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Abstract

The abundance of data has played a major role in the recent machine learning boom. The availability

of large datasets however, while useful, hasn’t directly translated to successful applications in robotics.

This thesis attempts to present ways to overcome the lack of data in robotics applications through domain

adaptation methods. We propose and study the performance in data-poor scenarios of algorithms designed

for two Robotics applications: visual tracking and learning from demonstrations. We first present a robust

multi-robot convoying approach that relies on visual detection of the leading agent. Our method is based

on the idea of tracking-by-detection, which interleaves efficient object detection with temporal filtering of

image-based bounding box estimation. Using a bounding box annotated dataset of images extracted from

footage of an underwater robot in ocean settings, we compare multiple tracker variants, including several

convolutional neural networks with and without recurrent connections and frequency-based model-free

trackers. We investigate the domain adaptation ability of our most applicable architecture through training

on synthetic data, generated from a realistic game engine. To demonstrate the practicality of this tracking-

by-detection strategy in real-world scenarios, we successfully control a 5-DOF legged underwater robot

to follow another robot’s independent motion. We then focus on the impact of data shortages when

learning from demonstration. Extending the options framework with the notion of reward options, we

develop a method for learning joint reward-policy options in the context of generative adversarial inverse

RL and show that methods in this context suffer in demonstration data-poor scenarios. We then study

the one shot domain adaptation abilities of our approach. That is, given expert demonstrations from a

mixture of environments with different dynamics, can the agent learn to properly complete a task in a

previously unseen environment with different dynamics. Our results show that our method is able to

successfully learn a task in these domain adaptation scenarios, and significantly outperforms inverse RL

without options.
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Abrégé

L’abondance de données a joué un rôle majeur dans le récent boom de l’apprentissage automatique. Mais,

la disponibilité de ces larges ensembles de données, bien qu’utile, ne s’est pas directement traduite à des

applications réussies en robotique. Cette thèse présente des moyens de pallier le manque de données dans

les applications robotiques grâce à des méthodes d’adaptation de domaine. Nous proposons et étudions la

performance d’algorithmes conçus pour deux applications en robotiques dans des situations de manque

de données: le suivi visuel et l’apprentissage à partir de démonstrations. Nous présentons d’abord une

approche robuste de convoi à robots multiples qui repose sur la détection visuelle de l’agent principal.

Notre méthode est basée sur l’idée de suivi par détection, qui couple la détection d’objet avec le filtrage

temporel de l’estimation de la boîte englobante de l’objet dans l’image. À l’aide d’un ensemble de don-

nées constitué d’images d’un robot sous-marin annotées de boîtes englobantes, nous comparons plusieurs

variantes d’algorithmes de suivi visuel, dont plusieurs réseaux neuronaux convolutifs avec et sans con-

nexions récurrentes, ainsi que des algorithmes de suivi visuels par fréquence. Nous étudions la capacité

d’adaptation de domaine de notre architecture la plus prometteuse à partir d’un entrainement sur données

synthétiques, générées grâce à un moteur de jeu réaliste. Pour démontrer la praticité de cette stratégie

de suivi par détection dans des scénarios réels nous contrôlons avec succès un robot sous-marin à na-

geoires, capable de cinq degrés de liberté, pour suivre le mouvement d’un autre robot indépendant. Nous

nous concentrons ensuite sur l’impact des pénuries de données lors de l’apprentissage par démonstration.

L’on étend le cadre des options en Apprentissage par Renforcement (AR) avec la notion d’options de ré-

compense, développons une méthode d’apprentissage des options de politiques et récompenses conjointe

dans le contexte de l’AR inverse génératif et adversairial, et montrons que les méthodes dans ce contexte

souffrent dans les cas de manque de démonstrations. Nous étudions ensuite les capacités d’adaptation

de domaine en un coup de notre approche. C’est-à-dire que, étant donné des démonstrations expertes

provenant d’un mélange d’environnements avec des dynamiques variées, l’agent peut-il apprendre à ef-
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fectuer correctement une tâche dans un environnement inconnu avec des dynamiques différentes. Nos

résultats montrent que notre méthode est capable d’apprendre une tâche avec succès dans ces scénarios

d’adaptation de domaine et surpasse significativement l’AR inverse sans options.
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Contributions

This thesis contributes the analysis of remediation methods to data scarce scenarios in robotics:

• Investigation of the effect of using synthetic data obtained from simulation in the training
of deep convolutional neural network-based detection methods for underwater vision-
based tracking (Chapter 2)

• Investigation of the effect of data scarcity for adversarial inverse reinforcement learning
algorithms, and remediation methods through one shot domain adaptation (Chapter 3)

In addition to these two lines of investigations in the performance of algorithms for robotics
in data-poor scenarios, the author is not the sole owner but has contributed in significant ways
to the following:

• Reduction of the YOLO detection framework for running onboard the AQUA robot (Chap-
ter 2)

• Inception and training of the Recurrent Reduced YOLO detection framework onboard the
AQUA robot (Chapter 2)

• Training of the YOLO, Reduced YOLO, and Recurrent Reduced YOLO detection frame-
works for tracking the AQUA robot (Chapter 2)

• Experimental results for YOLO and Recurrent YOLO variants (Chapter 2)

• In-ocean deployments of the AQUA robot for data collection and testing of the formulated
tracking-by-detection framework (Chapter 2)
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• Extension of the options framework to reward options (Chapter 3)

• Creation of OptionGAN, an optionated version of Generative Adversarial Inverse Rein-
forcement Learning, for use of extended options framework in inverse RL (Chapter 3)

• Empirical results demonstrating OptionGAN’s effectiveness in continuous control tasks
and one-shot transfer learning in inverse RL (Chapter 3)
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Chapter 1

Introduction

In the last decade, impressive results have been shown in fields neighbouring and overlapping
robotics, namely artificial intelligence, machine learning and computer vision. In computer vi-
sion for instance, Alexnet and many subsequent neural networks have conquered the leader-
boards at the Imagenet Large Scale Visual Recognition Competition [53, 34, 26], while in rein-
forcement learning, AlphaGo [64] beat human champions at the game of Go and Atari-solving
agents learned to beat the game at human levels [44]. These successes were achieved in part
by advances in computational power, but most importantly, the availability of huge amounts
of data: ImageNet database contains approximately 1.2 million labelled images, AlphaGo used
more than 38 million positions to train their algorithm to play Go, and [44] used more than 38
days of play to train their agents to win Atari.

While robotics has benefited from this surge of data, it hasn’t experienced the same data
avalanche that neighbouring fields have. Similarly to many fields where data requires acquisition
through physical experiments, robotics faces the real world and the process of obtaining a data
point is often expensive, time-consuming, and sometimes even dangerous. Oftentimes, a skilled
operator is required to supervise the data collection, and the data collection process can wear
down or even break parts of the robot. Furthermore, trying something takes a significant amount
of time, and seeing the consequence of each trial might even take longer. As such, requiring a
million trials to succeed at a task is infeasible when facing the real-world. While virtual data is
abundant and cheap, data is scarce in the physical world.
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1.1 Outline

One solution to the data scarcity problem in robotics and other fields originates from domain
adaptation which focuses on learning from a source distribution a model that performs well on
a different (but related) target data distribution. Using this method, we can supplement the small
amount of available data, or even remove the need for data from the target domainDT using data
obtained from a different but related domain DS . While the "distance" between the source and
target domain has no defined bound, of course the two domains need to share some information
about their counterpart for it to be useful. [68] for example, uses randomized augmentations of
the original data from domainDT as supplemental data from the ’related’ domainDS . Synthetic
data can also be used, from generative models such as in [19], or from complex simulators
mimicking DT [48].

1.1 Outline

In this thesis we present two state of the art algorithms with applications in robotics, analyze
their performance in data scarce scenarios, and overcome some of their observed limitations us-
ing domain adaptation techniques. Due to the difference in the two application domains (one in
perception and the other in control), we include relevant background and related work sections
in each chapter.

In chapter 2, we tackle the robot convoying problem in the underwater domain and present
the problem in section 2.1. We first present in section 2.3 the small dataset available to us for
the task and the data synthesis method used to generate extra data. We then present our own
as well as competing approaches and compare them on test datasets in sections 2.5. and 2.4
respectively. The results of training on synthetic data for our algorithm are shown in 2.6.2.
Finally, field experiment results are shown and analyzed in section 2.6.5.

In chapter 3, we present OptionGAN, an algorithm for learning joint reward-policy options
from demonstrations. We first present the learning from demonstration paradigm in section 3.1
and its applicability to robotics in sections 3.3-3.4. We then present our algorithm and method-
ology in sections 3.5-3.7. Finally, we present our results in section 3.8, and OptionGAN’s ro-
bustness to domain adaptation scenarios in section 3.8.5.
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Chapter 2

Domain Adaptation in the Visual Domain

2.1 Introduction

Convoying behaviours have a wide range of useful application contexts in robotics. Multi-agent
systems for example, where a group of simple robots work in concert towards a goal as op-
posed to a single larger complex robot, have the potential to be more efficient, economical, and
less prone to failure. In modern warehouses, large swarms of robots work together, sometimes
adopting convoying behaviours to automate and accelerate the shipping of products to the cus-
tomer. In a close future, one could easily imagine synchronized convoying behaviour applied
to self-driving cars or freight trucks, thus reducing traffic congestion. Robot assistant scenarios,
where autonomous mobile robots assist Humans in tasks are another. Numerous applications
arise from these scenarios, ranging from nursing home robot assistants to firefighter compan-
ions.

Vision-based tracking solutions have been applied to robot convoying in a variety of con-
texts, including terrestrial driving [58, 20], railroad maintenance vehicles [38], and unmanned
aerial vehicles [37].

In the underwater realm, convoying tasks face great practical difficulties due to highly varied
lighting conditions, external forces, and hard-to-model currents on the robot. Previous work in
terrestrial and aerial systems use fiducial markers on the targets to aid tracking. In this chapter,
we present a more general tracking-by-detection approach that is trained solely on the natural
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2.1 Introduction

Figure 2.1: A sample image from our underwater convoying field trial using Aqua
hexapods [57]. Videos of our field trials, datasets, code, as well as more information about
the project are available at http://www.cim.mcgill.ca/~mrl/robot_tracking

appearance of the object/robot of interest.

While this strategy increases the complexity of the tracking task, it also offers the potential
for greater robustness to changing pose variations of the target in which any attached markers
may not be visible. Other works have demonstrated successful tracking methods using auxiliary
devices for underwater localization, including mobile beacons [10], aerial drones [18], or acous-
tic sampling [13]. While these alternative strategies can potentially be deployed for multi-robot
convoy tasks, they require additional costly hardware.

This is achieved through tracking-by-detection, which combines a target detection method
to first localize the object of interest, and a recurrent approach for temporally filtered image-
based position estimation. Our solution is built upon several autonomous systems for enabling
underwater tasks for a hexapod robot [57, 55, 54, 22, 40], as well as recent advances in real-time
deep learning-based object detection frameworks [51, 52].

4
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2.2 Related Work

Our system learns visual features of the desired target from multiple views, through an an-
notated dataset of underwater video of the Aqua family of hexapod amphibious robots [57].
This dataset is collected from both on-board cameras of a trailing robot as well as from diver-
collected footage. Inspired by recent general-purpose object detection solutions, such as [51],
[52], [29], we propose several efficient neural network architectures for this specific robot track-
ing task, and compare their performance when applied to underwater sceneries. In particular, we
compare methods using convolutional neural networks (CNNs), recurrent methods stacked on
top of CNN-based methods, and frequency-based methods which track the gait frequency of the
swimming robot.

Given the difficulty of collecting underwater imagery, a relatively small dataset is available
to us for the training of deep learning methods. We thus generate a dataset of synthetic under-
water visual data generated in Unreal Engine, a game engine repurposed as a simulator for our
use case, and investigate how well our most promising architecture performs if no real data was
available and was trained solely on synthetic data.

Furthermore, we demonstrate in an open-water field trial that one of our proposed architec-
tures, based on YOLO [50] and scaled down to run on-board the Aqua family of robots without
GPU acceleration, is both efficient and does not sacrifice performance and robustness in the
underwater robot-tracking domain despite motion blur, lighting variations and scale changes.

2.2 Related Work

2.2.1 Vision-Based Convoying

Several vision-based approaches have shown promise for convoying in constrained settings.
Some methods employ shared feature tracking to estimate all of the agents’ positions along the
relative trajectory of the convoy, with map-sharing between the agents. Avanzini et al. demon-
strate this with a SLAM-based approach [2]. However, these shared-feature methods require
communication between the agents which is difficult without specialized equipment in under-
water robots.

Using both visual feedback combined with explicit behavior cues to facilitate terrestrial
robot convoys has also been considered [17]. Tracking was enhanced by both suitable engi-
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2.2 Related Work

neered surface markings combined with action sequences that cue upcoming behaviors. Unlike
the present work, that work was restricted to simple 2D motion and hand-crafted visual mark-
ings and tracking systems.

Other related works in vision-based convoying often employ template-based methods with
fiducial markers placed on the leading agent [58, 20]. Such methods match the template to the
image to calculate the estimated pose of the leading robot. While these methods could be used
in our setting, we wish to avoid hand-crafted features or any external fiducial markers due to the
possibility that these markers turn out of view of the tracking agent.

An example of a convoying method using visual features of the leading agent without tem-
plates or fiducial markers is [21], which uses color-tracking mixed with SIFT features to detect a
leading vehicle in a convoy. While we could attempt to employ such a method in an underwater
scenario, color-based methods may not work as well due to the variations in lighting and color
provided by underwater optics.

2.2.2 Tracking Methods

The extensive literature on visual tracking can be separated into model-based and model-free

methods, each with their own set of advantages and drawbacks.

In model-free tracking the algorithm has no prior information on the instance or class of
objects it needs to track. Algorithms in this category, such as [72], are typically initialized
with a bounding box of an arbitrary target, and they adapt to viewpoint changes through semi-
supervised learning. The TLD tracker [32], for example, trains a detector online using positive
and negative feedback obtained from image-based feature tracks. In general, tracking systems in
this category suffer from tracking drift, which is the accumulation of error over time either from
false positive identification of unseen views of the target, or errors due to articulated motion,
resulting in small accumulating errors leading to a drift away from the target object.

In model-based tracking, the algorithm is either trained on or has access to prior information
on the appearance of the target. This can take the form of a detailed CAD model, such as in
[39], which uses a 3D model describing the geometry of a car in order to improve tracking
of the vehicle in image space. Typically, line and corner features are used in order to register
the CAD model with the image. In our work we opted to avoid these methods because of their

6



2.3 Aqua Dataset

susceptibility to errors in terms of occlusion and non-rigid motion.

Works such as [7, 45] use convolutional neural networks and rely on supervised learning to
learn a generic set of target representations. Our work herein is more closely related to this body
of work, however, we are interested in a single target with known appearance.

2.3 Aqua Dataset

Figure 2.2: Synthetic images generated in Unreal Engine
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2.4 Detection Methods

2.3.1 Dataset Collection

We collected a dataset1 of video recordings of the Aqua family of hexapods during field trials
at McGill University’s Bellairs Research Institute in Barbados. This dataset includes approx-
imately 5200 third-person view images extracted from video footage of the robots swimming
in various underwater environments recorded from the diver’s point of view and nearly 10000
first-person point of view frames extracted from the tracking robot’s front-facing camera.

We use the third-person video footage for training and validation, and the first-person video
footage as a test set. This separation also highlights the way we envision our system to become
widely applicable: the training data can be recorded with a handheld unit without necessitating
footage from the robot’s camera.

2.3.2 Synthetic Data Generation

Given the relatively small amount of data available for training the deep convolutional neural
network-based methods, we generate a training dataset made up of synthetic data. We generate
the data in a simulated 3D underwater environment using Unreal Engine 4, with ready-made
assets and the CAD model of the AQUA robot. The location of the robot in the environment,
joint angles, as well as the lighting, viewpoint, and distance to the camera (within reasonable
bounds) are randomized to obtain a wide variety of images. This synthetic dataset contains only
single timestep images as opposed to image sequences. In other words, we do not generate
synthetic movie datasets for any of the recurrent methods that we examine here. Sample images
from the synthetic dataset are shown in Figure 2.2.

2.4 Detection Methods

The initial stage in our tracking pipeline is to localize the object of interest (the AQUA robot
in our case) within the image, that is: given an RGB image, output the bounding box pixel
coordinates containing the object. We describe in this section the details for each compared
method.

1The dataset, along with its ground truth annotations, can be found at http://www.cim.mcgill.ca/
~mrl/robot_tracking
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2.4 Detection Methods

2.4.1 Non-Recurrent Methods

VGG

The VGG architecture [65] classification performance has been shown to generalize well to sev-
eral visual benchmark datasets in localization and classification tasks, so we use it as a starting
point for tracking a single object. In particular we started from the VGG16 architecture, which
consists of 16 layers, the first 13 of which are convolutional or max-pooling layers, while the rest
are fully connected layers2, the output of which is the classification or localization prediction of
the network.

In our case, we want to output the vector z “ px, y, w, h, pq, where px, yq are the coordi-
nates of the top left corner and pw, hq is the width and height of the predicted bounding box.
We normalize these coordinates to lie in r0, 1s. p is interpreted as the probability that the robot
is present in the image. The error function that we want to minimize combines both the classifi-
cation error, expressed as binary cross-entropy, and the regression error for localization, which
in our case is the mean absolute error for true positives. More formally, the loss function that
we used, shown here for a single data point, is:

Ln “ 1p̄“1

3
ÿ

i“0

|zi ´ z̄i| ´ pp̄logppq ` p1´ p̄qlogp1´ pqq

where symbols with bars denote ground truth annotations.

We evaluated the following variants of this architecture on our dataset:

‚ VGG16a: the first 13 convolutional layers from VGG16, followed by two FC-128 ReLU, and a

FC-5 sigmoid layer. We use batch normalization in this variant. The weights of all convolutional

layers are kept fixed from pre-training.

‚ VGG16b: the first 13 convolutional layers from VGG16, followed by two FC-128 Parametric

ReLU, and a FC-5 sigmoid layer. We use Euclidean weight regularization for the fully connected

layers. The weights of all convolutional layers are kept fixed, except the top one.

‚ VGG16c: the first 13 convolutional layers from VGG16, followed by two FC-228 ReLU, and a

2Specifically, two fully connected layers of width 4096, followed by one fully connected layer of width 1000,
denoted FC-4096 and FC-1000 respectively.

9



2.4 Detection Methods

FC-5 sigmoid layer. The weights of all convolutional layers are fixed, except the top two.

‚ VGG15: the first 12 convolutional layers from VGG16, followed by two FC-128 ReLU, and a

FC-5 sigmoid layer. We use batch normalization, as well as Euclidean weight regularization for

the fully connected layers. The weights of all convolutional layers are kept fixed.

‚ VGG8: the first 8 convolutional layers from VGG16, followed by two FC-128 ReLU, and a FC-5

sigmoid layer. We use batch normalization in this variant, too. The weights of all convolutional

layers are kept fixed.

In all of our variants, we pre-train the network on the ImageNet dataset as in [65] to drastically
reduce training time and scale our dataset images to p224, 224, 3q to match the ImageNet scaling.

YOLO

The YOLO detection system [50] frames detection as a regression problem, using a single net-
work optimized end-to-end to predict bounding box coordinates and object classes along with
a confidence estimate. It enables faster predictions than most detection systems that are based
on sliding window or region proposal approaches, while maintaining a relatively high level of
accuracy.

We started with the TinyYOLOv2 architecture [51], but we found that inference on our
robot’s embedded platform (without GPU acceleration) was not efficient enough for fast, closed-
loop, vision-based, onboard control. Inspired by lightweight architectures such as [29], we con-
densed the TinyYOLOv2 architecture as shown in Table 2.1. This enabled inference on embed-
ded robot platforms at reasonable frame rates (13 fps). Following Ning 3 and [29] we:

‚ replace some of the 3ˆ 3 filters with 1ˆ 1 filters, and

‚ decrease the depth of the input volume to 3ˆ 3 filters.

Our ReducedYOLO architecture is described in Table 2.2. This architecture keeps the same
input resolution and approximately the same number of layers in the network, yet drastically
decreases the number of filters for each layer. Since we started with a network which was de-
signed for detection tasks of up to 9000 classes in the case of TinyYOLOv2 [51], we hypothesize

3’YOLO CPU Running Time Reduction: Basic Knowledge and Strategies’ at https://goo.gl/xaUWjL
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2.4 Detection Methods

that the reduced capacity of the network would not significantly hurt the tracking performance
for a single object class. This is supported by our experimental results.

We also use structures of two 1ˆ1 filters followed by a single 3ˆ3 filter, similar to Squeeze
layers in SqueezeNet [29], to compress the inputs to 3 ˆ 3 filters. Similarly to VGG [65] and
the original YOLO architecture [50], we double the number of filters after every pooling step.

As in the original TinyYOLOv2 configuration, both models employ batch normalization and
leaky rectified linear unit activation functions on all convolutional layers.

Type Filters Size/Stride Output

Input 416ˆ 416
Convolutional 16 3ˆ 3/1 416ˆ 416

Maxpool 2ˆ 2/2 208ˆ 208
Convolutional 32 3ˆ 3/1 208ˆ 208

Maxpool 2ˆ 2/2 104ˆ 104
Convolutional 64 3ˆ 3/1 104ˆ 104

Maxpool 2ˆ 2/2 52ˆ 52
Convolutional 128 3ˆ 3/1 52ˆ 52

Maxpool 2ˆ 2/2 26ˆ 26
Convolutional 256 3ˆ 3/1 26ˆ 26

Maxpool 2ˆ 2/2 13ˆ 13
Convolutional 512 3ˆ 3/1 13ˆ 13

Maxpool 2ˆ 2/1 13ˆ 13
Convolutional 1024 3ˆ 3/1 13ˆ 13
Convolutional 1024 3ˆ 3/1 13ˆ 13
Convolutional 30 1ˆ 1/1 13ˆ 13

Detection

Table 2.1: TinyYOLOv2 architecture

2.4.2 Recurrent Methods

In vision-based convoying, the system may lose sight of the object momentarily due to occlu-
sion or lighting changes, and thus lose track of its leading agent. In an attempt to address this
problem, we use recurrent layers stacked on top of our ReducedYOLO architecture, similarly
to [47]. In their work, Ning et al. use the last layer of features output by the YOLO network for n
frames (concatenated with the YOLO bounding box prediction which has the highest IOU with
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Type Filters Size/Stride Output

Input 416ˆ 416
Convolutional 16 7ˆ 7/2 208ˆ 208

Maxpool 4ˆ 4/4 52ˆ 52
Convolutional 4 1ˆ 1/1 52ˆ 52
Convolutional 4 1ˆ 1/1 52ˆ 52
Convolutional 8 3ˆ 3/1 52ˆ 52

Maxpool 2ˆ 2/2 26ˆ 26
Convolutional 8 1ˆ 1/1 26ˆ 26
Convolutional 8 1ˆ 1/1 26ˆ 26
Convolutional 16 3ˆ 3/1 26ˆ 26

Maxpool 2ˆ 2/2 13ˆ 13
Convolutional 32 3ˆ 3/1 13ˆ 13

Maxpool 2ˆ 2/2 6ˆ 6
Convolutional 64 3ˆ 3/1 6ˆ 6
Convolutional 30 1ˆ 1/1 6ˆ 6

Detection

Table 2.2: Our ReducedYOLO architecture

the ground truth) and feed them to single forward Long-Term Short-Term Memory Network
(LSTM).

While Ning et al. assume that objects of interest are always in the image (as they test on
the OTB-100 tracking dataset), we instead assume that the object may not be in frame. Thus,
we make several architectural modifications to improve on their work and make it suitable for
our purposes. First, Ning et al. use a simple mean squared error (MSE) loss between the output
bounding box coordinates and the ground truth in addition to a penalty which minimizes the
MSE between the feature vector output by the recurrent layers and the feature vector output of
the YOLO layers. We find that in a scenario where there can be images with no bounding box
predicted (as is the case in our system), this makes for an extremely unstable objective func-
tion. Therefore we instead use a modified YOLO objective for our single-bounding box single
class case. This results in Recurrent ReducedYOLO (RROLO) having the following objective

12
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function, shown here for a single data point:

Ipp
?
x̄´

?
xq2 ` p

?
ȳ ´

?
yq2qαcoord ` Ipp

?
w̄ ´

?
wq2 ` p

a

h̄´
?
hq2qαcoord

` IpIOU´ pq2αobj ` p1´ IqpIOU´ pq2αno_obj (2.1)

where αcoord, αobj, αno_obj are tunable hyper-parameters (left at 5, 1, 0.5 respectively based on
the original YOLO objective), w̄, h̄, w, h are the width, height, predicted width and predicted
height, respectively, I P t0, 1u indicates whether the object exists in the image according to
ground truth, p is the confidence value of the prediction and IOU is the Intersection Over Union
of the predicted bounding box with the ground truth.

Furthermore, to select which bounding box prediction of YOLO to use as input to our LSTM
(in addition to features), we use the highest confidence bounding box rather than the one which
overlaps the most with the ground truth. We find that the latter case is not a fair comparison or
even possible for real-world use and thus eliminate this assumption.

In order to drive the final output to a normalized space (ranging from 0 to 1), we add fully
connected layers with sigmoidal activation functions on top of the final LSTM output, simi-
larly to YOLOv2 [51]. Redmon and Farhadi posit that this helps stabilize the training due to
the normalization of the gradients at this layer. We choose three fully connected layers with
|YOLOoutput|, 256, 32 hidden units (respectively) and a final output of size 5. We also apply
dropout on the final dense layers at training time with a probability of .6 that the weight is kept.

We also include multi-layer LSTMs to our experimental evaluation as well as bidirectional
LSTMs which have been shown to perform better on longer sequences of data [24]. A general
diagram of our LSTM architecture can be seen in Figure 2.3. Our recurrent detection imple-
mentation, based partially on code provided by [47], is made publicly accessible.4

2.4.3 Methods Based on Frequency-Domain Detection

Periodic motions have distinct frequency-domain signatures that can be used as reliable and ro-
bust features for visual detection and tracking. Such features have been used effectively [56, 30]
by underwater robots to track scuba divers. Flippers of a human diver typically oscillate at fre-

4https://github.com/Breakend/TemporalYolo
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2.4 Detection Methods

Figure 2.3: Overview of our Recurrent ReducedYOLO (RROLO) architecture. The original
ROLO work [47] did not use bidirectional, dense layers, or multiple LSTM cells in their exper-
iments.

quencies between 1 and 2 Hz, which produces periodic intensity variations in the image-space
over time. These variations correspond to distinct signatures in the frequency-domain (high-
amplitude spectra at 1-2Hz), which can be used for reliable detection. While for convoying pur-
poses, the lead robot’s flippers may not have such smoothly periodic oscillations, the frequency
of the flippers is a configurable parameter which would be known beforehand.

We implement the mixed-domain motion (MDPM) tracker described by Islam et al [30]. An
improved version of Sattar et al [56], the MDPM works as follows (illustrated in Figure 2.4) :

‚ First, intensity values are captured along arbitrary motion directions; motion directions
are modeled as sequences of non-overlapping image sub-windows over time.

‚ By exploiting the captured intensity values, a Hidden Markov Model (HMM)-based prun-
ing method discards motion directions that are unlikely to be directions where the robot
is swimming.

‚ A Discrete Time Fourier Transform (DTFT) converts the intensity values along P most
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time
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Figure 2.4: Outline of mixed-domain periodic motion (MDPM) tracker [30]

potential motion directions to frequency-domain amplitude values. High amplitude spec-
tra on 1-3Hz is an indicator of robot motion, which is subsequently used to locate the
robot in the image space.

2.5 Visual Servoing Controller

The Aqua family of underwater robots allows 5 degrees-of-freedom5 control, which enables
agile and fast motion in 3D. This characteristic makes vehicles of this family ideal for use in
tracking applications that involve following other robots as well as divers [56].

One desired attribute of controllers in this type of setting is that the robot moves smoothly
enough to avoid motion blur, which would degrade the quality of visual feedback. To this end
we have opted for an image-based visual servoing controller that avoids explicitly estimating
the 3D position of the target robot in the follower’s camera coordinates, as this estimate typ-
ically suffers from high variance along the optical axis. This is of particular relevance in the
underwater domain because performing camera calibration underwater is a time-consuming
and error-prone operation. Conversely, our tracking-by-detection method and visual servoing
controller do not require camera calibration. Our controller regulates the motion of the vehicle
to bring the observed bounding boxes of the target robot on the center of the follower’s image,
and also to occupy a desired fraction of the total area of the image. It uses a set of three error

5Yaw, pitch, and roll rate, as well as forward and vertical speed
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2.5 Visual Servoing Controller

Figure 2.5: Errors used by the robot’s feedback controller. δx is used for yaw control, δy for
depth control, and the error in bounding box area, δA is used for forward speed control.

sources, as shown in Fig. 2.5, namely the 2D translation error from the image center, and the
difference between the desired and the observed bounding box area.

The desired roll rate and vertical speed are set to zero and are handled by the robot’s 3D
autopilot [41]. The translation error on the x-axis, δx, is converted to a yaw rate through a PID
controller. Similarly, the translation error on the y-axis, δy, is scaled to a desired depth change
in 3D space. When the area of the observed bounding box is bigger than desired, the robot’s
forward velocity is set to zero. We do not do a backup maneuver in this case, even though the
robot supports it, because rotating the legs 180o is not an instantaneous motion. The difference
in area of the observed versus the desired bounding box, namely δA, is scaled to a forward
speed. Our controller sends commands at a rate of 10Hz and assumes that a bounding box is
detected at least every 2 seconds, otherwise it stops the robot.
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2.6 Experimental Results

We evaluate each of the implemented methods on the common test dataset described in Section
2.3 using the metrics described below, with nimages the total number of test images, nTP the
number of true positives, nTN the number of true negatives, nFN the number of false negatives
and nFP the number of false positives:

‚ Accuracy : nTP`nTN
nimages

‚ Precision : nTP
nTP`nFP

and recall: nTP
nTP`nFN

‚ Average Intersection Over Union (IOU) : Computed from the predicted and ground-truth
bounding boxes over all true positive detections (between 0 and 1, with 1 being perfect
alignment)

‚ Localization failure rate (LFR): Percentage of true positive detections having IOU under
0.5 [9]

‚ Frames per second (FPS) : Number of images processed/second

Each of the implemented methods outputs its confidence that the target is visible in the image.
We chose this threshold for each method by generating a precision-recall curve and choosing
the confidence bound which provides the best recall tradeoff for more than 95% precision.

We present the evaluation results in Table 2.3 for each of the algorithms that we considered.
The FPS metric was measured across five runs on a CPU-only machine with a 2.7GHz Intel i7
processor.

2.6.1 Non-Recurrent Methods

As we can see in Table 2.3, the original TinyYOLOv2 model is the best performing method in
terms of IOU, precision, and failure rate.

However our results show that the ReducedYOLO model achieves a 14x speedup over
TinyYOLOv2, without a significant loss in accuracy. This is a noteworthy observation since
ReducedYOLO uses 3.5 times fewer parameters compared to TinyYOLOv2. This speedup is
crucial for making the system usable on mobile robotic platforms which often lack Graphical
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Algorithm ACC IOU P R FPS LFR

VGG16a 0.80 0.47 0.78 0.79 1.68 47%

VGG16b 0.82 0.39 0.85 0.73 1.68 61%

VGG16c 0.80 0.35 0.88 0.64 1.68 70%

VGG15 0.71 0.38 0.65 0.75 1.83 62%

VGG8 0.61 0.35 0.55 0.69 2.58 65%

TinyYOLOv2 0.86 0.54 0.96 0.88 0.91 34%
ReducedYOLO 0.85 0.50 0.95 0.86 13.3 40%

RROLO (n=3,z=1) 0.68 0.53 0.95 0.64 12.69 15%
RROLO (n=3,z=2) 0.84 0.54 0.96 0.83 12.1 9%
RROLO (n=6,z=1) 0.81 0.53 0.95 0.80 12.1 11%
RROLO (n=6,z=2) 0.83 0.54 0.96 0.82 12.03 11%
RROLO (n=9,z=1) 0.81 0.53 0.95 0.80 11.53 9%
RROLO (n=9,z=2) 0.80 0.50 0.96 0.79 11.36 14%

MDPM Tracker 0.25 0.16 0.94 0.26 142 19.3%
TLD Tracker 0.57 0.12 1.00 0.47 66.04 97%

Table 2.3: Comparison of all tracking methods. Precision and recall values based on an optimal
confidence threshold.

Processing Units, and are equipped with low-power processing units. Additionally, note that the
precision metric has not suffered while reducing the model, which implies that the model rarely
commits false positive errors, an important quality in convoying where a single misdetection
could deviate the vehicle off course.

In addition, we found that none of the VGG variants fared as well as the YOLO variants,
neither in terms of accuracy nor in terms of efficiency. The localization failure rate of the VGG
variants was reduced with the use of batch normalization. Increasing the width of the fully
connected layers and imposing regularization penalties on their weights and biases did not lead
to an improvement over VGG16a. Reducing the total number of convolutional layers, resulting
in the VGG8 model lead to a drastic decrease in both classification and localization performance,
which suggests that even when trying to detect a single object, network depth is necessary for
VGG-type architectures.

Finally, the TLD tracker [32] performed significantly worse than any of the detection-based
methods, mainly due to tracking drift. It is worth noting that we did not reinitialize TLD after
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the leading robot exited the field of view of the following robot, and TLD could not always
recover. This illustrates why model-free trackers are in general less suitable for convoying tasks
than model-based trackers.

2.6.2 Synthetic Dataset Domain Adaptation

Figure 2.6: Synthetic images and corresponding bounding boxes generated in Unreal Engine.
Only the top-right image is well bounded.

We investigate the feasibility of training the ReducedYOLO model on synthetic data only,
as it is the closest to running in real time onboard the AQUA robot. We train the model using
an increasing number of simulator generated images, going up to 50000 training images, and
obtain our results on the common real images test dataset. The Results for this experiment are

19



2.6 Experimental Results

N Synthetic Training Images ACC IOU P R LFR

1000 0.000 0.000 0.000 0.000 N/A
5000 0.542 0.173 0.930 0.459 36%

10000 0.443 0.189 0.914 0.329 26%
20000 0.528 0.188 0.925 0.442 35%
30000 0.416 0.166 0.931 0.287 23%
40000 0.455 0.171 0.937 0.336 26 %
50000 0.390 0.189 0.943 0.247 20%

Table 2.4: ReducedYOLO Trained on synthetic data only

shown in Table 2.4.

As we can see, training only on synthetic data gives poor results compared to training on
the real dataset. Synthetic data seems to make the performance of the algorithm worse as the
number of synthetic training images increases. This goes against intuition given the fidelity of
the visual data seen in Figure 2.2.

We find out through inspection of the annotations generated by Unreal Engine, that the
ground truth bounding boxes output by the simulator are often oversized compared to the robot.
We show a few examples of this issue in Figure 2.6. With these examples, the algorithm learns
overly loose bounding boxes which include significant amounts of background scenery. Because
of this, the resulting trained network naturally suffers in both localization and classification
performance. In addition, with the YOLO detection framework randomizing the batches of data
seen in training, the amount of well annotated data the network is trained on is unpredictable,
thus explaining the poor coherence of the results as a function of the number of synthetic training
images.

The poor annotations output by the simulator are due to its 3D nature as well as the pipeline
used to output the annotations. We plan to fix this issue to obtain conclusive results.

2.6.3 Recurrent Methods

All the recurrent methods were trained using features obtained from the ReducedYOLO model,
precomputed on our training set. We limit our analysis to the recurrent model using the Re-
ducedYOLO model’s features, which we’ll refer to as Recurrent ReducedYOLO (RROLO),
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again, because this model can run closest to real time on our embedded robot system. Our re-
sults on the test set are shown in Table 2.3. For these methods, z denotes the number of LSTM
layers, n is the number of frames in a given sequence. Note that the runtime presented here for
RROLO methods includes the ReducedYOLO inference time. Finally, while bidirectional recur-
rent architectures were implemented and tested as well, we exclude results from those models in
the table as we found that in our case these architectures resulted in worse performance overall
across all experiments.

As can be seen in Table 2.3, we find that the failure rate and predicted confidence can be
tuned and improved significantly without impacting precision, recall, accuracy, or IOU. More
importantly, we find that the correlation between bounding box IOU (with the ground truth)
and the predicted confidence value of our recurrent methods is much greater than any of the
other methods, which translates to a more interpretable model with respect to the confidence
threshold parameter while also reducing the tracking failure rate. For our best configurations
of VGG, YOLO, ReducedYOLO, and RROLO, we take the Pearson correlation r-value and the
mean absolute difference between the ground truth IOU and the predicted confidence6. We find
that RROLO overall is the most correlated and has the least absolute difference between the
predicted confidence and ground truth IOU.

Variations in layers and timesteps do not present a significant difference in performance,
while yielding a significant reduction in failure rate even with short frame sequences (n “ 3, z “

2). Furthermore, the frame rate impact is negligible with a single layer LSTM and short time
frames, so we posit that it is only beneficial to use a recurrent layer on top of ReducedYOLO.
While the best length of the frame sequence to examine may vary based on characteristics of the
dataset, in our case n “ 3, z “ 2 provides the best balance of speed, accuracy, IOU, precision
and recall, since this model boosts all of the evaluation metrics while retaining IOU with the
ground truth and keeping a relatively high FPS value.

Increasing the number of LSTM layers can boost accuracy and recall further, without im-
pacting IOU or precision significantly, at the expense of higher runtime and higher risk of over-
fitting. We attempted re-balancing and re-weighting the objective in our experiments and found

6Pearson correlation r-value: VGG (.70), YOLO (.48), ReducedYOLO (.56), RROLO (.88). Mean absolute
difference between confidence predicted and IOU with ground truth: VGG (.37), YOLO (.17), ReducedYOLO
(.18), RROLO (.08).
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that the presented settings worked best. We suspect that no increase in IOU, precision and recall
was observed as there may not be enough information in the fixed last layers of the YOLO out-
put to improve prediction. Future work to improve the recurrent system would target end-to-end
experiments on both the convolutional and recurrent layers, along with experiments investi-
gating different objective functions to boost the IOU while making the confidence even more
correlated to IOU.

2.6.4 Method Based on Frequency-Domain Detection

In our implementation of MDPM tracker, non-overlapping sub-windows of size 30 ˆ 30 pixels
over 10 sequential frames are considered to infer periodic motion of the robot. Peaks in the am-
plitude spectrum in the range 1-3Hz constitute an indicator of the robot’s direction of motion.
We found that the frequency responses generated by the robot’s flippers are not strong and reg-
ular. This is due to lack of regularity and periodicity in the robot’s flipping pattern (compared
to that of human divers), but also due to the small size of the flippers compared to the image
size. Consequently, as Table 2.3 suggests, MDPM tracker exhibits poor performance in terms
of accuracy, recall, and IOU. The presence of high amplitude spectra at 1-3Hz indicates the
robot’s motion direction with high precision. However, these responses are not regular enough
and therefore the algorithm fails to detect the robot’s presence in a significant number of de-
tection cycles. We can see however that the failure rate for this method is one of the lowest
among the studied methods, indicating very precise bounding boxes when detections do occur.
Additionally, this method does not need training and is the fastest (and least computationally ex-
pensive) method, by a significant margin. Therefore given more consistent periodic gait patterns
it would perform quite well, as previously demonstrated in [30].

2.6.5 Field Trial

Setup

To demonstrate the practicality of our vision-based tracking system, we conducted a set of in-
ocean robot convoying field runs by deploying two Aqua robots at 5 meters depth from the sea
surface. The appearance of the leading robot was altered compared to images in our training
dataset, due to the presence of an additional sensor pack on its top plate. This modification al-
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lowed us to verify the general robustness of our tracking-by-detection solution, and specifically
to evaluate the possibility of overfitting to our training environments.
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Figure 2.7: Histogram of true positive and false negative detections as a function of the area of
annotated bounding boxes, as obtained from in-ocean robot tracking runs.

We programmed the target robot to continuously execute a range of scripted trajectories, in-
cluding maneuvers such as in-place turning, changing depth, and swimming forward at constant
speed. We deployed the ReducedYOLO model on the follower robot, which operated at 7 Hz
onboard an Intel NUC i3 processor without GPU acceleration or external data tethering. More-
over, the swimming speeds of both robots were set to be identical in each run (0.5 ´ 0.7m{s),
and they were initialized at approximately two meters away from one another, but due to cur-
rents and other factors the distance between them (and the scale of observed bounding boxes)
changed throughout the experiment runs.
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Results

We configured the follower robot to track the leading robot at a fixed nominal distance. This
was achieved by setting the desired bounding box area to be 50% of the total image area, as
seen in Fig. 2.5.

The ReducedYOLO detector consistently over-estimated the small size of the target. Nev-
ertheless, Fig. 2.8 indicates that the bias error in bounding box centers between detected versus
ground truth was consistently low in each frame, regardless of the target size, on average within
10% of the image’s width to each other. This is notable due to frequent occurrences where the
robot’s size occupied less than 50% of the total area of the image.
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Figure 2.8: Histogram of average biases between detected vs. annotated bounding box centers,
as obtained from in-ocean robot tracking runs. Bars indicate 1σ error.

We also evaluated the performance of our system in terms of the average “track length”,
defined as the length of a sequence of true positive detections with a maximum of 3 seconds
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of interruption. Across all field trial runs, the follower achieved 27 total tracks, with an average
duration of 18.2 sec (σ “ 21.9 sec) and a maximum duration of 85 sec. As shown in Fig. 2.9,
the vast majority of tracking interruptions were short, specifically less than a second, which
did not affect the tracking performance, as the leading robot was re-detected. The majority of
these tracking interruptions were due to the fact that the annotated bounding box area of the
leading robot was less than 20% of the total area of the follower’s image. Sustained visual
detection of the target, despite significant visual noise and external forces in unconstrained
natural environments, and without the use of engineered markers, reflects successful and robust
tracking performance in the field.
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Figure 2.9: Histogram of true negative and false negative classifications in terms of their dura-
tion for our ReducedYOLO model, as obtained from in-ocean robot tracking runs.
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2.7 Conclusions

We presented a general tracking-by-detection approach that relies on visual sensing of the ap-
pearance of non-engineered targets, and also capitalizes on recent advances in deep learning for
deployment onboard robots with limited computing capabilities. We demonstrated the utility
of several lightweight neural network architecture for appearance-based visual convoying, and
we showed improvements made possible by recurrent extensions. We successfully performed
multi-robot convoying in the open sea in practice, using supervised learning based on limited
training data annotated beforehand. Furthermore, we carried out an extensive comparison of
various tracker variants with respect to a multitude of desirable attributes for visual convoying
tasks and investigated the feasibility of using synthetic data for these approaches by training and
evaluating our best candidate architecture using only synthetic data.

Possible improvements through future research include improvement on temporal-based
bounding box detection by making the entire architecture trainable end-to-end, the use of a
higher fidelity simulator for better synthetic data, extending this work to visual servoing with
multiple bounding boxes per frame, as well as robust target tracking, despite interruptions in
visual contact by using stronger predictive models.
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Chapter 3

Domain Adaptation to Learn from Demon-
stration

3.1 Introduction

Robot learning from demonstration (Lfd) is a paradigm to enable robots to reproduce a behavior
for a task demonstrated by an expert, usually a human. It can therefore be used to develop new
robot behaviors without writing code explicitly describing the behavior but instead by "show-
ing" the behavior to the robot. In the context of autonomous cars for example, the "stop at red
lights" behavior could be learned from human drivers driving lawfully instead of programming
by hand the actions needed for the encountered conditions. This field holds much potential in
a future where robots will become increasingly commonplace and mostly interact with users
unfamiliar with the inner workings of a robot.

Lfd can be tackled with direct inverse reinforcement learning (also known as imitation learn-
ing or policy imitation), where the robot attempts to imitate the policy of the expert by observing
its states and actions. In this case, the agent attempts to replicate the actions chosen by the expert
policy without reasoning about the reward function the expert was optimizing over. Behavioral
cloning is the simplest example of imitation learning, where it is treated as a supervised learning
problem: given a sequence of expert states and actions, learn the mapping between each state
and the corresponding action. However this approach lacks robustness as any deviation from the

27



3.2 Background and Notation

demonstrated paths will lead to states the learner has not encountered and thus unpredictable be-
haviors. Bagnell’s summary [5] of imitation learning presents many reasons why robust policies
are not achievable only using supervised learning.

Indirect inverse reinforcement learning on the other hand, usually simply referred to as In-
verse Reinforcement Learning (IRL), tackles the Lfd problem by first inferring about the reward
function the expert demonstrator was optimized over, and imitates the expert behavior using for-
ward reinforcement learning methods. From an engineering point of view, this line of work is
also called inverse optimal control. While IRL inherently produces more generalizable policies,
it has been determined that IRL is a degenerate problem [46] as there can be many reward func-
tions that explain an observed optimal behavior. Multiplying any reward function by a positive
scalar for instance will not change optimal behavior for that MDP.

In this chapter, we present an IRL algorithm applicable to robotics and demonstrate its
robustness to data scarce scenarios through domain adaptation.

3.2 Background and Notation

3.2.1 Markov Decision Processes (MDPs)

MDPs consist of states S, actions A, a transition function P : S ˆ A Ñ pS Ñ Rq, and a
reward function r : S Ñ R. We formulate our methods in the space of continuous control tasks
(A P R, S P R) using measure-theoretic assumptions. Thus we define a parameterized policy as
the probability distribution over actions conditioned on states πθ : S ˆ AÑ r0, 1s, modeled by
a Gaussian πθ „ N pµ, σ2q where θ are the policy parameters. The value of a policy is defined
as Vπpsq “ Eπr

ř8

t“0 γ
trt`1|s0 “ ss and the action-value is Qπps, aq “ Eπr

ř8

t“0 γ
trt`1|s0 “

s, a0 “ as, where γ P r0, 1q is the discount factor.

3.2.2 The Options framework

In reinforcement learning, an option (ω P Ω) can be defined by a triplet (Iω, πω, βω). In this
definition, πω is called an intra-policy option, Iω Ď S is an initiation set, and βω : S Ñ r0, 1s is a
termination function (i.e. the probability that an option ends at a given state) [67]. Furthermore,
πΩ is the policy-over-options. That is, πΩ determines which option πω an agent picks to use
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until the termination function βω indicates that a new option should be chosen. Other works
explicitly formulate call-and-return options, but in our case, we simplify to one-step options,
where βωpsq “ 1; @ω P Ω, @s P S. One-step options have long been discussed as an alternative
to temporally extended methods and often provide advantages in terms of optimality and value
estimation [67, 16, 14].

3.2.3 Mixture-of-Experts

The idea of creating a mixture of experts (MoEs) was initially formalized to improve learning of
neural networks by dividing the input space among several networks and then combining their
outputs through a soft weighted average [31]. It has since come into prevalence for generating
extremely large neural networks [63]. In our formulation of joint reward-policy options, we
leverage a correspondence between Mixture-of-Experts and options. In the case of one-step
options, the policy-over-options (πΩ) can be viewed as a specialized gating function over experts
(intra-options policies πωpa|sq):

ř

ω πΩpω|sqπωpa|sq. Several works investigate convergence to
a sparse and specialized Mixture-of-Experts [31, 63].

3.2.4 Policy Gradients

Policy gradient (PG) methods [66] formulate a method for optimizing a parameterized policy πθ
through stochastic gradient ascent. In the discounted setting, PG methods optimize ρpθ, s0q “

Eπθ
“
ř8

t“0 γ
trpstq|s0

‰

.

The PG theorem states: δρpθ,s0q
δθ

“
ř

s µπθps|s0q
ř

a
δπθpa|sq

δθ
Qπθps, aq, where µπθps|s0q “

ř8

t“0 γ
tP pst “ s|s0q [66]. In Trust Region Policy Optimization (TRPO) [59] and Proximal Pol-

icy Optimization (PPO) [61] this update is constrained and transformed into the advantage esti-
mation view such that the above becomes a constrained optimization: maxθ Et

”

πθpat|stq
πθold pat|stq

Atpst, atq
ı

subject to Et rKL rπθoldp¨|stq, πθp¨|stqss ď δ where Atpst, atq is the generalized advantage func-
tion according to [60]. In TRPO, this is solved as a constrained conjugate gradient descent
problem, while in PPO the constraint is transformed into a penalty term or clipping objective.
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3.2.5 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) was first formulated in the context of MDPs by [46]. In
later work, a parametrization of the reward function is learned as a linear combination of the
state feature expectation so that the hyperdistance between the expert and the novice’s feature
expectation is minimized [1]. It has also been shown that a solution can be formulated using the
maximum entropy principle, with the goal of matching feature expectation as well [73]. Gen-
erative adversarial imitation learning (GAIL) makes use of adversarial techniques from [23]
to perform a similar feature expectation matching [28]. In this case, a discriminator uses roll-
outs (state-action pair sequences) from the expert demonstrations and novice rollouts to learn
a binary classification probability distribution. The probability that a state belongs to an expert
demonstration can then be used as the reward for a policy optimization step. In other words, how
well the novice "fools" the discriminator by tending closer to the expert behavior determines the
reward it receives for a rollout.

3.3 Applying Lfd to Robotics

One goal in robotics research is to create a system which learns how to accomplish complex
tasks simply from observing an expert’s actions, such as videos of humans performing actions
for instance. While IRL has been instrumental in working towards this goal, it has become clear
that fitting a single reward function which generalizes across many domains is difficult.

To this end, several works investigate decomposing the underlying reward functions of ex-
pert demonstrations and environments in both IRL and RL [33, 62, 11, 3, 70]. For example,
in [33], reward functions are decomposed into a set of subtasks based on segmenting expert
demonstration transitions (known state-action pairs) by analyzing the changes in “local linear-
ity with respect to a kernel function”. Similarly, in [62], techniques in video editing based on
information-similarity are adopted to divide a video demonstration into distinct sections which
can then be recombined into a differentiable reward function.

However, simply decomposing the reward function may not be enough, the policy must also
be able to adapt to different tasks. Several works have investigated learning a latent dimension
along with the policy for such a purpose [25, 71, 35]. This latent dimension allows multiple
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tasks to be learned by one policy and elicited via the latent variable. All of these hierarchical
methods require however the attempted task to be specified explicitly by an oracle, through the
latent variable.

3.4 One Shot Domain Adaptation

For IRL to be applicable to robotics applications, it would ideally be able to learn underlying
reward functions and policies solely from human video demonstrations. We call such a case,
where the demonstrations come from various domains and the task must be performed in a novel
unseen environment, one-shot domain adaptation. For example, given only demonstrations of a
human walking on earth, can an agent learn to walk on the moon?

Algorithms able to handle this case would have a wide range of applications in robotics, as
it would allow the training of the agent without requiring any data from the final environment
the robot will perform in. Training a policy using only expert demonstrations collected in a
simulator to perform a task in the real world would reduce the need for human supervision,
robot hardware wear, as well as experiment time.

However, such demonstrations would undoubtedly come from a wide range of settings and
environments and may not conform to a single reward function. This proves detrimental to
current methods which might over-generalize and cause poor performance. In forward RL, de-
composing a policy into smaller specialized policy options has been shown to improve results
for exactly such cases [67, 4]. Thus, we extend the options framework to IRL and decompose
both the reward function and policy, allowing our method to learn deep policies which can spe-
cialize to the set of best-fitting experts. As opposed to the previous body of work mentioned
in Section 3.3, in our formulation the latent structure is implicitly encoded in an unsupervised
manner. This is inherently accomplished while learning to solve a task composed of a wide
range of underlying reward functions and policies in a single framework. Overall, this work
contains parallels to all of the aforementioned and other works emphasizing hierarchical poli-
cies [14, 16, 42], but specifically focuses on leveraging MoEs and reward decompositions to fit
into the options framework for efficient one-shot domain adaptation in IRL.

To accomplish this, we build upon the Generative Adversarial Imitation Learning (GAIL)
framework [28]. Unlike GAIL however, we do not assume knowledge of the expert actions as
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3.4 One Shot Domain Adaptation

we are interested in the Inverse Reinforcement Learning setting rather than Imitation Learning.
We therefore rely solely on observations in the discriminator problem, and refer to our baseline
approach as Generative Adversarial Inverse Reinforcement Learning (IRLGAN) as opposed to
imitation learning. It is important to note that IRLGAN is GAIL without known actions, and
we adopt a different naming scheme to highlight this difference. As such, our adversarial game
optimizes:

max
πΘ

min
RΘ̂

´ rEπΘ
rlogRΘ̂psqs ` EπE rlogp1´RΘ̂psqqss (3.1)

where πΘ and πE are the policy of the novice and expert parameterized by Θ andE, respectively,
and RΘ̂ is the discriminator probability that a sample state belongs to an expert demonstration
(parameterized by Θ̂). We use this notation since in this case the discriminator approximates
a reward function. Similarly to GAIL, we use TRPO during the policy optimization step for
simple tasks. However, for complex tasks we adopt PPO. Figure 3.1 and Algorithm 1 show an
outline for the general IRLGAN process.

We formulate using our method a way to learn joint reward-policy options with adversar-
ial methods in IRL. As such, we call our method OptionGAN. This method can implicitly
learn divisions in the demonstration state space and accordingly learn policy and reward op-
tions. Leveraging a correspondence between Mixture-of-Experts (MoE) and one-step options,
we learn a decomposition of rewards and the policy-over-options in an end-to-end fashion. This
decomposition is able to capture simple problems and learn any of the underlying rewards struc-
ture in one shot. This gives flexibility and benefits for a variety of future applications (both in
reinforcement learning and standard machine learning).

We evaluate OptionGAN in the context of continuous control locomotion tasks, considering
both simulated MuJoCo locomotion OpenAI Gym environments [8], modifications of these
environments for task transfer [27], and a more complex Roboschool task [61]. We show that the
final policies learned using joint reward-policy options outperform a single reward approximator
and policy network in most cases, and particularly excel at one-shot domain adaptation.
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Figure 3.1: Generative Adversarial Inverse Reinforcement Learning (left) and OptionGAN
(right) Architectures

3.5 Reward-Policy Options Framework

Based on the need to infer a decomposition of underlying reward functions from a wide range of
expert demonstrations in one-shot domain adaptation, we extend the options framework for de-
composing rewards as well as policies. In this way, intra-option policies, decomposed rewards,
and the policy-over-options can all be learned in concert in a cohesive framework.

In this case, an option is formulated by a tuple: (Iω, πω, βω, rω). Here, rω is a reward option
from which a corresponding intra-option policy πω is derived. That is, each policy option is
optimized with respect to its own local reward option. The policy-over-options not only chooses
the intra-option policy, but the reward option as well: πΩ Ñ prω, πωq. For simplicity, we refer
to the policy-over-reward-options as rΩ (in our formulation, rΩ “ πΩ). There is a parallel to be
drawn from this framework to Feudal RL [15], but here the intrinsic reward function is stati-
cally bound to each worker (policy option), whereas in that framework the worker dynamically
receives a new intrinsic reward from the manager.

To learn joint reward-policy options, we make use of the IRLGAN framework. We refor-
mulate the discriminator as a Mixture-Of-Experts and re-use the gating function when learning
a set of policy options. We show that by properly formulating the discriminator loss function,
the Mixture-Of-Experts converges to one-step options. In addition, this formulation allows us
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Input : Expert trajectories τE „ πE .
Initialize Θ, Θ̂
for i “ 0, 1, 2, . . . do

Sample trajectories τN „ πΘi

Update discriminator parameters (Θ̂) according to:

LΘ̂ “ Es„τN rlogRΘ̂psqs ` Es„τE rlogp1´RΘ̂psqqs

Update policy (with constrained update step and parameters θ) according to:

EτN r∇Θ log πΘipa|sqEτN rlogpRΘ̂i`1
psqq|s0 “ s̄ss

end
Algorithm 1: IRLGAN

to use regularizers which encourage distribution of information, diversity, and sparsity in both
the reward and policy options.

3.6 Learning Joint Reward-Policy Options

The use of one-step options allows us to learn a policy-over-options in an end-to-end fashion
as a Mixture-of-Experts formulation. In the one-step case, selecting an option (πω,θ) using the
policy-over-options (πΩ,ζ) can be viewed as a mixture of completely specialized experts such
that: πΘpa|sq “

ř

ω πΩ,ζpω|sqπω,θpa|sq.

The reward for a given state is composed as: RΩ,Θ̂psq “
ř

ω πΩ,ζpω|sqrω,θ̂psq, where ζ, θ P
Θ, θ̂ P Θ̂ are the parameters of the policy-over-options, policy options, and reward options,
respectively. Thus, we reformulate our discriminator loss as a weighted mixture of completely
specialized experts in Eq. 3.2. This allows us to update the parameters of the policy-over-options
and reward options together during the discriminator update.

LΩ “ Eω
”

πΩ,ζpω|sqLθ̂,ω

ı

` Lreg (3.2)

Here, Lθ̂,ω is the sigmoid cross-entropy loss of the reward options (discriminators). Lreg, as
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will be discussed later on, is a penalty or set of penalties which can encourage certain properties
of the policy-over-options or the overall reward signal. As can be seen in Algorithm 2 and
Figure 3.1, this loss function can fit directly into the IRLGAN framework.

Input : Expert trajectories τE „ πE .
Initialize θ, θ̂
for i “ 0, 1, 2, . . . do

Sample trajectories τN „ πΘi

Update discriminator options parameters θ̂, ω and policy-over-options parameters ζ ,
to minimize:

LΩ “ Eω
”

πΩ,ζpω|sqLθ̂,ω

ı

` Lreg

Lθ̂,ω “ EτN rlog rθ̂,ωpsqs ` EτE rlogp1´ rθ̂,ωpsqqs

Update policy options (with constrained update step and parameters θω P ΘΩ)
according to:

EτN r∇θ log πΘpa|sqEτN rlogpRΩ,Θ̂psqq|s0 “ s̄ss

end
Algorithm 2: OptionGAN

Having updated the parameters of the policy-over-options and reward options, standard PG
methods can be used to optimize the parameters of the intra-option policies. This can be done
by weighting the average of the intra-option policy actions with the policy-over-options πΩ,ζ .
While it is possible to update each intra-option policy separately as in [4], this Mixture-of-
Experts formulation is equivalent, as discussed in the next section. Once the gating function
specializes over the options, all gradients except for those related to the intra-option policy
selected would be weighted by zero. We find that this end-to-end parameter update formulation
leads to easier implementation and smoother learning with constraint-based methods.

3.7 Mixture-of-Experts as Options

To ensure that our MoE formulation converges to options in the optimal case, we must properly
formulate our loss function such that the gating function specializes over experts. While it may
be possible to force a sparse selection of options through a top-k choice as in [63], we find that
this leads to instability since for k “ 1 the top-k function is not differentiable. As is specified
in [31], a loss function of the form L “ py ´ 1

||Ω||

ř

ω πΩpω|sqyωpsqq
2 draws cooperation be-
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tween experts, but a reformulation of the loss, L “ 1
||Ω||

ř

ω πΩpω|sqpy ´ yωpsqq
2, encourages

specialization.

If we view our policy-over-options as a softmax (i.e. πΩpω|sq “
exppzωpsqq

ř

i exppzipsqq
), then the deriva-

tive of the loss function with respect to the gating function becomes:

dL

dzω
“

1

||Ω||
πΩpω|sq

`

py ´ yωpsqq
2
´ L

˘

(3.3)

This can intuitively be interpreted as encouraging the gating function to increase the like-
lihood of choosing an expert when its loss is less than the average loss of all the experts. The
gating function will thus move toward deterministic selection of experts.

As we can see in Eq. 3.2, we formulate our discriminator loss in the same way, using each
reward option and the policy-over-options as the experts and gating function respectively. This
ensures that the policy-over-options specializes over the state space and converges to a deter-
ministic selection of experts. Hence, we can assume that in the optimal case, our formulation of
an MoE-style policy-over-options is equivalent to one-step options. Our characterization of this
notion of MoE-as-options is further backed by experimental results. Empirically, we still find
temporal coherence across option activation despite not explicitly formulating call-and-return
options as in [4].

3.7.1 Regularization Penalties

Due to our formulation of Mixture-of-Experts as options, we can learn our policy-over-options
in an end-to-end manner. This allows us to add additional terms to our loss function to encourage
the appearance of certain target properties.

Sparsity and Variance Regularization

To ensure an even distribution of activation across the options, we look to conditional computa-
tion techniques that encourage sparsity and diversity in hidden layer activations and apply these
to our policy-over-options [6]. We borrow three penalty terms Lb, Le, Lv (adopting a similar
notation). In the minibatch setting, these are formulated as:
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Figure 3.2: The policy-over-options elicits two interpretable behaviour modes per option, but
temporal cohesion and specialization is seen between these behaviour modes across time within
a sample rollout trajectory.

Lb “
ÿ

ω

||EsrπΩpω|sqs ´ τ ||2 (3.4)

Le “ Es

«

||

˜

1

||Ω||

ÿ

ω

πΩpω|sq

¸

´ τ ||2

ff

(3.5)

Lv “ ´
ÿ

ω

varωtπΩpω|squ (3.6)

where τ is the target sparsity rate (which we set to .5 for all cases). Here, Lb encourages the
activation of the policy-over-options with target sparsity τ “in expectation over the data” [6].
Essentially, Lb encourages a uniform distribution of options over the data while Le drives toward
a target sparsity of activations per example (doubly encouraging our mixtures to be sparse). Lv
also encourages varied πΩ activations while discouraging uniform selection.
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Mutual Information Penalty

To ensure the specialization of each option to a specific partition of the state space, a mutual
information (MI) penalty is added.1 We thus minimize mutual information pairwise between
option distributions, similarly to [36]:

IpFi;Fjq “ ´
1

2
logp1´ ρ2

ijq, (3.7)

where Fi and Fj are the outputs of reward options i and j respectively, and ρij the correlation
coefficient of Fi and Fj , defined as ρij “

ErpFi´ErFisqpFj´ErFjsqs

σ2
i σ

2
j

.

The resulting loss term is thus computed as:

LMI “
ÿ

ωPΩ

ÿ

ω̂PΩ,ω‰ω̂

Ipπω, πω̂q. (3.8)

Thus the overall regularization term becomes:

Lreg “ λbLb ` λeLe ` λvLv ` λMILMI. (3.9)

3.8 Experiments

Task Expert IRLGAN OptionGAN (2ops) OptionGAN (4ops)
Hopper-v1 3778.8 ˘ 0.3 3736.3 ˘ 152.4 3641.2 ˘ 105.9 3715.5 ˘ 17.6

HalfCheetah-v1 4156.9 ˘ 8.7 3212.9 ˘ 69.9 3714.7 ˘ 87.5 3616.1 ˘ 127.3
Walker2d-v1 5528.5 ˘ 7.3 4158.7 ˘ 247.3 3858.5 ˘ 504.9 4239.3 ˘ 314.2

HopperSimpleWall-v0 3218.2 ˘ 315.7 2897.5 ˘ 753.5 3140.3 ˘ 674.3 3272.3 ˘ 569.0
RoboschoolHumanoidFlagrun-v1 2822.1 ˘ 531.1 1455.2 ˘ 567.6 1868.9 ˘ 723.7 2113.6 ˘ 862.9

Table 3.1: True Average Return for simple and complex experiments, with the standard error
across 10 trials on the 25 final evaluation rollouts using the final policy.

To evaluate our method of learning joint reward-policy options, we first investigate continu-
ous control tasks. We divide our experiments into 3 settings: simple locomotion tasks, one-shot

1While it may be simpler to use an entropy regularizer, we found that in practice it performs worse. Entropy
regularization encourages exploration [43]. In the OptionGAN setting, this results in unstable learning, while the
mutual information term encourages diversity in the options while providing stable learning.

38



3.8 Experiments

domain adaptation, and complex tasks. We compare OptionGAN against IRLGAN in all sce-
narios, investigating whether dividing the reward and policy into options improves performance
against the single approximator case.2 Table 3.1 shows the overall results of our evaluations and
we highlight a subset of learning curves in Figure 3.3. We find that in nearly every setting, the
final optionated policy learned by OptionGAN outperforms the single approximator case.

3.8.1 Experimental Setup

For all evaluation runs, hold all shared hyperparameters constant for both IRLGAN and Option-
GAN, and average evaluations across 10 trials, each using a different random seed. We use the
average return of the true reward function across 25 sample rollouts as the evaluation metric.

Multilayer perceptrons are used for all approximators as in [28]. For the OptionGAN intra-
option policy and reward networks, we use shared hidden layers to ensure a fair compari-
son against a single network of the same number of hidden layers. That is, rω, @ω P Ω, and
πω, @ω P Ω each share hidden layers among themselves. The policy-over-options πΩ use sepa-
rate parameters however.

For simple settings, all hidden layers are of size p64, 64q, while for complex experiments we
use p128, 128q hidden layers. In the 2-options case we set λe “ 10.0, λb “ 10.0, λv “ 1.0 based
on a simple hyperparameter search and reported results from [6]. Finally, in the 4-options case
we relax the regularizer that encourages a uniform distribution of options (Lb), setting λb “ .01.

3.8.2 Simple Tasks

First, we investigate simple settings for a set of benchmark locomotion tasks provided in Ope-
nAI Gym [8] using the MuJoCo simulator [69]. We use the Hopper-v1, HalfCheetah-v1, and
Walker2d-v1 locomotion environments. The results of this experiment are shown in Table 3.1
and sample learning curves for Hopper and HalfCheetah can be found in Figure 3.3. For this
setting, we use as demonstrations 10 expert rollouts from a policy trained using TRPO for 500
iterations.

In these simple tasks, OptionGAN converges to policies which perform as well or better than

2Extended experimental details and results can be found in the supplemental. Code is located at:
https://github.com/Breakend/OptionGAN.
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the single approximator setting. Importantly, even in these simple settings, the options which
our policy selects have a notion of temporal coherence and interpretability despite not explicitly
enforcing this in the form of a termination function. This can be seen in the two option version
of the Hopper-v1 task in Figure 3.2. We find that generally each option takes on two behaviour
modes. The first option handles: (1) the rolling of the foot during hopper landing; (2) the folding
in of the foot in preparation for floating. The second option handles: (1) the last part of take-
off where the foot is hyper-extended and body flexed; (2) the part of air travel without any
movement.

3.8.3 Complex Tasks

Next, we investigate slightly more complex tasks. We utilize the HopperSimpleWall-v0 environ-
ment provided by the gym-extensions framework [27] and the RoboschoolHumanoidFlagrun-v1
environment used in [61]. In the first, a wall is placed randomly in the path of the Hopper-v1
agent and simplified sensor readouts are added to the observations as in [71]. In the latter, the
goal is to run and reach a frequently changing target. This is an especially complex task with a
highly varied state space. In both cases we use an expert trained with TRPO and PPO respec-
tively, to generate 40 expert rollouts. For the Roboschool environment, we find that TRPO does
not allow enough exploration to perform adequately, and thus we switch our policy optimization
method to the clipping-objective version of PPO.

Task IRLGAN OptionGAN (2ops) OptionGAN (4ops)
Hopper-v1 (1 demo) 3636.55˘72.13 3595.38˘127.67 3687.03˘23.49
Hopper-v1 (3 demos) 3192.96˘354.50 3757.19˘16.17 3428.16˘211.81
Hopper-v1 (5 demos) 3299.126˘269.06 3697.98˘30.43 3608.63˘34.63
Hopper-v1 (10 demos) 3736.3 ˘ 152.4 3641.2 ˘ 105.9 3715.5 ˘ 17.6

HalfCheetah-v1 (1 demo) 2547.32˘252.00 2360.68˘350.80 528.43˘308.92
HalfCheetah-v1 (3 demos) 2755.71˘328.53 2396.25˘327.09 658.57˘409.37
HalfCheetah-v1 (5 demos) 2876.18˘146.33 2380.69˘270.60 298.13˘422.18
HalfCheetah-v1 (10 demos) 3212.9 ˘ 69.9 3714.7 ˘ 87.5 3616.1 ˘ 127.3

Walker2d-v1 (1 demo) 3808.98˘341.89 3050.25˘314.44 2878.54˘204.77
Walker2d-v1 (3 demos) 4067.27˘195.46 3547.44˘181.29 2673.93˘140.80
Walker2d-v1 (5 demos) 3860.87˘188.67 3789.80˘259.32 2911.82˘184.98

Walker2d-v1 (10 demos) 4158.7 ˘ 247.3 3858.5 ˘ 504.9 4239.3 ˘ 314.2

Table 3.2: True Average Return for expert demonstration ablation experiments, with the standard
error across 10 trials on the 25 final evaluation rollouts using the final policy.
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3.8.4 Simple Tasks with Few Demonstrations

Next we investigate the effect of having fewer expert demonstrations on both IRLGAN and
OptionGAN by cutting down the amount of demonstrations available to the algorithms, on the
same locomotion tasks. We evaluate each algorithm in the case of 1, 3, and 5 provided expert
rollouts. The results of this data shortage scenario are shown in Table 3.2.

We find that both algorithms suffer in performance, to varying degrees, with fewer provided
expert demonstrations. Intuitively, if only few demonstrations are given, the discriminator can
’memorize’ more easily the state space the expert occupies and obtain a higher classification
accuracy early on. However in this adversarial context, the samples from the learning agent
getting classified as expert samples by the discriminator act as the reward signal and therefore,
as desirable states to move towards. With the classification task being more clear cut with less
expert samples, the learning agent is left with less of a guiding signal and therefore suffers from
poorer performance.

3.8.5 One-Shot Domain Adaptation

Task Expert IRLGAN OptionGAN (2ops) OptionGAN (4ops)
Hopper (One-Shot) 3657.7 ˘ 25.4 2775.1 ˘ 203.3 3409.4 ˘ 80.8 3464.0 ˘ 67.8

HalfCheetah (One-Shot) 4156.9 ˘ 51.3 1296.3 ˘ 177.8 1679.0 ˘ 284.2 2219.4 ˘ 231.8
Walker (One-Shot) 4218.1 ˘ 43.1 3229.8 ˘ 145.3 3925.3 ˘ 138.9 3769.40 ˘ 170.4

Table 3.3: True Average Return for one-shot domain adaptation experiments, with the standard
error across 10 trials on the 25 final evaluation rollouts using the final policy.

Finally, we investigate one-shot domain adaptation scenarios. In these cases, the novice is
trained on a target environment, while expert demonstrations come from a similar task, but from
a set of source environments with altered dynamics (i.e. one-shot transfer from varied expert
demonstrations to a new environment). To demonstrate the effectiveness of OptionGAN in this
domain adaptation task, we use expert demonstrations from environments with varying gravity
conditions as seen in [27, 12]. For each environment, we vary the gravity (0.5, 0.75, 1.25, 1.5
ˆ Earth’s gravity) and train experts in each gravity variation using TRPO. We gather 10 expert
trajectories from each gravity variation, for a total of 40 expert rollouts, to train a novice agent
on the normal Earth gravity environment (the unmodified environment as provided in OpenAI
Gym), and repeat this for Hopper-v1, HalfCheetah-v1, and Walker2D-v1.
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Figure 3.3: Left Column: Simple locomotion curves. Error bars indicate standard error of av-
erage returns across 10 trials on 25 evaluation rollouts. Middle Column: One-shot transfer ex-
periments with 40 expert demonstrations from varied gravity environments without any demon-
strations on the novice training environment training on demonstrations from .5G, .75G, 1.25G,
1.5G gravity variations. Right Column: Activations of policy-over-options over time with 4 op-
tions on training samples in the one-shot transfer setting with λb “ .01.

These gravity tasks are selected due to the demonstration in [27] that learning sequentially
on these varied gravity environments causes catastrophic forgetting of the policy on environ-
ments seen earlier in training, which suggests that the dynamics are varied enough that trajecto-
ries are difficult to generalize across, yet still share some state representations and task goals.

As seen in Figure 3.3, using options can cause significant performance increases in this area,
but performance gains can vary across the number of options and the regularization penalty as
seen in the regular experiments (Table 3.1).

3.9 Ablation Investigations

Convergence of Mixtures to Options

To show that our formulation of Mixture-of-Experts decomposes to options in the optimal case,
we investigate the distributions of our policy-over-options. We find that across 40 trials, 100% of
activations fell within a reasonable error bound of deterministic selection across 1M samples.
That is, in 40 total trials across 4 environments (Hopper-v1, HalfCheetah-v1, Walker2d-v1,
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Figure 3.4: Effect of uniform distribution regularizer. Average πΩ across final sample novice
rollouts: λb “ 10.0, r.27, .21, .25, .25s; λb “ .01, r0., 0., .62, .38s.

RoboschoolHumanoidFlagrun-v1), policies were trained for 500 iterations (or 5k iterations in
the case of RoboschoolHumanoidFlagrun-v1). We collected 25k samples at the end of each trial.
Among the gating activations across the samples, we recorded the number of gating activations
within the range t0 ` ε, 1 ´ εu for ε “ 0.1. 100% fell within this range. 98.72% fell within
range ε “ 1´3. Thus at convergence, both intuitively and empirically we can refer to our gating
function over experts as the policy-over-options and each of the experts as options.

Effect of Uniform Distribution Regularizer

We find that forcing a uniform distribution over options can potentially be harmful. This can be
seen in the experiment in Figure 3.4, where we evaluate the 4 option case with λb “ t0.1, 10u.
However, relaxing the uniform constraint results in rapid performance increases, particularly in
the HalfCheetah-v1 where we see increases in learning speed with 4 options.

There is an intuitive explanation for this. In the 4-option case, with a relaxed uniform distri-
bution penalty, we allow options to drop out during training. In the case of Hopper and Walker
tasks, generally 2 options drop out slowly over time, but in HalfCheetah, only one option drops

43



3.10 Conclusion

Figure 3.5: Probability distribution of πΩ over options on expert demonstrations. Inherent struc-
ture is found in the underlying demonstrations. The .75G demonstration state spaces are signif-
icantly assigned to Option 1 and similarly, the 1.25G state spaces to Option 0.

out in the first 20 iterations with a uniform distribution remaining across the remaining options
as seen in Figure 3.3. We posit that in the case of HalfCheetah there is enough mutually ex-
clusive information in the environment state space to divide across 3 options, quickly causing a
rapid gain in performance, while the Hopper tasks do not settle as quickly and thus do not see
that large gain in performance.

Latent Structure in Expert Demonstrations

Another benefit of using options in the IRL transfer setting is that the underlying latent division
of the original expert environments is learned by the policy-over-options. As seen in Figure 3.5,
the expert demonstrations have a clear separation among options. We suspect that options fur-
ther away from the target gravity are not as specialized due to the fact that their state spaces are
covered significantly by a mixture of the closer options (see supplemental material for support-
ing projected state space mappings). This indicates that the policy-over-options specializes over
the experts and is thus inherently beneficial for use in one-shot domain adaptation.

3.10 Conclusion

We propose a direct extension of the options framework by adding joint reward-policy options.
We learn these options in the context of generative adversarial inverse reinforcement learning
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3.10 Conclusion

and show that this method outperforms the single policy case in a variety of tasks – particu-
larly in domain adaptation settings. Furthermore, the learned options demonstrate temporal and
interpretable cohesion without specifying a call-and-return termination function.

Our formulation of joint reward-policy options as a Mixture Of Experts allows for: poten-
tial upscaling to extremely large networks as in [63], reward shaping in forward RL, and using
similarly specialized MoEs in generative adversarial networks. Our optionated networks form
an effective and extendable framework. They capture the problem structure effectively, which
allows strong generalization in one-shot domain adaptation scenarios. Moreover, as adversarial
methods are now commonly used across a myriad of communities, the embedding of options
within this methodology is an excellent delivery mechanism to exploit the benefits of hierarchi-
cal RL in many new fields.
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Chapter 4

Conclusion & Future Work

4.1 Summary

In this thesis, we presented two algorithms with applications in robotic, both of which we show
are negatively affected by data shortages. Using domain adaptation methods, we tried to allevi-
ate these data shortage scenarios, using synthetic data in the case of underwater visual tracking
and data originating from various other domains in the case of agents learning from demonstra-
tions.

In Chapter 2, we presented a general tracking-by-detection approach that reliably tracks
targets without engineered markers, making use of recent advances in deep learning for de-
ployment onboard robots with limited computing capabilities. We compared the applicability
of multiple lightweight neural network architecture variants, and showed improvements made
possible by recurrent extensions of these networks, using several desirable metrics for visual
convoying tasks. We also investigated the performance of our most promising architecture in
data scarce settings, using realistic simulated visual data generated in Unreal Engine. In ad-
dition, we successfully performed open sea multi-robot underwater convoying using a limited
amount of annotated training data.

In Chapter 3, we proposed a direct extension of the options framework by adding joint
reward-policy options. By making use of multiple discriminators in the context of generative
adversarial inverse reinforcement learning, we learn the formulated reward-policy options and
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4.2 Future Work

show that our method outperforms the single discriminator and policy case in most attempted
tasks. We show that the options learned using our algorithm demonstrate temporal and inter-
pretable cohesion without having explicitly specified an option termination function. Further-
more, through expert demonstration ablation experiments, we show that the studied algorithms
suffer in data poor scenarios and demonstrate the advantageous domain adaptation capabilities
of our method which leverages joint reward-policy options.

4.2 Future Work

In the visual tracking domain, the temporal-based bounding box detection pipeline could be
improved by making the entire architecture trainable end-to-end. Additionally, to make this
approach robust to contexts with more than a pair of robots, it could be extended to visual
servoing with multiple bounding boxes per frame. Additionally, by using stronger predictive
models, tracking could be made more robust to tracking interruptions. Using our developed
Unreal Engine-based robot simulator, the 3D pose data of the robot can easily be extracted,
and extensions to 6D tracking-by-detection (pose and position) of the robot are thus possible.
Extensions of our framework to underwater gesture-based visual communication for convoying
behaviours is also possible, by specifying robot poses as communication tokens.

In learning from demonstrations, our optionated policy-reward formulation using MoEs
could be upscaled to extremely large networks as in [63], reward shaping in forward RL, or
ported for use in model-based RL. Furthermore, while adversarial methods are now used across
an increasing number of fields within machine learning, the use of multiple discriminators is still
rare, and the use of similarly specialized MoEs in generative adversarial networks could prove
useful to such fields. Our optionated networks capture the problem structure effectively, which
allows strong generalization in one-shot domain adaptation scenarios. Using these networks in
other domain adaptation scenarios, with data from "further" domains, such as Sim2Real exper-
iments for instance could prove beneficial.

Finally, recent work in Sim2Real scenarios have used domain randomization [68, 49], where
the environment characteristics for a task are stochastically changed as the agent learns the task,
as a viable strategy to improve the domain adaptation abilities of the agent. This method is
general enough to be applicable to both the visual tracking and learning from demonstration
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4.2 Future Work

domains, and as such, would be a good candidate to improve our results overall.
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