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ABSTRACT 

A large body of evidence indicates that dopamine (DA) neurotransmission 

regulates approach toward rewards and reward-related cues. The best-cited 

hypothesis proposes that DA accomplishes this by mediating the pleasurable 

effects of a variety of natural and drug rewards. This “anhedonia hypothesis” has 

received support from some pre-clinical models of reward and a few drug 

challenge studies in humans. However, direct assessment of DA’s role in mood 

and other subjective states in healthy humans has been largely limited to the use 

of psychostimulant drugs, which elevate brain levels of multiple neurotransmitters 

in addition to DA. This thesis is comprised of one study which examined the 

effect of more selectively elevated DA neurotransmission, as produced by 

administration of the immediate DA precursor, L-DOPA, in healthy human 

volunteers. L-DOPA failed to alter mood and other subjective states. These results 

add to the evidence that DA neurotransmission does not directly influence mood 

in healthy humans.  
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ABRÉGÉ 

La contribution précise de récompense et de motivation de la 

neurotransmission  de la dopamine (DA) n’est pas entièrement comprise. La 

meilleure hypothèse citée propose que la DA forme un trait d’union des effets 

agréables d’une variété de récompenses naturelles et narcotiques. Cette hypothèse 

« anhédoniste » a reçu l’appui de quelques modèles précliniques de récompense et 

de quelques études chez l’humain mettant la drogue en question. Cependant, 

l’évaluation directe du rôle de la DA sur la disposition et autres états subjectifs 

chez l’humain en santé a été principalement limitée à l’utilisation de drogues 

psychostimulantes, ce qui élève le niveau de neurotransmetteurs multiples en plus 

de la DA dans le cerveau.  La présente thèse comprend une étude qui examine 

l’effet d’une neurotransmission sélectivement plus élevée de la DA, produite par 

l’administration du précurseur immédiat de la DA, L-DOPA, chez des volontaires 

en santé. L-DOPA n’a modifié ni disposition ni autres états subjectifs. Ces 

résultats s’ajoutent à l’évidence la neurotransmission de DA n’influence pas 

directement la disposition chez l’humain en santé. 
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INTRODUCTION 

 

1.0 Dopamine biochemistry 

Dopamine (DA), norepinephrine (NE) and epinephrine are collectively 

referred to as catecholamines due to the presence of a common catechol or 

hydroxylated aromatic ring nucleus in each of the molecules. Catecholamines 

function as neurotransmitters in the central nervous system and they are also 

biologically active in a variety of peripheral body tissues. DA, for example, is 

found primarily in the brain, but also to some extent in the kidneys (Missale et al 

1998). Catecholamines share a common biosynthetic pathway, beginning with the 

essential amino acid phenylalanine (Kuhar et al 2006). Within the liver, 

phenylalanine is a substrate for phenylalanine hydroxylase (PH). PH adds an 

hydroxyl group to produce tyrosine. In catecholamine neurons, tyrosine is a 

substrate for the rate-limiting enzyme in DA synthesis, tyrosine hydroxylase 

(TH). The addition of the second hydroxl group produces dihydroxyphenylalanine 

(L-DOPA). L-DOPA, in turn, is a substrate for DOPA decarboxylase, which 

rapidly converts the precursor into DA. In neurons that release DA, this is the 

terminal step in catecholamine synthesis. The majority of DA neurons are found 

in two adjacent and somewhat overlapping brainstem nuclei, the ventral tegmental 

area (VTA) and the substantia nigra (SN; Kuhar et al 2006). DA neurons from the 

former area project to a variety of cortical and sub-cortical regions, including the 

prefrontal cortex, amygdala and ventral striatum (VS), while DA neurons from the 

latter structure project mainly to the dorsal striatum (Kuhar et al 2006). In other 

brainstem neurons, catecholamine synthesis does not stop with the formation of 

DA. Some of these neurons possess the enzyme DA β-hydroxylase (DßH), which 

converts DA into NE, while a minority of others also possess the enzyme 

phenylethanolamine N-methyltransferase, which converts NE into epinephrine 

(Kuhar et al 2006). Catecholamine synthesis in the periphery involves the same 

enzymes. 
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Of particular relevance to the present discussion are the storage, release 

and post-synaptic signalling features of the DA system. DA is most commonly 

synthesized in the pre-synaptic terminal of DA neurons, though synthesis also 

occurs in the cell body. Following DA synthesis in the cytosol, the 

neurotransmitter is actively transported into vesicles via the vesicular monoamine 

transporter (VMAT). DA release can be “phasic” which occurs in response to 

increases in the firing rate of DA neurons or “tonic” which is not activity-

dependent and contributes to the basal level of DA present in synaptic and extra-

synaptic areas (Grace et al 2007). Synaptic DA levels are generally regulated by 

pre-synaptic DA release and post-release clearance mechanisms. The latter 

involves reuptake of DA into the pre-synaptic terminal by the DA transporter 

(DAT) and ultimately its degradation into inactive metabolites by the enzyme 

monoamine oxidase (MAO). In most brain regions, DA can also be metabolized 

in an extraneuronal fashion by the enzyme catechol-O-methyltransferase (COMT) 

which is present in the synaptic cleft. Clearance by COMT is the dominant 

mechanism in the prefrontal cortex and clearance by DAT is the dominant 

mechanism in the striatum (Matsumoto et al 2003). DA exerts its post-synaptic 

effects by binding to one of the five different DA receptor subtypes (Missale et al 

1998). These are divided into two major families, the D1-like (D1 and D5) and 

D2-like receptors (D2, D3 and D4). All of the DA receptors are metabotropic 

receptors that signal through the creation of second messenger molecules, such as 

cAMP, which influence a variety of chemical cascades that in turn affect 

downstream targets such as gene transcription and receptor activity. DA receptors 

can be found pre-synaptically where they function as autoreceptors that regulate 

DA release or post-synaptically where they convey molecular signals to other 

neurons (Kuhar et al 2006).  

 

2.0 Dopamine, reward and the anhedonia hypothesis 

A series of groundbreaking studies conducted in the 1950s with electrical 

brain stimulation (EBS) served as a critical catalyst for investigations into the 
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neurobiology of reward and motivation. This approach was combined with a new 

operant conditioning paradigm to explore the potential involvement of cortical 

and sub-cortical structures in reward and punishment. Skinner’s behavioural 

theory of reinforcement (Skinner 1938) allowed for the objective measurement of 

behavioural responses related to reward and punishment. Briefly, a reinforcer was 

defined as any stimulus that served to increase the probability and frequency of 

actions that preceded its presentation (Skinner 1938). Thus, the frequency with 

which an animal responded by pressing a lever in a box, called instrumental 

responding, could be taken as a measure of the “rewarding effects” of a stimulus 

presented to that animal. In a landmark study, Olds and Milner (1954) combined 

EBS and operant conditioning and found that rats responded more frequently and 

vigorously on the operant lever in order to self-stimulate a variety of cortical and 

sub-cortical regions, including the lateral hypothalamus, cingulate cortex and 

brainstem. In stark contrast, though, rats did not increase their level of responding 

in order to receive EBS in other areas of the brain, including motor and sensory 

cortex. These and other observations made it clear that the brain contains specific 

anatomical substrates and circuits that correspond to basic biological drives, 

including sex, drinking and feeding (Coons et al 1965; Glickman & Schiff 1967; 

Olds 1956; Olds & Milner 1954).  

Work over the next decade led to the suggestion that a specific 

neurotransmitter mediated reward processing in the brain. Evidence for this 

proposition came from anatomical and pharmacological studies involving the EBS 

self-administration paradigm. First, the mechanism by which EBS of the median 

forebrain bundle enhanced instrumental self-administration behaviour in rats 

appeared to involve stimulation of noradrenergic fibers of passage (Dresse 1966) 

and the consequent release of NE from these nerve terminals (Stein & Wise 

1969). Second, drugs that altered NE neurotransmission produced dramatic 

changes in EBS self-administration behaviour. Specifically, drugs that augmented 

NE neurotransmission, such as amphetamine and MAO inhibitors, increased 

instrumental responding for EBS (Poschel 1969; Stein 1964), while drugs that 
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attenuated NE neurotransmission, such as DβH inhibitors, reserpine and alpha 

methylparatyrosine (AMPT), decreased instrumental responding for EBS (Gibson 

et al 1970; Wise & Stein 1969). These and other observations formed the 

foundation of the NE hypothesis of reward (Poschel & Ninteman 1963; Stein 

1964). 

Around the same time, DA was gaining attention as a potential 

neurotransmitter. Although DA was initially believed to function only as a 

precursor for NE synthesis, this view started to change when Arvid Carlsson and 

colleagues (1957) found that L-DOPA restored motor activity in reserpine-treated 

rabbits. While this study left open the possibility that L-DOPA produced its effect 

by elevating NE rather than DA levels, two subsequent studies provided strong 

evidence that DA was in fact the critical mediator. Tissue culture experiments 

revealed that L-DOPA more potently elevates DA levels compared to NE levels in 

the brain (Carlsson et al 1958) and that these neurotransmitters are synthesized in 

discrete, non-overlapping brain regions (Carlsson et al 1957). Since the latter 

study demonstrated that DA is synthesized to a high degree in the striatum and 

this brain region was known to be an important substrate for motor function, it 

was proposed that DA neurotransmission plays a key role in motor activity. The 

efficacy of L-DOPA as a treatment for the motor symptoms in Parkinson’s disease 

(PD) strengthened this notion further.  

Following the general acceptance of DA as a neurotransmitter, critical 

evidence emerged suggesting that it too was involved in reward. DA was first 

implicated in reward function based on the observation that electrode placement 

in brainstem nuclei that contained the cell bodies of DA neurons was sufficient to 

generate robust self-administration of EBS in rats (Crow 1972a; Crow 1972b; 

German & Bowden 1974). Next came the observation that systemic amphetamine 

administration enhanced instrumental responding for EBS when electrodes were 

placed in one of the loci of DA neurotransmission, the SN, as well as in the 

hypothalamus, which was believed to contain mainly noradrenergic fibers of 

passage (Phillips & Fibiger 1973). A role for DA in this behavioural phenomenon 
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was suspected since both isomers of amphetamine were equally effective at 

increasing instrumental behaviour for EBS despite the fact that d-amphetamine 

exerted more potent effects on NET compared to l-amphetamine. These two 

major findings from the EBS studies prompted the creation of a broader 

catecholamine hypothesis of reward, which posited that both DA and NE were 

important neurotransmitters for reward function.  

Investigators then conducted carefully controlled anatomical and 

pharmacological studies over the next decade in pursuit of confirmatory evidence 

for this new hypothesis. Surprisingly, though, a role for NE in mediating the 

rewarding effects of EBS was not supported by most of the evidence. Drugs that 

attenuated NE neurotransmission appeared to disrupt instrumental responding for 

EBS by altering arousal rather than reward function (Fouriezos et al 1978; 

Franklin 1978; Roll 1970). For example, in the study by Roll (1970), the DβH 

inhibitor disulfiram dramatically altered arousal as evidenced by the observation 

that rats fell asleep during brief pauses between EBS self-administration sessions. 

The key finding from this study was that disulfiram-treated rats resumed normal 

levels of instrumental responding for EBS when awoken by handling and placed 

back in front of the lever, suggesting that the rewarding efficacy of EBS remained 

the same, but that the lower levels of instrumental responding previously reported 

(Wise & Stein 1969) were due to the sedative effects of the drug. Furthermore, 

specific lesions to the NE fibers of the dorsal component of the median forebrain 

bundle failed to disrupt instrumental responding for EBS when the electrode was 

placed in either the locus coeruleus, a major locus of NE cell bodies in the 

brainstem, or the lateral hypothalamus, a structure densely innervated by NE 

fibers (Corbett et al 1977). A subsequent anatomical study determined that the cell 

bodies of NE neurons in the locus coeruleus did not overlap with the locations of 

electrodes in this region of the brainstem that supported self-administration of 

EBS (Corbett & Wise 1979). Since EBS did not appear to depend on activation of 

NE neurotransmission to generate rewarding effects, the role of this 

neurotransmitter in reward function started to come into question. 



12 

 

In contrast, similar experimental approaches provided some support for 

the idea that DA neurotransmission was an important part of the mechanism by 

which EBS produced its rewarding effects, though this was not without 

controversy. A series of drug challenge studies demonstrated that DA receptor 

antagonists strongly disrupted performance in EBS paradigms (Fibiger et al 1976; 

Franklin 1978; Franklin & McCoy 1979; Gallistel & Karras 1984; Rolls et al 

1974; Wauquier et al 1972; Zarevics et al 1977). Initially, this performance deficit 

was attributed to an effect of DA receptor antagonists on motor activity rather 

than reward function (Fibiger 1978; Fibiger et al 1976; Rolls et al 1974). For 

example, in the study by Fibiger et al (1976), the DA receptor antagonists 

haloperidol and pimozide both significantly reduced instrumental responding for 

EBS of the lateral hypothalamus. Since the number of lever presses dropped 

following drug administration and remained depressed throughout the test session, 

the authors concluded that the performance deficit was due to an effect of the 

drugs on motor activity. If the DA receptor antagonists disrupted performance 

because of an effect on reward function, the authors reasoned, an extinction curve 

characterized by an initial increase, followed by a progressive decrease, in 

instrumental responding should have been observed.  

Subsequent studies that were specifically designed to tease apart the effect 

of DA receptor antagonists on motor activity and reward function provided crucial 

evidence to suggest that these drugs were in fact altering reward function while 

leaving the capacity to respond intact. A notable series of experiments by 

Fouriezos et al (1978) provided compelling evidence. In the first experiment, the 

DA receptor antagonists pimozide and butaclomol both significantly and 

gradually decreased the instrumental response rate for EBS of the lateral 

hypothalamus. The resemblance of the pattern of drug effects to the extinction 

effect produced by reducing the current intensity of EBS implied that DA receptor 

antagonists reduced the rewarding effects of EBS in a similar manner. Indeed, the 

parallel between the effects of drugs and non-reward on instrumental responding 

is very important when interpreting the results of self-administration studies, since 
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it is assumed that the animal gradually ceases to respond for a reward while under 

the influence of a drug because it comes to experience that reward in the same 

way that it experiences non-reward. In the second experiment, Fouriezos et al 

(1978) observed that pimozide-treated rats initially responded at higher rates 

when they came back into contact with the lever after a brief timeout period that 

followed the initial extinction phase, though no EBS was available. The high 

levels of responding suggested that the pimozide-induced performance decrement 

in the previous experiment was not due to a drug-induced motor effect. In the 

third experiment, Fouriezos et al (1978) used a different self-administration 

paradigm to extract specific measures of motor and reward performance. In this 

paradigm, rats had to run down a long alley in order to press a lever and receive 

EBS. Running latency provided a measure of the ability to initiate a motor 

sequence, while running speed and self-stimulation rate provided measures of the 

ability to execute complex motor sequences. At the beginning of the extinction 

trials, pimozide-treated rats had normal running latencies, running speeds and 

self-stimulation rates when compared to vehicle-treated controls. However, as the 

session progressed, running latencies increased and both running speeds and self-

stimulation rates decreased significantly compared to controls. These results 

suggested that pimozide-treated rats decrease self-administration of EBS due to an 

effect of pimozide on the rewarding efficacy of EBS and not because of a drug-

induced inability to initiate and execute motor responses.  

The high rates of instrumental responding required in EBS self-

administration studies are a major limitation in reward studies, since even minor 

drug effects on motor performance can result in severe performance impairments. 

Consequently, an approach called the reward summation function was developed 

in an effort to reduce the impact of high response rate requirements and enhance 

the ability to detect the effect of experimental manipulations on reward function 

(Edmonds & Gallistel 1974; Edmonds & Gallistel 1977; Edmonds et al 1974). 

Using this approach, pimozide was shown to dramatically reduce the rewarding 

effects of EBS as evidenced by a shift to the right of the reward summation curve 
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(Franklin 1978; Franklin & McCoy 1979; Gallistel & Karras 1984), providing 

further evidence that DA receptor antagonists disrupt instrumental responding for 

EBS by impacting reward function rather than motor activity. Further 

pharmacological support for the proposition that DA was involved in EBS came 

from observations that DA augmenting drugs enhanced the rewarding efficacy of 

EBS as evidenced by dramatic increases in instrumental response rates or 

responding to lower current thresholds (Crow 1970; Gallistel & Karras 1984; 

German & Bowden 1974; Phillips & Fibiger 1973; Poschel & Ninteman 1964; 

Stephens & Herberg 1975). Additionally, an anatomical mapping study conducted 

by Corbett and Wise (1980) found that EBS self-administration was best 

supported by placement of electrodes in parts of the VTA, a brainstem region 

containing dense populations of DA neurons. Collectively, these studies showed 

that DA neurotransmission was an important component of the brain circuitry that 

mediates the rewarding effects of EBS. 

Concurrent with studies investigating EBS reward mechanisms, 

researchers began pursuing the idea that DA neurotransmission was also involved 

in mediating the rewarding effects of a variety of drug and natural rewards. The 

first indication that abused drugs tapped into the brain’s reward system came from 

the demonstration that amphetamine modulated responding for EBS (Stein 1964). 

Subsequently, it was shown that laboratory animals responded vigorously in an 

instrumental self-administration paradigm to receive injections of psychostimulant 

drugs (Pickens & Harris 1968). The possibility that direct activation of DA 

neurotransmission mediated the rewarding effects of psychostimulant drugs came 

from three separate lines of evidence. First, the DA receptor agonists 

apomorphine and piribedil sustained self-administration (Baxter et al 1974; Davis 

& Smith 1977; Wise et al 1976; Yokel & Wise 1978). Second, lesions to the 

ascending fibers of the DA pathway effectively eliminated the ability of 

psychostimulant drugs to sustain self-administration (Lyness et al 1979; Roberts 

et al 1977; Roberts et al 1980). Third and perhaps most striking was the ability of 

DA receptor antagonists to severely disrupt the prototypical high rates of 
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instrumental responding for psychostimulant drugs and DA receptor agonists in 

the self-administration paradigm (Baxter et al 1974; Davis & Smith 1977; de Wit 

& Wise 1977; Risner & Jones 1976; Risner & Jones 1980; Wilson & Schuster 

1972; Yokel & Wise 1975; Yokel & Wise 1976; Yokel & Wise 1978). For 

example, de Wit and Wise (1977) trained rats to lever press for cocaine and then 

tested these animals following pre-treatment with one of a wide range of doses of 

pimozide or saline. A very distinctive pattern of drug effects emerged in this 

study. Specifically, rats treated with the lowest dose of pimozide significantly 

increased their rate of responding compared to saline-treated rats, whereas rats 

treated with the high doses of pimozide dramatically increased their rate of 

responding at the outset of testing, but then eventually stopped responding 

altogether. The increased responding for cocaine observed in the rats treated with 

a low dose of pimozide suggested that the animals no longer found the previous 

dose of cocaine sufficiently rewarding since this behavioural pattern mirrored the 

commonly observed effect of lowering the dose of a psychostimulant drug. In this 

case, laboratory animals will increase their rate of responding in an effort to 

maintain a consistent blood level of the drug and to presumably optimize the 

drug’s rewarding effects. Additionally, the behavioural pattern of rats treated with 

high doses of pimozide, characterized by an initial robust increase in responding 

followed by a complete cessation of responding, resembled the extinction effect 

observed when animals previously trained to receive a reward are tested under 

conditions of non-reward. This pattern was also taken to suggest that the 

rewarding effects of cocaine were severely diminished by pre-treatment with a 

DA receptor antagonist. Combined with the growing evidence that neither lesions 

to the ascending fibers of the NE system (Roberts et al 1977) nor administration 

of NE antagonists (Davis & Smith 1975; Davis & Smith 1977; de Wit & Wise 

1977; Risner & Jones 1976; Risner & Jones 1980; Yokel & Wise 1975; Yokel & 

Wise 1976; Yokel & Wise 1978) compromised self-administration of DA-

augmenting drugs, it became clear that DA, but not NE, played an important role 

in mediating the rewarding effects of psychostimulant drugs. Following 
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observations that DA receptor antagonists disrupted instrumental responding for 

natural rewards, such as food and water (Gerber et al 1981; Wise & Schwartz 

1981; Wise et al 1978a; Wise et al 1978b), in much the same way that these drugs 

disrupted instrumental responding for artificial rewards, such as psychostimulant 

drugs and EBS, it appeared likely that DA neurotransmission was a common 

element in the brain circuitry that responded to nearly all rewards. 

Wise (1982) integrated the findings from investigations into the effect of 

DA receptor antagonists on EBS, drug and natural reward and formulated the 

anhedonia hypothesis of DA’s involvement in reward. The main purpose of the 

anhedonia hypothesis was to explain the robust performance-lowering effect of 

DA receptor antagonists on instrumental responding for a variety of rewards. The 

major thrust of the hypothesis was that DA receptor antagonists profoundly 

altered an animal’s level of “motivational arousal” by disrupting the rewarding 

effects of unconditioned stimuli as well as conditioned stimuli associated with 

reward. By rewarding impact, Wise meant the ability of these stimuli to produce a 

hedonic reaction and to reinforce behaviours that led to the acquisition and 

consumption of the unconditioned stimulus. The hypothesis was developed on the 

basis of several major behavioural patterns that emerged from studies examining 

the effect of DA receptor antagonists on reward. First, the response pattern of 

animals following pre-treatment with DA receptor antagonists resembled that of 

animals tested under the condition of non-reward. Specifically, in extinction trials 

involving omission of a previously reinforced reward, normal drug-free animals 

will initially respond at a high rate, but after failing to receive the reward, these 

animals gradually cease to respond. The same response pattern was observed 

following pre-treatment with DA receptor antagonists despite the fact that the 

reward was still available. Wise argued that this similarity in response patterns, 

termed “extinction mimicry,” occurred because animals treated with DA receptor 

antagonists came to experience the reward the same way as a normal drug-free 

animal came to experience non-reward. In other words, it appeared that the reward 

had lost its hedonic value following treatment with DA receptor antagonists. 
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Results from studies involving psychostimulant drugs were particularly striking 

since consistently elevated rates of responding were observed in animals pre-

treated with low doses of DA receptor antagonists, while an initial large burst of 

responding followed by a complete cessation of responding was seen in animals 

pre-treated with high doses of DA receptor antagonists. This was taken to suggest 

that DA receptor antagonism reduced the rewarding effects of these drugs and, 

consequently, animals increased responding in order to acquire a higher dose of 

the drug and presumably achieve the same magnitude of rewarding effect that 

previously occurred at the lower drug dose. The effects of DA receptor 

antagonism on instrumental responding for reward also resembled two other 

phenomena observed following non-reward in normal, drug-free animals: 

spontaneous recovery and decreased resistance to extinction. The former refers to 

a renewal of high rates of responding at the beginning of a new test session 

following an extinction trial, while the latter refers to a cumulative reduction in 

responding over successive extinction trials. Again, the similar behavioural 

patterns were taken to support the proposition that animals treated with DA 

receptor antagonists essentially valued the reward as much as a normal drug-free 

animal valued non-reward. These features were also important because they 

helped to rule out the alternative hypothesis that DA receptor antagonists affected 

instrumental responding by impairing motor activity rather than altering reward 

function. Second, at least with natural rewards, animals required multiple 

exposures to reward while under the influence of a DA receptor antagonist before 

a performance decrement was observed (Mason et al 1980; Wise et al 1978a). 

Additionally, normal levels of instrumental responding could be reinstated in 

these same animals if they were tested in a drug-free condition that occurred 

between test sessions involving pre-treatment with a DA receptor antagonist 

(Mason et al 1980). Taken together, these results demonstrated that animals 

needed to experience the reward while under the influence of a DA receptor 

antagonist before the drug would impact instrumental responding for that reward. 

It appeared that animals decreased instrumental responding in this situation 
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because the hedonic value of the reward was lower following DA blockade in 

comparison to a drug-free state. Third, decreased instrumental responding could 

be observed in the same animal following a transfer from several days of 

experience in a non-reward condition to a test session where the animal was pre-

treated with a DA receptor antagonist (Gerber et al 1981; Wise et al 1978a). This 

transfer effect was strongly suggestive of the existence of a shared property 

between the experience of non-reward and the experience of reward following 

pre-treatment with a DA receptor antagonist. Fourth, DA receptor antagonists also 

progressively diminish the ability of conditioned stimuli to elicit instrumental 

responding for reward (Gray & Wise 1980).  

A major argument against the anhedonia hypothesis was that DA receptor 

antagonists disrupted instrumental responding for reward not through an effect on 

reward per se, but rather by compromising motor function (Fibiger et al 1976). 

However, this was essentially ruled out by the fact that high instrumental response 

rates were initially observed following pre-treatment with DA receptor 

antagonists and again during tests of spontaneous recovery. Moreover, in 

experiments specifically designed to separate motor and reward functions, motor 

activity only decreased in animals pre-treated with DA receptor antagonists 

following several trials of normal responding and, most importantly, experience 

with the reward (Fouriezos et al 1978; Wise et al 1978a).    

Although the main intent of the anhedonia hypothesis was to account for 

DA’s role in reward as objectively measured by operant conditioning paradigms 

in laboratory animals, Wise and colleagues also openly speculated about a 

potential role of DA as a mediator of the subjective state of pleasure (Wise 1980; 

Wise 1982; Wise et al 1978b). This seemed to be a logical extension of the 

framework they presented to explain the modulatory effect of DA receptor 

antagonists on instrumental responding for reward, since hedonic reactions, 

including pleasure, presumably occur following interaction with rewards. This 

proposition also found some support from contemporary studies in humans, 

specifically the observations that DA receptor antagonists diminished 
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amphetamine-induced euphoria in drug users (Gunne et al 1972; Jonsson 1972; 

Jonsson et al 1971) and induced dysphoria in some patients with schizophrenia 

(Singh 1976). Moreover, humans reported feeling pleasure-like effects following 

EBS of brain regions innervated by DA neurons (Heath 1972). Thus, by the 

beginning of the 1980s, several distinct lines of evidence were suggestive of a role 

of DA neurotransmission in mediating positive mood states, such as pleasure.  

 

3.0 Dopamine and positive mood states 

3.1 Pre-clinical evidence against the anhedonia hypothesis  

 With respect to DA's involvement in pleasure, the anhedonia hypothesis 

was considered speculative. To the extent that it is possible to model and measure 

such subjective experiences in laboratory animals, none of the original 

experiments whose results form the basis of the anhedonia hypothesis actually did 

so. The proposition that DA mediated the pleasure associated with rewards mainly 

rested on the assumptions that pleasure always follows reward consumption and 

animals experience pleasure in the same way that humans do. Wise (1985) 

himself admitted this in a reformulation of the anhedonia hypothesis: "the 

assumption that pleasure is attenuated by neuroleptics is thus not a data-based 

assumption in the traditional sense. It is largely based on personal subjective 

experience; pleasure is a state which usually seems to accompany reward (Wise 

1985, page 182)." Clearly, the question of what role, if any, DA plays in positive 

mood states needs to be answered with evidence from studies in humans. 

Nevertheless, recent pre-clinical research has helped address this question by 

striving to elucidate the exact nature of DA's involvement in reward, motivation 

and hedonic processes.  

 Two lines of indirect evidence and one direct line of evidence have 

emerged from pre-clinical studies which cast doubt on the hypothesized role of 

DA as a mediator of positive mood states, including pleasure. First, the timing of 

DA neuron firing and DA release do not coincide with reward consumption. If 

DA mediated pleasure, DA neuron firing should occur just prior to, and DA 
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release during, interaction with a reward that is currently being consumed since 

that is the time when pleasure would be expected to be maximal. Experimental 

findings, though, do not support this prediction. For example, DA release in the 

nucleus accumbens (NAcc), a region of the VS that is densely innervated by VTA 

DA neurons, typically increases and then peaks prior to consumption of food or 

drug reward (Gratton & Wise 1994; Kiyatkin & Gratton 1994; Kiyatkin & Stein 

1996; Kiyatkin et al 1993; Phillips et al 1993; Richardson & Gratton 1996). 

Moreover, following multiple exposures, DA release begins to increase and then 

peak after presentation of visual or auditory cues that have been repeatedly paired 

with food or drug reward (Gratton & Wise 1994; Phillips et al 1993; Richardson 

& Gratton 1996). Similarly, electrophysiological studies have found that the firing 

rate of midbrain DA neurons does not increase following reward consumption, 

except when the reward is presented unexpectedly or during the initial stages of 

learning a task that involves reward (Ljungberg et al 1991; Ljungberg et al 1992; 

Mirenowicz & Schultz 1994; Schultz et al 1993; Schultz & Romo 1990). After 

extensive learning, midbrain DA neurons fire robustly and consistently to the 

presentation of cues associated with reward, but no increases in the firing rate are 

observed in response to the reward itself (Ljungberg et al 1991; Ljungberg et al 

1992; Mirenowicz & Schultz 1994; Schultz et al 1993; Schultz & Romo 1990). 

Second, a growing body of evidence implicates DA in aversive motivation 

(Ikemoto & Panksepp 1999; Salamone 1994a). Briefly, DA is released in the 

NAcc in response to a variety of aversive stimuli or stressful conditions, including 

foot or tail shock, tail pinch, restraint, forced exercise and anxiogenic drugs 

(Abercrombie et al 1989; Bertolucci-D'Angio et al 1990; D'Angio et al 1987; 

Imperato et al 1992; Imperato et al 1991; Kalivas & Duffy 1995; McCullough & 

Salamone 1992; Scatton et al 1988; Sorg & Kalivas 1991; Young et al 1993). 

Similar to reward-predicting conditioned stimuli, cues that are repeatedly 

presented in association with aversive stimuli also come to elicit DA release in the 

NAcc (Young et al 1993). Moreover, DA receptor antagonists impair avoidance 

responding (Ader & Clink 1957; Beninger et al 1980; Cook & Weidley 1957; 
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Davidson & Weidley 1976; White et al 1992). Taken together, these findings 

demonstrate that DA neurotransmission is not uniquely involved in reward 

processing or appetitive motivation. 

 The biggest pre-clinical challenge to the proposition that DA is a 

neurochemical mediator of pleasure has come from a series of studies using the 

taste reactivity test, which assesses the affective responses of animals after 

ingestion of sweet and bitter solutions. Briefly, the pattern of orofacial responses 

typically observed after an animal ingests a sweet solution are thought to reflect a 

positive evaluation akin to "liking" (hedonic reactions) whereas orofacial 

responses observed after an animal ingests a bitter solution are thought to reflect a 

negative evaluation akin to "disliking" (aversive reactions; Berridge & Robinson 

1998). Similar orofacial responses are observed across species, including humans 

(Berridge & Robinson 1998). Though it allows for a more direct assessment of 

how neurotransmitters, such as DA, affect hedonic processes in animal models, it 

is important to note that the taste reactivity test is not an index of subjective 

pleasure. In humans, orofacial responses to taste stimuli are highly correlated with 

subjective ratings of "liking" and "disliking," but they also occur normally in 

anencephalic infants (Berridge 1996; Steiner 1973). These and other findings 

suggest that the neural mechanisms underpinning orofacial responses to taste 

stimuli might be independent from those that mediate subjective hedonic 

experiences. Thus, while the taste reactivity test is a useful tool to investigate the 

neurobiology of basic hedonic processes, it can only provide limited insight into 

the role of DA in positive mood states, which are inherently subjective 

experiences.  

 With this caveat aside, several studies have examined the influence of 

experimentally-altered DA neurotransmission on positive and negative affect as 

measured by the taste reactivity test. According to the anhedonia hypothesis, 

methods that augment DA neurotransmission should increase hedonic reactions to 

sweet tastes, whereas methods that attenuate DA neurotransmission should do the 

opposite. The pattern of results, however, contravenes these predictions. DA 
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augmenting drugs, such as amphetamine and apomorphine, do not increase the 

number of hedonic reactions (Tindell et al 2005; Treit & Berridge 1990; Wyvell 

& Berridge 2000), nor does a robust elevation of DA levels with a 

hyperdopaminergic DAT knockout mouse (Pecina et al 2003). DA receptor 

antagonists, such as pimozide and haloperidol, fail to decrease the number of 

hedonic reactions (Pecina et al 1997; Treit & Berridge 1990) as do 

neurochemical-induced lesions of DA projections that substantially deplete DA 

levels (Berridge & Robinson 1998; Berridge et al 1989). Collectively, these 

findings suggest that DA neurotransmission is not involved in the neural 

mechanisms that underpin basic hedonic processes.   

 

3.2 Neuropsychiatric disorders and mood 

 Three neuropsychiatric disorders in which DA dysfunction is thought to be 

a component of the disease pathophysiology provide some insight into the 

potential role of DA neurotransmission in mood. First, altered DA 

neurotransmission has been implicated in the pathophysiology of depression and 

bipolar disorder, though no simple association between low DA levels and 

depressive symptoms has been demonstrated (Dunlop & Nemeroff 2007; Leyton 

2009). Rather, there is some evidence to suggest that DA dysfunction is present in 

a sub-group of depressed patients who exhibit psychomotor retardation (Meyer et 

al 2001; Meyer et al 2006). Second, PD, which involves pronounced decreases in 

DA neurotransmission and profound motor deficits, is also associated with mood 

and motivational disturbances (Aarsland et al 2005; Weintraub et al 2005). These 

latter symptoms likely emerge secondary to motor problems and are typically 

ameliorated with DA replacement therapy. Intriguingly, a small percentage of 

medicated PD patients develop a hypomanic-like syndrome, commonly called 

"DA dysregulation syndrome" (DDS), which is characterized by mood elevation, 

compulsive drug-taking and dramatic increases in goal-directed behaviours 

(Giovannoni et al 2000). As with bipolar mania, the precise contribution of 

increased DA neurotransmission to positive mood is not entirely clear. However, 
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one recent study with PD patients found an association between the magnitude of 

L-DOPA-induced DA release in the VS and subjective ratings of "drug wanting," 

but not "drug liking," suggesting that augmented DA neurotransmission does not 

contribute directly to the increased positive mood observed in PD patients with 

DDS (Evans et al 2006). Third, patients with schizophrenia, a psychiatric disorder 

thought to involve abnormally elevated striatal DA neurotransmission, do not 

experience euphoria as the anhedonia hypothesis would predict. However, these 

patients often complain of lowered mood and motivation following treatment with 

antipsychotic drugs, an effect sometimes referred to as "neuroleptic-induced 

dysphoria" (Lewander 1994; Singh 1976; Singh & Smith 1973) and these 

symptoms correlate with the degree of medication-induced DA D2 receptor 

blockade (Bressan et al 2002; de Haan et al 2000; Mizrahi et al 2007). 

Collectively, these lines of clinical evidence provide only weak support for the 

proposition that DA neurotransmission is involved in mood regulation. 

 

3.3 Dopaminergic agents: selectivity and mechanisms of action 

DA neurotransmission can be experimentally increased in humans through 

the administration of a variety of drugs. For the purpose of this review, these 

drugs will be divided into three main classes: specific DA augmenters, non-

specific DA augmenters and DA receptor agonists. In comparison to the non-

specific DA augmenters, drugs such as L-DOPA and tolcapone are relatively 

devoid of effects on neurotransmitters other than DA. L-DOPA, the gold standard 

in the treatment of PD, is the immediate metabolic precursor to DA. L-DOPA 

administration increases DA synthesis in the brain, though the magnitude of this 

effect is more pronounced in animal models of PD compared to healthy intact 

animals (Rodriguez et al 2007). Surprisingly, L-DOPA administration does not 

appear to have a significant effect on NE synthesis in vivo in laboratory animals 

(Bartholini et al 1969; Butcher & Engel 1969; Doshi & Edwards 1981; Goshima 

et al 1991; Schoenfeld & Uretsky 1973). Tolcapone elevates synaptic levels of 

DA through its inhibition of COMT, an enzyme that degrades catecholamines 
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from functionally active neurotransmitters to inactive metabolites (Karoum et al 

1994; Matsumoto et al 2003). This pharmacological mechanism more selectively 

enhances DA neurotransmission when tolcapone is administered in conjunction 

with L-DOPA, as evidenced by its clinical utility as an adjunctive therapy in PD 

(Ceravolo et al 2002). The psychostimulant drugs amphetamine and 

methylphenidate and the antidepressant drugs bupropion and nomifensine are 

included in the non-specific DA augmenter category since these drugs also 

significantly affect the levels of neurotransmitters other than DA. Amphetamine is 

a potent enhancer of pre-synaptic DA release via a combination of distinct 

mechanisms, including blockade of DAT and VMAT as well as inhibition of 

MAO (Sulzer et al 2005). Amphetamine also increases levels of NE and serotonin 

through its actions on VMAT and MAO along with blockade of their respective 

transporters, NET and SERT (Heal et al 2009; Sulzer et al 2005). 

Methylphenidate, a derivative of amphetamine and a commonly prescribed 

medication for the treatment of attention deficit hyperactivity disorder, robustly 

elevates DA and NE levels via a reuptake inhibition mechanism (Heal et al 2009). 

An abundance of pre-clinical evidence suggests that bupropion, used clinically as 

an antidepressant and smoking cessation aid, is a reuptake inhibitor of DA and 

NE, and to a lesser extent serotonin, as well as a nicotinic acetylcholine receptor 

antagonist (Arias et al 2009; Paterson 2009). However, in humans the extent to 

which its mechanism of action depends on elevated DA levels remains a matter of 

controversy since therapeutic doses administered to healthy volunteers do not 

appear to significantly alter striatal DA levels (Egerton et al 2010; Paterson 2009). 

Nomifensine, once a promising candidate antidepressant that had to be withdrawn 

from clinical use due to its abuse liability and side effects, is a reuptake inhibitor 

of DA and NE and, to a lesser extent, serotonin (Brogden et al 1979; Hanks 

1977). 

A plethora of DA receptor agonists are commercially available, but only a 

handful of these (apomorphine, bromocriptine, pramipexole and pergolide) have 

been used in carefully designed drug challenge studies probing the involvement of 
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DA neurotransmission in mood regulation in healthy humans. DA receptor 

agonists are mainly used in the treatment of PD (Kvernmo et al 2008), though a 

case has been made for their use either alone or as an adjunct to antidepressants in 

the treatment of depression (Willner 1997). Most DA receptor agonists exert their 

pharmacological effects by binding to several distinct types of DA receptors. For 

example, pergolide and apomorphine are considered mixed DA receptor agonists 

since these drugs bind with relatively high affinities to both the D1-like and D2-

like families of DA receptors (Kvernmo et al 2008). In contrast, bromocriptine 

and pramipexole have considerably higher receptor binding affinities for the D2-

like compared to D1-like receptor family (Kvernmo et al 2008). Pramipexole is 

the most selective D2 receptor agonist currently available since it is essentially 

devoid of activity at D1 and D5 receptors (Kvernmo et al 2008). Receptor binding 

promiscuity is a major limitation of the DA receptor agonists for two reasons. 

First, with the exception of pharmacological subtraction paradigms in which the 

behavioural effects of a mixed D1/D2 agonist are subtracted from the behavioural 

effects of a more selective D2 receptor agonist to uncover those behavioural 

effects most likely mediated through D1 receptor transmission, there is no way at 

present to accurately localize specific behavioural effects to specific sub-types of 

DA receptors in studies with humans. Second, receptor binding promiscuity is 

unfortunately not only limited to the DA family of receptors, since many of these 

agonists also have some affinity for serotonin and NE receptors, though typically 

to a much lesser extent.  

 

3.4 The effects of experimentally-increased DA neurotransmission on mood and 

subjective states in humans 

If the anhedonia hypothesis of DA function were correct, drugs that 

augment DA neurotransmission should produce increases in positive mood states. 

Early support for this hypothesis came from the clinical observations that repeat, 

high dose L-DOPA administration induced a hypomanic-like state in bipolar 

depressed patients (Bunney et al 1971; Goodwin et al 1970; Murphy et al 1971) 
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and in a subset of patients with PD (Calne et al 1969; O'Brien et al 1971) and the 

drug reversed the “pseudodepressions” that developed following reserpine 

administration (Degkwitz et al 1960). Around the same time, a series of studies 

demonstrated that neuroleptics could diminish the euphorigenic effects of 

amphetamine (Jonsson 1972; Jonsson et al 1971), pointing to DA as the 

neurochemical mediator of these mood-elevating effects. Collectively, these 

separate lines of evidence raised the possibility that increased DA 

neurotransmission could be a direct mediator of positive mood states in humans.  

In healthy subjects, by far the most robust and consistent pattern of effects 

on mood and other subjective states has been observed in studies that have 

administered the psychostimulant drugs amphetamine or methylphenidate. 

Amphetamine potently and consistently increases positive mood, as indexed by 

the POMS measure Elated-Depressed and the VAS items “Rush,” “High,” and 

“Euphoria,” and arousal, as indexed by the POMS measure Energetic-Tired and 

the VAS items “Excited,” “Energetic,” “Mind-Racing,” and “Alert” (Acheson & 

de Wit 2008; Brauer & de Wit 1997; Chait 1993; de Wit et al 2002; Leyton et al 

2007). For example, in a placebo-controlled study of 39 healthy volunteers 

conducted by Chait et al (1993), moderate doses of amphetamine (7.5 to 20 mg) 

produced marked effects on the POMS (increased scores on the Anxiety, Vigor, 

Friendliness, Elation and Arousal sub-scales), ARCI (increased scores on the BG, 

A, MBG and LSD scales) and VAS (increased scores on the items “Stimulated,” 

“High,” and “Anxious”). The same pattern of drug effects is typically seen 

following administration of methylphenidate (for a review see Kollins et al 2001), 

though there is some evidence to suggest that the magnitude of drug effects, 

particularly on measures of euphoria, is higher for amphetamine compared to 

methylphenidate when equivalent doses are administered (Brown et al 1978; 

Chait 1994; Martin et al 1971; Rush et al 2001; Smith & Davis 1977). More 

pronounced effects on measures of euphoria are generally observed following 

administration of higher doses of methylphenidate (for example, Volkow et al 

1999; Volkow et al 2006). Collectively, these studies demonstrate the robust 
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mood-elevating and stimulant effects of the psychostimulant drugs amphetamine 

and methylphenidate. Since both drugs exert their pharmacological effects on 

multiple neurotransmitter systems, it is impossible to attribute the observed 

changes in positive mood to changes in the activity of one neurotransmitter 

system, such as DA.  

In comparison, the non-specific DA augmenters bupropion and 

nomifensine have considerably weaker and far more variable effects on mood and 

other subjective states in healthy humans. Bupropion is structurally similar to 

amphetamine, but within the range of doses administered clinically or in 

experimental studies with humans (50 to 400 mg), it does not have the same 

constellation or magnitude of effects (Acheson & de Wit 2008; Miller & Griffith 

1983; Peck et al 1979; Rush et al 1998). Five published studies involving healthy 

humans have examined the effects of bupropion on mood and other subjective 

states. In general, high doses of bupropion (200 to 400 mg) produce mild 

stimulant-like effects, but are generally devoid of euphorigenic effects, whereas 

low doses (below 200 mg) do not have any observable effects on mood and other 

subjective states (Acheson & de Wit 2008; Gobbi et al 2003; Miller & Griffith 

1983; Peck et al 1979; Rush et al 1998). For example, in a combined sample of 33 

smokers and non-smokers who were otherwise neurologically and psychiatrically 

healthy, Acheson and de Wit (2008) found that a low dose of bupropion (150 mg) 

did not have any significant effects on the POMS, ARCI or DEQ. In contrast, a 

high dose of bupropion (300 mg) significantly increased scores on the POMS 

Arousal subscale and the DEQ items “Feel Drug,” “Like Drug” and “Want More 

Drug.” Notably, neither dose of bupropion had an effect on three putative 

measures of euphoria: the POMS subscale Elated-Depressed, the ARCI subscale 

MBG and the DEQ item “High.” Two studies have found hints of an effect of 

bupropion on measures of euphoria (Gobbi et al 2003; Rush et al 1998), but these 

findings are neither particularly strong nor consistent. In the first study, Gobbi et 

al (2003) used a chronic dosing regimen whereby healthy volunteers administered 

one of two doses of bupropion daily for one week. Relative to placebo, 
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participants who ingested 150 mg per day had significantly higher scores on the 

POMS Arousal subscale and a trend toward higher scores on the POMS Elated-

Depressed subscale. It is interesting to note that the higher dose of bupropion (300 

mg per day) did not significantly affect either of these subscales. In a study of 

healthy volunteers who were administered escalating doses of bupropion on 

separate days following a washout period, Rush et al (1998) found that 

participants who ingested high doses of bupropion (200 and 400 mg) had 

significantly increased scores on the DEQ item “Elated” compared to the placebo 

session. However, neither of these doses significantly altered scores on the POMS 

subscale Elated-Depressed, thus calling into question the robustness of 

bupropion’s effect on euphoria. In contrast to bupropion, studies assessing the 

effect of nomifensine on mood and other subjective states in healthy humans are 

more consistent. All of the four published placebo-controlled studies were 

conducted in the 1980s to assess nomifensine’s potential clinical viability as an 

antidepressant drug. In these studies, VAS were employed as part of a larger 

battery of cognitive and physiological measures. None of these studies found 

statistically significant differences between nomifensine (50 to 100 mg) and 

placebo for any of the VAS measures (Culig et al 1983; Hamilton et al 1983; 

Siegfried & Taeuber 1984; Taeuber et al 1979). Taken together, the studies 

reviewed above suggest that potent and non-selective DA augmenters, such as the 

psychostimulant drugs amphetamine and methylphenidate, have strong and 

consistent mood-elevating and stimulant-like effects in healthy humans. In 

contrast, the relatively weaker and non-selective DA augmenters, such as 

bupropion and nomifensine, are devoid of euphorigenic effects and only one of 

these (bupropion) has mild stimulant-like effects in healthy humans.  

Several studies have been conducted to assess the effect of DA receptor 

agonists on mood and other subjective states in healthy volunteers (summarized in 

table 1). A majority of these studies did not set out to investigate the role of DA 

neurotransmission in mood regulation, but rather employed mood and subjective 

state measures in order to control for the potential confound of drug side effects 
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on cognitive task performance. In many of these studies, VAS were commonly 

used to measure dimensions of mood related to arousal and less emphasis was 

placed on assessment of positive mood dimensions. Additionally, a few of these 

studies administered novel mood rating scales, such as the Adjective Mood Scale 

(AMS; Muller et al 1998). This is a major limitation of these studies since it is 

difficult to determine which items on these unique scales correspond to 

measurements of positive mood and how they might compare to positive mood 

items on more frequently used and validated instruments such as the VAS and 

POMS. Despite these limitations, a consistent picture has emerged from the group 

of studies which assessed the effect of DA receptor agonists on mood and other 

subjective states in healthy humans. In general, the mixed D1 and D2 receptor 

agonists apomorphine and pergolide and the relatively selective D2 receptor 

agonists pramipexole and bromocriptine do not produce mood-elevating effects in 

healthy humans. Only one study has been conducted in healthy volunteers with 

apomorphine (Blin et al 1990). In this study, nine healthy men were administered 

a subcutaneous dose of 10 µg per kg. Compared to placebo treatment, 

apomorphine did not significantly alter VAS ratings pertaining to arousal and 

positive mood. Similarly, in the four placebo-controlled studies which 

administered pergolide to healthy volunteers, none found strong evidence of a 

mood-elevating effect (Breitenstein et al 2006; Muller et al 1998; Roesch-Ely et al 

2005; Upadhyaya et al 2003). In fact, two of these studies (Muller et al 1998; 

Roesch-Ely et al 2005) detected a mild mood-lowering effect of pergolide as 

assessed by the AMS. Since neither of these studies employed VAS to measure 

potential side effects, such as nausea, dizziness and drowsiness, it is impossible to 

determine if these contributed to the mild mood-lowering effect that was detected. 

The only hint of a mild mood-elevating effect of pergolide came from a study by 

Breitenstein et al (2006) in which 0.1 mg of pergolide was administered daily for 

five days to a group of 40 healthy men and women just prior to training on an 

associative learning task. Acute administration of pergolide did not significantly 

affect mood as measured by the Positive and Negative Affect Scale. However, 
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compared over all of the training sessions, participants in the pergolide group had 

stable measures of positive mood whereas participants in the placebo group 

started out with similar positive mood scores and these consistently decreased 

during each of the subsequent training sessions. The authors interpreted this as 

evidence of flattened affect following inhibition of phasic DA release via 

stimulation of D2 autoreceptors with a low dose of pergolide. Alternatively, it is 

possible that chronic administration of pergolide produced a mild mood-elevating 

effect which was protective against the general mood-lowering effect of the 

cognitive task training.  

The relatively selective DA D2 receptor agonists bromocriptine and 

pramipexole appear to have mild mood-lowering effects at most. Of the seven 

published studies which examined the effect of bromocriptine on mood and other 

subjective states, only one found evidence of a mild mood-lowering effect (Mehta 

et al 2001 vs. Abduljawad et al 1998; Cools et al 2007; Franken et al 2008; 

Micallef et al 2009; Muller et al 1998; Roesch-Ely et al 2005). In the study by 

Mehta et al (2001) in a group of 20 healthy men, a low dose of bromocriptine 

(1.25 mg) significantly decreased scores on the VAS factor “Contentedness” 

compared to the placebo session. This could be a spurious finding since this effect 

was not detected in any of the other studies which either administered 

bromocriptine at the same dose (Abduljawad et al 1998; Cools et al 2007) or at a 

higher dose (2.5 mg; Franken et al 2008; Micallef et al 2009; Muller et al 1998; 

Roesch-Ely et al 2005). Of the three published studies which examined the effect 

of the most selective D2 receptor agonist pramipexole on mood and other 

subjective states in healthy humans, only one found evidence of a mild mood-

lowering effect of the drug (Hamidovic et al 2008). In this study, low (0.25 mg) 

and high (0.5 mg) doses of pramipexole were administered to a group of 10 

healthy men and women. The high dose of pramipexole, but not the low dose, 

significantly decreased scores on the ARCI subscales related to euphoria and 

energy, the POMS subscale Vigor and the empirically derived factor Positive 

Mood. The authors hypothesized that the sedative side effect of pramipexole was 
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responsible for the observed mood-lowering effect of the drug, possibly through 

an elaborate mechanism involving stimulation of pre-synaptic DA D3 

autoreceptors and a consequent disruption of NE neurotransmission. Further 

evidence for a non-specific effect of pramipexole on positive mood dimensions 

came from a study by Pizzagalli et al (2008) in which 0.5 mg of the drug was 

administered to a sample of 32 healthy men and women. A mild mood-lowering 

effect of the drug was observed as evidenced by significantly increased VAS 

ratings of “Mental Slowness” and “Tension” following pramipexole compared to 

placebo, but these effects were no longer significant after scores were adjusted for 

adverse drug effects. Taken together, the results of the studies which administered 

the relatively selective DA D2 receptor agonists bromocriptine and pramipexole 

suggest that these drugs at most have a mild mood-lowering effect in healthy 

humans. The effect appears to be non-specific and likely due to the side effect 

profile of both drugs.  

Compared to pharmacological challenge studies conducted with non-

specific DA augmenters and DA D2 receptor agonists, relatively fewer studies 

have been conducted with specific DA augmenters, such as L-DOPA and 

tolcapone. Nevertheless, the reported studies have consistently demonstrated a 

lack of effect of elevated DA neurotransmission on mood and other subjective 

states. For example, in a study of 25 healthy men, Roussos et al (2009) did not 

detect an effect of 200 mg of tolcapone on any of the POMS subscales, nor was a 

differential drug effect observed when participants were classified according to 

the presence of a polymorphism coding for either a high or low activity form of 

the COMT enzyme. Two other studies which administered tolcapone to healthy 

volunteers failed to find an effect of the drug on mood and other subjective states 

(Apud et al 2007; Giakoumaki et al 2008). Similarly, of the three studies which 

administered low doses of L-DOPA to healthy humans, none found evidence of a 

drug effect on mood and other subjective states (Andreu et al 1999; Micallef et al 

2009; Pine et al 2010). These studies are limited by the use of only one dose of L-

DOPA and dissimilar measures of mood and other subjective states across studies. 
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Specifically, the study by Andreu et al (1999) did not measure any positive mood 

dimensions and the more recent studies by Micallef et al (2009) and Pine et al 

(2010) did not have overlapping VAS measures or other standardized mood rating 

scales. Thus, there is an obvious need for additional studies to more fully 

characterize the effect of the selective DA augmenter L-DOPA on mood and other 

subjective states in healthy humans. 
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Table 1. The effect of dopamine-enhancing agents on positive mood states in healthy humans.  
Drug Mechanism of 

Action 

Dose Study n Mood 

Measures 

Effect on 

Positive Mood 

Details 

Apomorphine Mixed D1/D2 

agonist 

10 µg/kg Blin (1990) 9 VAS ≠  

Bromocriptine D2 agonist 1.25 mg Morcom (2010) 32 VAS NR VAS items corresponding to motivation and energy 

No drug effects on any measure 

2.5 mg Micallef (2009) 12 VAS ≠  

2.5 mg Franken (2008) 21  VAS 

PANAS 

≠  

1.25 mg Cools (2007) 22  VAS ≠  

2.5 mg Roesch-Ely (2005) 40  AMS ≠  

1.25 mg Mehta (2001) 20 VAS ↓ Bromocriptine ↓ VAS Contented and ↑ VAS Sad and 

Antagonistic scores 

1.25 mg Abduljuwad (1998) 12  VAS ≠  

2.5 mg Muller (1998) 16  AMS 
STAI 

≠ Not clear what these scales actually measure 

L-DOPA Selective DA 

augmenter 

100 mg Micallef (2009) 12  VAS ≠  

150 mg Pine (2010) 14  VAS ≠  

200 mg Andreu (1999) 22  VAS NR Only measured VAS “Drowsiness” 

Lisuride D2 agonist 0.2 mg van der Post (2004) 12 VAS ↓ Adverse effects, such as nausea, vomiting and headache 
No sedative effect 

Pergolide Mixed D1/D2 

agonist 

0.1 mg Breitenstein (2006) 40  PANAS ≠ Drugs administered daily for 5 days 

No acute drug effect (assessed on day 1) 

Pergolide group had stable positive mood during training 
sessions on days 2-5, whereas placebo group had ↓ positive 

mood during training sessions on all days 

0.1 mg Roesch-Ely (2005) 40  AMS ≠  

0.05 mg Upadhyaya (2003) 15 VAS ≠  

0.1 mg Muller (1998) 16  AMS 

STAI 

↓ Not clear what these scales actually measure 

Pramipexole D2 agonist 0.5 mg Micallef (2009) 12  VAS ≠  

0.25 mg, 0.5 mg Hamidovic (2008) 10  POMS 
ARCI 

DEQ 

↓ 0.5 mg ↓ euphoria and energy as measured by ARCI, ↓ POMS 
vigor and positive mood and ↓ item "like drug" on DEQ 

0.5 mg Pizzagalli (2008) 32  VAS ≠  

Tolcapone  COMT 
inhibitor 

200 mg Roussos (2009) 25  POMS ≠ No COMT genotype X drug interaction effect for any POMS 
item 

200 mg Giakoumaki (2008) 23  POMS ≠ No COMT genotype X drug interaction effect for any POMS 

item 

100 mg day 1 

followed by 200 

mg x 6 days 

Apud (2007) 47  POMS ≠ No COMT genotype X drug interaction effect for any POMS 

item 
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For the purpose of this table, measures of positive mood include the ARCI MBG subscale, POMS “Elated” subscale, 

and the VAS items “High,” “Rush,” “Euphoria,” “Contentedness,” “Like Drug,” and “Good Effects.” Abbreviations: 

AMS, Adjective Mood Scale. ARCI, Addiction Research Center Inventory. NR, not reported. PANAS, Positive and 

Negative Affect Scales. POMS, Profile of Mood States. VAS, Visual Analog Scales. STAI, State Trait Anxiety 

Inventory. 
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3.5 The effects of experimentally-decreased DA neurotransmission on mood in 

humans 

DA neurotransmission can be experimentally decreased in humans in two 

main ways, either through pharmacological blockade of DA receptors or through 

a reduction of DA biosynthesis. The latter can be accomplished by administering 

drugs that inhibit tyrosine hydroxylase (AMPT) or through dietary depletion of 

amino acids, such as tyrosine and phenylalanine, which are essential for DA 

synthesis (the acute phenylalanine tyrosine depletion method; APTD). In humans, 

the first evidence of an association between decreased DA neurotransmission and 

lowered mood came from a series of clinical observations in the 1970s with 

schizophrenic patients. In some patients, administration of antipsychotic drugs 

quickly led to the development of a constellation of negative subjective 

symptoms, including dislike of the medication, apathy, hostility and depression 

(Singh 1976; Singh & Smith 1973; Van Putten & May 1978). This syndrome was 

dubbed "neuroleptic-induced dysphoria" (Singh & Smith 1973). Some evidence 

suggests that these negative subjective symptoms are related to the sedative 

effects that arise from the pharmacological action of older antipsychotic drugs on 

the histamine and NE neurotransmitter systems (Lewander 1994). However, these 

symptoms have also been observed following administration of newer 

antipsychotic drugs which are relatively devoid of sedative side effects (Voruganti 

et al 2000), suggesting that some other mechanism is responsible for the mood-

lowering effect of antipsychotic drugs. In support of the proposition that altered 

DA neurotransmission contributes to the effect of antipsychotic drugs on mood in 

schizophrenic patients, three neuroimaging studies have found evidence of a 

positive association between the striatal D2 receptor occupancy of these drugs and 

negative mood symptoms in schizophrenic patients (Bressan et al 2002; de Haan 

et al 2000; Mizrahi et al 2007). Collectively, these clinical findings provide some, 

albeit weak, support for the notion that DA neurotransmission plays a role in 

positive mood regulation.  
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An abundance of studies have been conducted in healthy humans to 

examine the effect of relatively selective DA receptor antagonists, such as 

haloperidol and amisulpride, on aspects of cognitive function and mood (table 2). 

Since some of these studies were more concerned with the effect of DA receptor 

blockade on cognitive function, an emphasis was placed on measuring drug side 

effects rather than positive mood states. In fact, several studies failed to measure 

positive mood at all (for example, Mehta et al 1999; Mehta et al 2004; Mehta et al 

2005; Mehta et al 2008). In the studies that measured a much broader set of mood 

dimensions, none of the DA receptor antagonists consistently affected positive 

mood. For example, neither amisulpride nor sulpiride were found to alter positive 

mood in the six studies that used these drugs (Jocham et al 2011; Legangneux et 

al 2000; McClelland et al 1990; Peretti et al 1997; Ramaekers et al 1999; van der 

Post et al 2004). In the two studies that administered chlorpromazine to healthy 

humans and examined its effect on mood, one found evidence of a mood-lowering 

effect (McClelland et al 1990), while the other did not (Hughes et al 1999). In 

contrast to three lower doses of pimozide which did not produce any subjective 

effects (Brauer & de Wit 1995; Brauer & de Wit 1996), administration of a high 

dose of pimozide (8 mg) significantly reduced scores on the POMS “Elated-

Depressed” and “Vigor” subscales and a composite measure of positive mood 

(Brauer & de Wit 1997). In a large sample of healthy humans, Saeedi et al (2006) 

found evidence of a mild mood-lowering effect of haloperidol. In this study, 

participants who received a high dose of haloperidol (5 mg) had significantly 

decreased VAS “Contentment” scores compared to those who received placebo. 

VAS “Contentment” scores did not differ between participants who received 

lower doses of haloperidol (1 mg or 3 mg) and those who received placebo. 

Notably, none of these doses of haloperidol produced a sedative effect. This is an 

important point because the other three studies that found evidence of a mood-

lowering effect of haloperidol also observed a drug-induced sedative effect (Liem-

Moolenaar et al 2010; Magliozzi et al 1985; McClelland et al 1990). From these 

results it is unknown whether haloperidol-induced sedation contributed to the 
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observed mood-lowering effect, since the aforementioned studies did not examine 

this with an analysis of covariance. Nevertheless, these positive findings must be 

considered against a backdrop of several studies that failed to detect an effect of 

haloperidol on positive mood (for example, Enggasser & de Wit, 2001; Krystal et 

al 1999; Wachtel et al 2002). Taken together, these results suggest that DA 

receptor blockade, at least at the moderate level accomplished in these studies, 

does not appreciably modulate positive mood states in healthy humans. The 

possibility remains that a higher magnitude of DA receptor blockade must be 

achieved before an effect on positive mood will be observed in healthy humans. 

However, this will be difficult to test in future studies because of the risk of 

adverse drug effects at higher doses.  

By far the most consistent results have come from studies that decreased 

DA neurotransmission by reducing biosynthesis of the neurotransmitter. 

Administration of AMPT to healthy humans has been shown to robustly decrease 

positive mood and arousal in several studies (Laruelle et al 1997; Verhoeff et al 

2001; Verhoeff et al 2003; though see Krahn et al 1999; McCann et al 1995; 

Zimmerman et al 1996). However, since AMPT is a competitive inhibitor of 

tyrosine hydroxylase, it attenuates DA and NE levels to a similar extent. 

Consequently, the mood-lowering effect of the drug cannot be solely ascribed to 

changes in DA tone. In contrast, studies conducted with the APTD method, which 

more selectively decreases DA neurotransmission, have largely failed to detect a 

mood-lowering effect of the manipulation except following a psychosocial 

stressor. Specifically, only two out of ten published studies observed a mild 

mood-lowering effect following APTD compared to the balanced condition 

(Harmer et al 2001; McLean et al 2004). However, in a study by Leyton et al 

(2000), participants had significantly lower scores on the POMS “Elated-

Depressed” subscale in the APTD condition when mood was measured following 

stress induction with a public speaking task. Thus, decreased DA 

neurotransmission appears to produce a mild mood-lowering effect at best and 

perhaps only when it occurs in the context of an environmental stressor. The 
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possibility remains that a higher magnitude of DA depletion is required before a 

robust and consistent mood-lowering effect is observed in healthy humans, since, 

in the absence of a drug or psychological challenge, APTD might reduce synaptic 

DA levels by only 10-20% (Montgomery et al 2003). Collectively, the results 

from drug challenge studies that have attenuated DA neurotransmission in healthy 

humans suggest that DA only plays a minor role, if any, in the regulation of 

positive mood states.   
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Table 2. The effect of relatively selective dopamine-decreasing agents on positive mood states in healthy humans.  
Dopamine-

decreasing agent 

Mechanism of 

Action 

Study Dose n Mood 

Measures 

Effect on 

Positive Mood 

Details/Other Effects 

AMPT Tyrosine 

hydroxylase 

inhibitor 

McCann (1995) 6000 mg 41 POMS 

VAS 

≠ Sedative effect 

Laruelle (1997) 8000 mg 9 VAS ↓ Sedative effect 

Verhoeff (2001) 4500 mg 6 POMS 
VAS 

↓ Sedative effect 

Verhoeff (2003) 5200 mg 6 POMS 

VAS 

↓  Sedative effect 

APTD Dietary 
depletion of 

dopamine 

precursors 

Leyton (2000)  26 POMS 
VAS 

↓ Only significant following psychosocial 
stressor 

No sedative effect 

Harmer (2001)  12 VAS ↓ No sedative effect 

Harrison (2002)  13 POMS 
VAS 

≠ No sedative effect 

Grevet (2002)  12 POMS 

VAS 

≠ No sedative effect 

McLean (2004)  39 VAS ↓ No sedative effect 

Harrison (2004)  13 VAS ≠ No sedative effect 

Lythe (2005)  12 VAS ≠ No sedative effect 

Mehta (2005)  14 VAS NR Sedative effect 

Vrshek-Schallhorn (2006)  37 POMS 

VAS 

≠ No sedative effect 

Scholes (2007)  12 VAS ≠ No sedative effect 

Mann (2008)  16 VAS ≠ No sedative effect 

van Ruitenbeek (2009)  16 VAS NR No sedative effect 

Newhouse (2010)  11 POMS ≠ No mood-lowering effect following 

psychosocial stressor 

Amisulpiride D2/D3 

antagonist  

Mattila (1996) 50 and 200 mg 18 VAS NR No sedative effect 

Peretti (1997) 50 and 100 mg 12 VAS ≠ 50 mg had sedative effect 

Ramaekers (1999) 50 and 400 mg X 5 

days 

21 ARCI ≠  

Legangneux (2000) 50 mg 17 VAS ≠ No sedative effect 

Barrett (2004) 300 mg 32 VAS NR No sedative effect 

Jocham (2011) 200 mg 16 VAS ≠ No sedative effect 

Chlorpromazine D2 antagonist McClelland (1990) 50 mg 12 VAS ↓ Sedative effect 

Danion (1992) 12.5 and 25 mg 72 VAS NR No sedative effect 

Mattila (1994) 50 mg 12 VAS NR Sedative effect 

Green (1999) 50, 75 and 100 mg 12 VAS NR Sedative effect (75 and 100 mg) 

Hughes (1999) 50 mg 12 VAS ≠ Sedative effect 

McCartan (2001) 100 mg 46 VAS NR Sedative effect 

Barrett (2004) 100 mg 32 VAS NR Sedative effect 

Haloperidol D2 antagonist Magliozzi (1985) 0.125 mg/kg (IV) 

0.5 mg/kg 

16 POMS 

ARCI 

↓ Sedative effect 

McClelland (1990) 3 mg 12 VAS ↓ Sedative effect 
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Malaspina (1994) 2 mg (IM) 7 POMS ≠ Sedative effect 

Vitello (1997) 2 mg 12 VAS NR No sedative effect 

Lynch (1997) 2, 4 and 6 mg 15 VAS NR 4 mg dose produced sedative effect  

Peretti (1997) 1 and 2 mg 12 VAS ≠ No sedative effect 

Williams (1997) 0.5 and 1 mg (IV) 166 VAS ≠ No sedative effect 

Meyer-Lindenberg (1997) 300 mg 12 VAS NR No sedative effect 

Kumari (1998) 5 mg 57 UMACL ≠ Sedative effect? 

Abduljawad (1998) 3 mg 12 VAS ≠ No sedative effect 

Krystal (1999) 5 mg 20 VAS ≠ Sedative effect 

Beuzen (1999) 3 mg/day X 4 days 14 VAS ≠ Sedative effect 

Ramaekers (1999) 4 mg X 5 days 21 ARCI ↓ ↓ ARCI MBG subscale scores on day 5 only 

Legangneux (2000) 2 mg 17 VAS ≠ No sedative effect 

McCartan (2001) 1 mg (IV) 48 VAS NR No sedative effect 

Enggasser (2001) 3 mg 17 VAS 
ARCI 

≠ No sedative effect 

Wachtel (2002) 3 mg 18 POMS 

VAS 

ARCI 

≠ Sedative effect 

Saeedi (2006) 1, 3 and 5 mg 59 POMS 

VAS 

↓ 5 mg ↓ VAS "Contentment" 

No sedative effect 

Wezenberg (2007) 2.5 mg 15 VAS ≠ No sedative effect 

D'Souza (2008) 0.057 mg/kg 28 VAS ≠ No sedative effect 

Franken (2008) 2 mg 21 VAS ≠  

Liem-Moolenar (2010) 3 mg 12 VAS ↓ Sedative effect 

Pimozide D2 antagonist Brauer (1995) 4 mg 12 POMS 

VAS 
ARCI 

≠ No sedative effect 

Brauer (1996) 1 and 2 mg 10 POMS 

VAS 

ARCI 

≠ No sedative effect 

Brauer (1997) 8 mg 12 POMS 

VAS 

ARCI 

↓ No sedative effect 

Sulpiride D2 antagonist McClelland (1990) 400 mg 12 VAS ≠ No sedative effect 

Meyer-Lindenberg (1997) 300 mg 12 VAS NR No sedative effect 

Mehta (1999) 200 and 400 mg 34 VAS NR No sedative effect 

van der Post (2004) 400 mg 12 VAS ≠ No sedative effect 

Mehta (2004) 400 mg 35 VAS NR No sedative effect 

Mehta (2005) 400 mg 18 VAS NR No sedative effect 

Mehta (2008) 200 and 400 mg 10 VAS NR No sedative effect 

Morcom (2010) 400 mg 32 VAS NR VAS items assessed motivation and energy 

No drug effects observed 
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For the purpose of this table, measures of positive mood include the ARCI MBG subscale, POMS “Elated” subscale, 

and the VAS items “High,” “Rush,” “Euphoria,” “Contentedness,” “Like Drug,” and “Good Effects.” Unless otherwise 

stated, drugs were administered orally. Only relatively selective DA antagonists are included in this table; drugs with 

significant activity at other neurotransmitter receptors are omitted. Abbreviations: ARCI, Addiction Research Center 

Inventory. NR, Not Reported. POMS, Profile of Mood States. UMACL, UWIST Adjective Checklist. VAS, Visual 

Analog Scales. 
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3.6 The effects of experimentally-decreased DA neurotransmission on the mood-

elevating effects of abused drugs in humans 

 Concomitant administration of DA decreasing treatments and abused 

drugs is another approach that has been used to evaluate the potential role of DA 

in positive mood states. Most studies have been negative, though, and this lack of 

influence has been observed with multiple methods for diminishing DA 

neurotransmission (table 3). While early studies found intriguing evidence that 

DA-decreasing drugs could blunt the euphorigenic effects of high doses of 

amphetamine in regular users of the drug (Gunne et al 1972; Jonsson 1972; 

Jonsson et al 1971), this finding could not be replicated in subsequent studies with 

healthy volunteers (Brauer & de Wit, 1995; Brauer & de Wit 1996; Brauer & de 

Wit 1997; Jacobs & Silverstone 1986; Leyton et al 2007; though see McTavish et 

al 1999) or cocaine users (Evans et al 2001; Haney et al 2001; Leyton et al 2005; 

Nann-Vernotica et al 2001; Sherer et al 1989; Stine et al 1997; though see 

Romach et al 1999). It is important to note that all of the studies with healthy 

volunteers administered lower doses of amphetamine than the original in-patient 

studies, thus leaving open the possibility that DA blockade only modulates the 

euphorigenic effects of psychostimulant drugs when these are administered at 

relatively high doses. Additionally, despite the fact that the doses of DA receptor 

antagonists used in a majority of these studies falls within the clinical range that is 

associated with a high degree of DA receptor blockade, it is still possible that a 

higher magnitude of DA receptor blockade is required in order to diminish the 

euphorigenic effects of commonly abused drugs. This possibility will be difficult 

to test in future studies since higher doses of all currently available experimental 

methods to decrease DA neurotransmission are likely to produce significant 

unwanted side effects (Brauer & de Wit 1997; Evans et al 2001; Leyton et al 

2000). In general, though, experimentally decreased DA neurotransmission does 

not appear to alter the mood-elevating effects of psychostimulant drugs or other 

commonly abused drugs, including ketamine (Krystal et al 1999), THC (D'Souza 

et al 2008), ethanol (Barrett et al 2008; Enggasser & de Wit 2001; Leyton et al 
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2000; though see Ahlenius et al 1973), and nicotine (Casey et al 2006; Chausmer 

et al 2003; Venugopalan et al 2010). Collectively, these findings do not support 

the proposition that DA is a key mediator of positive mood states, including 

pleasure.  
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Table 3. The effect of dopamine-decreasing drugs on the mood-elevating effects of abused drugs in humans. 

Dopamine Blocker Abused Drug Study Participants Mood 

Measures 

Effect on 

Positive Mood 

Details/Other Effects 

Ecopipam (Selective 
D1/D5 antagonist) 

Cocaine Romach (1999) 15 cocaine-dependent 
volunteers 

VAS ↓ Acute dosing 
High dose ecopipam ↓ cocaine-induced 

increases in VAS "Good Drug Effect" and 

"High" scores 

Cocaine Haney (2001) 10 cocaine-dependent 
volunteers 

VAS ↑ Ecopipam ↑ cocaine-induced ratings of 
VAS "High" and "Good Drug Effect" 

Chronic dosing 

Cocaine Nann-Vernotica (2001) 10 cocaine-dependent 
volunteers 

VAS 
POMS 

ARCI 

≠ Chronic dosing 

Nicotine Chausmer (2003) 10 volunteers with 

cocaine and nicotine 
dependence 

VAS ≠  

Flupenthixol (Non-

selective DA antagonist) 

Cocaine Evans (2001) 31 cocaine abusers VAS ≠  

Fluphenazine (Non-
selective DA antagonist)  

AMPH Brauer (1995) 12 healthy volunteers VAS 
POMS 

ARCI 

≠  

Haloperidol (D2/D3 
antagonist) 

Cocaine Sherer (1989) 5 cocaine abusers VAS 
ARCI 

≠  

Ketamine Krystal (1999) 20 healthy volunteers VAS ≠  

THC D’Souza (2008) 28 healthy volunteers 

and cannabis users 

VAS ≠  

Ethanol Enggasser (2001) 17 social drinkers ARCI 

VAS 

≠ Haloperidol blocked alcohol-induced 

euphoria in sub-group of drinkers who 

reported stimulant effects following 
ethanol 

METH Wachtel (2002) 35 healthy volunteers VAS 

POMS 

ARCI 

≠  

MDMA Liechti (2000) 14 healthy volunteers OAV-ASC ↓  

Pimozide (D2 

antagonist) 

AMPH Jonsson (1972) 24 AMPH abusers VAS ↓ Acute and chronic (1 week) effects 

AMPH Jacobs (1986) 12 healthy volunteers VAS ≠  

AMPH Brauer (1995) 12 healthy volunteers VAS 

POMS 
ARCI 

≠  

AMPH Brauer (1996) 10 healthy volunteers VAS 

POMS 
ARCI 

≠ Low dose pimozide (4 mg) 

AMPH Brauer (1997) 12 healthy volunteers VAS 

POMS 

ARCI 

≠ High dose pimozide (8 mg) 

APTD AMPH McTavish (1999) 15 healthy volunteers VAS  ↓  
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Ethanol Leyton (2000) 39 healthy volunteers VAS 

POMS 

≠  

METH McTavish (2001) 16 healthy volunteers  ≠  

Nicotine Casey (2006) 15 men with nicotine 

dependence 

VAS 

POMS 

≠  

AMPH Leyton (2007) 14 healthy volunteers VAS 
POMS 

≠  

Cocaine Leyton (2005) 8 cocaine abusers VAS 

POMS 

≠ APTD ↓ cocaine craving 

Ethanol Barrett (2008) 16 social drinkers VAS ≠  

AMPT (tyrosine 
hydroxylase inhibitor) 

AMPH Jonsson (1971) 29 AMPH abusers VAS ↓ High single dose AMPH (IV 200 mg) 

Ethanol Ahlenius (1973) 10 healthy volunteers Observer ↓ Alcohol-induced increases in “Elation” 

and “Happy” were blocked by AMPT 

(observer ratings only; effect not found 
with self ratings) 

Cocaine Stine (1997) 10 cocaine abusers VAS 

POMS 

≠  
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For the purpose of this table, measures of positive mood include the ARCI MBG subscale, POMS “Elated” subscale, 

and the VAS items “High,” “Rush,” “Euphoria,” “Contentedness,” “Like Drug,” and “Good Effects.” Abbreviations: 

AMPH, amphetamine. AMPT, alpha-methylparatyrosine. APTD, acute phenylalanine tyrosine depletion. ARCI, 

Addiction Research Center Inventory. MDMA, 3,4-Methylenedioxymethamphetamine or ecstasy. METH, 

methamphetamine. OAV-ASC, Altered State of Consciousness rating scale. POMS, Profile of Mood States. THC, 

tetrahydrocannabinol. VAS, visual analog scales.  
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4.0 Individual differences: dopamine, approach-related personality traits and 

mood 

4.1 Dopamine and approach-related personality traits 

 In the early 1970s, Jeffrey Gray profoundly altered the course of 

psychology research when he postulated the existence of three basic behavioural 

systems that underpinned personality (Gray 1973). Since some evidence linked 

specific brain circuits to each of these basic behavioural systems, individual 

differences in the reactivity of these systems were proposed to result from inter-

individual variability in their underlying neurobiology. Gray (1973) speculated 

that individual differences in personality traits emerged from individual 

differences in the neurobiological substrates that directly mediated the reactivity 

of these basic behavioural systems. Gray's behavioural activation system (BAS) 

and later Panksepp's foraging-expectancy command system (Panksepp 1986b) 

were proposed to influence an animal's sensitivity to incentive stimuli in its 

environment and to regulate its approach to reward. On the basis of accumulating 

evidence from EBS and neurochemistry studies that implicated DA 

neurotransmission and elements of its associated reward circuitry in the control of 

approach and exploratory behaviour and incentive motivation (Bardo et al 1996; 

Beninger 1983; Berridge & Robinson 1998; Salamone et al 2007), several 

researchers have more recently postulated the involvement of DA 

neurotransmission in "approach-related personality traits" in humans, such as 

novelty seeking, sensation seeking, impulsivity and extraversion (Cloninger 1987; 

Depue & Collins 1999; Zuckerman & Kuhlman 2000).  

 The most compelling evidence collected to date in support of this 

proposition has come from a pre-clinical model of approach-related personality 

traits. In laboratory animals, novelty seeking behaviour can be assessed with 

several performance-based tests, such as open field and place preference tests. 

Since a high degree of inter-individual variability exists on these performance 

measures, rats can be categorized as either "high responders" (HR) or "low 

responders" (LR; Dellu et al 1996; Piazza et al 1989). The HR model is thought to 
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be analogous to measures of approach-related personality traits in humans, since 

both tools appear to assess approach and exploratory behaviours (Dellu et al 

1996). Neurochemistry and electrophysiology experiments using this model have 

yielded evidence indicating that HR rats are characterized by a midbrain DA 

system that is more reactive than LR rats. Specifically, HR rats show significantly 

higher NAcc DA release following either acute or chronic administration of 

psychostimulant drugs compared to their LR counterparts (Chefer et al 2003; 

Hooks et al 1992; Hooks et al 1991). HR rats have been shown to have higher 

VTA DA neuron firing rates (Marinelli & White 2000) and NAcc D1 receptor 

density (Hooks et al 1994) compared to LR rats. D2 receptor density has been 

found to be lower in the NAcc of HR compared to LR rats (Hooks et al 1994), 

which further suggests that DA neurotransmission is enhanced in this group of 

rats since these receptors are thought to function mainly as autoreceptors that 

control DA release. Using a different experimental approach, a recent study found 

that D2/D3 receptor binding was also significantly reduced in "impulsive" 

compared to "non-impulsive" rats (Dalley et al 2007). To the extent that these pre-

clinical models are analogous to human personality traits, these results suggest 

that midbrain DA neurotransmission might be elevated in humans who possess 

high levels of approach-related personality traits compared to those who possess 

lower levels of these traits.  

 In humans, two main lines of indirect evidence link variability in 

approach-related personality traits to individual differences in DA 

neurotransmission. First, several neuroimaging studies have found evidence of 

associations between approach-related personality traits and indices of DA 

neurotransmission. In brief, the magnitude of striatal DA release induced by 

amphetamine or alcohol challenge has been shown to positively correlate with 

individual differences in personality traits, such as novelty seeking and 

impulsivity (Boileau et al 2003; Boileau et al 2006; Buckholtz et al 2010a; 

Buckholtz et al 2010b; Leyton et al 2002). Two recent studies have also found 

evidence of baseline differences in DA neurotransmission between individuals 
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who score high or low on scales measuring approach-related personality traits, 

such as impulsivity and sensation seeking (Buckholtz et al 2010b; Gjedde et al 

2010). Of particular interest is the study by Buckholtz and colleagues (2010) who 

found an association between D2/D3 receptor binding in the VTA and SN and 

impulsivity, as measured by Barrett's Impulsivity Scale, as well as the magnitude 

of amphetamine-induced striatal DA release. Based on the results of a model they 

developed which incorporated these findings, the authors proposed that "high 

impulsive" individuals have fewer D2 autoreceptors in the VTA which decreases 

inhibition of DA neurons in this brain region and consequently facilitates 

enhanced DA release in the striatum. Taken together, these neuroimaging findings 

suggest that individuals who possess high levels of approach-related personality 

traits might be characterized by enhanced reactivity of the midbrain DA system in 

comparison to individuals who possess low levels of these traits. Second, drug 

challenge studies have shown that experimentally altered DA neurotransmission 

modulates the ability to sustain interest in rewards. Specifically, selective 

attention and responding for reward-paired cues is increased by DA augmenting 

drugs (de Wit et al 2002; Servan-Schreiber et al 1998) and decreased by DA 

attenuating drugs (Ahveninen et al 2000; Clark et al 1986; Kahkonen et al 2001; 

Leyton et al 2007; Magliozzi et al 1989; McLean et al 2004; Saeedi et al 2006; 

Shelley et al 1997). These findings parallel pre-clinical observations implicating 

DA neurotransmission in goal-directed or approach behaviour and thus provide 

further, albeit indirect, evidence in humans that DA neurotransmission might be a 

critical component underlying approach-related personality traits.  

  

4.2 Approach-related personality traits and the mood-elevating effects of 

psychostimulant drugs 

 There is a high degree of inter-individual variability in the subjective and 

mood-elevating effects of abused drugs (de Wit et al 1986), but the causes of this 

variation remain poorly understood. Since these effects are thought to be 

important in the development of drug addiction, researchers have sought to 
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determine the factors underlying this variation. Among the possible factors are 

individual differences in approach-related personality traits. However, attempts to 

predict a differential subjective drug response depending on individual differences 

in approach-related personality traits have so far been mixed. Three studies have 

found positive associations (Hutchison et al 1999; Sax & Strakowski 1998; White 

et al 2006) while four studies have not (Alessi et al 2003; Chait 1993; Corr & 

Kumari 2000; Uhlenhuth et al 1981). It is important to note that different 

personality scales were typically used in each of these studies and not all studies 

were designed explicitly to test associations between approach-related personality 

traits and the mood-elevating effects of amphetamine. Thus, no definitive 

conclusions can be made on the basis of this evidence. The results of recent 

neuroimaging studies, which have consistently found associations between the 

magnitude of DA release in the ventral striatum and individual differences in both 

the mood-elevating effects of amphetamine (Abi-Dargham et al 2003; Boileau et 

al 2007; Drevets et al 2001; Laruelle et al 1995; Martinez et al 2003; Munro et al 

2006; Oswald et al 2005; Oswald et al 2007; Volkow et al 1999) as well as 

approach-related personality traits (Boileau et al 2003; Buckholtz et al 2010a; 

Buckholtz et al 2010b; Leyton et al 2002), suggest that in some way variation in 

mood-elevating effects is systematically related to variation in approach-related 

personality traits.   

 

5.0 Purpose of the present study 

Whether or not elevated DA neurotransmission directly mediates positive 

mood states in healthy humans remains an open question for two reasons. First, 

several recent neuroimaging studies have found associations between 

psychostimulant drug-induced increases in striatal DA release and the mood-

elevating effects of these drugs (Abi-Dargham et al 2003; Boileau et al 2007; 

Drevets et al 2001; Laruelle et al 1995; Martinez et al 2003; Munro et al 2006; 

Oswald et al 2005; Oswald et al 2007; Volkow et al 1999). These findings have 

revived interest in the proposition that DA plays a critical role in positive mood 
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states, particularly pleasure. Second, previous drug challenge studies have either 

administered psychostimulant drugs, which act on multiple neurotransmitters in 

addition to DA, or DA receptor agonists or antagonists, which target specific DA 

receptor subtypes. Thus, it has been difficult to determine the precise contribution 

of DA to mood and other subjective states.  

The present study was conducted to determine the effect of a more 

selective DA augmenter, L-DOPA, on mood and other subjective states in a large 

group of healthy humans. Approach-related personality traits were used as proxies 

of DA neurotransmission since these traits have been shown to correlate with the 

magnitude of drug-induced striatal DA release (Boileau et al 2003; Boileau et al 

2006; Buckholtz et al 2010a; Buckholtz et al 2010b; Leyton et al 2002). If 

elevated DA neurotransmission produced pleasurable effects, it was expected that 

the effects would be largest in those individuals who scored high on 

questionnaires assessing approach-related personality traits.  
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ABSTRACT 

Dopamine neurotransmission influences approach toward rewards and reward-

related cues. The best cited interpretation of this effect proposes that dopamine 

mediates the pleasure that commonly accompanies reward. This hypothesis has 

received support in some animal models and a few studies in humans. However, 

direct assessments of the effect of transiently increasing dopamine 

neurotransmission have been largely limited to the use of psychostimulant drugs, 

which elevate brain levels of multiple neurotransmitters in addition to dopamine. 

In the present study we tested the effect of more selectively elevating dopamine 

neurotransmission, as produced by administration of the immediate dopamine 

precursor, L-DOPA (0, 100/25, 200/50 mg, Sinemet), in healthy human 

volunteers. Neither dose altered positive mood. The results suggest that dopamine 

neurotransmission does not directly influence positive mood in humans.  
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INTRODUCTION 

Mesolimbic dopamine (DA) neurotransmission influences the ability of 

rewards to elicit focused interest and approach [1-5]. One early and still 

frequently cited interpretation is that the neurotransmitter mediates pleasure [6]. 

This possibility was first suggested following observations that neuroleptic 

medications decreased amphetamine-induced subjective “high” in stimulant drug 

abusers [7-9] and produced a sense of “psychic indifference” in patients with 

schizophrenia [10] while extended treatment with high doses of L-DOPA led to 

hypomanic states in patients with bipolar mood disorders [11]. Subsequently, a 

series of carefully controlled animal studies indicated that increases in DA 

neurotransmission augmented instrumental responding for electrical stimulation 

of the brain (ESB) [12] while decreased DA neurotransmission disrupted 

responding for drugs, food, and ESB [13-18]. The latter effects were not 

attributable to compromised motor function since low doses of DA receptor 

antagonists increased instrumental responding while higher doses produced 

biphasic increases and decreases. These observations led to the suggestion that 

DA receptor antagonists reduced the ability to experience pleasure [6].  

Some recent work is at least consistent with the “anhedonia hypothesis.” 

For example, individual differences in the magnitude of drug-induced striatal DA 

responses correlate with approach-related personality traits [19-22] and the 

substance’s positive subjective effects [23-31]. In the converse experiments, 

mood-lowering effects of antipsychotic medications are predicted by their extent 

of DA D2 receptor blockade [32-34].  
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Other work, though, has seemed inconsistent with a role of DA in 

pleasure. First, in both humans [35,36] and laboratory animals [3,37] DA release 

in the ventral striatum can also be evoked by aversive stimuli. Second, in operant 

conditioning paradigms, DA release increases and then peaks just prior to a lever 

press for reward and then gradually decreases thereafter [38,39]. With experience, 

DA comes to be released in response to cues associated with the reward [38-40] 

but not when actually receiving the reward [40,41]. Third, an extensive series of 

studies has indicated that neither DA antagonists nor DA lesions alter responses in 

the ‘taste reactivity’ paradigm, an animal model of eating-related pleasure 

[2,42,43]. Finally, the majority of studies have failed to replicate an ability of 

neuroleptic medications or other DA lowering manipulations to decrease drug-

induced pleasure in humans [44-58].  

Given the above controversies, the present study aimed to test the effect of 

a more selective DA augmenter, L-DOPA, on mood states in healthy human 

volunteers. Since individual differences in approach-related traits predict 

differences in DA reactivity, it was further hypothesized that those who scored 

higher on these traits would exhibit greater mood elevation. 
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METHODS 

Ethics Statement 

The study was carried out in accordance with the Declaration of Helsinki 

and was approved by the Research Ethics Board of the McGill University 

Hospital Centre. All subjects gave informed written consent. 

 

Subjects 

Fifty participants were recruited from the McGill University campus 

through online classified advertisements. Forty-eight men and women (29 females 

and 19 males; mean age 21.9 ± 3.7 years) completed the study. One participant 

was excluded due to vomiting at the beginning of the test session and another was 

excluded because of failure to comprehend the task instructions. All were healthy, 

as determined by a physical exam, standard laboratory tests, and an interview with 

the Structured Clinical Interview for DSM-IV, axis I [59]. None had a personal 

history of axis I psychiatric disorders. On the test day, all subjects tested negative 

on a urine drug screen sensitive to cocaine, opiates, phencyclidine, barbiturates, 

∆
9
-tetrahydrocannabinol, and amphetamines (Triage Panel for Drugs of Abuse, 

Biosite Diagnostics©, San Diego, CA).  

 

Procedure 

Participants completed the personality questionnaires on the same day as 

the psychiatric interview, while the test session took place on a separate day. 

Participants also completed a battery of cognitive tasks during the test session, but 
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these results will be reported elsewhere. Participants were assigned to one of three 

drug groups (n = 16 per group): placebo, L-DOPA/carbidopa (Sinemet, 100mg /25 

mg) or L-DOPA/carbidopa (Sinemet, 200 mg/50 mg), in a randomized, double 

blind, between-groups design. A combination drug, including the peripheral 

decarboxylase inhibitor carbidopa, was used to prevent the conversion of L-DOPA 

to DA before it entered the brain. Low doses of L-DOPA were administered in an 

effort to avoid the potential confound of side effects such as nausea, vomiting and 

dizziness. On the test day, participants arrived in the laboratory at 11:30 AM and 

completed baseline subjective state questionnaires and drug screening. At 12:30 

PM, participants ingested two green capsules containing either placebo or one of 

the two doses of L-DOPA. Participants completed the mood questionnaires at 

three additional times: 45 minutes, 105 minutes and 165 minutes post-capsule 

ingestion. Cognitive testing commenced 45 minutes following ingestion of the 

capsules, coinciding with the time to peak blood concentration of L-DOPA, and 

lasted until 3:30 PM. Female participants who were not taking oral contraceptives 

were tested within 10 days of the start of menstruation because previous studies 

have shown that females are more sensitive to reward in the follicular compared 

to the luteal phase of the menstrual cycle [60-62].  

 

Personality Measures 

All subjects completed the Tridimensional Personality Questionnaire 

(TPQ) [63], Substance Use Risk Profile (SURPS) [64] and the Neuroticism-

Extroversion-Openness Five Factor Inventory (NEO-FFI) [65]. Of specific 
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interest in the present study were the TPQ Novelty Seeking factor and two of its 

subscales (Exploratory-Excitability and Impulsiveness), the SURPS factors 

Impulsivity and Sensation Seeking, and the NEO-FFI factor Extraversion. Each 

drug group was further sub-divided into high and low groups based on a median 

split of these personality factor scores for each subject.   
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Mood and Subjective Effects Measures 

Subjective effects were measured with the bipolar Profile of Mood States 

(POMS), a sensitive measure of small rapid changes in mood [66,67], and a visual 

analog scale (VAS) labeled “Nauseous”. The POMS is comprised of 72 adjectives 

that describe various mood states. Participants indicate the extent to which they 

feel these states at each time point on a scale ranging from 0 (“not at all”) to 4 

(“extremely”). The POMS items are then converted into 6 empirically derived 

sub-scales: Elated-Depressed, Composed-Anxious, Agreeable-Hostile, Confident-

Unsure, Energetic-Tired and Clearheaded-Confused. Both questionnaires were 

administered at four times on the test day: at baseline, and at 45, 105 and 165 

minutes post-capsule ingestion.  
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DATA ANALYSIS 

 Data analyses were conducted using SPSS Statistics (version 18.0; IBM, 

Chicago, Illinois). Each drug group was further subdivided based on a median 

split of scores for the approach-related personality traits of Impulsivity, 

Extraversion, Sensation Seeking and Novelty Seeking, yielding high and low 

groups for each factor. Three separate analyses were conducted for TPQ Novelty 

Seeking: the total score as well as scores for the Exploratory-Excitability (NS1) 

and Impulsiveness (NS2) subscales. Three-way mixed design ANOVAs were 

used to assess the effects of drug group (independent factor, 3 levels: placebo, 100 

mg L-DOPA, 200 mg L-DOPA) and personality trait sub-group (independent 

factor, 2 levels: high and low) across time (repeated factor, 4 levels: baseline, + 45 

minutes, +105 minutes and +165 minutes) for all of the mood and subjective 

effects measures. Two-way independent groups ANOVAs were used to assess the 

effects of drug group and personality trait subgroup on POMS absolute peak 

change scores, calculated as the largest difference between any of the three time 

points and baseline. Post-hoc Least Significant Differences (LSD) tests were used 

whenever an ANOVA yielded a significant result. The significance for all 

statistical tests was p < 0.05.  
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RESULTS 

 There were no significant Group x Time interaction effects for any of the 

POMS subscales (all ps > 0.05, see Table 1), nor were there significant main 

effects of personality (all ps > 0.05). A three-way Group x Personality sub-group 

x Time interaction raised the possibility that NS2 predicted differential POMS 

Agreeable-Hostile responses to L-DOPA, but this effect was no longer significant 

when VAS "Nauseous" scores were entered as covariates (F6, 114 = 0.804, p > 

0.05). Effects on nausea were mild (peak change = 1.4 / 10), and statistically 

significant for the 200 mg L-DOPA dose only (F6, 126 = 2.839, p < 0.05) (see Table 

1). 
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DISCUSSION 

In the present study, the immediate DA precursor, L-DOPA, did not affect 

positive subjective states in healthy human volunteers, neither in the groups as a 

whole nor in subgroups based on DA-related personality traits. These findings 

extend the results from previous drug challenge studies. In contrast to non-

specific DA augmenters, such as psychostimulant drugs, which reliably and 

potently elevate mood in healthy human volunteers [31,55,68-70], accumulating 

evidence indicates that more selective DA agonists do not (Table 2).  

The inability to detect effects of L-DOPA on positive mood does not 

preclude a relationship between DA neurotransmission, personality traits and 

goal-directed behavior [11,19-22,71,72]; indeed, enhancements in goal-directed 

behavior may lead to elevated mood [11,71-73]. However, the present results 

suggest that drug-induced mood-elevating effects are more closely related to 

neurotransmitters other than DA [3,37,71-78], perhaps serotonin, norepinephrine, 

glutamate, GABA, endocannabinoids and endogenous opioids [2,79-84].  

If DA’s influence on reward seeking behaviors is not accounted for by 

enhanced pleasure, this raises the question of why it has these effects. Perhaps the 

best-supported alternative interpretation from the animal literature proposes that 

DA enhances the incentive salience of reward related cues, increasing their ability 

to elicit focused interest and effortful seeking [2,43,85]. This conclusion is largely 

based on extensive evidence that decrements in DA neurotransmission reduce the 

willingness to work for rewards [37,85] without changing responses in an index of 

feeding related pleasure [2,43]. Accumulating work in humans supports this 
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interpretation also [71, Table 2]. For example, in a series of studies conducted 

here, decreasing DA neurotransmission disrupted the tendency of subjects to 

respond preferentially to reward-related cues [55] and decreased the willingness 

to work for abused drugs and monetary reward on progressive ratio breakpoint 

schedules [53,58]; each of these effects was produced without reductions in 

pleasure. Indeed, the majority of studies in humans have failed to replicate an 

ability of various DA lowering manipulations to diminish drug-induced pleasure 

[45-58]. 

 The present results should be considered in light of the following. First, 

there was no direct measure of the ability of L-DOPA to increase DA, leaving 

open the possibility that mood changes were not detected because L-DOPA failed 

to increase DA levels. However, this seems unlikely since similar doses of L-

DOPA given to healthy human volunteers induce behavioural effects [86-88] and 

increase striatal DA synthesis [89]. Pre-clinical studies confirm that L-DOPA 

increases extracellular DA levels in the intact brains of healthy laboratory 

animals, albeit to a lesser extent than in animal models of Parkinson's disease 

[90]. Although, to our knowledge, there are no reports of L-DOPA induced DA 

release in healthy humans, in patients with Parkinson’s disease robust L-DOPA 

induced DA responses are seen [91]; intriguingly, these effects are largest in those 

who have developed pathological gambling and the “DA dysregulation 

syndrome” [92,93]. Moreover, in these patients, larger L-DOPA-induced DA 

responses are associated with higher novelty- and fun-seeking personality traits, 

greater L-DOPA-induced psychomotor activation, and greater drug “wanting” but 
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not drug “liking” [92]. Testing the effect of larger increases in DA 

neurotransmission in healthy human volunteers will be difficult, though, since 

higher doses of all currently available drugs that selectively augment DA 

neurotransmission are limited by side effects such as nausea, vomiting, dizziness 

and drowsiness. Indeed, this limitation guided our selection of L-DOPA doses in 

the present study. Second, we used a median split to determine the high and low 

sub-groups for each of the approach-related personality traits. It might be 

necessary to recruit participants from the more extreme ends of the normative 

population distribution for each of these traits in order to detect a differential 

effect of a DAergic drug since individual differences in DA neurotransmission 

might be more pronounced in these more extreme ends of the distribution. This 

noted, a post hoc examination of our more extreme upper and lower quartiles also 

failed to identify an effect on mood (all p-values ≥ 0.15). Finally, it is possible 

that an effect on mood would have been seen with a larger sample size. However, 

this is considered unlikely. The single largest effect size was peak change to 

‘Energetic-Tired’ scores (d = 0.339), and this would have required a sample of 

138. All other effects would require samples larger than 200. Following 

corrections for multiple comparisons, these numbers increase further again.  

 In conclusion, then, L-DOPA failed to produce changes in positive mood 

states in a group of healthy human volunteers. These findings add to an 

accumulating literature suggesting that increases in DA neurotransmission are not 

sufficient to directly generate positive emotions.  
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Table 1. The effect of dopamine-enhancing agents on positive mood states in healthy humans.  
Drug Mechanism of 

Action 

Dose Study n Mood 

Measures 

Effect on 

Positive Mood 

Details 

Apomorphine Mixed D1/D2 

agonist 

10 µg/kg Blin (1990) 9 VAS ≠  

Bromocriptine D2 agonist 1.25 mg Morcom (2010) 32 VAS NR VAS items corresponding to motivation and energy 

No drug effects on any measure 

2.5 mg Micallef (2009) 12 VAS ≠  

2.5 mg Franken (2008) 21  VAS 

PANAS 

≠  

1.25 mg Cools (2007) 22  VAS ≠  

2.5 mg Roesch-Ely (2005) 40  AMS ≠  

1.25 mg Mehta (2001) 20 VAS ↓ Bromocriptine ↓ VAS Contented and ↑ VAS Sad and 

Antagonistic scores 

1.25 mg Abduljuwad (1998) 12  VAS ≠  

2.5 mg Muller (1998) 16  AMS 
STAI 

≠ Not clear what these scales actually measure 

L-DOPA Selective DA 

augmenter 

100 mg Micallef (2009) 12  VAS ≠  

150 mg Pine (2010) 14  VAS ≠  

200 mg Andreu (1999) 22  VAS NR Only measured VAS “Drowsiness” 

Lisuride D2 agonist 0.2 mg van der Post (2004) 12 VAS ↓ Adverse effects, such as nausea, vomiting and headache 
No sedative effect 

Pergolide Mixed D1/D2 

agonist 

0.1 mg Breitenstein (2006) 40  PANAS ≠ Drugs administered daily for 5 days 

No acute drug effect (assessed on day 1) 

Pergolide group had stable positive mood during training 
sessions on days 2-5, whereas placebo group had ↓ positive 

mood during training sessions on all days 

0.1 mg Roesch-Ely (2005) 40  AMS ≠  

0.05 mg Upadhyaya (2003) 15 VAS ≠  

0.1 mg Muller (1998) 16  AMS 

STAI 

↓ Not clear what these scales actually measure 

Pramipexole D2 agonist 0.5 mg Micallef (2009) 12  VAS ≠  

0.25 mg, 0.5 mg Hamidovic (2008) 10  POMS 
ARCI 

DEQ 

↓ 0.5 mg ↓ euphoria and energy as measured by ARCI, ↓ POMS 
vigor and positive mood and ↓ item "like drug" on DEQ 

0.5 mg Pizzagalli (2008) 32  VAS ≠  

Tolcapone  COMT 
inhibitor 

200 mg Roussos (2009) 25  POMS ≠ No COMT genotype X drug interaction effect for any POMS 
item 

200 mg Giakoumaki (2008) 23  POMS ≠ No COMT genotype X drug interaction effect for any POMS 

item 

100 mg day 1 

followed by 200 

mg x 6 days 

Apud (2007) 47  POMS ≠ No COMT genotype X drug interaction effect for any POMS 

item 
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For the purpose of this table, measures of positive mood include the ARCI MBG subscale, POMS “Elated” subscale, 

and the VAS items “High,” “Rush,” “Euphoria,” “Contentedness,” “Like Drug,” and “Good Effects.” Abbreviations: 

AMS, Adjective Mood Scale. ARCI, Addiction Research Center Inventory. NR, not reported. PANAS, Positive and 

Negative Affect Scales. POMS, Profile of Mood States. VAS, visual analog scales. STAI, State Trait Anxiety 

Inventory. 
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DISCUSSION 

 In the present study, L-DOPA failed to alter subjective ratings of positive 

mood in a large group of healthy humans. These findings support the results from 

other studies where selectively increasing or decreasing DA neurotransmission 

also did not elevate or diminish positive mood (tables 1 and 2). These findings 

stand in contrast to the ability of non-selective DA augmenters, such as 

psychostimulant drugs, to potently elevate positive mood in humans (Acheson & 

de Wit 2008; de Wit et al 2002; Hamidovic et al 2009; Leyton et al 2007; Volkow 

et al 1999). Collectively, the evidence strongly suggests that DA 

neurotransmission does not mediate the pleasure that commonly follows 

consumption of various natural and drug rewards. Instead, DA neurotransmission 

appears to mediate other aspects of reward, including approach and exploratory 

behaviours and incentive salience attribution (Beninger 1983; Berridge 2007; 

Grace et al 2007; Ikemoto & Panksepp 1999; Redgrave et al 1999; Robbins et al 

1989; Salamone 1994b; Salamone et al 2007; Schultz 2007; Wise & Rompre 

1989).  

The present findings do not preclude any role for DA in mood regulation. 

DA neurotransmission might indirectly affect positive mood states through its 

direct modulation of incentive salience attribution (Leyton 2009). Additionally, 

pharmacologically altered DA neurotransmission might contribute to the 

energizing and pro-motivational effects of some antidepressant drugs (Dunlop & 

Nemeroff 2007).  

Accumulating evidence, though, suggests that neurotransmitters other than 

DA might be more directly involved in mood. The fact that DA decreasing drugs 

do not alter the mood-elevating effects of psychostimulant drugs (table 3) implies 

that NE and/or serotonin mediate these effects, since psychostimulant drugs also 

potently increase the levels of these neurotransmitters. At present, clinical and 

drug challenge studies provide some support for this proposition. Briefly, 

serotonin and NE are thought to be involved in the pathophysiology of mood 

disorders (Brunello et al 2003; Lambert et al 2000; Nemeroff 2002) and drugs that 
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target these systems are effective antidepressants (Dremencov et al 2009). In 

healthy humans, dietary manipulations that augment or attenuate brain serotonin 

levels affect positive mood states, though the effects are typically weak and only 

occur in some individuals (Ruhe et al 2007; Young & Leyton 2002). Two recent 

studies found that selective NE drugs alter the mood-elevating effects of 

amphetamine (Sofuoglu et al 2009a; Sofuoglu et al 2008a), but whether these 

drugs impact mood when administered alone has not been examined to date. In 

pre-clinical studies using the taste reactivity test, serotonin agonists have been 

shown to modulate both positive and aversive hedonic responses (Treit & 

Berridge 1990). Selective NE drugs have not been tested with this paradigm to 

date. 

 Non-monoamine neurotransmitters, such as opioids, cannabinoids, GABA 

and glutamate, have also been implicated in mood regulation. Briefly, in pre-

clinical studies using the taste reactivity test, opioid receptor agonists have been 

shown to consistently enhance positive hedonic “liking” responses (Kelley et al 

2002; Pecina & Berridge 1995; Pecina & Berridge 2005; Pecina et al 2006). In 

healthy humans, opioid receptor agonists produce mixed euphoric and dysphoric 

effects (Hill & Zacny 2000; Walker et al 2001; Zacny & de Wit 2009; Zacny & 

Gutierrez 2003; Zacny & Lichtor 2008) and opioid release correlates with 

subjective ratings during mood-induction paradigms (Koepp et al 2009; Zubieta et 

al 2003). Additionally, both opioid receptor agonists and antagonists alter the 

subjective responses to a wide range of abused drugs (Brauer et al 1999; Cooper 

et al 2010; Comer et al 2002; Comer et al 2005; Haney 2007; Haney et al 2003; 

Jayaram-Lindstrom et al 2004; Jayaram-Lindstrom et al 2008; King & Meyer 

2000; McCaul et al 2000; Na & Lee 2002; Ray & Hutchison 2007; Setiawan et al 

2011; Sullivan et al 2006; Walsh et al 2001; Wewers et al 1998; though see 

Wachtel et al 2000). Cannabinoid neurotransmission appears to be involved in 

mood regulation based on three lines of evidence. First, cannabinoids modulate 

positive hedonic reactions to sucrose in the taste reactivity test (Mahler et al 

2007). Second, dysfunctional cannabinoid neurotransmission is thought to 



 

86 

 

contribute to the pathophysiology of mood disorders and drugs that act on this 

system might be useful as antidepressant drugs (Bambico et al 2009; Hill & 

Gorzalka 2009). Third, in healthy humans, a variety of drugs that alter 

cannabinoid neurotransmission, such as THC and cannabinoid receptor agonists, 

have mood-elevating effects (Karschner et al 2011; Kaufmann et al 2010; Wachtel 

et al 2002; Zuurman et al 2009; Zuurman et al 2010; Zuurman et al 2008).  

 At present there is also some evidence to suggest that the ubiquitous 

neurotransmitters GABA and glutamate might play a role in mood regulation. 

Specifically, in pre-clinical studies using the taste reactivity paradigm, injection of 

a metabotropic glutamate receptor 2/3 antagonist into the medial shell of the 

NAcc decreases (Richard & Berridge 2011) and injection of GABA receptor 

agonists into the parabrachial nucleus of the brainstem increases the number of 

positive hedonic “liking” responses to sucrose (Berridge 1988; Soderpalm & 

Berridge 2000). Drugs that modulate GABA or glutamate neurotransmission have 

been shown to alter the subjective responses to abused drugs in some (Cousins et 

al 2001; Hart et al 2004; Jackson et al 2009; Sofuoglu et al 2011; Sofuoglu et al 

2005a; Sofuoglu et al 2005b) but not all studies (Bisaga & Evans 2006; Haney et 

al 2005; Haney et al 2006; Nutt et al 2007; Sofuoglu et al 2008b; Sofuoglu et al 

2009b). Glutamate and GABA dysfunction are thought to contribute to the 

pathophysiology of mood disorders (Bielau et al 2007; Brambilla et al 2003; 

Hashimoto et al 2007; Yuksel & Ongur 2010) and drugs that affect these 

neurotransmitter systems show some promise as antidepressant or mood-

stabilizing treatments (Brambilla et al 2003; Pilc et al 2008; Sanacora et al 2003; 

Sanacora et al 2008; Zarate et al 2010).  

 There are two limitations in the present study. First, there was no direct 

measure of DA levels. This leaves open the possibility that L-DOPA did not 

produce any mood changes because it did not sufficiently increase DA levels. 

However, it is unlikely that L-DOPA failed to increase DA levels since previous 

drug challenge studies conducted in healthy humans found effects of L-DOPA on 

cognitive tasks (Eisenegger et al 2010; Floel et al 2008; Pine et al 2010) and a 
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recent pre-clinical study has shown that L-DOPA increases DA levels in healthy 

intact rodent brains (Rodriguez et al 2007). Another possibility is that more robust 

increases in DA levels are required to produce mood changes in healthy humans. 

This will be extremely difficult to test in future studies since all currently 

available DA enhancing drugs produce significant unwanted side effects, such as 

nausea, vomiting and drowsiness, when administered at high doses. Second, 

participants were categorized as "high" or "low" for each approach-related 

personality trait based on a median split. This might have limited our ability to 

detect a differential drug effect on mood and other subjective states, since there 

was not significant variability in scores on these measures. It might be necessary 

to recruit participants from the extreme ends of the normative population 

distribution for each of these traits in order to accentuate the putative differences 

in baseline DA neurotransmission.  

 In conclusion, the present study demonstrated that augmented DA 

neurotransmission, as produced by administration of the DA precursor L-DOPA, 

does not alter mood or other subjective states in healthy humans. Moreover, a 

differential drug effect on mood was not detected after categorizing participants 

based on individual differences in the approach-related personality traits of 

impulsivity, novelty seeking, sensation seeking and extraversion. This study adds 

to the growing body of evidence suggesting that DA is not a mediator of positive 

mood states, such as pleasure. Additional studies are needed to elucidate the 

nature of the relationship between individual differences in DA 

neurotransmission, approach-related personality traits and subjective responses to 

DA enhancing drugs.  
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