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ABSTRACT 

In recent years, the profit margin for mining companies has been declining due to low commodity 

prices and high operating costs associated with resource degradation and system aging, forcing 

mining companies to reduce operating costs in order to maintain operations. Cost savings 

presented by new technologies and computational resources that allow companies to modernize 

mining equipment are offset by increasing equipment complexity, which can lead to higher 

operating costs. The drilling operation is one component that can be the focus of cost reduction 

efforts because it affects all phases of mineral production—from exploration to extraction and 

mineral processing. Therefore, an efficient drilling operation can help to achieve the desired 

economic production cycle, but it must be optimized to balance operating performance (measured 

by the rate of penetration or ROP) with longer drill bit life. The ROP depends on various 

controllable (i.e., rotation speed, weight on the bit, and bailing air pressure) and uncontrollable 

(i.e., physical and mechanical properties of the rock formation, bit type, bit material, operator 

expertise, and drilling machine condition) parameters. The ROP and controllable parameters are 

directly related: when the controllable parameters increase, ROP also increases and operating costs 

decrease consequently. However, high controllable parameters shorten bit life and enhance bit 

consumption through wear. Thus, there is a trade-off between bit consumption and operating cost. 

The relationship between ROP and the bit life must be optimized to minimize the total cost of the 

operation for mine management. Identifying an optimum set of operational parameters helps to 

ensure the minimum cost per drill bit, which represents a considerable portion of the total operating 

cost of the machine. Hence, it is crucial to estimate the optimum bit replacement time while 

considering ROP. Another important factor that directly affects drilling performance and the cost 

is the condition of the drilling equipment, which is getting larger due to economies of scale. 
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Unexpected failures severely affect the production schedule; thus, equipment reliability is required 

for satisfactory performance. Statistical tools and simulation techniques are the best methods to 

determine bit replacement time, whereas reliability and maintenance analysis are the best tools to 

ensure operational performance. These tools help to forecast future failure of repairable and non-

repairable system components, prevent unexpected stoppages, and improve the quality of the 

maintenance. This thesis focuses on 1) optimizing drilling operation parameters using design of 

experiment tolls, cost minimization with evolutionary algorithms, machine performance 

assessment, and risk quantification using reliability analysis and stochastic modeling techniques 

(Markov Chain Monte Carlo and Mean Reverting); 2) determining optimum replacement time of 

drill bits based on historical data using discrete event simulation and minimizing replacement costs 

by using an evolutionary algorithm and Monte-Carlo Simulation.   
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ABRÉGÉ 

Ces dernières années, la marge bénéficiaire des sociétés minières a diminué en raison des prix bas 

des mineraux et des coûts d’exploitation élevés liés à la dégradation des ressources naturelles et 

au vieillissement du système, forçant les sociétés minières à réduire leurs coûts d’exploitation pour 

maintenir leurs activités. Les épargnes présentées par les nouvelles technologies et les ressources 

informatiques qui permettent aux entreprises de moderniser leurs équipements d’extraction 

minière sont compensées par une complexité croissante des équipements qui peut entraîner des 

coûts d’exploitation plus élevés. Les opérations de forage sont l’un des éléments sur lesquels 

peuvent porter les efforts de réduction des coûts car elles touchent toutes les phases de la 

production minérale, de l’exploration à l’extraction en passant par le traitement des minéraux. Par 

conséquent, une opération de forage efficace peut contribuer à atteindre le cycle de production 

économique souhaité, mais elle doit être optimisée pour équilibrer les performances 

opérationnelles (mesurées par le taux de pénétration ou ROP) avec une durée de vie prolongée du 

foret. La ROP dépend de diverses conditions contrôlables (vitesse de rotation, poids sur le trépan 

et pression de gonflage) et incontrôlables (propriétés physiques et mécaniques de la formation 

rocheuse, type de trépan, matériau du trépan, experience de l'opérateur et état de la machine de 

forage). Les paramètres ROP et contrôlables sont directement liés: lorsque les paramètres 

contrôlables augmentent, les ROP augmentent également et les coûts d'exploitation diminuent en 

conséquence. Cependant, des paramètres contrôlables élevés raccourcissent la durée de vie du 

trépan et augmentent sa consommation par l'usure. Il y a donc un compromis entre la 

consommation de bits et les coûts d'exploitation. La relation entre le ROP et la durée de vie du 

trépan doit être optimisée afin de minimiser le coût total de l'opération pour la gestion de la mine. 

L'identification d'un ensemble optimal de paramètres opérationnels permet de garantir un coût 
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minimum par trépan, qui représente une partie considérable du coût total d'exploitation de la 

machine. Par conséquent, il est crucial d’estimer le temps optimal de remplacement des bits tout 

en tenant compte de la ROP. Un autre facteur important qui affecte directement les performances 

de forage et le coût est l'état des équipements de forage, qui s'agrandit en raison d'économies 

d'échelle. Les défaillances inattendues affectent gravement le calendrier de production; ainsi, la 

fiabilité de l'équipement est requise pour des performances satisfaisantes. Les outils statistiques et 

les techniques de simulation sont les meilleures méthodes pour déterminer le temps de 

remplacement des bits, tandis que les analyses de fiabilité et de entretien sont les meilleurs outils 

pour garantir les performances opérationnelles. Ces outils aident à prévoir les pannes futures des 

composants système réparables et non réparables, à prévenir les arrêts imprévus et à améliorer la 

qualité de l’entretien. Cette thèse porte sur 1) l'optimisation des paramètres des opérations de 

forage à l'aide de la conception de droits d'expérience, la minimisation des coûts avec des 

algorithmes génétiques, l'évaluation des performances de la machine et la quantification des 

risques à l'aide d'analyses de fiabilité et de techniques de modélisation stochastiques (Markov 

chain Monte Carlo et mean reverting); 2) déterminer le temps de remplacement optimal des bits 

de forage sur la base de données historiques à l'aide de la simulation d'événements discrets, et 

minimiser les coûts de remplacement à l'aide d'un algorithme génétique et de la simulation de 

Monte-Carlo. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Overview 

Open-pit mining is among the most commonly used surface mining techniques. The production 

cycle of an open-pit mining operation includes fragmentation, loading, hauling, comminution, and 

concentration. The most widely used and economical fragmentation technique is drilling and 

blasting. Given that fragmentation is the first process of this cycle, the issues in this stage propagate 

the successive activities easily. As such, drilling and blasting have special importance. Drilling is 

used for many purposes such as exploration, creating a blast hole, grouting and soil stabilization, 

drainage, and ground support [1]. Among these purposes, blast hole drilling, which creates arrays 

of holes with an adequate geometry into a rock mass for blasting operation in the mineral 

industries, is the most widely used application [2].  

Horizontal layers, called benches, are created by drilling and blasting with particular explosives.  

The height of the benches depends on the production rates, selectivity requirement, loss and 

dilution, safety concerns, slope stability requirement, and the equipment size. The blast-holes are 

drilled in patterns that depend on the rock characterization. After the holes are loaded with the 

explosives, blasting operation, the most economical method of primary rock fragmentation, is 

implemented on the bench. The fragmented material is loaded and hauled to its destination [3]. 

The drilling and blasting program affects successive stages of the production cycle. The particle 

size of the rock fragments has a considerable impact on the loading, hauling, primary crushing, 

and mineral processing. Thus, the cost of transportation, crushing, and grinding can be 
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significantly reduced if rock fragment size is optimized [4] by conducting drilling systematically 

with an appropriate blasting pattern.  

The physical and the mechanical properties of the rock mass (especially compressive strength) 

have an important role in determining the blasting pattern and drill hole diameters and depths [5, 

6] (Figure 1-1). The vertical (burden) and horizontal (spacing) distances between the blast-holes 

to the bench edge are functions of the hole diameter [3]. Drill holes must be deeper than the height 

of the bench to avoid bench floor problems. This height difference is called sub-drill. Stemming 

in Figure 1-1 refers to material placed in the blast-hole to contain the explosive energy within the 

hole and thus enhance fragmentation of the rock mass without generating fly rock. The line parallel 

to the crest of a bench formed by drill holes is called a row. There are 3–8 rows of drill holes on a 

given actual bench [3].  

 

Figure 1-1: Illustration of a bench showing drill hole parameters 
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The most commonly applied mechanical drilling methods are rotary-percussive and rotary drilling 

[1]. The former is generally applied to hard rock formations [7], and the energy required to create 

cracks is generated by a drill based on the impact of hammer blows [8]. Rotary-percussive drilling 

is classified as top hammer or down the hole hammer, depending on the location of the hammer 

on the rig. In rotary drilling, drill bits are pushed into the rock mass by rotations of a drill, which 

forces the rock to develop cracks. Unlike rotary-percussive drilling, which has a low feed force 

with percussive blows, rotary drilling has a high feed force without percussive blows. Three types 

of drill bits are available from many manufacturers for rotary drilling, namely three-cone bits 

(standard steel tooth bits, tungsten carbide insert bits or TCBs), polycrystalline diamond compact 

bits, and diamond bits (surface set bits and impregnated bits). TCBs dominate rotary drilling 

applications because they can be used for rock types ranging from soft to very hard rocks, they are 

resistant to wear, and they are easier to handle in difficult situations [9, 10]. This research mainly 

focuses on rotary drilling with TCBs.  

The rotary drilling operation (Figure 1-2) is based on the rotation system and the pulldown system. 

The rotation system provides movement to turn the bit into the rock. There is an optimum rotation 

speed (RPM) for each type of rock [8]. The pulldown force depends on the compressive strength 

of the rock and the desired drill hole diameter [11]. In addition, to break a fresh portion of the rock 

in rotary drilling, rock cuttings formed by the interaction between the bit and the rock formation 

must be moved away from the bottom to the top by means of a circulating fluid or compressed air 

(Figure 1-2) [12]. This also helps to limit bit wear (thermic wear) due to high temperature [13]. 

Most of the time, compressive air is used as the circulating fluid because it is more efficient than 

water or other types of drilling fluids [12]. Further, it is able to eject larger rock cuttings from 
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blast-holes, and it keeps the hole dry; therefore, explosives can be filled without additional 

operations such as dewatering [14].  

 

Figure 1-2: Schematic illustration of a rotary drilling operation 

Rotary drilling consists of four main activities: moving (2–3 min), leveling (1 min), drilling, and 

pipe handling 1–2 min). Moving begins when the drill is ready to move to the next blast-hole. 

Leveling begins with lowering the leveling jacks once the drill is positioned precisely on the drill 

hole location. Leveling is required to have a firm base. The collaring phase of drilling operation 

starts with lower feed force, slower rotary speed and less compressed air than the required amount 

to drill and drill into the first 2 m of the hole. Full-fledged drilling begins after collaring. If the 

height of the intended blast-hole is longer than the height of the drill pipe, the drilling operation is 

paused to add a new drill pipe. These activities are repeated to obtain the required number of blast-

holes [15]. 
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1.2 Research Motivation 

Mining companies face many challenges in recent years, including environmental pressure, high 

operating costs, and low commodity prices. To remain in business within this atmosphere, they 

have been forced to explore effective cost management strategies to rationalize and improve 

operations and enhance the viability of the mining operation. Increasing bench drilling efficiency 

and performance in open-pit mines must be a priority, because the drilling operation affects the 

blasted quantity, particle size distribution of fragmented material, fill factor of shovel and truck, 

and input size of the crusher. 

In terms of the industrial aspect, one of the reasons for the excessive drilling cost is drill bit 

consumption associated with the interaction with the rock. Drill bit condition significantly affects 

the cost of the drilling operation and drilling performance. Bits are generally used until they are 

worn, which negatively affected the ROP - a key criterion to measure drilling performance. If the 

bit is changed while still effective, the company will lose money because of the high bit 

consumption. Therefore, drill bit condition monitoring is crucial for cost management, but it is 

generally overlooked.  

Equipment condition monitoring and performance prediction are key to cost management 

strategies because the equipment is one of the most significant assets of a mining company. 

Efficient equipment utilization has strong potential to reduce costs and generate considerable 

savings because system aging and resource degradation are two main reasons for increasing 

operating costs in mining activities. Performance prediction of drilling equipment is related to 

drilling operation efficiency: it is necessary to schedule the equipment availability in order to reach 

the intended economic level of mineral production. Therefore, reliability analysis, which is an 
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effective method to investigate equipment condition, is needed to design a realistic production 

schedule and achieve the desired operation.   

Over the past two decades, many studies have examined the importance of rotary drilling operation 

parameters to optimize drilling performance and lower operating costs. In particular, studies have 

aimed to predict drilling performance and extend bit life while improving the ROP. However, the 

performance prediction and the determination of optimum operating parameters for different 

working conditions have not been firmly established. Published studies are limited to small-scale 

drilling operations in the field or laboratory experiments. Index values and some regression 

analyses have been able to explain the drilling mechanism, but these are insufficient to describe 

the whole process. The current knowledge of the drilling operation is theoretical; more studies are 

needed to fill the gap between theory and practice. 

1.3 Research Objectives 

Drilling operations require advanced technical expertise and technology to lower costs. Therefore, 

this thesis proposes approaches to increase the performance and efficiency of bench drilling 

through modeling, simulation, and optimization tools. A variety of methods, including multiple 

regression modeling, stochastic processes, discrete event simulation (DES), and evolutionary 

algorithms are used to elucidate the dynamics behind bench drilling, variables affecting drilling, 

and their effects on ROP. Specific objectives are to: 

1. monitor wear in drill bits to determine their optimal replacement time; 

2. model the relationship between the reliability of drilling machine and drilling performance; 

3. minimize drilling operating costs through optimizing drilling variables; 
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4. quantify the effect of uncertainties in drilling operations on mine production scheduling; 

and 

5. assess risks associated with drill bit consumption for a given period. 

This thesis explores cost minimization elements and decision-making mechanisms in open-pit 

mining production drilling, which is currently missing in academia and industry literature.        

1.4 Original Contribution 

This research proposes new modeling, simulation, and optimization approaches to bench drilling 

operations that have the potential to add value to an open-pit mining operation. Specific 

contributions are as follows: 

1- established a model between energy cost and rotary drilling operation parameters (e.g., 

RPM, weight on the bit and bailing air pressure); 

2- developed a risk quantification approach associated with production rate and mine 

management; 

3- proposed an uncertainty management strategy that considers drill bit changing time, 

maintenance time, drilling time, available equipment, the required number of drill bits, and 

the number of intended drill holes;   

4- quantified the evolution of drill bit wear over the time using time series regression analysis; 

5- modeled the drilling operation to assist production scheduling and asset management; 

6- simulated physical activities in bench drilling through DES to help determine the feasibility 

of production plans; 

7- established a relationship between bit replacement time and the related cost and  
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8- proposed a practical approach to determine optimum drill bit replacement time based on 

the minimization of total expected replacement cost.  

1.5 Outline of the Thesis 

This thesis is organized according to the following chapters. 

Chapter 1 provides a general background regarding the drilling operation, research motivation, 

research objectives, and original contributions.  

Chapter 2 presents a literature review of topics related to this research, including (1) monitoring 

and optimizing drilling operations by predicting ROP and wear, (2) mining equipment reliability, 

and (3) simulation techniques associated with risk management and spare part management. 

Chapter 3 provides a detailed review of, and the requirements for, rotary drilling operations. The 

effects of controllable variables including RPM, weight on the bit, and bailing air pressure on 

drilling performance were quantified by an experimental design. The optimum replacement time 

of drill bits based on a cost minimization problem was formulated by an evolutionary algorithm. 

The cost optimization was applied and the trade-off problem between energy cost and drill bit 

consumption was solved. 

Chapter 4 discusses reliability analysis for both repairable and non-repairable systems and risk 

assessment. Reliability and the performance of the equipment were quantified. The probable 

realizations of the drilling operation were generated by Markov Chain Monte Carlo and Mean 

Reverting simulation techniques in order to assess the risk.    

Chapter 5 proposes a drill bit replacement strategy based on reliability analysis of drilling 

machines and bits. The optimum replacement time of drill bits was determined by DES. The 

mineral production capacity was formulated based on historical data.  
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Chapter 6 examines a drill bit replacement strategy based on minimizing replacement cost. A cost 

minimization problem based on the replacement cost was formulated to estimate the optimum 

replacement time by using evolutionary algorithms. A regression model is fitted for the 

relationship between the drill bit replacement time and the total expected replacement cost.     

Chapter 7 draws conclusions based on the research and provides a framework for future work.  
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CHAPTER 2 

2. LITERATURE REVIEW 

In this chapter, an extensive literature survey is presented on the concept of rotary blast-hole 

drilling.   

2.1 Rotary Drilling Monitoring and Optimization 

Among the many systems of drilling available (e.g., percussion, high-frequency vibration, and 

dissolution), rotary drilling has the most applicability to in open pit mines [11]. Rotary drilling 

transmits mechanical energy into the rock mass by rotations of a drill, which forces the rock to 

develop cracks. It can be used for rock types ranging from soft to hard rocks. Therefore, rotary 

drilling has been the subject of many research projects for decades. 

Recently, interest has grown in monitoring rotary drilling for both open-pit and underground 

mining activities in order to evaluate performance. Most studies have been based on controllable 

parameters, namely rotation speed (RPM), weight on the bit (WOB), bailing air pressure (BAP), 

and instantaneous rate of penetration (ROP) and uncontrollable parameters such as the physical 

and mechanical properties of the rock formation and drilling vibration. Quantifying the effect of 

both controllable and uncontrollable parameters on the rotary drilling operation and establishing 

the relationship between ROP and geological conditions have been the main goals. 

Several authors have investigated relationships between mechanical energy during drilling 

operations and various rock and operational parameters. Teale [16] introduced a mathematical 

model to quantify the mechanical energy (i.e. specific energy = thrust + torque) needed to break a 

unit volume of rock during rotary drilling. He considered pulldown force, RPM, drill-hole 

diameter, rotation torque, and ROP as parameters for the model. The author asserted that the model 
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could indicate some parameters of rock strength during the drilling process. Scoble, Peck [17] 

evaluated the effects of controllable parameters on rotary drilling into different rock types. The 

authors contended that the nature of the rock drives variations in the ROP during drilling through 

its effect on pulldown force, not RPM. Similar to Teale [16], the authors used specific energy to 

measure mechanical performance while changing the parameters and determined that rock strength 

can be monitored by variations in the specific energy. Liu and Karen Yin [18] defined a new 

concept called the specific surface energy, namely the specific energy per specific surface area 

(surface area per unit volume). They claimed that the specific surface energy is related to RPM, 

pulldown force, and rock hardness. The functional relationship among drilling parameters was also 

investigated to measure drilling performance. The authors evaluated several parameters such as 

the rock properties of the formation and operating conditions to monitor the drilling performance. 

With the development of technology, research has been carried out to monitor drilling operations 

with technological tools. Peck [19] determined the relationship between operating parameters and 

geo-mechanical and structural properties of rocks. Field tests showed that physical and mechanical 

properties of rocks can be determined by operating parameters recorded using an automated drill 

monitoring system, reducing the number of laboratory tests required. Further, drilling monitoring 

can provide significant information about optimum operating parameters and bit condition. Peck 

[20] also carried out comprehensive research to establish the relationship between geological 

formation and operating parameters in order to estimate rock strength properties and facilitate 

geological exploration, mine planning, bit selection, bit wear evaluation, and drill automation and 

control. Results showed that bit wear reduced the ability to define drilling performance variations 

under different rock conditions. The study also showed that automation of drilling operation can 
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be achieved by continuous monitoring of operating performance. Hence, critical operating 

parameters can be optimized, and the approach could aid bit selection. 

Aboujaoude [15] introduced an approach to control RPM during drilling and thus dampen 

vibrations before they reach a significant level. Laboratory tests showed that rock type, the position 

of the rotary head, and backlash between the rotary head and the mast are key factors affecting the 

prediction of vibration frequencies. Field tests were conducted to identify the machine dynamics 

for RPM, then a software simulator was implemented to analyze the test results. The simulation 

and the field tests results showed that the RPM controller is viable and can be used under all drilling 

conditions. Furthermore, Hatherly, Leung [21] proposed an approach called monitoring-while-

drilling (MWD) and compared MWD data to geological data. They concluded that the best 

geological information can be provided by blast-hole drilling with MWD equipment when RPM 

and WOB are constant. 

Unlike previous researchers, Ghosh, Schunnesson [22] suggested a method to evaluate the 

performance of rotary drilling with tri-cone bits and monitor bit wear with MWD data. The authors 

investigated the trend of ROP versus the operating lifetime of the drill-bits to identify bit 

replacement time. Bit wear was highly correlated with ROP degradation. Principal component 

analysis showed that the magnitude of the operating parameters must be reduced to extend the 

operating life of the bits. 

Ataei, KaKaie [23] developed a model to that was able to predict ROP from rock mass properties 

(texture, uniaxial compressive strength (UCS), and joint spacing, aperture, filling, and inclination) 

and drillability index, instead of operating parameters. Based on the relationship, rock drillability 

index was defined and rock mass was classified. To provide a better estimate, the authors also 

presented a new ROP model that considered both drillability index and operating parameters such 
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as RPM, WOB, and BAP. The authors asserted that drillability index can successfully predict ROP 

and assist mine production planning. In addition, Kricak, Miljanovic [10] developed a fuzzy logic 

model to predict the ROP of tri-cone rotary blast-hole drilling in open-pit mines based on field 

data from rocks of differing UCS. The model had five input variables (hole length, drilling time, 

pulldown force, RPM and UCS). A highly accurate prediction was obtained, despite variations in 

rock formation within the same drilling bench, probably due to the high volume of input data. 

Ergin, Kuzu [24] optimized roller-cone bit selection and rotary blast-hole drilling operations in 

order to achieve high ROP and prolonged bit life with the lowest total cost. Representative field 

samples were used in laboratory tests to investigate the geotechnical parameters of the rock 

formation. Full-scale drilling tests with four bit types were performed to optimize operating 

parameters. The ROP, torque, and power draw were measured to determine operating costs. After 

the laboratory experiments, the operating parameters were optimized by systematically changing 

the settings, and field tests were carried out to verify the model. Al-Chalabi, Lundberg [25] 

performed a case study to a model the economic lifetime of drilling machines. Operating and 

maintenance costs, purchase price, and machine resale value were considered to optimize the 

replacement time of a drilling machine. The proposed approach was based on financial data instead 

of reliability or failure data. Results showed that increasing the purchase price and decreasing the 

operating and maintenance costs significantly increased the optimal replacement time. Moreover, 

a regression analysis showed that maintenance cost has the largest impact on the optimal 

replacement time. 

McGill University has a long history of drilling operation related researches. Apart from the 

researches of Aboujaoude [15], Peck [19] and Peck [20] which previously mentioned, there are 

also ongoing researches which address different aspects of rotary drilling operations in surface 
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mining. Lucifora [26] has been working on an advanced drill control system to supervise the 

operation cycle of production drills and exploring the effect of drill bit design on drilling 

performance. Moreover, Rafezi [27] has been working on developing a wear monitoring system 

through the rotary motor current and vertical vibration signals in order to assist in failure 

prediction. Bit vibration fault frequencies, signal features from wavelet decomposed vibration and 

statistical features from rotary motor current have been used to investigate failure behavior of 

rotary drill bits. 

2.2 Reliability Analysis of Drilling Equipment 

Reliability analysis is the most significant system characterization method for both repairable and 

non-repairable systems. It is essential to measure the performance of systems [28] and assists in 

production scheduling, maintenance scheduling, and spare part management. Thus, many studies 

have investigated the importance of reliability analysis on the mining cycle to optimize individual 

operations. Interest has grown in using reliability analysis for drilling equipment to achieve the 

desired production target. For example, Barabadi, Barabady [29] estimated the number of spare 

parts required to prevent unexpected stoppages for a drilling machine using reliability analysis of 

field datasets. After creating scenarios based on reliability models, field tests were performed and 

showed that the hazard rate is approximately two times higher in ore rock than in waste rock under 

similar conditions. The authors concluded that the reliability characteristics and the number of 

required drill bits are strongly related to the type of drill bit and the length of the drill-hole. 

Similarly, Ghodrati and Kumar [30] forecast the required non-repairable inventory based on 

environmental factors. To analyze the behavior of the non-repairable items, a reliability analysis 

was conducted. According to the reliability model, two replacement strategies were developed and 

compared one considered environmental factors and one ignored environmental factors. Results 
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showed that environmental factors must be taken into consideration for accurate inventory 

management. The authors concluded that the operating environment has a considerable impact on 

system performance, and reliability analysis is the best way to characterize inventory behavior.  

Reliability analysis has a key place in maintenance management. Rahimdel, Ataei [28] modeled 

the reliability of four rotary drilling machines with the aim of improving machine reliability using 

reliability centered maintenance and creating a strategy to optimize preventive maintenance based 

on safety, operational, and economic criteria. The preventive maintenance intervals were defined 

for each machine based on the critical level of reliability, which was calculated by the reliability 

models of the machines. The authors asserted that the proposed model can improve the reliability 

of the rotary drilling machines after the maintenance activity. The maintenance cost is highly 

related to the reliability of the equipment. Balaraju, Govinda Raj [31] presented a reliability 

analysis of load-haul-dump machines in order to improve the equipment life while minimizing 

maintenance costs. Reliability-based preventive maintenance time intervals were estimated and 

scheduled based on minimizing total operating cost. The power law process—the most suitable 

tool to model the reliability problems of repairable systems—was applied to machines and the 

parameters were estimated. The authors asserted that preventive maintenance and additional 

failure costs are the key factors to estimate preventive maintenance intervals. Javanmard and 

Koraeizadeh [32] also predicted preventive maintenance intervals based on equipment cost and 

reliability. They introduced a new optimization procedure that uses a flexible interval technique 

aimed at planning preventive maintenance intervals at the lowest cost and highest reliability. The 

findings can be applied to all kinds of equipment. The authors advised precisely recording 

operating and maintenance time information for better scheduling.  
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2.3 Simulation Techniques 

Improving technology has led to the development of decision-making tools. Simulation techniques 

are commonly used to evaluate the performance of various operational scenarios during mine 

design and operating phases. Discrete event simulation (DES), a stochastic modeling tool, 

facilitates modeling mining systems that consist of several discrete sequences of the events to 

optimize operation [33]. It is an invaluable tool to analyze system dynamics and performance [34]. 

For example, Dindarloo and Osanloo [35] applied DES to model material transport in a large open-

pit mine for a three month period. Findings demonstrated that mineral production could be 

improved, and costs could be reduced using this simulation technique. A case study verified the 

proposed model. In addition, Botín, Campbell [36] proposed an approach to optimize the size and 

performance of a mine development system using DES to assign unit operation activity to six types 

of mining equipment: drilling, blast loading, roof scaling, ore transport, roof bolting, and 

concreting. A case study validated the proposed approach. The authors concluded that the DES 

model could support management decisions in short-term mine planning and equipment 

dispatching systems.   

Although the process of the modeling needs extensive experience and knowledge, replacement 

analysis with DES is a practical tool to evaluate the effect of failures on mining equipment [37]. 

Yuriy and Vayenas [37] developed a model to analyze maintenance activity by developing a 

combination of reliability assessment based on evolutionary algorithms and DES. The authors 

assessed two simulation tools for the same mining problem. The aim of the study was to analyze 

the effect of a single component of the equipment failure on the entire operating cycle. The authors 

generated random scenarios to model a sublevel-stopping underground hard rock mine by DES 

and reliability assessment based on evolutionary algorithms. Mechanical availability and 
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equipment utilization were analyzed by both simulation tools. The authors concluded that both 

tools produced corresponding results. 

Mining operations include several random events, which are poorly predicted by deterministic 

models [38]. DES provides probabilistic solutions that are viable for mining operations. Kaba, 

Temeng [39] developed a model to forecast mine production using DES to model the random 

behavior of excavators and trucks. Comparing stochastic results, deterministic results, and actual 

results showed a stronger fit between the stochastic model and actual results than the deterministic 

model. 

Some researchers contend that DES should be replaced by other modeling techniques. Yarmuch, 

Epstein [40] presented a methodology to decide the location of a crusher considering minimum 

capital and operating costs in an open-pit mine using Markov chains. The randomness of the 

failures was modeled by the Markov chain and DES to determine the productivity of the crusher 

system. Comparison of the two model results showed that Markov chain model could be used in 

place of a simulation model for mineral productivity calculations because the Markov chain model 

was able to generate relationships between variables that DES could not.  

In the next four chapters are presented the papers accompanying this thesis. 
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CHAPTER 3 

3. COST OPTIMIZATION OF DRILLING OPERATIONS IN OPEN-PIT MINES 

THROUGH PARAMETER TUNING 

3.1 Abstract 

Low commodity prices have forced many mining companies to suspend or cease operations. To 

remain in business, some mine managers are exploring strategies to reduce operating costs. Given 

its importance as a cost element, increasing bench drilling efficiency and performance in open pit 

mines has the potential to generate considerable savings. Efficiency and performance gains can be 

realized by monitoring the drilling operation, analyzing monitoring data with statistical tools and 

optimizing operational variables. Finding the best configuration of controllable drilling parameters 

(e.g., rotation speed, pulldown force and bailing air pressure) would assist to increase penetration 

rate and optimize drilling operation cost. In this part of the thesis, after the effects of controllable 

variables on drilling performance are quantified by the experimental design, a cost minimization 

problem is formulated to determine replacement time of drill bits by an evolutionary algorithm 

(EA). Results show that the proposed approach could be used to determine the optimal drilling 

parameters and minimize the energy cost in open pit mines. 

3.2 Introduction 

 Drilling is among the most significant processes in open-pit mining operations; the success of 

rock fragmentation strongly depends on drilling design and performance. New optimization and 

computer tools present opportunities to minimize the energy cost of drilling operations, as well as 

initiate new drilling technologies [41]. 
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Rotary drilling is the most extensively used technique for drilling operations, ranging from surface 

blast hole mining to deep drilling. Rotary drilling with tri-cone tungsten carbide bits has broad 

applicability because drilling parameters can be adapted to hard and soft rock formations [10]. For 

example, a slower rotation speed (RPM) is effective for hard rock formations because it provides 

sufficient time to create stress on the rock, whereas a higher RPM is effective for soft rock 

conditions.  Tungsten carbide bits are mainly used for hard and abrasive rock formations [10]. 

 The rotary drilling technique is based on two distinct motions—axial thrust and rotational 

torque—provided by a hydraulic or electric rotary head. Axial thrust is needed to push the bit into 

the rock to break one-unit volume of rock. Rotational torque is a force acting on a drill rig to rotate 

a drill bit through the rock formation. The tri-cone bits use the thrust and torque to spall the rock 

[42]. Sufficient weight on the drill bit is necessary to accomplish the drilling operation. Weight on 

the bit includes the dead weight of the drilling rig (i.e., the rotary head, drill rods, and cables) and 

the pull-down force (PDF). A feed system that generates adequate PDF is used to move the rotary 

head up and down [43].  

 Drill holes must also be cleaned during drilling by removing cuttings between the wall of the hole 

and drill rod with compressed air [42]. The air is also used for cooling to protect the bearings. 

Insufficient air pressure is among the primary reasons for drill bit wear and shorter bearing life. 

On the other hand, excessive air causes dust and noise problems, shortens bit life and increases 

energy costs [44]. Therefore, the operation parameters of a drilling machine such as RPM, PDF 

and bailing air pressure (BAP) have a profound effect on rock fragmentation success.   

The Rate of Penetration (ROP) is accepted as a key performance criterion of a drilling operation 

because it directly indicates the production capacity [10]. Knowledge of the drilling rate based on 

operation parameters and the rock formation also helps to predict physical and mechanical 



20 

 

properties of the rock formation [45]. Although the ROP is heavily influenced by the physical and 

mechanical properties of the rock formation, it is difficult to model the precise association between 

ROP and rock properties for the following reasons [46]. First, operation parameters are adjusted 

for rock characteristics in order to increase the ROP. For example, increasing the bit weight when 

drilling in soft rock formations only slightly increases the ROP because the bit teeth will bury into 

the formation and increase the torque [47]. For hard rock formations, heavier weight on the bit is 

crucial to increase the ROP, but the bit life is reduced above a given weight, which affects the 

drilling rate directly [47]. Further, the complexity of a drilling operation increases depending on 

the geological condition [21]. In modeling, the drilling environment is often assumed to be 

homogenous. Therefore, it is not feasible to develop a model that takes into account all parameters 

that directly affect the drilling rate [46].   

Cutting tools are considered the most expensive tools during a drilling operation [13], accounting 

for an estimated 21% of total drilling costs [48]. Therefore, for more than two decades—in addition 

to improving the ROP—studies have focused on extending drill bit life and understanding bit 

deterioration and failure. Optimization of operation parameters minimizes energy costs of the 

operations while maximizing the sustainability of drill bits [49, 50]. The main reason for tool 

consumption is bit deterioration associated with the interaction between the rock and the bit. The 

mechanism of drill bit wear depends on rock characteristics and equipment reliability [45]. 

Excessive pulldown force can over-stress drill bits and even break bit teeth. Excessive rotation 

speed and incorrect bailing pressure also contribute to bit wear [17, 20]. A worn bit has a low ROP 

[19] but on the other hand, replacing a bit prior to the end of its beneficial life increases drilling 

cost unnecessarily [48]. Thus, there is a trade-off between bit wear and drilling energy cost. 
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Energy consumption is an important cost element of drilling activity. It is calculated from the 

specific energy—the energy required to drill a unit volume of rock [16]. The specific energy is 

determined from the RPM, PDF, rotational torque (T), ROP and the area of the hole [22]. Specific 

energy is considered an indicator of rock condition: drilling hard rock requires more specific 

energy [18]. 

This chapter focuses on determining ideal drilling operation parameters for a given drilling 

operation and minimizing the number of bits consumed for a given bench. First, prior to data 

gathering in the minefield, a face-centered central composite design (FCCCD), as one of the 

experimental design methods in response surface methodology (RSM), was developed on the basis 

of the specified variables and levels. Based on this design, the testing procedure was conducted on 

an open-pit mine, analyzed, evaluated and optimized by design of experiment tools to quantify the 

relationship between operating parameters and ROP. Finally, an evolutionary algorithm (EA) was 

applied to determine optimum drilling operation parameters and drill bit replacement time while 

minimizing the energy cost of the operation, calculated from the specific energy. Field data were 

chosen over laboratory data because they were considered to be most representative of operational 

conditions [42]. The originality of the research rests on modeling parameters affecting bench 

drilling (e.g., machine parameters, drill bit replacement time and the effect of the bit wear), 

formulating the problem as an optimization problem and solving the problem with the design of 

experiment tools and the EA. 

3.3 Model Development 

Data collection is the first step to develop an appropriate cost minimization model (Figure 3-1). 

To determine the drilling time for each drill-hole, FCCCD was chosen because it minimizes the 

cost of obtaining usable datasets and requires less time, effort and resources. The FCCCD was 
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used to analyze the relationship between dependent (rate of penetration, vibration, and torque) and 

independent (RPM, PDF and BAP) variables, and optimization procedure of drilling parameters 

was applied. After optimum drilling time for every time interval was calculated based on optimized 

parameters, the drilling time was set as a target value to investigate the out-of-working range 

parameters to optimize energy cost. When out-of-range parameters were determined, the required 

drilling energy was then calculated for each drill hole by using the specific energy formulation. 

The drilling time and the level of combinations were used to calculate the required drilling energy. 

The last step was to determine the optimum drill bit replacement time. The objective function was 

formulated as the minimization of cost under the constraints of minimum drilling time, required 

drilling length, level of parameters and a total number of available drill bits. The tradeoff problem 

between energy cost and drill bit consumption was solved by the EA. 

 

Figure 3-1: Model development steps 
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3.3.1 Data Collection 

In engineering research, the dataset should be large enough to represent the entire population; on 

the other hand, data collection should be cost-effective [51]. Therefore, experimental design 

methods should be used to create data collection patterns. They allow the researcher to plan 

experiments so as to generate quantitative data. Moreover, they help to minimize the cost of data 

collection [52].  

RSM design methods are used to observe the most influential factors in response among the factors 

whose levels are fixed before the study in order to maximize or minimize the response[53]. 

FCCCD is a second order multivariate technique includes all possible combinations for all factors. 

In FCCCD design, the number of trails (N) that are needed to collect data is shown by Eq. 3-1 [51].   

𝑁 =  2𝑘  + 2𝑘 + 𝑛𝑐 (3-1) 

where k is the number of factors, 2k is the number of 2-level factorial runs, 2k is the axial runs and 

nc is the center point runs.  A typical second-order model can be expressed by Eq. 3-2 [51]. 

𝑦 =  𝛼 + ∑𝛽𝑖

𝑘

𝑖=1

𝑥𝑖 + ∑𝛽𝑖𝑖

𝑘

𝑖=1

𝑥𝑖
2 + ∑𝛽𝑖𝑗

𝑖<𝑗

𝑥𝑖𝑥𝑗 (3-2) 

where y is the response, xi and xj are the variables. α is the intercept; βi and βii are the linear and 

quadratic effect of the ith variable, respectively. βij represents the interaction effect of two 

variables [51].   

The three controllable factors (RPM, PDF, and BAP) were analyzed at two levels. An FCCCD is 
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displayed graphically in Figure 3-2 as a cube showing 15 combinations. 

 

Figure 3-2: Face centered central composite design for three variables (FCCCD) 

The operation parameters and their levels were selected by considering the real drilling operational 

conditions at the mine site. Table 3-1 shows the required combinations with coded values and the 

level of the factors. (To protect the confidentiality of the company, more details about the mine 

cannot be provided.).  

After creating the design pattern, drilling time was recorded for each drill hole for 15 different 

combinations (plus one additional central point which is needed for optimization) during the 

specified time (Each drill hole length is 20m and drill bit diameter is around 35 cm). 
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Table 3-1: FCCCD with three factors  

Combinations RPM PDF BAP 
Drilling Time 

(min/20m) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

- 

- 

- 

- 

- 

0 

0 

0 

0 

0 

0 

+ 

+ 

+ 

+ 

+ 

- 

- 

+ 

+ 

0 

0 

- 

0 

0 

0 

+ 

0 

- 

- 

+ 

+ 

- 

+ 

- 

+ 

0 

- 

0 

0 

0 

+ 

0 

0 

- 
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+ 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Factors 
Levels 

- 0 + 

RPM (rev/min) 

PDF (kN) 

BAP (MPa) 

40 

200 

1 

60 

250 

1.3 

80 

300 

1.6 

3.3.2 Determination of Drilling Time 

FCCCD can be used to optimize the independent variable to obtain a desirable level of the 

dependent variable. Eq. 3-3 is a model with three predictor variables (a, b and c) affecting the 
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dependent variable (Y). α is the intercept and β denotes the coefficient that is the change in the 

dependent variable corresponding to a unit change of a predictor variable when other variables are 

constant [52]. In other words, β allows the dependent variable to be predicted from changes to the 

independent variable. The most influential independent variable can be determined. In addition, 

Eq. 3-3 is used to calculate drilling time for each drill hole according to the level of independent 

variables. The equation is created from parameter estimation results which were calculated by JMP 

statistical analysis software. 

Y = α + β1a + β11a
2 + β2b+ β22b

2 + β3c + β33c
2 + β12ab + β13ac + β23bc + β123abc (3-3) 

3.3.3 Parameter Optimization and Desirability Function 

Design of experiment (DOE) methods provide an effective and efficient way to investigate the 

relationship between independent and dependent variables. It is neither cost-effective nor efficient 

to carry out experiments with every factorial combination because of a large number of trails 

needed. To exclude unnecessary trails and optimize the process, RSM can be used.   The objective 

of RSM, which is a mathematical and statistical technique, is to determine an optimum condition 

or a region for a dependent variable which is influenced by various independent variables [54]. To 

determine the structure of the relationship between variables, the first step is to approximate the 

model function by low order polynomials to minimize the sum of squares of the errors (first or 

second order). Once, an appropriate model is obtained, the solution is tested by goodness-of-fit 

tests whether it is satisfactory or not. A detailed description of the design of experiments theory 

can be found in Box and Draper [54], Myers [51] and Montgomery [52], among many others. 

The desirability function approach is a conclusively proved technique to determine the optimum 

level of the dependent variable. It is used to find the optimum experimental conditions in order to 
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reach satisfactory results. This approach has two steps; finding the optimum level of independent 

variables to obtain the most acceptable responses on the dependent variable and maximizing the 

overall desirability of the responses in the range of the independent variables [55]. Desirability 

varies between 0 and 1 which are an undesirable response and an ideal response, respectively. 

Depending on the desired criteria, the different individual desirability functions can be established. 

If the response must be maximized, Eq. 3-4 can be used to describe di(yi) [56]. 

𝑑𝑖(𝑦̂𝑖(𝑥)) =  [

1

(
𝑦𝑖̂ (𝑥) − 𝐿𝑖

𝑇𝑖 − 𝐿𝑖
)

𝑤𝑢

0

𝑖𝑓 𝑦𝑖̂(𝑥) >  𝑇𝑖

𝑖𝑓 𝐿𝑖  ≤  𝑦𝑖̂(𝑥) ≤  𝑇𝑖

𝑖𝑓  𝑦𝑖̂(𝑥)  <  𝐿𝑖

] (3-4) 

where Ui is the upper limit value, Li is the lower limit value, Ti is the target value and wu is the 

weight which shows the importance of being close to the maximum. Following equation shows if 

it must be minimized (Eq. 3-5) [56].  

𝑑𝑖(𝑦̂𝑖(𝑥)) =  [

1

(
𝑦𝑖̂ (𝑥) − 𝑈𝑖

𝑇𝑖 − 𝑈𝑖
)

𝑤𝑙

0

𝑖𝑓  𝑦𝑖̂(𝑥)  <  𝑇𝑖

𝑖𝑓 𝑇𝑖  ≤  𝑦𝑖̂(𝑥) ≤  𝑈𝑖

𝑖𝑓  𝑦𝑖̂(𝑥)  >  𝑈𝑖

] (3-5) 

where wl is the weight which shows the importance of being close to the minimum. If a particular 

value (target value) is the most desirable response, then the function can be described by Eq. 3-6 

[56]. 
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𝑑𝑖(𝑦̂𝑖(𝑥)) =  

[
 
 
 
 
 
 
 
 

0                 𝑖𝑓 𝑈𝑖 < 𝑦𝑖̂(𝑥)

(
𝑦𝑖̂ (𝑥) − 𝐿𝑖

𝑇𝑖 − 𝐿𝑖
)

𝑤𝑢

 𝑖𝑓 𝑇𝑖 < 𝑦𝑖̂(𝑥) <  𝑈𝑖

1                  𝑖𝑓 𝑦𝑖̂(𝑥) =  𝑇𝑖

(
𝑦𝑖̂ (𝑥) − 𝐿𝑖

𝑇𝑖 − 𝐿𝑖
)

𝑤𝑢

𝑖𝑓 𝐿𝑖 < 𝑦𝑖̂(𝑥) <  𝑇𝑖

 
0               𝑖𝑓  𝑦𝑖̂(𝑥)  <  𝐿𝑖 ]

 
 
 
 
 
 
 
 

 (3-6) 

Once the desirability functions are used to transform variables individually, they are then 

combined using the geometric mean, which gives the overall desirability (D) (Eq. 3-7) [55]. 

𝐷 =  (𝑑1(𝑦1)𝑑2(𝑦2)… 𝑑𝑘(𝑦𝑘)
1/𝑘 (3-7) 

where k is the number of responses. If any response is undesirable, overall desirability will be zero. 

Therefore, the quality of the model in the optimization process is crucial for the success of the 

desirability function [56]. 

3.3.4 Calculation of Drilling Energy 

The calculation of energy consumption is required for different combinations of drilling 

parameters. Specific energy is the total work (axial force plus rotational torque) per unit time [22]. 

It is as an indicator of the mechanical efficiency of a drilling process and is calculated by Eq. 3-8 

[16].  

es=(
F

A
) +(

2π

A
) (

NT

ROP
) in-lb/in3 (3-8) 

where es is the specific energy (in-lb/in3), F is the PDF (lb), A is the area of the borehole (in2), N 

is the RPM (rpm), T is the rotational torque (lb-in), and ROP is the rate of penetration (in/min). 
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The original equation above is in imperial units, but for this research, variables were converted to 

SI units.  

Liu and Yin [18] defined the specific surface energy in rotary drilling as the energy required to 

create a new unit of surface area. They incorporated into the calculation of the effects of vibration, 

which is inversely proportional to specific energy. Eq. 3-9 presents the specific surface energy 

formulation. 

EaAs=Ev=(
F

Ae
)+(

2πNT

Aeu
) - (

Vvib

Aeu
)N/m2 

(3-9) 

where Ea is the specific surface energy (N/m), As is the specific surface area (m2/m3), Ev is the 

specific energy (N/m2), F is the PDF (N), Ae is the excavation area (m2), N is the RPM (rps), T is 

the torque (N-m), u is the ROP (m/s) and Vvib is the total vibration (N-m/s). The last term of the 

equation shows the calculation of the vibration effect, which is generally ignored because of its 

relatively small magnitude. Therefore, this equation can be rewritten as Eq. 3-10. 

Ea=(
1

AsAe
) (F+

2πNT

u
)N/𝑚2 

(3-10) 

According to Ghosh et al. [22], cleaning the boreholes with compressed air is a key component 

that is missing from the specific energy calculation. It is as important as other two operation 

parameters. Hence, BAP is the missing part to fill the gap due to determine a reliable specific 

energy calculation. The energy consumption of BAP was obtained from the field and added to the 

specific energy calculations for all combinations, then the results were converted as kWh to 

determine the cost of unit energy (ce) using Eq. 3-11. 
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ce = es × Pu (3-11) 

3.3.5 Cost Minimization 

This research was extended to determine the optimal drilling parameters under the constraint of 

completing bench drilling in a specified time period. The goal is to minimize the energy cost by 

the objective function and determine how many drill bits are required. All variables needed to 

develop the optimization model were calculated from Eq. 3-3 to Eq. 3-11. The model is given 

below. 

- Decision variables  

x represents the number of bits. 

t represents the total time required to complete drilling on the bench which is calculated at the 

second step of model development. 

- Model parameters  

cb is the cost of a bit.  

MT is the maximum allowable time to complete the task. 

TB is the total number of available bits.  

- Objective Function 

Minimize 𝑐𝑏 + 𝑐𝑒 𝑡 (3-12) 

Subject to 
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t ≤ MT and t > 0 (3-13) 

x ≤ TB (3-14) 

𝑥 > 0 𝑎𝑛𝑑 𝑥 ∈  𝑁+ (3-15) 

To solve the problem, the EA approach provided in the Solver MS Office tool was used. The GA 

can be an appropriate technique when the objective function is discontinuous, NP-hard or non-

smooth [57]. The problem in this research is non-smooth because the objective function is non-

differentiable. Therefore, EA can generate a good approximation for problems that cannot be 

solved through exact methods. EA is expressed by a binary string representation of the candidate 

solutions. As a meta-heuristic, EA mimics the mechanism of biological evolution through the 

processes of mutation, crossover, and reproduction [57]. Meta-heuristics have been widely used to 

solve various mining problems [58-61].  

In the EA approach, several initial solutions (chromosomes) are randomly produced. A set of 

chromosomes is generated at random to create a population. The number of chromosomes in the 

population is the population size. A new population is created by the selection process using 

various sampling mechanisms. The production of a new solution through an iteration is called a 

generation. All chromosomes are updated by the reproduction, crossover and mutation operators 

in each new generation. The revised chromosomes are termed offspring.  

Although a binary vector is generally used, integer or floating vectors can also be used as the 

representation structure in EA-based meta-heuristics. A chromosome is represented as Y=(y1(l1), 

y2(l2) …, ym(lm)), where m is the population size. Since the problem is a cost minimization problem, 
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the randomly generated chromosomes are ranked in ascending order. The selected chromosome is 

perturbed through crossover and mutation operators. It is important to note that good solutions 

always have less chance to be perturbed. This mechanism keeps good solutions with higher 

probability. Thus, as the process advances, low-cost solutions survive. If the procedure is 

continued for sufficient iterations, it converges in optimality or near-optimality. 

3.4 Case Study 

To evaluate the performance of the proposed approach, a case study was carried out in an open pit 

mine. Bit replacement time was collected from 15 different combinations of operating parameters 

based on FCCCD pattern to estimate the mean operational lifetime of drill bits. The tests were 

replicated during the specified time and the means were used. The ROP was recorded in every 10 

hours for all combinations until it reached the 50. hour. Operational characteristics were regressed 

to quantify the relationship between operating parameters and ROP for all combinations. 

Interaction effects were ignored because their p-values were higher (p= 0.1-0.9) than alpha 

(p=0.05). Therefore, interaction effects were extracted from the equations. Parameter estimation 

results which were obtained from FCCCD by JMP Software can be seen at Table 3-2 with coded 

values and ANOVA results are shown in Table 3-3. The most influential parameter for rotary 

drilling operation is RPM when the bit is new. Over time, because of bit wear, the effect of RPM 

and ROP decrease dramatically. 
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Table 3-2: Parameter Estimation 

10.Hour Estimate St. Error t-Ratio p-Value Pareto Chart 

Intercept 12.71 0.06 133.92 <.0001*                     

RPM  -1.59 0.04  -39.30 <.0001*  

PDF  -0.41 0.04  -10.13 <.0001*  
BAP  -0.25 0.04  -6.18 0.0008*  

RS*PDF 0.09 0.05 1.93 0.1012  
RS*BAP 0.09 0.05 1.93 0.1012  

RS*RS  -0.09 0.08  -1.18 0.2821  

PDF*BAP  -0.01 0.05  -0.28 0.7916  
PDF*PDF 0.01 0.08 0.09 0.9331  

BAP*BAP 0.01 0.08 0.09 0.9331  
20.Hour Estimate St. Error t-Ratio p-Value Pareto Chart 

Intercept 19.62 0.07 119.43 <.0001*  

RPM  -1.73 0.05  -35.90 <.0001*  
PDF  -0.35 0.05  -7.26 0.0003*  
BAP  -0.31 0.05  -6.43 0.0007*  
PDF*BAP 0.08 0.05 1.39 0.2133  
RS*PDF 0.05 0.05 0.93 0.3892  
RS*BAP 0.05 0.05 0.93 0.3892  
RS*RS  -0.05 0.09  -0.51 0.6254  
PDF*PDF  -0.05 0.09  -0.51 0.6254  
BAP*BAP  -0.05 0.09  -0.51 0.6254  
30.Hour Estimate St. Error t-Ratio p-Value Pareto Chart 

Intercept 31.50 0.13 91.99 <.0001*  

RPM  -1.46 0.08  -17.48 <.0001*  
PDF  -0.37 0.08  -4.43 0.0044*  
BAP  -0.35 0.08  -4.19 0.0057*  
RS*PDF 0.18 0.09 1.87 0.1100  
PDF*PDF  -0.23 0.16  -1.40 0.2112  
RS*RS 0.22 0.16 1.37 0.2205  
PDF*BAP  -0.08 0.09  -0.80 0.4525  
BAP*BAP  -0.13 0.16  -0.78 0.4626  
RS*BAP  -0.05 0.09  -0.54 0.6116  
40.Hour Estimate St. Error t-Ratio p-Value Pareto Chart 

Intercept 46.81 0.12 208.52 <.0001*  

RPM  -1.66 0.08  -20.08 <.0001*  
PDF  -1.33 0.08  -16.09 <.0001*  
BAP  -0.43 0.08  -5.20 0.0020*  
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RS*BAP 0.18 0.09 1.89 0.1072  
RS*RS  -0.27 0.16  -1.65 0.1503  
RS*PDF 0.10 0.09 1.08 0.3209  
PDF*PDF  -0.12 0.16  -0.72 0.5001  
PDF*BAP 0.03 0.09 0.27 0.7959  
BAP*BAP  -0.02 0.16  -0.10 0.9264  
50.Hour Estimate St. Error t-Ratio p-Value Pareto Chart 

Intercept 114.17 1.77 64.40 <.0001*  

PDF  -20.13 1.18  -17.00 <.0001*  
BAP  -5.82 1.18  -4.92 0.0027*  
PDF*BAP 5.26 1.32 3.98 0.0073*  
PDF*PDF  -3.90 2.31  -1.69 0.1419  
BAP*BAP  -2.75 2.31  -1.19 0.2783  
RS*RS 2.20 2.31 0.95 0.3766  
RPM  -0.75 1.18  -0.63 0.5498  
RS*PDF 0.61 1.32 0.46 0.6599  
RS*BAP  -0.39 1.32  -0.29 0.7796  

Table 3-3: Summarized ANOVA for regression models 

Time Interval F-Value p-Value R2 (%) 

10 Hours 188.29 <.0001* 89.65 

20 Hours 154.34 <.0001* 85.59 

30 Hours 39.01 <.0001* 83.19 

40 Hours 77.81 <.0001* 81.51 

50 Hours 37.35 <.0001* 78.25 

The R2 values in Table 3-3 were relatively low because the mining site was assumed as 

homogeneous; however, the rock formation has many fractures and different minerals are present 

that directly affect the ROP. Moreover, the effect of bit wear can be seen with time and it affects 

the linearity of the model. 

According to the parameter estimation results described above, ROP was calculated for every 20 

m, which is the length of a drill hole of the open pit mine for every 10-hour interval. 
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The results were used to find optimum parameter combinations in the range of working conditions 

to minimize the average required time to drill a hole for every time interval. FCCCD was applied 

to obtain optimum parameters based on desirability level (ideal response). The optimum parameter 

combinations were created and the 3 of the 50 results for every interval with the optimum drilling 

time can be seen in Table 3-4. 

Table 3-4: Optimum parameter combinations in the range of working condition with 100% 

desirability 

Time Intervals (hour) RPM PDF BAP Time (min) 

0-10 

80 275 1.6 

10.5 80 300 1.3 

75 300 1.6 

10-20 

80 280 1.0 

17.0 77 295 1.3 

75 300 1.6 

20-30 

80 270 1.3 

26.0 80 260 1.6 

75 300 1.3 

30-40 

80 300 1.0 

43.0 80 295 1.6 

77 300 1.3 

40-50 

80 290 1.6 

86.5 77 295 1.6 

58 300 1.6 

Table 3-4 shows that when the drill bit is new, the ROP is strongly affected by RPM, thus the 

higher level of RPM causes a higher ROP. Moreover, some certain amount of PDF and BAP are 

enough for the desired operation. If the PDF and BAP are more than a certain amount, they 
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accelerate the bit deterioration, otherwise, the ROP decreases. In other words, the key factor of 

drilling operation is RPM. On the other hand, when the bit is getting worn, RPM is losing its 

importance and PDF is the most important parameter to drill a hole.    

Once the optimum drilling time of every interval was determined by minimization criteria of 

FCCCD, different combinations can be created depends on the range of machine limits which 

can be seen in Table 3-5. Therefore, drilling time was set as a target value and best combinations 

based on desirability level and max.-min criteria were calculated.  

Table 3-5: Drilling machine working limits 

Parameters Max. Min. 

RPM (rev/min) 30 100 

PDF (kN) 150 500 

BAP (MPa) 0.7 2.0 

T (kNm) 5 25 

FCCCD was used to set the optimum drilling time as the target value and the parameters were 

optimized in the new range (Table 3-6). 

The impact of bit wear on drilling time can be seen clearly after the 30th hour. After this hour, the 

effect of RPM is decreasing, and PDF becomes the key parameter for the drilling operation. 

After optimizing the drilling parameters, cost minimization procedure was applied. The energy 

consumption of drilling operation was calculated for every combination of every interval by 

specific energy formulation and it is multiplied by the unit price of the energy consumption (Pu) 

which was C$0.05/kWh. Energy calculation formulation can be seen in Eq. 3-16. 
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Table 3-6: Examples of optimized-drilling-parameters based on desirability level 

Interval RPM (rev/min) PDF (kN) BAP (MPa) Desirability (%) Time (min) 

0-10 

100 160 0.7 97 

10.5 77 400 0.7 86 

80 235 2.0 84 

10-20 

100 150 1.0 97 

17.0 70 500 0.7 90 

72 450 1.0 80 

20-30 

100 190 1.0 90 

26.0 70 500 0.7 90 

100 150 1.3 87 

30-40 

30 480 0.7 95 

43.0 40 440 0.7 90 

45 425 0.7 86 

40-50 60 350 2.0 75 86.5 

 

𝐸𝑑 = (
𝑃𝐷𝐹

𝐴
+ 

2𝜋 × 𝑅𝑃𝑀 × 𝑇

𝐴 × 𝑅𝑂𝑃
) × 𝑉 + 𝐵𝐴𝑃 (3-16) 

where Ed is required energy for drilling (kWh), PDF is pull down force (kN), A is drill hole area 

(m2), RPM is rotation speed (r/min), T is rotation torque (kNm), ROP is rate of penetration 

(m/min), V is the volume of the drill hole (m3) and BAP is bailing air pressure (kWh). (1000 kNm 

= 0.278 kWh). The energy requirement of BAP is selected from manufacturer catalog.  

The drilling cost of selected parameter combination associated with drilling operation can be seen 

in Table 3-7 (The combinations were selected according to desirability which must be more than 
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75%). The results show that RPM is the key factor for energy consumption. Moreover, the cost to 

drill a hole is increasing by time because of the drill bit wear which affects ROP immensely. 

Table 3-7: The summary of drilling cost 

Time Interval RPM (rev/m) PDF (kN) BAP (MPa) Total Cost (per h) Cost/Hole 

0-10 

100 160 0.7 14.85 2.60 

77 400 0.7 9.80 1.71 

80 235 2.0 12.75 2.23 

90 235 1.0 13.21 2.31 

61 480 1.3 8.07 1.41 

80 275 1.6 11.92 2.09 

80 300 1.3 11.66 2.04 

75 300 1.6 10.65 1.86 

10-20 

100 150 1.0 15.24 4.32 

70 500 0.7 8.22 2.33 

73 450 1.0 9.32 2.64 

75 245 2.0 11.31 3.20 

65 480 1.6 8.40 2.38 

80 280 1.0 10.65 3.02 

77 295 1.3 10.75 3.05 

75 300 1.6 10.47 2.97 

20-30 

100 190 0.9 15.12 6.55 

70 500 0.7 8.05 3.49 

100 150 1.1 15.29 6.63 

65 490 1.3 6.97 3.02 

75 450 2.0 11.36 4.92 

80 270 1.3 11.35 4.92 

80 260 1.6 11.65 5.05 

75 300 1.3 10.06 4.36 
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30-40 

40 480 0.7 5.47 3.92 

50 440 1.0 7.53 5.40 

55 425 1.3 8.54 6.52 

60 365 2.0 8.54 6.12 

90 220 0.7 12.43 8.91 

80 300 1.0 10.50 7.52 

80 295 1.6 11.59 8.31 

77 300 1.3 10.58 7.58 

40-50 

60 350 2.0 8.47 12.21 

80 290 1.6 11.54 16.63 

77 295 1.6 10.82 15.60 

58 300 1.6 7.11 10.25 

The operation parameters were optimized in order to minimize the cost, an optimization model 

was created. Table 3-8 presents the parameters of the optimization. The cost of the bit was provided 

by the mining company where the datasets were collected. 

Table 3-8: Optimization parameters 

Parameter Value 

Total Length (m) 8,400 

Maximum Time (h) 96 

Total Number of Bits 20 

Total Bit Cost (C$) 5,000 

Drill Length (hole/m) 20 

The two of the results of the optimization can be seen in Table 3-9 in order to compare the energy 

cost. The results show that parameter combination is a key factor for cost minimization. As can be 

seen from the Table 3-9 that the required time and the required number of drill bits are the same 

for both cases. However, there is a cost difference between both operations (Operation 1 and 
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Operation 2 followed the patterns with the combinations which have a minimum drilling energy 

cost and maximum drilling energy cost in Table 3-7, respectively). 

Table 3-9: Cost comparison between optimum combinations 

Results Operation-1 Operation-2 

Drill length (m/ bit) 2,100 2,100 

Drilling time (h/bit) 24 24 

Total time (h)  95 95 

Number of bits 4 4 

Bit consumption cost (C$) 20,000 20,000 

Energy cost (C$) 743 1,953 

Total cost (C$) 20,743 21,953 

According to the optimization results, parameter optimization is essential for cost minimization. 

Therefore, it must be taken into consideration due to the required number of bits, energy 

consumption and operation time which is needed to have a desired drilling operation. 

3.5 Conclusions 

This part of the thesis proposes FCCCD process and an approach to optimize drilling parameters 

and determine the optimum time to change drill bits through cost minimization in open pit mines. 

The results of FCCCD show that RPM was the most influential operation parameter particularly 

when the drill bit was new, the bit deterioration has a big negative impact on the performance of 

RPM. On the other hand, when the bit was getting worn, the importance of PDF for the drilling 

operation was increasing, unlike RPM. The optimum drilling time for a hole was calculated for 

each time interval by the optimized parameters in the working range. The optimum drilling time 

then was used to determine the new optimized parameters in the range of drilling machine 

capability by desirability function. The cost optimization was applied, and the EA was used to 



41 

 

solve the trade-off problem between energy cost and drill bit consumption; therefore, energy cost 

was minimized and the optimum time to change the drill bits was determined. The results of the 

optimization showed that; although the required time and the required number of drill bits are the 

same, the energy cost of the operation can be decreased by 67% with the parameter optimization. 

The results of the case study showed that the proposed approach could be used as a tool for cost 

minimization associated with bench drilling in open pit mining operations. 

3.6 Chapter Conclusion 

The effects of controllable parameters were quantified and optimized considering specific time 

intervals based on cost minimization model in this chapter. To achieve the desired operation, 

equipment reliability and bit wear quantification should also be taken into account. Thus, the effect 

of uncontrollable parameters into drill bit can be quantified more accurately. Therefore, equipment 

reliability which has a direct impact on drilling performance will be considered in the following 

chapter. Equipment condition will be monitored using historical data through reliability analysis. 

The relationship between the equipment condition and the performance will be established. The 

stochastic environment of drilling operation will be simulated.  
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CHAPTER 4 

4. RELIABILITY-BASED PERFORMANCE ANALYSIS OF MINING DRILLING 

OPERATIONS THROUGH MARKOV-CHAIN MONTE-CARLO AND MEAN 

REVERTING PROCESS SIMULATIONS 

4.1 Abstract 

In recent years, commodity prices have swiftly decreased, narrowing the profit margin for many 

mining operations and forcing them to find effective cost management strategies to respond to low 

prices. Given that equipment is one of the most significant assets of a mining company, efficient 

equipment utilization has strong potential to reduce costs. This chapter focuses on the relationship 

between the number of available drilling machines based on reliability analysis and the number of 

holes to be created on a bench of an open pit mining operation. Since equipment availability is 

random in nature, a range of holes to be drilled corresponding to a specified probability level was 

determined. To assess the performance of the proposed approach, a case study was carried out 

using two stochastic modeling techniques. Evolutions of reliabilities of ten rotary drilling machines 

over a specific time were simulated by Markov Chain Monte Carlo and Mean Reverting processes, 

using historical data. Multiple simulations were then used for risk quantification. Results show 

that the proposed approach can be used as a tool to assist in production scheduling and assess the 

associated risk. 

4.2 Introduction 

Drilling is one of the primary operations in an open pit mining cycle. It is a complex operation 

because it is affected by several factors such as geological structure, equipment condition, drilling 

parameters, and operator experience [62]. Failures in drilling equipment severely affect production 

schedules because they cause blasting delays and affect the subsequent production process. If 
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limits of operations are known, production plans can be more realistic. Equipment condition is an 

essential factor to achieve a desirable production rate and to sustain mining operation [63]. 

Reliability analysis is the best tool to ensure the condition of the equipment. Reliability analysis 

helps practitioners to forecast future failure of system components and prevent unwanted 

stoppages [64]. 

Equipment reliability can be used as a key system performance metric during the equipment 

lifetime [65, 66]. Field data are required to analyze system reliability and construct reliability 

models to facilitate decision-making. A non-repairable system is a system in which a repair is 

expensive or non-feasible. On the other hand, repairable systems are the systems which can be 

restored after a failure for satisfactory operation [67]. Time between failures and time to repair are 

primary data types needed to characterize system reliability [68]. Drilling machines are repairable 

systems that can be restored after failure to perform desired performance.   

It is impossible to predict the future availability of drilling equipment in a fleet. Therefore, there 

is a risk (uncertainty) associated with the number of holes to be drilled. If there are delays due to 

lack of available equipment, subsequent processes (e.g. blasting, loading, and hauling) will also 

be delayed such that production targets are not attained. To address the risks arising from available 

drilling equipment, stochastic modeling is conducted—using past failure and repair data—to 

simulate the available equipment in the fleet through multiple future scenarios. The stochastic 

simulations methods are used to calculate a range of production quantities [40].   

Mining engineering involves the significant amount of risks due to heterogeneities of geologic and 

geotechnics phenomena. Mining operations consist of consecutive activities (drilling, blasting, 

loading, hauling and crushing). Given that the drilling is the first activity, the delays in drilling due 

to equipment availability or insufficient equipment performance will also result in delays in 
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subsequent activities. Therefore, the production targets may not be attained. To address the risks 

arising from available drilling equipment, stochastic processes can be used to generate future 

probable realizations [40, 69]. Markov Chain Monte Carlo (MCMC) simulation and the Mean 

Reversion (MR) techniques have strong potential to quantify risks associated with drilling 

operations, which can be significant [40]. MCMC is a mathematical model for stochastic systems 

describing a series of possible events in a time series, whereby the probability of each event 

depends only on the condition of the preceding event [70]. MCMC generates probable realizations 

depending on the current condition. The MR theory states that variables eventually move towards 

and oscillate around the equilibrium level, which can be calculated from historical data [71]. Thus, 

MR is used to create possible scenarios depending on the historical average.  

MCMC simulation fits well the nature of the problem because the change in available machines in 

the next time increment does not fluctuate much. In other words, the number of available 

equipment in drilling operation for next shift depends on the previous shift. Furthermore, due to 

degradation, equipment availability will decrease over time. This phenomenon can be modeled 

through MCMC.  On the other hand, MR also suits well to simulate the number of available drilling 

machines. It assumes that random increments are generated from a normal distribution. This is a 

reasonable assumption because the decrease in equipment availability is governed by the 

availability of initial time and the long-term of the mean of the process. The biggest issue in MR 

is to calibrate the parameters. In this research, since information from the previous benches were 

collected, the calibration is a relatively easy task because there is an opportunity to observe 

deviations of calibrated parameters from actual realizations. Two different stochastic approaches 

are used to see if their outcomes agree. 



45 

 

Although both methods simulate equipment availability for a given duration, there are differences 

between their applications. MCMC uses transition probabilities, and the current state depends upon 

the previous state. The transition probabilities are computed from the previous experience. This 

computation is based on a formula. Therefore, the technique is quite fast. In addition, the ability 

to reduce multidimensional problems to a series of lower-dimensional ones is one of the most 

important characteristics of MCMC. However, so-called “memoryless” character of MCMC is the 

biggest drawback. The assumption of the exponential distribution for time to failure is also critical 

[70, 72]. MCMC should be implemented carefully after the validity of these assumptions. On the 

other hand, MR is mainly used in finance to simulate long-term future prices. It requires some 

parameters such as mean reverting factor, long-term mean, and constant volatility factor. These 

parameters are calibrated from historical data. The values of parameters, to a certain extent, 

depends on the quality of the maintenance program in the mine and heterogeneity level of rock 

characteristics. MR assumes that equipment availability tends to be the average availability over 

the time. This assumption is highly related to the size and quality of maintenance activities. Also, 

MR is very sensitive to outliers and data noisiness [71]. 

In recent years, some researchers have focused on performance measurement of drilling machines 

from different aspects. Ataei et al [23] investigated physical and mechanical properties of rock to 

measure the penetration rate. Unlike this research, we computed the penetration rate from historical 

data and, further investigated rock and machine interaction. Basarir et al [73] developed a model 

to predict the performance of drilling machines by adaptive neuro-fuzzy inference system and 

multiple regression. However, since the machine condition was ignored, it is difficult to have 

reliable outcomes. In our research, we linked production scheduling, which focuses on the quantity 

of material to be extracted for a given set of equipment. Furthermore, Al-Chalabi et al [74] conduct 
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a study for underground mine drilling rig to build a process to simulate the reliability of repairable 

complex systems based on historical data by Ordinary Monte Carlo simulation. In their research, 

the previous failures do not affect future events. In other words, it is time-independent. Unlike this 

research, applying MCMC simulation, time dependency was considered”. 

In this chapter, the relationship between the reliability of drilling equipment and its performance 

are quantified. Then, equally probable realizations of the available number of drilling machines 

over time series are generated through MCMC and MR, based on historical data. These realizations 

are used to assess the feasibility of targeted production plans. The originality of this chapter lies in 

proposing a risk quantification approach, which assists mine management to (1) determine 

production rates (mine production scheduling) based on drilling performance and (2) develop 

drilling equipment maintenance plans (preventive maintenance and spare part management).  

4.3 Research Methods 

After collecting field data over one year, a power law model was applied for each drilling machine. 

The power law method, also known as Crow – AMSAA, was used to analyze repairable complex 

systems. The power law model parameters were calculated by Reliasoft© RGA software. To 

investigate the trend of the time-between-failure datasets, the Laplace trend test was used to show 

if the system behavior was improving or deteriorating. Historical data were also used to investigate 

the relationship between machine reliability and machine performance by JMP© statistical 

software. In addition, the number of available drilling machines for each shift was simulated 

separately by MCMC (100 simulations in ModelRisk© software) and MR (100 simulations in 

Microsoft Excel©) for a three-month period. Finally, the range of drillable holes was generated 

according to the number of available drilling machines. 
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4.3.1 Reliability Analysis 

Reliability analysis helps to deal with the uncertainty and to make an informed decision. The 

general expression for the function of reliability is given by Eq. 4-1[66]. 

𝑅(𝑡) = Pr{𝑇 ≥ 𝑡} 
(4-1) 

where R(t) is the reliability at time t, T is the time to failure of the system or item and R(t) ≥ 0, R 

(0) = 1. Other expressions of the reliability function are presented by Eq.4-2 and Eq. 4-3 [67]. 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 − ∫𝑓(𝑥)𝑑𝑥

𝑡

0

 (4-2) 

𝑅(𝑡) = 𝑒−∫ 𝜆(𝑡)𝑑𝑡
𝑡
0  (4-3) 

where F(t) is cumulative failure distribution function, f(x) is the failure probability density function 

and λ(t) is the hazard rate.  

The reliability expressions given above are used to determine the reliability of a system or an item 

which the times to failure is characterized by statistical distributions such as exponential, normal 

or Weibull if the system behaves “as good as new” after the repair [74]. The failure process is 

called renewal process. This basic model is called Homogenous Poisson Process (HPP) [74]. The 

reliability function for 3-Parameter Weibull distribution is given by Eq. 4-4 [65] where the three 

defining parameters of the Weibull distribution are shape parameter (β) also known as Weibull 

slope, scale parameter (η) and location parameter (γ) also known as shift parameter. These systems 

are known as independent and identically distributed (i.i.d.) when there is not any trend at the 

dataset. However, for the complex systems such as trucks, loaders and drilling machines the 

failures are dependent based on the current age of remaining components. Therefore, the most 

cases the complex systems are between “as good as new” and “as bad as old” conditions after the 
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repair and the deterioration trend can be seen. This process is called non-renewable process. To 

characterize the reliability of drilling machines, Non-Homogenous Poisson Process (NHPP), 

which is a generalization of the Poisson process, can be used instead of distributions. It has a wide 

applicability to model repairable systems [74, 75]. 

𝑅(𝑡) =   𝑒
−(

𝑡−𝛾
η

)𝛽
 (4-4) 

In reliability life data analysis, failure data are needed to calculate the time between failures [65]. 

A power law model was fitted to the data to analyze the life of each machine for the duration of 

the operation. The initial transition and steady-state matrices were created to determine the 

transitions between stages on shifts based on reliability analysis by MC. The last step was to 

determine the number of available drilling machines and the expected number of holes that can be 

drilled. The problem was solved by MCMC and MR.  

Complex systems such as trucks, loaders, and drilling machines, the failures depend on the current 

age of remaining components. Therefore, most complex systems fall between “as good as new” 

and “as bad as old” conditions after the repair and the deterioration trend can be seen. This process 

is called a non-renewable process. To characterize the reliability of drilling machines, Non-

Homogenous Poisson Process (NHPP)—a generalization of the Poisson process—can be used 

instead of distributions. It has broad applicability to model repairable systems [75]. 

Drilling machines can be modeled by Power law method. In terms of an analytical method to 

investigate the trend of the time between failure datasets, the Laplace trend test is used in this 

research. It shows the system behavior whether improving or deteriorating. 
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The power law technique is used to model system failure intensity function to manage each 

succeeding system failure (Eq. 4-5) for particularly complex repairable systems. β and λ were 

estimated from Eq. 4-6 and Eq. 4-7 [76].  

𝑢(𝑡) =  𝜆𝛽𝑡𝛽−1 , 𝑡 > 0  
 

(4-5) 

  

β̂= 
∑ Nq

K
q=1

∑ ∑ ln (
Tq

Xiq
)

Nq

i=1
K
q=1

 
(4-6) 
 

  

𝜆̂ =  
∑ 𝑁𝑞

𝐾
𝑞=1

(𝑇1
𝛽
) + (𝑇2

𝛽
) + ⋯+ (𝑇𝐾

𝛽
) 

 
(4-7) 

where K is the number of drilling machines, Nq is the total number of failures for each system, and 

T is the observation time for each failure dataset. The estimated β value can also indicate the trend. 

If β = 1, there is no trend; if β >1, the system is degrading; and if β <1, the system is improving 

[75]. 

The Cramer-Von Mises test is the most suitable goodness of fit test to analyze multiple repairable 

systems that follow the power law model [77]. If a calculated result is less than critical value from 

the goodness of fit test table, it fails to reject the NHPP power model. The power law model mean 

repair function and reliability function, defined as the probability of zero failure from time t to t+s, 

for NHPP, can be seen in Eq. 4-8 and Eq. 4-9, respectively [66]. 

𝑀(𝑡) =  ∫ 𝜆
𝑡

0

(𝑡)𝑑𝑡 ≅  𝜆𝑡𝛽 
(4-8) 

  

𝑅(𝑑𝑡) =  𝑒− [ 𝑀(𝑡+𝑑𝑡)−𝑀(𝑡)] (4-9) 
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4.3.2 Markov Chain (MC) 

The mathematical definition of MC can be seen in Eq. 4-10 [78].  

𝑃{𝑆𝑡+1 = 𝑗|𝑆0 = 𝑘0, 𝑆1 = 𝑘1, . . . , 𝑆𝑡−1 = 𝑘𝑡−1, 𝑆𝑡 =  𝑖} = 𝑃{𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖 }  (4-10) 

where St is a stochastic process. For reliability modeling, the probability of being in state j in time 

t+1(dt) when it is in state i at time t can be formulated as in Eq. 4-11 [78]. 

𝑃{𝐸𝑡+1 = 𝑗| 𝐸𝑡 =  𝑖} = 

{ 𝐸1𝑗(𝑡 + 1)|𝐸1𝑖(𝑡),  𝐸2𝑗(𝑡 + 1) | 𝐸2𝑖(𝑡), . . . , 𝐸𝑚𝑗(𝑡 + 1)| 𝐸𝑚𝑖(𝑡)} 

(4-11) 

where the integers (1, 2, . . ., m) represent the number of equipment, and i and j represent the 

current and future states, respectively.  

Equipment reliability data were used to estimate the number of available drilling machines in a 

certain period by MC. The power law model tends to represent the life data of the system. It is 

used to estimate the parameters to make the function fit the data closely [78]. Eq. 4-12 shows the 

probability of being in operation, after one unit of time (dt) when equipment is working, and Eq. 

4-13 shows the probability of being under repair, after one unit of time (dt) when equipment is 

working, based on time-between-failure datasets. 

𝑃{𝐸𝑡+𝑑𝑡 = 𝑗| 𝐸𝑡 =  𝑖} = { 𝐸𝑚𝑗(𝑡 + 𝑑𝑡) = 1|𝐸𝑚𝑖(𝑡) = 1 } =  𝑒−(𝜆(𝑡𝛽)) (4-12) 

  

𝑃{𝐸𝑡+𝑑𝑡 = 𝑗| 𝐸𝑡 =  𝑖} = { 𝐸𝑚𝑗(𝑡 + 𝑑𝑡) = 0|𝐸𝑚𝑖(𝑡) = 1 } =  1 −  𝑒−(𝜆(𝑡𝛽)) (4-13) 

Similarly, Eq. 4-14 is used to calculate the probability of being in operation, after one unit of time 

(dt) when equipment is under the repair condition and Eq. 4-15 is used to calculate the probability 
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of continuing to stay under repair, after one unit of time (dt) when equipment is under repair the 

condition based on time-to-repair datasets. 

𝑃{𝐸𝑡+𝑑𝑡 = 𝑗| 𝐸𝑡 =  𝑖} = { 𝐸𝑚𝑗(𝑡 + 𝑑𝑡) = 1|𝐸𝑚𝑖(𝑡) = 0 } =  1 − 𝑒−(𝜆(𝑡𝛽)) (4-14) 

  

𝑃{𝐸𝑡+𝑑𝑡 = 𝑗| 𝐸𝑡 =  𝑖} = { 𝐸𝑚𝑗(𝑡 + 𝑑𝑡) = 0|𝐸𝑚𝑖(𝑡) = 0 } =   𝑒−(𝜆(𝑡𝛽)) (4-15) 

The one-step transition matrix for equipment was formulated from previous equations depending 

on the states. Multiplication is needed to determine the probability of transitioning one state to 

another for more than one piece of equipment (Eq. 4-16). 

𝑃{𝐸𝑡+𝑑𝑡 = 𝑗| 𝐸𝑡 =  𝑖} = { 𝐸1𝑗(𝑡 + 𝑑𝑡)|𝐸1𝑖(𝑡) } × … × { 𝐸𝑚𝑗(𝑡 + 𝑑𝑡)|𝐸𝑚𝑖(𝑡) } (4-16) 

After a certain number of transitions, the system will reach a steady state that is independent of the 

current state and has constant probability. At this state, the transitioning probabilities in a certain 

state are independent of the probability distribution of the initial state.    

More information about developing MC models for repairable systems and mining operations can 

be found in references [40, 70, 78].  

4.3.3 Markov Chain Monte Carlo (MCMC) 

MCMC was used to generate samples from complex distributions generated by the MC method. 

These samples were then used by the Monte Carlo method to quantify estimation and model the 

risk 18. There are many algorithms and sampling methods to implement MCMC. The Metropolis-

Hastings algorithm is frequently used way to set up MC [79]. It creates random samples from the 

target distribution to form an MC that conditionally depends only upon the last event [79].  
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For Ordinary Monte Carlo theory, samples are generated randomly and distributed as independent 

and identical [79, 80]. However, MCMC is used to create samples that depend only on the previous 

sample based on MC, which is stationary and reversible. The difference between Ordinary Monte 

Carlo and MCMC can be seen by the formulation of variance (𝜎2) in Eq. 4-17 and Eq. 4-18, 

respectively [70]. 

𝜎2 = 𝑣𝑎𝑟 { 𝑔(𝑋)} 
 

𝜎2 = 𝑣𝑎𝑟 { 𝑔(𝑋)} + 2 ∑ 𝑐𝑜𝑣 { 𝑔(𝑋𝑖), 𝑔(𝑋𝑖+𝑘)}

∞

𝑘=1

 

 

(4-17) 
 
 
(4-18) 

where g(a) is a real-valued function on the state space.  

The variance of the sample at Eq. 4-17 is independent and identically distributed. That is, the 

variance of the sample at Eq. 4-18 is the function of the variance of the previous sample.  

According to the Metropolis-Hastings algorithm, the probability of a proposed move from i to j is 

given by Eq. 4-19 and Eq. 4-20 [70, 79]. 

𝑟 (𝑖, 𝑗) =  
ℎ(𝑗)𝑞(𝑗, 𝑖)

ℎ(𝑖)𝑞(𝑖, 𝑗)
 

𝑎(𝑖, 𝑗) = min (1, 𝑟(𝑖, 𝑗)) 

(4-19) 

 

(4-20) 

where h is the un-normalized density, q is the conditional probability density, r is the Hasting ratio, 

and a is the probability of moving from i to j.  

The choice of the proposal density has a significant impact on the performance of the algorithm.  

The convergence characteristics of the implemented MCMC will be highly related to the choice 

of the proposal density. To generate samples, Metropolis sampling is required. In this point, the 
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proposal distribution q(S∣S(t-1)) and the prior distribution π(0) over the initial state in Markov 

Chain are required to select. In this research, Gaussian distribution was used for both distributions. 

The prior distribution is centered at zero μ=S(t-1) and (σ=1) and the proposal distribution is 

centered at the previous state of Markov-Chain (μ=0 and σ=1). 

Convergence of the MCMC to its stationary distribution is a requirement. Unfortunately, there are 

no universally accepted approaches to prove convergence. In this research, we used the software. 

In our best knowledge, it utilized the technique proposed by Gelman and Rubin [77]. The technique 

has two stages. The first, the target distribution is estimated and using this distribution the starting 

point is produced. Thus, the required number of independent chains are met. The second, the target 

distribution of the scalar quantity under consideration (e.g., a Student t distribution and the scale 

parameter) is re-constructed through the last k iterations. 

MCMC has a serious impact on solving in a wide range of stochastic problems. Pang et al. [81] 

used MCMC to estimate wind speed distribution, and Malhotra [82] used it for applications in the 

network and computer security. Similarly, Ozdemir and Kumral [72] tested fleet efficiency and 

Mardia et al, [83] implemented MCMC to model rock fractures.  

4.3.4 Mean Reversion (MR) 

MR is used to create future observations using historical data. MR stochastic process can be 

formulated as in Eq. 4-21 [84]. 

𝑑𝑥𝑡 =  𝜅(𝜃 − 𝑥𝑡)𝑑𝑡 +  𝜎√𝑥𝑡𝑑𝑍𝑡 (4-21) 

where xt is the process level at the initial time, κ is the speed of reversion, θ is the long-term mean 

level, σ is the volatility, and Z is the increment of standard Brownian Motion.  
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The parameters κ, θ, and σ can be forecast from a regression equation based on historical data (Eq. 

4-22) [84]. 

∆𝑥𝑡

𝑥𝑡
= 𝛽0 + 𝛽1

1

𝑥
+  𝜖 

(4-22) 

The variable κ is the negative of the intercept (-β0), θ is the negative ratio of the coefficient of 1/xt 

of the intercept, and σ is the standard error of the residuals. 

To simulate the generated MR model, a starting value was calculated from historical data and 

independent normally distributed error values (uniformly distributed between 0 and 1) were 

generated using Microsoft Excel©.  

MR is used to perform risk analysis and decision making. Therefore, it has rightfully received 

attention from research in finance and asset management. Detailed information about using this 

technique can be found in references [85-89]. 

4.4 Case Study  

4.4.1 Reliability Analysis  

Historical data were collected from ten rotary drilling machines working at an open pit hard rock 

mine in the North America over a one-year period (Table 4-1). The time between failures and the 

time under repair were recorded for each machine. In addition, under the same condition, the 

drilling length was calculated for each drilling machine to investigate the relationship between 

reliability and drilling performance. 
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Table 4-1: Summary of historical data collected from ten rotary drilling machines 

Machine 
Total No. 

Failures 

Up 

Time 

Down 

Time 

Mean Time 

Between 

Failures 

Mean Time 

Under 

Repair 

Total 

Time 

(hours) 

1 72 4,428 1,794 61.50 25.27 6,222 

2 100 4,688 1,751 46.89 17.69 6,439 

3 86 4,565 1,406 53.09 16.35 5,971 

4 85 5,238 1,269 61.63 14.93 6,507 

5 54 3,455 2,039 64.00 37.77 5,494 

6 73 4,438 1,536 60.81 21.34 5,974 

7 89 4,498 1,762 50.54 20.02 6,260 

8 111 4,566 1,923 41.14 17.32 6,489 

9 97 4,902 1,425 50.54 14.84 6,327 

10 113 4,441 1,737 39.31 15.51 6,178 

The parameters of the power law model are listed in Table 4-2 and the reliability plots of the 

machines are shown in Figure 4-1. 

The reliabilities of the drilling machines vary. For example, between 0 and 1,000 hours, the 

probability of fulfilling the intended functions of Machine 5 is only approximately 30%, whereas 

the probability for Machine 4 in same time range is approximately 70%.  

Once the reliability analysis and the reliability levels were obtained, drilling length was calculated 

for each drilling machine based on reliability levels by regression analysis (Eq. 4-23). 

𝑦𝑛 = 5.2764 ×  𝑒0.0011(𝑥[𝑛−(𝑛−20)]) (4-23) 
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where yn is the time required to drill for given length (min) and x is the starting point length of the 

drilling with same drill-bit n is the length increment (m) and 20 is the length of the drill hole. To 

make a meaningful comparison, the same length for each equipment was used. As can be seen 

from Figure 1, all equipment reliabilities after 1,400 hours are less than 60%: lower limit of the 

effective working range. Therefore, the drilling length was calculated for 1,400 hours of operation.  

Table 4-2: Parameters of the power law model for each of ten rotary drilling machines 

Machine 
Power Law Parameters 

β λ 

1 1.1412 0.00036 

2 1.1941 0.00019 

3 1.0993 0.00024 

4 1.1274 0.00015 

5 1.1924 0.00031 

6 1.1763 0.00019 

7 1.0988 0.00037 

8 1.1809 0.00031 

9 1.0578 0.00028 

10 1.0437 0.00049 

 

Eq. 20 shows the relationship between drilling time and drilling length when the variables of the 

drilling machine (i.e. rotation speed (rev/min), pulldown force (MPa) and bailing air pressure 

(MPa) are constant as 80, 150, and 1.6, respectively (standard drilling operation application based 

on the rock characteristics according to manufacturer’s recommendation). 
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Figure 4-1: Reliability plots of the rotary drilling machines 

For simplicity, the drilling length (20 m) was converted to the number of drill holes using JMP© 

Statistical Software to plots the relationship between reliability and drilling performance by linear 

regression analysis (Eq. 4-24, Table 4-3). 

𝑛𝑜ℎ =  −934.1 + (2,663.7 × 𝑟) (4-24) 

where noh is the number of drillable holes and r is the reliability level. 
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Table 4-3: Linear regression output to estimate the number of drill holes from drilling length 

Term Estimated Value p-Value R2 

Intercept -934.1 0.0003 
0.76 

Reliability 2,663.7 <0.0001 

There is a direct association between a number of drillable holes and reliability, which is a criterion 

of drilling performance. 

4.4.2 Markov Chain (MC)  

The number of the available drilling machines and the number of drillable holes can be generated 

by MC and simulated by MCMC. There are two possible conditions for a machine: in operation 

(1) or under repair (0). Hence, for ten drilling machines, there are 1,024 (210) possible states 

(summarized in Table 4-4). 

Table 4-4: Possible states for ten drilling machines 

Possible States 
Drilling Machines 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 0 0 0 0 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

1,022 1 1 1 1 1 1 1 1 0 1 

1,023 1 1 1 1 1 1 1 1 1 0 

1,024 1 1 1 1 1 1 1 1 1 1 
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The initial probability matrix of each equipment’s condition was calculated by Reliasoft© RGA 

software based on equipment reliability data. The probability of failure and probability of repair 

were obtained for ten hours of operation, which is one shift (Table 4-5). 

Table 4-5: The probability (%) of changing conditions for all drilling machines 

Machine 

1 → 0 1 → 1 0 → 1 0 → 0 

Probabilit

y of 

Failure 

Probability of 

Not Failure 

Probability of 

Repaired 

Probability of 

Not Repaired 

1 2.55 97.45 0.90 99.10 

2 0.11 99.89 2.33 97.67 

3 0.29 99.71 1.58 98.42 

4 2.64 97.36 3.93 96.07 

5 0.04 99.96 0.03 99.97 

6 1.48 98.53 0.45 99.55 

7 1.56 98.44 0.90 99.10 

8 1.67 98.33 4.04 95.96 

9 0.94 99.06 0.72 99.28 

10 0.51 99.49 4.74 95.26 

 If Machine 1 is working, the probability of being under repair is 2.55%, and the probability of 

being in operation is 97.45% after one shift. On the other hand, if Machine 1 is under repair, the 

probability of being in operation is 0.90% and the probability of staying under the repair condition 

is 99.10%. 

The initial probability matrix shows the probability of transitioning between stages on shift. 

Transitioning probability from one stage to another was calculated based on the condition changing 

probabilities (Table 4-5) and ModelRisk© software was used to obtain transitioning probabilities 

at different shifts. One step transition matrix (1024 x 1024) based on the initial probability matrix 
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is summarized in Table 4-6. The number of available drilling machines is calculated for each state, 

and the states are grouped based on the number of available machines. 

Table 4-6: Initial transition matrix (%) 

State 0 1 2 3 4 5 6 7 8 9 10 

0 81.90 16.63 1.40 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 0.99 82.76 15.08 1.13 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.01 1.99 83.58 13.51 0.88 0.03 0.00 0.00 0.00 0.00 0.00 

3 0.00 0.03 3.02 84.36 11.90 0.67 0.02 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.07 4.06 85.11 10.27 0.48 0.01 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.11 5.12 85.82 8.62 0.32 0.01 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.17 6.20 86.49 6.94 0.19 0.00 0.00 

7 0.00 0.00 0.00 0.00 0.00 0.24 7.29 87.13 5.24 0.10 0.00 

8 0.00 0.00 0.00 0.00 0.00 0.01 0.33 8.40 87.72 3.51 0.03 

9 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.43 9.52 88.27 1.77 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.54 10.66 88.78 

As an example, if any four drilling machines are in operation, the probability that any five drilling 

machines will be in operation after one shift (10 hours operation) is 10.27%. On the other hand, 

the probability that any three drilling machines will be in operation is 4.06%, and the probability 

that the same number of equipment will stay in operation is 85.11%. It should be noted that the 

0.00% probability in the matrices represents small but non-zero probabilities.   

After a specified time, the system will reach the steady-state level where the transitioning 

probabilities do not change in time and the states are constant. The steady-state matrix was 

calculated by ModelRisk© software and summarized in Table 4-7. 
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Table 4-7: Steady state matrix (%) 

State 0 1 2 3 4 5 6 7 8 9 10 

0 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

1 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

2 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

3 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

4 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

5 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

6 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

7 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

8 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

9 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

10 0.00 0.04 0.55 3.69 12.86 25.11 28.75 19.55 7.70 1.61 0.14 

When the steady state matrix is calculated, the number of available drilling machines can be 

simulated for future shifts. Table 4-8 shows the probabilities of having available drilling machines. 

The initial matrix helps generate the number of available drilling machines for the next shift. On 

the other hand, the steady-state matrix helps generate the number of available machines for future 

shifts when the system reaches the steady-state. 

At steady state, the probability of having five drilling machine working is 25.11% and the 

probability of having six drilling machine working is 28.75%. 
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Table 4-8: The probability of having available drilling machines 

No. Machines in Operation Probability (%) 

0 0.00 

1 0.04 

2 0.55 

3 3.69 

4 12.86 

5 25.11 

6 28.75 

7 19.55 

8 7.70 

9 1.61 

10 0.14 

As mentioned above, reliability data were used to create the initial matrix to implement MC. This 

process shows that each drilling machine is unique. Even if all equipment is brand-new at the 

beginning of the operation, the reliabilities and available cannot be same over time due to various 

factors such as geological heterogeneity, human factors, quality of maintenance and random 

events. Besides, mining operations use typically varying equipment ages. Therefore, equipment 

performance is different at a given time point. The probabilities of having available drilling 

machines will be different as shown in Table 4-9. 
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Table 4-9: Probability of having available drilling machines when machines are assumed identical 

No. Machines in Operation Probability (%) 

0 0.01 

1 0.09 

2 0.68 

3 3.04 

4 8.90 

5 17.85 

6 24.81 

7 23.60 

8 14.70 

9 5.42 

10 0.90 

Tables 4-8 and 4-9 show that, particularly for long-term plans, it can be misleading to assume that 

all machines are identical. Therefore, reliability analysis of each machine is necessary to obtain 

accurate results. 

4.4.3 Markov Chain Monte Carlo Simulation (MCMC) 

The number of available drilling machines for different shifts was generated by MCMC using 

ModelRisk© software based on the initial matrix and start vector, which is the initial state where 

eight of the ten drilling machines are available. The estimation facilitates visualizing the variation 

in a number of available drilling machines between shifts. Multiple scenarios were generated by 

replicating MCMC. Figure 4-2 demonstrates possible outcomes of uncertainties for 4 of 100 

randomly generated scenarios of available drilling machines. Because of seasonal effects, 90 

consecutive days (180 shifts) were simulated (To eliminate seasonal effects such as thermic wear 
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in summer time and drilling of the frozen rock formation in winter time, the datasets were chosen 

in dry spring time operations). Over time, similar results were obtained by different simulations. 

 

Figure 4-2: Number of available drilling machines simulated by MCMC 

The general trend falls between 5 and 8 available drilling machines. The degradation trend is 

evident, as expected.  

Once 100 scenarios were generated, the number of drillable holes was calculated for 180 shifts. 

The parameters of the drilling machine (rotation speed, pulldown force, and bailing air pressure 

were set at 80 in rpm, 150 MPa, and 1.6 MPa, respectively. It was assumed that drill bits are 

changed for every 1,400 m (70 holes), which is the level of effective drilling. Results are illustrated 

in Figure 4-3. 
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Figure 4-3: Number of drillable holes simulated by MCMC for 180 shifts 

4.4.4 Mean-Reverting (MR) Simulation 

In the same manner, the number of available drilling machines was simulated by MR using 

Microsoft Excel©. The parameters of the simulation calculated from historical data are presented 

in Table 4-10. 

Table 4-10: Parameters of MR simulation (see Eq. 4-23) 

Parameters  Value 

Number of Available Machines at Initial Time (X0) 8 

Speed (κ) 108 

Long-term mean (θ) 6.6 

Volatility (σ) 6 

Multiple scenarios were generated by the MR process and 100 randomly generated simulations 

were obtained for 180 shifts. The four simulations that exemplify the uncertainties (Figure 4-4) 

show that the available number of drilling machines fluctuates between 4 and 8 for most of the 

shifts, similar to the MCMC results. 
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Figure 4-4: Number of available drilling machines simulated by MR for 180 shifts 

The number of drillable holes was also calculated for the same drilling circumstances (Figure 4-

5). 

 

Figure 4-5: The number of drillable holes simulated by MR for 180 shifts 
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The comparison between MCMC and MR is presented in Table 4-11. The results show that their 

means are almost same but MCMC has a lower standard deviation than MR. 

Table 4-11: The comparison between MCMC and MR   

Number of Drillable Holes 

Parameter MCMC MR 

Mean 59,325 59,235 

Standard Deviation 778 966 

According to the MCMC simulation, the probability that the number of drillable holes is likely to 

be between 59,000 and 61,000 is 94% (Figure 4-4). MR results show 87% probability that the 

number of drillable holes is between the same range (Figure 4-6). There is a 7% difference between 

the two methods to create a production schedule. There will be around 3% deviation according to 

the given interval (2,000 out of around 60,000 holes). Given the nature of a mining operation, this 

is quite acceptable to install production capacity.  

To validate the approach, the simulation results and actual realizations are compared. In actual 

application, the number of drilled holes was 60,391. As can be seen, this result is within the range 

obtained by simulations. Therefore, as long as there will not be a significant change in rock 

characteristics, the rest of the operation can be designed with respect to simulation results. 

4.5 CONCLUSION 

This chapter presents an approach based on a combination of reliability analysis, MC theory, and 

MR to simulate the number of available drilling machines and the number of drillable holes for a 

given probability level. Using simulation results, a range of production rates can be generated for 

a pre-specified probability. First, the power law model was applied to time-between-failure data 

to determine β and λ parameters. Then, a reliability analysis was conducted to characterize the 
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behavior of drilling machines. Finally, the number of available machines was simulated by the 

MCMC technique based on reliability analysis and the MR process using historical data. The 

results of the MCMC simulation indicated a more than 80% probability that five to eight drilling 

machines will be available for every 10 hour-period (one shift). Using these processes will 

facilitate more accurate decision-making for production scheduling and risk management. It can 

be seen from the results of the number of drillable holes that there will be approximately only 3% 

deviation to plan drilling schedule by using both MCMC and MR process.  

Also, the association between drilling machine reliability level and performance was quantified 

for ten drilling machines. The direct relationship between reliability and performance was 

demonstrated by regression analysis. The comparison of the reliability of similar drilling machines 

was illustrated by statistical analysis.       

The chapter also discusses the assumption that all machines have identical reliability. The MC 

results showed that this assumption could be misleading if long-term plans are considered. In this 

way, the necessity of implementing the reliability analysis for decision-making mechanism and 

risk management were shown. 

4.6 Chapter Conclusion 

The effect of equipment condition on the performance was investigated in this chapter. The method 

which can be used as a tool to forecast the number of available drilling machines for long-term 

operations was also proposed. It is important to note that the results obtained from the simulations 

are site-specific. The research outcomes cannot be generalized. For different mines, the 

methodology should be repeated. To be able to have an accurate production plan, asset 

management has a crucial impact. In terms of drilling, bits are one of the main components of the 
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system. Exploring the optimum replacement time of the bits is the main concern for cost 

optimization. In the next chapter, unlike Chapter 3, bit wear will be also formulated as a parameter 

of drilling operation considering time series datasets. Physical drilling activities will be modeled 

by discrete event simulation, and the number of required drill bits and drillable holes will be 

calculated accordingly. The effect of reliability on drilling operation will also be investigated.    
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CHAPTER 5 

5. MANAGEMENT OF DRILLING OPERATIONS IN SURFACE MINES USING 

RELIABILITY ANALYSIS AND DISCRETE EVENT SIMULATION  

5.1 Abstract 

Low commodity prices have forced many mining companies to explore strategies to minimize 

operating costs. One cost-saving strategy is to increase drilling efficiency and performance, 

specifically in open pit mines; drilling operations are expensive, and they, directly and indirectly, 

affect most aspects of the mining process. A substantial portion of drilling costs is associated with 

drill bit consumption due to bit wear. Bit wear decreases the rate of penetration, which reduces 

drilling efficiency, but changing the bit too early unnecessarily increases drilling costs. In addition 

to this decision-making dilemma, the inventory management strategy is also crucial to cost 

minimization. Reliability analysis is an effective method to monitor the efficiency and 

performance of mining equipment and ensure that performance goals and quality criteria are met. 

In this chapter, reliability analysis of drilling machines and drill bits was performed and the 

relationship between reliability and machine performance was established. Moreover, the optimum 

drill bit change time was determined with discrete event simulation for a range of drill bits based 

on historical data. The range of drillable holes was also determined. Results of 100 simulations 

showed that the proposed approach can be an effective tool to facilitate production scheduling and 

asset management. 

5.2 Introduction  

Drilling is a primary operation in open-pit mining and unexpected drilling equipment failure has a 

serious impact on the production schedule: it causes delays in blasting operations and affects the 

entire production process. Mismanagement of equipment can result in production target shortages 
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and unfulfilled sales agreements [90]. One solution to production losses associated with equipment 

failure is to create inventory stockpiles, but this approach can lead to a stock surplus, high storage 

costs and possible opportunity costs [91]. Therefore, asset management plays a key role in mining 

operation performance. 

The immediate engineering problem is to determine the drilling equipment required to manage 

production plans. Data regarding equipment reliability and availability are needed because the 

overall system performance directly depends on the performance of the individual system 

components [92]. Reliability is defined as the probability that a system will perform required 

functions over a given period without any failures. In other words, it is the probability of a non-

breakdown shift. Equipment reliability can be used as a key metric of the success of a system 

during its operational lifetime [66]. Reliability is closely related to the quality of the product. It 

also depends on external factors such as operational performance and the maintenance action [65]. 

Although it is impossible to have a priori knowledge of the exact time of failure of a machine, it 

is generally possible to obtain information about the possibility of a replacement being required at 

any particular time [93]. 

Reliability analysis is the most effective method to determine the condition of the system 

components. If equipment reliability and availability are modeled appropriately, the production 

schedule will be more realistic. Reliability analysis is a modeling tool that can help to forecast the 

future evolution of failure of system components and thus prevent unwanted stoppages. It indicates 

the probability that a system can fulfill the intended functions [68]. Hence, there is a direct 

relationship between system reliability and system performance: a system that has a high reliability 

will perform at a higher level. Therefore, analysis of drilling system reliability and the number of 

available assets is essential to sustain a mining operation.  
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Drilling machines are examples of “repairable systems”; they can be restored after equipment 

failure for satisfactory operation without replacing the entire system [67]. Historical data regarding 

the time periods between failures and the number of failures at a particular time is needed to 

analyze system reliability [68]. The power law technique is used to model system intensity function 

for particularly complex repairable systems such as drilling machines, trucks and loaders [94]. 

Drill bits are “non-repairable”. When a non-repairable system fails, it cannot be repaired due to 

economic, logistic or practical reasons. The times between failures are assumed to be independent 

and identically distributed (i.i.d.). The renewal process can be employed to calculate the number 

of failures in a specific period [93].  

Drilling machine performance is measured by the rate of penetration (ROP)—the distance the bit 

enters into the rock per unit time. Bit wear decreases the ROP and is affected by both 

uncontrollable and controllable factors. Uncontrollable factors include the physical and 

mechanical properties of the rock formation (e.g., hardness, uniaxial compressive strength, mineral 

composition, quartz content, structure, and binding properties) [95-97]. The relationship between 

these factors and the ROP is non-linear and complex. Factors that can be controlled by the drilling 

machine operator (also called operational parameters) are revolutions per minute (RPM), weight 

on the bit or pull-down force (WOB) and bailing air pressure (BAP) [18].  

During most field operations, the decision to change the drill bit is based on operator experience; 

the drill bit is changed when the operator observes high vibration. In addition, in some applications, 

the operator let the bit drop into a hole and this may cause some issues such as safety problems in 

blasting and failures in crushers. An alternative is to monitor and optimize drilling parameters and 

then use statistical methods to determine drill bit replacement time. Recent advances in simulation 

technology have made it possible to model the production schedule and management of open pit 
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mines [40]. Discrete event simulation (DES) can be used to deal with the high uncertainty and 

variability of the mining environment to generate probable images of the future [98]. This 

stochastic mathematical modeling technique can simulate physical activities for discrete and 

probabilistic circumstances [34]. DES assigns the behavior of compound and complex systems as 

a discrete sequence of time-ordered events. It is commonly used to monitor and predict the 

behavior and the performance of the system with a trial and error approach as a dynamic simulation 

technique [36]. Furthermore, DES can combine system variability with probability distributions to 

model the system variables with uncertainty and risk [37]. Therefore, the complexities and 

interdependencies of components can be accommodated for a system. Botín, Campbell [36] used 

DES to minimize the highest risk parameters in a block caving project. Yuriy and Vayenas [37] 

analyzed maintenance actions of mining operations using DES. Ozdemir and Kumral [99] 

developed a DES model to evaluate the feasibility of a mining plan under an uncertain operating 

environment. 

The present study uses DES to simulate drilling activity in order to estimate the probable number 

of required drill bits and drillable holes. The uncontrollable factors listed above that affect the ROP 

make it challenging to develop a model to predict ROP [42]. Thus, rock characteristics were 

assumed to be homogeneous for a given bench. In addition, given that laboratory experiments in a 

controlled environment may neglect important factors operating in a field environment [42], 

multiple regression, time-series regression, and reliability analyses were performed on field data 

collected over a year period by measurement while drilling (MWD) systems. MWD is widely used 

in the mining industry as a drill monitoring technique. It provides wellbore position, drill bit 

information and operating parameters, as well as real-time drilling information for rock mass 

characterization, short- and long-term mine planning, blast design and optimization of 
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fragmentation [42]. The data collected include time, depth, feed force, RPM, ROP, rotation torque, 

air pressure, and vibration. 

Study objectives were to 1) determine the optimum drill bit replacement time based upon reliability 

analysis and representation of inventory management using historical data (with DES); and 2) 

calculate the range of drillable holes. Distribution parameters were calculated for each drilling 

machine and drill bit. Historical data were used to investigate the relationship between reliability 

level and machine performance. Furthermore, in order to obtain accurate results, drilling machines 

were assigned “machinery index” values according to their drilling performance using the equally 

weighted moving average method.  

The originality of this chapter rests upon (a) determining the number of drill bits required in a 

given period and (b) computing the number of holes to be drilled using these bits. Moreover, 

uncertainties (e.g., drill bit changing time, maintenance time and drilling time) associated with this 

process are assessed. 

5.3 Research Methods 

The research in this chapter has three stages: (i) reliability analysis of individual drilling machines 

and drill bits, (ii) using the reliability models derived in the previous stage to quantify wear rate 

and (iii) DES to compute probable realizations of total drill hole length in a given period. A power 

law model was fitted to drilling machines and the model parameters were calculated using 

ReliaSoft® software. Historical data collected by MWD systems were used to investigate the 

relationship between machine reliability and performance. The behavior of drill bits was modeled 

through a Weibull distribution using ReliaSoft® software. Bit wear was quantified by time series 

regression analysis of drill bit monitoring data and the optimum replacement strategy was 
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determined based on reliability analysis. Finally, the number of required drill bits and the range of 

drillable holes were simulated by DES (100 simulations in Arena® for each drilling machine) for 

trimester periods.  

5.3.1 Reliability Analysis 

Reliability analysis helps to deal with the uncertainty and to make an informed decision. The 

general expression for the function of reliability is given by Eq. 5-1 [65]. 

 𝑅(𝑡) = Pr{𝑇 ≥ 𝑡} (5-2) 

Where R(t) is the reliability at time t, T is the time to failure of the system or piece of equipment 

and R (t) ≥ 0, R (0) = 1. More information can be found in [68, 94, 100]. 

The failure rate can be defined as the probability of the incremental change in the number of 

failures per associated incremental change at any time t in the life of a system. Hazard rate refers 

to the rate of failure for an item at a given time t. The relationship between reliability (R), failure 

rate (f) and hazard rate (h) at time t is illustrated by Eq. 5-5-3 [66]. 

 𝑅(𝑡) =  
𝑓(𝑡)

ℎ(𝑡)
 (5-3) 

The Weibull distribution is commonly used to analyze and model reliability. It represents the i.i.d. 

life data of the system and is used to estimate parameters and fit the function closely with the data 

[93]. The Weibull distribution allows a decision maker to make reasonably accurate statistical 

predictions about a system’s life and estimate significant characteristics of the system (e.g., 

reliability, failure rate and mean lifetime) with a small sample size. It also can provide quantitative 

information for qualitative decision making because it is very versatile, being capable of modeling 

both symmetric and skewed data. Therefore, the Weibull distribution is one of the easiest 
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distributions to implement and interpret [93]. The three defining parameters of the Weibull 

distribution are the shape parameter (β), also known as the Weibull slope, scale parameter (η) and 

location parameter (γ), also known as shift parameter. The shape of the distribution is controlled 

primarily by β when η and γ are constant; η stretches or shrinks the distribution and γ shifts the 

distribution in time. Sometimes γ is set to zero (2-parameter Weibull distribution) [101]. The 

reliability function, failure rate function and hazard rate function for the 2-parameter Weibull 

distribution are given by Eq. 5-3, 5-4 and 5-5, respectively [93].  

 𝑅(𝑡) =  𝑒
−(

𝑡
η
)𝛽

 (5-4) 

 𝑓(𝑡) =  
𝛽

𝜂
 (

𝑡

𝜂
)

𝛽−1

𝑒
[−(

𝑡
𝜂
)
𝛽
]
 (5-5) 

 ℎ(𝑡) =  
𝛽

𝜂
 (

𝑡

𝜂
)

𝛽−1

 (5-6) 

Historical data were collected from ten rotary drilling machines working at an open pit mine over 

a year period. The time between failures, the time under repair and the drilling length were 

recorded for each machine. Reliability analysis followed the power law technique and the 

parameters were determined by ReliaSoft® software. 

Four drilling machines (from low to high reliability: Machines A, B, C, and D) were selected based 

on reliability analysis to investigate the effect of reliability on drilling performance. Multiple 

regression and time series regression methods were selected to describe the relationship between 

reliability and drilling performance, due to complex interactions between several independent 

variables and drilling operations. To simplify the analysis, the degradation of a drill bit was 

assumed to be linear. The drilling time at each hole was selected as a measure of drilling 
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performance (dependent variable) and the operating parameters RPM, WOB and BAP were 

independent variables. To quantify drill bit wear, the number of drillable holes was added to the 

time series regression equation as an independent variable because data were collected over time. 

Regression analysis was conducted with SPSS® software. 

The equally weighted moving average method was used to compare the performance of the drilling 

machines based on the time series data. This method is suitable only when the data have random 

variation [102]. It is generally used to determine seasonal effects in sales estimation for short-term 

forecasting; in this case, the drilling machines can be considered seasons and the number of drilled 

holes can be considered a number of sales. Therefore, the machine performance based on reliability 

level at a particular time can be indexed to forecast more accurate results. Eq. 5-6 shows the 

calculation of centered average values [102]: 

 

𝑥1 + 𝑥2+ . . . + 𝑥𝑠

𝑠
 =  𝑥̅𝑠+1

2
 

𝑥2 + 𝑥3+ . . . + 𝑥𝑠+1

𝑠
 =  𝑥̅𝑠+1

2
+1

 

. 

. 

. 

𝑥𝑁−𝑠+1 + 𝑥𝑁−𝑠+2+ . . . + 𝑥𝑁

𝑠
 =  𝑥̅

𝑁−
𝑠+1
2

+1
 

(5-7) 

where s is the number of the grouped values, and N is the total number of values. Then, the real 

value is divided by the centered average to calculate the percentage of average value. The average 

of the percentage of average values is calculated to assign an index of the drilling machine. The 
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index of each machine can be called as Machinery Index.  A relatively low machinery index 

indicates relatively less drilling time. 

5.3.2 Drill bit Replacement Strategy  

In previous studies, the optimum drill bit replacement time was estimated by deterministic 

methods, and replacement time was set at fixed time intervals. However, this approach is 

unrealistic given the uncertainties in material properties and geology noted above. Failure models 

such as reliability, failure rate, and hazard rate significantly affect optimal replacement policy 

[103]. Unlike previous studies, the optimum replacement time of the inventories was determined 

based on the failure time distribution of the component.     

5.3.3 Discrete Event Simulation (DES) 

Mining activities consist of a discrete sequence of events can be considered a non-Markovian 

process in which each event depends on the previous state. Therefore, dynamic simulation 

techniques based upon the Monte Carlo method can be used to model mining events [72]. The 

Monte Carlo method determines the impact of potential risks and investigates the behavior of 

complex systems. Random sampling is performed for different tasks to generate a range of possible 

outcomes by running simulations [104]. 

The detailed discrete-event system is illustrated in Figure 5-1. When a drilling machine arrives at 

a bench, the initial bit changing time is generated from a probability distribution formed by 

historical events. Then, machine reliability is checked based on historical failure time data to 

decide the necessity of maintenance activity. If the reliability is less than 40% at a given time 

interval, maintenance is required. The drilling machine is sent to a maintenance facility and a 

maintenance delay is applied based on the distribution modeled by the historical data. If 
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maintenance is not required, drill bit reliability is controlled based on historical failure time data 

to decide whether drill bit replacement is required. When the bit needs to be changed, it is recorded, 

and a new changing time is generated based on the distribution. Subsequently, moving and leveling 

time are assigned based on historical data. The drilling time is calculated based on regression 

analysis and the machinery index. Once a hole is drilled, it is recorded, and the system goes back 

to the state where the mechanical reliability is checked for drilling another hole. This cycle 

continues until the end of the simulation for all machines. The stopping criteria are assigned as the 

drilling time interval: trimester periods. 

The DES simulation of a number of required drill bits and number of drillable holes for trimesters 

were based on the reliability, regression analyses and the results of the equally weighted moving 

average method. Maintenance requirement and drill bit changing time were determined by 

reliability analysis and failure distributions. The parameters of the distributions of the power-law 

model and the machinery index were used to identify the performance differences between drilling 

machines to optimize simulation results. Moreover, the drilling time was calculated using the 

results of the multiple regression analysis and the drill bit changing time was determined by fitting 

a distribution. Finally, multiple scenarios were generated for each drilling machines. To eliminate 

the seasonal effect on drilling operation, 90 consecutive days (180 shifts) were simulated. 
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Figure 5-1: DES model of the drilling operation 
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5.4 Field Data Analysis 

The data were collected from the sensors installed in the drilling machines used in a Canadian 

mining operation. Drilling time was recorded for each drill hole for every time interval and 

operational parameters were collected by MWD sensors which were placed on the drill rigs. The 

production performance (evolution of drilling time) of four drilling machines on four benches 

shows that as the drill bit wear increased, drilling time increased (Figure 5-2). The minimum time 

spent to drill a hole was 10 min and the maximum was 59 min. The broad range can be explained 

by bit deterioration. Sharp drops in drilling time indicate that the drill bit was replaced (green 

arrows in Figure 5-2) and suggested that the ROP is a reliable indicator of the optimum drill bit 

changing time. 

  

  

Figure 5-2: Drilling time on four benches for four drilling machines (arrows indicate bit 

replacement) 
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The moving time followed triangle distribution (1.5, 2.0 and 2.5 min), and the leveling time was 

2.48 ± 0.84 min (± standard deviation) and followed a lognormal distribution.  

Figure 5-3 shows the replacement time for 495 drill bits from the four drilling machines. The bit 

life ranged from 20 to over 60 h (because of the uncontrollable factors listed above) and follows a 

Weibull distribution. The mean bit life (± standard deviation) was 38±13 h for Machines A and B 

(85% confidence interval = 35–55 h) and 40±11 h for Machines C and D (85% CI = 40–60).  

  

  

Figure 5-3: Histogram of time to failure for 495 drill bits of four drilling machines  

Due to the complex interaction between several independent variables and drilling operation, 

multiple regression and time series regression methods were selected to build prediction models. 

To make the analysis simpler, the degradation of a drill bit is assumed as linear while determining 

the coefficients of independent variables. 
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5.5 Case Study 

In this study, historical data were collected from ten rotary drilling machines working at an open 

pit mine over a year period. The time between failures, the time under repair and the drilling length 

were recorded for each machine. 

5.5.1 Reliability Analysis  

5.5.1.1 Reliability analysis of drilling machines and performance measurement 

The parameters of the power law model are listed in Table 5-1 and reliability plots of the machines 

are demonstrated in Figure 5-4. 

Table 5-1: Parameters of the power law model for each of ten rotary drilling machines  

Machine βp λp 

1 1.189 0.00045 

2 1.225 0.00031 

3 1.268 0.00019 

4 1.058 0.00143 

5 1.124 0.00063 

6 1.237 0.00031 

7 1.232 0.00023 

8 1.076 0.00109 

9 1.319 0.00011 

10 1.082 0.00087 
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Figure 5-4: Reliability plots of the rotary drilling machines  

Figure 5-4 shows that the reliabilities of the machines vary. For instance, between 0 and 900 hours, 

the probability to fulfill the intended operation of Machine 4 is only 14%, whereas the probability 

for Machine 9 is around 42% in the same range.  

Multiple regression models were constructed to predict drilling time (min) from RPM, WOB, and 

BAP for the four machines (Table 5-2). The p-value of the analysis was less than 0.0001 in all 

cases which shows that it is statistically significant. The length of each hole was 17 m. The 

unstandardized coefficient (Br) provides the average change of a dependent variable when an 

independent variable changes one unit. As expected, an inverse relationship was observed between 

drilling time and operational parameters. The standardized coefficient (βr), which compares the 
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relative importance of each independent variable in a regression model [105], shows that WOB 

had the greatest effect on drilling time in the long term. Approximately 40% of the variation of the 

drilling time (1–R2) cannot be explained by the operational parameters. Therefore, further analyses 

were required to explain the variation of drilling time. Drill bit wear must also be taken into 

account. 

Table 5-2: Regression analysis for operational parameters of four drilling machine 

Machine Parameter Br βr Sig. R2 p-value 

A 

Intercept 248.378   0.000 

0.669 0.000 
RPM –1.247 –0.320 0.000 

WOB –0.405 –0.464 0.000 

BAP –0.086 –0.206 0.000 

B 

Intercept 228.889   0.000 

0.607 0.000 
RPM –0.954 –0.255 0.000 

WOB –0.262 –0.494 0.000 

BAP –0.039 –0.108 0.042 

C 

Intercept 213.422   0.000 

0.615 0.000 
RPM –0.840 –0.251 0.001 

WOB –0.287 –0.449 0.000 

BAP –0.028 –0.092 0.047 

D 

Intercept 209.353   0.000 

0.637 0.000 
RPM –1.358 –0.314 0.000 

WOB –0.171 –0.419 0.000 

BAP –0.002 –0.007 0.009 

To understand the effect of bit wear and other parameters on the drilling operation, a detailed 

analysis was conducted with coded values ranging from –1 to +1 for 10 selected benches where 

drilling was begun with new bits. Multiple regression analyses were conducted on drill holes 1, 
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10, 20, 30 and 40 (Table 5-3). The βr values show that RPM was the most influential operational 

parameter, particularly when the bit was new. However, as the bits deteriorated, WOB became 

more important. In other words, when the bit is worn, the effects of RPM are not sufficient to 

maintain the desired ROP. Therefore, it is necessary to increase WOB to compensate. In addition, 

the R2 values decreased (residual errors increase) from hole 1 to 40 as a consequence of drill bit 

degradation. When a bit is worn, the impact of the controllable factors on the drilling operation 

decrease, and more parameters are needed to explain the variation in drilling time.  

To quantify the influence of bit wear, time series regression analysis was conducted on time series 

data sets with operational parameters. In time series regression analysis, data are exposed to log-

transformation to better capture seasonal effect  . A direct relationship existed between the number 

of drilled holes and drill bit wear (Table 5-4). Therefore, the number of drilled holes was added to 

the regression analyses to quantify bit wear (Table 5-5). The model in Table 4 is statistically 

insignificant (p > 0.05); therefore, a model without bit wear cannot represent the drilling operation. 

The regression model in Table 5 shows that bit wear was the most influential parameter for the 

drilling operation; 86% of the variation of drilling time could be explained by operational 

parameters and drill bit wear. 
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Table 5-3: Regression analysis on five drill holes in each of 10 benches 

Hole Parameter Br βr Sig. R2 p-value 

1 

Intercept 26.428  0.000 

0.913 0.013 
RPM –1.758 –0.714 0.038 

WOB –1.723 –0.569 0.045 

BAP –1.005 –0.520 0.039 

10 

Intercept 29.085  0.000 

0.860 0.030 
RPM –1.843 –0.430 0.018 

WOB –1.228 –0.415 0.046 

BAP –0.889 –0.320 0.041 

20 

Intercept 33.660  0.000 

0.825 0.036 
RPM –1.951 –0.453 0.035 

WOB –2.076 –0.395 0.023 

BAP –1.440 –0.334 0.042 

30 

Intercept 45.033  0.000 

0.807 0.039 
RPM –2.331 –0.496 0.019 

WOB –2.427 –0.601 0.016 

BAP –2.063 –0.458 0.034 

40 

Intercept 54.082  0.000 

0.751 0.044 
RPM –3.602 –0.570 0.008 

WOB –4.823 –0.763 0.002 

BAP –2.012 –0.332 0.040 
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Table 5-4: Time series regression without bit wear as a variable 

R 0.459   

R2  0.211 Regression Br p-value 

Adjusted R2 0.123 Intercept 3.531 0.000 

ANOVA df SS MS F Sig F RPM –0.085 0.102 

Regression 4 0.524 0.131 2.332 0.075 WOB –0.057 0.308 

Residual 35 1.968 0.056 
  

BAP –0.069 0.202 

Total 39 2.492 
   

  

Table 5-5: Time series regression with bit wear as a variable 

R 0.927 Regression Br p-value 

R2 0.862 Intercept 3.008 0.000 

Adjusted R2 0.839 Bit Wear 0.181 0.000 

ANOVA df SS MS F Sig F RPM –0.093 0.000 

Regression 5 2.143 0.429 41.702 0.000 WOB –0.064 0.010 

Residual 34 0.351 0.010     BAP –0.041 0.041 

Total 39 2.492             

The equally weighted moving average method was used to quantify the effect of reliability based 

on time series data. The drilling times for drill holes 10, 20, 30, and 40 were used to evaluate the 

performance of drilling machines. All machines started to drill with new bits and this application 

was replicated four times. Based on the machine performance, a machinery index was assigned to 

each drilling machine (Table 5-6). At a given time, the machine with a higher reliability level (D) 

spent less time drilling a hole than the one with a lower reliability level, as indicated by mean 

machine index. Therefore, there was a direct relationship between reliability and machine 

performance; the machinery index can be used to forecast more accurate results when the drilling 
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time is calculated from a regression equation. Note: The drilling time calculated from multiple 

regression can be multiplied by the machinery index to account for performance differences 

between machines. 

Table 5-6: Machinery Index 

Holes 
Machines 

A B C D 

10.   0.962 0.992 

20. 1.012 1.025 1.019 0.942 

30. 1.027 1.008 0.989 0.968 

40. 1.017 1.017   

Mean 1.019 1.017 0.990 0.967 

Adjustment Factor 1.001 

Machinery Index 1.021 1.019 0.992 0.969 

5.5.1.2 Reliability analysis of drill bits 

The results above show no trend in the failure data of each machine’s drill bits. Therefore, the 

renewal process was applied to these i.i.d. data using ReliaSoft® software. Goodness-of-fit tests 

showed that the best fit distribution is the 2-parameter Weibull distribution (Table 5-7). Reliability 

plots of the drill bits of the four machines were similar (Figure 5-5). However, the condition of the 

machine had a slight impact on drill bit performance, according to reliability analysis.  

Table 5-7: Parameters of the Weibull model for each drilling machine’s drill bits 

Machine 
Shape 

Parameter (Βw) 

Scale 

Parameter (ηw) 

A 3.266 41.962 

B 3.738 41.532 

C 4.166 43.692 

D 4.161 44.078 
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Figure 5-5: Reliability plots of the drill bits 

Table 5-8 shows the results of failure density, hazard rate and reliability analysis for drill bits used 

by the four drilling machines for 10 h intervals.  
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Table 5-8: The results of failure models for drill bits for 10 hours intervals 

Machine 
 Hours 

Model 10 20 30 40 50 60 

A 

Failure Density 0.073 0.195 0.333 0.244 0.098 0.057 

Hazard Rate 0.073 0.211 0.456 0.612 0.632 1.000 

Reliability 1.000 0.927 0.732 0.398 0.154 0.057 

B 

Failure Density 0.038 0.195 0.406 0.226 0.083 0.053 

Hazard Rate 0.038 0.203 0.529 0.625 0.611 1.000 

Reliability 1.000 0.962 0.767 0.361 0.135 0.053 

C 

Failure Density 0.051 0.102 0.364 0.339 0.119 0.025 

Hazard Rate 0.051 0.107 0.430 0.702 0.824 1.000 

Reliability 1.000 0.949 0.847 0.483 0.144 0.025 

D 

Failure Density 0.050 0.124 0.314 0.347 0.124 0.041 

Hazard Rate 0.050 0.130 0.380 0.677 0.750 1.000 

Reliability 1.000 0.950 0.826 0.512 0.165 0.041 

5.5.2 Appropriate Replacement Time 

The optimum replacement times were fitted to a lognormal distribution (39.86 ± 9.90 h) by 

ModelRisk® software. The probabilities of optimum replacement times of drill bits are shown in 

Table 5-9. 

Table 5-9: Probabilities of optimum replacement times 

Replacement time (h) Probability 

< 25.86 0.05 

25.86 – 49.85 0.90 

49.85 < 0.05 
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5.5.3 DES Results 

Figure 5-6 demonstrates possible outcomes of drill bit usage for 100 randomly generated scenarios 

of four drilling machines. The probability that the number of used drill bits is between 44 and 48 

is approximately 90% for Machines C and D, 60% for Machine A and 50% for Machine B. 

  

  

Figure 5-6: Simulation results – The number of drill bits for each machine 

Once 100 scenarios were generated, the number of drill holes that can be drilled was also calculated 

for 180 shifts. The probability that the number of drillable holes is between 2,400 and 2,450 is 

75% for Machines C and D (Figure 5-7). However, this probability is lower for Machines A and 

B (50%). The main reason for this significant difference is machine condition. Operator experience 

should also be taken into consideration.   
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Figure 5-7: Simulation results – The number of drill holes for each machine 

5.6 Conclusion 

This part of the thesis presents an approach for managing bench drilling operations based on a 

combination of data analysis, reliability analysis, the equally weighted moving average technique, 

and DES to simulate the number of drill bits and the number of drillable holes for a given period. 

Parameters affecting drill bit performance and the behavior of drilling operation from the first drill 

hole to the end of the drill bit life were determined. First, the effects of operational parameters 

were analyzed by multiple regression analysis and found to be insufficient to account for the 

variation in drilling time. Second, multiple regression analysis was conducted on specific drill 

holes with a new bit to understand the influence of bit wear. Finally, bit wear was quantified by a 

new regression model. The results are consistent with our previous studies  [94, 106-108], but 

differ in that time series datasets were also analyzed for the long term. These results showed that 
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the effects of the operational parameters changed with time because of bit deterioration; the 

changes can be used to indicate drill bit changing time.  

The number of drill bits and a number of drillable holes were simulated by DES based on reliability 

analysis, regression analysis, and historical data. The simulations indicated the probability that the 

number of drill bits was 46–50 is 80% for each drilling machine for three months operation. 

However, the number of drillable holes varied depending on the machine performance. The 

proposed approach highly depends on the type of equipment and the operation.  

This chapter also quantified the relationship between reliability and machine performance. A direct 

relationship was demonstrated with the equally weighted moving average method. This made it 

possible to compare the performance of drilling machines.   

5.7 Chapter Conclusion 

Bit wear was quantified as a parameter of drilling operation considering time series datasets. Then, 

it was added to the regression analysis as an independent variable in order to calculate the number 

of required drill bits and drillable holes through modeling drilling operation phases. The effect of 

reliability, as a parameter, on drilling operation was also investigated in this chapter. All the results 

obtained are case specific and the proposed models can be seen as a continuous improvement tool. 

In the next chapter, replacement costs will be incorporated into the research to quantify the effect 

of maintenance costs on optimum drill bit replacement time. The drill bit replacement time will be 

optimized considering replacement cost. The relationship between the total expected replacement 

cost and replacement time will also be investigated.  
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CHAPTER 6 

6. OPTIMIZATION OF DRILL BIT REPLACEMENT TIME IN OPEN-CAST COAL 

MINES 

6.1 Abstract 

To gain a competitive edge within the international and competitive setting of coal markets, coal 

producers must find new ways of reducing costs. Increasing bench drilling efficiency and 

performance in open-cast coal mines has the potential to generate savings. Specifically, 

monitoring, analyzing, and optimizing the drilling operation can reduce drilling costs. For 

example, determining the optimal drill bit replacement time will help to achieve the desired 

penetration rate. This chapter presents a life data analysis of drill bits to fit a statistical distribution 

using failure records. These results are then used to formulate a cost minimization problem to 

estimate the drill bit replacement time using the evolutionary algorithm. The effect of cost on the 

uncertainty associated with replacement time is assessed through Monte-Carlo simulation. The 

relationship between the total expected replacement cost and replacement time is also presented. 

A case study shows that the proposed approach can be used to assist with designing a drill bit 

replacement schedule and minimize costs in open-cast coal mines. 

6.2 Introduction 

During open-cast coal mining, several benches must be created in both the overburden strata and 

the coal seam. A drilling operation is required where the overburden is hard. As a primary 

operation, drilling affects both the production and overall operating costs [109]. The efficiency of 

the drilling operation depends primarily on energy consumption and on the drill bit life [2] because 

a worn bit significantly decreases the rate of penetration (ROP). The driver of drill bit consumption 

is wear due to the interaction between the bit and the rock. Given that the bit cost is considered the 
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most expensive part of a drilling operation, accounting for approximately 21% of total operating 

costs [48], it is vital to determine the ideal time to replace drill bits.   

In current practice, a bit is replaced either when it drops into a drill hole during the operation, or 

the operator determines it is worn based on professional judgment (e.g., high vibration can indicate 

a worn drill bit). In the latter case, the bit might be changed before its beneficial life has expired, 

which increases drilling costs unnecessarily. On the other hand, waiting to replace a bit until it is 

worn negatively affects the production rate. Although operator experience clearly plays an 

important role in drilling operations, a more objective approach to support bit replacement 

decisions is to monitor and analyze life datasets and use cost minimization methods [110].  

The optimum replacement interval is the time period when the total operating cost is at its lowest 

[93]. Various researchers have developed strategies such as corrective and predictive maintenance 

[111] to determine optimal maintenance and replacement intervals [112]. According to Tsang 

[111], the high cost of maintenance activities is due to 1) unscheduled events that stop ongoing 

operations and increase total downtime, thus delaying production targets and increasing labor 

costs; and 2) unexpected failures that may damage other parts of the system and result in health 

and safety problems. Critical to the development of a replacement policy is determining the 

optimum replacement interval to maximize the production rate, avoid unexpected failures, and 

minimize operation costs [93]. 

Weibull analysis is a commonly used failure analysis technique because it has the ability to forecast 

with small samples numbers and the flexibility to represent most of the failure cases (i.e., it is 

capable of modeling both symmetrical and skewed datasets). It can also provide accurate statistical 

predictions about characteristics of the system (reliability, failure rate, hazard rate, and mean 



97 

 

lifetime) and help decision-makers formulate reasonable predictions about the system [93]. Thus, 

Weibull analysis is extremely useful for planning maintenance schedules. 

Most research on bit replacement strategies has focused on two factors: bit age (reliability) and 

ROP (production efficiency). For example, Godoy, Pascual [113] modeled replacement strategy 

based on condition-based reliability. Hatherly, Leung [21] suggested using measurement while 

drilling (MWD) systems to monitor bit wear. Li and Tso [114] proposed a method to determine 

tool replacement time based on measurable signals such as cutting speed and feed rate. Tail, 

Yacout [48] proposed a fixed reliability threshold to determine replacement time. Ghosh, 

Schunnesson [42] and Karpuz [2] used ROP as an indicator of drill bit replacement time, whereas 

Bilgin, Copur [6] used rock condition as the indicator. 

Unlike previous studies, optimal drill bit replacement time is calculated in this chapter based on 

the minimization model of total expected replacement cost per unit time by the evolutionary 

algorithm (EA). The outcomes of the study are tested by Monte Carlo simulation (MC) with 100 

randomly generated scenarios using Arena® simulation software. In addition, a regression analysis 

is conducted to determine the relationship between the replacement time and the total cost of 

replacement. The originality of this paper resides in presenting a practical approach to determine 

the optimum drill bit replacement time based on the minimization of total expected replacement 

cost. Also, the relationship between replacement time and the related costs is quantified. 

6.3 Research Methods 

The research was conducted in three stages: (i) life data (Weibull) analysis of drill bits, (ii) cost 

minimization based on optimal replacement time, and (iii) risk analysis based on the differences 

between costs of predicted replacement and failure replacement. Failure data were provided by 
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MWD systems to analyze the behavior of drill bits. A Weibull model was fitted to drill bits, and 

the model parameters were calculated using ReliaSoft® software. Finally, the optimization 

procedure was applied to determine the optimal replacement time with minimum total expected 

replacement cost per unit time based on the operating and maintenance cost.  

6.3.1 Life Data Analysis (Weibull Analysis) 

Replacement decision depends on changes in the performance, reliability, or risk when the 

equipment or the tool ages. Operating and maintenance records chronicle changes in operating 

performance, failure rate, and maintenance cost [110] to support replacement decisions. Life data 

analysis helps to forecast bit life by fitting a statistical representative distribution using failure 

records. The probability density function f(t), also called the failure density function in reliability 

work, is used to describe the distribution [115]. It can be defined by Eq. 6-1 [100].  

𝑓(𝑡) =  
𝑑𝐹(𝑡)

𝑑𝑡
 (6-1) 

where F(t) is the cumulative distribution function. 

Drill bits are non-repairable items and the times between failures are independent and identically 

distributed. Therefore, the renewal process can be applied to determine the time to failure. The 

Weibull distribution is one of the most widely used distributions for life data analysis of 

independent and identically distributed variables because it can characterize a variety of data forms 

[115]. The probability density function of the 2-parameter Weibull distribution is given by Eq. 6-

2  [101].  

𝑓(𝑡) =  
𝛽

𝑡
 
𝑡

𝛼

𝛽

 𝑒−(
𝑡
𝛼
)
𝛽

 (6-2) 
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where β is a shape parameter and α is a scale parameter. The system behavior can be estimated 

based on β. When β=1, the system is constant. If β<1, the system is improving (i.e., the system 

reliability increases after the maintenance operation). If β>1, then the system reliability is 

decreasing [38]. More information can be found in [116].  

Mean Time to Failure (MTTF) is one of the most commonly used statistics of life data analysis for 

non-repairable systems. The general expression of MTTF is presented in Eq. 6-3 and Eq. 6-4 [66].  

𝑀(𝑡) = ∫ 𝑅(𝑡) 𝑑𝑡
∞

0

 (6-3) 

or 

𝑀(𝑡) = ∫ 𝑡 𝑓(𝑡)𝑑𝑡
∞

0

 (6-4) 

where M(t) is MTTF and R(t) is the reliability for the specified period of time.\ 

In the case study, the ModelRisk® software was used to determine the Weibull distribution 

according to the Schwarz information, Akaike information, and Hannan-Quinn information 

criteria goodness-of-fit tests.      

6.3.2 Cost Minimization Model 

The objective is to estimate replacement time to schedule planned replacements, which are less 

costly than failure replacements. Since it is not possible to find the exact time of a failure, the goal 

is to reduce the failure replacements to minimize the total expected replacement cost per unit time 

(Ctu), which can be calculated by Eq. 6-5 [117].  
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𝐶𝑡𝑢 = 
𝐶𝑡

𝑡𝑒
 (6-5) 

where Ct is the total expected replacement cost and te is the expected length of a bit usage. Ct and 

te are calculated in Eq. 6-6 and Eq. 6-7, respectively [117]. 

𝐶𝑡 = 𝐶𝑝  ×  𝑅𝑡𝑢 + 𝐶𝑓  ×  [1 − 𝑅𝑡𝑢] (6-6) 

where Cp is the cost of a predicted replacement, Rtu is the probability of a predicted replacement, 

Cf is the cost of a failure replacement, and 1 – Rtu is the probability of a failure replacement. 

𝑡𝑒 = 𝑡𝑝  ×  𝑅𝑡𝑢 + 𝑆𝑝  ×  [1 − 𝑅𝑡𝑢]  (6-7) 

where tp is the predicted bit usage time, which is the optimum replacement time, and Sp is the 

expected length of a failure cycle. From Eq. 6-6 and 6-7, Ctu can be expressed by Eq. 6-8 [117].  

𝐶𝑡𝑢 = 
𝐶𝑝  ×  𝑅𝑡𝑢 + 𝐶𝑓  ×  [1 − 𝑅𝑡𝑢]

𝑡𝑝  ×  𝑅𝑡𝑢 + 𝑆𝑝  ×  [1 − 𝑅𝑡𝑢]
 (6-8) 

The failure density function can also be displayed on a plot (Figure 6-1). The area under the curve 

is used to determine the probability of the failure in the specified period of time [115]. 
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Figure 6-1: Probability density function 

The unshaded area of Figure 6-1 represents the probability of a failure occurring before tp, which 

is denoted 1-Rtu. The shaded area is the probability of a failure occurring after tp, which is denoted 

Rtu. Sp is the mean of the unshaded area (Eq. 6-9) [117].  

𝑆𝑝 = ∫
𝑡 𝑓(𝑡)𝑑𝑡

1 − 𝑅𝑡𝑢

𝑡𝑝

0

 (6-9) 

The problem is formulated to determine optimal tp with minimum Ctu. The formulation of the 

minimization of Ctu by changing tp, Cp and Cf is given below. All variables needed to develop an 

optimization model are calculated from Eq. 5 to Eq. 9. Cp and Cf are constant, and Ctu and Sp are 

functions of tp. The objective function is given by Eq. 10. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑡𝑢 = 
𝐶𝑝  ×  𝑅𝑡𝑢 + 𝐶𝑓  ×  [1 − 𝑅𝑡𝑢]

𝑡𝑝  ×  𝑅𝑡𝑢 + 𝑆𝑝  ×  [1 − 𝑅𝑡𝑢]
 (6-10) 

The following assumptions must be met. 



102 

 

- The cost of a failure replacement cannot be less than the cost of a predicted replacement. 

𝐶𝑓 > 𝐶𝑝  (6-11) 

- The predicted length of a bit usage, the cost of a predicted replacement and the cost of a 

failure replacement are positive integer numbers (N). 

𝑡𝑝, 𝐶𝑝 and 𝐶𝑓  ∈ N  (6-12) 

- The predicted length of a bit usage is larger than the mean time of the failure times. 

𝑡𝑝 > 𝑆𝑝  (6-13) 

- The cost of a failure replacement is larger than the cost of a predicted replacement 

(Otherwise, drill bits can be used until the failure time.).  

𝐶𝑓 > 𝐶𝑝  (6-14) 

The EA approach provided in the Excel Solver MS Office tool was used to solve this problem. EA 

is a problem-solving technique based on the principles of biological evolution and commonly used 

for probabilistic optimizations. It provides feasible solutions called individuals. Recombination 

(crossover) and mutation are applied to individuals to create new individuals [118]. Possible 

solutions are represented by the population, which is a dynamic object, unlike the individuals. In 

most EA applications, the population size is constant, and the worst individual in the population is 

selected to be replaced by the new better individual (the mutation rate must be small in order to 

increase the searching ability of the algorithm) [119]. Convergence is a list of criteria that ensure 
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finding the optimal solution in infinite time. More information can be found in [119, 120]. The 

steps to create the EA model used in this study are given below. 

1. Initial EA parameters (e.g., population size and mutation probabilities) are entered.  

2. Initial solutions corresponding to population size are created.  

3. Solutions are assessed relative to the fitness function. 

4. Using crossover and mutation operators and rank evaluation, previous solutions are 

perturbed, and the new solutions are generated and ordered.  

5. These solutions are assessed relative to the fitness function. 

6. The best solution is recorded. 

7. Steps 4–6 are repeated until EA converges. 

6.3.3 Single-Variable Sensitivity Analysis 

Sensitivity analysis is used to quantify the effect of variation in input variable Cf in the model, 

which has a significant effect on the output and consequently, the cost. Single-variable sensitivity 

analysis is a technique to quantify the effect of variation of a single factor on the outcome while 

keeping the other factors constant [25].  

It is common to use sensitivity analysis in mining research. Al-Chalabi, Lundberg [25] used 

sensitivity analysis to quantify the effect of the purchase price, operating cost, and maintenance 

cost of the drilling machine. de Werk, Ozdemir [121] proposed a model to compare the parameters 

of two different material haulage systems by sensitivity analysis. Ozdemir and Kumral [122] 

applied sensitivity analysis to determine the impact of variations of explosive price, the unit cost 

of equipment, and electricity price on the total mining operating cost. Yüksel, Benndorf [123] 

performed sensitivity analysis to prevent long-range spurious correlations for block size 

localization in open-cast coal mines.  
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6.3.4 Monte Carlo Simulation (MC) 

MC generates random realizations to find an appropriate solution to a stochastic problem [124]. 

Sembakutti, Kumral [125] proposed an approach to model fleet availability in open-pit mines by 

MC. de Werk, Ozdemir [121] applied MC to assess the uncertainty design parameters of material 

handling systems in open-pit mines. Ozdemir and Kumral [126] generated random variables from 

a probability distribution with MC for uncertain variables of a material handling system (e.g., 

loading time, hauling time, and payload).  

The failure behavior of the drill bits is simulated to assess the bit replacement decision. First, the 

failure time is assigned from the 2- parameter Weibull distribution (Figure 6-2). If the predicted 

time (tp) is longer than the failure time (tf), the replacement decision is recorded as a predicted 

replacement; otherwise, it is recorded as a failure replacement. Once all the replacement decisions 

are classified, the total cost of the replacement is calculated. This cycle continues until the end of 

the simulation for a month period.  
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Figure 6-2: Flowchart of the MC simulation model 

6.4 Case Study 

To evaluate the performance of the proposed approach, a case study was carried out in an open-

cast coal mine using the time to failure data collected for 123 rotary drill tri-cone rock roller bits 

by MWD tools. The probability of drill bit changes being required was 90% between 29 and 67 

hours, and the MTTF was approximately 47 hours (Figure 6-3). Bit replacement times varied 

because of the operating conditions, the heterogeneity on the rock, and geologic characteristics. 

These results show no trend in the failure data; therefore, the renewal process was conducted, and 

the 2-parameter Weibull distribution was determined, using α = 3.8 and β = 53.3. 
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Figure 6-3: Histogram of the failure times of 123 rotary drill tri-cone rock roller bits 

After parameter estimation, the failure density function of the drill bits was determined by Eq. 2, 

and the results were plotted in Figure 6-4. The initial variables, such as Rtu, 1-Rtu, Sp and tp were 

selected based on the MTTF. 

 

Figure 6-4: Weibull distribution showing failure density function (f(t)) of drill bits 
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The following initial EA parameters were selected: convergence, 0.0001; mutation rate, 0.075; and 

population size, 100. The solver engine explored 98,319 subproblems in approximately 52 

seconds. The optimal variables are given in Table 6-1 and the optimal drill bit replacement time 

that minimizes Ctu (tp = 51 hours) is illustrated in Figure 6-5. Note that all costs are in Canadian 

dollars. 

Table 6-1: Optimum variables 

Variable Value 

Cp (C$) 10,000 

Cf (C$) 15,000 

Rtu 0.43 

1–Rtu 0.57 

Sp (h) 38.00 

tp (h) 51.00 

Ctu (C$/h) 293.77 

 

Figure 6-5: Optimal drill bit replacement time 
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From Figure 6-5, it is evident that there is a slight difference between changing the bit in 47 hours 

and 51 hours in terms of the cost of operation per unit time ($0.5). However, changing the bit 

before the end of beneficial life incurs a substantial cost to the company, approximately 8% less 

operation time per bit. In other words, drill bit consumption increases by approximately 14 bits per 

machine per year, a cost of around $70,000. On the other hand, if the bit is changed 4 hours after 

tp, the cost increases $7.0 per unit time and the probability of failure increases by 70%. 

These results strongly depend on the cost of failure replacement, which affects the risk of the 

replacement decision. Therefore, a single-variable sensitivity analysis was performed to identify 

the effect of the variation (Table 6-2). An increase in the Cf has a considerable positive impact on 

Ctu and negative impact on tp. The latter impact is due to the increased risk of replacement decision-

making. A 10% increase in the Cf, leads to an increase in Ctu of approximately $17 and a decrease 

in tp of 5 hours. 

Table 6-2: Results of sensitivity analysis 

Variation of Cf (%) Ctu ($) tp (h) 

0 293.77 51 

10 310.35 46 

20 326.00 45 

30 341.14 44 

40 353.60 40 

To test the feasibility of the proposed approach, 100 randomly scenarios were created by MC using 

six predicted times to replace drill bits for six circumstances used to compare the minimization 

results. The possible outcomes of the total replacement cost in a month (assuming C$5,000 per 

bit) are given in Table 6-3. The total bit usage and replacement costs were lowest for the 51-hour 
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replacement time. Compared to the 47-hour replacement time, the total replacement cost is 11% 

lower, which agrees with the optimization results shown in Figure 6-5. 

To investigate the relationship between the predicted replacement time and the total drill bit 

replacement cost, a regression equation was fitted using SPSS® software (Eq. 6-15). 

𝐶𝑡 = 485.49 × 𝑡𝑝
2 − 49462 × 𝑡𝑝 + 151 ×  104   (6-15) 

The R-square of the proposed quadratic model is 0.89, showing that the fitted curve is close to the 

model. 

Table 6-3: Predicted drill bit replacement times and costs based on MC 

Predicted 

Replacement 

Time (h) (tp) 

Number of 

Predicted 

Replacements 

Number of 

Failure 

Replacements 

Total 

number 

of bit 

used 

Total Replacement Cost 

(C$) (Replacement Cost + 

Bit Cost) (Ct) 

43 12 5 17 280,000 

47 11 5 16 265,000 

51 9 5 14 235,000 

55 6 9 15 270,000 

59 4 11 15 280,000 

63 4 13 17 320,000 

6.5 Conclusion 

This chapter proposes a practical approach through a cost minimization model to determine 

optimum replacement time for drill bits based on replacement costs. The approach presented herein 

is based on failure data of the drill bits and the maintenance cost of the replacements. First, the 
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Weibull life data analysis was applied to time-to-failure data to obtain the parameters of the model. 

Replacement time was formulated as a minimization problem. In a case study, the EA was used to 

determine the optimum time to change the drill bits for an open-cast mining operation. Model 

results show that increasing the operating time of drill bits by 8% can make a considerable impact 

on the total replacement cost of a drilling operation. The proposed approach can be used to 

facilitate decision-making for replacement scheduling. 

In addition, a sensitivity analysis was conducted to quantify the relative importance of the cost of 

a failure replacement. Results indicate that increasing the cost of a failure replacement negatively 

affects the total cost of expected replacements per unit time and the length of the predicted cycle 

(the optimum replacement time). In other words, when the cost of a failure replacement increases, 

the optimum interval time to use the drill bits decreases. Thus, the proposed approach can also be 

used to assess the risk of the replacement decision.  

MC simulation was implemented to determine the variation of total replacement cost. The total 

replacement cost can be reduced by approximately 11% by using a 51-hour replacement time 

relative to a 47-hour replacement time. Hence, the simulation results support the consistency of 

the proposed approach. 

Lastly, the relationship between drill bit replacement time and the total drill bit replacement cost 

was formulated by a quadratic regression equation using the results of the MC simulation. Using 

this equation, the total replacement cost can be calculated when the drill bit replacement time is 

chosen.       
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CHAPTER 7 

7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

This thesis introduced a variety of statistical tools and simulation techniques aimed to help mining 

companies to optimize drilling operations in order to reduce operating costs. The contribution of 

this research is to provide scientific solutions for decision-making problems instead of experience-

based solutions. In this thesis, modeling, simulation, and optimization procedures were applied to 

rotary drilling with tri-cone tungsten carbide bits in surface mining operations in order to develop 

a continuous improvement tool for bench drilling operations. Given that the production plans are 

dependent on mining activities, the proposed approach increases the feasibility of production 

plans.   All the results obtained are case-specific. For each mine, the proposed approach should be 

repeated.  

Early phases of the research were dedicated to using experimental design tools to determine the 

best configuration of controllable drilling parameters that increase the ROP and optimize operating 

cost. Through a detailed analysis of the monitored data, the optimum drilling time for a hole was 

calculated for different bit conditions.  

Drilling operation performance was quantified based on energy consumption. A cost minimization 

problem was formulated to establish a relationship between controllable parameters and energy 

cost and bit replacement time was modeled using evolutionary algorithms. The effects of 

controllable parameters based on the bit condition were described. Results of a case study showed 

that the proposed approach could be used as a tool for optimizing controllable parameters 

associated with cost minimization.  
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The risks emerging from production rate and mine management were quantified. Through 

reliability analysis, the production amount was associated with the number of holes to be drilled 

based on the number of available drilling machines. Since equipment availability is stochastic, a 

range of holes can be drilled corresponding to a specified probability level, determined based on 

historical data. A case study assessed the performance of the proposed approach using two 

stochastic modeling methods: Markov Chain Monte Carlo and Mean Reverting. Multiple 

simulations were generated by both methods to quantify the risk of uncertain events such as drill 

bit changing time, maintenance time, drilling time, the number of pieces of equipment available, 

the required number of drill bits, and the number of intended drill holes. The consistent simulation 

results demonstrated that the proposed method could be a useful tool to assist in production 

scheduling and assess the associated risk.  

The subsequent part of the research involved forecasting the required number of drill bits 

associated with the optimum replacement time of the bits. To quantify the evolution of the wear 

over the time, a comprehensive regression analysis was carried out based on time series data. The 

relationship between reliability and machine performance was also quantified by the equally 

weighted moving average method, which allows practitioners to use reliability as an independent 

variable in a drilling operation. The drilling operation was then modeled and simulated by DES to 

measure the feasibility of the production plans and assist production scheduling and asset 

management.  

Finally, the effect of replacement cost on the optimum replacement time was incorporated to assess 

the risk of the replacement decision. Replacement time was formulated, and then the optimum 

replacement interval was determined based on cost minimization. A variation of total replacement 

cost based on predicted and failure costs was demonstrated by the implementation of the Monte 
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Carlo simulation. Lastly, the relationship between replacement time and the total replacement cost 

was established by a quadratic regression equation using the results of the simulation. By using 

this equation, the total replacement cost can be practically calculated based on the replacement 

time.  

The methods explored in the thesis can be used to contribute to developing sustainable operations 

with continuous improvement. These methods are not applicable for the feasibility studies of a 

mining operation because historical datasets such as failure times of the equipment, operating 

parameters, drilling time and ROP, as well as rock characterization, are needed to apply proposed 

models.  

7.2 Future Work 

Although this thesis has elucidated detailed information about rotary drilling operations, additional 

field studies are needed to quantify the effects on the drilling operation of physical and mechanical 

properties of the rock formation such as UCS, hardness, abrasiveness, and elasticity. In addition, 

monitoring of drilling operations offers great potential to optimize mining applications and 

consequently minimize operating costs. However, the link between the drilling operation and other 

phases of the production cycle should also be considered to investigate the impact of the drilling 

operation on blasting and materials handling. Furthermore, many sensors are used in drilling 

operation such that more information about rock can be collected. The proposed statistical tools 

can be integrated with information of sensor data. Thus, the efforts of autonomous drilling can 

benefit from this research.  

The importance of maintenance activities is inevitable. Thus, in future studies, the variables that 

affect the maintenance cost should also be investigated in detail. The constants of the objective 
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function, the cost of a failure replacement, and the cost of a predicted replacement should be 

modeled as the functions of maintenance cost elements, and the total cost of the replacement should 

be re-formulated with these cost elements.  

In addition, this thesis has not addressed the quantification of seasonal effect. The efficiency of 

drilling operation is directly affected by the condition of the rock formation. In winter time, the 

resistance of a material to break under compression increases and the ground is more stabilized 

due to the frozen environment. Therefore, it is hard to handle drilling operation with the frozen 

ground condition. More energy is needed to achieve desirable operation. In spring and fall time, 

blast-holes might be wet. It decreases the efficiency of the cutting tools, and it also makes harder 

to eject rock cutting from blast-holes because the particles can stick on the drill bit and the drill 

rod. Thus, ROP might be decreased. Moreover, additional operations such as dewatering might be 

needed to fill explosives to the holes. In summer time, the risk of the thermic wear is getting higher 

due to high temperature. It reduces the life length of the drill bits. Therefore, the seasonal 

differences have a huge impact on the condition of the rock formation and it is important to 

quantify this impact in order to have the desired drilling operation.  
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