
Hybrid Cloudification of Legacy Analysis Tools

in Aeroderivative Gas Turbine Design

FOZAIL AHMAD

Department of Electrical and Computer Engineering

McGill University, Montreal

August, 2021

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science

©Fozail Ahmad, August 2021



Abstract

The design of aero-derivative gas turbines (AGT) at Siemens Energy is a complex process

that requires the use of various software tools for mechanical design, validation and test-

ing. Due to the evolutionary nature of AGT development, changes are incremental and

built upon previous models. Therefore, it is preferred to utilize the same tools that were

initially developed and adopted decades ago in order to preserve the models and their

real world offsets.

Executing finite element analysis (FEA) at Siemens Energy is computationally inten-

sive while its legacy tool is designed to be manually deployed onto local desktops and

servers in a sequential manner. Consequently, the analysis of multiple AGT designs is a

laborious process requiring users to invoke custom tool scripts on a limited pool of local

computing resources. Users are responsible for maintaining each computing environment

and have to checkpoint each analysis task manually.

To address these challenges, I propose to cloudify the legacy FEA software tool by

designing and developing an Analysis Tool as a Service (ATaaS) with a distributed mi-

croservice architecture that provides automation, scalability and distribution ofthe FEA

software in a hybrid cloud deployment. The thesis contributions include (1) a distributed

software architecture for ATaaS, (2) a prototype implementation for ATaaS integrating

a legacy FEA tool used at Siemens and (3) various performance estimation models for

executing FEA over ATaaS. (4) To validate the proposed architecture, models and pro-

totype implementation, I carry out an experimental evaluation of performance and the

functional testing of key components.
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Abrégé

La conception de turbines à gaz aérodérivatives (AGT) chez Siemens Energy est un pro-

cessus complexe qui nécessite l’utilisation de divers outils logiciels pour la conception et

validation mécanique. En raison de la nature évolutive du développement de l’AGT, les

changements sont incrémentiels et s’appuient sur les modèles précédents. Par conséquent,

il est préférable d’utiliser les mêmes outils qui ont été initialement développés et adoptés

il y a des décennies afin de préserver les modèles et leurs décalages dans le monde réel.

L’outil d’analyse par éléments finis (FEA) de Siemens Energy est exigeant en termes de

calcul et est développé pour être déployé manuellement sur des ordinateurs de bureau

et des serveurs locaux de manière séquentielle. Par conséquent, l’analyse de plusieurs

conceptions d’AGT est un processus laborieux qui exige que les utilisateurs invoquent des

scripts d’outils sur un groupe limité de ressources informatiques locaux. Les utilisateurs

sont responsables de la maintenance de chaque environnement informatique et doivent

vérifier manuellement chaque tâche d’analyse.

Pour répondre à ces défis, je propose de cloudifier l’outil logiciel FEA existant en

développant un outil d’analyse en tant que service (ATaaS) avec une architecture dis-

tribuée de microservices qui fournit l’automatisation, la scalabilité et la distribution du

logiciel FEA dans un déploiement de cloud hybride. Les contributions de la thèse com-

prennent (1) une architecture logicielle distribuée pour ATaaS, (2) une implémentation

prototype pour ATaaS et (3) divers modèles d’estimation des performances pour exécuter

de FEA sur ATaaS. (4) Pour valider l’architecture, les modèles et l’implémentation pro-

posés, je réalise une évaluation expérimentale des performances et des tests fonctionnels.
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Chapter 1

Introduction

1.1 Motivation: Design of Aeroderivative Gas Turbines

Aeroderivative Gas Turbines Aeroderivative Gas Turbines (AGTs) are gas turbines made

for electrical power generation by adapting aircraft turbine engines. Aircraft turbine en-

gines are designed to ramp up and slow down very quickly for effective flight control

which enables AGTs to dynamically change their electrical output based on load changes

in the grid. The ability of AGTs to rapidly adapt to grid conditions makes them well suited

to efficiently fill demand peaks in the electrical grid as traditional power generation tech-

nologies such as hydroelectric dams cannot be brought online or offline as quickly. Fur-

thermore, AGTs are comparatively lighter when compared to traditional turbines making

them useful in applications with weight restrictions such as off shore marine installations.

Siemens Energy has significant business interest in AGT, offering numerous AGT

models with a wide range of electrical power generation capacity. AGTs are an impor-

tant tool in offering operational and deployment flexibility to operators given the diverse

gas turbine market which includes industrial and heavy duty gas turbines. As the shift

to renewable energy progresses worldwide, AGTs are poised to be a part of this impor-

tant process due to their ability to use alternative fuels such as hydrogen. Hydrogen is

an energy dense renewable fuel source who’s combustion produces no harmful exhausts.
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Investments made into improving the performance of AGTs will provide cleaner energy

today and for decades to come.

Finite Element Analysis Improving the performance of AGTs is an iterative process

spread over many years, which involves designing new AGTs models and then analysing

these models to determine if the performance has improved. Instead of using physical

prototypes to develop AGTs, computer software is used to build AGT engine models and

then to analyze AGT engine models for their simulated mechanical performance. As a

critical step in the design process of AGTs, Finite Element Analysis (FEA) is performed

on thermomechanical models of AGTs to analyze and test new designs in order to validate

their performance against improvement objectives.

At Siemens Energy, legacy software tools are used for FEA. Legacy FEA tools are pre-

ferred as engineers gain an understanding of the digitization process and errors of the

software and can then reliably estimate the offsets required within the software to achieve

the desired real world results. However, utilizing legacy software tools that are no longer

maintained introduces its own drawbacks, mainly a lack modern software functionality

such as automation, scalability and portability.

Problem statement The key challenge faced by Siemens Energy when using the legacy

FEA software tool is the manual and time consuming process for running the simulations.

It must be invoked locally and relies on local files to perform its analysis. If multiple

analysis have to be performed simultaneously, then custom scripts must be manually

invoked. Furthermore, the software is primarily designed to be deployed on-premise

and there is no built-in mechanism for distributing the analysis across a dynamic pool of

hosts. Any potential solution to this challenge must address the following challenges:

C1 Integrate with the Windows-based legacy FEA software tool for analysis.

C2 Enable distributed execution across heterogeneous computer hosts.

C3 Provide a mechanism for automated task submission.
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C4 Support horizontal scaling for parallel computing.

1.2 Objectives

In order to address these challenges I propose to cloudify the legacy FEA software tool

by designing and developing an Analysis Tool as a Service (ATaaS) with a distributed

microservice architecture in order to provide automation, scalability and distribution of

the FEA software in a hybrid cloud deployment with Windows support.

Contributions In the particular, this thesis presents the following contributions:

• I propose a distributed software architecture for ATaaS which is deployable over a hy-

brid computing platform using container technology.

• I provide a prototype implementation for the ATaaS architecture where a legacy FEA

tool widely used at Siemens is seamlessly integrated with Amazon Web Services.

• I provide various performance estimation models of FEA over the ATaaS containing esti-

mates for task time, task analysis time, task batch service time and task wait time.

• To validate the proposed architecture, models and prototype implementation, I carry

out an experimental performance evaluation and the functional testing of key components.

An overview of the proposed ATaaS solution is provided in Figure 1.1 with the blue

highlighted boxes represent the novel contributions. After identifying the required ther-

momechanical engine models and obtaining an existing execution script used by Siemens

engineers for the legacy FEA tool in a task preparation step, the cloudification of FEA in-

volves four key steps:

1. Task initialization involves creating a task and configuring it accordingly (ie. spec-

ifying the engine models required).
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Figure 1.1: An overview of the proposed cloudification of legacy FEA software

2. Task file submission involves uploading the execution script and any associated

files for the task.

3. Task queuing involves queuing the task you just created and submitted files for to

the execution queue.

4. Task execution involves executing the task by invoking the legacy FEA tool and

passing to it the task execution script, any associated files and the engine models.

Highlights of experimental results An initial experimental evaluation of the proposed

framework and its prototype implementation has been carried out in (1) a simulated set-

ting used for validating the various performance estimation models. Moreover, the per-

formance of ATaaS has also been assessed when executing (2) a real engineering task

performed by Siemens engineers.

Our initial evaluation shows that in a simulated setting the ATaaS is capable of reli-

ably reducing the total service time for a batch of FEA tasks with respect to the concurrent

execution capacity of the ATaaS when compared to the theoretical predictions of the per-

formance estimation models. Furthermore, the ATaaS hybrid prototype deployment is

able to successfully execute real engineering tasks and provide scalable and automated

FEA task execution parallelization.
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Benefits for Siemens The proposed ATaaS framework brings substantial benefits for

Siemens engineers in two aspects. The increased level of automation helps engineers to

easily initiate and execute FEA tasks without locally invoking (and installing) the FEA

software. The increased scalability and distribution provided by ATaaS offers signifi-

cant speedup in the overall AGT design process by parallelizing the individual FEA tasks,

which no longer requires manual interaction.

1.3 Structure of the Thesis

The rest of the thesis is structured as follows:

• Chapter 2 introduces the core concepts and technologies used for the proposed

framework and its prototype implementation.

• Chapter 3 showcases the ATaaS framework to cloudify the legacy FEA tool.

• Chapter 4 discusses the ATaaS prototype implementation and hybrid deployment.

• Chapter 5 demonstrates the correctness testing of all the ATaaS prototype compo-

nents and experimental validation of the proposed cloudification solution.

• Chapter 6 discusses the related work done in the research areas of cloudification,

containerization, and ATaaS.

• Chapter 7 summarizes the key accomplishments of the thesis and identifies the fu-

ture work areas.
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Chapter 2

Background

2.1 Finite Element Analysis

Finite element analysis (FEA) is the mathematical modelling of physical objects using the

numerical technique of finite element method (FEM). FEM is process in which an object is

broken down into many finite element parts and then a system of algebraic equations are

used to predict how each finite element and the entire system will behave. FEA allows

engineers to model physical objects and predict how it will react to certain forces, tem-

peratures, fluids, and other physical phenomenon. This enables engineers to determine

whether a mechanical model will meet its design requirements using relatively inexpen-

sive FEA computer software compared to making use of real physical prototypes [48].

Use Cases for Finite Element Analysis

AGT Design Aero derivative gas turbines (AGT’s) are inherently unstable machines

which require a careful balance of multiple mechanical domains. The ability to evaluate

different AGT designs under various operating conditions in order to determine the op-

timal AGT design and operating conditions is critical for the successful development and

progress of AGT’s at Siemens Energy. Therefore, FEA software is used by companies to

design AGT’s and evaluate whether they meet design objectives without having to build
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costly prototypes. FEA is primarily used to evaluate the mechanical stress, mechanical

vibration, material fatigue, mechanical motion, thermo-mechanical behaviour, fluid flow

within an AGT design under different test operating conditions. After many iterations

of designing and testing AGT’s using FEA on computers, physical prototypes which are

hopefully as close as possible to the production version can be manufactured and tested.

FEA Limitations FEA software is ultimately ran on digital computers which are discrete

by definition. On the other hand physical objects and phenomenon are continuous which

implies that any FEA done on computers will contain some errors compared to the real

world. Understating the offsets required when designing models and performing FEA

such that the final physical objects produced from these designs are not affected by these

errors takes a significant amount of time and research. This results in companies like

Siemens Energy maintaining and using the same software for decades in order to not

loose the hard earned insight on how to offset designs and when to expect computational

errors regardless of the numerous improvements made in modern FEA software.

Finite Element Analysis at Siemens

FEA Software The FEA software used by Siemens Energy is a legacy tool designed to

be deployed in private clouds with static number of Windows hosts. It must be invoked

manually using a CLI and expects a bare metal computing environment. The FEA soft-

ware can be used with a GUI or through execution scripts that would be passed during in-

vocation. The execution script is where all the references to any resources are required, such

as the engine models. The resources required by an execution script are generally expected

to be available on network drives mounted onto the host as populating large collection of

resource files on every host is unfeasible. Despite that the execution script must be written

in such a way that everything is referenced to local hard coded locations. Lastly, the FEA

software can only be deployed in certain countries as the technology along with AGT

engine models must respect Canadian Export Control laws.
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License Management Service Furthermore, the legacy FEA software used by Siemens

Energy requires to authenticate with a License Management Service for every invocation.

The License Management Service is an IP service that must be made available to any host

that will run the FEA software. When installing the FEA software on the host you need to

specify the port and IP address of the License Management Service. The License Management

Service is a very basic service that authorizes any FEA software authentication request it

receives. That means no extensive checks are performed on the authentication request to

ensure that the FEA software is being used in the right country or by an authorized user.

Due to this limitation, the License Management Service is generally only made available to

secure internal networks where all traffic is considered safe and authorized.

2.2 Distributed Computing

Distributed computing is a process in which the computation for a single system is spread

across separate computers [43]. Any system making use of distributed computing has to

be built using a distributed architecture to take advantage of the hardware setup. The

primary advantage of distributed computing is the scalability and redundancy provided

by using distributed architectures:

• Scalability: A distributed computing system can be scaled horizontally by adding

more computers to increase capacity instead of having to scale individual comput-

ers vertically which is arguably more difficult and limited by the processing power

offered by a single computer.

• Redundancy: Distributed computing can allow for redundancy in a system, allow-

ing the architecture to treat individual computers as dispensable to the system in

case they fail as many instances of each system component would be deployed at

any given time.
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Every distributed computing system generally requires two main components to func-

tion correctly; a non distributed system view and a message passing function [42]:

• Non Distributed System View: For any distributed system is it important to ab-

stract the entire system such that is appears as a single centralized system to end

users. By its very nature distributed computing is spread across many computers,

making it difficult to deal with the entire system simultaneously as a user. Therefore,

a unified system endpoint provides users a simple and efficient way of interacting

with the system despite the actual system begin distributed across many computers.

• Message Passing: Most distributed systems rely on some form of message pass-

ing for different components to communicate and coordinate. This is essential as

although each component is ultimately independent they need to work together to

provide the functionality of the system. Message passing can rely on internet pro-

tocols, message queues, databases. etc.

2.2.1 Master-Worker Paradigm

The master-worker paradigm from distributed computing is a widely used pattern in

distributed systems [13, 43]. Tasks are units of work which are the main object in such

systems, the master handles the tasks while the workers execute the tasks. This mainly

consists of tasks being broken down and stored in a bag by the master and the worker be-

ing sent tasks from the manager to execute. The master-worker paradigm can be simpli-

fied into three core concepts for most distributed systems; Manager, Worker and Executor.

Manager

The Manager in distributed computing is the component which is responsible for the en-

tire system and has a global viewpoint. It serves as the centralized system endpoint from

where the users can interact with the distributed system. The Manager interacts with users
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of the system to create and manage tasks in a Task Repository. A Manager can be responsi-

ble for Workers by actively scaling the number of Workers and managing their operation.

However, this is not something that a Manager is required to implement, it can be handled

by a custom-built system. A Manager also needs to send tasks to Workers and this can be

accomplished through synchronous or asynchronous communication using the message

passing functionality of the system.

Worker

The Worker in distributed computing is essentially a node in the system serving as a small

player in a bigger system. Workers can either receive or pull tasks from the Manager and

then are responsible for being able to execute those tasks. Tasks can be directly executed

by a Worker however tasks can also be launched as separate processes which can then

be called Executors. Workers are responsible for their tasks and can coordinate with the

Manager to ensure that tasks are successfully completed.

Executor

The Executor in distributed computing is the process on a Worker node that performs the

execution for a task. An Executor is generally isolated from the distributed computing

functionality of the Worker, allowing for the task be to executed uninterrupted. Depend-

ing on the implementation, an Executors can be a long running process which will execute

many tasks or it can be an ephemeral process that will execute only a single task. Ex-

ecutors require the bulk of the computation power in any distributed system since they

actually execute tasks.

2.3 Containers

Container technology is a form of operating system (OS) virtualization or abstraction,

allowing software to be packaged into standard units and executed virtually anywhere.

10



Container images contain all the code, executables, libraries, system files and settings and

can be executed as containers on any host with an OS that supports containers. When

executing, each container receives its own isolated space within the host OS where all

the storage, networking and computing is separate and protected. There are three key

advantages that containers offer to software deployment:

• Lightweight: Containers are fast as they do not package any guest OS in their im-

ages and rely on the host OS kernel to execute in isolation. This also enables high

container density per host due to their small footprint.

• Portable: Containers can be executed on any supported OS and does not have any

other dependencies on the host as everything required for execution is packaged

into the image, make them useful for hybrid systems with heterogeneous OSs.

• Scalable: As every container is an isolated process, containers can be easily scaled

vertically within the same host due to container isolation. Moreover, containers

can be deployed in clusters making them ideal for horizontal scaling such as in

distributed systems.

Due to these key advantages containers are preferred over virtual machines (VMs). Vir-

tual machines are the virtualization or abstraction of physical hardware which means

they must package a guest OS on top of everything else already in a container, making

them large heavy objects. Moreover, virtualizing hardware is computationally expensive

making VMs slower when compared to container which simply virtualize the OS. The key

differences between a container and virtual machines can be summarized in Figure 2.1.

2.3.1 Docker Containers

Docker is a popular open source container technology that is used by many companies.

Docker container technology is preferred due to its wide support on many different oper-

ating systems including Windows and the open source community built around it. Vari-

ous plugins are available for Docker, enabling extensive third party components support.
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Figure 2.1: Containers vs Virtual Machines

Due to all these aforementioned advantages and mature enterprise support Docker is the

container technology of choice chosen by our industrial partner Siemens Energy. When

using Docker there are four main Docker components that users interact with; Docker

Images, Docker Engine, Docker Client and the Docker API.

Docker Images

Docker containers are spawned from images that are available locally on the host or in

an container image registry. A Docker image can be built by anyone using a Dockerfile

which contains the following elements:

• Base Image: Every Docker image must be built from a base image, base images are

essentially a snapshot of a bare bones OS such as Ubuntu or Windows.

• Commands: On top of the base image, the image creator can run commands that

will setup the container as they wish. This can include copying files, installing ad-

ditional libraries and so forth.

• Entry Point The entry point of an image is the process that is internally started when

the image is launched as a container, this is basically the container start instruction

such as running a web server.
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Docker Engine

The Docker engine is the core technology of Docker enabling containers to run on a host

OS. The Docker engine must be installed on any host that need to run Docker containers.

There are thee main sub function within the Docker Engine:

• Container Runtime: Within the Docker engine there is the container runtime which

is responsible for the OS virtualization; executing containers in isolation while pro-

viding them with storage, networking and compute power.

• Image Handling: The Docker engine is used to build Docker images from Docker-

files, and is also needed to store and retrieve Docker images from the local host or a

repository.

• API: Furthermore, the Docker engine provides the daemon that serves the Docker

API. The Docker engine also interfaces with other components offered by docker

such as the Docker CLI, or external plugins through the Docker API that it imple-

ments and exposes.

Docker Client

The Docker client are the tools and wrappers used to access the Docker engine. The

Docker API can be directly accessed using a HTTP client however this can be cumbersome

and inefficient in many scenarios. Therefore Docker provides two types of clients to users

in order to interact with the Docker engine:

• CLI: Commands for the host’s local command line interface (CLI) which can be in-

voked from the terminal to work with the Docker engine. For example, the CLI can

be used to create an image from a local Dockerfile and then run the newly created

image as a container.

• SDK: Docker provides software development kits (SDKs) which can be used within

programs to access the Docker API to work with the Docker Engine. For example,
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if you want a python program to access the Docker engine it does not have to make

an HTTP request to the Docker API but can simply use the SDK which will make

the appropriate calls to the Docker API.

Docker API

The Docker API is a service endpoint provided by the Docker engine enabling users to

interact with the engine. The Docker engine is capable of many different functions as

explained earlier however its through the API that users can make use of the Docker

engine. The API is made available as a RESTful API on the host’s local network, which

means it can be accessed using HTTP requests. As the Docker API is web-based, it can be

accessed through any IP network as long as there is access to the local host’s Docker API

service endpoint. The Docker API being available as a network web-service is particularly

useful if the Docker engine on the host will be a part of a larger cluster.

2.3.2 Container Orchestration

Container orchestration technology builds on top of container technology to enable the

deployment and management of a large number of containers across many different

hosts. Running a single container on a single host is a relatively simple process which

can be performed manually. However, when running a large complex application re-

quiring multiple containers working in tandem, a manual process is infeasible and the

need for container orchestration emerges. Container orchestration enables the automated

provisioning, deployment, networking, scaling, availability, and lifecycle management of

containers on a cluster of hosts. Container orchestrators generally have a master con-

troller which is responsible for all the nodes in the cluster and node agents which connect

the nodes to the cluster master. Container orchestrators essentially enable distributed

systems and their architecture observes the master-worker computing paradigm.

There are many container orchestrators available for container technology however

the two most popular ones are Kubernetes developed by Google [40] and Swarm de-
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veloped by Docker [19]. These container orchestrators are highly customizable and are

utilized by many companies. However, they have still have room for improvement to

allow for widespread adoption, such as hybrid cloud deployment support is still limited.

Within the scope of this thesis there was no feasible container orchestrator which could

be used simply because the legacy FEA software is Windows based and there is no con-

tainer orchestrator available that supports Windows containers natively. Most container

orchestrators are designed for Linux containers and with Linux based master controllers,

and the ability to run Windows and Linux containers side by side is still in experimental

stages with no stable production solution.

2.4 Service Technology

2.4.1 Microservices

Microservices is an architectural approach by which a larger complex application is built

using loosely coupled smaller services communicating using lightweight mechanisms

[18]. Each microservice is supposed to serve a single function to facilitate independent

and simple deployment [73]. As each microservice is supposed to be independent, each

of them has its own technology stack and can be developed and tested without depending

on other components in the application. Microservices make it easy to scale applications

horizontally and to take advantage of distributed computing by placing each microser-

vice on different hosts. A key factor in ensuring that microservices are successful is that

communication between each of them is simple, most microservices use RESTful API’s or

message passing services to communicate.

There are no standardized rules or definitions which determine what qualifies as a

microservice architecture; however, it is important to identify what microservices are not.

Microservices are the opposite of monolith architectures which make large applications

by using a single tightly coupled component containing all the logic required. In general,

monolith architectures are difficult to maintain and are not recommended [31].
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Domain Driven Design Microservices should generally follow the principles of Do-

main Driven Design (DDD). DDD is a style of software development where software is

built using domain model which has a detailed and complete understanding of the pro-

cesses and rules of the domain in question [75]. To successfully build any domain model

it is recommended that a Ubiquitous Language be used to enable developers and users

to have a clear understanding [20]. Particularly the concept of Bounded Context from

DDD is central to designing and defining the boundaries of any microservice [53]. The

Bounded Context concept is part of of DDD’s strategic design section where a large mod-

els are divided into different Bounded Contexts with explicit interrelationships [20].

2.4.2 RESTful API

REST stands for REpresentational State Transfer and is an flexible architectural style to

design and develop web applications [21]. In practice this means that the REpresenta-

tional State of resources in these web applications is exchanged between the client and

the server. The application programming interface (API) of any application is a set of

rules and methods that allow external entities to connect and communicate with the ap-

plication. A RESTful API is simply an API that subscribes to the REST architectural style

of exchanging the state of resources. RESTful APIs are built on top of the HTTP protocol

and methods, allowing for CRUD operations on resources and providing request param-

eters and headers. RESTful APIs provide a flexible and lightweight way for applications

to communicate and are commonly used in microservice application architectures where

loosely coupled components need to share resources [32].

The REST architectural style for APIs requires that the following six architectural con-

strains be respected:

1. Uniform Interface: All the API requests for the same resource should have the same

logical URI regardless of the requesting client.
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2. Client-Server Decoupling: The API client and the server must be completely inde-

pendent from each other. The client should only interact with the URIs of resources

and not directly with server applications and vice versa.

3. Stateless: All the API requests should be stateless such that they contain all the

required information in order for the server to process it without needed any further

context.

4. Cacheability: Resources should be cachable on the client and server side when pos-

sible in order to improve performance and stability.

5. Layered System Architecture: The API client should not be able to determine whether

it dealing directly with the end server or an intermediary system.

6. Code on Demand (optional): API request can return executable code in certain

cases to customize client side behaviour on demand.

Flask Flask is an open source web framework module for Python. Flask is considered

a lightweight microframework as it does not have any dependencies to external tools or

libraries. Due to this, Flask does not include any full service web framework features

such as database abstractors. However, any required functionality can generally be made

available via plugins. Due to most projects already using Python at Siemens Energy and

Python offering cross OS compatibility, Flask was chosen as the web framework of choice

for the ATaaS. Flask can be used to develop RESTful APIs for microservices, which will

be required for the development of the ATaaS prototype.

2.5 Cloud Technology

Cloud computing is a model for enabling on-demand ubiquitous and convenient access

to shared pools of configurable computing resources over the network, that can be rapidly
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and easily provisioned and released [52]. The National Institute of Standards and Tech-

nology (NIST) defined this model of having three service models, and four deployment

models which will be further explained below. A popular public cloud provider that of-

fers public cloud computing as defiend by NIST and chosen by Siemens Energy due to its

enterprise support and popularity is Amazon Web Services (AWS). The AWS resources

utilized within this thesis will be briefly described.

2.5.1 Service Models

According to NIST there are three cloud service models: Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a Service (SaaS). Each service model covers a

larger portion of the technology stack as shown in Figure 2.2. Here are the NIST defini-

tions for the capability provided to the cloud consumer for each service model [52]:

• IaaS: ”The capability provided to the consumer is to provision processing, storage, networks,

and other fundamental computing resources where the consumer is able to deploy and run

arbitrary software, which can include operating systems and applications. The consumer

does not manage or control the underlying cloud infrastructure but has control over op-

erating systems, storage, and deployed applications; and possibly limited control of select

networking components (e.g., host firewalls).”

• PaaS: ”The capability provided to the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using programming languages, libraries,

services, and tools supported by the provider. The consumer does not manage or control the

underlying cloud infrastructure including network, servers, operating systems, or storage,

but has control over the deployed applications and possibly configuration settings for the

application-hosting environment.”

• SaaS: ”The capability provided to the consumer is to use the provider’s applications run-

ning on a cloud infrastructure . The applications are accessible from various client devices

through either a thin client interface, such as a web browser (e.g., web-based email), or a
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program interface. The consumer does not manage or control the underlying cloud infras-

tructure including network, servers, operating systems, storage, or even individual applica-

tion capabilities, with the possible exception of limited user-specific application configuration

settings.”

The ATaaS proposed and developed within this thesis is closest to a SaaS service model

where a software is provided as a service, in this case a legacy FEA tool. Engineers need

to perform FEA for their jobs in AGT development and would prefer to not invest time in

learning and managing their tool’s technology. A SaaS service model provides all features

of the software as service in such a way that users do not need to do maintenance of the

software. Instead, users only configure the software for a particular feature and provide

the required data [77]. Therefore, providing the FEA tool as a SaaS (we define it as ATaaS)

enables engineers to efficiently and effectively perform FEA.

Figure 2.2: Cloud service models [61]

19



2.5.2 Deployment Models

According to NIST there are four cloud deployment models: Private Cloud, Community

Cloud, Public Cloud and Hybrid Cloud. Each cloud deployment models defines who

operates the provisioned IT infrastructure for a cloud application. Here are the NIST

definitions for each cloud deployment model [52]:

• Private: ”The cloud infrastructure is provisioned for exclusive use by a single organization

comprising multiple consumers (e.g., business units). It may be owned, managed, and oper-

ated by the organization, a third party, or some combination of them, and it may exist on or

off premises.”

• Community: ”The cloud infrastructure is provisioned for exclusive use by a specific com-

munity of consumers from organizations that have shared concerns (e.g., mission, security

requirements, policy, and compliance considerations). It may be owned, managed, and oper-

ated by one or more of the organizations in the community, a third party, or some combina-

tion of them, and it may exist on or off premises.”

• Public: ”The cloud infrastructure is provisioned for open use by the general public. It may

be owned, managed, and operated by a business, academic, or government organization, or

some combination of them. It exists on the premises of the cloud provider.”

• Hybrid: ”The cloud infrastructure is a composition of two or more distinct cloud infrastruc-

tures (private, community, or public) that remain unique entities, but are bound together by

standardized or proprietary technology that enables data and application portability (e.g.,

cloud bursting for load balancing between clouds).”

The ATaaS is designed using a distributed microservice architecture for deployment

on the hybrid cloud using both the private and public clouds. The hybrid cloud deploy-

ment model provides the benefits of each while minimizing the risks associated with each.

The private cloud can be used for infrastructure that needs to be deployed privately due
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to business and regulatory requirements while the public cloud can be used to scale ser-

vices when demand spikes beyond the private clouds fixed capacity (i.e. cloud bursting).

The hybrid deployment model also enables greater cost control as the cheaper option

between the public or private cloud can be utilized when appropriate.

2.5.3 Amazon Web Services

Amazon Web Services (AWS) is a public cloud provider offering a large selection of ser-

vices spanning all three cloud service models. AWS provides extensive enterprise support

and is trusted by the cloud community at large to be a market leader. AWS complements

their product offering a wide range of SDKs for every possible deployment scenario and

provides developer tools such as a CLI. Siemens Energy chose to utilize AWS as their

public cloud provider for these aforementioned reasons. Although AWS offers many ser-

vices, within the scope of the ATaaS the following services were explored: DynamoDB,

Simple Storage Service, Elastic Compute Cloud and Identity Access and Management.

DynamoDB DynamoDB [4] is a fully managed NoSQL key value database service (PaaS

model). Database tables are a collection of items with attributes, which are essentially

JSON documents with key value pairs within. Each item needs to have a primary at-

tribute which uniquely identifies it in the database table. The data within an item does not

need to be structured and can contain various types of attribute values, such as strings,

integers and arrays. The entire database is eventually consistent however some database

operations such as read operations can be requested to be strongly consistent.

Simple Storage Service Simple Storage Service (S3) [7] is a fully managed object storage

service (PaaS model). An object in S3 is essentially a file of any type which is stored

in a bucket. Buckets serve as a collections of objects for the same purpose such as an

application or service. Inside a bucket there is no concept of actual folders, instead objects

are stored at different paths. Each element in the path from the bucket root until the object
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name can be considered as a sort of pseudo folder. However, such folders must contain

an object eventually. For example, if a pseudo folder contains only one object which then

gets deleted, the folder simply disappears along with the path of the object.

Elastic Compute Cloud Elastic Compute Cloud (EC2) [5] is a computing infrastructure

service (IaaS model). EC2 offers instances with various OS with different computational

capabilities (CPU, memory, storage and networking). The number of EC2 instances can

be easily scaled while individual instances can also be scaled vertically. EC2 provides a

Virtual Private Cloud (VPC) for all instances and it can be configured with the specific net-

working functionalities such as VPN tunnels to private corporate clouds. EC2 instances

are priced by the hour on demand however for non critical tasks excess EC2 instances can

be purchased at significant discounts (spot pricing).

Identity Access and Management Identity Access and Management (IAM) [6] is propri-

etary secure control access service for AWS services (PaaS model). IAM is used to create

users and roles for an AWS account. Permission sets are then assigned to users and roles

in order to give them fine tuned access to AWS services such as S3 or DynamoDB. Pro-

grammatic access credentials can be generated and assigned to a user, which then allows

anyone using those credentials to authenticate requests to AWS services with the same

rights as the user. IAM can also be used to assign permissions sets to AWS resources,

such as instance profiles which can be attached to an EC2 and would automatically au-

thenticate any AWS request originating from it.
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Chapter 3

Architecture

The Analysis Tool as a Service (ATaaS) is a service that provides mechanical engineers

the ability to perform finite element analysis (FEA) without needing to install or run any

FEA software on their computer. The service implements a standardized way for users to

structure, package and perform FEA as tasks. It is built using a distributed microservice

architecture that allows the service to be deployed flexibly across different computers and

networks. The ATaaS utilizes pools of resources to concurrently execute finite element

analyses in order to speed up the computation time for users requesting multiple analyses

simultaneously. In the remaining parts of this chapter, Section 3.1 gives an overview of the

service architecture, Section 3.2 describes the platform architecture of the prototype ATaaS

developed in this thesis, Section 3.3 introduces the taxonomy of a task configuration and

Section 3.4 showcases the high level behaviour of a task.

3.1 Service Architecture

The ATaaS is built using three core components; the Manager, the Worker and the Executor.

The Manager is responsible for serving the ATaaS to users and essentially operates as the

primary endpoint for the service. The Worker is a node agent in the ATaaS that is respon-
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sible for pulling tasks from the ATaaS task queue and launching Executors. Consequently,

the Executor is an ephemeral container which will actually perform the FEA for a task.

There are also external third party services in the ATaaS that the core components

depend upon to function correctly, such as the Task Repository (as a service), the File Storage

Service and the License Management Service. Each component is built and packaged such

that it can be deployed independently of each other and across different environments,

enabling the service to be fully distributed in a hybrid deployment. The overall service

architecture is represented in Figure 3.1.

Figure 3.1: General architecture of Analysis Tool as a Service (ATaaS)
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3.1.1 Manager

The Manager is the primary client facing service endpoint of the ATaaS, allowing engi-

neers to create tasks, queue tasks and get task information. The Manager serves an impor-

tant bounded context in the overall architecture as it focuses only on handling the tasks

without actually executing them. The Manager exposes an API which the users can then

utilize to perform the actions mentioned earlier and explained below:

• Task Creation: When a Manager receives a task creation request, it generates a glob-

ally unique task identifier (ID) for the task and then submits the task along with any

task configuration parameters passed in by the user to the Task Repository. Once the

task is successfully saved by the Manager, the task ID is returned to the user.

• Task Queuing: Once the Manager receives a queue request for a task, for which

the user should have already uploaded the required task files to the task folder, the

Manager updates the task in the task repository to a queued state, making it eligible

for execution.

• Getting Task: At any time the Manager can respond to task query requests from

users. At that point the Manager will retrieve the task from the task repository if it

exists and return the state, configuration parameters and metadata for the task.

As the primary function of the Manager is to serve the ATaaS to users, the Manager does

not need to directly interact with the other core components of the ATaaS. The Manager

primarily interacts with the Task Repository to create, queue and retrieve tasks. Therefore,

the Manager is built such that multiple instances of it can be deployed without any single

instance interfering in the operation of other instances (horizontal scaling).

3.1.2 Worker

The Worker is an agent that runs on a node in the ATaaS, and is responsible for pulling

queued tasks from the Task Repository and launching and managing Executor’s on the node
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to perform the task analysis. The Worker acts within a bounded context as a local task

manager, ensuring that tasks are being processed accordingly on one single machine. The

Worker can be deployed on any host to make it a node in the ATaaS. When a Worker is

deployed on a node, the number of Executors allowed to be launched concurrently on

that node can be configured.

Task Checkpointing The Worker is responsible for managing any Executor’s it launches

for tasks it has secured, which entails the following functions:

• Task Timeout: The Worker must periodically check point each Executor. If an Execu-

tor run time exceeds a maximum threshold, the Executor is stopped and the the task

it was executing is requeued in the Task Repository if it has not reached the requeue

limit, otherwise the task is failed.

• Executor Cleanup: Once an Executor terminates or is terminated for its task, the log

files generated by it are uploaded to its respective task folder in the File Storage Service

by the Worker. Furthermore the Worker updates the end time of the task in the Task

Repository and confirms that the task state in the Task Repository is either completed

or failed, if not it marks the task as failed.

Task Launching Launching Executors for tasks is the primary function of the Worker

once it has been deployed deployed, which consists of the following actions:

• Task Securing: The Worker periodically polls the Task Repository for tasks that have

been queued and waiting to be executed. The Worker then tries to secure a task based

on a designated order. Since there is no limit on the number of Workers which can

be deployed to allow for distributed execution of tasks, the task securing process is

designed such that no more than one Worker can secure a given queued task from

the Task Repository.

• Executor Launching: Once a Worker has secured a task it launches an Executor for

the secured task, configured with all the configuration parameters from the task.
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It also updates the task in the Task Repository with a start time and increments the

attempt counter.

3.1.3 Executor

The Executor is an ephemeral container in the ATaaS which contains the execution environ-

ment that performs the analysis for a single task. The Executor serves the bounded context

of task execution in an isolated manner, its solely responsible for ensuring that single task

executes successfully. An Executor is always launched by a Worker for every task that it

secures. In order for the Executor to function as desired, it is passed the task ID and all the

configuration parameters for the task it is spawned for upon creation. The Executor has

three distinct phases in its lifecycle: task setup, task execution and task cleanup.

Task Setup The following actions are performed to setup the Executor for a task prior to

launching the FEA software for task execution:

1. Parameter Verification: The Executor performs some checks to ensure that the task

parameters were set properly. This entails verifying:

• The validity of the task ID, such that it was passed correctly and that it exists in

the Task Repository.

• The existence of an execution script at the location specified by the user in the

execution script configuration parameter or through automatic detection if not

specified.

• The proper tool version configuration parameter specification. The Executor is

packaged with different versions of the FEA software to perform the task anal-

ysis. The Executor can only use the user specified tool version for versions avail-

able within it. Moreover, if no tool version is specified by the user, a default

version is used.
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If the task ID or the configuration parameters are misconfigured, the Executor up-

dates the task in the Task Repository to a failed state along with a debug message,

and then terminates itself.

2. Execution Environment Setup: The Executor downloads its task folder and user spec-

ified engine models from the File Storage Service into its execution environment. All en-

gine models, input folders and other standard FEA software components are all placed

in standardized locations within the execution environment for the execution script to

call upon.

Task Execution Task execution follows the successful completion of the task setup. The

Executor launches the FEA software to execute the task analysis and the following occurs

within the FEA software:

1. Software Verification: The FEA software communicates with the License Manage-

ment Service to authenticate itself before executing the task execution script.

2. FEA Analysis: The FEA software executes the instructions line by line within the

execution script in order to perform the task analysis. This is the main capability

being provided by the ATaaS to its users.

Task Cleanup The Executor must cleanup for a task once the FEA software terminates

and the task execution is completed, this consists of the following actions:

1. File Upload: The Executor synchronizes all the task folder files from the execution

environment, or a subset depending on the output folders configuration parameter,

back to the task folder in the File Storage Service.

2. Task Update: The Executor updates the task status to completed in the Task Reposi-

tory along with an end time.

Once all the phases are complete, the Executor exits. At this point the Worker’s will

eventually perform the Executor cleanup function.
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3.1.4 External Services

Each ATaaS component is designed to operate independently of each other but they all

require access to certain external third party services to operate cohesively and commu-

nicate. Each of these services were not developed in the scope of this thesis and thus can

be considered as black boxes. Moreover, each service can be considered a distributed mi-

croservice, in the sense that their function is singular and that they are deployed widely.

The three external services within the ATaaS are the Task Repository, File Storage Service

and License Management Service, which are elaborated below.

Task Repository The Task Repository is the database that contains all the ATaaS tasks.

The core ATaaS components can create, update and view tasks in the Task Repository as

needed. It serves not only to store tasks but also functions as a message passing commu-

nication service between each core component in the ATaaS, enabling distributed com-

puting. All the task information along with the task state is stored in the task repository,

allowing each component to ensure its properly manipulating each task. However, ATaaS

users cannot directly manipulate the Task Repository to ensure that each component func-

tions correctly and that tasks are not accidentally corrupted.

File Storage Service The File Storage Service is essentially a file server where the ATaaS

can upload, download and list engine models and task files within task folder’s. The File

Storage service is responsible for handling and storing files for the ATaaS. Firstly, the ATaaS

users can directly interact with the File Storage Service as it is the secondary service end-

point of the ATaaS, giving users the ability to upload, download and view their task files

within task folders. Secondly, the File Storage Service is internally used by the Executor to

populate the execution environment and then to return task result files.

License Management Service The License Management Service is a service required for

the authentication of the FEA software that runs inside every Executor. It is built to be
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deployed in a distributed manner such that each instance of the License Management Ser-

vice is a standalone service that can manage FEA software authentication requests. The

License Management Service approves any authentication request that can reach the service

endpoint from the FEA software as it does not perform any further checks. Ensuring that

the FEA software is permitted to operate in a region or whether the appropriate individ-

uals are using the FEA software is not within the scope of the License Management Service.

To ensure the latter is being respected, the License Management Service must only be de-

ployed to approved regions within networks where all the users are permitted to use the

FEA software.

3.2 Platform Architecture

The ATaaS is built and deployed using specific technologies to enable a distributed mi-

croservice architecture. The three core ATaaS components; the Manager, the Worker and

the Executor depend on container technology to operate correctly. The Task Repository

and File Storage Service in the ATaaS are microservices provided by Amazon Web Services

(AWS) to handle information and file storage respectively. The License Management Service

in the ATaaS is a proprietary service provided by Siemens for the FEA software authen-

tication. Finally, all the components in the ATaaS require a specialized networking setup

to function together properly and provide functionality.

3.2.1 Container Technology

The Manager, Worker and Executor ATaaS components are designed to be distributed across

many computer hosts without interfering with each other and the hosts themselves. More-

over, having the ability to deploy multiple instances of each component is critical to allow

the distributed availability of the ATaaS service to users and parallel execution of tasks.

To accomplish these requirement, each of the aforementioned components are packaged

into containers, enabling their deployment on virtually any available host with a con-
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tainer runtime enabled. With each component packaged into a container, its deployment

and operation will not interfere with or modify the host machine in any way other than

using the host’s resources. Moreover, as each of those component containers do not com-

municate directly with each other, the ATaaS can be deployed using a hybrid cloud setup.

This means that both computer hosts in the public cloud and private cloud can be used

in a hybrid setting in the ATaaS.

Manager Container The purpose of each Manager is to serve the primary ATaaS end-

point to users, therefore at least a single container deployment of the Manager is required

for the ATaaS service to be considered available and operational. Furthermore, the Man-

ager can be deployed multiple times on different hosts to make the service available in

more than one location. This is important as not all users of the ATaaS will be able to

access each of the deployed Managers of the service due to network restrictions. Once a

Manager container is deployed, it has to be exposed to the host’s network as required so

that ATaaS users within the host’s network can reach the ATaaS.

Worker Container The Worker is responsible for pulling queued tasks from the task

repository and launching Executors to perform the task analysis. Consequently, any host

on which you deploy a Worker container becomes a node in the ATaaS for task execu-

tion. At least one Worker is required to always be operational for tasks in the ATaaS to

be executed. The Worker can only spawn Executor’s for task execution on the same host it

is running on. Therefore, the Worker needs to have access to the host container runtime

control plane to launch Executor’s. It is important to note that the Executor containers run

alongside the Worker on the host container runtime and are not running within the Worker

container, also known as container in container. This access is also used by the Worker to

manage the number of concurrent Executor’s on the host, to timeout long running Execu-

tor’s and clean up exited Executor’s.
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Executor Container The Executor is an ephemeral container which does the analysis for

a single given task and then exits. An Executor is always launched by a Worker how-

ever once the container has been launched it does not require the Worker to function as

it operates independently. The separation of the Worker and the Executor allows for fault

tolerance, such that even if the Worker encounters any issues the Executor can complete

execution for its given task. The Executor is the most computationally demanding con-

tainer as it performs the actual FEA and therefore must only be deployed on hosts with

enough computing power. Multiple Executor’s can be launched on the same host without

any interference as long as the host machine has enough resources to manage the load.

3.2.2 Amazon Web Services

The Task Repository and File Storage Service in the ATaaS are external services that are pro-

vided by Amazon Web Services (AWS). These external services enable the ATaaS to func-

tion without having to implement complex capabilities that are not core to the capability

of the ATaaS. Each of these AWS services are accessible via public or private AWS service

endpoints using AWS credentials. Furthermore, AWS services are available through nu-

merous software development kits (SDK’s) and command line interfaces (CLI’s), allowing

them to be utilized by the three core ATaaS components and users.

Task Repository AWS DynamoDB is the service utilized for the Task Repository. Dy-

namoDB is a distributed microservice offering low latency responses, making it suitable

for serving large amounts of requests from many clients. As a NoSQL database is al-

lows the ATaaS to store all the configuration parameters, metadata and state for a task

in an unstructured manner while still offering the ability to perform granular operations

on the task values. All three core ATaaS components utilize the task repository to oper-

ate. This makes DynamoDB the primary channel for indirect communication between the

three core ATaaS components, as it allows each component to perform its task functions

without having to directly communicate with other ATaaS components.
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File Storage Service AWS Simple Storage Service (S3) is the service utilized for the File

Storage Service. S3 is a highly available global high bandwidth microservice, allowing for

the storage of virtually a limitless number of files of any size. This capability makes it

ideal to store the task folder’s and engine models for the ATaaS. S3 is used as the primary

system for file storage and transfer in the ATaaS, as it accepts and returns files from users,

and provides the stored files to the Executor as needed. ATaaS users can directly interact

with S3 to manage their task folder’s while the Executor can rapidly pull task folder’s from

S3 and push back updated task folder files to S3.

3.2.3 License Management Service

The License Management Service is a service offered by Siemens Energy to authenticate the

proprietary FEA software used by the ATaaS. As the Executor is the only ATaaS compo-

nent that utilizes the FEA software, it becomes critical that the License Management Service

is accessible to all the Executor’s that are launched. The License Management Service is not

a containerized service which means it must be deployed directly on a host. Regard-

less, it can be deployed on any host and exposed to any network as long as security and

Canadian Export Control requirements are respected. As multiple instances of the License

Management Service can be deployed, the service can be offered to many different isolated

networks where it is required.

3.2.4 Networking

The overall networking architecture required between all the components in the ATaaS to

function correctly is shown in Figure 3.2.

The Manager can be deployed on any suitable host and network, as long as it is made

accessible to the local area network (LAN) of the host so that users within that network

can access the ATaaS. The Worker can also be deployed on any host and network, provided

that it has access to the host’s loopback network to launch Executor’s on it. Furthermore,
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Figure 3.2: Network architecture for Analysis Tool as a Service (ATaaS)

as the Executor is always launched by a Worker on the same host, the Executor itself does

not require access to the host loopback network or the LAN of the host.

Since both the Manager and Worker do not directly communicate, the hosts and conse-

quently their networks used by both can be completely isolated from each other without

any issues. However, any host in any network that contains an ATaaS core component

requires general internet access to be able to communicate with the public endpoints of

AWS in order to access the Task Repository and File Storage Service external services. More-

over, any host and its network that contains an Executor must also have access to the

License Management Service to authenticate the FEA software that runs within. Due to the

deployment and access restrictions of the License Management Service mentioned earlier, a

secure encrypted connection between the network of any Executor and the network where

the License Management Service is deployed is required.
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3.3 Taxonomy

A task configuration includes all the relevant details that need to be specified in order

to set up and execute a task in the hybrid cloud based ATaaS environment. The domain

model for task configuration is defined by the UML class diagram shown in Figure 3.3.

Figure 3.3: Domain model for task configuration

Task In a task configuration, a task is the main resource which users interact with. A

task can be defined as a single self contained finite element analysis. Every task must

have a task ID, which is an ATaaS unique identifier for a task and enables the users and

the service to monitor and manipulate a task from creation to completion. Moreover, a

task contains service metadata and various configuration parameters which can be set by

the user to customize the analysis behaviour. Lastly, a task always has a state which will

be further explained in Section 3.4.1.
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A task has multiple configuration parameters shown in Figure 3.3 such as tool version,

execution script, engine models and input/output folders, which are discussed subsequently.

As further relevant metadata, we also detail the task folder and the execution environment.

Tool Version The tool version configuration parameter for a task controls which version

of the FEA software would be used by the Executor to perform the finite element analysis.

This capability is critical as different versions of the FEA software exist, with each offering

a unique set of capabilities which don’t completely overlap.

Execution Script The execution script configuration parameter for a task is the name and

relative location of the execution script within the task folder. The execution script is es-

sentially a required file that the user creates for the FEA software. During execution, the

ATaaS passes the execution script to the FEA software which then interprets and executes

the commands within to perform the desired FEA for the task. The execution script is

the main input to the FEA software from which any secondary files present in the task

folder may be may be loaded into the FEA software, such as engine models. The execu-

tion script has to be prepared with the execution environment in mind, such that all paths

within should be relative to the task folder or point to standard predefined ATaaS execution

environment resource locations.

Engine Models The engine models configuration parameter is an optional parameter and

it specifies to the ATaaS which engine models to make available within the task folder of an

execution environment. An engine model represents the mechanical geometry and thermo-

mechanical properties of an engine. It can be shared and reused amongst different FEA

tasks and generally requires large amounts of storage space. The engine models specified

by the engine models configuration parameter are always found in a standard location in

the task folder of an execution environment and can then be referenced by the task execution

script to load them into the FEA software during analysis. Alternatively, users are free to

upload engine models to task folder’s directly at the File Storage Service and subsequently
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reference them in their execution script. However, it is preferred to utilize the engine models

configuration parameter as it reduces the data transfer and storage overhead.

Input Folders The input folders is an optional configuration parameter that specifies to

the ATaaS which empty sub folders to create inside the task folder of an execution environ-

ment. This is a critical parameter as empty folders cannot be created inside a task folder at

the File Storage Service and the FEA software cannot write to non existent folders inside

the task folder of an execution environment. Therefore, any execution script for a task that

would create a new file in a new folder inside the task folder of an execution environment

would necessitate the usage of this configuration parameter.

Output Folders The output folders configuration parameter is an optional parameter that

specifies to the ATaaS which sub folders from the task folder of the execution environment

to synchronize back to the File Storage Service once the analysis has completed. During

the analysis of a task, large amounts of data can be generated and not all of it would

be relevant to save. By default all new data generated in the task folder of an execution

environment is synchronized back to the task folder at theFile Storage Service. Therefore

by specifying this configuration parameter, the user could reduce the data storage and

transfer overhead for any large data intensive analysis task.

Task Folder The task folder for a task is the folder which contains all the files required

and generated by a task, it is an isolated file space for every task. The task folder inherits

the same name as the task ID of a task. A single task folder is available for every task that

is created in the ATaaS at the File Storage Service. The execution script for a task should

always be located in the task folder according to the path specified by the execution script

task configuration parameter. When an Executor is spawned for a task, a copy of the task

folder from the File Storage Service is made in the execution environment. The task folder of an

execution environment is where the task input folders are created and where the task output

folders should be located as well. Moreover, the same folder inside the task folder of an
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execution environment can be treated as an input folder and an output folder. Ultimately

when an Executor terminates, the task folder in its execution environment is synchronized

back to the File Storage Service according to whatever was specified for output folders.

Execution Environment The execution environment for a task is the container environ-

ment of the Executor which performs the analysis for a task. A task can only be associated

to one execution environment at a time as one and only one Executor can be spawned for a

task simultaneously. The execution environment also has an association to the host which

runs the Executor container. The execution environment of a task ultimately contains the

actual input folders, output folders, execution script, engine models, tool version and task folder,

albeit only while the task is executing as the Executor is ephemeral.

3.4 Task Behavior

3.4.1 Task States

The task state for any task is defined and governed by the state machine as shown in

Figure 3.4.

A task has a total of 5 possible states which each representing a different point in the

lifecycle of a task as detailed below:

• Created: The created state indicates that the task has been created within the ATaaS

Task Repository along with all its configuration parameters, and is ready to accept

task files in its task folder at the File Storage Service.

• Queued: The queued state indicates that the task is ready to be be taken by Worker

for execution, and it expects that all the task files have been uploaded to its task folder

at the File Storage Service.

• Executing: The executing state indicates that the task has been secured by a Worker

and is being executed by an Executor.
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Figure 3.4: UML State Diagram for a Task

• Completed: The completed state indicates that the task execution script successfully

exited, and that the resulting files are available in the task folder at the File Storage

Service.

• Failed: The failed state indicates that the task for some reason was not able to com-

plete, the reason for failure is always available.

3.4.2 Task Lifecycle

The manner in which each ATaaS component interacts with a task from task creation to

completion is shown by the the following UML communication diagram in Figure 3.5.

A task changes state during its lifecycle due to the user commands and the behaviour

of the ATaaS core components, this process is detailed below:

1. A task is created by the Manager with the required configuration parameters upon

user request and specification.

39



Figure 3.5: UML Communication Diagram for a Task

• When all the necessary task files have been successfully uploaded by the user

to the task folder at the File Storage Service, the task is ready to be queued.

2. A task is queued by the Manager upon user request.

• The Manager can only successfully queue a task that is in the created state.

• Once a task is submitted to the queue it becomes available to the ATaaS to

execute, meaning a Worker can secure it.

• User should have uploaded all their task files to the task folder at the File Storage

Service prior to queuing a task.

3. A task is taken by the Worker when it has the availability to launch an Executor for

the task.

• A task can be requeued by a Worker if it reaches a timeout.

• A task can be failed by a Worker if it reaches a timeout and max requeue limit or

if an Executor unexpectedly terminates without failing or completing the task.

4. A task is completed by the Executor when the task analysis completes successfully.
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• Users can pull from the task folder at the File Storage Service all the new files that

were generated in the task folder of the execution environment when the analysis

completed.

• Users can pull from the task folder at the File Storage Service the Executor log file

that performed the analysis for the task.

5. A task is failed by the Executor when the task analysis could not be completed suc-

cessfully.

• Task failure occurs when the configuration parameters were not set properly,

such as incorrect tool version or execution script being specified

3.4.3 Task Cloudification

The contribution of the ATaaS is to cloudify the legacy FEA tool in five steps; (0) task

preparation, (1) task initialization, (2) task file submission, (3) task queuing, (4) task ex-

ecution with the final step of retrieving the analysis task outputs. This entire process is

detailed in relation to the proposed ATaaS architecture in Figure 3.6.

Each step of the cloudification process in Figure 3.6 are detailed below:

0. Task Preparation: The user is responsible for preparing all the files for single finite

element analysis, most importantly the execution script, prior to accessing the ATaaS

to create a task. The user also has to identify all the engine models that would be

required by the execution script.

1. Task Initialization: A task is created at the Manager and a task ID is returned. Var-

ious configuration parameters can be set in a task creation request which allow the

ATaaS to customize the task execution and analysis per the requirements of the user.

For example the engine models required by the execution script should be specified

in the task creation request.
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⓪ Task Preparation

Execution script(s) 
to perform the 
given analysis

Associated Files 
or Required files 

to preform the 
analysis

Engine Models (Thermomechanical)

File Storage Service on the 
cloud to ensure the smooth 

task execution

Upload

① Task Initialization

Location of the execution script

Selecting the appropriate engine models

Required empty folders (input folders)

Output folders for analysis results uploading

Select the appropriate tool version

② Task File Submission ③ Task Queuing

④ Task Execution
Perform the selected analysis using all required files & given execution script on an Executor  

Create the task at the Manager

Figure 3.6: Overview of cloudification of the proposed ATaaS architecture

2. Task File Submission: Once a task ID is created and returned to the user in the pre-

vious step, they can then upload all the task files they prepared in the task prepara-

tion step to its respective task folder at the File Storage Service.

3. Task Queuing: Once all the required task files have been uploaded for a task in the

previous step, the task can be queued by the user. At this point the task enters the

execution queue and waits for a Worker to secure it and launch an Executor for it.

4. Task Execution: Once a Worker has secured the task and launched an Executor for it,

the FEA can be performed using the task files submitted in the task file submission

step and engine models requested in the task creation step.

Task Status Through this entire process users can view the task state and additional

metadata throughout the task lifecycle. Task metadata includes the number of attempts

made to execute the analysis, the node which secured the task for execution, the execution

start and end time for the task and any debug messages that were generated by the ATaaS
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during the task life cycle. Furthermore, users can also view their task folder and files within

at any point after a task has been created. Lastly, users need to check the status of their

tasks themselves as no task callback functionality is provided by the ATaaS once a task

finishes execution.

Task Output Retrieval Once the task analysis has been completed, the task state gets

updated from executing to completed or failed. Subsequently, users can then download

the task results files from the task folder at the File Storage Service, including the log file of

the Executor that performed the task analysis. At this point the task is considered done by

the ATaaS and the user has full access to the FEA output of their task.
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Chapter 4

Implementation

The Analysis Tool as a Service (ATaaS) is built using a distributed microservice archi-

tecture that allows the service to be deployed flexibly across different computers and

networks. Users can access the ATaaS through service endpoints to perform finite ele-

ment analysis (FEA) and are given programmatic tools to make use of the ATaaS more

effectively. The core ATaaS components are entirely developed within the scope of this

thesis, and primarily makes use of open source technologies to enable code and technol-

ogy reuse. The external third party services used within the ATaaS are proprietary off the

shelf services. The entire ATaaS is designed and deployed in a hybrid cloud environment,

making use of the public and the private cloud to leverage the benefits offered by both.

In the remaining parts of this chapter, Section 4.1 gives an overview of the ATaaS service

endpoints, Section 4.2 describes the implementation of each of the ATaaS components,

and Section 4.3 presents the deployment of the prototype ATaaS developed in this thesis.

4.1 Service Endpoints

Users interact through two service endpoints to perform FEA with the ATaaS. The Man-

ager is the primary service endpoint which enables the users to create, queue and get
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ATaaS tasks. The File Storage Service is the secondary service endpoint which allows the

users to upload their task files, download their task result files and view their task folder’s.

Both service endpoints are required to successfully perform FEA through the ATaaS

and provide a RESTful API. In order to effectively make use of the ATaaS service end-

points offered by the Manager and the File Storage Service, a service script is offered to

users that allows them to easily manage ATaaS tasks from creation to completion pro-

grammatically on their local computer.

4.1.1 Manager

The Manager is the primary service endpoint in the ATaaS, and it provides a web based

RESTful API which allows users to create, queue and get tasks within the ATaaS. The

REST API implemented by the Manager provides three service URI’s with specific query

and header requirements for each HTTP request. Each successful HTTP request that is

returned provides a detailed JSON response body from the Manager with all the relevant

data. The three service URI’s for the REST API are further detailed in Table 4.1.

HTTP Method URI Description
POST /create-task Create an analysis task
POST /queue-task Queue an analysis task
GET /get-task View an analysis task

Table 4.1: ATaaS Manager REST API

It is important to note that the REST API implemented by the Manager is a preliminary

design based off the existing workflows at Siemens Energy and hence does not follow

some of the best practices of defining resources in REFTful API’s. In the future the API

should define the task as a resource and then use HTTP methods to interact with the

task. For example, creating a new task would be defined as POSTing a task document

describing its details to the task resource or getting a task could be GETting the task

resource based on its identifier as query parameter.
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Create Task The create task API call allows users to create a task in the ATaaS and spec-

ify any task configuration parameters they wish to set. Every HTTP request for this call

must include a header key user with the value being the the email of the requester. The

optional task configuration parameters are specified as query parameters in the HTTP

request as detailed in Table 4.2.

Key Value Configuration Parameter
tool FEA Software Version Tool Version
exec Execution Script Path & Name Execution Script
model Engine Model Name Engine Model
input Input Folder Name Input Folder
output Output Folder Name Output Folder

Table 4.2: Create Task API call parameters

The response for the create task API call will indicate whether the task was success-

fully created and if so it will return a task ID. If a task could not be created by the Manager,

the following reasons could be the possible cause:

• In the HTTP request header, the user did not specify the email properly.

• In the HTTP request query, the user did not specify a valid tool version.

• The Manager encountered a backend error, the user should try again.

Queue Task The queue task API call allows users to queue a task in the ATaaS. This call

should only be made once the user has uploaded all their task files to the task folder at the

File Storage Service. Every HTTP request for this call must include a query parameter with

the key being task id and the value being the task ID of the task the users wishes to queue.

The response for the queue task API call will indicate whether the task was success-

fully queued or not. If a task could not be queued by the Manager, the following reasons

could be the possible cause:

• In the HTTP request query, the user did not specify a task ID.
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• The task ID specified does not exist in the ATaaS.

• The task has already been queued and is waiting execution.

• The task is in a state which does not permit queuing; executing, completed, failed.

• The Manager encountered a backend error, the user should try again.

Get Task The get task API call allows users to view all the task information for a partic-

ular task excluding the task folder and any files within. This call can be made at any time

as long as the user has a valid task ID. Therefore, every HTTP request for this call must

include a query parameter with the key being task id and the value being the task ID of

the task the user wishes to view.

The response for the get task API call will return all the task information for the re-

quested task. If the Manager finds the requested task in the Task Repository, the task infor-

mation returned by this call is detailed in Table 4.3.

If the Manager cannot find the requested task in the Task Repository, the following rea-

sons could be the possible cause:

• In the HTTP request query, the user did not specify a task ID.

• The task ID specified does not exist in the ATaaS.

• The Manager encountered a backend error, the user should try again.

4.1.2 File Storage Service

The File Storage Service is the secondary service endpoint in the ATaaS which allows the

users to (1) upload their task files, (2) download their task result files and (3) view their

task folder’s. The File Storage Service is an external third party ATaaS component that relies

on the AWS Simple Storage Service (S3) for all of its capabilities. Therefore, to access the

File Storage Service, ATaaS users have to use AWS authentication and tools.
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Key Value Explanation
state Current task state One of the possible task states
owner User email The task owner’s email
attempt Number of execution attempts The number of task execution

attempts so far
tool FEA Software Version Execution script configuration

parameter if specified
exec Execution Script Path & Name Execution script configuration

parameter if available
model Engine Models List Engine Models configuration

parameter if specified
input Input folders list Input Folders configuration pa-

rameter if specified
output Output folders list Output Folders configuration

parameter if specified
task message Message Task status message if avail-

able
host Hostname The most recent task Executor

host if applicable
queue time Queue Time The most recent task queue

time if applicable
start time Start time The most recent Executor start

time if applicable
end time End Time The most recent Executor end

time if applicable

Table 4.3: Get Task API call response

Service Use Cases

Every use case of the File Storage Service detailed below is always in relation to a task. For

every task that is created in the ATaaS, a task folder in the File Storage Service with the same

name as the task ID is available. Therefore to perform any File Storage Service operation a

task ID is required in the request in order to manipulate the correct task folder.

Upload Task Files Users upload task files to the task folder in order to have those files

available to the Executor that performs the task analysis. Task files can be uploaded to the

task folder at any point. However, all the task files should be uploaded to the task folder

before the task is queued in order to ensure that all the required task files are available to
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the task Executor when it launches. In order for a task to succeed it is required that the

user upload at least an execution script to the task folder, otherwise the task will fail.

Task files can be uploaded to the task folder individually by name. However, it is rec-

ommended that the user creates a local task folder on their computer and then upload

the entire folder’s contents to the task folder using the copy folder command offered by

the File Storage Service. The copy folder command takes all the files available within a

local folder and uploads them to the specified task folder. If used more than once, the copy

folder command will overwrite existing files in the task folder with the same name.

Download Task Result Files Users download task result files (or any task file) from

the task folder in order to obtain the results from their task execution. Task results files

become available in the task folder only once they have been uploaded by the Executor to

the task folder upon the successful completion of the task analysis. Therefore, users should

only expect to download their task result files when the task state becomes completed. In

addition to the task result files, the log file of the Executor that performed the task analysis

is also available in the task folder of any completed task.

Any task result file in a task folder can be individually downloaded from the task folder

by file name. However, it is recommended to use the folder sync command offered by the

File Storage Service. This command will synchronize the contents of a specified task folder

to any local folder, preferably the local task folder that was prepared earlier for the task

file uploading. There are two primary advantages to using the folder sync command:

• The user does not need specify the task result files by name. Otherwise the user

would have to view the contents of the task folder and then download the desired

task result files individually.

• All the files from the task folder that do not exist in the local target folder or that are

an older version will be downloaded. This ensures that all the task result files are

downloaded without incurring the overhead of transferring files that already exist

locally from when the task files were initially uploaded.
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The copy folder command can also be used to download task result files from the task

folder to any local folder. This action will download all the task files from the task folder

into a target local folder, overwriting any existing files with the same name in the target

local folder even if they are current.

View Task Folder Users can view the contents of any task folder and sub folders within

in order to verify that task files have uploaded successfully and to inspect which task

files exist within the task folder, including any task result files. The task folder and its sub

folders can be viewed during any stage of the task lifecycle at the File Storage Service.

The list folder command should be used to view the contents of a task folder and its sub

folders. This command provides users a visual representation of their task folder files and

sub folders, including the size, and upload date and time of every object within.

Service Access

The File Storage Service is accessible via the public internet as an AWS service, and there-

fore requires that all requests it receives are authenticated using AWS credentials. ATaaS

users are manually assigned and given AWS credentials upon request to use the File Stor-

age Service. These credentials would specifically allow them programmatic access to task

folders in the File Storage Service, allowing them to upload, download and view task fold-

ers and files. However, it is important to note that AWS credentials with programmatic

access do not allow users to access the public AWS web page.

The File Storage Service can be accessed through virtually every platform and system

because of the numerous SDK’s offered by AWS for their services such as S3. Due to the

programmatic credentials given to ATaaS users, they cannot access the File Storage Service

through the AWS web page and must do so programmatically using an SDK. There is

a REST API available for S3 but users can take advantage of the AWS command line

interface (CLI). The AWS CLI allows users to authenticate once and then use the CLI on

their local computer terminal to access AWS services such as S3 for the File Storage Service.
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4.1.3 Endpoint Usage

Direct Access

The RESTful API provided by the Manager and the File Storage Service is accessible to

anyone who can reach the service endpoints and make valid HTTP requests according to

the API requirements. Moreover, there is no web page available for the Manager service

endpoint, and the service endpoint web page for the File Storage Service is not accessible

using programmatic credentials. Therefore, users would have to pick and use a tool of

their choice to manually make the HTTP requests to the service endpoints in order to

perform FEA analysis with the ATaaS API.

Service Script

In order to facilitate ATaaS usage, we developed an ATaaS service script that would allow

users to create and launch multiple ATaaS tasks from their local machine without having

to manually access the ATaaS service endpoints for each task and make the required API

calls. The service script has the following local machine prerequisites in order to be used:

• The script must be launched on a Windows machine as it is built using the Power-

shell framework.

• The AWS CLI must be installed on the machine and already authenticated using

AWS programmatic credentials that allow access to the File Storage Service.

Script Setup In order to use the ATaaS service script, a user has to locally prepare a batch

analysis folder that will contain one sub folder for each task the user wants to launch.

Inside each task sub folder, the user will place all the task files required for the analysis

of the task. Furthermore, a standardized JSON task configuration file must be created

within each task sub folder. Each JSON task configuration file can contain the following

data representing the task configuration parameters previously explained in Section 3.3:
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Key Value Format
tool FEA Software Version String
exec Execution Script Path and Name String
model Engine Model Names String Array
input Input Folder Names String Array
output Output Folder Names String Array

Table 4.4: Local task folder JSON configuration file

Script Usage Once the local batch analysis folder has been prepared according to the

script setup requirement detailed earlier, the user can launch the service script on their

local machine PowerShell terminal. The service script should be launched from the local

batch analysis folder and must be passed the user’s email, and optionally the name of the

task configuration file and the Manager endpoint IP address.

Script Behaviour Upon launching, the service script performs the following actions for

each task sub folder found in the local batch analysis folder in order to create, prepare

and queue ATaaS tasks:

1. Task Creation: The task configuration file that should be found in the task folder is

parsed. Subsequently a task creation HTTP request is sent to the Manager endpoint

with the appropriate task configuration parameters set as HTTP request query pa-

rameters depending on the parsed contents of the task configuration file. The task

ID is outputted to the user if the task creation request is successful. If no task con-

figuration file is found in the task sub folder or the task creation request fails then

the task sub folder is ignored and skipped.

2. Task File Uploading: With the task ID returned in the previous step, all the folders

and files within the task sub folder are uploaded to the task folder in the File Storage

Service. The success and failure of each task file is outputted to the user.

3. Task Queuing: With all the task folders and files uploaded, the task is queued. The

success or failure of this operation is outputted to the user.
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Once the service script completes executing it is up to the user to periodically poll

the Manager endpoint with the task ID’s outputted by the script to see whether the newly

created and queued tasks have started executing or completed or failed.

4.2 Service Components

The Analysis Tool as a Service is built using three core components; the Manager, the

Worker and the Executor. Each core component is entirely developed within the scope of

this thesis and is primarily built using open source technologies. The Manager is a web

server that handles user requests, the Worker is a web server that serves as a node agent

and the Executor is a script that handles the analysis of one task.

The Task Repository, the File Storage Service and the License Management Service are the

external services within the ATaaS. Each is implemented by proprietary off the shelf ser-

vices; the Task repository is provided by AWS DynamoDB, the File Storage Service is pro-

vided by AWS S3 and License Management Service is provided by Siemens Energy.

Each core component works together with the Task Repository to ensure that any task

state transition respects the task state machine model. This entails that no component

will modify the state of any task in the Task Repository without verifying if that action will

violate the task state machine model. Furthermore each core component utilizes UTC

whenever dealing with time based operations. Lastly, the File Storage Service essentially

provides the file storage and delivery functionality to the ATaaS. It allows the users and

core components to efficiently move files from task creation to completion.

4.2.1 Manager

The Manager is the primary service endpoint of the ATaaS and therefore implements a

Python Flask web server to serve the RESTful API of the ATaaS. The Manager does not

implement any security for the API and therefore anyone who can reach the service end-

point has full access to the API. Whenever a properly formatted API call it made to the
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Manager a 200 HTTP code response is always given with a JSON payload, irrespective of

if the API call was actually successful or not.

Task Creation When the Manager receives a task creation request the following actions

are performed as part of the task creation routine:

1. It is verified if an owner email was specified in the HTTP request header.

2. It is verified that if a tool version was specified as a HTTP query paramater, whether

it is a valid tool version available within Executor’s.

3. All the configuration parameters are parsed from the HTTP query parameters.

4. A new task ID is created by joining the current date and time with a new UUID.

5. The Task Repository is queried with the new task ID to ensure it does not exist already,

even though this is highly unlikely.

6. A task is created in the Task Repository with the new task ID as its identifier, the

configuration parameters and owner specified in the HTTP request are included as

well, and finally the new task is assigned the created state.

7. The new task ID is returned to the user after the successful completion of the above

steps, otherwise an error message is returned.

Task Queuing When the Manager receives a task queuing request the following actions

are performed as part of the task queuing routine:

1. It is verified if a task ID was specified in the HTTP request as a request query pa-

rameter.

2. The Task Repository is queried with the requested task ID to ensure that the task

requested to be queued actually exists.
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3. With the task query results from the previous step it is verified if the task is in the

created state, if not an error message is returned.

4. The task is updated to the queued state along with a queue time in the Task Repository

with the condition that the task exists and was in the created state.

5. A success message is returned to the user after the successful completion of the

above steps, otherwise an error message is returned.

Getting Task When the Manager receives a get task request the following actions are

performed as part of the getting task routine:

1. It is verified if a task ID was specified in the HTTP request as a request query pa-

rameter.

2. The Task Repository is queried with the requested task ID.

3. With the task query result from the previous step it is verified if the task exists, if

not an error message is returned.

4. If the task query result returns a task then a success message is returned to the user

along with all the task information; including the task configuration parameters, the

task state and additional metadata.

4.2.2 Worker

The Worker implements a Python Flask web server and operates as a node agent for the

ATaaS. A node in the ATaaS is any host on which the Worker is deployed as an agent so

that it can launch Executor’s which perform analysis for tasks. The Worker needs access to

the host container engine API in order to launch and manage Executors. On deployment

of the Worker the maximum number of concurrent Executor’s (Concurrency) allowed on the

host can be configured. Concurrency should set depending on the computational power of

the node as deploying too many Executor’s on a single node will slow down the execution
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time for every Executor. The Worker has a periodic update routine which first checkpoints

all the Executor’s and then launches new Executor as necessary. At the beginning of every

update routine the concurrent Executor counter is reset.

Task Checkpointing

The task checkpointing process discovers all the Executor’s available on the host. For each

Executor found, the Worker extracts the task ID it is executing for. The Worker subsequently

queries the Task Repository for that particular task ID and caches the task information re-

turned. If the Executor is still running, the Worker runs the task timeout subroutine. Oth-

erwise, if the Executor has exited the Worker runs the Executor cleanup subroutine.

Task Timeout The Worker determines how long an Executor has been running for by

comparing the start time of the Executor with the current time. If the Executor’s runtime

is less than the maximum runtime allowed for tasks in the AtaaS, the Executor is allowed

to continue running and the concurrent Executor counter is incremented. Otherwise the

Executor is stopped, the end time is recorded and the following task timeout cleanup

actions are performed:

1. The Executor logs are uploaded to the task folder of the task it is executing for at the

File Storage Service.

2. The number of execution attempts mode on the task is extracted from the task query

results cached earlier.

3. The task is updated in the Task Repository as following:

• If the number of task attempts exceeds the maximum number of attempts al-

lowed for a task, the task is updated in the Task Repository to a failed state along

with a task message and the end time.
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• If the number of task attempts is below the maximum number of attempts al-

lowed for a task, the task is updated in the Task Repository to a queued state

along with a task message and the end time.

• A task is updated in the Task Repository to the failed or completed state only if

its current state was running in the Task Repository.

• In the unlikely event that the task state is not running in the Task Repository, the

task is failed along with a special state violation task message.

4. The Executor is removed from the container engine of the machine.

Executor Cleanup The Worker needs to clean up the exited Executor from the host in

order allow for new Executor’s to be launched. The Executor cleanup routine consists of

performing the following actions:

1. The Executor logs are uploaded to the task folder of the task it is executing for at the

File Storage Service.

2. The task state is extracted from the task query results cached earlier.

3. The task state is verified to ensure that the Executor updated the task in the Task

Repository to a failed or completed state before exiting.

4. In the unlikely event that the verification in the above step fails, the following steps

are taken:

• The current time is recorded to serve as the end time for the task.

• The task is failed in the Task Repository along with a special Executor failure task

message and end time.

5. The Executor is removed from the container engine of the machine.

57



Task Launching

The task launching process consecutively secures a task in the queued state from the Task

Repository and then launches an Executor for the secured task until the number of con-

current Executor on the node reaches the maximum value set during the deployment of

Worker on the host. If there are no available tasks in the queued state in the Task Repository

before the number of concurrent Executors reaches the maximum value, the task launch-

ing process exits until the next periodic invocation. The tasks securing subroutine con-

sists of securing a task for execution from the Task Repository and the subsequent Executor

launching subroutine consists of launching an Executor for the secured task.

Task Securing During the task securing subroutine the Worker scans the Task Repository

for all tasks that are in the queued state. The query result list is then organized from oldest

to newest queue time. The Worker then tries to secure the oldest queued task in order to

follow a first in first out principle for task execution. The following actions are performed

repeatedly until a task has been secured:

1. In the Task Repository the state of the oldest queued task from the query result list

is updated to running, the task host is set to the host name where the Worker is

deployed, the task start time is set to the current time and the task attempt number

is incremented.

2. A strongly consistent query is performed on the Task Repository with the task ID

of the oldest queued task from the query result list to ensure that the eventually

consistent update call was successful, the task query results are cached.

3. The oldest queued task is removed from the query result list.

4. If the task query result returned different values from the update task values, an-

other Worker has secured the task.
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5. If the task query result returned the same values as the update task values, the task

has been successfully secured by the Worker.

Executor Launching During the Executor launching subroutine the Worker launches an

Executor for the task it has secured. The Executor launching subroutine consists of the

following actions:

1. The task configuration parameters are extracted from the task query result cached

earlier.

2. Using the container engine API, the Executor is launched for the task and is passed

the task ID and the task configuration parameters.

3. The concurrent Executor counter is incremented.

4.2.3 Executor

The Executor is essentially a script which runs inside a container and performs the anal-

ysis for a single task. When the script inside the Executor exits, the Executor terminates

as well. The Executor is designed to be ephemeral and resilient to failure, such that the

task it is executing for can be recovered and rerun by the AtaaS in case the Executor ter-

minates unexpectedly. On launch the Executor takes a task ID as the primary required

input and optionally the following configuration parameters; tool version, execution script,

engine models, input folders and output folders. The Executor assumes that the task it is being

launched for is already in the running state and only makes task fail or complete calls on

that condition being verified. The following actions are performed by the script in the

Executor after launching for a task analysis:

1. It is verified if the task ID was inputted, otherwise the script exits prematurely.

2. Downloads the task folder of the executing task from the File Storage Service into the

execution environment.
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3. If the engine models configuration parameter was specified, the requested engine mod-

els are downloaded into a sub folder in the task folder of the execution environment.

4. If the input folders configuration parameter was specified, the requested input folders

are created as sub folders in the task folder of the execution environment.

5. The execution script is identified:

• If the execution script configuration parameter was specified, the specified path

and name of it is verified in the task folder of the execution environment.

• If the execution script configuration parameter was not specified, it is automati-

cally detected in the task folder of the execution environment.

• If the execution script cannot be identified in the task folder of the execution en-

vironment, the Executor’s task is failed in the Task Repository along with a task

message and the end time, and subsequently the script exits.

6. The FEA tool version to use for analysis is identified:

• If the tool version configuration parameter was specified, it is verified if the

requested tool version is available within the Executor for analysis.

• If the tool version configuration parameter was not specified a default tool ver-

sion is set to be used for analysis.

• If the tool version configuration parameter that was specified is not available

within the Executor, the Executor’s task is failed in the Task Repository along

with a task message and the end time, and subsequently the script exits.

7. The FEA software of the tool version identified earlier is launched and is passed the

execution script as input.

8. The FEA software log file and select files from the task folder in the execution environ-

ment are uploaded to the task folder at the File Storage Service once the FEA software

finishes executing:
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• If the output folders configuration parameter was specified, only the requested

output folders within the task folder of the execution environment are uploaded.

• If the output folders configuration parameter was not specified, all the new and

modified files within the task folder of the execution environment are uploaded.

9. The Executor’s task is updated in the Task Repository to a completed state along with

the end time and the script exits successfully.

Once an Executor terminates it remains in an exited state on the host it ran on until the

host Worker is able to clean up the Executor in order to free up resources for new Executor’s.

4.2.4 External Services

The Task Repository, the File Storage Service and the License Management are the external

third party services used to provide critical functionality to the ATaaS. The first two ser-

vices are provided by AWS DynamoDB and AWS S3 respectively while the last service is

provided by Siemens. Each external service is used in a particular manner to enable it to

function as desired within the ATaaS.

Task Repository

The Task Repository is provided by AWS DynamoDB, where each ATaaS task is stored

into the Task Repository as an item and is identified by its task ID as the primary attribute

of the item. Additionally, all the metadata, the configuration parameters and the state

for each task is stored into the task item as attributes in the Task Repository. The Task

Repository is accessed by all the core ATaaS components, effectively serving as the primary

communication channel between all of them. There are four primary functions that the

Task Repository provides for ATaaS tasks; create task item, update task item, query task

item and scan task items.
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Create Task Item The create task item function creates an item for a task in the Task

Repository. The task item must be assigned a task ID which will serve as the primary

attribute of the item. All the task data available at creation such as the task configuration

parameters can be included as attributes. Moreover the task state, which is an attribute

that is always required to exist in a task item, is set to created. If the create task item

function is called for a task with a task ID that already exists in the Task Repository, the

existing task item is overwritten by this call.

Update Task Item The update task item function updates the data within a task item

in the Task Repository. In the function call it can be specified which task item attributes

besides the primary attribute to update and how to do it. The task item attributes are

updated as following:

• Updating the value for a key that did not previously exist consists of adding the key

value pair to the item, such as when a Worker secures a task and assigns a start time

value to it.

• Updating the value for a key that did previously exist consists of simply updating

the value for the key with what was specified in the function call, such as when the

task state is updated.

• Update the value for a key value which is a integer can consist of perform incre-

ments on the previous value, such as when the number of attempt for a task is

updated by the Worker which secures it for execution.

Finally the update task item function call can contain a condition which determines

whether to perform the update operation. The condition can be based on existing at-

tributes in the task item and uses common logical operands such as and, or, equal to, etc.

Update task conditions are primarily used within the ATaaS to ensure that update task

item calls are not violating the task state machine model when updating the task state.
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Query Task Item The query task item function retrieves an entire task item from the

Task Repository for the task ID requested. It can be requested that the task query result be

strongly consistent. Therefore the query task item function can be called right after using

the update task item function to verify if the update call was successful. This functionality

is important as it is used by the Worker in the task securing process detailed earlier.

Scan Task Items The scan task items function retrieves all the task items from the Task

Repository. It can be requested that the results be strongly consistent and be filtered ac-

cording to attribute values. A filter is essentially a condition that each task in the scan

must satisfy before being included in the results sent back to the requester. The filters are

very useful to find particular types of task items in the Task Repository, such as when the

Worker scans for only the queued tasks during the task securing process.

File Storage Service

The File Storage Service is provided by AWS S3, where all the ATaaS task files are stored in

the File Storage Service as objects at different paths in the same bucket. The path for each

task file starts at the bucket root, second comes the task ID which essentially becomes the

task folder, then any sub folders if needed and finally the file name. All the engine models

are also stored in the File Storage Service in a single folder of one bucket. The File Storage

Service is accessible and used by both the ATaaS users and components as detailed earlier

and serves to enable file storage and delivery.

There are three primary functions that the File Storage Service provides to the ATaaS;

upload files to a folder, downloading files from a folder and viewing files at a folder. There

are various different AWS API calls and CLI commands that S3 offers to accomplish the

three different functions provided by the File Storage Service. However in practice only

three AWS S3 CLI commands are used; copy, sync and list:

• Copy The copy command copies files from a local source to a s3 path or vice versa.

It can be configured to target a single file, all the files or specific types of files in a
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given folder. For example, this command is used by the Executor to download all

the task files from a task folder in S3 into its execution environment at the beginning of

a task analysis.

• Sync The sync command synchronizes all the files from a local source folder to a

s3 path or vice versa and can be configured to target specific types of files. For

example, this command can be used by the Executor to upload any new or modified

files from the task folder in the execution environment to the task folder in S3 at the end

of a task analysis.

• List The list command displays all the folders and files along with their size and

creation time at a particular path. For example, this command can be used by an

ATaaS user to view the contents of their task folder.

S3 can be accessed through a diverse set of API calls and CLI commands which are

highly customizable. Therefore the above is not an exhaustive list of all the S3 calls which

can be used in order to accomplish the functions of the File Storage Service within the

ATaaS, rather the ones which were used in our implementation of the ATaaS.

License Management Service

The License Management Service is provided by Siemens, which is a fully managed soft-

ware activation service. The legacy FEA software used by the Executor to perform task

analysis is a proprietary software that must be activated with a license from the License

Management Service on every invocation. The License Management Service communicates

with the FEA software using IP protocols and two different ports. The first port is used

to establish a connection from the FEA software and the second port is used to transmit

a license back. The License Management Service treats any license request that it receives

as valid and does not perform any additional checks such as verifying if the software is

being used in the correct region or if an authorized users is invoking it.
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4.3 Deployment Platform

The ATaaS is designed using a distributed microservice architecture and deployed in a

hybrid cloud environment with heterogeneous computers, networks and services. This

entails making use of both the public and the private cloud to leverage the benefits offered

by both. The first step to enabling a hybrid deployment was containerizing the core ATaaS

components so that they could be deployed on any host. The second step was making use

of the public cloud Amazon Web Services to offer fully managed specialized services to

the ATaaS. The third step was strategically deploying the License Management Service to

fulfill the requirements of the ATaaS and the FEA software. The last and final step was

implementing a robust networking strategy that enabled all the ATaaS components to

function cohesively while ensuring operational security and resilience for the service.

4.3.1 Containerization

The core ATaaS components are all built and packaged into Docker containers as using

the Docker container engine allowed for the ATaaS to depend on a well developed and

supported container technology. This is evidenced by the Docker having extensive Win-

dows container support which is critical as the FEA software used by the Executor is only

available on Windows. Utilizing containers for the core components allows for their de-

ployment to be flexible, enabling any computer to host a core component of the service.

The base ATaaS container image for every core component of the ATaaS begins from a

base windows image, which results in the ATaaS core components only being deployable

on Windows hosts. Subsequently, every ATaaS container image has the AWS CLI installed

on it, and the IAM credentials for accessing AWS services are embedded into the container

as environment variables. Furthermore, each core component further builds on top of the

base ATaaS container image and utilizes the container technology in a tailored way to

effectively deliver its functionality.
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Manager

The Manager is a Python Flask web server packaged into a container, which is accom-

plished through the following steps:

1. Installing Python and Flask into the base ATaaS container image.

2. Copying the web server source code into the container image.

3. Loading the python libraries required by the web server into the container image.

4. Exposing the container image on the web server port.

5. Designate launching the web server as the entry point of the container image.

When launching the Manager, the web server container port must be mapped to a host

port. As long as the Manager container is active the web server within will run and serve

as a primary endpoint of the ATaaS. Multiple Manager containers can be launched with-

out interfering with each other. Therefore each Manager instance serves an independent

primary endpoint of the ATaaS, this allows the ATaaS primary endpoint to be deployed

and available on many different hosts ad networks.

Worker

The Worker is a Python Flask web server packaged into a container, which is accomplished

through the following steps:

1. Installing Python and Flask into the base ATaaS container image.

2. Copying the web server source code into the container image.

3. Loading the python libraries required by the web server into the container image.

4. Designate launching the web server as the entry point of the container image.
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Unlike the Manager, the web server port does not need to be exposed and mapped to

the host. This is because the web server inside the Worker periodically and internally calls

the update routine and does not serve any requests. As long as the Worker container is

active, the web server within will launch and manage task Executor’s on the host. Sub-

sequently, in order for the Worker to launch and manage Executor’s, the Worker need to

have access to the host’s Docker API. This must be done by configuring the host’s docker

engine to expose the API endpoint to the isolated network where the containers operate.

When launching the Worker container, the host’s Docker API endpoint and the number

of Executor’s the Worker is allowed to launch concurrently can be specified as container

parameters which would be passed through to the web server. If the host’s Docker API

endpoint is not specified the Worker will assume it is available at the default gateway of

the host container network. Lastly, multiple Worker’s can be launched overall however

only one Worker per host should be deployed as the Worker operates as a node agent.

Executor

The Executor is a PowerShell script which performs the task analysis with FEA software

inside a container, this is accomplished through the following steps:

1. Copying every version of the FEA software and resources into the base ATaaS con-

tainer image.

2. Installing every version of the FEA software inside the container image.

3. Setting the License Management Service endpoint for the FEA software as an environ-

ment variable.

4. Copying the PowerShell script into the container image.

5. Designating the PowerShell script as the entry point of the container image.

When launching the Executor container, the task ID and the task configuration param-

eters can be specified as parameters which would be passed through to the PowerShell
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script. The Executor containers are ephemeral and are designed to terminate once the

execution for the task has been completed.

4.3.2 Amazon Web Services

AWS DynamoDB, S3, EC2 and IAM services are used by the ATaaS to deliver its service

without having to implement every functionality required. As explained earlier the Task

Repository was provided by DynamoDB and the File Storage Service was provided by S3.

Moreover, EC2 was used to provide computer hosts that would serve as nodes in the

ATaaS and IAM was used to generate access credentials for the AWS services. The de-

ployment and configuration of each of these services within the context of the ATaaS is

further detailed below.

DynamoDB AWS NoSQL database DynamoDB was used to provide the Task Repository

as a service to the ATaaS. It was configured to use task ID’s as the primary attribute of any

item within. The service was provisioned be on demand such that it would scale automat-

ically to service any number of read or write requests. In order to respect the geographic

restrictions of IT infrastructure deployments within Siemens, it was not replicated across

different regions in the world. The database was made to be accessible through the gen-

eral internet as long as the requests were authenticated with the proper IAM credentials.

S3 AWS S3 was used to provide the File Storage Service to the ATaaS. Two buckets were

created for the ATaaS, one for all the task folders and another for all the engine models.

The first bucket served to store the task files within their respective task folders and the

second bucket to store engine models, both using the object path scheme introduced in

Section 4.2.4. The buckets were configured such that their data would only exist in one

region to ensure that AGT data did not cross international borders as prohibited by export

control laws. Each bucket was secured such that they could only be accessed with IAM

credentials and not through any public endpoint.
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EC2 AWS EC2 was used to provide nodes on which the Worker could be deployed so

that Executors could be launched to perform analysis for tasks. The EC2 machines were

running Widows as their OS and were configured to have at minimum the CPU, memory

and networking capacity to reliably run at least one Executor. The machines also had IAM

credentials attached to them allowing access to the DynamoDB table and S3 buckets pro-

visioned for the ATaaS, allowing any process within the EC2 to access the Task Repository

and File Storage Service automatically. Lastly, the EC2 Machines were all in the same EC2

Virtual Private Cloud (VPC) and hence were in the same local area network and shared

the settings associated to the VPC such as networking security.

IAM AWS IAM was used to provide credentials to the ATaaS core components and

users in order to access AWS services. IAM credentials are used in the ATaaS to authenti-

cate requests made to S3 for the File Storage Service and DynamoDB for the Task Repository.

Following the operational security principles of giving access of least privilege, two sets

of credentials were created; one for the core components and the other for end users.

• Core Credentials: The IAM credentials for the core components granted full access

to the S3 buckets used in the File Storage Service and the DynamoDB table in the Task

Repository. These IAM credentials were either embedded within the container for

each core component or the EC2 machine that was running any core component.

• User Credentials: The IAM credentials for the users granted write, read and list

access to the objects of the S3 bucket used for task folders. These credentials would

allow the user to manipulate any possible task folder and file.

4.3.3 Hybrid Cloud Deployment

The ATaaS is designed using a distributed microservice architecture which means that it

can take advantage of a hybrid cloud deployment. The core components of the ATaaS

can be deployed anywhere as long as they have access to the external third party services
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utilized in the architecture. A hybrid cloud deployment of the ATaaS enables the system

to take advantage of underutilized on-premise hosts to act worker nodes in the ATaaS.

The most important aspect in ensuring that hybrid deployment of the ATaaS is functional

is the correct networking between all the components as explained in Section 3.2.4. Fig-

ure 4.1 showcases the ATaaS component placement and the general networking configu-

ration for a hybrid deployment.

License Management Service The License Management Service is deployed on private

Siemens Energy infrastructure and managed as a service by Siemens Energy IT. The de-

ployment of the License Management Service must be in a private corporate network where

all network users can be implicitly trusted due to the lack of any security mechanism

within the service itself. In a hybrid deployment the License Management Service must be

exposed to the public cloud Worker nodes using a secure private connection such as a

VPN tunnel instead of traversing the public internet. This means that any Worker node

using a public cloud instance without a secure network path to the License Management

Service is guaranteed to timeout all the Executor’s it would launch as the FEA software

would freeze during the license authentication request.

AWS Services The Task Repository and the File Storage Service within the ATaaS are AWS

services which can be accessed using the general internet as all requests are encrypted and

authenticated using IAM credentials. This introduces the requirement that any non EC2

host with a Manager, Worker or Executor must maintain general internet access to the AWS

service endpoints to function correctly. It is important to note that the Task Repository

serves as the message passing service of the system, therefore general internet access

becomes critical for the proper operation of the ATaaS. The File Storage Service is primarily

used by the Executor, without access to it the Executor will never be able to perform any

actual FEA as all task files would be unavailable.
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Figure 4.1: Hybrid cloud deployment and networking for ATaaS
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Manager The ATaaS primary service endpoint served by the Manager implements no

security or authentication mechanism. Any entity which can reach the network address

and port of the Manager would have access to the ATaaS primary service endpoint. In

order to secure the ATaaS primary service endpoint the Manager should only be deployed

on hosts in networks where all inbound traffic can be implicitly trusted to use the ATaaS.

Hence the Manager is preferably deployed in a closed network such as the network of the

corporate private cloud or the EC2 VPC.
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Chapter 5

Validation

The ATaaS was designed, built and then deployed for testing and validation of the ser-

vice. The core components and the entire system were manually tested to ensure that

they operated as envisioned. Subsequently, the ATaaS was validated experimentally to

demonstrate that the performance and behaviour of the system were as expected and

fulfilled our two research questions.

5.1 Testing

The correctness of the ATaaS is validated by testing the individual components and the

system as a whole to ensure that they operate as required. First, each core ATaaS com-

ponent must be tested individually in isolation to verify that it correctly performs its

designated functionality. Since the ATaaS uses a distributed microservice architecture,

the Manager, the Worker and the Worker are the key components that had to be tested

individually to ensure that designated behaviour can be observed upon certain inputs.

Once all the core components have been individually tested, the entire system must

be tested to ensure that the ATaaS functions as envisioned. Black box testing is used for

the system as such that it is verified for a set of inputs, the outputs are as expected.
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5.1.1 Component Testing: Manager

The Manager was tested to ensure it provides a functional and correct service to ATaaS

users as the primary endpoint. The Manager endpoint provides a web based RESTful

API which allows users to create, queue and get tasks. Each API URI was tested with

multiple different requests in order to verify the ability of the Manager to respond to valid

and invalid requests. Testing each API URI individually and independently is essential

in ensuring that the system can handle production workloads without malfunctioning.

Create Task

As main success scenario (CT1), the create task API call was tested with a valid task cre-

ation request in which all the configuration parameters and the owner were specified.

The result of this test was successful as verified by the response given by the Manager re-

turning a valid task ID. As further validation the task ID was manually queried in the Task

Repository and the task item returned contained all the task configuration parameters as

specified in the request, the created task state as required and all the metadata was sound.

Subsequently the create task API was tested with two invalid task creations requests.

In the first invalid request (CT2) the owner was not specified, which resulted in no task ID

being returned and a debug message indicating the issue. In the second invalid request

(CT3) a non existent tool version was specified as a configuration parameter, which re-

sulted in no task ID being returned and a appropriate debug message. These tests demon-

strated that the API call could protect the Task Repository from ill-formatted task creation

requests while providing feedback to the user.

Queue Task

As main success scenario (QT1), the queue task API call was tested with a valid task queu-

ing request in which a task ID for a task in the created state was specified. The result

of this test was successful as verified by the response given indicating that the task was
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successfully queued. As further validation, the task ID was manually queried in the Task

Repository and the item returned indicated a queued task state and the correct queue time.

Subsequently the queue task API was tested with two invalid task queuing requests.

In the first invalid request (QT2) a non existent task ID was specified, which resulted in

the response simply containing a debug message identifying the issue correctly. In the

second invalid request (QT3) a task ID was specified for a task that was not in the created

state, which resulted in the response containing a debug message correctly indicating that

the task cannot be queued due to its state. This test demonstrated that the API call would

not violate the task state machine model.

Get Task

As main success scenario (GT1), the get task API call was tested five times with a valid get

task request in which a task ID for a task in a particular state was specified. The five states

from the task state machine model was tested; created, queued, running, completed or

failed. For every request the results of the test were successful as the task configuration

parameters, metadata and state returned in the response were as expected and the manual

query of the Task Repository with the task ID confirmed the latter.

Subsequently, the get task API call was tested with two invalid get task requests. In

the first invalid request (GT2) a non existent task ID was specified, which resulted in the

response simply containing a debug message informing that the task ID requested did

not exist in the ATaaS. In the second invalid request (GT3) no task ID was specified in

the request, which again resulted in the response containing a debug message identifying

the request issue correctly. These tests demonstrated the ability of the Manager to clearly

provide feedback to the user when something failed.

5.1.2 Component Testing: Worker

The Manager was tested to ensure that it can secure tasks and launch and manage the

Executor’s for its tasks correctly. The Manager is a web server with a update routine that it
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periodically and internally invokes in order to perform task timeouts, task cleanups and

task launching. Each of these main functionalities was tested by creating special tasks

in the Task Repository and setting up the host of the Worker in a particular manner. The

following actions can be considered as inputs and then the behaviour of the Worker was

considered as the output.

Task Timeout

As main success scenario (TT1), an Executor was manually launched for a special task in

the Task Repository with a set runtime that would exceed the maximum runtime allowed

by the ATaaS and an attempt count below the maximum value. Once the Executor ex-

ceeded the maximum allowable runtime, the Worker stopped and cleaned up the Executor

as expected and then requeued the task.

Subsequently, we then let the Worker relaunch Executor’s for this special task (TT2)

until it was attempted the maximum number of times allowable by the ATaaS, at which

point the Worker stopped and cleaned up the Executor as expected and then failed the task

in the Task Repository. The successful behaviour of the Worker demonstrated its ability

to correctly timeout tasks which seem to be running excessively long and subsequently

communicate this information to the user as important feedback.

Task Cleanup

As main success scenario (TC1), an Executor was manually launched for a valid task onto a

node and allowed to execute to completion. Once the Executor terminated it was success-

fully verified that the Worker’s update routine cleaned up the task correctly by uploading

the container logs of the Executor to the appropriate task folder in the File Storage Service,

removing the Executor from the node and then identifying that the Executor successfully

updated the task state to completed in the Task Repository.

Subsequently, the same test above was performed (TC2) however the Executor was

manually terminated before it could complete. In this case it was successfully verified that
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the Worker’s update routine correctly cleaned up the task by identifying that the Executor

did not update the task state to completed or failed in the Task Repository and subsequently

failing the task in the Task Repository along with an appropriate debug message and end

time. This showcased the ability of the ATaaS to recover from the sudden termination of

an Executor in case of a unknown error.

Task Launching

As main success scenario (TL1), multiple valid tasks in the queued state were created in the

Task Repository. It was then successfully verified that the Worker’s update routine scanned

for queued tasks in the Task Repository, organized all the queued task results by queue

time, secured the oldest tasks and launched an Executor for each until the maximum

number of concurrent Executor was reached. It was further verified that each Executor

launched by the Worker was properly passed all the task’s configuration parameters.

Subsequently, once all the queued tasks were taken from the Task Repository (TL2), it

was successfully verified that the Worker’s update routine identified the lack of queued

tasks in the Task Repository and exited without launching any new Executors. Lastly, for

a Worker that had the maximum number of Executors running (TL3), it was successfully

verified that the the Worker’s update routine did not attempt to launch more Executors.

5.1.3 Component Testing: Executor

The Executor was tested to ensure that it is able to perform FEA for tasks correctly. The

Executor is a script within a container which passes a execution script to a particular version

of the FEA software within to perform the FEA for a given task. There were two tests

performed on the Executor, one with a valid task and another with a invalid task. For

each test, a special task in the running state was created in the Task Repository for both

tests as inputs and the behaviour of the Executor was considered as the output.
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Valid Task (ET1)

A valid task was manually created in the Task Repository in which every configuration pa-

rameter was set. Moreover, all the required task files for this task, including the execution

script, were uploaded to the task folder in the File Storage Service. A Executor for this task

was then launched and passed the task ID and all the configuration parameters. It was

then successfully verified that the Executor performed correctly:

1. All the task files from the task folder in the Fie Storage Service were downloaded into

the task folder of the execution environment.

2. All the engine models specified were downloaded from the the Fie Storage Service

into the task folder of the execution environment.

3. All the input folders specified were created as sub folders in the task folder of the

execution environment.

4. The execution script is verified to exist at the location specified in the task folder of the

execution environment.

5. The correct version of the FEA software is launched as specified by the tool version,

it is passed the execution script as input.

6. Upon completion of the analysis, the FEA software log file and the output folders

specified are uploaded from the task folder in the execution environment to the task

folder in the File Storage Service.

7. The task state is updated to completed in the Task Repository along with the end time.

Invalid Task (ET2)

An invalid task was manually created in the Task Repository in which every configura-

tion parameter was set. However, all the required task files for this task, including the

required execution script, were not uploaded to the task folder in the File Storage Service. A
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Executor for this task was then launched and passed the task ID and all the configuration

parameters. It was then successfully verified that the Executor performed correctly:

1. No task files from the task folder in the Fie Storage Service were downloaded into the

task folder of the execution environment as they were never uploaded.

2. The execution script is verified to not exist at the location specified in the task folder

of the execution environment.

3. The task state is updated to failed in the Task Repository along with the end time and

a debug message.

5.1.4 System Testing

The entire ATaaS system must be tested to ensure that users can perform FEA with it from

task creation to completion. As main success scenario (ST1) we test the ATaaS by creating a

computationally demanding FEA task and then using the ATaaS to execute the task. The

results of this analysis were then verified to ensure that the ATaaS functioned correctly.

The test was successfully performed manually as outlined below along with a detailed

UML sequence diagram of the internal system calls in figure 5.1.

1. Task Preparation: A local task folder was prepared on the machine of a user, inside

which the execution script and any additional task files were placed.

2. Task Initialization: A create task request was made to a Manager service endpoint

by the user and a task ID was returned. In the create task request, the user’s email

was specified and the following configuration parameters were set as determined

by the objectives of the task and the execution script:

• Tool Version: The required FEA software version to invoke for the analysis.

• Execution Script: The path and name of the execution script that was prepared

inside the local task folder and will ultimately be in the execution environment.
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• Engine Model: The engine model to download into the task folder of the execution

environment so the execution script can use it during analysis.

• Input Folder: The empty folder to create inside the task folder of the execution

environment so the execution script can write data to it during analysis.

• Output Folder: The sub folder in the task folder of the execution environment that

will contain the desired results from the FEA, which will need to be uploaded

back to the task folder in the File Storage Service for the user to retrieve.

3. Task File Submission: The AWS CLI was used to upload the entire local task folder

to the task folder in the File Storage Service according to the task ID returned earlier.

4. Task Queuing: The queue task request with the task ID was made to a Manager

service endpoint by the user and a success message was returned.

5. Task Getting: The get task request with the task ID was made to Manager service

endpoint by the user to verify the queued status the task and ensure all the task

configuration parameters set set correctly.

6. Task Launching & Executing: The above get task request was periodically made

until the task state changed to running and and subsequently completed.

7. Task Output: The AWS CLI was used to download all the task results from the task

folder in the File Storage Service into the local task folder.

8. Task Verification: It was successfully verified that the task result files were correct

and as expected for the FEA requested. Additional log files from the FEA software

were also present and valid.

The above test was similarly performed on a batch of tasks using the service script

(ST2) in order to validate its automation capability and benefits. In this test a local batch

folder with individual task folders was prepared and the service script was used to au-

tomatically create the tasks in the ATaaS, upload the local task folders accordingly and
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Figure 5.1: UML Sequence Diagram of internal system calls for scenario ST1

then queue the tasks. The results from the completed tasks were successfully verified to

be correct. This test demonstrated that the tools we developed for users to more easily

and effectively use ATaaS worked as intended.

5.2 Experimental Validation

The deployment platform of the ATaaS has multiple parameters which have an impact on

the performance of the overall system. Understating how each variable affects the sys-

tem in order to optimize the execution time of the analysis tasks while minimizing the

resource wastage is essential when determining the deployment strategy of the ATaaS.

Furthermore, ensuring that the ATaaS offers better execution time performance than the

existing solutions helps justify the business use case of the system. Finally, validating

the ATaaS on real engineering analysis tasks proves that the system can handle produc-

tions workloads while delivering the promised benefits of automation, scalability and

increased execution time performance.
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As an experimental validation of the proposed ATaaS architecture, we carried out

measurements to address two main research questions:

• RQ1: How do various platform parameters influence the performance of the pro-

posed architecture?

• RQ2: How does the proposed architecture perform for real engineering analysis

tasks?

5.2.1 Performance Estimation Models

Mathematical models for any software system may enable to analyze or predict key char-

acteristics of the system without prior to execution. For that purpose, we first define

two models to estimate the end-to-end task time and the task analysis time. We then use

values from these two models to build a high-level performance estimation model. Such a

performance estimation model for the proposed ATaaS architecture reveals how the various

platform parameters would affect the total service time for a batch of analysis tasks. Sub-

sequently, we derive a maximum task wait time model from the three previous models.

Task Time Model

The end-to-end execution time of a single task from when it was queued to when it will

complete can be modelled as following:

T task = Twait + T launch + T analysis

The formula uses the following notation:

- T task: The total response time to execute an analysis task from queuing to completion

- Twait: The amount of time a task waits in the queued state while the nodes in the

ATaaS are executing other analysis tasks, this should only occur if the number of

tasks exceeds the concurrent task execution capability of the entire ATaaS
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- T launch: The amount of time it takes for a Worker to invoke its update routine, check-

point all of its existing tasks and secure the task and launch an Executor for it

- T analysis: The amount of time it takes for an Executor to run for an analysis task from

creation to completion.

Analysis Time Model

We can further break down T analysis for a single task into a model as following:

T analysis = T setup + T execution + T cleanup

Where the following notation is used:

- T setup : The amount of time the Executor takes to setup the execution environment from

container creation until invocation of the FEA software for analysis

- T execution: The amount of time the FEA software within the Executor takes to perform

the FEA for a given task that it was invoked for

- T cleanup: The amount of time the Executor takes to cleanup the task until the container

exits

Service Time Model

Assuming that the ATaaS is idle, the total execution time for a batch of similar analysis

tasks queued together can be estimated using the following performance estimation model:

T service =

⌈
M∑N
i=1C i

⌉
× (T analysis + T launch)

The performance estimation model uses the following notation:

• N : The number of nodes
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• Ci : Concurrency, i.e. the maximum number of concurrent Executors on a node

• M : The number of analysis tasks in the batch

• T analysis : The approximate runtime of an Executor for a single task in the batch

• T launch : The amount of time it takes for a Worker to invoke its update routine, check-

point all of its existing tasks and secure the task and launch an Executor for it

We call the sum of all node concurrencies the Concurrent Executor Capacity of the ATaaS.

Maximum Wait Time Model

Figure 5.2 illustrates how individual tasks (in a batch of tasks) can be assigned to different

nodes. One can observe that Twait depends on the scheduling of the individual tasks. For

example, Twait-1 = 0 and Twait-2 = 0 while Twait-3 and Twait-4 equal to T task-1 and T task-2,

respectively. Henceforth, from that we can model that Twait for any given task in a batch

of tasks can be expressed as following:

Twait ≤ T service − (T analysis + T launch)

𝑇𝑙𝑎𝑢𝑛𝑐ℎ−1

𝑇𝑙𝑎𝑢𝑛𝑐ℎ−2

𝑇𝑙𝑎𝑢𝑛𝑐ℎ−3

𝑇𝑙𝑎𝑢𝑛𝑐ℎ−4

𝑇𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠−1

𝑇𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠−2

𝑇𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠−3

𝑇𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠−4

Node 1, C1 = 1

Node 2, C2 = 1

𝑇𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑇𝑤𝑎𝑖𝑡−3 = 𝑇𝑡𝑎𝑠𝑘−1

𝑇𝑤𝑎𝑖𝑡−4 = 𝑇𝑡𝑎𝑠𝑘−2

Task Batch

Queue Time

Task 

Batch

M =4

Concurrent Executor Capacity = 2

Figure 5.2: Twait for tasks in a batch (with M = 4 and Concurrent Executor Capacity = 2)
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5.2.2 Experiments for RQ1

Theoretical Estimate

From analysing the performance estimation model we can observe that the two main

variables that effect the total service time for a batch of tasks is the number of tasks in the

batch (M ) and the Concurrent Executor Capacity of the deployment. If we input different

values for the variables in the performance estimation model we can observe how T service

is affected. T launch can be considered as a constant as it is related to the frequency of the

update routine in the Worker which is five minutes for our test deployment, therefore we

set T launch = 5 minutes. If we input various different values of M = 5, 10, 15 and Concur-

rent Executor Capacity between [1 : 15] for T analysis = 5, 10, 15 minutes in the performance

model, we obtain the following graphs for T service in Figure 5.3.

From analyzing these graphs, we can extrapolate that if Concurrent Executor Capacity

is equal to one then the ATaaS essentially becomes a sequential analysis system where

T service is at its maximum and the only benefit that the ATaaS provides is automation.

Furthermore, we observe that once the Concurrent Executor Capacity is equal to M , T service

reaches its minimum at which point T service = T analysis + T launch. Increasing the value of

Concurrent Executor Capacity beyond M will offer no performance gain.

We also observe that while T analysis affects the T service maximum and minimum, it has

no theoretical impact on the rate of change of the T service for task batches of the same size.

Therefore it is important to consider that regardless of T analysis, the Concurrent Executor

Capacity in a deployment provides diminishing returns in terms of T service for every extra

node. For a deployment with a static number of nodes, setting the value of Concurrent

Executor Capacity should be done such that T service is small enough to meet business dead-

lines without over provisioning resources that will bring relatively little gain.
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(a) T analysis = 5 minutes

(b) T analysis = 15 minutes

(c) T analysis = 30 minutes

Figure 5.3: Estimation of T service w.r.t. to Concurrent Executor Capacity and the number
of tasks in the batch (M )
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Simulated Estimate

Simulation Setup The performance estimation model was simulated on an ATaaS de-

ployment in an public cloud setup with two identical EC2 machines for nodes. Each

Worker on the nodes was configured to have a different Executor Concurrency depending

on the Concurrent Executor Capacity experiment that was being performed. The Worker’s

all had an update routine frequency of five minutes. There was a Manager deployed on

the local computer from where the tests were being performed in order for the tester to

interact with the ATaaS. The simulated analysis tasks being used for the tests were the

same as real engineering analysis tasks except for the following difference:

1. During the task execution phase of the Executor the FEA software was not invoked

and instead a sleep command with a set time was invoked

2. Since no actual task result files would be generated during the task execution phase,

a sleep command was used during the task cleanup phase to simulate uploading

task result files.

The sleep command allowed us to simulate the performance estimation model while en-

suring that T analysis was relatively homogeneous between the different tasks in a batch, the

task setup phase of the Executor was real. Furthermore, using the sleep command enabled

us to test the performance estimation model for different values of the Concurrent Execu-

tor Capacity as we could increase the Concurrency for each of the two EC2 nodes without

reaching their computational limit.

The performance estimate model assumes that M tasks in a batch would be available

instantaneously in the queued state for execution. However, in our simulation setup, the

individual tasks in a batch could only be queued sequentially one after another. Hence in

our simulation tests the task batch does not have a universal queue time which makes it

impossible to calculate the simulated service time for a batch of tasks. In order to address

this issue we recorded the individual queue time for each task in a batch and then we

considered the median queue time and the last queue time as replacement for the task
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batch queue time. This allowed us to have a meta task batch queue time that could serve

in our calculations and validate our simulation results against theoretical estimates.

Simulation Results We picked certain input values from the above theoretical estimates

and tested them onto the simulation setup detailed earlier in order to generate simulated

performance estimates for the ATaaS. We tested the model setup for task batches of size

M = 10 with Concurrent Executor Capacity = 2, 4, 6, 10 for T analysis = 5, 10, 15 minutes, and

we obtained the following graphs for T service in Figure 5.4.

We observe from the simulation results in Figure 5.4 that T service for any data point is

generally below the performance estimate from the model. The only scenarios in which

the performance estimate does not hold true is for when Concurrent Executor Capacity = 10

and we use the median queue time for calculating T service. This can be explained by the

fact that when the 10 tasks were sequentially queued over a period of time longer than

the frequency of the Worker update routine, it resulted in the Concurrent Executor Capacity

not being fully utilized for all 10 tasks by the median queue time.

Concurrent Executor Capacity T analysis = 5 T analysis = 15 T analysis = 30
2 25.99% 10.23% 2.82%
4 37.15% 21.96% 9.31%
6 69.81% 11.56% 4.50%
10 34.06% 16.51% 0.20%

Table 5.1: T service percent difference between performance model estimate and simula-
tions results using last tqueue for calculations

If we observe Table 5.1 for the percent difference between the simulation results and

the theoretical estimate from the performance model we can deduce that as T analysis be-

comes smaller the estimates from the performance models becomes more inaccurate. Fur-

thermore, looking at the simulation results empirically we can assume that the that per-

formance estimate model is valid and can be used as reliable indicator for T service for any

ATaaS deployment.
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(a) T analysis = 5 minutes

(b) T analysis = 15 minutes

(c) T analysis = 30 minutes

Figure 5.4: Comparison of estimated and simulated T service w.r.t. to Concurrent Executor
Capacity for M = 10, T launch = 5
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Threats to Validity There are certain threats to validity of the simulation setup and

results which are used to validate the performance estimate model. Although empirically

the performance estimate model is a good indicator of T service as verified by the simulation

results, we outline the following threats to the validity of that statement:

• The simulation results were derived from a single run of the simulation input data

points and hence we cannot make any statistical statement about the validity of our

simulation results.

• The task batch queue time did not truly exist and a meta value was used (last and

median queue times) as the task batch could not be instantaneously be queued. It

would have been preferred to develop a mechanism to queue tasks in parallel in

order to have a true task batch queue time.

• The analysis tasks were simulated using a special Executor container in which the

task execution time and task cleanup times were set. It would have been ideal to

use a probability models and have these values be stochastic in order to increase the

variance and validate the performance estimate model.

RQ1: Summary of results

The ATaaS performs as expected depending on the configuration of the deployment. The

following platform parameters influence the performance of the proposed architecture:

• The number of analysis tasks in conjunction with the Concurrent Executor Capacity

determines how many analysis tasks can be performed in parallel on the proposed

architecture. As the ability to parallelize increases more tasks can be processed in

the same unit of time.

• The execution time for any given analysis task determines the minimum amount of

time required to process the task. Increasing Concurrent Executor Capacity will not

speedup individual task times.
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5.2.3 Experiments for RQ2

The ATaaS has to be tested and validated on real engineering tasks in order to ensure that

performs as designed. In order to accomplish this real engineering tasks would be tested

on a hybrid cloud deployment of the ATaaS as well on a local server with traditional

scripts. Through these tests we will be able to gauge and compare the performance of the

proposed architecture.

Hybrid Test Setting

Hybrid Setup In order to observe the performance of the ATaaS with real engineering

tasks, we decided to deploy a fully operational system. As the ATaaS is built using a

distributed microservice architecture to be deployed on a hybrid cloud, we deployed the

ATaaS across different machines and networks spanning the public and private cloud as

modeled in Figure 4.1. For our particular setup of the ATaaS we used two AWS public

cloud EC2 instances and one Siemens private cloud server as worker nodes each having

a Concurrency = 1 for a Concurrent Executor Capacity = 3. We tested M = 10 real engineer-

ing task batch with each task ideally having T analysis = 150minutes. The worker update

routine runs every 5 minutes so we can expect to observe T launch ≤ 5minutes.

Hybrid Results The real engineering tasks T service performance on the hybrid deploy-

ment of the ATaaS are outlined as following in Table 5.2. T service is calculated twice and

uses a meta task batch queue time as outlined earlier, one being the last queue time for a

task in the batch and the other being the median queue time for a task in the batch. T task,

T analysis and T service are all calculated in minutes as following:

• T task = tend − tqueue

• T analysis = tend = tstart

• T service-last = tend-10 − tqueue-10
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• T service-median = tend-10 − tqueue-5/6

Task # tqueue tstart tend T task T analysis

Task 1 07:04:43 07:05:27 09:22:28 137.75 137.02
Task 2 07:05:43 07:06:38 10:15:55 189.28 189.28
Task 3 07:07:23 07:09:20 10:17:27 190.07 188.12
Task 4 07:08:57 09:29:41 12:05:59 297.03 156.30
Task 5 07:09:58 10:20:32 13:28:47 378.82 188.25
Task 6 07:10:57 10:21:20 13:28:47 377.83 186.95
Task 7 07:11:58 12:16:50 14:54:49 462.85 157.98
Task 8 07:12:58 13:31:22 16:38:18 565.33 186.93
Task 9 07:13:58 13:34:34 16:43:22 569.40 188.80
Task 10 07:14:59 15:00:50 17:26:39 611.67 145.82
T service-last 611.67
T service-median 616.20

Table 5.2: T task for all the tasks along with T service for a batch of tasks

If we were to use the performance estimation model to estimate what Tservice should be

for an ATaaS with aforementioned settings, T service would be 620minutes. In our real en-

gineering test where tasks are not perfectly identical and the computational capability of

each node is heterogeneous, we notice that T analysis varies between 145 and 190 minutes.

The variation can be explained by the fact that the EC2 nodes have less powerful CPU’s

then the Siemens server. Despite this variation, the model we built is still able to pro-

vided a reasonable estimate with less than 0.61% difference than the theoretical estimate.

Furthermore, the task result files for each task in the batch were empirically verified by

engineers to ensure if the FEA was performed as required, to which they were satisfied.

Local Test Setting

Local Setup In order to compare the performance of the ATaaS with the existing pro-

cess of launching the FEA software locally using a custom script and local task folders,

we deployed a local standalone machine with four cores and executed on it the same task

batch used for the hybrid test. In a local setup the FEA software was invoked ten times si-

multaneously by the script and passed the execution scripts for each task in the batch from
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the local task folder. Therefore, we can only measure T execution as there is no Twait, T launch,

T setup and T cleanup for tasks in a local setting as these concepts relate to the automation

provided by the ATaaS. T service for the batch is calculated as the difference between the

end time of the last task and the invocation time of the custom script.

Local Results The T execution for each task and the T service in minutes for the task batch

(same one from the hybrid test) in the local setup are outlined in Table 5.3.

Task # T execution

Task 1 387.85
Task 2 445.47
Task 3 448.45
Task 4 451.12
Task 5 451.25
Task 6 452.95
Task 7 454.98
Task 8 456.37
Task 9 456.42
Task 10 460.77
T service 460.80

Table 5.3: T execution for all the tasks along with T service for a batch of tasks

We observe that T service for the batch of tasks is lower than the hybrid setup however

when you factor that this was performed on a four core machine, the ability to parallelize

the tasks was greater than the ATaaS (Concurrent Executor Capacity = 3). However, we

also observe that since 10 tasks were simultaneously launched on the local machine, the

individual T execution was significantly longer than T analysis (387.85 � 189.28), even though

T analysis additionally includes T setup and T cleanup. This showcases that the CPU schedul-

ing on local machine slows down all the tasks in the batch in order to perform the task

execution in parallel rather than trying to finish each task as quickly as possible before

moving on to another task like the ATaaS. Due to ability to set the Concurrency per node

appropriately (C i should generally be set to less than the number of cores on a node), the

individual T analysis will generally be lower than T execution when launching task batches all
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at once on a local machine. We can also postulate that with a larger Concurrent Executor

Capacity, the ATaaS would have had a lower T service time compared to a local machine.

RQ2: Summary of results

The hybrid test demonstrated the ability of the ATaaS to perform FEA for real engineering

analysis tasks and produce valid results while also meeting the expected performance

time based on the deployment setup. When compared to local test the ATaaS completed

each task significantly quicker than a local machine and given enough compute resources

it would reduce the overall execution time of real engineering analysis tasks significantly.

Therefore, we can conclude that the the proposed architecture performs adequately for

real engineering analysis tasks.
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Chapter 6

Related Work

Cloud-based distributed computing is an emerging computing paradigm that is widely

used to implement various configurable and reliable models of computing resources like

servers, networks, services, database/file storage, and applications [27, 36, 77]. Some of

the key benefits that lead to refactoring of several applications, softwares, and analy-

sis tools are; reducing the cost of ownership, reducing time-to-market a product (soft-

ware/tool), increasing the application resilience, enabling scalability, and improving the

security of an application [2]. Furthermore, due to fast-emerging solutions in speeding up

and automating applications, several references to the related work are available in the

literature. Therefore, in the following sections, we present and discuss some of the most

important related works about cloudification, job submission systems in grid computing,

containerization in distributed computing, and ATaaS because these works directly align

with the scope of this thesis.

6.1 Cloudification

Although several applications are being rearchitected for cloud platforms (referred to as

cloudification), this process of rearchitecting is always associated with several challenges

like dependencies, the complex nature of the application, and many more. Researchers
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have developed different methodologies to cloudify several applications, platforms, soft-

ware, and infrastructures [3, 35]. However, in this section, we mainly focus on the cloud-

ification of legacy tools because it directly aligns with the scope of this thesis. One of the

solutions for cloudification of the legacy tool is Service-oriented Architecture, in which

the functions are defined as services, and these services are connected with well-defined

interfaces [14, 33]. This enables it to reconfigure tools in a loosely coupled set of services

to prepare them for cloudification. Another solution is to enable the multi-tenant feature

using application profiling and categorization, which migrates the legacy application,

including infrastructure, on the cloud [8, 76]. Other solutions include reverse engineer-

ing and implementing the code in another programming language, wrapping the legacy

code [60,70], and tool-supported model-driven technology [63]. Although these solutions

provide cloudification of legacy tools, the research in this direction is in the early stage,

and several open research challenges require further investigation [33], for example; the

unknown internal structure of the application, lack of knowledge for infrastructure envi-

ronment, multi-tenancy influence, variability in configuration based on user preferences,

and different resource requirements.

In summary, before cloudification of legacy analysis tools, the following key parame-

ters should be considered; (1) architecture implications of legacy system migration to the

cloud, (2) quality attributes of the transformation of the architectural elements, and (3)

the most affected architectural elements.

6.2 Grid Computing

Grid computing is a distributed computing paradigm that pools heterogeneous computer,

storage, network and software resources from various sources to provide computing and

associated services to a target community through a unified interface [11]. The man-

agement software for any compute grid always provides a job submission system such

that users can utilize the grid effectively, along with workflow management for complex
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tasks [34]. There are many grid management toolkits available to use on commodity

hardware and software each with their own set of capabilities and availability.

Globus is a fully developed grid computing toolkit for UNIX based machines that en-

abled global deployments of grids and was widely used in the academic community to

share computing resources [24, 25]. However, as of 2018 the Globus project was retired

due to a lack of funding [23]. Another widely used toolkit for grid management and job

scheduling system for Linux based machines is SLURM [81]. Moreover, SLURM is an ac-

tive open source project with ongoing research and development [78]. It is important to

note that both of these grid computing solutions are not built for Windows which means

any task or jobs requiring the Windows OS are out of luck.

Conversely, there has been some effort put into grid computing toolkits with support

for Windows, such as GridBus and Condor. GridBus is a service oriented grid and utility

computing project that enabled a wide array of hardware and operating systems includ-

ing Windows to become a feature complete compute grid [12]. However, a cursory search

and a visit to the projects website indicates that the project has retired as it has no recent

activity. The Condor open source project is a long running and extensively developed job

scheduling system for grid computing. Originally developed for idling Linux computers

to be used as part of a compute grid for job processing with minimal performance impact

to the computer owner, it can now be used to manage fully distributed computer pools

and schedule jobs with novel matching algorithm’s [46,72]. Moreover, the project is mov-

ing towards fully supporting Windows natively however there are still some significant

missing functionalities such as job check-pointing in Windows [17].

Grid computing and the related job submission systems domains that have been well

defined and developed over the decades with very powerful open source tools available

to the community. However, when trying to build a container based distributed service

which has to natively support a Windows application, the practical usage of existing solu-

tions is complex and unpractical, necessitating the research and development of the novel

distributed ATaaS proposed in this thesis.
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6.3 Containerization

In cloud-based distributed computing, containerization is a methodology to package the

application to make it deployable in the cloud with very little overhead [58]. However,

it is not always straightforward to determine the design and deployment of these con-

tainers because container orchestration deals with the entire lifecycle of the containers

while also migrating them among different servers. In container orchestration, users can

also handle the coordination between different containers of the same application. There

exist several projects to orchestrate the containers depending upon the technology stack

and management services. One of the commonly used containerization technology is

Docker, which introduces an underlying container engine [54]. For example, Docker is

being used in many resource-constrained applications because of its small overhead, i.e.,

Capillary Network [57] (containers without hardware virtualization support) and Glas-

gow Raspberry Pi cloud [74] (implemented using the built-in Linux containers). Apart

from these solutions, many Docker-based containerizations are being deployed in cloud

platforms, e.g., SciServer [51], Sciserver-Compute [51], data duplication based on Map-

reduction [37], Virtual-Hadoop [16], ISLET [65] and many more [41,56,79]. Docker-based

containerization makes the management of applications feasible, but several orchestra-

tion features need to be considered before deploying them, i.e., resource limit control,

scheduling, load balancing, health check, fault tolerance, and auto-scaling.

6.4 Analysis Tool as a Service (ATaaS)

Cloud-based distributed computing provides Software as Service (SaaS) [44, 55, 80], Plat-

form as a Service (PaaS) [1, 9, 69], and Infrastructure as a Service (IaaS) [64, 68]. Although

these services show significant performance improvement in several applications, like the

telecom industry [38,62], automobile industry [15,49], and several other safety-critical ap-

plications [10,22,28], these services do not cover analysis and verification tools which are

critical in designing any software, hardware, or hybrid system. All the existing analysis
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and verification tools are computationally intensive and required long periods of execu-

tion time. It has been reported in many applications that analysis and verification are the

most time and resource consuming phases of the design cycle [39,50,66]. Therefore, there

is a dire need to speed up and automate analysis and verification tools.

Towards this goal, recently, researchers have started to develop cloud-based verifica-

tion and analysis tools, which can provide an analysis model as a service (MaaS) and/or

the ATaaS [59]. In MaaS, cloud-based web services are used to build a distributed system

model that can be used to improve the performance of several analyses, e.g., FEA, Com-

putational Fluid Dynamics [26, 30, 45, 47, 71]. Although MaaS reduces the analysis time

and runs several jobs, distributing the model for asynchronous analysis is not always fea-

sible or practical. Thus, ATaaS has emerged as the most appropriate alternative solution

along with its own underlying challenges. For example, the existing ATaaSs, e.g., Cloud-

MEMS [67] and [59], mainly focus on providing the interface between the cloud platform

and the user but do not entirely address the automation and speed-up issues in ATaaS.

While the ATaaS developed in this thesis builds on [59], it addresses the aforemen-

tioned challenges and issues by providing an asynchronous interface between the anal-

ysis tools (in this thesis, it is the FEA Tool) and the analysis systems. Moreover, it also

supports deployment over a hybrid cloud-based platform while [59] was restricted to

on-premise execution.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis, I proposed a distributed microservice architecture for an Analysis Tool as a

Service (ATaaS) to enable the scalable (C4) and distributed execution (C2) of a legacy

finite element analysis software used at Siemens Energy over a hybrid cloud platform. I

also developed a prototype implementation (C3) which (1) uploads relevant task files and

execution scripts to the AWS file storage service, (2) persists the task state in an AWS

NoSQL database, and (3) executes FEA tasks on arbitrary Windows-based hosts (EC2 or

on-premise) by using the legacy FEA software packaged into Docker containers (C1).

Since FEA may run for several hours, it is also important to predict the expected exe-

cution time of an FEA task. For that purpose, I developed various performance predication

models to estimate various phases of task execution time by incorporating the number of

Workers nodes and the number of tasks available within the ATaaS as input parameters.

In order to validate the proposed architecture and prototype software, I developed and

executed functional tests (both on component and system level), and carried out various

experiments. The faithfulness of the performance prediction models were investigated in

a simulated setting, while the overall performance of the ATaaS framework was assessed

in the context of a real FEA engineering task provided by Siemens engineers.
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Limitations Our first prototype of the ATaaS framework has several limitations such as:

• Due to the technological context of the legacy FEA tool, the ATaaS framework is

currently Windows-native, i.e. it cannot make use of Linux instances and tools (such

as container orchestrators).

• Currently, the scaling of Workers needs to be carried out manually by the engineers,

which is unsustainable for very large-scale analysis tasks with hundreds of Workers

appearing or disappearing in a short amount of time.

• The endpoints for file-based operations and task-based operations are currently sep-

arate. Ideally, the entire service could have a unified access point for the end users.

• The endpoints are RESTful APIs which must be accessed using a HTTP client. Ide-

ally the service endpoints would also be available as graphical web pages to facili-

tate users.

• While a failed Executor can be recovered, a failed Worker results in a deadlock due

to the lack of a recovery mechanism for Worker.

• The Licence Management Service is a legacy program, which is a single point of failure

for the entire system. A failure in licence management would bring down the entire

ATaaS service.

• The File Storage Service does not restrict users from accessing all task folders.

• While the proposed solution is assumed to be deployed in secure (corporate) net-

work, the ATaaS framework itself does not provide extra layers of security (such as

user authentication).

• Certain parameters in the performance estimation models could benefit from a stochas-

tic treatment (instead of using constants as in our simulations).

101



7.2 Future Work

The future work for this project in order of importance to the industrial partner Siemens

Energy is discussed below; security, auto-scaling, performability model.

Security The primary service endpoint implemented by the Manager offers to security

layers, whereas any requests it receives are implicitly trusted and processed. As future

work, the Manager can implement various security functions into the RESTful API; such

as user authentication and code injection protection. Users of the ATaaS can be authenti-

cated so that they can queue and get information only on tasks they created. Furthermore,

API requests can possibly be targeted with code injection attacks which the Manager can

scan for and protect against.

Auto-Scaling The Manager developed in Section 3.1.1 serves as only the primary service

endpoint for the ATaaS. As future work, the Manager can be further developed to enable

cloud bursting whereas public cloud instances could be automatically provisioned and

configured as ATaaS Worker nodes whenever the task queue becomes unreasonably long.

This auto scaling functionality can further be used to perform health checks on Workers

and recover failed nodes and their tasks.

Performability model The performance model developed in Section 5.2.1 predicts ex-

pected execution time by assuming that no faults (e.g. timeouts, node failures, communi-

cation failures) are present in the system. As future work, the performance model could

be further developed into a performability model to investigate the effects of faults on

performance. For that purpose, one could take the state machine of a task (Figure 3.4)

as a baseline, and assign frequencies to events triggering the transitions in order to de-

rive queuing networks or stochastic reward nets as formal performability models. The

steady-state analysis of such Markovian models could then provide reasonable estimates

for software services as shown in [29].
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