSG FPRON * HANDLER hd -, TIrE? -
* OPERATOR
= EEEAESECREEEE XS
BEEBEEEFXRER R RN
L1321
*010%
. = E1*
G1 *. * *
* 1S5 *,
«*COMNAUD FOR*.
¥, HYPERVISOR? . s
. ¥
., o h
. o *007*
* X0 * Bu*
* ¥
*
¥
QSIOINTX o',
‘...‘H‘Il"t‘.t“‘ KEEERHIARREERE TS S B3 .,
- - . .,
‘RELOAD SCBATCH ‘ * DECRENENT BAX * NO .* IS RAX *
- REGS - - TIMER #(wewe=-wc¥, TIKER NEG? %
* - - *, ®
- - * L -, *
SEEOEFFENERERRNSS EEBEREEFREEERE R RS L P
T YES
PSRRI I
OSIOINT l
(LA RS RRE LI LS L 2]
BEERTIERESREEES -
* GO TO 0S/)6) = DECREMENT RAX *
. I0-FLIH hd TIMER »

.
.
-
SEPERKEEEIEIILE M
-

*
SEsessasEeRRNSEE

TINEQK v
EEEVELI AR BABANA
- »

= =
* STORE RAXTIME *
- .

* »
PEEASAS SRR EEREI R

FEERERUIAERBO RSN

*hed

“nw
a]
=

e

krew

SEESRCYERR RS REE kS EEREEUCHREKERNBRRK
* * - *

* - =
« SAVE RAXTINE :SET STACKED INT:-‘-
*

*
»
«
*
*«

- * *
ERERE R B ERRE AERERREERRR AR ERRE

|
|
|
1
v
.

uu' 't. *EEEEDS RF Rk RSETES
e L *STACKIO 00]A|‘
TINE &, B et o
INT ALLOWED .®-=-ss=e-d>x% t
*. * * STACK I/0 INT *
. . * *
*, L« BEREEEE R KRR IR AR
* NO I
1
1
| |
1
| }
MASKED v v
D T BENEUEG KRR RRTAEENE
'STACFE)T ODBAI', - *

SET EXT INT

LSTACK BYTERSAL +
. INT . *

* *
EEESEAEERREEEF SRS

PR

NOTINE %,
Ju

(Lt e T T
:STACKXO 2231«
el puplobuf N

. .
- STACK IT .
. 3

R e T e 2

v
Rlit]

LT

»
- L
- *

»

-

*
FEREERERRRERRIEN

WORKRET
EEREGSRRBRRRENE

*G0 TO RAX (VIA *

: PCR) *

SERERECUREREERE

EEEERHS K r MR HREREN
- -

* SET ONIT *
® ADDRESS OF Em
: CURRENT INT =

-
EIARAESEABRANENNE

YES
JUSTONE o *
a5 .

*.
INT ..
ALLOWED ..‘

ot
* X0

SEEERKSACEERANRES

‘STACKXO 003A1'
‘STACK IT Tfﬂ -
: KO RETU h) :

sansssene

IR]

RAX - 0S/360 HYPERVISOR PAGE 303
AUG 23, 1973

INTERZUPT QUEUE MANAGEMENT ROUTINES

STACKIO STACKEXT _.*. UNSTACK
BEE R TR MR a3 -,
'GETQLL oaua1t el -, EEETQAY REARKE TR
--------------- TES % SOMEITHING *, * SAVE LINKAGE &
'GET FREE QUEUE ‘ yowmwmeccecavgeaa=¥, ALREADY OX .* ¥ REGISTER -
. ELENMERT * i - . QUEJE ¥ - .
* ‘ -, ¥ EHERAREXNEEY RS
AFEEEE R NEEFIC RN LR
* X0
{
v] v
XOPEED I X EESERT RN v TERAKRRINEEREEE R R R
4 * I PR e TS thAQFL [STTAE]
* FILL IN UNIT * * CATASTROPHIZT * = #e—e-mececeooo- .- NONE
ADDRESS AND CSu * ERROR hd ‘GET FEF? OU?UE - ¥ ——————
* * * <~DEAD-RAIT- = EYE *

LR e T

» .
BB ASRREE RN .ttt‘stttttt'cvcc

|
l
|
|

HRERICLRES R CRE RS ttttv:}lit*tt‘t‘l BERBATUEEARERIRAE

*PUTQEL OOQAJ‘ ‘ GET COUNT JF ¢ b S R
Ddstuiuttabuintrtatustababuted ‘SAVB TIMER IhFO‘ QUEUES - *RETUAIN WITH NO *
'PUT ELERENT ON ‘ IN IT *(CHANN. S + EXTe hd INTERRGRT *

APPRODRIATE INT) . » bd
t CHANNEL QUEUE * » ® 3 EEERKEFREEEREES S
BERER RSP R BN EEREERE RIS T Rl 2 A L L) ‘t"“ttl.““.l‘

BESREDIRERT SRR BrEERDIEEME RN ER N ut:ttguxv:ttttttc
. *

#PUTQEL 00ea3s
% INCREASE L S P t POIXT T3 BT .
® QUEUECNT BY 1 * 1TPUT 17 0% RAT = IS8T O .
* * * INT QUEUE @ * b .
*® * * - L] =
““‘.#t#‘t‘.t!" BEEEEBEERE N RRES R EEEEENEFFaNEERES K

i |
| | |

-,

21' .
*, BRERF IR ERE KRR LE
" R TURN *, YES . L4 BETUKN TO *
. neqursrzo? I R + TaaLer *
“x, S | BEERCRA R TR F
. . |
* NO
EEE 3 I
#003«
« F1 %> |
* * |
L 35dd v
OSRET v .,
CEERAT TR SR TE R RN v Fu
» - REREP2ANRSN AL ES GETQFL 03u51
% SET STARTOS * * RETURN TO - Wrmmm——— ————%, N
® TIME TO NOW = * CALLER * ANYTHING ON .t--—----- -------- >
L * . * « QUEUE? .=
* . ERRENARRR A REE Sk ., e
EFERRE RV ERNEE SR E *, o*
«"yEs

wenE

OSRET]
vn:ovc1- FxikRuRn
»

*
'RELOAD 0S BEGS *
* *

L4 *
SFXEREENAIREER RN

SEEFHiraksurRaR
* LPSW I/0 OLD *
*PSW (RETURN TO *
- Q .

AERENSREIBENEES

REEFAGL AR R TR
* *
GET INTERRUPT *
o INFO e
*
*
«

-
PR TR RS E L S a L 23

BeRREHERRRERE kL
*PUTQEL OORAJ‘

K EﬁnPT ‘
FREL QUEUE »
.

L
SreABERa KB ARIRRNY

I
‘.‘tJnt!t'tttt‘
* RETURY TO *
- CALLER .
.

REEIERSHESRAERS

ROTHERE
--tttgst-u-nuu'.'

. POINT TO KEXT ‘
: QUEDE
U

»* *
FEETELERUANEENEE

‘tttJSl!tt‘.‘.‘
* RETURN SAYING »
:NO INT PENDING *
-

FRRSREARRNTLE RS

http:NOT~~:;.Gs
http:DEAi'l-ilA.Il

PAGE 004
AUG 23, 1973

BAX - 05/360 HYPERVISOR

INTERRUPT QUEUE MANAGEMEZKT ROUTINES

GETQEL
R S T P T

*POINT TO QUEUE *
: START :

. *
PR R i]

" pTR20 &, =0
., 1F BEPTY [s--

», .
*

FEEREC]HAFAE DR AR
* -
*DECREASE QUEUE *
CNT AND T ALL=
:T[HE Low 1¢ NEC:

LRI A TSt 2l

©u

EEERED I ERRRREERRE
*

*PICK UP PTR TO *
: REXT ELEMENT :

* L3
R AI T L S T L 2

E1 .

. *.
o* is *
®, THERZ ONE?
*, .

. -

, .
YES

.

QFINI
EREERP TR SERRA SRR
- *
* SAY QUEUE NOW *
: EfPTY :

* *
L 2 LI T ¥ 1]

<
QSTILL
ERERAGIRERRE NSRS
- »

* SET_NZW _START *
(OR ZERO IP =
EMPTY) b

“ne

EREEE RS ERERER RN

ASERRH IS ERERAR R RN
- =
¥ GET RELATIVE =*
*ADDRESS OF OUR =
: ELEMENT :

WEXEVEREEERE R AR

EENSTIERR NN R RN
- -
hd RETURY M
. *

EARSRbunRABR RN

ERERCIRRRBNEE NS
* RETURN SAYING ¢
: NO ELEMENTS :

R EFASRAR K

EHEERPIEREN RS LED
= *
* CALC ABSOLUTE #
ADDRESS OF NEXT
: ELENMENT -

*

XA ERERRERE O R

PUTQRL

AEEREQ I AR AR R AR
»

.
*GET START, END *
» oF guale »

* -
SRR KRR REE R

v
PO T I TR P
*
SET OUR ELIZMENT
* AS LAST OF *
QUEUE -

* *
EEKEXEEEABERRRE G

<l *.
. .
. WAS OUR &,
., QUEUE .
« ENPTY? %
., o
x, .
7 YES

|
QALREADY v
RAAKEDICRRNERR S &

- *
#ADD OUR ELEMENT*
: TO CHAIN *

*

* *
BEEEASEERERUREEES

<=

CHAINOK
[t
*2ERQ
*ELEY
* ONE

FEREREARNBRRSRE S

EASAIP IR EKERERAEE
*INCREASE USAGZ =
* COUNT AND SEI *
* ALL TINE HIGH *
* IF XNEC *

*

«

L S T T T
1
1
ERERSIRERREIEAR
-

*
* RETURN -
- *

EruarknEREERO NN

e s e 8.

CREREDGREE R LEE S
* *
SET OUR ELEMENT
* AS START OF «
* QUElE -
*

R R R e]

tttttpatlit‘-cac:
PyUT Glun3*
- -
*REPLACE O PREE*Ce~~v-
* QUEJE 3

EREERR P ERRRRA K

CLEAXSTK
CEEEFAGKES W RRR TSN

*

LOAD COUNT OF *
TRTFRRUPT *
QUEUES

»
*
*
» .
*
L]

*
EEEERREERERCNOEE

v
HEXCERSESREENER R
- *

®POINT TOQ PIRST »,
20DEUE (EXTERNALS
: 147T) *

*
KRS EEEREREROE R

CLEAXNY

REEEAGSERRR T ARG RN

*
* POINT TO NEXT =
: QUETE

-
.
* .
P R T T

¥,
HS %,
o* *.
. ARE *®. TES
*, THER? NORE -——-
*. QUEUBS?..
e e
* NOo

|

“ltJS XEETREE RN
-
B RETURN -
® -

BESEEEEERI SRR

http:INCtlEt.SE
http:El!~f.NT

WAIT
SERER AN RATERE
- ESTABLISH *
:kDDRESSASILIY! :

CEEEBERRE P EEEN R

NOWAIT ¥,

S S R TR A
:UNSTACK COJAQ:
» TEST FOR *
: PENDIXG INT =

*

R RCREBREERERE R

BARRGIRERERE RS

ANY INT RENDINGY
EEEEERRSSINRE SN

.........

}AX - 0S/360 HYPERVISOR

RAX &AIT RQUTINE INTERFACE

B
B2 *, FRERIEIRICNKRAT R
Rl -, * -
. MESSAGE *. NO * NORMAL WAIT, =
>, BEQUEST e¥F-mwowaead® SAVE RETURK *
. * e INFO *
., o »
» . EEEREENEARER AR E

* YES

¥ LOOKSEE ¥

BREEBCORRBEHER R RN EEERECJERRETERT RN
* * ®UNSTATK Q03n4*
* GO PROCESS * wemteelloaalallle
* MESSAGE * « .
* * * *
* L

*

= IN ROPTS *
MR RT RS BERRECEELERTORN KR

P,

TN
)07
* B2¥ ¥
. x 03 ., ARRCRDUEREERRRERR
- ¥ *, * -
. *. YES * SAY THIS IS & *
0 AN(THING? . #=wecaca- > TSTACKED INT =
., o * *
*, ¥ * -
. a* ARESE SRR AE TR TSN
* Nowe
LIa 2] .
M EA i I
*»E3 e-> v
. *EUE S
LE2 2 ‘0{\2.
OS¥ORK v * G5e
REERKE DN R RN R R EK EXEEIEIE R RRR TR LY
L3 * L N - *
* MAKE SUBE ND _ * * TEST IF REAL *
SHXINTS GO TO AAX ¥---=-=c=>€EACAINE HAS AN{®
« » #EXT INT PENDING®
L] * - L
FRIRER AR PSR Sk & EEPEEEEE SR AT R &
13
!
N EXTINT
P3 *, EEERRPURRE R AU S
. ISTACKEXT 023A3%
.. ANY?? . ~->#STACK THIS EXT #~--
. . * INT -
=, . *
LI 4 BEREL AR AEERE R EE S
*"NO
{
!
0560

v
SPERICIERRERREC
- -
*SET TO GO BACK *
: Td OS L

»

- -
EEREER R CESERERER

{
i
!
v
YALTISW ot
a3 ., L TR P
. ., - .
" FIRST ¥, YES * RESET .
L WAIT? R bt et bl &4 "WAITISN® *
., .* * .
., o = .
, = R e e T
= NO 1
s 1 [
*G0S5e] H
* J3 s=>] |
- . {
I i
FAIT? v
REREFJIS AR RRERER R REJEERRRERRREE
* » * -
* RE-LOAD OS * *RESTORE 0S LOC *
* ENVIROUMENT » * 50 TIMER »
* {FEGS, TINMZR) = . *
* - * .
SR REERESRERNETER . BEEEREEREE AR SN N RN
i
!
v
[
i *J00*
* Byw
. .
EBPFCIRBURRE SN Ld
® LPSV -~ RESUNE =»
*

- 0S WORK
.

LA T D TP

BAX - 05/36) HYPERVISOR

05/360 INTERFACE ROUTINES

OSWAIT

BEERLJERER TR n kR
* SET UP BASE *
* REGISTERS :

-
FEEREE R FEERS

OSWAITSW

@

-
L]
»3
. mEHM

o
WOLRD R e
FET

L
COXKAN

.,
*,PROM R
*

NORMWAIT

SEERED I ERARK
* 3 EEERD IR AR
REST hd * GO _INTD *
HOSWAITSW" hd * WAITSTATE :
- *

« FREEESRREERE KK

“enw

AERRENFEBEEENS

PERERE I ERERERE AN
L *
* SAVE 0§ *
REGISTERS, PSH,
« TIaER *

*
ERERERR KT R R A

SrEFPIRREREE Y HE
* SEND IPL OK *
: BESSAGE *

SEEARE R RRE R Rk

CFFEEE
*00Q9%
. 35 OSTINME
-5
» FERRCIRCENK IR wE

» CALCULATE *
:05/360 TIME JP *
.

LIS P I T Y

|
!

K2 *
* .
*

" Is 05
., ACTIVE?

PAGE
AUG 23,

IOCATCH

AERR LU REER B
« SET U0 BASE *
* REGISTERS :
-

R S T e]

{
v
FEEERDERREREE
* Ld
PATCH UP b
9s/360 *
IO~FLIH “

FERRR SRR EEE

* .

FREAKTUREERRRERKE
* *
SAVE 05 IONEW,
P PSW'S

*
* PGMNEW
*

XEY)

*
RERER AR RN

AEERUDUIEERERL RN
*SET HYPERVISOR *
* IONZU, PGHMNEW *
* PSY ; i *
* CORE *

*

*

*
HEREE A EEER R

ERRRTL AR
%GO PROCESS THIS®
* INTERRUPT :

*
EEEESRREA AR AR

bt
392
* B2»

e et
* YES

ARSI ISUERRRE SN ERRRETIRHREERCN S
he * hd CALCUOLATE *
- CALCULATE . * HYPERVISO »
*05/360 TIME JF * *PSEUDO TIME OF *
* DAY * »

- -
FEEERBASENFAUS REE LR LR P T TR Y T
SHRENIEOREESERY SEERKIRETRRRLRE
* * = »
b RETGRN - b RETURN *
. . . -

ARREEEURSRENAKY

RS RERBEERE

006
1973

BAX - 057360 HYFERVISOR PAGE 207
XESSAGE HANDLING ROUTINES AUG 23, 1973
CONSOLE COMMAND ANALYSIS

ipd

LTI e
Q7 *0)7*
*« D2 * Bus
L - ¥
. .
1
I
RAXNSG v 0SHSG
ERUBI[IAECEEREE SEsunpl Rrcxurkdns
* - * -
* SET MESSAGE ¢ * SAVE 0S *
. RAX * *BEGISTERS, PSH *
* * - *
* L * -
EENEFERETEEENS ETE2T AL RS2 2243

ERERECU YRR

L *
* SET MESSAGE *
* FRON 0S/360 =
- =
*
EEEGE AR XN
[TR
"
.+° pe=1pL ¥, YES
.l RAKH teelleen,
, COXNAND , v
. . sEwk®
 .* s00ae
* NO * plw
= | * ®
] L
!
o*,
TR
¥ .,
. Lo Ms=oRRDN %, YES
PUT TR ., " Emmmeaan,

i *. CORNAND , ¢ v
xRk ., . Avkkn
#009% LI *310s
st «"x0 o a3x

5 % l * *®

*

FREWFIRRE SRR
*

*RBJZCT CONKAND *
* -

EEEHRVEREERENE

kR

Q10%

* D5% .

LK Gh .
.

- «,
% M=zIpL . YES

*, OS™ COHNAND ,$=<=--v-,

- ® v

“e, R eren
*, L =20a%
* NO * AT

* w

PP L L T T
L

-
:BEJECT COXNMAND :
FEREEHERSRERRIE

Ty
01)
.« D5«

wknky
)08
= 2w
v
*
|
v
RAXIPL o*.
Al *.
. -

«* IS BAX *.
. ACTIVE? .
, o
. o
., ¥

* NO

SERARPIREE MR RESK
*SET PCR=D (SET
* OR

: ADDRESSABLE)

BEEEAEHE PR R RERKY

X TR X

ERESAC]RFEERRR AR
.

*
CLEAR HAX CORE,
* MOVE IN TIPL

* PRO

D
w
E~
=

EX)

CERERREFFTERRS KRR

L b T

:CLEANSTK QOUAS:
EMPTY INTERRUPT
:STACKE SYSTEY *

B *
A SRR FE SRR R R

MREKKE R EREEKE

» Y
* SET *
* WRAXIOSE", s
T MGaITIsEh e
-

*
LA T LR L L]

LI SRR T
-

*
* SET R:X AS %

* BEING ACTIVE «
- *
* *
HERRARRRTRN LS

P IR SR
* *
* SAVE 0S TIMER *
: VALOZ :

- *
SEESHEEANERIIN RS

33 b L ittt
* SET PCR TO 50 =
: TO IPL PGY :

AEEBRIERERERNA R

RAX -

057350

HYPERVISOR

¥ESSAGE HANDLING ROUTINES

EREREIRRK KRR R
*

*REJECT COMUAND :
*
A PRI T T A)

23 3dd
“Q10%
* pS«

RAX IPL SIKULATOR

ERRET

ErERpIeBUERS
*

*
: BAX IPL ERROR :
EEEREEEREFRCRER

SEEPECTRRNERSY
* *

* RESET *
* MRAXIOSH" *
* YRAITISHE" *
* *
ERCERRBRRREERE

CEERKRDIR AR RKER
«
* SET_RAX NOT *
* ATTIVE .
* *
L4 *
EXSEHRR KRR

LaA LT ATEE IL 2L P LYY
* *

* SET UP 1/0 -
: ERROR N¥ESSRAGE :

* *
FRNAREEEREEEAEE R

«ryxn

*}10%

I3
)09
* Bu*

RAXIPLD
BEERBLESTRREENE
* RAX TPL b
- COMPLETED :
»

LTI Ty s

EEERBDUERN Rk R OR
* *
* SET UP 1PL *
* COMPLETE *
* MESSAS *
» *
» *

FHNKEERER KRR

Lk d
*312x
* EGw

RAGE
AUG 23,

P D LE T P
* GO INTO WAIT =
* STATE b

BEEEREIEEF R

sxenx
*Q05%
* J3*

208
1973

[3dd
*009%
A1

IPLOS
LAI LIS LRI LTS Y
* 05/360 IPL *
: SIKULATOR :
EEERIE R RS REE S

YES

-

“‘.'c"“"“t“t
. *
& pySH LOAD *
JBUTTON (VIX "SI0}
. INST) :

SREERFERREFANR RS

UER AP | FERF AL A

.
L3 -
- N *
+ (IEANDEGD) +
- *
- *®

FEEECER RN E NN

RSP PR RV KRR RE
*PATCH IPL _TEXT *

* FOR _MARYINUM «
STORAGE ADDRESS
* FOR 0S/36) *

BEEEREERRRERER RN

ERRSEGIERB R EERR AR
PATCH IPL ERROR
ROQUTIKE TQ CONE
TQ "IPLOSE3" ON
b ERROR :

»
BEKBEESECRFSRE LR

*

" RER .
« ALL PATCHES
* oK

Pru——

LI I RS RS T LTS
L
T -
ACTIVE
"OSYAITSH"
.
BENEEEEE R R R ES

.

snens

BEURLIBEAREE SN
*GO TO IPL TEXT *
* VIA LPS%® :

ERESUBEREIREE Y

RAX - 0S/367 HYPERVISOR
MESSAGE HANDLING ROUTINES
0S/360 IPL STINULATOF

ERKABIRERRERER K
*

*
LRSI moememsesmemssascocsesocoo->EREJECT COSMAND *

L L R R T

iy
*310%
* DS*

SDInERARFASEE
*

T HYPERVISOR *
CONTROL (NEW®
pSW'S ETC) -

EENERERRE TR AR

=0y

G —

AEENEEINARKEEREEN

* »
* SET I/0 ERROR *
* MESSAGE :

* *
R AR L R L

IPLOSE2
Py TS TR PR TS

-
tssr yreERyrson
(vvn
pSH & BEc
‘ttt“tttt'!ittt'

‘oocxaat‘t-nat-t-
*

SET BAD IPL &

‘ TEXT MESSAGE :--~

»
tntntuct.tttt‘toc

IPLOSE3
ERAERU e RI R E RS
* DFAD-WAIT %
RETURY FROM IPL
* vy *
e E R RN

HEERETL KRR E TR

*
SET 0S5 NOT «
ACTIVE .‘

XX

-
EREREFREIEENS S

tt!‘vbut‘tttttttt
'PUT "YPF?VIQQR *
‘IY COV E {NEW«

'S _TC) *

-
EEERVME AR IR BNk

AEERREY RN R AR
* SET WATT-CODE »
* BESSAGE *
- -
* *
* *

ARREEHREXFERE R

_____ s Y

PAGE 009
AUG 23, 1973

ek
000
* B5%

OSIPL
t Bsuaattacca-

t SET IPL
= COMPLETE
L SESSAGE
«
*

EREEERN R C MR

XXX R}

IPLOS~EX
ttttc)5t wesunree

FOR ONLY ‘

ET
-------—---------->aovs REPLY LINE *

t
.ti‘i.i‘it.‘ttu(!

v
‘tl‘KS“‘t.“‘.
* SEXD REPLY TO
* "APPROPRIATE #e-=,
. SYSTEN M
PR P Ry]

renus
210
s Eus

RAX - 05/36) HYPERVISOR PAGE 210
ESSAGE HAKDLING ROUTINES AUG 23, 1973
CE

N LLANEOUS CONSOLE ROUTINES
enkx tEREE LR]
*)10= «310s #3174
- Al * A3= ¥ Auw
- & L * %
» - -
3 1 N | .
BCOUNTS v HC1 RAXDRATIN v OSDHRAIN v KILLOS
T IS L T tt‘tth?tut'ttlu;t MEXTRA IR EIEANEE NS ERERBAYRSERFRRES S
*PICK UP BUMSER = » HusET * * ® SRS AGH MR IR RN
0f COUNTERS AND« ' POINT TO XEXT ‘ ¢ SET * * SET OS5 #0T M *PSU~-RESThRT KRY*
* PTR TO PIRST = * COGNTER * I Eh)i HQ % * ACTIVE *{--, * WAS PRESSED «
* ONE M * hore InT RRUPTS¥ * b « *
* - * » Ld H FEEREE RS E R
FEERERRERREERE T KR EEEERENBA R AR RN rrsensenrasaren L T PP T L 2 { ‘
| ! i
i I | |
1 1 t
}] |
* v }
t‘t‘ta]‘t"'ttt!t BZ. ‘e, FRFRRAY SRR AR I AN REBE IR RRERER
* o* *, * « . *
‘ SET UP COUNT * KO .* HAVE WL &, *PUT HYPEPVISOR = I * SET UP BASE *
* POR PRINTING ¥Cemw-ccn= *, DONE LAST ¥ *IN CONTROL (NEw® bbbl d REGISTERS *
. * * ALREADY . * PSK'S ETC) . . *
. * o . * * «
EEEBEE RN RS RERRS RN S, EREREEREEE RO RO KAEREEENRERERNEEE
» XES
P R PR Y EEEERCDARREKERRE
- * *
SET "NEXT-LINE" *
«" "ADDRES5 T - * *
* nicin «
- * . - TapwE
EEBBES KR ATEA KON AN R LT I e T T T xN10%
* phHx
= ¥
-
I
[N rommaem— > ,
cowpoxr 8ADCHD v
tttt‘Dthu‘-tt-tt ‘tnu!tt‘t.ttlt EEANIDERRECTRRB N K
« -
‘ SET TO PBRINT ‘ * SET _Up DONE ‘ *SET BAD COMNAND®
m——— ———— * DONE 436G * * MESSAGE * * KESSAGE *
= L * L3 * =
R REE * * * * * -
‘010. [EREEESKEERRRKE K F LIS S RSS2 2220 EXRKRENRFURE RN E X
* Ei*
* x ‘
* | P > - 1
seknE rmmemmamm wmmem—m——— ----.l
*010%
Go-051 ® E4% CONRET
.« ‘tt*t,ut!tttttttt
SRR JESRKREEE B K L *
3 NTRY FROM ‘ l ‘SI.‘\D REPLY SACK*
Ld con 3 cmmmeaD®TN SYDTEY WHTCH*
*CONSOLE ¥ AGu' ‘ GAVE L()HHAND ‘
l“‘.“l.“l(.t
ttt!tttlttlttttc‘
v
S0=-05 . % RO=KEY
F3 Fu *,
- o* ., SEwAFSREm kT Uy Y
Al 05 .* WYERE *, KEY * GO INTO OS *
"""""" - mmmmm—— RE =~=%, WAS COMMAND ,%==cc-cee)>2 WAITSTATE *
« MES *, FROM? % b4 *
-, *, " ETEEEIREREERAESE
*, . o *
* BAX
!
¥
sksek
*00h%
§O-0SIN GO=-RAYX ® D2#*
ARG EERCENE SRS ““tht“l!‘"“t A EAKCIEREBERERS T EEEEACL AN ERBEARE * %
- * » « » . .
. GO TO * ‘ 52T TO SEKD ‘ L. SAVE hd = SET REPLY (IF =*
% WNEXT-LINE" * * "D-l'" CONSJLE . - LINE® » * ANY) *
* ROUTIKE * * CHD TO 08/363 = *ROOT ADDRESS* *
* * - * - - » *
BARERERN RN E RS T T T T P T T Ly T 2
el
L d »*
* o %,
.« x RABARGIERRRBEE R L e T 14 -,
- * * TART LINE o Lo, t‘t‘PSltttttl!.
#SET TO GO TO Os* * TYPLNG ON * «* IS RAX *, NI *
* JO-FLIH QU * 05/360 *, ACTIVE ‘----*-*-)‘ GO TO OS5 THEN *
* RE'E\TRY . * COKSOLE * *, . - hd
- ., . L D
ARABERERREE TN O BERRERRRREN RS
* YES
LT L2322
*3053% =005
* Gl= * B3
* & LT L RELS cttct .=
* * BErsJuswkEv Rk L d
- ssr sprxu . * RETURN TO RAX *
. 172 * VIA SPB INST. *
- ""3\50" ' L L]
- . EEXEE RSN IR EE
RSN AR RS

[X34
#3031
4 G1

BIBLIOGRAPHY

R.F. Rosin, "Supervisory and Monitor Systems," Computing

Surveys, Vol. 1, No. 1, 37-54, (March 1969).

IBM System/360 Remote Access Computing System (RAX)

Version 4 Program Description Manual, GH20-0354.

P.J. Denning, "Virtual memory," Computing Surveys, Vol.

2, No. 3, 153-189, (September 1970).

R.P. Parmalee, T.I. Peterson, C.C. Tillman, and D.J.

Hatfield, "Virtual storage and virtual machine

concepts," IBM Systems Journal, Vol. 11, No. 2, 99-130.

IBM System/360 Principles of Operation, GA22-6821.

J.M. Chiarello, IBM Simultaneous Use of Operating

Systems and/or Emulators under Hypervisor Shared Storage

RPQ, Z77-9086.

IBM, Internal paper - only identification "Appendix D".

91

10.

IBM System/360 Operating System MVI Supervisor Program

Logie Manual, GY28-6659

IBM System/360 Model 656 Functional Characteristics,

GA22-6884,

S.S. Hussen, Microprogramming: Principles and Practices,

Prentice-Hall, Englewood Cliffs, N.J., (1970).

IBM An Introduction to MUicroprogramming, GF20-0385

92

g

