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ABSTRACT

A plant is a natural hierarchical structure, which exhibits remarkable

mechanical properties. The macro (scale) mechanical properties of a plant are

the cumulative outcome of the structural properties of its preceding level of

structural hierarchy. To develop engineering structures inspired by a plant

and its organs, a comprehensive characterization of its mechanical properties

exhibited at multiple hierarchical orders is essential to mimic such structures

for engineering application.

This thesis presents a set of theoretical and computational models at

various orders of the structural hierarchy to capture the overall structural

properties of a plant petiole. The modeling method is framed within a multiscale

mechanics framework, which is essential for any structure displaying hierarchical

orders of organization. The macro structural properties, i.e. flexural and

torsional stiffness, of a plant petiole are obtained by correlating cell wall

construction, tissue microstructure, and structural shape morphology. The

stiffness of the cell wall is modeled using the theory of a fiber reinforced

composite material. The microarchitecture of the constituent tissues that govern

the properties of the petiole are modeled with a novel algorithm – finite edge

centroidal Voronoi tessellation (FECVT) – that is capable to provide a realistic

visualization of the tissue. The effective stiffness properties of the constituent

tissues are obtained via finite element analysis of the FECVT models coupled

with cell wall properties. With the properties of the tissues, the cross-sectional

shape of the petiole at the structural level is considered to determine its flexural

and torsional stiffness, which are also validated experimentally for rhubarb

petiole. This multiscale mechanical model will elucidate the role of each order

of structural hierarchy to determine the structural compliance of the petiole.
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A hierarchical modeling approach that captures the overall structural

properties of a petiole has been introduced in this thesis. In particular, the

model develops a relationship between the micro and macrostructural properties

using a tailored multiscale mechanics approach. Therefore, this research

can bridge the gap between plant biology and engineering to develop novel

bio-inspired material and structures. This research can also help to develop

fundamental knowledge of plant cellular bio-mechanics and its impact on the

macroscopic mechanics of stems and petioles with the end goal of transferring

this knowledge to the processing and design of compliant engineering structures

and materials.
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ABRÉGÉ

Une plante est une structure hiérarchique naturelle, qui présente des

propriétés mécaniques remarquables. Les propriétés mécaniques à grande

échelle d’une plante sont le résultat cumulatif des propriétés structurelles du

niveau précédent de la hiérarchie structurelle. Pour développer des structures

de génie inspirées par une plante et ses organes, une caractérisation détaillée

de ses propriétés mécaniques manifestées aux multiples niveaux hiérarchiques

est essentielle pour imiter ces structures pour les applications d’ingénierie.

Cette thèse présente un ensemble de modèles théoriques et numériques

à divers niveaux hiérarchiques structuraux afin de capturer les propriétés

structurelles aux niveaux globaux d’un pétiole d’une plante. La méthode de

modélisation est cadrée au sein d’un système mécanique à niveaux multiples,

qui est essentiel pour toute structure composée de plusieurs ordres hiérarchiques

d’organisation. Les propriétés structurelles à grande échelle, c.à.d. la raideur en

flexion et en torsion, d’un pétiole d’une plante sont obtenues par la corrélation

entre la construction de la paroi cellulaire, la microstructure des tissus, et

la morphologie de la forme structurelle. La raideur de la paroi cellulaire est

modélisée en utilisant la théorie des matériaux composites à renfort fibreux.

La microarchitecture des constituants des tissus qui gouverne les propriétés du

pétiole est modélisée avec un nouveau algorithme – La tessellation de Voronoi

de centre à bord fini (FECVT) – qui est capable de fournir une visualisation

réaliste du tissu. La raideur effective des constituants des tissus est obtenue

par la méthode des éléments finis des modéles FECVT accouplée avec les

propriétés de la paroi cellulaire. La forme du pétiole en coupe transversale au

niveau structural ensemble avec les propriétés des tissus sont considérées afin

de déterminer sa raideur en flexion et en torsion, qui sont également validés
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expérimentalement pour le pétiole de la rhubarbe. Ce modéle mécanique à

échelles multiples éclaircira le rôle de chaque niveau de la hiérarchie structurelle

pour déterminer la souplesse structurelle du pétiole.

Une méthode de modélisation hiérarchique qui capture les propriétés

structurelles globales d’un pétiole a été introduite dans cette thèse. Notamment,

le modèle établit une relation entre les propriétés du micro et macro

niveaux structuraux en utilisant un procédé mécanique adapté, à échelles

multiples. Par conséquent, cette recherche peut combler le vide entre la

biologie végétale et le génie afin de développer de nouveaux matériaux et des

structures bio-inspirées. Cette recherche peut également aider à développer les

connaissances fondamentales de la biomécanique cellulaire des plantes et son

impact sur la mécanique macroscopique des tiges et des pétioles avec l’objectif

final de transférer ces connaissances pour le traitement et la conception des

structures et matériaux souples de génie.
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CHAPTER 1
Introduction

1.1 Motivation

The long and pragmatic tradition of man-made technology is to focus on

stiff structures, whereas nature traditionally builds more flexible structures.

Nature, especially the plant kingdom, resorts to stiff structures only in special

situations, such as when the need arises to stay erect against gravity. Often, we

can observe that twisting due to wind brings some branches of a tree closer to a

downward orientation with many of the branches in a closer proximity to each

other, thus reducing the tendency of the tree to bend over. The compromise

between torsional and bending stiffness can be observed at a larger scale in

bamboo culms [1] and banana petiole [2], and in a smaller scale, for instance,

in sedges [3] and daffodil flowers [4]. The structural compliance of a plant and

its organs are dependent on the flexural stiffness and torsional rigidity of the

respective structures. Both the flexural and torsional stiffness of plant organs,

such as the petiole and stem, are dependent on their geometry and constituent

tissue (material) stiffness. This stiffness essentially depends on plants at each

length scale, from cell to tissue. The structural properties of petioles and

stems—as well as other plant organs—are correlated, among others, with their

macrostructural shape, and size; microstructural properties of tissue, and cell

wall construction.

Over the course of its life cycle, a plant may develop roots, stems, branches,

leaves, and eventually flowers and fruits. These biological organs work in synergy

to ensure the survival and reproduction of the organism. Within the shoot

system of a plant, petioles and stems can be considered as multifunctional

1



organs that optimize structural and functional performance, such as bending

resistance and nutrient transport. The petiole is an organ that attaches the

leaf to the stem, whereas the primary function of the leaf is to harvest the light

needed to drive the photosynthetic process, which is essential for the synthesis

of organic compounds [5]. A petiole acts as a cantilever beam, holding their

blades out, and must not bend easily. On the other hand, a petiole twists

to permit the leaves to be clustered, which reduce their drag in a storm or

under high wind. The overall geometry of a leaf petiole, the microstructure of

the underlying tissues, and their hierarchical organization aids the petioles in

stretching, bending, and twisting.

Figure 1–1: Multiscale hierarchic organization of a plant (Rheum rhabarbarum)
petiole.

The petiole can be considered as a hierarchical cellular structure that has

structural features defined at multiple length scales. The Rheum rhabarbarum

petiole, as shown in Figure 1–1, exhibits structural hierarchies at multiple

length scales ranging from a nanometer to a meter. The cell wall belongs to

the first order of hierarchy (n = 1). The structural features at a smaller length

1 ©2000 Rosie Lerner, Purdue University

2 ©US Department of Energy Genome Programs/genomics.energy.gov
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scale (below the first order of hierarchy) are not considered in the present

hierarchical organization, because the continuum modeling approach will be

inappropriate at this length scale. Therefore, the cell wall constituents are

assumed to be shapeless at hierarchical order n = 0. The tissue stiffness

at the second order of hierarchy, n = 2, is mostly controlled by the cellular

microstructure. The heterogeneous cellular structure makes natural cellular

solids comparatively more mechanically efficient than man-made engineered

cellular materials [6]. The third order of hierarchy, n = 3, depicts the shape

contour of the petiole. The cross-section of the petiole varies across species

and may exhibit a longitudinal groove (for example, Rheum rhabarbarum

petiole exhibits an semi-elliptical shaped top groove). The grooved non-circular

shape elevates the structural flexibility to a greater extent than a circular

cross-section.

To predict the overall mechanical properties (performance) of plant petioles

and stems, a multiscale model capable of capturing structural properties

at each length scale is required to model the overall mechanical properties

(performance) of plant petioles and stems. Thus, mathematical formulations

are required to model the structural properties at each order of hierarchy. The

challenging tasks of the multiscale model of the petiole are to comprehend

the structural properties at each order of hierarchy and to integrate the

hierarchical structural properties to determine the overall mechanical properties.

Thus, a successful integration of the anisotropic cell wall properties and

micro-architecture of cellular tissue and its properties are necessary. To this

end, a multiscale mechanical model that integrates hierarchical structural

properties was developed through the present research to gain insight into

the complete mechanical properties of the petiole. Nonetheless, the research

on biomechanical characterization of petiole is conducted because structured
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solids with torsional flexibility like petiole can be incorporated into boat mast,

building, structure subjected to high wind, and wind turbine tower that can

flex with wind. The multiscale mechanical model will elucidate the role of each

order of structural hierarchy to determine the overall flexural and torsional

stiffness of the petiole.

1.2 Goals of the Current Research

The goal of this doctoral research is to develop multiscale mathematical

models to capture the overall mechanical properties of a petiole by correlating

its hierarchical structural responses at different orders of hierarchy. The specific

aim of the current research is to determine the flexural stiffness and the torsional

rigidity of the petiole, where the properties are related to cell wall anisotropy,

tissue microstructure, and cross-sectional morphology. The objectives of the

current research are to:

1. Develop a mathematical model correlating the composite structure of

the cell wall to obtain the stiffness of the cell wall.

2. Generate a non-periodic cellular network to realistically illustrate the

tissue microstructure.

3. Conduct a finite element analysis to determine the effective/homogenized

stiffness for the random (non-periodic) cellular microstructure.

4. Correlate the flexural and torsional stiffness of the petiole by considering

its morphology and constituent tissue stiffness by way of the concept of

shape transformers.

5. Validate experimentally the mathematical models.

1.3 Requirements of the Multiscale Mechanics Model

Since the petiole displays a hierarchical organization at multiple length

scales, a multiscale model of a plant petiole requires a set of mathematical

models that integrates plant biology with the quantitative approach of
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engineering to explicitly model biomechanical properties through theory,

computation, and experiments. A multiscale model for a natural hierarchic

cellular structure should be able to provide a quantitative formulation, which

allows a researcher to simulate and predict the mechanical/structural properties

of the structure. Thus, a multiscale model should enable an integration of the

interaction between the geometry and material properties within a hierarchy

and between hierarchies, while also making precise and verifiable predictions.

The biomechanical model of a plant organ requires a systematic hierarchical

approach as the organ displays hierarchical organization at multiple length

scales. The systematic modeling approach integrates the biological sciences with

the quantitative approaches of engineering to model the overall biomechanical

properties of the plant organ. Hence, the determination of the mechanical

properties at different orders of the structural hierarchy and their integration are

important. The mechanical characterization of an individual hierarchical order

is commonly found in literature. For example at the cell level, the structural

properties of cell wall have been modeled based on the stiffness properties of

the wall constituents and their compositions [7–9]. Other factors that govern

the biological and structural properties of the plant tissues include the spatial

distribution of cells and their size, and shape. In general, the mechanical

properties of plant tissues have been mostly modeled without considering

the actual cell distributions [10–12]. At the structural level, the geometric

properties of the plant organ along with the material properties play a crucial

role in determining mechanical properties—flexural stiffness and torsional

flexibility [1, 13–15]. Although research on plants and plant-based materials on

several level of the structural hierarchy has been carried out, the integration

among the hierarchical outcomes to characterize the overall biomechanical

properties is currently lacking. A multiscale model can, thus, contribute to
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capture the properties at multiple orders of the structural hierarchy of the

plant organ. The model requires being more comprehensive and allows to

integrate the interaction between geometry and material properties within the

hierarchical orders, while making precise and verifiable predictions. Hence, the

proposed biomechanical research has the aim of elucidating the relationship

between the structural properties of the petiole, its microstructures, and the

mechanics at each level of the structural hierarchy of a leaf petiole.

The modeling of the structural properties of plants is challenging since

the hierarchical orders of plants are observed in several scales, ranging from

the subcellular level (nanometer) to the whole organism (meter). Hence, each

order of hierarchy has to be quantitatively modeled to describe its biological

processes. The multiscale model, comprising hierarchical mathematical models,

should able to explicitly predict the biomechanical properties of the petiole.

However, the multiscale model also reveals the general principles by exploring

the mathematical models based on experimental observations. Therefore, a

mathematical model should have the following characteristics: (1) it should be

biologically based and explicit—the variables described in the model should have

counterparts in the experimental data against which the model is calibrated,

(2) it should be parametrized with biological data upon availability, (3) it

should be developed in such a way that it can make key predictions that

are experimentally verifiable, and (4) it should be able to make efficacious

predictions that can be used to generate novel hypotheses [16].
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Figure 1–2: Hierarchical research approach.

Multiscale models usually are organized around two approaches—bottom

up or top down, consisting of density functional theory (DFT), molecular

dynamics (MD), dislocation dynamics (DD), cellular automata (CA), Monte

Carlo, finite difference (FD), finite element (FE) and Fast Fourier transform

(FFT). In this thesis, the former has been used. Figure 1–2 briefly illustrates the

modeling approach used. The cell wall is modeled at the first order of hierarchy

using the classical micro (Voigt and Reuss) and macromechanical theories of

composite materials. Since plant tissues usually exhibit graded cellularity as

well as complex heterogeneity, Voronoi tessellation has been chosen to capture

the cellular distribution at the third order of hierarchy [17]. At this level of

hierarchy, the virtual model coupled with wall stiffness (from the hierarchy

below) undergoes a finite element analysis. However, the finite element analysis

(FEA) applied to stochastically selected representative volume elements yields

homogenized/effective tissue stiffness [12,18–20]. At the top order of hierarchy,

the petiole is modeled with the shape transformers method [21, 22] coupled

with its effective tissue properties to obtain the compliant beam mechanical

properties. Thus, the structural ability of the petiole to withstand a bending

and twisting load depends on the stiffness properties of the cell wall, turgor
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pressure, the microstructure of tissue and its stiffness properties, and the

petiole’s cross-sectional shape [23].

1.4 Outline of the Dissertation

Chapter 2 is a comprehensive literature survey delineating the related

background works at each order of hierarchy. The literature review also

provides insight into the need for the present research. The hierarchical

modeling approaches are mainly presented in Chapter 3 to 6. In Chapter 3,

the stiffness of the plant cell wall is modeled with respect to the first and

second order of hierarchy. At the first order of hierarchy, the stiffness of

the cell wall is mathematically modeled using the theory of a composite

material. The engineering properties of the cell wall are modeled using

micro and macromechanical theories of composite material at this order of

hierarchy. Experimentally measured volume fractions of the constituents and

fiber orientation angle of the cell wall of the model plant are used to approximate

the cell wall stiffness.

Chapter 4 provides a geometrical modeling of plant tissues, which belong

to the third order of hierarchy. Since the tissue microstructures exhibit

gradient-based heterogeneity, Voronoi tessellation can capture these complex

microstructures. The inherent drawback, semi-infinite edges at the boundary,

makes the conventional Voronoi model unrealistic and restricts its use in

FEA. Therefore, a novel algorithm, finite edge centroidal Voronoi tessellation

(FECVT), was developed to realistically capture the microstructures. The

FECVT algorithm was used to model a variety of plant tissues. The virtual

models and their geometric and statistical characterizations are discussed in

this chapter.

Chapter 5 analyzes the effective stiffness of tissues for the heterogeneous

tissue microstructures, which belong to the third order of hierarchy. The finite
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element analyses of the Voronoi models coupled with the cell wall properties

provide the effective/homogenized stiffness. In addition to apparent tissue

stiffness, the FEA also provides an insight into the effect of microstructural

variations on tissue stiffness.

In the hierarchical organization of the present study, the cross-section

of the petiole belongs to the fourth order of hierarchy. Thus, Chapter 6

develops the flexural and torsional stiffness of the petiole by considering its

shape morphology and constituent tissue properties. The flexural and torsional

stiffness analyses describe the cumulative effect of the structural properties of

the preceding hierarchies. The computed flexural and torsional stiffness also

are compared with the experimental stiffness.

The organization of the thesis is shown in Figure 1–3:
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CHAPTER 2
Literature Review

2.1 Overview

The word petiole comes from the Latin word petiolus, which literally

translates into “little foot”. Evolutionary processes have shaped the morphology

of petioles and other plant organs, and over generations natural selection has

driven the evolution of efficient and structurally sound petioles. The petiole

resembles a cantilever beam that supports the leaf against gravity, allowing for

its exposure to the sun. Figure 2–1 shows the image of a plant with its leaf

in an extended petiole. When exposed to wind, a petiole acts as a beam that

resists the drag acting on the frontal area of the leaf. The petiole thus provides

mechanical support against the weight of the leaf and against environmental

factors such as rain and wind, resisting both bending and twisting loads [24].

2.2 Stiffness of Cell Wall

The structural properties of plant organs collectively depend on the

geometry of their constituent cells, cell wall composition and the structural

properties of the cell wall constituents. Cell walls are mainly composed of

complex networks of polysaccharides, namely cellulose (C), hemicelluloses (HC)

and pectin, along with comparatively minor quantities of structural protein

and/or lignin [25–28]. Each Cellulose Microfibril (CMF) is a semi-crystalline

aggregate of 36 b-1, 4-glucan chains. CMFs are several µm long but only

about 3-4 nm thick and lay 15-30 µm apart in the wall [8]. The construction

of the cell wall is considered to be a fiber-reinforced composite where the

cellulose fibrils act as the main load-bearing elements [7, 29, 30]. The CMFs

are embedded in a compliant matrix of hemicelluloses and lignin, where the
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Figure 2–1: Rheum rhabarbarum (Rhubarb) whole plant in a garden.

stiffness of the matrix is approximately two orders of magnitude lower than

the CMF [9, 27]. Experiments on plant cells also show that the properties

of CMF strongly dictate the elasticity of the cell wall while, lignin and

hemicelluloses have a marginal effect [31]. The stiffness of the cell wall can be

approximated considering the simplest composite model, where the cell wall

is a two phase system under uniaxial loading condition [32,33]. Based on the

elastic properties and the volume fractions of the CMF and lignin/hemicellulose

or pectin/hemicelluloses matrix, the stiffness of the cell wall can be determined

for two limiting architectures—parallel (Voigt model) and perpendicular fiber

orientations (Reuss model)—with respect to loading direction. Due to a

significant difference in stiffness between the polysaccharides at the cell wall

level and other hierarchies, the orientation of the microfibrils in the cell wall

influences the stiffness properties of individual cells and tissues as well. The

Microfibril Angle (MFA) has been experimentally shown to be a key factor in

determining the mechanical properties of a plant’s cell walls [26–28,30]. Hence,
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the Voigt and Reuss models are insufficient to approximate the stiffness of the

cell wall. To determine the longitudinal and transverse modulus, the orthotropic

nature of the cell wall should be considered [34,35]. However, the stiffness of

the cell wall is highly species dependent since the cell wall composition and

the MFA vary with the species [36–39]. An integrated modeling approach is

necessary to approximate the wall stiffness of the species of interest. A stiffness

bound for the cell wall can be estimated based on its constituent’s properties

and arrangements through the classical micro and macromechanical theories of

composite materials. Based on the experimentally determined MFA, volume

fractions, and Young’s moduli of the wall constituents, the stiffness of the

cell wall can be modeled assuming orthotropic material properties, where the

constitutive relation yields the stiffness of the cell wall along the orthogonal

directions. However, the effect of turgor pressure, another factor, which affects

the apparent wall stiffness is not considered in this analysis.

2.3 Geometric Modeling of Plant Tissue

A plant organ is generally composed of an assembly of cellular tissues

which make up its microstructure and essentially govern its physical properties.

Each tissue has evolved to meet specific functional requirements that guarantee

the plant’s survival in a given environment. The way in which multiple tissues

are geometrically tessellated within an organ helps determine mechanical

performance and is important for achieving optimal structural support. It has

been demonstrated that the shape, size, and spatial distribution of cells are

among the main factors that govern the physical, biological and structural

properties of a cellular material [22, 40]. Hence, the ability to realistically

model the cellular microstructure of a plant tissue is crucial to understanding

its mechanical behavior [41].
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Cellular structures in plants may appear quasi-regular and periodic. For

example, the microstructure of cork and balsa wood are almost as regular

as honeycomb [10]. This type of structure can be modelled using a repeated

unit cell with a given geometric shape. While important for analysing the

microstructure of periodic cellular solids, this method cannot account for the

structural variations and imperfections inherent to most natural cellular solids.

An alternative technique, the Voronoi tessellation, can be used to generate an

accurate representation of a non-periodic microstructure [11,12,42]. In previous

works, however, the actual cellular distribution of a natural structure has not

been considered when generating virtual models. In fact, the nucleation points

of the Voronoi cells were generated randomly, with no realistic replication

of the cellular tissue, thereby yielding a structure that differed significantly

from the actual cell distribution of an actual plant tissue. Nevertheless, the

structural analyses of these Voronoi models delineated the dependence of the

mechanical properties on the randomness of non-periodic microstructures.

A Voronoi tessellation is a partition or tiling of a d−dimensional space

into d−dimensional polyhedral cells. Such a technique has been applied in

numerous fields including biology, meteorology, metallurgy, crystallography,

forestry, ecology, geology, geography, computer science and engineering [43–45].

Because of its ability to capture the randomness of a cellular pattern, this

technique can be applied to model a plant tissue with irregular cell shapes

and sizes. Voronoi tessellation is used extensively to model grain geometry for

the characterization of the properties of polycrystalline aggregates [46] and

inter granular cracks [47]. Mattea [48] and Roudot [49] pioneered the use of

Voronoi tessellation to model the microstructure of fruit tissues. However,

neither group was able to generate a representative geometrical model that

resembled the actual tissue micrograph. Both groups aimed only to capture the
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randomness of the fruit tissue microstructure without necessarily producing

a model that accurately represented the real tissue. Mebatsion [50] applied a

Voronoi algorithm to model the parenchyma tissue of different apple cultivars.

They developed virtual models using Centroid-based Voronoi Tessellation

(CVT) and Poisson Voronoi Tessellation (PVT); the latter model bears a

closer resemblance to the actual fruit parenchyma. However, the techniques are

unable to differentiate between the actual cells and the extracellular spaces that

are present in the fruit tissues. Moreover, the cells are more elliptical in fruit

parenchyma compared to those in plant petiole and stems. Mebatsion et al.

later developed a new modelling technique, the ellipse tessellation, which was

able to generate a more accurate representation of the fruit parenchyma [50,51].

The need to develop a realistic geometric model of plant tissue is

crucial to understanding tissue mechanics, since certain mechanical properties

are governed by the architecture and structural distribution of the tissues.

Given that stem and petiole tissues are morphologically different from fruit

parenchyma, Voronoi tessellation, specifically CVT, can be an appropriate

modelling tool. In a recent publication, Ntenga et al. [52, 53] tried to

analyse the structure, morphology, and mechanical properties of Rhectophyllum

camerunense (RC) plant fiber using a conventional Voronoi diagram. Due

to inherent drawbacks in the Voronoi (CVT) model, semi-infinite edges were

present at the boundary of the fiber, making the model unsuitable for finite

element analysis (FEA). To overcome this challenge, the authors developed a

virtual model coupled with a java-based image-processing program, ImageJ.

This method can be used to model an arrangement of cells bound by an

irregular shape; however, one requirement for its application is that the edges

at the sample boundary be reconstructed to obtain straight line edges.
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The conventional CVT has the drawback of yielding semi-infinite edges at

the fiber boundary. As a result, the mechanical response of a microstructure

with an irregular shape contour is impossible to calculate. Therefore, the

development of a comprehensive CVT-based technique for generating geometric

models that possess finite edges at the sample boundary is of utmost importance

for determining the stiffness properties of plant tissues [17]. From geometrical

considerations, the Voronoi model is a good candidate to generate random

microstructure since it provides planar boundaries, which separate the cells. As

compared to other procedure such as using a micrograph of the cross-section

into a finite element model, the major advantage of Voronoi modelling is the

ability to generate a virtual tissue with a very large number of cells at a low

computational cost.

2.4 Stiffness of Plant Tissue

Microstructural analysis of cellular solids is crucial to understanding

their overall behavior since cellular solids are prevalent both in nature and

in man-made engineering structures. Many researchers have modeled natural

cellular solids using repeating unit cells to construct a regular microstructure

in the form of circular, square or hexagonal arrays [54]. Closed-form relations

of the structure-property can be derived using a simplified geometrical

model based on repeated unit cells [10, 12]. However, modeling plant

tissue is a challenging task, for its heterogeneity as natural cellular solid

often exhibits non-periodic microstructures. Since the microstructure is

heterogeneous in shape and size, the Voronoi tessellation technique is effective

at capturing such irregular distribution of cell shapes. In addition, finite

element analysis (FEA) of the geometric (Voronoi) model can be used to obtain

the effective/apparent/homogenized stiffness properties of a real representation

of the tissue.
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Most studies on the homogenization of cellular solids are based on regular

models with a periodic microstructure. However, real solid foams exhibit

amorphous arrangements of pores with different sizes and shapes rather than

perfectly periodic structures. The homogenized/apparent elastic property for

periodic honeycomb varies from 10∼15% compared to non-periodic honeycomb

[12]. To consider the microstructural irregularity, the Voronoi cell finite element

method (VCFEM) was developed and coupled with asymptotic homogenization

theory to generate a global homogenized elastic property [40]. This method only

considers the local periodicity of the microstructure. To take into account the

global periodicity in the irregular microstructures represented by the Voronoi

tessellation, the homogenization process requires a large scale representative

volume element (RVE). Analyses of such models had been provided, among

others, by Silva et al. [11], Fazekas et al. [55], Roberts and Garboczi [56] for both

two and three-dimensional models. Even a large scale RVE of a plant tissue

having heterogeneous cellularity may not attribute to the respective tissue.

Moreover, the large scale RVEs are inefficient in terms of computational effort.

To overcome this limitation, instead of a large scale RVE, the computational

homogenization technique can be applied to several small scale RVEs with

non-periodic microstructures for global homogenization [57–59]. This stochastic

approach is able to effectively consider the microstructural irregularity present

in the plant tissues. For a given boundary condition, the finite element

analysis of the 2D virtual tissue (RVE) provides the homogenized stiffness. The

homogenized material property can thus be used in the next order of hierarchy

to capture macro-scale mechanical properties—bending and torsional stiffness.

2.5 Flexural and Torsional Stiffness of Plant Petiole

The structure of the petiole adapts to meet multiple evolving requirements.

Besides sustaining metabolic functions, the primary task of a petiole is to
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(a) basal (b) middle (c) apical

Figure 2–2: Petiole cross-sections at different locations along the length.

provide structural support to the leaves of a plant. The petiole acts as a

cantilever beam as it withstands the load of a large leaf blade and upholds

the blade to maintain its exposure to the sun without bending against gravity.

It helps clustering the leaves by twisting, which reduces drag in both frontal

and total exposed area [14]. Along with the material properties, the geometric

properties of the petiole play a crucial role in determining flexural stiffness

and torsional flexibility. The twist-to-bend ratio is an index that has been

used to examine the ability of living organisms to twist without bend [60–63].

Petioles with a top groove usually have higher twist-to-bend ratios than petioles

without grooves. Figure 2–2 shows the cross-sections of roughly semi-elliptical

shaped rhubarb petiole at different locations along the longitudinal axis. The

petiole’s cross-sectional shape can be captured using Gielis’ superformula, which

has demonstrated its capacity for a wide range of biological cross-sectional

shapes [64]. This enables the accurate representation of natural forms and is

used here to capture the last hierarchy of the petiole, i.e. the grooved contour.

Along with the shape morphology, the mechanical properties of a petiole

depend on the series of integrated tissues; for instances, rhubarb petiole mainly

consists of epidermis (bark), collenchyma, and parenchyma tissue. Each of these

tissues is distinguishable in terms of its function and its material properties. The

material and geometric properties of each tissue may play a role in governing

the flexural stiffness and torsional rigidity of the whole petiole. The ability
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of an organism to resist deformation by an imposed load depends on both

the shape of its body and the mechanical properties of its tissues [65]. The

effect of cross-sectional geometry on the mechanical properties of structures

has been widely studied [66,67]. Shape transformers [66] and shape factors [67]

are two main criteria used to study this relationship. Using shape factors,

the geometry of a cross section is compared with a square of the same area.

Using shape transformers, the cross-sectional geometry is compared with a

rectangle that envelops the given cross section. While shape factors depend on

both the size and shape of a cross section, shape and size are decoupled when

using shape transformers. Shape transformers, thus, might provide a more

convenient approach for investigating the geometric effect of cross-sectional

shape on the mechanical properties of a structure. Shape transformers were

previously formulated for idealized pure geometric shapes [21,66]. The Gielis

parametrization of the Lamé curves [64] has been considered in the present

analysis to redefine their formulation for the natural forms of biological organs

and has been coupled with the shape transformers method [41]. This coupled

approach is capable of capturing the overall macro-structural effect of layered

architecture of the constituent tissues along with the petiole’s natural shape

morphology.

2.6 Summary

The analysis of the mechanical response of petiole requires the development

of mathematical models and experiments that can describe the structural

properties of a petiole at each order of hierarchy spanning from cell wall to

whole petiole. The proposed research will address each order of hierarchy and

will integrate the hierarchical outcomes to obtain the overall response of the

plant petiole. The following points are addressed in this research:

19



• The stiffness of cell wall is approximated to a fibrous composite material

to capture the anisotropic cell wall stiffness, whereas the cell wall is

mostly considered to be isotropic in the earlier works.

• To capture the actual architecture and geometry of the cells in a tissue, a

novel algorithm, Finite-Edge Centroidal Voronoi Tessellation (FECVT),

is developed and implemented.

• Since a large scale RVE (virtual tissue) is computationally inefficient and

may not capture the detail heterogeneity, a stochastic computational

homogenization technique is realized in this work.

• Finally, the bending and torsional stiffness of the petiole are modeled

considering the shape morphology, the stiffness of constituent tissues and

cell wall, and the cell turgor pressure. Since such cumulative approach of

modeling the macroscale mechanical response has not been addressed,

the overall bending and torsional stiffness will provide an insight into the

cumulative effect of the hierarchical structural properties.
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CHAPTER 3
Cell Wall Stiffness

3.1 Overview

In this chapter, the stiffness of plant cell wall is modeled by relating

two orders of structural hierarchy. At the sub-cellular level—the first order

of hierarchy—the cell wall is modeled by considering the material as a

fiber-reinforced composite. The stiffness of the parenchymal cell wall is

approximated based on the composition of the wall constituents, their volume

fractions and elastic properties. Additionally, to predict the elastic properties

of the collenchymatous cell wall, the effect of the fiber orientation angle is

taken into account. The stiffness of both the parenchyma and collenchyma cell

wall will be used to determine the elastic properties of the respective tissues.

3.2 A Micromechanical Model of the Cell Wall Stiffness

The cell wall is considered as the building block of the first order of

hierarchy as shown in Figure 1–1. Since the cell wall is considered to be

a fiber-reinforced composite material, stiffness bounds can be obtained by

considering the microfibril angle (MFA) and the volume fractions of the wall

constituents, and their elastic properties. The upper and lower bounds of

the stiffness of the cell wall can be approximated by using micromechanical

models: the Voigt (iso-strain) and the Reuss (iso-stress) models. To use these

models, three pieces of information are required: (i) the elastic moduli of the

cell wall constituents, (ii) the volume fractions of the various constituents,

and (iii) the geometric arrangements of the constituents relative to each other.

The properties of the cell wall constituents are available in the literature. An

earlier theoretical prediction of the Young’s modulus provides relatively higher
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values—246 and 319 GPa [68,69]—whereas more recent analyses show 120–140

GPa [70–72] and 167 GPa [73] for crystalline cellulose along the fiber direction.

Data for the elastic modulus of hemicelluloses are scarce and fall within a range

of 5–8 GPa [74]. The elastic properties of lignin are difficult to assess and vary

from 4 to 7 GPa [75, 76]. The constitutive properties of pectins also are scarce

in the literature, and the stiffness vary between 1 to 4 GPa [77–80]. Along

with the Young’s modulus of 1 GPa for the pectins, a set of rational moduli [9]

considered in this work are shown in Table 3–1.

Table 3–1: Elastic properties of cell wall constituents used in the present
work [9].

Properties CMF Lignin Hemicellulose

E (GPa) 134 2.0 2.0
G (GPa) 4.4 1.0 0.6
ν 0.1 0.2 0.3

The values shown in Table 3–1 are used in the Voigt and Reuss models to

determine the wall stiffness along the fiber direction, E1, and across the fiber

direction, E2 (Figure 3–1). The Voigt upper bound is

E1 = Efvf + Emvm (3.1a)

and the Reuss lower bound is

1

E2

=
vf
Ef

+
vm
Em

(3.1b)

where E1 and E2 refer to the Young’s moduli of the composite; Ef and Em refer

to the Young’s modulus of the fiber and matrix, respectively; vf and vm refer

to the volume fraction of the fiber and matrix, respectively, with vf + vm = 1.
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Using a similar micromechanical concept, the major Poisson’s ratio ν12,

along the fiber direction is

ν12 = νfvf + νm (1− vf ) (3.2a)

and, the minor Poisson’s ratio ν21, across the fiber direction, can be derived

with reciprocal relationship
ν21
E2

=
ν12
E1

(3.2b)

Figure 3–1: Voigt and Reuss model.

The in-plane shear modulus can be expressed as

G12 =
GmGf

Gf (1− vf ) +Gmvf
(3.3)

An actual cell wall, however, may not behave according to the predictions

based on either the pure Reuss or the pure Voigt model. Rather, a hybrid

model appears to be the best modeling approach, although the Voigt elements

appear to be dominant.

On the other hand, to predict the Young’s modulus of the primary cell

wall (Epcw), considering a random or a biaxial fiber-reinforced composite

material, the efficiency factor or Krenchel factor, ηθ, can be used with a rule
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(a) ηθ = 0.5 (b) ηθ = 0.375

Figure 3–2: Bi-axial and multi-axial fiber matrix resulting in a composite
material with a Krenchel factor (ηθ) of 0.5 and 0.375 respectively.

of mixture (ROM) that can capture the effect of fiber orientation on the cell

wall stiffness [81–83]. For the biaxial and random fiber-reinforced composite,

as shown in Figure 3–2, the Krenchel factor is ηθ = 0.5 and ηθ = 0.375,

respectively, assuming the fibers are longer than the critical length of the fiber

of that type. Therefore, the Young’s modulus of the parenchyma cell wall can

be expressed as

Epcw = ηθEfvf + Emvm (3.4)

3.3 Constitutive Properties of the Cell Wall using Macromechanics

The constitutive relation of the fiber (CMF) reinforced composite cell wall

depicts the stiffness in the global coordinate system. For an orthotropic cell

wall, the compliance matrix is expressed for plane stress conditions as

[S] =


S11 S12 0

S12 S22 0

0 0 S66

 (3.5)
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where S11 =
1

E1

, S12 = −ν21
E2

= −ν12
E1

= S21, S22 =
1

E2

, S66 =
1

G12

Therefore, the constitutive relation for an orthotropic material is

{ε} = [S]{σ} (3.6a)

{ε} = [Q]−1{σ} (3.6b)

where [Q] is the stiffness matrix, [S] is the compliance matrix with [S] = [Q]−1.

Figure 3–3: On-axis and off-axis configuration.

Equation (3.6) stands for the on-axis configuration, where the global

coordinate system, the x− y axis, coincides with the local coordinate system,

the 1 − 2 axis, respectively. When the local and global coordinates do not

coincide, the arrangement is an off-axis configuration as shown in Figure 3–3.

Therefore, the on-axis stress-strain relationship is not adequate for an analysis

of an off-axis configuration. In the off-axis configuration, the stiffness depends

on the fiber orientation angle, which is the MFA for the cell wall configuration.

Thus, the MFA needs to be addressed in the constitutive relation. If the

x− y coordinate system is aligned with the direction of loading, and the 1− 2

coordinate system is aligned with the fibers, MFA, θ, is the angle between the

two systems (Figure 3–3).

The local (1−2) and global (x−y) coordinate systems are related through

a transformation equation. Hence, the transformation of strains between the
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loading (local) direction and the fiber (global) direction is denoted by
ε1

ε2

ε6

 =


m2 n2 mn

n2 m2 −mn

−2mn 2mn m2 − n2



εx

εy

γxy

 = [Tε]


εx

εy

γxy

 (3.7)

where m = cosθ, m = sinθ and [Tε] is the strain transformation matrix.

Similarly, the stress transformation matrix is
σ1

σ2

σ6

 =


m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2



σx

σy

τxy

 = [Tσ]


σx

σy

τxy

 (3.8)

Rearranging and combining equations (3.6 to 3.8), the Cartesian strain-stress

relationship in the global coordinate system is given by
εx

εy

εxy

 = [Tε]
−1[S][Tσ]


σx

σy

τxy

 (3.9a)

⇒


εx

εy

εxy

 = [S̄]


σx

σy

τxy

 (3.9b)

where ¯[S] is a new matrix and known as the transformed reduced compliance

matrix. The new compliance matrix represents an anisotropic constitutive

relationship that has shear coupling terms. The off-axis constitutive relationship

can be expressed in the following form:
εx

εy

γxy

 =


S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66



σx

σy

τxy

 (3.9c)
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The elements of ¯[S] are shown in Appendix A. In summary, the constitutive

(engineering) properties of the cell wall are

Ex =
E1

m4 +

(
E1

G12

− 2ν12

)
n2m2 +

E1

E2

n4

(3.10a)

νxy =

ν12 (n4 +m4)−
(

1 +
E1

E2

− E1

G12

)
n2m2

m4 +

(
E1

G12

− 2ν12

)
n2m2 +

E1

E2

n4

(3.10b)

Ey =
E2

m4 +

(
E2

G12

− 2ν21

)
n2m2

E2

E1

n4

(3.10c)

νyx =

ν21 (n4 +m4)−
(

1 +
E2

E1

− E2

G12

)
n2m2

m4 +

(
E2

G12

− 2ν12

)
n2m2 +

E2

E1

n4

(3.10d)

Gxy =
G12

n4 +m4 + 2

(
2
G12

E1

(1 + 2ν12) + 2
G12

E2

− 1

)
n2m2

(3.10e)

3.4 Experiments on Model Plant (Rhubarb) and Results

Rheum rhabarbarum (rhubarb), commonly known as a vegetable, grows

wild in central Asia and often is cultivated in the western and north-western

provinces of China, in Tibet and in Europe and North America. Although fresh

rhubarb is usually available from early winter through early summer, winter

rhubarb is commercially produced in green houses in the northern United States

and Canada. Rhubarb can be naturally grown as an annual in subtropical and

tropical climates that have a cool production period. In these environments,

the usual average spring temperatures during the day are ∼ 24 ◦C and 10 ◦C to

12.8 ◦C at night; the average summer temperature is below ∼ 32 ◦C. Rhubarb

is a hardy, perennial, dicotyledonous plant that grows from a bulbous rhizome,

forms thick and long leaf stalks (petioles) that bear heart-shaped large leaves

27



Figure 3–4: Photograph of a cross-section of rhubarb petiole with constituent
tissues.

of up to 1m2 in size (Figure 2–1). The typical size of the rhubarb plant varies

from 3 to 5 feet in height, or even more, and 3 to 4 feet in diameter. Generally,

the fleshy petiole is slender with a length of up to 18 inches and 1− 2 inches

in diameter. However, the width (diameter) of investigated rhubarb petioles

ranged between 0.55 and 1.2 inch (14 ∼ 30.5 mm). The petiole cross-section

is solid with a roughly semi-elliptical grooved shape [66,84,85]. The rhubarb

plant is chosen as the model plant because the petioles of the rhubarb plant

carry large leaf blades and have longitudinal top groove, which assists the

structural flexibility than the circular cross-sectional shape.

Fresh Rhubarb petioles were imported from leading international fruit

and vegetable suppliers—“The Greenary” in Barendrecht, Netherlands and

“Dragonberry Produce” in Clackamas, OR, USA. The petioles were stored at

4 ◦C in plastic bags to prevent decay and dehydration during shipping so to

preserve their freshness. A photograph of a cross-section of rhubarb petiole

with different tissues is shown in Figure 3–4.
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3.4.1 Experimental Measurement of Cell Wall Thickness

Deparaffinised rhubarb sections on slides were mounted on SEM stubs

using carbon tape, and sputter coated with gold (Au). The sections were

imaged using a JEOL JSM-7400F High Resolution Field Emission Scanning

Electron Microscope (Figure 3–5).

Figure 3–5: Scanning electron micrograph of parenchymal cell wall.

The scanning electron micrographs were acquired for three different

rhubabrb petioles and include a total of 21 sample locations. To approximate

the thickness of the parenchymal cell wall, 5 to 35 images were taken from

the sample locations. The wall thickness was measured from the scanning

electron micrographs using ImageJ64, a Java-based image processing program,

which supports standards image processing functions including edge detection,

contrast manipulation, smoothing and others. For each location, a sample mean

(thickness) has been computed. The means of the pooled data are statistically

analyzed to approximate an average cell wall thickness (the pooled mean wall

thickness). About 95.45% of the values lie within two standard deviations

of the pooled mean. However, 2 of the 21 sample means are not reflected
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Figure 3–6: Distribution of the mean parenchymal cell wall thickness.

in the subsequent calculation, since they are considered to be outliers (i.e.,

an observation that lies an abnormal distance from other values in a random

sample from a population). The sample means of a 95% confidence interval

level are shown in Figure 3–6.

To calculate a single/equivalent mean value, the principle of pooled variance

has been used. The pooled variance is used to estimate the variance given

in several populations taken in different circumstances. A set of formulas

used to calculate the pooled parameters is given in Appendix B. By using the

principle, the pooled standard deviation and mean cell wall thickness have

been calculated. The estimated mean parenchymal wall thickness is

Pooled mean cell wall thickness = 367.323 (SD 112.006) nm.

3.4.2 Measurement of Cell Radius using Light Microscopy

Rectangular pieces of tissue, measuring ∼ 5× 5× 5 mm, were cut out of

the rhubarb petioles and fixed in formaldehyde: acetic acid : alcohol (FAA).
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These fixed tissues were subsequently dehydrated in ethanol and embedded

in Paraplast Plus [86]. Samples were cut into 8-µm sections and stained with

0.05% toluidine blue O (TBO) in sodium citrate. Images were acquired with

a Leica DM6000B microscope using OPENLAB, a modular imaging software

used for fluorescence imaging. Individual sections were imaged at multiple

points, and the images were digitally stitched together to form composite

micrographs using Adobe Photoshop®.

Figure 3–7: Measurement of cell radii from the micrograph of a rhubarb
tissue sample. A vertical line arbitrarily separates the parenchyma from the
collenchyma, and horizontal lines represent the location of cells that were
measured.

By using the similar principle of pooled variance, the pooled standard

deviation and mean cell wall thickness have been calculated. The estimated

mean parenchymal wall thickness is

Pooled mean parenchyma cell radius = 72.75 (SD 28.22) µm

3.5 Computational Results and Discussion

The computational results are obtained based on the mathematical models

along with the experimental measurements of cell dimensions. The results are

discussed in the following subsections.
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3.5.1 Constitutive Properties of Collenchyma Cell Wall

The properties of the collenchyma cell wall depend on the wall constituents,

mainly cellulose microfibril, hemicellulose, and lignin. The CMF, embedded

in a pliant lignin/hemicellulose matrix, acts as the load bearing element that

controls the wall properties. In addition to the elastic properties of these cell

wall constituents (shown in Table 3-1), the volume fractions of the constituents

play an important role as well. The volume fractions of the constituents are

not homogeneous throughout a multi-layered cell wall. Usually, the layered

construction is evident in woody plants, but it is also observed in many other

non-woody plants. Although the number of layers depends on several factors,

such as the types of species and cells, the cell wall is widely accepted to be

considered as a three-layered structure. In fact, the woody plants typically

exhibit three secondary layers plus a primary layer and middle lamellae. The

primary layer only plays a significant role in the early stage of a growing plant

and in the parenchymal cell. When a plant cell reaches maturity, the secondary

wall becomes the determinant that governs its mechanical performance. The

volume fractions of CMF, lignin, and hemicelluloses as shown in Table 3–2

represent the values of a typical set of multilayered plant cell walls. Nevertheless,

the composition of the constituents depends on several factors as well, such as

the types of species and cells, the location of the cells, and the age of a plant.

Table 3–2: Approximate volume fractions of tracheid cell wall [68].

Cell wall layer CMF (%) Lignin (%) Hemicellulose (%)

S1 28 45 27
S2 45 20 35
S3 47 15 38
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The data shown in Tables 3–1 and 3–2 have been used to compute the

effective engineering properties, such as stiffness and Poisson’s ratio, of the cell

wall. The variations of stiffness with respect to MFA along different layers are

shown in Figures 3–8(a) to 3–8(c). Figure 3–8(a) depicts the effect of MFA

on the longitudinal Young’s modulus for each layer. Up to 40 ◦, the effect

of MFA on the longitudinal wall stiffness is substantial, and the stiffness is

reduced to a considerable amount. In contrast, the transverse stiffness is nearly

invariant with the MFA up to 50 ◦ as shown in Figure 3–8(b). Beyond this

limit, the transverse modulus varies with MFA and increases with increasing

MFA. The shear modulus is maximum for CMF equal to 45 ◦ in the loading

direction(Figure 3–8[c]). However, the variation of shear modulus up to 20 ◦ is

less significant, and a gradual increase is observed until the MFA reaches 45 ◦

and starts decreasing afterwards. The Poisson’s ratios shown in Figures 3–9(a)

and 3–9(b) vary with the MFA. The major Poisson’s ratio increases rapidly up

to MFA of 20 ◦ compared to the minor Poisson’s ratio. The major Poisson’s

ratio plays an important role in controlling the anisotropic cell wall properties.

It is evident that the MFA plays a significant role in the cell wall stiffness,

an observation that has been experimentally detected in the cell walls of

numerous plants [37, 87–89]. MFA usually varies between 0 to 40 ◦ in the S2

layer [37,87,90] and plays a leading role in determining the overall wall stiffness.

Moreover, since the thickness of the S2 layer is generally much thicker than that

of the S1 and S3 layers, the measurement of MFA for the whole cell wall, or the

average MFA across the cell wall, involves the approximation of MFA in the

S2 layer. Therefore, the S2 layer is often the main determinant of the stiffness

of the plant [91]. This concept is used to determine the effective engineering

properties of a single layered dicotyledonous cell. Although a more accurate
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Figure 3–8: Stiffness properties of different cell wall layers for varying MFA.
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Figure 3–9: Poisson’s ratio of different cell wall layers for varying MFA.

and rigorous analysis would be conceivable by considering microfibril angles at

different layers, the composition of the S2 layer with respective MFA provides

a good approximation of the overall stiffness of the collenchyma cell wall. Also,

the measurement of MFAs in different layers is not always experimentally

possible.

Typically, the collenchyma tissue in petioles and stems is observed

in peripheral locations beneath the epidermal layer (Figure 3–4). As per

experimental measurements, the collenchyma tissue typically comprises 20% of
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cellulose and 80% of the HC/lignin matrix [92,93]. Although no clear distinction

exists, the collenchyma cell walls can be considered to be a secondary cell

wall [92,94], where the orientation of CMF is mostly found to be inclined to

the longitudinal axis [95–100]. However, the MFA also varies with respect to

the measuring technique used. For dicotyledonous plants, the MFA usually lies

between 6 ◦ ∼ 25 ◦ [101]. Based on the fiber volume fraction and MFA, the

stiffness properties of the collenchyma cell wall can be computed. The stiffness

properties of the collenchyma cell wall with 20 ◦ MFA are summarized in Table

3–3. The elastic properties of the collenchyma cell wall will be used to predict

the respective tissue stiffness.

Table 3–3: Stiffness properties of collenchyma cell wall determined via Equation
3.10.

Ex (GPA) Ey (GPA) Gxy (GPA) νxy νyx

Cell wall 8.405 2.503 1.467 0.3872 0.1183

3.5.2 Elastic Properties of Cell Wall

Thin walled parenchyma cells make up the bulk of most non-woody

plants. The parenchymal cell wall is mainly the primary cell wall composed

of cellulose microfibril embedded in a hemicellulose/pectin matrix. The

constituent composition of the primary cell wall differs from the secondary

cell wall. Earlier analyses showed that the typical primary plant cell wall

is composed of 9 − 25% CMF and an interpenetrating matrix of 25 − 50%

hemicelluloses, 10 − 35% pectins, and 510% structural proteins [102–104].

Weibel has shown that roughly 40% cellulose, 30% hemicelluloses, and 30%

pectins are present in the parenchymal cells of sugar beet pulp in one of his

patents [105]. Later, Vorwerk and his coworkers approximated the constituent

composition of the primary cell wall of dicotyledonous plants to be 30% cellulose,
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30% hemicelluloses, 35% pectin, and 1−5% structural proteins on a dry weight

basis [106]. Hence, the primary cell wall is plainly characterized by relatively less

CMF and greater pectin compared to the secondary walls. The pectins content

are especially found to be more in the primary cell walls of the dicotyledonous

plants. The primary cell walls of dicotyledonous plants typically contain

25− 35% cellulose, 50% or more pectin, and a remainder of xyloglucan and

other hemicelluloses [25,107,108]. In the primary cell walls of the celery (Apium

graveolens L.) parenchyma cells, Thimm et al. found 43% CMF, 51% pectin,

and 6% hemicelluloses [109]. A more recent analysis revealed that the primary

cell wall is composed of 15− 40% CMF, 30− 50% pectic polysaccharides, and

10− 20% hemicelluloses and other structural proteins [110]. The primary cell

walls of all higher plants appear to contain the same general polysaccharides,

albeit sometimes in very different proportions.

The primary cell wall grows, elongates and provides mechanical support for

the plant by being rigid and stiff. This conflicting characteristic of the primary

cell wall originates from the arrangement of the cellulose microfibrils. The

orientation of the CMFs often is dispersed in the primary cell wall, but may show

varying degrees of alignment because of cell elongation [111–115]. Wardrop

showed that the orientation of CMFs altered from a transverse to longitudinal

direction, relative to the cell axis, from the inner part to the outer part of the

primary cell wall of the macerated tracheids of Pinus radiate [115]. According

to Wardrop, the CMFs originally were deposited in the transverse direction to

the cell axis, and during cell enlargement, their orientation passively shifts to

the longitudinal direction. Later, Wardrop [116] and Harada and Cote [117]

proposed a model for the primary cell wall that consisted of loosely aggregated

CMFs, which were oriented more or less transversely in the inner part and

longitudinally in the outer part of the cell wall. A similar variation in the
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orientation of CMFs is observed during the formation of the primary cell walls

in Pinus densiflora [113]. Later, Abe et al. reported that the newly deposited

CMFs on the innermost surface of the primary cell walls of Abies sachalinensis

are random, and their arrangements vary during the differentiation [111]. The

predominant orientation of the CMFs altered from the transverse to longitudinal

direction of the cell axis [111,112,118]. Nonetheless, recent analyses have found

that CMFs initially are oriented transverse to the direction of growth of the

inner face of the primary cell wall; however, as the wall expands, the CMFs

tend to reorient. Yet, the distribution of CMFs, integrated across the thickness

of the expanded cell wall, becomes nearly random [119–121]. Figure 3–10 shows

both random and bi-directional orientation of CMFs in the primary cell wall of

different plants.

(a) (b)

Figure 3–10: (a) Primary wall of a fiber from the xylem of angiosperm showing
the arrangement of cellulose microfibrils. Magnification ×21900. (b) Cell wall
from the alga Cladophora prolifera showing different orientations of cellulose
microfibrils in adjacent wall lamellae. Magnification ×15230. (Adapted from
Frei-Preston [122]).

If the orientation of deposited CMFs does not change during the cell

expansion, the CMFs of the mature primary cell wall should be oriented

approximately transversely in the inner part and longitudinally in the outer

38



part with respect to the cell axis. Hence, an inference can be made from the

experimental evidence and various cell growth models that the stiffness of

the fiber-reinforced primary cell wall can be approximated as isotropic. In

the present work, the hypothesis of random orientation of CMFs is adopted

to determine the stiffness of the parenchyma cell wall. Nevertheless, the cell

growth is ignored, since the parenchyma cell wall is assumed mature in the

current mathematical model.

In this work, to predict the stiffness of the parenchyma cell wall, the

volume fractions of the wall constituents are considered to be 30% CMF, 60%

pectin, and 10% hemicelluloses. To compute the theoretical Young’s modulus

using Equation (3.4), the stiffness values shown in Table 3–1 are used along

with the modulus of stiffness of 1 GPa for the pectins. The predicted composite

stiffness of the parenchyma cell wall is

Epcw = 15.8GPa

Gpcw = 6.1GPa

The typical values of computed stiffness fall between 150 MPa and 71.4 GPa, a

range given by Vincent [123]. However, the stiffness of the parenchymal cell is

affected by the water content and varies with the turgor pressure, as described

in the following section.

3.6 Summary

This chapter has focused on the constitutive properties of the plant cell

wall by considering the first order of hierarchy. At this hierarchical order,

the constitutive properties of cell walls have been computed considering the

constituents, and their compositions and organization. The upper and lower

bounds of stiffness of the collenchyma cell wall are approximated by using

the classical micromechanical models of Voigt and Reuss. Since the thick

collenchyma cell wall resembles the secondary wall, the microfibril angle and
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the stiffness bounds at the sub-cellular level have been used to compute the

effective stiffness of the collenchymatous cell wall. On the other hand, the thin

primary cell wall of the parenchyma tissue have been modeled for isotropic

stiffness since the experimental evidence often exhibits biaxial or random fiber

orientation in the respective cell wall. We have computed the stiffness of

the parenchymal cell wall by using the rule of mixture associated with the

Krenchel (efficiency) factor for random fiber orientation. However, the stiffness

of the walls might differ significantly from the actual wall stiffness of the model

plant rhubarb since the constitutive values are computed based on the generic

composition of the dicotyledonous plant cell wall. Therefore, if the volume

fractions and MFA of the model plant were determined experimentally, the

computational stiffness would be more representative and closer to the actual

wall stiffness. Further, the model used in the present work is simplified since

it has ignored the presence of multi-layers. Despite these limitations, the

approach is able to approximate the theoretical stiffness of the collenchyma

and parenchyma cell walls. It would have been more appropriate to have wall

stiffness values obtained via experiments. However, due to the limitation of

our current experimental facility, we could not conduct the experiments at the

cell wall level. Furthermore, the experimental data of wall stiffness are also

scarce in literature and not available for rhubarb.
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CHAPTER 4
Geometric Modeling

4.1 Overview

In this chapter, the geometric modeling of cellular plant tissues is

considered. The geometric model aids to capture the contribution of tissue

microstructure, which influences the structural behaviour and mechanics

of biological beams, such as leaf petioles and stems. To represent the

microstructure of tissue via simulations, a novel computational method, namely

Finite-Edge Centroidal Voronoi Tessellation (FECVT), is developed and coded

in MATLAB. The technique presented in this chapter might serve as a

generalized way of modelling plant microstructures. The algorithm is applied

to a variety of plant tissues, including Arabidopsis thaliana, Philodendron

melinonii and Rheum rhabarbarum (rhubarb), to generate geometric models.

The chapter mainly encompasses the description of plants, image acquisition

techniques, the concept of Voronoi tessellation, and the FECVT algorithm.

The outcomes and limitations of the proposed method are also discussed. The

results obtained for Arabidopsis and P. melinonii via this method satisfactorily

obey the geometric, statistical, and topological laws of naturally evolved cellular

solids [17]. However, in this chapter, the results have been discussed in detail

for rhubarb tissues, which equally satisfy all the empirical laws.

4.2 Growth Condition, Sample Preparation and Image Acquisition

The virtual geometric models are generated for three distinct plants,

Arabidopsis, Philodendron melinonii, and Rheum rhabarbarum (rhubarb). As

mentioned in Chapter 3, rhubarb is a hardy, perennial, dicotyledonous plant

that grows from a bulbous rhizome, forms thick and long leaf stalks (petioles),

41



bearing heart-shaped large leaves of up to 1 m2 in size (shown in Figure 2–1).

The fleshy petiole is generally slender with a length of up to 18 inches long and

1− 2 inches of diameter Small slices of petiole were fixed in FAA, dehydrated

and embedded in Paraplast Plus as described by Ruzin [86]. These were cut

into 8 µm sections and stained with 0.05% toluidine blue O in sodium citrate.

Images were acquired with a Leica DM6000B microscope using OPENLAB

as shown in Figure 4–1. To obtain high resolution images, micrographs of

individual sections were digitally stitched together to form composite images

using Adobe Photoshop®.

Figure 4–1: Paraffin-embedded rhubarb petiole cross-section stained with TBO
and imaged with light microscopy at 20x magnifications. approximately 16
photos were stitched together to create this composite image. Ep-epithelium,
Co-collenchyma cells, VB-vascular bundle, Pa-parenchyma cells are visible.
Scale bar = 50 µm.

Arabidopsis thaliana as shown in Figure 4–2(a) is a flowering plant that

has become very popular as a model organism in genetics and molecular

biology [124]. It is a terrestrial plant, whose primary inflorescence stem grows

to a height of about 30 cm. The small size, brief life cycle and high fertility

42



of Arabidopsis make it amenable to rapid and large-scale experimentation.

Furthermore, the availability of thousands of mutant lines makes it relatively

trivial to grow plants that display subtle micro-architectural differences.

Figure 4–2: (a) Maturing Arabidopsis thaliana plant, (b) Micrograph
of transversely sectioned Arabidopsis stem stained with toluidine blue.
Ep-epidermis, Co-cortex, En-endodermis, Ph-phloem, Xy-xylem and Pi-pith
are visible. Scale bar = 300 µm.

Arabidopsis thaliana seeds were planted on solid AT media [125] and

stratified at 4 ◦C for 2− 5 days. They were grown at 22 ◦C under continuous

light before being transplanted onto soil after 7 − 10 days. Stem segments

were harvested at ∼ 5 weeks. Short segments from below the shoot apical

meristem were fixed in 0.5% glutaraldehyde, dehydrated and embedded in

Spurr’s resin as described in Western et al. [126]. These were cut into 1000

nm sections which were then stained with 1% toluidine blue O in 1% sodium

borate. Sections were imaged as shown in Figure 4–2(b).

Philodendron melinonii is a relatively rare tropical plant that is

substantially larger in size, with petioles measuring up to 1m in length (Figure
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(a)

(b)

Figure 4–3: (a). Adult Philodendron melinonii plant, (b) Micrograph
of transversely sectioned P. melinonii petiole stained with toluidine blue.
Aerenchyma (Ae) and vascular bundles (Vb) are visible, as are three tissue
layers: epidermis (Ep), parenchyma and aerenchymatous parenchyma. Scale
bar = 1 mm.

4–3[a]). These petioles must support large, heavy leaves against physical

stresses like wind and precipitation. Aside from being lightweight and very

stiff, P. melinonii petioles display two unusual structural adaptations: an

aerenchymatous core and a broad, flat groove along the apical surface (Figure

4–3b). Aerenchymatous tissues are normally found in the roots of aquatic

plants, where they aid in gas exchange. In their study of two related species,

Hejnowicz and Barthlott [127] reason that aerenchymae such as these primarily

serve a structural role, reducing the density and energetic cost of these large
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petioles. The apical groove, meanwhile, gives the petiole a peculiar D-shaped

cross-section which may contribute to its mechanical anisotropy. We examine

these two species, whose cellular structures are very dissimilar, to demonstrate

the broad applicability of FECVT in tissue modeling.

Fresh Philodendron melinonii petioles were collected from the Montreal

Botanical Garden. Small slices of petiole were fixed in FAA, dehydrated and

embedded in Paraplast Plus as described by Ruzin [86]. These were cut into

8 µm sections and stained with 0.05% toluidine blue O in sodium citrate.

Sections were imaged and shown in Figure 4–3(b).

4.3 Voronoi Tessellation

Given two points p1 and p2, their Voronoi regions in the plane are the two

regions on either side of the perpendicular bisector of the line segment joining

p1 and p2 (Figure 4–4[a]). This bisector is the boundary edge of the Voronoi

region. A Voronoi microstructure is constructed based on a set of randomly

generated points called Voronoi sites. The cell boundaries are drawn such that

any point within the enclosed polygon is closer to its Voronoi site than to

the Voronoi sites of the surrounding polygons. The Voronoi tessellation thus

divides a space into as many regions as there are Voronoi sites (Figure 4–4[b]).

Usually in a two-dimensional space, two methods are used to generate a Voronoi

diagram. One is known as PVT, where points are randomly distributed in

space according to the Poisson point process. The second one is the CVT,

where the centroids of the cells are used to construct the Voronoi diagram.

In a CVT, the associated generating points are centroids (centre of mass

with respect to a given density function) of the corresponding Voronoi cells.

For a given domain D ⊆ RN and a density function ρ(x) defined for x ∈ D,
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(a) (b)

Figure 4–4: (a) Schematic illustrating the creation of two Voronoi domains
through the perpendicular bisector (solid line) of the line segments joining p1
and p2. (b) 2D Voronoi region generated for 50 randomly generated Voronoi
sites [17].

the center of mass or centroid zc of D is given by

zc =

∫
D
xρ(x)dx∫

D
ρ(x)dx

(4.1)

If an object has uniform density, its centre of mass is the same as the centroid

of its shape. When the centroids of the cells and Voronoi sites coincide, the

resulting diagram is called CVT.

4.4 Generation of a Conventional CVT

To generate a conventional CVT from an image or a micrograph, several

steps are required to follow. The steps are discussed in this section. The steps

are also included in the FECVT algorithm.

4.4.1 Image Segmentation

To model the microstructure, we need to calculate the centroids of the

cells present in a micrograph. This begins with the segmentation of a colour

micrograph of plant tissue. Segmentation refers to the process of partitioning a

digital image into multiple segments [128]. The goal of this process is to simplify

both the representation of an image and its analysis. It helps to distinguish the

cells and the cell boundaries from the background. The simplest method for
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image segmentation is known as “thresholding”. Based on an optimum threshold

value, thresholding converts a colour or greyscale image into a binary (black

and white) image. Thresholding is performed here using Otsu’s method [129],

a well-known algorithm for global thresholding. The interclass variance of

black and white pixels of the binary image is minimized to compute a global

threshold value, which is a normalized value between 0 and 1.

4.4.2 Edge Detection

Since plant tissue microstructures exhibit graded cellularity as well as

complex heterogeneity, thresholding is not sufficient to identify the cells in

a micrograph. An edge detection algorithm is used in conjunction with

thresholding to obtain the cellular distribution accurately. The Canny edge

detection algorithm, which uses the double thresholding, is applied here because

it can detect true but weak edges [130]. In this algorithm, the noise is first

removed to smooth the image. Next, the edge detector finds the image gradient

to highlight regions with spatial derivatives. The regions are tracked and the

pixel that is not at the maximum is suppressed. The gradient array is then

reduced by hysteresis, which is used to trace the remaining pixels that have

not been suppressed. The hysteresis uses two thresholds and is set to zero

(non-edge) if the magnitude is below the first threshold. The edge is created

if the magnitude is above the high threshold. However, if the magnitude is

between the two thresholds, it is set to zero unless there is a path from this

pixel to a pixel with a gradient above higher threshold. As a result, the shape

of the cell can be detected more precisely.

4.4.3 Calculation of Centroids

The calculation of centroids depends on the Region of Interest [131], a

region of non-zero pixel value, which is 1 for a binary image. Based on X and

Y coordinates of the pixels, the centroids of the cells are obtained calculating
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the 1st order moments of the cells are computed. Since we are working with a

digital image, the moment equation is modified into following algebraic form

mpq =

n1∑
i=1

n2∑
j=1

Xp
i Y

q
j f (i, j) (4.2)

where (Xi, Yj) is the coordinate of the i, j th pixel, f (i, j) have value 1 if the

i, j th pixel is in the shape and 0 otherwise. Considering the region of interest,

which is completely enclosed in a rectangular region G of size n1 by n2 pixels, i

varies from 1 to n1 and j varies from 1 to n2 in the function f (i, j). For a 2D

region, p+ q denotes the order of moment, where p and q are integers. Hence,

the coordinates of the centroid of a cell are

X̄ =
m10

m00

and Ȳ =
m01

m00

(4.3)

where the zeroth moment, physically, is equal to the area of the region.

4.4.4 Generation of CVT

After determining the centroids of the cells, which are the Voronoi sites,

by drawing the cell boundaries such that any point within the enclosed polygon

is closer to its centroid that to the centroids of the surrounding Voronoi cells.

The outcome is a CVT (Figure 4–5) with semi-infinite edges at the boundary.

Furthermore, while there may be a clear boundary in the micrograph, there is

no specific boundary in the corresponding Voronoi model. The semi-infinite

edges complicate finite element analysis because the boundary conditions,

applied at an infinite distance, are not realistic. This problem is especially

difficult to correct in models with irregular shape contour.

4.5 Finite Edge Centroidal Voronoi Tessellation (FECVT)

Conventional CVT is not sufficient to represent a microstructure with an

arbitrary shape contour. To remove the infinite edges from the boundary, the

centroids of the outermost cells should be determined. For each centroid, the
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Figure 4–5: Arabidopsis stem modeled with the conventional Voronoi
tessellation. The unrealistic semi-infinite edges appearing at the boundary of
the figure are a limitation of this method [17].

distances between the centroid and the surrounding Voronoi sites (centroids

of the surrounding polygons) are calculated and the minimum distance is

determined. An imaginary point is created such that the distance between

itself and the centroid is half of the minimum distance. The imaginary point is

thus created for each of the selected centroid. The purpose of generating the

imaginary points is to create a boundary using Quick hull algorithm [132]. The

Quick hull algorithm is an algorithm for computing the convex hull of a set of

points in two or more dimensions. If a finite planer set of points is given, the

convex set of minimum area, which contains the original set, is known as the

convex hull. In computational geometry, especially in computer graphics and

image processing, the set usually consists of points (in two or higher dimensions).

In two dimensions (2D), a convex hull is the minimal polygon that encloses

all the given points. Based on the set of imaginary points and the convex hull

algorithm, a boundary is imposed, after which a Boolean subtraction is realized.

With this Boolean operation, the semi-infinite edges are truncated and the

vertices of the truncated edges are reconnected to form the final boundary.

Hence, the semi-infinite edges are removed, and straight line edges are obtained
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to create cell boundaries. The Finite Edge Centroidal Voronoi Tessellation

(FECVT) technique is thus capable of representing the microstructure of an

image with an arbitrarily shaped or a rectangular boundary contour, as shown

in Figures 4–6 and 4–7, respectively.

4.6 Computational Results

The FECVT method is applied to replicate the Arabidopsis, P. melinonii,

and rhubarb tissues. Arabidopsis, a dicotyledon, displays a complex stem

structure consisting of several tissue layers (Figure 4–2[b]). The core of the

stem is composed of pith, a foam-like tissue composed of large, thin-walled

parenchyma cells. Surrounding this core is a ring of fibrous xylem and

interfascicular fibers, which functions as the stem’s main structural support.

Outside this layer lie the phloem, the endodermis and a thick layer of cortical

cells. An epidermal monolayer then surrounds the entire stem. Although

six types of tissues were identified, the cross-section of the inflorescence stem

of Arabidopsis thaliana displays mainly three layers of tissues. The outer

layer consists of epidermis (Ep), cortex (Co), primary phloem (Ph), middle

layer comprises of primary xylem (Xy) and interfascicular fiber tissue (if any),

and the inner layer represents pith (Pi). These layers of tissues are used to

define stem’s micro-architecture and response to mechanical perturbation [41].

This microstructure is modelled using the FECVT method (Figure 4–6). The

FECVT model represents the stem realistically, in the sense, capturing the

geometry of the cellular tissues.

P. melinonii, a monocotyledon, displays relatively simple structural

organization (Figure 4–3[b]). The interior of the petiole is composed almost

entirely of parenchyma cells. There is a steady gradation in cell size, with the

outermost cells being the smallest and the innermost cells being the largest.

Vascular bundles, which contain stiff xylem cells, are scattered randomly
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Figure 4–6: FECVT model of the entire cross-section of Arabidopsis stem [17].

throughout this parenchymatous tissue. Once again, an epidermal monolayer

surrounds the entire structure. An FECVT model of a P. melinonii petiole is

shown in Figure 4–7.

Figure 4–7: FECVT model of a portion of the cross-section extracted from a
P. melinonii petiole [17].

The tissue of the Rheum rhabarbarum petiole, as shown in Figure 4–2(b),

consists of a parenchymatous core surrounded by several layers of parenchyma

cells and an epidermal layer. The parenchymal tissue has cellulose cells and fills

the space between the dermal and the vascular bundles. The vascular bundles
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consisting of xylem, phloem and cambial tissues are pervaded throughout the

parenchyma tissue fairly evenly. The dermal system consists of a stiff and

strong layer, which encloses all the core tissues. This layer is known as bark. In

between bark and parenchymal tissue, the other structural tissue collenchyma

consisting of thick but relatively flexible cell walls is present [66, 84]. The

FECVT models of different rhubarb (petiole) tissues are shown in Figures 4–8

to 4–10. The geometric models are generated for the collenchyma, parenchyma

and both the collenchyma-parenchyma (col-par) tissue, respectively. Since

experimental data are used to formulate the mathematical model, the accuracy

of the model appears to depend on the quality of the micrograph. The FECVT

method, thus, can capture the detail of cellular distribution if the micrograph

of the tissue microstructure is vivid and clear. However, the polygons at the

boundary of a FECVT model may differ in shape and size from the boundary

polygons of a conventional CVT.

The application of the Canny edge detection algorithm significantly

enhances the accuracy of detecting the cell boundaries. In the previous

works [50,53], the tissue microstructures were less complex in terms of variation

of cell shape, and size and did not display an intense cellular gradient. On the

other hand, the microstructures examined in this work are highly non-periodic

and heterogeneous (Figures 4–1, 4–2[b], and 4–3[b]), displaying remarkable

cellular gradients. In the virtual geometric models as shown in Figures

4–8 to 4–10, the FECVT method shows its ability to capture this complex

heterogeneity and the graded cellularity. However, the linear interpolation

between the points results in straight edge Voronoi cell boundary, whereas the

actual cell boundary may contain curve edges. The simplification is accepted,

because the length scale of the cells is much smaller than that of the whole

petiole.
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Figure 4–8: FECVT model of collenchyma tissue of rhubarb petiole [18].

Figure 4–9: FECVT model of parenchyma tissue of rhubarb petiole.

Figure 4–10: FECVT model of combined collenchyma-parenchyma tissue of
rhubarb petiole.
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(a) Collenchyma tissue

(b) Parenchyma tissue

(c) Collenchyma-parenchyma tissue

Figure 4–11: Cellular area distribution of Rheum rhabarbarum tissue images
and corresponding FECVT and PVT models of collenchyma (a), parenchyma
(b) and collenchyma-parenchyma tissue (c).
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Table 4–1: ANOVA for FECVT models of collenchyma tissue.

Col FECVT Sum of Squares df Mean Square F Sig.
Between Groups 0.655 2 0.327 0.174 0.840
Within Groups 1147.104 611 1.877

Total 1147.759 613

Table 4–2: ANOVA for FECVT models of parenchyma tissue.

Par FECVT Sum of Squares df Mean Square F Sig.
Between Groups 4.458 4 1.114 0.572 0.683
Within Groups 8452.119 4337 1.949

Total 8456.577 4341

Table 4–3: ANOVA for FECVT model of collenchyma-parenchyma tissue.

Col-Par FECVT Sum of Squares df Mean Square F Sig.
Between Groups 0.623 2 0.623 0.331 0.565
Within Groups 7723.589 4105 1.882

Total 7724.212 4106

FECVT models are generated for several arbitrary chosen sections of

different types of tissues. For each of the tissue microstructures, 3− 5 sections

are chosen to generate the FECVT models. Each section is representative of

the respective tissue type. Nonetheless, A one-way ANOVA is used to test the

difference among the FECVT models generated for collenchyma, parenchyma,

and combined collenchyma-parenchyma (col-par) tissues and shown in Tables

4–1 to 4–3, respectively. The first column in the ANOVA tables corresponds to

the between-groups, and within-groups estimate of variance, which are shown

in the fourth column, showing the mean square. The second column gives the

sum of squares for each of the estimates of the variance. The third column

gives the degrees of freedom (df) for each estimate of the variance. The number
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of FECVT models and the sum of the Voronoi cells in the models are used to

calculate the degrees of freedom between-groups and within-groups, respectively.

The fifth column, F , corresponds to the ratio of the variance of between-groups

and within-groups, shown in the preceding column. The last column gives the

probability of significance of the F ratio, i.e., p value. Since, the p value is

greater than the significance level (α = 0.05), the null hypothesis is not rejected.

It is evident from Table 4–1 that the FECVT models of the collenchyma tissue

sections statistically do not differ significantly across the models as determined

by one-way ANOVA (F (2, 611) = 0.172, p = 0.837 > 0.05). Similarly, for

both the parenchyma and whole tissue, there are no statistically significant

differences among the respective FECVT models (Table 4–2 and 4–3). The

output of the ANOVA test, thus, implies that the FECVT models of the

stochastically chosen tissue sections are statistically invariant; hence each

model can be considered to be a representative volume element for the FEA.

4.7 Discussion

The virtual models of the tissues generated by the FECVT method should

manifest the characteristics of naturally evolved cellular solids. Therefore, the

FECVT models should conform to a number of geometric, statistical, and

topological laws. The FECVT models of Arabidopsis and P. melinonii tissues

satisfactorily obey these laws [17]. The characterization of the FECVT models

of the rhubarb tissues based on the empirical laws have been discussed in this

section.

The statistical characteristics are shown in Figures 4–11 to 4–15. In Figure

4–11, both the original micrographs and the virtual models, (i.e., FECVT and

PVT models), are considered, whereas in the other figures, the characteristics

are shown only for the virtual models. The cell areas of the Rheum rhabarbarum

tissues are determined using the image micrographs, and the area distributions
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are used to validate the FECVT models. In the original micrographs, the

cell areas are calculated using digital image processing based on the pixel

information. The cell areas from the different images and their corresponding

FECVT and PVT models are statistically compared in Figure 4–11. It is

reflected in this figure that the variations of cell area distributions of the

FECVT and PVT models are subtle. The cell area distributions for both

the models conform to the distributions of the corresponding image area. By

contrast, in a conventional Voronoi model with semi-infinite edges, the areas of

the virtual cells differ significantly with respect to the original images since the

boundary cell areas are large due to semi-infinite edges. Figure 4–12 depicts the

frequency distribution of polygon shapes in different FECVT and PVT models.

Although both the FECVT and PVT methods create cells more than ten edges,

we do not see such cell shapes in the original micrographs. However, in contrast

to PVT models, the FECVT models are inclined to hexagon-dominated where

five-sided polygons are counterbalanced by seven-sided polygons. The FECVT

models display geometric randomness, but they strongly tend to follow Euler’s

law, which relates the number of vertices V , edges E, and faces F of cells. As a

consequence of Euler’s law, an irregular honeycomb with an edge-connectivity

of 3 should have, on average, six sides per face. For a honeycomb with regular

hexagonal cells, the average number of sides is 〈n〉 = 6; in these centroidal

Voronoi models, 〈n〉 varies from 5.94 to 5.98 while for the PVT models, 〈n〉

varies from 5.82 to 5.95. When we compare the average cell sides between the

two types of models, we note that the FECVT models have the tendency to

follow Euler’s law more accurately.

Biological tissues, soap bubbles and polycrystalline grains are natural

examples of random, space-filling cellular networks. Despite large differences

in length scales and formation processes, all these cellular networks evolve to a
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Figure 4–12: Frequency distribution of polygon side of the FECVT and
PVT models for the collenchyma tissue, parenchyma tissue and combined
collenchyma-parenchyma tissue of the Rheum rhabarbarum. The average
number of sides in the FECVT models varies from 5.94 to 5.98; for the PVT
models, On the Other Hand, it ranges between 5.82 and 5.95.

steady state with a similar structure. In most systems, the pinning of boundaries

by surface grooving leads to stagnation of grain or tissue growth. This can

be characterized by measuring the spatial distribution of cell sizes, shapes

and their geometric correlations. There is a strong correlation between the

microstructural geometry and the structural properties of space-filling networks.

The interdependence between topology, geometry and physical dynamics of the

spherulitic grain size-shape arrangement in semi-crystalline polymeric cellular

networks has been shown both experimentally and theoretically [133, 134].

In naturally evolved cellular structures, the few-edged cell has a tendency

to be in contact with many-edged cells and vice versa [135, 136]. Since the

FECVT models represent plant tissues, they are expected to follow this spatial

distribution. In Figure 4–13, we observe that polygons with fewer sides tend to

be surrounded by polygons with more sides and that this holds true for all the
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models generated by both the FECVT and PVT methods. We expect similar

trends for both the types of models, since only the distribution of the points is

different in the Poisson Voronoi tessellation.

Figure 4–13: Polygons of fewer sides are surrounded by the polygons of more
sides for different FECVT and PVT models. In naturally evolved cellular
structures, the few-edged cell has a tendency to be in contact with several
edged cells and vice versa [135,136].

Furthermore, Aboav-Weaire [135, 137] established a linear relationship

between the mean cell sides and the neighbouring cell sides for an infinite

random cellular structure. This correlation is empirical and is satisfied by a large

number of naturally grown cellular structures. According to the Aboav-Weaire

law, on average, the sum of the number of sides of the cells immediately

adjacent to an n−sided cell, nm(n) is linear in n such that,

nm(n) = (6− a)n+ (6a+ µ2) (4.4)

where, µ2 is the second moment of the P (n), the probability distribution

of the number of edges and a, a system-constant, is a measure of nearest
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neighbour correlation that depends on the topology. Generally, in biological

structures, a is in the order of 1 [138,139]. The second moment is defined as

µ2 =
∑
n

P (n)(n − 〈n〉)2, where,〈n〉 is the average with respect to the same

distribution, P (n), and whose variance, var(n) = (〈n2〉 − 〈n〉2) is a measure of

topological disorder. However, for finite networks with 〈n〉 6= 6, the topological

model yields the relation,

nm(n) = (〈n〉 − a)n+
[
〈nm(n)〉 − 〈n〉2 + 〈n〉a

]
(4.5)

Figure 4–14: Aboav-Weaire law for 2D topology. A linear relation between the
mean cell sides to the neighbouring cell sides for a random cellular structure.
The upper 3 equations in bold represent FECVT models and the lower 3
equations represent PVT models.

A wide range of experiments conducted on various natural structures

have demonstrated that their cellular geometries obey the above correlations

[135, 138–140]. In Figure 4–14, the tessellated models for both the FECVT

and PVT methods display a linear relationship between the mean sides of the

polygonal cells and the surrounding cells. The variation of mean cell sides can
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be completely explained by the polygons side since coefficient of determination

R2, is 1.For the FECVT models, a ≈ 1, whereas for the PVT models, a ≈ 1.4.

The parameter a quantifies the deviation of the slope from the average number

of sides. Hence, the FECVT method is apparently an appropriate tool for

generating virtual models of plant tissues.

Figure 4–15: Relations between the average area of cells and the number of
polygon sides for the FECVT and PVT models. The linear relationship between
cell size (area) and shape, stated in Lewis’s law, holds true for biological tissues
and various cellular networks.

Another useful statistical measure, Lewis’ law, states that the average

area of a polygon with n sides 〈An〉 should be a linear function of the number

of sides n, which holds true for various cellular networks and biological tissues

[135,136,141–143],

〈An〉 = 〈An〉 [1 + λ (n− 6))] n ≥ 3 (4.6)

where λ is a constant and usually, λ = 1/4 for a Voronoi tessellation [144].

Mombach et al. [145] investigated five different epidermal vegetable tissues
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and found the values of λ in the range of 0.16− 0.23. Figure 4–15 shows the

correlation between the sizes and shapes of the cells for the FECVT models

and the corresponding PVT models. In the virtual tissues (Voronoi models)

generated by both the methods, as expected, the average area 〈An〉 of the

n sided cells varies monotonically with varying n. In the FECVT models, λ

varies from 0.18 to 0.37, whereas in the PVT models, λ varies from 0.24 to

0.48. Speculatively we can say, λ is influenced by the dispersion of cell areas as

well as the number of cells. The values of λ for the FECVT models are close

to its usual value [144].

Topologically, the shape of the Voronoi polygons is considered to be random

variable. The polygons cannot be defined and distinguished by their sizes or

any other metric measures alone. For this reason, we can use topological

entropy as a measure of randomness, i.e., a statistical measure of a disordered

pattern. The topological entropy, St, is defined as St = −
∑
n

p(n)ln(pn), where

St ≥ 0 and pn is the probability of finding n−sided polygons within a Voronoi

diagram. For perfectly regular and periodic patterns, the topological entropy

is zero. It increases with the increasing randomness of the polygons in a region

of interest [43]. The image entropies of the collenchyma and parenchyma

tissues are 1.82364 and 1.84739, respectively, while the corresponding FECVT

models’ entropies are 1.73274 and 1.76854, respectively. In contrast with

FECVT, the PVT models’ entropies are 1.68957 and 1.70265, respectively.

The image entropy is calculated from a greyscale image derived from a color

micrograph. The entropic variation between the image and its model is partly

due to the conversion of the image to greyscale and also to the original quality

of the micrograph. For the high magnification wedge-shaped micrograph,

the image entropy and FECVT model entropy are closer to each other. Cell

boundaries tend to appear sharper under higher magnification, which allows the
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corresponding FECVT model to be as random as the natural microstructure.

In case of the whole tissue (collenchyma-parenchyma) tissue, the image entropy

and the corresponding FECVT and PVT models entropies are 1.81623, 1.79045,

and 1.74398, respectively. However, for all the tissues, FECVT model entropies

are close to the corresponding image entropies comparing with PVT models.

These statistical analyses demonstrate the applicability of the FECVT method

to a range of different tissue microstructures. In a nutshell, the accuracy of

the model in capturing the microstructure is highly dependent on the quality,

resolution and magnification of the micrograph.

4.8 Summary

The chapter focuses on the generation of Voronoi model that can

realistically capture the microstructure of plant tissues. To demonstrate

the effective application of the FECVT method, three distinct and complex

non-periodic structures displaying graded cellularity have been modeled. The

geometric representation of a tissue can enhance our understanding of how

microstructure determines mechanical properties. The fidelity of the prediction

FECVT models are assessed and partially validated by topological laws as well

as experimental data and compared with PVT models. A number of statistical

and topological analyses manifest the appropriateness of the FECVT method

in modeling plant tissues.

The FECVT method can be used to capture the microstructure of any

shape, in which the tissues display complex heterogeneity and graded cellularity.

The use of an edge detection algorithm augments the ability of the FECVT

method to represent these types of geometries. The model can be generated

using MATLAB without the assistance of any other image processing software

and can be integrated directly with FEA software (ANSYS) without the need

for pre-processing. Additionally, the FECVT method can generate a model

63



with finite edges, making it easier to study the mechanics of the structure

using finite element analysis. The geometric models are representative of

the structures they mimic and allow us to computationally model the elastic

properties, will be described in next chapter, of a cellular tissue with higher

accuracy.
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CHAPTER 5
Finite Element Analysis and Effective Stiffness of Tissues

5.1 Overview

This chapter describes the finite element analysis (FEA) of the collenchyma

and parenchyma tissues, generated by the finite edge centroidal Voronoi

tessellation (FECVT), of the model plant. Coupling the cellular microstructure

(geometric representation) and cell wall (material) properties, the effective

stiffness of the tissues is obtained by using a numerical homogenization

technique via detailed finite element analysis of the models of sub-regions

of the tissues. Since the microstructures of the tissues are highly random,

a representative volume element (RVE) would not have been effective to

capture the extensive randomness observed in the tissue. Hence, a stochastic

approach has been adopted in this work to obtain the characteristic apparent

tissue stiffness. The statistical volume element (SVE) is, therefore, considered,

as opposed to a large-scale RVE. The finite element analysis of FECVT

models—the SVEs—are conducted in ANSYS. With appropriate boundary

conditions, the FEA can capture the random microstructural variations and

determine the apparent (homogenized) stiffness of the FECVT models. This

chapter provides the apparent/effective stiffness of the tissues and their

combination. The results yield insight into the effect of cell size and the

graded cellularity of the tissue stiffness.

5.2 Finite Element Modeling for Homogenized Tissue Properties

Although the mechanical properties of a random microstructure can

be determined by using direct numerical simulation, this strategy is

computationally expensive to apply throughout the whole domain. Instead,
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the homogenized/effective properties of a material with random microstructure

can be obtained from an RVE, which avoids the use of a large scale direct

numerical simulation [146,147]. The RVE contains the essential microstructural

features and has been widely used to compute the effective material properties

of heterogeneous and composite material having microstructural irregularities

such as grains, inclusions, voids, fibers and others. An appropriate RVE needs

to be (a) spatially invariant and large enough to represent the microstructural

variability, and (b) representative of a microstructure that is typical of the entire

microstructure [148]. Since the intrinsic non-homogeneity in the constituent

tissues of the rhubarb petiole is highly random, it is not viable to capture the

heterogeneity with a single FECVT model because the requirement of the RVE

size, being infinite, is neither practical nor desirable, and the simulation of

such a large RVE may suffer from a heavy computational burden [149,150].

In the present analysis, to overcome the limitations of the RVE approach

and to address the effect of microstructural variability in the constitutive tissue

properties, the concept of SVE is adopted. The size of the SVE is smaller

than a conventional RVE, but larger than the microstructure characteristic

length scale [151]. Hence, each of the FECVT models of a particular tissue

should correspond to the respective SVE for the numerical simulation so as

to capture the microstructural randomness present in the tissue. To obtain

the effective/homogenized mechanical properties, the numerical simulation of

compressive deformation in each SVE is performed by finite element analysis.

The stochastic approach of using several SVEs better captures the overall

randomness present in a tissue.

5.2.1 Construction of the Finite Element Model

The geometric information of the FECVT model (i.e., SVE) is transferred

to ANSYS, and the model is reconstructed using ANSYS Parametric Design
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Language (APDL). In the finite element model, the cell walls are considered

to be straight and of uniform thickness throughout the generated model. The

relative density of a given model is specified by assigning the appropriate cell

wall thickness. The constitutive behavior of the wall material is assumed to

be elastic-perfectly plastic according to J2 plasticity theory. Each cell wall

of the Voronoi microstructure is modeled with a BEAM23 element, which is

capable of modeling both elastic and plastic behavior. The shear deformation,

which is important for stubby beams, also is captured by considering the

shear deflection coefficient of the beam element. The beam elements have a

rectangular cross-section of uniform thickness t. The relative density, ρ∗/ρs of

the SVE, is given by

ρ∗

ρs
=

area of solid walls

total area of a V oronoi model
= t

N∑
i=1

li

LXLY
(5.1)

where N is the total number of beams, li is the length of the beam i ; LX and

LY are the dimensions of the Voronoi model along X and Y axes, respectively.

The FEA is conducted for different relative densities, adjusted by the value

of t. In the finite element analysis, a Young’s modulus Es = 1 is assigned to

each beam to obtain the normalized tissue stiffness. To present the FE results

in non-dimensional form and to facilitate the loading condition, the value of

Young’s modulus is only chosen for convenience. The finite element model

accounts for the appropriate loading and boundary conditions, as explained in

the following section.

5.2.2 Loading and Boundary Condition

One of the most important aspects of using the FEA is the decision

about the most suitable boundary conditions. The best boundary condition

should lead to the average global behavior for the 2D FECVT models and
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avoid any localized deformation near the mesh boundaries. Three types of

boundary conditions (BC) generally imposed by the FEA are the (1) periodic

boundary condition, (2) prescribed displacement boundary condition, and

(3) mixed boundary condition [20, 152]. The periodic boundary condition

assumes that the corresponding nodes on the opposite beams or struts of

the mesh have the same expansion or compression in the normal directions,

the same displacements in the other directions, and the same rotations in

all directions. Since the microstructures of the tissues (and corresponding

FECVT models) are not periodic, the periodic boundary condition is not

appropriate for use in the current analysis. On the other hand, the prescribed

displacement boundary condition enforces very strong constraints and is usually

used with problems related to plastic deformation. The mixed boundary

condition enforces the normal displacement, which eliminates the tangential

force and the bending moments at the nodes on the boundaries. Since the mixed

boundary condition tends to underestimate the Young’s modulus [20, 152], the

displacement boundary condition has been selected here as it was proved to be

appropriate for the analysis of non-periodic microstructures for uniaxial and

biaxial loading cases [11,12,55,153,154].

To determine the effective Young’s modulus, the uniaxial compression

load with prescribed displacement is simulated in both X and Y directions. A

uniaxial compressive strain along the X axis is imposed on the nodes of the

right edge, while the nodes at the left edge are constrained from translating in

this direction as shown in Figure 5–1(a). The nodes of the bottom edge also

are constrained from translating in the Y direction to prevent the rigid body

motion. Similarly, uniaxial compression along Y axis also is performed (Figure

5–1[b]). In both cases, the nodes are constrained from rotating in the X − Y

plane. To determine the effective shear modulus as shown in Figure 5–1(c),
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a biaxial loading test has been simulated with a positive displacement in the

X direction and a negative displacement in the Y direction. The results have

been computed for the alternative values of relative densities for the prescribed

boundary condition.

Figure 5–1: Simulated tests for determining the effective stiffness properties.

5.2.3 Determination of the Effective Stiffness Properties

For each model with a given relative density, the effective Young’s modulus

E∗,and effective shear modulus G∗
XY are determined. The macroscopic stress

σ∗ is calculated from the global reaction forces of the structure in the loading

direction. The sum of the nodal reaction forces is divided by the edge length

to determine the average normal stress in the loading direction. The strain

ε∗ is determined based on the technique of gage lines introduced by Silva [12]

so as to eliminate the end effects. The displacement at each location, where

the gage line intersects a cell wall, is computed using a linear interpolation of

the displacements of the two adjacent nodes. For a given pair of gage lines,

the normal strain is computed as the change in distance between the gage

lines divided by their original distance. The shear strain is computed as the

change in the angle between the gage lines oriented at 45 ◦ with respect to the

coordinate axes. Nevertheless, the computed elastic constants for any model

may vary by several percent, depending on the location of the gage lines.
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5.3 Experimentally Determined Tissue Stiffness

The stiffness of parenchyma tissues is experimentally determined and

later compared with the tissue stiffness obtained via computation. Cubes

of parenchyma tissue were cut using a potato chipper and a knife, and their

dimensions were measured with digital calipers. The cubes were placed between

two glass plates and tested in compression using a Micro EP miniature UTM

(ADMET) fitted with a 10 lb load cell. Data were sampled and acquired at

100Hz using an MTESTQUATTRO system from ADMET. The stiffness of the

parenchyma tissue was found to 4.87 (SD 0.73) MPa and 4.36 (SD 1.47) MPa

for the basal and apical location, respectively.

5.4 Computational Results and Discussion

The normalized stiffness properties of the collenchyma, parenchyma, and

combined collenchyma and parenchyma (col-par) tissues are approximated by

using the FEA of the respective FECVT models—the SVE. The finite element

analyses of the SVEs determine the average stiffness of the corresponding

tissues. The FECVT model captures the cellularity present in the tissue

microstructure, which in turn is used in the FEA.

5.4.1 Effective Stiffness of Collenchyma Tissue using the FEA

The FECVT models of the collenchyma sections are simulated in ANSYS

to determine the effective tissue stiffness. Each of the FECVT models is

simulated for a set of relative density, varying from 5% to 30%. Figure 5–2

shows the nodal displacements of the model tissue for 15% relative density,

with compressive strain along X and Y directions. The microstructure in the

X direction is less stiff than that in the Y direction. The microstructural

anisotropy of the plant tissue originates from the cellular distribution.
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(a) Nodal displacement along X direction (b) Nodal displacement along Y direction

Figure 5–2: Nodal displacement of FECVT model of collenchyma tissue under
uniaxial displacement BC [18](a) X component of nodal displacement (b) Y
component of nodal displacement.

Figures 5–3(a) to 5–3(c) represent the variability of the computed stiffness

with one standard error. The variations of the shear moduli are significant

compared to the Young’s moduli of the FECVT models at varying density.

(a) Young’s modulus along X− axis (b) Young’s modulus along Y− axis

(c) Shear modulus

Figure 5–3: Variability of the mean stiffness of the FECVT models of
collenchyma tissue for varying relative density with one standard error.
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Figure 5–4: Normalized moduli of the FECVT model of collenchyma tissue.

The normalized effective stiffness of the FECVT model along the Y

direction is around 15% to 25% higher than that of the FECVT model along the

X direction for the range of density considered here (Figure 5–4). The variation

reflects the stiffening effect of the cell shape, size, and cellular distribution, and

also depicts the anisotropic behavior of the collenchyma tissue of the rhubarb

petiole. Figure 5–5 depicts the variability of the Poisson’s ratio, ν∗XY and

ν∗Y X , of the FECVT model of the collenchyma tissue. However, the effective

Poisson’s ratios, ν∗XY and ν∗Y X , exhibit no difference within the range of relative

density (Figure 5–6).

(a) Poisson’s ratio ν∗XY (b) Poisson’s ratio ν∗Y X

Figure 5–5: Variability of mean Poisson’s ratio of the FECVT models of
collenchyma tissue for varying relative density with one standard error.
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Figure 5–6: Effective Poisson’s ratio of the FECVT model of collenchyma
tissue.

5.4.2 Apparent Stiffness of Parenchyma Tissue using the FEA

The FECVT models of the parenchyma sections also are simulated for

the range of relative density, 0.05 ≤ ρ∗/ρs ≤ 0.30, in ANSYS to determine

the effective tissue stiffness. Figure 5–7 shows the nodal displacements of

model tissue for 15% relative density, with compressive strain along X and

Y directions. The microstructure in the Y direction is less stiff than that in

the X direction, whereas the collenchyma is less rigid in X direction; this

indicates that the microstructural anisotropy of the parenchyma tissue displays

an opposite behavior compared to the collenchyma tissue.

Figures 5–8(a) to 5–8(c) represent the variability of the computed stiffness

with one standard error. Similar to the collenchyma tissue, the variations of the

shear moduli are significant compared with the Young’s moduli of the FECVT

models at varying relative density.

The normalized effective stiffness of the parenchyma FECVT model along

the X direction is an average of 15% higher than that of the FECVT model

along the Y direction for the range of density considered here (Figure 5–9). The

clustered and graded cellularity of the vascular bundle stiffens the parenchyma
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(a) Nodal displacement along X direction (b) Nodal displacement along Y direction

Figure 5–7: Nodal displacement of FECVT model of parenchyma tissue under
uniaxial displacement BC (a) X component of nodal displacement (b) Y
component of nodal displacement.

tissue in X direction compared to Y direction. Along with the higher gradient

in clustered regions, the cell size and cellular distribution lower the stiffness

(a) Young’s modulus along X− axis (b) Young’s modulus along Y− axis

(c) Shear modulus

Figure 5–8: Variability of the mean stiffness of the FECVT models of
parenchyma tissue for varying relative density with one standard error.

74



Figure 5–9: Normalized moduli of the FECVT model of parenchyma tissue.

of the parenchyma tissue compared to the collenchyma tissue. Figure 5–10

depicts the variability of the Poisson’s ratios, ν∗XY and ν∗Y X , of the FECVT

model of the parenchyma tissue. However, the effective Poisson’s ratios, ν∗XY

and ν∗Y X , of the FECVT model of the parenchyma tissue exhibit an average

of 15% difference within the range of specified relative density (Figure 5–11).

From a structural point of view, the micro-architecture of the parenchyma

tissue seems to be the origin of this variation.

(a) Poisson’s ratio ν∗XY (b) Poisson’s ratio ν∗Y X

Figure 5–10: Variability of mean Poisson’s ratio of the FECVT models of
parenchyma tissue for varying relative density with one standard error.
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Figure 5–11: Effective Poisson’s ratio of the FECVT model of parenchyma
tissue.

5.4.3 Apparent Stiffness of Collenchyma-Parenchyma (Col-Par)
Tissue using the FEA

Since the overall stiffness of a plant petiole or stem depends on the

constituent tissues as a whole, the stiffness properties of the collective tissues

also are analyzed in this section. To capture the cumulative effect of both

the collenchyma and parenchyma (col-par) tissue, the FECVT models of the

combined tissue sections also are simulated in ANSYS for the range of relative

density, 0.05 ≤ ρ∗/ρs ≤ 0.30, to determine the normalized tissue stiffness.

Figure 5–12 displays the nodal displacements of the col-par FECVT model for

15% relative density, with compressive strain along the and directions. The

displacements along both directions are close to same order of magnitude for

the cellular distribution in the combined tissue.

Figures 5–13(a) to 5–13(c) represent the variability of the computed

stiffness with one standard error. An expected trend of variability, similar to

the collenchyma and parenchyma tissue, is observed for the combined tissues

(Figure 5–14).
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(a) Nodal displacement along X direction (b) Nodal displacement along Y direction

Figure 5–12: Nodal displacement of FECVT model of col-par tissue under
uniaxial displacement BC (a) X component of nodal displacement (b) Y
component of nodal displacement.

(a) Young’s modulus along X− axis (b) Young’s modulus along Y− axis

(c) Shear modulus

Figure 5–13: Variability of the mean stiffness of the FECVT models of combined
collenchyma-parenchyma tissue for varying relative density with one standard
error.

The combined effect of the collenchyma and parenchyma tissue is different

than the individual tissues. The normalized effective stiffness of the col-par
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Figure 5–14: Normalized moduli of the FECVT model of combined collenchyma
-parenchyma tissue.

FECVT model is nearly similar (an average of 4% higher along the X direction)

along both theX and Y directions throughout the relative density considered

here (Figure 5–14). The overall effect of the combined tissues results in

approximately equal stiffness. Nevertheless, the effective Young’s moduli and

shear modulus of the combined tissues are in-between the individual tissues.

The Poisson’s ratios, ν∗XY and ν∗Y X , of the FECVT model of the combined

tissues also exhibit a difference between the ratios (Figure 5–15 and 5–16).

(a) Poisson’s ratio ν∗XY (b) Poisson’s ratio ν∗Y X

Figure 5–15: Variability of mean Poisson’s ratio of the FECVT models of
col-par tissue for varying relative density with one standard error.
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Figure 5–16: Effective Poisson’s ratio of the FECVT model of combined
collenchyma-parenchyma tissue.

The normalized stiffness of the individual tissues and their combination

provides insight into the effect of cell size, shape, and cellular distribution with

clustered and complex higher area gradient present in the rhubarb petiole. The

analyses presented in these sections have manifested the micro architectural

effect of constituent tissues.

5.4.4 Comparison of the Normalized Stiffness of Various Tissues

The normalized stiffness of the FECVT models are compared to the

stiffness of a randomly generated Voronoi model, and the stiffness calculated

from closed-form expressions available in literature for periodic cellular

materials and used for plant tissue modeling [12]. However, this assumption

is oversimplified and not well representative of the real random cellular

distribution of plant tissue. These formulas are obtained with an isotropic

periodic cellular model that has a hexagon as a unit cell and are given in

Appendix C. On the other hand, the random Voronoi model is generated for

a set of uniformly distributed points. Figure 5–17 shows a regular hexagonal

unit cell and the randomly generated Voronoi model.
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(a) (b)

Figure 5–17: (a) Hexagonal unit cell (b) Randomly generated Voronoi model
for uniformly distributed points.

The normalized stiffness of the FECVT models of collenchyma,

parenchyma, and combined collenchyma-parenchyma tissues; randomly

generated Voronoi model; and the hexagonal unit cell are shown in Figure 5–18.

The FEA of the random Voronoi model shows an average of 8% and 6% higher

axial and shear modulus, respectively, compared to the closed-form solutions

obtained for the unit cell shown in Figure 5–17(a). The results of the moduli

are in agreement with those presented by Gibson et al. [10, 12]. For a given

set of relative density, the normalized effective elastic moduli of the different

models at X and UY directions are shown in Figures 5–18(a) and 5–18(b).

With respect to relative density, 0.05 ≤ ρ∗/ρs ≤ 0.30, the FECVT models of

the rhubarb tissues exhibit nearly equal stiffness, which is 31% to 40% less rigid

than the randomly generated Voronoi model, and 29% to 35% less stiff than

the periodic unit cell along the X direction. On the other hand, the stiffness

of the FECVT models of the rhubarb tissues varies along the Y direction.

Along this direction, for relative densities varying between 5% to 30%, the

collenchyma FECVT model is 20% to 39% less stiff than the random Voronoi
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(a) Normalized modulus along X− axis

(b) Normalized modulus along Y− axis

(c) Normalized Shear modulus

Figure 5–18: Comparison of the normalized modulus of the FECVT models
of the different constituent tissues to random Voronoi and hexagonal unit cell
models.
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model and 15% to 35% less rigid than the unit cell model; the parenchyma

FECVT model is 22% to 47% pliant than the random Voronoi model and 19%

to 44% less stiff than the unit cell model. The col-par FECVT model is 18%

to 39% more compliant than the random Voronoi model and 24% to 33% than

the unit cell model. Similarly, the shear moduli of the FECVT models are

considerably lower than both the random Voronoi and unit cell models. The

shear modulus of the collenchyma FECVT model is 30% to 57% less rigid than

the randomly generated Voronoi and hexagonal unit cell model. However, the

FECVT models of the parenchyma and combined collenchyma-parenchyma

tissues much less stiff than the random Voronoi and the unit cell models.

To generate the Voronoi tessellation, a uniform distribution of points

has been imposed. Hence, the randomly generated Voronoi model displays a

uniform cell size, a factor that influences the stiffness properties as shown in

Figure 5–18. In the FECVT model, both the shape and size of the cells vary

significantly with respect to the random Voronoi model and the hexagonal cell

model. Therefore, the shape and size of the cells affect the normalized stiffness,

which varies with density. The variation of the stiffness of the different FECVT

models along the X and Y direction reflects the stiffening effect of the cell

shape, size, and cellular distribution. Nonetheless, since the FECVT model

contains smaller cells than those of the actual tissue, the stiffness could be

overestimated. In addition, the short cell walls modeled by the beam element

may impose superfluous stiffness.

Figure 5–19 depicts the effective Poisson’s ratios for the FECVT, random

Voronoi, and hexagonal unit cell models. The finite element analyses of the

different FECVT models and random Voronoi models exhibit a marginal

difference between the Poisson’s ratio of ν∗XY and ν∗Y X . The Poisson’s ratios of

the FECVT, and the random Voronoi model are weakly dependent on relative
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density, and the micro-architecture of the tissue weakly affects the Poisson’s

ratio.

Figure 5–19: Comparison of effective Poisson’s ratio of the FECVT models of
the different constituent tissues to random Voronoi and hexagonal unit cell
models.

5.4.5 Computational Stiffness of the Constituent Tissues of the
Rhubarb Petiole

The effective stiffness of the cellular tissue can be obtained based on the

computed wall stiffness described in Chapter 3. The effective axial and shear

moduli of the collenchyma tissue vary between 9.2 ∼ 36.3 MPa and 2.3 ∼ 10.8

MPa, respectively. The axial stiffness of parenchyma tissue lies between 13.2

and 19.6 MPa and the shear modulus is approximately 6.7 MPa. However, the

experimental stiffness of the fresh parenchyma tissue is approximately 5 MPa,

which is considerably lower than the computed stiffness of the respective tissue.

The stiffness of the cell wall of the collenchyma and parenchyma tissues are

obtained by using typical cell wall configurations. Instead of using the generic

composition of the dicotyledonous plant cell wall, the volume fractions and

microfibril angle (MFA) of the model plant should be determined experimentally,

so the corresponding computational stiffness would be more representative and
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close to the actual tissue stiffness. Nevertheless, the computational stiffness of

the parenchyma and collenchyma tissues provides a theoretical stiffness range

for the constituent tissues.

5.5 Summary

In this chapter, the finite element analysis is used to assess the tissue

properties of the rhubarb petiole, whose cellular microstructures have been

modeled by using the FECVT algorithm presented in the previous chapter.

Instead of a large scale RVE, the statistical volume elements, the FECVT

models, of the tissue are considered to facilitate the FEA. The finite element

analysis of the SVEs depicts the impact of complex heterogeneity and graded

the cellularity in the tissues. The cell shape, size, and cellular distribution of

the collenchyma and parenchyma tissues are shown to have a different impact

on their respective normalized stiffness properties. The collenchyma tissue is

found to be stiff along the Y direction, whereas the parenchyma tissue is stiff in

the X direction. The axial stiffness of the combined tissue, on the other hand,

is similar in both directions. The shear modulus of the collenchyma tissue

also is higher compared to the parenchyma tissue, and is in-between for the

tissues as a whole. By comparing these results with the randomly generated

Voronoi and hexagonal unit cell models, a clear inference can be made that the

cellularity in the rhubarb tissues make them more compliant. The apparent

elastic properties of the constituent tissues will be used in Chapter 6 to create

a theoretical stiffness map for the bending and torsional stiffness of the model

plant.
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CHAPTER 6
Flexural and Torsional Stiffness of Rhubarb Petiole

6.1 Overview

This chapter both computationally and experimentally examines the

overall (macroscale) bending and torsional stiffness of the rhubarb petiole

to characterize its compliance. In this chapter, the irregular cross-sectional

shape of the petiole and the two layers of the constituent tissues are considered

to evaluate the stiffness properties at the structural level. The arbitrary shape

contour of the model plant rhubarb is generated by the Gielis superformula,

which can produce a complex biological shape with reasonable accuracy. The

stiffness and architecture of the constituent layered tissues are considered

and modeled by using the concept of shape transformers so as to obtain the

computational twist-to-bend ratio for the petiole. Additionally, structural

efficiency maps displaying domains for bending and torsional stiffness also are

generated to accommodate the experimental data for flexural and torsional

stiffness of the rhubarb petioles. The maps may be a source of inspiration for

biomimetic design, since they help to provide insight into the efficiency of the

biological beams described by the different tissues properties, geometry, and

turgidity.

6.2 Arbitrary/Irregular Shape and its Geometrical Properties

The shapes of biological organs are often asymmetric and difficult to

capture. Since their geometry influences the overall mechanical properties of

the organs, it is necessary to model their shapes and geometrical properties

with considerable accuracy.
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6.2.1 Gielis Parametrization

The capturing of the shapes of biological organisms and organs is an

essential step to determine the stiffness properties, such as bending and torsional

stiffness, of plant petioles. Circular, spherical, and cylindrical shapes and forms

are observed occasionally in nature, whereas plant stem, petiole, and leaves

often display a complex form in their adaptation to nature to provide mechanical

support against the weight of the leaf and against environmental factors, such

as rain and wind, resisting both bending and twisting load. Even though these

asymmetric and complex shapes are mathematically difficult to represent, they

can be interpreted as modified polygons, which are referred to supershapes [64].

The square and circle, rectangle and ellipse all belong to the family of

Lamé curves [155], which are known as superellipses, and defined by

|x/a|n + |y/a|n = 1 (6.1)

The superellipses can be divided into four quadrants only, a drawback for

modelling asymmetric shape. Due to this limitation, the superellipses are

not capable of generating a wide range of natural shapes, which are often

far from being regular. Therefore, by using polar coordinates, the Gielis

parametrization of the Lamé curves [64] has been introduced to redefine their

formulation for biological cross-sectional shapes. This strategy enables the

accurate representation of natural forms, which can be divided into a number

of sectors equal to m using Equation (6.2), and is used here to capture the

last order of hierarchy of the petiole, i.e., the arbitrary shape contour. With

respect to the polar coordinates, the radius r (φ)—a Gielis curve—is given by

r = f(φ)
1

n1

√(
| 1
a

cos( 4
m
φ)|
)n2 +

(
|1
b

sin( 4
m
φ)|
)n3

(6.2)
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where the parameters a and b control the scale, m represents the number of

rotational symmetries, and n1, n2, and n3 are the shape coefficients. The

parameter n1 determines the sharpness or the flatness of corners and the

convexity of the sides. The parameters n2 and n3 determine whether the figure

is circumscribed or inscribed. If n2, n3 > 2, the figure is circumscribed i.e., a

super-polygon; and if n2, n3 < 2, the figure is inscribed i.e., a sub-polygon in

the unit circle [64].

6.2.2 Geometric Properties of Irregular Shape

The topmost order of the structural hierarchy of the petiole shown in

Figure 1–1 resembles the actual shape of the organ and is modeled by Gielis

parametrization. To determine flexural and torsional stiffness, various geometric

properties such as the area and second moment of area of the Gielis curve need

to be calculated. Due to the irregular shape contour, the geometric quantities

cannot be calculated with closed form expressions. Therefore, the domain

integral is first transformed into the line integral by using Green’s theorem.

Then, the integral is computed using quadratic elements that represent the

coordinates over the boundary. The procedure produces exact formulas for

the shapes enclosed by boundaries that can be represented by 1st or 2nd order

polynomials. The integrals are used to compute the area and inertial properties.

Figure 6–1 shows a two dimensional arbitrary domain in the x− y plane with

a continuous piece-wise boundary.

The geometric and inertial properties of the domain can be obtained by

integrating the following integrals:

A =

∫∫
dxdy (6.3a)

Ax =

∫∫
ydxdy (6.3b)
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(a) (b)

Figure 6–1: (a) 2-Dimensional arbitrary area with irregular interior and exterior
boundaries (b) Discretization of interior and exterior boundaries.

Ay =

∫∫
xdxdy (6.3c)

Ixx =

∫∫
y2dxdy (6.4a)

Iyy =

∫∫
x2dxdy (6.4b)

Ixy =

∫∫
xydxdy (6.4c)

x̄ =
Ax
A

(6.5a)

ȳ =
Ay
A

(6.5b)

where A is area, Ax is the moment of area about the x−axis, Ay is the first

moment of area about the y−axis, Ixx is the second moment of area about the

x−axis, Iyyis the second moment of area about the y−axis, Ixy is the product

of inertia, and x̄, and ȳ are the centroid of the given domain. Each one of the

preceding integrals can be written in one of the following forms:

I1 =

∫∫
∂F1

∂x
dxdy (6.6a)

I2 =

∫∫
∂F2

∂y
dxdy (6.6b)
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I2 =
1

2

∫∫ (
∂F1

∂x
+
∂F2

∂y

)
dxdy (6.6c)

where F1, x, xy, x
2
/

2, xy2, x3
/

3, and x2y
/

2 for A,Ax, Ay, Ixx, Iyy, and Ixy

respectively. The expressions for F2 can be obtained in the same manner.

Substituting the integrals of the Equations (6.3) to (6.5) in each one of the

three forms given by Equation (6.6) and using the well-known Green’s theorem

for transforming domain to boundary integrals, the following equations are

obtained for each case:

A1 =

∮
xdy A2 = −

∮
ydx A3 =

1

2

∮
(xdy − ydx) (6.7)

(Ax)1 =

∮
xydy (Ax)2 = −1

2

∮
y2dx (Ax)3 =

1

2

∮ (
xydy − 1

2
y2dx

)
(6.8)

(Ay)1 =
1

2

∮
x2dy (Ay)2 = −

∮
xydx (Ay)3 =

1

2

∮ (
1

2
x2dy − xydx

)
(6.9)

(Ixx)1 =

∮
xy2dy (Ixx)2 = −1

3

∮
y3dx (Ixx)3 =

1

2

∮ (
xy2dy − 1

3
y3dx

)
(6.10)

(Iyy)1 =
1

3

∮
x3dy (Iyy)2 = −

∮
x2ydx (Iyy)3 =

1

2

∮ (
1

3
x3dy − x2ydx

)
(6.11)

where the line integration over the exterior boundary is counter clockwise, and

clockwise for the interior boundary as shown in Figure 6–1(b). The boundary is

discretized by N number of nodes and intervals. The integration is performed

over those intervals, and summing up the sub-integrals yields the desired area

and inertial quantities. The discretized numerical boundary approximation is

given in Appendix D. The area and inertial quantities are used to determine

the flexural and torsional stiffness, where the effect of the cross-section plays

an important role, as described in the next section.
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6.3 Determination of Flexural and Torsional Stiffness using the
Shape Transformers Method

The importance of the shape of engineering structures has been investigated

using different methods [156–159]. To gain insight into the shape performance

of engineering and natural structures, the shape transformers method was

introduced [21, 160–162]. The concept is based on the geometry of the

cross-section, which is described by two distinct contributions. The first

is related to the size of the cross-section, whereas the second is the shape. The

size is defined by a rectangle with the main dimensions of the cross-section

and is referred to as the envelope D, as shown in Figure 6–2. S represents the

shape of the cross-section enclosed in D, and its properties are dimensionless.

Figure 6–2: The constituents of a cross-section: shape and envelope.

The effect of the cross-section, multi-layered tissues, and cellular

structuring within the tissues can be captured by using the method of shape

transformers. With this method, a geometric quantity of a cross-section is

normalized by the same geometric quantity of the surrounding envelope, which

is a rectangle. Hence, the dimensionless shape transformers, ψg, of the geometric

quantities, g, of a cross-section is defined by

ψg =
g

gD
(6.12)
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where gD is the geometric quantity of the envelope. For example, the shape

transformers for area, the second moment of area (moment of inertia) about

the x−axis, and the torsional constant can be defined as

ψA =
A

AD
(6.13a)

ψIxx =
Ixx
IDxx

(6.13b)

ψJT =
JT
JDT

(6.13c)

(a) (b)

Figure 6–3: (a) An ideal cross-section structure (b) Structural hierarchies of a
petiole. (Adapted from Pasini [22]).

To describe the structuring effect of a material, an idealized example can be

examined as shown in Figure 6–3(a). This figure shows four hierarchical levels

of a cross section, where the elements are assumed to be continuous at each

order of hierarchy. At the order 0, the material M0 is considered to be uniform

and shapeless. When shaped, M0 becomes a solid circular two-dimensional

structure. During this process, M0 is conferred with geometrical properties g1

and M1, i.e., the shaped material at order n = 1, and M1 inherits properties

M0g1. The scheme of shape transformers, ψg, for instance, can be applied to
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the bending stiffness [21,66,160]. The effective flexural property E1 at the first

order of hierarchy is obtained by normalizing E0I1 with the envelope property

ID1 and is expressed as

E1 = E0
I1
ID1

= E0ψ
1
I (6.14)

At the following hierarchical order, the circular elements of the first order are

clustered together to form a hollow rectangular cross-section. Assuming that

the circular elements of the first order exhibit isotropic and uniform material

properties similar to the first level, the flexural property at the second order of

hierarchy can be expressed as

E2 = E1ψ
2
I = E0ψ

1
Iψ

2
I (6.15)

Therefore, the structure of two hierarchical orders is factored in by the shape

properties, which can lead to the determination of the effective material

properties. Further the structuring of the cells in the previous order results in

an effective Young’s modulus at the third hierarchical order and is expressed

as

E3 = E2ψ
3
I = E0ψ

1
Iψ

2
Iψ

3
I (6.16)

If the process repeats at the higher orders (of hierarchy), the effective Young’s

modulus at the nth order can be expressed as a ratio of effective material

properties:
En
E0

=
n∏
j=1

ψjI (6.17)

To factor in the overall structure size, En in Equation (6.17) can be rearranged

and substituted in the shape transformers expression of an Equation of

Mechanics E. M. [21, 66]. Hence, mass, flexural, and torsional stiffness can be
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expressed using the following relation:

E.M. = F ×M0 ×
n∏
j=1

Sj × gD (6.18)

where F represents the problem constant, gD is the geometric quantity of the

overall envelope, and S describes the shape properties at each hierarchical order.

The Equation (6.18) is valid for a single-layered material. For a multi-layered

structure consisting of different geometrical, material, and mechanical properties

at each layer, the overall properties of the layered architecture are the sum of

the properties of the integral layers.

The equation of mechanics can be applied to characterize the flexural and

torsional moduli of the petiole having multi-layered tissues. To characterize the

moduli of a multi-tissue system, the material properties of the layers, the shape

and size of the cross-section, and the architecture and number of layers are

considered as design variables. The model in the present work is based on the

assumption that a perfect bonding occurs between each layer. Although this

hypothesis is too unrefined to describe the real interfacial bonding between cells

and layers, it still fits the purpose of an approximate study of the constituent

materials, since it allows for finding limiting ideal bounds of the effective

properties. The strain at the interface between materials also is anticipated to

remain unchanged. It is assumed that flexural strain varies linearly along all

the layers without any discontinuity. On the other hand, only the stress varies

continuously within each layer, but discontinuously at the layer transition,

since each material has its own modulus.

A petiole beam of generic cross-sectional shape, S, subjected to a pure

bending moment, MB, per unit width may consist of multiple material layers

arranged with respect to the shape classes. The flexural stiffness and unit mass
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of the system can be shown in simplified form:

MB

c1
= ψIIDED (6.19)

m

l
= ψAADρD (6.20)

where c1 is the curvature of the beam.
MB

IDc1
= ED and

m

ADl
= ρD are the

effective properties of the beam, flexural modulus and density, respectively. To

express these properties as a function f () of the layer geometry, Lg, and their

materials, we assign to the ith layer, where i = 1, 2, 3, . . . k, Young’s modulus

Ei and the second moment of area Ii, and density ρi and area Ai, respectively.

Therefore, the geometry of the layer architecture can be expressed in terms

of the shape transformers of each layer, ψAi
and ψIi . Hence, the effective

properties of the system can be shown as

ED =
k∑
i=1

Ei
Ii
ID

=
k∑
i=1

Ei

∫
Ai

y2i dA

ID
=

k∑
i=1

EiψIi︸ ︷︷ ︸
f(Lg)

(6.21)

ρD =
k∑
i=1

ρi
Ai
AD

=
k∑
i=1

ρiψAi︸ ︷︷ ︸
f(Lg)

(6.22)

Coupled with the cross-sectional shape of the layer, the transformed flexural

modulus and density for the ith layer can be expressed as

ETlayer = ψIED = ψI︸︷︷︸
S

k∑
i=1

EiψIi︸ ︷︷ ︸
f(Lg)

(6.23)

ρTlayer = ψAρD = ψA︸︷︷︸
S

k∑
i=1

ρiψAi︸ ︷︷ ︸
f(Lg)

(6.24)
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If structured materials exist among the layers, their contributions can be

factored in by replacing En in Equation (6.17) with Ei in Equation (6.23)

ET =
k∑
i=1

(
E0

n∏
j=1

ψjI

)
ψIi (6.25)

Including the effect of materials layering, the Equation (6.18) can be generalized

in the following form:

E.M. = F ×M0 ×
k∑
i=1

(
E0

n∏
j=1

Sj

)
Si × gD (6.26)

This rationale can be used to evaluate the torsional stiffness and expressed as

JT =
k∑
i=1

(
J0

n∏
j=1

ψjJ

)
ψJi (6.27)

where JT is the torsional constant of the cross-sectional shape. The preceding

rationales can be used to evaluate the compliance of a petiole, resembling a

cantilever, under wind and gravity loads. Therefore, the twist-to-bend ratio of

a petiole with prescribed length and boundary conditions can be written as

EI

GJt
=

k∑
i=1

(
E0

n∏
j=1

ψjI

)
ψIi

k∑
i=1

(
G0

n∏
j=1

ψjJ

)
ψJi

IDn

JDn

(6.28)

where G is the shear modulus, Jt is the torsional constant of the cross-sectional

shape. The above effective properties can capture the multiscale effect of

changing the variables at different level of the structural hierarchy.

6.4 Experiments of Model Plant (Rhubarb) and Results

Since plant petioles and stems are soft compared to engineering materials

and are of non-uniform cross-section, the mechanical testing could not be

performed with a commercially available universal testing machine (UTM).

Hence, a customized testing apparatus was constructed in-house to conduct
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the mechanical tests. The experiments to determine the mechanical properties,

the flexural and torsional stiffness, of petioles were conducted with imported

rhubarb stalks from the Netherlands and USA. As mentioned earlier in Chapter

3, the freshness of the petioles was maintained by storing them below 4 ◦C

in plastic bags. The length of the petioles varied between 35 to 55 cm. A

distinctive/typical rhubarb petiole is shown in Figure 6–4. The rhubarb petiole

is roughly uniform throughout its length, but a slight variation in cross-sectional

shape is observed between the basal and apical locations.

Figure 6–4: A typical rhubarb stalk.

6.4.1 Measurement of Tissue Density

Cubes of parenchyma tissue were cut from the petioles using a potato

chipper and a knife. The dimensions of the cubes were measured with digital

calipers, and their weight was measured using a precise laboratory scale.

Strips of collenchyma and combined collenchyma and parenchyma tissues

were similarly cut, measured, and weighed. The densities of the tissues were

measured for a large number of samples to obtain statistically significant

results. Figure 6–5 shows a box and whisker plot of data from the density

measurement of collenchyma, parenchyma, and whole petiole. The upper and

lower boundaries of the box indicate upper (75th percentile) and lower (25th

percentile) quartile, whereas the internal black line indicates the median data

(density), and the thick white line represents the mean value (density). The

lines extending vertically from the boxes, known as whiskers, illustrate the

variability outside the upper and lower quartiles. The size of the box and
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Figure 6–5: Experimental measurement of the density of the constituent tissue
of the rhubarb petiole.

the spacing between the different parts of it indicate the dispersion/spread

of the measured data (density). The densities of the collenchyma vary to a

considerable amount in comparison with the parenchyma and complete tissues.

The population size of the collenchyma samples was less when compared to the

population size of other tissue types, which might causes the large dispersion.

Apart from that difference, a variation in parenchyma density along the length

of the petiole also was observed. The density of the parenchyma tissue is less

dense in the apical location than in the basal location.

The mean densities of the tissues are as follows:

• Mean parenchyma tissue density = 0.903 (SD 0.04) gm/cm3

• Mean collenchyma tissue density = 0.828 (SD 0.06) gm/cm3

• Mean collenchyma-parenchyma tissue density = 0.93 (SD 0.05) gm/cm3
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6.4.2 Measurement of Flexural Stiffness of Rhubarb Petiole

To measure the flexural stiffness of the rhubarb petiole, 15 (whole) petioles

were subjected to a three-point bending test by using the custom built apparatus

shown in Figure 6–6. Samples were placed on aluminium supports with a gauge

length of 287 mm, and force was applied to the center through a semi-annular

probe. Samples were loaded using a hand crank, and care was taken to maintain

a consistent speed throughout the test. Figure 6–6 demonstrates a three-point

bending test using the in-house apparatus.

Figure 6–6: Three-point bending test of a rhubarb petiole using the apparatus
built in-house.

After testing, a whole petiole was sampled at 5 points from basal to

apical along its length for cross-sectional geometry. The height and width were

measured using digital calipers, and hand-cut sections were imaged using a

digital camera. The outline of each section was drawn and scaled in AutoCAD,

which allowed us to calculate the geometric properties, such as area, A, and

second moment of area, Ixx, that helped us calculate the flexural stiffness of

the petioles. The box and whisker plot as shown in Figures 6–7 and 6–8 depict

the distribution of area and Ixx of the rhubarb petioles along the length.
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Figure 6–7: Experimental measurement of the lengthwise cross-sectional area
of the rhubarb petioles used in the bending tests.

Figure 6–8: Experimental measurement of Ixx of the lengthwise cross-sectional
shape of the rhubarb petioles in the bending tests.

99



Figure 6–9: Experimental stress-strain diagram from the three-point bending
test of a rhubarb petiole.

During the experiment, force and deflection were measured through a

10 lb load cell (Honeywell) and a linear potentiometer (Omega), respectively.

Data was sampled and acquired at 100 Hz using an MTESTQUATTRO system

from ADMET. The experimental stress and strain were calculated from the

load-deflection by using the required geometrical properties determined by

the CAD model. A distinctive stress-strain diagram is shown in Figure 6–9.

It is to be noted that the applied loads were within the elastic limit. The

experimental bending stiffness, EI, of the sample petioles were then obtained

from the geometric properties and stress-strain plots.

6.4.3 Measurement of Torsional Stiffness of the Rhubarb Petiole

To measure the torsional stiffness of the rhubarb petiole, 15 (whole) petioles

also were subjected to torsion tests using the apparatus built in-house as shown

in Figure 6–10. The sample rhubarb stalks varied between 270 to 310 mm in

length. Sample ends were fixed inside aluminium cylinders with cyanoacrylate

glue (Loctite, UK) and epoxy resin (Scotch-Weld, 3M). One cylinder was held
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in position, while the other was attached to a pulley. Torque was applied to

the pulley using a hand crank, and care was taken to maintain a consistent

speed throughout the test. Figure 6-9 shows the torsion test on the test bed.

Figure 6–10: Torsion test of a rhubarb petiole using the apparatus built
in-house.

After testing, the whole petioles were similarly sampled at 5 points from

basal to apical along their length for cross-sectional geometry. A similar

procedure to the one used on the bending samples was followed to measure

the geometric properties, area, A and torsional constant, JT , of the petioles in

torsion. The torsional constant was used to determine the torsional stiffness of

the rhubarb petiole. The box and whisker plot as shown in Figures 6–11 and

6–12 illustrate the statistical distribution of area and JT of the rhubarb petiole

along the length.
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Figure 6–11: Experimental measurement of the lengthwise cross-sectional area
of the rhubarb petioles used in the torsion tests.

Figure 6–12: Experimental measurement of JT of the lengthwise cross-sectional
shape of the rhubarb petioles in the bending tests.
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The force applied to the pulley line was measured using the 10 lb load

cell, and the corresponding angle of deflection was measured using a touch-less

rotary sensor (Novotechnik, Germany). Data were sampled and acquired at

100 Hz using the MTESTQUATTRO system from ADMET. The experimental

torque was calculated from the applied load and plotted against the angle of

twist as shown in Figure 6–13.

Figure 6–13: Experimental torque vs. angle of twist diagram from the torsion
test of a rhubarb petiole.

6.4.4 Experimental Flexural and Torsional Stiffness of the Rhubarb
Petiole

For both the flexural and torsional tests, while loading within the elastic

range, the results show a linear stress-strain and Torque vs. twist angle

variation (Figures 6–9 and 6–13), respectively. The experimental measurement

of flexural stiffness, EI, and torsional rigidity, GJT , is used to determine the

twist to bend ratio, EI
/
GJ . EI is the resistance to bending and GJT is the

resistance to torsion of a structure. The dimensionless EI
/
GJ ratio indicates

the relative torsional stiffness or twist-to-bend ratio of the rhubarb petiole.
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Nature often strives to raise the ratio by forming grooved, flattened or some

other non-circular cross-section in the stems and petioles. The experimental

EI and GJT of the petioles are shown in Figure 6–14. A detailed sample wise

plot also is described in section 6.5.4, the discussion about the computational

results.

Figure 6–14: Experimental flexural and torsional stiffness.

6.5 Computational Results and Discussion

The effective flexural and torsional stiffness are computationally

determined for the cross-sectional shapes at the locations shown in Figure 2–2

along the petiole length. The effective stiffness properties represent the overall

outcome of the mechanical properties of the preceding orders of the structural

hierarchy for the rhubarb petiole (Figure 1–1) that are considered in this work.

The flexural and torsional stiffness are used to calculate the computational

twist-to-bend ratio, which is compared to the experimental values. However,

considering the two tissue (collenchyma and parenchyma) system, efficiency

zones for both flexural and torsional domains can be proposed for all possible

combinations of these two tissue types.
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6.5.1 Generation of Cross-sectional Shapes of the Rhubarb Petiole

The Gielis superformula given by Equation (6.2) is used to capture the

cross-sectional shape at the basal, middle, and apical locations of the Rheum

rhabarbarum (rhubarb) petiole. In the computational analysis, the mid-basal

and mid-apical locations are not considered because of their close resemblances

with the basal and apical shapes, respectively. The values of the parameters of

Equation (6.2) to obtain the shape contours are given in Table 6–1.

Table 6–1: Parameters used in Equation (6.2) [Gielis superformula] to plot the
shape contours of the rhubarb petiole.

Lengthwise petiole location m n1 n2 n3 a b

Basal 8.0 2.9 3.1 2.9 0.76 1.1
Middle 7.7 2.8 4.1 2.3 0.76 1.1
Apical 7.8 2.5 3.0 3.5 0.90 1.3

(a) near stem (b) middle (c) near leaf

Figure 6–15: Petiole cross-sections at different locations along the length.

The contours of the different cross-sectional shapes are mathematically

captured and shown in Figure 6–15. The shape contours are fairly accurate

for representing the cross-sectional shapes as shown in Figure 2–2. The

shape contours are used to determine the computational flexural and torsional

stiffness.
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6.5.2 Effective Flexural Stiffness Map for Two Tissue System

In the computational model, the petiole is assumed to consist of two

integrated tissues, collenchyma and parenchyma, although in reality, more

than two tissues exist. In this analysis, each domain is created for a specific

cross-section based on all possible combinations of the constituent tissues. The

experimental bending (flexural) stiffness of the rhubarb petiole is expected to

fall within this structural efficiency zone. Figures 6–16(a) to 6–16(c) show the

flexural stiffness domains bounded by the limiting curve of the constituent

tissue material. The change in domain due to cellularity is also shown in these

figures.

Considering a tissue to be a homogeneous material can be informative;

however, tissues are mostly cellular in nature. The thick (blue) solid lines in

Figures 6–16(a) to 6–16(c) depict the boundary of the two-tissue (collenchyma

and parenchyma) system, while considering both tissues to be homogeneous.

The inherent cellularity of the constituent tissues is approximately represented

(a) Basal section
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(b) Middle section

(c) Apical section

Figure 6–16: Flexural stiffness domain for the collenchyma-parenchyma tissues
at the (a) basal, (b) middle, and (c) apical cross-sectional shape of the
rhubarb petiole. Regions bounded by thick blue lines depict the domain
with homogeneous tissue (solid blue) and the domain with cellular tissue
(dashed blue). The upper triangles in the figure are experimental EI data from
the bending test.
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by the circular microstructure. The corresponding efficiency domain is expanded

due to the structuring effect in the layered tissues, which is illustrated by the

thick dashed (blue) lines in these figures.

The experimental bending stiffness shown by the upper triangles falls

within the theoretical domain, although few data fell outside the domains.

The variations of cross-sectional shapes and the inherent differences of volume

and stiffness of constituent tissues of the sample petioles result in variations

of experimental data. Therefore, the experimental EI values are a slightly

scattered and a few values fall outside the domains. The domain with the

cellular microstructure expectedly comprises more experimental EI values

compared to the domain of the homogeneous tissue. It is observed that

the domain of basal section contains more data points than the other two

domains. This reflects the effect of cross-sectional shape. From the structural

point of view, since the petiole acts as a cantilever, the maximum stress is

developed at the basal location. The natural variation of the petiole’s shape is

to accommodate the applied load.

6.5.3 Effective Torsional Stiffness Map for Two Tissue System

The theoretical torsional stiffness domains similar to the domains of

flexural stiffness at the three different locations of the rhubarb petiole are

plotted in Figures 6–17(a) to 6–17(c). The thick (blue) solid lines in these

figures illustrate the boundary of collenchyma and parenchyma system without

any turgor pressure, while considering both tissues to be homogeneous. The

effect of the inherent cellularity of the constituent tissues also is captured in the

circular microstructure. The domain is expanded for the cellular microstructures

compared to homogeneous tissues, which is shown by thick dashed (blue) lines

in these figures (Figures 6–17[a] to 6–17[c]).
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(a) Basal section

(b) Middle section
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(c) Basal section

Figure 6–17: Torsional stiffness domain for the collenchyma-parenchyma tissues
at the (a) basal, (b) middle, and (c) apical cross-sectional shape of the
rhubarb petiole. Regions bounded by thick blue lines depict the domain
with homogeneous tissue (solid blue) and the domain with cellular tissue
(dashed blue). The lower triangles in the figure are experimental GJ data from
the torsion test.

The experimental torsional stiffness shown by the lower triangles falls

within the theoretical domain except few data. The domains of all the sections

appear to contain the experimental GJT . However, the experimental results

of the torsional stiffness lie closer to the boundary of collenchyma tissue for

the mid and apical location, and can be explained in terms of the constitutive

properties of the tissues. The collenchyma tissue is stronger in tension but not

in twisting load. Since the collenchyma tissue is seen to the peripheral location,

its stiffness appeared to influence the torsional rigidity of the petiole. Hence,

the experimental results are closer to the region of collenchyma. Moreover, the

torsional stiffness is also affected by the stiff outer epidermal layer, which has

been ignored in the present computational model.
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6.5.4 Comparison of Twist-to-Bend Ratio

Figure 6–18 shows the bar plot of the experimental EI
/
GJT for 15 samples

of rhubarb petiole and the computational twist to bend ratio for the three

shape contours, considering two constituent tissues. Since the variability of the

experimental EI
/
GJT ratio is visible, a large number of experiments on petioles

are therefore required to obtain a more accurate and statistically meaningful

estimation. The average experimental twist to bend ratio of the rhubarb petiole

is found to be 4.67 (SD 1.39), whereas the average computational EI
/
GJT

ratio is approximately 4.04 (SD 0.65). It is evident that both shape and tissue

(material) properties influence the EI
/
GJT ratio. Although expected to twist

easily, permitting leaves to cluster and reduce their drag in high wind, the

petioles must not bend too easily to work as cantilevers and to hold the leaf

blades upright. Plants usually achieve high values of EI
/
GJT ratio by the

concerted adjustment of material and geometry. Hence, the twist-to-bend ratio

can be used to assess the efficiency of the cross-section shape in minimizing

wind drag as well as in preventing the sag under gravity loads.

The computational model does not account for all of the tissue types

normally present in a plant petiole. The tissues that have been ignored,

despite contributing a narrow volume, may affect the mechanical properties in

unpredicted ways. The effects of ignored tissues, especially epidermal layer,

are expected to influence the experimental twist to bend ratio and result in a

deviation. It is also assumed that a perfect bonding occurs between two layers,

which may not be realistic for the petiole morphology. Moreover, the errors

due to simplification of preceding hierarchies propagate from a lower to higher

order hierarchy, and consequently, these errors accumulate at the last order of

hierarchy.
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Figure 6–18: Comparison of experimental and computational twist-to-bend
ratio of rhubarb petiole.

The material properties E and G are the cumulative outcome of the

preceding orders, n = 1 to n = 3, of the hierarchy (Figure 1–1), whereas

the geometric properties, I and G, of the shape denote the contribution

of the topmost hierarchy. Without considering the material properties, the

twist-to-bend ratio (I/J) of rhubarb petioles exhibit values just above 1 [66].

The contribution of material (tissue) anisotropy increases the twist-to-bend

ratio to a considerable amount and reflects the influence of the multiple orders

of the structural hierarchy observed in the petiole. Despite the simplification

in modeling and the limitation in obtaining various experimental data at

different hierarchical orders, the narrow difference between the experimental

and computational twist to bend ratio depicts a comparative accuracy of the

multiscale computational modeling approach presented in this thesis. The

modeling approach and the associated experiments are, therefore, capable of

capturing the contribution of the cross-sectional shape and the tissue on the

petiole’s twist-to-bend ratio.
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The study of biological structure is essential to the innovation of novel

biomimetic technology. The mechanisms used by the plants to grow flexible

and resistant structure require to be unravelled to get a pathway to discover

advanced engineering materials. The current study is a first step to understand

how plants exploit the structural and functional integration at each order

of hierarchhape morphology require the study that correlates biology and

engineering modeling.

6.6 Summary

This chapter has discussed the flexural and torsional stiffness properties

of the rhubarb petiole at the structural hierarchy. The mechanical properties

are found to be contingent on the previous orders of hierarchy, since the

stiffness of the constituent tissues considered in this chapter are obtained

hierarchically. The effect of cross-sectional shape in determining the flexural

and torsional stiffness also has confirmed. With respect to tissue properties,

the cellular microstructure and the shape of the cross-section at the structural

hierarchy play a substantial role in determining the compliance of the petiole.

Described by the twist to bend ratio, the compliance of the petiole is higher

when determined experimentally and slightly lower when measured by the

computational model. The variation is obvious and is expected to have lower

value for the computational model. However, the computational model is

representative to characterize compliance behavior of the actual petiole and

demonstrates an ability to do multiscale modeling of a petiole.
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CHAPTER 7
Conclusion

7.1 Summary of Accomplishments

This work has used a multiscale method to model the mechanical

properties—flexural and torsional stiffness—of a plant petiole in conjunction

with experiments conducted at multiple length scale to validate the properties.

The goal of such modeling is to capture the mechanical properties of the

petiole by correlating its structural responses at multiple orders of the plant

structural hierarchy via theoretical and computation models validated via

experiments of plant tissue and organs. Experimentally determined cell and

tissue properties are coupled with the mathematical models at various orders

of hierarchy, such as sub-cellular, cellular, and tissue level, to compute the

stiffness at each structural level; and the computed stiffness is validated with

the stiffness obtained via experiments at the tissue and structural levels.

At the sub-cellular level, the cell wall has been modeled using the theory

of a composite material to obtain the constitutive properties of the cell wall.

A novel finite edge centroidal Voronoi tessellation (FECVT) algorithm has

been developed and implemented to generate the virtual (geometric) tissues

that represent the constituents of the petiole at the tissue level. The effective

(homogenized) tissue properties have been obtained through the finite element

analysis of the FECVT models. In contrast to the representative volume

element (RVE) approach, the concept of the statistical volume element (SVE)

has been implemented to compute the apparent tissue stiffness using finite

element analysis. Such an approach is appropriate for natural cellular solids,

whose microstructures are completely random with complex heterogeneity. The
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effective stiffness of the constituent tissues has been used at the structural

level with the shape morphology to compute the flexural and torsional stiffness

of the petiole. Studies that have used the integration of multiple orders of

hierarchy to determine the macrostructural properties of a plant petiole are

currently lacking in the literature. The method implemented in this thesis is

general, meaning that it can be applied to any plant and animal organs, and is

capable of accounting for both the micro and macro architectural behaviors of

these organs.

Plant biomimetics is a part of an innovative scientific field that uses

biology as a model to create new energy production, storage and delivery

systems, sensors, actuators, advanced materials and structures, electric systems,

artificial intelligence, and computer systems. The challenge for a systematic

knowledge transfer from nature to engineering is to integrate biology and

engineering. Existing engineering technology fails to fully exploit the structural

and functional integration found in plants at each length scale, from cell to

whole organism. The conducted research can bridge the plant biology and

engineering to develop novel bio-inspired material and structures. This research

can help to develop fundamental knowledge of plant cellular biomechanics

and its impact on the macroscopic mechanics of stems and petioles with

the end goal of transferring this knowledge to the processing and design

of compliant engineering structures and materials. Plant biomimetics for

compliant structures is an efficient engineering design route to create high

performance material systems that adapt to loads, reduce weight, and deploy

when needed.

In Chapter 3, two orders of the structural hierarchy of plant have

been examined. The cell wall belonging to the first order of hierarchy is

modeled considering a fiber-reinforced composite material. The stiffness of the
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parenchymal cell wall is approximated based on the composition of the wall

constituents, their volume fractions, and elastic properties. Additionally, the

effect of the fiber orientation angle is taken into account to predict the elastic

properties of the collenchymatous cell wall. The constitutive properties are

computed based on the generic composition of dicotyledonous plant cell wall

with reasonable assumptions. The computational stiffness, however, would be

more representative and closer to the actual wall stiffness if the experimentally

determined volume fractions and MFA could be used in the mathematical

model. Despite the limitation of acquiring the experimental data, the modelling

approach provides a fundamental framework to relate the cell wall stiffness to

its configuration.

In Chapter 4, the virtual (geometric) model of plant tissue has been

generated. A novel algorithm, FECVT, is developed and efficiently applied to

a variety of plant tissues, including Arabidopsis, Philodendron melinonii, and

Rheum rhabarbarum (rhubarb), to construct the geometric models. The FECVT

method is capable of capturing the tissue microstructure, and eliminating the

semi-infinite edges at the boundary—an inherent drawback of conventional

Voronoi tessellation. The generated models are statistically representative

of the actual plant tissues. Therefore, this FECVT method can be applied

to the geometric modeling of a microstructure of any shape with complex

heterogeneity and graded cellularity.

In Chapter 5, the finite element analysis has been conducted on the

FECVT models, generated in Chapter 4 coupled with the cell wall properties

obtained in Chapter 3, to determine the homogenized/effective stiffness of the

constituent tissues. Instead of using the classic approach of RVE to determine

homogenized properties, a stochastic approach has been applied. Since the

microstructures of the constituent tissues are highly random with clustered
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higher area gradients, an RVE approach is not computationally efficient for

capturing the complete randomness observed in the tissue. Therefore, the

statistical volume elements are considered in contrast to a large-scale RVE to

compute the homogenized properties with a reduced amount of computational

effort. The cellular distribution in the FECVT models accounts for the lower

values of the normalized effective stiffness of the respective models compared

to the unit cell and randomly generated Voronoi models. The effective elastic

properties of the constituent tissues are used to determine the flexural and

torsional stiffness of the petiole.

In Chapter 6, the flexural and torsional stiffness and the corresponding

twist-to-bend ratio based on the cross-sectional shape of the rhubarb petiole and

its tissue properties have been computationally determined. The stiffness and

the twist-to-bend ratio represent the cumulative effect of the shape morphology

and micro-architectural effect of the tissues and cells. The stiffness and

twist-to-bend ratio obtained via experiments validate the computed results.

Therefore, the computational model demonstrates its ability to capture the

multiscale characteristics and mechanics of plant petiole and other organs.

7.2 Original Contributions

The following are the original contributions of this thesis:

1. A multiscale modeling approach is presented to determine the flexural

and torsional stiffness of the plant petiole (and stem) by integrating its

hierarchical organization, which spans from the cell wall assembly to the

overall structural geometry.

2. The parenchyma and collenchyma cell wall stiffness are determined

by using the theory of composite material considering the volume

fractions and microfibril orientation (assembly) of the respective cell wall

constituents. The adopted approach is able to capture the anisotropic
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cell wall stiffness, whereas in the existing literature, the wall stiffness

mostly approximated to be isotropic.

3. A novel algorithm, FECVT, is used to capture the random distribution

of cells in the tissue microstructures with complex heterogeneity. The

method is capable of replicating any tissue microstructure with reasonable

accuracy, resolving the inherent drawback of semi-infinite edges at

the boundary. This algorithm can be applied to model any material

microstructure.

4. The effective (homogenized) stiffness of the constituent tissues is

determined by introducing the concept of statistical volume element. For a

relatively simple cellular distribution, the existing approaches in literature

consider RVE, which cannot determine the characteristic/representative

stiffness of plant tissue.

5. The shape morphology is integrated with hierarchically determined

constituent tissues’ stiffness to computationally determine the flexural and

torsional stiffness of plant organ. The approach is applied to determine

the macrostructural response of rhubarb petiole.

7.3 Outlook to Future Research Paths

The hierarchical modeling approach used in this present work provides

insight into the mechanics of plant organs at multiple orders of hierarchy. The

methodology developed in this thesis allows the modeling of a wide variety of

natural cellular solids. Moreover, this modeling approach can be extended to

provide a more detailed examination of the mechanism of the micro and macro

structure of the natural hierarchical cellular solids. The following are a few

areas, in which the current research can be further extended or applied:

• Viscoelastic Modeling of the Cell Wall

The cell wall has been modeled by assuming a linear elastic behavior
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in the present work. The cell wall, however, often exhibits viscoelastic

properties. The mechanical characterization of the cell wall will be

more representative if the viscoelasticity is considered. Therefore, the

micromechanical modeling of viscoelastic composites can be implemented

to determine the wall stiffness in future.

• Modeling of Morphogenesis

With respect to the living structures in nature, the structural properties

of tissue and organism are affected by the differentiation and growth of

the tissue and organism during development. During the growth process,

the formation and reorganization of cells occur within the tissue. In the

current work, the morphogenesis of tissue is not considered. With respect

to the in vivo and in vitro experimental evidence of cell differentiation,

a series of cellular distribution can be obtained for a period of time.

The time dependent distribution of the cells can be modeled via the

FECVT algorithm by determining the centroids of the cells at different

time frame. Hence, the FECVT algorithm can be extended to investigate

the temporal growth process and its impact on the structural properties

of tissue thorough finite element analysis.

• Fluid Solid Interaction

Turgor pressure plays an important role in controlling the structural

properties of a plant. The effect of fluid structure interaction and fluid

flow can be addressed in future endeavours. It is important because the

properties of cell wall constituents change, for instance, hemicelluloses

easily hydrolyze and swell; and consequently, the stiffness reduces due

to the interaction with water. Therefore, a multi-physics analysis of the

fluid structure interaction will provide a deeper understanding of the

whole process.
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• Biomimetic Application

One of the aims of this research is to gain insight into the mechanics of

the petiole structure at a multiple length scale, so these lessons could be

applied to designing a bio-inspired compliant composite beam/structure

displaying hierarchical structural features and cellular organization. The

tissue architecture and structural mechanics in conjunction with the

mechanical testing of petioles with altered cell organization will support

the development of engineering structures with optimized structural

properties. The knowledge gained through this research can be applied to

designing a compliant biological beam like structure for boat masts, a wind

turbine base, or other such structures that are subjected to both flexural

and torsional loading. The stiffness of such a beam can be controlled by

regulating the micro and macro architectures. A plant-based actuation

system controlled by water content and turgor pressure is another area

of application for bio-inspired design. As a whole, the methodology and

the results of this current research provide a framework for plant-based

biomimetics.
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Appendix A

The elements of transformed reduced compliance matrix [S̄], shown in

Equation (3.9c), are

S̄11 = S11m
4 + (2S12 + S66)m

2n2 + S22n
4

S̄12 = (S11 + S22 − S66)m
2n2 + S12(m

4 + n4)

S̄16 = (2S11 − 2S12 − S66)m
3n− (2S22 − 2S12 − S66)mn

3

S̄22 = S11n
4 + (2S12 + S66)m

2n2 + S22m
4

S̄26 = (2S11 − 2S12 − S66)mn
3 − (2S22 − 2S12 − S66)m

3n

S̄66 = 2(2S11 + 2S22 −−4S12 − S66)m
2n2 + S66(m

4 + n4)

where

S11 = 1/E1

S12 = −ν21/E2 = −ν12/E1 = S21

S22 = 1/E2

S66 = 1/G12
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Appendix B

Pooled Variance and Mean

if n1 = number of subjects in sample 1

n2 = number of subjects in sample 2

x̄1 = mean of sample 1

x̄2 = mean of sample 2

s21 =

∑
(x1 − x̄1)2

n1

= variance of sample 1

s22 =

∑
(x2 − x̄2)2

n2

= variance of sample 2

σ1 = standard deviation of sample 1, σ1 =
√
s21

σ2 = standard deviation of sample 2, σ2 =
√
s22

For the conditions, n1 6= n2, x̄1 6= x̄2, and s21 6= s22, the (composite) pooled

mean, pooled variance, and pooled standard deviation for the two samples can

respectively be expressed as

x̄ =
n1x̄1 + n2x̄2
n1 + n2

s2 =
n1

{
s21 + (x̄1 − x̄)2

}
+ n2

{
s22 + (x̄2 − x̄)2

}
n1 + n2

σ =
√
s2

where x̄ is the composite or pooled mean, s2 is the pooled variance, and σis

the corresponding pooled standard deviation [163].
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Appendix C

The closed form expressions to determine the elastic properties of a periodic

array of repeating hexagonal cells (hexagonal honeycomb) are described here.

For the isotropic case, hexagonal unit cell as shown in figure 5–17(a), the

relative density is given by

ρ∗

ρs
=

2√
3

(
t

l

)
(C.1)

where ρ∗ and ρs are the densities of the cellular material and of the solid cell

wall material, respectively; t and l are the thickness and length of the cell wall,

respectively. In terms of the thickness-to-length ratio, t
/
l, the two independent

elastic constants of the unit cell are given by

E∗

Es
=

4
√

3

3

(
t

l

)3 [
1

1 + (5.4 + 1.5νs) (t/l)2

]
(C.2)

ν∗ =

[
1 + (1.4 + 1.5νs) (t/l)2

1 + (5.4 + 1.5νs) (t/l)2

]
(C.3)

where E∗ and ν∗ are the Young’s modulus (effective modulus) and Poisson’s

ratio (effective Poisson’s ratio) of the cellular material, respectively; and Es and

νs are the Young’s modulus and Poisson’s ratio of the solid cell wall material,

respectively [12].
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Appendix D

Boundary Approximation

The boundary integrals for a general boundary curve are defined by

Equations (6.7) to (6.11) in Chapter 6. To compute the integrals numerically,

the boundary needs to be discretized. The boundary is discretized by N number

of nodes and intervals as shown in Figure 6-1. The integration is performed

over those intervals, and summing up the sub-integrals yields the desired area

and inertial quantities.

Let us assume first order polynomial interpolation over each boundary

Figure D-1: Two dimensional arbitrary area with discretized interior and
exterior boundary.

segment, where the ith segment connects the nodes xi and xi+1. Interpolating

the x-coordinate of the boundary linearly over that segment using a local

coordinate ξ, yields,

x = xiφ1 (ξ) + xi+1φ2 (ξ) xi < x < xi+1 (D.1)
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where φ1 (ξ) = 1− ξ and φ2 (ξ) = ξ so that ξ = 0 corresponds to xi, and ξ = 1

corresponds to xi+1. Similarly for the y-coordinate, we have

y = yiφ1 (ξ) + yi+1φ2 (ξ) yi < y < yi+1 (D.2)

where φ1 (ξ) = 1− ξ and φ2 (ξ) = ξ so that ξ = 0 corresponds to yi, and ξ = 1

corresponds to yi+1.

The differential quantities dx and dy can be obtained by differentiating

Equations (D.1) and (D.2), respectively:

dx = xi
dφ1(ξ)

dξ
+ xi+1

dφ2(ξ)

dξ
= xi+1 − xi (D.3)

dy = yi
dφ1(ξ)

dξ
+ yi+1

dφ2(ξ)

dξ
= yi+1 − yi (D.4)

Let us consider the area integrals given in Equation (6.7). The first integral

of Equation (6.7), area A1 can be computed by summing the sub-integral over

the N segments:

A1 =
N∑
i=1

i+1∫
i

x(ξ)dy(ξ) =
N∑
i=1

xi i+1∫
i

φ1(ξ)d(ξ) + xi+1

i+1∫
i

φ2(ξ)d(ξ)


=

1

2

N∑
i=1

(xi+1 − xi) (yi+1 − yi)

=
N∑
i=1

Ai1

(D.5)

where Ai1 =
1

2
(xi+1 − xi) (yi+1 − yi) is the contribution of the ith segment.

Applying the similar procedure for the second and third area integrals, A2 and

A2, respectively, gives

Ai2 =
1

2
(xi − xi+1) (yi+1 + yi) (D.6)

Ai3 =
1

2
(xiyi+1 − xi+1yi) (D.7)
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Although different forms of mathematical expressions are obtained for the

corresponding area integrals, all formulations provide the same numeric result

after summing all the sub-integrals over the N segments. Applying the similar

procedure repeatedly for the other geometric properties given in Equations

(6.8) to (6.11), we can derive the formulas for all the Equations as given in

Table D-1. The generated formulas yield exact results for domains enclosed by

piece wise straight segments.

Table D-1: Formulas for geometric quantities of a arbitrary polygon using 1st

order polynomial.

Geometric Formula
Quantities

A
1

2
(xiyi+1 − xi+1yi)

Aix
1

6
(xi − xi+1)(y

2
i + yiyi+1 + y2i+1)

Aiy −1

6
(x2i + xixi+1 + x2i+1)(yi − yi+1)

I ixx
1

12
(xi − xi+1)(y

3
i + y2i yi+1 + yiy

2
i+1 + y3i+1)

I iyy − 1

12
(x3i + x2ixi+1 + xix

2
i+1 + x3i+1)(yi − yi+1)

A more accurate approximation can be obtained assuming 2nd order

interpolating polynomial over each boundary segment. The Equation (D.1)

and (D.2) will then be replaced by

x = xi1φ1 (ξ) + xiφ2 (ξ) + xi+1φ3 (ξ) xi−1 < x < xi+1 (D.8)

y = yi1φ1 (ξ) + yiφ2 (ξ) + yi+1φ3 (ξ) yi−1 < y < yi+1 (D.9)

where φ1 (ξ) = (1 − 2ξ)(1 − ξ), φ2 (ξ) = 4ξ(1 − ξ), and φ3 (ξ) = ξ(1 − 2ξ).

Differential quantities dx and dy can be obtained by differentiating Equations
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(D.8) and (D.9) and result in

dx = xi−1
dφ1(ξ)

dξ
+ xi

dφ2(ξ)

dξ
+ xi+1

dφ3(ξ)

dξ
= xi+1 − xi

= (4ξ − 3)xi−1 − (8ξ − 4)xi − (4ξ − 1)xi+1

(D.10)

dy = (4ξ − 3)yi−1 − (8ξ − 4)yi − (4ξ − 1)yi+1 (D.11)

Carrying out the integrations over each segment for each one of the

integrals given in Equations (6.7) to (6.11), we get element formulas as shown

in Table D-2. The 2nd order interpolation is sufficient to have desired level of

accuracy. However, higher order interpolating polynomial can also be applied

to the integrals to obtain more accurate element formulas, which would be

lengthy and impractical to use. Formulas in Table D-1 and D-2 can be used

to compute the required property for any given section, whose boundary is

described by x− y coordinates [164].
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Table D-2: Formulas for geometric quantities of a arbitrary polygon using 2nd

order polynomial.

Geometric Formula
Quantities

A
1

6
(4xi−1yi − 4xi+1yi − 4xiyi−1 + xi+1yi−1 + 4xiyi+1 − xi−1yi+1)

Aix
1

30
(−2xi(yi1 − yi+1)(4yi + 3yi−1 + 3yi+1)+

xi+1(−8y2i + 2yiyi−1 + y2i−1 − 6yiyi+1 + yi−1yi+1 + 10y2i+1)−
xi−1(−8y2i + 10y2i−1 + 2yiyi+1 + y2i+1 + yi−1(yi+1 − 6yi)))

Aiy
1

30
(−8x2i (yi1 − yi+1)− xi−12(−6yi + 5yi−1 + yi+1)+

2xixi+1(−4yi + yi−1 + 3yi+1) + x2i+1(−6yi + yi−1 + 5yi+1)+

xi−1(xi+1(yi−1 − yi+1)− 2xi(−4yi + 3yi−1 + yi+1)))

I ixx
1

420
(−4xi(yi1 − yi+1)

(16y2i + 12yiyi−1 + 11y2i−1 + 12yiyi+1 + 8yi−1yi+1 + 11y2i+1)−
xi−1(−64y3i + 105y3i−1 + 16y2i yi+1 + 4yiy

2
i+1 + y3i+1)+

y2i−1(−44yi + 9yi+1) + yi−1(−48y2i + 16yiyi+1 − 3y2i+1))+

xi+1(−64y3i − 9y3i−1 + y2i−1(4yi − 3yi+1)− 48y2i yi+1−
44yiy

2
i+1 + 105y3i+1 + yi−1(16y2i + 16yiyi+1 + 9y2i+1)))

I iyy
1

420
(x3i−1(44yi − 35yi−1 − 9yi+1)−

64xi3(yi−1 − yi+1) + 16x2ixi+1(−4yi + yi−1 + 3yi+1)+

4x2ixi+ 1(−12yi + yi−1 + 11yi+1) + x3i+1(−44yi + 9yi−1 + 35yi+1)+

x2i−1(3xi+1(−4yi + 3yi−1 + yi+1)− 4xi(−12yi + 11yi−1 + yi+1))−
xi−1(−16xixi+1(yi−1 − yi+1) + 16x2i (−4yi + 3yi−1 + yi+1)+

3x2i+1(−4yi + yi−1 + 3yi+1)))
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