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Abstract

As technology increases the tremendous amount of text we encounter each day, a

clear need has arisen for tools to filter out noise and highlight key phrases. Automatic

summarization systems have emerged as a viable solution to sort through and intelli-

gently condense text. In this thesis, we focus on extractive summarization, in which

the system selects text snippets from a source document that best represent the given

text. Extractive summarization systems must learn complex lexical representations so

that they are able to rank sentences in order of relevance, while minimizing redundancy

in the output summary. For news articles, extractive summarization systems have been

shown to exhibit a bias towards selecting content from an article’s lead sentences, even

when these sentences are irrelevant to the overall text (Kedzie, McKeown, and Daume

III 2018). We investigate this phenomenon in detail, showing that when an article’s sen-

tence order is permuted, state-of-the-art systems drastically underperform. To alleviate

this problem, we propose an auxiliary objective function which encourages the model

to look beyond a document’s leading sentences and properly value each sentence. We

show that this auxiliary objective significantly improves summarization performance,

particularly in cases where the article’s leading sentences constitute a poor summary.

We extend this approach to a novel summarization method that classifies documents

into two distinct groups: ones in which leading phrases constitute a strong summary,

and ones in which they form a poor summary. Two separate systems then summarize

the two groups. We show that this approach is promising, though accurate classification

remains an obstacle towards improved summarization.
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Abrégé

L’usage de la technologie au quotidien nous confrontant à de plus en plus à d’éléments

textuels, nous avons plus que jamais besoin d’outils pour filtrer et synthétiser les con-

cepts clés dans un corps de texte. Les systèmes de résumé automatiques apparais-

sent comme des solutions viables pour organiser et condenser du texte intelligemment.

Dans cette thèse, nous nous concentrons sur la synthèse extractive, dans laquelle

le système sélectionne les extraits du document source représentant au mieux l’idée

générale du texte. Les systèmes extractifs doivent apprendre des représentations lex-

icales complexes afin de pouvoir classer les phrases par ordre de pertinence, tout en

minimisant leur redondance dans le résumé final. Pour les articles de presse, il a été

démontré que les systèmes extractifs présentent un biais car ils sélectionnent d’emblée

les premières phrases de l’article, même lorsque ces phrases ne sont pas pertinentes

pour résumer le texte global (Kedzie, McKeown, and Daume III 2018). Nous étudions

ce phénomène en détail, en démontrant le déclin drastique des performances de tech-

nologies de pointe lorsque l’ordre des phrases au sein d’un article est perturbé. Pour

atténuer ce problème, nous proposons un objectif auxiliaire qui encourage le modèle

à poursuivre son analyse au-delà des premières phrases d’un document, et à évaluer

correctement chaque phrase. Nous montrons que cet objectif auxiliaire améliore con-

sidérablement la qualité de synthèse, en particulier dans les cas où les premières phrases

de l’article constituent un mauvais résumé. Nous étendons cette approche à une nou-

velle méthode de synthèse, qui classe les documents en deux groupes distincts : ceux

dont les premières phrases constituent un bon résumé, et ceux pour lesquelles elles

sont insuffisantes. Des systèmes séparés résument les deux groupes. Nous montrons

que cette approche est prometteuse, bien qu’il soit nécessaire d’optimiser davantage le

système pour classer les articles avec plus de précision.



Contents

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Early Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Maximum Marginal Relevance . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 MEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Graph-based Summarization . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 ILP-based Summarization . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.7 Neural Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Summarization Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



CONTENTS v

2.2.2 ROUGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Countering Lead Bias via Auxiliary Loss 19

3.1 Base model: BanditSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Lead Bias of News Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Auxiliary Loss Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Summarizing by Classifying Lead Performance 32

4.1 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Neural Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Dearly and Dlate Subset Training . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Summarization through Classification: LeadClassifySum . . . . . . . 37

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.2 Dearly and Dlate Results . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.3 Summarization Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Exploring Threshold Values . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 Classifier Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



CONTENTS vi

5 Conclusion 45

Bibliography 47



List of Figures

3.1 An overview of the BanditSum model. . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Comparison of BanditSum and RNES on Dearly and Dlate subsets. . . . . . . . . 22

3.3 Training curves for BanditSum-based models. . . . . . . . . . . . . . . . . . . . 28

3.4 Average affinity scores and average position selected for the BanditSum and Ban-

ditSum+KL models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Example of the BanditSum vs. BanditSum+KL prediction distributions. . . . . 31

4.1 ROUGE performance with varying proportion score thresholds. . . . . . . . . . 34

4.2 A fine-grained analysis of summarization performance change when the threshold

is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



List of Tables

1.1 An example in which leading sentences form a good summary. . . . . . . . . . . 2

1.2 An example in which leading sentences form a poor summary. . . . . . . . . . . 3

1.3 Frequency the lead is chosen among recent summarization models. . . . . . . . . 4

3.1 BanditSum’s performance on perturbed datasets . . . . . . . . . . . . . . . . . . 24

3.2 BanditSum’s average performance on perturbed datasets. . . . . . . . . . . . . . 24

3.3 Main results from auxiliary loss method on the CNN / Dailymail dataset. . . . . 27

3.4 ROUGE scores on Dearly, Dmed and Dlate subsets. . . . . . . . . . . . . . . . . . 30

4.1 Classification results for the Bilinear model on various data subsets. . . . . . . . 38

4.2 Classification accuracy comparison for the bilinear model against a majority base-

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 ROUGE results on Dlate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 ROUGE results on Dearly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 LeadClassifySum ROUGE results on CNN / Daily Mail test set. . . . . . . . . . 41

viii



1
Introduction

Natural Language Processing (NLP) is an important subfield of artificial intelligence

concerned with designing systems that understand and respond to human language. Complex

natural language tasks often require intricate solutions, and many NLP problems remain open

research areas. Among these topics, automatic summarization aims to create systems able

to write concise summaries of various text sources. Automatic summarization’s use cases are

diverse: these systems could be used to summarize informal text such as emails or extract

key points from formal literature such as medical reports or legal documents (Zhang et al.

2018; Kornilova and Eidelman 2019). Professions that require studying large amounts of

text, such as doctors, lawyers or analysts, could greatly benefit from needing less time to

grasp key concepts. The task’s usefulness attracts substantial research interest, and forms

the topic of this thesis.

Summarization systems typically follow one of two approaches. Abstractive summariz-

ers generate summaries token-by-token, requiring the system to both understand the text

in-depth and produce a grammatical summary. On the other hand, extractive summarizers

create summaries by selecting relevant text spans – usually sentences – from the source docu-

ment. This thesis will focus on analyzing and improving the extractive approach, particularly

in the news domain.

Extractive summarizers have historically focused on selecting the most relevant text snip-

pets while reducing redundancy between selected segments. This can be accomplished in

1
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Article: Bangladesh beat fellow World Cup quarter-finalists Pakistan by 79 runs in the
first one-day international in Dhaka. Tamim Iqbal and Mushfiqur Rahim scored centuries as
Bangladesh made 329 for six and Pakistan could only muster 250 in reply. Pakistan will have
the chance to level the three-match series on Sunday when the second ODI takes place in Mir-
pur. Bangladesh elected to bat after winning the toss but struggled to 67 for two in the 20th
over after Soumya Sarkar was run out by Wahab Riaz for 20 and Mahmudullah was bowled
by Rahat Ali. Tamim and Mushfiqur set about repairing Bangladesh’s stuttering innings and
did just that by putting on 178 runs in 21.4 overs for the third wicket, during which time
Tamim notched his fifth ODI century. He continued to plunder runs with ease but went for
one big shot too many against Wahab and was caught at mid-off to leave Bangladesh on 245
for three with nine overs left. His 135-ball knock of 132 included 15 fours and three sixes. Two
sixes in the 43rd over took Mushfiqur into the nineties and he joined Iqbal in passing three
figures by hitting Saeed Ajmal for successive fours in the 45th. Mushfiqur perished in the 48th
over when he edged Wahab behind to depart for a 77-ball innings of 106 which included 13
fours and two sixes. Shakib al Hasan and Sabbir Rahman scored 30 runs in 2.2 overs before
falling to Wahab (four for 59) in the final over as the hosts set pakistan 330 for victory. Azhar
Ali and Sarfraz Ahmed put on 53 runs for the first wicket before the latter slog-swept Arafat
Sunny to deep backward square leg to leave Pakistan one down in the 11th over. Mohammad
Hafeez was then run out to leave Pakistan stuttering on 59 for two but there was some respite
when Azhar notched his fifth ODI half-century in the 20th over to celebrate his first match
as captain in fine style.
Reference: Bangladesh beat fellow World Cup quarter-finalists Pakistan by 79 runs. Tamim
Iqbal and Mushfiqur Rahim scored centuries for Bangladesh. Bangladesh made 329 for six
and Pakistan could only muster 250 in reply. Pakistan will have the chance to level the
three-match series on Sunday.

Table 1.1: Leading sentences often form a strong baseline for news summarization, such as
in this example. Here, the highlighted passage indicates the most closely related sentences
to the reference summary. Note that the article has been truncated for conciseness.

numerous ways, such as a linear combination of these two features (Carbonell and Goldstein

1998), or more sophisticated formulations using integer linear programming or graphical

methods (McDonald 2007; Mihalcea and Tarau 2004). More recently, state-of-the-art sum-

marizers have overwhelmingly been developed using deep learning approaches, and this thesis

focuses on deficiencies within these methods.

Different text domains often carry idiosyncratic traits and require different summarization

approaches. For example, a system summarizing emails may benefit from using an abstrac-

tive approach, since emails are typically comprised of a conversational nature and may not

contain relevant summary-worthy text snippets. In the same way, news summarization also

features unique characteristics that affect how we summarize these texts. News articles,
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Article: Standing up for what you believe. What does it cost you? What do you gain?
Memories Pizza in the Indiana town of Walkerton is finding out. The family-run restaurant
finds itself at the center of the debate over the state’s religious freedom restoration act after its
owners said they’d refuse to cater a same-sex couple’s wedding. “If a gay couple was to come
and they wanted us to bring pizzas to their wedding, we’d have to say no”, Crystal O’Connor
told CNN affiliate WBND-TV in South Bend. The statement struck at the heart of fears by
critics, who said the new law would allow businesses to discriminate against gays and lesbians.
They called for boycotts. But supporters also rallied. And by the end of the week, they had
donated more than $842,000 for the business. Social media unloaded on the pizzeria in the
community of 2,100 people that few folks outside northern Indiana knew existed before this
week. riskyliberal tweeted : “Dear #memoriespizza. no. My boycotting your business because
I don’t like your religious bigotry is not a violation of your freedom to practice your religion.”
“Don’t threaten #memoriespizza” tweeted aanda. “Just mock them for their ignorance.” Bad
reviews flooded the restaurant’s Facebook page, most having little to do with the quality of
the food. Many too vulgar to share. “Do you really want to financially support a company
that treats some of your fellow citizens like second class citizens? Boycott memories pizza!!”
said Rob Katz of Indianapolis. “Let’s hope they either rethink their policy or the free market
puts them out of business.” But one outburst in particular shut down the restaurant Wednes-
day and was expected to do the same Thursday. “Who’s going to Walkerton with me to
burn down Memories Pizza?” Jessica Dooley of Goshen tweeted, according to the Walkerton
police department. The account has been deleted since the tweet was posted. Detectives who
investigated have recommended charges of harassment, intimidation and threats, according
to Charles Kulp, assistant police chief.
Reference: Indiana town’s Memories Pizza is shut down after online threat. Its owners say
they’d refuse to cater a same-sex couple’s wedding.

Table 1.2: In some cases, such as this one, models must learn that leading sentences do
not always constitute meaningful content. As in Table 1.1, the highlighted passages indicate
sentences that reflect the content from the reference summary. The article has been truncated
for conciseness.

especially event-based journalism, usually follow an inverted pyramid scheme, in which the

main facts are placed near the article’s starting point. Using the first three sentences of an

article as a summary is often used as a strong baseline (Nenkova 2005), and many systems

naturally exploit position cues when extracting a summary (Hong and Nenkova 2014; Schiff-

man, Nenkova, and McKeown 2002). For example, consider the article in Table 1.1. While

the article’s first three sentences include slightly extraneous information, overall it closely

mimics the reference summary and undoubtedly represents a strong extractive summary.

However, in many situations the leading sentences may not convey the most meaningful

summary content. For example, consider the article in Table 1.2. In this case, summarization

models should recognize that the preamble does not contribute relevant information and
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Model Lead Overlap (%) ROUGE-1, -2, -L
Average

Oracle 27.24 47.43
NeuSum (Q. Zhou et al. 2018) 58.24 31.52

RNES (Wu and Hu 2018) 68.44 32.57
BanditSum (Dong et al. 2018) 69.87 32.82

Table 1.3: On the CNN / Dailymail dataset (Hermann et al. 2015), recent models frequently
select leading sentences far above the rate that an oracle summarizer does. The third column
measures a summarization performance metric named ROUGE (higher is better).1 The strik-
ing difference between recent models and the oracle indicates that current models remain far
from optimal.

exclude these sections from the output summary. Likewise, another challenge models face is

recognizing that important content may occur near the end of the article, as in this example.

Previous work has shown that more than 20-30% summary-worthy sentences come from

the second half of news documents (Nallapati, B. Zhou, et al. 2016; Kedzie, McKeown,

and Daume III 2018). It is therefore crucial that systems properly balance position cues

with semantic representations of the text. Alas, previous studies suggest that most recent

neural methods predominantly pick sentences from the lead, and that their content selection

performance drops greatly when the position cues are withheld (Kedzie, McKeown, and

Daume III 2018). Table 1.3 provides a sample of how often recent systems select sentences

from the lead. We include an “oracle” extractive summarizer in which we compute the

3 highest-scoring sentences with respect to ROUGE, a measure of lexical overlap between

the system and reference summary.2 The striking difference between the oracle extractive

summarizer and other recent systems indicates that these models’ reliance on positional cues

is a serious deficiency.

This trend is particularly worrying since it suggests that current systems ignore learning

the document’s details in favour of exploiting simple positional cues. This learning bottle-

neck has implications beyond news summarization: many other summarization domains may

also hold similar idiosyncrasies that models may be exploiting instead of learning suitable
1See Section 2.2.2 for an overview of ROUGE.
2See footnote 1.
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representations. For this reason, it is important to design methods that promote learning

beyond simple cues, and encourage models to learn deeper semantic representations.

1.1 Thesis Outline

In this thesis, we explore to what degree models are affected by positional biases in news

summarization, primarily using the recent BanditSum model (Dong et al. 2018) to explore

these issues. We then formulate a method to counter these biases using an auxiliary target

objective, showing that this technique leads to better summaries overall. We also propose a

new summarization model based on classifying articles by the leading sentence’s strength.

Chapter 2 provides the background information necessary to understand summarization.

We review prior work in designing summarization systems, explaining how their development

lead to the current status of the field. Particular attention is given to more recent neural

extractive models, as they serve as the basis for the following experiments.

Chapter 3 We explore BanditSum’s reliance on positional cues through a series of per-

turbation experiments. After showing that positional cues play a dominating role in content

selection, we present a method for countering the detrimental effects of lead bias. The method

estimates the value of each sentence in an article, and modifies an existing model by encour-

aging it to match the estimated values. We show that this technique leads to summaries that

are significantly more similar to reference summaries.

Chapter 4 We devise a new summarization model based on classifying articles by the

strength of their leading sentences. We show that by training on a subset of articles with

weak leading sentences, the resulting model outperforms a baseline trained on the full dataset

on this subset. However, the classification step proves to be very difficult. Although the

classifiers we build surpass a random baseline, they are not effective enough to achieve sum-

marization performance gains.
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Chapter 5 summarizes this work’s main findings, and provides some potential directions

for future research.

1.2 Statement of Contributions

This work was heavily influenced by colleagues’ experiments, and for completeness, we include

these motivating experiments here. In particular, the perturbation experiments in Chapter 3

– Section 3.2 – were conceived and executed by Yue Dong. Original contributions from this

thesis include all other experiments in Chapter 3 and all experiments in Chapter 4, i.e. the

auxiliary loss and the lead classifier sections.

Parts of this thesis also appeared in a paper published in the 2019 Conference on Empirical

Methods in Natural Language Processing and 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP 2019). The paper, Countering the Effects of Lead

Bias in News Summarization via Multi-Stage Training and Auxiliary Losses (Grenander et

al. 2019), contains all experiments from Chapters 3.



2
Background

In this chapter, we provide an overview of select extractive summarization systems and

other relevant concepts. Generally, an automatic summarization system is provided with

a document D and returns a summary S which should satisfy certain properties, such as

faithfulness to the original article, non-redundancy and coherence.

In abstractive summarization, the summary is generated token-by-token: the model typ-

ically maintains a vocabulary V , and at each time step t, it selects a word wt ∈ V as the

next token. Abstractive summarization techniques typically must contend with large search

spaces due to vocabulary sizes that are at least tens of thousands in size. Extractive sum-

marization avoids this difficulty by creating summaries exclusively from text snippets in the

source document. In the case where these snippets are sentences, an extractive summarizer

can be viewed as assigning labels yi ∈ {0, 1} for each sentence si in D, indicating whether si

will be included in the final summary or not.

Summarization tasks can also differ in the number of source documents provided. In

single-document summarization, a single article is summarized, whereas in multi-document

summarization, the system must condense multiple, possibly overlapping sources of informa-

tion. Multi-document summarization adds an extra layer of difficulty due to the high-level

of redundancy across documents. In this work, we focus on the single-document setting.

Although this thesis focuses on news summarization, many datasets exist for other sum-

marization domains. Some notable examples include legal domains such as patents and

7
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legislative documents (Sharma, Li, and Wang 2019; Kornilova and Eidelman 2019), medical

documents (Kedzie, McKeown, and Daume III 2018; Zhang et al. 2018) and meeting notes

(Carletta et al. 2005). Although these corpora provide exciting challenges, they are outside

the scope of this work.

In this overview, we broadly cover (1) models, (2) datasets and (3) evaluation measures

relevant for extractive summarization. We assume background knowledge on several basic

machine learning and NLP concepts, including:

• Neural networks: backpropagation, gradient descent, multi-layer perceptrons (MLP),

long short-term memory networks (LSTMs), convolutional neural networks (CNNs).

• Natural Language Processing: ngrams, stemming, tf–idf, word embedding techniques

such as Word2Vec and GloVe (Mikolov et al. 2013; Pennington, Socher, and Manning

2014).

2.1 Models

Early summarization methods commonly use handcrafted features with manually tuned

weights to score and rank salient sentences from the source article. Later, more sophisti-

cated methods started borrowing methodologies from various other optimization algorithms

such as PageRank and integer linear programming. As more labelled data became available,

neural network-based methods such as Cheng and Lapata 2016 began to show prominence.

In addition to better summarizing performance overall, neural methods are attractive as they

typically require less feature engineering.

It is important to note that the methods we present here represent a small select set of

representative algorithms, and is not reflective of the entire broad field of summarization.

The most relevant group of summarization systems to our approach – neural network-based

summarizers – is presented in Section 2.1.7.
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The non-neural methods we highlight here are all unsupervised, except for the deter-

minantal point process approach from Kulesza, Taskar, et al. 2012. Although non-neural,

supervised summarization models do exist, many non-neural methods predate the creation

of massive, high-quality, labelled summarization datasets. This lack of labelled data often

put supervised methods at a disadvantage, and they do not feature as predominantly as

unsupervised methods from this era. On the other hand, all neural summarization methods

we discuss follow a supervised approach. In general, many neural network formulations –

though not all – required labelled data, and are therefore usually supervised methods.

2.1.1 Early Methods

The earliest summarization system produces abstracts for scientific papers by computing a

significance factor for each sentence (Luhn 1958). The algorithm first removes non-content

words such as ‘is’ or ‘and’ using a lookup table. It then stems and sorts the remaining words

by frequency, marking words that rank above a threshold as significant. The significance

factor of a sentence is then computed as the ratio of significant words to sentence length. If

the significance factor surpasses a certain threshold, it is included in the final summary.

Edmundson expanded on Luhn’s work with a summarization system that incorporated 4

features in its decisions (Edmundson 1969). It considers presence of certain cue words such

as ‘significant’ and ‘impossible’, word frequency of non-cue words, words from the article’s

title and heading, and word position. A weighted linear combination of the 4 features is

computed for each sentence after manually determining suitable weights, and the top-ranked

sentences are chosen as the summary.

2.1.2 Maximum Marginal Relevance

MaximumMarginal Relevance (MMR) is another well-known summarization algorithm, espe-

cially for its ability to create summaries in a multi-document setting (Carbonell and Goldstein

1998). It measures relevance and novelty independently, then greedily selects sentences using
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a linear combination of these two metrics. The MMR formula is computed as:

MMR = argmax
Di∈R\S

[
λSim1(Di, Q)− (1− λ) max

Dj∈S
Sim2(Di, Dj)

]
(2.1)

where R is a collection of documents, S is the summary so far, Di is a sentence in R \ S,

Q is a query vector, λ is a hyperparameter and Sim1, Sim2 are similarity metrics, possibly

identical. The algorithm greedily maximizes this formula for each sentence in the source

document until the target length is achieved.

2.1.3 MEAD

The MEAD summarization system also focuses on the multi-document setting, but with a

document-clustering approach (Radev, Jing, and Budzikowska 2000). It relies on a document-

clustering algorithm named CIDR to cluster same-topic documents together. CIDR produces

a vector for each cluster identified, representing the words relevant for each particular cluster.

The MEAD algorithm then computes 4 features for each sentence in the source documents

and scores them using a linear combination with manually-tuned weights:

Score(Si) = wcCi + wpPi + wfFi − wRRi (2.2)

where Ci is a centroid value denoting the sentence’s similarity to CIDR’s clusters, Pi is a posi-

tional value ranking earlier-occurring sentences higher, Fi measures the degree of overlap with

the document’s first sentence and RS is a redundancy penalty term similar to MMR. Similar

to MMR, sentences that maximize this score are greedily chosen until a given compression

ratio is achieved.

2.1.4 Graph-based Summarization

Numerous summarization approaches have benefitted from graph-based approaches (Mihal-

cea and Tarau 2004; Erkan and Radev 2004); we detail one of the most popular models,

TextRank (Mihalcea and Tarau 2004). TextRank differs hugely from Edmundsonian meth-

ods, avoiding manually-tuned weights through innovative use of the PageRank algorithm.
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It represents a document as a graph: sentences are represented as vertices, with weighted

edges between sentences determined by lexical overlap. The iterative PageRank algorithm is

then applied to this graph, outputting a relevance score for each sentence. The top-ranked

sentences are selected to form the final summary.

2.1.5 ILP-based Summarization

Another family of summarization models is based around optimizing an integer linear pro-

gramming problem (McDonald 2007; Clarke and Lapata 2008; Gillick and Favre 2009). We

explain McDonald 2007’s approach, one of the earliest ILP-based summarization models. He

formulates summarization as a global inference problem based on maximizing relevance while

minimizing redundancy, subject to a length constraint. Given a document D = {t1, . . . , tn},

a relevance function Rel, a redundancy function Red, and length constraint K, the optimal

summary can be computed as:

S = argmax
S⊆D

∑
ti∈S

Rel(i)−
∑

ti,tj∈S, i<j
Red(i, j) (2.3)

such that
∑
ti∈S

l(i) ≤ K (2.4)

where l(i) is the length of ti. The formulation does not depend on specific Rel and Red

functions, leaving the implementation up to the user. In their experiments, the authors

use tf–idf vectors to represent sentences and measure redundancy and relevance with cosine

similarity.

After demonstrating that the problem is NP-hard, the author then formulates 2 approx-

imate solutions using a greedy approach similar to MMR and dynamic programming. An

exact solution can also be extracted by using an integer linear programming approach, where

sentence selection is formulated as a set of linear constraints.
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2.1.6 Probabilistic Methods

SumBasic (Nenkova and Vanderwende 2005) is another well-known unsupervised summariza-

tion method. SumBasic assigns an initial probability to each word in a document based on

word frequency, and ranks each sentence by the average word probability. After choosing

the top-ranked sentence, SumBasic tackles redundancy issues by squaring the probabilities

of each word appeared in the chosen sentence, thereby reducing its likelihood of appearing

in subsequent sentence rankings:

pnew(wi) = pold(wi) · pold(wi) for all wi ∈ Si (2.5)

where Si is the sentence chosen at time step i. This process is repeated until the desired

summary length is achieved.

The last non-neural summarization method we discuss is based on determinantal point

processes (DPP) (Kulesza, Taskar, et al. 2012). DPPs define a special type of probability

measure over subsets of a fixed set of N elements. An essential characteristic of DPPs is

that similar elements tend not to co-occur. In other words, DPPs promote diverse subsets by

assigning low probability to similar pairs of elements. This characteristic lends itself naturally

to extractive summarization, where non-redundancy is an important aspect. Kulesza, Taskar,

et al. 2012 adapt DPPs to extractive summarization by computing feature vectors for each

sentence in a document and training a DPP in a supervised setting. They show that DPPs

are an effective method for extracting diverse, representative summaries from a document.

2.1.7 Neural Summarization

In recent years, many researchers have shifted towards summarization methods based on deep

learning, where lexical representations are learned by neural networks. Although in general

these models may require more computational resources and large amounts of data to train,

neural models are often considered more effective summarizers provided that the evaluation

domain is similar to the training setting (Nallapati, Zhai, and B. Zhou 2017).
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Neural-based extractive summarization methods typically comprise two steps. In the

sentence representation step, models map raw text into some abstract representation,

usually a vector. Then, in sentence selection, models use the content representations to

rank and select which sentences should constitute the summary.

Kågebäck et al. 2014 presented one of the earliest extractive neural summarization mod-

els, called Continuous Vector Space Models. The model first uses CW or Word2Vec

vectors to represent words in the document (Mikolov et al. 2013; Collobert and Weston

2008). Sentence representations are then created by summing a sentence’s word embeddings

or using a recursive auto-encoder (RAE) to combine word embeddings. The RAE aims to

compress word embeddings recursively until single vector is left, representing the whole sen-

tence. Sentence selection is performed by following the Lin-Bilmes method, in which a linear

combination of coverage and diversity factors is approximately optimized (H. Lin and Bilmes

2011).

Cheng and Lapata 2016 present a summarizer more tightly integrated with neural net-

works. After encoding the document’s words with Word2Vec embeddings, they use a con-

volutional neural network (CNN) to create hidden representations (s1, . . . , sm). In order to

capture latent temporal information, these vectors are subsequently fed into a long short-term

memory (LSTM) network to achieve sentence embeddings (h1, . . . , hn). To extract sentences,

another LSTM followed by a multi-layer neural network is used to predict which sentences

should form the summary. The extractor sequentially labels each sentence, using the previous

time step’s decision to help inform whether or not to include the current sentence in the final

summary:

h̄t = LSTM(pt−1st−1, h̄t−1) (2.6)

p(yt = 1|D) = σ(MLP([h̄t;ht])) (2.7)

where [h̄t;ht] denotes concatenation of the two vectors.

Large neural models ordinarily require large amounts of training data, which was not

readily available at the time. To overcome this data paucity, the authors retrieved hundreds
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of thousands of news articles from the Daily Mail news archives, along with associated bullet

point highlights to serve as summaries. The model is then trained using this resource.

Nallapati, Zhai, and B. Zhou 2017’s SummaRuNNer model employs two layers of bidi-

rectional GRUs to create sentence representations. The first biGRU runs over the document’s

words to create word-level representations. Each sentence’s word-level representations are

then averaged and fed into another GRU to create sentence-level representations (h1, . . . , hn).

A document representation d is also computed by averaging sentence embeddings followed

by a non-linear transformation.

A logistic layer then classifies whether to include each sentence or not based on a variety

of factors:

p(yj = 1|hj, sj,d) = σ
(
Wchj + hTjWsd− hTjWr tanh (sj) +Wapp

a
j +Wrpp

r
j + b

)
(2.8)

where the Wx and b variables represent learnable parameters. The “summary-so-far” rep-

resentation sj is recursively computed by weighting each sentence representation by the

probability outputted by the logistic classifier:

sj =
j−1∑
i=1

hip(yi = 1|hi, si, d) (2.9)

Finally, positional embeddings paj and prj indicating the absolute and relative sentence position

are included as inputs to the logistic classifier.

Narayan, Cohen, and Lapata 2018b argue that minimizing a cross-entropy loss objective,

as done in many previous neural models, is not ideal for supervised summarization tasks. In

order to use cross-entropy loss for supervised summarization tasks, it is often necessary to

create heuristic gold labels. Narayan, Cohen, and Lapata 2018b note that mismatches exist

between heuristic labels and true summary-worthy content, which may hurt summarization

performance. Instead, they argue that directly optimizing ROUGE can prevent these er-

rors. In order to optimize ROUGE, the authors formulate a novel objective based on the

REINFORCE algorithm (Williams 1992). Their model architecture itself is similar to Cheng

and Lapata 2016: words are first encoded by CNN followed by a LSTM to create sentence
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embeddings. An LSTM followed by a softmax layer then assigns a probability score to each

sentence. During training, sentences with low ROUGE scores are manually filtered to reduce

the search space, and a summary is created by sampling from the remaining probabilities.

After creating a summary hypothesis, the model is scored against the reference summary

using ROUGE, and this score is backpropagated through the network using REINFORCE.

BanditSum is another recent neural model trained using a reinforcement learning-based

objective function (Dong et al. 2018). Unlike Narayan, Cohen, and Lapata 2018b, Bandit-

Sum does not filter the action space, and thereby samples from the true action space instead

of approximating it. BanditSum employs two sets of bidirectional LSTMs to create sentence

representations. After embedding words with GloVe (Pennington, Socher, and Manning

2014), a word-level LSTM creates word representations of the article. For each sentence, the

word-level representations are averaged and inputted into a sentence-level LSTM to create

sentence representations (h1, . . . , hn). A multi-layer perceptron then runs over the sentence

representations to create sentence affinity scores for each sentence. Similar to Narayan, Co-

hen, and Lapata 2018b, hypothesis summaries are created by sampling without replacement

from the sentence affinities. After sampling B distinct summaries, the extracts are scored

using ROUGE and the weights are updated using the REINFORCE algorithm (Williams

1992).

2.1.7.1 Language Model Pre-Training

Recently, summarization methods based on language model pre-training objectives have

achieved state-of-the-art results. These approaches, released concurrently with our work,

are particularly interesting because they tend to exhibit less lead bias, and thus provide

promising directions for future research. We detail here the extractive model BertSum (Liu

and Lapata 2019), though abstractive approaches based on large pre-training objectives also

exist (Lewis et al. 2019).

BertSum is an extractive model that uses BERT to encode sentences (Liu and Lapata

2019). BERT is a language representation model built with a Transformer architecture
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(Vaswani et al. 2017) and trained with a masked language modeling task. It has proven

effective as an encoder for both words and sentences in many NLP tasks. Liu and Lapata

2019 use the pre-trained BERT model to encode sentences in a document, followed by a

second Transformer to extract and rank sentences by summary-worthiness. The model is

fine-tuned with a cross-entropy loss using heuristically-generated gold labels.

2.2 Summarization Evaluation

2.2.1 Human Evaluation

Traditionally, evaluating summary quality has been performed by human judges. Refer-

ence and systems summaries are compared along multiple dimensions, such as coverage,

non-redundancy and coherence. However, although human summary evaluation is usually

considered to be the most conclusive method to compare summarization systems, it is often

difficult to scale human summary evaluation to tens of thousands of summary judgements.

Moreover, human judgement has not been standardized in the summarization community,

and different authors often use incompatible metrics when evaluating summary quality. These

inconsistencies complicate comparisons between different systems.

2.2.2 ROUGE

Driven by the difficulties of human evaluation, automatic summary evaluation has been

researched for many years. The most common evaluation scheme is ROUGE, or Recall-

Oriented Understudy for Gisting Evaluation (C.-Y. Lin 2004), a set of metrics based

on measuring word overlap between the generated system summary and a reference sum-

mary. ROUGE is comprised of several individual measures, representing distinct aspects of

comparison. In our experiments, we report the following metrics:

• ROUGE-N measures the ngram overlap between the generated and reference sum-

maries. Given a set of reference summaries R = {R1, . . . ,Rm} and a system summary
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S, the ROUGE-N score is computed as:

ROUGE-N(S,R) =
∑m
i=1

∑
gramN∈Ri

Countmatch(S,Ri)(gramN)∑m
i=1

∑
gramN∈Ri

Count(gramN) (2.10)

where N is the ngram length we are considering, gramN is an ngram of length N , and

Countmatch(S,Ri) is the number of matching ngrams between Ri and S.

Although the original paper describes this metric as a recall-based measure, recent

models have at times reported the F1 score instead. This decision is usually based on

the dataset and whether a summary length limit is specified. To better compare with

state-of-the-art models, we compute the F1 score. In our experiments, we report both

ROUGE-1 (unigram) and ROUGE-2 (bigram) metrics.

• ROUGE-L scores how well the word order is respected in the reference summary. It

is based on a “union longest common subsequence” score LCS∪ between the system

summary and each sentence in the reference summary (C.-Y. Lin 2004). Given a

system summary S with sentences s1, . . . , sv and a reference summary R with sentences

r1, . . . , ru, we first create sets from the longest common subsequence (LCS) between each

reference sentence ri and S. LCS∪(ri,S) is computed by taking the union of these sets

and dividing by the total word length of ri:

LCS∪(ri,S) = |
⋃u
i=1 LCS(ri,S)|
|ri|

(2.11)

The recall and precision scores are then computed as:

Rlcs =
∑u
i=1 LCS∪(ri,S)

|R|
, Plcs =

∑u
i=1 LCS∪(ri,S)

|S|
(2.12)

The final ROUGE-L F1 score is given by the F1 score of the above precision and recall.

2.3 Datasets

The Document Understanding Conferences1 (DUC) produced an annual summarization dataset

from 2001–2007, before joining as a track within the Text Analysis Conferences2 (TAC) (Har-
1https://duc.nist.gov/
2https://tac.nist.gov/

https://duc.nist.gov/
https://tac.nist.gov/
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man and Over 2004; Dang 2006; Dang and Owczarzak 2008). The DUC/TAC datasets consist

of news articles paired with multiple human-written summaries, making these datasets an

excellent resource for multi-document summarization. However, the datasets generally do

not contain enough samples to train neural network-based summarization models.

The CNN / Daily Mail dataset is a large collection of news stories with associated

bullet point highlights used as summaries (Hermann et al. 2015). The dataset is split

into 287,227/13,368/11,490 article-summary pairs for the training / development / test-

ing datasets, making it a tremendous resource for neural methods which often require large

quantities of training data for adequate generalization. The CNN / Daily Mail is especially

suitable for extractive systems as the summaries are known to be quite extractive in na-

ture – in other words, summary content is often copied from the source document (Grusky,

Naaman, and Artzi 2018).

While other news summarization datasets exist, such as the New York Times Corpus,

Newsroom and XSum (Sandhaus 2008; Grusky, Naaman, and Artzi 2018; Narayan, Cohen,

and Lapata 2018a), they are more abstractive and hence less suitable for our purposes.

Gigaword is another well-known summarization dataset containing millions of news articles

from several publishers (Napoles, Gormley, and Van Durme 2012); however, the news articles

are not paired with summaries, complicating the use of machine learning approaches. In all

experiments, we report results using the CNN / Daily Mail dataset.



3
Countering Lead Bias via Auxiliary Loss

A recent study by Kedzie, McKeown, and Daume III 2018 shows that MLE-based summa-

rization models learn a significant bias towards selecting early sentences when trained on

news articles, a phenomenon they term ‘lead bias’. They demonstrate that in some mod-

els, as much as 58% of selected summary sentences come directly from the article’s leading

sentences. Moreover, when these models are trained on news articles whose sentences are

randomly shuffled, the performance drops considerably on the news domain.

These results suggest that lead bias is a significant bottleneck for news summarization

systems. For this reason, we would like to explore the severity of this issue further and

design potential solutions. In this chapter, we corroborate and expand on Kedzie, McKeown,

and Daume III 2018’s findings by perturbing sentence order in news articles in a multitude

of ways. These experiments confirm that positional cues dominate the learning signals for

state-of-the-art summarization systems.

We then detail our method for countering lead bias, based around augmenting an existing

summarization system with an auxiliary loss objective aimed at properly evaluating sentence

relevance independent of sentence position. We demonstrate that this method is able to

decrease the percentage of time the base model selects leading sentences, while also improving

the model’s overall summary quality. The resulting model is particularly more adept at

summarizing articles where the lead performance is weak, indicating that our method is

effective at helping models look beyond simple positional cues.

19
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3.1 Base model: BanditSum

In order to experiment with lead bias in modern summarization models, we first need to

choose a model to analyze. Here, we detail BanditSum’s formulation (Dong et al. 2018), and

why it lends itself well to lead bias experiments.

BanditSum approaches extractive summarization as a contextual bandit problem. This

approach views the document as a context, while selecting a subset of sentence indices cor-

responds to an action. Sentences are first mapped to sentence affinity scores, representing

the model’s propensity to include each sentence in its summary. BanditSum then takes ad-

vantage of reinforcement learning techniques, interpreting these affinity scores as a stochastic

policy. The model uses the REINFORCE algorithm (Williams 1992) to compute policy gra-

dient updates, avoiding the MLE-based summarization issues raised by Narayan, Cohen, and

Lapata 2018b. The authors also confirm empirically that BanditSum’s non-autoregressive

framework enables it to sidestep some lead bias issues faced by other autoregressive summa-

rization systems.

3.1.1 Model Architecture

Given a document D with n sentences, the neural model produces sentence affinity scores

πθ = {π1, . . . , πn}, where πi ∈ [0, 1]. After first using GloVe (Pennington, Socher, and

Manning 2014) to embed each word, a word-level LSTM captures interword dependencies.

In each sentence, these word representations are averaged and then passed to a sentence-level

LSTM to create sentence features h1, . . . , hn. Finally, a multi-layer perceptron decoder maps

h1, . . . , hn to the sentence affinity scores πθ = {π1, . . . , πn}.

Using the sentence affinity scores, BanditSum now computes a gradient update following

the REINFORCE algorithm (Williams 1992). In particular, hypothesis summaries are re-

peatedly sampled according to πθ, consisting ofK sentences each.1 Each hypothesis summary
1The authors use K = 3 following the average reference summary sentence length.
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Figure 3.1: An overview of the BanditSum model. Sentence affinity scores are sampled
to create hypothesis summaries, which are then scored against a reference summary using
ROUGE. A gradient update is then computed using REINFORCE. Figure created by Yue
Dong and used with permission.

is then scored against the reference summary using a reward function based on ROUGE:

R(S,RD) = 1
3 (ROUGE-1F1(S,RD) + ROUGE-2F1(S,RD) + ROUGE-LF1(S,RD)) (3.1)

where S is the system summary and RD is the reference summary. The reward function

scores relevance and redundancy simultaneously by using an F1 version of ROUGE. Finally,

using a self-critical baseline r for variance reduction (Rennie et al. 2017), the policy gradient

update is computed as follows:

∇θJ(θ) = 1
B

B∑
i=1
∇θ log pθ(Si|D) [R(Si,RD)− r] (3.2)

where pθ(Si|D) is the joint probability of including the sentences in Si (i.e. according

to πθ) and B is the batch size. This equation corresponds to the update equation given by

REINFORCE (Williams 1992).
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Figure 3.2: Comparison of BanditSum and RNES on Dearly and Dlate subsets. While perfor-
mance is roughly similar on Dearly, BanditSum dominates over RNES on Dlate. Figure from
Dong et al. 2018.

3.1.2 Analysis

One of BanditSum’s key properties is that the model is non-autoregressive, meaning that

the decision to include sentence si does not explicitly depend on sentences s1, . . . , si−1. An

example of an autoregressive model is given by SummaRuNNer (Nallapati, Zhai, and B. Zhou

2017), whose “summary-so-far” representation recursively depends on previous summary

decisions (see Equations 2.8 and 2.9).

BanditSum’s authors conjecture that autoregressive models are more likely to suffer from

lead bias issues. Autoregressive models must decide whether to include early sentences before

fully evaluating later sentences, and this may lead the models to erroneously include earlier

sentences in their summaries. To verify this claim, the authors compare BanditSum to an

autoregressive model RNES (Wu and Hu 2018), which also uses a reinforcement learning-

based, neural system. The authors annotate articles from the validation set by an extractive
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index idx, denoting whether an oracle-generated extractive summary appears earlier or later

in the document. Articles are then sorted according to idx, and two datasets are created.

Dearly is formed from the top 50 documents w.r.t. idx (i.e. best summary appears earlier),

while Dlate contains the lowest-scoring 50 articles (i.e. best summary appears late). Finally,

both BanditSum and RNES are trained on the Dearly subset then evaluated on the Dlate

subset. The results are displayed in Figure 3.2.

While BanditSum and RNES perform similarly on Dearly, BanditSum eclipses RNES on

Dlate, converging much quicker to higher scoring summaries. Owing to its non-autoregressive

formulation, BanditSum can produce more effective summaries when summary-worthy sen-

tences occur later in the article. This fact provides a good basis for performing lead bias

experiments with BanditSum, as we would prefer a model that is not inherently biased to-

wards earlier occurring sentences.

3.2 Lead Bias of News Systems

While the observed performance drops in Kedzie, McKeown, and Daume III 2018 may be due

to the destruction of position cues, they may also arise because the article’s coherence and

context were lost, i.e. shuffling sentence order affects semantics. We explore this phenomenon

more comprehensively by distorting sentence order in a fine-grained approach.

We manipulate the CNN / Daily Mail dataset to preserve sentence position information

at different levels. For each setting, we train separate instances of BanditSum, then test the

model on the other datasets. In the random setting, sentences are shuffled randomly; in

reverse, they are in reverse order; in insert-lead and insert-lead3, we insert an out-of-

document sentence (chosen randomly from the corpus) as the first sentence or randomly as

one of the first three sentences, respectively. Finally, original preserves the original ordering.

In Table 3.1 and 3.2, we show BanditSum’s performance when trained and tested on the

various datasets. All models (except random) perform worse when tested on a mismatched

data perturbation. Although some drops in performance are expected, the extreme ROUGE
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Train setting
Test setting original random reverse insert-lead insert-lead3

Lead-3 baseline 32.68 22.81 17.94 27.67 27.68
original 33.85 26.18 20.71 31.71 31.11
random 30.88 29.70 29.79 29.97 30.09
reverse 21.35 26.32 33.59 21.63 21.65

insert-lead 33.21 26.07 20.70 33.41 31.59
insert-lead3 32.29 25.57 20.22 32.92 32.15

Table 3.1: BanditSum’s performance—calculated as the average between ROUGE-1,-2, and -
L F1—on the CNN/Daily Mail validation set. The sentence position information is perturbed
at different levels.

Train setting Average of ROUGE-1, -2, -L Standard Deviation
Lead-3 baseline 25.76 5.00

original 28.71 4.72
random 30.09 0.42
reverse 24.91 4.72

insert-lead 29.00 4.93
insert-lead3 28.63 4.98

Table 3.2: Average ROUGE-1, -2 and -L scores and standard deviation on the CNN / Daily
Mail validation set using different training settings.

difference highlights how much more attention is given to position cues instead of semantic

content. Even when the distortion is at a single lead position in insert-lead and insert-

lead3, the model trained on the original setting suffers large performance drops. This drop

occurs despite little semantic difference between the original and insert-lead/insert-lead3

settings. This experiment worryingly suggests that very slight changes to sentence position

can have drastic effects on summarization models.

These results corroborate Kedzie, McKeown, and Daume III 2018’s findings for RL-based

systems. Similar results hold two other models we test: RNES (Wu and Hu 2018) drops 4.2

and Refresh (Narayan, Cohen, and Lapata 2018b) drops 3.4 points in average ROUGE when

trained on shuffled data and tested on the original dataset.

The results in Table 3.1 are concerning as the large drops between mismatched train

and test settings suggest that position cues are a dominating signal for BanditSum. These

findings suggest that BanditSum may largely ignore semantic content in favour of cheap
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positional cues. Obviously, solely exploiting positional cues will not work for news articles

where summary-worthy content appears later, such as in Table 1.2. Beyond the news domain,

other summarization domains may contain their own positional biases and similarly influence

automatic learners. More generally, future summarization systems which attempt to create

summaries across many domains cannot solely rely on positional cues if these signals change

across domains. In order to be effective, systems must learn to balance between exploiting

positional cues in the data and understanding the underlying semantic content.

Interestingly, the randommodel has the best mean performance and the lowest variation,

indicating that removing or lessening position bias may allow a model to focus on learning

robust sentence semantics. Following this observation, we explore novel techniques aimed at

reducing the influence of lead bias on the learning process.

3.3 Auxiliary Loss Objective

Motivated by the experiments in Section 3.2, we set towards designing methods to reduce

models’ dependence on positional cues. We observe that in general, BanditSum tends to

converge to a low-entropy policy, in the sense that the model’s affinity scores are either 1 or

0 at the end of training. Regularizing low-entropy policies can increase a model’s propensity

to explore potentially good states or stay close to a known good policy (Nachum, Norouzi,

and Schuurmans 2017; Galashov et al. 2019). We extend this idea to summarization by

introducing a ROUGE-based loss which regularizes the model policy using an estimate of the

value of individual sentences.

As the goal is to guide the model towards properly valuing sentences, we must first

approximate the true value of each sentence in a document. These sentence-level estimates

are computed as a categorical distribution PR over the document:

PR(x = i) = r(si,G)∑n
j=1 r(sj,G) (3.3)

where r is the average of ROUGE-1, -2 and -L F1 scores between sentence si in the article and
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the reference summary G. Since ROUGE measures lexical overlap, this distribution provides

a good approximation of each sentence’s relevance to the reference answer.

We would like the model’s predictive distribution PM to approximately match PR. To

compute PM, we normalize the model’s predicted sentence scores. In other words, if the

model outputs sentence affinity scores πθ = (π1, . . . , πn), PM is computed as:

PM(x = i) = πi∑n
j=1 πj

(3.4)

Our auxiliary loss is defined as the KL divergence: LKL = DKL(PR ‖ PM). We modify

the update rule using a weighted sum of the original model loss and our KL-based loss:

θ(t+1) = θ(t) + α
(
∇LM(θ(t)) + β∇LKL(θ(t))

)
(3.5)

Here, θ(t) represents the model’s parameters at time step t, LM is the original model’s loss

function, α is the learning rate, and β is a hyperparameter. In the case of BanditSum, LM

corresponds to J(θ) from Equation 3.2.

Notably, LKL does not account for redundancy, and we do not use this measure as the sole

objective function. In fact, experiments we conduct show that solely using the KL objective

function does not result in improved performance.

3.4 Experimental Setup

We test our method using the CNN/Daily Mail dataset (Hermann et al. 2015), building

on top of the author-provided BanditSum implementation. To reduce training time, we

pre-compute and store the ROUGE-1, -2, and -L average for every sentence triplet of each

article, using PyTables and HDF5 (PyTables Developers Team 2002-2019; The HDF Group

1997-2019). This allows for a considerable increase in training speed. We limit the maximum

number of sentences considered in an article to the first 100. All the models were trained for

4 epochs. We set the auxiliary loss hyperparameters α = 1e− 4 and β = 0.0095 in Equation

3.5 based on a grid search using the Tune library (Liaw et al. 2018).
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Model ROUGE Lead Overlap
1 2 L %

Lead-3 40.06 17.53 36.18 100.0
Oracle 56.53 32.65 53.12 27.24
Refresh 40.0 18.2 36.6 –
NeuSum 40.15 17.80 36.63 58.24
RNES 41.15 18.81 37.75 68.44
BanditSum 41.68 18.78 38.00 69.87
B.Sum+pretrain 41.68 18.79 37.99 70.77
B.Sum+entropy 41.71 18.87 38.04 64.83
BanditSum+KL 41.81* 18.96* 38.16* 65.13

Table 3.3: ROUGE scores for systems. Lead overlap denotes the model’s overlap in extraction
choices with the lead-3 baseline. Scores significantly higher than BanditSum with p < 0.001
(bootstrap resampling test) are marked with *. Note that we are unable to evaluate Refresh
on the lead overlap measure due to lack of access to the model outputs.

We also train a baseline entropy model by replacing LKL with the negated entropy of PM

in Equation 3.5. This loss penalizes low entropy, helping the model explore without indicating

which sentences are relevant. In this sense, it is an ‘undirected’ loss function compared to

our proposed method. In contrast, the LKL loss provides an indication of each sentence’s

value, and provides a more targeted signal. We present the results of Lead-3 baseline (first 3

sentences), and two other competitive models – Refresh and NeuSum (Narayan, Cohen, and

Lapata 2018b; Q. Zhou et al. 2018). Lastly, we include results from an oracle summarizer,

computed as the triplet of source sentences with the highest average of ROUGE-1, -2 and -L

scores against the abstractive gold standard.

3.5 Results

Table 3.3 reports the F1 scores for ROUGE-1,-2 and -L (C.-Y. Lin 2004). We use the

pyrouge2 wrapper library to evaluate the final models, while training with a faster Python-

only implementation3. We test for significance between the baseline models and our proposed

techniques using the bootstrap method. This method was first recommended for testing
2www.github.com/bheinzerling/pyrouge
3www.github.com/Diego999/py-rouge

www.github.com/bheinzerling/pyrouge
www.github.com/Diego999/py-rouge
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Figure 3.3: Training curves for BanditSum-based models. Average ROUGE is the average of
ROUGE-1, -2 and -L F1.

significance in ROUGE scores in the original ROUGE paper (C.-Y. Lin 2004), and has

subsequently been advocated as an appropriate measure in works such as Dror et al. 2018

and Berg-Kirkpatrick, Burkett, and Klein 2012.

The simple entropy regularizer has a small but insignificant improvement, indicating that

while boosting exploration is helpful, it is too simple to provide real performance gains.

In contrast, the BanditSum+KL method significantly improves over BanditSum, with an

extra 0.15 ROUGE points on average. The last column reports the percentage of summary

sentences which overlap with the lead. The auxiliary loss leads to a 4.7% absolute decrease

in such selections compared to the base system, while also reaching a better ROUGE score.

Figure 3.3 shows that the reward for the auxiliary loss model is consistently above the base.

3.6 Analysis

Given that our method is designed to alleviate overfitting to positional cues, we suspect that

the BanditSum+KL model achieves greater gains when the lead constitutes a poor summary.
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To test this idea, we examine the auxiliary loss model on documents where the summary is

mostly comprised of lead sentences Dearly, mostly sentences much later in the article Dlate,

and a dataset at the midway point, Dmed. To create these sets, we compute an extractive

index idx for each test set document, similar to Dong et al. 2018. Given a document, we use

the oracle summarizer’s extracted indices (i, j, k) and compute idx as:

idx = i+ j + k

3n (3.6)

where n is the number of sentences in the document.

After the test articles are ranked using the idx metric, the 100 test articles with lowest

average index are Dearly, the 100 with highest value are Dlate and the 100 closest to the

median are Dmed. In Table 3.4, we can see that the auxiliary loss model’s improvements are

even more amplified on Dmed and Dlate.

The second line in Table 3.4 reports the oracle ROUGE scores of the best possible ex-

tractive summary. While all systems are quite close to the oracle on Dearly they only reach

half the performance on Dlate. This gap indicates that our improvements only scratch the

surface, but also that this problem is worthy and challenging to explore.

In Figure 3.4, we compare BanditSum and BanditSum+KL’s average affinity scores. The

BanditSum+KL method sharply reduces the average affinity score on the first two sentence

positions, while increasing the average affinity for sentence positions 3 and beyond. This

indicates that our method can help the model reach sentences further down the document. We

notice similar trends for the average position selection, though the BanditSum+KL method

remains far from the oracle summarizer.

We also compare model prediction distributions on an example article from the validation

set in Figure 3.5. While the BanditSum predictions forms a very low-entropy distribution,

the KL loss helps even out the predictions and reach sentences further in the document.

It is worth noting that we have attempted to build a single model which can summarize

both lead-biased articles and those whose information is spread throughout. Our aim was to

encourage the model to explore useful regions as a way of learning better document semantics.
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Model Dearly Dmed Dlate
Lead-3 46.17 30.90 20.18
Oracle 50.52 47.92 42.21
NeuSum 40.70 31.26 20.44
RNES 41.76 32.11 20.62
BanditSum 43.10 32.65 21.63
BanditSum+entropy 41.96 32.59 22.12
BanditSum+KL 42.63 33.05 21.96

Table 3.4: Average ROUGE-1, -2 and -L F1 scores on Dearly, Dmed and Dlate subsets. Each
set contains 100 documents.

But we hypothesize that our models can be further improved by learning to automatically

predict when the lead paragraph suffices as a summary, and when the model should look

further in the document.



CHAPTER 3. COUNTERING LEAD BIAS VIA AUXILIARY LOSS 31

Figure 3.4: (Top) Average affinity scores for the BanditSum and BanditSum+KL models.
Note that the original model has far higher affinity on average for the first two sentence
positions, while our proposed model has a more even distribution. (Bottom) Average position
selected for the same models. We observe similar trends as the affinity score distribution,
though the BanditSum+KL method remains far from the oracle positions.

Figure 3.5: Example of the BanditSum prediction distribution (left) vs. the BanditSum+KL
prediction distribution (right) on the same given article from the validation set. The original
formulation is more prone to lead bias compared to our proposed method, as demonstrated
here.



4
Summarizing by Classifying Lead Performance

Chapter 4’s results suggest that methods addressing model dependence on positional cues can

be an effective way to boost summarization performance. The previous chapter’s auxiliary

loss method is able to decrease how frequently the base model selects from leading sentences,

while also significantly improving summary quality. Although the auxiliary loss method’s

summarization improvement is statistically significant, it does not offer extraordinary gains

over baselines. Figure 3.4 reveals that the method only offers modest reductions in how

often lead sentences are selected and does not approach the percentage an oracle summarizer

selects from the lead.

The results do not necessarily suggest that addressing positional biases is an ineffective

strategy. Previous works such as Kedzie, McKeown, and Daume III 2018 and our own exper-

iments in Chapter 3 have already shown that positional cues represent a major bottleneck

for learning summarization. Instead, we suspect that the auxiliary loss methods are not

sufficiently aggressive enough to counter the effects of lead bias. For these reasons, we would

prefer a model formulation that integrates the ideas of lead bias more centrally.

We hypothesize that articles with a strong lead (i.e. the lead forms an accurate sum-

mary) are fundamentally different from cases with a weak lead, such that a classifier could

distinguish between these two cases. We look to build such a classifier, so that we can ap-

ply different summarization strategies for the two scenarios. In this chapter, we detail this

new classification task, the model formulation, the challenges surrounding the task and the

32
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resulting model’s summarization capabilities.

4.1 Classification Task

We first define how to categorize articles based on the lead baseline’s strength. Since there

is a large variance between the highest achievable ROUGE score between different articles,

we avoid categorizing articles solely based on the lead ROUGE score. For example, if the

lead baseline achieves 30.0 ROUGE-1 on both articles A and B, but the oracle summarizer

respectively achieves 60.0 and 30.0 ROUGE-1, we should avoid placing A and B in the same

category. To avoid this scenario, we rank articles by how well the lead performs in relation

to an oracle summarizer:

Proportion Score(D) = rlead(D)
roracle(D) (4.1)

where rlead denotes the lead-3’s ROUGE-1, -2 and -L average score on D, and roracle denotes

the same quantity using an oracle summarizer. As previously, the lead is defined as the first

3 sentences in the document, while the oracle is defined in the same way as in Chapter 3.

We also need to define a threshold value T in order to divide articles. To determine an

acceptable threshold value, we experiment with varying threshold values on the CNN / Daily

Mail development set. For each threshold value, we divide the articles based on whether their

proportion score falls below or above the given threshold. Documents below the threshold are

summarized by the BandiSum+KL model, while documents above the threshold are handled

by the lead-3 baseline. The results are shown in Figure 4.1.

The highest gains in ROUGE performance are attained when the threshold T = 0.75,

and we therefore use this value as the threshold in the following experiments.

Since distinguishing points very close to the threshold may be difficult for classifiers, we

also experiment with removing articles close to the threshold T . After ranking all articles

by their proportion score, we create subsets by removing articles close to the threshold.

Specifically, we experiment with removing 20, 30, 50 and 60 percent from each of the training
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Figure 4.1: Each data point in this figure represents a trial with varying threshold T . In each
trial, articles with proportion scores < T are summarized by BanditSum+KL and otherwise
summarized by the lead-3 baseline. The highest 1

3(R1 + R2 + RL) value is attained when
T = 0.75.

/ development / testing data, centered around T . The subsets are named D20, D30, D50 and

D60. We use Dall to refer to the full dataset with no data removed. Furthermore, we designate

the subset of articles with a proportion score less than T asDlate, and greater than T asDearly.

4.2 Models

In this section, we introduce the various components that comprise our summarization model.

We describe (1) a strong baseline using BanditSum and BERT, (2) the neural classifier model,

and (3) the BanditSum + BERTearly and BanditSum + BERTlate models for the Dearly and

Dlate subsets.

4.2.1 Neural Classifier

The centrepiece of our summarization approach is a classifier separating articles with a strong

lead from articles where summary-worthy sentences appear later. We experiment with four



CHAPTER 4. SUMMARIZING BY CLASSIFYING LEAD PERFORMANCE 35

model formulations. A common element of these models is they encode the leading three

sentences separately from the overall document and recombine the embeddings to classify the

article. The goal of this formulation is to allow the model to learn the interactions between

the article’s leading sentences and the overall document, in order to properly classify the

article. The four models are as follows:

• Concatenation model: We separately encode the first three leading sentences and

the entire document with BERT. Before encoding, we prepend a [CLS] token to each

sentence, then extract the encoded [CLS] token embeddings as sentence representations.

We then use separate LSTMs to run over the lead and document sentence embeddings,

extracting the final hidden state of both. Shallow MLPs encode these representations

to form a lead representation hL and a document representation hD. Finally the lead

and whole document representations are concatenated and a logistic layer assigns a

probability of a high proportion score:

p

(
rlead(D)
roracle(D) > T

∣∣∣∣∣ hL,hD
)

= σ (wout [hL; hD]) (4.2)

• Bilinear model: This model is similar to the concatenation model but instead of

concatenating the lead and document representations, a bilinear map combines the

embeddings.

p

(
rlead(D)
roracle(D) > T

∣∣∣∣∣ hL,hD
)

= σ
(
hTLWout hD

)
(4.3)

• Separate-BERT model: This model follows the concatenation model but separate

BERT encoders are used to produce the lead and document representations.

• No-lead baseline: The leading three sentences are not separately encoded. After

BERT encodes the document, the first [CLS] token representation is provided as input

to a logistic layer which maps this output to a probability between 0 and 1.
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4.2.2 Dearly and Dlate Subset Training

After articles are classified, our approach requires two different summarization methods to

handle each case. A reasonable strategy is to train separate summarization systems on the

Dearly and Dlate subsets. We first define a base model based on BanditSum, then detail how

to specialize the model on the two cases through subset training.

4.2.2.1 Base Model: BanditSum+BERT

We continue to use BanditSum in these experiments, though we replace the sentence encoder

from the original formulation with BERT (Devlin et al. 2019). Given a document D with

sentences s1, . . . , sN , we encode it using BERT and use the [CLS] token as a sentence embed-

ding, similar to the BertSum summarization model (Liu and Lapata 2019). These sentence

embeddings are then fed to a multi-layer perceptron decoder in order to produce a sentence

affinity πi ∈ [0, 1] for each sentence si ∈ D. Essentially, we compute:

πi = MLP(hi) (4.4)

h1, . . . , hN = BERT(D) (4.5)

The MLP structure follows BanditSum’s decoder specifications and the remaining model

details such as the reinforcement learning-based objective function follow BanditSum’s details

as well (Dong et al. 2018).

4.2.2.2 Training on Data Subsets

In order to specialize the base model towards summarizing Dearly and Dlate articles, we

train two separate versions of BanditSum+BERT, restricted to the Dearly and Dlate subsets.

Our hypothesis is that articles where the lead baseline performs well require a different

summarization strategy than cases where the lead is weak. We use BanditSum + BERTearly

to denote the model trained on Dearly and likewise, use BanditSum + BERTlate for the model

trained on Dlate.
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4.2.3 Summarization through Classification: LeadClassifySum

The final summarization model is a straightforward pipeline of the previous components.

Given an article, the classifier predicts if it belongs in Dearly or Dlate, and the appropriate

model is then used to summarize it. After finding that BanditSum + BERTearly solely learns

positional cues and chooses indices nearly always matching the lead-3 baseline, we instead

use the simpler lead-3 baseline to summarize cases in Dearly. We use BanditSum + BERTlate

to summarize articles in Dlate. This final model is named LeadClassifySum.

4.3 Experiments

For each of the D20, D30, D50 and D60 subsets1, we train the four classification models to

separate articles with a proportion score less than T = 0.75 from ones greater than T . We

also experiment with a setting where no articles are removed, i.e. using Dall. Every model

is trained to reduce the cross-entropy loss between its prediction and the gold label. For

each training subset, we test the model using a subset of the test set that respects the same

threshold boundaries as the training subset. We implement data re-weighting to reduce the

effects of class imbalance, and we employ gradient clipping with a maximum gradient norm

of 1.0.

We train the BanditSum+BERT model on the CNN / Daily Mail dataset, converging after

6 epochs. For both Dearly and Dlate subsets, we train separate BanditSum+BERT models,

with the late version converging within 10 epochs and the early version within 5 epochs.

For all experiments, we employ the Hugging Face ‘bert-base-uncased’ BERT implemen-

tation to build our models (Wolf et al. 2019). We use Adam to optimize model parameters,

with PyTorch’s default momentum configuration (Kingma and Ba 2015; Paszke et al. 2019).

We tune the learning rate for each of these experiments using the Tune library (Liaw et al.

2018).
1See Section 4.1 for how these subsets are defined.
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4.4 Results

4.4.1 Classification Results

Results across all model variations are very similar for at least one learning rate configu-

ration. The results for the Bilinear model are shown in Table 4.1. All subsets experience

a striking degree of overfitting, with each subset resulting in greater than 20% difference

between the training and testing accuracy. In Table 4.2, we compare the Bilinear model to a

simple majority baseline. Apart from the Dall setting, the classifier outperforms the majority

baseline, suggesting that the classifier learns non-trivial cues from the training data. There

is also a notable increase in test set accuracy as the amount of data removed increases, with

an 11% increase between the Dall and D60 dataset. However, overall, overfitting prevents our

classifier implementations from being practical.

Dataset Training Accuracy (%) Test Accuracy (%)
Dall 81.64 62.5
D20 90.29 65.09
D30 95.74 67.09
D50 93.31 71.9
D60 93.61 73.49

Table 4.1: Classification results for the Bilinear model on various data subsets, using T =
0.75. We notice greater test accuracy as the amount of data removed increases; however,
strong overfitting prevents the classifiers from being practical for our purposes.

Model Accuracy (%)
Dall D20 D30 D50 D60

Majority Baseline 64.62 52.61 52.94 53.29 53.16
Bilinear Model 62.5 65.09 67.09 71.9 73.49

Table 4.2: Apart from the Dall dataset, the Bilinear model is able to outperform a majority
baseline on the classification task.
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Model ROUGE-1 ROUGE-2 ROUGE-L Lead Overlap (%)
BanditSum+BERT 40.17 17.56 36.61 53.20

BanditSum + BERTlate 40.75 18.17 37.30 33.37
Lead-3 35.32 13.38 31.77 100.0
Oracle 57.19 33.50 53.94 17.13

Table 4.3: Results on CNN / Daily Mail test articles with proportion score less than T = 0.75,
corresponding to training on Dlate. The BanditSum + BERTlate model noticeably outper-
forms BanditSum+BERT and selects the leading sentences less often.

Model ROUGE-1 ROUGE-2 ROUGE-L Lead Overlap (%)
BanditSum+BERT 47.01 22.84 43.18 67.50

BanditSum + BERTearly 49.01 24.52 45.04 99.99
Lead-3 49.01 24.52 45.04 100.0
Oracle 56.16 30.70 52.45 45.70

Table 4.4: Results on CNN / Daily Mail test articles with proportion score less than
T = 0.75, corresponding to training on Dearly. Although BanditSum + BERTearly out-
performs BanditSum+BERT significantly, positional cues dominate the learning signal for
BanditSum + BERTearly. In the end, it is indistinguishable from the lead-3 baseline.

4.4.2 Dearly and Dlate Results

The results for Dlate and Dearly are displayed in Tables 4.3 and 4.4 respectively. On Dlate,

subset training benefits the BanditSum+BERT model considerably, as we see large jumps

in ROUGE-1, -2 and -L metrics. There is also a strong decrease in the lead overlap, as the

BanditSum + BERTlate model is exposed to less positional bias compared to the baseline

model. These results confirm that separating articles with weak lead performance is impor-

tant for summarization, and that subset training can help models focus on a specific strategy

for the Dlate subset.

The Dearly experiment shows even greater gains in ROUGE performance, around 2 points

across all three ROUGE metrics. However, in this case, positional biases clearly play a

dominating role in the model’s learning process, as the model exactly copies the lead-3

baseline and achieves the same performance. Unfortunately, the model fails to pick up on

deeper cues and its ROUGE scores remain far from the oracle’s.
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4.4.3 Summarization Results

The main summarization results on the CNN / Daily Mail test set are shown in Table 4.5.

4.4.3.1 BanditSum+BERT Baseline

The BanditSum+BERT markedly outperforms BanditSum across all three ROUGE metrics,

indicating that BERT’s encodings are far more suitable for this summarization task than

LSTMs. Besides a noticeable increase in ROUGE, the model also selects significantly less

from the lead than both BanditSum and the BanditSum+KL model. One possible expla-

nation is that BERT acts as a regularizer for sentence position, and its strong language

modelling abilities help it from being distracted by position cues.

Experiments with a BanditSum+BERT+KL model do not result in increased ROUGE

scores nor decreased lead overlap compared to the BanditSum+BERT model. It is possible

that BERT encodings are less reliant than LSTMs on position cues and therefore benefit less

from the auxiliary loss regularization. We leave this hypothesis for later experiments and do

not investigate the model further.

4.4.3.2 LeadClassifySum

Hampered by a weak classifier, the LeadClassifySum approach is unable to surpass its baseline

in terms of ROUGE. Curiously, the degree of lead overlap actually increases, further reflecting

on the classifier’s inability to properly separate strong-lead articles from weak ones. The

summarization approach hinges on a capable classifier, and in the absence of one, this result

is expected.
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Model ROUGE-1 ROUGE-2 ROUGE-L Lead Overlap (%)
Lead-3 40.06 17.53 36.18 100.0

BanditSum 41.68 18.78 38.00 69.87
BanditSum+BERT 42.70 19.40 39.03 57.52

LeadClassifySum (our model) 41.82 18.62 38.12 73.52
Oracle Classifier 43.73 20.49 40.13 52.02

Oracle 56.53 32.65 53.12 27.24

Table 4.5: Results from various models on the CNN / Daily Mail test set. While Bandit-
Sum+BERT outperforms BanditSum, both are surpassed by the Oracle Classifier and true
Oracle scores. The LeadClassifySum model faces challenges from an inadequate classifier,
preventing it from summarizing effectively.

Figure 4.2: By running both BanditSum + BERTlate and Lead-3 models over the entire test
set, we can visualize how the ROUGE-1, -2 and -L average score changes on an article-by-
article basis when varying the threshold T . This experiment validates our choice of T and
shows that only a single optimum exists.

4.5 Analysis

4.5.1 Exploring Threshold Values

A natural question to ask is what an upper performance bound would be from using this

approach. To this end, we run an oracle classifier over the CNN / Daily Mail test set to
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correctly label articles with their proportion score. Articles with a proportion score less than

T are then summarized with the BanditSum + BERTlate model. Conversely, articles with a

proportion score greater than T are summarized by the lead-3 baseline.

The Oracle Classifier results are displayed in Table 4.5. The noticeable performance gain

of over 1 point in ROUGE-1, -2 and -L metrics suggest that our lead classifier approach is

a viable approach to summarization. This oracle method is furthermore able to decrease

lead overlap by 5.5% compared to the base BanditSum + BERTlate model, achieving a closer

degree of lead overlap as the true oracle model.

We also want to further validate our choice of T . The experiment shown in Fig. 4.1 gives

an adequate estimate of a good threshold value. However, we would prefer to use stronger

baselines as the base models and analyze the results on a fine-grained article-by-article basis.

We first create summaries for the whole CNN / Daily Mail test set with both lead-3

and BanditSum + BERTlate models, and sort all articles by their proportion scores. We then

sweep through the sorted test set, marking the change in overall average ROUGE-1, -2 and -L

scores as T varies. The results are shown in Figure 4.2. The peak ROUGE score, occurring

at T = 0.71, shows the possible gains over the BanditSum + BERTlate model (far right point)

and lead-3 model (far left point). Figure 4.2 also demonstrates that only a single optimal

threshold value exists, and that our choice of T is justified.

4.5.2 Classifier Regularization

In an effort to reduce the degree of overfitting, we explore a variety of regularization tech-

niques to reduce the gap between the training and testing accuracies. We experiment with

the following techniques:

• Weight decay is a common technique for regularizing parameters which involves mul-

tiplying each weight by a factor slightly less than one after each step. We explore a

variety of weight decay terms to regularize model parameters.
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• Reducing model complexity: We halve both the LSTM decoders’ hidden size and

the logistic classifier size to explore if reducing model size improves generalization.

• PCA on BERT outputs: BERT’s output representations are 768-dimensional vec-

tors, which may be too large for the task. Using a version of BERT with lower-

dimensional outputs requires re-training the entire BERT model from scratch, which is

computationally infeasible. Instead, after fine-tuning BERT on the classification task,

we fix BERT’s parameters and employ PCA to reduce the output dimension to 300.

We then continue fine-tuning the decoders using the lower-dimensional outputs.

• Freeze BERT outputs: In order to reduce the number of trainable parameters, we

fix BERT’s parameters, and only fine-tune the remaining weights.

We do not explore using dropout as the BERT encoder already employs it.

Unfortunately, none of the above regularization techniques significantly changes classifi-

cation accuracy on the test set. Freezing BERT outputs decreases accuracy by around 8%.

Further regularization techniques may be beneficial to the task, but ultimately the solution

may require alternate model formulations to overcome the gaps in accuracy.

4.6 Conclusion

In this chapter, we conjecture that separating articles with strong or weak leads can aid

automatic summarization, though ultimately we do not observe so with the models we build.

To partition the dataset, we define a document’s Proportion Score, the ratio of the lead to

oracle ROUGE score. We run experiments using the lead-3 baseline and the BanditSum+KL

model to determine an effective threshold T to partition the CNN / Daily Mail dataset.

We design classifiers to divide documents by their proportion score. Despite regularization

attempts, overfitting remains a bottleneck for our approach. Future methods may require

alternate model formulations or stronger regularization techniques.
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We proceed to build a base model using BanditSum with a BERT encoder. After par-

titioning the training dataset based on proportion score, we train separate summarizers on

the subsets. On the late subset, where the documents’ proportion scores are less than T ,

BanditSum + BERTlate is able to create better summaries, presumably because its represen-

tations are less biased towards positional cues. In contrast, BanditSum + BERTearly summa-

rization performance increases on the early subset, but the model exclusively learns to copy

the lead baseline.

Using an oracle classifier, we show that the summarization performance can improve up to

1 point across all ROUGE-1, -2 and -L metrics. We examine how performance gains change

on an article-by-article basis, showing that only a single optimum occurs at T = 0.71.



5
Conclusion

In this work, we have investigated summarization systems and how positional biases affect

these systems’ learning process. Motivated by Kedzie, McKeown, and Daume III 2018’s work

and our own experiments showing that current summarization systems are heavily affected

by positional cues, we design novel methods to counter the dominance of these signals.

Our first method involves augmenting an existing gradient descent-based summarization

model with an auxiliary loss objective. For a given input article, this loss objective estimates

each sentence’s value by computing the sentence-level ROUGE score compared to the refer-

ence summary. It then encourages the model to match these sentence-value estimates using

the KL divergence between the model’s predictions and the estimates. We test this method

with a state-of-the-art summarization system, BanditSum (Dong et al. 2018), and find that

our method can significantly improve summary quality.

Although the improvements are noteworthy, the resulting model is still hampered by

an overreliance on lead bias. Evidence for this lingering issue is seen in Figure 3.4, as the

oracle summarizer extracts leading sentences far less than the BanditSum+KL method. Some

extensions to this method could include other algorithms to combine the loss functions such

as MAML (Finn, Abbeel, and Levine 2017), or investigating RL methods aimed at promoting

exploration such as the Soft-Actor Critic algorithm (Haarnoja et al. 2018).

After hypothesizing that articles with a strong vs. weak lead require different summa-

rization strategies, we design a second novel summarization method based around classifying

45
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whether an article’s lead contains summary-worthy sentences. We find that by partitioning

the training dataset and training separate summarization systems on these subsets, we can

achieve greater performance on both subsets. We note that in the case of the Dearly sub-

set, the model’s learning is dominated by positional bias, and it learns to mimic the lead-3

baseline exactly. Training a classifier proves to be a much more difficult task, especially with

regards to overfitting. Since the classifier does not perform adequately, it remains unclear

how to build an effective summarization system using this approach, and our proposal is a

negative result for the full summarization system.

Future summarization approaches may be able to indirectly alleviate lead bias issues

without explicitly targeting them in their formulation. Emerging summarization models, such

as BertSum and BART (Liu and Lapata 2019; Lewis et al. 2019), have taken advantage of

large unsupervised language model pre-training in their approaches. In particular, BertSum’s

authors show that their method is able extract sentences further in the document compared

to a competitive baseline, and that the extracted sentence positions are more similar to an

oracle summarizer. Compared to previous models such as BanditSum, BertSum is more

robust with respect to lead bias effects, despite having no explicit target objective aimed at

countering this damaging signal. This may mean that explicit lead bias regularization is not

necessary, as long as the model can sufficiently balance positional cues with semantic ones.

Regardless of how future summarization models operate, we have shown that positional

biases are an important consideration when designing summarization systems. Creating

models that understand how to properly balance positional cues and value sentences correctly

represents a major milestone towards truly practical summarization systems.
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