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ABSTRACT

Density matrix theory is used to arrive at theoretical representations of pulsed Nuclear
Magnetic Resonance experiments performed on two diverse systems, both giving evidence
of orientational anisotropy. The first case examines the Multiple Quantum Filtered line
shape of 23Na (/=3/2), as recently observed in some biological tissues. Relaxation is
accounted for by use of Redfield theory, and the production of a second rank tensor
cbntribution to the line shape is shown to be directly attributable to the presence of a non-
vénishing electric quadrupole coupling constant. The derived equations of motion for
I=3/2 can be applied to a general pulse sequence and a specific solution to the Double
Quantum Filtered experiment is discussed. The second “case seeks to account for the
re$ponse signal of both o-D, (with rotational angular momentum J=0 and nuclear spin
I‘—“ﬁ) and p-D, (with J=/ and I=1) in NMR 'ekpeliments consisting of two-pulse
sequences. The predicted solid echo amplitude for both the /=1 and /=2 contributions is
expressed as 2 function of the mole fraction, the pulse parameters, the tiﬁ1e between the
two pulses, the average spin-pair d{polar field and the average inhomogeneous field. The
properties of solid hydrogen are discusseci within the context of the two pulse solid écho
experiment. For the /=2 fraction, the positions of the expected satellite echoes are
determined, while failure to observe them in solid D, is discussed in terms of the relative

magnitudes of the intramolecular coupling terms and the inhomogeneous field.



RESUME

La théorie de la matrice de densité est utilisée pour obtenir une representation

théoretique de la Resonance Magnétique Nucléaire (RMN) effectuée sur deux systemnes -

differents, les deux menant a dencé de ["anisotropy ortentational”. Le premier cas examine
la "Multiple Quantum Fiitered" (MQF) ligne en forme de 23Na (/=3/2) tel qu‘obsérvé
recemment dans certains tissus biologiques. On peut remenquer la relaxation en utilisant la
théorie de Redfield. La production de la contribution d'un tenseur de deuxiéme ranq 2 la
forme de la ligne est demontée étre directment attributable a la presence d'une constante
de copulation quadrupole electrique qui ne disparant pas. Les equations des mouvements
dérivécs pour /=3/2 peuvent étre appliquées a une sequence general de pouls et une
solution specifiques pour l'expérience DQF est discutée. Le deuxiéme cas recherche le
signal réponse de 0-D, (ﬁvec impulsion angulaire rotationalle J=0 et le spin angulaire /=2)
et p-D5 (avec /=1 et /=1) dans les expériences RMN consistant dans une sequence 3 deux
pouls. L'amplitude prevue de l'echo solide pur les coﬂntributions de I=1 et J=2 est exprimée
par une fraction molaire, les parametres du pouls, l'intervalle entre les deux pouls, le
champs moyen dipola‘ire de la pair de s{Jin et le champs non-homogéne magneétique. Les
propriétés de I'hydrogene solide sont discutées dans le contexte de I'expérience de l'echo
solide. Pour la fraction /=2, les positions prevues pour les echos satellites sont déterminées
ainsi que I'impossibilté de les observer en D solide est discuteés en termes des granduers
relative des constantes de copulation intramoléculaire et du champs non-homogéné

magnétique.
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GENERAL INTRODUCTION

In the realm of chemical spectroscopy, modem Nuclear Magnetic Resonance is
without equal. Arguably, the most significant technical advance in this field has deen the
introduction of Fourier transform methods. Traditional continuous wave techniques have
been supplanted by the use of tuned radio frequency pulses, thus permitting the
development of a plethora of experiments, each designed to probe the microscopic
dynamics of nuclear spins and to enhance understanding of molecular structure. With the
advent of superconductor magnet technology and fast data archival systems came such a
high degree of spectroscopic resolution that the imagination of the experimentalist became
the most obvious limitation.

Part of the continuing appeal of NMR is due to its adaptability, allowing a wide
range of studies on diverse ksamples. Due to the fact that the energy separation between
the non-degenerate angular momentum states is small relative to thermal background, the
various interactions between spin bearing nuclei can be resolved. Some theoretical
understanding of the physical properties of the system permits direct relation of the
resonant line shapes and amplitudes to such phenomena as chemical exchange, molecular
dynamics, crystal and molecular structure through interpretation of the \(an'ous correlation
times and relaxation rates, A thoughtfully designed NMR expenment can be an invaluable
attribute to a greater research regimen.

Recent burgeoning experimental applications have provided a wealth of
information on physical, chemical and biological systems and, at once, have betrayed the
lack of comprehensive theoretical developments that can adequately explain these rcsulfs.
This difficulty is exacerbated for studies on nuclei of 7 > 1/2. Recognizing the potential
value in studying nuclei other than the proton, investigators have given increasing
attention to this class of nuclei. The familiar vector model used for the visualization of

nuclear magnetization of /7 = 1/2 nuclei does not provide an adequate description of the



dynamics of these higher spin magnitudes, as the number of quantum mechanical states
required to span a spin space scale as 2/+1. Such nuclei also bear nuclear electric
quadrupole moments that couple to electric field gradients around the nucleus, inducing
rapid relaxation and the requisite line broadening. On one hand, these nuclet f)rovide
unique probes into the dynamics and physical environs of both ions in solution and
molecules in a rigid lattice. On the other hand, it can be a formidable task to extract
physically meaningful information from the higher dimensional theoretical space in which
nuclear dynamics are cast and relate it to an experimental line shape, especially one that is
broad and featureless. This thesis was written as a partial address to these considerations.

Of the wide variety of theoretical approaches to NMR experiments, a true
distinction can be made between those that seek to describe structure and those describing
dynamics. One field of raﬁid developmenf concerns itself with the structural elucidation of
maﬁromolecﬁles. The general ptulosophy of this pursuit is t-o treat the vast number of
‘corrélaticjns between all spin beaﬁng nuclei in the macromolecule ( generally only H and
-13'C ) as one body of information. Clever combinatorial algorithms are then applied in the
hope_ pf finding 2 molecular structure'. that is consistent with the information content of the
experirtjlents. In contrast, a careﬁxl account .of the dynamics of the individual spins requires
sdme knowledge of t{he physical environment which inevitably form the coherence
pathways throﬁgh which energy is transferred. For these purposes, it is ‘convenient to
enﬁsage a statistical mixture of nuclear spins which require consideration of all possible
multiquann;m coherences amongst all possible nuclear s_pin levels,b to mathematically treat
this statistical mixture as a spin density .operator and subsequently account for the
d;namical evolution of the density operator by solving the quantum Liouville equation of
motion.

‘Described in this thesis are theoretical treatments of two regimes of experimental
NM& presented- in the framework of density matrix theory. The physical and practical

 differences between the two sets of experiments will be obvious, but it is the strength of



density matrix theory that will allow discussion of all relevant experimental results within
the context of oné theoretical construct. While the theoretical formulations were
conceived with the experimental results in mind, new theoretical results were obtained that
will allow simulation of more general NMR experiments. PART 1 of this thesis gives a
short review of those theoretical aspects of angular momentum, spherical tensors and
density operators required to pursue a theoretical treatment of the experiments described

herein.

In PART 2, the relaxation of an J = 3/2 spin system in an anisotropic environment -

characterized by a finite residual quadrupolar splitting, @,, is modeled by analytically

solving for the density operator from Redfield's relaxation theory. The resulting equations
are cast into the multipole basis in order to describe the tensorial components of the spin
density matrix. Included in the relaxation matrix are off-diagonal elements, J, and J,,

which accounts for anisotropic systems with @, values less than the width of the resonant

W

line. With the Wigner rotation matrices simulating hard pulses, the response to an arbitrary
pulse se“qhence can be determined. An analytical exp.ression for the response to the double
quantum filtered (DQF) pulse sequence %—%4 :r—yz__— 6-6-6-AQ for6=n21is

presented, explicitly showing the formation of a second rank tensor owing only to the
presence of a finite @, . This second rank tensor displays asymptotic behavior when the

(reduce&) quadrupole splitting is equal to either of the oﬁdiago_nﬂ spectrai densities er
and J,. Line shape simulations for @, values of less than a line width reproduce the
general features of some recently reported 23Na DQF line shapes from biological 'systems.
Distinct relaxation dynamics govern each of the tensorial components of the réonant-
gignal revealing the influence of the experimental variables on the line shape.

In PART 3, density matrix theory is used to calculate the response signal of both
0-D; (with rotational angular momentum J=0 and nuclear spin /=2) and p-D, (witﬁ;.l-=1

and J=1) in NMR experiments consisting of two-pulse sequences. The closed form method”



previously applied to the NMR "solid echo” of o-Hy (with J=/ and /=1) has been
extended to the deuterium system arriving at a detailed account of the dipolar interactions
between like and unlike spins in a hcp lattice of concentration X(J=1). The predicted solid
echo amplitude for both the /=1 and /=2 contributions is expressed as a function of the
mole fraction X, the pulse parameters (the angle # and relative phase @), the time =

between the two pulses, the average spin-pair dipolar field & and the average

inhomogeneous field a_j. Agreement is good between the theoretical predictions and the

experiments in which the solid echo amplitude is recorded as a function of the
experimentally controllable parameters 5, ¢ and 7. For the J=2 fraction, the positions of

‘the expected satellite echoes are determined, while failure to observe them in solid D, is

discussed in terms of the relative magmtudes of the intramolecular coupling terms and a_j.
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PART 1
GENERAL THEORY
Chapter 1. ANGULAR MOMENTUM AND SPIN
Angular Momentum Operators and Single Spin Basis States

Consider a single isolated particlé described by the three Cartesian co-ordinates x,
¥, and = and their conjugate momenta p,, p), and p.. The associated classical angular
momentum about some origin is defined by the vector equation

L=rxp : | [1.1.1]
\&here r is the vector from the origin to the particle and p is its momentum. The
comresponding quantum mechanical operator is formed by replacing the c;.lassical
momentum by its operator representation -4V, forming from [1.1.1]

L=-in{rxV) , , [1.1.2).

Assignment of the relevant quantum numbers is not arbitrary, rather it follows as a
natural consequence of the system. Considefing only integral values of the angular
momentum, one method for deriviné the quantum numbers is to solve the equation lo'f

motion given by the time dependent Schrédinger equation

| S¥
#H)w = EY =ih— [1.1.3],

where #(z) is the Hamiltonian or total energy operator of the particle, for the
wavefunctions describing the three-dimensional rigid rotator. Introducing the square of

the angular momentum ()



1 o é‘) 1 &% |
- 2 2 2=_ 2 = 9 114
Le+Ly+ Lz =-h |_sin6 Er1G TanZe a"¢2_l t14)

leads to an ekplicit representation of the angular momentumn algebra. Assuming that an
eigenvalue equation of the form [1.1.3] is to be solved i.e. )

2w =2 (1)y [1.1.5]
suggests that ¥ is separable into its angular components

¥[8, ¢) = 0(6)0(¢) | [1.1.6]

such that

S C)

| oG 242 [1.1.7]
yields Legendre's equation, with x = cos@ and ©(8) = P(x)
43P dP(x) [ e | | -
(1-%?) — W - P =o [1.1.8].

Boundary conditions and convergence require that (1% =1(1+1), -1<m<1! and that

both / and m are integef's. Of course, the eigenfunctions of I? are the spherical harmonics

2) ' o
| | 2f+1(lw M (-)™ m I im
Y:m(B,¢)=1/l . (H:)! o (1-x )/ ,+m(x2—1) eim$ [1.1.9]

and are thus representations of the abstract Dirac quantum state |Im) (3)
| Yim(8,8) = {69 |im) [1.1.10].
Given the differential forms of L, and the shift operators ‘

a .
L,-—zha¢ [l.l.ll]l

1
Li=L,%il -hei‘¢Li_+zcot-%J [1.1.12]

.
Y



leads to the explicit representation of the angular momentum algebra in the ¥},,(6.¢)

basis

LiYim(8.8) = 31+ ) - m(m £ 1),,,(6, 6)
L Yn(6,8) = imY,(6,8) [1.1.13]

with orthonormalization

J 27 T 07(0,8) i 6, ) sin 0 d6 dip = 5116y [1.1.14].

This arbitrary selection of L_ as an eigenoperator means that L, and L, are not, by virtue
of the uncertainty relation, signifying the non-commutativity of the components of the
angular momentum.

Though consistent, this procedure for obtaining angular fnomentum quantum

numbers is not completely satisfactory as it negates the possibility of half-integer values of

I. That is to say, functions of the type Y_,_"n(é?, ¢) are not single valued émd the eigenvalue
2

condi?:ions in [1.1.13] are not followed. While it may be sufficient to discard half-integer
value$ of [ as regards the description of the quantum ﬁgid fotator, no such argument may
be méde for the case of intrinsic spin I, since the existence of a wavefunction (thai is, 2
ﬁmctijon of the co-ordinates in the position representation) is not required a priori.

- Spin angular momentuni;operat.ors I do not hﬁve representations as differential
operatofs,' rather they follow_: the more fundamental commutation relations given
equivalently by | ; |

| IxI=inl
or

[I ol ] =ihl, (and cyclic permutations) . [1.1.15]

which determine all proberties of angular momentum, including operators-not‘ deﬂnéd by
[1.1.2].



Considering, then, the spin angular momentum, it is convenient to re-define the
shift operators
' Iy =1,=il, [1.1.16]
and the square of the total spin angular momentum
P=rI=1}++12=(J_+I1_1,)/12+1? [1117]

which commutes with all components /., 7, and 7,. A set of basis states for the

representation of these operators may be chosen as the normalized simultaneous

eigenvectors, [IM), of I2 and one of the Cartesian components (again, I, is
conventionally and arbitrarily selected). Following the notation of Dirac (3), the ket vector
| y IM ) is labeled by the quantum numbers I and M, related to the eigenvalues of 2 and
I. by
|y M) = aMly M)
~ Py )= w211+ 1|y 1) [1.1.18]

and the set of all other spin_independent quantum numbess, y , needed to fully specify the
state (neglected hereafter). The intrinsic spin is labeled such that 7 = 1/2, 1, 3/2,... and it |
follows from [1.1.18] and [1.1.15] that for any fixed value of I there exist 2/+1 possible
values of M, namely M = -7, -I+1, ... ,0, /-1, L.

The complete set of ket or state vectors |4I), .., |T = I can be understood to span

an abstract vector space. A dual vector space is defined by the dual bra vectors (M|

standing in one to one correspondence with the associated ket vectors. Together these
follow the orthonormality relation
(IM"M)=5175M7M [1.1.19&]

and closure

2y =1 [1.1.15b]
M



forming a complete basis for a (2/+1) dimensional Hilbert space. There also exists a set of

projection operators such that for any vector in this space, | 8), associated with some other

property of the system

|18)= %lIM)(LM[ﬂF 2 byl M) [1.1.20]

M

where the components 4, of this vector are complex numbers. Eigenvalues of I, can be

determined with the definition of the scalar product [1.1.19]

L\ M) = hexp(+ig) I( +1) - M(M £1)| IM 1) [1.1.21]
where @ is some arbitrary phase. The widely accepted convention of Condon and Shortley
(4) is used to fix @ = 0 and define the relative phases of the states | M) of different M

17— M)=(-)M| D)+ [1.1.22

where the asterisk indicates the complex conjugate.

Multispin Basis States

In classical mechanics the addition of dynamically independent angular momenta is
carried out according to the laws of vector addition. Addition of quantum mechanical
angular momenta is considerably more involved. Consider two spins defined by
independent angular momentum operators I; and I,. As always, the commutation .
relations for each I; are [1.1.15] and it is left to construct the eigenkets and determine the
corresponding eigenvalues of the total angular momentum

I=n+I, ‘ [1.1.23]
for fixed values of 7} and /5. One component of I can be specified simultaneously with / 2

and because 112 and 122 are scalars, they also commute with I2. However, since
[0 =21 1o, 1] 0, and - [1%,1p;] %0, I, and I, cannot be specified
simultaneously with the square of the total angular momentum operator. What results is

two complete sets of compatible angular momentum observables: the already described set
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associated with the product of the individual angular momenta {I 12 Jiz,7 22,1 2:} and the
coupled set {I 2 Aa 7 12,1 22} yet to be determined. ( It isn't possible to completely describe

any system in terms of the angular momentum variables alone. In this development it is
convenient to ignore these further observables owing to the Hamiltonian as they are
expected to commute with the angular momentum operators. Hence, all ofher quantum
numbers required to specify the kets are ignored since they do not change throughout this
derivation.} The former set satisfy (i =1 or 2)

W12 - 1(5 + )| My M) = 0

W1z - M| WMo My ) = 0 [1.1.24]
as expected from [1.1.18]. The eigenkets of the latter set are defined by

212 - I+ D)) 1L M) = 0

W1, - M) LI,1M) =0

(1 - 1,1 + )| hIa ) =0 [1.1.25]
and the orthonormality condition .
s IM| LI M) = S 18 ) g S1 By, [1.1.26]

An orthogonal (2] 1+ 1)(2!2 + 1) -dimensional subspace of the Hilbert space for the
composite spin is formed from the discrete product lI 1M1) ®|I 2 My )EII 1My, M, )s
|I 1M 1)|12M2>. Spanning each subspace are the kets II 1M 2M2) following the closure

| WML My XM I My | =1 [1.1.27]
MM,

and these undetermined kets may then be written in terms of the known kets

|nnnM) = 2AnM I M, | LI M) LM I M, ) [1.1.28]

MM, .
The unitary transformation is determined by the real valued Clebsch-Gordan (C-G)
coefficient, (6) related to the Wigner 3-j symbol through (5)
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(n I, I

-

(LM My |1 T, ) = (-1) (-1) ..1+1LMl M, _MJ [1.1.29].

The completeness relations [1.1.26] and {1.1.27] then imply

sl & 0B s

2 R RGN
J=lal+ ) Topoany 1.1.30].
My My MMM My M [1.1.30]

The 3-/ symbol vanishes unless the triangle inequality I;+7y 27 2|I 1= 12 l and
conservation of angular momentum M = M, + M, are satisfied. There is, therefore, only

one state for each value of [ and M verified by the fact that the dimensionality of the state

sub-space has been preserved

Dy +1y
f(zn )={2n,+1)(21; +)) - [1.1.31].
1=|h -1 |

Some symmetry properties of the 3-j coefficient will be of future use: they are

symmetric under a cyclic permutation of the columns

[11 I, 13] [13 I -’2] [12 I3 Il] | [1.1.32a]
= = . Jd.o.za),
M, My M) \Mz; My M) My M; M :
non-cyclic permutations are multiplied by a phase
L I, I L, n, I
[ 122 %3 J:(_nfi”z“”s[ 2 193 J [1.1.32b],
My M; M; My M, M;
similarly if all magnetic quantum numbers are inverted
I I 1 : L I, I
( ! 2 3 J:(-])fl"‘fz”s( 17293 J [1.1.32¢].
-My, -M; -Mj My M; Ms

When the coupling of three or more product eigenstates to give a resultant state
defined by a total angular momentum must be considered, a further difficulty arises from

the fact that there is no unique representation of such higher direct products (7) i.e. of
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l! 1M 1)@]1 2M2)®...®| I ,,M,,). A coupling scheme must be specified followed by
construction of a complete set of orthonormal basis states for a Hilbert subspace, by
successive C-G coupling between pairs of |I ,-Mi) states, as per [1.1.28]. (8} For three
spin angular momenta /|, [, and /5, there exist two distinct coupling schemes: coupling
of /| and [, and subsequently /5 with the resultant /15 and the coupling of /; with the
resultant I3 of I and J3. Both the |((1J2)I1275)IM) and |(Iy(Fa23)005) ) bases
give equivalent representations of any three spin operator and are related by a unitary
transformation involving the matrix of 6-j symbols. (3) Coupling four I;'s leads to a 9-f
symbol.(5) These 6-j and higher "recoupling coefficients” can be reduced to sums of
products of 3-j symbols and have been used to construct complete orthonormal bases for

n spins following various coupling schemes. (6}
Representation of Finite Rotations

A right hand positive rotation through an angle & may be regarded as the sum cf
a sé"iﬁ‘of n successive rot?ﬁons through angles € / n. Defining the infinitesimal rotation

angle 86 = lim (8 /n), the finite rotation Rr(#) about some axis k in terms of n
n=yo ‘

infinitesimal rotations is

R(6) = lim (Re(8/m)" = 1im (R, (68))°'%
n=> 68 —-0

L =]

[1.1.33].

The 2/+1 eigenstates | IM) of fixed I are of significance at this point, in that they span an

irreducible representation DY of the infinite rotation group R, (9) such that

(i0
R, (6)= expt‘ifl") [1.1.34]

for k=x, y, =. An arbitrary "passive" rotation operator D{a,fS,y7) is conveniently

described by rotations about these axes subtented by the Euler angles @, 8, ¥
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(iy iB ) ia )

¥)= —1. — —1. -

Dia. p.7) = ex L1, Josg| T, Joxe ., [1135)
which has the effect on a function of rotating the coodinate system through right handed

positive rotations. QOther authors (70, /1) write

D(a,B.,7)= exp(—i:—!:)ex;{-—%f_v)up[—%1:)

which is an "active" rotation of functions by positive angles &, 8.y with respect to some

fixed coordinate system.

A basis state transforms under a rotation by
1 =3
Dla, 8,7)| ) = 2.2 11, B.7) M) [1.1.36).
Ml

With the orthonormailty condition of the basis functions [1.1.19], an expression for the ™.

- Wigner rotation matrix is readily found (6)
20 sle, B.7) = (DD, B.)| 1) |
= exp(iMe + My XM explif I, ) M) [1.137],
where the fact that the vectors | M) and |IM*) are eigenstates of /. has been exploited.
Futher, it is typical to identify the remaining matrix element in [1.1.37] as the reduced
Wigner rotation matrix element

i 1e(B) = (Bt lexpliBl, ) 24) = D2 5, (0, 5.0) [1.1.38]
There exists an infinite number of representations D) of the infinite rotation
group R; (hence the name), each of dimension 2/+1 (deduced from [1.1.37]) for al

positive half integer values of . A number of methods have been used for the non-trivial

evaluation of the d&? M( B ) , including use of Wigner monomials (5, /2), boson operators

(13) and second order differential equations in B . (74) While half integer representations
of the angular momentum may not be expressed as differential operators in configuration

space, the general form of the rotation is derived from the corresponding transformations

of the | IAf). One explicit form is (6)



vy

i4

@D () = T+ M= M)T + MINT = M)

]2!-!—;14’—.'\/!'-25( J.M'— M+1s

in—
sn,)

[1.1.38]

(I+M-s)s M = M+s)(I-M=35)!

3
where 5 runs over all integral values leading to non-negative factorials. From this is
recovered the explicit form of the transformation of states [1.1.36], under finite rotations.

It is not difficult to conceive that any two rotations may be expressed as a single
rotation about a suitably chosen axis, from which it follows that any series of rotations
may bgr.f}p’?éssed as a single rotation about some axis.

" Da', py)Da, B r") = Na,B.7) [1.1.39].

As representations of the infinite rotation group Rj, it is worth stating the group

 properties of the D/?: there exists a unit element 2¢7(000), an inverse 24 ~Y(a, 8,7)

=2 (-a-p ,—y)‘—'[am (., 8.7 )]T ( T is the normal operator adjoint) and associativity

holds; o (1)['9(1) 2o (3)] =[9m(1)9m(2)]ﬂw(3) . It remains, however, to express

‘the cloéure [1.1.39] in terms of the irreducible representations. To do this we must appeal

to the methods used to describe the coupling of angular momenta employed earlier. It was
tacitly stated that the 2/+1 eigenfunctions of 7, and [ 2, | M), span a DD For

I=1I+I, simultaneous eigenfunctions of 7. and I 2 must be built from linear

combinations of the (2I)+1)(27, +1), 1M, 1)'1 2 My) product states vis [1.1.28].
Equivalently, for two sets of functions, one spanning one representation of a group I ()
and -the other‘ spanning a second I (2), the direct product spans the representation
rYer (2), which is, in general, reducible. Perhaps intuitively, it should be expected
that :

W) @pUn) = pth+ha) L ptitia=D . plh=El [1.1.40]
as is well known for the grouﬁ R;. Considering the effect of the total angular momentum

rotation operator



174

15

e‘q{i; (IL +715. )Jex;{-!i(fh f"v)}e\ﬂ_, (Il_ +15. )}

e 27 e L ﬁfp{ﬂ}.rf_«z_wfgW
—ex]:{_h 11_.]&.\er1 Iz_.jlexq. " Ily_lex . 1-_,_V e?\}i s Il_.Je.\pL P [2___| [1.1.41]

(note that &!*8) = o4e8 [FF [4.B] = 0) on both sides of [1.1.28] and taking matrix
elements over the relevant values of M = My + My and M' = M| + M4 yields the C-G

reduction of the representation

Dy PN, —LWZ‘SIIMIIoMa | B I My T My | L T YD\

IM M M{ My -MA\M, M, -M)MM [1.1.42a).

and the inverse

(e
EL‘SJJ z (11 Iy IJD(JI) o) (Il‘- Iy ]]

2 ! ] ) » ] 'ﬂ/! 4‘:'-."\:-. B

(2I+1) t’ﬁ{‘f M{ M5 M) MMM MM, My M [1.1.42b]

My
where
- )
i (o) = (DM -M), | (o) [1.1.42¢).

__Anéular Momentum Operators Constitute a Lie Algebra

The group Rj is an example of a continuous group in that the operators of the
group D{a, B,7)are functions of continucusly varying angles, Only because Rj is

continuous do the infinitesimal transformations have any meaning. Generally, a set of

infinitesimal transformations O; derived from 2 continuous group can be written as

O;=1+2.5a;P; - [L.143]
J
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where da; is some infintesimal change in some relevant variable and the Pj are

generators. The O; themselves form a group and obey the general commutation relation

[P P]= ?C(L k)P, [L.1:44].
These elements P; ;. of the group and their commutation relationships constitute a
general Lie algebra. Angular momentum operators are the generators of the inﬁnitesimﬂ

rotation operators

. —1-Lsp. |
R(56) =1-—88 -1 [1.1.45]

which, together with the structure constants, c( j,k,l) =ih, also form a Lie algebra, from

which the structure of the theory of angular momentum, based on this underlying

symmetry, is obtained,

f
re

L Gyt
),
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Chapter 2. TENSOR OPERATORS

Construction of Single Spin Operators

So far it has been shown that the angular momentum eigenvectors behave simply
under the infinite group of coordinate rotations vis [1.1.36] and in fact, form basis sets for
the irreducible representations DV ) of R;. It remains to consider the transformation

properties of operators subject to such rotations. To this end, an irreducible tensor

operator of rank & is defined as a set of 2k+1 operators 1;(1‘) 9(I) which transform under

coordinate rotations according to

De,B,7)%®9 (1D Na.8,7) q'_z_?(k)(a,ﬂ,r)?(k”'(l) [1.2.1]

with the tensor components ¢ and ¢’ having the aIlc.)wed' 2k+1 values running from -k to £.
These tensor operators are irreductble in the sense that there is no subset or linear
combination of 74®)9(J), for a given k, that transform sep’ératély amonst themselves
under a rotation. Using the implications of the unitary transformation [1.2:1] and
-arguments similar to those empldyed for the determination of the eigenvalues [ aq_d Min

state space, the analogous angular momentum eigenvalues in this operator space are found

in terms of kand ¢

x[x z""qu)]] M+ 3@

{‘Iz,?(k)q(n] = 1;(")9'(1)

[10.4@9(D)]| = (k7 g) (k2 g+) 29D . (22

\ | i
As operators, the %%®)9(I)<are constructed differently for different spin\
magnitudes, but being tensors, are‘. rotationally invariant regardless of the spin. Since

rotations ‘are viewed on a sphere, and anticipating applications to problems in NMR, a
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spherical basis is a natural selection for the construction of the 2k+1 components of a

tensor of rank &, One such spherical basis is selected such that
eM0 =7

HOLINE- %E(xi{y) [123]
in terms of the Cartesian basis vectors. Generalization of the coordinate system in three
dimensions in terms of these three unit vectors is given by the Clebsch-Gordan expansion

k k
W = 3 (tigirg |krkokg) et el 22 [12.4]
Qi
in a manner exactly analogous to [1.1.28]. The quantities ¢®)9 are the It rank basis
tensors from which the spherical tensor components (which are really Cartesian scalar

operators) are obtained by a k-fold dot product
(@9 =[® o kR)e | ©[1.2.5]

where, for example, 4 2B = ZA,- jBji=A:B.The e(®)q obey the normalization

) |
e®1 g keé.) =0, q [1.2.6]

with phase determined by the original selection in [1.2.3]
BT = o) = (k=907 | [1.2.7].

Normalized %*)(I) are constructed from the [7]®) (15, 1 6)

2k +1)
A =Vl[1] ® @ *® (n® [1.2.8])
ip such a way that
| 2O O *4® (1) = (2% +1) ‘ 112,91

The normalization constant determined by the scalar [1] ) . k[I ] *) i given by (13, 17}

(kD221 +k+1)!
2%(21 + D {(26) 121 - k)L

M®e*n® = [1.2.10].
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Individual spherical tensor components are again built from the tensor operators by the &-
fold contraction given in [1.2.5].

As might be expected, higher rank spherical tensor operators can be built directly
by the repeated Clebsch-Gordan coupling exploited in [1.2.4] and [1.1.28]. For example,

the five ¢ components of the second rank %®}(I) can be constructed from the

predetermined vector operators %(0(J)

morny_ |3 .
7= 0+

) S S
¥ = 21(1+1)(+"ri)

7PN = 3 (-I)Z"qJE[ :

1 2 ' _
sz a(n4W%e() [1.2.11]
a3 1 92 -4

Transformation Properties of Single Spin Operators

Just as the state space basis vectorslI M ) evolve in a quantum mechanical system,
“the %% )9(]) determined by the quantum numbers & and ¢ can also be mixed through
coupling terms in the :Hamiltonian. Both the set of so called multipole operators
{7;(") q(I)} and the {{IMXIM']} span the same operator space and the uhitary

transformation relating the two is given by the now familiar Clebsch-Gordan coupling

coefficient

¥ B0 = ()P D) ) maY e . ['1.2. 12].
= :
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A most useful property of tensor operators is exploited by the well known Wigner-Eckart
theorem (/8), which enables the factorization of matrix elements between any two angular
momentum states into two parts
I kI
%) A_(_nI-M ( (k) )
(15 ® ()| 1) = () [ o g M,] 1P| [1.2.13}

The geometrical term is so named because of its dependence upon the spatial quantum

numbers g, M and A, while the physical term (I ”1;(")([ )l

I ), known as the reduced marix

element, is dependent only upon the tensor rank and spin magnitude and has been

evaluated in the multipole basis (6, 8)
(™) = O* T +Dik+D [1.2.14].

Hence, the expansion of the multipole operator in terms of the more common {| By )}

basis is

3 ® () =)k JoI+ D2k +D Z‘(—l).I“M[I .
W’

M g M,)|W)(M'l.[1.2.15a].

From: the symmetry properties of the 3-j symbol [1.1.32], the inverse of [1.2.15a] is found

tobe

BeXBe= /MBI T B, & s nais
Spmﬁed by the properties of the 3-j symbol are restrictions to which the quantum.
numbers k and g are subject. Meeting the conditions of the triangle ineqhality, k has
allowed values £ = 0, 1, 2, ..., 27 while the condition that q+lM '— M =0 provides for
integer values of ¢ ranging from -£ to k. In this way the spherical tensor or multipole
operator basis is al natural selection for the description of multiquantum NMR
experifnents. The tensorial or multipole rank is designated by % (dipole, quadrupole,
octupole etc.) and since ¢ = 4 M, a labeled multipole component represents a q-quantﬁm

coherence. The number of multipole operators for a given spin / is then



[

I
2k +1) = (25 +1)? [1.2.16]

k=0

each obeying the adjoint relation
3W 1) t=4 (1) = (-1)¥-94®-9(y) [1.2.17]
and the orthonormality condition defined by the quantum mechanical trace
w{g®I01E (D) = (301D ET D)) = (21 + 05480 12181
These (27 +1)2 operators are closed under commutation (78)
[40m(D),4®9D]|=2F ¢ (klk')((f;("') 7(1) |¢(!)m(1)|¢;(k)4(1)»1’(/:'):1'(;) 11.2.19]
k'g .

where, from the Wigner-Eckart theorem

(a®7 ) Iff"""(I)I?""?(I)»=tr{ft""’q'(I)Tff‘”'"_m’f(k)qtf)} [1.2.20]

el el , A A I
= (—)*Fa+2 (R LeR (o1 ) (26 +1) (287 + 1) (27 + 1) 2{1 e or\—qg m q)

- ¥ Hemou)som))

for which {...} is the 6 recoupling coefficient (6) and ¢(klk) =1 if k+!+k’ is odd and
zero otherwise.

For completeness sake, mention éhould be made of thel construction of multipole
operators for n-spin systems (20), even though they will not be utilized in this thesis. For
two spins I; ahd I5, a two-spin multipole operator basis 7 (k)q(kl k2) can be constructed
from the direct product basis 209 (1) @20 %2(I,) = 280 (1,) %)% (1,) that
spans the two-spin operator basis, but it is over-complete in the sense that it is not.

irreducible under rotations generéted by the total angi.llar momentum [=/1;+1y. A

complete irreducible operator basis is obtained by the operator analogue of [1.1.28]

i
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T(k)fI(klk_.,_) [(2]1+1 2[2_,_1]/ (ke (-0 JTE T
ql?:

x["l k2 Jﬁaoq{(h)@(M(Iz)

41 492 -~

[1.2.20].

For n > 2 a complete operator basis is the uncoupled direct product of the irreducible
single spin operators 'I;(k')ql(Il)®1;(l°l)92(12)®...®7;(k") q,,(I ,,). Given the selection
of a suitable coupling scheme, a complete irreducible spherical tensor basis can be evolved
by repeated C-G coupling via [1.2.20]. Various properties of these muitipole, multispin

operators have been presented elsewhere (20). .
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Chapter 3.  DENSITY MATRIX FORMALISM OF NMR

Applications of quantum mechanics are generally concerned with those states of
systems that can be represented by state vectors. Indeed, within the context of NMR
experiments, the dynamics of single spins can be interpreted within the context of the
motion of the classical magnetization vectors, represented by the phenomenological Bloch
equations. (21) However, for coupled systems or, more generally, for systems that have no
more than a certain probability of being defined by a precise dynamical state vector, it is
necessary to appeal to density matrix techmiques. (22, 23, 24) First applied to the
description of statistical concepts in quantum mechanics by von Neumann (2+), the density
matrix is best suited to determine the average response of a macroscopic system.

In this chapter will be given an account of those aspects of density .matrix
formalism fhat are relevant to pr;ablems in NMR. The concepts presented previously will
be extended to account for the behaviour of an ensemble of spins. Just as the spin
operators presented in the previous sections can be constructed in 2 number of equivalent:
ways, so too can the dynamics of spin systems be calculated using different techm'ques.
Numerical methods can be derived to treat spin dynamical calculatmns exactly, making
such considerations moot. However, in many cases, accuracy comis at the expense of
physical insight. Judicious selection of both the representation of the spin system and
method by which the time evolution is determined is done to facilitate interpretation of the
results of a particular NMR experiment. Observable transverse magnetization can then be

resolved into its component contributions by considering some physical interpretation of

the system.
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Matrix Form of the Density Operator

In order to define the form of the density operator of 2 quantum mechanical

system, the time-dependent Schrodinger equation {1.1.3] is re-written

tad0)

7 [1.3.1].

AP O()) = -in

The ith dynamical state of the statistical quantum system is interpreted as an ensemble of

the complete set of  stationary basis states {[u,, )} of the Hamiltonian

@)= Zc<‘)(z)|u) [13.2]

expanded through the time-dependent coefficients ¢f(z). For an ensemble in thermal
equilibrium, the density operator is determined by the probability p; that it will be observed

in one of several normalized states lY’m (t)), such that
pl) = Z'pf(r)|w<f) OO0 =Z (0T Zed@ePO lumus] 11331

Physical insight is gained by considering the matrix representation of the density

operator in the orthonormal basis {lu )} Given any two generalized mixed states

(# O] ol (0) = Zplcr)z ZefP D0 (# 0 o [0 0)
=c() c(‘)(t) [13.4]

where 2 p;(f) =1 and the bar denotes the ensemble average. By virtue of [1.3.1], the

i
’|¥’(")(t)) form an eigenvector basis of the Hamiltonian. Interaction with an

electromagnetic field can cause transitions between states, providing a distinction between

two types of matrix elements. If this interaction is weak enough so that the |¥’(i) (t)) are

not appreciably changed, the operator representing this ‘transition is |!F(’)(t))(5”(")(r)|
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bearing an associated phase exp(—{;(E, —Es)t). A "coherent superposition" of states is
thought of as those members of the ensemble that are correlated with respect to time

dependence and phase and is represented by the off-diagonal matrix element
prs(t) = (FOW)| o0 FO ) = O () ()" [13.5).

The diagonal eleme~ts are not influenced by the relative phases between the members of

the ensemble, so that for a statistically significant number of particles, the matrix element
pre () = (#ON) ] (0)) = P () 2 [1.3.6]
can be interpreted as the population of particles in a particular state. In the random phase
approxixﬁation, the density matrix of a system in thermal equilibrium with an external
reservior ( a canonical ensemble ), containing no inherent time dependence, consists solely

of the diagonal elements bearing the populations of the eigenstates given by the Boltzmann

distribution

e_E{r%T

2 = S—— [13.7)
- E(,V 3.7).
ze kT : :

and the trace of the density matrix is equal to unity
r{p®)) =2 pu() =D 2 =1 [1.3.8].
i i

Of particular significance is the expectation value {2) of some arbiirary observable

operator 2, expressed in terms of p() in the Schrddinger representation

(2)=2 50 (PO 2w D)

=2 Al Ze@ )" P () upm|2|n) [139].



26

=2 2 Puml8) 2y = r{2p(2)}

Finding the expectation value can be done equivalently in the Heisenberg representation by
evaluating the trace of the product {2(s) p(0)}. This reflects one of the most powerful
attributes of the density matrix theory, as the trace is independent of the representation
used to give the form of the density matrix.

‘ An idealized "pure” state is one in which all particles in the ensemble are in the
same state and can be equally represented by the same normalized state function. For such

a situation the exactly defined ]?'(i)‘(t)) represents a statistically significant number of

simultaneously prepared particles. As an average of many identical single particle states,
the pure state itself can be.thought of as a single particle state, even though dispersion free
states are not Iikely. to be realized in practice. (25) The density matrix of a pure state is
idempotent i.e. p2 = p, and its matrix elements are projection operators akin to those
introduced in [1.1.20]. From thesé considerations

tr{-pz(t)}sl | [1.3.10]

with the equality holding for pure states. | :
Time Evolutfon of the Density Matrix

The equation of motion for the density matrix follows directly from the
- Schrddinger equation for each statistical state
[Y’“’(r))=1¢(z)|¥'("’(0))‘

mm— 1(:) 2(t); w(d) =1 [1.3.11]

which, when combined with [1.3.3], yields the quantum Liouville or von Neumann

equation
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é‘ p(r)

=[#0), p(0)] = ) p(1) [13.12]

with time evolution of the density operator suitably determined by the unitary
transformation

p(8) =2(1) p(O)y2(1) T [1.3.13].

If the Hamiltonian is time-dependent wherein [?(t)._ f#(t')] =0 for t=¢', one

formal solution for %(#) is the Feynman-Dyson expansion (26)

%(1) = Texp(——;;_[é’#(t') dt') [1.3.14].

A long expansion of nested commutators of #(r) at different ¢ is contained in the tirﬁe
ordering operator 7. This series is normally truncated in order to facilitate evaluation, with
the consequence that %(7) loses its unitary properties, such as preserving the trace of a
| quantﬁm mechanical operator. Qther methods, such as the Magnus expansion (27), have

been employed to expand %(¢) in terms of Hermitian operators

2(1) = exp(.Q @) @(0)=0

\.Q(t) Za(')(r [1.3.15]
=0 _

however, only 2(z) = -%K?(tﬂdtl is readily and generally calculable.

" Selecting a suitable representation, such as a rotating ﬁ*anie, provides a means by
which the Hamiltonian might be made time-independent within finite time segments. In
this case the evolution of the density matrix can be expressed by a sequence of umtary
transformations of the form

pt) = exp(--’h-m) p(0) exp(-%#t) - 13163

plt+my +7 2)= exp(-‘;:?‘zfz) CXP(-‘%?‘p'l) p(1) fxp(';:?’lfl) exp(%?zfz) [1.3.16b]
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defined by the propagators %(r,,):e"i'?"r". This form applies to any sequence of
intervals t,, in which time-independent average Hamiltonians can be defined and is
particularly useful for the representation of pulsed NMR experiments.

The formal solution to the quantum Liouville equation [1.3.12] for time-
independent Hamiltonians is the unitary transformation [1.3.13]. Of interest is the solution
of any matrix element of p of the trace of some observable {1.3.9]. Two 'general methods
are made use of in this thesis. The first is obtained by expanding [1.3.16a] as a Taylor
senes in time around =0 giving the multiple commutator expansion known as the Baker-
Campbell-Hausdorff fomula (28)

p()= p(O)+(-L)[#, (0] + 1{-Le) [7[#, p(O]]+- {1317
Also referred to as the exponential operator method, this treatment is easily handled for
cases where the series quickly converges and the multiple commutators terminate. For
example, under conditions allowing application of the high-temperature approximation, -
truncation of [1.3.17'] to include only the first few terms is accurate and the series forms a
useful pertﬁrbative result. This expansion is also convenient fo:f the treatment of relatively
simple two-pulse experiments. |

As an alternative to the evaluation of p(z) in terms of a series of nested

commutators [1.3.17], the density matrix and the Hamiltonian can be expanded into a
complete orthonormal basis set of operators {2’“’} = {|9” (i))<5" © |} (29) Applying the
evaluation of observables [1.3.9] to an adapted form of the expansion of p{#) [1.3.3]

gives

: p0=2 (029D = Tar{ p2®1 }2®@ =Z(z(f> t)z®  [13.182]
i i i

=Y ha® [1.3.18b]
; |



which reduces the Liouville equation to a system of coupled first order differential

equations among the average values 0 ;:

20T ela gt

=2 0;(0) p; [1.3.19].
j

Significantly, solution of the system of equations [1.3.19] gives the time evolution of the

density matrix in terms of the dynamics of every observable p;;(r} from the set of initial

conditions { 5;(0)}.

Basis States for the Representation of the Spin Density Matrix

While inferred, no explicit connection has beeﬁ made to spin angular momentum
during this survey of density matrix formalism. Selection of the operator basis set into
which the density matrix is expanded, is arbitrary, but should be appropriate to the
symmetry of the Hamiltonian. For the consideration of NMR experiments, this amounts to
finding a convenient representation for the spin angular momentum. While this formally
restricts attention to only the spin variables, relaxation by interaction with the lattice
modes can be accounted for perturbatively.

By considerj.zlig‘only the spin part of the density matrix, it is pbssible to find the
dimensionality of t;'jxiﬂ'anﬁltonian and thus, 2 finite-dimensional representation of the spin
density matrix itseff., One representation of the spin density matrix was first proposed by
Fano (29) for spin /=1/2 in terms of the magnetic polarizations P ={&) = tr { p&}

1

1
p(l‘) = E(E}é +P'5‘)=E(E}£ +P.o, +‘Pyay +P:o';_.)

1 I+P, P.-iP,
2| Pc+iPy, 1-F

—

[1.3.20).
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Expectation values o; of the Pauli spin matrices determine the components of this
magnetization P; and thus, knowledge of the vector P completely desribes the dynamical

state of the /=1/2 system. Since any 2x2 Hermitian matrix can be written in terms of

01 0 —i 1 0
0',,=[1 0] a}’:(i OJ o*z---'[0 _J [1.3.21]

and the unit identity E e this set of (27 +1)? orthogonal operators span the operator

space of /=1/2. In an equivalent way the Hamiltonian for the interaction of the spin
magnetic moment & = fiy5 with an external ﬁeld H(t) can be written
#e) =-Lny5-HG) [1.3.22]
from which can be formed a system of first order differential equations as per [1.3.19]

S P(t)
at

=—y H(t) x P(2) - [13.23].

- For arbitrary spin magnitudes 121/2, vestor polarizations are not sufficient to
completely span the (2/+1)-dimensional spin density matrix. Expressing p by [1.3.18] in
terms of the set of operatbrs {2’ (i),f ;}, tﬁe transformation of pis given by {1.3.16a] and
it is left to determine how p(0) evolves un&er the unitary transformation induced by #.

Substituting [1.3.18] into [1.3.16a] gives
ple) = Z 2;(0) exp(—%#’t) z® exp(-%ﬁft) T [1.3.24]
: . .

which is solved for the p;(), given the structure of the transformation of 4() under #
that is reflected in [1.3.19].

‘ Spin dynamical problems in NMR are frequently dominated by the Zeeman
" interaction or by the application of RF pulses. Both interactions appear in the spin .

Hamiltonian by way of propagators of the form exp(—-%Q-I t), recognizable as

generators of rotations ( cf [I.'i.34] ). The orthogonal ‘set of multipolé operators
 4®9(1) - naturally incorporate this spherical symmetry following [1.2.12]. A

B
)‘.
Ké
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generalization cf Fano's expression [1.3.20] can be given for arbitrary / by the multipole

expansion of the spin density matrix (79)

27
pl) = 2.6 ®4®) ()
k=0

[ Ik 'l
=@I+)VE + 2 2oy ®) | [1.3.25]

L k=lg=-k

in terms of the multipole polarizations of rank &
650 = (4011 )= (40 =r{gP D o)} [1326a]
L) = ¢%9()" = (-DF-9 g%-9(s) [1.3.26b].
In general ¢ &) = (?(k)(1)> is the 2%-pole moment of the spin angular momentum

and labels the associated g-quantum coherence dictated by the symmetry in [1.2.15b].
Taking {1.3.25] as the form of the spin density matrtix, the system of differential equations

[1.3.19] or the Liouville equation are equivalently expressed by

a¢q()

= (2l + 1)-12(<f;<">w)|[ LA a®TaeE () ns2m

kl!

‘which may also be written in matrix form

%‘553: 050 F =%¢§(r)«;<">9’(1) - [132m).
The ¢é‘ (£) make up the components of the column vector (1) in a Liouville -spac; .
spanned by the 2®n. : ) |

The ;;oncept of in'educibie tensor opérators is normally introduced for,represcnging
NMR Hamiltonians in order to\.simplify’evaluationr of matrix elements via the Wigner-_
Eckart theorem. (30, 31) Other bases such as the [IM)}IM '| are in common use and are

paricularly convenient when the Hamiltonian is diagonal in this re—presentation (such as



32

when the Zeeman interaction with an external magnetic field dominates). These become
unwieldy for the complete description of a multi-pulse NMR experiment owing to a lack
of rotational symmetry. Bases built from simple products of the Cartesian operators have
been employed. (21, 32) These “"product” operators are also not irreducible under

rotations and generally require the formulation of often cumbersome commutator tables.



Chapter4.  THE NUCLEAR SPIN HAMILTONIAN

The fact that most NMR experiments can be discussed within the context of a
drastically simplified spin Hamiltonian is one of the most impressive attributes of the NMR
experiment, allowing degrees of resolution only theorized about in other forms of
spectroscopy. With the representation of the spin density matrix by a finite dimensional

Hilbert space, comes the ability to extract closed solutions for even the most sophisticated

experiments.

The Zeeman Hamiltonian

' The Zeeman interaction is linear in the single spin operators and consists of the
interaction of nuclear spin with an applied external field. Generically, in the context of
NMR, this consists of interaction with the static magnetic ﬁeld‘BO and the response to a
'time-dependent radio frequency (r.£) field

#z (1) =—I - B(t)

- @Z?‘“"’U)Bm(t) [1.4.1]

‘where I'is represented by its spherical components %" ™(I). The z component of B(¢) is
static while the x and y components account for the r.f. pulse of controllable duratioh T

' B(t)-.zi Byz+xBj cod{ ot ~ @) - yB, sin(or - ¢} [1.4.2],

where @ is the phase angle through which the xy oscillating field can be shiﬂéfi. Before

attemptiné to solve the Liouville equation it is useful to render [1.4.1] time-independerit.

By transfdrmation into a rotating frame at thq_ radio frequency @ = jaBl
#=U 'lﬂ'(t)U =’ X g(f)e~ ' | _
= —7ﬁ(z§0 +XxB) cosg@ + yB sin gp) ' [1.4.3],



34

an allowable result, since the high field Hamiltonian % = fiay is invariant under rotations
about z, Casting the multipole polarizatioris into the ay rotating frame

¥ (1) = 70 g5 (1) [1.4.4]

and using [1.4.1] in spherical tensor form, leads to the general form (79) of the Liouville

equation in terms of a frequency offset 4o =@y —

2k
a¢q;i+r) 2—12: {I(I+1 «?(k) "7;(1)“1;(")))
){ eidwr—icp(_l)k—q[fq ; ;"J_ e-iAmqup(_l)k—q(-kq _11 :JJé‘é’f(t)

__E_erdwr-:un k+q k q+1) ¢q_1(t)+?e":Amr+l?J k+q+1) ¢q+l(t)

Y ap
= zgq? 110N | [1.4.5].
Solutions to {1.4.5] have been presented for experimentally relevant conditions in terms of

the resonance offset and r.f. pulse frequency (33, 34). The pulse mixes the coherences ¢ in

a tensor manifold of rank & and vields a tranformation valid for any spin magnitude J
$E(t+7)=2osla+o,B.a-p+7)5 () [1.4.6].
ql

Assuming an on-resonance {Aw =0), "hard" pulse of short duration so that
evolution due to internal coupling can be neglected, @ and S reduce to

T

a==; B =ayr [1.4.7]

which islltl.1e case of a resonance rotation thr_ough the angle g, .in the rotéting frame
- defined by [1.4.4] and corresponding to quantum absorption of energy. In this case of
pure hard pulses, the effects of a pulse or pulse sequence can be mathematicaliy simulated
by repeated rotation of the polarizations by [1.4.6]. Relative differences in phase between
any two pulses in a pulse sequence are accounted for by an appropriate selection of the

angle ¢,



35

Broadening by Magnetic Dipole Interactions

Magnetic dipole coupling between various nuclei in a sample contribute to the
width of the Zeeman resonance line. The quantum mechanical interaction between two

magnetic moments I; = y;Ail; is reflected in the Hamiltonian giving the dipolar

contribution for N spins
NNz 2 3gm 7 1
1 - H 3(# “h n)(.u I‘rmn)
Had =52 Z|_ I J [1.4.8].
m=1n=1 rmn g rmn ="

Instances of m = n are excluded aﬁd the factor of 1/2 ensures that each relevant
contribution to the sum is counted only once. Expressing the internuclear vector 7, in
terms of the polar angles between the magnetic field By and r,,,, (&,,,) and the azimuthal
angle with respect to the x-axis (@p,), gives [1.4.8] in terms of the irreducible tensor

operators

,
Fg=hp D FZI42Da . - [1.4.9].

m#n g=-2

Spin operators are contained in the functions A,S,z,,) where the nth spin has components

I, and I.,, while the orientational information is in the F,g,)
Arstzn)o = dmn{lzmlz —%(I-i:mf-n +I—mI+n))

FH0 =1-3c0s2 Gy

A.Snngﬂ: "%dmn(IzmIin +IimIZﬂ)
F}%)il =sinf,, Cosemneq:i?”" ) ’ [1.4.10&]‘

E e s
F’gl:.!):f:z = sinz emnenig;m" : = N

where
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4, = LmZn [1.4.10b]

2r,g,,

is the dipolar coupling constant in frequency units. (31, 2/) In the high-field
approximation, only the terms that are secular with the representation of the Hamiltonian
are maintained, namely those with g = 0, resuiting in the commonly used truncated form of
[1.4.9]

Ry =§ > |1~ 3057 Opan {3 Ll e = I I [L4.11].

m=n

Further simplification is obtained for heteronuclear spin systems, in which the flip-flop
terms [, J_ appearing in A®)? of [1.4.10a] are also dropped.

The method of moments proposed by van Vleck (335) decomposes the resonant line
without actually solving an eigenvalue equation, a method that circumvents the difficulties
arising from the non-commutativities present in [i.4.11]. Generalized #-spin basis states
have also been proposed, in various forms, to arrive at a more detailed account of the
dipolar field. (36) However, resolution of these individual interactions in the solid state
depends upon. orientational averaging of F(2)0, and is further exacerbated for I > 12
where contributions from electric quadrupole interactions usually dominate the spin

Hamiltonian.
Evolution under the Electric Quadrupole Interaction

Spin-bearing nuclei of 7 > 1/2 do not have spherical charge density and the
electrostatic effects of re-orientation of the nucleus must be accounted for. Non-spherical
charge densities interact with the electronic potentials #(r) around the nucleus. Following
the development by Slichter (3:!), the cl;ssical interaction energy of a charge of density o
with ¥(r) is "
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E=[olW(dr (1.4.12],
Expanding ¥(r) in a series about the origin, chosen as the centre of mass of the nucleus,
gives
v 1 3
V(r) =V(0)+IinZxT+?!izjxjij--- [1.4.13a]

E= V(O)_[od'r + ZV,-Ix,-odr +%ZPU J-x,-xjodr-l--- [1.4.13b]
i i

where the indices /, j run over each of the x, ¥ and = coordinates and

v v
V.= —o = ~
d ax,- Vu a“x,-o"xf

The first term is the electrostatic energy of the point charge nucleus. Since the centre of .

mass of the nucleus and the centre of chargé coincide, the second term involving the ‘

electrical dipole moment of the nucleus, vanishes. The third term is the interaction of the

nuclear quadrupole moment { with electric field gradients about the nucleus. Considering

only these tensorial components F;, it is convenient to define an expression for the

quadrupole operator 2 in terms of the quantum mechanical operator for the charge

density given by 5(r) = e 5{r-n)
k
2= I(Bx,—x ;= J;jrz)d‘{r)dr

| = eZI(Bx,-xj, - 5,3-1’2)5("‘ tk)d’l'
k

= eZ(3x,-kxjk - 5‘}'?]‘2) ) [14 14]
k

where % runs over the protons in the nucleus. In what amounts to changing from the

position to the momentum representation (being mindful of the commutation relations

[1.4.13c].

B
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[1.1.2] and {1.1.15]), it can be shown that the matix elements of [1.4.14] can be

equivalently evaluated as eigenvalues of angluar momentum states

<L\{i e§(3x,-k -5yn2)

Here K is constant within a fixed nuclear state i.e. is independent of both the spin labels M

IM'>— <IM‘ uj-uf 512|M'> [1.4.15],

and the co-ordinate indices. Given this, for the matrix element wherein M = M'=1 and

i= j=z, K can be expressed in terms of the electric quadrupole moment Q of the nucleus

eQ= <II

yielding the electric quadrupole contribution to the Hamiltonian

eZ(l‘:ﬁ —rkz)
k

11) (11]31. 12|II) KI(2I-1)  [L4.16]

- The factor of 1/6 is a direct consequence of the relationship between [1.4.13b] and

[1.4.14]. ChooSing a set of suitable axes local to the nucleus leads to the restriction that
Vi=0 if i=j. In this so called "Quadrupolar Principal Axis System" (QPAS)

representation, the field gradient tensor is diagonal and the above expression can be

Vie =V

rewritten by further defining the quadrupolar asymmetry parameter 77 = ——V——‘W- and the
maximum component along the local axis of quantization eq =V,
QQ{z_ziz_zT |
=T % - 3 (12-13) ] [1.4.17b],

thus reducing the problem to the consideration of just two parameters.
Solution to the evolution of a spin system under % may not be straightforward in

the presence of an external magnetic field, owing to the difference in the symmetry
between the Zeeman and quadrupole Hamiltonians. Making the assumption that the field
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-

to which @ is coupled bears cylindrical symmetry sets 77 =0 and exact solutions to the

combined effects of #p and %z can be found. Further, a clear distinction should be

drawn between the principal z~axis of the QPAS and that defined by the external magnetic
field. Applying the positive rotation through the angle &; ) between the local director and

the lab axis
I.=Iscos8;p+Iusinb;p [1.4.18]
to [1.4.17b] (77 = 0), produces a result in terms of the observed first order splitting @, in

the laboratory z’-axis
(mo)= 13- 1]

— e2q0 (3cos2 6rp- 1\
“a - 2 J [1.4.19].

In this regard, E); is interpreted as being proportional to the small net projection of the

axial component of the field tensor (V. in the molecular frame) onto the laboratory axis.
It would seem most convenient to seek solutions in the |M)(M’[ basis as it is here that
[1.4.19] is diagohal. However, specific solutions for 1< 7 <9/2 have been presented and:
discussed in the multipole formalism (37) and a general solution for arbitrary spin [ has
also been presented (38). Explicit solutions relevant to this thesis will be developed in

PART 2.
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Chapter S.  DENSITY MATRIX FOR A DISSIPATIVE SYSTEM

For a quantum mechanical system that is closed, or isolated from interactions with
its surroundings, there exists a time independent Hamiltonian giving the time evolution of
the system defined by the unitary transformation {1.3.24] or equivalently by the Liouville
equation [1.3.27]. (22) Under such an evolution, pure states are always transferred into
other pure states, meaning that mixtures are neither created nor destroyed. The
cohventional framework of spin dynamics in terms of some set of basis operators is an
idealization, however, in that all physical syster_ns are somehow interrelated and it is never
possible to completely isolate a system. In this chapter, the interaction of a spin system
with its surroundings is formaily introduced. The Liouville equation describes a reversible
~ time evolution of the microscopic particles. Since relaxation pﬁenomena are macroscopic
and irreversible, it is left to account for fhe gradual evolution of a spin system (typically
polarized) towards thermal equilibrium. In a strict account, both lattice and spin states

" must be accounted for in a total density matrix as in [1.3.3].
Seéond Order Pertﬁrbation Formalism

For a spin system [ interacting with some unobserved lattice L, a total Hamiltonian

is given by
F=F +R +F [1.5.1]
where #, = %; +%_ is a static secular term acting on both the spin and lattice variables
and @ is a small time-dependent perturbation coupling the spin to Vthe lattice. The

equation of motion of the density matrix is, as suggested by [1.4.3] and [1.4.4]

ihg% =[%o +(2), p(1)] | [1.5.22]

. . . . - Lot ~Lay
or, in the interaction representation whereby #(¢) =e? ¥ ™ A
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hﬂ-—— [#(0), 5()] [1.5.2b].

Integrating [1.5.2b] from =0 gives

B(0) = o0 - L |40, plear [1.53).
0

Successive approximations are obtained by iteratively substituting 3{r) for A(s") in

[1.5.3]). To second order, this perturbative procedure yields

2% . .
A = I [ﬂﬁ(r , p(O)lar+ ("g) I f [?l(t'),[?ﬁ(t'), p(t')]]dr'dt' [1.5.4])
, 00
and subsequently taking the time derivative gives

ﬁe(_‘_)._&_[g,l(,) p(0)] +(2) j[;.yl(;) (B oellee sy

Conditions of Reversibility

At this point, coupling of the two systemé may still result in a reversible exchange
of polarization, since no explicit allowance for irreversibility has been made. It is therefore
aSsumed that L has so mziny degrees of freedom the the effects of coupling with
I dlSSlpa.te qulckly enough f or coherent energy transfer back into 7 to be neglected. Thus,
L remains determined by \a distribution of states in thermal equilibrium and any
correlations ( beyond establishment of a spin temperature ) between I and L are ignored.
In the absence of % (say at ¢ = Q) the spins and lattice are uncoupled and the total density
operator consists of a product p(0) = p;(0) o, (0) ofits si‘)in and Izit;‘tjce contributions.

Under these conditions, the reprgsenmﬁon of the latticq.f/ig fgiven by a Boltzmann

distribution akin to [1.3.7]
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n
o
de /AT
!
and a reduced spin density matrix p;(1) is formed by taking the trace over all lattice

variables, hence
tr pli) =;r}:{p; (1) o (0)} = oy (0) [1.5.7).

This is the basic condition of irreversibility, since the lattice is given by [1.5.6] at any time
t. Recognizing the commutativity of the lattice and spin operators, expansion of [1.5.7] in
the high temperature approximation indicates that, as regards [1.5.5], it is more suitable to
consider not just the components of the spin density matrix, but the polarization relative to

the thermal average ( )T

pr) > p; (f)—(P1(0)>T [1.5.8].
Time Correlation Functions and the Markoff Approximation

In order to follow the details of the evolution of the density operator, it is now
neccessary to consider an explicit form of the interaction Hamiltonian. It is assumed that

#) can be expanded into tensors of general rank -

@y = LR 40 ' [1.5.9]
| e

where F} are the lattice operators and the A% are operators acting on the spin

variables only. In the interaction representation
é‘l(t) = exp(-};(?; +?L)t) ﬁ"l exp(—-’ﬁ(?f +?L)t) = ZF(k) (t) A(k)(f) [\15\\5103.]
k Ta

where



FR@) = exp( )Fm e:(p( Lr) [1.5.10b)

A(k)(r) = exp(%’#,t)zi(k) exp(n-};"ﬂ-’,-r) [1.5.10¢].

Substituting [1.5.10] and [1.5.7] into [1.5.5] and taking advantage of the fact that the

F%) and the 4%) commute gives

ép i ! ] -
e -‘Z[‘z (F90 00}{49) o100 - PJ(O)A(“(t))J

a

{ ] il | {FPWF) o, ) A0 40 o1 (0)- 40 £y 1) 4010)

k1O

-?{F(’)(w)p“') 0 O} AR oy () 4P e - p,(r)A(f)(:')A('f)(:))]dp [1.5.11).

The trace in [1.5.11] is defined in terms of the eigenstates of #, , defining the expectation

value as,

(FR@0)={F ¥ o0} =0 [1.5.12),

This vanishing time average causes #(7) to have a vanishing ensemble average as well,
equivalent to the assumption that #{z) does not produce an average frequency shift.
Such a restriction is somewhat misleading, however, as any stationary shift can be

incorporated into a reconstituted %, { as will be illustrated in PART 2 ).

of great physical importance are the time correlation functions
(F(ﬂ(z)p(’)(r))=,E{p(k)(z)F“?(z')pL(o)} *[15.13)

which describe the average correlation existing between physical interactions occurring 5t
different times ¢ and ¢’. Variations of the perturbating Hamiltonian can be thought of as
being due to some physical movement of the system. In [1.5.13] it is assumed that the
ensemble average depends on ¢ and ¢’ only through the difference 7 = ¢ — ', indicative of a

perturbation that is effectively stationary. (39) It has already been decided that the lattice



quickly dissipates any effects of interaction with the spin system, that is to say, the lattice

quickly "forgets" any such interactions and remains in equilibrium. Over some short time

interval where molecular motions are not negligible, (F (K} £ (t—r)) will be non-

zero. However, as 7 increases this correlation becomes progressivley diminished until,
beyond some correlation time 7, the lattice quickly loses all memory of its former seif.

Thus [1.5.13] has 2 maximum at 7 =0 and vanishes for ¢ >> 7, in which case
(FR@FO- )= (FRONFPe-))=0 (1514

The correlation time is a function of the lattice and intimately dépequ upon the nature of
the system under observation. It might, for example, be interpreted as the mean time that a
lpair of nuclei are in close enough proximity to allow for interaction of their respective
nuclei, before diffusing away. Any stress tﬁat would influence the efficacy of this
mechanism would manifest itself as a change in the correlation time ( unless accounted for
othenﬁse )- | \ |
. Tt is, however, the macroscopic behaviour of the system 6n the time scale of .spin
dynamics that is of interest, rather than the detailed correlations of the ﬂuctﬁating field. If
T, is much smaller than some characteristic time for relaxation, required for p;(f) to
change appreciably, then o
pf(r) 40) , [1.5.15]
which is a satlsfactory reSuIt, since it is expected that f#;(t) is small causing- g, (t) to vary
slowly. Substitution of [1.5.15] into [1.5.11] is the Markoﬁ' approxlmanon, unplymg that
no attempt can be made to seek resolution. of the dynarmcs of the system over short time
| mtervals comparable to z,. Taking into account the arguments mtroducmg [1.5.14), “the
upper limit of integration of [1.5.11] may be extended to 't = o with negligible error under
the Mﬁrkoff approximation. Dropping the sta:tionary terms [1.5.12] and recognizing that
dr = —dt’, modifies [1.5.11] to give

A%
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(1) _

o ZT[ FOQFD (- o)) 4@ 4D (=) py () - 4V (1 - 7) py (9 49 ()

et
(FO (= ) PO D) AB0) o (0 ADe ~1) - (04 —r)A(k)(t)}jdr [L5.16].
Applying [1.5.10c] to the matrix elements between the eigenstates |a) of #; gives
(| AR (Dl a’) = &%t (| 49| 7) [1.5.17a]
for which
hopg =Ey—E, [1.5.17b].

Using this notation, the components of the correlation function are resolved

Gaawﬁ'(’)=§<“["(k)|“>< pla)s)F FOF Peva))

- E(a|,4(")|a")(ﬁ '|A(_”|ﬁ)gy(r) [1.5.1831,

the Fourier transform of which yielding the spebtral density at frequency @

-

'Ja_aﬁﬁ'(w)=TGaayyﬂ:(r)e“”"dr N sasy)
-0 : .

wheie even symmetry about the origin has been assumed for the correlation function.

Co‘mbining [1.5.18], [1.5.17), [1.5.16] and [1.5.8] gives the final result

aPI aa'(t)

where the Redfield relaxation matrix elements (40) are éiven as

ffa;;ﬁﬂ' ﬁ%z[fa}aﬁr(%?éif) ¥ J_aﬁaﬁ-"(%ae)

: -lﬁ'_’:“\\

~bapr T a0 ) = e ZJraw'(%f‘)j N nsay
y . 7 :

[N

5t a’aa'pf,aa'(t) +!ﬂz Raaﬁﬂ'(pl:ﬂﬁ'(t)—(pl,ﬁh'(o)>) . [1-5-19]‘.
B | _

L]

{0
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( Note that high frequency oscillations have been neglected as only terms satisfying

a—a’'=f§ — B’ are expected to contribute to [1.5.16].

The elements J,g,4+ can be eviuated by use of the Wigner-Eckart theorem

[1.2.13]
ey 1 .-
J o\ @ap ) = Z[T O o e P T a)J [15.21]
where |
<1a17;“"" 1;3) = (-1) '“(__L | fl é](.rl[a;(") ||I> (1521

and the reduced matrix element is as given in [1.2.14].

Quadrupole Relaxation due to Molecular Reorientation

Taking [1.5.9] to represent the tensor coﬁpling between the nuclear spin and the

electric ﬁgjdfgradient at the nucleus

Ve
-

#g = 2, FP9(2) 4P9(1) [1.5.22)
q

2 T
___i_?Q_[ (200, 1 4022, 42)-2 ]
| =aGI-pL4 +73(‘4 +42)
where the lattice and spin operatdrs are both of rank & = 2 and £2 specifies the set of
_ i

Euler angles defining the orientation of the molecule with respect to the laboratory frame.

The spin operators are defined as

AP =312 _1(1+1)

4222 6 2 [1.5.23].
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. The lattice operators reflect the magnitude and symmetry of the electric field gradients,
Taking the correlation function of the field gradients surrounding the nucleus as a simple

exponential, identical for all tensor ranks

Saapp (T) = ?_:,(F B P (¢ + r)) = ex :_—t]) [1.5.24]

is a crude but reasonable approximation. The isotropic spectral densities at the Larmor

frequency are then

ncoorg

(equ 2( ’?2\(- 27¢ ;
J(na) =RI‘5LI(2I—1)&) L”?Jhsf(worc)z " lnooz.)?

4

27

2 )
;ct e 0% 2J | [1.5.25].
l+(nwoz'c) 1+(nw0z-c) i .

Here C is the second order quadrupolar interaction constant. The real part of [1.5.25]

contributes to the relaxation while the imaginary part is a small second order dynamic

frequency shift.

o

(&1

Y

£
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PART 2

MULTIPLE QUANTUM FILTERED NMR STUDIES OF I=3/2 NUCLEI IN
BIOLOGICAL SYSTEMS: EXPERIMENTAL EVIDENCE AND THEORETICAL
LINE SHAPE ANALYSES DESCRIBING ORIENTATIONAL ANISOTROPY

Chapter . INTRODUCTION

The application of NMR methods to problems in cellular biology has significantly
contributed to the evolution of the modern concept of the cell. One area of interest that
has enjoyed a renaissance of late concerns itself with the environments and dynamics of
' tﬁe ions found in the proximity of the cell membrane; most notably 23Na* and 39K+ (both
I'=3/2). Nuclear magnetic relaxation of quadrupolar ions provides a sensitive method for
studying the ion binding properties on a molecular level, in colloidal and other
macromolecular systems, For examble, the compésition of the fluid within the cell differs
markedly from that of its natural medium. The intracellular cytosol contains a host of
proteins and other macromolecules that endow it with a much more viscous consistency
and suggest differential,‘?possibly identifiable, binding sites within the cell. The cell
membrane itself is also the object of many investigations as its role in the regulatory
. processes of the cell continues to emerge. Transmembrane ionic gradients can be

measured using methods that can distinguish between intracellular and extracellular ion
pools. Thus, differences in NMR visibility of the ions in question would presumably
bécome .manifest in the NMR signal. (42) Since the eﬁrliest experiments (43-45) the
:chaﬂenée has been to identify and characterize the ion binding sites, with the aim of
‘developin‘g a no@-invasive methodology for studying cellular ionic processes and to

produce a physical model of ion binding sites. ( Without committing to a definition of
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"binding", the term will be used to describe some association resulting in restricted
molecular motion. )

The common assumption in these experiments is that the ions are in large excess
relative to the available binding sites and 2 substantial fraction of these ions are in an
aqueous isotropic environment. It is reasonable to assume that these "free" ions undergo
chemical exchange with the ions associated with a macromolecule or the cell membrane,
Overall relaxation characteristics of the tons under consideration are thus strongly affected
by the occurrence of said bound states, exchange dynamics, local fields and molecular
motion, pi‘oviding a link between the spin dynamics and the molecular properties of the
systerr.

Redfield theory is often sufficient to describe the spin relaxation of quadrupolar
nuclei. In isotropic phase, where the residual quadrupolar interaction is averaged to zero
(co_q= 0), Redfield theory applies to all but those systems characterized by very long
rotational correlation times, 7. (46, 4 7) Provided 7, is not in the extreme narrowing limit,
it is possible to induce the fo‘nﬁgj.i'c{m of multiple quantum (MQ) coherences in an NMR
experiment owing to the presence of multiexponential relaxation. (46) Coupled relaxation
transfers magnetization in higher rank multipoles which can subsequently transforrnéd into
MQ coherences by r.f pulses. Multiple quantum filtered (MQF) experiments, consisting of
appropriate pulse sequences and phase cycling, may thus be used:to directly distinguish
pools in which the nuclei are bound or otherwise associated with slowly rotating
macromolecules, since single exponentials describe the uncoupled relaxation of the free
spin concentration . In many cases the static quadrupolar interaczgjon term of the
Hamiltonian contains a contribution from a non-zero quadrupole splitting resulting ﬁoﬁ
an aniso\tr:ropic distribution of tfne electric field gradients (EFG) in the sample. In a
macroscopically oriented sample with local anisotropy, a static quadrupole splitting results

if the diffusion of the spin-bearing particle is slow, i.e., the residence time within each
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"domain" is much longer than the inverse of the quadrupole splitting. In this context,
"domain”" may be a microcrystallite as in some liquid crystal samples (¥8) or may be a
nomer for the long orientational correlation length of some biomolecular associations. The
splitting within one domain is then determined by the orentation with respect to the
external magnetic field and the spectrum is the average over many domains.

Observations from some MQF experiments of biological tissue are best interpreted
in the context of this latter examplé. (42, 49-51) Rooney and Springer have produced an
exhaustive review of tissue resonances of / = 3/2 nuclei (52, 53) where the influence of a
residual quadrupole is discussed from an experimental perspective. Subsequent efforts
describe specific studies of 23Nat in biological systems. (54) More general considerations
include chemical exchange between the bound sites and the isotropic surroundings; some

theoretical studies examine the modulation of both -a')—; and 7, by chemical exchange by

means of a discrete exchange model (DEM). (55-58) This allows discussion of the
_ interm'ediate. and slow exchange regimes since in the fast exchange limit, macroscopic
parameters are found to be weighted averages of the exchanging sites (56, 58) and may
therefore be discussed in the context of Redfield theory. Eliav and Navon have defined the
limits of Redfield theory (38) in terms of the MQF experinient By extending their general
treatment of the quantum Liouville equation to describe the contributions of the higher
quantum coherences to the line shapes of a single spin pool over a range of ¢, values for
an isotropically oriented system.

This section will summarize the experimental methods used and observations made
in the more recent NMR studies of 23Na* ion environments. Despite the large number of
NMR experiments conducted and the diverse biological systems observed, a rather limited
amount of information can be extracted from such a study withoﬁt a detailed

understanding of the dynamics of the spiri system. The major theoretical models currently
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exploited to help explain the experimental findings will also be discussed as well as the
method developed by the author to simulate these 23Na line shapes.

Nuclei with electric quadrupole moments ( /> 1/2 ) are usually strongly affected
by interactions with electric field gradients to the extent that this mechanism dominates the
evolution of the quadrupolar nucleus. These interactions harbour much information
regarding the dynamics of the spin system under investigation that cannot be tapped by the
typical single quantum experiment. The isolated 7 = 3/2 nucleus can, in principle, undergo
single, double and triple quantum NMR transitions { see Figure 2.3 ). The states involved
in these transitions may be brought into coherent superposition by suitable manipulation of
the system, which is the realm of multiple quantum NMR. (21) In isotropic phase where
the extreme narrowing condition is met 1.e. the correlation time of the fluctuating field that
induces relaxation is much shorter than the inverse of the Larmor frequency, ayr, <<1,
the .expressions.for the longitudinal and transverse relaxation rates may only be described
by single exponential decays. (30, 59, 60) However, if the nuclei are associated with
macromolecules or are subject to the conditions of similarly motionally comstrained
environs in which the correlation time becomes more appreciable, the coupled relaxation is
muiti-exponential and MQ coherence transfer processes become possible even in the
absence of splittings.

In an ordered environment where the principal axes of the EFG tensor are frozen
in a narrow distribution of orientations with respect to the magnetic field, the typical single
quantum NMR spectrum consists of a sharp central component (representing the transition
between the | 1/2> and .1-1/2> states) accounting for 40% of the total signal intensity
flanked by two broader components (the |43/2> & |21/2> transitions) with 30% intensity
each. The result is a single crystal type spectrum of three lines split by a residﬁal

quadrupolar coupling constant a. If =, is still much shorter than the inverse frequency of

this interaction, the EFG may become partially averaged, however the time averaged value
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of a; will still be non-zero. This is the situation observed in oriented liquid crystals and

oriented biopolymers. (6/)

It is much more common in biological samples to observe unoriented,
macroscopically isotropic sodium environments. Here, the effective EFG axes have
random orientations relative to the magnetic field and the contributions to the line shape

and the mechanism inducing MQ coherences must be carefully distinguished. In one

—_1 ; . o .
extreme 7, >>®,  and the single quantum spectrum is a superposition of the centre line

and a number of satellites resulting from a distribution of randomly oriented nuclei; a so

called powder pattern. In the other extreme 7, << m_q-l. Again, provided that the

correlation time does not follow the extreme narrowing limit, both longitudinal and

~ transverse processes exhibit muitiexponential behaviour. The resulting single quantum

spectrum consists of a superposition of narrow (40%) and broad (60%) lines at or near the
same resonant frequency. MQ coherences can be induced in this case owing to the
multie.tponentfal relaxation even though the residual quadrupole coupling approaches
Zero. (62, 63, 43) |

The MQ NMR results from the biological samples reported here display behaviour
consistent with this last class of conditions. There exists a residual quadrupolar coupling
that is typically less than a line width and a correlation time that is not in the extreme
narrowing limit. Dependence of these results on such seemingly benign considerations
such as samplg preparation reflect the inherent sensitivity of the experiment on the
quadrupolar interactions. It is the origins of these interactiéns on a cellular level that the
theoretical models hope to identify.

The state multipole formalism (37, 64, 66) describes the evolution of a spin system
in ﬁ multi-pulse NMR experiment. Relaxation under the Redfield operator of an isotropic
system has been described in the multipole basis (66) and the evolution of the tensors

corresponding to higher quantum coherences for I < 9/2, in the absence of relaxation, has



been explored. (63) More recently, Furd and Halle have investigated the spin relaxation of
nuclei in anisotropic systems in two dimensional quadrupolar echo (67) and inversion
recovery {68} experiments using the multipole formalism. They have also developed a
theoretical framework for the use of MQF for the detection of the evolution of various
MQ coherences, (60) again in the multipole basis. While the Redfield superoperator was
used to describe spin relaxation, Furd er al. ignored contributions from the off-diagonal
elements of the resulting relaxation matrices, assuming that the various components of the
observable magnetization were uncoupled. The resulting rate equations for the
components of the spin density matrix then relax independently and can be solved

separately. However, for cases in which E;; is less than the line width of the central line,

this approximation will not adequately describe the spin dynamics, since the magnitudes of

both 7, and E; contribute to the resonant lineshape, For example, we have found that the

second rank tensor generated in an MQF experiment, the presence of which is the direct
result of an orientationally anisotropic environment, displays strikingly rich behavior at

small a_)q- values that can be accounted for only if the contributions from these off diagonal

matrix elements of the Redfield equation are considered.
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Chapter 2. MULTIEXPONENTIAL RELAXATION IN I=3/2 SYSTEMS

In order to motivate discussion of relaxation processes, the results from a standard
Redfield relaxation treatment are applied to a simple one pulse experiment. As mentioned

previously, for / = 3/2 systems for which E)?: 0, there are three degenerate single
quantum transitions. Using the formalism of Jaccard et al. (¥6) the spin density matrix
2 (¢) may be expanded in terms of the single element product operators,

A(6)= 22 Brs(O)rXs] [2.2.1].
The coefficients 2,.(f) of the product operators represent the elements of the density
matrix in the interaction representation of the free precession Hamiltoman as in [1.4.3].
The four eigenstates can be re labeled; [1)=]3/2), |2)=[1/2), |3)=1-1/2), |[4)=|-3/2)
giving a set of coupled differential equations for the evolution of the single quantum

elements.

(dp1a ()

_dt { prat) |
ZP:C!;T(‘). - g® ;,z(,) [2.2.2]
dpsq () Lﬁu(r)J *

a ) |

for which the Redfield relaxation matrix in the single quantum manifold is calculated from

[1.5.20] | | _
~ —(J0:+J1 +J2) 0 J2 ]
RV =¢ 0 Hn+dy) 0 [2.23].
L S 0 (o +J1+J2)J

As per [1.5.24], Cis the second order qudrupolar interaction constant and real parts of the

spectral densities that contribute to relaxation are defined as
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27,
2

Jp=—————
’ 1'*‘(”"’0%)-

dependence of the single quantum (SQ) elements.

(@)
dt {0,

(1 o
@0l ol |
dt = Raiggi P2 (1)

S (D
dp{? (1) B3 ()
\ dt

/

with -

o R o o )
(1 I
RG.=| o R o
o o RY
Each combination of coupled SQ coefficients follows an exponential decay
AP0 = B (O explR{M1]

with the following rate constants.

1 ~_1 . .
R =-C(Jo+4y),. Bt )_ =75 P2+ P3e)

1 ‘ O
RY) =~C(Jy + ), P§_) = P23

I -' PN SR PP
R =~C(Jp+ 4y +2J2), P:S ‘ =75 (P12~ P34)

This is the simplest derivation of an evolution mairix that :may\:be applied with :

[2.2.6].

[2.2.7]

[22.8]

some success to the problem at hand. It is limited in that it cannotaccount for the residual

quadrupolar coupling and the dynamic effects that ensue. However, it does serve to
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illustrate the features of the dynamics of the 7 = 3/2 nucleus. The sum of the 12 and 34

(1

satellite transitions in an isotropic medium decays by exp(Rl t) while the centre 23

transition follows exp(Rgi)t). From this example it can be seen directly that in the extreme

narrowing limit, from [2.2.4] Jg = J; =J; = 27, and the elements ;'51(1) )

and ﬁ§1 decay
with the same rate. However, inducing the formation of MQ coherences in the absence of
a residual quadrupolar splitting is incumbent upon the existence of multi-exponential
relaxation, as will be presently illustrated. Evolution in the other g-quantum manifolds can
be derived in an exactly analogous manner to give expressions for 77 ( spin-lattice
relaxation of ;he populations in the zero quantum manifold ) and analytical exﬁressions fbr
relaxation in an arbitrary pulse sequence.

The density matrix may also be cxpressed in terms of normalized irreducible tensor
operators, (8, 9, 70) which provide a more physically intuitive model of the spin dynamics.
After an initial (x/2) y hard’ pulse applied to a system in thermal equilibrium
(correspondirig to a right-handed rotation of the component of magnetization parallel to -

the external field about the positive y axis ), the state of an / =3/2 system is ( [1.2.11])

‘where the factor recognizing the normalization of N spins has been omitted. Without loss

- of generality, the contribution of the g = +1 transition need only be considered

\Ef;(m=—-;-(J§|1)(2|+2|2)(3|+J§|3)(4|) - [22.109]

clearly showing that the single element operators appear with relative intensities 3:4:3.

While only the £ = 1 operator is present immediate!f following the pulse, coupling

- ‘m_eéhanisr'ﬁs can induce the formation of the higher rank tensors.

A =%(I_2)(.3I—|3)(4I) [2.2.10b]
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#2212~ V3123031 + 3 22
g = Jg(ll)(-l J312)G] +|3%4)) [2.2.10¢]

Yet, given the symmetry of [2.2.3], the coefficient of %! will be non-vanishing only if
the coherences associated with the outer transitions decay unequally. The time evolution

of {2.2.9] is found by incorporating [2.2.8]

ﬁ‘*”(r)='?(l1)<2|+13)<4|)e:cp[Rf“r]+12>(3lexp[R§”r] [2.2.11]

or, in the tensor operator basis

1;(3) 1

[ | 1
) 1
5D (1) = '71—_0"[7’( 01 3explR{" 11+ 2exp RE1) +—‘/—-E—(&‘<p[R1(l)t] - ex.p[Ré ":])J

Both transverse and longitudinal relaxation are characterized by two relaxation

rate constants. From [2.2.8] the relevant terms corresponding to the "fast" and "slow"

relaxing components for 75 processes are

1
Rl(l) = Ii,-f =_C’(J0 +J’1) :,(-I) =E=—C(JI+J2) [2.213].

From the evolution of the polarizations in the zero quantum manifold (46) can be derived

the 7} rate constants "

1

=-2C/, [2.2.14].
Tls- ’

©__1 : 0)
RO = — - acs R9 -
1 Tl ! Aol 2

Equationt [2.2.12] describes the transfer of coherence from the & =1to thek=3 .
- tensors in the single quantum manifold due to the effects of biexponential relaxation. The
dipole -operator ( rank one ) is responsible for the directly observable transverse
magnetization while the presence of the third rank tensor, or octupole spin operator,
implies that MQ ccherences are ;ccessible via the application of subsequent r.f. pulses.

The degree to which the signal is repreéented by the third rank tensor is proportional to
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the difference between the two single quantum rates. Ions which are subject to strong
rel-axation ( and hence, may exhibit lower NMR "visibility" ) will‘contribute more strongly
to the DQ signal than those ions which are weakly relaxed ( and more visible ). In the fast
motion regime, when the three relaxation eigenvectors are equal, the third rank tensor is
not produced. The absence of a second rank tensor is 2 direct result of an isotropically
averaged quadrupole coupling, a primary assumption in the above development. Clearly,
the effects of orientational anisotropy must be considered in a full development of the

dynamics of this spin system.

i$)

'

i

i
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Chapter 3.. RESULTS FROM THE MQF EXPERIMENT

The MQF s f.iuence consists of four pulses

D{0,%.0)- %~ D{0.7.0) - % - D B.¢1) o - D B, 02) - Q) [23.1]
Details of the evolution qf the components of the spin operators will be discussed in the
next section. For now, suffice it to say that multiple quantum coherences are de§eloped
subsequent to the third pulse and that the contributions to any g-quantum manifold may be
isolated by apropriate phase cycling of angles ¢,,.

With the production of higher rank tensors it is possible to filter biexponentiall=y :
relaxing nuclei through a state of multiple quantum coherence. (63, 46) MQF methods
may thus be used to directly distinguish between intracellular and extracellular sédium
e;;wironments as the latter are almost invariably in the extreme narrowing region. More
precisely, only those sites on which the ion is somewhat motionally hindered will
contribute to a multiquantum signal, In the ;:)riginal I;apers describing these experiments
both the double and triple quantum filter ( TQI ) techniques have been described in detail,
(63, 46) It has been shoxin; that the triple quantum experiment generaliy enjoys an increase
in S/N, corhpared to DQF experiments. (70) However, the DQ analogue has been used
almost exclusively, presumably in anticipation of the production of a second rank tensor
contribution to the line shape, but also because of :‘single‘ quantum leakage aris'mg from
experimental "non-idealities".

Sodium and potassium are distributed inhéinogeneously in tissue; the sodium
concentration is lower inside cells than outside whiI-e the reverse is true for potassium.
These ionic gradients are supported by metabolic processes and are sensitive to cell injﬁry. .
As alluded to previously, differences in the NMR visibility of these ion bools could
possibly provide a non-invasive means to monitor intracellular and extracellular ions. One

non-invasive approach would be to utilize the strong dependency of the quadrupolar
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signals on relaxation rates. While there is no direct evidence to date that the ion pools can
be so distinguished, transient decreases in the 23Na signal from cat brain undergoing
seizures have been reported, (7/) but the technique has not met with universal success and
may not be a reliable method for the study of in vivo ion gradients. Another study on in
situ rat brain notes changes upon death in the DQ NMR signal that are consistent with
differential relaxation, (42) After death the line shape is typical for a biexponentially
relaxing nucleus, going througlh'a maximum for some optimal preparation time. Before

death, however, the line shac; can no longer be fully described by a biexponential

_ relaxation model as it adopts what'appears to be a dispersive component. The change is

presuma,b_lxj_ due to the breakdown of the metabolically sustained ionic gradients, with
more pronounced differences noted in the DQ experiments. In these results reported by
Lyon et al. (42), in contrast to the small decreases obsérved in single pulse spectrum
following death, large increases are observed in the DQF sodium spectra. This is
consistent with an influx of sodium into the cell following death. If quadmpolﬁr relaxation
is more effective for intracellular sodium-than for the extracellular pools, the intracellular
sodium would have a reduced visibility in the single pulse spectrurﬁ and an enhanced DQ
signal owing to greater pr&iuction of the third rank tensor.

One proven, but invasive, methc;d involves the use of shift reagents: chelating
agents that change the chemical shift of the ion of interest. Their effect on the
physiological processes of the cell are poorly understood but they do serve to effectively
distinguish intracellular and extracellular ion pools. i:lxperimental results produced in

collaboration with Dr. Joe Tauskela ( then of the Montréal Meurological Institute ) are

. now introduced. (72) Figure 2.1a shows the effect of addition of the shift reagent

 Dy(PPP),7- on the single quantur spectrum of 23Na in human red blood cells, The shift

reagent does not permeate the cell membrane and thus isolates the intracellular signal from

. extracellular signal. Nystatin is a substance known as an ionophore which breaks down the

ph;(siologit;ally mairtained ionic gradients, thus simulating the death of.the cell and
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reproducing the requisite influx of Na*, as discussed above. Both signals contain the
membrane bound contribution and that from the isotropic medium. Figure 2.1b shows a
DQF experiment ( which excludes the free sodium ) with the evolution time t = 0.014s,
performed on the same. sample. Prior to the general acknowledgement of the influence of
orientational anisotropy on such lineshapes, the experimental protocol for the
determination of transmembrane ionic gradients consisted mainly of relating the net
change in the DQ signal, upon the addition of Nystatin, to changes in the concentrations of
bound sodium in the cell. This technique of relating the signal amplitude to chemical
concentration, works reasonably well for narrow lines consisting of contributions with the
same relaxation characteristics. However, as Figure 2.1c shows, for shorter values of the
evolution time there exists an additional contribution to the signal that is out of phase with
the previously well-explained DQ signal. Here the signal amplitude is a meaningless
parameter, without a proper account of the origihs of all contributions to the resonant line.

Figure 2.2 shows the results of a similar experiment, with theaddition of a relaxation

reagent that effectively removes the contribution from the sodium bound to the external .

cell wall. At short evolution times, the frequency domain spectra consistently display two

independently relaxing contributions. It is interesting to note that in order for these results

to be reproduced, the red blood cell sample must be centrifuged, thus packing these disc

shaped bodies and imparting some degree of orientational order.
The production of even rank tensors in these experiments is thus experimental

evidence for the existence of order in biological tissues. In the study by Lyon et al. (42)

these anomalous line shapes were tentatively ascribed to dispersive contributions. Almost -

identical line shapes have been observed in the inversion-recovery experiments performed

r
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Figure 2.1. Single quantum ( SQ ) and doubie quantum ( DQ ) spectra of Na in huriian red
blood cells (72). Addition of a.shift reagent to the sample isolates the contributions from
the intracellular and extracellular spin pools, while Nystatin breaks down the metabolically
sustained transmembrane ion gradients, simulating the death of the cell. At short MQ
preparation times, the DQ signal adopts what appears to be a dispersive component.
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Figure 2.2. DQF spectra of human RBC's in the presence of.a relaxation rggi:gent that
" removes the contribution ﬁ'qm the ions bound to the external cell wall. At ,'f’short MQ
preparation times the spectra consistently display two distinct contributions to the signal.

(72)
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by Price (73, 74) on LiCl owing to a combination of dynamic frequency shifts and
dispersive components near the null point. In the case of the biological samples discussed
here, the dependence of the ratio of the broad and narrow components of the line on 7 can
only be explained by the production of a second rank tensor and thus indicate the presence

of orientational anisotropy.
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Chapter 3. SIMULATION OF THE MQF EXPERIMENT

Here, solutions for the time e-olution and relaxation of the eigenvectors of the spin
density matrix for [ = 3/2 subject to a residual quadrupole coupling, are given. Cast into
the multipole basis, the resulting rate equations may be conveniently used to generate an
analytical response function to a general h~ * ulse sequence. The response to a typical

MQF experiment is dicussed in the contex: - ie tensorial contributions to the line shape.

Equations of Motion

Applying the high field approximation, the Liouville superoperator [1.3.27] is
diagonal in the direct product basts. The static quadrupole coupling is introduced as a first
order perturbation of these stationary states. Assuming the relaxation may be sufficiently
described by Redfield theory, the evolution of the spin density operator in the absence of

an oscillating r.f. field is governed by

P . '
== p—iRp [2.3.1]

where £ is generated by the static Zeeman interaction and the secular contributions from

the quadrupolar Hamiltonian [1.4.19]

4=%[#0 +(#p), ] B [2.3.2).
The effect of this splitting on the stationary states of 7 = 3/2, along with the conver_ltion
used for labelling these states, is shown in Figure 2.3. Relaxation is treated as a second
order perturbation, as discussed in § 1.5, and The Redfield relaxati:on superoperator, R, -

factors into distinct blocks for each of the four possible #-quantum manifolds of the /=3/2
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Figure 2.3. Schematic representation of the [ = 3/2 energy eigenvectors subject to a
residual quadrupolar splitting showing the various muiti-quantum frequencies.
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spin, with matrix elements given by [1.5.20]. (These have been given eisewhere for the / =
3/2 case (60), however, a MAPLE routine has been developed for determining [1.5.20] for
general / and is given as an appendix to this thesis. ) The spin density oﬁerator is expanded
in terms of the product operators as in [2.2.1] ( but not in the rotating frame),

o) =3 p ()] [2.3.3]
with the time dependence being contained exclusively in the coefficients p,(¢}. Unlike the
Liouville superoperator, the relaxation matrix has off-diagonal terms involving the non-
secular spectral densities J, and J, which couple the operators governing the relaxation

of the satellite lines. (73) If the ZJ; is large relative to the width of the central line then the

elements of the equation of motion [2.3.1] decouple and may be treated independently.
(67) For the quadrupolar spin in an orientationally ordered environment, the spectral

degeneracy of the 2/+1-n n-quantum coherences is lifted for an} ;q- # 0 ( see Figure 2.3 ).

Incorporating the effects of this residual 5,; gives for the evolution of the single quantum

coefficients ‘
(—i(a}b +d)é]—(.fo +J1+J2) 0 | Jay
—(ig+R) = CL o —iaf ~(Jy + /) 0
A 0 (g — ) = (Jo + Iy + )
[2.3.4).

For convenience the resonant frequencies have been reduced by C, i.e.,

Wy = el d=— [2.3.5].
In the treatment of the isotropic % = apE where E is the unit matrix, i< and R may
then be treated and solved separately’ as shown in § 2.2, To reiterate, the off-diagonal
relaxation terms are relevant whenever the detected quadrupolar splitting s comparable
to, or less than, the width of the central line, In systems where all spins aré homogeneously

oriented relative to some external reference axis, as in crystals and oriented liquid crystals,
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there exists a single valued _. In samples exhibiting local anisotropy (47), the splitting

observed in the laboratory frame is an average over all possible alignments of the local

director of the EFG. However, if the splitting shown by the "powder" peaks is large the

relative weight of regions exhibiting a small @_ is minor. Orientations in 2 heterogeneous

environment can be assumed to follow a distribution about the mean value -a;; with a

width Aw,. Taking chemical exchange into consideration, if exchange of a single spin
between anisotropic sites with different @, values is assumed to be slow, then the

observed value of E); is one that is moderated by exchange with unbound fraction.

The spectral densities that determine the evolution of the diagonal terms in [2.3.4]
are not strictly real valued and contain a second order dynamic frequency shift term as per
[1.5.24]. However, since the evolution of the central line is decoupled from the evolution
of the satelilites, the small dynamic shift effects can be accounted for by adding a relative
frequenc’:y shift to the central line only and will be neglected in this treatment, The real part
of the spectral density is defined as [2.2.4]: In the product operator basis, off-diagonal
relaxation terms are strictly real valued, (22)

Solutions to [2.:3.1] are found by diagonalizing [2.3.3] and solving the resulting set

of uncoupled differential equations.

(RO o o)
TG+ RIT' =RG, =] 0 R o0 [2.3.6].
o o RY

Because [2.3.4] is not Hermitian, the transformation is not unitary and
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l ( - Jp?j —w[f +ia);]) 0 Jy
T=-2—J— 0 V2, 0 [23.7).
- Sy 0 JSF-wp via,

Then, for the relaxation eigenvalues and corresponding product basis eigenfunctions, the

following evolution is found:

Rl(l) =‘-C(J0 +J1+J2 +-"J§ "60&2)

p__1 2_ 2.,
r;\.:“__ p]F =J5J2[‘( Jz—a)q +Iﬂ)q)p12 +sz34J

R ==C(J, +.1)

M -
P =Py

Rgl) =—C{J0 +J1+J2 —-"J% —w&z)
[2.3.8].
w_ 1 (22)]

As solutions to [2.3.1], each coefficient decays exponentially:

2 (1) = A (0)exp[R1] [23.9].
Suitable manipulation of [2.3.8] gives the time dependence of the coefficients of the single

quantum operators

P (2) £ (0)
P (1) |=R| oy (@) | [23.10]
P (1) £3.(0) '

where

1y
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rJJ% -w‘}z t:osh{CJJ:2 —a),}z r]

~ia, sinh(C,}Jzz -y :) 0 Ja sinh(c (13- ‘”&_2 :)
[ 22
R(l) = K“)(:) 0 J; ~ay LXP[CJOI] 0

_ 1}.]3 - t? cos rCJJf -t :)
Jysib{CyfTE o 1) 205 O e
ZS‘ 2 wq . hed nd
+eg suﬂl(C,’J;_? -y t)

[2.3.11]

and

)—_r":‘lacp[ C(Jo +J1+J-. t]exp[—zmot] exp[ C(J-l-ia)())t]

Jz w&z Jz '2

{2.3.12]
Even with the added influence of orientational anisotropy and relaxation coupling via J,,
the satellite and céntral lines rgmain uncoupled and relax independently. (63)

| Additional physical insight may be gained by transforming the spin dynamics to a
spherical tensor basis through {1.2.15]. In this basis, the spin density of the nucleus is
materially described, in contrast to descﬁbing the eigenvectors of the product operator
~ basis that are derived from the lab frame energy levels. Also, taking advantage of the
rotational symmetry propertites of the spherical tensors [1.2.1] facilitates the simulation of
multi-pulse experiments;ff(k)q (I) are the operators that span the Liouville space for?ﬁh
I Iﬁ the operator basis of :?(k)q(l ) the tensor rank, %, and MQ coherence Qéder, g, are
the Liouville space quanm;n numbérs equivalent to the A/ quantum nunbers in state

space The spin density operator for a smgle spin can be expanded into the multipole

polanzatlons [1.3.26]}
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27
ol=2¢ (k)o(k)?(k)u)
k=0

=(27+1)" l-E;+Z Zqﬁ ;)/(")‘I(I)-I [1.3.25)
I P |
6§ 0= (3091 )= (5P W)= r {3

(1) p(t)]r
8E(0) = %90 =(-)*~74%7(y)

[1.3.26a]

[1.3.26b].
Since the product and multipole operator bases span the same space, they are related by a

unitary transformation defined by [1.2.15]

?(-‘-) 97

I k I
> I- M[ ] 121
AN I+1)(2k+1) Z{L'( -1 M g M | ;X B| [1.2.158]
Applying the appropriate transformation (37) to [2.3.11] gives the evolution supermatrix

.

in the muitipole basis

Zrﬁ 2 Jg\ (J— "'l\[_ —-J-
yrOy-1 = ;\/;L’ 5 o JJEJR(I)\/; L o JEJ A
_\/E JE —/2 -\/3 i-J§ —w/i -
exp{—~CJt] exp|~i ,“ rlzl " |
= Ride = ) ’2i31 [2.3.13].
© s

*1
732 ’33
The matrix elements for [2.3.13] are given in Table 2.1

s
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TABLE 2.1

R{), Evolution Matrix Elements

rkk'

+1
m

£1
2

1
n3

2l

+1

3

.-\
33

l' 1
cos(C lw —Jz ) ————sm(CJaJ’z - J'2 ) |+2exp[CJOt
1 o -3 ]
V5 ———= w'2 = Sm(CJa»‘;}z - Jg' r) = —rzill
q 2 ‘
r

:
Jg . . 1
—2——zsm(C-‘/coq2 - J% t)J: r:ﬁ

0)‘} —Jz

-ngl-exp[CJot] - cos(waco;;2 -J2 t) -

S{COS(C-"&)‘? - J? ')"_Z{Z"TSin(CJ“’t}z - J} t)}

CO& ‘—Jz

) : : o
$m——2-q—-?sm(c1/w’2 - J'2 ): -r:,»izl

—J2

le:cos(gfazaz -J: 22 z) +—2J—22—sin(61fw;;2 - J% t)} +3 exp[CJot]

a.w;j —Jz

\
/

&
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Evolution of the ¢ = 1 multipole coefficients is then given by

{ ¢$x(r>\] f $11(0)
J [2.3.14].

#21(0) |= Rizp! 621(0)

Lzsil(r)J Lﬁél ©
From the multipole expansion in [2.3.13] and [2.3.14] and the explicit form of the
relaxation matrix elements in Table 2.1, it is readily apparent that in anisotropic media, it is
possible for a second rank tensor component, i.e, ¢121, to couple to the transverse
magnetization, ¢:ll, produced in an NMR experiment. Moreover, as w;, approaches zero

the contribution from this vanishes as seen from rllz in Table 2.1.

The double quantum coherences can be treated in a manner analogous to the SQ
coherences above. With the Redfield matrix applicable to the DQ transitions (46) the DQ

eigenvectors evolve according to

_(M+R)=C{—i(2m6 +co,})—(.f0 +J1+J2) J1 )

[2.3.14].
J —i(ZQé“wé)—(Jo +J1+J2)J

As in the single quantum case, the Liouville and Redfield supermatrices cannot be
separated and simultaneously diagonalized. Again, diagonalization of {2.3.14] and
subsequent solution of [2.3:1] gives the exponentizl time dependence of the DQ product
basis eigenvectors, from which can be calculated the time dependence of the p,

coefficients:
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(
J;"' —co,'iz cosh(CJle —cu;{z r) )
-ia, sinh(c It ~off r) J sinh(c N :)

(P13(I)J - K(Z) (1)

( P13(0))
P (t) p24(0)

2 2 2 2
Ji -y cosh(C Ji—af :)
Ji sinh(CJle —w,’i,z r) — ;
L +iag smh(C\}Jl -y r) J

[2.3.15]
for which
exp|-ClJ +i2a§ Jt
K@= p[ ( = )| [2.3.16].
: J’lz —a),}z
Applying [1.2.15] to [2.3.15] gives the DQ coherences in the multipole expansion
2" ¢ *2 =2 2 0
["’;J )J = exp[-C(J +i20, )z][’ﬁ ’2;] (¢§2( )) [2.3.17]
Per (t) Ip Ty 2 (0)
from the unitary transformation '
U - [1 l) 2.3.18
- JQ—_ I _’. [ e ].
(2)

The matrix elements for the double quantum evolution matrix in the multipole basis, R

>

are given in Table 2.2. Again, in isotropic media where @, =0, there is no coupling

between the even and odd rank tensors. S
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TABLE2.2

R( v Evolution Matrix Elements

22 !2 2 Jl . i 3 +2
22 cos{ Cyop* = Jf |+ ———==sin|C\J0}" - J} t}|=r55
gl 2 2 q 3
Cc)& "'Jl
. w, )
,.-i—{ﬁ~""2i32 x—'zq_z'Sin(C\/w&z —J12 t):—r;z‘
CUC} —Jl .

Jaccard et al. (46) have treated the longitudinal relaxation processes of the zero
quantum polarizations ¢; so they are not discussed here, except to say that in the zero

quantum manifold the g} alignments are associated with the 7, , spherical tensors and the

off-diagonal elements of R‘® reduce to zero in the extreme narrowing limit. The only

triple quantum transition is fully given by
P (1) = B2 (1) = ¢35, (0)exp[-C(J, + J; +i3w, )} 1] [2.3.19].

Simulation of the MQOF Experiment

For I = 3/2 nuclei, MQF spectra are typically recorded using the pulse sequence
(46, 76, 77) '

d(2) -4 - at(z) -4 - [“" ] - [("" ]%-AQ(t) [2.3.20].
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MQ coherence pathways are selected by appropriate phase cycling through the ¢,,. (77)

Hereafter, discussion will be restricted to the DQ experiment only. For § = % both the

contributions from the quadrupolar (second rank) and octupolar (third rank) tensors are

maintained. In the context of systems with a finite wyg, the effect of this pulse sequence

may be summarized as follows. The first 7/2 pulse converts the equilibrium magnetization

(see[1.2.11])

0(0) = =i s {I:); [23.21]

to the transverse plane, where it is described by ¢,1:1(t). Dunng the MQ preparation time
7, the relaxation processes governed by the modulation of the quadrupolar interaction,
transfer polarization to the quadrupole and octupolar modes, ¢2,() and ¢2(7) as per
[2.3.17]. The z pulse in the middle of the preparation beriod serves to refocus any field
inhomogeneities. Since this is a purely experimental consideration that has no effect on the
relaxation, it will not be taken into account. The second pulse would normally mix all g-
quantum coherences amongst tensor contributions of the sz;me rank, as described in

[1.2.1]. However, phase cycling enables the discrete sélectionjl of particular tensor

components, Thus, the second pulse has the presumed effect of transferring ¢£1(1‘) and
¢izl(t) into the DQ manifold to produce ¢_€2(t) and ¢§2(t). These evolve according to
[2.3.17] during the short MQ evolution time &. This evolution time is of long enough "'
duration to allow the spectrometer to recover from the effects of the previous pulse. These
DQ coherences are sﬁbsequently converted back to the SQ manifold by the read pulse to
contribute to the directly observable ¢_11(t), which is monitored during the acq-uisition
period 40.

In isotropic media, coupling can exist only between ;ensors diﬁ'ering in rank by an
even integer value, a fact borne out by [2.3.14] and [2.3.17]. Thus, only odd rank tensors

are produced in an NMR experiment on an isotropic system evolving from thermal

equilibrium. Conversely, anisotropic orientational ordering permits coupling to ¢§_1 for =
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3/2 nuclei in the preparation period. The DQF phase cycling selects both 453:32 and ¢§2

while only the contribution from ¢3ﬂ 1s retained in the triple quantum filtered experiment.
In the DQF experiment it is necessary to follow only those tensors that contribute

to and evolve from the g = 2 coherences. By using the conventional notation for the

reduced Wigner rotation matrix elements, dg(})( B), and the evolution matrix elements,

{q)

Iy (2}, identified from Table 2.1 and Table 2.2

PHOE Zd‘“(ﬂ) ORI OB Z Do sfo  ps2
=

and extracting the relevant terms, one finds for the detectable vector magnetization

ko)

xp|-ig(4Q + 7 +25)| exp|-CI(AQ + = +9)]
25

{f113(AQ)[’322(5)f211(r)(dzu(ﬁ)(dzzl(ﬁ)-dzz-l(ﬁ))-431-2(/6)(41321(5)“‘13 -l(ﬁ)))

1 _ e
$L1(FID) =

[2.3.23]

""323(5)"?}1(f)(dzlz(ﬂ)(d%l(ﬁ)+d§-l(ﬁ))+d-l 2(,3)(0'-21( )+d32—1(l3)))]
+ 3y (4O Gk (7 d212(8)(@3{ B) - d3-1(8)) + 4212 B @21 B) - 41 ()

+ f223(5)’3}1(7)(d31-2(ﬁ)(dézl(ﬁ) + déz—l(ﬂ)) —d2( B)d3(B) + dg—x(ﬁ_)))]}dllosﬁé(ﬂ)

Aséuming hard, delta function pulses, evolution and relaxation are ignored during the
pulse interval. As written, all relaxation matrix elements are positive, since relevant signs .
for the elements coupling the even.and odd rank tensors have been extracted and appear in
the pulse terms. _ |

The FID given by [2.3.23] is exact, within the limits of the theory, and
incorporates the effects of evolution of the DQ, ¢ =2, coherences in the short § period.
Simulation of the DQF expenment settlng @y =0 gives results 1dent1cal to those described
in § 2.2 and shown in Figure 2.2b, after Fourier transforming a su1tably partitioned FID, as

expected for an isotropic system. Figure 2.4a shows the frequency domam spectrum that
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derives from a pure octapolar signal, With the onset of orientational anisotropy, increased

values of the quadrupole splitting generate a contribution from the second rank tensor. For

~ splittings less than the resonant line width, the more complex shane of the signal is due to

the overlap of the quadrupolar and octapolar contributions, shown in Figures 2.4c and

2.4d. The difference between these two spectra with the relatively small change in @y is

somewhat startling, but is in keeping with the observation that the line shape is sensitive to
experimental conditions. As @y increases beyond the magnitude of the composite resonant
line width, the satellite lines become resolved ( Figure 2 ). Here, the correlation time of
molecular motion is set such that wgz, = 1, in the region of the "7, minimum" where spin-
lattice relaxation is most efficient. In general, it was found that the value apz, as it
appears in the spectral densities, has a relatively small effect on the width of the line. Over
at least two orders of magnitude, 0.1 < wyr, <10, the line shape is dictated primanly by
wg. Below this lower limit, the extreme narrowing limit is approached and the MQ signal
disappears. Beyond the upper limit, the theory is limited in that extremely I_ong correlation
times are precluded by the Markoff approximation taken in the development of the
Redfield matrices,

By setting f# = 54.73° in the DQF pulse sequence it is possible to isolate -the
contribution of the second rank tensor, owing to the presence of terms proportional to
3cos? f -1 in the d¥ of [2.2.237- That is, the epr;cit form of the Wigner rotation
matrix selectively filters out any third rank tensor components. (46, 49) Simulation of this
modified pulse sequence produces results nearly identical to those shown in Figure 2.4b,
showing that this line is indeed dominated by the presence of a second rank tensor. Notice
is made here of the line shape of the isolated contribution from the second rank tensor,
which may be thought of as a powder distribution of antiphase doublets. It is antiphase in
the sense that this signal is 90° out of phase with respect to the third rank tensor
contribution to the observable. Consequently, the ¢_21 contribution to the signal appears

to be in dispersive mode when plotted so that the contribution from ¢31 is in absorptive

-~
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Figure 2.4. Fourier transforms of [2.3.22] with 7= 4 ms, &= 60 ps, 7,0, =1, C =
6.14x107 s2 and w_q values 2) co_q = 0.Hz: pufe octapole contribution, b) B; =40 Hz (=
CJ,), ) oy =45 Hz, d) o = so/gé, ¢) @, = 10 000/2x Hz. The isolated contribution

from ¢31 (B=54.73%is identiGal to b). For @, = J;, 4531 is negligible and the line is as
shown in a).
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mode, as is the custom. When properly shown in absorptive mode, the poorly resolved
antiphase doublet appears with an apparent dispersive line shape, from which the
experimentally observed @), can be measured. For clarity, in Figure 2.4b the isolated ¢31
portion of the signal is presented as it -would appear in dispersive mode so that its
contribution to the reported experimental results is more obvious. Figure 2.5 shows the
resuits of one such experiment, performed on centrifuged human red blood cells. (72)
From this spectrum, the peak-to-peak separation is about S0Hz, giving
2@ = 27(50) rad/s. Figure 2.6 shows how this doublet would appear, if the spectrum is
displayed such that ¢.§1 appears in absorptive mode. It is by this quirk of nature that the
poorly resolved antiphase doublet, displayed in dispersive mode, looks like a Lorentzian
line, causing some degree of grief amongst experimentalists, some of whom thought this
indicated the presence of two distinct ion pools.

In order to directly judge the efficacy of this theoretical model in describing the
experimental results, Figure 2.7 shows the DQ spectra from experiments performed with
 different evolution times. Here again, the signal due to the ions bound to the external cell
wall has been‘ligxcluded by the addition of a relaxation reagent. At short evolution times,
both the FID md the frequency spectrum show contributions from both second and third
rank tensors.- The simulated resonant lines are found for wyr, =12 ( and hence, should
appear broader than those shown in Figure 2.4 where wy7, = 1.0, however, the spectral

width of the two figures is different )} and a: 48Hz. Without any direct connection to

the signal amplitude and the number of visible spins in the sample, an arbitrary amplitude
normalization is assumed for the puposes of simulation ( [2.3.21] ). The simulation not
only repoduces the gqg‘j:él shapes of the lines, but is also able to predict the cependence
of the line shape on the preparation time 7. Therefore, this formulation requires only two

independent parameters, namely E and @y, both of direct physical significance. All

other variables appearing in [2.3.7:3] are experimentally controlled.
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Na™

total

200 Hz -

Figure 2.5. DQF spectra taken from Na in red blood cells showing the isolated
contribution from 45_21 obtained from an experiment with B = 54.73°. (72) Again, a shift
. reagent discerns between the intra aﬁd extracellular signals, The poorly resolved antiphase
doublet appears as it would if plotted in absorptive mode. Peak-to-peak separation gives
@g = 50Hz.
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Figure 2.6 Same spectra as in Figure 2.5 plotted in dispersive mode as it normaily appears
in the context of a DQF experiment. (72) '
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r = 14 ms j

Figure 2.7. DQF spectra from red blood cells taken at different preparation times. Both
the FID's and the frequency domain spectra show contributions from the second and third

. rank tensors. {72) The simulated lines are found for a7, =12 and EJ_; =48 Hz. -
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It remains to be shown why E has such a dramatic effect on the line shape.
Figure 2.8 shows the relative amplitudes of the real parts of the second and third rank
tensors at the end of the read pulse ( at the beginning of the acquisition period i.e.,
¢_ﬁ(”2-—r—% -& -—%) ) with varying a. As expected, the third rank tensor
oscillates through a range of positive values maintaining the DQF signal through all
conditions. In contrast, ¢_21 is zero for 5,; = 0 and subsequently oscillates through
positive and negative values as w_q increases. Moreover, ¢31 goes through two cusps at

small -c-u: values: the first is at @ =J5 ( a)q CJ» ) where the second rank tensor

completely dominates the spectrum as shown in Figures 2.4b and 2.8b. The contribution
of ¢_21 to the FID may be further elucidated by the form of the analytical expressions of
the relaxation elements in [2.3.13] govemning the development of ¢31 and the value of the

expression 73 (6) (7)D1 +rl " (5)1-3,( )D" (D's represent pulse terms) from [2.3.23]. As

* sinx : e
wq approaches J; the ~ term in rzll rapidly approaches its finite value

lim hl ‘t‘) lim

(174 —)Jz G)&

3.24].

C'Jco':Z - St

The contribution from the sine term in r 1( ) is also mamtamea although it is much less

( 2. )
[J_ CrJs sm[C o %2 )J=J1_scz-12 [2

sngmﬁcant for small values of 4. Simulation of the line shape with this splitting value

-accordingly gives a line out-of-phase ( Figure 2.4b ) with respect to that produced by the

third rank tensor In addition, as wyj approaches J the amplitude of the contribution from

¢_1 fOHOWS
, V150 .
o4 at = ) = (14 ,C8)———Z=sin| Cyw* - 237 |DI [2:3.25]
1 2_ 2 g 2

d'),'; —Jz
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{
—J6J,C 5IL&‘P[CIOT] - cos(C \[ wc}z - J-f r) - \/—w—%?-‘-———;z—sin(c 1{0);12 - f r)JDZ
q 2

in which ¢31 is rapidly minimized for finite values of & It should be noted that while the
intensities of each of these tensorial components is modulated by 7z and 6, the positions of
these cusps are determined by the non-secular spectral densities, Jy and J». While such
asymptotic terms exist in the evolution of ¢_31 they are mitigated by the preponderance of R
other exponential terms that dominate the evolution of the odd rank tensor components.
Thus, over a narrow range in which a)—q is less than the line width, the line shape is highly

sensitive to the residual quadrupole splitting. In this regime, the magnitude of Eg, which 1S

observed in the laboratory frame and tends to resoive the satellite lines, matches the off-
diagonal relaxation elements that couple the same satellite lines. These are, in tumn,
determined by the correlation time of molecular reorientation. It would be formally
incorrect to describe this phenomenon as a resonance condition, as the lattice is modelled
by random functions that should not have coherent phases to which the s‘pin system can
couple. However, in a self-consistent sense, it is acceptabie for the combined effects of the
static quadrupolar coupling and the second order quadrupolar relaxation to become
manifest in ¢5_21, a feature of the spectrum that is particularly sensitive to the conditions
previously discussed. Similar behaviour has been observed in the microwave.inversion
spectrum of ammonia, in cases where pressure broadening is comparable to the resonant

line width. (78) In practice, it should be expected that a would be better represented by
a distribution of values about the average and consequently, such severe asymptotic
behaviour might not be observed. At least not to the extent in which it is portrayed here. "

Using this multipole approach it is not difficult to show the dependence of the line

shape on the preparation time as observed in many biological tissues. (49, 54, 72, 75) In
Figure 2.9 the relative amplitudes of the real parts of ¢_31 and ¢_21 at the end of the read

X
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pulse are plotted as a function of z: Figure 2.92 a)_q =45 Hz and wy7, = 1.0, Figure 2.9b
g =45 Hz and wy7, = 0.6, Figure 2.9 @, = 50 Hz and wyr, = 1.0, Figure 2.9d @, =
50 Hz and wyzr, = 1.5. Under the conditions used to generate the line reported in Figure
2.4c, Figure 2.9a shows that gSf'l has a significant contribution only up to about 20 ms
after which it quickly decays. ¢E’[ maintains a significant contribution to approximately 40
ms. This underscores the fact that each of the tensorial components of the observed signal,
including the higher quantum coherences, are governed by distinct relaxation behavior.
The fact that the lines in a resonant signal may be the result of several tensonal

contributions may complicate the interpretation of relaxation data inferred from analysis

using a product operator basis.

‘)

1

()



87

03 r
o
2 a
<
=
iy
‘@
=
2
E
----- psid
—0.2 i L ) - psi2
o 1000 2000 3000 4000
wq (rad/s)
08
:ﬁ‘ 0.6 SN ...E..........--........E...-...“...A......-'-_é tremebbanaaanttenane b
N 'E . '
= : :
-E: O o ,..
..E, : :
e :
- :
‘T ;
g :
= :
= X
3 :
= :
S psid
—0.2 i i i - psi2
“o 50 100 150 200
wq (rad/s)

Figure 2.8, Dependeﬂqe on the quadrupolar splitting of the relative amplitudes of
@21 (solid line) and ¢>)(dashed line) at the end of the read pulse in the DQF experiment:
a) large splittings showing the oscillation in both tensors b) small splittings showing the -

dominance of ¢31 near 5; =40 Hz (= CJ,). Parameters as in Figure 2.4.



88

012 01F
015 +
2 009 R %
8 - eb. RN TP AN
" e s
- =
g 008 g 009 } ‘
= -
2 =
[-)
g Eoosh - ..
3 003 - B
00
Ts
: !
000 o t 1 0.00 L i J
“000 091 002 003 004 005 006 0600 001 002 003 004 005 G006
tau (o tau )
009 - ' _ ) 009
5 3
3 : ‘- S oo
L] ‘=
= : : o
L] : H -
3 : : 2
Eg, -E' : H ' '
E 0.03 .;‘"_. J;T"" - - 0.03 T N TR < TR PRRT Y
. } : - \
® : - N
: ; N
= T‘ il I_. ) | ! i S [

: 0.00
o'ooo.oo 001 002 003 004 005 006 000 001 002 003 004 005 008
tau (o tau (o

Figure 2.9. Dependence of the relative amplitudes of ¢31(solid line) and ¢31(da5hed line)
at the end of the read pulse\lin the DQF experiment on the preparation time. The relative .

amplitudes depend upon the values of both ?o? and ayt,. Figure 2.92a a; = 45 Hz and
@7, = 1.0, Figure 2.9b E =45 Hz and wyr, = 0.6, Figure 2.9¢ -a-):; = 50 Hz and a7,

=1.0, Figufé 2.9d Eq_ = 50 Hz and @)y7, = 1.5.0ther parameters as in Figure 2.4.
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Chapter 5. CONCLUSION

The I = 3/2 nucleus is 2 potentially sensitive probe for analysing a host of nuclear
interactions. As described here a detailed study of the dynamics of the nucleus via NMR
line shape analysis can provide information about the forces influencing these dynamics
allowing us to intuit something about the physical surrounds of the spin. In the context of
biological systems there is no shortage of mechanisms that have the potential to manifest
themselves in NMR experiments. NMR exclusively has shown evidence for orientational
anisotropy and has supported the previously assumed notions of fast ion exchange and
motional hinderance. In contrast, there is a relatively small number characteristics of _the
quadrupolar nucleus that avail themselves to interpretation by relaxation studies. The
problem, then, is to:try to directly relate this nuclear dynamic behaviour to well established
attributes of the biological system in question. While several, seemingly disparate, theories
may be used to successfully model spin dynamics, no information is gained if these models
cannot be directly related to some physical quality of the system.

This review is a good example of the synergistic relationship between the
development of theory and experimental methods. With the first observation of anisotropy
in the DQF experiments described, many experimentalists were at a loss to correctly
account for the origins of the "anomalous" line shape. With the establishment of working
theoretical models, the challenge is to discover new evidence, prompting the development
of new theories. ‘

The formation of even-rank tensors in a MQF experiment on a half-integer spin
system initially at thermal equilibrium is a direct result of the existence of a finite residual

quadrupole splitting, When E is less than the resonant line width of the [-1/2) ~» [1/2)

transition, it is necessary to account for the off-diagonal terms in the Redfield perturbation

treatment of the relaxation. Even though relaxation does not couple the central line to the
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innermost satelfites for half-integer spins, inclusion of these non-secular terms is required
to generate the asymptotic behavior of the even rank tensor and, thus, the tull contribution
to the line shape in a MQF experiment.

The use of Redfield theory to describe the evolution of the tensorial components of .
the spin density matrix has been shown to provide a convenient method for the analysis of
the dynamics of a spin system in a MQF pulse sequence; with the multipole evolution
matrices presented here it is easy to recognize the response to a general hard pulse
sequence and the ongins of each of the tensor components. The analytical solutions
offered here not only describe the relaxation behaviour of each of the tensor components,
but have reproduced some of the general features observed in experiment and in more

fundamental analyses,
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PART 3
THEORY OF PULSED NMR STUDIES ON SOLID D,
IN THE SHORT-RANGE ORDERED hcp PHASE

Chapter 1. INTRODUCTION

Solid ortho and para mixtures of the molecular hydrogens, H, and D5, have been
investigated over the past four decades. Much of the reason for this persistent interest is
due to the cooperative orientational ordering in these crystals that is brought about by well
understood anisotropic intermolecular electrostatic forces. The interaction responsible for
this ordering :originates from the coupling between the electric quadrupoles of non-
spherical molecules, namely those with an orbital angular momentum J different from
ze;o. References (79-82) describe experiments and theoretical progress towards the
understanding of the orentational ordering in the hydrogens, both in the regime of long-
range order and in that of the\ gradual freezing into a "quadrupolar glass" state.

When cooled through their respective triple points at 14.7 and 18.6K both H, and
‘Dz form crystals with a hcp structure. In their solid state, only the ground rotational
energy levels are populated, where both 0-H, and p-D, have an angular momentum J=1
with an electric quadrupole moment Q,, while p-H, and 0-D5 have /= 0 and Q, = 0.
Mixtures characterized by the molar fraction X(J = 1) of the / = 1 component can be
prepared in any proportion. |

The anisotropic electric quadrupole-quadrupole { EQQ ) interaction between two
isolated neighbouring J = 1 molecules tends to align :chese into a perpendicular "T"
formation. The alignment in three dimensions is frustrated by the presence of both several
J =0 and J=1 neighbours in the solid state. This frustration, minimized in the Iong-i'ange
ordered state, is most pronounced in the glassy phase. The orientational ordering that

occurs as the temperature is decreased is a function of the mixture composition. (79) At



temperatures below a transition line 73(.X), where X¢ < .X' < 1.0, the ordering is long-
range and there is a crystalline phase change into a fcc structure (Pa; with interpenetrating
sub lattices). For the critical concentration X~ = 0.53, the transition is at 7; = 0, while for
the pure J =1 solids T; = 3.0K and 4.0K for H, and D,. For mixtures with .Y < X, the
rotational motion freezes gradually into the quadrupolar glass state, the crystalline
structure rematning hep.

There have been numerous nuclear magnetic resonance { NMR. ) studies of these
mixtures giving abundant information on the static and dynamic properties of the spin
systems. In both H5 and D, the orientational ordering process is found to be similar and an
approximate scaling of the characteristic temperatures of ordering in terms of the
quadrupolar interaction energy parameter [ is obtained. (79, §2) In H,, the molecules
with J= 1 have a total nuclear spin / = 1, while those with /= 0 bear / = 0. Even though
the spin lattice relaxation is modulated by the relative motions of all molecules in the
crystal, only the former species are capable of producing an NMR signal. In contrast, for
D, both modifications have nuclear spins, namely the J= 1 molecules have 7 = 1 and of
the J = 0 species, 5/6 have I = 2 while the remaining 1/6 are / = 0. Therefore, both D,
species produce an NMR signal.

As the temperature is decreased in the solid phase, the NMR line, initiéflly only
broadened by intermolecular dipolar interactions, becomes substantially wider below T =
. 2K through the intramolecular nuclear interactions as orientational order in both Hj aﬁd
D, increases. (83, 84) This is particularly so for the J = 1 molecules that are directly
coupled by the EQQ interaction. In contrast, orientational ordering for J = 0 molecules is
possible only through admixture of the J = 2 state into the J = 0 ground state ,yig
perturbation by the J = 1 molecules, (85) and this ordering is Qbservable for 0-D».
Therefore, the line broadening in the frequency domain is appreciably smaller than that for

the J =1 molecules and as a result the signals from both species in D, can be resolved.
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There are nuclear dipolar interactions between ortho and para neighbours in solid
D,. Thus, the NMR spectrum of D, is complicated because of the presence of two
distinct spin-bearing components and of their dynamic interaction. As a result the spin
dynamics in D are less well understood than those in the simpler H, system. In a strict
account of the dipolar interactions, intermolecular coupling to all other spin bearing
deuterons must be considered. However, since the distance between two molecules is
much greater than that between two atoms in the same molecule, atomic spin states need
not be accounted for per se, and intermolecular dipolar interactions are formally restricted
to atoms with f=0.

Two-pulse and three-pulse NMR experiﬁxents have been carried out on Hjy and
were analysed. (86, 87) In particular, the response signal "solid echo" from the two-pulse
and three-pulse sequences was studied experimentally and theoretically in some detail and
could be well understood. (86) In D5, a similar experimental program was carried out, (38,
89) but at that time the theoretical formalism for the J = 2 spins had not yet been

- developed. Furthermore, for the solid echo data, the analysis of the results consisted of a
simple extension of the / = 1 theory used for H,, without proper consideration of the
complete intermolecular dipolar interaction. © -

:In these solid echo experiments on D, a search for the satellite echoes, predicted
to occur for 7 = 2 systems and previously observed for D, embedded in an amorphous
silicon matrix (90) (in which exist large crystal fields ), was unsuccessful. A formal theéry‘
was needed to estimate the amplitude expected for these satellites in D, given the known
local magnetic fields acting on the nuclei,

In this section, a theory for the spin signal amplitude for both ortho and para solid
D, for two-pulse experiments is presented and comparison of the predictions with the
expérimental results is m'ade. In Chapter 2, the formal theory using a "closed form"
method, analogous to that previously developed for/=1in H, is presented. In Chapter 3,

the calculated solid echo profiles are compared with experimental data and the 'positions



94

‘ and amplitudes of the principal and satellite echoes are discussed. Chapter 4 brings a

summary.

()

%)
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Chapter 2. THEORETICAL DEVELOPMENT OF THE D, SOLID ECHO

Symmetry Designations of the Hydrogens

TABLE 3.1 Symmetry Designations of the Hydrogens
designation Hy (i=172) D, (i=1)
ortho I=1 1/61=0,5/61=2
¥, symmetrical J=1 J=0"
para I=0 I=1
¥, antisymmetrical J=0 =1

* small admixture with J=2 state in the solid state

Here the symmetry designations of the solid hydrogens are briefly recapitulated.

These are based on the fundamental premise of quantum theory to deny the existence of a
transition on exchange of two identical particles. For the case of diatomics, if the nuclear
spins have integral spin quantum number i, as in the case of D,, then the total wave
function must be symmetrical with respect to exchange of homonuclear bosons; if the
spins are half—integral; as for H,, the total wave function must be antisymmetrical to
exchange of the fermions. Since both the ground state electronic and vibrational modes are
always symmetrical in a diatomic molecule, the symmetry of the total wave function is
determined by the product of the rotational and nuclear contributions, if coupling between
these four modes can be ignored. Systems with even (symmetrical) spin wave functions
are designated ortho while those with odd (antisymmetrical) spin wave functions are

designated para. These considerations are summarized in Table 3.1.
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The Single Spin Hamiltonian

As mentioned in Chapter 1, only the ground rotational states are populated at
temperatures where the hydrogens are crystalline. This implies that the single molecule
rotational wavefunctions are functions of the spherical harmonics Y J,,,(B.go). TheJ =0
state corresponds to the scalar Yy, a spherically symmetrical state for which no
orientational dependence is expected. This is not the case for Ylm(B.QD) . upon which the
effects of anisotropic potentials are anticipated. In the presence of intermolecular nuclear
dipolar interactions, J =1— J =0 conversion takes place. (79) In D5, where the nuclear
dipole moment is much smaller than that for H, the /= 1 — J =0 conversion rate is only
of the order (8+4) of AX=0.5%/24h for X=0.3 and therefore the concentration remains
essentially constant during the course of a day's expenments, certamnly constant on the
time scale of the pulse sequence. |

To consider the intramolecular interactions involving the nuclear spins, the spin

Hamiltonian, #g, for non-interacting H, or D, molecules is introduced. (1)

oy @ 3. 8@ .51
w i\ iV enj( -n
——h‘g=—oz'I:—bJJz—cI_;I-.I-i-}‘:yI}’zil -~ ( )( )l

i? I_ o ’132 _|

(103 431 A O[O ) @[ 1)

eQ, I W.[
p— 3
4i(2i-Dh =2 L

[3.2.1]
Again, [, and J, are the projections of the total spin 7 =1 D +i® and rotational angular
momentum J of the molecule onto the axis of the external magnetic field. The two spin
operators for the nuclei in a molecule are denoted i and i and # is the unit vector
determining the orientation of the molecular axis. The first n»;o terms represent the
Zeeman interaction and-the energy of the magnetic moment associated with molecular

rotation. Spin-rotation coupling is represented by the third term. The fourth term accounts

for dipole-dipole coupling of the magnetic moments 4 = Ay i of the atoms separated by
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: the distance 712 ( [1.4.8] ) while the last term, relevant only for deutenum, is the coupling
‘ of the deuteron nuclear quadrupole moment O, to the electric field gradient along the
bond axis of the molecule ( [1.4.19] ) in the QPAS system. A careful distinction should be
made between the nuclear quadrupole moment and the electric quadrupole moment Q, of

the molecule, which mediates the orientational ordering,.
Intermolecular fnteractions

Molecular hydrogens are the only examples of orientational quantum solids, in
which the lattice molecules have a large zero point motion or a broad spatial distribution
about the lattice sites and in which the angular distribution is non localized, even at T'= 0.
On condensation, the moleculai‘ hydrogens maintain their properties as free rotors ( as
suggested by low heats of melting )} owing to the large energy differences between

 rotational states aﬁd the relatively weak anisotropic potentials in the solid, wﬁch are
domunated by th_e permanent electric quadn;poi_e-quadmpole (EQQ) interactions between
J =1 molecules. (79) These anisotropic electronic energies are, in turn, much larger than
" the nuclear spin energies appearing m [3.2.1], so the rotational states in #g can be
replaced by their thermodynamic averages. At temperatures above a few mK-the magnetic .
energies are also negligible in comparison with kT, in ‘which case all components of the

-rotational -angula.r momentum J, (@ =x,y,z) have zero thermodynamic averages,

i

(Ja )T =0. (82, 85, 30) In other words, the rotational correlation times are much shorter

"~

than those corresponding to the nuclear spin part of #g so the effect of the operators
~byJ: and —cyyI-J is effectively zero due to quenching of the orbital angular

: mor;_:enmm.
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Restricting discussion to D, in the crystalline state, the relevant nuclear spin
Hamiltonian, including the intermolecular magnetic dipolar interaction. can be written as a

sum over all molecules 7 in the sample.

\

— ) '3
;I( ajl: vaj(azgl)z *‘3‘\;) —:‘}l)(ij(-l) +1) —if,z)(iEZ) +1))\I

|
1) n.Q2 0.2 2.2
; L+bj Ej SJ — 46 )—-L ;e }) . [.J, >3k bﬂ[.k J 3.2.2]

..“.:i

$hejiej —3injisy

Here the first three terms are the nuclear Zeeman term and the intramolecular terms
resulting from the nuclear quadrupolar and nuclear dipolar interactions with coefficients a;
and ;. Due to the fact that the atoms in D, are homonuclear, the flip-flop terms in the
intramolecular dipolar contribution are not quenched, resulting in a mixing of the ortho ( /
=2 aqd I =0 ) states and consequently / is not 2 good quantum number for 0-D,. The
final term is the contribution from the intermolecular nuciear dipole-dipole interaction.
Taking into c0nsi'dération local field ﬁﬁomogeneities, the frequency representing the
average local magnetic field change is defined

-—

2; = 2up(B; - Bo) | B23]
where B and B; represent the external and local magnetic fields. By homogeneous
broademng, it is meant that each spin is equally assocxated with all energies of the resonant
line, as would be achieved in an ideal cubic crystal. Since the dipolar interaction varies as

rﬁ?, small deviations in position' can produce huge shifts of the Larmor frequency, due to.

the large local field experiencéd by the coupled spin pair, relative to the effects of all other
spins. The resonance of such an. inhomogeneously broadengdspin_‘ pair is so far removed
from the rest of the sample, that it can be considered isola.lted and is associated with its
own energy. Inhorrfiogeneously broadenqd lines consists of many such contributions.

Only the contribution of the expanded intramolecular dipole term that is secular
with the Zeeman term is considered. Furthermore, both the intramolecular quadrupole and
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dipole coupling terms, a; and bj, are moderated by the degree of orientational ordering of
the neighbouring / = 1 molecules in the sample. As the direct EQQ interaction between
molecules with , = 0 tends to induce orientational alignment in the p-D, fraction, this
molecular field also produces a perturbative alignment of the 0-D, molecules resulting in
the admixture of the J = 2 state into the ground state, (83) owing to the existence of off-
diagonal matrix elements in an otherwise vanishing ,. The EQQ interaction dominates
the onentationally dependent part of the intermolecular potential (92) and can be written

in terms of the irreducible tensor operators.

Frp = Smryg 707 X (Sman| S Ja Tm+nff (1) 4P (12) Ve men($22) 3241
. mn :

The EQQ coupling constant is defined by the electric quadrupole moment of the J = /

molecule and the equilibrium intermolecular distance

_ 6?02
25R}

Taking the quantization axis to lie parallel to the intermolecular vector requires only one

Iy [3.2.5].

component of the spherical harmonic ¥4 ,,,+,,(.Q jk) , sirnplifying [3 24]

#EQQ '“"%ﬂ'omz&mz""|2240)”1(2)'"(11)7}(2)-'"(-’2) [3.2.6].

The factor C;(X) expressing this admixture has been derived by Harris (85) for the

regime of long-range orientational order where X > X~ = 0.53 and is given by

' I
C;i(X)= %g-E?-X to lowest order in °/B, where I"/k5=1.04K and the rotational energy

constant B/kg= 43K for D,. For lower concentrations, where the orientational order is

short-range, an adequate approximation for C;(X) is obtained (92) by scaling the

expression above by the local order parameter of the J = 1 fraction in the hcp phase,

o= (1 - %Jzzj)r, divided by the order parameter in the long-range prdered phase, =~ 1in |

rp

e
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which case o is the same for each domain j. Here Jzzj is the small net projection of the

angular momentum on the local symmetry axis. For these expressions of the order
parameter, a cylindrical symmetry is assumed, as is reasonable for nuclet in states of well-

s 2 2 .
defined angular momentum, signifying that the transverse components Jy; and Jy; remain

quenched. (93) Hence, the admixwure coefficient in [3.2.8] is replaced by a temperature

dependent coefficient applicable to the short-range ordered regime "sr”.

gl

C (X, T) =~’§--B—,X<I-%ij>r 3.27].
Expressions for the intramolecular interaction coefficients are then obtained

a; =3Co(X,1)(1-3c0s 65 5 g [3.2.82] -

bj = —S$Co(X,T)1-3c0s? 65 )ds [3.2.8b]
where p - is the angle between the magnetic field and the local symmetry axis and where . -
(85)

2 2
2e°0, @ “V,
dg = s é'z& =2250 kHz

and

2
ZJ’Dﬁ 1
dm=—5-<;3->=2.74 kHz

with the quantum mechanical expectation value of the interatomic distance given by <—3->
r
For the typical concentration X = 0.3, C;, = 0.02 at T 7= 0.2K and represents the
admixture of the J = 2 rotational state into the ground state forming a symmetrical " total
spin state ] = 2. Of course, to consider the admixture of states in the rotational manifold of
the p-D, fraction is irrelevant, so Cj, is replaced by o for the J= 1 molecules as regards

{3.2.8] above.

\‘,{

=
.
4

posd
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For the last term of [3.2.2], that describes the intermolecular nuclear dipolar
" interaction for both / = 2 and / = 1 spins, it should be noted that a typical intermolecular
distance is much greater than that between two nuclei of the same molecule. Therefore,
the expression for the intermolecular nuclear dipole-dipole interaction is well
approximated by that representing single spiﬁs of magnitude [/ localized at the centres of

gravity of molecules separated by a distance Rj;, with the orientation of the intermolecular

axis given by an angle & RyB relative to the external field. Therefore, the average dipolar

field experienced by a spin j due to the surrounding spins & is approximated by

2
Ybp h 2

2.233. (1‘3°°5 eRjkB)Izj = Zfsjk Iz [3.2.9]

k=j <k k=j

and is treated as a first order perturbation of the single molecule states. Here y ) is the
gyromagnetic ratio of the deuteron. This formulation does not take into account the
ind_ividual spin states of the deuterons in adjacent molecules, hence the dipolar interaction
is réstriéted to atoms in /20 molecules. Given the relatively large intermolecular distances,
this imposed limitation of theoretical resolution is acceptable as it merely reduces the
number of intermolecular dipole coupling constants inherent to the theory.

| This local field description of the dipolar interactions suggests that the dipolar field
at a lattice site j is the sum of the fields arising from all other moments in the sample. Two
distinct contribi_ltions to this dipolar field might then be expected, namely those due to the
presence of neighbouring 7 ="1 and J = 2 molecules, with respective frequencies —53 and

3};. Of the four possiblé forms of fS'J_-k, the constant 6'_21, for example, is the average

intermolecular dipolar frequency experienced by an J = 2 molecule due to the presence of

| _neighbouring = 1 spins in the lattice. In the absence of the non-trivial calculation of the

2

lattice sum in [3.2.9] over the range in which the dipole-dipole interaction is effective, (94)

it might be argued that the relative magnitudes of these fields will increase with the
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concentration of the spin species generating the field, i.e. 3—; should increase with X while

—

6j» should decrease. Since the magnitudes of these field contributions should be

independent of 7_;, it might be considered superfluous to retain the subscript j in the

& jr.'s. However, this convention is maintained throughout this development in order to

provide both a clearer description of the theoretical results and a means by which to gauge
the validity of the suppositions regarding the intermolecular nuclear dipolar interactions,
once the numerical results are presented. Based on the discussion above, the following
relations are expected

o1y =9y and O12 =0 [3.2.10].
The accuracy of these relations can be independently ascertained as the Hé‘_j;'s are treated
as four independent parameters to fit the theoretical expressions to the experimental data.
Analysis of the results from both the four-parameter and the two-parameter regimen will

be discussed in Chapter 3.
Development of the Closed-Form Expression for the Solid Echo Experiment

A density matrix calculation of the two-pulse solid echo has been performed for
the p-H, system. (80) Here again the intermolecular interaction is treated as a perturbation

of the non-interacting Hamiltonian operating on the total product spin states

|M) = HIMJ ) formed from the single molecule spin states IM i ) Formally, the product
J

applies to all like spins in the sample; in practice only the aforementioned spin-pair
interactions need be considered in the short-rzinge ordered regime, reducing the problem's
computational complexity. Other total spin operators may also be defined

Le=20y I2=2Iily
J ik [3.2.11a]
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I=21; [3.2.11b].
j

Before application of the first r.f. pulse, the density matrix in the rotating frame of

a system of spins / in thermal equilibrium with the lattice at temperature T is introduced.

exp(-Hror / k5T)
0) = [3.2.12]
PO = exp(-Hror TkpT)

Expanding [3.2.12] and applying the high field and high temperature approximations gives

k

LI < (3.2.13]
PO~ iarey 21y =8l:

where g is a constant of the system. Time evolution of the density matrix, again in the

i,

absence of a r.f. pulse, is determined by ( [1.3.16] )

p(t) = exp(— 5 Fror?) p(0) exp(5 Fror?) (3.2.14].
The effect of hard pulses is determined by the Wigner rotation matrix ([1.1.37])

Dianle, B, 7)=dig(B)expli(M - M)g) [3.2.15)
expressed in terms of the pulse angle 5 and phase ¢ . By convention, a pulse with ¢= 0 is
denoted x and one with ¢ = #/2 is denoted y. In this investigation, it is always the case
that :the first pulse has § = #/2 and @ = 0 and therefore this is a (2/2), pulse. Subsequent
to such a pulse, transformation of [3.2.13] gives

o0 =21 p(0)2 =gl : [3.2.16].

The remainder of the pulse sequence involves a period of evolution as per [3.2.14] of
duration 7, followed by a second hard pulse 2,( 8, @) of arbitrary angle and phase with a
final evolution period ¢, in which the solid echo is collected. The evolution of the density
matrix in this time interval is given by
P(8) = exp(- 5 F#or1)0; texp(—§ Frore el x ) exp(y #1or7)P2 exp(y #7071

[3.2.17].
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Since the expectation value of an operator is determined by the quantum
mechanical trace and by the time evolution of the density matnix [1.3.9], the detectable
transverse signal at time ¢ after the second pulse is
- r(p(),) - r{p(0)l)

(o0 y)  r(elk)

In order to calculate the trace in the denominator of [3.2.18], consider an & spin system

S.(0) [3.2.18].

with angular momentum components given by a form similar to [3.2.11]. Taking as the set
of basis functions the product of N single spin states, it is neccessary to evaluate the sum

2AMMy . My | Ty | MM,y M) (3.2.19].
MM,... My

If the M's are considered eigenvalues of I, then all diagonal elements of /, and /,, are
identically zero. However, since the assignment of the observable component of
magnetization ié, arbitrary, the 2/+1 values of M's can be equivalently taken as the
eigenvalues of /.. From the definition of the square 6f the total angular momentum
[1.1.17] and [1.1.18], for the V identical terms for which j=%in [3.2.11a]

tr( grﬁ) = gi{g—gN(ZI-i- VRl | [3.2.20]

which amounts to a normalization over the sample containiﬁg N ortho or para deuterium
molecules. It should be noted at this time that, in practice, this normalization is treated as
an arbitrary amplitude correction, for reasons to be discussed shortly.

In evaluating the trace in the numerator of [3.2.18j, a closed form method is used
to explicitly calculate the independent contributions to the echo by evaluating the non-zero
matrix elements subject to the selection rules to be discussed. While any equivalent
representation of the spin space will lead to the sameqresult, this method is chosen over
that used in PART 2 ( where the line is decomposed i;ato its tensorial contributions ) for
several reasons: a) the experiment consists of a two pulse sequence so it is not as

imperative to appeal to the rotationally invariant properties of the spherical tensors, b) the
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form of #ror is diagonal in the | IMYIM'| basis, c) a tensor operator approach is based
upon the average values of the interactions appearing in #rpr and does not resolve their
individual contributions and d) it would be neccessary to construct a coupled tensor basis
of the type [1.2.20] and its transformation properties under #ror. Direct evaluation in the
| MY M) basis circumvents these difficulties. To begin, [3.2.17] is expanded making use
of the completeness relation [1.1.19b] so that
S.(0)= ““I—"Z((M lexp(~4 #70r1)?; TIM M| exp(— 5 Frore)gl x| M")
tr( gl 3 ) F A

(M| exp(h Fr077)0| MY M| exp(: #ro70) 1| M) [3.2.21].
Again, it is anticipated that the intermolecular dipolar interaction may be effectively
treated as a sum of pairwise interactions in the short-range ordered hcp phase of Ds. As

mentioned previously, the pair eigenstates and the rotatlon matrices are defined as

|0, ) M) M) [3.2.22]
D=0y [3.2.23)
resulting in |
1 i
S.()=——7 ; 5 | M*
+(@) tr(gff) MIM;-ZM;M; MkMkZMEME (MJ M, '9211» | MM}, )

(MM |1 GEx| a5 My ) (M5 My [0 M7 M) by Me|laE M0,

o [ - 2, o, -5, Y -]

-

e[y )25, 53, -]

[3.2.24].
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Z and Z are sums over the molecular spin states of molecules j
M A/f} z‘f.r; JM; A i AJL A"{E A E

and k. Ey is the unit matnx operating on spins & and Ebj and EaJ are the intramolecular
dipole and quadrupole eigenvalues.
For I = 2, the non-zero matrix elements of £, generate the selection rules:
M} =+ A«I} =*1 M} ==, M} =+20 M} = =0, A/f} =l [3.2.25a].

From the form of /_ the following selection rules are found:

M7 =2,M;=1 M7 =1M;=0 M7 =0,M;=-1 M} =-1, M;=-2[3225p]

for a total of 24 combinations. The conditions for echo maximum amplitude are
determined by the intramolecular interactions which cause the relative spin phases to
become refocussed at time ¢ = z after the second pulse,. resulting in the formation of the
principal echo. This condition imposes a further restrictionl on [3.2.25], namely
M}'z —M} = -—(M }2 -M }2) , thus reducing the number of selection rules to the
following eight combinations:
M;=1, Mj =22, M} =4%], Mj=2
Mj=0, Mj=%l, M5=0, M=1
M;=-1, M;=0, M} =%], M7=0 [3.2.26a)
M;=-2, M} =%l, M}=%2, M7=-1
for each of which
M = Mp, M| =M], [3.2.26b].
Considering the relevant matrix élements, for 1 <1 the same result obtained by Yu et al.
(86) is found
Mj=0, M}:il, M_‘; =0, M}‘-’:l
M;=-1, M;=0, M} =%], M7=0 [3.2.27].

Computation of [3.2.24] yields expressions for the principal echo amplitude of the form
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S(r=1)=301- X)[a +bcos($f) + ccos(zc—S'Er) +dcos(3§£r) + ecos(4£r)]

+ X[1+ mcos(éﬁr) +n cos(zZs'J-:)]

[3.2.28a]

S(I=2)= %(1 - X)[A + Bcos(gzr) + Ccos(fggr) + Dcos(?:gr) + _Ecos(4§2_2-r)]
+ X[L +M cos(gr) +N cos(zgzr)]
[3.2.28b].
The coefficients 4, B, ..., N, a@, b, ..., n are functions of the pulse parameters, § and ¢ and

the inhomogeneous field represented by cos(Za_j'z') and are presented explicitly in

Appendix 1. Note that for X=1 ( no /=2 spins ), [3.2.28a] reduces to Eq. (12a) reported
by Yu et al. (86) which applies to H,, except for a /2 phase shift reflecting the difference
in conventions used for the definition of the pulse terms. Assuming that the
inhomogeneous field is independent of the intermolecular dipole interactions, for f =a/2,

[3.2.28] reduces to a form in which the influence of the inhomogeneous field is more

obvious, |
Ser = —P(l - cos{?.ajr))

Sy = P(1+ cof2a7) [3.2.292]

in which case P is a function independent of the pulse parameters

PU=1) = $(1- )+ cos{i3¢) + 2608(23757) + cos(38157) + os(48757))
+ X(£+2c0s(81y7) + L cos(23, 7))

[3.2.26a]

P(I=2)= %( 1-X )(%-i- cos(gz-;r) + 2cos(2@r) + cos(3gr) +§-cos(4§£r))
+ X(% +2 005(5_21r) + %cos(;?&_z‘;r))

[3.2.29b].
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This interpretation represents a significant departure from the development used
for the analysis of p-H, (86) where, in the absence of unlike /=0 spins, the dipolar field is

entirely described by the two terms cos(gﬂr) and cos(zﬁr).' Moreover, both these

terms and the one arising from the inhomogeneous field were taken as averages over the
sample ( cos(nczr =¥ ZCOS(-a T ) for example ) and used as arbitrary parameters to

fit the data obtained for each set of experimental conditions. Assumed to be relevant for
the p-D, fraction in solid deuterium, the previous development (88) also neglected the
dipolar interactions between unlike spins i.e. the tacit assumption that ;5-1; =0 was made.
Despite these shortcomings, two useful relations were discovered that remain valid. From

[3.2.29] a measure of the inhomogeneous field is obtained by forming the ratio

lS,x +Sx_vl

== ISn!+le3'!

= cos(2a;7) [3.2.30].

Also, information of the spin-spin relaxation due to the dipolar field can be extracted by
combining the results for an xx and xy sequence for a given set of experimental parameters

| +lsxy[ =P [3.231).
Confirmation of the validity of [3.2.30] and [3.2.31] by companson to the exéerimental
results will at once verify both the independence of the inhomogeneous field on the dipolar

interactions and the detailed form of the echo amplitude decay from dipolar relaxation

arrived at in [3.2.24].
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Chapter 3. RESULTS AND DISCUSSION
Echo Amplitudes and Decay: the Anomalous p-D ; Behaviour

One of the most intriguing and as yet unexplained phenomena found in solid D5 is
the striking departure from Curie's law for the / = 1 magnetization with decreasing
temperature, (84, 88) This deviation is particularly strong for X = 0.5 and in the

temperature range where the orientational fluctuation rate z‘él is of the same order as the

Larmor frequency & of the precessing spins. (93) This departure from Curie's law means
_ an apparent "loss" of spins in the sample and various scenarios have been proposed in an
unsuccessful attempt to explain this phenomenon. No such "loss" is observed for the / =2

spins in the same sample, nor for the I = 1 spins in solid H, at comparable mole fractions
X and at temperatures where @yt =1. (93) Therefore, in solid D,, the amplitude ratio

S Jt.y(f =1) /S ;y(f =2) in the limit = — 0 is smaller than the calculated ratio of the nuclear

susceptibilities and is a function of 7 and X,

For the observable p-D, I = 1 spins, the solid echo decay is affected by the
orientational fluctuations in the temperature region where @grp ~1 and the theory of the
Ienha.nced echo damping caused by these fluctuations has been presented by Harnis et al.
(95) In this analysis of the echo relaxation data, only samples studied ;mder conditions
where this fluctuational damping is small are considered. For instance, no attempt is made
to account for the behaviour of samples with X = 0.49 at temperatures below 7 = 0.4K
where orientational fluctuations are considerable. The magnitude of this damping and the
.damping characteristic temperature decrease with X. Hence, samples with X =028 at T=
0.2K will show only small fluctuation damping (95) and will be analyzed as described

below.
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. Figure 3.1. Representative echo profiles for the xy and xx pulse sequenc‘es and the absolute

amplitudes S{(7=1) and S(Z=2) of the principal echo, in arbitrary units, as taken from (88).
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No correlation exists between the observed solid echo magnitudes of the different
samples shown in the various figures, since the settings of the electronics are not
necessarily kept the same for different experiments, as they were chosen to optimize the

recording conditions.
Echo Amplitude Relaxation

The computations are gompared with tabulated experimental data of (88).
Representative echo profiles for the xy and xx pulse sequences are shown in Figure 3.1.
The absolute value of each in the same arbitrary units is reproduced here, but the
aimplitude is positive relative to the FID for the xy and@egﬁive for the xx echoes. The
signal amplitudes, S(/=1) and 5(/=2), for para and ortho-D, resl}ectively, are also defined.
For I = 1, the signal maximum of the principal echo is located at a time ¢ = 7 after the
‘second pulse, as expected. The asymmetry of the broader J = 2 echo envelope and the
apparent shift of the echo maximum amplitude are due to intermolecular dipole relaxation
and have been interpi'e;ted in terms of a Gaussian line shape centred at a time .t = 7 after the
second pulse and damped by an exponential decay. (88, 96) From measurements of the
inhomogeneous‘ and intennolecﬁlar second moments, the typical values found are
c_z?=150Hz and S_Jk- = 220Hz for the mean dipolar field (88) for both para and ortho-D;.
| (There is a small relative frequency shift & ?j‘ (96) between para and ortho-D, but it does

not affect the individual analyses of S(=1) and SU=2).)
" Figure 3.2 shows the representative echo amplitude decay of a sample with X=0.49
at 0.6 K and X'=0.45 at 0.4K as a function of the evolution time 7 for both the xx and xy
sequences with 8 =x /2. With mcreasmg vaiues of T the echo amplitudes are damped
through 'both the intermolecular dipole and inhomo éeneous fields. The relevant parameters

are determined by simultaneous fit of the theory to the data from the xx and xy sequences,



with the lines representing the best fits of [3.2.29]. Table 5.2 gives a summary of the
parameters used to produce relaxation curves similar to those in Figure 3.2 for various
samples over a range of conditions, from which a few trends are immediately apparent.
(These parameters can be varied individually to within about 5% without deterioration of
the fit and are comparable with the experimentally observed values reported in (38) from a
simpler analysis.) They are consistent in the sense that it is expected that both the ofrho
and para fractions are subject to the same inhomogeneous broadening and hold for both
the respective xx and xy sequences. There is no well established trend in the magnitude of
this inhomogeneous field with X. At 8 = /2, the amplitude of the S, signal is small
relative .to Sy tesulting in unfavourable S/N and large experimental scatter. While this
problem is not as signiﬁcant for the /=2 signal, the error is amplified when the dat'a‘ are
processed via [3.2.30] and [3.2.31]. A survey of Table 3.2 also suggests that the .
interpretation of the dipolar relaxation is adequate in that &} = - and 8} = Jﬁ. ‘
In Figure 3.3 the fit of the combined [3.2.29] and [3.2.3 l] is given for the same set
of expei'imental data used in Figure 3.2, Here the theoretical curves are inciependent of the
inhomogeneous field and show the dependence of the signal _-:a_mplitude on the
intermolecular dipole relaxation alone. The theoretical results for the four-parameter (solid
line) and two-parameter (broken line) representations of the dipélar field are comp#fed
using the values reported in Table 3.2. Making the assumption that [3.2.10] holds and
using average values of the relevant coupling constants yields the broken curve for the
two-parameter model. This last fit to the experimental data deviates from them somewhat
more than the less restrictive four-parameter fit. Hc;wever, these theoretical results do
* support the notion that the dipolar field experienced by all spins in the sample can be
effectively represented by two diéﬁnct cbntn‘butions given by E and%E. It is also -
significant that these dipolar coupling terms reveal a more sensitive dependence of the

signal amplitudes on the presence of the ortho spins than on the para fraction, which is not

7

s
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Figure 3.2. Echo amplitude decay of the absolute amplitudes S(Z=1) and S(=2) for 2
sample with X=0.49 at 0.6K and X=0.45 at 0.4K as a function of the evolution time 7 for
both the xy (triangles) and xx (circles) pulse sequences with f=90°. For each sample, the
arbitrary units are the same. The symbols represent the experimental data while the broken

and solid curves are the computed decays using the coupling constants reported in Table
3 1 and descnbed in the text.
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Figure 3.3, Fit of Eq. 28 to the same set of experimental data used in Figure 3.2, The
theoretical curves are independent of the inhomogeneous field and show_the dependence
of the signal amplitude decay on the intermolecular dipole relaxation alone: The results of
both the two-parameter and four-parameter representations of the dipolar field are given,
The solid curves result from the coupling constants reported in Table 3.2. The broken

curves are the result of the two-parameter fit assuming 3,; = &;; and &, = 5_12. using
average values. '
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X T (K) E(I= ) 5_“ -5? al(l=2) a1 -5;
(Hz) (Hz) (Hz) (Hz) (Hz) | (Hz)

0.06 0.1 - - - 120 - 223
0.06 0.2 - - - 120 - 223
0.06 1.2 - - - 120 - 223
0.28 0.2 125 64 175 120 64 191
0.30 1.2 92 107 199 104 127 203
0.40 0.6 95 107 199 107 111 207
0.45* 0.1 123 130 195 123 115 215
0.45 0.4 115 111 191 123 127 199
0.45 1.0 115 111 191 123 115 199
0.49 0.6 145 119 187 155 135 195

Table3.2. Summary of the theoretical coupling constants used throughout the analysié.
Note that the X=0.45 sample at 0.1K (marked by the asterisk) is affected by the additional
damping from orientational fluctuations, as described in the text, resulting in larger than
- expected values for 31—1 and_—JE. The observed trend in the magnitudes of the dipolar

coupling constants is as expected for the different values of X i.e. a increases and 61_2
decreases as X increases. While samples with larger X tend to exhibit larger values of Ec}-,

there is no reason to expect a correlation between these two quantities.

surprising when one considers the difference in spin magnitudes but perhaps this also hints
at the distribution of environments experienced by the 6-D, molecules.

The data from these two samples were again used to produce Figure 3.4. The data
(open circles) are compared with the curves calculated from [3.2.30] where the values of

the inhomogeneous field E; in Table 3.2 have been used. The experimental scatter. is

exacerbated in this case owing to the fact that the difference in phase of S, and Syy leads
to a subtraction. This operation cancels out the effect of the intermolecular dipole
interaction, yet despite this more serious deviation of the theory it is noted that the

inhomogeneous field appears to be uncoupled from the intermolecular dipolar field. Again
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it is apparent that the inhomogeneous field affects each spin in the sample in a uniform
fashion and has only a slightly larger effect on the sample with the larger concentration of

I =1 spins. While our basic understanding of the &;.'s is good, the origin of the

inhomogeneous field is unclear as discussed previously. (88}

In Figure 3.5, for a sample with X' = 0.28 and 7 = 0.2K ( incorrectly labeled X =
0.24 in Figure 7 of (88) ), the dependence of the signal amplitude on the angle of the
second pulse, f, is presented for four different values of 7 . This set of experiments
represents the most demanding examination of the validity of the entire theoretical model,
as it incorporates systematic variations of all experimentally significant parameters. The
values of the parameters reported in Table 3.2 are the averages of those used to fit all four
sets of data and were varied within 10% in order to closely match the experimental points,
The increasing deviations from these means generally arise from results with larger values
of z. As previously discussed, given the form of 5‘,—,1 expressed in [3.2.9], it is tacitly

expected that for a spin j coupled to the field generated by surroundiné spins [ = 1, 5_,._1

should decrease with decreasing X, a trend observed from the results for Figures 3.2, 3.3

.

and 3.5 shown in Table 3.2. While the reverse should be true for [ = 2, i.e. 85 should

increase with decreasing X, the results suggest more efficient céupling to spins [, = 2 in
lattices with larger concentrations of 7 = 1 molecules. Despite this apparent contradiction .
in the expécted behaviour of the dipolar field, we do note that the average values of -6_':
and g appear to independent of the magnitude of the spin i, hence -6_2—1' ~ -6; and 52“ S
% consfstently throughout: this analysis as expected. The fit of the theory to the
experimental data presented in Figure 3.5 makes use of the four-parameter procedure
because here an attempt is made to simultaneously account for the influence of all-relevant
parameters. There is. increasing disparity between the theoretical curves and the
experimental evidence for large values of both 7 and g, the common cause being the

dephasing of the prepared coherences. Apart from the unfavourable S/N typical for low
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amplitude signals, as the amplitudes decrease with increasing 7 and f the effects of
imperfect pulse tuning become increasingly important and thus some systematic deviation
might be introduced. This heralds the breakdown of the two-parameter model for the

dipolar field, as increasingly divergent values of the E’s must be used in order to closely

match the experimental data for the longer values of 7. However, a relaxation mechanism
hitherto unaccounted for may exist. Spin diffusion and the motion of neighbouring atoms
or defects should have negligible influences at these temperatures, but it remains possible
for cross-relaxation to be effective. This would manifest itself as a zero-quantum
(4M = 0) exchange of polarization between two spins and might have been neglected due
to the strictly secular representation of the intermolecular dipolar interaction.

For the I = 2 §,, case, Figure 3.6 shows how these theoretical curves_are
constituted of the functions 4, B, ..., N defined by [3.2.28] and presented the Appendix. In
the absence of an inhomogeneous field, these ﬁmcf:ions are dependent only upon the pulse
terms and have odd symmetry about S =x/2. However, when a__,- #0, those
- contributions associated with the higher frequency dipole terms (£ and N for example) are
favoured at larger values of # , as shown in Figure 3.6 where a; = 120Hz and 7 =
1.0ms. It should be expected, then, that such high frequency terms are attenuated for

increasing values of T , as evidenced in Figure 3.5.
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Figure 3.4. Fit of [3.2.30] to the experimental data for samples with X' = 0.49 at 7= 0.6K
and X'= 0.45 at 0.4K. The theoretical curve shows the contribution of the inhomogeneous
field alone to the signal amplitude decay and its independence on the dipolar field. Fit
parameters used are reported in Table 3.2.
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Figure 3.5a. Dependence of the signal amplitude on the angle of the second pulse, 4, for
four different values of zfor a sample with X = 0.28 at T= 02K The symbols (circles for
Sy triangles for Syy) mark the experimental data and the solid and broken curves, the best

fit of the theory. For 7 =1 the fit parameters for all four sets of data are: a_j = 120 Hz,
811 =64 Hz, 81, = 175 Hz. '



120

550 ——r— 800 e “
350 | 7 =0.5ms 1 &00 _ I.Oms_:
150 ] 400t :
L\ a ] 200} 20980\
-50 o \ 7 -1 a) b
L ¢ 7 0 AN
250 F /8% '\ s
—250 /a7 [ s’ ]
5 \ /A _200 :\? //A g
- i / [ e ]
R 2 -a00f 1 ]
= [ \ A L\ /L ]
S  -650 | \ )4 1 _¢oo L h
5 | 600 | _
8 \ Y
Tt -~
[an | e e R R e
p
>
»
W
c% 250 100
N [
H - b
0 0
)\ A .
v 4 ' [
~250  \ 7 { -100
A d F 3
o/
-500 L [IEPEPEPEPY EPEPEE =200
. 60 120 180
B (degrees)

Figure 3.5b. Same as Figure 3.52 for I=2: @; = 120 Hz, &5, = 190 Hz, 35; =64 Hz. In

both cases the values of the dipole coupling terms were varied individually to within 10%,
with increasing deviation at large values of .
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Positions of Principal and Satellite Echoes

Molecular State | M, ) : Eigenvalue
2)=11p) —2a;+2a;+b; +2 28 11y
k=j
1) = Yz[110}+|01)] _ b, —
- -a;- J/+Z<‘)‘-.I.
a;=4aj; 2 ket sk
k=j
|x) = Yall-10+]1-1)] 2a;-b;
|y} =100) - 4,
-1 = Yzll-10}+|0-1)] _ b, —
—a;— J/- 20l
@j=a;= /2 el zk
k=f
-2)=l-1-1) 2a; +2a;+b; 2 20l
k= j

Table 3.3. Energies of the Molecular States for 0-D,

In order to account for the positions of the principal and satellite echoes for / = 2,
the frequencies of the relevant coherences mustr be determined. To summarize, the
eigenvalues of the molecular states of total spin J are calculated by considering the
intramolecular quadrupole and dipolar energies of the atomic spin states. Table 3.3 shows
how these molecular states are constructed and presents the corresponding eigenvalues
under the Hamiltonian of [3.2.2]. Note that the state§ lx) and |)’) are linear combinations
of the ortho I =0 and I = 2, M=0 states which are mixed through elements in the flip-flop
terms of the intramolecular dipole contribution. Assuming that the splitting 6a; 'bj
between the |x) and |¥) states is large relative to the intermolecular nuclear dipole

interaction ( recall -J-j?z 100Hz ), the latter is treated as a non-degenerate first order

’



123

perturbation as these states can be considered to be uncoupled. Table 3.4 shows the
frequencies of the single quantum coherences [ A/} M’| from which four transitions in the

frequency domain are expected, namely,

3b;
v—vy =2 3a; +T =+X]

and v [3.3.11.

b.l
v-yy==% Baj - =&

During the first time interval 7z, the spins accumulate a phase #27X,,7 relative to the
Larmor frequency that can be refocussed subsequent to the second pulse, which has the
effect of mixing these coherenceé. Formation of the principal echo is due to those two
components that do not change relative phase, subject to the condition X,,;¢ = X7, while
two satellite echoes are possible, corresponding to the two coherence changes Xz = X5

and X5t = X7z Using the frequencies of these AM = %1 transitions, echoes are expected

_ X X
to be found at ¢ =kz where &£ = =L s 1 —2— or

1+ /z /
8 5
1_/ 3/ [33.2] |

which is equivalent to the expression obtained by Volz et al. (90} and Conradi et al. (97)

—t—
k===

for 4= 3a; where a different convention for the nuclear quadrupole interaction is used.
Note from [3.2.8] that while a; and &; are functions of the po]anzatlon and the relative
orientation of the molecular axis and the external magnetic field, the ratios appearing in
[3.3.2] are not. It would be expectéd, therefore, that the values of ¥ would be independent
of the orientational ordering, the mole fraction of /=1 spins and the admixture between the
'J=0 and J=2 rotational states and would be given by & = 0.845, 1 and 1.183. This



exemplifies the fact that / is not a good quantum number for 0-D5, otherwise we would

expect Solomon echoes at k= 1/3, 1 and 3. (98)

Operator Frequency
| MY M|
|2X1l — 3b; — -
—& +30j +J %4‘ Zé‘jk!:k
- kej
| 1] —_ b _
—aj--3aj+ %+ Zé‘jkf:k
k=j
ID{y| _ b —
-—aj +3aj— é'i' Zaﬂcfzk
- kwj
Jx)-1 — B .
-'Ctj +3aj— %4‘ Zsjklzk
k=j ‘
|y}=11 _ b; —
= . —aj—3aj+ A+ Z5Jk1:k
k#jf
> 12| _ 3, —
: —aj—3aj- %4‘ 25_]]{1:]{
kej

Table 3.4. Frequencies of the Single Quantum Operators for 0-D,

Whether or not the satellite echoes are observed, however, will depend upon the
admixture of the rotational states for in the spherically symmetrical /=0 state the vaiues of
a; and &; both vanish and the frequencies of Table 3.3:collapse to a sihg'le degenerate
transition. Even given finite values of these coupling terms it is necessary that the
broadened NMR lines are wellhresolved. The k=7 satellite echoes described in (90) for HD
and 0-D, embedded in an amorphous silica substrate, a system with large crystai fields,
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are not observed in solid D, (see Figure 3.1). Use of the values a; = 290Hz and 4; = -70
Hz ( obtained from [3.2.8] for Co(X,T) = 0.02 and ( 1- 3cos> 93':_,-) = 1, corresponding
to a weakly onented system (99) ) in [3.3.1] shows that the frequency separation
IX I,‘"X 2| is only about 150Hz, which is comparable to the inhomogeneous broadening

frequency a—j = 130Hz. Given this situation, it is likely that the satellites are not observed

because of the weak orientational ordering of the 0-D, fraction. The weak polarization
indicated by the admixture coefficient C,(X,T ) results in the small observed values of the
intramolecular coupling constants q; and 5;. Consequently, the frequencies of the single
quantum coherences shown in Table 3.4? become degenerate and only the £ = 1 echoes
may form. In contrast, the crystal field must have been very large for the experiments on
D, embedded in an amorphous silicon matrix. (90) Therei the strength of the orientational
ordering is élready evident fronf the sharpness of the principal echo, indicating significant

NMR line broadening. Under these conditions, Cg(X,T ) may well be of the order of unity

and therefore |X 1|4 |X2l will be much larger than any small local field inhomogeneity

resulting i observable satellite echoes.

(R
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Chapter 4. CONCLUSION

A formal theory for the solid echo amplitude of both the ortho and para fractions
in solid D5 has been presented. The numerical results obtained for the contributions to the
spin-pair dipolar field and the inhomogeneous magnetic field are consistent with those
obtained from analysis of the experimental line shapes: observed signal amplitude decay is
well approximated in terms of our model for dipolar spin relaxation and inhomogeneous
line broadening. Similarly, the experimentally observed dependence upon the parﬁmcters
of the pulse sequence is accounted for as well, in terms of the evolution of the detailed
dipole-dipole coupling terms. The magnitude of ihese terms is consistent with
expectations, however, the origin of the inhomogeneous field needs clarification.

While the satellite echoes expected for the /=2 fraction of solid D, have not been
observed, we posit that it is a combination of weak crystal fields and the existence of
inhomogeneous broadening that contribute to the lack of resdlution of the NMR frequency
spectrum, resulting in quenching of the satellites.

The deviations from Curie's law for the I—-l_ spins, the oﬁgins of the
inhomogeneous field as well as the possibie existence of unaccounted relaxation
mechanisms need further discussion. The phase of the solid hydrogen is primarily
ldetemllined by the domirant EQQ interactions. between /=1 molecules. At both low
temperatures and higher values of X, strong localized orientational ordering would tend to
" produce the regimes associated with a glassy phase, which would certainly produce:
inhomogeneities throughout the sample. A mild increase . in the magnitude of the
- inhomogeneous field was generally observed from the theoretical simulations for
experiments performed at lower temperatures, but in this cése, only a tentative trend in the
data can be inferred. These ordering processes would also be more effective at lawer
temperatures, providing an efficient form of relaxation. As the temperature ihcrw.ss,_

random motions of the /=1 molecules would result in a much shorter correlation time for
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fluctuations of the EQQ interaction. Thus, fast relaxation mechanisms that occur below
the limits of resolution of the NMR experiment could account for the apparent "loss" of
I=1 spins at low temperatures. Given this development of a more comprehensive theory
for the response of the solid deuteriums to two pulse NMR experiments, it is expected that

further interest in these concerns will be generated.

ri
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APPENDIX 1.

Explicit Formulation of the Functions Defined in [3.2.24] of the Text

Evaluation of [3.2.24] subject to the selection rules of [3.2.25-27] was performed with the
help of MAPLE to derive [3.2.28]). The MAPLE code also contains a routine for the
evaluation of the general form of the rotation matrices of [3.2.15]. Listed below are the

terms required to reproduce the theoretical results.
a (1-&-2cos2 B cos? l'p—ZCOSZ qp—cos2 ﬂ)(z‘g-cos" B +-§-cos3 B —%cosz B —-é-cos,B +%)

+(-1— cos? B )c:os(Za:—_,-r)(j{fc:os‘1 B —-%cos3 B —-%COSZ B +-§-cos B +%)

b (1+2cos2 B cos® :p—Zcos2 q:—cos?‘ ﬂ)(—7cos4 B -2cos’ B +6cos> B +2cosf + l)
+(1-cosz ﬂ)cos(za}r)(—'h:os4 B+ 2cos° B+ 6cos® B —-2cos 8 + 1)

c (1+2cos ﬂcos o- 2 cos? @ —cos ﬂ)( cost g - ~2cos° ﬁ'--—cos ﬁ+cosﬁ+2)

(1 —COS ,B)cos(anfJr ) Zcost B +2cos ﬂ —--cos B —cosf +2)
d .(1-&-2c.os2 B cos? go—ch:as2 ga—cos2 ﬂ)(—cds4 B +2cos® B -.2cosﬁ +1)
+(l cos? ﬁ cms(2¢:z.‘r ) cos4ﬁ—26053ﬂ+2cosﬁ +1)‘

e (1+2cos ﬂcos o- —2cos? o- cos? ﬂ)(—cos B- —cos ﬂ-i-lcos B - cosﬁ+-})
+(1—~cos ﬂ)}:os(Zajr) -gcos ﬁ+-2-cos ﬂ+%cos ﬂ+-%-cosﬂ +-}§)
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(1+2cos2 B cos? 4;0—2cos2 qo—r:c’s2 [3)(%cos2 B +cos B +%)

+{1 - cos? ﬁ) cos(za__,;z-)(-%cos2 B —cosB +-é~)

(1+2c052 B cos? o - 2cos? ¢ — cos® ﬂ)(2—2cosz ﬁ)

+2(1 - cos? Jij )2 cos(2a_jz‘)

(1-{-2‘3052 B cos® @ —2cos? @ — cos® ﬂ')(%cos2 B —cos B +%)

+(1 ~cos? 8 ) cos(za-;-r)('% cos® B +cos '*‘%)

(%icos4 B +5cos’ Jij —%cos2 b —cosf -t»%)(cos2 r;m:c:s4 B —%cos4 B
+2cos? gaacos3 B~ cos> Jij -2¢0s® @cosf +cos cos? /] +%
+18cos? Jii (Zc:os2 qz;v,c;os2 B - cos? B 2cosz»qJ + 1))
+°°s(2;:"-r)(%°°54 B —3cos’ B -2cos? B +3cos B +%)

x(l—zco_sﬂ +2cos’ B —cps4 Jij —9(c:os2 B -l)c:os2 ﬁ)

(—7 cos* B —2cos’ B+ 6cos? B +2cosf +1)(cos’.2 a;ocos4 B —--%-cos4 B
+2cos? pcos® B —cos® B —2cos? peos B +cos B — cos gp-i--%

+9 cé}sz ﬂ(z cos? pcos® B —cos? B —_2cos2 P+ 1)) _

-!-cos(zqc;;r)(——? cos* B +2c0s> B =.|-6cc:s2 B —2cosf +_l)

x(1—2cosﬁ +2c.:os3 B —cos* g :Sl(cos2 B —I) cf"os2 B)
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(%cos4 B +2cos’ yij -—-%cos?' B —-cosf +?,)(2c:os2 ;ocos" Ji] - cos* B
+4cos? gvcos3 B ~2cos’ Yij —dcos® @cosfB +2cos B -2cos® @+1
+9 cos? ﬁ(Z cos’ «;wos2 B - cos? yij -2 cos? @+ I))
+cos{2-c_z;r)(%cos4 B -2¢o0s° B —%cos?' B +cosf +2)

x(l—-Zcosﬂ +2c08° - cos* B - 9{cos® B - 1) cos? ﬁ)

(— cos* +2cos° B —2cosf + l)(2 cos? gz:vcos4 Ji c:os-4 Jij
+4cos? @cos B -2cos® Jij -4cos? @cos f +2cos 8 - 2cos? @+1
+9 cos? ﬁ(z cos? a;pcos2 .ﬁ — cos? B —2cos? @+ l)) :
+cos(2&—;r)(—cos4 B ~2¢os f+2cosf + 1)

x(1—2cosﬂ +2cos® B —cos* B —9(cosz B —1) cos? ﬁ)

(-};cos4 B —-%-cos3 B -i-;%-cos2 Jis —%—cosﬂ +%)(2cc>s2 pcost B -cos* B
+4cos? ¢cos3 B —~2cos’ B —4cos? qnéosﬁ +2cos 8 —2cos® @ +1

+9 cos? B (2cos2 @ cos® B - cos® B ~2cos? ¢+1)) :
+cos{2&7r)(-%cos4 Jif -‘I--%-cos3 B +%<:os2 B +%cos B +%)

x(1—2cosﬂ +2cos° B ~cos* B -9(cos2 B —1) cos? p‘)
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(-%cos2 B +cosf +-})(2 cos? e;pcos4 B — cos* Ji)

+4 cos? gr:vcos3 s —2cos? Jii —4cos? pcos B +2cos B —2cos? p+1
+9cos? (2 cos? @cos® B - cos? B —2cos? @ + 1))
+cos(2&7r)(-%cosz B —cosf +-%)

x(l——Zcosﬁ +2¢cos° B —cos* 8 —9(cos2 A —1) cos? ﬂ)

(2- 2cosﬂ)(2 cos? gpcos* B - cos* B

+4cos® ¢cos3'ﬂ -2cos’ B —4cos? @cos B +2cos B - 2c0s? @+1
+18cos? ﬂ(z cos? gzacos2 Jij —cos? B ¥2cosz @+ 1))

+cos{2a jr)(l— cos )

| x(2-—4cosﬂ +4cos’ Jij —2cos? B —18(c052 B —l)cos2 ﬂ)

(%— cos +%cos2 B)(Z cos” @ cos* B - cos* Ji

+4cos? gvcos3 B =2cos’ J: ] ~4cos? gcos B +2cos fB —2cos? o+1
+9 cos? ﬂ(2c052 «;zaco's2 B - cos? B- 2cos? @+ ))
+cos(2a_jr)(-2]-+ cos -!--%-cos2 ﬂ)

x(1-2cosﬁ +2cos’ B ~7cos4 B -—9((:05.2 ﬂ -1) cos? ﬂ) -
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APPENDIX 2. MAPLE routine for the evaluation of the Redfield matrix [1.5.20}

H I I I I Ik

Evaluation of the Redfiled supercperator for general spin mag. si
The j symbol as defined in Edmond's Eq. 3.6.10 for the Clebsh-Gordan
co-eff and 3.7.3 for the j sumbol defined in terms of the latter

DINESEN  Nov/93.

fac:=proc(n) GAMMA(n+1) end;

j=proc(ml,m2,m3)

s):

end;
#
.
#

local s, ss, £
if ml1+m2+m3 <> o then RETURN (0) fi;
55:=0;
for s from 0 to si+m3 do .

if si-m1-s <0 or si+m3-s < 0 or 2-si+ml+s <0 then

£=0 '

else _

fi=fac(sttml+s)*fac(2+si-m1-s)/(fac(s)*fac(si-m1-s)*fac(2-si+ml+s)*fac(si+m3-

fi;
ss:=ss+(-1)**s*f,
od;
fi=fac(2)*fac(si-m1)*fac(2-m2)*fac(si-m3)*fac(si+m3)/
(fac(6)*fac(1)*fac(2)*fac(si+ml)*fac(2+m2)):
edmonds:=(-1)**(-2*si-m1-m3)*ss*sqrt();

“build the redfield matrix element R(alpha,alphap,beta betap) of Jn's

red:a:roc(alpha,alphap,beta,Betap) :

- local i, m, gamm; - . *
Ri=array(1.3,00,0,0); ° - °
m:=alphap-betap; ,
if abs(m)<=2 then R[abs{m)+1];=R[abs(m)+1-70*(-1)"(2*si-alpha-betap)



betap)

end;
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*i(-alpha,m,beta)*j(-betap,-m,alphap)fi,
m:=alpha-beta;
if abs(m)<=2 then R[abs(m)+1]:=R[abs(m)+1-70*(-1)*(2*si- alpha-betap)
*j(-alpha,m,beta)*j(-betap,-m,alphap)fi;
if alphap=betap then
fori from 0 to 2*si do
gamm:=si-i;
m:=gamm-beta;
if abs(m)<=2 then R{abs(m)+1]}:=R[abs(m)+1+70*(-1)"(2*si-alpha-betap)
*j(~gamm,m,beta)*j(-beta,-m,alphap) fi;
od;
fi;
if alpha=beta then
for i from O to 2*si do
gamm:=si-i;
m:=gamm-betap;
if abs(m)<=2 then R[abs(m}+1]:=R[abs(m)+1+70*(-1)"(2*si-alpha-

*j(-gamm,m,alphap)*j(-betap,-m,gamm) £
od;
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CONTRIBUTIONS TO ORIGINAL KNOWLEDGE

PART 2. The analytical evolution matrices for the single and double quantum manifolds
for 7 = 3/2 subject to a residval quadrupole splitting and relaxation modeled by Redfield

theory, are new. These can be used to simulate the response to an arbitrary pulse sequence

applied to systems for which the Redfield theory may be applied. Specific solutions for the

L]

DQF experiment, derived from the new theory, are discussed in terms of the residual
quadrupole coupling and compared to experimental results obtained from Na in human red
blood cells. As an appendix, a MAPLE routine is supplied that evaluates the Redfield

matrices for general [,

PART 3. The theoretical formulation for the NMR of D; has not been assembled before,
This treatment accounts for both the J=1 and /=2 contributions, where previously, the

dynamics of the latter were assumed to match the theory available for H,. A model for the

 spin pair dipolar field and inhomogeneousTield is developed to account for the solid echo

decay. To this end, formal solutioné to the two pulse solid echo experiment were

produced, showing that the intermolecular interactions can be accounted for by the spin

* pair dipolar model. Dependence of the signal amplitude to all relevant experimental and

theoretical parameters is dicussed in detail and comparison with the experiment is good. A .

discussion of the absence of the expected satellite echoes is also given.
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SUGGESTIONS FOR FUTURE WORK

PART 2. Recently, investigators have begun examining the dynamicsl of /=5/2 nuclei in
similar biological conditions. While the individual components of the resonant line of these
nuclei is generally not as well resolved as the /=3/2 case, it would be worthwhile to
evaluate the Redfield matrix for such a system and examine the effect of a residual
quadrupole splitting on the results of relevant experiments. It is unl_ikely that analytical
solutions for such a treatment would be readily obtained, given the higher dimensiohality
of the spin space and the resulting higher order differential equations requiring solution.

However, numerical solutions could be found.

PART 3. Given the future production of more NMR expeﬁmenté on solid D,, the general
theory provided here can be further applie&to account for behaviour unobéerved in the
simple two pulse experiment. Thefe does exist some data for the stimuléted echo resulting
from a three pulse sequence as well as a number of oﬂ:‘-reéonénce'experiments, which
should be amenable to such a treatment. Perhaps the ﬁoﬂ intriguing quality of the solid
hydrogens is the source of the inhomogeneous field and the observed deviations from
Curie's law. While it is not likely that either of these issues wdl be satisfactorily addressed |
by NMR methods alone, given the poor resolutién of the signal, a more detailed statistical
description of this EQQ ordered glass phase would certainly provide much needed insight.





