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PREFACE 


A basic requirement in the management of a large

scale computing facility is to provide the complete range of 

services which the user community requires. Often, even if 

the desired facilities could be obtained, it is impractical 

due to cost, machine configuration, or incompatibility with 

existing software. 

This paper describes the development of a means by 

which two discrete operating systems, each of which normally 

operates on a dedicated IBM 8/360 or 8/370 computer, can be 

multiprogrammed to operate on the same machine. Results of 

the project are described, and future implementations are 

discussed. 

The reader is assumed to have some knowledge of 

modern digital computer internals, but not necessarily of 

IBM computers. Chapter 3 includes a description of all the 

features of 8/360 architecture which are required by the 

rest of the paper. 
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CHAPTER 1 


COMPUTER SYSTEMS DEVELOPMENT 


The methods by which large scale digital computers 

are operated have changed drastically in the last fifteen 

years. l The first computers were relatively slow and little 

support programming was available. To solve a problem, the 

user would have to reserve the machine for his exclusive 

use, and debug and run his job at the computer console. 

Although this was not a very satisfactory approach, since 

the machine was idle during the programmer's "think time", 

it was still an acceptable method of operation. System 

time, even on a large configuration, was often worth only 

twenty five to fifty dollars per hour. 

As machine speed and cost increased, one man 

sitting at the computer console could not in general keep 

the machine busy even a small percentage of the time. 

Obviously, for a computer worth perhaps four hundred dollars 

per hour, some other method of operation had to be devised. 

The initial solution involved several new develop

ments. The first of these was the introduction of HIGH 

LEVEL LANGUAGES. A high level language such as FORTRAN or 

COBOL enables the computer user to present the problem that 

1 



he wants solved in terms familiar to him. A program called 

a COMPILER translates this representation into instructions 

that the machine can execute. One instruction in these new 

languages might be translated into many machine instruction. 

The programmer could now generate his programs much more 

efficiently, no longer having to deal with the actual 

details of the computer. Also, since the size (in source 

language statements) of each program was usually greatly 

reduced, the number of logical errors made by a programmer 

would be similarly reduced. 

The other significant development was that of 

OPERATING SYSTEMS or PROGRAMMING SYSTE.f\1S. Their purpose was 

two-fold. Firstly, operating systems provided subroutines 

to perform repetitive or intricate operations for the 

programmer. Many of these subprograms did routine 

mathematical calculations (such as square roots, 

exponentials, etc.). Often they related to input/output 

(I/O) operations. The programmer could now simply tell the 

operating system to read a block of data from a tape. The 

system would issue all the necessary commands to perform 

this and also initiate any error recovery which might be 

needed. The availability of all these routines freed the 

programmer from much of the tedious coding, leaving him free 

to do more creative work. Also worth noting is that since 

these routines were supplied, the user no longer had the 

2 



opportunity to make errors which might have occurred if he 

had to write the routines himself. 

The second facility which operating systems 

provided on medium to large computers was the ability to 

BATCH jobs. A whole set of jobs could be made available to 

the computer at one time. When one job was complete, the 

operating system would start processing the next one. All 

information needed to process the job was supplied on the 

punched cards included in the job. This included such 

information as the type of language processor (Fortran or 

Cobol, etc.) and the external facilities needed (tape 

drives, etc.). Eliminating operator intervention between 

jobs cut out much machine idle time. The next step was to 

allow the operating system to actually run more than one job 

concurrently. This was done by having several jobs reside 

in memory at the same time. If one job could not execute 

any more instructions until an I/O operation was complete, 

the operating system would let one of the other jobs run for 

a while. This technique of running more than one job at a 

time is called J:.IDLT I PROGRAMMING • 

These advances all helped to make more efficient 

use of the computer resources and, consequently, improved 

service and reduced the cost to the computer user. 
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'I'he newer higher speed computers with their 

advanced software had many advantages over older models. 

Due to their speed, these machines could be used to tackle 

problems, which previously simply could not be handled. The 

new programming languages also helped as the effort needed 

to create a large program was often much reduced. The 

11 cost/performance 11 ratio, the cost to perform a given amount 

of computing, tended to go down as the size of the machine 

increased. Of course since the number of applications using 

the computer increased, the overall cost often increased as 

well. 

For many applications, the type of operating system 

just described was and is quite suitable. However, for some 

applications, specifically program development and execution 

of short jobs, and information retrieval (inquiry) 

operations, this environment was far from perfect. In many 

computer installations, a job requires a minimum length of 

time from the moment it is submitted for running until the 

output is available to the programmer. This time is seldom 

less than two hours and often as long as a day. This is 

true even if the actual job is very short. A programmer 

working on a project often needs many short runs to complete 

his work. The batch operating system cannot usually satisfy 

this type of need while at the same time provide the very 

sophisticated facilities needed by other users. 
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The dilen~a of providing short turn-around for 

simple jobs was answered by the development of TI~1E-SHARING 

or TELEPROCESSING SYSTEMS. These systems usually work on 

the following principle. Instead of giving each programmer 

a ten minute time slot each day as a batch system might, 

this system might give him a one second slice of time every 

minute (on the average). To accomplish this feat, a number 

of typewriter-like terrninals are connected to the computer. 

The operating system apportions the computer's time among 

all the active users at terminals. The user, instead of 

punching his programs on cards and submitting them to be 

run, now types the programs directly into the computer via 

his terminal. The operating system keeps track of what each 

user is doing. Since the average terminal user does not 

make very large demands on a powerful computer, the 

operating system, if properly designed, can keep a number of 

users satisfied simultaneously. Ideally, each user's 

requests or jobs can be completed quickly and while he is 

thinking about what to do next, many other user's requests 

are processed. 

It is not inconceivable to imagine an operating 

system which could provide a wide range of computing 

facilities to the batch users, and at the same time, provide 

a comprehensive, efficient means of programming via a remote 

terminal. However, despite several valiant attempts, this 
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had not been accomplished (at the time of the study to be 

discussed) for an IBM S/360 computer at a reasonable cost to 

the installation and user. 

6 



CHAPTER 2 


ILLINOIS BELL TELEPHONE 


The developments in computer technology coupled 

with a changing set of data processing requirements 

necessitated a re-evaluation of the computer facilities at 

the Illinois Bell Telephone Company during 1969. At that 

time the processing at the company headquarters was being 

done on several relatively small Honeywell computers, an IBM 

7074 and two IBM System/360's, a Model 30 and 40. The 

8/360-40 was running an interactive teleprocessing system 

(RAX}t during the day and doing batch processing in non-

prime time using the IBM DOS (Disk Operating System). The 

S/360-30 was also running DOS. DOS is an operating system 

providing reasonably good facilities for business oriented 

applications on small to medium sized machines (the Model 30 

and 40 fit this category). RAX is an independent system 

providing basic language and data management facilities for 

use from a number of remote terminals concurrently. Its 

facilities were (at that time) satisfactory for many 

applications particularly in the fields of engineering and 

data collection. At Illinois Bell, the largest application 

was collection from remote locations. There was also a 

tRAX IBl-1 program 360A-CX-17X. It was originally 
called "RACS" for Remote Access Computing System. 
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large amount of general interactive program execution and 

program development. Both the RAX and DOS IBM S/360's were 

quite heavily loaded. 

There were several criteria and aims concerning 

modifications to and expansion of the computing facility. 

It was desirable to provide a better time-sharing service 

than the standard IBM RAX system. Also, it was necessary to 

be able to handle a much larger workload on this system. 

The intended plan was to replace the DOS system with the 

S/360 Operating System (OS). This would provide a much more 

versatile system featuring virtually all the batch oriented 

processing facilities which could be needed. OS is better 

suited than DOS to take advantage of a large computer 

configuration and to provide the users with a sophisticated 

set of facilities. This was needed since it was planned to 

eventually shift much if not all of the work of the 

Honeywells and the IBM 7074 to the S/360 computer(s). It 

should be remarked in passing that OS, because of its 

flexibility and wide range of services offered, has a much 

larger overhead than DOS, and thus generally requires a more 

powerful machine. 

It seemed necessary to run both systems (or similar 

ones) since, at the time, no single system existed for an 

IBJl.1 S/360 which would provide the high level services and 
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through-put of os and the teleprocessing facilities of RAX. 

Even such a system had existed for another manufacturer's 

machines, the conversion effort would have been enormous. 

The criterion of a better time-sharing system was 

met by acquiring the rights to utilize the McGILL-RAX 

operating system. This system is a version of the standard 

IBM RAX system 2 
, highly modified by the McGill University 

Computing Centre to provide a much improved set of language 

and terminal facilities for users.t 

The requirements now evolved into the following. 

McGILL-RAX (or an equivalent system) must be run during the 

daytime hours (7AM-5PM) _ Its machine must be powerful 

enough to support a much larger workload than the current 

Model 40. The OS system must have the capability of 

processing a large amount of work relative to the current 

DOS Model 40 setup. It must be possible to process at 

least test jobs and certain production jobs on OS during the 

day_ This would allow programmers who are developing and 

testing programs to use their time more productively. Both 

systems should have some surplus power at the time of 

installation and must be expandab without any unreasonably 

high jump in cost. 

tThroughout the rest of this paper, the name RAX will be 
used to refer to the McGill-RAX operating system. 
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Several proposals were made. They are outlined 

below. 

Configuration one consisted of two S/360 Model 

50's. During the day, RAX would be run on one and OS on the 

other. At night, both machines could be used for OS. One 

great advantage of this setup would be due to the fact that 

the CPU and much of the I/O equipment would be duplicated. 

The online RAX system would thus have excellent backup in 

case of the failure of some piece of the primary RAX 

machine. For several reasons however, this was not a very 

satisfactory configuration. Running two individual OS 

systems at night would be inconvenient since it implies 

maintaining two versions of the operating system, two sets 

of libraries, and so forth. A prime disadvantage of this 

configuration would be the very high cost of upgrading one 

or both of the l1:odel 50s to a S/360 I'lodel 65 (the next 

larger size CPU). The two 1-1odel 50s would be able to cope 

easily with the immediate workload, but should a larger 

machine be needed for either system, the cost increase would 

be large indeed. 

Proposal two called for one S/360 Model 65. Such a 

system would run RAX during the day and OS for the remaining 

time. This hardware setup would give both RAX and OS plenty 

of room for expansion and also happens to be the least 
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expensive of the suggestions. There were two major 

drawbacks. A large amount of hardware, necessary to run OS, 

would be idle while RAX was running. RAX simply had no use 

at that time for all the core storage and I/O devices needed 

by OS. Also, and more important, no OS jobs could be 

processed during the day. This could not be accepted. 

Solution three was to use one large S/360 Model 65 

running OS. Although not utilizing RAX, this proposal quite 

nearly met all the requirements. Under the Operating 

System, a program called CALL/360 could be used. This is a 

system similar to RAX, the major difference being that it is 

not a stand-alone operating system but is part of OS. It is 

not quite as versati as RAX, but it would fit the 

requirements at Illinois Bell. The major deterrents to this 

implementation were the higher hardware cost and the large 

amount of conversion effort (and thus cost) needed to modify 

all the RAX jobs to run under CALL/360. 

'1'he fourth solution was to use a Model 65 using the 

"Hypervisor" shared storage feature. This hardware 

enhancement, when coupled with the appropriate software, 

could allow two independent operating systems to coexist in 

the same machine, each operating system running as if it had 

complete control over its own computer. The Hypervisor 

software basically controls the two supervisors, thus the 
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name HYPERvisor. If RAX and OS could be Hypervised 

efficiently, this proposal would be quite attractive. At 

this point the McGill University Computing Centre was 

contacted concerning the feasibility of such a program. 

After the matter had been studied, it was decided that such 

a Hypervisor could be written. The Hypervised Model 65 

could run RAX and a small OS system during the day and one 

large OS system at night. In this configuration, OS jobs 

could be processed during the day. Also, the large 65 

configuration at night could, if properly used, be more 

powerful that two Model 50 CPUs. There were disadvantages 

of the Hypervised 65. Because of the hardware/software 

implementation, duplication of some hardware for RAX and OS 

would be necessary. When both systems were running, each 

must have control of its own channels and I/O devices. The 

possibility of a failure in one system impacting the other 

system also had to be considered. 

An overall consideration was the fact that any 

Model 50 CPUs acquired would be rented while a Model 65 

could be purchased. The economics are such that in the long 

run, it would be less expensive to purchase than lease, but 

it would not be worthwhile to purchase a machine which might 

soon be outgrown (i.e. a Model 50). Because of this, the 65 

configurations were even more attractive than the rental 

prices indicate. 
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One other proposal was considered. This involved 

the use of a System/360 Model 67 CPU running an operating 

system called CP/67. A Model 67 is a special variety of 

S/360 with full relocation hardware.t The CP/67 system 

allows several conventional S/360 operating systems to run 

simultaneously. The system is very generalized. Because of 

this, it requires a large amount of hardware to support it. 

Also, the software was extremely inefficient (at least at 

the time this decision had to be made). This system would 

be able to run RAX and OS simultaneously but the overhead 

would tend to decrease performance by too much, especially 

considering the high cost of the hardware involved. 

Table I summarizes the various configurations with 

respect to cost and features. 

Based on the preceding data, all solutions but the 

OS-CALL/360 and the OS-RAX Hypervisor were ruled out. The 

final decision was to use the Hypervised Model 65 concept. 

The decision was made partly because of the conversion 

effort which would be necessary to use CALL/360. A large 

factor in the decision, however, was that Illinois Bell was 

tFull relocation hardware allows any section of physical 
memory to be assigned any reasonable address (in 2048 byte 
blocks) by the the operating system supervisor. This allows 
the programmer to think he has contiguous storage, and 
permits the system to fully utilize fragmented storage. 3 
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TABLE I 

ILLINOIS BELL TELEPHONE 

COMPUTER PROPOSAL SUMMARY 

RAX OS COST ADVANTAGES 

50 50 $74,182 Backup hardware 

50 65 $92,652 

65 50 $88,682 

65 $66,013 Inexpensive 
more power 
two 50's 

than 

Hyp 65 $73,642 OS during day 

67 $81,903 Versatile 

65 
CALL/OS 

$77,148 One standard 
machine/ 

software 

DISADVANTAGES 

Upgrade cost high 

Upgrade cost 
from two 50's 

Not a likely 
configuration 

No OS during day 

Two systems on 
CPU affects 
reliabili ty 

Expensive, slow 
extra versatility 
not needed. 

Conversion 
effort, etc. 
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extremely pleased with the RAX system which they had 

obtained from McGill. It was felt that if a Hypervisor were 

to be obtained from McGill, it would be of similar quality. 

The Hypervisor would effectively give a full 8/360 Model 65 

to RAX during the day, a large Model 65 to OS at night, and 

a "slow" Model 65 to OS during the day. Since both systems 

would have a rather powerful machine available, there should 

be no need to upgrade CPUs in the near future. The McGill 

Computing Centre agreed to write the software needed to 

Hypervise RAX and OS on the 65 (under contract to the 

Illinois Bell Telephone Company) . 
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CHAPTER 3 


8Y8TEM/360 CO~~UTER ARCHITECTURE 

To understand the Hypervisor implementation, it is 

first necessary to have a good background in the 8ystem/360 

internal architecture and operation. 4 

The main components of a 8/360 computer are a main 

storage (memory), a central processing unit (CPU), channels 

and various input/output (I/O) devices. 

The NEHORY of a computer is a device capable of 

storing binary information. The unit of storage in a 8/360 

is eight bits and is called a BYTE. Bytes in the memory are 

consecutively nlli.mered starting at zero. Each number is 

considered to be the address of the corresponding byte. The 

memory is used for storing programs consisting of 

instructions to the computer, and data related to the 

problem being solved. On a 8/360, the storage device is 

composed of magnetic ferrite cores. The term CORE has become 

synonymous with the term memory and will be used 

interchangeably. 

The CPU is responsible for executing instructions 

stored in the memory. It can also establish communication 
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with the I/O devices under control of the program being 

executed. Associated with the CPU is the Program Status 

Word {PSW}. The PSW contains eight bytes of information 

completely describing the status of the CPU in relation to 

the running program, at any given time (Fig. 1). It 

contains, among other things, bits of data specifying 

whether the CPU is running or waiting (in WAIT state), what 

type of occurrences may interrupt the current instruction 

sequence, and the address of the next instruction to be 

executed. 

Under normal conditions, the CPU performs the 

operation requested by each instruction. When this is 

complete, it goes on to the next sequential instruction. 

This process continues until the instruction executed is a 

branch. In this case, the next and successive operations are 

fetched starting from the address pointed to by the branch 

instruction. The normal instruction sequence can also be 

disrupted by interrupts, as described in the following 

sections. 

The channels interface the I/O devices to the CPU. 

When a program wishes to do some input or output, the CPU 

sends data to the channel concerning the type of operation 

to be done (read, write, etc) and the adresses in memory 

where the data is located or is to be placed. The channel 
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FIGURE 1 

PROGRAM STATUS HORD 

SYSTEf.l NASK KEY A M vi P INTERRUPTION CODE 

0 7 8 11 12 15 16 31 

ILC CC PGM MSK INSTRUCTION ADDRESS 

32/ 34/ 36 39 40 63 
33 35 

SYSTEM MASK 
Bits 0-6 If on, allows I/O interrupts on channels 0-6 

respectively 
Bit 7 If on, allows external interrupts 

KEY 
Specifies memory fetch and store limitations. If all zeros, 
current program can fetch or store anywhere in memory 

AMWP 
A not used 
M If on allows machine error interruptions 
W If on machine is not running, but in "WAIT" state 
P If on machine is in "PROBLEH" state and may not perform 

any supervisor functions. 

INTERRUPTION CODE 
After an interruption, the reason for the interrupt is 
stored here . 

ILC 
Instruction Length Code - length of the last instruction 
executed (in a 8/360, instructions can be 2,4, or 6 bytes 
long) 

CC 
Condition Code - two bits which may be set by one 
instruction and tested by later one 

PGM MSK 
Program mask - four bits related to interruptions which can 
occur during arithmetic operations 

INSTRUCTION ADDP~SS 
Address of next instruction to be executed (this and the ILC 
can be used to compute the address of the last executed 
instruction. 
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then operates independently and the CPU is free to continue 

other processing. When the I/O operation is complete, the 

channel signals the CPU that it is finished. The mechanism 

used to signal the CPU of a completed channel operation is 

the I/O interrupt. When an operation is complete, and the 

current PSW allows this channel to cause an interruption 

(Fig. 1 System Mask), the current PSW is stored in a 

special location (Fig. 2) in the memory (I/O OLD PSW loc 

56).t Next, a new PSW is loaded from another specified 

location (I/O NEW PS~ij - loc 120). This new PSW contains an 

instruction address pointing to a section of program 

designed to handle completed input/output operations. This 

routine can take whatever action is necessary and then 

resume what the CPU was doing before the interrupt by 

loading the PSW that was stored at location 120. The 

channel address is a number (usually from 0-7) by which the 

channel is identified. If when an I/O operation completes, 

the current system mask disallows this channel's interrupts, 

the interrupt remains "PENDING" until the system mask is 

changed to allow it. The interrupt then occurs just as 

described. 

The principles employed in performing an 

input/output operation are quite straight forward. The main 

tAll memory locations referenced in this paper are 
expressed in decimal. 
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FIGURE 2 


SYSTEM/360 LOW CORE MAP 


IPL PSW 
0 • • • • • • • 

IPL CCW 1 
8 • • • • 

, 

• • • 

IPL CCW 2 
016 • • • • • • 

EXTERNAL OLD PSW 
24 • • • • • •· 

SVC OLD PSW 
32 • • • • • •· 

PROGRAM CHECK OLD PSW 
40 • • • • • • • 

MACHINE CHECK OLD PSW 
48 • • • • • • • 

I/O OLD PSW 
56 • • • • • •· 

CHANNEL STATUS WORD 
64 • • • • • • · 

CAW UNUSED 
72 • • • · • • 

TnmR UNUSED 
80 • • • · •· 

EXTERNAL NEl-V PSlv 
88 • • • • • • • 

SVC NEW PSW 
96 • • • • · · • 

PROGRAM CHECK NEW PSW 
104 • • • • • •· 

MACHINE CHECK NEW PSW 
112 • • • • • • • 

I/O NEW PSW 
120 · • • • ·· · 
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means of communication from the CPU to the channel is the 

Channel Command Word (CCW) _ This consists of eight bytes of 

information including the type of operation to be done, the 

storage address of the data involved, and the number of 

bytes of data to be transferred. To initiate an I/O 

operation, the software constructs one or more CCWs and 

places the address of the first one in the Channel Address 

Word (CAW) at loc 72 of the memory_ The program then issues 

a Start I/O (SIO) instruction specifying the unit number of 

the device to be used. The channel looks at the pointer in 

the CAW and from this location (Le. the location of the 

CCW) gets its instructions. Assuming that the CAW and CCW 

are valid, the SIO instruction is now complete and the CPU 

is free to go on to the next instruction. The channel 

performs the operation(s) described in the CCW{s). 

As soon as it is finished, and as soon as the CPU 

System Mask allows interrupts from this channel, an I/O 

interrupt occurs. The unit number of the device which was 

addressed is stored in the interrupt code of the I/O OLD 

PSW. Also, a Channel Status Word (CSW) is stored at 

location 64. The CSVV indicates whether or not the operation 

was successful. If it was not, the CSW also gives 

information pertaining to the error conditions. 
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The interval timer is another feature available on 

most 8/360 computers. This device allows the program to 

measure and keep track of time. The interval timer consists 

of four bytes of storage starting at location 80 in the 

memory. Every 1/60 of a second, this location is 

decremented. The amount of each decrement is 1380. This is 

equivalent to 1/60 second, since the interval timer is in 

units of about 13 microseconds. If this value should become 

negative, a timer interrupt occurs (assuming the current P8W 

system mask allows it). 

This timer interrupt is a specific type of EXTERNAL 

interruption. It operates in a way similar to the I/O 

interrupt; in this case however, the machine stores the 

current P8~v in the EXTERNAL OLD PSW (loc 24) and fetches the 

new one from the EXTERNAL NE~v P8W (loc 88). This new P8W 

points to a routine written to handle timer interrupt 

conditions. 

To use the timer to measure elapsed time, the 

program need only initialize the timer to some value. At 

any later time, the difference between this original value 

and the current contents of the timer is a measure of how 

much time has passed. 
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To limit a function to a specific length of time, a 

program places in the timer location a value equal to the 

allowed time (in timer units). When the period has expired, 

a timer interrupt will occur. 

The last feature of the S/360 machines which is 

relevant to the Hypervisor design is the method in which a 

program or operating system is first loaded into the 

computer. To begin operation, the address of the device 

where the progra~m resides is placed in a set of dials. The 

"LOAD" button is then pressed. This causes the INITIAL 

PROGRAM LOAD (IPL) procedure to take place within the 

machine. This procedure is equivalent to doing a SIO on the 

selected device, using a CCW which contains a read command. 

This reads 24 bytes of information into locations starting 

at location zero of memory (Fig. 2). This 24 bytes of data 

from disk contain more CCWs and a PSW (Fig. 2). The channel 

program continues after the read, using the CCWs now at 

location zero. When the I/O operation has been successfully 

completed, the PSW at location 16 is loaded. This PSW 

normally points to the program loaded by the I/O operation 

just performed. 

The Hypervisor hardware modification allows the 

memory of the computer to be divided into two independent 

sections from the viewpoint of the programs. In the 
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following explanations and examples, for simplicity, we will 

assume that the computer has a memory of 20000 bytes (in 

reality, the core sizes of machines on which this paper is 

centred are from 256K to 1024K (K = 1024 bytes». When it 

is divided, there will be two segments, each of 10000 bytes. 

Note that the memory addressing starts at zero, so that the 

20000 byte memory is addressed from 0 to 19999 and the 10000 

byte segments as 0-9999. When the Hypervisor feature is 

active, the memory is partitioned into two logically 

separate core storage boxes. As far as the CPU and channels 

are concerned, the addressing of each box starts at location 

zero and increments by one until its highest address. Thus 

there are now two locations "0", two locations "1", etc. 

Since there are now two low core areas, all special 

locations (e.g. OLD, NEW PSW's) are duplicated. It is the 

joint function of the Hypervisor hardware and software to 

control which of the core boxes is to be used for which 

purposes. 

This control is achieved via the PREFIX CONTROL 

REGISTER (PCR). The PCR is an extra hardware register 

consisting of eight bits numbered 0-7. Bits 0-6 refer to 

I/O channels 0-6. Bit 7 to the CPU itself. If all 

the bits are zeros, the machine operates as a normal S/360. 

No memory partitioning take place. Once any of the bits are 

on, core storage is divided into two segments. If the bit 
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corresponding to a channel is on, then any time that channel 

references the computer memory, 10000 will be added to the 

address specified by the channel. What this means is that 

if the channel is instructed to read some data into location 

100, and its PCR bit is on, the data will really be placed 

at location 10100 of the real memory_ Note also that when 

this channel stores its CSW and fetches it's CAW, although 

it is referring to locations 64 and 72 respectively, the 

real memory locations used will be 10064 and 10072. As far 

as this channel is concerned, its memory starts at byte zero 

and goes as far as 9999. In reality, it is using locations 

10000 to 19999. 

Similarly if bit 7 of the PCR is on, any storage 

reference made by the CPU is relocated. This is true for 

storage references to get instructions as well as data. A 

branch to location 500 will cause the next instruction to be 

fetched from real core location 10500 if PCR bit 7 is a one. 

If the bit for any channel or the CPU is off, it 

can refer to memory locations 0-9999. If the bit is on, 

apparent addresses are also from 0 to 9999, but these latter 

references will actually address physical locations 10000

19999. It can be seen that a program written to work in a 

normal machine can work in the upper core box of a 

Hypervised machine without any modification. All that is 
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necessary is to make sure that the relevant PCR bits are set 

to ones. 

Table 11 gives examples which illustrate these 

rules. Instead of the 20000 byte machine used in the 

previous examples, the table assumes a machine of 50000 

bytes partitioned at byte 20000. 

Note that the bit 7 for the CPU can be turned on or 

off at will. However, if the channel bits are changed while 

data is being transferred, the results could be disastrous. 

Data would start in one of the memory boxes and suddenly 

jump into the other one. The channel bits could be changed 

if all channel activity could be quiesced first. However, 

this would require much co-ordination and synchronization 

between the two programming systems. In most cases, it is 

simply not practical. It also follows that since the 

channel bits should not be set to zero during normal 

mUltisystem operation, once the memory is partitioned, it 

must remain so. This means that while running, a program 

residing in one part of the memory cannot access the core of 

the other. 

Remember also that the interval timer is at 

location 80 of the TItemory and is decremented every 1/60 of a 

second by the CPU. If the CPU PCR bit (bit 7) is on at the 
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TABLE 11 

HYFERVISOR SHARED STORAGE FEATURE 


PREFIX CONTROL REGISTER EXAMPLES 


PCR REFERENCE RELOCATED ADDRESS ACTUAL 
FROM ADDRESS 

10100001 Channel 0 YES 100 20100 

10100001 Channel 1 NO 100 100 

10100001 Channel 2 YES 200 20200 

10100001 CPU YES 300 20300 

10100001 CPU YES 20400 40400 

10100001 CPU YES 30400 invalid 
50400>49999 

10100001 Channel 0 YES 20100 40100 

10100001 Channel 1 NO 20100 invalid 
20100>19999 

11000000 CPU NO 201 201 

11000000 CPU NO 30003 invalid 
30003>19999 

00000000 Channel 0 NO 100 100 

00000000 Channel 1 NO 30004 30004 

00000000 CPU NO 45777 45777 
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time, the location that gets decremented is the location 80 

in the high core box. The machine is now running with two 

timers. One of them being decremented part of the time and 

the other active the remainder of the time. 

One new instruction is added to the System/360 with 

the Hypervisor feature. It is the SET PREFIX and BRANCH 

(SPB) instruction. The operands of the SPB instruction are 

one 8 bit byte and a memory address. The PCR is first set 

according to the 8 bit code. Then the CPU branches to the 

address specified in the instruction. If the new PCR 

contains a zero in bit 7, the address is used as is. 

However, if bit 7 is a one, the address will refer to the 

upper core box since relocation is now in effect for all CPU 

storage references. This instruction therefore gives the 

ability to set the Prefix Control Register and to transfer 

program control from one of the core boxes to the other. 
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CHAPTER 4 


McGILL-RAX - 05/360 HYPERVISOR DESIGN 

The concept of Hypervising two operating systems 

was first developed to allO\v a 5/360 computer to run both 

OS/360 and a 7074 Emulator program simultaneously. An 

emulator is a hardware assisted program which simulates 

another type of computer. The 7074 emulator runs on certain 

S/360 CPUs. It is a stand-alone system, that is, it 

normally runs on a machine all by itself, not depending on 

any other operating system. Hhen a computer installation 

converts from an older type of computer such as an IBM 7074 

to a newer S/360, the emulator allows old jobs to be run 

without any modification or conversion. As time passes, 

less of the workload is emulated and more becomes S/360 

progranuning. To run this type of job mix the computer must 

alternatively run OS and the emulator program. The 

Hypervisor hardware and software allowed these systems to be 

run concurrently. 

Since the initial impl6aentation, the Hypervisor 

has been used to run several other combinations of operating 

systems. Examples of these are 7074 emulator/DOS, two 7074 

emulators, and two DOS systems. 5 It has so been reported 

that a modified IBM RAX and OS/360 have been Hypervised 
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before, but documentation relating to this has not been 

available. A short paper6 was obtained (from IBM) giving 

an implementation plan for Hypervising RAX and OS. Because 

of different design criteria, this paper's ideas were not 

followed very closely, however, it was useful in the initial 

planning stage. It was never established whether this paper 

described an existing system or was simply a possible 

implementation specification. 

Once the decision was made to use the Hypervised 

8/360-65, the software specifications were set. There were 

two sets of guide lines established. The first set were 

criteria which it was felt must be met for the Hypervisor to 

work as planned. The other set were desirable attributes 

which were to be included if possible. That is, the first 

criteria must be met, the second were to be satisfied but 

not at the cost of any of the first set. 

Major criter 

A-1 	 The RAX system must have priority over the 08/360 

system. Any time RAX needs the CPU, it must get control 

over it quickly (i.e. within a period of time measured 

in microseconds). There must be a minimum of 

degradation in RAX due to OS. 
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A-2 While running under the Hypervisor with OS, RAX 

reliability should not suffer appreciably. This means 

RAX should be able to keep running even if OS crashes 

{stops dead}. 

A-3 	RAX time charges must be accurate both for execution and 

connect time. This means RAX's timer must be running 

(logically if not physically) at all times. RAX must be 

able to keep track of time used for CPU work, time in 

wait state, and time of day, all reasonably accurately. 

A-4 	OS must be able to maintain job timing. OS charges are 

by CPU time and a measure of how long the job utilizes 

system resources (core, I/O units, etc). Time of day 

accuracy is desirable but not mandatory. 

A-5 	The OS system will have only 256K memory during the day. 

This is not a very large configuration and therefore the 

amount of core occupied by the Hypervisor on the OS core 

box should be kept to a minimum. 
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Minor Criteria 

B-1 The Hypervisor should depend as little as possible on 

ther control blocks or coding within 08/360. A new 

version or release of OS should necessitate a minimum of 

changes in the Hypervisor. 

B-28imilarly, the number of changes to 08/360 itself should 

be kept small, preferably zero. 

B-3 	The Hypervisor coding should be efficient, particularly 

the sections which are executed often (up to several 

million times per day). It should not appreciably 

degrade either RAX or 08 operation. 

B-4 	The same system residence disk packs for both 08 and RAX 

should be able to be used on a Hypervised system or 

stand-alone. It would not be desirable to have to 

maintain two almost identical systems. 

B-SThe Hypervisor should keep internal usage statistics. 

These are useful to measure its performance and help 

indicate areas where design improvement might be needed. 

B-6 	It should be easy to modify the Hypervisor to reflect 

hardware configuration changes. 
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After the initial installation of tile Hypervisor, a 

new requirement developed. In the original design, if OS 

failed catastrophically during the day, it was felt that it 

would be satisfactory to leave OS off until the end of the 

RAX day. This seemed reasonable at the time for several 

reasons. First, it was not expected that OS would fail very 

often. Second, since before the Hypervisor was used, no OS 

production was processed during the day, it was felt that to 

occasionally revert to this condition would not hurt 

greatly. 

In practice, OS did fail with some regularity due 

to both hardware and software problems. Also, once the 

programmers were used to having OS jobs run during the day, 

it was not very satisfactory to suddenly withdraw this 

facility. The new criteria all related to increasing the 

reliability and availability of both systems, but 

particularly OS. 

Additional Criteria 

C-1 	 The Hypervisor must be able to re-IPL OS during 

production hours with minimal effect on RAX and its 

users. 
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C-2 Either system can run without the other. That , RAX 

can run under the Hypervisor without 08/360 running, and 

08 can run if RAX is inactive. 

C-3 Either system can be stopped or started at any time. 

These additions vJ'Ould not only allow either sys tern 

to be re-IPL'd during the day, but due to the second and 

third specifications, one of the systems could not be 

started due to either hardware or software malfunctions, the 

other system could still be run. When the errors had been 

corrected, it would be very likely that the first system 

could now be IPL'd without affecting the work being 

processed on the running system. 
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CHAPTER 5 


HYPERVI80R IMPLEMENTATION 


The Hypervisor program to be described was written 

in accordance with the specifications laid out in the 

previous section. It corresponds to the McGILL-RAX - 08/360 

Hypervisor currently installed at the Illinois Bell 

Telephone Company. 

External Implementation 

FroIa the machine operator's point of view, the 

Hypervisor operation consists of the following procedures. 

To start, the Hypervisor is loaded from a magnetic tape or a 

deck of cards. Once it is in core, a command can be typed 

in on one of the console typewriters. This command should 

instruct the Hypervisor to IPL either OS or RAX. The 

specified system will be loaded. When its initialization is 

complete, the console of that system can be used to instruct 

the Hypervisor to load the other operating system. After 

that, commands can be entered on either the systems 

consoles. 
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Theory of Operation 

When both the systems are running, RAX has ultimate 

control of the machine. When RAX has no computing to do, 

and it would normally go into wait state, it now transfers 

control to the Hypervisor. The Hypervisor restarts OS/360 

at the place where it was last interrupted. When an I/O 

interrupt occurs, it is handled by a Hypervisor routine. If 

it is for OS, a branch is taken to the OS I/O First Level 

Interrupt Handler (I/O FLIH). If it is from a RAX device, 

the information pertaining to the interrupt is passed back 

to the RAX machine for processing. That in principle is all 

the Hypervisor does. In practice, there are many 

complications. 

The aim of the implementation is to give OS as much 

time as possible without degrading RAX. That is, any time 

during which RAX would normally go into wait state, let OS 

use the CPU. However, often when RAX wishes to go into wait 

state, its PSW system mask does not allow interrupts on all 

channels. If it were in real wait state and an I/O 

operation on one of the masked out channels completed, the 

interrupt would remain pending until RAX changed its system 

mask to allow this channel to interrupt the CPU. That is, 

the interrupt would not occur until RAX wanted it, and then 

it would occur immediately. With the Hypervisor, when 
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control is passed to OS, this interrupt will occur 

immediately, as OS allow interrupts on all channels. To 

stop OS from accepting interrupts on some channels some of 

the time would have necessitated extensive (if not 

impossible) modifications to OS. This was completely ruled 

out. Thus this interrupt will occur and be intercepted by 

the Hypervisor I/O interrupt routine. It cannot be passed 

on to RAX, since RAX does not want now. This problem is 

solved by means of the Hypervisor being able to remember 

interrupt information until RAX is ab to accept it. These 

interrupts are said to be queued or STACKED. The stacks are 

really First-In-First-Out (FIFO) queuest, one being 

maintained for each channel. 

The other major bottleneck in the Hypervisor 

implementation has to do with the interval timer management. 

RAX is required to be able to keep track of time accurately. 

The timer at location 80 of the RAX memory, however, is only 

running when RAX is actually using the CPU. Somehow, RAX 

must keep track of the rest of the time when OS is in 

control. Basically this is done by noting OS/360's time of 

day (TOD) whenever OS is given the CPU, and again before RAX 

is to get The difference is subtracted from the 

tThe term STACK normally refers to a first-in-last-out 
list, but it is used in this paper to mean a FIFO list to 
coincide with the terminology used within the actual 
Hypervisor module. 
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original value at RAX's location 80. This effectively lets 

RAX know about all the time that passes while it is not 

running. Of course, it is not that simple. If the 

subtraction cause the interval timer to go from a positive 

value to a negative one, an external (timer) interrupt 

should occur. This is what would happen on the real hardware 

if the timer became negative. Similarly, if the Hypervisor 

finds that the value of the timer becomes negative, it 

simulates an external interrupt just as it normally sends 

I/O interrupts to RAX. If RAX is not currently allowing 

timer interrupts to occur, it is stacked on a special queue. 

Another problem which occurs is that on a real 

machine, if an interrupt is pending but not allowed due to 

the PSW system Bask, and later the system mask is changed to 

allow interrupts on this channel, the I/O or external 

interrupt is automatically taken. However in our case, this 

interrupt may have been accepted while OS was running and 

queued in the Hypervisor's stacks. When control is given to 

RAX, the information remains queued. Later, RAX may execute 

a SET SYSTEM MASK (SSM) or LOAD PROGRAM STATUS WORD (LPSW) 

instruction to change the system mask. The physical channel 

at this time would pass the interrupt on to RAX. Since it 

is pending in the Hypervisor stacks now, not the channel, 

RAX is not informed of its presence automatically. The 

Hypervisor has to tell RAX about it. The solution taken, is 
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to modify RAX so that any time it executes a critical SSM 

or LPSW instruction, it calls a subroutine in the Hypervisor 

program to inquire whether any pending interrupts can now be 

taken. If any are available, they will be presented to RAX 

at this time. 

The next set of problems centre around the IPL of 

OS/360 while RAX is running. The actual IPL is simulated 

rather simply and will be described in the detailed program 

description. The main point worth noting concerns the timer 

management. When control is first given to the os IPL 

program, the OS timer routines are not yet loaded into core 

yet. This makes it difficult to calculate the os TOD. This 

time is needed to maintain the RAX clock. Fortunately, it 

is known that OS will very quickly set its time of day to 

00:00:00 (i.e. zero hours, zero minutes, zero seconds). 

This gets over the first hurdle of the actual IPL. Later, 

(perhaps several seconds or minutes), the computer operator 

issues a SET CLOCK command to os to tell it the real clock 

time. When the Hypervisor next gets control, it finds that 

the OS TOD has jumped by a large amount (from 00:00:00 to 

some large value). In reality, only a fraction of a second 

has gone by. The Hypervisor cannot show this jump to RAX. 
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Yet, it must be capable of passing large increments to RAX 

at other times.t The solution is that the Hypervisor ignores 

a large jump (greater than 30 minutes) only if it occurs 

when the previous time was small (less than zero hours, ten 

minutes) • This method is not fool-proof. If OS is IPL'd 

under the Hypervisor between midnight and 12:30 AM, it will 

not work properly. However since the Hypervisor is normally 

working only during the day shift, the method outlined above 

will work quite satisfactorily. 

tThis would be necessary if RAX was on the air, but not 
very busy for a long period of time. 
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CHAPTER 6 


HYPERVISOR INTERNAL DESIGN AND OPERATION 


Following is a detailed description of the 

Hypervisor control program. Emphasis will be placed on 

logic flow within the software rather than coding 

techniques. The text closely follows the Hypervisor 

flowcharts found in Appendix A. Capitalized names within 

the text usually refer to labels used within the flowcharts. 

Hypervisor Initialization 

After the Hypervisor is loaded, it takes complete 

control of the machine by setting all the new PSWs in OS's 

low core to point to its own interrupt handlers. At the 

same time, the location 80 timer is initialized. A read 

command is started on the console typewriter. When the 

operator has finished typing something in, control is given 

to the standard Hypervisor console command handler. If this 

message is a request to IPL either RAX or OS/360, it is 

carried out. If any other reply is made, the initialization 

process must be re-done (i.e. IPL the Hypervisor again). 
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I/O Interrupt Supervisor 

When an I/O interrupt occurs while OS is running 

the Hypervisor IOINT routine is entered. If the interrupt 

is from an OS/360 device other than the console typewriter, 

the os I/O FLIH is given control. For the typewriter, tests 

are made to determine the interrupt concerns a Hypervisor 

message. It could be either a Hypervisor command from the 

operator or an indication of the completion of a Hypervisor 

message to the operator. If it is, the correct processing 

routine is called. Otherwise, a transfer is made to the os 

interrupt handler. 

If the interrupt is from a RAX device, the 

information must be passed on to RAX or stored for future 

use. First though, the amount of time since RAX last had 

the CPU is calculated and subtracted from the RAX interval 

timer value. If this causes it to become negative, and 

external interrupts are allowed by RAX, the I/O interrupt is 

stacked and control is returned to RAX signalling a timer 

overflow. If it goes negative but external interrupts are 

not wanted, it is stacked. In all cases except when the 

timer interrupt is taken, a decision must be made concerning 

the original I/O operation (and any other ones which may 

already be stacked). The queues are inspected and if an 
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interrupt can be passed on to RAX, it is done. If none can 

be found, control of the CPU is returned to 08/360. 

Interrupt Queue ~1anagement Routines 

All pending interrupt data is stored in queues (or 

stacks). A queue exists for every channel used by RAX and 

for external interrupts. If a queue is non-empty, it 

consists of pointers to queue elements which contain the 

relevant information. There is also a dummy queue 

consisting of unused (free) queue elements. All the queues 

are managed on a first-in-first-out (FIFO) basis. Each 

queue control block contains data relating to the start and 

end of its stack. Also maintained is the count of elements 

currently on the queue and several usage statistics.t Each 

queue element has room for the device address where the 

interrupt originated, the CSW, and a pointer to the next 

element on the queue. 

A set of subroutines is used to maintain the 

queues. The STACKIO routine will transfer information 

relating to the current I/O interrupt to the appropriate 

channel queue. During this operation, a call is made to a 

tStatistics maintained are; the number of times the queue 
is used, and the all-time minimum and maximum number of 
elements in the queue. 
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subroutine within the RAX supervisor to fetch the contents 

of the RAX CSW. Since this was a RAX I/O interrupt, the 

channel PCR bit is on and the CSW is stored in the upper 

core box. The Hypervisor, which resides in the lower core 

box cannot access the CSW itself. 

The STACKEXT routine notes that a timer interrupt 

has occurred. This routine will only allow one element in 

the stack. Two pending external interrupts is a condition 

which cannot occur on a real machine and should never occur 

within the Hypervisor. 

The UNSTACK module inspects the pending interrupt 

stacks and returns with the best one which can be taken. 

Consideration is given to the current RAX PSW system mask, 

the relative priority of the channels and the order in which 

the original interrupts occurred.t 

There is also a small function to simply empty out 

all the interrupt stacks (CLEANSTK). It is equivalent to a 

IISYSTEl1 RESET II on a CPU as it removes all traces of pending 

interrupts. It is used by the IPL simulator to obtain a 

IICLEAN" machine. 

tExternal interrupts have the highest priority. Channels 
come next, the higher the channel number, the lower the 
priority. Elements within each queue are processed FIFO. 
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The queue utility subroutines GETQEL, PUTQEL are 

used by all the above functions to perform the actual queue 

element additions and deletions. 

RAX Interface Routine 

This section of the Hypervisor is entered from RAX 

to perform a variety of services. All communication from 

RAX to the Hypervisor is done via this path. There are 

three reasons for coming here. 

The first is a request to inspect the stacks for 

pending interrupts which can now be taken. It is called 

after RAX executes a SSM or LPSW instruction which may 

change the system mask. Return is made to RAX with the 

information requested. 

The second entry is used to pass to the Hypervisor 

a message from the RAX console. Control is given to the 

console command processor. 

The third type of entry is used when RAX has 

nothing to do and therefore wishes to go into wait state. 

If any stacked interrupts can be returned immediately, they 

are. If not, the machine will normally be given to os. 

First however, a check is made to see that the interval 
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timer has not gone negative since external interrupts were 

last allowed by RAX. If it had and control were given to 

OS, OS would at once receive a timer interrupt which 

rightfully belongs to RAX. The check is made by momentarily 

allowing external interrupts. If one occurs, it is either 

stacked or passed on to RAX RAX is currently allowing 

externals). If this is the first time the wait routine has 

been called, the opportunity is taken to send an IPL 

COMPLETE message back to the OS console, assuming it was OS 

that IPL'd RAX. In all other cases, OS is given the CPU. 

It keeps it until the next I/O interrupt occurs at which 

time IOINT takes over. 

OS/360 - Hypervisor Interfaces 

There are three Hypervisor routines that have 

contact with OS/360 directly. 

The first of these is the OSTIME module. Its 

function is to give the I/O interrupt handler the time of 

day according to OS/360. Is OS is active at the time, the 

OS timer control blocks are inspected to determine what OS 

thinks the time is. Note that this will normally not be the 

correct time since the OS clock is not running while RAX is 

active. If OS is not being used, a fake time of day is 

produced. This is just the negative of the interval timer 
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(divided by 256 to obtain 300th of a second). Both of 

these times are not true clock times although the former is 

slightly better than the latter. However, on two successive 

inspections, with os using the CPU in between, they both 

give accurate elapsed time. This is their true purpose and 

both are quite satisfactory. 

The next two routines are used only once each 

during normal operation. One is IOCATCH. Its purpose is to 

intercept the first I/O interrupt when OS starts running 

after an IPL and perform patches to the OS nucleus. When OS 

is loaded, the I/O HEW PsvJ points to its own I/O FLIH. The 

first instructions of the interrupt handler however are 

modified to branch to IOCATCH. This routine replaces the 

modified instructions in the I/O FLIH, saves the original 

I/O NEW PSW and stores a new one at location 120 to give 

control to IOINT on all following interruptions. Also 

modified is the PROGRAM CHECK NEVv PSW so that if the 

Hypervisor accidentally gets a program error, it will be 

noted as such instead of being attributed to some user 

program running under OS. 

The last OS interface module is OSWAIT. Its 

function is to intercept OS/360 wait states. That is, when 

OS intends to go into a wait state, it instead goes to 

OSWAIT. The first time it is entered after start-up, if the 
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IPL request had been from RAX, a message is sent back to the 

RAX console saying IPL COMPLETE. This effectively returns 

control of the CPU back to RAX, since the OS IPL was done 

only as an exit to the RAX console handler. Under any other 

conditions, OSWAIT simply goes into wait state by loading a 

PSW with the wait bit set to one. This PSW, like the normal 

os wait state PSW has a system mask of all ones to allow all 

interrupts. 

Hypervisor Message Handler 

If an operator command for the Hypervisor is typed 

in, control is given to the appropriate analysis section.t 

Either RAXMSG or OSMSG is entered, depending on which 

console the message was typed. Through the RAX console, the 

operator can drain (stop dead) RAX, drain OS, and IPL OS. 

From the OS console, the operator can drain and IPL RAX, and 

ask for a display of the Hypervisor internal counts 

(statistics). Also, at initial Hypervisor IPL time, this 

console can be used to IPL OS. When a valid command is 

recognized, the message scanner transfers to the correct 

command processor. If an invalid command is entered, an 

error message is returned. 

tAll commands for the Hypervisor are prefixed by two 
equal signs, as in '==IPL OSI. 
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RAX IPL Simulator 

The purpose of the IPL simulator is to load RAX 

into the upper section of the memory, set the PCR correctly 

and transfer to RAX. It basically simulates the "LOAD" 

button with additional functions necessitated by the shared 

storage feature. Since there is no RAX I/O active at this 

time, the simulator sets the PCR to zero so that all core 

may be addressable. After clearing RAX's core, it moves 

into it a small IPL program. The CLEANSTK routine is called 

to discard any pending interrupts. Switches are set to say 

that RAX is being started. The PCR is set for all RAX 

channels and the CPU. At the same time, a branch is taken 

to the IPL program in the RAX core box. This program starts 

a read request on the RAX system residence disk. After the 

read, the CCWs just read into core at location zero are 

executed. On successful completion, the PSW at location 16 

is loaded. This completes the IPL of RAX. If the I/O had 

not been without error, the IPL program would go back to the 

Hypervisor and an error message would be sent. 

Once RAX completes its normal system 

initialization, when it would normally go into wait state 

(waiting for work to do), it returns to the Hypervisor via 

the normal RAX wait processor. At this time, it passes to 
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the Hypervisor, addresses within the RAX supervisor of 

several service routines to be used by the Hypervisor. 

OS/360 IPL Simulator 

The program to load OS/360 is similar to the RAX 

loader but a bit more complicated. Since both the 

Hypervisor and OS reside in the lower core box(es) , there is 

no need to set the PCR here. Channel programs are set up 

similar to those for loading RAX, and the I/O performed. If 

an error occurs, a message is issued. the I/O is good, 

several patches are made to the OS IPL-TEXT program before 

it can be given the CPU. First, a byte is set to say it 

should load an alternate nucleus instead of the standard 

one. This secondary OS nucleus contains patches which cause 

branches to the OSWAIT and IOCATCH routines. Next a 

modification is made to limit os to the memory below where 

the Hypervisor resides. If left on its own, OS would 

compute how much core was available. Since the space where 

the Hypervisor exists is physically availab , OS would use 

it, thereby destroying the Hypervisor. The last set of 

patches is made so that if the IPL-TEXT program finds any 

serious errors (I/O or otherwise), where it would normally 

go into a dead wait state, it will now go back to the 

Hypervisor. Thus if RAX is active, it can keep on running. 

When all this has been completed, the IPL-TEXT will be 
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entered. OS will have complete control of the CPU until it 

first enters into its normal wait state. Then OSWAIT will 

be used to give CPU control back to the Hypervisor. The 

whole IPL procedure normally takes only a few seconds. It 

is not unusual for RAX to lose control of the machine for 

only about five seconds if the computer operators perform 

their jobs well. 

Display Hypervisor Statistics 

The HCOUNTS routine types on the OS console a 

series of lines each containing the name of an internal 

counter and its value. Both systems continue running while 

this is being done. OS however cannot access its console 

during this time. As it might take up to one minute for all 

the information to type, os could stop due to this if it had 

some urgent message to type or needed an operator reply to 

continue. It is not a major problem since the counts are 

not normally produced very often. 

Drain Processing 

If the Hypervisor is instructed to shut down either 

operating system (via the n==DRAIN OS" or "==DRAIN RAX" 

commands), appropriate switches are set to ensure that the 

referenced system will not be made active again (unless it 
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is re-IPL'd). If OS has gone into a dead wait state or a 

loop, and the console typewriter cannot be used, the PSW 

RESTART button on the CPU control panel can be depressed. 

This causes a branch to KILLOS which has the same effect as 

entering a II==DRAIN OSII command. 

Console Exit Processing 

After processing any operator command, the 

Hypervisor exits back to the system which originated the 

message. If it was RAX, the RAX console processor is 

returned to; if OS, after any reply has been typed, the 

following subterfuge is carried out. Since the original 

command was intercepted by noticing that an OS/360 console 

read operation had completed, OS still thinks the read is 

active. To satisfy the OS console manager, an I/O interrupt 

is simulated. A 11 DISPLAY TIME" command is placed in the 

original buffer in place of the line the operator really 

typed. The I/O PSW and the C8W is set up to indicate the 

completed read operation. This simulated I/O interrupt is 

handled as if it were a real one. This method logically 

completes the read which 08/360 initiated and when 08 

responds to the message, it effectively time-stamps the 

Hypervisor command. 
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Hypervisor storage Requirements 

One of the major criteria in the Hypervisor design 

was that it occupy as small a region of main storage as 

possible. The final version of the Hypervisor described 

here requires only 5500 bytes of memory. Since the value 

must be rounded up to 2K (2048) segments, the final storage 

requirements are 6K. This was well within the original 

specifications. 
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CHAPTER 7 


OPERATING SYSTEM MODIFICATIONS 


OS/360 Modifications 

The design criteria called for the Hypervisor to be 

as independent of OS/360 and its internal workings as 

possible. It was of course necessary to assume that the 

basic operations of a S/360 CPU would not change. The first 

version of the Hypervisor was very OS independent. To 

maintain TOD, a small routine accessed the relevant OS 

control block. 7 If the format of these would be changed in 

the future (quite unlikely), the Hypervisor subroutine could 

easily be rewritten. In general however, it was most 

unlikely that future versions of OS/360 would not work 

properly with the Hypervisor. 

In the final Hypervisor, due to the need to IPL 

OS/360 and yet still retain control of the machine, much 

more knowledge of OS had to be built into the Hypervisor 

logic. Also, OS itself had to have several changes made 

(although none very large or complicated). There are two 

areas of problems. 
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1. 	 When OS is IPL'd, it brings into core its own set of new 

PSWs. This cannot be stopped easily as this is only a 

minor result of the necessary loading process. Thus I/O 

interrupts no longer go to the Hypervisor but to the OS 

I/O FLIH. To retain control, the Hypervisor must 

inspect ALL I/O interrupts. 

2. 	 During initial loading, if some sort of error is found, 

the load routine simply loads a PSW to put itself into 

wait state with no interrupts allowed (Dead Wait). This 

lack of any activity acts as a signal to the computer 

operator that something is wrong. If this would happen 

under Hypervisor control, RAX would be dead also. This 

condition not desirable. 

The solution to both these problems is not 

difficult. In the first case, the initial instructions of 

the OS I/O FLIH are modified to transfer to the Hypervisor. 

This Hypervisor routine saves the OS new PSWs and replaces 

the with Hypervisor PSWs. At the same time it replaces the 

original instructions in the OS I/O FLIH. All I/O 

interrupts now go to the Hypervisor and then are passed on 

to the I/O FLIH in the appropriate system as described 

previously. 
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The second problem also has a relatively simple 

solution. After the Hypervisor reads into core the OS/360 

initial load program, it modifies it to go to a Hypervisor 

error routine instead of stopping dead in the event of any 

serious error. At the same time, the IPL program is 

modified to make it seem that the amount of core available 

to OS/360 ranges from the bottom of memory up to but not 

including the Hypervisor program. 

All of the actual changes to OS are made in an 

extra copy (secondary nucleus) and are only loaded into core 

when the Hypervisor IPLs OS. When OS is loaded normally by 

the computer operator, an unmodified 08 is used. 

RAX Hodifications 

Just as in the case of 08/360, some changes to the 

RAX system were necessary for the operation of the 

Hypervisor. It was desired to minimize these modifications 

to make conversion to any future version of RAX easy, but 

this was not as pressing a need as with OS.t 

tThe installation at Illinois Bell of a new McGill-RAX 
version would be infrequent, and even then, it would be done 
by people fully qualified to do the necessary Hypervisor 
modifications. 
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There were three major design features whose 

implementation required changes to RAX. In addition, there 

were several relatively minor facilities also added. 

1 • 	 The first change in RAX is the one around which the 

whole system revolves. The RAX routine which normally 

loads a wait state PSW to put RAX into wait state 

(during idle moments), now trans control to the wait 

routine in the Hypervisor. This coding gives the CPU 

back to OS/360 at the place where it was last 

interrupted. 

2. 	 A standard RAX system, during most of its running time, 

allows interrupts (via PSW system mask) on all channels. 

If an interrupt from an OS device were to occur, an 

ordinary RAX system, knowing that this device does not 

belong to it, would simply discard this interrupt. This 

is certainly not an acceptable method from OS's 

viewpoint. There are three possible alternatives to 

this. First RAX, on recognizing an interrupt from OS, 

could pass it on to OS, thus giving up the CPU. This 

would violate the rule that of RAX having ultimate 

priority. OS should only get control of the machine 

when RAX can no longer do any processing. The second 

solution is for RAX to queue this interrupt for OS just 

as the Hypervisor does for RAX interrupts (those which 
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cannot be accepted immediately). The complications of 

this method (particularly with regard to dequeueing 

these interrupts) ruled it out. The third method is 

quite simple and it is the one used. While RAX is 

running, it now, never sets a system mask to allow 

interrupts on the channels belonging to OS. Since OS's 

interrupts are never allowed during RAX operation, they 

bother no one. When OS gains control of the CPU next, 

it sets a system mask of all ones and any pending 

interrupts fall through. 

3. 	 The third problem and its solution is by far the most 

complicated. When running on a regular machine, any 

interrupt which attempts to occur while the machine is 

in wait state with the system mask disallowing this 

channel's signals (or external interrupts), will remain 

pending. Whenever the system mask is changed to allow 

this type of interrupt, it will occur immediately. 

Under the Hypervisor, RAX does not go into wait state 

but goes to OS/360. This interrupt just mentioned 

actually happens (OS allows all interrupts), but since 

RAX does not want it, it is stacked. Some time later, 

RAX again starts running. Soon it normally changes its 

system mask, expecting any pending interrupts to occur. 

Now however, there are none. The Hypervisor has one 

stacked, but if it does not know about the change in the 
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RAX system mask, it can do nothing. The answer is, at 

these critical times, to ask the Hypervisor if it has 

any pending interrupts to pass on to RAX. The mechanism 

used is as follows. All critical instructions in RAX 

which can change the system mask are replaced by 

specific, invalid, S/360 operation codes. When these 

are executed, they cause a PROGRAM CHECK to occur 

specifying an invalid operation code. The program check 

handler contains programming to recognize these special 

lIerrorstl. On finding one, it goes to the Hypervisor to 

check if any pending interrupts are allowed by the new 

system mask. none are found, the program check 

routine goes back to the program (after setting the 

system mask as the original instruction would have 

done). If an interrupt is found, PSWs in RAX's low core 

are set up to make it look as if the normal instruction 

had been executed, and immediately, the pending 

interrupt had occurred. To RAX this looks identical to 

what would have happened on the real machine. 

4. 	 Several other small changes exist. There is a routine 

to get the current CSW (Fig. 2) and return it to the 

Hypervisor. The Hypervisor, when it wants to stack an 

I/O interrupt for RAX must save the CSW, but as the 

channel stores it in RAX's core box, the Hypervisor 

(residing in the OS section), cannot get it itself. 

59 



The RAX console handler recognizes console commands 

starting with n=;;:n and passes them on to the Hypervisor. 

It also allows for a reply from the Hypervisor to be 

printed. 

It should be noted that all these changes only take 

effect when the Hypervisor IPLs RAX. All these 

modifications contains checks to make sure that if RAX is 

running as a stand-alone system, no branch is ever made to 

the various Hypervisor routines (which do not exist)! 
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CHAPTER 8 


HYPERVISOR PERFOID1ANCE 


The main purpose of the Hypervisor as described 

here is to allow RAX to operate on an IBM 360 Model 65 

unencumbered, while allowing a S/360 operating system to use 

any CPU time that is left over. The implementation just 

detailed seems to do this quite well. 

Tests were run to obtain some measure of how well 

the Hypervisor works and to find out how different OS job 

types were affected by running under the Hypervisor. The 

general approach was to process a certain job (or jobs) 

using OS/360 without RAX running, and observe their 

performance. The same jobs were also run while RAX was 

operating (during production hours- i.e. a loaded system) • 

During this run, the performance of the OS jobs was again 

monitored. Also, some statistics from RAX with respect to 

its CPU usage were obtained. 

Ideally, these tests should have been run in a 

carefully controlled, reproducible manner. Unfortunately 

this was not possible since it would have required a 

dedicated machine for a relatively long stretch of time. 

Also, at least thirty people at terminals (or another 
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computer to simulate them) would have been needed to place a 

realistic load on the RAX machine. Neither of the above 

machine configurations nor the people were at the disposal 

of the author. This necessitated performing most of the 

tests in a 'live' enviror~ent during normal production time. 

Several restrictions as to the exact kind of tests run and 

the statistics available from them were thus introduced. 

The first problem was that no control whatever 

could be exercised over exactly how busy the RAX system was 

during the tests, or just what kind work it was doing. 

Care was taken to ensure that RAX was not virtually idle, or 

completely saturated while most of the tests were run. 

Little could be done however to ensure that erratic things 

(such as sudden RAX compute bound jobs being run, or sudden 

lulls) did not occasionally occur. 

Another bottleneck was that it was often hard to 

make the sampling of the RAX statistics coincide exactly 

with the start and end of the OS test runs. However, as the 

test runs lasted as much as thirty minutes, and the error in 

fetching the RAX statistics was not usually more than 

several seconds, the error is hopefully minimal. 

Extrapolation allows a quite accurate figure to be 

estimated. 
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The set of test jobs took about an hour to run from 

start to finish. Since these tests had to be run on the 

machine at Illinois Bell Telephone, which was heavily 

utilized, tile number of test runs was naturally limited. 

Many of the tests had to be run while RAX was active, but 

these prime day-time hours were the time when they could 

least afford to give up the OS side of their machine for any 

length of time. iifevertheless, it is felt that enough tests 

were performed to give a good picture of the Hypervisor 

performance. As will be seen later, despite all these 

problems, the tests do seem to show that the RAX/OS 

Hypervisor does behave as an intuitive approach would 

indicate. 

There are several effects which will tend to alter 

how much work OS can get done in a given period of time. 

The parameters which affect OS/360 are, the amount of CPU 

time it is given, and how this time is partitioned. If OS 

gets on the average, x percent of the total CPU time, a 

compute bound job normally taking t seconds will now run in 

(100/x)*t seconds, with an apparent time with respect to OS, 

of t seconds. If a very I/O bound job with a stand-alone 

elapsed time of t seconds is run, and it can get the CPU 

from RAX whenever necessary to restart I/O, the job will 

take only t seconds of real time with an apparent time to OS 

of anywhere from (x/100)*t to t seconds. In this case, the 
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apparent time to OS will depend upon how much of the I/O 

time is overlapped with RAX CPU work. It can be seen that 

in these simple cases, the apparent time to OS will never 

exceed t. In the case of real jobs, however, the RAX/OS 

interaction can increase apparent job times in addition to 

real clock time. This can be particularly important for 

jobs performing much disk input/output. 

Consider the case of os wanting to initiate a disk 

read for a record that is just about to pass under the read 

head of the drive. If the CPU is taken from os before the 

request can be initiated, and RAX runs for long enough for 

this record to pass by, os will now have to wait a full 

revolution of the disk (1/60th second) before its read 

request can be completed. Of course this same type of 

happening can lessen the apparent time of a disk request to 

OS by delaying action so that the request happens to 

complete sooner. The effect and frequency of this type of 

occurrence will be highly dependent on the job 

characteristics of both the os and RAX tasks. 

It must be remembered that the RAX job mix at 

Illinois Bell tended to be highly I/O bound (averaging only 

25% CPU utilization). That is, much of the time, it is 

initiating I/O requests and attempting to go into wait state 

(i.e. go to OS/360). As soon as the I/O completes, it takes 
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control back from OS. The 05/360 job mix is also similarly 

I/O bound. As a result, it is quite likely that OS, during 

its time slot, will initiate an I/O request of its own and 

place the machine in a real wait state. Whichever request 

completes first, will cause control to be given to the 

appropriate supervisor. The devices (and thus their 

timings) for the two systems are basically the same. That 

is, one can expect the typical I/O request on either system 

to be of the same duration. Thus, if the situation just 

described is a correct picture, it is not unreasonable to 

expect OS to gain control often enough (at small enough 

intervals) to maintain a high I/O activity rate. This is 

true, except when the RAX machine goes into a solid CPU 

bound activity, completely locking OS out. The RAX job mix 

at Illinois Bell on the Model 65 tended to be either highly 

I/O bound, or completely CPU bound (momentarily at least). 

During the I/O times, OS should be able to do almost as much 

work as on a bare machine, and during the CPU time, it 

should do nothing. Thus, the overall efficiency of the 

05/360 machine should be approximately equal to the 

percentage of I/O bound time (non CPU time) of the RAX 

machine. 

The basic performance bench marks consisted of a 

set of 05/360 jobs. These were Fortran-G and Cobol jobs. 

The stream was largely I/O bound, although sections were 
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compute bound. It was It that they would closely resemble 

the type of jobs normally run on the machine while RAX was 

active. TWo versions of the job stream were run. The 

second version was different from the first in that it 

allowed the jobs to allocate more buffer memory than the 

others. This allowed I/O requests to be blocked and thus 

tended to make the stream slightly less I/O bound. Each 

stream was run once on a machine without RAX present, and 

twice while RAX was active. 

The method used to determine the effects of running 

these jobs under the Hypervisor was to note the time of day 

(both real TOD and TOD according to the os clock) at the 

start of the first job and also at the end of the stream. 

When RAX was not running, these two elapsed times were 

course the same. When RAX was active, the OS clock only 

runs when RAX is not actively using the CPU and so it 

reflects only the time that OS has control of the whole 

machine. 

The results in all cases were similar (Table Ill). 

The clock time to run the jobs under RAX was always greater 

than the time needed on a stand-alone system. The amount of 

extra time varied depending on how busy RAX was. However, 

the OS elapsed time was always less than on a stand-alone 

machine (the OS timer does not run while RAX is doing 
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TABLE III 

OS/360 BENCH MARK TEST RESULTS 

JOB MODE ELAPSED OS/360 TIME RAX CPU OS/360 RAX RAX 
STREAM TIME (RAX WAIT) TIME EFFICIENCY CPU WAIT 

, 

1 S/A 1464 1464 - 100% - 
1 HYP 1803 1376 427 81% 24% 76% 


1 HYP 1760 1366 394 83% 22% 78% 


2 S/A 1176 1176 - 100% - 
2 HYP 1745 1123 622 67% 36% 64% 


2 HYP 1593 1104 489 74% 31% 69% 


Cl All times are in seconds. 
'" 
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computing) • Therefore, as far as OS/360 was concerned, the 

jobs ran faster. Using the first set of tests as an 

example, the jobs took 1464 seconds to run on the bare 

machine. The time under the Hypervisor and RAX was 1803 

seconds. During the second run, the OS clock increased by 

only 1376 seconds. That is, during the 1803 seconds real 

time, RAX was running as if it were alone on a 5/360 model 

65 CPU. Simultaneously, the OS side was performing 1464 

seconds worth of work. In the surplus time discarded by 

RAX, the OS system was working at the rate of 

(1464/1803)*100% of that possible on a stand alone machine. 

This produces an efficiency of 81% for the OS/360 side of 

the machine. The extra 81% is not quite free of course. 

Additional hardware is needed to support this configuration, 

but it only increases the system cost by about 12%. 

It should be noted that the RAX CPU utilization 

while the second set of jobs were being processed was 

appreciably higher than during the first set of jobs. This 

had nothing to do with the OS job stream characteristics. 

The RAX system was simply more heavily loaded (with compute 

bound jobs) during the latter tests. 

As expected, the efficiency of the 05/360 partition 

is roughly the same as the percentage of wait time available 

to it. If anything, it is slightly higher, indicating that 
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it is taking advantage of RAX CPU time to allow I/O to 

complete (essentially "free" time). 

Another type of test was also run. This program 

vlrote records on a magnetic tape while concurrently 

performing CPU bound work. It was designed to find the 

maximum amount of CPU work that could be done without 

slowing down the tape I/O. That is, it was to find the 

maximum number of times it could execute a given arithmetic 

operation without increasing the elapsed time needed to 

write 100 records on tape. This test was done for a variety 

of record lengths. On a stand-alone system, the test gives 

the expected results; the number of loops varies linearly 

with the tape record size. When run under the control of 

the Hypervisor, it was hoped that the test would give some 

insight into the type of interference that the RAX system 

caused. 

The results certainly did this, but not quite in 

the analytical way expected. The type of interference found 

could best be described as 'erratic'. Some of the tests, 

which happened to be run during a quiet spell on RAX, were 

virtually indistinguishable from those run on a bare 

machine. Another set not only showed completely different 

results, but showed that the program logic was not really 

able to cope with the situation it encountered. It became 
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quite confused when the RAX machine would alternate between 

being completely compute bound, and then almost completely 

idle. This fluctuation (between CPU and I/O bound work) 

happened too slowly to average itself out over a period of 

several seconds, and too fast to allow a complete run of the 

test to complete (20 seconds or so) without seeing some 

fluctuations • ~vhen running without RAX, the program could 

reliably use the logic that if, for example, 50 CPU loops 

during a I/O request saturated the computer, then certainly 

100 loops would also. This was no longer true under the 

RAX-influenced Hypervisor. The bench mark tests produced 

reasonable results in this same environment because they 

average out all the system interactions over a period of 20

30 minutes. The tape test program, tries to compare results 

on a second by second basis, and this is simply not 

practical. 'l'11e program could have been modified to average 

performance over a longer period of time, but then its 

overall running time would have been too long to execute 

during the available test period. 

An important contributing factor to overall 

Hypervisor performance was the degradation to either or both 

operating systems due to the Hypervisor itself. If the 

Hypervisor, in performing its switching task was using too 

much of the CPU resources, it could never be a success. In 

order to estimate how much CPU time was being used by the 
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Hypervisor itself in performing its functions, a number of 

counts were kept within the Hypervisor module. These counts 

produced a record of exactly how many times all the key 

routines within the Hypervisor were entered, and the 

decision paths followed within these routines. The counts 

could be printed at any time by means of a console command. 

From the counts, it was determined which sections of the 

Hypervisor code were executed with some regularity. It must 

be remembered that many of the routines were programmed to 

handle 'special' case occurrences. It was not originally 

known exactly how often (if ever) these things happened. 

The counts showed that, in fact, all these special cases did 

happen at some time or another. Some counts were as high as 

400,000 per hour of operation. 

Execution times for most sections of the Hypervisor 

were calculated using the values for instruction execution 

times published by IBM. s Counts for a typical period of 

time were analyzed and combined with the times calculated 

above. For the 7 1/2 hour period sampled, the Hypervisor 

coding evaluated would have taken 171 seconds to execute. 

This works out to be only about 25 seconds per hour. Even 

if a generous allowance is made for sections of coding not 

included in this analysis (not often executed, but perhaps 

longer in length), the overhead due to the Hypervisor is 

still likely to be under 1%. This figure is quite low. It 
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is especially good when it is remembered that the CP/67 

system mentioned earlier as possible alternative to the 

Hypervisor, typically had overheads of 30-50% in this type 

of environment. 

The overhead attributable to maintaining the counts 

themselves was calculated to be 27 seconds during the same 7 

1/2 hour period, or only 4 seconds per hour. 

72 



CHAPTER 9 

OVERALL RESULTS AND THE FUTURE OF THE HYPERVISOR 

All the essential requirements set forth in Chapter 

2 were satisfied by the RAX-OS/360 Hypervisor. In addition, 

the Hypervisor met virtually all the criteria discussed in 

Chapter 4. Perhaps even more important, it has been found 

to be truly usable in a real production environment. Once 

the systems are IPL'd (a simple task), the Hypervisor is 

virtually invisible to the operations staff. They are 

running normal OS/360 and RAX systems. The RAX users rarely 

notice any difference from running on a bare machine.t The 

OS machine processes a reasonable number of both production 

and test jobs during the day. The Hypervisor, at Illinois 

Bell Telephone, is quite certainly a success. 

The only major disadvantage of the Hypervised 

system is that the user is tied down to a particular piece 

of equipment. The Hypervisor feature is available only on 

the S/360 Model 50 and 65 CPUs. the capacity of the 

Model 65 were to be reached, there is no machine to upgrade 

to (if the Hypervised approach is to be maintained). A 

tThe only real impact upon the RAX user was that the 
overall system failure rate was higher due to OS/360 crashes 
bringing RAX down with it. 
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possible solution will be brought forth, but first it is 

relevant to review several new computer models that IBM has 

made available since this project was first undertaken. 

The System/370 line of IBM computers is a series of 

central processors and peripherals designed to be upward 

compatible with the 8/360. That is, most S/360 programs 

(except very CPU model dependent ones like the 

Hypervisor), will run on the new machines without 

modification. The new models offer certain economies over 

the older ones due to technological advances. In addition, 

they possess several facilities and features not normally 

found on 8/360 computers. 

Relocation memory is standard on most S/370 models. 

It was formerly available only on the S/360 Model 67. It 

has been argued that the ability to dynamically relocate 

programs within rnain storage is a valuable asset to a well 

designed time sharing system. However, a time sharing 

system, which offers the economies, versatilities, and 

OS/360 compatibilities of RAX was still not available from 

IBM. This fact has been emphasized by the fact that IBM has 

recently acquired the rights to market (on a royalty basis) 

the McGill-RAX operating system.t RAX would appear to still 

tIBM is currently marketting the system under the name 
MUSIC (McGill £niversity ~stem for Interactive £omputing). 
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be the best time sharing system running on IBM machines for 

use in many medium to large installations. However, as was 

the case with Illinois Bell, many of these same installation 

have a need to be able to run either OS/360 or its newly 

announced successor OS/VS2. A follow-on to the CP/67 

system, W4/370 is available. It does allow several 

operating systems to be run on the same machine. It would 

seem that its performance is far better that was CP/67, 

however the overhead needed to multiprogram RAX and OS would 

still appear to be the 30% range. 

No Hypervisor function is currently available from 

IBM for any of the S/370 computers. However, several 

features of the 8/370s make the concept very attractive. 

The new central processors have, in addition to the interval 

timer, several other means of maintaining both time of day 

and elapsed time. These new timers do not reside in main 

storage, and this would eliminate many of the problems 

experienced with the Model 65 Hypervisor implementation. 

The timers are designed to be used in multiprogramming 

systems and so would be better suited for use in the 

Hypervisor (a multisystem system) than the older interval 

timer. Secondly, and perhaps most important, all the 8/370 

processors currently available are highly microprogrammed 

machines. 9 That is, assembler instructions coded by 

programmers are not executed directly by the electronics of 
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the CPU, but rather are interpretively executed by a program 

written in a much more primitive language. This more basic 

instruction set varies with each machine, according to its 

internal design. The set of basic instruction needed to 

perform the S/370 operations are called the microprogram, 

and reside in a special storage within the cPU. 

Most of the S/360 models were microprogrammed also. 

However, the newer machines tend to have two unique 

characteristics. The microprogram can be changed easily 

(sometimes even under the S/370 program control). This is 

as opposed to the 8/360 implementation where a complicated 

engineering and/or manufacturing process was often needed to 

change the microprogram. 

Secondly, the type of microprogram 10 used within 

the S/370s tends to lend itself to making relatively small 

modifications to the way in which instruction are performed. 

It is also easy (relatively speaking) to add special new 

machine functions. All this can often be done without any 

hardware (electronics or wiring) change to the computer. It 

would seem that the functional characteristics changes to 

most S/370s to implement a Hypervisor could be accomplished 

relatively easily and inexpensively (by IBM engineers at 

least) by means of microprogram changes. Such changes could 

even be designed to enable the Hypervisor to perform certain 
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of its functions very efficiently by providing specially 

designed CPU operations. 

Lastly, it is worth noting that the parts of the 

Model 65 configuration required by the Hypervisor over and 

above a 'normal' configuration, were extra memory and 

channels. In the S/370 series, both of these have tended to 

come down in price. The new machines tend to be priced so 

that the bulk of the cost is for the CPU itself. If adding 

some extra memory and channels yields an 75% increase in 

production, (as it seems to have done at Illinois Bell), 

then it is indeed a good bargain. 

The McGill University Computing Centre is currently 

operating an IBM 8/360 Model 75 computer system running 

OS/360, and a S/370 Model 155 running MUSIC (RAX). The 

Model 75 is heavily loaded. The next larger machine in the 

current IBM product line is a 8/370 Model 168. The Model 

168 is considerably faster than the Model 75 and it also 

provides facilities (such as memory relocation hardware) 

which make it a very attractive machine. However, it is 

also considerably more expensive than the Model 75. If 

MUSIC could be run on this same machine, it would mean that 

the Model 155 would no longer be needed. This cost saving 

would help to finance the Model 168. 
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There are several ways of running MUSIC on the same 

machine as OS. One is to use VM/370. This would easily 

provide the function, but the estimated cost in terms of 

overhead seems to be very high (currently over 50% with 

OS/VS2) • Perhaps in a few years, when VM/370 becomes more 

efficient, this could be a reasonable approach. Another way 

is to modify MUSIC so as to run as a program under OS 

instead of as a dedicated system. This is possible, but it 

is felt that to do so would remove most of the ficiencies 

that are among MUSIC's best assets. 

The most promising method seems to be to Hypervise 

the two systems. IBM is currently considering a McGill 

request to provide a Hypervisor shared storage feature for 

the 8/370 Model 168. 
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CHAPTER 10 

CONCLUSIONS 

The l-icGill-RAX - OS/360 Hypervisor was proposed as 

a vehicle for providing a wide range of computing services 

using a single computer. Since its installation in 1970, 

the Hypervisor has proven to be extremely practical, 

efficient and reliable. 

The new IBM System/370 line of computers contain 

many desirable features. Several of these would make it 

very much easier to write a Hypervisor program, others would 

enable the Hypervisor to be more sophisticated and general 

than the one described ln this paper. It is reasonable to 

expect that the overhead of this expanded Hypervisor would 

still be in the order of 1-3%. All that is needed is for 

the Hypervisor hardware feature to become available for 

large scale System/370 computers. 
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APPENDIX A 

HYPERVISOR FLOWCHARTS 
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