
NOTE TO USERS

This reproduction is the best copy available.

UMI

Biochemical System Simulation

on a Heterogeneous Multicore

Processor

By

Sevin A1 Assaad

Department of Electrical and Computer Engineering

McGill University, Montreal

"A thesis submitted to McGill University in partial fulfillment of

the requirements of the degree of Master of Engineering"

Copyright © Sevin A1 Assaad 2008

January 2009

1 * 1
Library and Archives
Canada

Published Heritage
Branch

Biblioth&que et
Archives Canada

Direction du
Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-66921-1
Our file Notre reference
ISBN: 978-0-494-66921-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Biblioth&que et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des th&ses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent §tre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conform&ment a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

14-1

Canada

Acknowledgements

I would like to thank my thesis supervisor, Prof. Warren J. Gross, for his

guidance and support during my work in the Integrated Microsystems Laboratory.

Additionally, I would like to thank Nathaniel Azuelos and David Fernandez

Becerra for their continuous and generous input in helping me understand the

CBE processor, and port the algorithm onto it. Our weekly meetings have proven

invaluable, and I would not be here without you. I would also like to thank

Laurier Boulianne for designing the original version of GridCell. My project

would not exist without your original idea and design.

I would also like extend my deepest gratitude to l'Association Philippe

Jabre for their financial support during my undergraduate and graduate studies.

Without your generous scholarships, I would not have been able to come to

Canada to pursue bigger and better opportunities. You have marked my life in an

invaluable way, and I will be forever grateful.

Last but not least, 1 would like to thank my parents for their continuous

support, and for believing in me even when I did not. Without your unconditional

love and support, I would not be the person nor the professional I am today.

Thank you all for your immense impact on my life and education. I

dedicate this thesis to you.

1

Abstract

Biological system simulation is an increasingly popular field of study that

provides biologists with the tools necessary to simulate biochemical systems in

order to obtain quantitative models. The purpose of this thesis is to describe an

accelerated version of GridCell, a stochastic biological system simulator. GridCell

tracks each individual particle's location in the system, as well as the time

evolution of the concentration of each species involved. It simulates molecular

diffusion via Brownian movements, and particle interactions are dependent on

their locations. We present here a parallel adaptation of the algorithm,

implemented on a heterogeneous multicore processor, i.e. IBM Cell Broadband

Engine (CBE). We introduce the CBE architecture and outline its advantages, as

well as describe the original algorithm. Subsequently, we detail the parallel

implementation and the algorithm modifications. Finally, we perform timing

analysis to show that the parallel version provides improved performance over the

original serial version.

11

Resume

L'etude de systemes biologiques vise a mieux comprendre leur

comportement sous differentes conditions biochimiques. La simulation de ces

systemes aide a la creation de modeles quantitatifs, ainsi facilitant cette etude. Le

but de cette these est de presenter une version acceleree de GridCell, un

simulateur stochastique de systemes biologiques. GridCell a l'avantage de suivre

la progression de toutes les particules presentes dans le volume simule, tout en

calculant la concentration de chaque espece impliquee dans la simulation.

GridCell permet de simuler les interactions entre les differentes particules, ainsi

que leurs mouvements stochastiques. Une adaptation parallele de GridCell,

implementee sur le Cell Broadband Engine (CBE) de IBM, est ainsi presentee.

Tout d'abord, 1'architecture du processeur ainsi que ses nombreux avantages sont

exposes. Ensuite, les deux versions de GridCell, originaire et parallele, seront

introduites de par la description de l'algorithme qui les gouverne. Cette these

conclue par une analyse des temps d'execution demontrant une amelioration de la

performance vis-a-vis la version originaire non-parallele.

111

Glossary

B: Byte

b: bit

CAM: Computation Acceleration Model

CBE: Cell Broadband Engine

CBE version: Version of GridCell implemented on the CBE

DMA: Direct Memory Access

DM AC: Direct Memory Access Controller

DPFP: Double Precision Floating Point

EIB: Element Interconnect Bus

GUI: Graphical User Interface

LS: Local Store

MFC: Memory Flow Controller

PPE: PowerPC Processing Element

PPSS: PowerPC Processor Storage Subsystem

PPU: PowerPC Processing Unit

SBML: Systems Biology Mark-up Language

SDFP: Single Precision Floating Point

Serial-Intel: Serial implementation, run on an Intel processor

Serial-PPU: Serial implementation, run on the CBE, using only the PPU

SPE: Synergic Processing Element

SPU: Synergic Processing Unit

IV

Table of Contents

ACKNOWLEDGMENTS i

ABSTRACT ii

RESUME iii

GLOSSARY iv

T A B L E O F C O N T E N T S 1

L I S T O F F I G U R E S 4

L I S T O F T A B L E S 6

C H A P T E R 1 I N T R O D U C T I O N A N D B A C K G R O U N D 7

1.1 INTRODUCTION 7

1.2 BACKGROUND.... 8

1.2.1 Virtual Cell 9

1.2.2 The Stochastic Simulation Algorithm (SSA) 10

1.2.3 SmartCell 11

1.2.4 StochSim 12

1.2.5 MCell 13

1.2.6 Cell++ 15

1.2.7 ChemCell 15

1.2.8 MesoRD 16

1.2.9 Original GridCell 17

1.3 SUMMARY 18

1.4 MOTIVATION 18

C H A P T E R 2 T H E C E L L B R O A D B A N D E N G I N E 21

1

2 .1 ARCHITECTURE 21

2.1.1 PowerPC Processing Element 21

2.1.2 Synergistic Processor Elements 22

2.1.3 Element Interconnect Bus 25

2 . 2 MEMORY FLOW CONTROLLER 2 6

2.2.1 Direct Memory Access Controller 26

2.2.2 Mailboxes 27

2.2.3 SPU signal notification 28

2 . 3 PROGRAMMING MODELS 29

2 . 4 C B E PERFORMANCE ANALYSIS 3 0

2 . 5 THE SONY PLAYSTATION 3 © 31

C H A P T E R 3 T H E A L G O R I T H M 32

3 .1 ORIGINAL IMPLEMENTATION 32

3.1.1 Pre-processing stage 32

3.1.2 Reactions 35

3.1.3 Movement 40

3 . 2 C B E IMPLEMENTATION 41

3.2.1 Overview of the CBE implementation 41

3.2.2 PPU pre-processing stage 41

3.2.4 SPU pre-processing stage 48

3.2.5 Multi-buffering 49

3.2.6 Reactions 52

3.2.7 Reaction selection 56

3.2.8 Movement 56

C H A P T E R 4 R E S U L T S A N D P E R F O R M A N C E A N A L Y S I S 60

4 .1 VERIFICATION OF RESULTS 60

4.1.1 Simple Reversible Reaction 60

4.1.2 Michaelis-Menten System 62

4.1.3 Analysis 64

4 . 2 PERFORMANCE ANALYSIS 65

2

4.2.1 Serial-PPU and CBE implementations 65

4.2.2 Serial-Intel and CBE implementations 71

C H A P T E R 5 S U M M A R Y A N D C O N C L U S I O N 7 6

5.1 CONCLUSION 7 6

5 .2 FUTURE WORK.. 77

5.2.1 Increased Performance 77

5.2.2 Increased Accessibility 78

B I B I O L O G R A P H Y 79

3

List of Figures

Figure 1-1: Michaelis-Menten System 8

Figure 2-1: CBE High Level Block Diagram [37] 22

Figure 2-2: PowerPC Processor Element [37] 23

Figure 2-3: Synergic Processor Element [37] 24

Figure 2-4: Memory-Flow Controller [37] 26

Figure 2-5: Peak performance comparison [39] 31

Figure 3-1: Serial algorithm flow chart 33

Figure 3-2: Reactions Flow Chart 37

Figure 3-3: D3Q27 Grid [25] 40

Figure 3-4: Flow chart of the CBE algorithm 42

Figure 3-5: DMA List Addresses 44

Figure 3-6: Block Distribution over 3 SPUs 47

Figure 3-7: Examples of Voxel Selection 48

Figure 3-8: Double Buffering Memory Transfers 50

Figure 3-9: Example of Block Selection for Double-Buffering 51

Figure 4-1: Simple reversible reaction: Concentration results of the CBE

implementation using only one SPU (Ap, Bp, and Cp) compared to the

results of Serial-PPU (A, B and C) 61

Figure 4-2 : Concentration results of the simple reversible reaction on the CBE,

over 1,2, 3 & 6 SPUs 62

Figure 4-3: Michaelis-Menten System: Concentration results of the CBE

implementation using only one SPU (Ep, Sp, ESp and Pp) compared to the

results of Serial-PPU (E, S, ES, and P) 64

4

Figure 4-4: Concentration results of the Michaelis-Menten System on the CBE,

over 1,2, 3 & 6 SPUs 64

Figure 4-5: Example of timing spectrums 66

Figure 4-6: Speed-up of the CBE implementation utilizing different SPU block

sizes, over the Serial-PPU version, for a different number of SPUs 68

Figure 4-7: Speed-up of the CBE implementation for different 3D grid sizes, over

the Serial-PPU version, for 3 and 6 SPUs 69

Figure 4-8: Speed-up of the CBE implementation with varying particle density,

over the Serial-PPU version, for a different number of SPUs 70

Figure 4-9: PPU Time as a percentage of total time of the CBE implementation,

over varying grid sizes, number of SPUs, and particle densities 73

Figure 4-10: SPU Time of the CBE implementation, over varying grid sizes,

number of SPUs, and particle densities 73

5

List of Tables

Table 1-1: Summary of simulators 19

Table 2-1: Sample Target Applications 25

Table 2-2: Comparative Analysis of Mailboxes and Signals 29

Table 2-3: Programming Models Comparison [37] 30

Table 3-1: Number of blocks for n SPUs 43

Table 3-2: Conditions on the grid size and number of SPU blocks 49

Table 3-3: Reaction Results by type (SPU) 52

Table 3-4: Reaction Selection Example 57

Table 4-1: Speed-up of the CBE implementation utilizing a different number of

SPUs, over the Serial-PPU version. 66

Table 4-2: Execution time of the CBE implementation over 3D grid size in

seconds, using three and six SPUs 68

Table 4-3: Timing analysis, and speed-up of the Serial-Intel version, over the

Serial-PPU version, for different 3D grid sizes and particle densities. 71

Table 4-4: Speed-up of the CBE version, utilizing a different number of SPUs,

over Serial-Intel 74

6

Chapter 1 Introduction and Background

Computational cell biology is a cross-disciplinary area of research joining

together computer simulation technology with cellular biology [1], The long-term

goal of this field is to simulate a biological cell in order to understand the different

molecular interactions occurring within it. For example, quantitative models of

cancerous stem cells have been found to be very useful in the understanding of

cancer dynamics [2], One system that is often simulated is the Michaelis-Menten

system [3], described by the equation: E + S ^ > E S ^ E + P.

S is a substrate that binds to enzyme E to yield ES, which can decompose

into the product P and the enzyme E, or into its original form E + S. Usually, the

enzyme is the limiting factor, since its concentration is much lower than that of S.

The results of the simulation (Figure 1-1) give insights into the time evolution of

the concentration of the different species involved.

A large number of computer simulators have been developed in order to

study various biochemical systems and determine the time evolution of particle

concentrations in those systems [4-24],

1.1 Introduction

GridCell is a stochastic simulator of biochemical reactions in which the

volume under test is represented by a 3D grid, and each particle in the system is

an independent object that can move and react [25, 26], GridCell supports both

molecular diffusion and particle interactions, and the simulation runs over discrete

time-steps.

7

0 100 200 300 400 500

Time-step

Figure 1-1: Michaelis-Menten System

In this thesis, we present a parallel version of the GridCell algorithm,

originally described in [25, 26]. Stochastic simulators are linearly implemented,

whereas biological processes occur randomly and concurrently [27], where a

particle is dependent only on its immediate neighbourhood, and is not affected by

the movement and interactions of particles further away. Therefore, it is possible

to divide the simulation environment over multiple processors, and implement

GridCell on a multicore system, such as the Cell Broadband Engine (CBE). In the

following section, we provide some background information about common

biochemical simulators.

1.2 Background

There are two different types of biochemical simulators: deterministic and

stochastic. Deterministic simulators solve a system of mathematical equations

which describe the biochemical process to be tested as well as the different

particle interactions. The equations also describe the evolution of species

concentrations. For the same problem, deterministic simulators generate the same

solution every time. On the other hand, stochastic simulators generate

probabilities and random numbers in an attempt to recreate molecular behaviour.

In stochastic simulators, the time evolution to reach a system's steady state is

different for each simulation, but the results are comparable.

8

Some of the most popular simulators are discussed here. Virtual Cell [17,

18, 23], a deterministic simulator, is presented first. Next, Gillespie's Stochastic

Simulation Algorithm is introduced because of its importance in the development

of other stochastic simulators [11]. Subsequently, seven different stochastic

simulators are presented: StochSim [15, 16, 28], MCell [29], SmartCell [4],

ChemCell [19], Cell++ [22], MesoRD [12] and the original GridCell program [25,

26],

1.2.1 Virtual Cell

Virtual Cell [17, 18, 23], developed at the University of Connecticut

Health Center, is a deterministic simulator based on solving a set of mathematical

equations. The model under test is represented by a system of equations in Virtual

Cell Mathematics Description Language or VCMDL. VCMDL is a declarative

language that was specifically created for Virtual Cell, and used to describe

classes of mathematical equations that need to be solved during the simulation

[17, 18, 23]. Once the VCMDL model description is obtained, it is then translated

into programming code which is sent to the numerical solvers which resolve the

mathematical equations.

Virtual Cell is accessible through a graphical interface (GUI) that allows

users to specify the characteristics of the biological processes to be tested, such as

the type and number of the molecules in the system, the reactions that characterize

the interactions between them, as well as their location and spatial topology

within cellular compartments. This quantitative data is put together to construct a

complex spatial model depicted by mathematical equations, thus obtaining the

VCMDL model description. For biologists untrained in physics and mathematics,

the GUI provides a simple way of inputting information into the system, and

requires no knowledge of the underlying equations. On the other hand, for

experienced users with a mathematical background (e.g.: bioengineers and

mathematical biologists), the model can also be manually created by directly

entering the equations describing the biological process in VCMDL format. In

9

either case, the model definition is finalized when initial and boundary conditions

have been specified. The simulation produces spatial and temporal results

comparable to experimental data, such as particle concentrations. Virtual Cell is

not suitable for processes with a variable 3D structure such as mitosis. More

information on Virtual Cell can be found in [17, 18, 23],

In the next section, we introduce Gillespie's Stochastic Simulation

Algorithm.

1.2.2 The Stochastic Simulation Algorithm (SSA)

Gillespie's SSA was created because deterministic approaches, which are

based on solving equations, are not suitable in all situations, such as nonlinear or

unstable systems. In such cases, the number of equations to solve increases

significantly and the equations become too complex. The size of the system also

increases with the number of species in the system. Consequently, the

computation time and resource utilization considerably increase such that the

simulation cannot occur in a reasonable amount of time [11]. Additionally, the

mathematical representation of the system does not always include important

information regarding the biochemical processes, such as the spatial organization

of the volume, or the distribution of the particles within that volume [22].

The SSA was the first stochastic simulator to be created. Stochastic

approaches are based on random number generation. Those random numbers are

used to determine the way particles interact, based on a list of reactions that

describe the process under test. The basic assumption for the SSA is that the

system is well-mixed or "spatially homogeneous" [11]: a particle can react with

any other particle in the system. In the simulation, there are Nj particles of type Si,

and M reactions Ru with reaction parameters cu. The SSA algorithm is probability-

based, and attempts to simulate the Joint Probability Density Function (PDF) for

each reaction, at specific times.

The SSA process is divided into four consecutive steps, as follows:

1 0

- The first stage is the initialization stage in which the initial values of

all the parameters, including Ni and cu, and the list of chemical

reactions, are specified and stored.

- The second stage is the Monte Carlo phase, which consists of

generating two random numbers that satisfy the PDF, using Monte

Carlo techniques [30] : an index u of the reaction to perform next, and

a time increment x.

The third step is the update stage where the time is incremented by x,

and the values of the reactants and products involved in Ru are

modified as if reaction Ru just executed. For instance, if Ru is the

reaction + S2 2S3 , the update stage involves decreasing the

concentration of Si and S2 by 1, and increasing the copy number of S3

by 2.

Finally, in the publish stage, the updated values are output.

The process, starting from the Monte Carlo stage, iterates until the

simulation has completed, or there are no more reactants in the system. This

algorithm computes the time evolution of all the species in the biological system

under test, and does not take into account the spatial localization of the particles

or the characteristics of the volume in which the process takes place. In the SSA,

molecular diffusion is not supported, and particle localization is not tracked. The

SSA is fully described in [11].

1.2.3 SmartCell

SmartCell [4] is a stochastic simulator developed at the European

Molecular Biology Laboratory in Heidelberg. It is based on a modified SSA

algorithm: the basic SSA hypotheses (e.g.: well-mixed system) are maintained,

but molecular diffusion is implemented as an individual event. Intended for the

modelling of biological processes, SmartCell supports various cellular geometries

and compartments, allowing the user to localize certain species within

11

membranes. Because of the spatial distribution of molecules, the volume is no

longer necessarily well-mixed, which does not adhere to Gillespie's hypothesis

for the SSA algorithm. This situation is remedied by dividing the volume into

smaller sections in which the molecules are well-mixed; and molecular events

take place within those sections.

The model is described using SBML (or Systems Biology Markup

Language [31]]) which is an XML language used to create biological models. The

SBML file includes all the information regarding the number of molecules in the

system as well as the characteristics of the reactions between them (e.g.: constant

rate). The molecular entities are defined also defined in the SBML file, as well as

the different processes (reaction or diffusion). Each process element is an event

which involves at least one entity. Before the simulation begins, a list of entities

and processes is generated. Complex reactions (with three or more reactants) are

simplified into many simpler reactions with one or two reactants.

For each event (reaction and diffusion) in the system, a probability is

calculated. Events are then added into the events queue, and an associated

reaction-time is computed for each. The event with the smallest reaction-time is

executed, a new probability is calculated for it, and it is added to the queue. If the

queue is not empty, the next event to occur is the one with the smallest reaction-

time. It is important to note that reaction-times of events in the queue can change

when the current event has executed. Thus, after each event has occurred,

reaction-times are updated in the queue. Additionally, the reaction time-step

varies during the simulation as it is dependent on the fasted reaction at the time.

One drawback of SmartCell is that the computation is very slow for larger

systems. Additionally, localization of individual particles is not inherently

supported as the algorithm is based on the SSA which represents particles in bulk.

Details about SmartCell can be found in [4],

1.2.4 StochSim

StochSim [15, 16], developed at the University of Cambridge for a study

on bacterial chemotaxis [32], represents each individual molecule in the system as

1 2

an "independent software object". Additionally, StochSim supports a 2D structure

in which processes are simulated. Three different structures are available: a

square, a triangle, and a hexagon.

Interactions between molecules are simulated based on probabilities pre-

computed from the molecular concentration of the reactants and the reaction rates.

Complex reactions are achieved through multiple uni- and bi-molecular reactions

(one or two reactants). The simulation is done in two-dimensions, and reactions

can occur between randomly chosen molecules. One set of random numbers is

used to select the reactants; another is compared to the reaction probability to

verify if the reaction will occur. It is possible to define reactions that are

dependent on neighbouring particles. In this case, the reaction rates depend not

only on the state of the selected particle, but also on the states of its neighbours.

During the initialization process, the user must specify the rate of the

reactions in the system. In addition, the simulation time-step (defined as the

length of time of one iteration) and the reaction probabilities are computed. The

simulation then proceeds by executing a small subroutine at every time-step.

The algorithm iterates over discrete time-steps, and the simulation occurs

between randomly chosen particles. Once molecules have been arbitrarily chosen

to react, a random number Rn is generated and compared to the probability of the

reaction. The reaction occurs if Rn is less than the probability of reaction. The fact

that the specific location of reacting molecules does not play a role in the reaction

is a major drawback in the StochSim algorithm. More information on StochSim

can be found in [15, 16].

1.2.5 MCell

In Gillespie's algorithm as well as SmartCell, stochastic simulation is

achieved by representing molecules in bulk [4, 11]. The spatial location of the

particles is irrelevant to the time evolution of the species concentrations.

However, recent research indicates that the spatial localization of particles in a

1 3

system plays an important role in the molecular interactions within that system

[33]. MCell [29] was created to resolve this situation.

MCell is a simulator of cellular microphysiology, based on Monte Carlo

methods. This stochastic tool solves reaction-diffusion problems and analyses

molecular events (movements and reactions) within a 3D volume of arbitrary

shape. Molecular diffusion is accomplished through random walk movements

which reproduce Brownian motion [34] without tracking the absolute molecular

displacements. The location of a particle in the 3D volume is not required to be

known. However, one must know its relative position with respect to boundaries

(e.g. membranes and compartments). This way, molecular diffusion and collision

are both simulated without the need for absolute spatial localization. Particles

move independently from each other, but are restricted by boundaries.

Reactions are based on individual molecule selection, and the realistic

representation of molecular interactions is achieved through probability

calculation and random number generation. A molecule is selected, and a random

number is generated and compared with known Monte Carlo probabilities to

determine if the reaction will occur for the chosen molecule.

The model under test is defined in a simulation file using MDL, MCell's

Model Description Language. These MDL files represent the tool's program

interface; they include all the necessary information required for model creation

and are user-created. Input and output parameters are also specified in the MDL

file. The input parameters are divided into two subsets: (1) those that define the

biological process to be simulated (e.g.: number of molecules in the system), and

(2) those that characterize the simulation (e.g.: time-step).

The simulation starts with an initialization stage in which the simulation

environment is set up. Random numbers are pre-generated in this stage as well.

The simulation is then run in discrete time-steps during which the stochastic

molecular events take place. The program is started using command line calls.

Relative positioning is tracked, and collision only occurs for molecular

diffusion. The MCell tool is described in [29],

1 4

1.2.6 Cell+H-

Cell++ [22] is a stochastic simulation environment developed at the

University of Toronto. It allows the user to model a variety of different biological

processes while accurately simulating small and large molecules with variable

molecular concentrations. The volume is represented by a 3D cubic lattice, and

cellular compartments are supported with the spatial implementation of

membranes. The basic design of the simulator combines Brownian dynamics to

accurately represent larger particles, with a cellular automata approach that

describes the behaviour of smaller molecules. Discrete components diffuse via

random walks restricted by the spatial localization of particles and boundaries

(collision), and interactions are handled using a probability-based Monte Carlo

approach in which the probability of reaction depends on the components

involved.

Although Cell++ is a stochastic simulator, a deterministic set of equations

must be solved in order to handle the diffusion of smaller molecules, thus

allowing molecules to move into adjacent sites. Additionally, the concentration

changes are described by another set of equations.

Cell++ is based on an iterative algorithm that advances through discrete

time-steps. The simulator provides the user with an interactive graphical interface

to manipulate and control the simulation. Modifying the input files and the source

code allows for new systems to be simulated. More information about Cell++ is

found in [22],

1.2.7 ChemCell

ChemCell [19] was developed at Sandia National Laboratories to model

the stochastic behaviour of prokaryotic cells such as microbes. The algorithm

implements molecular diffusion using Brownian motion and the particles react

with each other based on the constant reaction rates. The cell is modelled by a

geometric volume, and each molecule is implemented as one "particle" in the

system with its own (x,y,z) coordinates and type. Compartments, such as the

1 5

nucleus, are inherently supported through internal boundaries, and each

compartment has its own external boundary. During the simulation, particles

diffuse and react with other neighbouring particles. However, collision is

supported such that particle diffusion is limited by compartment boundaries and

other particles. Reactions occur by computing probabilities and comparing them

to known reaction probabilities stored in the system. Whether the reaction occurs

or not is based on the comparison results.

The first part of the simulation consists of setting up the model by reading

an input file with a list of commands. In this phase, the geometry of the model

(e.g.: compartment creation, topology and size) is defined, as well as the

characteristics of the biological process (e.g.: particle species and list of chemical

reactions). The next phase is referred to as the "timestepping" stage in which

particles move and react with each other. Movement is done following Brownian

motion rules. In order for particles to react with each other, they have to be

neighbours. To find neighbouring particles, a binning algorithm is used: a reaction

can only occur between two particles in the same or neighbouring bins. Once a

pair is selected, random numbers are generated to verify if the reaction will occur.

At the end of the timestepping stage, simulation outputs can be generated. More

information on ChemCell can be found in [19].

1.2.8 MesoRD

MesoRD [12] was developed at the Uppsala University in Sweden. This

stochastic simulation tool attempts to solve the Reaction-Diffusion Master

Equation (RDME) which describes the Markov Process. In probability theory, the

Markov Process illustrates a probability distribution in which the current state is

independent from past states [35],

In order to solve the RDME, other simulators such as the Next Subvolume

Method [36] have been developed in which the system volume is divided into

smaller subvolumes characterized by the concentration of each species found in

that subvolume. For 3D geometries, a large number of subvolumes are required

1 6

for accurate analysis, thus increasing the state-space dimension of the RDME

which raises the execution time. MesoRD was implemented in order to achieve

improved performance.

The biological system to be modeled is described in an SBML file which

is read at run-time. The SBML input file includes such information as the reaction

rates, geometry and diffusion information, as well as the species present in the

system and their initial concentrations. Other parameters, such as the simulation

settings and visualization options, are also specified during the initialization stage

through either the user interface for Windows users, or the command line for

UNIX users. Chemical reactions and molecular diffusion are handled within each

subvolume, and their rates depend on the amount of each species found in that

subvolume. Once the simulation starts, three threads divide the work: (1) a

simulation thread handles molecular events (reactions and diffusion), (2) a

visualization thread runs the 3D viewer, and (3) a status thread displays the results

of the simulation. More information about MesoRD can be found in [12],

1.2.9 Original GridCell

GridCell is a biological system simulator that represents the simulation

environment with a 3D cubic grid comprised of discrete voxels [25, 26], The

system under test is modeled in an SBML file, and the program supports both

biochemical reactions and molecular diffusion.

Particles move and react based on probabilities computed based on the

characteristics of the molecules in the system under test: random numbers are

generated that determine if a particle will move and/or react, and which reaction

will occur. Additionally, GridCell keeps track of particle localization since each

particle is an independent object that has its own 3D coordinates in the simulation

volume. Furthermore, since each discrete voxel holds up to one particle at a time,

molecular diffusion is constricted by particle locations, thus taking molecular

crowding into effect. The algorithm is described in more detail in [25, 26] and in

Section 3.1.

1 7

1.3 Summary

The basis behind stochastic simulators is that mathematical equations

cannot accurately represent all biological processes. For nonlinear systems that

are chemically unstable, it is not possible to model the molecular behaviour

realistically [11]. In addition, deterministic approaches do not always take into

account the spatial localization of the particles in the system, which has been

shown to play an important role in molecular interactions [33]. Furthermore, most

stochastic simulators model biological systems without including the effects of

localization and/or particle collision. All those simulators implement molecular

diffusion through random walk movements following Brownian rules. On the

other hand, molecular interactions are handled very differently from one simulator

to the other. Table 1-1 summarises the various simulators just presented.

1.4 Motivation

By studying similar work done in the field, one can understand the

motivation behind GridCell. Firstly, GridCell represents the volume as a 3D grid

in which the well-mixed assumption does not necessarily hold. As we will see

however, we can still simulate well-mixed systems with GridCell. This allows for

the simulation of different types of processes. Secondly, the choice of the reaction

to perform is dependent on the particle chosen and its neighbouring molecules.

Thus, reactions do not occur between randomly-chosen particles. The spatial

localization of particles plays an important role on both diffusion and molecular

interactions.

Since biochemical reactions occur randomly and concurrently within a

biological system, each particle is dependent only on its immediate

neighbourhood. In this thesis, we take advantage of this characteristic of

biochemical reactions to demonstrate the use of a multicore parallel architecture,

namely the Cell Broadband Engine (CBE), to implement the GridCell algorithm.

1 8

Table 1-1: Summary of simulators

Simulator Type Summary

Cell++ [22] Stochastic

- Hybrid approach
- Uses equations for small molecule diffusion

and concentration changes
- Time- and spatial-evolution
- 3D volume

ChemCell Stochastic - Time- and spatial-evolution
[19] Stochastic - Collision is supported

- Reactions based on probability calculations
- Model described in SBML

GridCell
[25, 26]

- Reaction and diffusion occur in a 3D grid GridCell
[25, 26] Stochastic comprised of discrete voxels

- Molecular crowding and localization taken
into account

- Uses Monte Carlo methods

MCell [29] Stochastic - Molecular diffusion is implemented
- Relative positioning is tracked
- Collision only for diffusion

MesoRD
[12]

- Model described in SBML MesoRD
[12] Stochastic - Reaction and diffusion occur in subvolumes MesoRD
[12] - Reactions based on probability calculations

- Model defined in SBML
- Modified SSA: diffusion supported

SmartCell
[4]

Stochastic - Well-mixed subvolumes (total volume not
necessarily well-mixed) where
reaction/diffusion occur

- Particles represented in bulk

SSA [11] Stochastic

- Molecules represented in bulk
- Time-evolution only (no localization)
- Well-mixed volumes only
- Reactions/particles randomly selected
- Diffusion not supported.

StochSim Stochastic

- Particles as independent software objects
- 2D volume structure

[15,16] Stochastic - Randomly chosen particles
- Time-evolution only

Virtual Cell
[17,18, 23] Deterministic

- System of equations
- Spatial simulation is possible (equations can

include info about spatial structure)

In the following chapters, we discuss the GridCell algorithms as well as

the serial and CBE implementations, and analyse their performance on various

platforms. In Chapter 2, we describe the Cell Broadband Engine (CBE), as well as

1 9

the important software and hardware tools that we use in the implementation of

GridCell. In Chapter 3, we present the GridCell algorithm, starting with the serial

version, and followed by the CBE adaptation. Results verification and

performance analysis are carried out in Chapter 4. We conclude this thesis in

Chapter 5 with an outline of potential future work.

2 0

Chapter 2 The Cell Broadband Engine

The Cell Broadband Engine (CBE) [37] is a heterogeneous multicore

processor designed originally for the Sony PlayStation 3© (PS3) [38] gaming

platform. A heterogeneous processor is comprised of processing elements with

different architectures. It has since been used as a high-performance computing

tool because of its highly-parallel structure. In this chapter, we present the

architecture of the CBE, as well as the important hardware and software tools that

are used in GridCell.

2.1 Architecture

The CBE is comprised of two different types of processing elements

connected together and to main memory through the Element Interconnect Bus

(EIB). Figure 2-1 displays a high-level block-diagram of a cell processor. The

PowerPC Processing Element (PPE) is a PowerPC processor with a standard

PowerPC instruction set, and is described in Section 2.1.1.

Currently, each CBE has eight Synergic Processor Elements (SPE) which

are specialized highly-parallel processors (see Section 2.1.2). However, on the

PS3, either one or two SPEs are disabled to improve yield [38], and thus cannot

be used.

2.1.1 PowerPC Processing Element

The PPE is comprised of a PowerPC Processing Unit (PPU) and the

PowerPC Processor Storage Subsystem (PPSS). The PPU is a general-purpose 64-

2 1

Figure 2-1: CBE High Level Block Diagram [37]

bit (b) processor. It is a multi-threaded core with separate LI instruction and data

caches (128-byte (B) lines). The PPU register file has three types of data registers:

(1) 32 64b General Purpose Registers, (2) 32 64b Floating Point Registers, and (3)

32 128b vector Registers for single-instruction-multiple-data (SIMD) processing.

Aside from the data registers, the register file also holds control and error

registers.

Two execution units, the Fixed-Point Unit and the Vector/Scalar Unit,

perform fixed-point (integer) operations, and floating-point and vector (SIMD)

operations respectively. SIMD operations are possible on the PPU through the

vector/SIMD multimedia extension instructions. Additionally, memory transfers

involving the PPU are managed by the Memory Management Unit, which is

responsible for all address translation.

The PPSS is an L2 unified cache through which communication with the

EIB is possible. Like the LI caches, L2 cache lines are 128B. The PPSS carries

out requests coming from the PPU, or to the PPU from the SPUs and other

devices. The PPU communicates with the PPSS through loads (32B) and stores

(16B), whereas data transfers between the PPSS and the EIB occur on 16B load

and store buses. Figure 2-2 shows a high-lever block diagram of the PPE.

2.1.2 Synergistic Processor Elements

Each SPE is a combination of a Synergistic Processor Unit (SPU) and a

Memory Flow Controller (MFC). The SPU is a SIMD core processor with a

2 2

PPE

PPU

Register
Fife

Instruction
Unit

Fixed Point
Unit

Vector/
Scalar Unit

tJ Inst Cache I f Date Cache

Memory Management Unit

L
PPSS

L2 Unified Cache

v
Element Interconnect Bus

Figure 2-2: PowerPC Processor Element [37]

unified vector register file holding 128 128b vector registers. Those are General

Purpose Registers that can be used for fixed or floating-point storage.

The SPU stores both instructions and data in its Local Store (LS), which is

only 256KB, making memory management on the CBE a crucial task. The SPE

communicates with main memory, the PPE and other SPEs through its MFC (see

Section 2.2).

Unlike the PPU, the SPU does no memory address translation for LS

addresses. However, through effective-addressing, software on the PPE and other

SPEs can access the LS in main memory. The SPE must use Direct Memory

Access (DMA) transfers to move data from main memory to the LS, and vice

versa, in order to access the data.

2.1.2.1 Limitations

Floating-Point (FP) operations are supported on the SPU. A 128b vector

holds four single-precision (SP) FP values, and SPFP operations are executed in

SIMD, i.e.: four operations at a time. However double-precision (DP) instructions

2 3

Figure 2-3: Synergic Processor Element [37]

are not executed in parallel. Vectors are broken down into scalar values prior to

the execution, increasing the execution time making DPFP operations inefficient.

A 128b vector holds two DPFP values, and DPFP instructions execute on one

DPFP value at a time. SPFP operations are much more efficient on the current

version of the CBE because the PS3 gaming platform did not require double-

precision execution.

Since the SPU is a SIMD processor, all instructions are executed on 128b

vectors. Scalar code can be written for the SPU; however, scalar values are stored

in and must be extracted from vectors prior to execution since there are no scalar

registers. This extraction increases the execution time, and reduces the efficiency

of scalar code. It is preferable to store scalar values in vectors, and perform vector

operations instead.

The SPU's performance is also constrained by branches and conditional

statements because of the linear instruction flow of the SPU. A branch instruction

can disrupt the sequential execution, and can have a very high penalty. When a

branch is not taken, it causes an 18 or 19-cycle penalty, which is over twice the

average SPU latency (maximum 7 cycles), resulting in degraded performance.

Although it is not always possible to eliminate all conditional statements

in a piece of code, there are means to reduce their effect. Function-inlining can be

used to eliminate the branch caused by an instruction call, but excessive inlining

increases the size of the code, thus reducing the effective space for data. Secondly,

loop branches can be reduced or eliminated by unrolling the loops, although loop

branches are highly predictable, and for a large index, the penalty becomes

negligible. Another approach is to use program-based branch prediction. Program-

based prediction is based on program constructs where heuristics determine how

2 4

Table 2-1: Sample Target Applications

Some Accelerated Functions Sample Target Applications
Signal Processing
Image Processing
Matrix Mathematics
Vector Mathematics
Physics Simulations
Encryption/Decryption
Pattern Matching
Parallel Processing
Real Time Processing

Medical Imagine/Visualization
Drug Discovery
Training Simulations
Secure Communications
Digital Content Creation/Distribution
Computational Chemistry
Voice and Patter Recognition
Network Processing
Climate Modeling

to predict the branch associated with those constructs. For example, unconditional

branches should always be predicted as taken. The advantage of this technique is

that a misprediction penalty is small compared to the penalty incurred without

prediction, or to the computation time [37].

The SPU's limitations dictate what type of applications can be run on the

CBE. The CBE is targeted towards applications that are highly-parallel and

highly-repetitive, with very little branching, such as biochemical simulations.

Applications such as signal and image processing can be very easily and

effectively accelerated on the CBE. Table 2-1 list some target applications that

can be run on the CBE [39].

2.1.3 Element Interconnect Bus

The Element Interconnect Bus (EIB) connects all the elements on the

CBE: main memory, the PPE and all the SPEs. It consists of four unidirectional

16B data rings (two clockwise, and two counter-clockwise). Each ring

accommodates 128B transfers (equivalent to one PPE cache line). The EIB's

maximum internal bandwidth is 96B per cycle and can handle over 100

outstanding memory transfers.

The EIB supports memory-coherence, and thus the CBE is designed to be

fully coherent with other CBEs in a system.

2 5

Figure 2-4: Memory-Flow Controller [37]

2.2 Memory Flow Controller

The MFC is the SPU's main interface to main memory and other

processors and devices, through the EIB. The MFC's most important role is to

allow communication between the SPU's LS and main memory. This is done

through DMA transfers by means of the DMA controller. The MFC also provides

other functionalities to the SPU, such as synchronization between the LS and

main memory, as well as other communication features such as Mailboxes and

Signals. The MFC block diagram is shown in Figure 2-4. The figure shows the

different elements of the MFC that are discussed in the following Sections.

The MFC provides the SPU with different mechanisms that allow it to

communicate explicitly with other processors and devices: (1) DMA Transfers,

(2) Mailbox messages, and (3) Signal Notification messages.

2.2.1 Direct Memory Access Controller

The Direct Memory Access Controller (DMAC) allows transfers between

main memory and the SPU's LS. The DMAC executes the memory transfer

commands in parallel with the SPU execution, thus preventing the SPU from

being bottlenecked by the DMA commands. It also allows the SPU to pre-fetch

data while executing, therefore allowing multi-buffering on the SPU. The

controller can issue up to 16 independent transfers to and from the LS.

2 6

There are two types of DMA transfers: (1) single transfers, and (2) list

transfers. Single transfers allow the DMAC to fetch one block of consecutive data

from main memory to LS. On the other hand, to fetch data in non-consecutive

blocks in main memory, DMA list transfers can be used. A DMA list is a list of

transfer elements where each element consisting of a transfer size and an effective

address in main memory. This allows fetching non-consecutive blocks in main

memory and storing them consecutively on the LS, using a single DMA list

command.

The size of one DMA transfer, whether it is a single transfer or as part of a

DMA list, cannot exceed 16KB. In addition, a DMA list can hold up to 2048

transfer elements. Currently, 2048 transfer elements of 16KB each exceed the size

of the SPU LS, but this flexibility allows the size of the LS to increase in future

versions of the CBE, without modifying the DMA list construct. Another

constraint of DMA transfers relates to the size and alignment in main memory of

the data being transferred. First, the data size must be IB, 2B, 4B, 8B or a

multiple of 16B. Second, the data must be aligned on a 128B boundary. Failure to

do so will result in bus errors.

In addition to the DMAC, the MFC has a channel facility referred to as

"Tag-Group Completion Facility". This facility provides memory synchronization

between main memory and LS. Each DMA command is tagged with a 5b

identifier that allows several commands to be grouped together, and each tag is

used to determine when a command or group of commands has finished

executing. Additionally, since the DMA commands are executing in parallel with

the SPU operation, tags allow for "blocking" transfers such that execution on the

SPU halts until the DMA commands have finished executing.

2.2.2 Mailboxes

Each SPU has three 32b mailbox queues: (1) outbound mailbox queue, (2)

outbound interrupt mailbox queue, and (3) inbound mailbox queue. The mailbox

facility manages communication through three mailbox channels that control the

2 7

queues: (1) two outbound one-entry channels: the SPU Write Outbound Mailbox

and the SPU Write Outbound Interrupt Mailbox, and (2) one four-entry inbound

channel: the SPU Read Inbound Mailbox. Mailboxes were intended to send short

messages, such as program status and flags, between the SPE and the PPE.

However, they can be used for sending 32b data of any type.

The inbound mailbox queue is a FIFO queue of four entries, and allows

other processors and devices to send messages to the SPE. If messages are being

read at a slower rate than they are being received, the fourth entry is always

overwritten with the latest message to arrive. On the other hand, the outbound

queues can hold up to one entry only.

Mailbox operations (read channel, or write channel) are, by default,

blocking operations on the SPE: writing to a full location, or attempting to read an

empty location will cause the SPE to stall until the mailbox operation can be

executed. This is a very useful tool because it can allow the PPE to control the

execution on the SPE, and vice versa. However, it is possible to have non-

blocking operations, by setting flags in the mailbox operation. In the CBE

implementation of GridCell, the PPE and SPE communicate via mailbox

messages to synchronize the execution, and make sure that the data is ready

(therefore assuring data integrity on both processors).

2.2.3 SPU signal notification

The Signal-Notification Channel facility in the MFC allows the SPU to

send signals (such as buffer completion flags) to other processors and devices in

the system. Each SPU has two independent 32b signal notification facilities.

Reading from signal channels can be implemented to cause an SPU interrupt, or

the SPU can poll (and thus block) when waiting for a signal to appear. Signal

sending commands are executed like DMA commands. Signals and mailbox

messages can be used to the same effect. Depending on the reason for usage, one

or the other might be preferred. Table 2-2 shows the differences between signals

and mailboxes.

2 8

Table 2-2: Comparative Analysis of Mailboxes and Signals

Attribute Mailboxes Signals

Direction: 1 Inbound
2 Outbound 2 Inbound

Interrupts: 2 Mailbox event interrupts 2 signal event interrupts
Message
Accumulation No Yes

SPU Commands Channel reads/writes Sndsig, sndsigf and sndsigb
Destructive
Read Reading consumes entry Reading channel resets bits

Channel Count Number of available
entries Number of waiting signals

2.3 Programming Models

There are seven different programming models that can be used to design

applications for the CBE: (1) Function-Offload Model, (2) Device-Extension

Model, (3) Computation-Acceleration Model, (4) Streaming Model, (5) Shared-

Memory Multiprocessor Model, (6) Asymmetric-Thread Runtime Model, and (7)

User-Mode Thread Model [13].

GridCell uses the Computation Acceleration Model (CAM). In this model,

the PPE acts as a controller and the SPEs are responsible for executing the

computation-intensive sections. It does not require a significant rewrite of the

application; only the individual sections that need to be accelerated on the SPU

are recoded. The work can be partitioned manually by the programmer, or

automatically by the compiler, and the SPUs execute the work in parallel.

Memory transfers are handles through DMA commands or message passing. This

is the simplest and easiest way to take advantage of the functionalities of the CBE,

as well as the highly-parallel structure offered by the multiprocessor system.

Table 2-3 briefly summarises the different programming models

2 9

Table 2-3: Programming Models Comparison [37]

Programming Model: Brief Description:

Asymmetric-Thread
Runtime Model

Threads can run on either the PPE or the SPEs. The
PPE is multithreaded, whereas each SPE can only
run one thread at a time.

Computation-
Acceleration Model

The PPE acts as a controller, and the SPEs execute
the most computationally-intensive functions. Each
SPE runs one thread to its completion.

Function-Offload Model
The SPEs are used to run specific procedures. The
bulk of the code runs on the PPE.

Device-Extension Model
Special Case of the Function-Offload model: the
SPEs act as I/O devices

Shared-Memory
Multiprocessor Model

The PPE and the SPEs fully interoperate; such that
the CBE is a shared memory multiprocessor with 2
instruction sets.

Streaming Model
The SPEs work on data that streams though, either in
serial or parallel. The PPE acts as a controller.

User-Mode Thread
Model

Tasks are processed by available SPEs. Each SPE
thread manages different functions. At the
completion of an SPE thread, the SPE starts
processing another thread.

2.4 CBE Performance Analysis

We implemented GridCell on the CBE because of its various advantages.

First, the CBE is a multiprocessor system in which the processors are specifically

designed to handle such tasks as the ones GridCell requires. It is a highly-parallel

structure, and GridCell's algorithm is suited for such hardware since the work is

very repetitive and computationally intensive. In addition, in biological systems,

particles are only dependent on their immediate neighbourhood, and are

independent of the movement and interactions of particles further away.

Therefore, it is possible to divide the simulation volume over multiple processors,

and performing the operations in parallel.

Additionally, the different functions of the SPE and the PPE allow for

better power usage. The shared-memory system with three levels of memory

3 0

• FP(SP) FP (DP) • Short (16 bits) • Int (32 bits)

250

« 200

Q)
150 i/>

a.
O
c 100 o

5 50

0
Freescale AMD Athlon Intel Pentium PowerPC CBE 3.2 Ghz

MPC8641D 64 X2 2.4Ghz D 3.2 Ghz 970MP 2.5
1.5Ghz Ghz

Figure 2-5: Peak performance comparison [39]

hierarchy and the asynchronous DMA functionality provide superior memory

management over other multiprocessor systems. Finally, the larger register files,

simpler hardware and multithreaded environment allows for increased frequency,

thus breaking the frequency barrier set by other systems. These hardware

capabilities of the CBE give it a competitive advantage over other processors used

in high-performance computing.

Figure 2-5 outlines a comparison of peak performance of five different

processors, including the CBE, in integer (16 and 32b) and floating point (SP and

DP) operations [39]. One can see from the figure that SPFP and Integer operations

are significantly faster on the CBE. However, no performance improvement is

seen for DPFP because of their inefficiency of execution.

2.5 The Sony PlayStation 3©

GridCell was run on the Sony PlayStation 3© which has certain usage

restrictions because of its use for gaming. First, only six SPEs can be used for

high-performance computing (two have been turned off in order to improve yield

[38]). Second, the size of main memory is limited to 250MB.

3 1

Chapter 3 The Algorithm

In this chapter, we describe the algorithms governing the original serial

version, as well as the CBE implementation of GridCell, highlighting the

differences between the two.

3.1 Original Implementation

The original serial GridCell algorithm, published in [25, 26], is described

in the flow chart in Figure 3-1. The algorithm starts with a pre-processing stage

where all the variables are set up, the 3D grid is generated, and the reactions

created. Afterwards, at each time-step, GridCell loops over all the particles in the

system, once for the reaction stage, and once for the movement stage. The

simulation ends when the simulation time is reached.

3.1.1 Pre-processing stage

The pre-processing stage involves the initialization of the 3D grid, as well

as the reactions list. When GridCell is started, a Systems Biology Mark-up

Language (SBML) file must be specified, which contains the characteristics of the

biological model to be simulated. Based on this information, the size of the 3D

grid is obtained, as well as the initial concentration of each species involved in the

simulation. Additionally, during the pre-processing stage, the list of reactions to

be simulated is generated. This process is described in greater detail in Section

3.1.2.

3 2

MOVEMENT STAGE

Figure 3-1: Serial algorithm flow chart

Compartments can be specified in the SBML file. However, in this version

of GridCell, only one SBML compartment is supported. Additional compartments

can be manually created by inserting immobile particles at specific locations in

the grid, using an optional input file, referred to as the structure file. By default,

the particles will be randomly placed within a cube of the volume specified in the

SBML file. The structure file gives the user some flexibility in setting up the 3D

structure of the grid. The characteristics of the structure file are as follows:

The first line specifies the shape and size of the simulation space. Three

positive numbers describing the relation between the three axis lengths

must be chosen. The set {a b c} is equivalent to the relation x — ^ y = ^z .

These numbers must be selected based on the following rules:

• To obtain the same volume as the one specified in the SBML file,

you should choose three numbers whose product is equal to '1' .

3 3

For example, the set {1 1 1} will generate a cube, and the set {1 V2

2} will generate a 3D rectangle with x — 2y — ^z.

• If the product of the three values is not '1' , the volume generated

will be scaled by the product of the three values. For example, the

set {4 2 1} will generate a rectangular volume 6 times (4*2*1)

larger than the one specified in the SBML file where x = 2y = 4z.

The subsequent lines are species-related, and characterize the initial

location and quantity of the particles. The number of lines is not limited,

and it is possible to have more than one line associated with the same

species in which case particles of the same species are located in different

areas of the grid. The total quantity of each species cannot exceed the

value specified in the SBML file. For example, the line 3 7245 1 5 0 10 8

11 0 is interpreted as:

• The first number (3) is the species. In the SBML file, species are

labelled with their name. A species number is generated based on

the order in which the species are specified in the SBML file.

Species *i* is the ilh particle type entered in the SBML file.

• The second value (7245) is the number of particles that will be

placed in the specified volume. This value cannot exceed the value

specified in the SBML file. If '-1' is entered instead of a positive

number, a homogeneous solid block of that species is created, thus

forming a boundary or membrane. This allows for the manual

creation of compartments.

• The next six numbers (1 5 0 10 8 11) represent the coordinate

ranges of the subvolume where these particles will be randomly

placed (xm jn Xmax y m i n ymax Zmin ^max)-

• The last value indicates whether the particles are immobile (0) or

mobile (1). Immobile particles are given a species number, they

does not participate in any reactions, and have a moving ratio of 0

(they do not move).

3 4

For example, consider the following structure file:

1 1 4
1 25000 0 0.4 0 1 0 1 0
2 1250234 10 11 12 0
3 1000 0 1 0 1 0 1 1

• The volume is scaled by 4 (1 * 1 *4)

• 25000 mobile particles of species 1 are placed in a rectangle

delimited by the two voxels of coordinates (0,0,0) and (0.4,1,1).

• 1250 mobile particles of species 2 are placed in a rectangle

delimited by the two voxels of coordinates (2,3,4) and (10,11,12).

• 1000 immobile particles of species 3 are placed in the square

delimited by the two voxels of coordinates (0,0,0) and (1,1,1).

In the next sections, we describe the algorithms used for the particle

reactions (Section 3.1.2) and movement (Section 3.1.3). In GridCell, each particle

has access to its immediate neighbours only, and is independent from particles

further away. The immediate neighbours of a particle are those voxels that are

within one coordinate displacement away from the current voxel; for a 3D grid,

there are 26 neighbours.

3.1.2 Reactions

In the pre-processing stage, the list of reactions is generated by reading the

SBML file. GridCell supports only unidirectional reactions of three possible

types: (1) transformation reactions (A -» B), (2) split reactions (A —» B 4- C). and

(3) merge reactions (̂ 4 + B —> C). Reversible reactions are implemented as two

independent unidirectional reactions where the reactants and products are

reversed. More complicated reactions are reduced into multiple reactions of type

1, 2, or 3, thus creating temporary particles and intermediate reactions. However,

temporary particles have a limited lifespan: if they do not react in the two time-

steps following their creation, they must revert back to their original state.

Additionally, the intermediate reactions created have a probability of reaction of 1

3 5

(they will always occur, as long as the necessary conditions are satisfied).

Reactions are associated with the species of their first reactant.

GridCell also supports reactants or products of stoichiometry higher than

one. In this case, the number of reactants and/or products increases to reflect the

stoichiometry, and all the elements are treated as different. For example: A +

2B —> 3C is equivalent to A + B + B^C + C + C, which is interpreted in

the system as having three reactants, and three products.

In the SBML file, reactions are specified in terms of reactants and

products, and the reaction type is not known beforehand. Once the numbers of

reactants and products have been determined, the type of reaction can be obtained:

a. One reactant and one product: this is a transformation reaction or

"isomerisation" [40], and is the simplest type of reaction that can occur.

The reaction can require the presence of a reaction modifier (or enzyme) to

occur.

b. One reactant and two or more products: this is a split reaction or

"chemical decomposition" [40]. If there are more than two products,

temporary particles and reactions are created. This is best shown through

an example.

For reaction (*)A —>B + C + D + E, two temporary particles and

reactions must be created: (**)Ta —>B + C, and (***)T2 —>D + E.

This means that (*) can be reduced to (****)A —>Tt + T2. Reaction

(****) is added to the list of split reactions for species A (with products T|

and T2), and the intermediate reactions (**) and (***) are added to the list

of split reactions associated with Ti and T2 respectively.

c. Two or more reactants and two or more products: this is a merge

reaction or "direct combination" [40], If there are more than two reactants,

and/or more than two products, temporary particles and reactions must be

created. This is best shown through an example.

For reaction (•)A + B + C—>D + E + F, three temporary particles

and reactions must be created: (••) A + B ->T1} (•••)T1 + C —>T2, and

3 6

Generate
Random
Number
(01 ,2)

Legend:
-> Did not find Reaction
- - Found Reaction

Check
Transformation

Reactions

Check Split Check Merge Check
Transformation

Reactions Reactions Reactions

1
1

1
1
1

1
1
1 1

Check Split
Reactions

Check Merge
Reactions

Check Merge
Reactions

Check
Transformation

Reactions

T

Check
Transformation

Reactions

x
J L

Check Split
Reactions

Return 1; (successful)

Figure 3-2: Reactions Flow Chart

Return 0; A
(not successful) J

(••••)T3 ->D + E. This means that (•) has been reduced to

(•••••) T2 ->T3 + F. Reactions (••), and (•••) are added to the list of

merge reactions for A and Ti respectively, and (••••) and (•••••) are

added to the list of split reactions for T3 and T2 respectively

Reversible reactions are treated as two separate and independent reactions.

A reversible transformation reaction A <->B is listed in the system as two

transformation reactions: (1) a forward reaction A —>B associated with species A,

and (2) a backward reaction B —>A associated with species B. Similarly, a

reversible split reaction A ++B + C is listed in the system as a forward split

reaction (A ^>B + C), and a backward merge reaction (B + C —>A). Finally, a

reversible merge reaction A + B <->C is listed in the system as a forward merge

reaction (A + B ->C), and a backward split reaction (C -^A + B). This also

applies to intermediate reactions created from complex reactions. Temporary

particles created have an associated state 0 or 1, depending on whether the

reaction they are associated with is a forward (0) or backward (1) reaction.

The reactions algorithm follows a round robin process. When a reaction is

not successful, other reactions are tested until one succeeds, or all the reactions

associated with the current particle's species have been tested (Figure 3-2). First,

a random number between 0 and 2 is generated to indicate whether the first

3 7

reaction to test is a transformation (0), a split (1) or a merge (2). Once the reaction

type has been selected, another random number is computed in order to select

which reaction of that type to test first, since each species can be associated with

multiple reactions of a specific type. If that reaction is not successful, the other

reactions of that type are tested until one is successful, or there are no more

reactions. In the latter case, another reaction type is selected based on Figure 3-2,

and the process is repeated. The reaction stage stops when a reaction is successful,

or when all the reactions associated with the reactant particle's species have been

tested. At this point, the particle is marked as "reacted" even if no reaction was

successful. The algorithm loops over all the particles in the system.

The algorithms governing the three types of reactions are described next.

3.1.2.1 Transformation Reaction

Transformation reactions are of type A —>B. They are the simplest

reaction to execute as they do not require the creation or the consumption of

neighbouring particles. However, some transformation reactions require the

presence of a reaction modifier (or enzyme) in the immediate neighbourhood of

the reactant particle. This information is stored within the reaction characteristics.

When GridCell determines that a reaction requires an enzyme, it looks for it in the

26 neighbouring voxels. If the enzyme is not found, the reaction fails.

If the reaction does not require an enzyme, or if the required enzyme is

found, a uniform random number a is generated and compared to the reaction's

probability of reaction Rn. If a < Rn, the reaction is successful, and the

transformation occurs. The type of the current voxel is set to B, and the

concentrations of A and B are updated in the system: that of A is decremented,

while that of B is incremented. If a > Rn, the reaction fails.

3.1.2.2 Split Reaction

Split reactions are of type A B + C. Because they consist of the

creation of two particles, split reactions require the presence of at least one empty

3 8

voxel in the immediate neighbourhood of the reactant particle in order to house

the second product. In addition, split and merge reactions could involve temporary

particles, and must check the state of the first reactant particle with the direction

of the selected reaction (forward or backward). The condition requires one of

three situations to be true: (1) the state is -1, meaning that the particle is not a

temporary one; (2) the state is 0, and the reaction is forward; or (3) the state is 1

and the reaction is backward. If this condition is not satisfied, the reaction fails.

On the other hand, if the condition is satisfied, GridCell looks for an

empty location amongst the surrounding voxels. If no voxel is unoccupied, the

reaction fails.

If an empty voxel is located, a uniform random number a is generated and

compared to the reaction's probability of reaction Rn. If a < Rn, the reaction is

successful, and the split occurs; the type of the current voxel is set to B, and type

C is set into the empty voxel. Finally, the concentrations of A, B and C are

updated accordingly. If a > Rn, the reaction fails

3.1.2.3 Merge Reaction

Merge reactions are of type A + B —>C. They are inherently similar to

split reactions, with one major difference: merge reactions require the presence of

the second reactant B in the immediate neighbourhood of the current particle.

Similarly to the split reaction, the temporary particles condition is evaluated, and,

if not satisfied, the reaction fails.

If the condition is satisfied, GridCell searches for the second reactant in

the immediate surroundings of the current particle. If it is not found, the reaction

fails. Otherwise, a uniform random number a is generated and compared to the

reaction's probability of reaction Rn. If a < Rn, the reaction is successful, and

the merge occurs; the type of the current voxel is set to C, and the second voxel is

marked as empty. Finally, the concentrations of A, B and C are updated

accordingly. If a > Rn, the reaction fails.

3 9

\ d "
>

r A i r * / 1
 v

Figure 3-3: D3Q27 Grid [25]

Once all the particles in the system have reacted, the algorithm loops again

over all the particles to see if they can diffuse. The movement algorithm is

described in the following section.

3.1.3 Movement

In GridCell, particle movement is implemented as a Brownian random

walk, where each particle can move only once per time-step. The algorithm starts

by determining if the particle can move, in which case its moving ratio is higher

than 0. Immobile particles can form compartment boundaries, and provide a

movement constraint for the diffusing particles. If the particle cannot move, the

algorithm skips to the next particle. Otherwise, a random number a is generated,

and compared to the particle's moving ratio M. If a > M, the movement does not

occur.

If a < M, the movement can occur and the destination voxel to which the

particle will move is determined. A random number between 1 and 27 is

generated that indicates one of the possible 27 locations (D3Q27 grid [25], Figure

3-3). If this destination voxel is occupied, collision occurs, and the particle cannot

move. If the voxel is empty, the particle is moved to the new location, its moved

flag is set to 1, and the original voxel is marked as empty. The special case where

4 0

the destination and source voxels are the same ((X, Y,Z) = (Xnew, Ynew,Znew)) is

treated as any other collision case.

The CBE implementation of GridCell is described in Section 3.2.

3.2 CBE Implementation

The CBE algorithm is displayed in Figure 3-4. Execution is shared

between the PPU and the SPU. The PPU is responsible for the pre-processing and

initialization stages in which the 3D grid is set up. Because SBML is not used for

this version of GridCell, the 3D grid and reactions are set-up manually, based on

the same rules and conditions described earlier.

3.2.1 Overview of the CBE implementation

The strategy to parallelize GridCell is based on the fact that biochemical

systems are inherently parallel systems where local events are independent from

events further away. Therefore, it is possible to divide the simulation space over

the different SPUs to take advantage of the parallel structure of the CBE. Each

SPU executes the simulation on a smaller portion of the volume, and then

communicates the results back to the PPU. Additionally, it is possible to obtain a

second level of parallelism due to the SIMD nature of the SPU, where four voxels

are processed at one time.

Furthermore, because of the highly-parallel structure of the CBE, we

expect increased performance of the CBE version of GridCell, compared to the

serial version.

3.2.2 PPU pre-processing stage

The PPU pre-processing stage involves generating the DMA lists that will

be used by the SPUs to fetch all their blocks. Given the sizes of the 3D grid, the

SPU partition, and each SPU block in LS, it is possible to determine the number

of blocks that will be fetched from main memory by each SPU, at each time-step.

4 1

Pre-processing
Stage

Create SPU Threads
& Contexts

Boundary_react()
Boundary_move()

i
Update

Concentration

Reset moved' &
'reacted' flags

<

Set ppu ready = 1

r
Update

Concentration

Set ppu_ready = 2

SPU Pre-processing
Stage

Set spu_ready = 1

End PPU

SPU CODE
Reaction()

Reaction_selection()
Movement()

End SPU
Exit Context

Figure 3-4: Flow chart of the CBE algorithm

4 2

Table 3-1: Number of blocks for n SPUs

3D Grid (main memory) SPU Block (Local Store) Number of Blocks

X Spuc

X-2
blockx —

n * spuc

Y SpUr

Y - 2
blockv = y spur

Z spud

Z — 2
blockz =

spud

Number of blocks per SPU= numOfDMALists = blockx * blocky * blockz

There is one DMA list per SPU block, so the total number of blocks per

SPU is equivalent to the number of DMA lists per SPU. Additionally, the DMA

lists are generated in the same order as the blocks will be read by the SPU (see

Section 3.2.5). Table 3-1 summarizes how to obtain the number of blocks in each

direction, for a simulation that uses '«' SPUs.

Once the number of blocks per SPU is obtained, the DMA lists must be

generated. It is necessary to use DMA lists because the 3D grid is stored in

consecutive locations in main memory, but the SPUs operate on non-consecutive

data since the grid is partitioned. A 3D grid is stored in main memory starting

with the elements in the Z direction (for example: 000 001 002 ... 010 011 012 ..

100 111 112 ...). Each DMA command must transfer cr particles, where a =

spud + 2. The effective address of each transfer for block (spuc, spur, spud) is

determined by the equation: ealow = &grid[n + i + ix\j + ij[ik].

Figure 3-5 shows various effective address examples. The equation

parameters are:

(1) n is the SPU number (starting from 0)

(2) i and j are the x and y coordinates in the SPU block respectively

(3) ix, iy and ik are given by the following equations:

a. ix — oc * spuc; a is the number of the block in the x direction.

b. iy = p * spur ; (3 is the number of the block in the y direction.

4 3

SPUO SPU 1 SPU 2

/

(a, 0, f) - (0,0,0)
ea low = &gridf0)[5|[0]

la, p, f) = (1,1,0)
eajow = &grid) 1Q\\0\

(a, fi, f) = (1,0,0)
ea„k>u> = Skgrid |26]jl2J[0|

eajow = 8bgrid[ri+i+ix}\j+ij\[ik]

Figure 3-5: DMA List Addresses

c. ik = 0 * s p u d ; (|) i s the number of the block in the z direction.

Once the DMA lists are generated, an additional vector is created which

stores the addresses to each DMA list. Since the number of DMA lists is usually

too large to fit in LS, the SPU fetches the DMA list corresponding to each block

before operating on that block, instead of storing the inventory of DMA lists.

Therefore, during the SPU pre-processing stage, the vector of DMA list addresses

is fetched first. However, each DMA list address is 32b or 8B, but the transfer

size must be a multiple of 16B, so there must be an even number of DMA lists.

Furthermore, the transfer size cannot exceed 16KB, resulting in a maximum

number of DMA lists/SPU blocks that is allowed:

transfer size = numOfDMALists * sizeof (long) < 16KB

transfer size - numOfDMALists *8B < 16KB

16KB
numOFDMALists < = 2048

8 B

Consequently, the total number of DMA lists (and SPU blocks) must be

even and less than 2048 so that the memory transfer requirements are satisfied.

4 4

3.2.3 PPU Execution

Once the DMA lists and address vector have been generated, the PPU

creates the SPU contexts and the SPU threads. At this point, the SPU pre-

processing stage begins (see Section 3.2.4). Once the SPU pre-processing has

completed, the SPU sends a signal to the PPU's mailbox indicating that the SPU

is ready to begin execution. At this point, the time-step loop begins (§), and the

execution continuously switches between the PPU and the SPUs.

The PPU carries out the reaction section on the boundary particles (details

are outlined in Section 3.2.3.1). It then sends a message to the SPU mailboxes to

signal that data is ready and the SPUs can start processing. Once an SPU has

finished processing all of the blocks assigned to it, it sends a message to the PPU

to signal that it is ready for the next time-step. The PPU waits for all the SPUs to

be done, executes the movement code on the boundaries, updates the

concentration of all the species, resets the 'moved' and 'reacted' flags to 0 for all

particles, and increments the time-step. The process restarts again from (§). When

the simulation time is reached, the execution exits the time-step loop, and the PPU

sends a message to the SPU mailboxes to signal the end of the simulation, at

which point the SPU threads are completed.

3.2.3.1 Boundary Particles

Although the SPUs are responsible for the bulk of the data processing, the

PPU does some of the work also, as shown in Figure 3-4. In a 3D cube, each

particle has access to 27 voxels, including itself (D3Q27 grid). However, the

particles that are on the boundary of the cube (e.g.: x = 0) only have 18 immediate

neighbours, and there are six different boundaries corresponding to: (1) x = 0,

(2)y = 0, (3) z = 0, (4) x = xmax - 1, (5) y = ymax~ 1, and (6) z =

z — 1 ^max

To determine if a particle is on the boundary, a conditional statement must

be used, which is inefficient on the SPU. In order to eliminate this conditional,

boundary particles are not evaluated on the SPUs. Instead, the PPU serially

performs reaction and movement operations on those particles, whereas the SPU

4 5

processes the rest of the grid. Consequently, out-of-bounds assessments are no

longer needed on the SPU since no boundary particles are evaluated. For a grid of

size (X, Y, Z), the area that is operated on by the SPUs is (X - 2) (F - 2)(Z - 2).

For larger blocks, the area of the boundaries becomes negligible compared to the

area operated on by the SPUs. Hence, the effect of the PPU operation becomes

negligible overall.

Without boundary particles, the area of the 3D block that is worked on by

the SPUs is delimited by (x,y,z) = (1,1,1) to (x,y,z) = (x m a x - 2 , ymax- 2,

zmax- 2). However, if this is the area that is sent to the SPU, the particles at

coordinates x = 1 for example become boundary particles since they only have

access to 18 neighbours (corresponding to x = 1, and x = 2). Therefore, if the SPU

will analyze a block of data of size (spuc, spur, spud), it is required to fetch a

block of data of size (spu c + 2, spur + 2, spud + 2) in order to guarantee that

each particle will have access to its 26 neighbours (the D3Q27 grid must be in LS

in its entirety). The voxels on the additional six planes will not yet be processed

by the SPU. They are read and written to by reaction and movement codes, but

those particles do not diffuse nor react. They will be operated on by the PPU,

other SPUs, or the same SPU as part of other blocks. This is best shown through

an example.

Consider the case outlined in Figure 3-6 where the grid is distributed over

three SPUs. For simplicity, 2D is assumed. However, the same concept applies to

3D. The grid is divided into three equally-sized partitions. Since the LS on the

SPU is limited, each partition could be divided into smaller blocks that can fit in

LS. In this example (Figure 3-6), each SPU will operate on four blocks serially.

The particles on the boundaries in gray (arrows ai, a2, a3 & a4) are operated on by

the PPU. For a block of size (spu c , spu r) , SPU 0 must fetch a block of size

(spuc + 2, spur + 2) as shown in the figure, thus borrowing four boundaries:

(1) One x boundary from the PPU (arrow ai).

(2) One x boundary from SPU 1 (arrow b).

(3) One y boundary from the PPU (arrow a2).

4 6

SPUO
spuc +2

SPU 1 SPU 2

Figure 3-6: Block Distribution over 3 SPUs

(4) One y boundary from the next block on the same SPU (arrow d).

The particles pointed to by arrow'd' are fetched twice by the same SPU,

once as a boundary, and once as data to be processed. Similarly, in order to

analyze block 2, SPU 1 must fetch 4 boundaries: arrows (c) and (f) from SPUs 0

and 2 respectively; and arrows (g) and (h) from blocks on SPU 1.

The SPU is a SIMD processor, and requires data to be in 128b registers.

Additionally, the code is based on a series of integer or float operations (32b

each). The SPU code thus executes the movement and the reaction sections on

four voxels at a time. However, since each voxel needs exclusive access to 26

neighbours, it is important that those neighbours not be shared amongst the four

voxels to make sure that data integrity is maintained (the same voxel cannot be

written to simultaneously by two different particle operations).

Figure 3-7 shows four examples of voxel selection (2D is chosen for

simplicity; the same concept applies to 3D). The figure shows that voxels need to

be separated by at least two other voxels in order to be operated on

4 7

simultaneously. In GridCell, simultaneous execution of four particle operations

occurs in the x direction. For this reason, for an SPU block size

(spuc, spur, spud), spuc must be a multiple of 4, and be at least 12; otherwise, it

is not always possible to find four independent particles that can be executed upon

simultaneously. There are no such conditions on spur and spud.

Given the above mentioned requirement and the execution of boundaries

by the PPU, there are conditions on the total size (columns, rows, depth) of the

3D grid (in main memory) for accurate execution. For a simulation over n SPUs,

and an SPU block size (spu c , spur, spud) in LS, without borrowed boundaries,

the conditions on the 3D grid and SPU block sizes are outlined in Figure 3-7.

3.2.4 SPU pre-processing stage

As shown in Figure 3-4, the pre-processing stage on the SPU is executed

only once per simulation. It involves the memory transfers of (1) the control

block, which includes all the information required for the SPU operation, (2) the

reaction lists per species, and (3) the list of DMA list addresses in order to fetch

the DMA lists. Once this is done, the SPU signals the PPU that it is ready to

operate. The DMA transfers of the DMA list and the actual block of data occur

within the processing stage. Based on the size of the 3D grid, each SPU could

4 8

Table 3-2: Conditions on the grid size and number of SPU blocks

Variable: Condition:

Size of the 3D grid:

(1) columns — {spujcolumns * n) * ir^ + 2
(2) rows — spujrows * ra2 + 2
(3) depth = spujdepth *m3 + 2
where mi, m2 and m; are non-zero positive integers

Maximum number of blocks
& DMA lists per SPU

numOfDMALists % 2 = 0
numOfDMALists < 2048

Minimum value for
blockz

blockz ^ 6

Value of spuc
spuc = 4 * m
spuc > 1 2

process more than one data block per time-step resulting from the limited size of

the LS.

The processing stage involves (1) fetching the DMA list from memory, (2)

fetching the data block from memory using DMA list commands (Section 3.2.5),

(3) executing the reaction and reaction-selection stages (Sections 3.2.6 & 3.2.7),

(4) executing the movement stage (Section 3.2.8), and finally, (5) writing the

block back to memory.

3.2.5 Multi-buffering

Figure 3-8 shows how multi-buffering is done on the SPU. Since each

SPU will operate on multiple blocks, the processing stage involves moving each

block from main memory into the SPU, operating on it, and then writing it back to

main memory. However, memory transfers are time-consuming, and as the

number of blocks and/or the transfer size increase, the amount of time wasted in

memory transfers becomes significant.

Multi-buffering is a way of overlapping the execution with memory

transfers in order to eliminate their effect on performance. In fact, with multi-

buffering, it is possible to eliminate the effect of all but two memory transfers: (1)

the initial transfer from main memory into LS, and (2) the final write to main

memory.

49

/ B=° \
x _ N = o _ _ y

Figure 3-8: Double Buffering Memory Transfers

In GridCell, before the SPU can transfer a block into its LS, it must obtain

the corresponding DMA list from memory. Therefore, each block requires two

'get' commands (to fetch data), and one 'put' command (to write data). The

execution starts with three consecutive 'get' operations for (1) the first DMA list,

(2) the first block, and (3) the second DMA list respectively. These commands are

blocking since they are the initial transfers. Afterwards, the execution loops over

all the SPU blocks in the system.

During each iteration, the SPU operates on the current block, while

fetching the next block and the following DMA list. At any time, the SPU stores

three DMA lists, and two SPU blocks, except for the last pair of blocks where it

does not fetch a third list (since there are no more blocks to operate on). The

DMA lists are therefore triple-buffered, whereas the SPU blocks are double

buffered. At the end of each iteration, the SPU writes back the current block into

main memory. This is a non-blocking operation which overlaps with the

execution on the following block.

5 0

Figure 3-9: Example of Block Selection for Double-Buffering

However, each SPU block contains data shared with other blocks. Thus,

adjacent blocks cannot be double-buffered. A pattern of execution must be found

such that blocks can be double-buffered without jeopardizing data integrity. The

algorithm loops over blocks in the Z direction, for each X and Y pair. It is

possible to double-buffer even-numbered blocks, and odd-numbered blocks

separately, as shows in the following example.

If there are two blocks in the X direction, two blocks in the Y direction,

and four blocks in the Z direction (as outlined in Figure 3-9), the even blocks 000,

002, 010, 012, 100, 102, 110, and 112 can be double-buffered in that order, since

they do not share any sides or corners. Similarly, the odd blocks 001, 003, 011,

013, 101, 103, 111, and 113 can be double-buffered in that order. The DMA list

for block 001 is fetched from memory while the SPU is executing on block 111,

and the block itself is fetched while writing back block 111 to memory (since both

are non-blocking operations) However, blocks 111 and 001 share a side. If the

execution proceeds as mentioned, block 001 will have incorrect data. This issue

occurs as long as there are less than six blocks in the Z direction. As a result, for

accurate execution, it is necessary to have at least six blocks in the Z direction on

each SPU (Table 3-2) in order to guarantee precise multi-buffering. Since the SPU

block is small due to the limited LS, this condition is not unrealistic since

simulated volumes (3D grids) have a significantly large number of blocks.

In the next sections, we describe the algorithm for the reactions, reaction

selection, and the movement sections. To eliminate unnecessary conditionals,

empty voxels are treated like any other voxels. Prior to the beginning of the

5 1

Table 3-3: Reaction Results by type (SPU)

Reaction Type L Vector Results Vector

Transformation Lt= {Lt,,Lt2, Lt3, Lt4
TransType:
{Pt,, Pt2, Pt3, Pt4}

Split Ls = {Lsi, Ls2, LS3, LS4}

Typesl:
{PS,,PS2, PS3, PS4>,
Types2:
{Ps,,Ps2, Ps3,Ps4}2
Coordinates of 2nd result:
(Xfs, Yfs, Zfs)

Merge Lm = {Lmi, Lm2, Lm3, Lm4(

Typeml:
{Pmi, Pm2, Pm3, Pm*}]
Typem3:
{Pmi, Pm2, Pm3, Prri4}3
Coordinates of 2nd reactant:
Xfm, Yfm, Zfm

execution, if the voxel is empty (type 0), a flag is set to make sure movement and

reaction are not possible.

3.2.6 Reactions

In the serial code, the reactions are executed one type at a time. However,

this involves a lot of inefficient conditional statements. For this purpose, GridCell

attempts to find one successful reaction per type for each particle. The results of

each are saved in temporary variables (Table 3-3, Section 3.2.7).

Prior to the reaction execution, the type of the particles tested is

determined. If the voxel is empty (type 0), or if there are no reactions associated

with that species, a flag is set to make sure that no reaction will occur for that

voxel.

The SPUs also keeps track of the concentration changes for each species.

At the end of every time-step, the SPUs write the concentration changes to

memory so that the PPU can update the total amounts, and then reset the

concentration vector to 0 for the next time-step. The PPU can therefore track the

concentration evolution at each time-step.

52

In the next sections, we present the algorithms for the (1) transformation,

(2) split, and (3) merge reaction respectively, as well as the modifications that are

necessary to be able to parallelize the code.

3.2.6.1 Transformation Reaction

Transformation reactions are the simplest reaction type. No new

coordinates are required, except to search for reaction modifiers. The order of

execution is very similar to that of the serial code, with the only exception being

that four reactions are being executed simultaneously.

i. The type at each voxel is determined to make sure empty voxels or

particles with no transformation reactions do not react.

ii. Four random numbers are generated to determine which transformation

reaction to test first for each particle.

iii. For each reaction that requires a modifier (or enzyme), GridCell searches

the immediate surroundings of that particle for the modifier. If no enzyme

is found, the reaction fails, and the probability is set to 2 for that particle.

iv. For each reaction that does not require an enzyme, and for each reaction

where an enzyme was found, a uniform random number a is generated,

and compared to the probability of each reaction (the vector operation

r < RN).

v. If the inequality is satisfied, the flag Lt is set to indicate that a reaction is

successful. The expected result of the transformation is stored in a vector

called TransType.

The algorithm loops over all the transformation reactions for each of the

four voxels until a reaction is successful for each particle or there are no more

transformation reactions to test. At the end of the transformation section, two

128b vectors are saved (Table 3-3): (1) Lt which indicates if a reaction was

successful (Oxffffffff) or not (0) for each voxel, and (2) TransType which stores

the transformation result of the successful reactions.

5 3

3.2.6.2 Split Reaction

Split reactions involve the creation of a new particle, and thus require the

presence of an empty voxel in the immediate neighbourhood of each particle. The

order of execution is very similar to the order of the original implementation.

i. The type at each voxel is determined to make sure empty voxels or

particles with no split reactions do not react.

ii. Four random numbers are generated to determine which split reaction to

test first for each particle.

iii. The first step is to determine the temporary particles condition (see

Section 3.1.2.2). If the condition is not satisfied, the reaction fails, and the

probability is set to 2 for that voxel.

iv. If the condition is satisfied, the algorithm searches neighbouring voxels for

an empty location. If no location is unoccupied, the reaction fails, and the

probability is set to 2 for that particle.

v. If an empty voxel is found (at coordinates Xfs, Yfs, Zfs), a uniform

random number a is generated, and compared to the probability of each

reaction (the vector operation R < RN).

vi. If the inequality is satisfied, a flag Ls is set to indicate that a reaction is

successful. The two results of the split reaction are saved in vectors typsel

and types2.

The algorithm loops over all the split reactions for each of the four voxels

until a reaction is successful for each particle or there are no more split reactions

to test. At the end of the split section, four 128b vectors are saved (Table 3-3): (1)

Ls which indicates if a reaction was successful (Oxffffffff) or not (0) for each

voxel, (2) the coordinates of the empty voxels (location of the second product)

Xfs, Yfs and Zfs, (3) types 1 which stores the expected result in the current

coordinates, and (4) types2 which stores the expected results at (Xfs, Yfs, Zfs).

5 4

3.2.6.3 Merge Reaction

Merge reactions involve the consumption of an existing particle, and thus

require the presence of that particle species in the immediate neighbourhood of

each particle. The order of execution is very similar to the order of the original

implementation.

i. The type at each voxel is determined to make sure empty voxels or

particles with no merge reactions do not react.

ii. Four random numbers are generated to determine which merge reaction to

test first for each particle.

iii. The first step is to determine the temporary particles condition (see

Section 3.1.2.2). If the condition is not satisfied, the reaction fails, and the

probability is set to 2 for that particle.

iv. If the condition is satisfied, the algorithm searches the neighbouring

voxels for the reaction's second reactant. If it is not found, the reaction

fails, and the probability is set to 2 for that particle.

v. If the second reactant is located at coordinates (Xfm, Yfm, Zfm), a

uniform random number a is generated, and compared to the probability

of each reaction (the vector operation R < RN).

vi. If the inequality is satisfied, a flag Lm is set to indicate that a reaction is

successful. The result of the merge reaction is saved in vector typmel.

Keeping in mind that, after the merge, an empty location replaces the

second reactant, vector typem3 stores the initial types at (Xfm, Yfm, Zfm).

The algorithm loops over all the merge reactions for each of the four

voxels until a reaction is successful for each particle or there are no more merge

reactions to test. At the end of the merge section, four 128b vectors are saved

(Table 3-3): (1) Lm which indicates if a reaction was successful (Oxffffffff) or not

(0) for each voxel, (2) the coordinates of the second reactant (Xfm, Yfm Zfm), (3)

typeml which stores the expected result in the current coordinates, and (4)

typem3 which stores the pre-merge types at (Xfm, Yfm, Zfm).

55

3.2.7 Reaction selection

Once all three reactions have been executed, the next step is to determine

which reaction's results will be permanently recorded. To determine which

reaction's results will be saved, a vector R of four random numbers between 0 and

2 is generated, indicating which reaction will be selected first for each particle (as

per Figure 3-2). Three select vectors (selecttrans, selectsplit, and selectmerge)

are created when R is compared with {0,0,0,0}, {1,1,1,1} or {2,2,2,2}. The values

of the select vectors depend on the value of R. When R holds a:

0 at a particular location, select trans will be set to 1 at that location.

1 at a particular location, select split will be set to 1 at that location.

2 at a particle location, select merge will be set to 1 at that location.

For example, select trans = {0, Oxffffffff, 0, 0} means that a

transformation reaction must be selected first for the second particle. A reaction

type is chosen if (1) the random number generated corresponds to the reaction

type, and (2) a reaction of that type was successful (based on the flag vectors Lt,

Ls and Lm). If at least one of those conditions is not satisfied, GridCell checks the

following reaction type, based on the flow chart in Figure 3-2.

Based on the values of the three select vectors, and the three L vectors (Lt,

Lm, and Ls) (Table 3-3), GridCell determines which reaction will occur, allocates

the corresponding results to the SPU block, and updates the concentration

displacements of each species involved. Table 3-4 shows an example of reaction

selection.

3.2.8 Movement

As previously mentioned, each SPU operates on four particles at a time.

The first step is to verify if any of the four voxels are empty or the particles

stationary. For any such voxel/particle, a flag is set to make sure the movement

will not occur. Secondly, a vector of four random numbers a is generated, and

compared to the particle's moving ratio M. Based on the results of the

comparison, the movement will either occur (if a < M), or not (a > M). Then,

5 6

Table 3-4: Reaction Selection Example

Selection Vector:
R = {0,1,0,2}

Flag vectors:
Lt= {1,0,0,1}
Ls= {0,1,1,1}
Lm= {1,1,0,0}

Select vectors:
Selecttrans = {1,0,1,0)
Select_split = {0,1,0,0)
Selectmerge = {0,0,0,1}

Select trans [0] = 1 Try transformation reaction
first
Lt [0] = 1 transformation reaction is successful
for particle 0!

Select split [1] = 1 try split reaction first
Ls [1] = 1 -> split reaction is successful for
particle 1!

Select trans [2] = 1 try transformation reaction
first
Lt [2] = 0 -> try split reaction
Ls [2] = 0 -> try merge reaction
Lm [2] = 0 -> there are no successful reactions
for particle 2 !

Select merge [3] = 1 try merge reaction first
Lm [3] = 0 -> try transformation reaction
Lt [3] = 1 -> transformation reaction is successful
for particle 3 !

Concentration Update: The concentration is updated for each of the
successful reactions

GridCell establishes the destination voxels. This is done by determining the

displacement from the current voxels through the generation of random numbers

between 0 and 2 (Rn_x, Rn_y, and Rn_z).

The interpretation of the random numbers is as follow:

0 means the new coordinate is equal to the old coordinate: X = Xnew.

1 means the old coordinate is incremented by one: X + 1 = Xnew.

2 means the old coordinate is decremented by one: X — 1 — Xnew.

There are 27 possible combinations of those three random numbers, thus

obtaining one out of 27 possible destination voxels (D3Q27 grid, Figure 3-3). A

total of 12 numbers are generated: three coordinates for each of four particles.

57

Once the displacement is obtained, the coordinates of the destination voxels are

computed by comparing the random numbers with {0,0,0,0}, {1,1,1,1} and

{2,2,2,2}.

The next step is checking whether the destination voxels are unoccupied.

If so, the movement occurs in the same way as in the serial code: the current voxel

is marked as empty, and the new voxel is assigned the particle's characteristics

(type, lifetime, state, etc). At this stage, particle concentration is not affected as

particles are neither created nor consumed.

At the end of the movement code, temporary particles are updated if two

or more time-steps have passes since they were created. In this case, their state is

reversed so that, at the next time-step, it can revert back to its original form. A

temporary particle reverts back to its original form if it cannot react to produce the

final product of the original complicated reaction.

For example, the reversible reaction B C + D + E is reduced to:

B -» C + TJ (•)

TJ D + E (••)

D + E -*T1 (—)

C + Tj B (••••)

If the forward reaction (••) could not occur two time-steps after T| was

created, the particle Tj's state flag is reversed to indicate a backward reaction.

This means that, in the next time-step, the backward reaction (••••) will have a

chance to occur such that B is obtained from the temporary particle T],

Additionally, the forward reaction (••) will not be able to occur since the

temporary particles condition will not be satisfied (reaction is forward, but state

indicates backward reaction).

At the end of the movement code, the block is written back to main

memory, and the execution starts again on the following block. If there are no

more blocks to be processed, the final write is blocking, followed by sending the

concentration changes back to the PPU. At this point, the PPU will update the

concentrations, advance by one time-step, and the process starts again.

5 8

Now that the algorithm has been described in detail, the results of the CBE

implementation can be validated by undertaking a comparison with the results of

the serial version. Additionally, performance and timing analysis can be carried

out in order to show that the CBE implementation is better performing than the

serial implementation.

5 9

Chapter 4 Results and Performance Analysis

In this chapter, we first analyse the results of the CBE implementation in

order to establish the accuracy of the algorithm. Since SBML is not used in the

CBE implementation, we adjusted the serial code to manually generate the 3D

grid and create the reactions. However, the algorithm itself was not modified from

the original code. Subsequently, we undertake timing analysis with the purpose of

determining if the CBE version yields any performance improvements over the

serial version run on the PPU, and on an Intel processor.

4.1 Verification of results

The first step is to determine the validity of the results of the CBE

implementation. In order to do so, we compare the concentration results with

those of a serial version running on the CBE, utilizing the PPU exclusively

(referred to as 'Serial-PPU). We simulate different systems to compare and

corroborate results. The first system is a simple reversible reaction A + B <-» C.

The second system represents the Michaelis-Menten kinetics. For the third

system, the effects of crowding are analyzed, by adding inert particles to a

Michaelis-Menten system, and studying the rate of product creation.

4.1.1 Simple Reversible Reaction

We start by comparing the results of a simple reversible reaction system,

between the CBE implementation run on one SPU, and the Serial-PPU

implementation.

6 0

Q , 1 , 1 1 j r f p—, 1 , ; , . , ; j—, 1 » , ;

0 10 20 30 40 50

Time-step

Figure 4-1: Simple reversible reaction: Concentration results of the CBE implementation using

only one SPU (Ap, Bp, and Cp) compared to the results of Serial-PPU (A, B and C).

The system is given by the following equation:

A + B «-> C.

For this simulation, the forward probability of reaction is 0.25, and the

backward probability is 0.05. This unique reversible reaction is entered in the

system as two independent and different reactions:

a) A forward merge reaction A + B -> C with a probability of 0.25

b) A backward split reaction C A + B with a probability of 0.05.

At the beginning of the simulation, there are 3000 particles of type A,

1000 particles of type B, and no particles of type C. Figure 4-1 shows the results

of the simulation with the following parameters:

a) Grid size: 290 x 12x20

b) SPU block size: 24 x 2 x 2

c) Number of iterations: 50

d) Number of SPUs: 1

e) Sampling rate: 2 iterations.

As can be seen from Figure 4-1, the results of both implementations are

comparable, with the exception of some expected stochastic noise. Additionally,

6 1

0 10 20 30 40 50

Time-step

Figure 4-2: Concentration results of the simple reversible reaction on the

CBE, over 1,2, 3 & 6 SPUs

Figure 4-2 shows the results of the simple reversible reaction on the CBE, over

one, two, three and six SPUs. As can be seen from the figure, the results are

accurate, independently of the number of SPUs used.

4.1.2 Michaelis-Menten System

The Michaelis-Menten system describes the kinetics of many enzymes,

and is given by the equation:

E + S^ES^>E + P.

In this equation, S is a substrate that binds to enzyme E to yield ES, which

can decompose into the product P and the enzyme E, or into its original form

(E+S). Usually, the enzyme is the limiting factor, since its concentration is much

lower than that of S. The simulation parameters are:

a) Grid size: 290 x 12 x20

b) SPU block size: 24 x 2 x 2

c) Number of iterations: 500

d) Number of SPUs: 1, 2, 3 and 6

e) Sampling rate: 20 iterations

f) Initial concentrations: 1000 particles of E and 3000 particles of S.

6 2

The above 3D grid size satisfies the conditions set on the size of the grid,

with respect to the number of SPUs, and the SPU block size. Additionally, for

each of the simulations, the total number of blocks per SPU is even as required

(Table 3-2):

For one SPU:

290 = 2 + 1 * (24 * 12),

12 = 2 + (5 * 2) and

20 = 2 + (9 * 2).

540 blocks per SPU

For three SPUs:

290 = 2 + 3 * (24* 4),

12 = 2 + (5 * 2) and

20 = 2 + (9 * 2).

180 blocks per SPU

For two SPUs:

290 = 2 + 2 * (24 * 6),

12 = 2 + (5 * 2) and

20 = 2 + (9 * 2).

270 blocks per SPU

For six SPUs:

290 = 2 + 6 * (24* 2),

12 = 2 + (5 * 2) and

20 = 2 + (9 * 2).

90 blocks per SPU

The system is represented by three different and independent reactions:

a) A forward merge reaction E 4- S -> ES probability of reaction 0.25

b) A backward split reaction ES -> E + S with probability of reaction 0.05

c) A forward split reaction ES -> E + P with probability of reaction 0.05

Figure 4-3 compares the results of the serial version with those of the

parallel version utilizing only one SPU. As expected, the time evolution of the

concentration for both implementations is similar, with the exception of some

expected stochastic noise. The total number of particles in the system is also

similar, with a maximum error margin of 2.43%.

Additionally, we compare the results of the CBE implementation using

one, two, three or six SPUs. Figure 4-4 shows the results of the simulation. As can

be seen from the figure, the results overlap, and cannot be distinguished. The

results are therefore accurate regardless of the number of SPUs used in the

simulation.

6 3

100 200 300

Time-step

400 500

Figure 4-3: Michaelis-Menten System: Concentration results of the CBE

implementation using only one SPU (Ep, Sp, ESp and Pp) compared to the

results of Serial-PPU (E, S, ES, and P).

3500

3000
in
"S 2500
t
2. 2000

v
_Q
E 3
z

1500 »

1000 j

500 •

0
0

\

100 200 300

Time-step

400 500

Figure 4-4: Concentration results of the Michaelis-Menten System on the CBE,

over 1, 2, 3 & 6 SPUs

4.1.3 Analysis

In Sections 4.1.1 and 4.1.2, we showed that the results of the parallel

implementation are comparable to the results of the original serial algorithm. We

can conclude that, firstly, the modifications to the algorithm, described in Section

6 4

3.2, did not have an impact on the accuracy of the implementation. Secondly, the

number of SPUs employed in the implementation does not have any consequences

on the algorithm precision.

This result is indicative of the fact that the parallel version of GridCell is

algorithmically correct. We can now proceed to analyze the performance of the

parallel simulator by measuring and comparing execution times.

4.2 Performance Analysis

In order to show performance improvements over the serial version of

GridCell, we compare the execution time of the serial version running on the

CBE, utilizing only the PPU (referred to as 'Serial-PPU) with that of the CBE

version employing a different number of SPUs, for a variety of test cases. There

are four different parameters that can affect the execution time, and consequently

the performance of the CBE implementation: (1) the number of SPUs used, (2)

the size of each SPU block, (3) the size of the 3D grid that represents the volume

simulated, and (4) the portion of the total volume that is initially occupied (the

initial particle density, expressed as a percentage of the total volume). We discuss

each of these parameters in the following subsections, and analyse their effect on

performance.

Moreover, we evaluate the performance of the CBE implementation, over

the serial version running on an Intel Pentium IV 3.2 GHz processor (referred to

as 'Serial-Intel').

4.2.1 Serial-PPU and CBE implementations

In this section, we compare the performance of the CBE version, with the

serial version run on the CBE employing the PPU exclusively (Serial-PPU). We

start by determining the effect on performance of the number of SPUs used in the

simulation. Afterwards, we establish the effect of different SPU block sizes,

followed by that of different 3D grid sizes. Finally, we study the effect of

different particle densities.

6 5

Table 4-1: Speed-up of the CBE implementation utilizing a different number of SPUs, over the

Serial-PPU version.

Serial-PPU 2 SPUs 3 SPUs 4 SPUs 6 SPU s
Time (s): 147.84 151.21 117.58 100.33 83.50
Speed-up: 1.00 0.98 1.25 1.48 1.76

Timing
spectrum -

over 2
SPUs

Timing
spectrum -

over 4
SPUs

Time of Serial Version

PPU Pre-proefesswg., SPU Pre-processing

PPU Pre proeessir« . SPU Pre-processing

PPU Pre-processing - SPU Pre-processing SPU Execution

PPU Pre processing , SPU Pre-processing SPU Execution

PPU Pre-processing ' SPU Pre-processing SPU Execution

PPU Pre-processing" SPU Pre-processing SPU Execution

Timo
Diffewx:*

SPU Execution

SPU Exsibtion

Figure 4-5: Example of timing spectrums

4.2.1.1 Speed-up over the number of SPUs

The number of SPUs used affects the execution time in different ways. For

the same volume, particle density, and SPU block size, the number of used SPUs

modifies the number of blocks evaluated on each SPU. Additionally, the time

spent by the PPU creating the SPU threads and the contexts increases with the

number of SPUs. Table 4-1 shows the execution times and the speed-ups obtained

when simulating the Michaelis-Menten system with the following parameters:

a) Grid size: 866X22 X 14

b) SPU block size: 24 x 2 x 2

c) Number of iterations: 500

d) Number of SPUs: 2, 3, 4 and 6

e) Number of blocks per SPU: 1080, 720, 540 and 360 respectively.

6 6

As expected, using more SPUs will decrease the execution time because

each SPU operates on a lesser number of blocks (Table 3-1 shows how to obtain

the number of blocks per SPU). In this example, using only two SPUs yields a

higher execution time because the advantage of dividing the simulation volume

over two SPUs is countered by the time wasted setting up all the structures

required as well as the SPUs. In order to obtain performance improvements, the

time that each SPU spends operating on its blocks must be small enough such that

the time spent in the pre-processing stages does not hinder performance. Figure

4-5 shows an example of timing spectrums, for two and four SPUs, compared to

the execution time of Serial-PPU, where using two SPUs causes decreased

performance. For the same grid size, particle density, and SPU block size, the

PPU pre-processing stage takes approximately the same time, but the number of

SPUs affects the time spent on the SPU pre-processing, as well as the SPU

execution. Therefore, using more SPUs yields better timing results, thus

increasing the speed-up over the Serial-PPU version.

4.2.1.2 Timing over SPU block size

The second parameter that may affect the execution time and the speed-

ups is the size of the SPU block in LS. This value affects the transfer of each

block from main memory into LS since the transfer amount is dependent on the

size of the SPU block in the Z direction. Figure 4-6 shows the speed-ups obtained

when simulating the Michaelis-Menten system with the following parameters:

a) Grid size: 866 X 22 X 30

b) SPU block size: 22 x 2 x 4 and 12 x 5 x 4

c) Number of iterations: 500

d) Number of SPUs: 2, 3, 4 and 6

e) Particle density: 14%

The figure shows that similar speed-ups are obtained for any SPU block

size, as long as all the other parameters are maintained. A larger SPU block size

reduces the number of blocks that the SPU will execute on, but it will increase the

6 7

2 SPUs 3 SPUs 4 SPUs 6 SPUs

Number of SPUs

m24x2x4

12x5x4

Figure 4-6: Speed-up of the CBE implementation utilizing different SPU block sizes,

over the Serial-PPU version, for a different number of SPUs.

Table 4-2: Execution time of the CBE implementation over 3D grid size in seconds,

using three and six SPUs

Grid Size Serial-PPU Three SPUs Six SPUs
866 x 22 x 30 227.19 211.81 135.47
578 x 22 x 30 152.03 142.46 91.77
434 x 22 x 30 111.08 106.09 67.84
290 X 22 X 30 71.16 71.51 40.04

amount of data to be transferred when fetching the block into LS from main

memory. Additionally, the time the SPU spends operating on the larger block will

increase. The combination of all these effects is such that the SPU block size does

not influence the execution time of the CBE version, and thus the performance of

GridCell on the CBE is not dependent on the SPU block size.

4.2.1.3 Timing over 3D grid size

The third parameter that may influence the execution time is the size of the

volume to be simulated (or the 3D grid size). Table 4-2 shows the execution time

of the serial version, compared to the CBE implementation using three and six

SPUs, obtained when simulating the Michaelis-Menten system for different grid

sizes, with the following parameters:

a) 3D grid size: variable.

6 8

2.000

"g 1.000 v a. to

o . 3

0.000

0.500

1.500

• 866 x 22 x 30

• 2 9 0 X 2 2 X 3 0

434 x 22 x 30

506 x 22 x 30

3 SPUs 6 SPUs

Number of SPUs

Figure 4-7: Speed-up of the CBE implementation for different 3D grid sizes, over the

Serial-PPU version, for 3 and 6 SPUs.

b) SPU block size: 24 x 2 x 2

c) Number of iterations: 500

d) Number of SPUs: 3 and 6

e) Particle density: 20%

As expected, the time increases with the size of the 3D grid representing

the volume to be simulated. For larger grids, the number of voxels increases, and

consequently, the time to process all those voxels rises. Figure 4-7 shows the

speed-ups obtained from this example. As a result of the increase in grid size, the

execution time rises comparatively for both the Serial-PPU and the CBE version.

Consequently, the acquired speed-ups for the different volumes are relatively

close to each other, for both three and six SPUs. We can therefore conclude that,

if all the other parameters are maintained, we can obtain analogous performance

improvements for variable 3D grid sizes.

4.2.1.4 Timing over initial particle density

The last parameter that may affect execution time and speed-ups is the

initial number of particles in the system, or the initial particle density which is

expressed as a percentage of the total volume. In order to study the effect of

6 9

6 SPUs

14 21 28 35 42 49 56

Particle Density (%)

Figure 4-8: Speed-up of the CBE implementation with varying particle density, over

the Serial-PPU version, for a different number of SPUs.

particle density on performance, we simulate the Michaelis-Menten system with

the following simulation parameters:

a) Grid size: 434 x 22 x 30

b) SPU block size: 22 x 2 x 2

c) Number of iterations: 500

d) Number of SPUs: 2, 3 and 6

e) Particle density: 7% to 56% (7% increments)

The results of the simulation, shown in Figure 4-8, indicate that the speed-

ups obtained increase with the initial particle density. In the serial algorithm, the

execution over a voxel stops if any of the following occurs: (1) the voxel is

empty, (2) the particle is immobile or inert, (3) a successful reaction is found, or

(4) no reactions are associated with that particle type. Therefore, for a low particle

density, the algorithm spends less time executing since more voxels are empty.

On the other hand, the CBE algorithm operates over four voxels at a time,

including empty voxels (a flag is set in this case to prevent reactions or diffusion

from occurring). Additionally, the algorithm attempts to find one successful

reaction of each type, and then selects one reaction to perform. The CBE version

does more work on each voxel, compared to the serial implementation. Even

i.UU

0.50

0.00

7 0

Table 4-3: Timing analysis, and speed-up of the Serial-Intel version, over the Serial-PPU version,

for different 3D grid sizes and particle densities.

Volume & Particle Scrial- Serial- Speed-up: Serial-Intel over
Density PPU Intel Serial-PPU

8 6 6 X 2 2 X 3 0 - 2 0 % 84.04 22.43 3.75
866 X 22 X 30 - 35% 132.16 40.21 3.29
866 X 22 X 30 - 50% 178.77 48.36 3.70
866 X 22 X 30 - 75% 254.59 66.83 3.81
5 7 8 x 2 2 x 3 0 - 2 0 % 57.86
5 7 8 x 2 2 x 3 0 - 3 5 % 89.08 22.78 3.91
5 7 8 x 2 2 x 3 0 - 5 0 % 118.56 . ..'.. 3.40
5-78 x 22 x 30 - 75% 165.74 52.94 ; 3.13 :
434 x 22 x 30 -20% 42.16 12.01 3.51
434 x 22 x 30 - 35% 66.51 19.29 3.45
434 x 22 x 30 - 50% 89.21 25.41 3.51
434 x 22 x 30 - 75% 145.46 43.15 3.37

Average Speed-up 3.55

when the particle density is low, the SPU spends a significant amount of time

processing empty voxels.

On the other hand, when the particle density is high, the serial algorithm

must go through a higher number of non-empty voxels, which increases its

execution time. However, the SPU processes these voxels anyway. Hence, when

compared to the execution time of Serial-PPU, the CBE implementation's time is

lower for high density. Figure 4-8 shows that speed-ups can be obtained for more

than 20% initial density for three of more SPUs, and over 35% density for two

SPUs. Using six SPUs always yields good speed-ups as can be seen from the

multiple examples that we have examined.

4.2.2 Serial-Intel and CBE implementations

In this section, we compare the performance of the CBE version with the

serial version run on an Intel Pentium IV 3.2 GHz processor (Serial-Intel, Section

4.2.2.2). To better understand the results of the comparison, we start by evaluating

the performance of Serial-PPU with respect to Serial-Intel (Section 4.2.2.1).

7 1

4.2.2.1 Serial-Intel compared to Serial-PPU

In order to understand the performance of the CBE implementation when

compared to the Serial-Intel version, we start by comparing the Serial-Intel and

Serial-PPU versions. The Serial-PPU source code runs on the PPU, which is a

PowerPC processor. Table 4-3 shows timing analysis between the Serial-PPU and

the Serial-Intel versions of GridCell, for three different volumes, over four

different particle concentrations.

Using the tabulated results, we conclude that the Intel version is on

average 3.55 times faster than the Serial-PPU version. This is expected since

commercial Intel processors are better performing than the PPU. Using this

information, we can further study the timing analysis between the CBE

implementation, and the Serial-Intel version.

4.2.2.2 Serial-Intel compared to Parallel version

As mentioned in Section 3.2 in the description of the CBE implementation

of GridCell, the bulk of the work is processed by the SPUs. However, boundary

voxels are traversed by the PPU at each time-step. Additionally, the PPU loops

over the 3D grid at each iteration to reset the flags "moved" and "reacted".

Consequently, the performance of the CBE implementation is bottlenecked by the

PPU execution, given that the Intel implementation is significantly faster than the

Serial-PPU version. In order to determine the effect of the PPU execution on

overall performance, we simulate the Michaelis-Menten system with the

following parameters, twice: (1) to obtain the total execution time, and (2) to

gather the execution time of the SPU code only (boundary particles were not

evaluated).

a) Grid size: variable

b) SPU block size: 22 x 2 x 2

c) Number of iterations: 200

d) Number of SPUs: 3 and 6

e) Particle density: 20%, 35%, 50% and 75%.

7 2

7 0 . 0 0

60.00

So 5 0 . 0 0

4 0 . 0 0

3 0 . 0 0

£ 20.00
10.00
0.00

c eu u

3 SPUs 6 SPUs

866 x 22 x 30 5 7 8 x 2 2 x 3 0

3D Grid Size

• 20%
II35%

• 50%

• 75%

Figure 4-9: PPU Time as a percentage of total time of the CBE implementation, over

varying grid sizes, number of SPUs, and particle densities.

01
E

3 SPUs

8 6 6 x 2 2 x 3 0 5 7 8 x 2 2 x 3 0

3D Grid Size

4 3 4 x 2 2 x 3 0

• 20%
a 35%

• 50%

• 75%

Figure 4-10: SPU Time o f the CBE implementation, over varying grid sizes, number of

SPUs, and particle densities.

Given the two time values collected, it is possible to estimate the

execution time over the boundary particles (PPU Time). The results of the PPU

and SPU times are shown in Figure 4-9 and Figure 4-10 respectively. Figure 4-9

shows the PPU time as a percentage of the total execution time of the CBE

implementation. We notice that the PPU time's portion of the total time increases

only with the particle density. However, as can be seen in Figure 4-10, the SPU

7 3

Table 4-4: Speed-up of the CBE version, utilizing a different number of SPUs, over Serial-Intel

Volume & Density
• T < T«/T3 T>4 . Tin/T„ : •*•• T,/r24

866 X 22 X 30 - 20% 83.98 53.22 22.43 0.63 33.73 21.37 0.66 1.05
8 6 6 X 2 2 X 3 0 - 3 5 % 95.84 64.08 40.21 0.67 42.84 28.65 0.94 1.40
8 6 6 X 2 2 X 3 0 - 5 0 % 106.54 73.8 48.36 0.69 51.12 35.41 0.95 1.37
8 6 6 X 2 2 X 3 0 - 7 5 % 123.22 88.76 66.83 0.72 63.94 46.06 1.05 1.45
578 x 2 2 x 3 0 - 2 0 % 56.26 35.96 15.53 0.64 22.98 14.69 0.68 1.06
578 x 22 x 30 - 35% 64.14 42.99 22.78 0.67 28.81 19.31 0.79 1.18
578 x 22 x 30 - 50% 71.07 55.64 34.87 0.78 43.56 34.10 0.80 1.02
578 x 2 2 x 3 0 - 7 5 % 81.46 58.76 52.94 0.72 42.39 30.57 1.25 1.73
434 x 22 x 30 -20% 41.95 26.76 12.01 0.64 17.07 10.89 0.70 1.10
434 x 2 2 x 3 0 - 3 5 % 40.05 32.11 19.29 0.80 25.74 20.64 0.75 0.93
4 3 4 x 2 2 x 3 0 - 5 0 % 53.46 37.24 25.41 0.70 25.94 18.07 0.98 1.41
4 3 4 x 2 2 x 3 0 - 7 5 % 66.3 48.64 43.15 0.73 35.68 26.18 1.21 1.65

time increases only slightly over rising particle density, because the SPU operates

over all voxels, even if they are empty, unlike the PPU which skips empty voxels.

In order to reduce the effect of the PPU execution on the overall execution

time, and thus obtain positive speed-ups, we can utilize a higher number of SPUs.

Given that the PS3© only has six active SPUs, we can speculate as to the

minimum number of SPUs required to obtain any speed-up. The speed-up is given
T by the following equation: Speedup = — , where Tj is the time of Serial-Intel,
Ti

and Tn is the CBE version's time over SPUs. In this case, we have access to

three and six SPUs, so we can determine the relationship between the execution

time over six (T&) and three (T3) SPUs. In this case, T6 « 0.7T3 which we can

generalize to T2N ~ 0.7TN. We can therefore estimate the execution time over 12
T• and 24 SPUs. The results are tabulated in Table 4-4. A ratio — higher than one
Tn

indicates that a speed-up can be obtained. In this case, 12 SPUs will produce a

speed-up in the case of 75% particle density, whereas 24 SPUs will generate

better performance over Serial-Intel for all but one case.

Furthermore, given that the PPU execution represents a bottleneck to the

overall performance over rising particle density, it is possible to reduce the effect

of the PPU execution on the total CBE time if the specific section of the PPU

7 4

source code can be parallelized. Reducing the PPU time's sensitivity to particle

density by equally processing all voxels, similarly to the SPU execution, will

improve the overall performance for dense systems.

7 5

Chapter 5 Summary and Conclusion

5.1 Conclusion

Because of its highly-parallel structure, the CBE is an attractive platform

for biochemical simulations, as biological events happen locally, and are

independent from particles further away. We parallelized GridCell based on the

fact that it is possible to divide the simulation space over multiple processors that

operate simultaneously. The SIMD structure of the SPUs provides an additional

level of parallelism as voxels are processed four at a time, compared to only one

at a time for the serial versions.

By studying the performance of the CBE implementation, we conclude

that the CBE version of GridCell yields better performance for large dense

systems over the Serial-PPU version. Additionally, the size of each SPU block

does not affect the execution time of the simulation, since the total number of

voxels to be processed overall is the same. The parameter that affects the overall

speed-up is the particle density since the serial version processes only non-empty

voxels, and for increasing density, the number of non-empty voxels rises,

therefore raising the execution time. On the other hand, in the CBE version,

empty voxels are processed in the same way as particles, thus density has a

limited affect on performance.

Finally, the CBE adaptation of GridCell shows performance improvements

over the serial version implemented on an Intel processor when a higher number

of SPUs can be used. In fact, it is possible to obtain platforms equipped with more

than eight SPUs, such as Cell Blades.

7 6

We conclude this thesis with a brief discussion of potential future work

that can help enhance the performance and usability of GridCell.

5.2 Future Work

Potential future work that can be done to enhance GridCell's usability can

be divided into two categories: (1) those modifications that increase performance,

and (2) those that render it more accessible to users unfamiliar with programming

techniques. We end this thesis with an outline of prospective work under these

two categories.

5.2.1 Increased Performance

Although we are able to achieve improved performance by porting

GridCell onto the CBE, superior speed-ups can be achieved by additionally fine-

tuning the code. First, it is important that the PPE execution of the boundary

particles not hinder performance on the CBE. Since it is possible to write SIMD

code for the PPE, rewriting the section of the algorithm that executes on the PPE

in SIMD will help achieve increased performance because the execution will be

partially parallel. This will also allow for better results compared to the Serial-

Intel adaptation of GridCell.

Additionally, the random number generator libraries used produce random

numbers serially. Hence, in order to obtain a vector of random numbers on the

SPE, the function must be called multiple times. Unfortunately, function calls

instigate cycle-delays on the SPE as a consequence of the branch request. In order

to minimize this effect, we can rewrite the libraries in SIMD, thus reducing the

number of function calls. The libraries can be written in SIMD on the PPE as well

since they are called by the portion of the algorithm that operates on the PPE.

With these modifications to the code, we can expect to see increased

performance and higher speed-ups without modifying the algorithm itself.

77

5.2.2 Increased Accessibility

Currently, it is necessary to recompile the code with different parameters

in order to simulate various systems. In an effort to make the algorithm more user-

friendly, a graphical user interface (GUI) can be designed such that the user can

enter the reaction information as well as the simulation and system parameters

directly, without the need to modify and recompile the source code.

Consequently, users unfamiliar with programming tools will be able to use

GridCell.

A GUI will also assist the user in obtaining visual results directly, without

having to use other tools, such as MATLAB, to plot the program's output, thus

facilitating the application's usage.

Furthermore, adding SBML support to the CBE version of GridCell will

allow existing systems to be simulated easily, without the need to manually

recreate them. Using SBML files as input will help simulate more complicated

systems straightforwardly and at a higher level, since there will be no need to

translate the information in the SBML file into source code that GridCell

understands.

These modifications will make GridCell a more user-friendly application

which, together with the performance improvements acquired, will render the

simulator a great instrument to use in the computational biology field.

7 8

Bibiolography

1. Drummond, A., Computational Biology and Evolution.

http://bioinf.cs.auckland.ac.nz/.

2. Michor, F., Mathematical Models of Cancer Stem Cells. J. Clin. Oncol, 2008.

26(17): p. 2854-61.

3. Michaelis, L. and M. Menten, Die Kinetik der Invertinwirkung. Biochem.,

1913.49: p. 333-369.

4. Ander, M., et al., SmartCell, a framework to simulate cellular processes that

combines stochastic approximation with diffusion and localisation: analysis

of simple networks. Syst. Biology, 2004.1(1): p. 10.

5. Andrews, S., Smoldyn. www.smoldyn.org.

6. BPS, Biological Pathways Simulator.

http://www.brc.dcs.gla.ac.uk/projects/bps/.

7. CI. Cell Illustrator, http://www.genomicobject.net/member3/index.html.

8. COPASI, Complex Pathway Simulator, http://www.copasi.org/tiki-index.php.

9. E-Cell, E-Cell. http://www.e-cell.org/ecell/.

10. Gepasi, Gepasi. www.gepasi.org.

11. Gillspie, D.T., A General method for numerically simulating the stochastic

time evolution of coupled chemical reaction. Journal of Computational

Physics 1976. 22(4): p. 403-434.

12. Hattne, J., D. Fange, and J. Elf, Stochastic reaction-diffusion simulation with

MesoRD. Bioinformatics, 2005. 21(12): p. 2923-2924.

13. JigCell. JieCell. http://iigcell.biol.vt.edu.

14. Kyoda, K.M., et al., BioDrive: Simulator for Biochemical and Genetic

Networks.

7 9

http://bioinf.cs.auckland.ac.nz/
http://www.smoldyn.org
http://www.brc.dcs.gla.ac.uk/projects/bps/
http://www.genomicobject.net/member3/index.html
http://www.copasi.org/tiki-index.php
http://www.e-cell.org/ecell/
http://www.gepasi.org
http://iigcell.biol.vt.edu

15. LeNovere, N. and T.S. Shimizu, StochSim: modelling of stochastic

biomolecularprocesses. Bioinformatics 2001. 17(6): p. 575-576.

16. LeNovere, N. and T.S. Shimizu, StochSim website at University of

Cambridge. http://www.pdn.cam.ac.uk/groups/comp-cell/StochSim.html.

17. Loew, L.M. and J.C. Schaff, The Virtual Cell: a software environment for

computation cell biology. Trends in biotechnology, 2001. 10(10): p. 401-406.

18. Loew, L.M. and J.C. Schaff, The Virtual Cell.

http://cmbi.bimu.edu.cn/cmbidata/vcell/v:

. cell/Virtual%20Cell%20Development.htm: p . .

19. Plimpton, S. and A. Slepoy, Chemcell: a particle-based model of protein

chemistry and diffusion in microbial cells. Sandia Technical Report

SAND2003-4509, 2003.

20. Poolman, M.G., ScrumPy: metabolic modelling with Python. Systems

Biology, IEE Proceedings, 2006.153(5): p. 375-378.

21. Poolman, M.G., ScrumPy.

http://mudshark.brookes.ac.uk/index.php/Software/ScrumPv.

22. Sanford, C., et al., Cell++ — simulating biochemical pathways.

Bioinformatics, 2006. 22(23): p. 2918-2925.

23. Schaff, J., et al., A general computational framework for modelling cellular

structure and function. Biophysical Journal, 1997. 73: p. 1135-1146.

24. Snoep, J.L. and B.G. Oliver, JWS. http://jjj.biochem.sun.ac.za/index.html.

25. Boulianne, L., et al., GridCell: a stochastic particle-based biological system

simulator. BMC Systems Biology, 2008. 2.

26. Boulianne, L., M. Dumontier, and W.J. Gross. A stochastic particle-based

biological system simulator, in Proceedings of the Summer Computer

Simulation Conference (SCSC07). 2007. San Diego, California.

27. Lok, L., The need for speed in stochastic simulation. Nature Publishing

Group, 2008. 22(8): p. 964-965.

28. Bergmann, F.T. and H.M. Sauro, Comparing Simulation Results of SBML

capable simulators. Bioinformatics, 2008.

8 0

http://www.pdn.cam.ac.uk/groups/comp-cell/StochSim.html
http://cmbi.bimu.edu.cn/cmbidata/vcell/v
http://mudshark.brookes.ac.uk/index.php/Software/ScrumPv
http://jjj.biochem.sun.ac.za/index.html

29. Stiles, J.R. and T.M. Bartol, Monte Carlo Methods for simulating realistic

synaptic microphysiology usingMcell (Chapter 4), in Computational

Neuroscience: Realistic Modeling for Experimentation. 2001, E. D. Schutter,

Ed. CRC Press, Boca Raton, p. 87-127.

30. Hubbard, D., How to Measure Anything: Finding the Value of Intangibles in

Business. 2007: John Wiley & Sons.

31. SBML, Systems Biology Markup Language, www.sbml.org.

32. Shimizu, T.S., et al., Molecular model of a lattice of signalling proteins

involved in bacterial chemotaxis. Nat. Cell. Biol., 2000. 2: p. 792-796.

33. Lemerle, C., B.D. Ventura, and L. Serrano, Space as the final frontier in

stochastic simulations of biological systems. FEBS Letters, 2005. 528(8): p.

1789-1794.

34. Brown, R., A brief account of microscopical observations made in the months

of June, July and August, 1827, on the particles contained in the pollen of

plants; and on the general existence of active molecules in organic and

inorganic bodies. Phil. Mag., 1828. 4: p. 161-173.

35. Weisstein, E., Markov Process. Math World.

36. Elf, J. and M. Ehrenberg, Spontaneous separation ofbi-stable biochemical

systems into spatial domains of opposite phases. Syst. Biol. 2: p. 230-236.

37. IBM, Cell Broadband Engine Programming Handbook. 1.1 ed. 2007. 877.

38. Linklater, M., Optimizing Cell Core, in Game Developer Magazine. 2007. p.

15-18.

39. Perrone, M., Introduction to the Cell Processor, in 6.189 IAP, IBM, Editor.

2007.

40. Chemistry, I.U.o.P.a.A., Chemical Reaction Internet edition ed. Compendium

of Chemical Terminology.

8 1

http://www.sbml.org

