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Abstract 

 Breast cancer is a heterogeneous disease with variable clinical presentation, 

histological features, and response to therapy. Despite improvements in therapy and 

survival in breast cancer patients, triple-negative breast cancer (TNBC) subtype is the 

exception. TNBC is a heterogenous disease, with no targeted therapy and patients are 

still treated with standard of care chemotherapy. While some patients present favorable 

treatment responses, others develop metastatic disease within the first three years after 

their initial diagnosis.  While these differences have been partially explained by inter- and 

intra-tumoral heterogeneity at the genomic and transcriptomic level, the role of spatial 

and temporal heterogeneity upon disease progression, represented by the tumor 

architecture is still poorly understood.  

 Here, we use patient derived xenografts (PDX) to study temporal heterogeneity 

upon disease progression.  We develop models of residual disease, recurrence, 

treatment resistance and metastatic disease in a stepwise manner subjected to single-

cell RNA sequencing (scRNA-seq) to identify biomarkers and interrogate spatial 

heterogeneity in situ.  We combine single-cell RNA sequencing (scRNA-seq), multiplex 

immunofluorescence (MIF) and digital spatial profiling transcriptomics to interrogate 

matched PDX models of primary and metastatic TNBC samples to later define 

transcriptional states in the context of intact tissues.  Here we identify cell populations 

that are present across independent TNBC tumors that are predominantly determined by 

their spatial localization within the tumor. Both primary and metastatic tumors contain 

transcriptionally distinct cycling populations that show a gradual transition towards 

hypoxic populations, largely defined by their distance to necrotic zones. In contrast, a 



 II 

second class of cell populations, show no preference for spatial localization and display 

a low degree of network connectivity, interspersed among other cell states within the 

tumor tissue. These cells are exposed to distinct environmental queues in each zone and 

tend to co-express a range of transcriptional programs, supporting a high degree of 

plasticity. In functional studies, both hypoxic and cell populations displaying plasticity 

show higher tumor initiating potential in vivo and are enhanced in tumor metastases.   

 Taken together, we present a spatial transcriptomic approach coupled with the 

discovery of distinct TNBC zones. This methodology allows us to a) study the spatial 

distribution of distinct cell populations identified by single cell gene-expression in 

histological samples, b) identify distinct cell populations in defined neighborhoods within 

defined tumor locations and c) identify cells within specific biological zones that may share 

states of plasticity and can be found among other TNBC with distinct clinical and specific 

activation status. The integration of spatial information and single-cell transcriptomics is 

a powerful tool to biologically interrogate intra-tumor heterogeneity with a high level of 

integration among tissue sections that can be clinically relevant among disease 

progression. 
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Résumé 

 Le cancer du sein est une maladie hétérogène dont la présentation clinique, les 

caractéristiques histologiques et la réponse au traitement sont variables. Malgré les 

améliorations apportées au traitement et à la survie des patientes atteintes d'un cancer 

du sein, le sous-type de cancer du sein triple négatif (CSTN) fait figure d'exception. Le 

CSTN est une maladie hétérogène, sans thérapie ciblée et les patientes sont toujours 

traitées par chimiothérapie standard. Alors que certaines patientes présentent des 

réponses favorables au traitement, d'autres développent une maladie métastatique dans 

les trois premières années suivant leur diagnostic initial.  Si ces différences ont été 

partiellement expliquées par l'hétérogénéité inter- et intra-tumorale au niveau génomique 

et transcriptomique, le rôle de l'hétérogénéité spatiale et temporelle sur la progression de 

la maladie, représentée par l'architecture tumorale, est encore mal compris.  

 Grace à des xénogreffes dérivées de tumeurs de patients (PDX), nous avons 

développé des modèles de maladie résiduelle, de récidive, de résistance au traitement 

et de maladie métastatique pour étudier l'hétérogénéité spatiale et temporelle lors de la 

progression de la maladie. En combinant les technologies de séquençage de l'ARN de 

cellules cancéreuses individuelles, de marquage multiple par immunofluorescence et de 

profilage spatial de cibles d’ARN, nous avons identifié différentes sous-populations de 

cellules cancéreuses en fonction de leur localisation intra-tumorale distincte au sein de 

tumeurs primaires et de métastases. Par exemple, une sous-population de cellules 

hypoxiques montrant une transition progressive vers un état prolifératif est largement 

définie par sa distance relative aux zones nécrotiques. Une deuxième classe de 

population cellulaire, en revanche, ne présente aucune localisation particulière mais 
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plutôt une distribution homogène et intriquée dans les différentes zones du tissu tumoral. 

Ces dernières expriment un large éventail de profils transcriptomiques suggérant une 

importante plasticité phénotypique influencée par le micro-environnement tumoral des 

différentes zones.   Des études fonctionnelles in vivo de ces sous-populations de cellules 

hypoxiques et plastiques ont démontré une capacité de tumorigenèse et de progression 

métastatique accrue.  

 Notre approche innovante de profilage spatial de cibles d’ARN couplé à la 

caractérisation de zones distinctes au sein de CSTN par marquage 

d’immunofluorescence nous a permis de a) caractériser la distribution spatiale de sous-

populations identifiées par le séquençage de cellules cancéreuses individuelles, b) 

identifier des sous-populations ayant une localisation intra-tumorale spécifique au sein tu 

tissu and c) démontrer l’existence d’une plasticité phénotypique entre différentes sous-

populations localisées dans la même zone tissulaire, caractéristique d’ailleurs observée 

dans plusieurs cas de CSTN. L’intégration du séquençage de cellules individuelles avec 

le profilage spatial représente un outil majeur pour comprendre l’hétérogénéité spatiale 

et temporelle intra-tumorale des CSTN à partir de sections histologiques de tumeur, dont 

l’évaluation permet de mieux envisager la progression de la maladie.  
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of intra-tumor heterogeneity and study different biological processes, such as tumor 

initiation, resistance to treatment and metastasis. Importantly, spatial transcriptomics 

using markers to identify populations or to differentiate different cell types has been 

addressed by different methods and by different groups using various techniques. 

However, systematic, and unbiased integration of single-cell RNA sequencing (scRNA-

seq), spatial transcriptomics, digital spatial profiling, and functional studies of different 

cancer populations is still not done in a standardized manner.   

 To overcome the main limitation of scRNA-seq, which loses the spatial information 

of cells, we coupled this technology with multiplex immunofluorescence and digital spatial 

profiling.  First, two triple-negative breast cancer (TNBC) patient-derived xenografts 

(PDXs) tumor replicates were bioinformatically joined to obtain robust scRNA-seq data 

clusters and biomarkers aimed to identify specific cell populations. Later, the breast 

primary tumor, the lung metastasis and matched PDX from the same patient, were 

stained with specific markers/antibodies that aimed to identify each bioinformatic cluster. 

To do that, a computational system was developed to integrate the ratio of expression of 

the antibodies in each cell in the tumor. This allowed us to determine in-situ, to which 

scRNA-seq cluster each cell corresponded to.  

 The mapping of scRNA-seq populations identified two tumor zones. A hypoxic 

tumor zone, comprised by cells enriched with hypoxic gene signatures and properties, 

that tend to be found near necrotic regions in the tumor. On the other hand, a cycling 



 VIII 

tumor zone, where cells with proliferative genes were found further away from hypoxic 

regions. Other scRNA-seq populations were zone-less and were found to be scattered in 

the tissue.   

 Moreover, in absence of patient’s PT scRNA-seq data, digital spatial profiling 

served as validation method for the identification of scRNA-seq zonal populations. We 

proved that the spatial heterogeneity between the PT and matched PDXs is preserved 

and that scRNA-seq populations express transcriptional program depending on their 

geographical location in the tumor. Lastly, we characterized in time and upon disease 

progression, the primary tumor transcriptomic cell populations by establishing a 

spontaneous lung metastasis (SLM) PDX model that mimicked the 6-month patient’s 

disease progression latency. The spatial mapping of cells in the lung environment in the 

PDX and the patient’s lung metastasis biopsy, revealed an enrichment of one of the zone-

less populations identified in the PT. This population displayed phenotypic plasticity, 

adopting markers of different tumor zones, and a cholesterol homeostasis transcriptional 

program. Using a multi-pronged approach, integrating scRNA-seq data, multiplex 

immunofluorescence, digital spatial profiling and functional studies, we identified the most 

aggressive populations promoting tumor initiation and metastatic disease. Therefore, 

hypoxic and cholesterol homeostasis transcriptomic populations were targeted in vivo, 

displaying a reduction in tumor growth and lung metastatic burden. 

 Altogether, these data interrogating phenotypic plasticity in situ throughout disease 

progression, allows for the integration of the biological properties of distinct transcriptomic 

populations, their spatial localization, and their selection from the primary to the 

metastatic disease.   
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1.1 Breast cancer 

1.1.1 Epidemiology 

 Breast cancer is a heterogenous and complex disease arising from epithelial cells 

in the breast tissue. Worldwide breast cancer is the most diagnosed cancer, accounting 

for 2.3 million cases per year and 11.7% of all cancers in the globe.  In women, breast 

cancer is the most frequently diagnosed cancer and accounts for the largest number of 

cancer deaths in women. In the whole population breast cancer is the fifth most deadly 

cancer, responsible for 6.9% of all world cancer-related deaths (1). In females, breast 

cancer continues to increase over the years at a rate of 0.5% per year. This rise in the 

incidence is mostly explained by enhanced detection as well as changes in  lifestyle 

contributing to overall weight gain delayed childbearing and overall lower fertility rate (2).    

 In Canada, cancer is the main cause of death surpassing cardiovascular diseases. 

Breast cancer is the most diagnosed cancer after lung and 4th deadliest cancer after lung, 

colorectal and pancreatic cancer. Every year 27,700 people are diagnosed with breast 

cancer and 5,100 die from it.  In 2020, the 5-year overall survival for breast cancer patients 

was 88%. This is partly explained by efforts to improve screening strategies using 

mammography to detect cancer at earlier stages and emerging therapies that provide 

better outcome for patients.  Despite considerable improvements in breast cancer 

detection, therapies and overall survival, this disease surpassed lung cancer deaths in 

2020, and is still responsible for 685,000 deaths annually across the globe (3). 
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1.1.2 Histopathology 

 Breast cancer is not a single disease, it comprises distinct phenotypic entities. 

Breast cancer is usually identified through the microscope by analyzing histological 

clinical samples.  Different genetic/epigenetic events can lead to the abnormal 

proliferation of either ductal or lobular epithelial cells from the terminal duct lobular units 

(TDLU) in the breast (Figure 1.1 A). These cells can then progress into a pre-malignant 

or malignant disease. Depending on the breast cell affected, premalignant lesions will be 

classified as either atypical ductal hyperplasia (ADH) or atypical lobular hyperplasia 

(ALH). After repetitive insults to the cell, premalignant lesions that do not invade the 

basement membrane can give rise to in situ carcinoma [ductal carcinoma in situ (DCIS) 

or lobular carcinoma in situ (LCIS)] (Figure 1.1 B). Lastly, if aberrant uncontrolled 

proliferative cells invade the basement membrane, the lesion will now be considered 

malignant or “invasive” [invasive ductal carcinoma (IDC) or invasive lobular carcinoma 

(ILC)] (Figure 1.1 C).  These events can occur throughout the span of years, however, 

normal epithelial cells of the TDLU can progress rapidly into invasive lesions or present 

concomitantly with different stages of disease in the breast (Figure 1.1 D).   
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Figure 1.1 

Figure 1.1. Breast tissue histopathological transformation from normal to cancer. 

A. The breast is comprised by fat tissue and multiple ducts and lobes breast cell that 

together form the terminal lobular duct units (TDLU).  B. Lobes and ducts when they 

undergo increased proliferation can give rise to atypical ductal hyperplasia or atypical 

lobular hyperplasia. C. Ductal or lobular cells that invade the basement membrane 

transformed to invasive ductal carcinoma or invasive lobular carcinoma. D. The 

progression of disease can evolve throughout years at different speed and with 

concomitant stages of disease. The classic stepwise progression starts with hyperplasia 

of either TDLU, followed by hyperplasia with atypia of the cells, then into carcinoma in 

situ and lastly into invasive carcinoma. 
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 The architectural heterogeneity in breast cancer pathogenesis is readily observed 

at the histological level by the complexity and mixture of different histopathological 

features and regulation by different transcriptional programs (4). The progression of 

normal epithelial cells into a premalignant lesion has well described architectural features 

– excessive proliferation, pathological filling and distension of ducts or acini, and an intact 

basement membrane (5,6). However, the distinction between atypical epithelial 

hyperplasia and carcinoma in situ of the breast relies on mostly the absence or presence 

of several of these morphological features. The  diagnosis is a continuum and a challenge 

for pathologists and clinicians who have to determine the best treatment for these patients 

(7). Treatment for DCIS can vary. In some cases it can be either chemotherapy prior to 

surgery (neoadjuvant),  chemotherapy post-surgery (adjuvant), surgical resection alone 

or in other cases “watchful waiting” by doing regular imaging follow-ups (8).  

 DCIS is the main type of carcinoma in situ (80-90%). Due to breast cancer 

screening with mammography, the diagnosis of DCIS has increased over the years, being 

20-30% of all newly diagnosed breast cancers.  This immediate precursor of invasive 

breast cancer (IBC) is divided into different DCIS types depending on the architectural 

pattern and histopathological features. There are six different histological types based on 

their growth patterns; comedo, cribiform, solid, micropapillary, papillary and mixed type. 

To add to the complexity, DCIS type does not strictly determine the aggressiveness of 

the cancer. It is the grading system (low and high grade) that will help establish the most 

appropriate intervention, which in most cases is debatable (9). 
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 Progression into an invasive breast carcinoma will be defined by the invasion of 

the basement membrane. Although, in IBC there is almost no doubt of intervention in 

most cases, this entity poses a challenge from an architectural, molecular and therapeutic 

perspective due to its heterogeneity (10). Cells at this stage, acquire at different rates, 

distinct phenotypes displaying diverse hallmarks of cancer. Cells can exhibit uncontrolled 

proliferation, lack of growth suppression, anti-apoptotic or cell death mechanisms, 

development of angiogenesis or neovascularization, dissemination and/or metastasis 

(11). All hallmarks of cancer can be present at time of diagnosis or be acquired throughout 

disease evolution. The exposure to new events or signals coming from neighbouring 

tumor or stromal cells will also play a role in the molecular adaptation of the cancer cells. 

Different molecular mechanisms (genomic, transcriptomic or epigenetic) can trigger 

changes at a single cell level (12). Therefore, the understanding of the spatial localization 

and disposition in space of every single cell regarding other cells is essential to integrate 

the changes that can occur either through cell-to-cell (C-C) or cell-to-environment (C-E) 

interactions. For instance, adjacent cells can rely on the exchange of hormones, 

cytokines, exosomes, and other bidirectional communication ques to adapt to a specific 

event or environmental change. Moreover, C-E interactions exert selective pressures for 

fit cells (13,14).  

 Harsh environmental conditions in the tumor environment, such as in 

hypoxic/acidic pH/low nutrient availability tumor zones will inevitably select for cells 

already adapted or with the machinery to adapt and survive, posing a clinical challenge 

at the time of delivering treatment (15). At the time of treatment selection, all these 

molecular changes at the single cell level are not globally integrated to make therapeutic 
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decisions. The treatment decision is still mostly based on the clinical classification of 

breast cancer through the expression of receptors, specific mutations that can grant 

benefit for specific targeted therapy, and lately the incorporation of the immune 

compartment to identify patients suitable for immunotherapy 

1.2 Breast cancer subtype classifications 

 Breast cancer subtyping depicts the level of heterogeneity of this disease.  Many 

attempts considering different molecular alterations have been described. The most 

common breast cancer subtype used in the clinic, is the histopathological classification. 

Breast cancers are mostly divided into three subgroups depending on the expression of 

receptors: hormone receptor positive (estrogen and progesterone), HER2 receptor 

positive, the expression of both HR and HER2, and triple-negative breast cancer that 

lacks all receptors. Moreover, the complexity of the tumor is further characterized by the 

type of histology present in the tumor and its histological grade. These clinical variables 

will help determine the aggressiveness of the tumor, intervention, and prognosis.  The 

histopathological classification helps to tailor treatment and offer patients the opportunity 

to receive targeted therapy.  The molecular characterization based on gene-expression 

(transcriptomic) and on both mutational profiles and copy number aberrations (genomic) 

further characterizes the disease and identifies again differential prognosis. Lastly, within 

the TNBC subgroup, that lacks targeted therapy, efforts to redefine the disease into TNBC 

subtypes (TNBCtypes) has shed light on the heterogeneity of the disease, helping on the 

elaboration of more specific clinical trials and therapeutic strategies (Fig.1.2A). 
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 Altogether, these classifications and subtyping can have many possible 

combinations, making each tumor different from each other (Fig.1.2B). The inter and 

intra-tumor heterogeneity in breast cancer is reflected trough the inability to describe 

breast cancer in only a few subtypes. The prognosis and treatments will take into 

consideration all these variables and subtypes, making personalized treatment an unmet 

clinical need (Fig.1.2C).  

Figure 1.2 
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Figure 1.2 Breast cancer subtype histopathological and molecular classification.  

A. The histopathological classification is determined by the expression of hormone 

receptors (ER, PgR), HER2 receptor, the expression of both HR and HER2, or the 

expression of none. The lack of receptors described the TNBC subtype. The molecular 

classification describes the subtypes by gene-expression and the genomic Integrative 

clusters (IntClust). Moreover, TNBCtypes are described consequently B. Prognostic 

balance illustration of two distinct breast cancer classification. C. Graphical overall 

survival for the two different breast cancer subtypes described in B.  
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1.2.1 Breast cancer histopathological classification 

 The complexity of the cell populations from a morphological point of view is 

comprehensively appreciated by the existence of an immense amount of breast cancer 

histological subtypes. A recent update of the fourth edition of breast tumors by the World 

health organization (WHO) displays how dynamic tumor classification is by re-defining 

BC subtypes into even more entities. The most frequent histological subtype in breast 

cancer is invasive ductal carcinomas (50-80%), no specific type or IDC-NST. This is due 

to the existence of specific subtypes with very distinct morphological features.   The most 

frequent specific subtype is invasive lobular carcinoma, accounting for 15% of all BC 

subtypes. Other specific subtypes represent the remaining 5%. The following diseases 

can be found within the specific subtypes histology: comedo, cribiform, solid, 

micropapillary, papillary, adenoid cystic, metaplastic, neuroendocrine, mixed and others 

(16). As important it is to better understand and classify these tumors, the histological 

subtypes of breast cancer at the moment do not change practice, even-though, prognosis  

and treatment response differ among these (17,18).  Moreover, the prognostic factors of 

breast cancer are mostly determined by tumor grading, which is mostly assessed using 

the Elston/ Nottingham grading (19,20).  In brief, this scoring system determines the level 

of glandular differentiation, nuclear pleomorphism, and mitotic counts (this last criterion 

was updated to mm2 by WHO in 2019).  Although histological grade is known to be a 

strong prognostic factor, the histopathological subtyping of breast cancer does not 

change standard of care (21). 

 The molecular histopathological classification of breast cancer importance relies 

on the assessment of the expression of different receptors in the cells. This classification 
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is the most clinically used because it determines the treatment. An initial biopsy will 

undergo immunohistochemical (IHC) staining for assessment of known biomarkers of 

breast cancer. The clinical classification of invasive carcinoma of the breast will be 

determined by histology and  the expression of estrogen (ER), progesterone (PgR), and 

of human epidermal growth factor 2 (HER2 also known as ERBB2) (22).   

1.2.1.1 Hormone receptors (estrogen and progesterone) 

 The estrogen receptor positive breast cancer accounts for 70% of all breast 

cancers.  Estrogen is a nuclear hormonal receptor that dimerizes when estradiol binds to 

it. The conformational changes in ER receptor initiates transcription and cell 

proliferation(23). Tamoxifen, a drug used to inhibit this pathway became the first targeted 

therapy in breast cancer.  In 1966 tamoxifen was initially produced as an emergency 

contraceptive method developed by ICI pharmaceuticals (now AstraZeneca)(24). Parallel 

research, understanding the mechanism of action, and initiatives by Dr. Walpole, led to 

selective estrogen receptor modulator (SERM), becoming the standard of care treatment 

for hormone receptor positive breast cancer (25). The spectrum and available drugs for 

pre and post-menopausal ER positive breast cancer  patients was further extended, 

including aromatase inhibitors (Anastrozole/Letrozole), gonadotropin-releasing hormone 

agonists (Goserelin) and selective estrogen receptor modulators (Fulvestrant)(26–28). 

These drugs not only provided breast cancer with a post-surgical recurrence reduction of  

average 40%, but also became important in other cancer types, such as prostate, where 

hormonal regulation is essential for tumor growth(29,30).  
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 The progesterone receptor (PgR) was subsequently identified as prognostic and 

predictor IHC biomarker for breast cancer.  As PgR expression is regulated in an ER-

dependent manner, ER the main receptor used to assess hormone-receptor (HR) 

positivity(31). Therefore, now it is determined that any case where ER is negative and 

PgR is positive, requires a repeat test.  The final assessment of  HR (ER or PgR) positivity,  

the presence of 1% to 100% positive cell’s nuclei predicts benefits for the use of endocrine 

therapy for breast cancer patients.  (32). Although the use of endocrine therapy achieves 

a 5-year overall survival that surpasses 90%,  recurrent disease remains a long-term 

clinical challenge when observing poor 15-years survival rates (33,34). This may arise 

from tumors that acquire endocrine resistance, such as mutations within ER as well as 

new targetable alterations (CDK4/6) that have been identified and therapeutic intervention 

targeting these is now  being studied in different clinical trials (35,36). 

1.2.1.2 Human epidermal growth factor-2 (HER2)  

  HER2 plays an important role in breast cancer pathogenesis. Overexpression of 

HER2 promotes formation of homodimers or heterodimers that interact with different 

members of the HER family. Upon dimerization and subsequent activation of the intrinsic 

kinase activity, multiple intracellular signaling cascades are triggered, promoting cell 

proliferation, survival, invasion, and metastatic progression (37).  HER2 amplifications or 

overexpression can be present in up to 15-20% of breast cancer patients (38). HER2 

alterations are strongly associated with poor prognosis, which prompted the development 

of HER2 targeted therapies. These therapies have improved patient recurrence-free 

survival either with a single monoclonal antibody (Trastuzumab), dual antibody blockade 
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(Trastuzumab + Pertuzumab) or small molecule inhibitors (Lapatinib) (39–41).Therefore, 

the clinical assessment of HER2 is routinely done in every breast cancer patient either by 

IHC or Fluorescent in situ hybridization (FISH). If IHC is utilized a score of +3 will be 

considered positive. If FISH is used a value of  2.0 or more will be considered positive 

(42,43).  

 Lastly, the absence of these receptors will comprise the subtype called triple-

negative breast cancer (TNBC). Patients with TNBC are not suitable candidates neither 

for hormonal nor anti-HER2 targeted therapy. The molecular histopathological 

classification determines the patient’s candidacy for treatment and disease prognosis. 

Patients with TNBC subtype, due to the  lack of therapeutic targets, still receive the 

standard of care treatment that consists of neoadjuvant chemotherapy (NAC), surgery 

and radiation therapy and are known to display a more aggressive disease and present 

metastatic disease within the first three years of diagnosis (44).  The neoadjuvant 

regimens of chemotherapy are comprised anthracyclines (Doxorubicin), taxanes 

(Paclitaxel), alkylating agents (Cyclophosphamide) and platinum-based agents 

(Cisplatin/carboplatin).   This subtype constitute  ~15%  of all breast cancers and together 

with HER2+ patients display higher rates of pathological completes response (pCR) after 

NAC when compared to HR+ tumors (44,45).  The use of Platinum-containing agents 

(Carboplatin) and its positive association in BRCA mutated patients outcome, changed 

the initially described  pCR rates of ~40% in TNBCs to rates to ~50-60% (46–48).    For 

this reason, pCR started to be used as an outcome measure in different clinical trials to 

shorten their duration and speed application to clinics (49–52).    
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1.2.2  Breast cancer molecular subtypes 

1.2.2.1  Intrinsic subtypes  

 Following genome wide and transcriptomic studies of large breast cancer cohorts, 

BC was further classified into different molecular ‘intrinsic’ subtypes based on distinct 

gene expression patterns.  A landmark gene expression microarray study by Perou, C 

and Sorlie, T using breast cancer bulk tumors, defined breast cancer molecularly into 5 

subtypes: Luminal A, Luminal B, (ER positive), HER2-enriched (HER2E), Basal-like and 

Normal-like. All these subtypes reflect components of transcriptional profiles of normal 

cell types found in the breast epithelium identifying hierarchy of differentiation within BC 

subtypes(53).  This molecular classification highlights how each BC subtype gene 

expression is defined in part through its identity and environmental localization. 

 Luminal A and B subtypes present with markers of breast luminal cells. These 

markers can be expressed to varying degrees, some of them being ER, CK8/18, GATA3. 

Luminal A tumors express higher levels of ER compared to Luminal B, and demonstrate 

expression of LIV-1, HNF3A, XBP1, and GATA3. Luminal B tumors have characteristic 

expression of GGH, LAPTMB4, NSEP1 and CCNE1 (54).  Moreover, the Luminal B 

subtype of BC display worst outcome compared with luminal A and are more closely 

related to basal and HER2E subtypes due to their shared enrichment for genes involved 

in proliferation. HER2E subtype tumors are characterized by the overexpression or 

amplification of gene expression patterns reflective of the HER2 amplicon (17q21) (54). 

The Basal subtype are enriched for basal breast cell epithelial markers. Some of these 

include CK17, CK5/6 and EGFR. Also, this subgroup is characterized by absence of 
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expression for luminal/ER related genes.  Lastly, Normal-like tumors displayed 

enrichment in genes that can be found in adipose tissue and stromal cells in the breast 

(PIK3R1, AKR1C1, FACL2) and may be tumors with low tumor cell content (54).   

 The importance of these breast cancer subtypes discovered in the early 2000 

relied on the ability to be associated with treatment response and patient prognosis 

(55,56) Luminal and Normal-like subtypes have better overall survival, response to 

treatment and less proliferative capacity when compared to HER2E and the Basal 

subtype that lacked targeted therapies (57,58). This initial study included a panel of 496 

genes, which was redefined to a 50-gene subset that could predict intrinsic subtypes from 

different sequencing studies. This new prediction analysis of microarrays of 50 genes 

(PAM50), is widely used to determine the molecular subtype of different breast cancers 

from gene expression data (59).  

 These subtypes were further classified into a hierarchical model that resembled 

either a more a luminal-like (differentiated) or mesenchymal-like (undifferentiated) state 

(56). A Claudin-low subtype was included into the list of intrinsic subtypes (60). This 

subtype is characterized by high mesenchymal features, low luminal expression and 

enrichment for  CD49f (61). These tumors are considered to be enriched of cell with 

features of cancer stem cells and/or reflect an epithelial to mesenchymal de-differentiation 

program and are more correlated with BRCA1 genomic alterations (62). These intrinsic 

subtypes correlate with the previously described clinical subtypes based on IHC.  Luminal 

A and B are hormone receptor positive, HER2E in 50% of cases is ER negative, and most 

of Basal subtypes are TNBC (ER- , PR- and HER2-) (60).  
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1.2.2.2 Integrative clusters 1-10 

 Although the molecular classification of breast cancer built grounds for the use of 

gene signatures and gene sets as prediction tools (Mamma-print 70-gene signature/ 

Oncotype DX) for treatment response, this was insufficient to explain unresponsive 

patients being predicted to respond using these criteria (63,64).  Attempts to redefine 

subtypes came with the integration of both genomic and transcriptomic data, classifying 

breast cancer into 10 Integrative Clusters (IntClust 1-10) (65). This study used genomic 

data from the METABRIC dataset, describing new subtypes with distinct chromosomal 

alterations. The new subtypes were associated with the previously described intrinsic 

clusters and with prognosis. IntClust5 correspondent with a HER2E intrinsic subtype, 

displayed the worst overall survival, however, this was prior to the incorporation of the 

results of Trastuzumab use related trials (66).   

 The wide use of genomic and sequencing technologies in the early 2000 led to a 

better understanding of the heterogeneity of breast cancer.  Breast cancer is 

characterized by a long tail of genomic alterations. Some of these are commonly found in 

a larger subset of patients. For instance, the most frequent single-nucleotide variants 

(SNVs) are TP53 (37%), PI3KCA (36%) and GATA3 (11%). The remaining mutations are 

observed in less than 10% of patients. Moreover, common drivers of breast and other 

tumor types have been consistently identified through different genome-wide studies. This 

has helped to understand the impact in breast cancer of low frequency genomic 

alternations observed in other malignancies (67).  In respect to somatic copy number 

aberrations (CNA), the most frequent alterations in breast cancer are gains in 

chromosome 1q, 8q, and 20q, while losses are observed on 5q, 8p, 13 and 16q. (66). 
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1.2.2.3  Triple-negative breast cancer subtypes 

 The growing interest of understanding triple-negative or basal breast cancer, due 

to the lack of targeted therapies and aggressiveness of the disease, led to studies 

centered in pinpointing the molecular differences among TNBCs. Although ~70% of 

TNBC are of the basal breast cancer subtype as defined by PAM50, in 2011 this was 

revisited and TNBC was divided into 6 TNBC subtypes. This stratification was performed 

based on gene expression data extracted from 21 previously reported datasets.  Gene-

ontology characterized TNBC into  six transcriptionally defined TNBC subtypes 

(TNBCtypes) as follows: Basal-like 1 (BL1), Basal-like 2 (BL2), Immunomodulatory (IM),  

Mesenchymal-like (M), Mesenchymal Stem-like (MSL) and Luminal androgen receptor 

(LAR) (68).   This classification was redefined by the same group five years later when 

noting that laser capture microdissection (LCM) had considerable differences when 

compared to TNBC TCGA gene expression profiles. The latest TNBCtype describes 4 

subtypes: BL1, BL2, M, and LAR (69). 

 BL1 subtype is characterized by high cell cycle and DNA damage repair genes, 

where patients achieve high pCR rates (52%) in response to NAC. BL2 is a subtype 

enriched for myoepithelial markers and growth factor signaling pathways. This subtype 

has poor response to NAC (0%) and displays the worst overall survival from all four 

subtypes. The M subtype has high expression of genes involved in epithelial-to-

mesenchymal transition (EMT) and some genes involved in cell proliferation. This also is 

the subtype with least tumor infiltrating lymphocytes (TILs), pCR rates of 23%, and higher 

lung metastatic disease (46%) when compared to the other TNBCtypes (24%).  Lastly, 
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the LAR subtype displays androgen receptor signaling and luminal gene expression 

patterns, with low pCR rates (15%) and is predominantly diagnosed in older women (70).  

The previously described IM presented considerable amount of immune infiltration being 

excluded from the new classification. Similarly, the MSL subtype displayed a high content 

of stromal signatures , being also excluded from the new TNBCtype-4 groups (69).    

 Although intensive efforts to stratify breast cancer and TNBC type have been 

intended by many groups, none of these studies or subtypes is entirely applicable in a 

personalized manner to a one size fits all for breast cancer patients. This difficulty in 

classifying this disease highlights the inter-tumor heterogeneity observed within patients.  
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1.3  Breast cancer clinical challenges 

 Breast cancer displays around 88% overall survival after 5 years follow-up (71).  

Certainly, many patients do not die from this disease at early stages but some of them do 

after years of developing local recurrences or distant metastasis. Nevertheless, different 

strategies have been developed at different levels of prevention to maximize detection 

and minimize progression of breast cancer to advanced stages. First, at the secondary 

prevention level, annual mammography is now recommended for all women over 45 

years and up to 75 years old. This strategy has increased detection of breast cancer in 

early stages and improved outcomes. Genetic testing is an alternative reserved for people 

with known germline mutations in the family, or in people with evidence of close degree 

relatives that developed cancer at a young age.   Although, the use of these prevention 

strategies aids detection of breast cancer, it does not prevent breast cancer by tackling 

tumor initiation (TI).  Once TI occurs, therapy is given with an attempt to eliminate the 

disease. The use of chemotherapy, radiation therapy and surgery are considered the 

standard of care.  After therapy is given, neoplastic cells often remain and can be detected 

either macroscopically or microscopically, can give rise to what is known as residual 

disease (RD).  RD is one of the biggest clinical challenges and it could be considered a 

“point of no return”. From here, RD cells can give rise to local recurrence/rebound 

disease, resistant disease, and ultimately disseminate through the blood stream and 

promote distant metastases. Moreover, tumor cells prior to treatment can also give rise 

to metastasis. Those tumors that metastasize are still not fully elucidated and especially 

those that display metastatic dissemination at early tumor stages. Altogether, this is still 

a large clinical unmet challenge in breast cancer (Fig 1.3). 
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Figure. 1.3 

 

Figure 1.3. Breast cancer progression and key clinical challenges. 

A, B Breast cancer illustrative image (top) and corresponding tumor initiating cells 

(bottom). C.  Remanent cells after treatment will give rise to residual disease. D From RD 

state, resistant tumor cells can arise and contribute to disease progression. E. Residual 

disease or resistant tumor cells that have survived can proliferate and start relapse 

disease with cells already having a more aggressive phenotype.  F, G Lastly, metastatic 

disease can arise at any of the previous stages. Cells can metastasize faster or be 

dormant for a longer time before disseminating to distant organs.   
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1.3.1 Tumor initiation 

1.3.1.1 Tumor initiating cells 

 Tumor initiation is the process whereby, tumor initiating cells (TIC), a special 

subset of cells with unique capacities will give rise to a tumor.  The concept of TICs Is 

often referred to as cell of origin and cancer stem cells (CSC). TICs refers solely to the 

capability of cells to initiate tumor growth, cell of origin defines a specific cell type that 

transformed due to an initial oncogenic event and gives rise to TICs, and CSCs are 

defined by stem cell properties (self-renewal and  differentiate into distinct cell types which 

may have different properties from TICs (72). 

Although in the literature these terms are used sometimes indistinctively, throughout this 

work TIC will be the term to be used. TICs can be found in different solid tumors and have 

been well described in breast cancer. TICs in breast cancer were initially identified in vivo 

mouse models, were as few as 100 cells were able to give rise to transplanted tumors 

(73,74). Most TICs present with self-renewing capacity and the ability to proliferate and 

generate non-TICs, repopulating and contributing to new tumor formation and as such 

fulfill the definition of CSC. 

1.3.1.2   Models of tumor initiation  

  There are two models that aim to describe tumor initiation. First the tumor-initiating 

cell model describes a hierarchical organization of tumor cells, with the those found at the 

apex having self-renewing, proliferating and differentiation capacities (75). These cells 

can survive and adapt to different environmental conditions and selective pressures. This 

was demonstrated By Bonnet and Dick in 1997 in acute myeloid leukemia, where only a 



 22 

small subset of cells (0.01-1%) were capable to reproduce leukemias when performing 

serial transplantation in immunocompromised mice.  Second, the clonal evolution model 

proposes that cells inherit survival and proliferative advantages through stochastic 

genetic and epigenetic alterations (76,77). The clonal evolution model is not hierarchical, 

any cell at any time can accumulate molecular alteration that would lead to cell 

subpopulations selection and the subsequent expansion of cells with specific survival 

fitness. These factors ca also come from the surrounding tumor microenvironment and 

therefore, from different localizations in the tumor (78) (Fig 1.3.1.2).  

1.3.1.3 Experimental assays for tumor-initiating cells 

 The functional plasticity displayed by TICs can be addressed both in vitro and in 

vivo.  In vitro, the use of TIC markers can be used to enrich for TIC populations. For 

example, in breast cancer cells expressing (CD44high/CD24low or ALDH1) are 

representative of a TIC population. To assess TIC self-renewal and proliferating capacity, 

tumorspheres can be cultured in non-adherent conditions and be subsequently serially 

propagated for quantification and TIC frequency determination (79). A downside of in-

vitro TIC models is that they set pre-established conditions for tumor cells. For example, 

cells that are in culture are exposed to the same levels of oxygen from an incubator and 

nutrients found in cell culture media. Therefore, a gold standard assay for TICs is the use 

of limiting dilution assays in-vivo. This test evaluates tumor forming capacities and 

frequency in mice. It is normally set up, having a high and a low number of inoculated 

cells with the target population, aiming to determine the TIC frequency of a specific tumor 

or cancer cell line.  Moreover, TICs have some defined gene expression profiles  that can 
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be correlated with the tumorigenic capacity of breast cancer intrinsic subtypes (80,81).  In 

essence, tumor recurrence, resistant to therapy and metastasis requires TICs to self-

renew and differentiate to propagate these distinct phenotypes.  

 

Figure 1.3.1.2 
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Figure 1.3.1.2. Tumor-initiating cell vs clonal evolution models in disease 

progression. 

A.  In tumor-initiating model TICs non-genetic alterations lead to self-renewal and 

differentiation capacity.  This progeny of TIC cells can be TIC and non-TIC cell 

populations. The non-TIC cells will only have daughter cells along their differentiation path 

B. The clonal evolution model depicts cells that acquired distinct mutations that conferred 

their progeny with survival advantage and fitness. They can acquire more mutations along 

disease progression and give rise to distinct clones that will conform the bulk of the tumor.  

C. Under the hierarchical TIC model, the primary tumor is comprised by TIC and non-TIC 

cells. After treatment cells will require TIC capacity to evolve into a relapse and form a 

new tumor. Intrinsically, after treatment, TIC cells are resistant to therapy and will select 

for cells with a more aggressive phenotype along disease progression.  D The clonal 

evolution model primary tumor will be represented by different cell populations that 

acquired different mutations.  These genomic alterations will confer them self-renewal 

and differentiation capacity. After treatment, residual disease will be comprised by 

resistant clones that later will proliferate to form a clinical relapse. These resistant clones 

will all have specific mutations, and the new relapsing tumor will be mostly comprised by 

these selected clones and new mutations that come after this.  
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1.3.2 Residual disease 

 The use of neoadjuvant chemotherapy (NAC) as standard of care in TNBC and 

HER2+ BC, consists of treatment given prior to surgery.  NAC allows the shrinkage of 

tumors, and in many cases the opportunity of surgical resection in previously inoperable 

patients. Apart from increasing chances of surgical resection, the use of NAC and 

pathologic complete response (pCR) are associated with improved outcomes among 

breast cancer patients. Initially, the responses described within the different BC subtypes 

were for HR+ BC ~10%,  HER2+  60% and  TNBC ~30% (45,46). However, pCR response 

rate is a dynamic parameter since it is constantly changing with the development of new 

clinical trials and new therapies.  Notably,  the rate of pCR response is considerably higher 

in patients with HER2+ and TNBC (51,52). Moreover, higher pCR rates are also 

associated with increased recurrence-free survival (RFS) in TNBC (82–84) . In addition, 

the lack of pCR after NAC, is a strong predictor of patients with poor overall survival (OS) 

and distant-metastasis free survival (DMFS)(85).  Particularly for TNBC patients, there 

are other clinical-pathological factors that are important prognostic factors that predict 

poor outcome and long-term survival of patients. The following have been described:   

axillary lymph node status (ALN), Lymph Node Ratio (LNR), low nodal positivity rate 

(LNPR) and Lympho-vascular Invasion (LVI) ha are important prognostic factors 

predicting poor outcome and long-term survival of patients (86–89).  Overall, residual 

disease is an important parameter to assess disease progression and survival outcomes 

in patients, deserving attention from a clinical and research perspective. In TNBC the 

neoadjuvant setting opens many different research avenues to understand differences 
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between tumors that respond versus those that fail to respond, and to better evaluate 

pCR within these breast cancer patients. 

1.3.2.1 Pathological complete response assessment and definitions 

 Once the presence of pCR or absence of RD post-NAT became approved as an 

endpoint for accelerated drug approval by the Food and Drug Administration (FDA), a 

standardized definition and assessment was required (90).   Pathological complete 

response histopathological definitions are the following: 

a.  The absence of residual invasive cancer cells after neoadjuvant treatment in the 

complete resected specimen and all regional lymph nodes through H&E 

assessment. This American Joint Committee on Cancer (AJCC) definition is short 

for ypT0/Tis ypN0 (91). 

b. The absence of residual invasive and in situ cancer cells after neoadjuvant 

treatment of the complete resected specimen and all regional lymph node. This 

AJCC definition is short for ypT0 ypN0 (91). 

 Moreover, an alternative definition to the AJCC RD was developed in 2007 at MD 

Anderson Cancer Centre (MDACC). The concept of Residual Cancer Burden (RCB) 

arose from the fact that many BC patients do not achieve pCR after NAT, but their degree 

of RD was different(92).  The RCB is an index subdivided into 4 categories and it 

combines two variables: the pathological findings in the primary tumor bed and regional 

lymph nodes. The categories are RCB-0 (pCR), RCB-I (minimal residual disease (MRD)), 

RCB-II (moderate RD ) and RCB-III (extensive RD) (93). 
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 There have been complementary methods to assess for residual disease using 

imaging technologies. Different modalities such as Magnetic Resonance Imaging (MRI), 

Contrast-enhanced mammography (CEM) and post-NAC image-guided biopsy have 

been used to detect RD in a less invasive manner. MRI and CEM are commonly used in 

patients undergoing NAT and surgery to assess tumor volume before and after treatment. 

In general, the accuracy of these methods when RD is 5mm or more (~90%) (94,95).  

Both modalities have higher accuracy in TNBC and HER2+ BC patients and overall 

indistinct of BC subtype the positive predictive values are around 70-80% (94,96).  Image-

guided biopsy have been use in different centers and trials with the intent to avoid surgery 

in patients with pCR (97,98). Although, this is an invasive method, the early stratification 

of patients that could spare surgery could improve BC patient’s quality of life and different 

trials are intending to assess this (99).  

  Altogether, the variety of definitions and assessment modalities of RD and pCR 

emphasize the clinical need for the identification of pCR biomarkers and a thorough 

understanding of patient treatment response in regards to NAT (100).  
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1.3.2.2 Residual disease biomarkers in triple-negative breast cancer 

1.3.2.2.1 Immune microenvironment RD markers 

 Many studies have revealed the role of immune cell crosstalk not only in tumor 

progression and metastasis formation, but also in shaping the intra-tumoral 

microenvironment. A summary of the main research studies can be found in (table 1).  

 There is a growing understanding of the tumor immune microenvironment (TIME) 

role and its influence on response to therapy (101,102).  TIME-related biomarkers have 

been utilized to guide therapy selection. Is now recognized that cytotoxic agents can exert 

their antitumor activity by inducing immune responses against tumor cells. Tumor-

infiltrating lymphocytes (TILs) are mononuclear immune cells that can infiltrate the tumor 

and its quantification and localization is associated with distinct treatment responses 

(103).  

 For instance, high levels of TILs within the tumor are predictive of NAC pCR , 

increased disease-free survival (DFS), and OS in multiple clinical trials (104,105). Also, 

High pre-NAC TIL levels or scores are an independent predictor of  pCR and improved 

OS in TNBC (106,107). Similarly, low pre and post-NAT TILs in TNBC are associated 

with poor prognosis and shorter RFS (108). However, when studying  post-NAC TILs,  

Hamy et al, described no association with prognosis in 716 pre and post NAC matched 

paired TNBC specimens (109). Similarly, high TILs post-NAC TNBC RD are correlated 

with better RFS and OS (110). In addition, a change in TILs levels, despite  being an 

increase or decrease, has been shown to be correlated with a better DFS as compared 

to patient with unchanged TIL levels in TNBC (111).  The characterization of different TIL 

subtypes is another variable playing a role in tumor response.  IHC of different TIL 
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subtypes in RD found that high CD4-TILs, high CD8-TILs and low CD20-TILs in patients 

with better prognosis (112). 

 As many differences were observed regarding the quantity, density, and type of 

TILs, observing the spatial localization of where TILs were allocated in the samples 

became important. A large study by Loi, S and colleagues interrogated 2,148 early TNBC 

RD patients. In this study, stromal TILs (sTILs) demonstrated a strong prognostic role in 

early-stage TNBC. In addition, the authors constructed a prognostic model that 

incorporated the evaluation of TILs and clinicopathologic factors (104).  Other immune 

cells have also been investigated in the context of RD in TNBC. Neutrophils are key 

cellular players in the inflammatory environment and their relationship with TILs is known 

to have different impact in BC patients’ prognosis. Muñoz Montaño et al. assessed the 

neutrophil-to-lymphocyte ratio (NLR) in RD of BC patients and found that high NLR 

predicted worse OS in TNBC patients suggesting the immune influence in outcomes 

(113).  Moreover, Gruosso et al, demonstrated a comprehensive understanding of the 

TIME in respect to the spatial localization of immune cells in the tumor. A immunoreactive 

microenvironment was defined by tumoral infiltration of CD8+T cells. Also, a “immune-

cold” microenvironment, defined by absence of tumoral CD8+ T cells was characterized 

by high expression of immunosuppressive markers, stromal fibrotic signatures, and poor 

outcomes in patients. However, a distinct poor-outcome was identified in TIME were 

CD8+ T cells are   found only in the stroma, having specific signatures of cholesterol 

biosynthesis (114).   
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Table 1:  Summary of studies assessing immune biomarkers for TNBC residual 

disease. 

Study  Biomarker Number of 
patients per 
arm (n) 

Findings and prognostic value 

Watanabe 
et al. 
(2017)  

TILs score 47 (pre- 
treatment),  
and 28 (post-
treatment) 

A high TIL score before treatment resulted in a 
significantly higher proportion of pCR in TNBC.  

Zhang et 
al. (2018)  
 

Tumor-
infiltrating 
lymphocytes 
volume 
(TILV) 

58 stromal TILs and TILV showed significant 
correlation with pCR (P = .01 and P = .0008, 
respectively).  
pCR, TILs, and TILV were all significantly 
correlated with the overall survival, with P = 
.028, .029, and .015, respectively. 

Hamy et 
al. (2019)  

TILs levels 716 (pre- and 
post-treatment 
matched 
paired 
specimens of 
BC) 

Pre-NAC TIL levels were higher in tumors for 
which pCR was achieved than in cases with RD 
(33.9% vs. 20.3%, P = 0.001).  
High post-NAC TIL levels were not associated 
with aggressive tumor characteristics and with 
impaired DFS in TNBCs. 

Luen et al. 
(2019)  

TILs  375 (RD TNBC 
samples)  

Higher RD TILs were associated with improved 
RFS (HR: 0.86; 95% CI 0.79-0.92; P < 0.001), 
and improved OS (HR: 0.87; 95% CI 0.80-0.94; 
P < 0.001) and remained significant predictors in 
multivariate analysis (RFS P = 0.032; OS P = 
0.038 for OS).  
RD TILs added significant prognostic value to 
multivariate models including RCB class (P < 
0.001 for RFS; P = 0.021 for OS).  

Ochi et al. 
(2019)  

pre-NAT 
TILs and 
pCR 

80 Low pre-NAT TILs were associated with lower 
pCR rate (4.0% vs 43.6%).  
low pre-NAT TILs showed significant association 
with shorter RFS (HR = 3.844 [1.190-12.421], p 
= 0.024) in TNBC with RD.  
Low post-NAT TILs showed borderline 
significant association with shorter RFS (HR = 
2.836 [0.951-8.457], p = 0.061).  

Loi et al. 
(2019)  

Stromally 
located TILs 
(sTILs) 

2148 sTILs were significantly lower with older age (P 
= .001), larger tumor size (P = .01), more nodal 
involvement (P = .02), and lower histologic 
grade (P = .001).  
sTILs added significant independent prognostic 
information for all end points (likelihood ratio χ2, 
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48.9 iDFS; P < .001; χ2, 55.8 D-DFS; P < .001; 
χ2, 48.5 OS; P < .001).  Every 10% sTILs 
increase corresponds to an iDFS HR of 0.87 
(95% CI, 0.83 to 0.91) for iDFS, 0.83 (95% CI, 
0.79 to 0.88) for D-DFS, and 0.84 (95% CI, 0.79 
to 0.89) for OS.  

Muñoz-
Montaño 
et al. 
(2020)  

Neutrophil-
to-
lymphocyte 
ratio (NLR) 

N=1519 (BC) patients with high NLR had worse OS in the 
presence of TNBC (105.9 months; 95% CI, 
100.2-111.5] vs. 98.7 months; 95% CI, 91.1-
106.3; P = .029).  

Bai et al. 
(2020)  

TIL 
assessment 
algorithm 

 Using an optimal cut point (30%) derived from 
TNBC cohort training set A, patients with high 
eTILs% displayed an overall survival benefit (HR 
0.4, p=0.0150).  

Lee et al. 
(2020)  

TIL level 
changes 

n = 104 Changes in TIL levels (calculated by subtracting 
the TIL level of pre-NAC biopsy specimens from 
the TIL level of post-NAC operation specimens) 
associated with better DFS (increased TIL level 
(27.9%): HR 0.359, p= 0.014; decreased TIL 
level (41.3%): HR 0.439, p= 0.014).  

Bai et al.(2
020)  

CD4-, CD8-, 
CD20- TIL 
number, 
CD4/CD20 
ratio, 
CD8/CD20 

n = 37 High CD4-TILs (DFS: P = 0.005, OS: P = 
0.021), high CD8-TILs (DFS: P = 0.018) and low 
CD20-TILs (OS: P = 0.042) associated with 
better prognosis.  
CD4/CD20 ratio greater than 1 (DFS: P = 0.001, 
OS: P = 0.002) or CD8/CD20 ratio greater than 
1 (DFS: P = 0.009, OS: P = 0.022) had a better 
prognosis. 

 

DFS, disease-free survival; HR, hazard ratio; TIL, tumor-infiltrating lymphocytes; OS, 

overall survival; BC, breast cancer; HR, hazard ratio; PD-L1, programmed death ligand 

1; iDFS, invasive disease-free survival. 

 

 

 

 

 



 32 

1.3.2.2.2 Genetic and proteomic RD markers 

 The genetic and molecular profiles of TNBC with RD after NAC has been 

challenging researchers all over the world with its complexity and diversity. To date, 

various high-throughput genomic method analyses have been developed, providing solid 

grounds for new biomarker discovery. Known genetic and proteomic markers that 

influence prediction of response to chemotherapy and prognosis are summarized (Table 

2).  TP53 and PI3K mutations are frequently found in TNBC. The protein level of p53 

assessed by IHC in TNBC RD, is significantly associated with pCR (115).  Also, somatic 

co-mutations in TP53 and PIK3CA assessed in 353 post-NAC residual tumor samples by 

Sanger sequencing, were associated with more poor survival compared with non-carriers 

(116). A comprehensive molecular study from MDACC demonstrated that patients with 

BRCA genomic alterations are associated with higher mutational burden and enhanced 

chemosensitivity in TNBC.  These results were validated using a TCGA TNBC cohort, 

observing that BRCA mutant patients had significantly better survival outcomes (117). 

Similar validation using the METABRIC TNBC cohort, identified that  BRCA-deficient 

(BRCA-D) breast cancer subtype with BRCA1/2 low expression, had a higher mutation 

burden and better survival (117). To further examine functional RNA-based BRCA 

deficiency, Afghahi et al. performed BRCA1/2 sequencing of residual disease in known 

BRCA1/2-mutant BC patients with poor response to NAC. A BRCA1 reversion mutation 

in a TNBC patient was reported in this study which was correlated with poor response to 

therapy and early relapse (118).  

 Large cohort studies have allowed the discovery of different genes and proteins in 

TNBC. The results from a study of 1,079 TNBC cases demonstrated that helicase antigen 
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(HAGE) protein and mRNA expression was associated with higher presence of TILs and 

pCR (119).  Another study performing gene expression profiling of TNBC RD, identified 

449 genes associated with a more aggressive phenotype. The results identified CCL5, 

DDIT4 and POLR1C as independent prognostic factors for distant recurrence-free 

survival (DRFS). As a result, a three-gene signature of CCL5, DDIT4 and POLR1C was 

developed to describe chemotherapy resistance in TNBC (120).  Several biomarkers of 

TNBC RD have been identified by several groups, such as Phosphorylated Hippo 

Pathway Kinases (MST1/2 and LATS1/2) (121), Matrix Metalloproteinase 9 (MMP-

9)(122),  CD44v9 (123), CCND1 (124) and Folate Receptor Alpha (FRα) (125).   Since 

RD TILs is associated with better prognosis in TNBC, TIL-related genes have been 

interrogated. Criscitiello and colleagues developed a four-gene signature (HLF, CXCL13, 

SULT1E1, and GBP1) that predicted better DRFS in high post-NAC TILs TNBC samples. 

However, the study lacked external dataset validation(126). In another similar study, 

Kochi et al. identified 22 overexpressed genes in TNBC cases with high TILs scores and 

established a  TILs-associated genomic signature (TILs-GS) (127). Lastly, a study 

interrogating pre and post NAC TNBC demonstrated that HAGE and programmed death 

ligand 1 (PD-L1) are associated to higher TILs, whereas Ras–MAPK signaling activation 

were commonly found in RD with lower TILs (128). Studying RD in TNBC comes with two 

clinical challenges. First, RD or post-NAT tissue is a small and precious clinical material. 

Second, TNBC are only around 15% of all BC, so multi-centered studies are needed to 

evaluate larger datasets.  The future use of biomarkers alone or in combination requires 

collaboration and a mechanistic understanding to be use as part of the clinical validation 

of RD in TNBC.   
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Table 2: Summary of research studies assessing genomic and proteomic 

biomarkers of TNBC residual disease. 

Study  Biomarker Number of 
patients 
(n), 
treatment 

Main findings and prognostic value 

Loi et al. 
(2016)  

Ras–
MAPK 
pathway; 
cell-cycle 
pathway 

39, pre-
NAC and 
92, post-
NAC 
(total= 39 
paired 
samples) 

Low TILs in RD is associated with activating 
alterations in the Ras–MAPK pathway (amplifications 
in KRAS, BRAF, RAF1, and truncations in NF1, 16% 
altered, P = 0.005) and activating cell-cycle pathway 
alterations (CCND1-3, CDK4, CDK6, CCNE1, RB, 
AURKA, and CDKN2A, 37% altered, P = 0.05).  
Prognostic value: NA 

Abdel-
Fatah et 
al. 
(2016)  

HAGE 
expression 

1079, post-
NAC 
(anthracycl
ine) 

High HAGE protein expression HAGE (+) compared 
with HAGE (-) cases: EP-TNBC, increased death risk 
[HR, 1.3; 95% confidence interval (CI), 1.2-1.5; P = 
0.000005]; received ACT with mRNA HAGE (+): a 
lower risk of death (P = 0.004); The expression of 
HAGE was linked to the presence of TILs and both 
features were found to be independent predictors of 
pCR (P < 0.001) and prolonged survival (P < 0.01) 

Kim et 
al. 
(2015)  

p53, Ki-67, 
and Bcl-2 

198, post-
NAC 
(taxane-
based)  

Expression of p53 was independently associated with 
pCR to NAC (odds ratio, 3.961; p=0.003); The pCR 
rate was 5.2% in patients with low expression of both 
p53 and Ki-67, and the highest 25.8% when both 
biomarkers were highly expressed. 

Jiang et 
al. 
(2016)  

AR/FOXA1 
pathway 
mutations, 
BRCA-
deficient 
(BRCA-D) 

29, post-
NAC 
(anthracycl
ine/ 
taxane) 

Mutations in AR/ FOXA1-regulated networks 
associated with higher sensitivity to ACT CT (pCR 
rate of 94.1% compared to 16.6% in tumors without 
mutations in AR/FOXA1 pathways); and significantly 
better survival outcome (log-rank test, p = 0.05).  
Patients with functionally BRCA-D tumors had 
significantly better survival than patients whose 
tumors were not BRCA-D (log-rank test, p = 0.021), 
and they had significantly higher mutation burden (p 
< 0.001), presenting clonal neoantigens associated 
with increased immune cell activation.  

Pinto et 
al. 
(2016)  

Three-
Genes 
Expression 
(CCL5, 

82, post-
NAT; 113, 
TNBC 
validation 
cases.  

The median score of the three-genes signature (-
0.393×CCL5+0.443×DDIT4+0.490×POLR1C) 
identified patients with distinct DRFS in the discovery 
set (0.1494) (P<0.001) and in the validation set 
(0.0024) (P=0.002). 
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DDIT4 and 
POLR1C) 

Chen et 
al. 
(2017)  

PD-L1 
Expression
, TILs 

309, pre-
NAC 

The expression of PD-L1 was more commonly 
observed in patients with low levels of total TILs (p < 
0.001), high levels of FOXP3+ TILs (p < 0.001) and 
low levels of CD8+ TILs (p < 0.001). prognostic 
value: The expression of PD-L1 was an independent 
prognostic factor for both RFS (HR = 1.824, p = 
0.013) and OS (HR = 2.585, p = 0.001).  High 
expression of PD-L1 was correlated with worse OS in 
TNBC.  Patients classified as PD-L1-high/CD8-low 
exhibited relatively unfavorable survival, whereas 
patients with either low expression of PD-L1 or high 
expression of CD8 had similar outcomes. 

Kochi et 
al. 
(2017)  

TILs-GS 
(22 
overexpres
sed genes 
in cases 
with high 
TILs 
scores) 

40, post-
NAC 
(anthracycl
ine and 
taxane-
based) 

TILs-GS had no prognostic value in TNBC. TILs-GS 
levels are different between the cases with pCR and 
RD after anthracycline and taxane-based 
neoadjuvant chemotherapy. In the multivariate 
analysis, pCR was independently associated with 
smaller tumor size, higher histological grade, ER 
negativity, HER2 positivity and higher TILs-GS 
scores (OR 2.02, 95% CI 1.30-3.14, P = 0.025). 

Ercolani 
et 
al.(2017
)  

MST1/2 
and 
LATS1/2) 

57 HER2-
positive 
and TNBC 
post-NAT. 

Patients with pMST1/2nuc (Nuclear pMST1/2) 
expressing tumors had increased risk of RD after 
NAT (pCR ypT0/is ypN0: OR 4.91, 95%CI: 1.57-
15.30; pCR ypT0 ypN0: OR 3.59, 95%CI 1.14-11.34); 
pMST1/2cyt (cytoplasmic pMST1/2) seemed to be a  
positive prognostic factor (pCR ypT0/is ypN0: OR 
0.34, 95%CI: 0.11-1.00; pCR ypT0 ypN0: OR 0.31, 
95%CI 0.10-0.93). 

Afghahi 
et 
al.(2017
)  

BRCA1 
Reversion 
Mutation 

80, post-
NAC 
(platinum 
based). 

From 19 patients with deleterious germline BRCA1/2 
mutation, four had RD after surgery. BRCA1/2 
sequencing of residual tissue was performed on three 
patients. These patients had BRCA1 1479delAG, 
3374insGA, and W1712X mutations, respectively, 
with LOH at these loci in the pre-NAC tumors. In first 
case, a new BRCA1 mutation was detected in RD.  

Wang et 
al. 
(2018)  

MMP-9 303, post-
NAC 
(paclitaxel 
plus 
carboplatin
) 

The relative change in sMMP-9, rather than sMMP-9 
at baseline or surgery, had a remarkable predictive 
value for pCR. Each 1 ng/ml in serum decrease in 
sMMP-9 after NAC was shown to result in a 0.3% 
increase in pCR rate.  hMMP-9 expression in residual 
tumors was independently correlated with DFS for 
non-pCR responders (P < 0.001). 



 36 

Cheung 
et al. 
(2018)  
 

Folate 
receptor 
alpha 
(FRα) 

2012, 
TCGA and 
METABRI
C. 305 
untreated 
and 18 
post-NAC 
IHC. 

FRα is overexpressed in significant proportions of 
aggressive basal like/TNBC tumors, and in post 
neoadjuvant chemotherapy-residual disease 
associated with a high risk of relapse.  FRα 
expression is associated with worse OS.  TNBCs 
displayed dysregulated expression of thymidylate 
synthase, folate hydrolase 1, and 
methylenetetrahydrofolate reductase. folate 
metabolism.  

Tokuna
ga et 
al.(2018
)  

CD44v9 48, pre-
NAC. 

There were no significant relationships between the 
pCR rate and the expression of CD44v9, vimentin, or 
BRCA1.  High grade in the residual tumor cells, poor 
pathological response and high CD44v9 expression 
in the pre-treatment CNB samples were significantly 
correlated with a poor DMFS (p = 0.0433, 0.0406 and 
p = 0.0333). High grade in the residual tumor cells 
was significantly associated with high CD44v9 
expression in the pre-treatment CNB (p = 0.0389). 

Criscitiel
lo et al. 
(2018)  

A 4 gene 
signature 
(HLF, 
CXCL13, 
SULT1E1, 
and GBP1) 

99, pre-
NAC 

The four-gene signature was significantly associated 
with DRFS (HR: 0.17, 95% CI: 0.06-0.43). GS added 
significant prognostic information when compared 
with the clinicopathologic pre-treatment model 
(likelihood ratio test in the training set P = 0.004 and 
in the validation set P = 0.002). 

Orozco 
et 
al.(2019
)  

GE profiles 708, pre 
and post 
NAC 

49 genes consistently affected by NAC were involved 
in enhanced regulation of wound response, 
chemokine release, cell division, and decreased 
programmed cell death in residual invasive disease. 
The statistical distances between pre and post- NAC 
significantly predicted pCR [AUC = 0.75; p = 0.003; 
95% (CI) 0.58-0.92]. The expression of CCND1 was 
the most informative feature in pre-NAC biopsies to 
predict response to NAC. 

Chen et 
al. 
(2019)  

TP53 and 
PIK3CA 
mutations 

353, post-
NAC 

Patients with somatic co-mutation were more likely to 
have high-grade tumors in TNBC (35.3% vs. 13.3%, 
P = 0.025) compared with non-carriers.  More 
importantly, co-mutation of TP53 and PIK3CA 
carriers had a significantly worse DFS and DDFS 
than non-carriers (5-year DFS: 58.0% vs. 83.2%, P < 
0.001; 5-year DDFS: 70.3% vs. 86.4%, P = 0.024).  

EP-TNBC: Early primary TNBC; HRD: Homologous Recombination Deficiency; LOH: 

Loss of heterozygosity; CNB: core needle biopsy TAI: telomeric allelic imbalance; DRFS: 

Distant recurrence-free survival; GS, genomic signature; DDFS: Distant disease-free 

survival. 
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1.3.3 Resistance to therapy  

 Resistance to therapy is the ultimate challenge that clinicians must face in order to 

prevent disease progression and more importantly metastatic disease. Therapy 

resistance can be acquired at different stages throughout disease progression. Cells can 

have primary or intrinsic resistance (IRes) when they do not respond to their initial line of 

treatment and were previously naïve to treatment. Cancer cells can also display acquired 

resistance, presenting initially sensitive to treatment but later present no response to it 

(ARes) to it (129).  This can be in one or multiple rounds of treatment, or one or many 

treatment regimens.  The mechanisms of how a cancer cell can acquire resistance relies 

on previous concepts and cancer models. Cancer cells can be resistant to chemotherapy 

with the presence of genomic alterations (mutations, amplifications, overexpression) or 

escaping the drug mechanism of action. Clonal evolution would suggest that certain tumor 

clones carrying mutations that confer them fitness, will survive therapy and comprise the 

recurrent resistant disease (130).  The cancer stem cell theory supports that CSCs have 

particular properties and can display quiescent states that will make them resistant to 

chemotherapy, which targets mostly cycling cells (131). A combination of these proposed 

models plus epigenetic modifications, metabolic adaptations, and cell-to cell interactions 

will also induce selective pressures for those cells resistant to therapy. Resistance to 

therapy can be studied with different approaches. Multiregional single-cell sequencing of 

tumors, pre and post treatment samples analysis, and the use of liquid biopsies (132). 

Clinical trials and the development of preclinical models that mimic resistant are extremely 

necessary to understand the mechanisms and adaptations of cells that are resistant to 

therapy. 
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1.3.4 Metastatic disease 

1.3.4.1 Metastatic cascade  

 Metastasis is the end and most devastating stage of tumor progression, being 

the main cause of death in cancer patients.  Metastases arise from an adaptative journey 

of cancer cells into a completely new niche. Tumor cells first need to escape the primary 

site, for that they need to invade the surrounding microenvironment, increase their 

motility, degrade the extracellular matrix, and reach blood vessels to circulate throughout 

the body. Once cells reach the new organ they extravasate, seed the organ, proliferate 

and develop neovascularization at the new site to acquire nutrients and establish a new 

tumor (133,134). (Figure 1.3.4).    

 

1.3.4.2  Single cell vs collective cell dissemination 

 Tumoral cells in the primary site acquire specific properties that allow them to 

intravasate into the circulation.   One of the programs that metastatic are thought to 

require to efficiently disseminate is epithelial-to-mesenchymal transition (EMT) (135).  

EMT is a process whereby cells acquire mesenchymal properties and lose epithelial 

characteristics. This phenomenon is often a reversible and dynamic process that can be 

displayed by cells at different levels and provide them with different degrees of plasticity. 

Cells can either disseminate individually or in groups or collection of cells through the 

blood stream.  Single circulating tumor cells (CTCs) can migrate through the matrix 

forming adhesions complex, cellular polarity and acquiring a mesenchymal-like 

phenotype(136). Meanwhile, cohesive circulating tumor clusters seemed to be the 

preferential metastatic dissemination mechanisms.  Studies have provided insights that 
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collective cell migration (CCM) is a more efficient way to travel through vessels and 

ultimately colonize new organs. Multi-cellular clusters can travel while preserving cellular 

junctions and adhesions with other cancer cells (137). CTCs and CCM while in circulation 

they are surrounded and shielded by platelets and other immune cells. This association 

with platelets also helps in explaining the pro-thrombotic state in cancer patients. 

Moreover, the seeding of new organs through micro-vessels or capillaries is facilitated by 

the microthrombi phenotype cancer cells display when coupled with platelets and the 

cellular receptors present in endothelial cells can recognize platelets welcoming them to 

the new environment. The seeding and invasion of new organs can be facilitated through 

collective migration  and survival in suspension since there are more cells able to survive 

and adapt to the new metastatic niche (135). 

 

1.3.4.3  Metastasis organotropism 

 In addition to the molecular adaptions acquired for the metastatic process, 

cancer cells display predilection or organotropism for specific anatomic sites. During the 

late 1800 James Paget investigated the metastatic patterns of 735 breast cancer patients’ 

autopsies. He discovered that breast cancer cells had a predilection to metastasize to the 

bones, and he characterized these as the theory of “seed and soil”.   Cancer cells (seeds) 

would be successful to grow in a particular anatomic site (soil) if the proper conditions for 

growth are present(138). This theory was challenged 40 years later by  James Ewing, 

who suggested that metastatic spread was driven solely by the direction of the blood 

flow(139).  In 1970s, Fidler confirmed that blood flow was important for metastatic spread, 

but he also demonstrated in vivo that the metastatic niche is key to determine which cells 
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will successfully grow in specific organs, revalidating Paget’s theory (140,141).  In BC  the 

decreasing incidence order of the most common metastatic sites is bone, lung, liver and 

brain (142). The metastatic patterns and organotropism vary within BC subtypes. For 

instance, In Luminal A, Luminal B, HER2+/HR- and HER2+/HR+ BCs the most common 

metastatic site is the bone, whereas in TNBC is the lung. Generally, HER2+ patients 

display a higher incidence of liver metastasis and brain metastasis after some years of 

dormancy (143,144). Also they are more frequently observed concomitantly with other 

organ metastases, rather than as an initial metastatic site (145).   Moreover, cells that 

metastasize to distinct organs have shown to have different gene expression and 

metabolic profiles. In TNBC, genes involved in lung metastasis have been identified. In 

vitro and in vivo studies have demonstrated that lung metastatic cells were enriched for 

ANGPL4, EREG, CXCL1, MMP1, MMP2, ID1, SPARC, among others (146,147). These 

genes are involved in angiogenesis and matrix degradation. Moreover, primary, and 

matched lung metastatic samples from breast cancer show enrichment of hypoxic genes 

such as CA9, EGLN3, DNAH11, and LOX. Cells exposed to hypoxia in the primary tumor 

acquire “hypoxic-memory” and genes that confer lung metastatic cells resistance to 

oxidative phosphorylation (oxphos). This is a survival mechanism for cancer cell 

dissemination through the blood stream (148). The metabolic plasticity of cells in the 

primary tumor, in circulation and in the new metastatic site, is key for cells to seed and 

grow in their environment.  The metabolic programs and gene expression profiles of cells 

will depend on the organ (149). For instance, brain cells require adaptation to low glucose 

and lipid levels. This is supported by the high expression of Fatty Acid Synthase (FASN) 

in HER2+ BC cells, an enzyme required for brain fatty acid metabolism (150). 
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1.4 Tumor heterogeneity in cancer 
 

1.4.1 Intra-tumor heterogeneity 
 

 Throughout the last two decades, researchers and clinicians have tried to 

established breast cancer subtypes with the objective to find the most suitable treatment 

that can help patients. Common efforts have facilitated the identification of a subset of 

patients that could benefit from targeted therapy or certain types of chemotherapy (151). 

However, even within the same breast cancer subtype or patients with similar 

clinicopathological characteristics, responses to treatment are different. The era of 

personalized treatment in breast cancer is emphasized by the large heterogeneity that 

this disease and each patient presents (152). There are many variables that make a 

patient different from one another. Some of these are medical comorbidities, body weight, 

geographic location, and the type of diet that patients have, affects both the incidence of 

cancer and their response to treatment.  

 
 

1.4.1.1 Spatial and temporal heterogeneity 
 
 

  Intra-tumor heterogeneity and  morphological  differences of cancer cells can be 

readily observed in formalin-fixed paraffin embedded samples of human tumors (153). 

Most studies that established different breast cancer subtypes based on gene expression 

were performed on bulk tumors. The tumor bulk is an overall representation of the most 

common or frequent alterations identified in the whole tumor. The tumor is comprised by 

many different cancer and stromal cells, and not all genomic or non-genomic alterations 

will be present in all the cells found in the tumor.  Moreover, intra-tumor heterogeneity is 

also influence by the tumor microenvironment and the distinct cell-to-cell interactions 
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found in a three-dimensional space. The local tumor queues, such as the vasculature and 

the degree of oxygen and nutrient availability, have also been shown to affect tumoral 

cells metabolic and transcriptional profiles (154,155).  

 

 
1.5  Tools to interrogate cellular heterogeneity upon disease progression 

 

 The study of cellular heterogeneity upon disease progression has been possible 

by using high throughput technologies, primarily imaging and sequencing technologies. 

Moreover, the challenges of tissue availability are eased by clinical trials, allowing the use 

of clinical material for research purposes. Pre-clinical models coupled with single-cell 

RNA sequencing technologies and advanced microscopy techniques, are key for 

understanding both temporal and spatial heterogeneity (156–158). 

 

1.5.1 Patient-derived xenografts  
 

 Patient-derived xenografts (PDX) are useful preclinical models to obtain renewal 

patient material to perform subsequent research studies. The establishment of PDXs 

requires multi-disciplinary coordination, especially from clinicians and researchers. 

Common efforts in establishing breast cancer PDXs have been performed over the past 

decade. Establishment of different breast cancer subtypes has also posed a challenge 

since the engraftment rates are correlated with aggressive disease. Aggressive 

phenotypes, advanced disease, HR- samples, have better engraftment rates (159). In 

contrast, ER+ BC tissue has lower rate of engraftment and normally requires estrogen 

pellets (160).  
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1.5.2 Single-cell RNA sequencing 
 
 

 In the past decade, sequencing technologies have revolutionized cancer research 

and opened infinite avenues to gain further mechanistic understanding of tumor biology. 

However, sequencing from the tumor bulk, does not allow comprehensive understanding 

of cellular heterogeneity and diversity within the tumor ecosystem. The readout of bulk 

RNA and DNA sequencing does not explain patient’s unresponsiveness to targeted 

therapy. Genomic alterations that have available targets, can be present as a robust 

finding in bulk sequencing, however, not all cells might present this alteration and, 

therefore, they might explain why some tumors do not respond to treatment (161).  

 

 Single cell sequencing technologies has allowed the interrogation of cancer and 

tumor microenvironment cells in the tumor. With this technology the transcriptome and 

genome of epithelial, vascular, immune, and other cell types, can be interrogated within 

a same tumor using scRNA-seq. An advantage over other methods, is that rare cell 

populations in the tumor can be identified, discovered, or further interrogated using 

scRNA-seq. Moreover, cellular networks, trajectories and cell hierarchies can be 

interrogated (162,163).  
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1.5.3 Spatial profiling in situ 
 

 To overcome scRNA-seq’s main limitation, different technologies have also 

been developed. Allowing the comprehensive use of what would correspond to spatial 

transcriptomics (ST). Moreover, the spatial localization of cells in the tumor 

microenvironment and their relationship with other structures can play an important role 

in the phenotype and sensitivity to drugs. For instance, cells localized near blood vessels, 

not only will have high availability of nutrients and oxygen, but also a higher proliferating 

capacity exposure drugs delivered intravenously. The use of multiplex 

immunofluorescence, despite the downside of having limited number of antibodies that 

can be used at once, is still a very powerful approach for biomarker discovery and valida-

tion (164). The use of this technology is normally a good approach before moving into 

higher-throughput technologies, such as digital spatial profiling (DSP) (157). The DSP 

technology is a newer alternative that offers the opportunity to interrogate different tumors 

at once, trying to make up for the lack of the one patient approach using scRNA-seq. This 

technology is based on the selection of region of interest (ROIs) in the tumor.  Within 

these ROIs antibodies are stained by using multiplex immunofluorescence techniques. 

These allows to interrogate larger datasets in the same manner(165). Overall, this and 

other approaches are key and successful to answer clinical questions when developing 

a good experimental design. 
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1.6 Rationale 

  The phenotypic diversity of triple-negative breast cancer cells in different regions 

of a sample poses challenges in pathologic assessment of markers used in clinical 

decision-making (32,166). Therapy does not integrate the spatial context of tumor cells, 

their abundance, nor the networks to the local environment where they reside. These 

variables can influence transcriptomic, metabolic, and epigenetic variability among these 

cells and therefore, their response to treatment (167). The spatial heterogeneity and cell 

organization represented by the tumor architecture, plays a critical role in disease 

progression (15,168). Tumor cells adapt to stress through cell state transitions and 

plasticity in response to therapy and metastatic dissemination at the single cell level. This 

has been investigated by different approaches including scRNA-seq and/or imaging 

technologies, however, the biological differences and vulnerabilities of individual cell 

populations integrating these technologies is still poorly studied. The aim of this thesis 

work is to use preclinical models that mimic the patient’s disease progression in a multi-

pronged approach. With the use of single-cell sequencing, digital spatial profiling, and 

functional experimentation of single cell populations we expect to bring insights about 

how single cell populations are transcriptionally regulated by their spatial localization in 

the tumor. Moreover, we aim to understand the biology of aggressive cell populations 

involved in metastatic progression. Utilizing dynamic tracing of cell populations in 

matched primary and metastatic samples from a same patient, we aim to identify 

therapeutic targets that can prevent disease progression.  
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2.1 Breast cancer models to study clinical challenges  
 

2.1.1 Biobanking breast cancer clinical samples. 

 Surgical specimens are collected transferred for diagnosis to pathology and tissue 

in excess at pathology is available for research. Patient derived xenografts for breast 

cancer, require a small piece less than 1mm3 of preferably fresh tissue (159). Normally, 

the tissue is engrafted either subcutaneously or in the case of breast cancer PDXs, it can 

be implanted into the fourth mammary fat pad of immunocompromised mice as well as 

through the nipple directly into the duct, for ER positive breast cancers (169,170). The 

environment of the fat pad mimics the environment of the breast, avoiding as much 

possible phenotypic alterations. The initial engraftment of the patient’s tumor into the first 

generation of mice is called passage (P)0, following collection and re-transplantation 

gives rise to P1 etc. Moreover, tumor dissociation and specific culture medias allows the 

generation of matched patient-derived organoids (PDXOs) or patient-derived cell lines 

(PDCs) allowing use for complementary studies in-vitro.  The key step in use of PDXs as 

preclinical models is the need to validate that the PDX retains the clinical histology, 

genomic landscape and transcriptomic of the patient tumor. If the PDXs recapitulate the 

human tumor landscape, they serve well as preclinical models to perform further 

translational and basic science research studies.    
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2.1.2 Patient-derived xenografts to model breast cancer disease progression. 

 Patient-derived xenografts or PDXs are preclinical models that recapitulate the 

clinical landscape of the patient and provide a renewable source of the tissue to perform 

research. We have bio-banked and generated PDXs from patient’s primary and matched 

metastatic disease samples. This provided a powerful tool to interrogate disease 

progression preserving the same patient’s landscape and gather further understanding of 

the primary tumor biology and metastatic disease (Fig 2.1.2A).  To understand the 

sensitivity to standard of care treatment, we first identified a panel of drugs commonly 

used in TNBC patients and tested response in a 1x1x1 trial approach (171). Following an 

apparent complete response to a specific drug (change in tumor volume of ~100%), we 

obtained a residual disease PDX model.  The residual disease tumor from PDX-Lm 

(GCRC2076) was developed in response to the chemotherapeutic agent, Gemcitabine 

(Fig 2.1.2B).  To further develop a model of recurrence, the drug was removed, and 

residual tumor cells allowed to expand then re-challenged with the same drug repeatedly 

“on and off” until acquired resistance was established and resistant tumor harvested (Fig 

2.1.2B).  To further validate the acquired resistance, the tumor was transplanted into a 

new cohort of mice and treated with gemcitabine to demonstrate that resistance to 

therapy was preserved upon tumor passages (Fig 2.1.2C).   
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Fig.2.1.2 

 

 

Fig.2.1.2. PDX models to mimic breast cancer disease progression. 

 A. The patient’s primary tumor (GCRC1915) after surgical resection was engrafted into 

the mammary fat pad of an immunocompromised mouse to establish a first PDX. Later, 

the same patient once developed lung metastatic disease (GCRC2076), the biopsy of the 

lung tumor was engrafted into other mice to generate a matched PDX. B. Treatment with 

Gemcitabine in PDX GCRC2076 created complete response to the treatment. The 

residual disease was removed off the effect of the drug and a rebound was obtained. The 

rebound was re-challenged on and off with drug until no response was seen anymore. C. 

The resistant tumor was transplanted into 5 mice and treated with Gemcitabine, 

confirming no response to treatment. 
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2.1.3 Single-cell RNA sequencing of stepwise disease progression samples.  

 

 To study the key clinical and research questions of tumor heterogeneity and 

relapse, corresponding PDX models were generated. These models of disease 

progression serve to study the patient’s biological and genomic landscape in a consistent 

and reproducible manner. Matched primary (GCRC1915), and metastatic disease 

samples (GCRC2076), provides a unique opportunity to interrogate cell populations 

selected for a more aggressive phenotype in a temporal manner. After developing these 

models and prior to analysis by single cell RNA sequencing, scRNA-seq, each tumor 

dissociation requires technology development.  The process of tumor dissociation 

requires optimization of the digestion process, cell isolation, cell viability and bioinformatic 

analyses. Once, this was obtained, the primary tumor, matched lung metastasis, residual 

disease, rebound, and resistant tumor were subjected to scRNA-seq. 
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Figure.2.1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1.3. Technical aspects of tumor dissociation and samples for scRNA-seq. 

A.  Schematic approach of technology development required to properly subject 

samples for scRNA-seq. The digestion process, isolation technique of cells, cell viability 

and bioinformatic analyses are essential steps to perform a good experiment. B. 

Disease progression samples subjected to scRNA-seq. Each of them requires individual 

optimization of all the aspects mentioned in A. 
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2.2 Spatial and temporal heterogeneity in breast cancer metastasis 
 

2.2.1 Patient-derived xenografts as models to study temporal heterogeneity. 

 To understand the molecular heterogeneity induced by changes in the tumoral 

environment in TNBC, we established a cohort of matched TNBC samples and patient 

derived xenografts (PDX). These samples include a patient primary triple-negative breast 

cancer tumor obtained from the patient (PT).  A matched PDX from the primary tumor 

(PDX-Pri). Later a PDX derived from the patient’s lung metastasis (PDX-Lm). The 

metastatic disease in the patient was diagnosed six months after the partial mastectomy 

was performed. Finally, a spontaneous lung metastasis PDX model was derived (PDX-

Slm). This was performed by engrafting the PDX-pri tumor in the mammary fat pad (MFP), 

resecting it when reaching endpoint, and monitor for mice to develop symptomatic 

disease, which occurred six-months after the tumorectomy from the PDX-pri MFP, 

mimicking the temporal heterogeneity observed in the patient (Fig 2.2.1A-C).  

Fig.2.2.1 
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Figure.2.2.1. Schematic overview of primary and metastatic breast triple negative 

PDXs experimental pipeline.  

A. Overview of experimental design. Primary breast tumor was used to generate PDX-

pri samples. A six-month lung metastasis from the same patient was utilized to generate 

PDX-Lm. B. From PDX-pri two replicates were generated (Pri1 and Pri2), and from the 

PDX-Lm two metastatic replicates were generate (Lm1 and Lm2). A third PDX from a 

PDX-pri spontaneous lung metastasis was derived six months post-resection of tumor 

in fat pad (Slm). C. Five tumors from 2 PDX-Pri, 2 PDX-Lm and 1 PDX-Slm were 

dissociated into single cells and subjected for single-cell RNA sequencing using 10x 

genomics. 
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2.2.2 Patient-derived xenografts are representative models of the patient’s 
histological, transcriptomic, and genomic landscape.  

 

 To confirm that PDX models faithfully recapitulate patient tumor samples, we 

compared their histological, transcriptomic, and genomic landscapes. Both PT and PDX-

Pri were negative by immunohistochemistry (IHC) for ER, PR and HER2, consistent with 

their clinical classification as TNBC. IHC staining for breast cancer clinical markers 

(PanCK, Ki67, p53) showed similar patterns in the patient and PDX samples (Fig. 

2.2.2A). Transcriptional profiles derived from bulk RNA-seq were also similar, with PT 

and PDX-Pri clustering together as basal breast cancer by absolute intrinsic molecular 

subtyping (AIMS) (172) using the PAM50 gene set (66,159) (Fig. 2.2.2B) . Both PT and 

PDX whole-genome sequencing revealed a missense mutation in TP53 (p.R273H), 

correlating with the increased p53 protein levels detected by IHC. Finally, copy number 

alteration (CNA) profiles pointed to similar genomic landscapes (Fig. 2.2.2C). Taken 

together, these results indicate that PDX-pri recapitulates the clinical marker profile by 

IHC, as well as the genomic and transcriptomic landscape of the patient’s primary tumor, 

therefore serving as a good pre-clinical model to study intra-tumor spatial and temporal 

heterogeneity at the single-cell level.  
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Figure. 2.2.2 
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Figure. 2.2.2. Patient-derived xenograft mimics the molecular features of the 

patient’s primary tumor. 

 A. Evaluation of the principal markers for the clinical classification of breast cancer by 

immunohistochemistry showed that both PDX and PT present the same pattern 

expression of ER, HER2, Ki67, tp53 and PanCK. B. PDX and PT were clinically classified 

as a triple-negative breast cancer, and PAM50 signature gene expression analysis 

revealed that PDX and PT cluster as basal breast cancer (Heatmap metric: One minus 

Person correlation; Linkage Method: Complete)(159). C. Circos plots showing somatic 

mutations and transcriptional profiles in the PDX and corresponding primary tumor. The 

outer ring shows the mRNA profile of every chromosome (blue and red lines represent 

genes that are down- or up-regulated, respectively. Only genes that have |log2FC| > 8 

are shown). The middle ring represents copy number variations, derived from whole-

genome sequencing data. The green lines traversing the inner ring indicate inter- and 

intra-chromosomal rearrangements and structural changes. 
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2.2.3 Single-cell RNA sequencing of primary breast cancer patient-derived 
xenograft replicates. 
 
 

 To define the cellular heterogeneity and obtain robust biomarkers of cell 

populations in the primary breast tumor, we subjected two PDX-pri replicates (Pri1 and 

Pri2) to dissociation, murine stromal cell depletion, and single-cell RNA sequencing using 

the 10X Genomics technology. After alignment, demultiplexing and filtering of murine 

cells, replicates were integrated using two alternative methods, Canonical Correlation 

Analysis and Harmony (173). Replicates displayed a high degree of reproducibility, 

displaying same number of clusters with similar structure within the uniform manifold 

approximation and projection (UMAP) (Figure 2.2.3A, B).  Moreover, with both methods 

QC metrics and cell population structure is well represented within both PDX pri1 and pri2 

samples. Number of genes, mitochondrial content and ribosomal content was similar in 

all samples, slightly lower in Lm2 (Figure 2.2.3C-E) 

 

Fig 2.2.3 
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Figure. 2.2.3. Single-cell RNA sequencing of primary triple-negative metrics. 

A. UMAP visualization of the primary joint (PJ) analysis, in which the primary PDX 

samples, Pri1 and Pri2, were integrated using CCA. Cells are colored by cluster identity. 

B. UMAP visualization of the primary join Harmony (PJh) integration of primary PDX 

samples, Pri1 and Pri2. Cells are colored by cluster identity. C. Comparison of library 

quality metrics for Pri1 and Pri2 samples following read alignment and transcript counting. 

UMI, unique molecular identifier. D. Distribution across cells per sample for four quality 

control metrics. E. UMAP plots of the CCA integration of Pri1 and Pri2, with cells colored 

by four quality control metrics. Below, the distribution of each metric per cluster, with cells 

separated by sample of origin.  
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2.2.4 Single-cell RNA sequencing of the breast primary tumor identifies eight 
distinct transcriptomic populations. 

 

 Clustering analysis in the integrated space revealed transcriptionally distinct cell 

populations (PJ0-PJ7) each containing cells from both samples, with the only exception 

of a small distinct cluster (PJ8, 174 cells), detected predominantly (80.5%) in one of the 

samples (Fig. 2.2.4C). This indicates consistency in the phenotypic states found across 

replicates. Dimensionality reduction by Uniform Manifold Approximation and Projection 

(UMAP) positioned cells following a gradient that was only partially explained by cell cycle 

phases. Clusters PJ3 and PJ6 were enriched for cells in the G2M cell cycle phase, while 

cluster PJ0 was enriched for cells in the S phase (Fig 2.2.4B).  Since cell cycle status is 

often a major source of transcriptional variation in scRNA-seq datasets, we performed a 

regression analysis to determine to what extent the population structure was dictated by 

cell cycle programs. As expected, PJ3 was largely affected when regressing out cell cycle 

genes, showing the largest dispersion in the UMAP space and increasing its geometric 

median absolute deviation. All other clusters, on the other hand, were quite robust to cell 

cycle regression, indicating that other processes, independent of cell cycle, are the main 

source of variation in this cohort (Fig 2.2.4C-E). 
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Fig. 2.2.4 
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Fig.2.2.4. Primary joint cell cycle phase representation and regression.  

A. Pri_1 and Pri_2 cell number representation for each PJ cluster. B. Percentage of cells 

in each PJ cluster in different phases of the cell cycle; G1 (purple), S (orange) and G2M 

(purple). (A) UMAP plot of primary joint (PJ) before cell cycle (CC.) regression (upper) 

and after CC. regression (lower), cells are colored by the clusters identified before cell 

cycle regression. C, D. UMAP before and after cell cycle regression, respectively.  E. 

Each PJ clusters vertically with UMAP space before CC. regression (top) and after CC. 

regression (bottom). PJ3 (cells under G2M phase) is highly dispersed after CC. 

regression, other PJ clusters relatively remain their major crowds. F. Quantification bar 

plots showing the highest displaying geometric median absolute deviation (MAD).  

Clusters are ordered by the difference of geometric MAD between the data after CC. 

regression and before CC. regression, descending. 
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2.2.5 The primary tumor replicates are comprised by 4 distinct biological cell 

populations and 4 transitional clusters. 

 To investigate the cellular classification of biological clusters we interrogated the 

SCENIC platform to identify active and specific transcription factors and elevated genes 

comprising these TF’s regulons (174). We identified a cell cycle cluster (PJ3 – purple), 

with high and specific activity of Forkhead Box M1 (FOXM1) known to be overexpressed 

in TNBCs, and associated with the modulations of genes involves in the regulation of cell 

cycle and tumorigenesis (175–177). Moreover, cycling genes such as MKI67, CDK1, 

CDK2ND were also highly and specifically expressed. We also found a hypoxic clusters 

(PJ1/PJ2 ) with activity of HIF1A,  which is induced under hypoxia and characterize 

aggressiveness in breast cancer (178,179). Moreover, HIF1A targets were specifically 

expressed in this cluster (CA9, VEGFA, BNIP3L, SLC2A1)(180). Additionally, we 

identified a  lipid metabolism cluster (PJ5 – yellow), which displayed high activity of 

Peroxisome Proliferator-Activated Receptor Delta (PPAR), a master regulator of lipid 

metabolism, EMT, angiogenesis and inflammation (181,182).  Moreover, this cluster 

presented elevated expression of genes involved in cholesterol metabolism (DHCR24) 

and genes found in breast cancer cells with bipotential progenitor capacities (KRT6B). A 

interferon alpha/gamma cluster (PJ7 – brown), with high expression of ETV7 and viral 

mimicry response genes (IFI27, ISG15, OASL). Finally, we detected a small cluster with 

signatures elated to NOTCH and PI3KCA pathways (PJ8 – orange) (Fig 2.2.5A, B). 

  Lastly, we predicted the relationship between the PDX-pri clusters by inferring a 

cell differentiation hierarchy using Monocle (183). Cells in the cycling cluster PJ3, hypoxic 

cluster PJ1/PJ2 and lipid metabolism in PJ5, were all found on opposing trajectories. 
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Notably, transitional clusters (PJ0, PJ4, PJ6, and PJ8) were found along the distinct 

trajectories, demonstrating the transitional state of the cells found in these clusters 

(Fig.2.2.5D). Together, these analyses support a high concordance in the transcriptional 

diversity observed between PDX replicates. Distinct biological and transitional 

populations were identified in both PDX-pri samples, making the use of a joint space a 

reliable tool to identify robust biomarkers in situ.   

 

Fig.2.2.5 
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Fig.2.2.5. Single-cell RNA sequencing of TNBC PDXs.  

A. UMAP visualization of primary joint (PJ) space representing two primary PDX tumors 

replicates (pri1 and pri_2). B. ssGSEA scores for MSigDB Hallmark pathways, computed 

per cluster and Z-scored across clusters. The top 2 pathways for each cluster based on 

scaled ssGSEA score were selected for visualization. C. UMAP plots of PJ analysis with 

cells colored by inferred transcription factor activity. Active and specific factors for 

biological subsets are shown. D.  Reconstructed cell state trajectory with the ordered cells 

colored by PJ cluster identity. 
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2.2.6 Methodological selection of specific cluster markers from scRNA-seq data. 

 To interrogate the spatial topology of cell populations defined by scRNA-seq within 

the tumor in an unbiased manner, we integrated gene expression data from scRNA-seq 

and multiplex immunofluorescence (MIF). First, the most specific `genes to use as protein 

markers for each single-cell population of PDX-pri were selected from the scRNA-seq 

data. Differentially expressed genes between the single-cell clusters were computed with 

the Wilcoxon Rank Sum Test, and genes with high average fold changes, low p-values, 

and with available antibodies for immunofluorescence were selected as protein markers 

(see Methods). There were clusters that were characterized by the expression of either 

one or two genes, whereas other clusters did not have specific genes that could solely 

identify them.  In fact, most of clusters with specific gene markers corresponded to the 

identified biological clusters, and those lacking markers were concordant with what we 

called transitional clusters. Within biological clusters, the cell cycle cluster PJ3 was 

characterized by the expression of topoisomerase-2a (TOP2A) and PCNA-associated 

factor (KIAA0101). The hypoxic cluster PJ1 displayed specific expression of Carbonic 

anhydrase 9 (CA9), while the hypoxic cluster PJ2 had expression of CA9 and Solute 

Carrier Family 2 Member 1 (gene: SLC2A; protein: Glucose transporter 1, GLUT1). 

Cluster PJ4 presented high and specific expression of Ubiquitin hydrolase L1 (UCHL1). 

Cluster PJ5 had specific expression of Crystallin-AB (CRYAB) and expression of 

Calmodulin Like 5 (CALML5), while PJ7 had specific shared expression of CALML5 with 

cluster PJ5. Within the transitional clusters, namely PJ0, PJ4, PJ6 and PJ8, they showed 

no gene markers with high fold changes relative to other clusters, and lowly expressed 

several genes selected as protein markers for other clusters (Fig. 2.2.6 A, B). 



 66 

Fig. 2.2.6 

 

 

Fig. 2.2.6. In-situ spatial mapping pipeline of single-cell RNA sequencing 

populations. 

 

A. The PDX primary tumor is dissociated into single cells. These cells are subjected to 

scRNA-seq using the 10X genomics platform. After bioinformatical analyses, we identified 

distinct cell populations colored in the UMAP and for each of them we selected specific 

genes as cluster markers.  B.  The colored violin plots represent the expression of 

selected gene markers for each PJ cluster. Clusters are represented in the vertical axis 

with their corresponding colors. In the horizontal axis are the selected gene markers and 

their corresponding expression per cluster.   
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2.2.7 Spatial mapping of scRNA-seq populations gene markers in PDX and PT. 

 

 To test feasibility and reproducibility of using antibodies for the proteins encoded 

by the selected gene markers, first we tested the PDX-pri if we could identify these 

markers by using unstained 4um PDX tumor sections. We stained PDX tumor sections 

for hematoxylin and eosin (H&E) to define histological tumor features (e.g., necrosis), and 

for DAPI and the 7 selected protein markers on unstained slides. Confocal microscopy 

was utilized to obtained images from each individual channel corresponding to one 

antibody. This way we were able to determine the localization of cells that were positive 

by immunofluorescence for each marker in the tissue. (Fig. 2.2.7A). Similarly, we 

obtained one H&E slide and one unstained slide from the clinical FFPE block from the 

patient and performed MIF (Fig. 2.2.7B). We were able to determine that each of the 

selected markers were represented by IF in the PDX, as well as in the patient’s primary 

tumor. 
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Fig.2.2.7 

 

Fig.2.2.7. Marker selection is represented in both PDX and PT tumor. 

 A. PDX unstained tumor slides were used to stain for DAPI and the seven selected gene 

markers from scRNA-seq data. B. PDX and PT H&E and multidimensional imaging by 

confocal microscopy is illustrated. Each antibody staining is represented through 

individual channels.  PDX and PT confocal images were masked to exclude regions of 

necrosis based on the H&E image and disrupted DAPI observed through MIF. In white-

dotted lines necrosis is circumscribed. (Scale bar, 100um). 
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2.2.8 In situ spatial cartography for scRNA-seq populations.  

 Proof of principle of gene markers represented by IF in both PDX and PT prompt 

the further characterization of the intensity of expression within one cell.  Although each 

of the selected antibodies can identify cells enriched for the marker protein, the range of 

intensities for each antibody varies as each cell can express more than one of the 

selected markers. Therefore, we developed a computational approach that identified each 

single cell in the tumor and the corresponding expression of each of the to assign each 

primary tumor cell from the images produced by MIF to a PDX-Pri cell state identified by 

scRNA-seq (Fig 2.2.8A).  

 To accomplish this, the RNA expression of each of the seven marker genes for the 

single-cell clusters was scaled in the interval [0, 1] and normalized to the area under the 

curve. This yielded a probability density function for each marker gene. Thus, each single 

cell in an image is characterized by seven distinct intensity values obtained by MIF, and 

computationally analyzed to determine to which scRNA-seq PJ cluster it corresponds (Fig 

2.2.8B). The method produces an output computational image in which each cell is 

colored according to the inferred PDX-Pri cell state (Fig. 2.2.8C).  Spatial mapping of the 

cell states identified transcriptionally allows us to explore the spatial relationship of these 

states to the microenvironment and to tumor properties (e.g., necrosis), and the 

organization of cellular networks (Fig. 2.2.8D) Altogether, performing in-situ spatial 

cartography of scRNA-seq populations provides reproducible and unbiased approach to 

identify markers for tumoral states and examine the spatial relationship of tumor cells 

alongside their expression profiles. 
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Fig. 2.2.8 
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Fig.2.2.8. In situ spatial mapping pipeline.   

A. Unstained slides from tumor sections are stained with 8 colors MIF as an input image. 

Each cell will be analyzed separately. B. Each cell (e.g., Cell 1) will have different 

intensities for each of the antibodies. Probability density functions are obtained from the 

scRNA-seq expression data, where each cell will be assigned to only one transcriptomic 

cluster. C. After all cells are assigned to their most likely transcriptomic cluster and output 

image is generated. In this image, each cell is colored corresponding to the scRNA-seq 

cluster they were allocated to. D. Once we have the spatial information and the 

transcriptional profiles of these cells, spatial topology, spatial distribution, and cellular 

networks can be interrogated.  
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2.2.9 Spatial cartography of primary breast tumor populations reveals zonal and 

zone-less populations adjacent to necrotic regions  

 Prior to dissecting the spatial relationship of the PJ clusters, we verified that these 

cell states are found in similar abundances in both the PDX and PT.  Using the in-situ 

spatial cartography (ISC) approach, we spatially mapped the PJ clusters in different tissue 

sections from PDXs and different regions of the primary tumor (Fig 2.2.9A). In the PDX, 

3 biological replicates (three different tumors) and 3 regions in each tumor (technical and 

heterogeneity replicates) were selected. In the patient’s primary tumor 9 ROIs (technical 

replicates) were selected in the clinical specimen of the tumor. After calculations, we 

found that within the PJ clusters in both PDX and PT, the most abundant biological 

populations were PJ0, PJ3, and PJ2 and PJ1 as minor populations PJ5, PJ4 and PJ7 in 

a proportion of ~9%.  Overall, the abundances of cell states identified from single-cell 

transcriptional analysis are consistent in both the PDX and primary tumor (Fig 2.2.9B). 

To better understand if gene expression profiles were influence by the spatial localization 

of clusters, we decided to look at clusters that by MIF already displayed some level of 

zonation. Single-cell RNA sequencing data revealed two distinct clusters containing 

signatures of hypoxia.  These two clusters expressed CAIX and/or GLUT1 by MIF, 

displaying a distinct spatial localization adjacent to necrotic regions in the tumor. This is 

consistent with data from other groups, where hypoxic or non-resolving necrosis in tumors 

have high expression HIF1A, are associated with poor outcome and display spatial 

patterns of expression (12,184,185).  
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 Hence, to examine if the spatial distribution and biologically defined gene-

expression populations were influenced by distinct environmental ques, the distance from 

the nearest necrotic region for each cell in PDX and PT was measured. Cluster PJ, which 

was the most abundant hypoxic cluster was found to have a higher density within 100um 

from the nearest necrotic regions (Fig.2.2.9C, D). Therefore, we established tumor zones 

containing this and PJ1 hypoxic population as hypoxic tumor zones (HTZ). On the other 

hand, we observed cluster PJ3 enriched for cell cycle signatures, homogenously 

dispersed throughout the tumor and localized within 250um from the nearest necrotic 

regions, mostly excluded from where hypoxic populations were found (Fig 2.2.9F, G). 

These tumor regions were named cycling tumor zones (CTZ). Finally, in contrast to zonal 

HTZ and CTZ, cells from PJ5 are a small population, that is not spatially defined by their 

spatial localization. These cells have a homogenous scattered representation throughout 

the tissue when assayed across 500um from the nearest necrotic regions. These cells 

were defined as zone-less with scattered distribution in the tumor (Fig2.2.9H, I). 

  Overall, PJ1 and PJ2 cells were preferentially localized closely to necrosis or 

hypoxic tumor zones (HTZ) within 50um from necrosis.  Contrarily, PJ3 cells were found 

further away from necrosis concentrated in greater proportions over 50um from necrosis, 

in what we defined as cycling-tumor zones (CTZ). These two zonal populations displayed 

geographic localization associated to distinct transcriptional profiles, likely dictated by 

oxygen and nutrient availability. Exceptionally lipid metabolism cells (PJ5), had most of 

its cells in hypoxic tumor zones, but also in cycling tumor zones.  Moreover, the spatial 

heterogeneity of scRNA-seq populations had concordant results between PDX and PT. 

Therefore, the use of in situ spatial cartography in PT and matched PDX models uncovers 
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preserved spatial heterogeneity among these populations. The molecular and 

topographic properties of these cells may indicate that spatially defined clusters have 

environmentally influenced gene expression profiles, whereas zone-less populations are 

defined by cell intrinsic transcriptional profiles. 

 

Fig.2.2.9. 

 

 



 75 

Fig.2.2.9. Spatial quantification of scRNA-seq populations in PDX and PT. 

A. Computation image of PDX and PT tumor tissues of all PJ scRNA-seq inferred clusters 

(scale bar, 20um). B. PJ clusters cell proportions in PDX (n=10 images) and PT (n=9 

tumor regions). Exploded minor proportion populations. C-I.  Computational image with 

distribution of 100um from necrosis for clusters PJ2, PJ3 and PJ5 (left) and their 

corresponding quantification in density plots (right). 

 

2.2.10 Digital spatial profiling of PDXs and patient’s primary tumor and lung 
metastasis. 

 

 The identification of spatially defined populations in the PDX with preserved 

heterogeneity in the PT, prompt to interrogate if also the gene expression profiles of these 

cells were retained in the PT. Since the patient’s primary tumor material was limited and 

no scRNA-seq was performed on it, we performed digital spatial profiling (NanoString) for 

PDX slides and matched PT tissue microarrays (TMA).  As observed through MIF and by 

the gene expression on scRNA-sq data, CAIX was identified as a spatially defined marker 

for hypoxic scRNA-seq populations. We stained regions of interest (ROI) determined by 

CAIX+ and adjacent CAIX- regions in PDXs and patient’s tumor sections. We used PDX-

pri1915, PDX-Lm2076, PT_pri1915) and PT_Lm2076 (lung metastasis). Later, 

expression profiles in the patient’s tumor section determine by CAIX positivity could be 

compared with the PDX scRNA-seq data (Fig. 2.2.11A).   First, three to five CAIX+ and 

CAIX- regions of interest (ROIs) were selected in the PDX and matched PT samples. The 

selection of CAIX+ and CAIX- ROIs was done in adjacent regions of the PDX and PT 

samples. (Fig 2.2.11B). Three different slides or Nanostring experiments were done. 
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Therefore, batch effect was taken into consideration and quality metrics were similar 

within three experiments.  

Fig.2.2.10 

 

Fig.2.2.10 Digital spatial profiling of PT and matched PDXs samples. 

A. Overview of DSP:  Samples from the patient’s primary tumor, patient’s lung metastasis 

and corresponding PDXs were obtained on FFPE blocks. These were used to build 1 

slide and 2 TMAs. The slides and TMAs were stained with nuclear marker, PanCK, CA9 

and Vimentin (Vim) or Smooth muscle actin (SMA). Gene expression profiles of CAIX+ 

and CAIX- were obtained to identify specific scRNA-seq populations in the PJ space by 

spatial deconvolution methods. B. Example of ROI selection of CA9+ and CA9- in the 

PDX and primary tumor. These was done for all samples in 3 to 5 ROIs per tumor. CA9+ 

and CA9- selected regions were adjacent to one another.   
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2.2.11 Digital spatial profiling of CA9 positive regions correspond to scRNA-seq 
hypoxic populations. 

 To determine if PDX-pri retained the same gene expression profile observed in the 

hypoxic high cluster, a spatial deconvolution approach was taken. Each ROI was mapped 

to one of the PJ clusters identified by scRNA-seq. We observed that among all samples 

with CAIX+ they had a high correlation with the hypoxic cluster PJ2. This was in the case 

of the primary and metastatic disease PDXs and patient’s samples (PT). However, In 

PDX and PT primary tumors the abundance in PJ2 is higher than in the PDX and PT lung 

metastasis samples. Moreover, CA9- samples were mostly represent with the higher 

abundance for the cell cycle cluster PJ3. In the case of the PT_1915 it also had 

representation of PJ0, a transitional but abundant cluster identified by scRNA-seq 

(Fig.2.2.11A).  The independent CAIX+ and CAIX- ROI representation of each tumor 

gave additional information regarding the proportion of each scRNA-seq cluster identified 

in each sample. In CAIX+ ROIs the main cluster was PJ2, followed by PJ3, and found 

mostly on the metastatic samples was PJ5. In CAIX- ROIs, the most abundant cluster 

was PJ3, followed by PJ6 transitional cluster, and PJ5 in the lung metastases samples. 

(Fig.2.2.11B, C). 

 Altogether, these results validate that spatially defined populations identified by 

scRNA-seq are preserved among different samples and by different methodologies. 

Moreover, the spatial heterogeneity of scRNA-seq populations in PDX is preserved in the 

patient’s primary and lung metastasis samples.  Nevertheless, for non-spatially defined 

populations, digital spatial profiling seems to represent those clusters found as more 

abundant in the scRNA-seq data. For instance, PJ3-cell cycle cluster was the most 
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abundant, whereas other minor populations are not equally represented. Notably, cluster 

PJ5, enriched for cholesterol homeostasis signatures, displayed a particular abundance 

in the metastatic disease, both in CAIX+ and CAIX- ROI and both in the PDX and patient’s 

lung metastatic disease. This suggest that PJ5 cells display high levels of plasticity, being 

able to survive in both hypoxic or non-hypoxic environments, and in a different anatomic 

location such as the lung.   

Fig.2.2.11  
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Fig.2.2.11.  Spatial deconvolution of scRNA-seq clusters through digital spatial 

profiling. 

A. Abundance estimates of scRNA-seq PJ clusters in all samples. ROIs are illustrated on 

the horizontal axis and PJ clusters on the vertical axis with their corresponding colors. 

Nanostring experiments and corresponding samples are labeled as slide and sample 

respectively. B, C. CAIX + (top) and CAIX – (bottom) scRNA-seq proportion in each 

independent ROI in the horizontal axis. Clusters legend on the right side.  
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2.2.12 Hypoxic CAIX positive cell populations are identified in early-stage tumors. 
 
 

 The presence of hypoxia on primary tumors,  has been shown to be involved in the 

selection of cells with survival advantage, EMT-like properties and metastatic capabilities 

(186)(187). EMT was a characteristically enriched pathway in hypoxic clusters, pointing 

that these cells could play a role in tumor initiation or tumor progression. Since CA9 gene 

and protein expression (CAIX) levels were specific for this cluster, we utilized it as a 

surrogate marker to enrich and functionally test these cells (2.2.12A).  To understand if 

PJ1/PJ2 cells were a snapshot of advanced stage necrotic tumors, or were rather present 

also in early tumor development, we collected PDX-pri tumors of different sizes and 

performed CAIX IHC.  Tumors as small as 4mm3 presented zonal expression of CAIX 

adjacent to necrotic regions, supporting the early presence of hypoxic-PJ4 populations in 

tumor initiating conditions (2.2.12B). These data support that hypoxic populations are 

present in early stage tumors in what would likely correspond to pre-necrotic or less 

oxygenated regions in the tumor.  
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Fig 2.2.12 

 

 

Fig 2.2.12. CA9 is a marker of hypoxic populations in early and late-stage tumors. 

A. PJ UMAP depicting CA9 expression level in percentiles throughout all scRNA-seq 

populations. B.  In vivo experiment with resection of tumor at different sizes/stages. H&E 

staining at the top (Scale bar;100um). CAIX and CD31 IHC staining in the middle and 

bottom respectively. (Scale bar; 20um). 
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2.2.13 Hypoxic CAIX positive cell populations display higher tumor initiating 
capacity in vivo. 

 

 To functionally test the role of CAIX in tumor initiation, PDX-pri tumors were 

dissociated into single cells, and cultured in non-adherent conditions as tumorspheres in 

both 20% and 3% oxygen chambers (Fig. 2.2.13A). Tumorspheres in 3% O2 expressed 

CAIX when compared with 20%O2 tumorspheres which lacked expression of the protein 

in this condition (Fig. 2.2.13B). To further interrogate the biological behavior of PJ1/PJ2 

population in vivo, 3% O2 tumorspheres were dissociated into single cells and fluorescent-

activated cell sorted (FACS) for CAIX+ and CAIX- cells was performed (Fig. 2.2.13C, D). 

Tumor initiating capacity (TIC) in vivo was tested by injecting bilaterally CAIX+ and CAIX- 

sorted cells into the fourth mammary fat pad (MFP) of 18 mice (MFP right: CAIX+ cells; 

MFP left: CAIX- cells) in three different dilutions; 10,000, 1,000 and 100 cells (6 mice per 

group) (Fig. 2.2.13E). CAIX+ tumors grew in 5/6 mice with 10,000 cells, 2/6 with a 1,000 

and 3/6 in the lowest dilution with 100 cells. On the other hand, CAIX- tumors only grew 

4/6 tumors in the highest 10000 cells dilution and none with the lowest cell inoculums. 

Extreme limiting dilution assay (ELDA) significantly demonstrated that CAIX+ cells have 

a higher TIC capacity with 1 in 2,792 cells (Fig. 2.2.13F, G). Altogether, these data 

support that hypoxic populations, characterized by CAIX positivity, are found in higher 

proportion in hypoxic conditions in vitro and display higher tumor initiating capacities in 

vivo. 
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Fig 2.2.13 
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Fig.2.2.13. Primary tumor CAIX positive sorted cells have a higher tumor initiating 

capacity. 

A. Experimental outline part 1; PDX tumors were dissociated into single cells and then 

cultured in non-adherent conditions to obtain tumorspheres both 3% and 20% oxygen. B. 

Tumorspheres in Histogel stained with DAPI and CAIX in 3% O2 (Scale bar, 50um). C. 

Experimental outline part 2; tumorspheres in 3% oxygen were sorted for CAIX+ and CAIX- 

cells. D. FACS-sorted CAIX+ and CAIX- single cells gate. E. Experimental outline part 3; 

CAIX + and CAIX- sorted cells were injected contralaterally in the mammary fat pad (MFP) 

of mice (n=18, 3 groups). F. Growth curves of PDX-pri tumors of CAIX+ (red) and CAIX- 

(black) sorted cells with 10.000 (left), 1000 (not shown), and 100 cells (right). (mean   

SEM; ** p<0.005: ns, not significant, t test). G. Estimated tumor-initiation frequency after 

three serial dilutions:10.000, 1000, 100 cells (n=6 per arm) (*p<0.05).  
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2.2.14 Primary tumor and tumorspheres spatial cartography on different oxygen 

conditions. 

 To further investigate in situ phenotypic plasticity of zone-less cluster PJ5 in the 

primary tumor, cells were assessed for positivity for markers of distinct zones. CAIX was 

selected as a marker to define HTZ, because of its high specificity to select for hypoxic 

clusters (PJ1/PJ2).  Likewise, CAIX negativity and KIAA0101 positivity were used to 

determine cells from PJ3 in CTZ. Imaging and quantification evidenced that cells positive 

for CRYAB (marker of PJ5 cluster) could adopt CAIX+ expression when in hypoxic tumor 

zones (31%) and when in CAIX- tumor zones they could adopt positivity for KIAA0101 

(29%). The definition of hypoxic and cycling tumor zones was represented by both 

expression of CAIX and KIAA0101, where only 5% of cells were triple positive 

(Fig.2.2.14A, B). This supports that CRYAB cells representing PJ5 cluster, have 

phenotypic plasticity and may be able to adapt to distinct environments in the tumor. 

Hypoxia has been shown to be involved in the selection of cells in the primary tumor with 

a survival advantage, EMT-like properties and the ability to invade distant organs 

(186,187). To functionally test tumor initiation in PDX-pri tumors were dissociated into 

single cells and cultured as tumorspheres in both 20% and 3% oxygen conditions (Fig. 

2.2.14C). Tumorspheres cultured in 20% O2 did not express CAIX, but most cells 

expressed CRYAB. On 3% O2, tumorspheres expressed CAIX and most cells also 

expressed CRYAB (Fig. 2.2.14D). To have an accurate quantification not only of cluster 

markers, but of scRNA-seq populations, ISC was applied to tumorspheres identifying that 

PJ2 and PJ5 cluster cells were accounting for most of the tumorspheres’ cells (Fig. 

2.2.14E).  Also, when looking at the difference in PJ cluster proportion between CAIX+ 
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and CAIX- sorted tumors, the main difference observed was within cluster PJ5 

(Fig.2.2.14F). These data, suggests that hypoxic (PJ2) and cholesterol homeostasis cell 

have a more aggressive phenotype in the context of tumor initiation.  

 
 

Fig. 2.2.14 
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Fig.2.2.14 Spatial cartography of markers and scRNA-seq populations on different 

oxygen conditions.  

A. MIF from whole section (WS) and inset images for DAPI, CRYAB, CAIX and KIAA0101 

(Scale bar WS, 100um and inset 20um). B. Percentage of all CRYAB positive cells that 

are also positive either for CAIX, KIAA0101 or both in image in A. C. Experimental outline, 

tumor dissociation into single cells and cultured tumor-spheres in 3 and 20% oxygen. (D) 

DAPI image of spheres merged with MIF individual channels for CAIX, CRYAB, 

KIAA0101 and KI67 of single-cell derived tumorspheres histogel in 3% O2 .(Scale bar, 

50um). DAPI KI67 is taken from consecutive histogel section. E. Number of cells from 

tumorspheres inferred PJ clusters quantification (mean   SEM; * p<0.05, t test). 
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2.2.15 Breast cancer lung metastases retain primary tumor biological populations. 

 To determine if transcriptional clusters were retained from the primary tumor upon 

disease progression, we performed single-cell RNA sequencing from 2 of the established 

PDX from the patient’s lung metastasis (PDX_Lm1 and PDX_Lm2) and from the 

spontaneous lung metastasis PDX model (PDX_Slm) (Fig 2.2.15A).  The three lung 

metastases samples were integrated into a metastases joint space (MJ), identifying 6 

transcriptomic populations (MJ0-MJ5). After alignment, demultiplexing and filtering of 

murine cells, the replicates were integrated using Harmony (173) (Figure 2.2.15B).  

Among these replicates, a high degree of reproducibility was displayed. Moreover, the 

number of cells, QC metrics and cell population structure is well represented within the 

three samples. However, the PDX_Slm sample displayed less cluster proportions since 

it was a smaller sample coming directly form a lung lesion in the mouse.  Number of 

genes, mitochondrial content and ribosomal content was similar in all samples (Figure 

2.2.15C, D). Finally, on primary and metastases cluster correspondence, we identified 

that cluster PJ5 (cholesterol homeostasis-yellow) was mostly represented in cluster MJ4 

(yellow), cluster PJ3 (cell cycle-purple) with cluster MJ2 (red), and cluster PJ2 (hypoxic-

green) with cluster MJ1 (orange) (Figure 2.2.15E). Altogether, some of the lung 

metastases populations are previously identified in the primary tumor. These populations 

are mostly the defined biological clusters, (Hypoxic-PJ2, cell cycle-PJ3, and cholesterol 

homeostasis-PJ5). These clusters, were also identified as the most abundant in 

metastatic samples by DSP, suggesting that cells with metastatic capability, can be 

observed in the primary tumor through scRNA-seq and by spatial mapping in situ.  
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Fig.2.2.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2.15. Single-cell RNA sequencing of lung metastases cancer PDXs. 

A. PDX samples. Three metastatic samples (2 from the MFP and one from a spontaneous 

lung metastasis in the mouse) sent for scRNA-seq. B. UMAP visualization of the primary 

joint (PJ) analysis, in which all three metastatic samples (Lm1, Lm2 and Slm), were 

integrated using Harmony. Cells are colored by cluster identity. C. Comparison of cell 

number in each sample per cluster. D. Cluster quality metrics of number of genes, 

mitochondrial content, and ribosomal content for all three samples. E. Heatmap of cluster 

correspondence between primary PDXs clusters (Pri cluster) and lung metastases 

clusters (Met_cluster). 
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2.2.16 Spatial cartography and scRNA-seq reveals that hypoxic and cholesterol 
homeostasis populations display an aggressive phenotype 

 

 The primary tumor PJ clusters were examined in PDX_Slm and the patient’s lung 

metastasis biopsy (PT_Lm). The spatial heterogeneity was interrogated, and PJ cluster 

quantification was performed also retained upon disease progression. Histological 

samples were stained by MIF, and we applied ISC to further quantify PJ clusters in the 

metastatic samples (Fig. 2.2.16A, B).  PDX-Slm and PT_ Lm cell proportion assigned to 

each PJ cluster, showed that most cells were in clusters PJ3, PJ5, and PJ2. On the other 

hand, a minor proportion of cells (~10%) were allocated to clusters PJ4, PJ0 and PJ1. 

PJ7 showed to be increased in the PDXs when comparing to the Lm_human (Fig. 

2.2.16C). Moreover, the only cluster significantly increased in the metastatic samples 

compared to the primary tumors was PJ5, while PJ0 and PJ1 were reduced (Fig. 

2.2.16D).   

 Since the lung environment compared to the primary tumor in the mammary gland 

has higher levels of oxygen tension (188), we investigated if zonal and zone-less primary 

tumor populations were spatially resolved in a similar manner in the metastatic disease. 

Therefore, distance from the nearest necrotic region was measured. In the lung 

metastases samples, most populations were found withing the first 200um from the 

nearest necrotic region, PJ2 having the highest proportion of cells in these regions.  Over 

200um, all clusters show a homogenous spatial distribution throughout the tissue (Fig. 

2.2.16E).  
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 Moreover, overall survival (OS) and distant metastasis free survival (DMFS) were 

interrogated in basal breast cancer, were PJ2- hypoxic cluster signature displayed 

reduced DMFS and PJ5-cholesterol homeostasis cluster poor OS (Fig. 2.2.16F, G).  

Altogether, we demonstrate that the unbiased marker selection for the epithelial 

compartment and the spatial mapping of single cell populations in situ is a feasible tool to 

perform biological interrogations, not only between PDX and human samples, but also 

upon disease progression.  Cluster PJ2 has a significant role in tumor initiation and may 

enhance selection of cells with aggressive metastatic phenotype. Moreover, these 

findings identify the expansion of the primary tumor population PJ5, enriched in 

cholesterol homeostasis signatures, suggesting that PJ5 population displays phenotypic 

plasticity, and that possibly has a role in tumorigenesis and disease progression. 
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Fig.2.2.16 
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Fig.2.2.16. Spatial cartography of scRNA-seq populations in metastatic samples. 

A, B. H&E of PDX_Slm and PT_lm (top) and corresponding spatial cartography of PJ 

clusters in computational image (bottom). Scale bar, 20um and 100um respectively. C. 

Quantification of PJ cluster proportion in the three metastatic samples (Lm1, Lm2 and 

Slm) and in the patient’s lung metastasis biopsy (PT_Lm). D. Mean proportion of cells in 

primary tumor and lung metastases samples (n=3, 2 PDXs and 1 human sample for 

each). T-test ***p=0.0005. E. Mean proportion of cells assigned to each PJ cluster and 

their distance from the nearest necrosis from all lung metastases samples (n=3). F, G. 

Overall survival (OS) and Distant-metastasis free survival (DMFS) of HU_Basal tumors 

PJ2 (left) and PJ5 (right) meta-signatures of TOP10 genes in each cluster (*p<0.05. Log 

Rank (Mantel-Cox) test). GOBO (Ringer et al.,2011). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 94 

2.2.17 Combined cholesterol and hypoxic targeted therapy display growth arrest 

and increased distant-metastasis free survival in PDX. 

 

 To functionally interrogate mechanisms of sensitivity to different drugs we first 

used a PDX clinical trial approach with commonly used chemotherapies and targeted 

therapies. PDX-pri showed to be unresponsive to multiple lines of therapy as tested in a 

1x1x1 study approach (160). However, it presented a partial response to Gemcitabine, 

same drug used in the adjuvant setting for this patient (Fig. 2.2.17A). Due to the observed 

poor OS in basal breast cancer and hypoxia playing a role in phenotypic plasticity of some 

populations in the tumor, we treated readily grown PDX tumors (~100mm3) with SLC-

0111 a CAIX inhibitor (CAIXi) alone, Gemcitabine (Gem) alone and both drugs in 

combination. The combination arm had a significant delay in tumor growth, while CAIXi 

had no effect when compared to vehicle (Veh) (Fig. 2.2.17B, C).  

 As the presence of CAIX showed enhanced tumorigenesis under tumor initiating 

conditions, we performed a second PDX trial, treating from the moment of tumor 

engraftment in the MFP. We used SLC-0111 and Ro 48-8071, a 2,3-oxidosqualene: 

lanosterol cyclase activity inhibitor (OSCi), to also target PJ5 population, known to be 

enriched in cholesterol homeostasis signatures and present in the metastatic disease 

samples.  Additionally, tumors were resected when reaching endpoint (>500mm3) to also 

assess the role of these drugs in the reduction of distant metastases incidence (Fig. 

2.2.17D).  
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 Tumors treated from day 0 had a significant delay in tumor growth both with CAIXi 

alone and in combination with OSCi (Fig. 2.2.17E). Significant reduction in tumor burden 

at endpoint was only displayed by CAIXi (Fig. 2.2.17F). Moreover, after tumor resection 

the 120 days follow-up showed a significant increase of distant-metastasis free survival 

(DMFS) in tumors treated with both CAIXi and OSCi or alone with CAIXi. In this case the 

increase in DMFS was only significant in the combination treatment. On the counterpart, 

OSCi alone had an increase of metastatic burden compared to control (Veh) (Fig. 

2.2.17G).  

 Altogether, we sought to target two distinct populations, with signatures of hypoxia 

and cholesterol homeostasis. PDX treatments identified sensitivity to CAIXi only when 

tumors were treated from the moment of engraftment, supporting the role in tumor 

initiation. The decreased metastatic burden in combination therapy supports a role of 

cholesterol homeostasis as having a role in disease progression in basal breast cancer, 

more than only in the tumor initiating context. 
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Fig.2.2.17 
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Fig.2.2.17. Combination therapy with CAIX and OSC inhibitors delays tumor growth 

and increases DMFS. 

A. PDX-pri best average response (Progressive disease (PD), Stable disease (SD), 

Partial response (PR) and Complete response (CR)) for different drugs. B. Growth curves 

of treated tumors when reached ~100mm3 with Vehicle, SLC-0111(CAIX inhibitor), 

Gemcitabine (Gem) or combination (Gem+SLC-0111). (n=9-10 per group). C. Change in 

tumor volume from treatment to endpoint (*p<0.05, **p<0.005, p<0.0005*** one way 

ANOVA). D. Experimental Pipeline: 1x1x1mm3 tumors were engrafted unilaterally in the 

fourth mammary fat pad and treated from day 0 with Vehicle (Veh), SLC-0111, or 

combination of SLC-0111 and Ro-4871 (OSC inhibitor). Tumors reaching ~500mm3 were 

resected. Mice were left to develop symptoms or metastatic disease detectable by 

imaging. E. Growth curves indicating response from moment of tumor engraftment to the 

different treatments (n=8-10 per group). F. Endpoint-free survival tumor volume change 

at 32 days for all mice with their corresponding treatment. (*p<0.05, t test). G. Distant 

metastasis free survival (DMFS) curves of mice that underwent resection of tumors (*p< 

0.05 Log Rank (Mantel-Cox) test). 
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3.1 Breast cancer heterogeneity beyond conventional tumor heterogeneity 

 Triple-negative breast cancer is not a single disease and despite recent and 

common efforts to identify therapeutic strategies for these patients, chemotherapy is still 

used as the main standard of care.  Understanding intratumor heterogeneity has helped 

to elucidate molecular differences among breast cancer and TNBC, but overall does not 

account for the different responses observed in patients that have the same BC subtype.  

 Moreover, TNBC displays genomic heterogeneity with variable clinical 

presentation, histological features, and response to therapy. Genome-wide profiling of 

TNBC reveals far greater diversity at the genomic level (189) than at the transcriptomic 

level, from which TNBC is stratified within four distinct transcriptomic subtypes (69). 

Similarly,  differences in stroma (190) and immune populations (114) are linked with 

outcome.  However, this growing information has been slowly integrated in the clinic to 

change clinical practice, and the consideration of the tumor microenvironment into 

treatment is still underexplored.  

 TNBC Bulk tumor populations contain several cell types, including malignant cells 

and non-malignant stromal and immune cells that support or oppose their growth. 

Although each individual cell within a tumor adopts a gene expression pattern governed 

by its cell identity, these patterns adapt in response to cell-extrinsic factors and the local 

microenvironment in response to treatment. Hence, the exposure to specific local cues is 

an important source of heterogeneity for tumor cells sharing the same identity. 
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 The understanding of breast cancer heterogeneity has developed rapidly, where 

the predominant use of clinical receptors to stratify patients, has been redefined by 

transcriptional intrinsic subtypes, specific genomic alterations in BRCA genes and lately, 

through BC immunophenotyping, to consider immunotherapy as an adjunct treatment 

(191).  Altogether, these discoveries have contributed significantly to the advancement of 

knowledge in the breast cancer field and have led to subtle changes in clinical practice 

and breast cancer patient outcomes (192). The use of targeted therapy,  PARP inhibitors, 

Immunotherapy, and specific platinum agents for patients with BRCA mutations are now 

therapeutic complements to conventional chemotherapy regimens, that remain as 

standard of care (193).   

 

3.2 The use of PDXs as preclinical models of disease progression  

 PDXs are a powerful tool to obtain an unlimited source of clinical material for 

research. In this thesis, a series of samples providing a stepwise development of disease 

progression samples were presented, intending to generate models that enable the 

interrogation key clinical challenges to understand disease progression. The use of 

primary and matched PDXs from the same patient to understand tumor cell selection 

upon metastatic disease is extremely valuable due to the technical difficulties that are 

presented when obtaining these samples. Metastatic samples are usually obtained from 

a procedure that would likely result in small tissue biopsy. The biopsy material of the 

metastatic sample is mostly available for clinical use, and the use of some” leftover” 

material for research implicates associated challenges. The development of new PDX 

biobanking and close follow-up of patients from whom we banked primary tumor material 



 101 

is essential to obtain matched metastatic samples. Moreover, the development of rapid 

autopsy programs within the clinical and research domain, will in the future allow the 

development of these models and further sequencing of metastatic lesions in a timely 

manner. This approach becomes important when interrogating metastatic tumor 

populations within distinct tumor microenvironments or anatomic sites (194).  

 In this thesis, the use of these samples was explored in a reproducible manner 

and with extensive molecular and phenotypic characterization. Moreover, the 

establishment and subsequent scRNA-seq data of residual disease, rebound and 

resistance samples, will provide powerful material for further research avenues. Although, 

the data has not been fully developed, the time spent in creating these models will provide 

discovery and mechanistic understanding pursued by others.  The utility of these models 

will expand beyond validations for tumor marker discovery, and the sequential availability 

of these samples will allow delineation of the selection of aggressive cell populations in 

the primary tumor during tumor progression. 

 These PDX models are most representative of a snapshot of a late-stage disease, 

being of great value for drug selection and screening for response to new therapeutic 

combinations. The therapeutic opportunities that these samples enable in the clinical 

domain are the most likely to be integrated into clinical practice, conferring disease 

progression PDX models an added value.  Lastly, it is important to highlight the need for 

tumor models of DCIS, an early-stage disease to enhance our understanding of how to 

identify which DCIS may progress and target the disease prior to progression. Also, the 

use of matched primary tumors, circulating tumors cells and metastatic disease, will also 

contribute to identifying metastases initiating cells.  
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 The use of PDXs, certainly comes with some limitations. PDXs are engrafted in 

immunocompromised mice that over time exchange human stroma with murine and 

lacking a mouse functional immune system. The crosstalk between the immune 

microenvironment and tumor cells can’t be further explored in these models. 

Nevertheless, some immunocompromised models, retain functional immune cells or can 

engraft donor  human cells to reconstitute their environment (195,196). Moreover, the 

patient stroma is normally replaced by murine derived stroma. This may not accurately 

reflect cell-to-cell interactions as well as cell-to-tumor microenvironment interactions 

observed in the patient (197). Ligand-receptor interactions and signaling pathways that 

play a role in tumorigenesis might be affected by the murine-to-human  tumor 

microenvironment, where for example murine hepatocyte growth factor (HGF) displays 

lower affinity for  the human Met receptor tyrosine kinase than does human HGF (198). 

In addition, the increasing interest and successful use of immunotherapy has motivated 

the development of humanized mouse strains.  Moreover, it has been shown by our group 

that not only the immune infiltration matters, but also the spatial localization of immune 

cells within the stroma and the tumor (114).   

 Taken together, PDX are valuable preclinical models for tumor marker discovery, 

drug development and mechanistic understanding of key clinical questions. Advances in 

computational approaches, artificial intelligence, and sequencing technologies, have 

made the manipulation of patient-derived cells highly used for drug screening and 

interrogation of distinct tumor populations.  
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3.3 Single-cell RNA sequencing as a technology to deliver patient-centered care 

 Single-cell technologies performed on dissociated tumor cells have provided a 

better understanding of the genomic landscape and heterogeneity of tumors. Moreover, 

cells display level distinct or same genomic alterations can display different transcriptional 

profiles exhibiting distinct phenotypic heterogeneity that can drive tumor initiation, tumor 

growth and metastatic disease. Single-cell technologies, where tumors are dissociated 

into single cells, have allowed us to have a deeper understanding among a same or 

different cell type.  

 The main limitation of single-cell sequencing has been intended to be overcome 

by profiling distinct cell types within tumors  (epithelial, fibroblasts, endothelial or immune 

cells) by immunohistochemistry using well-known markers (114,199–201) or by 

performing prospective spatial transcriptomics, initially by isolating cells from tumor 

domains (190) or then as high resolution as phenotypic spatial transcriptomics(168,202). 

However, how single tumor cell transcriptomic phenotypes correlate with and are 

modulated by the spatial tumor architecture is still poorly understood. 

 Spatial heterogeneity is apparent in many tumor types. Morphological  differences 

of cancer cells can be readily observed in formalin-fixed paraffin embedded samples of 

human tumors, without the need of specific markers (153).  Moreover, phenotypic 

diversity of TNBC cancer cells in different regions of a sample poses challenges in 

pathologic assessment of markers used in clinical decision-making (32,166). Therapy 

does not integrate the spatial context of tumor cells, their abundance, nor the networks to 

the local environment where they reside, which can influence transcriptomic, metabolic 

and epigenetic variability among these cells (167).   
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 This in fact, could even affect how drug treatment delivery is performed. If cells 

that are far away from the vasculature and near necrotic regions in the tumor, are intended 

to be treated with a targeted therapy, by knowing the spatial localization, it would make 

sense always to first debulk the tumor of cycling cells and later give sequential targeted 

therapy to for instance, target hypoxic populations.  

Fig.3.3 
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Fig. 3.3.  Spatial tumor architecture and drug delivery approach. 

A. The tumor is a 3D structure composed by tumor cells (in red and purple) and elements 

of the tumoral environment (necrosis, blood vessels, oxygen level etc.).  The disposition 

of cells regarding the distinct environmental queues, displays hypoxic tumor cells near 

necrotic regions and cycling cells further away from necrosis and closer to vasculature. 

B. The information obtained from the spatial localization of cells, proposes a sequential 

approach of drug delivery.  First, a debulking treatment for cycling cells and later, after 

cycling cells are dead, the delivery of targeted therapy for hypoxic cells.  

 

 Some of the caveats that single-cell technologies presents is the high cost of single 

cell sequencing to perform experiments with multiple technical or biological replicates. 

The monetary implication of this is the selection of samples tailored to answer specific 

biological questions (203). Therefore, the interrogation of larger datasets is limited. Hence 

now the extrapolation of single-cell technology data to the clinic is limited.  The biological 

findings identified in our studies, however, raise opportunities for validation in other 

cohorts through multiplexed immunofluorescence of potential biomarkers discovered in 

this study.  An extended analysis has confirmed the anticorrelation between hypoxic CAIX 

positive zones and proliferative KIAA0101 markers. Our findings were demonstrated in 

PDX replicates then compared to the matching human data provided by sister 

technologies, such as digital spatial profiling. Although these studies were focused on 

only one patient with longitudinal primary and metastatic samples, our data support that 

PDXs are viable models to study tumor progression and supports the need of further 

studies to examine additional PDXs or preclinical models.  In this context, other bio-
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banked triple-negative breast cancer PDXs serve as surrogate models (159). These 

models are available not only for TNBC, but also rare breast cancer subtypes, where 

further interrogation of single-cell populations and the use of successful techniques 

identified in this work can be used to interrogate patients longitudinally.  Hence the 

development of the single-cell atlas trying to mimic the TCGA or multi-center cross 

platforms, will likely provide us with a powerful approach with a focus to identify elusive 

tumor initiating cells as important therapeutic targets yet a poorly understood and 

heterogeneous population in TNBC.  The ability to integrate data from different groups 

and expand findings into larger datasets (204) will be crucial to this understanding. 

Moreover, the rapid advancement in technologies will rapidly make this and other 

technologies more accessible (205). 
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3.4 Spatial heterogeneity in triple-negative breast cancer. 

  In chapter 3, we introduce a novel unbiased and clinically applicable in situ 

approach to spatially map single-cell RNA sequencing populations in PDX and patient 

tissue sections in primary tumors and metastatic disease. We integrate scRNA-seq, 

multiplex immunofluorescence, and a computational analysis to integrate the expression 

of selected markers in each individual cell in the tissue to define scRNA-seq populations. 

This approach integrates transcriptional and spatial information from a same cell type of 

a specific tumor, where importantly PDX used in replicates, retains not only the histology, 

genomic and transcriptomic patient ‘s landscape, but also the regional heterogeneity, 

conferring additional information that PDXs can be a relevant pre-clinical tool to explore 

spatial heterogeneity. Other single-cell studies have performed cell type profiling with well 

known-markers or spatial transcriptomics ablating tumor regions and performing 

transcriptomic analyses. Relevant poor outcome subtypes have been identified within 

TNBCs through spatial transcriptomics. These include a hypoxic TNBC subtype, indeed 

characterized by CAIX expression, was correlated with poor outcome and  (168). 

Moreover the use of DSP for pre and post treatment BC samples was recently used, 

being able to identify in HER2 positive BC patients,  biomarkers of HER2-targeted therapy 

sensitivity (206). The use of single-cell sequencing technologies, digital spatial profiling 

and spatial transcriptomics brings promising avenues for an integrated view of the distinct 

levels of heterogeneity in the tumor. This certainly, highlights the complexity of tumor 

biology and the need of a patient -centered approach. The costs of technologies Is the 

main limitation for personalized treatment, but in hopes of the advancement in technology 

this seems likely a promising strategy to deliver care in the near future. 
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Fig.3.4  

 

 

Fig.3.4. Personalized approach to integrate spatial and temporal heterogeneity. 

A. Individualized treatment should be done for each patient (patient 1 and patient 2). The 

use of single-cell sequencing technologies should be ideally coupled with spatial profiling 

methods to identify potential clinical biomarkers. B. The use of cell lines, organoids, and 

preclinical models such as PDXs can be used in a personalized manner for drug 

screening. B. Each of these steps should be done throughout the evolution of disease. 

For instance, new samples from recurrence or metastatic disease should undergo the 

same process depicted in A. 
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3.5 Spatial architecture and temporal heterogeneity of transcriptomic 

populations in primary and metastatic disease  

 The interrogation of the spatial localization of tumor cells populations within the 

tumor revealed preserved zonation of certain biological clusters in both the primary and 

metastatic disease.  We were able to demonstrate that the spatial heterogeneity is 

preserved in the patient’s primary tumor. Moreover, we also showed that the metastatic 

samples also have a conserved spatial architecture for spatially zoned populations 

identified by scRNA-seq. The combination single-cell RNA sequencing, multiplex 

immunofluorescence (MIF) and Digital Spatial Profiling (NanoString) to outline matched 

patient-derived primary and metastasis xenograft models and define transcriptional states 

in the context of intact tissues. We identify a set of cell populations present across 

samples that are predominantly determined by their spatial localization within the tumor. 

Both primary and metastatic tumors contain transcriptionally distinct hypoxic cell 

populations that show a gradual transition towards a cycling state, largely defined by their 

distance to necrotic zones. A second class of cell populations, in contrast, show no 

preference for spatial localization and display a low degree of network connectivity, 

interspersed among other cell states within the tissue. These cells are exposed to distinct 

environmental queues in each zone and tend to co-express a range of transcriptional 

programs, indicating a high degree of plasticity. In functional studies, both hypoxic and 

cholesterol homeostasis cell populations displayed higher tumor initiating potential in vivo 

and are enhanced in tumor metastases respectively.  The metabolic nature of the 

populations identified, requires further investigation of the metabolic profiles and 

adaptations that these cells, which display plasticity, undergo in the primary tumor, in 
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circulation and upon arrival to the metastatic niche. The metabolic changes that these 

cells undergo, possibly enable them to successfully survive and repopulate the tumor at 

a distant location. The cholesterol signatures and targeting reducing metastatic disease 

has been explained by other groups.  Cholesterol metabolism plays a role in many 

biological functions. In cancer, ER stress and hypoxia are known to stimulate SREBP1 

and SREBP2, which leads to cholesterol biosynthesis programs (207,208) This program 

has been proven to be involved in TNBC and other cancers progression (209). 

Metabolomics or metabolic spatial profiling is what would allow a better characterization 

of the aggressive populations in this tumor. This would like to allow a better understanding 

of the mechanisms behind metastatic dissemination. Moreover, epigenetic changes at 

the single-cell level should serve as a powerful tool to understand transient cellular 

adaptations upon distinct biological processes, such as tumor initiation, metastatic 

dissemination, and therapy resistance (210). For the understanding of dynamic changes 

in distinct cell populations the integration of live cell imaging or cell tracing is key to be 

able to characterize temporal phenotypic events (211). The technologies used here  

captures a snapshot of cells already adapted to a certain program and phenotype, and 

although they bring value about key transcriptional programs required for tumor initiation 

and metastatic dissemination, knowledge of the intermediate adaptations required by 

these cells and the changes at the metabolic or epigenetic level are in need to have a 

better mechanistic understanding (212). 
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Fig.3.5 

 

 

Fig.3.5. Transcriptomic populations identified in lung metastatic disease preserved 

their spatial zonation. The main biological populations identified in the primary tumor 

are also identified in the lung metastasis disease. These populations preserved their 

spatial localization. Hypoxic populations were identified close to necrotic regions and by 

using CAIX as a marker.  The sequential mapping of scRNA-seq populations allows the 

identification of more aggressive populations in the primary tumor. The identification of 

metastatic initiating cells is still not elucidated and remains a key question.  
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3.6 Spatial cartography of primary and metastatic samples identifies aggressive 

populations 

 We describe two distinct tumor zones found in the PDX and matched patient 

sample. One hypoxic and other cyclic tumor zone spatially defined by their distance from 

necrosis. The topology of these cells found in one patient was further interrogated in other 

matched PDXs. The interactions of cancer cells with distinct environmental ques gives 

additional tissue context information and a better understanding of how these cells found 

in specific niches present different transcriptional profiles. Moreover, when analyzing 

“cholesterol homeostasis” patient’s outcomes, we observed that hypoxic signatures from 

scRNA-seq clusters are correlated with an increased DMFS within the first five years of 

diagnosis. When performing sphere-forming efficiency assays in 3 vs 20% oxygen we 

identified cells positive for the markers of a basal-mesenchymal-like population in both 

conditions, revealing an important level of plasticity of these cells. When tested in vivo the 

tumor initiating capacity of CAIX positive cells and CAIX cells selected from tumorspheres 

in 3% oxygen where most cells are positive for PJ5 markers, we show that cells with CAIX 

positivity when compared to cells that are CAIX negative have a higher tumor initiating 

capacity in vivo.  Our data provides information that zone-less cell populations can 

acquire specific traits when residing individually in distinct tumor zones, and once 

survived or adopted hypoxic features they have a more aggressive phenotype.  Lastly, 

the development of a spontaneous lung metastasis model mimics the patient’s disease 

progression. This model coupled with the MFP lunge metastases, allowed the 

understanding in space and time of aggressive cell populations found in the primary tumor 

and selected upon disease progression. 
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3.7 Conclusions.  

 Single-cell RNA sequencing is a growing technology started to be more used in 

the clinic. Translational and applicable methods within distinct samples across larger 

datasets are needed for further data extrapolation. We presented a spatial transcriptomic 

approach coupled with the discovery of distinct cell populations tested biologically. We 

demonstrated that spatial heterogeneity is not only preserved in PDX and the patient’s 

primary tumor, but also upon disease progression.  Moreover, this was further validated 

with a different methodological approach using digital spatial profiling. This methodology 

allowed to interrogate the geographic localization of single cell gene-expression defined 

populations in situ and determine transcriptomic populations with enhanced tumor 

initiating and metastatic capacity by performing functional tests. Overall, the integration 

of spatial information, single-cell transcriptomics and biological testing of single-cell RNA 

sequencing populations is a powerful tool to biologically interrogate intra-tumor 

heterogeneity with a high level of integration among tissue sections that can be clinically 

relevant among disease progression. This work provides the proof of principle that PDXs 

are a useful pre-clinical model able to recapitulate spatial and temporal heterogeneity 

from the patient. This allows researchers not only to do bioinformatic analyses on tissue, 

but also to functionally test and biologically interrogate transcriptomic populations. 

Although he one patient approach is the main limitation of this study; this paves the way 

for similar studies and provides new understanding of the plasticity of TIC.  Certainly, in 

the upcoming years a single-cell RNA sequencing data repository will provide with easily 

accessible and larger datasets to be able to extrapolate findings and be able to tackle the 

bigger picture, rather than only providing data with a patient-centered approach. 
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4. EXPERIMENTAL PROCEDURES 
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4.1 Patient-derived xenografts 

PDXs were developed in accordance with the McGill University Health Center research 

ethics board (SUR-99-780) and the McGill University Animal Care Committee (2014-

7514) guidelines. Studies were performed in NOD.Cg-prkdcscidIl12rgtm1wjl/SzJ (NSG) mice 

(Jax). We established a patient-derived xenograft (PDX) from a patient’s primary TNBC 

tumor (159). Tumors were measured by calipers twice weekly by palpation), by an animal 

technician blinded to experimental detail. Tumors were harvested between 200 and 600 

mm3 depending on experiment. 

 

4.2 Tumor dissociation into single cells 

Single-cell suspensions were generated by mechanical and enzymatic dissociation. 

Murine stromal cells were removed using a Mouse Cell Depletion Kit (Miltenyi). Mouse-

depleted single-cell suspensions were washed two times in PBS and submitted for single-

cell RNA sequencing. Viability was assessed prior to sequencing by a LIVE/DEAD 

viability testing (Thermo Fisher Scientific).  

 

4.3 Multiplex Immunofluorescence (MIF) 

Primary antibodies were first optimized by monoplex staining. Slides were deparaffinized 

in xylenes, re-hydrated in ethanol followed by antigen retrieval in boiling 10 mM citrate 

buffer (pH 6.0). Slides are fixed in NBF for 20 minutes followed by distilled water wash.  

Slides are rinsed with AR6 or AR9 solution. Microwave treatment (MWT) is applied to 

slides and allowed to cool down at room temperature (RT) for 15 minutes. Slides are 

rinsed with TBST and then stored in blocking buffer at 4C.  Blocking solution is removed 
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and primary antibody solution is applied to the tissue. Slides are washed with 1x TBST 3 

times, 2 minutes each.  Opal polymer HRP secondary antibody solution is applied to the 

tissue and incubated for 10min at RT. Slides are washed with 1x TBST 3 times, 2 minutes 

each. Slides are rinsed with AR9. A new cycle is repeated by MWT as previously 

described for each antibody. At the end, slides are incubated in DAPI solution for five 

minutes at RT and then washed in TBST for 2 minutes followed by 2 minutes of distilled 

water.   

Table 3: Antibodies used for experiments. 

Antibody (clone) Company (Cat#) Dilution 

GLUT1 Rabbit Polyclonal Antibody Ventana Pre-diluted 

Carbonic Anhydrase IX (CA IX) (EP161) 
Rabbit Monoclonal Antibody 

Esbe scientific / 

CMQ 379R16 

1:40  

Anti-CALML5  Abcam-ab122665 1:400 

UCHL1 (D3T2E) XP® Rabbit mAb CST - # 13179S 1/200 

Topoisomerase IIa (D10G9) CST #12286 1/50 

CRYAB antibody (clone 1D11C6E6) Byorbit orb97538 1/100 

PAF15-KIAA0101 (D8E2Y) XP Rabbit mAb CST - #81533 1/100 

Ki67 Ventana (790-4286) Pre-diluted (IHC) 

ER (SP1) Ventana (790-4342) Pre-diluted (IHC) 

HER2 (4B5) Ventana (790-2291) Pre-diluted (IHC) 

Pan-KRT  Ventana Pre 

CD31mouse (Rat) Dianona-DIA-310 1/40 

CD34 Ventana- 7902927 Pre-diluted 

P53 Ventana-7902912  
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4.4 Imaging by confocal microscopy 

Eight color multiplex immunofluorescence-stained tumor sections were imaged using an 

LSM710 confocal microscope (Zeiss). Zen software (Zeiss) was used to obtained images 

in high quality to be further computationally analyzed. A minimum of three distinct tumor 

passages in primary and lung metastatic PDXs were selected and within each tumor three 

distinct regions were selected to be imaged. In the human section ten distinct regions of 

the primary tumor were selected for imaging. The spontaneous lung metastasis in PDX 

had two replicates and the lung human biopsy section was a whole single image. 

 

4.5 Tumorspheres formation assay 

Primary tumor freshly dissociated was used to generate single-cell suspensions that were 

seeded in concentration of 100.000 cells per well on six 6 well ultra-low attachment plates 

(Corning) containing sphere medium (DMEM/F-12 GlutaMAX (Gibco), 1x B27 (Gibco), 20 

ng/ml human EGF (BPS Bioscience), 10 μg/ml insulin (Gibco), 0.5 mg/ ml hydrocortisone 

(Wisent), 20 ng/ml bFGF (StemRD), 10 μg/ml heparin (STEMCELL), 50 μg/ml gentamicin 

(Gibco)) containing 1% methylcellulose at 37°C and 5% CO2 . Spheres were cultured in 

either 20% O2 or 3% O2 for 7 days.  

 

4.6 Histogel formalin fixed paraffin embedded tumorspheres and organoids 

Tumorspheres cultured for 7 days in low oxygen (3%), were centrifuge at 1200rpm for 4 

min. Supernatant was discarded and spheres were resuspended in 100ul of Matrigel. 

Spheres in Matrigel were seeded as a drop in an individual well of a 12 well plate and left 

for 10 min at room temperature until drop solidified, 800 μl of 4% PFA was added for 2 
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hours at room temperature in a fume hood. In the meantime, a 150ul of Histogel 

previously warmed to 65C was added into a cryomold (10x10x5mm) and gently spread. 

Cryomold was placed on ice for 10min. Sample in Matrigel after 2 hours is stained with 

Hematoxylin for 10min at RT and then washed 3 times with ddh20 and carefully scrapped 

with a blade and transferred to the cryomold. Additional 150ul of Histogel was added on 

top Matrigel embedded sample on the cryomold and cooled on ice for 10min. The histogel 

block was transferred to a tissue cassette embedded in 10% formalin for 24 hrs. and later 

transferred to 70% ethanol. 

 

4.7 Fluorescent-activated cell sorted (FACS) 

Single cell suspension from tumorspheres cultured for 10 days in 3%O2 was generated 

by enzymatic dissociation with Accutase. Single-cells were resuspended in FACS buffer 

(PBS, 2% FBS, 10 mM HEPES), stained with CAIX-APC conjugated antibody (BD 

Biosciences) for 30 min on ice, washed and viability stained with 7-AAD (eBioscience) 

was performed. CAIX positive and CAIX negative cells were sorted and used for in vivo 

experiments. 

 

4.8 Tumor formation and extreme limiting dilution analysis in vivo. 

CAIX positive and CAIX negative sorted cells were injected bilaterally in the fourth mammary fat 

pad. Three distinct dilutions of 10000, 1000 and 100 cells were selected and injected in 6 mice 

per group. The right mammary fat pad was injected with CAIX positive sorted cells and the left 

mammary fat pad with CAIX negative cells. Tumors were monitored and measured twice a week 

by a blinded animal technician. When the tumors reached endpoint ~500mm3, the tumor was 

resected and collected to generate histopathological and frozen material. 
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CAIX positive and CAIX negative sorted cells were injected bilaterally in the fourth 

mammary fat pad. Three distinct dilutions of 10000, 1000 and 100 cells were selected 

and injected in 6 mice per group. The right mammary fat pad was injected with CAIX 

positive sorted cells and the left mammary fat pad with CAIX negative cells. Tumors were 

monitored and measured twice a week by a blinded animal technician. When the tumors 

reached endpoint ~500mm3, the tumor was resected and collected to generate 

histopathological and frozen material. 

 

4.9 In vivo treatments 

All human participants provided informed consent for this study. The tissue was collected 

at the McGill University Health Centre. The used of established protocols approved by 

the research ethics board (SUR-99-780) were used. The McGill University Animal Care 

Committee (2014-7514) approved all experiments, which were conducted in NOD scid 

gamma (NSG) mice from The Jackson Laboratory [Jax]. In vivo studies were randomized 

in cohorts of 10 mice per arm. Cells in different dilutions (up to 10.000 cells) or tumor 

fragments of 1-2mm3 were engrafted in the fourth mammary fat pad of 6-8 weeks old 

female mice. SLC-0111 (CAIX inhibitor) was administrated through oral gavage once 

daily at 10 μl/gram per mouse (in 100ul volume) for 20-30 days followed by a rest for 2 

days every 15 days. The vehicle is 0.5% Carboxymethylcellulose and 0.1% Tween 80. 

Ro 48-8071 was administrated through oral gavage once daily at 30 mg/kg per mouse (in 

50ul volume). Gemcitabine was administered intravenously twice a week at a 

concentration of 100mg/kg. All mice were monitored by a blinded animal technician twice 

a week. Tumor volume was calculated by ((smaller tumor dimension2 x largest tumor 
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dimension)/2). Change in tumor volume was calculated by ((Final volume – Initial volume) 

/ initial volume). 

 

4.10 In vivo metastasis assessment 

PDX GCRC 1915 (PDX-Pri) was subjected to a mammary fat pad resection once the 

tumor reached endpoint (>500mm3). Biweekly monitoring of signs and symptoms was 

metastatic disease performed by animal technicians, for at least 6 months after resection. 

The 6 months follow up time was determined upon previous experiments that confirmed 

metastatic disease at 6 months, mimicking the patient’s onset of lung metastatic disease 

after surgical resection of the primary tumor.  

 

4.11 Bulk RNA and WGS sequencing 

The tissue from GCRC1915 and GCRC2076 was taken from snap frozen material. Total 

DNA and RNA was isolated from adjacent sections using the AllPrep DNA/RNA Mini Kit 

(Qiagen). For GCRC1915 Germline DNA was derived from buffy coat and extracted using 

the DNA Blood Maxi Kit (Qiagen). DNA was quantified using the Qubit fluorometer. RNA 

was quantified by NanoDrop and integrity was evaluated with Bioanalyzer 2100 (Agilent) 

(159). 

 

4.12 Statistical analysis for in vivo experiments 

Prism 7 (GraphPad) was used for basic statistical analysis, for survival analysis using the 

log rank (Mantel-Cox) test. Data represent mean ± SEM; p value < 0.05 was considered 

significant. 
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4.13 Single-cell RNA sequencing data pre-processing and quality control.  

Reads from the single-cell RNA sequencing libraries were trimmed, demultiplexed, 

aligned to the reference genome (cellranger hg19 and mm10 build version 1.2.0), and 

unique transcripts were counted using the 10X Genomics cellranger pipeline (versions 

listed in Extended Data Table 1). Species assignment was performed using cellranger, 

and only human cells were retained for further analysis. Quality control of expression 

matrices, clustering and visualization was performed in R with methods from the Seurat 

package(213,214) (v.2.3.4). Genes with expression in fewer than 3 cells and cells with 

fewer than 200 detected genes were excluded. Low quality cells and multiplets were 

filtered out based on the following metrics: number of detected genes, number of UMIs, 

and percent of mitochondrial transcripts. Filtering thresholds are summarized in Extended 

Data Table 4. A much higher number of cells were captured for sample Lm2 than the 

other samples, therefore the top 10,000 cells based on number of UMIs were retained for 

downstream analysis. Following filtering, each sample was normalized by dividing the 

UMI counts for each cell by the total counts in that cell, then the counts were multiplied 

by 10,000 and log transformed. 

Table 4: Single-cell RNA sequencing metrics. 

 
Sample 

Min. # 
detected 
genes 

Max. # 
detected 
genes 

Min. # 
UMIs 

Max. # 
UMIs 

Max. % 
mitochondrial 

Cellranger 
version 

Pri1 1,000 8,000 2,500 75,000 10 2.0.1 

Pri2 1,000 6,000 2,500 40,000 10 2.1.1 

Lm1 1,000 6,000 2,500 40,000 10 2.1.1 

Lm2 1,000 6,000 2,500 40,000 10 2.2.0 

Slm 1,000 6,000 2,500 40,000 10 2.2.0 
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4.14 Primary PDX joint analysis CCA and Harmony.  

Primary PDX samples Pri1 and Pri2 were integrated to overcome batch effects using two 

methods: canonical correlation analysis (CCA) implemented with the Seurat 

package(213,214) (v.2.3.4), and Harmony integration (v.1.0)(173) implemented with the 

Seurat package (v.3.1.5)(213,214). The data was scaled to regress out the effects of 

technical confounders (number of UMIs detected and mitochondrial content). Highly 

variable genes were computed for each sample separately as genes with average 

expression ≥ 3 or ≤ 0.0125 and dispersion ≥ 0.5. Variable genes were ranked by 

dispersion, and the union of the top 2,000 variable genes for each sample (2,502 genes) 

was used as input to integration with the scaled data.  For CCA integration, 100 canonical 

correlation vectors (CCs) were computed, and the first 47 were aligned. The 47 aligned 

CCs were used as input for visualization in two dimensions with t-SNE(215) and 

UMAP(216). Cells were clustered by constructing a Shared Nearest Neighbor (SNN) 

graph from the 47 aligned CCs and applying the Louvain algorithm for community 

detection, with the resolution parameter set to 0.6.  For Harmony integration, 100 principal 

components (PCs) were computed, and the top 47 PCs based on variance explained 

were aligned by sample with the Harmony method(173). The “harmonized” PCs were 

used as input for visualization in two dimensions with t-SNE(215) and UMAP(216). Cells 

were clustered by constructing a Shared Nearest Neighbor (SNN) graph from the 

“harmonized” PCs and applying the Louvain algorithm for community detection, with the 

resolution parameter set to 0.6.  
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4.15 Post-clustering quality control.  

Some transcriptional clusters were excluded from subsequent analyses based on quality 

control assessment. In the CCA integration of the primary PDX samples, the smallest 

cluster, PJ9, was excluded as its median number of UMIs and median number of genes 

was more than twice that of the other clusters, suggesting it consists of multiplets. Other 

clusters were flagged based on whether they consisted of cells from primarily one sample, 

such as the cluster PJ8. 

 
4.16 Cell cycle regression and assessment.  

To assess if cell cycle phase drives the clustering analysis of PDX-Pri, we compared the 

cluster identity of cells in the CCA integration to this analysis repeated with cell cycle 

regression. For this, we computed cell cycle phase scores with a linear regression 

approach implemented in the Seurat package(213,214) (v.2.3.4) using cell cycle gene 

signatures(163,217). The resulting cell cycle phase scores were regressed out, along with 

number of UMIs detected and mitochondrial content, at the step of data scaling described 

above. Computing CCs, clustering, and visualization was then performed as described 

above. To quantify the dispersion of cell clusters in the UMAP plots with and without cell 

cycle regression, we calculated the geometric median absolute deviation (MAD), i.e. 

𝑀𝐴𝐷 =  √𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖  −  �̃�|)2  +  𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌𝑖  −  �̃�|)2. The difference in MAD per cluster 

with and without cell cycle regression, as well as visual inspection of the UMAP plots, was 

used to assess the effect of cell cycle on clustering. 
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4.17 Characterization of clusters with gene set enrichment.  

In order to assess gene pathway activation in transcriptional clusters, we performed 

single-sample gene set enrichment analysis (ssGSEA)(218) as described(219,220). We 

scored enrichment of the MSigDB(221) Hallmark, Canonical Pathway, and KEGG(222) 

signature collections. Only genes detected in the dataset were considered for analysis. 

For each gene pathway, ssGSEA scores were computed per cell cluster using mean 

cluster expression, and z-scores were computed across clusters. The 2 pathways with 

the highest z-scores for each cluster were selected as defining pathways for that cluster. 

To determine the leading-edge genes of each pathway (i.e., the genes that contributed 

the most to the enrichment score), we computed a Kolmogorov-Smirnov (K-S) running 

sum statistic. Moving down the list of genes ranked by mean cluster expression, the 

running sum increases by a weighted step if the gene is in the given pathway or decreases 

by a fixed-size step when the gene is not. The leading-edge subset is the subset of genes 

that achieve the maximum running sum statistic. 

 

4.18 Transcription factor activity inference.  

The activity of transcription factors (TFs) and their regulated genes was inferred from the 

normalized single-cell expression data with the python implementation of SCENIC(223) 

(v.0.9.19). Briefly, modules of genes coexpressed with TFs were detected through 

reconstructing a gene regulatory network with the GRNboost2 method implemented with 

the arboreto package (v.0.1.5). TFs with binding motifs enriched in their corresponding 

modules were retained, and genes containing the binding motifs as potential direct targets 

were retained in the modules. The AUCell algorithm (223) was then used to compute an 
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activity score for each TF’s module in each cell.  Top active and specific TFs for PDX-Pri 

clusters grouped based on their biology were selected as follows. For this analysis, cells 

in PJ5 and PJ8, PJ3 and PJ6, and PJ1 and PJ2 were grouped, while PJ7 was analyzed 

alone. TF activity scores were averaged in each group. The 50 most active TFs for a 

given group were selected based on mean activity scores. The fold change of mean 

activity in the given group and mean activity outside the group was computed. The 50 

TFs with the largest fold changes were selected as most specific. The intersection of the 

most active and most specific TFs was selected for each group. 

 

4.19 Cluster marker selection for spatial mapping.  

To identify potential protein markers for each PDX-Pri cluster, gene markers were 

computed for each cluster compared to all other cells using the Wilcoxon rank sum test, 

requiring that a gene is detected in at least 25% of cells in the cluster or outside the cluster 

to be tested. The resulting cluster markers were sorted using adjusted p-value to select 

the top marker genes as candidates for antibody selection. When p-value did not 

distinguish genes, they were sorted with average log-fold change in expression and the 

difference between the proportion of cells expressing the gene within the cluster (pct.1) 

and the proportion of cells expressing outside the cluster (pct.2). 

 
4.20 Spatial scRNA-seq population assignment 

We classified the cells that were imaged using IF into classes defined by the clusters we 

found from single-cell sequencing. For this, we used the genes we have chosen as 

markers and assumed that the distribution of mRNA molecules measured by sequencing 

could be mapped to the immunofluorescence intensity observed in images. Hence, we 



 126 

assume that there is a linear correspondence between the signals of each one of the 

seven fluorescence channels and the transcription levels observed in sequencing.  The 

cell assignment to clusters was performed using the histograms that describe RNA levels. 

For each of the 7 seven genes we scaled the expression in the interval [0, 1] and 

normalized the area under the curve to obtain probability density functions. Similarly, the 

seven images corresponding to each tissue sections were normalized so that the median 

cell intensity varied from 0 to 1 in every channel. Thus, all cells in an image are 

characterized by 7 intensity values that we used to find the best match to one of the 

available clusters. For example, cells with high intensities in the CAIX channel, mid 

intensities of CALML5 and low CRYAB, have a high probability of belonging to a cluster 

where the probability density functions of these genes agree with such expression profile. 

Hence, we computed the probability that a given cell belongs to each of the possible 

clusters to make the final assignment. Our large mosaic images of tissue sections contain 

approximately 20,000 cells each and span different areas of the samples. In total we 

analyzed around 10 locations per sample, accounting for 200,000 cells. We mapped cells 

to clusters and studied their spatial distribution to understand their arrangement and 

interactions in the physiological context.  

 

4.21 Joint analysis of samples within and across conditions.  

Samples were joined in several combinations to directly compare expression profiles, as 

performed for PDX-Pri above, using the Seurat package (v.3.1.5)(213,214). The following 

joint analyses were performed: mammary fat pad metastatic PDX samples (Lm1 and 

Lm2), mammary fat pad and lung metastatic samples (Lm1, Lm2, and Slm), and all five 
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samples from primary and metastatic conditions together. For each analysis of samples 

across conditions, we confirmed that the structure of populations identified from analysis 

of conditions separately was conserved to support that the cells were not artificially joined 

in any cluster. In each iteration, data was scaled to regress out the effect of number of 

UMIs detected and mitochondrial content. Highly variable genes were computed for each 

sample separately as genes with average expression ≥ 3 or ≤ 0.0125 and dispersion ≥ 

0.5. The variable genes were ranked by dispersion, and the union of the top 2,000 variable 

genes for each sample were selected as features for downstream analysis. When joining 

more than 2 samples, the features were also required to be variable in at least 2 samples 

and detected in the data of all samples. These features were used as input for principal 

component analysis, where 100 PCs were computed. The top 30 PCs based on variance 

explained were selected as input for clustering and visualization using Harmony 

integration(173), with integration performed over the “sample” variable. The 30 

“harmonized” PCs were used for visualization in two dimensions with t-SNE(215) and 

UMAP(216), as well as to inform clustering. Cells were clustered using a shared nearest 

neighbor modularity optimization-based clustering algorithm. First, a KNN graph of cells 

is construction from Euclidean distance in the “harmonized” PCA space, which then 

informs the construction of a graph from Jaccard similarity of any two cells (FindNeighbors 

function, nn.eps = 0.5). Clustering was then performed on this graph using the Louvain 

algorithm for community detection (FindClusters function, n.start = 10, random.seed = 

100, resolution = 0.5). Cluster markers were computed for each cluster compared to all 

other cells using the Wilcoxon rank sum test, requiring that a gene is detected in at least 

25% of cells in the cluster or outside the cluster to be tested. 
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4.22 Differential expression between conditions.  

Differentially expressed genes between conditions in the joint analyses, such as between 

mammary fat pad and lung environments with the metastatic sample joint analysis, were 

computed per cluster using the Wilcoxon Rank Sum Test. Cells were first randomly down- 

sampled to yield the same number of cells for each condition. Only genes detected in at 

least 1% of cells in the cluster or outside the cluster were tested, and a minimum log-fold 

change of 0.1 was required to be reported as a condition marker. 

 
4.23 Stress response effect.  

As our single-cell experiments were conducted under 37°C, we evaluated a potential 

stress response induced by the dissociation method. Using the top 40 genes obtained 

from a published differential expression analysis between cells digested under 6°C and 

under 37°C(224), we calculated the average expression of these genes and added it as 

an additional factor to regress from the data in the clustering workflow described above. 

Nearly all clusters retained their relative localization, with only the spontaneous lung 

metastasis showing clusters from the non-regressed analysis mixing following regression 

of the stress response genes. 

 

4.24 Cell state trajectory inference.  

We inferred cell state trajectories for PDX-Pri with Monocle 2 (v.2.10.1)(183,225). Due to 

the continuous nature of the clusters, we explored the relationship of representative cells 

of the PJ clusters, selected as described above. After normalization and variance 

estimation, a smooth function to model dispersion and mean expression of genes was 

computed. Ordering genes were defined as having mean expression of at least 0.1, 
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empirical dispersion of at least 1, and expressed in at least 10 cells. These genes 

informed the ordering of cells with the Discriminative Dimensionality Reduction with Trees 

(DDRTree)(225) manifold learning algorithm. The root state of the trajectory for 

directionality was manually set. Differentially expressed genes across pseudotime were 

computed with the differential GeneTest function, which compares the performance of 

modeling each gene’s expression when pseudotime is known to when it is not, with the 

transcriptional clusters specified with the fullModelFormulaStr parameter.  

 

4.25 Digital spatial profiling, Nanostring.  

The NanoString digital spatial profiling technology (NanoString, Seattle, WA, USA) allows 

the detection of multiplexed molecules from the surface of FFPE tissue using a single 

molecule optical barcoding. This allows the detection and quantitation of proteins and 

spatially digital characterization of previously defined regions of the interest (ROI). The 

specific barcodes in the tissue are attached via a UV-cleavable linker to either the primary 

antibodies or nucleic acid probes that are liberated by a UV laser from user-selected 

ROIs. These are counted by using an nCounter platform. All counts are spatially mapped 

to the tissue, allowing spatial designation of target abundance at the resolution of the 

defined ROI. We used 4um unstained slides and TMA’s sections and stained them with 

a nuclear antibody, pan-cytokeratin, CAIX, and SMA, both to visualize the overall tissue 

morphology and  guide the ROI selection.  
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4.26 Digital spatial profiling differentially expressed genes  

Normalization and differential gene expression analysis were conducted using a negative 

binomial distribution with DESeq2 (R/Bioconductor)(226,227). The Benjamini-Hochberg 

method was used to correct for multiple testing, with an adjusted p-value of < 0.01 as a 

threshold to identify differentially expressed genes (DEGs)(228).  

 

4.27 Spatial Deconvolution of cell populations Identified by scRNA-seq. 

Quantification of the cell populations identified by single cell RNA sequencing within the 

regions of spatially resolved gene expression data was performed using SpatialDecon 

(R/Bioconductor) (229). Prior to deconvolution, the spatially resolved gene expression 

data was normalized to the third quartile (Q3). A matrix of cell profiles was derived from 

the mean expression profile of each cell population identified by single cell RNA 

sequencing.  Similarly, a matrix of expected background for all data points in the 

normalized spatially resolved data matrix was derived from negative control probes 

included in the Cancer Transcriptome Atlas probe set and was used to establish the level 

of technical noise expected in each spatially resolved region. Principal components 

analysis (PCA), heatmaps and bar plots were generated with R (version 4.0.5). 
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