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Abstract 

Biological system simulation is an increasingly popular field of study that 

provides biologists with the tools necessary to simulate biochemical systems in 

order to obtain quantitative models. The purpose of this thesis is to describe an 

accelerated version of GridCell, a stochastic biological system simulator. GridCell 

tracks each individual particle's location in the system, as well as the time 

evolution of the concentration of each species involved. It simulates molecular 

diffusion via Brownian movements, and particle interactions are dependent on 

their locations. We present here a parallel adaptation of the algorithm, 

implemented on a heterogeneous multicore processor, i.e. IBM Cell Broadband 

Engine (CBE). We introduce the CBE architecture and outline its advantages, as 

well as describe the original algorithm. Subsequently, we detail the parallel 

implementation and the algorithm modifications. Finally, we perform timing 

analysis to show that the parallel version provides improved performance over the 

original serial version. 
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Resume 

L'etude de systemes biologiques vise a mieux comprendre leur 

comportement sous differentes conditions biochimiques. La simulation de ces 

systemes aide a la creation de modeles quantitatifs, ainsi facilitant cette etude. Le 

but de cette these est de presenter une version acceleree de GridCell, un 

simulateur stochastique de systemes biologiques. GridCell a l'avantage de suivre 

la progression de toutes les particules presentes dans le volume simule, tout en 

calculant la concentration de chaque espece impliquee dans la simulation. 

GridCell permet de simuler les interactions entre les differentes particules, ainsi 

que leurs mouvements stochastiques. Une adaptation parallele de GridCell, 

implementee sur le Cell Broadband Engine (CBE) de IBM, est ainsi presentee. 

Tout d'abord, 1'architecture du processeur ainsi que ses nombreux avantages sont 

exposes. Ensuite, les deux versions de GridCell, originaire et parallele, seront 

introduites de par la description de l'algorithme qui les gouverne. Cette these 

conclue par une analyse des temps d'execution demontrant une amelioration de la 

performance vis-a-vis la version originaire non-parallele. 
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Glossary 

B: Byte 

b: bit 

CAM: Computation Acceleration Model 

CBE: Cell Broadband Engine 

CBE version: Version of GridCell implemented on the CBE 

DMA: Direct Memory Access 

DM AC: Direct Memory Access Controller 

DPFP: Double Precision Floating Point 

EIB: Element Interconnect Bus 

GUI: Graphical User Interface 

LS: Local Store 

MFC: Memory Flow Controller 

PPE: PowerPC Processing Element 

PPSS: PowerPC Processor Storage Subsystem 

PPU: PowerPC Processing Unit 

SBML: Systems Biology Mark-up Language 

SDFP: Single Precision Floating Point 

Serial-Intel: Serial implementation, run on an Intel processor 

Serial-PPU: Serial implementation, run on the CBE, using only the PPU 

SPE: Synergic Processing Element 

SPU: Synergic Processing Unit 
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Chapter 1 Introduction and Background 

Computational cell biology is a cross-disciplinary area of research joining 

together computer simulation technology with cellular biology [1], The long-term 

goal of this field is to simulate a biological cell in order to understand the different 

molecular interactions occurring within it. For example, quantitative models of 

cancerous stem cells have been found to be very useful in the understanding of 

cancer dynamics [2], One system that is often simulated is the Michaelis-Menten 

system [3], described by the equation: E + S ^ > E S ^ E + P. 

S is a substrate that binds to enzyme E to yield ES, which can decompose 

into the product P and the enzyme E, or into its original form E + S. Usually, the 

enzyme is the limiting factor, since its concentration is much lower than that of S. 

The results of the simulation (Figure 1-1) give insights into the time evolution of 

the concentration of the different species involved. 

A large number of computer simulators have been developed in order to 

study various biochemical systems and determine the time evolution of particle 

concentrations in those systems [4-24], 

1.1 Introduction 

GridCell is a stochastic simulator of biochemical reactions in which the 

volume under test is represented by a 3D grid, and each particle in the system is 

an independent object that can move and react [25, 26], GridCell supports both 

molecular diffusion and particle interactions, and the simulation runs over discrete 

time-steps. 
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Figure 1-1: Michaelis-Menten System 

In this thesis, we present a parallel version of the GridCell algorithm, 

originally described in [25, 26]. Stochastic simulators are linearly implemented, 

whereas biological processes occur randomly and concurrently [27], where a 

particle is dependent only on its immediate neighbourhood, and is not affected by 

the movement and interactions of particles further away. Therefore, it is possible 

to divide the simulation environment over multiple processors, and implement 

GridCell on a multicore system, such as the Cell Broadband Engine (CBE). In the 

following section, we provide some background information about common 

biochemical simulators. 

1.2 Background 

There are two different types of biochemical simulators: deterministic and 

stochastic. Deterministic simulators solve a system of mathematical equations 

which describe the biochemical process to be tested as well as the different 

particle interactions. The equations also describe the evolution of species 

concentrations. For the same problem, deterministic simulators generate the same 

solution every time. On the other hand, stochastic simulators generate 

probabilities and random numbers in an attempt to recreate molecular behaviour. 

In stochastic simulators, the time evolution to reach a system's steady state is 

different for each simulation, but the results are comparable. 
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Some of the most popular simulators are discussed here. Virtual Cell [17, 

18, 23], a deterministic simulator, is presented first. Next, Gillespie's Stochastic 

Simulation Algorithm is introduced because of its importance in the development 

of other stochastic simulators [11]. Subsequently, seven different stochastic 

simulators are presented: StochSim [15, 16, 28], MCell [29], SmartCell [4], 

ChemCell [19], Cell++ [22], MesoRD [12] and the original GridCell program [25, 

26], 

1.2.1 Virtual Cell 

Virtual Cell [17, 18, 23], developed at the University of Connecticut 

Health Center, is a deterministic simulator based on solving a set of mathematical 

equations. The model under test is represented by a system of equations in Virtual 

Cell Mathematics Description Language or VCMDL. VCMDL is a declarative 

language that was specifically created for Virtual Cell, and used to describe 

classes of mathematical equations that need to be solved during the simulation 

[17, 18, 23]. Once the VCMDL model description is obtained, it is then translated 

into programming code which is sent to the numerical solvers which resolve the 

mathematical equations. 

Virtual Cell is accessible through a graphical interface (GUI) that allows 

users to specify the characteristics of the biological processes to be tested, such as 

the type and number of the molecules in the system, the reactions that characterize 

the interactions between them, as well as their location and spatial topology 

within cellular compartments. This quantitative data is put together to construct a 

complex spatial model depicted by mathematical equations, thus obtaining the 

VCMDL model description. For biologists untrained in physics and mathematics, 

the GUI provides a simple way of inputting information into the system, and 

requires no knowledge of the underlying equations. On the other hand, for 

experienced users with a mathematical background (e.g.: bioengineers and 

mathematical biologists), the model can also be manually created by directly 

entering the equations describing the biological process in VCMDL format. In 
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either case, the model definition is finalized when initial and boundary conditions 

have been specified. The simulation produces spatial and temporal results 

comparable to experimental data, such as particle concentrations. Virtual Cell is 

not suitable for processes with a variable 3D structure such as mitosis. More 

information on Virtual Cell can be found in [17, 18, 23], 

In the next section, we introduce Gillespie's Stochastic Simulation 

Algorithm. 

1.2.2 The Stochastic Simulation Algorithm (SSA) 

Gillespie's SSA was created because deterministic approaches, which are 

based on solving equations, are not suitable in all situations, such as nonlinear or 

unstable systems. In such cases, the number of equations to solve increases 

significantly and the equations become too complex. The size of the system also 

increases with the number of species in the system. Consequently, the 

computation time and resource utilization considerably increase such that the 

simulation cannot occur in a reasonable amount of time [11]. Additionally, the 

mathematical representation of the system does not always include important 

information regarding the biochemical processes, such as the spatial organization 

of the volume, or the distribution of the particles within that volume [22]. 

The SSA was the first stochastic simulator to be created. Stochastic 

approaches are based on random number generation. Those random numbers are 

used to determine the way particles interact, based on a list of reactions that 

describe the process under test. The basic assumption for the SSA is that the 

system is well-mixed or "spatially homogeneous" [11]: a particle can react with 

any other particle in the system. In the simulation, there are Nj particles of type Si, 

and M reactions Ru with reaction parameters cu. The SSA algorithm is probability-

based, and attempts to simulate the Joint Probability Density Function (PDF) for 

each reaction, at specific times. 

The SSA process is divided into four consecutive steps, as follows: 
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- The first stage is the initialization stage in which the initial values of 

all the parameters, including Ni and cu, and the list of chemical 

reactions, are specified and stored. 

- The second stage is the Monte Carlo phase, which consists of 

generating two random numbers that satisfy the PDF, using Monte 

Carlo techniques [30] : an index u of the reaction to perform next, and 

a time increment x. 

The third step is the update stage where the time is incremented by x, 

and the values of the reactants and products involved in Ru are 

modified as if reaction Ru just executed. For instance, if Ru is the 

reaction + S2 2S3 , the update stage involves decreasing the 

concentration of Si and S2 by 1, and increasing the copy number of S3 

by 2. 

Finally, in the publish stage, the updated values are output. 

The process, starting from the Monte Carlo stage, iterates until the 

simulation has completed, or there are no more reactants in the system. This 

algorithm computes the time evolution of all the species in the biological system 

under test, and does not take into account the spatial localization of the particles 

or the characteristics of the volume in which the process takes place. In the SSA, 

molecular diffusion is not supported, and particle localization is not tracked. The 

SSA is fully described in [11]. 

1.2.3 SmartCell 

SmartCell [4] is a stochastic simulator developed at the European 

Molecular Biology Laboratory in Heidelberg. It is based on a modified SSA 

algorithm: the basic SSA hypotheses (e.g.: well-mixed system) are maintained, 

but molecular diffusion is implemented as an individual event. Intended for the 

modelling of biological processes, SmartCell supports various cellular geometries 

and compartments, allowing the user to localize certain species within 
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membranes. Because of the spatial distribution of molecules, the volume is no 

longer necessarily well-mixed, which does not adhere to Gillespie's hypothesis 

for the SSA algorithm. This situation is remedied by dividing the volume into 

smaller sections in which the molecules are well-mixed; and molecular events 

take place within those sections. 

The model is described using SBML (or Systems Biology Markup 

Language [31]]) which is an XML language used to create biological models. The 

SBML file includes all the information regarding the number of molecules in the 

system as well as the characteristics of the reactions between them (e.g.: constant 

rate). The molecular entities are defined also defined in the SBML file, as well as 

the different processes (reaction or diffusion). Each process element is an event 

which involves at least one entity. Before the simulation begins, a list of entities 

and processes is generated. Complex reactions (with three or more reactants) are 

simplified into many simpler reactions with one or two reactants. 

For each event (reaction and diffusion) in the system, a probability is 

calculated. Events are then added into the events queue, and an associated 

reaction-time is computed for each. The event with the smallest reaction-time is 

executed, a new probability is calculated for it, and it is added to the queue. If the 

queue is not empty, the next event to occur is the one with the smallest reaction-

time. It is important to note that reaction-times of events in the queue can change 

when the current event has executed. Thus, after each event has occurred, 

reaction-times are updated in the queue. Additionally, the reaction time-step 

varies during the simulation as it is dependent on the fasted reaction at the time. 

One drawback of SmartCell is that the computation is very slow for larger 

systems. Additionally, localization of individual particles is not inherently 

supported as the algorithm is based on the SSA which represents particles in bulk. 

Details about SmartCell can be found in [4], 

1.2.4 StochSim 

StochSim [15, 16], developed at the University of Cambridge for a study 

on bacterial chemotaxis [32], represents each individual molecule in the system as 
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an "independent software object". Additionally, StochSim supports a 2D structure 

in which processes are simulated. Three different structures are available: a 

square, a triangle, and a hexagon. 

Interactions between molecules are simulated based on probabilities pre-

computed from the molecular concentration of the reactants and the reaction rates. 

Complex reactions are achieved through multiple uni- and bi-molecular reactions 

(one or two reactants). The simulation is done in two-dimensions, and reactions 

can occur between randomly chosen molecules. One set of random numbers is 

used to select the reactants; another is compared to the reaction probability to 

verify if the reaction will occur. It is possible to define reactions that are 

dependent on neighbouring particles. In this case, the reaction rates depend not 

only on the state of the selected particle, but also on the states of its neighbours. 

During the initialization process, the user must specify the rate of the 

reactions in the system. In addition, the simulation time-step (defined as the 

length of time of one iteration) and the reaction probabilities are computed. The 

simulation then proceeds by executing a small subroutine at every time-step. 

The algorithm iterates over discrete time-steps, and the simulation occurs 

between randomly chosen particles. Once molecules have been arbitrarily chosen 

to react, a random number Rn is generated and compared to the probability of the 

reaction. The reaction occurs if Rn is less than the probability of reaction. The fact 

that the specific location of reacting molecules does not play a role in the reaction 

is a major drawback in the StochSim algorithm. More information on StochSim 

can be found in [15, 16]. 

1.2.5 MCell 

In Gillespie's algorithm as well as SmartCell, stochastic simulation is 

achieved by representing molecules in bulk [4, 11]. The spatial location of the 

particles is irrelevant to the time evolution of the species concentrations. 

However, recent research indicates that the spatial localization of particles in a 
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system plays an important role in the molecular interactions within that system 

[33]. MCell [29] was created to resolve this situation. 

MCell is a simulator of cellular microphysiology, based on Monte Carlo 

methods. This stochastic tool solves reaction-diffusion problems and analyses 

molecular events (movements and reactions) within a 3D volume of arbitrary 

shape. Molecular diffusion is accomplished through random walk movements 

which reproduce Brownian motion [34] without tracking the absolute molecular 

displacements. The location of a particle in the 3D volume is not required to be 

known. However, one must know its relative position with respect to boundaries 

(e.g. membranes and compartments). This way, molecular diffusion and collision 

are both simulated without the need for absolute spatial localization. Particles 

move independently from each other, but are restricted by boundaries. 

Reactions are based on individual molecule selection, and the realistic 

representation of molecular interactions is achieved through probability 

calculation and random number generation. A molecule is selected, and a random 

number is generated and compared with known Monte Carlo probabilities to 

determine if the reaction will occur for the chosen molecule. 

The model under test is defined in a simulation file using MDL, MCell's 

Model Description Language. These MDL files represent the tool's program 

interface; they include all the necessary information required for model creation 

and are user-created. Input and output parameters are also specified in the MDL 

file. The input parameters are divided into two subsets: (1) those that define the 

biological process to be simulated (e.g.: number of molecules in the system), and 

(2) those that characterize the simulation (e.g.: time-step). 

The simulation starts with an initialization stage in which the simulation 

environment is set up. Random numbers are pre-generated in this stage as well. 

The simulation is then run in discrete time-steps during which the stochastic 

molecular events take place. The program is started using command line calls. 

Relative positioning is tracked, and collision only occurs for molecular 

diffusion. The MCell tool is described in [29], 

1 4 



1.2.6 Cell+H-

Cell++ [22] is a stochastic simulation environment developed at the 

University of Toronto. It allows the user to model a variety of different biological 

processes while accurately simulating small and large molecules with variable 

molecular concentrations. The volume is represented by a 3D cubic lattice, and 

cellular compartments are supported with the spatial implementation of 

membranes. The basic design of the simulator combines Brownian dynamics to 

accurately represent larger particles, with a cellular automata approach that 

describes the behaviour of smaller molecules. Discrete components diffuse via 

random walks restricted by the spatial localization of particles and boundaries 

(collision), and interactions are handled using a probability-based Monte Carlo 

approach in which the probability of reaction depends on the components 

involved. 

Although Cell++ is a stochastic simulator, a deterministic set of equations 

must be solved in order to handle the diffusion of smaller molecules, thus 

allowing molecules to move into adjacent sites. Additionally, the concentration 

changes are described by another set of equations. 

Cell++ is based on an iterative algorithm that advances through discrete 

time-steps. The simulator provides the user with an interactive graphical interface 

to manipulate and control the simulation. Modifying the input files and the source 

code allows for new systems to be simulated. More information about Cell++ is 

found in [22], 

1.2.7 ChemCell 

ChemCell [19] was developed at Sandia National Laboratories to model 

the stochastic behaviour of prokaryotic cells such as microbes. The algorithm 

implements molecular diffusion using Brownian motion and the particles react 

with each other based on the constant reaction rates. The cell is modelled by a 

geometric volume, and each molecule is implemented as one "particle" in the 

system with its own (x,y,z) coordinates and type. Compartments, such as the 
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nucleus, are inherently supported through internal boundaries, and each 

compartment has its own external boundary. During the simulation, particles 

diffuse and react with other neighbouring particles. However, collision is 

supported such that particle diffusion is limited by compartment boundaries and 

other particles. Reactions occur by computing probabilities and comparing them 

to known reaction probabilities stored in the system. Whether the reaction occurs 

or not is based on the comparison results. 

The first part of the simulation consists of setting up the model by reading 

an input file with a list of commands. In this phase, the geometry of the model 

(e.g.: compartment creation, topology and size) is defined, as well as the 

characteristics of the biological process (e.g.: particle species and list of chemical 

reactions). The next phase is referred to as the "timestepping" stage in which 

particles move and react with each other. Movement is done following Brownian 

motion rules. In order for particles to react with each other, they have to be 

neighbours. To find neighbouring particles, a binning algorithm is used: a reaction 

can only occur between two particles in the same or neighbouring bins. Once a 

pair is selected, random numbers are generated to verify if the reaction will occur. 

At the end of the timestepping stage, simulation outputs can be generated. More 

information on ChemCell can be found in [19]. 

1.2.8 MesoRD 

MesoRD [12] was developed at the Uppsala University in Sweden. This 

stochastic simulation tool attempts to solve the Reaction-Diffusion Master 

Equation (RDME) which describes the Markov Process. In probability theory, the 

Markov Process illustrates a probability distribution in which the current state is 

independent from past states [35], 

In order to solve the RDME, other simulators such as the Next Subvolume 

Method [36] have been developed in which the system volume is divided into 

smaller subvolumes characterized by the concentration of each species found in 

that subvolume. For 3D geometries, a large number of subvolumes are required 
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for accurate analysis, thus increasing the state-space dimension of the RDME 

which raises the execution time. MesoRD was implemented in order to achieve 

improved performance. 

The biological system to be modeled is described in an SBML file which 

is read at run-time. The SBML input file includes such information as the reaction 

rates, geometry and diffusion information, as well as the species present in the 

system and their initial concentrations. Other parameters, such as the simulation 

settings and visualization options, are also specified during the initialization stage 

through either the user interface for Windows users, or the command line for 

UNIX users. Chemical reactions and molecular diffusion are handled within each 

subvolume, and their rates depend on the amount of each species found in that 

subvolume. Once the simulation starts, three threads divide the work: (1) a 

simulation thread handles molecular events (reactions and diffusion), (2) a 

visualization thread runs the 3D viewer, and (3) a status thread displays the results 

of the simulation. More information about MesoRD can be found in [12], 

1.2.9 Original GridCell 

GridCell is a biological system simulator that represents the simulation 

environment with a 3D cubic grid comprised of discrete voxels [25, 26], The 

system under test is modeled in an SBML file, and the program supports both 

biochemical reactions and molecular diffusion. 

Particles move and react based on probabilities computed based on the 

characteristics of the molecules in the system under test: random numbers are 

generated that determine if a particle will move and/or react, and which reaction 

will occur. Additionally, GridCell keeps track of particle localization since each 

particle is an independent object that has its own 3D coordinates in the simulation 

volume. Furthermore, since each discrete voxel holds up to one particle at a time, 

molecular diffusion is constricted by particle locations, thus taking molecular 

crowding into effect. The algorithm is described in more detail in [25, 26] and in 

Section 3.1. 
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1.3 Summary 

The basis behind stochastic simulators is that mathematical equations 

cannot accurately represent all biological processes. For nonlinear systems that 

are chemically unstable, it is not possible to model the molecular behaviour 

realistically [11]. In addition, deterministic approaches do not always take into 

account the spatial localization of the particles in the system, which has been 

shown to play an important role in molecular interactions [33]. Furthermore, most 

stochastic simulators model biological systems without including the effects of 

localization and/or particle collision. All those simulators implement molecular 

diffusion through random walk movements following Brownian rules. On the 

other hand, molecular interactions are handled very differently from one simulator 

to the other. Table 1-1 summarises the various simulators just presented. 

1.4 Motivation 

By studying similar work done in the field, one can understand the 

motivation behind GridCell. Firstly, GridCell represents the volume as a 3D grid 

in which the well-mixed assumption does not necessarily hold. As we will see 

however, we can still simulate well-mixed systems with GridCell. This allows for 

the simulation of different types of processes. Secondly, the choice of the reaction 

to perform is dependent on the particle chosen and its neighbouring molecules. 

Thus, reactions do not occur between randomly-chosen particles. The spatial 

localization of particles plays an important role on both diffusion and molecular 

interactions. 

Since biochemical reactions occur randomly and concurrently within a 

biological system, each particle is dependent only on its immediate 

neighbourhood. In this thesis, we take advantage of this characteristic of 

biochemical reactions to demonstrate the use of a multicore parallel architecture, 

namely the Cell Broadband Engine (CBE), to implement the GridCell algorithm. 
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Table 1-1: Summary of simulators 

Simulator Type Summary 

Cell++ [22] Stochastic 

- Hybrid approach 
- Uses equations for small molecule diffusion 

and concentration changes 
- Time- and spatial-evolution 
- 3D volume 

ChemCell Stochastic - Time- and spatial-evolution 
[19] Stochastic - Collision is supported 

- Reactions based on probability calculations 
- Model described in SBML 

GridCell 
[25, 26] 

- Reaction and diffusion occur in a 3D grid GridCell 
[25, 26] Stochastic comprised of discrete voxels 

- Molecular crowding and localization taken 
into account 

- Uses Monte Carlo methods 

MCell [29] Stochastic - Molecular diffusion is implemented 
- Relative positioning is tracked 
- Collision only for diffusion 

MesoRD 
[12] 

- Model described in SBML MesoRD 
[12] Stochastic - Reaction and diffusion occur in subvolumes MesoRD 
[12] - Reactions based on probability calculations 

- Model defined in SBML 
- Modified SSA: diffusion supported 

SmartCell 
[4] 

Stochastic - Well-mixed subvolumes (total volume not 
necessarily well-mixed) where 
reaction/diffusion occur 

- Particles represented in bulk 

SSA [11] Stochastic 

- Molecules represented in bulk 
- Time-evolution only (no localization) 
- Well-mixed volumes only 
- Reactions/particles randomly selected 
- Diffusion not supported. 

StochSim Stochastic 

- Particles as independent software objects 
- 2D volume structure 

[15,16] Stochastic - Randomly chosen particles 
- Time-evolution only 

Virtual Cell 
[17,18, 23] Deterministic 

- System of equations 
- Spatial simulation is possible (equations can 

include info about spatial structure) 

In the following chapters, we discuss the GridCell algorithms as well as 

the serial and CBE implementations, and analyse their performance on various 

platforms. In Chapter 2, we describe the Cell Broadband Engine (CBE), as well as 
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the important software and hardware tools that we use in the implementation of 

GridCell. In Chapter 3, we present the GridCell algorithm, starting with the serial 

version, and followed by the CBE adaptation. Results verification and 

performance analysis are carried out in Chapter 4. We conclude this thesis in 

Chapter 5 with an outline of potential future work. 
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Chapter 2 The Cell Broadband Engine 

The Cell Broadband Engine (CBE) [37] is a heterogeneous multicore 

processor designed originally for the Sony PlayStation 3© (PS3) [38] gaming 

platform. A heterogeneous processor is comprised of processing elements with 

different architectures. It has since been used as a high-performance computing 

tool because of its highly-parallel structure. In this chapter, we present the 

architecture of the CBE, as well as the important hardware and software tools that 

are used in GridCell. 

2.1 Architecture 

The CBE is comprised of two different types of processing elements 

connected together and to main memory through the Element Interconnect Bus 

(EIB). Figure 2-1 displays a high-level block-diagram of a cell processor. The 

PowerPC Processing Element (PPE) is a PowerPC processor with a standard 

PowerPC instruction set, and is described in Section 2.1.1. 

Currently, each CBE has eight Synergic Processor Elements (SPE) which 

are specialized highly-parallel processors (see Section 2.1.2). However, on the 

PS3, either one or two SPEs are disabled to improve yield [38], and thus cannot 

be used. 

2.1.1 PowerPC Processing Element 

The PPE is comprised of a PowerPC Processing Unit (PPU) and the 

PowerPC Processor Storage Subsystem (PPSS). The PPU is a general-purpose 64-
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Figure 2-1: CBE High Level Block Diagram [37] 

bit (b) processor. It is a multi-threaded core with separate LI instruction and data 

caches (128-byte (B) lines). The PPU register file has three types of data registers: 

(1) 32 64b General Purpose Registers, (2) 32 64b Floating Point Registers, and (3) 

32 128b vector Registers for single-instruction-multiple-data (SIMD) processing. 

Aside from the data registers, the register file also holds control and error 

registers. 

Two execution units, the Fixed-Point Unit and the Vector/Scalar Unit, 

perform fixed-point (integer) operations, and floating-point and vector (SIMD) 

operations respectively. SIMD operations are possible on the PPU through the 

vector/SIMD multimedia extension instructions. Additionally, memory transfers 

involving the PPU are managed by the Memory Management Unit, which is 

responsible for all address translation. 

The PPSS is an L2 unified cache through which communication with the 

EIB is possible. Like the LI caches, L2 cache lines are 128B. The PPSS carries 

out requests coming from the PPU, or to the PPU from the SPUs and other 

devices. The PPU communicates with the PPSS through loads (32B) and stores 

(16B), whereas data transfers between the PPSS and the EIB occur on 16B load 

and store buses. Figure 2-2 shows a high-lever block diagram of the PPE. 

2.1.2 Synergistic Processor Elements 

Each SPE is a combination of a Synergistic Processor Unit (SPU) and a 

Memory Flow Controller (MFC). The SPU is a SIMD core processor with a 
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Figure 2-2: PowerPC Processor Element [37] 

unified vector register file holding 128 128b vector registers. Those are General 

Purpose Registers that can be used for fixed or floating-point storage. 

The SPU stores both instructions and data in its Local Store (LS), which is 

only 256KB, making memory management on the CBE a crucial task. The SPE 

communicates with main memory, the PPE and other SPEs through its MFC (see 

Section 2.2). 

Unlike the PPU, the SPU does no memory address translation for LS 

addresses. However, through effective-addressing, software on the PPE and other 

SPEs can access the LS in main memory. The SPE must use Direct Memory 

Access (DMA) transfers to move data from main memory to the LS, and vice 

versa, in order to access the data. 

2.1.2.1 Limitations 

Floating-Point (FP) operations are supported on the SPU. A 128b vector 

holds four single-precision (SP) FP values, and SPFP operations are executed in 

SIMD, i.e.: four operations at a time. However double-precision (DP) instructions 
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Figure 2-3: Synergic Processor Element [37] 

are not executed in parallel. Vectors are broken down into scalar values prior to 

the execution, increasing the execution time making DPFP operations inefficient. 

A 128b vector holds two DPFP values, and DPFP instructions execute on one 

DPFP value at a time. SPFP operations are much more efficient on the current 

version of the CBE because the PS3 gaming platform did not require double-

precision execution. 

Since the SPU is a SIMD processor, all instructions are executed on 128b 

vectors. Scalar code can be written for the SPU; however, scalar values are stored 

in and must be extracted from vectors prior to execution since there are no scalar 

registers. This extraction increases the execution time, and reduces the efficiency 

of scalar code. It is preferable to store scalar values in vectors, and perform vector 

operations instead. 

The SPU's performance is also constrained by branches and conditional 

statements because of the linear instruction flow of the SPU. A branch instruction 

can disrupt the sequential execution, and can have a very high penalty. When a 

branch is not taken, it causes an 18 or 19-cycle penalty, which is over twice the 

average SPU latency (maximum 7 cycles), resulting in degraded performance. 

Although it is not always possible to eliminate all conditional statements 

in a piece of code, there are means to reduce their effect. Function-inlining can be 

used to eliminate the branch caused by an instruction call, but excessive inlining 

increases the size of the code, thus reducing the effective space for data. Secondly, 

loop branches can be reduced or eliminated by unrolling the loops, although loop 

branches are highly predictable, and for a large index, the penalty becomes 

negligible. Another approach is to use program-based branch prediction. Program-

based prediction is based on program constructs where heuristics determine how 
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Table 2-1: Sample Target Applications 

Some Accelerated Functions Sample Target Applications 
Signal Processing 
Image Processing 
Matrix Mathematics 
Vector Mathematics 
Physics Simulations 
Encryption/Decryption 
Pattern Matching 
Parallel Processing 
Real Time Processing 

Medical Imagine/Visualization 
Drug Discovery 
Training Simulations 
Secure Communications 
Digital Content Creation/Distribution 
Computational Chemistry 
Voice and Patter Recognition 
Network Processing 
Climate Modeling 

to predict the branch associated with those constructs. For example, unconditional 

branches should always be predicted as taken. The advantage of this technique is 

that a misprediction penalty is small compared to the penalty incurred without 

prediction, or to the computation time [37]. 

The SPU's limitations dictate what type of applications can be run on the 

CBE. The CBE is targeted towards applications that are highly-parallel and 

highly-repetitive, with very little branching, such as biochemical simulations. 

Applications such as signal and image processing can be very easily and 

effectively accelerated on the CBE. Table 2-1 list some target applications that 

can be run on the CBE [39]. 

2.1.3 Element Interconnect Bus 

The Element Interconnect Bus (EIB) connects all the elements on the 

CBE: main memory, the PPE and all the SPEs. It consists of four unidirectional 

16B data rings (two clockwise, and two counter-clockwise). Each ring 

accommodates 128B transfers (equivalent to one PPE cache line). The EIB's 

maximum internal bandwidth is 96B per cycle and can handle over 100 

outstanding memory transfers. 

The EIB supports memory-coherence, and thus the CBE is designed to be 

fully coherent with other CBEs in a system. 
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Figure 2-4: Memory-Flow Controller [37] 

2.2 Memory Flow Controller 

The MFC is the SPU's main interface to main memory and other 

processors and devices, through the EIB. The MFC's most important role is to 

allow communication between the SPU's LS and main memory. This is done 

through DMA transfers by means of the DMA controller. The MFC also provides 

other functionalities to the SPU, such as synchronization between the LS and 

main memory, as well as other communication features such as Mailboxes and 

Signals. The MFC block diagram is shown in Figure 2-4. The figure shows the 

different elements of the MFC that are discussed in the following Sections. 

The MFC provides the SPU with different mechanisms that allow it to 

communicate explicitly with other processors and devices: (1) DMA Transfers, 

(2) Mailbox messages, and (3) Signal Notification messages. 

2.2.1 Direct Memory Access Controller 

The Direct Memory Access Controller (DMAC) allows transfers between 

main memory and the SPU's LS. The DMAC executes the memory transfer 

commands in parallel with the SPU execution, thus preventing the SPU from 

being bottlenecked by the DMA commands. It also allows the SPU to pre-fetch 

data while executing, therefore allowing multi-buffering on the SPU. The 

controller can issue up to 16 independent transfers to and from the LS. 
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There are two types of DMA transfers: (1) single transfers, and (2) list 

transfers. Single transfers allow the DMAC to fetch one block of consecutive data 

from main memory to LS. On the other hand, to fetch data in non-consecutive 

blocks in main memory, DMA list transfers can be used. A DMA list is a list of 

transfer elements where each element consisting of a transfer size and an effective 

address in main memory. This allows fetching non-consecutive blocks in main 

memory and storing them consecutively on the LS, using a single DMA list 

command. 

The size of one DMA transfer, whether it is a single transfer or as part of a 

DMA list, cannot exceed 16KB. In addition, a DMA list can hold up to 2048 

transfer elements. Currently, 2048 transfer elements of 16KB each exceed the size 

of the SPU LS, but this flexibility allows the size of the LS to increase in future 

versions of the CBE, without modifying the DMA list construct. Another 

constraint of DMA transfers relates to the size and alignment in main memory of 

the data being transferred. First, the data size must be IB, 2B, 4B, 8B or a 

multiple of 16B. Second, the data must be aligned on a 128B boundary. Failure to 

do so will result in bus errors. 

In addition to the DMAC, the MFC has a channel facility referred to as 

"Tag-Group Completion Facility". This facility provides memory synchronization 

between main memory and LS. Each DMA command is tagged with a 5b 

identifier that allows several commands to be grouped together, and each tag is 

used to determine when a command or group of commands has finished 

executing. Additionally, since the DMA commands are executing in parallel with 

the SPU operation, tags allow for "blocking" transfers such that execution on the 

SPU halts until the DMA commands have finished executing. 

2.2.2 Mailboxes 

Each SPU has three 32b mailbox queues: (1) outbound mailbox queue, (2) 

outbound interrupt mailbox queue, and (3) inbound mailbox queue. The mailbox 

facility manages communication through three mailbox channels that control the 
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queues: (1) two outbound one-entry channels: the SPU Write Outbound Mailbox 

and the SPU Write Outbound Interrupt Mailbox, and (2) one four-entry inbound 

channel: the SPU Read Inbound Mailbox. Mailboxes were intended to send short 

messages, such as program status and flags, between the SPE and the PPE. 

However, they can be used for sending 32b data of any type. 

The inbound mailbox queue is a FIFO queue of four entries, and allows 

other processors and devices to send messages to the SPE. If messages are being 

read at a slower rate than they are being received, the fourth entry is always 

overwritten with the latest message to arrive. On the other hand, the outbound 

queues can hold up to one entry only. 

Mailbox operations (read channel, or write channel) are, by default, 

blocking operations on the SPE: writing to a full location, or attempting to read an 

empty location will cause the SPE to stall until the mailbox operation can be 

executed. This is a very useful tool because it can allow the PPE to control the 

execution on the SPE, and vice versa. However, it is possible to have non-

blocking operations, by setting flags in the mailbox operation. In the CBE 

implementation of GridCell, the PPE and SPE communicate via mailbox 

messages to synchronize the execution, and make sure that the data is ready 

(therefore assuring data integrity on both processors). 

2.2.3 SPU signal notification 

The Signal-Notification Channel facility in the MFC allows the SPU to 

send signals (such as buffer completion flags) to other processors and devices in 

the system. Each SPU has two independent 32b signal notification facilities. 

Reading from signal channels can be implemented to cause an SPU interrupt, or 

the SPU can poll (and thus block) when waiting for a signal to appear. Signal 

sending commands are executed like DMA commands. Signals and mailbox 

messages can be used to the same effect. Depending on the reason for usage, one 

or the other might be preferred. Table 2-2 shows the differences between signals 

and mailboxes. 
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Table 2-2: Comparative Analysis of Mailboxes and Signals 

Attribute Mailboxes Signals 

Direction: 1 Inbound 
2 Outbound 2 Inbound 

Interrupts: 2 Mailbox event interrupts 2 signal event interrupts 
Message 
Accumulation No Yes 

SPU Commands Channel reads/writes Sndsig, sndsigf and sndsigb 
Destructive 
Read Reading consumes entry Reading channel resets bits 

Channel Count Number of available 
entries Number of waiting signals 

2.3 Programming Models 

There are seven different programming models that can be used to design 

applications for the CBE: (1) Function-Offload Model, (2) Device-Extension 

Model, (3) Computation-Acceleration Model, (4) Streaming Model, (5) Shared-

Memory Multiprocessor Model, (6) Asymmetric-Thread Runtime Model, and (7) 

User-Mode Thread Model [13]. 

GridCell uses the Computation Acceleration Model (CAM). In this model, 

the PPE acts as a controller and the SPEs are responsible for executing the 

computation-intensive sections. It does not require a significant rewrite of the 

application; only the individual sections that need to be accelerated on the SPU 

are recoded. The work can be partitioned manually by the programmer, or 

automatically by the compiler, and the SPUs execute the work in parallel. 

Memory transfers are handles through DMA commands or message passing. This 

is the simplest and easiest way to take advantage of the functionalities of the CBE, 

as well as the highly-parallel structure offered by the multiprocessor system. 

Table 2-3 briefly summarises the different programming models 
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Table 2-3: Programming Models Comparison [37] 

Programming Model: Brief Description: 

Asymmetric-Thread 
Runtime Model 

Threads can run on either the PPE or the SPEs. The 
PPE is multithreaded, whereas each SPE can only 
run one thread at a time. 

Computation-
Acceleration Model 

The PPE acts as a controller, and the SPEs execute 
the most computationally-intensive functions. Each 
SPE runs one thread to its completion. 

Function-Offload Model 
The SPEs are used to run specific procedures. The 
bulk of the code runs on the PPE. 

Device-Extension Model 
Special Case of the Function-Offload model: the 
SPEs act as I/O devices 

Shared-Memory 
Multiprocessor Model 

The PPE and the SPEs fully interoperate; such that 
the CBE is a shared memory multiprocessor with 2 
instruction sets. 

Streaming Model 
The SPEs work on data that streams though, either in 
serial or parallel. The PPE acts as a controller. 

User-Mode Thread 
Model 

Tasks are processed by available SPEs. Each SPE 
thread manages different functions. At the 
completion of an SPE thread, the SPE starts 
processing another thread. 

2.4 CBE Performance Analysis 

We implemented GridCell on the CBE because of its various advantages. 

First, the CBE is a multiprocessor system in which the processors are specifically 

designed to handle such tasks as the ones GridCell requires. It is a highly-parallel 

structure, and GridCell's algorithm is suited for such hardware since the work is 

very repetitive and computationally intensive. In addition, in biological systems, 

particles are only dependent on their immediate neighbourhood, and are 

independent of the movement and interactions of particles further away. 

Therefore, it is possible to divide the simulation volume over multiple processors, 

and performing the operations in parallel. 

Additionally, the different functions of the SPE and the PPE allow for 

better power usage. The shared-memory system with three levels of memory 
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Figure 2-5: Peak performance comparison [39] 

hierarchy and the asynchronous DMA functionality provide superior memory 

management over other multiprocessor systems. Finally, the larger register files, 

simpler hardware and multithreaded environment allows for increased frequency, 

thus breaking the frequency barrier set by other systems. These hardware 

capabilities of the CBE give it a competitive advantage over other processors used 

in high-performance computing. 

Figure 2-5 outlines a comparison of peak performance of five different 

processors, including the CBE, in integer (16 and 32b) and floating point (SP and 

DP) operations [39]. One can see from the figure that SPFP and Integer operations 

are significantly faster on the CBE. However, no performance improvement is 

seen for DPFP because of their inefficiency of execution. 

2.5 The Sony PlayStation 3© 

GridCell was run on the Sony PlayStation 3© which has certain usage 

restrictions because of its use for gaming. First, only six SPEs can be used for 

high-performance computing (two have been turned off in order to improve yield 

[38]). Second, the size of main memory is limited to 250MB. 
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Chapter 3 The Algorithm 

In this chapter, we describe the algorithms governing the original serial 

version, as well as the CBE implementation of GridCell, highlighting the 

differences between the two. 

3.1 Original Implementation 

The original serial GridCell algorithm, published in [25, 26], is described 

in the flow chart in Figure 3-1. The algorithm starts with a pre-processing stage 

where all the variables are set up, the 3D grid is generated, and the reactions 

created. Afterwards, at each time-step, GridCell loops over all the particles in the 

system, once for the reaction stage, and once for the movement stage. The 

simulation ends when the simulation time is reached. 

3.1.1 Pre-processing stage 

The pre-processing stage involves the initialization of the 3D grid, as well 

as the reactions list. When GridCell is started, a Systems Biology Mark-up 

Language (SBML) file must be specified, which contains the characteristics of the 

biological model to be simulated. Based on this information, the size of the 3D 

grid is obtained, as well as the initial concentration of each species involved in the 

simulation. Additionally, during the pre-processing stage, the list of reactions to 

be simulated is generated. This process is described in greater detail in Section 

3.1.2. 
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MOVEMENT STAGE 

Figure 3-1: Serial algorithm flow chart 

Compartments can be specified in the SBML file. However, in this version 

of GridCell, only one SBML compartment is supported. Additional compartments 

can be manually created by inserting immobile particles at specific locations in 

the grid, using an optional input file, referred to as the structure file. By default, 

the particles will be randomly placed within a cube of the volume specified in the 

SBML file. The structure file gives the user some flexibility in setting up the 3D 

structure of the grid. The characteristics of the structure file are as follows: 

The first line specifies the shape and size of the simulation space. Three 

positive numbers describing the relation between the three axis lengths 

must be chosen. The set {a b c} is equivalent to the relation x — ^ y = ^z . 

These numbers must be selected based on the following rules: 

• To obtain the same volume as the one specified in the SBML file, 

you should choose three numbers whose product is equal to '1' . 
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For example, the set {1 1 1} will generate a cube, and the set {1 V2 

2} will generate a 3D rectangle with x — 2y — ^z. 

• If the product of the three values is not '1' , the volume generated 

will be scaled by the product of the three values. For example, the 

set {4 2 1} will generate a rectangular volume 6 times (4*2*1) 

larger than the one specified in the SBML file where x = 2y = 4z. 

The subsequent lines are species-related, and characterize the initial 

location and quantity of the particles. The number of lines is not limited, 

and it is possible to have more than one line associated with the same 

species in which case particles of the same species are located in different 

areas of the grid. The total quantity of each species cannot exceed the 

value specified in the SBML file. For example, the line 3 7245 1 5 0 10 8 

11 0 is interpreted as: 

• The first number (3) is the species. In the SBML file, species are 

labelled with their name. A species number is generated based on 

the order in which the species are specified in the SBML file. 

Species *i* is the ilh particle type entered in the SBML file. 

• The second value (7245) is the number of particles that will be 

placed in the specified volume. This value cannot exceed the value 

specified in the SBML file. If '-1' is entered instead of a positive 

number, a homogeneous solid block of that species is created, thus 

forming a boundary or membrane. This allows for the manual 

creation of compartments. 

• The next six numbers (1 5 0 10 8 11) represent the coordinate 

ranges of the subvolume where these particles will be randomly 

placed (xm jn Xmax y m i n ymax Zmin ^max)-

• The last value indicates whether the particles are immobile (0) or 

mobile (1). Immobile particles are given a species number, they 

does not participate in any reactions, and have a moving ratio of 0 

(they do not move). 
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For example, consider the following structure file: 

1 1 4 
1 25000 0 0.4 0 1 0 1 0 
2 1250234 10 11 12 0 
3 1000 0 1 0 1 0 1 1 

• The volume is scaled by 4 (1 * 1 *4) 

• 25000 mobile particles of species 1 are placed in a rectangle 

delimited by the two voxels of coordinates (0,0,0) and (0.4,1,1). 

• 1250 mobile particles of species 2 are placed in a rectangle 

delimited by the two voxels of coordinates (2,3,4) and (10,11,12). 

• 1000 immobile particles of species 3 are placed in the square 

delimited by the two voxels of coordinates (0,0,0) and (1,1,1). 

In the next sections, we describe the algorithms used for the particle 

reactions (Section 3.1.2) and movement (Section 3.1.3). In GridCell, each particle 

has access to its immediate neighbours only, and is independent from particles 

further away. The immediate neighbours of a particle are those voxels that are 

within one coordinate displacement away from the current voxel; for a 3D grid, 

there are 26 neighbours. 

3.1.2 Reactions 

In the pre-processing stage, the list of reactions is generated by reading the 

SBML file. GridCell supports only unidirectional reactions of three possible 

types: (1) transformation reactions (A -» B), (2) split reactions (A —» B 4- C). and 

(3) merge reactions (̂ 4 + B —> C). Reversible reactions are implemented as two 

independent unidirectional reactions where the reactants and products are 

reversed. More complicated reactions are reduced into multiple reactions of type 

1, 2, or 3, thus creating temporary particles and intermediate reactions. However, 

temporary particles have a limited lifespan: if they do not react in the two time-

steps following their creation, they must revert back to their original state. 

Additionally, the intermediate reactions created have a probability of reaction of 1 
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(they will always occur, as long as the necessary conditions are satisfied). 

Reactions are associated with the species of their first reactant. 

GridCell also supports reactants or products of stoichiometry higher than 

one. In this case, the number of reactants and/or products increases to reflect the 

stoichiometry, and all the elements are treated as different. For example: A + 

2B —> 3C is equivalent to A + B + B^C + C + C, which is interpreted in 

the system as having three reactants, and three products. 

In the SBML file, reactions are specified in terms of reactants and 

products, and the reaction type is not known beforehand. Once the numbers of 

reactants and products have been determined, the type of reaction can be obtained: 

a. One reactant and one product: this is a transformation reaction or 

"isomerisation" [40], and is the simplest type of reaction that can occur. 

The reaction can require the presence of a reaction modifier (or enzyme) to 

occur. 

b. One reactant and two or more products: this is a split reaction or 

"chemical decomposition" [40]. If there are more than two products, 

temporary particles and reactions are created. This is best shown through 

an example. 

For reaction (*)A —>B + C + D + E, two temporary particles and 

reactions must be created: (**)Ta —>B + C, and (***)T2 —>D + E. 

This means that (*) can be reduced to (****)A —>Tt + T2. Reaction 

(****) is added to the list of split reactions for species A (with products T| 

and T2), and the intermediate reactions (**) and (***) are added to the list 

of split reactions associated with Ti and T2 respectively. 

c. Two or more reactants and two or more products: this is a merge 

reaction or "direct combination" [40], If there are more than two reactants, 

and/or more than two products, temporary particles and reactions must be 

created. This is best shown through an example. 

For reaction (•)A + B + C—>D + E + F, three temporary particles 

and reactions must be created: (••) A + B ->T1} (•••)T1 + C —>T2, and 

3 6 



Generate 
Random 
Number 
( 01 ,2 ) 

Legend: 
-> Did not find Reaction 
- - Found Reaction 

Check 
Transformation 

Reactions 

Check Split Check Merge Check 
Transformation 

Reactions Reactions Reactions 

1 
1 

1 
1 
1 

1 
1 
1 1 

Check Split 
Reactions 

Check Merge 
Reactions 

Check Merge 
Reactions 

Check 
Transformation 

Reactions 

T 

Check 
Transformation 

Reactions 

x 
J L 

Check Split 
Reactions 

Return 1; (successful) 

Figure 3-2: Reactions Flow Chart 

Return 0; A 
(not successful) J 

(••••)T3 ->D + E. This means that (•) has been reduced to 

(•••••) T2 ->T3 + F. Reactions (••), and (•••) are added to the list of 

merge reactions for A and Ti respectively, and (••••) and (•••••) are 

added to the list of split reactions for T3 and T2 respectively 

Reversible reactions are treated as two separate and independent reactions. 

A reversible transformation reaction A <->B is listed in the system as two 

transformation reactions: (1) a forward reaction A —>B associated with species A, 

and (2) a backward reaction B —>A associated with species B. Similarly, a 

reversible split reaction A ++B + C is listed in the system as a forward split 

reaction (A ^>B + C), and a backward merge reaction (B + C —>A). Finally, a 

reversible merge reaction A + B <->C is listed in the system as a forward merge 

reaction (A + B ->C), and a backward split reaction (C -^A + B). This also 

applies to intermediate reactions created from complex reactions. Temporary 

particles created have an associated state 0 or 1, depending on whether the 

reaction they are associated with is a forward (0) or backward (1) reaction. 

The reactions algorithm follows a round robin process. When a reaction is 

not successful, other reactions are tested until one succeeds, or all the reactions 

associated with the current particle's species have been tested (Figure 3-2). First, 

a random number between 0 and 2 is generated to indicate whether the first 
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reaction to test is a transformation (0), a split (1) or a merge (2). Once the reaction 

type has been selected, another random number is computed in order to select 

which reaction of that type to test first, since each species can be associated with 

multiple reactions of a specific type. If that reaction is not successful, the other 

reactions of that type are tested until one is successful, or there are no more 

reactions. In the latter case, another reaction type is selected based on Figure 3-2, 

and the process is repeated. The reaction stage stops when a reaction is successful, 

or when all the reactions associated with the reactant particle's species have been 

tested. At this point, the particle is marked as "reacted" even if no reaction was 

successful. The algorithm loops over all the particles in the system. 

The algorithms governing the three types of reactions are described next. 

3.1.2.1 Transformation Reaction 

Transformation reactions are of type A —>B. They are the simplest 

reaction to execute as they do not require the creation or the consumption of 

neighbouring particles. However, some transformation reactions require the 

presence of a reaction modifier (or enzyme) in the immediate neighbourhood of 

the reactant particle. This information is stored within the reaction characteristics. 

When GridCell determines that a reaction requires an enzyme, it looks for it in the 

26 neighbouring voxels. If the enzyme is not found, the reaction fails. 

If the reaction does not require an enzyme, or if the required enzyme is 

found, a uniform random number a is generated and compared to the reaction's 

probability of reaction Rn. If a < Rn, the reaction is successful, and the 

transformation occurs. The type of the current voxel is set to B, and the 

concentrations of A and B are updated in the system: that of A is decremented, 

while that of B is incremented. If a > Rn, the reaction fails. 

3.1.2.2 Split Reaction 

Split reactions are of type A B + C. Because they consist of the 

creation of two particles, split reactions require the presence of at least one empty 
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voxel in the immediate neighbourhood of the reactant particle in order to house 

the second product. In addition, split and merge reactions could involve temporary 

particles, and must check the state of the first reactant particle with the direction 

of the selected reaction (forward or backward). The condition requires one of 

three situations to be true: (1) the state is -1, meaning that the particle is not a 

temporary one; (2) the state is 0, and the reaction is forward; or (3) the state is 1 

and the reaction is backward. If this condition is not satisfied, the reaction fails. 

On the other hand, if the condition is satisfied, GridCell looks for an 

empty location amongst the surrounding voxels. If no voxel is unoccupied, the 

reaction fails. 

If an empty voxel is located, a uniform random number a is generated and 

compared to the reaction's probability of reaction Rn. If a < Rn, the reaction is 

successful, and the split occurs; the type of the current voxel is set to B, and type 

C is set into the empty voxel. Finally, the concentrations of A, B and C are 

updated accordingly. If a > Rn, the reaction fails 

3.1.2.3 Merge Reaction 

Merge reactions are of type A + B —>C. They are inherently similar to 

split reactions, with one major difference: merge reactions require the presence of 

the second reactant B in the immediate neighbourhood of the current particle. 

Similarly to the split reaction, the temporary particles condition is evaluated, and, 

if not satisfied, the reaction fails. 

If the condition is satisfied, GridCell searches for the second reactant in 

the immediate surroundings of the current particle. If it is not found, the reaction 

fails. Otherwise, a uniform random number a is generated and compared to the 

reaction's probability of reaction Rn. If a < Rn, the reaction is successful, and 

the merge occurs; the type of the current voxel is set to C, and the second voxel is 

marked as empty. Finally, the concentrations of A, B and C are updated 

accordingly. If a > Rn, the reaction fails. 
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Figure 3-3: D3Q27 Grid [25] 

Once all the particles in the system have reacted, the algorithm loops again 

over all the particles to see if they can diffuse. The movement algorithm is 

described in the following section. 

3.1.3 Movement 

In GridCell, particle movement is implemented as a Brownian random 

walk, where each particle can move only once per time-step. The algorithm starts 

by determining if the particle can move, in which case its moving ratio is higher 

than 0. Immobile particles can form compartment boundaries, and provide a 

movement constraint for the diffusing particles. If the particle cannot move, the 

algorithm skips to the next particle. Otherwise, a random number a is generated, 

and compared to the particle's moving ratio M. If a > M, the movement does not 

occur. 

If a < M, the movement can occur and the destination voxel to which the 

particle will move is determined. A random number between 1 and 27 is 

generated that indicates one of the possible 27 locations (D3Q27 grid [25], Figure 

3-3). If this destination voxel is occupied, collision occurs, and the particle cannot 

move. If the voxel is empty, the particle is moved to the new location, its moved 

flag is set to 1, and the original voxel is marked as empty. The special case where 

4 0 



the destination and source voxels are the same ((X, Y,Z) = (Xnew, Ynew,Znew)) is 

treated as any other collision case. 

The CBE implementation of GridCell is described in Section 3.2. 

3.2 CBE Implementation 

The CBE algorithm is displayed in Figure 3-4. Execution is shared 

between the PPU and the SPU. The PPU is responsible for the pre-processing and 

initialization stages in which the 3D grid is set up. Because SBML is not used for 

this version of GridCell, the 3D grid and reactions are set-up manually, based on 

the same rules and conditions described earlier. 

3.2.1 Overview of the CBE implementation 

The strategy to parallelize GridCell is based on the fact that biochemical 

systems are inherently parallel systems where local events are independent from 

events further away. Therefore, it is possible to divide the simulation space over 

the different SPUs to take advantage of the parallel structure of the CBE. Each 

SPU executes the simulation on a smaller portion of the volume, and then 

communicates the results back to the PPU. Additionally, it is possible to obtain a 

second level of parallelism due to the SIMD nature of the SPU, where four voxels 

are processed at one time. 

Furthermore, because of the highly-parallel structure of the CBE, we 

expect increased performance of the CBE version of GridCell, compared to the 

serial version. 

3.2.2 PPU pre-processing stage 

The PPU pre-processing stage involves generating the DMA lists that will 

be used by the SPUs to fetch all their blocks. Given the sizes of the 3D grid, the 

SPU partition, and each SPU block in LS, it is possible to determine the number 

of blocks that will be fetched from main memory by each SPU, at each time-step. 

4 1 



Pre-processing 
Stage 

Create SPU Threads 
& Contexts 

Boundary_react() 
Boundary_move() 

i 
Update 

Concentration 

Reset moved' & 
'reacted' flags 

< 

Set ppu ready = 1 

r 
Update 

Concentration 

Set ppu_ready = 2 

SPU Pre-processing 
Stage 

Set spu_ready = 1 

End PPU 

SPU CODE 
Reaction() 

Reaction_selection() 
Movement() 

End SPU 
Exit Context 

Figure 3-4: Flow chart of the CBE algorithm 

4 2 



Table 3-1: Number of blocks for n SPUs 

3D Grid (main memory) SPU Block (Local Store) Number of Blocks 

X Spuc 

X-2 
blockx — 

n * spuc 

Y SpUr 

Y - 2 
blockv = y spur 

Z spud 

Z — 2 
blockz = 

spud 

Number of blocks per SPU= numOfDMALists = blockx * blocky * blockz 

There is one DMA list per SPU block, so the total number of blocks per 

SPU is equivalent to the number of DMA lists per SPU. Additionally, the DMA 

lists are generated in the same order as the blocks will be read by the SPU (see 

Section 3.2.5). Table 3-1 summarizes how to obtain the number of blocks in each 

direction, for a simulation that uses '«' SPUs. 

Once the number of blocks per SPU is obtained, the DMA lists must be 

generated. It is necessary to use DMA lists because the 3D grid is stored in 

consecutive locations in main memory, but the SPUs operate on non-consecutive 

data since the grid is partitioned. A 3D grid is stored in main memory starting 

with the elements in the Z direction (for example: 000 001 002 ... 010 011 012 .. 

100 111 112 ...). Each DMA command must transfer cr particles, where a = 

spud + 2. The effective address of each transfer for block (spuc, spur, spud) is 

determined by the equation: ealow = &grid[n + i + ix\j + ij[ik]. 

Figure 3-5 shows various effective address examples. The equation 

parameters are: 

(1) n is the SPU number (starting from 0) 

(2) i and j are the x and y coordinates in the SPU block respectively 

(3) ix, iy and ik are given by the following equations: 

a. ix — oc * spuc; a is the number of the block in the x direction. 

b. iy = p * spur ; (3 is the number of the block in the y direction. 
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Figure 3-5: DMA List Addresses 

c. ik = 0 * s p u d ; (|) i s the number of the block in the z direction. 

Once the DMA lists are generated, an additional vector is created which 

stores the addresses to each DMA list. Since the number of DMA lists is usually 

too large to fit in LS, the SPU fetches the DMA list corresponding to each block 

before operating on that block, instead of storing the inventory of DMA lists. 

Therefore, during the SPU pre-processing stage, the vector of DMA list addresses 

is fetched first. However, each DMA list address is 32b or 8B, but the transfer 

size must be a multiple of 16B, so there must be an even number of DMA lists. 

Furthermore, the transfer size cannot exceed 16KB, resulting in a maximum 

number of DMA lists/SPU blocks that is allowed: 

transfer size = numOfDMALists * sizeof (long) < 16KB 

transfer size - numOfDMALists *8B < 16KB 

16KB 
numOFDMALists < = 2048 

8 B 

Consequently, the total number of DMA lists (and SPU blocks) must be 

even and less than 2048 so that the memory transfer requirements are satisfied. 
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3.2.3 PPU Execution 

Once the DMA lists and address vector have been generated, the PPU 

creates the SPU contexts and the SPU threads. At this point, the SPU pre-

processing stage begins (see Section 3.2.4). Once the SPU pre-processing has 

completed, the SPU sends a signal to the PPU's mailbox indicating that the SPU 

is ready to begin execution. At this point, the time-step loop begins (§), and the 

execution continuously switches between the PPU and the SPUs. 

The PPU carries out the reaction section on the boundary particles (details 

are outlined in Section 3.2.3.1). It then sends a message to the SPU mailboxes to 

signal that data is ready and the SPUs can start processing. Once an SPU has 

finished processing all of the blocks assigned to it, it sends a message to the PPU 

to signal that it is ready for the next time-step. The PPU waits for all the SPUs to 

be done, executes the movement code on the boundaries, updates the 

concentration of all the species, resets the 'moved' and 'reacted' flags to 0 for all 

particles, and increments the time-step. The process restarts again from (§). When 

the simulation time is reached, the execution exits the time-step loop, and the PPU 

sends a message to the SPU mailboxes to signal the end of the simulation, at 

which point the SPU threads are completed. 

3.2.3.1 Boundary Particles 

Although the SPUs are responsible for the bulk of the data processing, the 

PPU does some of the work also, as shown in Figure 3-4. In a 3D cube, each 

particle has access to 27 voxels, including itself (D3Q27 grid). However, the 

particles that are on the boundary of the cube (e.g.: x = 0) only have 18 immediate 

neighbours, and there are six different boundaries corresponding to: (1) x = 0, 

(2)y = 0, (3) z = 0, (4) x = xmax - 1, (5) y = ymax~ 1, and (6) z = 

z — 1 ^max 

To determine if a particle is on the boundary, a conditional statement must 

be used, which is inefficient on the SPU. In order to eliminate this conditional, 

boundary particles are not evaluated on the SPUs. Instead, the PPU serially 

performs reaction and movement operations on those particles, whereas the SPU 
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processes the rest of the grid. Consequently, out-of-bounds assessments are no 

longer needed on the SPU since no boundary particles are evaluated. For a grid of 

size (X, Y, Z), the area that is operated on by the SPUs is (X - 2 ) ( F - 2)(Z - 2). 

For larger blocks, the area of the boundaries becomes negligible compared to the 

area operated on by the SPUs. Hence, the effect of the PPU operation becomes 

negligible overall. 

Without boundary particles, the area of the 3D block that is worked on by 

the SPUs is delimited by (x,y,z) = (1,1,1) to (x,y,z) = ( x m a x - 2 , ymax- 2, 

zmax- 2). However, if this is the area that is sent to the SPU, the particles at 

coordinates x = 1 for example become boundary particles since they only have 

access to 18 neighbours (corresponding to x = 1, and x = 2). Therefore, if the SPU 

will analyze a block of data of size (spuc, spur, spud), it is required to fetch a 

block of data of size (spu c + 2, spur + 2, spud + 2) in order to guarantee that 

each particle will have access to its 26 neighbours (the D3Q27 grid must be in LS 

in its entirety). The voxels on the additional six planes will not yet be processed 

by the SPU. They are read and written to by reaction and movement codes, but 

those particles do not diffuse nor react. They will be operated on by the PPU, 

other SPUs, or the same SPU as part of other blocks. This is best shown through 

an example. 

Consider the case outlined in Figure 3-6 where the grid is distributed over 

three SPUs. For simplicity, 2D is assumed. However, the same concept applies to 

3D. The grid is divided into three equally-sized partitions. Since the LS on the 

SPU is limited, each partition could be divided into smaller blocks that can fit in 

LS. In this example (Figure 3-6), each SPU will operate on four blocks serially. 

The particles on the boundaries in gray (arrows ai, a2, a3 & a4) are operated on by 

the PPU. For a block of size (spu c , spu r ) , SPU 0 must fetch a block of size 

(spuc + 2, spur + 2) as shown in the figure, thus borrowing four boundaries: 

(1) One x boundary from the PPU (arrow ai). 

(2) One x boundary from SPU 1 (arrow b). 

(3) One y boundary from the PPU (arrow a2). 
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SPU 1 SPU 2 

Figure 3-6: Block Distribution over 3 SPUs 

(4) One y boundary from the next block on the same SPU (arrow d). 

The particles pointed to by arrow'd' are fetched twice by the same SPU, 

once as a boundary, and once as data to be processed. Similarly, in order to 

analyze block 2, SPU 1 must fetch 4 boundaries: arrows (c) and (f) from SPUs 0 

and 2 respectively; and arrows (g) and (h) from blocks on SPU 1. 

The SPU is a SIMD processor, and requires data to be in 128b registers. 

Additionally, the code is based on a series of integer or float operations (32b 

each). The SPU code thus executes the movement and the reaction sections on 

four voxels at a time. However, since each voxel needs exclusive access to 26 

neighbours, it is important that those neighbours not be shared amongst the four 

voxels to make sure that data integrity is maintained (the same voxel cannot be 

written to simultaneously by two different particle operations). 

Figure 3-7 shows four examples of voxel selection (2D is chosen for 

simplicity; the same concept applies to 3D). The figure shows that voxels need to 

be separated by at least two other voxels in order to be operated on 
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simultaneously. In GridCell, simultaneous execution of four particle operations 

occurs in the x direction. For this reason, for an SPU block size 

(spuc, spur, spud), spuc must be a multiple of 4, and be at least 12; otherwise, it 

is not always possible to find four independent particles that can be executed upon 

simultaneously. There are no such conditions on spur and spud. 

Given the above mentioned requirement and the execution of boundaries 

by the PPU, there are conditions on the total size (columns, rows, depth) of the 

3D grid (in main memory) for accurate execution. For a simulation over n SPUs, 

and an SPU block size (spu c , spur, spud) in LS, without borrowed boundaries, 

the conditions on the 3D grid and SPU block sizes are outlined in Figure 3-7. 

3.2.4 SPU pre-processing stage 

As shown in Figure 3-4, the pre-processing stage on the SPU is executed 

only once per simulation. It involves the memory transfers of (1) the control 

block, which includes all the information required for the SPU operation, (2) the 

reaction lists per species, and (3) the list of DMA list addresses in order to fetch 

the DMA lists. Once this is done, the SPU signals the PPU that it is ready to 

operate. The DMA transfers of the DMA list and the actual block of data occur 

within the processing stage. Based on the size of the 3D grid, each SPU could 
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Table 3-2: Conditions on the grid size and number of SPU blocks 

Variable: Condition: 

Size of the 3D grid: 

(1) columns — {spujcolumns * n) * ir^ + 2 
(2) rows — spujrows * ra2 + 2 
(3) depth = spujdepth *m3 + 2 
where mi, m2 and m; are non-zero positive integers 

Maximum number of blocks 
& DMA lists per SPU 

numOfDMALists % 2 = 0 
numOfDMALists < 2048 

Minimum value for 
blockz 

blockz ^ 6 

Value of spuc 
spuc = 4 * m 
spuc > 1 2 

process more than one data block per time-step resulting from the limited size of 

the LS. 

The processing stage involves (1) fetching the DMA list from memory, (2) 

fetching the data block from memory using DMA list commands (Section 3.2.5), 

(3) executing the reaction and reaction-selection stages (Sections 3.2.6 & 3.2.7), 

(4) executing the movement stage (Section 3.2.8), and finally, (5) writing the 

block back to memory. 

3.2.5 Multi-buffering 

Figure 3-8 shows how multi-buffering is done on the SPU. Since each 

SPU will operate on multiple blocks, the processing stage involves moving each 

block from main memory into the SPU, operating on it, and then writing it back to 

main memory. However, memory transfers are time-consuming, and as the 

number of blocks and/or the transfer size increase, the amount of time wasted in 

memory transfers becomes significant. 

Multi-buffering is a way of overlapping the execution with memory 

transfers in order to eliminate their effect on performance. In fact, with multi-

buffering, it is possible to eliminate the effect of all but two memory transfers: (1) 

the initial transfer from main memory into LS, and (2) the final write to main 

memory. 
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Figure 3-8: Double Buffering Memory Transfers 

In GridCell, before the SPU can transfer a block into its LS, it must obtain 

the corresponding DMA list from memory. Therefore, each block requires two 

'get' commands (to fetch data), and one 'put' command (to write data). The 

execution starts with three consecutive 'get' operations for (1) the first DMA list, 

(2) the first block, and (3) the second DMA list respectively. These commands are 

blocking since they are the initial transfers. Afterwards, the execution loops over 

all the SPU blocks in the system. 

During each iteration, the SPU operates on the current block, while 

fetching the next block and the following DMA list. At any time, the SPU stores 

three DMA lists, and two SPU blocks, except for the last pair of blocks where it 

does not fetch a third list (since there are no more blocks to operate on). The 

DMA lists are therefore triple-buffered, whereas the SPU blocks are double 

buffered. At the end of each iteration, the SPU writes back the current block into 

main memory. This is a non-blocking operation which overlaps with the 

execution on the following block. 
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Figure 3-9: Example of Block Selection for Double-Buffering 

However, each SPU block contains data shared with other blocks. Thus, 

adjacent blocks cannot be double-buffered. A pattern of execution must be found 

such that blocks can be double-buffered without jeopardizing data integrity. The 

algorithm loops over blocks in the Z direction, for each X and Y pair. It is 

possible to double-buffer even-numbered blocks, and odd-numbered blocks 

separately, as shows in the following example. 

If there are two blocks in the X direction, two blocks in the Y direction, 

and four blocks in the Z direction (as outlined in Figure 3-9), the even blocks 000, 

002, 010, 012, 100, 102, 110, and 112 can be double-buffered in that order, since 

they do not share any sides or corners. Similarly, the odd blocks 001, 003, 011, 

013, 101, 103, 111, and 113 can be double-buffered in that order. The DMA list 

for block 001 is fetched from memory while the SPU is executing on block 111, 

and the block itself is fetched while writing back block 111 to memory (since both 

are non-blocking operations) However, blocks 111 and 001 share a side. If the 

execution proceeds as mentioned, block 001 will have incorrect data. This issue 

occurs as long as there are less than six blocks in the Z direction. As a result, for 

accurate execution, it is necessary to have at least six blocks in the Z direction on 

each SPU (Table 3-2) in order to guarantee precise multi-buffering. Since the SPU 

block is small due to the limited LS, this condition is not unrealistic since 

simulated volumes (3D grids) have a significantly large number of blocks. 

In the next sections, we describe the algorithm for the reactions, reaction 

selection, and the movement sections. To eliminate unnecessary conditionals, 

empty voxels are treated like any other voxels. Prior to the beginning of the 
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Table 3-3: Reaction Results by type (SPU) 

Reaction Type L Vector Results Vector 

Transformation Lt= {Lt,,Lt2, Lt3, Lt4 
TransType: 
{Pt,, Pt2, Pt3, Pt4} 

Split Ls = {Lsi, Ls2, LS3, LS4} 

Typesl: 
{PS,,PS2, PS3, PS4>, 
Types2: 
{Ps,,Ps2, Ps3,Ps4}2 
Coordinates of 2nd result: 
( Xfs, Yfs, Zfs ) 

Merge Lm = {Lmi, Lm2, Lm3, Lm4( 

Typeml: 
{Pmi, Pm2, Pm3, Pm*}] 
Typem3: 
{Pmi, Pm2, Pm3, Prri4}3 
Coordinates of 2nd reactant: 
Xfm, Yfm, Zfm 

execution, if the voxel is empty (type 0), a flag is set to make sure movement and 

reaction are not possible. 

3.2.6 Reactions 

In the serial code, the reactions are executed one type at a time. However, 

this involves a lot of inefficient conditional statements. For this purpose, GridCell 

attempts to find one successful reaction per type for each particle. The results of 

each are saved in temporary variables (Table 3-3, Section 3.2.7). 

Prior to the reaction execution, the type of the particles tested is 

determined. If the voxel is empty (type 0), or if there are no reactions associated 

with that species, a flag is set to make sure that no reaction will occur for that 

voxel. 

The SPUs also keeps track of the concentration changes for each species. 

At the end of every time-step, the SPUs write the concentration changes to 

memory so that the PPU can update the total amounts, and then reset the 

concentration vector to 0 for the next time-step. The PPU can therefore track the 

concentration evolution at each time-step. 
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In the next sections, we present the algorithms for the (1) transformation, 

(2) split, and (3) merge reaction respectively, as well as the modifications that are 

necessary to be able to parallelize the code. 

3.2.6.1 Transformation Reaction 

Transformation reactions are the simplest reaction type. No new 

coordinates are required, except to search for reaction modifiers. The order of 

execution is very similar to that of the serial code, with the only exception being 

that four reactions are being executed simultaneously. 

i. The type at each voxel is determined to make sure empty voxels or 

particles with no transformation reactions do not react. 

ii. Four random numbers are generated to determine which transformation 

reaction to test first for each particle. 

iii. For each reaction that requires a modifier (or enzyme), GridCell searches 

the immediate surroundings of that particle for the modifier. If no enzyme 

is found, the reaction fails, and the probability is set to 2 for that particle. 

iv. For each reaction that does not require an enzyme, and for each reaction 

where an enzyme was found, a uniform random number a is generated, 

and compared to the probability of each reaction (the vector operation 

r < RN). 

v. If the inequality is satisfied, the flag Lt is set to indicate that a reaction is 

successful. The expected result of the transformation is stored in a vector 

called TransType. 

The algorithm loops over all the transformation reactions for each of the 

four voxels until a reaction is successful for each particle or there are no more 

transformation reactions to test. At the end of the transformation section, two 

128b vectors are saved (Table 3-3): (1) Lt which indicates if a reaction was 

successful (Oxffffffff) or not (0) for each voxel, and (2) TransType which stores 

the transformation result of the successful reactions. 
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3.2.6.2 Split Reaction 

Split reactions involve the creation of a new particle, and thus require the 

presence of an empty voxel in the immediate neighbourhood of each particle. The 

order of execution is very similar to the order of the original implementation. 

i. The type at each voxel is determined to make sure empty voxels or 

particles with no split reactions do not react. 

ii. Four random numbers are generated to determine which split reaction to 

test first for each particle. 

iii. The first step is to determine the temporary particles condition (see 

Section 3.1.2.2). If the condition is not satisfied, the reaction fails, and the 

probability is set to 2 for that voxel. 

iv. If the condition is satisfied, the algorithm searches neighbouring voxels for 

an empty location. If no location is unoccupied, the reaction fails, and the 

probability is set to 2 for that particle. 

v. If an empty voxel is found (at coordinates Xfs, Yfs, Zfs), a uniform 

random number a is generated, and compared to the probability of each 

reaction (the vector operation R < RN). 

vi. If the inequality is satisfied, a flag Ls is set to indicate that a reaction is 

successful. The two results of the split reaction are saved in vectors typsel 

and types2. 

The algorithm loops over all the split reactions for each of the four voxels 

until a reaction is successful for each particle or there are no more split reactions 

to test. At the end of the split section, four 128b vectors are saved (Table 3-3): (1) 

Ls which indicates if a reaction was successful (Oxffffffff) or not (0) for each 

voxel, (2) the coordinates of the empty voxels (location of the second product) 

Xfs, Yfs and Zfs, (3) types 1 which stores the expected result in the current 

coordinates, and (4) types2 which stores the expected results at (Xfs, Yfs, Zfs). 

5 4 



3.2.6.3 Merge Reaction 

Merge reactions involve the consumption of an existing particle, and thus 

require the presence of that particle species in the immediate neighbourhood of 

each particle. The order of execution is very similar to the order of the original 

implementation. 

i. The type at each voxel is determined to make sure empty voxels or 

particles with no merge reactions do not react. 

ii. Four random numbers are generated to determine which merge reaction to 

test first for each particle. 

iii. The first step is to determine the temporary particles condition (see 

Section 3.1.2.2). If the condition is not satisfied, the reaction fails, and the 

probability is set to 2 for that particle. 

iv. If the condition is satisfied, the algorithm searches the neighbouring 

voxels for the reaction's second reactant. If it is not found, the reaction 

fails, and the probability is set to 2 for that particle. 

v. If the second reactant is located at coordinates (Xfm, Yfm, Zfm), a 

uniform random number a is generated, and compared to the probability 

of each reaction (the vector operation R < RN). 

vi. If the inequality is satisfied, a flag Lm is set to indicate that a reaction is 

successful. The result of the merge reaction is saved in vector typmel. 

Keeping in mind that, after the merge, an empty location replaces the 

second reactant, vector typem3 stores the initial types at (Xfm, Yfm, Zfm). 

The algorithm loops over all the merge reactions for each of the four 

voxels until a reaction is successful for each particle or there are no more merge 

reactions to test. At the end of the merge section, four 128b vectors are saved 

(Table 3-3): (1) Lm which indicates if a reaction was successful (Oxffffffff) or not 

(0) for each voxel, (2) the coordinates of the second reactant (Xfm, Yfm Zfm), (3) 

typeml which stores the expected result in the current coordinates, and (4) 

typem3 which stores the pre-merge types at (Xfm, Yfm, Zfm). 
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3.2.7 Reaction selection 

Once all three reactions have been executed, the next step is to determine 

which reaction's results will be permanently recorded. To determine which 

reaction's results will be saved, a vector R of four random numbers between 0 and 

2 is generated, indicating which reaction will be selected first for each particle (as 

per Figure 3-2). Three select vectors (selecttrans, selectsplit, and selectmerge) 

are created when R is compared with {0,0,0,0}, {1,1,1,1} or {2,2,2,2}. The values 

of the select vectors depend on the value of R. When R holds a: 

0 at a particular location, select trans will be set to 1 at that location. 

1 at a particular location, select split will be set to 1 at that location. 

2 at a particle location, select merge will be set to 1 at that location. 

For example, select trans = {0, Oxffffffff, 0, 0} means that a 

transformation reaction must be selected first for the second particle. A reaction 

type is chosen if (1) the random number generated corresponds to the reaction 

type, and (2) a reaction of that type was successful (based on the flag vectors Lt, 

Ls and Lm). If at least one of those conditions is not satisfied, GridCell checks the 

following reaction type, based on the flow chart in Figure 3-2. 

Based on the values of the three select vectors, and the three L vectors (Lt, 

Lm, and Ls) (Table 3-3), GridCell determines which reaction will occur, allocates 

the corresponding results to the SPU block, and updates the concentration 

displacements of each species involved. Table 3-4 shows an example of reaction 

selection. 

3.2.8 Movement 

As previously mentioned, each SPU operates on four particles at a time. 

The first step is to verify if any of the four voxels are empty or the particles 

stationary. For any such voxel/particle, a flag is set to make sure the movement 

will not occur. Secondly, a vector of four random numbers a is generated, and 

compared to the particle's moving ratio M. Based on the results of the 

comparison, the movement will either occur (if a < M), or not (a > M). Then, 
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Table 3-4: Reaction Selection Example 

Selection Vector: 
R = {0,1,0,2} 

Flag vectors: 
Lt= {1,0,0,1} 
Ls= {0,1,1,1} 
Lm= {1,1,0,0} 

Select vectors: 
Selecttrans = {1,0,1,0) 
Select_split = {0,1,0,0) 
Selectmerge = {0,0,0,1} 

Select trans [0] = 1 Try transformation reaction 
first 
Lt [0] = 1 transformation reaction is successful 
for particle 0! 

Select split [1] = 1 try split reaction first 
Ls [1] = 1 -> split reaction is successful for 
particle 1! 

Select trans [2] = 1 try transformation reaction 
first 
Lt [2] = 0 -> try split reaction 
Ls [2] = 0 -> try merge reaction 
Lm [2] = 0 -> there are no successful reactions 
for particle 2 ! 

Select merge [3] = 1 try merge reaction first 
Lm [3] = 0 -> try transformation reaction 
Lt [3] = 1 -> transformation reaction is successful 
for particle 3 ! 

Concentration Update: The concentration is updated for each of the 
successful reactions 

GridCell establishes the destination voxels. This is done by determining the 

displacement from the current voxels through the generation of random numbers 

between 0 and 2 (Rn_x, Rn_y, and Rn_z). 

The interpretation of the random numbers is as follow: 

0 means the new coordinate is equal to the old coordinate: X = Xnew. 

1 means the old coordinate is incremented by one: X + 1 = Xnew. 

2 means the old coordinate is decremented by one: X — 1 — Xnew. 

There are 27 possible combinations of those three random numbers, thus 

obtaining one out of 27 possible destination voxels (D3Q27 grid, Figure 3-3). A 

total of 12 numbers are generated: three coordinates for each of four particles. 

57 



Once the displacement is obtained, the coordinates of the destination voxels are 

computed by comparing the random numbers with {0,0,0,0}, {1,1,1,1} and 

{2,2,2,2}. 

The next step is checking whether the destination voxels are unoccupied. 

If so, the movement occurs in the same way as in the serial code: the current voxel 

is marked as empty, and the new voxel is assigned the particle's characteristics 

(type, lifetime, state, etc). At this stage, particle concentration is not affected as 

particles are neither created nor consumed. 

At the end of the movement code, temporary particles are updated if two 

or more time-steps have passes since they were created. In this case, their state is 

reversed so that, at the next time-step, it can revert back to its original form. A 

temporary particle reverts back to its original form if it cannot react to produce the 

final product of the original complicated reaction. 

For example, the reversible reaction B C + D + E is reduced to: 

B -» C + TJ (•) 

TJ D + E (••) 

D + E -*T1 (—) 

C + Tj B (••••) 

If the forward reaction (••) could not occur two time-steps after T| was 

created, the particle Tj's state flag is reversed to indicate a backward reaction. 

This means that, in the next time-step, the backward reaction (••••) will have a 

chance to occur such that B is obtained from the temporary particle T], 

Additionally, the forward reaction (••) will not be able to occur since the 

temporary particles condition will not be satisfied (reaction is forward, but state 

indicates backward reaction). 

At the end of the movement code, the block is written back to main 

memory, and the execution starts again on the following block. If there are no 

more blocks to be processed, the final write is blocking, followed by sending the 

concentration changes back to the PPU. At this point, the PPU will update the 

concentrations, advance by one time-step, and the process starts again. 
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Now that the algorithm has been described in detail, the results of the CBE 

implementation can be validated by undertaking a comparison with the results of 

the serial version. Additionally, performance and timing analysis can be carried 

out in order to show that the CBE implementation is better performing than the 

serial implementation. 
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Chapter 4 Results and Performance Analysis 

In this chapter, we first analyse the results of the CBE implementation in 

order to establish the accuracy of the algorithm. Since SBML is not used in the 

CBE implementation, we adjusted the serial code to manually generate the 3D 

grid and create the reactions. However, the algorithm itself was not modified from 

the original code. Subsequently, we undertake timing analysis with the purpose of 

determining if the CBE version yields any performance improvements over the 

serial version run on the PPU, and on an Intel processor. 

4.1 Verification of results 

The first step is to determine the validity of the results of the CBE 

implementation. In order to do so, we compare the concentration results with 

those of a serial version running on the CBE, utilizing the PPU exclusively 

(referred to as 'Serial-PPU). We simulate different systems to compare and 

corroborate results. The first system is a simple reversible reaction A + B <-» C. 

The second system represents the Michaelis-Menten kinetics. For the third 

system, the effects of crowding are analyzed, by adding inert particles to a 

Michaelis-Menten system, and studying the rate of product creation. 

4.1.1 Simple Reversible Reaction 

We start by comparing the results of a simple reversible reaction system, 

between the CBE implementation run on one SPU, and the Serial-PPU 

implementation. 
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Figure 4-1: Simple reversible reaction: Concentration results of the CBE implementation using 

only one SPU (Ap, Bp, and Cp) compared to the results of Serial-PPU (A, B and C). 

The system is given by the following equation: 

A + B «-> C. 

For this simulation, the forward probability of reaction is 0.25, and the 

backward probability is 0.05. This unique reversible reaction is entered in the 

system as two independent and different reactions: 

a) A forward merge reaction A + B -> C with a probability of 0.25 

b) A backward split reaction C A + B with a probability of 0.05. 

At the beginning of the simulation, there are 3000 particles of type A, 

1000 particles of type B, and no particles of type C. Figure 4-1 shows the results 

of the simulation with the following parameters: 

a) Grid size: 290 x 12x20 

b) SPU block size: 24 x 2 x 2 

c) Number of iterations: 50 

d) Number of SPUs: 1 

e) Sampling rate: 2 iterations. 

As can be seen from Figure 4-1, the results of both implementations are 

comparable, with the exception of some expected stochastic noise. Additionally, 
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Figure 4-2: Concentration results of the simple reversible reaction on the 

CBE, over 1,2, 3 & 6 SPUs 

Figure 4-2 shows the results of the simple reversible reaction on the CBE, over 

one, two, three and six SPUs. As can be seen from the figure, the results are 

accurate, independently of the number of SPUs used. 

4.1.2 Michaelis-Menten System 

The Michaelis-Menten system describes the kinetics of many enzymes, 

and is given by the equation: 

E + S^ES^>E + P. 

In this equation, S is a substrate that binds to enzyme E to yield ES, which 

can decompose into the product P and the enzyme E, or into its original form 

(E+S). Usually, the enzyme is the limiting factor, since its concentration is much 

lower than that of S. The simulation parameters are: 

a) Grid size: 290 x 12 x20 

b) SPU block size: 24 x 2 x 2 

c) Number of iterations: 500 

d) Number of SPUs: 1, 2, 3 and 6 

e) Sampling rate: 20 iterations 

f) Initial concentrations: 1000 particles of E and 3000 particles of S. 
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The above 3D grid size satisfies the conditions set on the size of the grid, 

with respect to the number of SPUs, and the SPU block size. Additionally, for 

each of the simulations, the total number of blocks per SPU is even as required 

(Table 3-2): 

For one SPU: 

290 = 2 + 1 * (24 * 12), 

12 = 2 + (5 * 2) and 

20 = 2 + (9 * 2). 

540 blocks per SPU 

For three SPUs: 

290 = 2 + 3 * (24* 4), 

12 = 2 + (5 * 2) and 

20 = 2 + (9 * 2). 

180 blocks per SPU 

For two SPUs: 

290 = 2 + 2 * (24 * 6), 

12 = 2 + (5 * 2) and 

20 = 2 + (9 * 2). 

270 blocks per SPU 

For six SPUs: 

290 = 2 + 6 * (24* 2), 

12 = 2 + (5 * 2) and 

20 = 2 + (9 * 2). 

90 blocks per SPU 

The system is represented by three different and independent reactions: 

a) A forward merge reaction E 4- S -> ES probability of reaction 0.25 

b) A backward split reaction ES -> E + S with probability of reaction 0.05 

c) A forward split reaction ES -> E + P with probability of reaction 0.05 

Figure 4-3 compares the results of the serial version with those of the 

parallel version utilizing only one SPU. As expected, the time evolution of the 

concentration for both implementations is similar, with the exception of some 

expected stochastic noise. The total number of particles in the system is also 

similar, with a maximum error margin of 2.43%. 

Additionally, we compare the results of the CBE implementation using 

one, two, three or six SPUs. Figure 4-4 shows the results of the simulation. As can 

be seen from the figure, the results overlap, and cannot be distinguished. The 

results are therefore accurate regardless of the number of SPUs used in the 

simulation. 
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Figure 4-3: Michaelis-Menten System: Concentration results of the CBE 

implementation using only one SPU (Ep, Sp, ESp and Pp) compared to the 

results of Serial-PPU (E, S, ES, and P). 
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Figure 4-4: Concentration results of the Michaelis-Menten System on the CBE, 

over 1, 2, 3 & 6 SPUs 

4.1.3 Analysis 

In Sections 4.1.1 and 4.1.2, we showed that the results of the parallel 

implementation are comparable to the results of the original serial algorithm. We 

can conclude that, firstly, the modifications to the algorithm, described in Section 
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3.2, did not have an impact on the accuracy of the implementation. Secondly, the 

number of SPUs employed in the implementation does not have any consequences 

on the algorithm precision. 

This result is indicative of the fact that the parallel version of GridCell is 

algorithmically correct. We can now proceed to analyze the performance of the 

parallel simulator by measuring and comparing execution times. 

4.2 Performance Analysis 

In order to show performance improvements over the serial version of 

GridCell, we compare the execution time of the serial version running on the 

CBE, utilizing only the PPU (referred to as 'Serial-PPU) with that of the CBE 

version employing a different number of SPUs, for a variety of test cases. There 

are four different parameters that can affect the execution time, and consequently 

the performance of the CBE implementation: (1) the number of SPUs used, (2) 

the size of each SPU block, (3) the size of the 3D grid that represents the volume 

simulated, and (4) the portion of the total volume that is initially occupied (the 

initial particle density, expressed as a percentage of the total volume). We discuss 

each of these parameters in the following subsections, and analyse their effect on 

performance. 

Moreover, we evaluate the performance of the CBE implementation, over 

the serial version running on an Intel Pentium IV 3.2 GHz processor (referred to 

as 'Serial-Intel'). 

4.2.1 Serial-PPU and CBE implementations 

In this section, we compare the performance of the CBE version, with the 

serial version run on the CBE employing the PPU exclusively (Serial-PPU). We 

start by determining the effect on performance of the number of SPUs used in the 

simulation. Afterwards, we establish the effect of different SPU block sizes, 

followed by that of different 3D grid sizes. Finally, we study the effect of 

different particle densities. 
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Table 4-1: Speed-up of the CBE implementation utilizing a different number of SPUs, over the 

Serial-PPU version. 

Serial-PPU 2 SPUs 3 SPUs 4 SPUs 6 SPU s 
Time (s): 147.84 151.21 117.58 100.33 83.50 
Speed-up: 1.00 0.98 1.25 1.48 1.76 

Timing 
spectrum -

over 2 
SPUs 

Timing 
spectrum -

over 4 
SPUs 

Time of Serial Version 

PPU Pre-proefesswg., SPU Pre-processing 

PPU Pre proeessir« . SPU Pre-processing 

PPU Pre-processing - SPU Pre-processing SPU Execution 

PPU Pre processing , SPU Pre-processing SPU Execution 

PPU Pre-processing ' SPU Pre-processing SPU Execution 

PPU Pre-processing" SPU Pre-processing SPU Execution 

Timo 
Diffewx:* 

SPU Execution 

SPU Exsibtion 

Figure 4-5: Example of timing spectrums 

4.2.1.1 Speed-up over the number of SPUs 

The number of SPUs used affects the execution time in different ways. For 

the same volume, particle density, and SPU block size, the number of used SPUs 

modifies the number of blocks evaluated on each SPU. Additionally, the time 

spent by the PPU creating the SPU threads and the contexts increases with the 

number of SPUs. Table 4-1 shows the execution times and the speed-ups obtained 

when simulating the Michaelis-Menten system with the following parameters: 

a) Grid size: 866X22 X 14 

b) SPU block size: 24 x 2 x 2 

c) Number of iterations: 500 

d) Number of SPUs: 2, 3, 4 and 6 

e) Number of blocks per SPU: 1080, 720, 540 and 360 respectively. 
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As expected, using more SPUs will decrease the execution time because 

each SPU operates on a lesser number of blocks (Table 3-1 shows how to obtain 

the number of blocks per SPU). In this example, using only two SPUs yields a 

higher execution time because the advantage of dividing the simulation volume 

over two SPUs is countered by the time wasted setting up all the structures 

required as well as the SPUs. In order to obtain performance improvements, the 

time that each SPU spends operating on its blocks must be small enough such that 

the time spent in the pre-processing stages does not hinder performance. Figure 

4-5 shows an example of timing spectrums, for two and four SPUs, compared to 

the execution time of Serial-PPU, where using two SPUs causes decreased 

performance. For the same grid size, particle density, and SPU block size, the 

PPU pre-processing stage takes approximately the same time, but the number of 

SPUs affects the time spent on the SPU pre-processing, as well as the SPU 

execution. Therefore, using more SPUs yields better timing results, thus 

increasing the speed-up over the Serial-PPU version. 

4.2.1.2 Timing over SPU block size 

The second parameter that may affect the execution time and the speed-

ups is the size of the SPU block in LS. This value affects the transfer of each 

block from main memory into LS since the transfer amount is dependent on the 

size of the SPU block in the Z direction. Figure 4-6 shows the speed-ups obtained 

when simulating the Michaelis-Menten system with the following parameters: 

a) Grid size: 866 X 22 X 30 

b) SPU block size: 22 x 2 x 4 and 12 x 5 x 4 

c) Number of iterations: 500 

d) Number of SPUs: 2, 3, 4 and 6 

e) Particle density: 14% 

The figure shows that similar speed-ups are obtained for any SPU block 

size, as long as all the other parameters are maintained. A larger SPU block size 

reduces the number of blocks that the SPU will execute on, but it will increase the 
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Figure 4-6: Speed-up of the CBE implementation utilizing different SPU block sizes, 

over the Serial-PPU version, for a different number of SPUs. 

Table 4-2: Execution time of the CBE implementation over 3D grid size in seconds, 

using three and six SPUs 

Grid Size Serial-PPU Three SPUs Six SPUs 
866 x 22 x 30 227.19 211.81 135.47 
578 x 22 x 30 152.03 142.46 91.77 
434 x 22 x 30 111.08 106.09 67.84 
290 X 22 X 30 71.16 71.51 40.04 

amount of data to be transferred when fetching the block into LS from main 

memory. Additionally, the time the SPU spends operating on the larger block will 

increase. The combination of all these effects is such that the SPU block size does 

not influence the execution time of the CBE version, and thus the performance of 

GridCell on the CBE is not dependent on the SPU block size. 

4.2.1.3 Timing over 3D grid size 

The third parameter that may influence the execution time is the size of the 

volume to be simulated (or the 3D grid size). Table 4-2 shows the execution time 

of the serial version, compared to the CBE implementation using three and six 

SPUs, obtained when simulating the Michaelis-Menten system for different grid 

sizes, with the following parameters: 

a) 3D grid size: variable. 
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Figure 4-7: Speed-up of the CBE implementation for different 3D grid sizes, over the 

Serial-PPU version, for 3 and 6 SPUs. 

b) SPU block size: 24 x 2 x 2 

c) Number of iterations: 500 

d) Number of SPUs: 3 and 6 

e) Particle density: 20% 

As expected, the time increases with the size of the 3D grid representing 

the volume to be simulated. For larger grids, the number of voxels increases, and 

consequently, the time to process all those voxels rises. Figure 4-7 shows the 

speed-ups obtained from this example. As a result of the increase in grid size, the 

execution time rises comparatively for both the Serial-PPU and the CBE version. 

Consequently, the acquired speed-ups for the different volumes are relatively 

close to each other, for both three and six SPUs. We can therefore conclude that, 

if all the other parameters are maintained, we can obtain analogous performance 

improvements for variable 3D grid sizes. 

4.2.1.4 Timing over initial particle density 

The last parameter that may affect execution time and speed-ups is the 

initial number of particles in the system, or the initial particle density which is 

expressed as a percentage of the total volume. In order to study the effect of 
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Figure 4-8: Speed-up of the CBE implementation with varying particle density, over 

the Serial-PPU version, for a different number of SPUs. 

particle density on performance, we simulate the Michaelis-Menten system with 

the following simulation parameters: 

a) Grid size: 434 x 22 x 30 

b) SPU block size: 22 x 2 x 2 

c) Number of iterations: 500 

d) Number of SPUs: 2, 3 and 6 

e) Particle density: 7% to 56% (7% increments) 

The results of the simulation, shown in Figure 4-8, indicate that the speed-

ups obtained increase with the initial particle density. In the serial algorithm, the 

execution over a voxel stops if any of the following occurs: (1) the voxel is 

empty, (2) the particle is immobile or inert, (3) a successful reaction is found, or 

(4) no reactions are associated with that particle type. Therefore, for a low particle 

density, the algorithm spends less time executing since more voxels are empty. 

On the other hand, the CBE algorithm operates over four voxels at a time, 

including empty voxels (a flag is set in this case to prevent reactions or diffusion 

from occurring). Additionally, the algorithm attempts to find one successful 

reaction of each type, and then selects one reaction to perform. The CBE version 

does more work on each voxel, compared to the serial implementation. Even 

i.UU 

0.50 

0.00 
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Table 4-3: Timing analysis, and speed-up of the Serial-Intel version, over the Serial-PPU version, 

for different 3D grid sizes and particle densities. 

Volume & Particle Scrial- Serial- Speed-up: Serial-Intel over 
Density PPU Intel Serial-PPU 

8 6 6 X 2 2 X 3 0 - 2 0 % 84.04 22.43 3.75 
866 X 22 X 30 - 35% 132.16 40.21 3.29 
866 X 22 X 30 - 50% 178.77 48.36 3.70 
866 X 22 X 30 - 75% 254.59 66.83 3.81 
5 7 8 x 2 2 x 3 0 - 2 0 % 57.86 
5 7 8 x 2 2 x 3 0 - 3 5 % 89.08 22.78 3.91 
5 7 8 x 2 2 x 3 0 - 5 0 % 118.56 . ..'.. 3.40 
5-78 x 22 x 30 - 75% 165.74 52.94 ; 3.13 : 
434 x 22 x 30 -20% 42.16 12.01 3.51 
434 x 22 x 30 - 35% 66.51 19.29 3.45 
434 x 22 x 30 - 50% 89.21 25.41 3.51 
434 x 22 x 30 - 75% 145.46 43.15 3.37 

Average Speed-up 3.55 

when the particle density is low, the SPU spends a significant amount of time 

processing empty voxels. 

On the other hand, when the particle density is high, the serial algorithm 

must go through a higher number of non-empty voxels, which increases its 

execution time. However, the SPU processes these voxels anyway. Hence, when 

compared to the execution time of Serial-PPU, the CBE implementation's time is 

lower for high density. Figure 4-8 shows that speed-ups can be obtained for more 

than 20% initial density for three of more SPUs, and over 35% density for two 

SPUs. Using six SPUs always yields good speed-ups as can be seen from the 

multiple examples that we have examined. 

4.2.2 Serial-Intel and CBE implementations 

In this section, we compare the performance of the CBE version with the 

serial version run on an Intel Pentium IV 3.2 GHz processor (Serial-Intel, Section 

4.2.2.2). To better understand the results of the comparison, we start by evaluating 

the performance of Serial-PPU with respect to Serial-Intel (Section 4.2.2.1). 
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4.2.2.1 Serial-Intel compared to Serial-PPU 

In order to understand the performance of the CBE implementation when 

compared to the Serial-Intel version, we start by comparing the Serial-Intel and 

Serial-PPU versions. The Serial-PPU source code runs on the PPU, which is a 

PowerPC processor. Table 4-3 shows timing analysis between the Serial-PPU and 

the Serial-Intel versions of GridCell, for three different volumes, over four 

different particle concentrations. 

Using the tabulated results, we conclude that the Intel version is on 

average 3.55 times faster than the Serial-PPU version. This is expected since 

commercial Intel processors are better performing than the PPU. Using this 

information, we can further study the timing analysis between the CBE 

implementation, and the Serial-Intel version. 

4.2.2.2 Serial-Intel compared to Parallel version 

As mentioned in Section 3.2 in the description of the CBE implementation 

of GridCell, the bulk of the work is processed by the SPUs. However, boundary 

voxels are traversed by the PPU at each time-step. Additionally, the PPU loops 

over the 3D grid at each iteration to reset the flags "moved" and "reacted". 

Consequently, the performance of the CBE implementation is bottlenecked by the 

PPU execution, given that the Intel implementation is significantly faster than the 

Serial-PPU version. In order to determine the effect of the PPU execution on 

overall performance, we simulate the Michaelis-Menten system with the 

following parameters, twice: (1) to obtain the total execution time, and (2) to 

gather the execution time of the SPU code only (boundary particles were not 

evaluated). 

a) Grid size: variable 

b) SPU block size: 22 x 2 x 2 

c) Number of iterations: 200 

d) Number of SPUs: 3 and 6 

e) Particle density: 20%, 35%, 50% and 75%. 
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Figure 4-9: PPU Time as a percentage of total time of the CBE implementation, over 

varying grid sizes, number of SPUs, and particle densities. 
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Figure 4-10: SPU Time o f the CBE implementation, over varying grid sizes, number of 

SPUs, and particle densities. 

Given the two time values collected, it is possible to estimate the 

execution time over the boundary particles (PPU Time). The results of the PPU 

and SPU times are shown in Figure 4-9 and Figure 4-10 respectively. Figure 4-9 

shows the PPU time as a percentage of the total execution time of the CBE 

implementation. We notice that the PPU time's portion of the total time increases 

only with the particle density. However, as can be seen in Figure 4-10, the SPU 

7 3 



Table 4-4: Speed-up of the CBE version, utilizing a different number of SPUs, over Serial-Intel 

Volume & Density 
• T < T«/T3 T>4 . Tin/T„ : •*•• T,/r24 

866 X 22 X 30 - 20% 83.98 53.22 22.43 0.63 33.73 21.37 0.66 1.05 
8 6 6 X 2 2 X 3 0 - 3 5 % 95.84 64.08 40.21 0.67 42.84 28.65 0.94 1.40 
8 6 6 X 2 2 X 3 0 - 5 0 % 106.54 73.8 48.36 0.69 51.12 35.41 0.95 1.37 
8 6 6 X 2 2 X 3 0 - 7 5 % 123.22 88.76 66.83 0.72 63.94 46.06 1.05 1.45 
578 x 2 2 x 3 0 - 2 0 % 56.26 35.96 15.53 0.64 22.98 14.69 0.68 1.06 
578 x 22 x 30 - 35% 64.14 42.99 22.78 0.67 28.81 19.31 0.79 1.18 
578 x 22 x 30 - 50% 71.07 55.64 34.87 0.78 43.56 34.10 0.80 1.02 
578 x 2 2 x 3 0 - 7 5 % 81.46 58.76 52.94 0.72 42.39 30.57 1.25 1.73 
434 x 22 x 30 -20% 41.95 26.76 12.01 0.64 17.07 10.89 0.70 1.10 
434 x 2 2 x 3 0 - 3 5 % 40.05 32.11 19.29 0.80 25.74 20.64 0.75 0.93 
4 3 4 x 2 2 x 3 0 - 5 0 % 53.46 37.24 25.41 0.70 25.94 18.07 0.98 1.41 
4 3 4 x 2 2 x 3 0 - 7 5 % 66.3 48.64 43.15 0.73 35.68 26.18 1.21 1.65 

time increases only slightly over rising particle density, because the SPU operates 

over all voxels, even if they are empty, unlike the PPU which skips empty voxels. 

In order to reduce the effect of the PPU execution on the overall execution 

time, and thus obtain positive speed-ups, we can utilize a higher number of SPUs. 

Given that the PS3© only has six active SPUs, we can speculate as to the 

minimum number of SPUs required to obtain any speed-up. The speed-up is given 
T by the following equation: Speedup = — , where Tj is the time of Serial-Intel, 
Ti 

and Tn is the CBE version's time over SPUs. In this case, we have access to 

three and six SPUs, so we can determine the relationship between the execution 

time over six (T&) and three (T3) SPUs. In this case, T6 « 0.7T3 which we can 

generalize to T2N ~ 0.7TN. We can therefore estimate the execution time over 12 
T• and 24 SPUs. The results are tabulated in Table 4-4. A ratio — higher than one 
Tn 

indicates that a speed-up can be obtained. In this case, 12 SPUs will produce a 

speed-up in the case of 75% particle density, whereas 24 SPUs will generate 

better performance over Serial-Intel for all but one case. 

Furthermore, given that the PPU execution represents a bottleneck to the 

overall performance over rising particle density, it is possible to reduce the effect 

of the PPU execution on the total CBE time if the specific section of the PPU 
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source code can be parallelized. Reducing the PPU time's sensitivity to particle 

density by equally processing all voxels, similarly to the SPU execution, will 

improve the overall performance for dense systems. 
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Chapter 5 Summary and Conclusion 

5.1 Conclusion 

Because of its highly-parallel structure, the CBE is an attractive platform 

for biochemical simulations, as biological events happen locally, and are 

independent from particles further away. We parallelized GridCell based on the 

fact that it is possible to divide the simulation space over multiple processors that 

operate simultaneously. The SIMD structure of the SPUs provides an additional 

level of parallelism as voxels are processed four at a time, compared to only one 

at a time for the serial versions. 

By studying the performance of the CBE implementation, we conclude 

that the CBE version of GridCell yields better performance for large dense 

systems over the Serial-PPU version. Additionally, the size of each SPU block 

does not affect the execution time of the simulation, since the total number of 

voxels to be processed overall is the same. The parameter that affects the overall 

speed-up is the particle density since the serial version processes only non-empty 

voxels, and for increasing density, the number of non-empty voxels rises, 

therefore raising the execution time. On the other hand, in the CBE version, 

empty voxels are processed in the same way as particles, thus density has a 

limited affect on performance. 

Finally, the CBE adaptation of GridCell shows performance improvements 

over the serial version implemented on an Intel processor when a higher number 

of SPUs can be used. In fact, it is possible to obtain platforms equipped with more 

than eight SPUs, such as Cell Blades. 
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We conclude this thesis with a brief discussion of potential future work 

that can help enhance the performance and usability of GridCell. 

5.2 Future Work 

Potential future work that can be done to enhance GridCell's usability can 

be divided into two categories: (1) those modifications that increase performance, 

and (2) those that render it more accessible to users unfamiliar with programming 

techniques. We end this thesis with an outline of prospective work under these 

two categories. 

5.2.1 Increased Performance 

Although we are able to achieve improved performance by porting 

GridCell onto the CBE, superior speed-ups can be achieved by additionally fine-

tuning the code. First, it is important that the PPE execution of the boundary 

particles not hinder performance on the CBE. Since it is possible to write SIMD 

code for the PPE, rewriting the section of the algorithm that executes on the PPE 

in SIMD will help achieve increased performance because the execution will be 

partially parallel. This will also allow for better results compared to the Serial-

Intel adaptation of GridCell. 

Additionally, the random number generator libraries used produce random 

numbers serially. Hence, in order to obtain a vector of random numbers on the 

SPE, the function must be called multiple times. Unfortunately, function calls 

instigate cycle-delays on the SPE as a consequence of the branch request. In order 

to minimize this effect, we can rewrite the libraries in SIMD, thus reducing the 

number of function calls. The libraries can be written in SIMD on the PPE as well 

since they are called by the portion of the algorithm that operates on the PPE. 

With these modifications to the code, we can expect to see increased 

performance and higher speed-ups without modifying the algorithm itself. 
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5.2.2 Increased Accessibility 

Currently, it is necessary to recompile the code with different parameters 

in order to simulate various systems. In an effort to make the algorithm more user-

friendly, a graphical user interface (GUI) can be designed such that the user can 

enter the reaction information as well as the simulation and system parameters 

directly, without the need to modify and recompile the source code. 

Consequently, users unfamiliar with programming tools will be able to use 

GridCell. 

A GUI will also assist the user in obtaining visual results directly, without 

having to use other tools, such as MATLAB, to plot the program's output, thus 

facilitating the application's usage. 

Furthermore, adding SBML support to the CBE version of GridCell will 

allow existing systems to be simulated easily, without the need to manually 

recreate them. Using SBML files as input will help simulate more complicated 

systems straightforwardly and at a higher level, since there will be no need to 

translate the information in the SBML file into source code that GridCell 

understands. 

These modifications will make GridCell a more user-friendly application 

which, together with the performance improvements acquired, will render the 

simulator a great instrument to use in the computational biology field. 
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