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Abstract

Let n ≥ 2, fix 1 < p < n, and let Ω ⊂ Rn be a bounded domain, with possibly

non-smooth boundary, containing the origin. We investigate the compactness of

Palais-Smale sequences for a class of critical p-Laplace equations with weights. More

precisely, we establish a Struwe-type decomposition result for Palais-Smale sequences

extending the recent result of Mercuri-Willem [17] to weighted equations. In sharp

contrast to the model case of the critical p-Laplace equation, all bubbling must occur

at the origin. Furthermore, we do not impose any smoothness assumptions on the

boundary of Ω and our Palais-Smale sequence may be sign-changing.
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Abrégé

Soit n ≥ 2, 1 < p < 2 et Ω ⊂ Rn un ouvert borné, avec possiblement un bord

non lisse, contenant l’origine. Nous étudions la compacité des suites de Palais-Smale

pour une classe d’équations critiques avec p-laplacien et poids. Plus précisément,

nous établissons un résultat de décomposition de type Struwe pour les suites de

Palais-Smale qui généralise un résultat récent de Mercuri-Willem [17] aux équations

à poids. De manière très diffénte du cas modèle de l’équation avec p-laplacien, tout

phénomène de bulle doit se produire à l’origine. De plus, nous n’imposons aucune

condition de régularité sur le bord de Ω et nos suites de Palais-Smale peuvent changer

de signe.
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his unwavering encouragement and guidance. Without his support and the count-

less hours he devoted to answering my many questions, this thesis would not have

been possible. In addition, I want to express my gratitude towards my co-supervisor

Professor Pengfei Guan for helpful comments and the time he invested in this work.

I would also like to thank Professor Guan, Professor Vétois, and the Department of
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Chapter 1

Introduction and Background

In this thesis we address questions relating to the analysis of partial differential

equations. More specifically, we are interested in compactness properties for critical

elliptic problems with weights. Informally, given a sequence of functions approximat-

ing a critical point of an energy functional, it is natural to hope for the existence of

a subsequence that converges strongly to a solution of the equation. However, even

when such a property fails, one can still sometimes glean information about the PDE

by asking why and how the loss of compactness can occur. In our case, although

compactness may fail, we are indeed capable of answering the latter question. It is

the purpose of this work to describe this possible loss of compactness. Moreover, we

seek to provide an asymptotic and energy expansion of this approximating sequence

in terms of a solution to the original problem that our sequence indeed encodes.

In the section that follows, we offer a brief overview of the current literature

on compactness theorems for critical elliptic problems in Rn. Especially, we discuss

the model case studied by M. Struwe in 1984 (Struwe [20]) which was the first

decomposition result of its type. This has the added benefit of introducing the topic

of this thesis in the more familiar setting of a classical Sobolev space. Afterwards, we

consider the generalized problem with the p-Laplace operator, carefully noting the

additional assumptions required to obtain an analogous compactness result. We also

take the time to touch upon applications of compactness theorems in the context of

PDE. Having provided sufficient context, we then introduce our weighted problem

9



10 CHAPTER 1. INTRODUCTION AND BACKGROUND

and its setting. Additionally, we provide a summary of the essential results and tools

we develop in this document.

1.1 Struwe-type Decompositions: The Unweighted

Setting

Let n ≥ 3 be an integer. Given 1 < p < n, we let

p∗ :=
np

n− p

denote the Sobolev conjugate exponent of p. Consider the critical Laplace problem−∆u ≡ λu+ |u|2
∗−2 u in Ω,

u ∈ H1
0 (Ω),

(1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω and λ ∈ R. This

problem has the associated energy functional

φ : H1
0 (Ω)→ R, u 7→ 1

2

∫
Ω

|∇u|2 dx− 1

2

∫
Ω

λ |u|2 dx− 1

2∗

∫
Ω

|u|2
∗

dx

with derivative

〈φ′(u), h〉 =

∫
Ω

∇u · ∇h dx−
∫

Ω

λuh dx−
∫

Ω

|u|2
∗−2 uh dx, ∀u, h ∈ H1

0 (Ω).

Define D1,2(Rn) to be the space of all functions u ∈ L2∗(Rn) such that ∇u exists in

the weak sense on Rn and ∇u ∈ L2(Rn). We topologize D1,2(Rn) by giving it the

inner product

〈f, g〉D1,2(Rn) :=

∫
Rn
∇f · ∇g dx.

It is well known that smooth functions of compact support are dense in D1,2(Rn)

and that the Gagliardo-Nirenberg-Sobolev inequality holds on D1,2(Rn) (see Willem
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[24]). Namely, there exists a constant C > 0 such that

‖u‖L2∗ (Rn) ≤ C ‖∇u‖L2(Rn) , ∀u ∈ D1,2(Rn).

In 1984, M. Struwe established a global compactness theorem for the problem in (1.1).

More precisely, Struwe showed (see Struwe [19]-[20]) that a Palais-Smale sequence

for (1.1) must, up to a subsequence, converge to a solution of (1.1) perturbed by

finitely many “bubbles” solving the limiting problem−∆u ≡ u |u|2
∗−2 in Rn,

u ∈ D1,2(Rn).
(1.2)

Formally, M. Struwe proved the following result:

Theorem A (Struwe [20], 1984). Let n ≥ 3, c ∈ R, and Ω ⊂ Rn be a smoothly

bounded domain. Let (uα) be a sequence in H1
0 (Ω) such that

φ(uα)→ c and φ′(uα)→ 0 in H−1(Ω)

as α → ∞. Then, after passing to a subsequence, there exists a solution v0 of

(1.1), finitely many non-trivial functions v1, . . . , vk ∈ D1,2(Rn) solving (1.2), and

associated sequences (y
(j)
α ), (λ

(j)
α ) in Ω and (0,∞), respectively, such that λ

(j)
α → 0

for each j = 1, . . . , k and

uα − v0 −
k∑
j=1

(
λ(j)
α

) 2−n
n vj

(
x− y(j)

α

λ
(j)
α

)
→ 0 in D1,2(Rn)

as α→∞.1

Informally, the aforementioned result asserts that, up to a subsequence, a Palais-

Smale sequence for (1.1) decomposes at the energy level into a solution of (1.1) and

finitely many bubbles solving (1.2). Put otherwise, Theorem A offers an asymptotic

1The terms
(
λ
(j)
α

) 2−n
n

vj
(
x−y(j)α
λ
(j)
α

)
are often called bubbles.
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expansion of the Palais-Smale sequence in the energy space D1,2(Rn). Results of this

type are often called “Struwe-type decompositions”, and have proven to be useful

when addressing questions of existence and multiplicity (see, for instance, Barletta-

Candito-Marano-Perera [3], Clapp-Rios [9], Clapp-Weth [10], Devillanova-Solimini

[13], and Vétois [23]).

In 2010, Mercuri-Willem [17] extended Theorem A to p-Laplace equations with

critical nonlinearities. More precisely, Mercuri-Willem showed that a Struwe-type

decomposition continues to hold for Palais-Smale sequences of the problem−∆pu+ a |u|p−2 u ≡ |u|p
∗−2 u in Ω,

u ∈ W 1,p
0 (Ω)

(1.3)

where a ∈ Ln/p(Rn) is arbitrary, but fixed, provided (uα)− → 0 strongly in Lp
∗
(Rn),

as α→∞. Here, ∆p denotes the p-Laplace operator

∆pu := div(|∇u|p−2∇u).

In this case, the bubbles are explicit and known to be of the form

λ
1
p−1N

p−1

p2

(
N−p
p−1

)1/p′

λ
p
p−1 + |x− x0|

p
p−1


N−p
p

for some x0 ∈ RN and λ > 0. (1.4)

This classification was established by

• Caffarelli-Gidas-Spruck [7] in 1989 for p = 2;

• Damascelli-Merchán-Montoro-Sciunzi [11] in 2014 for 2N
N+2
≤ p < 2;

• Vétois [22] in 2016 when 1 < p < 2 (using a symmetry result of Damascelli-

Ramaswamy [12] from 2001);

• Sciunzi [18] in 2016 for 2 ≤ p < N (using a priori estimates from Vétois [22] in

2016).
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For more on this classification result, we urge the reader to consult the introduction

of the paper [18] of Sciunzi.

The assumption that (uα)− → 0 in Lp
∗
(Rn) is required to rule out to possibility

of bubbling on the boundary of Ω. Furthermore, we should note that the proof put

forth by Mercuri-Willem in [17] differs significantly from that found in Struwe [19],

and relies largely upon a duality argument. This approach has its roots in a paper

of Brézis-Coron [5] and was later refined in the book Minimax Methods of Willem

(where the case 2 < p < 2∗ was treated – see Willem [25] for more).

1.2 The Weighted Case

Let Ω ⊆ Rn be a bounded domain and fix a dimension n ≥ 2. For any 1 < p < n,

we let q be the critical Caffarelli-Kohn-Nirenberg exponent given by the rule

q :=
np

n− p(1 + a− b)
, (1.5)

whilst subject to the constraints

a <
n− p
p

and a ≤ b < a+ 1. (1.6)

In particular, condition (1.6) implies that max(ap, qb) < n and p < q ≤ p∗. There-

fore, the weight functions x 7→ |x|−ap and x 7→ |x|−bq both belong to L1
loc(Rn). In the

special case where Ω contains the origin, we will be interested in the compactness of

Palais-Smale sequences for the following weighted critical p-Laplace problem:{
− div

(
|x|−ap |∇u|p−2∇u

)
= |x|−bq |u|q−2 u in Ω,

u ∈ D1,p(Ω, |x|−ap).
(1.7)

In the above, D1,p(Ω, |x|−ap) denotes the completion of C∞c (Ω) with respect to the

norm

‖u‖D1,p(Ω,|x|−ap) :=

(∫
Ω

|∇u|p |x|−ap dx

)1/p

.
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Namely, we ask whether a Struwe-type decomposition holds for Palais-Smale se-

quences associated to the problem (1.7). We note that the norm described above

arises naturally from the Caffarelli-Kohn-Nirenberg inequality, which states that

there exists a constant C = C(a, b, n, p) > 0 having the property that(∫
Rn
|u(x)|q |x|−bq dx

)1/q

≤ C

(∫
Rn
|∇u(x)|p |x|−ap

)1/p

(CKN)

for all functions u ∈ C∞c (Rn).

1.3 Thesis Structure

In the next chapter, we develop a theory for the space D1,p(Ω, |x|−ap) in full general-

ity. First, we identify D1,p(Ω, |x|−ap), up to isometric isomorphism, with an explicit

function space. We then give conditions under whichD1,p(Ω, |x|−ap) can be embedded

into Lebesgue spaces, and provide criteria under which this embedding is compact.

In other words, we prove a Rellich-Kondrachov Embedding Theorem for the Sobolev

space D1,p(Ω, |x|−ap). We also give a classification of all bounded linear function-

als on D1,p(Ω, |x|−ap) by way of a Riesz Representation Theorem. Finally, given a

bounded sequence (uα) in D1,p(Ω, |x|−ap), we establish conditions under which one

can extract a subsequence whose gradients converge pointwise and touch upon the

homogeneity/rescaling properties of D1,p(Ω, |x|−ap).
In Chapter 3, we extend Theorem A to the problem (1.7), i.e. we provide a

Struwe-type decoposition result for the weighted critical p-Laplace equation in (1.7)

in the case a 6= b. Our approach is based on the proof found in Mercuri-Willem

[17], however, we no longer require that Ω have smooth boundary and we make no

sign assumption on the Palais-Smale sequence. Even so, the presence of weights,

particularly in the operator, introduces new difficulties. Especially, we are forced to

work with a measure that is no longer translation invariant, thereby breaking the

traditional rescaling law used in Mercuri-Willem [17] and Struwe [19]-[20]. On the

other hand, these weights allow us to give a more precise description of the bubbling.
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Indeed, Palais-Smale sequences for (1.7) can only produce bubbles at the origin.

Moreover, the weights allow us to rule out boundary bubbling without appealing

to a non-existence result (which is the case in both Mercuri-Willem [17] and Struwe

[19]-[20]). Additionally, the weights appear in the limiting problem our bubbles solve.

In the final chapter, we discuss open problems relating to the compactness of

Palais-Smale sequences for (1.7). In particular, we pay special attention to the limit

case a = b and the difficulties that arise when extending the arguments used in the

main proof to this special case. We also comment on what phenomena we expect to

arise when a = b.
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Chapter 2

Homogeneous Sobolev Spaces with

Critical Weights

In this chapter, we study the functional analytic properties of D1,p(Ω, |x|−ap) and

analyze the behaviour of bounded sequences within this same space. In doing so,

we extend well known classical results, including the Riesz Representation Theo-

rem and the Rellich-Kondrachov Compactness Theorem, to this class of weighted

homogeneous Sobolev spaces. Throughout this entire chapter, we fix an exponent

1 < p < n, a point x0 ∈ Rn, and assume that (1.6) is satisfied. Unless otherwise

stated, we will denote by U ⊆ Rn a non-empty open set.

If ϕ : Rn → R is smooth and compactly supported, then so must be the map-

ping y 7→ ϕ(y + x0). Consequently, the Caffarelli-Kohn-Nirenberg inequality (CKN)

asserts that(∫
Rn
|ϕ(x)|q |x− x0|−bq dx

)1/q

=

(∫
Rn
|ϕ(y + x0)|q |y|−bq dy

)1/q

(2.1)

≤ C

(∫
Rn
|∇ϕ(y + x0)|p |y|−ap dy

)1/p

(2.2)

= C

(∫
Rn
|∇ϕ(x)|p |x− x0|−ap dx

)1/p

(2.3)

17
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with C > 0 a constant independent of ϕ and the point x0. Therefore, the Caffarelli-

Kohn-Nirenberg inequality remains valid after a translation of the origin. We also

note that the map

ϕ 7→
(∫

Rn
|∇ϕ(x)|p |x− x0|−ap dx

)1/p

is a valid norm on C∞c (Rn). In light of this, we define the following:

Definition 2.0.1. Let U ⊆ Rn be a non-empty open set and fix x0 ∈ R. We define

D1,p
a (U, x0) to be the completion of C∞c (U) with respect to the norm

‖·‖D1,p
a (U,x0) :=

(∫
Rn
|∇(·)| |x− x0|−ap dx

)1/p

.

The continuous dual of D1,p
a (U, x0) is denoted D−1,p′

a (U, x0), with p′ given by

1

p
+

1

p′
= 1.

Note that D1,p
a (U, 0) is precisely the space D1,p(U, |x|−ap) previously defined.

Remark 2.0.1. We should point out that when a = 0, the space D1,p
a (Rn, x0) is

isomorphic to (see Willem [24])

D1,p(Rn) :=
{
u ∈ Lp∗(Rn) : ∇u ∈ Lp(Rn)

}
,

endowed with the norm

‖·‖ :=

(∫
Rn
|∇·|p dx

)1/p

.

Furthermore, the Caffarelli-Kohn-Nirenberg inequality in (CKN) reduces to the clas-

sical Gagliardo-Nirenberg-Sobolev inequality on D1,p(Rn).

In the section that follows, we give an explicit description of D1,p
a (U, x0). More

precisely, we will isometrically identify D1,p
a (U, x0) with a subspace of those functions

u belonging to a weighted Lq-space possessing weak derivatives of the first order

on U \ {x0} such that ∇u lives in a suitable weighted Lp-space. Afterwards, we
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establish a Rellich-Kondrachov type compactness theorem for the space D1,p
a (U, x0).

We also provide a complete characterization of the continuous linear functionals on

D1,p
a (U, x0) by way of a Riesz-type representation theorem. Finally, we develop a

condition that will (up to a subsequence) yield the pointwise convergence of the

gradients almost everywhere on U . The homogeneity and rescaling properties of

D1,p
a (U, x0) are also touched upon in the last section.

2.1 Lp-Asymptotics and Concentration Functions

We begin by recalling the Brézis-Lieb lemma, which improves the conclusions of

Fatou’s lemma when the sequence (fα) is uniformly bounded in Lp.

Theorem 2.1.1 (Brézis-Lieb Lemma). Let (X,M, µ) be a measure space and let (fα)

be a sequence of measurable functions on X converging pointwise almost everywhere

to a measurable function f . If the sequence (fα) is bounded in Lp(X, dµ), then

lim
α→∞

(∫
X

|fα|p dµ−
∫
X

|fα − f |p dµ

)
=

∫
X

|f |p dµ.

Moreover, when the measure space (X,M, µ) is complete, one can drop the measur-

ability assumption on f .

For the proof we refer the reader to the original paper Brézis-Lieb [6]. We also

take note of the following elementary statement:

Lemma 2.1.1. Let (X,M, µ) be a measure space, fix 1 ≤ p <∞, and let (uα) be a

bounded sequence in Lp(X, dµ). Assume that (vα) is a sequence in Lp(X, dµ) such

that ‖uα − vα‖Lp(X,dµ) → 0 as α→∞. Then,∣∣∣∣∫
X

|uα|p dµ−
∫
X

|vα|p dµ

∣∣∣∣→ 0

as α→∞.
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Proof. Clearly, (vα) is bounded in Lp(X, dµ). Thus, there exists some M > 0 such

that 0 ≤ ‖uα‖Lp(X,dµ) , ‖vα‖Lp(X,dµ) ≤ M for all α ∈ N. By the reverse triangle

inequality, we have∣∣∣‖uα‖Lp(X,dµ) − ‖vα‖Lp(X,dµ)

∣∣∣ ≤ ‖uα − vα‖Lp(X,dµ) = o(1).

Then, using that the map x 7→ xp is uniformly continuous on [0,M ],

∣∣∣‖uα‖pLp(X,dµ) − ‖vα‖
p
Lp(X,dµ)

∣∣∣ =

∣∣∣∣∫
X

|uα|p dµ−
∫
X

|vα|p dµ

∣∣∣∣ = o(1)

as α→∞.

We now recall a standard duality result (see, for instance, Hewitt-Stromberg [15]

and Jakszto [16]) linking weak convergence and the pointwise almost everywhere

convergence of a bounded sequence in Lp(X, dµ).

Theorem 2.1.2. Let (X,M, µ) be a measure space and fix 1 < p < ∞. Denote by

p′ the Hölder conjugate exponent of p. That is, let p′ ∈ (1,∞) be such that

1

p
+

1

p′
= 1.

Let (fα) be a bounded sequence in Lp(X, dµ) converging µ-almost everywhere to a

measurable function f on X. Then, for every fixed g ∈ Lp′(X, dµ), one has∫
X

|(fα − f)g| dµ→ 0, as α→∞.

In particular, when the (fα) are supported on a set of finite measure, fα → f strongly

in L1(X, dµ). If (X,M, µ) is complete, then the measurability assumption on f may

be dropped.

Proof. By Fatou’s lemma we must have f ∈ Lp(X, dµ). Especially, (fα − f) forms

a bounded sequence in Lp(X, dµ). Fix a function g ∈ Lp′(X, dµ) and let ε > 0 be
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given. For each α ∈ N consider the measurable set

Eα :=
{
x ∈ X : |(fα(x)− f(x)) g(x)| ≤ ε |g(x)|p

′
}
.

Clearly, since fα(x)→ f(x) for µ-a.e. x ∈ X and ε |g|p
′
∈ L1(X, dµ), the Dominated

Convergence Theorem asserts that

lim
α→∞

∫
Eα

|(fα − f) g| dµ = 0. (2.4)

On the other hand, given α ∈ N, an application of Hölder’s inequality yields

∫
X\Eα

|(fα − f) g| dµ ≤
(∫

X\Eα
|fα − f |p dµ

)1/p(∫
X\Eα

|g|p
′
dµ

) p−1
p

≤M1/p

(∫
X\Eα

ε−1 |(fα − f) g| dµ
)1− 1

p

,

with M ≥ 0 given by

M := sup
α∈N

∫
X

|fα − f |p dµ.

In particular, for every α ∈ N, there holds∫
X\Eα

|(fα − f) g| dµ ≤Mε1−p.

Using this with (2.4), we infer that

lim sup
α→∞

∫
X

|(fα − f) g| dµ = lim sup
α→∞

(∫
Eα

|(fα − f) g| dµ+

∫
X\Eα

|(fα − f) g| dµ
)

= lim sup
α→∞

∫
X\Eα

|(fα − f) g| dµ

≤Mε1−p.

Letting ε↗∞ then yields the desired conclusion.
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Lemma 2.1.2. Let (X, d) be a metric space and F be an equibounded and equicon-

tinuous subfamily of C(X,R). The function s(x) := supf∈F f(x) is a continuous

map X → R.

Proof. Since the family F is equibounded, our function s is well defined. Now, given

any x, y ∈ X note that

s(x) = sup
f∈F

f(x) ≤ sup
f∈F

(f(x)− f(y)) + sup
f∈F

f(y).

Thus,

s(x)− s(y) ≤ sup
f∈F
|f(x)− f(y)| .

Similarly, s(y)− s(x) ≤ supf∈F |f(x)− f(y)| whence

|s(x)− s(y)| ≤ sup
f∈F
|f(x)− f(y)| .

The continuity of s then follows from the equicontinuity of F .

Our only application of this will be the following:

Proposition 2.1.3. Let U ⊆ Rn be a non-empty set and fix f ∈ L1(Rn). Define the

Lévy concentration function of f , denoted Qf , by the following:

Qf : [0,∞)→ [0,∞), Qf (r) := sup
y∈U

∫
B(y,r)

|f | dx.

Then, Qf is continuous on [0,∞).

Proof. Since f ∈ L1(Rn), we have
∫
B(y,r)

|f | dx ≤ ‖f‖L1(R) < ∞ for all y ∈ U and

r ≥ 0. Thus, Qf is a well defined function. In light of the previous lemma, we will

be done provided the family {Qf,y}y∈U defined by

Qf,y : [0,∞)→ [0,∞), r 7→
∫
B(y,r)

|f | dx
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is equicontinuous and equibounded on an arbitrary compact interval [a, b] ⊂ [0,∞).

The equiboundedness of our family {Qf,y}y∈U follows at once from the assumption

that f ∈ L1(Rn). As for equicontinuity, start by fixing r, s ≥ 0. Without loss of

generality, we can assume that r ≥ s. Then, for any y ∈ U ,

|Qf,y(r)−Qf,y(s)| =
∫
B(y,r)\B(y,s)

|f | dx.

Given ε > 0, we can find δ > 0 such that
∫
E
|f | dx < ε whenever E ⊂ [0,∞) is

Lebesgue measurable with m(E) < δ. Now, it is easy to check that

m(B(y, r) \B(y, s)) = ωn(rn − sn)

= ωn(r − s)(rn−1 + srn−2 + · · ·+ sn−2r + sn−2)

≤ C |r − s| .

Here, ωn is the volume of the unit ball in Rn and C > 0 is a suitable constant

depending only on n, a, and b. Thus, {Qf,y}y∈U is equibounded and equicontinuous

on [a, b]. By the previous lemma, Qf is continuous there.

Finally, we will require (in the proof of Lemma 3.2.3) the following basic conver-

gence result:

Proposition 2.1.4. Let (X,M, µ) be a finite measure space and let (fα) be a sequence

of measurable functions on X converging almost everywhere to a measurable function

f . Then, fα → f in measure as α→∞. That is,

lim
α→∞

µ ({x ∈ X : |fα(x)− f(x)| ≥ ε}) = 0

for each fixed ε > 0.

Proof. Let δ, ε > 0 be given. By Egoroff’s theorem, there exists a measurable set

E ∈M such that fα → f uniformly on E and µ(X \E) < δ. Let N ∈ N be so large
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that |fα(x)− f(x)| < ε for all α ≥ N and all x ∈ E. Then, for each α ≥ N ,

{x ∈ X : |fα(x)− f(x)| ≥ ε} ⊆ X \ E

whence µ ({x ∈ X : |fα(x)− f(x)| ≥ ε}) ≤ µ(X \ E) < δ.

2.2 Weighted Lebesgue Spaces

Let (X,M, µ) be a measure space and fix 1 ≤ p < ∞. Let ω : X → [0,∞] be

a measurable function that is both positive and finite almost everywhere on X.

We define Lp(X,ω) to be the weighted Lp-space consisting of all measurable maps

f : X → R with the property that∫
X

|f(x)|p ω(x)dµ(x) <∞.

We endow this space with the norm

‖·‖Lp(X,ω) :=

(∫
X

|·(x)|p ω(x)dµ(x)

)1/p

.

Simply considered as Lp-spaces, weighted Lebesgue spaces have no special proper-

ties. Indeed, the weighted space Lp(X,ω) is precisely the space Lp(X, dν) with the

measure ν given by

ν(E) :=

∫
E

ω dµ, E ∈M.

However, when working with weighted Lebesgue measures in Rn, it is natural to

ask whether smooth functions of compact support remain dense in the resulting

Lp-spaces; a question which appears to have not been directly answered in many

references. Below we show that, under relatively weak assumptions, the answer is

affirmative.

Theorem 2.2.1. Let 1 ≤ p < ∞ and assume that ω ∈ L1
loc(Rn) is positive almost

everywhere on Rn. Then, C∞c (Rn) is dense in Lp(Rn, ω).



2.2. WEIGHTED LEBESGUE SPACES 25

Proof. Let ε > 0 be given and fix a function f ∈ Lp(Rn, ω). By the Monotone

Convergence Theorem, we can find R > 0 such that∫
{|x|>R}

|f(x)|p ω(x)dx <
εp

2p+1
,∫

{|f |>R}
|f(x)|p ω(x)dx <

εp

2p+1
.

Then, the function g := f1{|x|≤R,|f |≤R} is bounded, compactly supported, and satisfies

‖f − g‖Lp(Rn,ω) =

(∫
Rn
|f(x)|p 1{|x|>R}∪{|f |>R}ω(x)dx

)1/p

≤
(∫

Rn
|f(x)|p

(
1{|x|>R} + 1{|f |>R}

)
ω(x)dx

)1/p

<

(
εp

2p+1
+

εp

2p+1

)1/p

=
ε

2
.

Let η ∈ C∞c (Rn) be a standard mollifier and define, for δ > 0, the mollification

gδ := g ∗ ηδ. Here, ηδ is given by

ηδ(x) =
1

δn
η
(x
δ

)
.

Then, each gδ is smooth and compactly supported. In fact, since g is compactly

supported, there exists a compact set K ⊂ Rn such that supp(gδ), supp(g) ⊆ K for

all δ > 0 sufficiently small. Furthermore, Hölder’s inequality shows that

|gδ(x)| ≤ ‖ηδ‖L1(Rn) ‖g‖L∞(Rn) ≤ ‖η‖L1(Rn) R <∞

for all x ∈ Rn and every δ > 0. Since gδ(x) → g(x) for almost every x ∈ Rn, the

Dominated Convergence Theorem asserts that

lim
δ↘0

∫
Rn
|gδ(x)− g(x)|p ω(x)dx = 0.
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Hence, for δ > 0 suitably small, we have ‖gδ − g‖Lp(Rn,ω) <
ε
2
. To summarize, we

have that

‖f − gδ‖Lp(Rn,ω) ≤ ‖f − g‖Lp(Rn,ω) + ‖g − gδ‖Lp(Rn,ω) < ε.

Since gδ ∈ C∞c (Rn), this is precisely what had to be shown.

Remark 2.2.1. As a consequence of this theorem, if ν is any locally finite measure on

the Lebesgue σ-algebra that is absolutely continuous with respect to the Lebesgue

measure, then C∞c (Rn) is dense in Lp(Rn, dν). Indeed, by the Radon-Nikodym the-

orem, there exists a non-negative ω ∈ L1
loc(Rn) such that Lp(Rn, dν) = Lp(Rn, ω).

Before proceeding further, we establish some shorthand that will make the proofs

that follow more elegant.

Notation. Let E ⊆ Rn be a measurable set. For the sake of simplicity, we will write

Lpa(E, x0) to denote the weighted Lebesgue space Lp(E, |x− x0|−ap). Similarly, we

shall use Lqb(E, x0) instead of Lq(E, |x− x0|−bq).

2.3 An Explicit Description of D1,p
a (U, x0)

We continue to assume that 1 < p < n and that (1.6) holds true for a fixed pair

(a, b). Given an open set U ⊆ Rn and a point x0 ∈ Rn, we define E1,p
a (U, x0) to be the

real vector space consisting of all functions u ∈ Lqb(U, x0) possessing weak derivatives

of the first order on U \ {x0} such that ∇u ∈ Lpa(U, x0). In symbolic terms,

E1,p
a (U, x0) := {u ∈ Lqb(U, x0) : ∇u ∈ Lpa(U \ {x0}, x0)} .

We endow this space with the strong norm

‖u‖E1,pa (U,x0) := ‖u‖Lqb(U,x0) + ‖∇u‖Lpa(U,x0) .

Finally, let E1,p
a,0(U, x0) denote the closure of C∞c (U) in E1,p

a (U, x0).
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Our first assertion is that the Caffarelli-Kohn-Nirenberg inequality in (2.1)-(2.3)

continues to hold for all functions u ∈ E1,p
a,0(U, x0). Thankfully, this is immediate from

the definition of E1,p
a,0(U, x0).

Lemma 2.3.1. The Caffarelli-Kohn-Nirenberg inequality is valid in E1,p
a,0(U, x0). More

precisely, there exists a constant C > 0 such that, for all functions u ∈ E1,p
a,0(U, x0),

(∫
U

|u(x)|q |x− x0|−bq dx

)1/q

≤ C

(∫
Rn
|∇u(x)|p |x− x0|−ap dx

)1/p

. (2.5)

In particular, ‖·‖E1,pa,0 (U,x0) := ‖∇·‖Lpa(U,x0) is an equivalent norm on E1,p
a,0(U, x0). Fur-

thermore, the constant C does not depend on the singular point x0.

Proof. Given a function u ∈ E1,p
a,0(U, x0), there exists by definition a sequence (ϕα)

in C∞c (U) converging to u in E1,p
a (U, x0) as α → ∞. Consequently, ϕα → u and

∇ϕα → ∇u in Lqb(U, x0) and Lpa(U, x0) (respectively) as α→∞. Since (2.5) is valid

for each ϕα by our calculations in (2.1)-(2.3), the claim follows.

In light of this lemma, we will henceforth give E1,p
a,0(U, x0) the simpler norm

‖·‖E1,pa,0 (U,x0) defined above. Before giving an explicit description of D1,p
a (U, x0), we

require another elementary result regarding Banach spaces. Despite being very easy,

the proof is provided for the sake of completeness.

Lemma 2.3.2. Let Y be a dense subspace of a Banach space (X , ‖·‖) and denote by

Y∗ the completion of Y with respect to ‖·‖. There exists an isometric isomorphism

T : Y∗ → X .

Proof. A general element of Y∗ is an equivalence class [(yα)], where (yα) is a Cauchy

sequence in Y . In particular, (yα) converges, as α → ∞, to some y ∈ X . If (y′α) is

another representative of [(yα)], then yα − y′α → 0 in Y as α → ∞. Consequently,

y′α → y in X as α→∞. It follows that the map

T : Y∗ → X , [(yα)] 7→ y

is well defined. Clearly, T is linear and, by the density of Y in X , is surjective.



28 CHAPTER 2. CRITICALLY WEIGHTED SOBOLEV SPACES

Next we prove that T is an isometry. Indeed, fix a point [(yα)] in Y∗ and set

y := lim yα, with the limit being understood in X . Then, by the continuity of norms,

‖T ([(yα)])‖ = ‖y‖ = lim
α→∞

‖yα‖ = ‖[(yα)]‖ .

This shows that T is an isometry and so the proof is complete.

This lemma readily gives way to the following identification result:

Theorem 2.3.1. Give E1,p
a,0(U, x0) the norm ‖·‖E1,pa,0 (U,x0). There exists an isometric

isomorphism D1,p
a (U, x0)→ E1,p

a,0(U, x0).

Proof. Assume for the moment that E1,p
a (U, x0) is complete. In particular, E1,p

a,0(U, x0)

is a Banach space. Since C∞c (U) is dense in E1,p
a,0(U, x0) with respect to the norm

‖·‖D1,p
a (U,x0) :=

(∫
U

|∇(·)|p |x− x0|−ap dx

)1/p

,

we see from Lemma 2.3.2 that there exists an isometric isomorphism

D1,p
a (U, x0)→ E1,p

a,0(U, x0).

Hence, we are reduced to proving that E1,p
a (U, x0) is Banach. To this end, let (uα) be a

Cauchy sequence in E1,p
a (U, x0) with respect to the strong norm ‖·‖E1,pa (U,x0). Then, the

sequences (uα) and (∇uα) are Cauchy in Lqb(U, x0) and Lpa(U, x0), respectively. Since

these are complete, we can find functions u ∈ Lqb(U, x0) and v1, . . . , vn ∈ Lpa(U, x0)

such that

lim
α→∞

uα = u in Lqb(U, x0)

and

lim
α→∞

∂iuα = vi in Lpa(U, x0)

as α → ∞ for all i = 1, . . . , n. We now claim that ∂iu = vi for each i = 1, . . . , n on

U \ {x0}. Fix a test function ϕ ∈ C∞c (U) such that supp(ϕ) ⊂ U \ {x0}. Then, there

exists c > 0 such that |x− x0|−ap ≥ c and |x− x0|−bq ≥ c for all x ∈ supp(ϕ). Since
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uα → u in Lqb(U, x0),∫
supp(ϕ)

|uα − u|q dx ≤ 1

c

∫
supp(ϕ)

|uα − u|q |x− x0|−bq dx

≤ 1

c

∫
U

|uα − u|q |x− x0|−bq dx→ 0, as α→∞.

Similarly, we see that ∂iuα → vi in Lp(supp(ϕ)) for each i = 1, . . . , n. Thus, two

successive applications of Hölder’s inequality show that∫
U

u∂iϕdx = lim
α→∞

∫
U

uα∂iϕdx = − lim
α→∞

∫
U

ϕ∂iuαdx

= −
∫
U

ϕvidx

for all i = 1, . . . , n. It follows from here that ∇u = (v1, . . . , vn) in the weak sense

on U \ {x0}. In particular, u ∈ E1,p
a (U, x0). Since uα → u and ∇uα → (v1, . . . , vn)

in Lqb(U, x0) and Lpa(U, x0) respectively, we infer that uα → u in E1,p
a (U, x0). This

completes the proof.

Henceforth, we will identify the weighted Sobolev space D1,p
a (U, x0) with the ex-

plicit space E1,p
a,0(U, x0). Especially, we see that D1,p

a (U, x0) consists of functions in

Lqb(U, x0) having first order weak derivatives away from the singular point x0. Fur-

thermore, these functions must obey the Caffarelli-Kohn-Nirenberg inequality (2.5).

As a matter of fact, when a, b ≥ 0, the functions u ∈ D1,p
a (U, x0) have first order

weak derivatives on the entire set U .

Corollary 2.3.3. When a ≥ 0, the elements of D1,p
a (U, x0) are differentiable in the

weak sense on the entire set U .

Proof. To see this, first note that a ≥ 0 forces b ≥ 0. Therefore, the weight functions

x 7→ |x− x0|−ap and x 7→ |x− x0|−bq are bounded below by positive constants on

every compact subset of Rn. Then, if (ϕα) is a sequence in C∞c (U) converging to u

in D1,p
a (U, x0), we have

ϕα → u in Lqb(U, x0)
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and

∇ϕα → ∇u in Lpa(Ω, x0).

Now, given ϕ ∈ C∞c (U) we let Λ be its support in U . Following the argument in

Theorem 2.3.1, we see that ϕα → u in Lq(Λ) and that ∇ϕα → ∇u in Lp(Λ). Then,

using Hölder’s inequality as in the proof of Theorem 2.3.1, we obtain∫
U

u∂iϕ dx = −
∫
U

ϕ∂iu dx

for all i = 1, . . . , n.

2.4 A Rellich-Kondrachov Embedding Theorem

In this section we will show thatD1,p
a (U, x0) can be compactly embedded into weighted

Lebesgue spaces when the open set U is bounded. Of course, given a bounded se-

quence in D1,p
a (U, x0), this will allow us to extract a subsequence converging almost

everywhere on the set U . Formally, the main result of this section is as follows:

Theorem 2.4.1. Let U ⊆ Rn be bounded and fix θ ∈ (−∞, bq].

(1) Given any 1 ≤ r ≤ q, there exists a constant C > 0 such that

‖u‖Lr(U,|x−x0|−θ) ≤ C ‖u‖D1,p
a (U,x0)

for all u ∈ D1,p
a (U, x0).

(2) Assume that 1 ≤ r < q. If (uα) is a bounded sequence in D1,p
a (U, x0), there exists

a subsequence (uβ) converging strongly to a function u ∈ Lr(U, |x− x0|−θ) and

pointwise almost everywhere on U .

As a first step in proving this theorem, we will require a simple extension result

for D1,p
a (U, x0).
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Proposition 2.4.1. Let V be an open set which contains the closure of U . Given

a function u ∈ D1,p
a (U, x0), let u and ∇u be the elements of Lqb(V, x0) and Lpa(V, x0)

(respectively) given byu = u a.e. in U and u = 0 a.e. on V \ U ;

∇u = ∇u a.e. in U and ∇u = 0 a.e. on V \ U.

Then, u ∈ D1,p
a (V, x0) and ∇u = ∇u in U . Moreover, the linear map

T : D1,p
a (U, x0)→ D1,p

a (V, x0), u 7→ u

is an isometry.

Proof. Given u ∈ D1,p
a (U, x0), let (uα) be a sequence in C∞c (Ω) converging to u in

D1,p
a (U, x0). By (2.5), we have both ∇uα → ∇u in Lpa(U, x0) and uα → u in Lqb(U, x0),

as α → ∞. Passing to a subsequence, we may also assume that this convergence

takes place almost everywhere on U . Now, (uα) and (∇uα) all have compact support

in U ⊆ V . Thus, (uα) also forms a Cauchy sequence in D1,p
a (V, x0). Passing to yet

another subsequence, we may assume that

(i) uα → v in D1,p
a (V, x0) as α→∞;

(ii) uα → v pointwise a.e. on V;

(iii) and ∇uα → ∇v pointwise a.e. on V .

Now, this means that v = u and ∇v = ∇u a.e. on U . However, as each uα is

supported on U , we also have v = 0 and ∇v = 0 a.e. on V \ U . These facts

combined show that v = u and ∇v = ∇u almost everywhere in V . In particular,

u ∈ D1,p
a (V, x0). Since T is clearly linear, the proof is complete.

We are now properly equipped to give the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. Let 1 ≤ r ≤ q. First, note that on every compact subset Λ

of Rn, there exists a constant c > 0 such that c |x− x0|−θ ≤ |x− x0|−bq everywhere
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on Λ \ {x0}. Now, for any u ∈ D1,p
a (U, x0), Hölder’s inequality together with the fact

that the measure |x− x0|−θ dx is locally finite on Rn shows that(∫
U

|u(x)|r |x− x0|−θ dx

)1/r

≤ C

(∫
U

|u(x)|q |x− x0|−θ dx

)1/q

≤ Cc−1/q ‖u‖Lqb(U,x0) .

for a suitable constant C > 0 independent of u. Invoking Lemma 2.3.1, part (1) of

Theorem 2.4.1 is verified.

We must now verify the compactness of this embedding when 1 ≤ r < q. Let

(uα) be a bounded sequence in D1,p
a (U, x0) so that, by Lemma 2.3.1, (uα) is bounded

in Lqb(U, x0) and (∇uα) is bounded in Lpa(U, x0). Citing Proposition 2.4.1, after an

extension by zero, we can assume that (uα) is a bounded sequence in D1,p
a (Rn, x0)

that is supported on U . Now, for k ≥ 1 we denote by Ak the open annulus

B(x0, k + 1) \B(x0, 1/k)

in Rn. Since q > p, (uα) forms a bounded sequence in W 1,p(Ak) for each k ≥ 1.

Then, using the classical Rellich-Kondrachov compactness theorem, we can construct

a family {(uα,k)}∞k=1 of subsequences of (uα) such that

(i) (uα,k+1) is a subsequence of (uα,k) for each k ≥ 1,

(ii) (uα,k) converges strongly to vk in Lp(Ak),

(iii) (uα,k) to vk pointwise almost everywhere on Ak.

Clearly, vk+1 = vk almost everywhere on each Ak. Thus, the diagonal sequence (uα,α)

converges almost everywhere to a well defined measurable function u on Rn. By (1),

it is clear that (uα,α) is bounded in Lq(U, |x− x0|−θ). Thus, using Theorem 2.1.2

with exponent q/r > 1, we infer that

lim
α→∞

∫
U

|uα,α(x)− u(x)|r |x− x0|−θ dx = 0.
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Finally, we have from (1) that (uα,α) is bounded in Lr(U, |x− x0|−θ). It now follows

from Fatou’s lemma that u ∈ Lr(U, |x− x0|−θ).

Next, we check that elements of D1,p
a (U, x0) behave as expected when multiplied

by a cutoff function. Namely, given an open set V whose closure is contained in U

and a cutoff function η ∈ C∞c (V ), can we guarantee that uη ∈ D1,p(V, x0)? The

answer is affirmative, but the argument relies on the following natural embedding:

Proposition 2.4.2. Let Λ ⊂ Rn be compact. There exists a constant C > 0 such

that (∫
Λ

|u(x)|p |x− x0|−ap dx

)1/p

≤ C ‖u‖D1,p
a (Rn,x0)

for all u ∈ D1,p
a (Rn, x0). That is, D1,p

a (Rn, x0) ↪→ Lploc(Rn, |x− x0|−ap).

Proof. If 0 ≤ a ≤ b or a < 0 ≤ b then, since p < q, we have ap ≤ bq whence the

claim follows from Theorem 2.4.1-(1). If instead a ≤ b < 0, we write∫
Λ

|u(x)|p |x− x0|−ap dx =

∫
Λ

|u(x)|p |x− x0|−apθ |x− x0|−ap(1−θ) dx

with θ = b/a. Then, θ ∈ (0, 1] and Hölder’s inequality with exponent q/p yields

∫
Λ

|u(x)|p |x− x0|−ap dx ≤ C

(∫
Λ

|u(x)|q |x− x0|−apθ·
q
p dx

)p/q
= C

(∫
Λ

|u(x)|q |x− x0|−bq dx

)p/q
with C given by

C =

(∫
Λ

|x− x0|−ap(1−θ)
q
q−p

)1−p/q

.

Now, since a < 0 and θ ∈ (0, 1], it is clear that C <∞. Thus, in any case, we obtain

‖u‖Lp(Λ,|x−x0|−ap) ≤ C ‖u‖D1,p
a (Rn,x0)
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for a suitable constant C > 0 independent of u.

Proposition 2.4.3. Let V ⊆ Rn be an open set such that V̄ ⊆ U . Let η ∈ C∞c (V )

and fix a function u ∈ D1,p
a (U, x0). Then, uη ∈ D1,p

a (V, x0).

Proof. After an extension by zero, we may again assume without loss of generality

that U = Rn. First, we note that uη ∈ E1,p
a (V, x0). Indeed, fix a test function

ϕ ∈ C∞c (V ) with

Λ := supp(ϕ) ⊆ V \ {x0}.

Then, using ηϕ ∈ C∞c (U) as a test function, we infer that∫
U

ϕη∂iudx = −
∫
U

u∂i(ηϕ)dx = −
∫
U

(uϕ)∂iηdx−
∫
U

(uη)∂iϕdx

whence ∫
V

(uη)∂iϕdx = −
∫
V

(u∂iη + η∂iu)ϕdx

for all i = 1, . . . , n. In particular,

∇(uη) = u∇η + η∇u in V \ {x0}.

Consequently, uη is weakly differentiable on V \{x0}. Since η is bounded, we clearly

have ηu ∈ Lqb(V, x0). By Proposition 2.4.2, we see that ∇(uη) belongs to Lpa(V, x0).

All that remains is to check that uη ∈ E1,p
a,0(V, x0). To this end, let (uα) be a sequence

in C∞c (U) converging to u in E1,p
a (U, x0). Clearly, uαη ∈ C∞c (V ) for each index α ∈ N.

Moreover, for

M := sup
x∈Rn
|η(x)|q ,

one has ∫
V

|uη − uαη|q |x− x0|−bq dx ≤M

∫
U

|u− uα|q |x− x0|−bq dx→ 0,
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as α→∞. Similarly, we have ∇(uη − uαη) = η∇u+ u∇η − η∇uα − uα∇η so that

‖∇(uη − uαη)‖Lpa(V,x0) ≤ ‖η(∇uα −∇u)‖Lpa(V,x0)

+ ‖∇η(uα − u)‖Lpa(V,x0) .

Since η,∇η are bounded and have compact support in V ⊆ U , another application of

Proposition 2.4.2 shows that both of these terms converge to zero as α→∞. That

is, uαη → uη strongly in E1,p
a (V, x0). This completes the proof.

In fact, by the same argument, we obtain a more general but weaker result:

Lemma 2.4.4. Let u ∈ W 1,1
loc (Rn \ {x0}) and let η ∈ C∞c (Rn) vanish in a neighbour-

hood of x0. Then ηu ∈ W 1,1(Rn).

Proof. Fix a test function ϕ ∈ C∞c (Rn) and note that the product ηϕ is a smooth

compactly supported function vanishing near x0. Therefore,∫
Rn

(uη)∇ϕdx = −
∫
Rn

(uϕ)∇η dx+

∫
Rn

(uϕ)∇η dx+

∫
Rn

(uη)∇ϕ dx

= −
∫
Rn

(uϕ)∇η dx+

∫
Rn
u∇(ηϕ) dx

= −
∫
Rn

(uϕ)∇η dx−
∫
Rn

(ηϕ)∇u dx

= −
∫
Rn

(u∇η + η∇u)ϕ dx

and we see that uη is weakly differentiable with ∇(uη) = u∇η + η∇u. Since u,∇u
are locally integrable away from x0 and η ∈ C∞c (Rn) vanishes in a neighbourhood of

x0, the claim follows.

This gives way to the following simple lemma that will play a key role within the

proof of our main result.

Lemma 2.4.5. Let Λ ⊂ Rn be compact and let (uα) be a bounded sequence in

D1,p
a (Rn, x0) converging pointwise almost everywhere to 0 on Rn. Then, there ex-

ists a subsequence (uβ) converging strongly to 0 in Lp(Λ, |x− x0|−ap) as β →∞.
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Proof. Choose a bounded open set U ⊃ Λ and let η ∈ C∞c (U) be a cutoff function

such that η ≡ 1 in a neighbourhood of Λ. We first assert that D1,p
a (U, x0) is compactly

embedded into Lpa(U, x0). Since 1 < p < q, this follows immediately from Theorem

2.4.1 if either 0 ≤ a ≤ b or a < 0 ≤ b.1 Thus, we are reduced to checking that the

embedding is still compact when a ≤ b < 0. For ε > 0 small, we define

θε :=
bq

a(q − ε)
.

Note that θε is continuous in ε > 0 sufficiently small and that, as ε↘ 0,

ap(1− θε) ·
q − ε

q − p− ε
→ pq(a− b)

q − p
≤ 0 < n.

Thus, for all ε > 0 small, we have ap(1− θε) · q−ε
q−p−ε < n. Using Hölder’s inequality

as in the proof of Proposition 2.4.2, we obtain∫
U

|w(x)|p |x− x0|−ap dx ≤ C

(∫
U

|w(x)|q−ε |x− x0|−apθε·
q−ε
p dx

)p/(q−ε)
for all measurable w, with 0 < C <∞ given by

C =

(∫
U

|x− x0|−ap(1−θε)·
q−ε
q−p−ε

)1− p
q−ε

which is finite for ε > 0 sufficiently small. Put otherwise, there exists a constant

C > 0 such that(∫
U

|w(x)|p |x− x0|−ap dx

)1/p

≤ C

(∫
U

|w(x)|q−ε |x− x0|−bq
)1/(q−ε)

for all measurable w. Again, by Theorem 2.4.1, D1,p
a (U, x0) is compactly embedded

into Lq−ε(U, |x− x0|−bq) which proves our first assertion.

It remains to prove the lemma. By Proposition 2.4.3, vα := uαη is an element of

1In either case, take θ = ap ≤ bq in the statement of Theorem 2.4.1.
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D1,p
a (U, x0). In fact, we know from the proof of this result that

∇vα = η∇uα + uα∇η in U \ {x0}.

It is then clear from Proposition 2.4.2 that the sequence (vα) is bounded inD1,p
a (U, x0).

Furthermore, vα → 0 almost everywhere on U as α → ∞. Since (vα) is bounded in

D1,p
a (U, x0), the argument above allows us to extract a subsequence (vβ) converging

strongly to 0 in Lpa(U, x0) as β →∞. As η ≡ 1 on Λ, it readily follows that uα → 0

strongly in Lp(Λ, |x− x0|−ap).

We remark that after studying the weak compactness of D1,p
a (U, x0), it will be

possible to give a more elegant and precise reformulation of this lemma.

2.5 The Dual Space D−1,p′
a (U, x0)

Recall that, by definition, D−1,p′
a (U, x0) is the vector space of all continuous linear

functionals D1,p
a (U, x0) → R endowed with the operator norm. Here, p′ denotes the

Hölder conjugate exponent of p, i.e.

1

p
+

1

p′
= 1.

It is an elementary fact that the topological dual of any normed space is, in fact, a

Banach space. In this section we study the behaviour of continuous linear functionals

on D1,p
a (U, x0) and discuss their link to those on Lpa(U, x0). More precisely, we show

that D1,p
a (U, x0) is a reflexive Banach space and establish a Riesz-type representation

theorem for the bounded linear functionals on D1,p
a (U, x0). Thus, we give a complete

description of those φ ∈ D−1,p′
a (U, x0).

Proposition 2.5.1. Let (uα) be a bounded sequence in D1,p
a (U, x0) and fix a point

u ∈ D1,p
a (U, x0). Then, uα ⇀ u in D1,p

a (U, x0) if and only if ∇uα ⇀ ∇u in Lpa(U, x0).
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Proof. First, we note that the linear operator

T : D1,p
a (U, x0)→ Lpa(U, x0), u 7→ ∇u,

is an isometry. Let now E denote the image of D1,p
a (U, x0) under T ; we claim that

uα ⇀ u in D1,p
a (U, x0) if and only if ∇uα ⇀ ∇u in E, where E is interpreted as a

subspace of Lpa(U, x0). First, assume that uα converges weakly to u in D1,p
a (U, x0).

Then, given a continuous linear functional ψ : E → R, the composite φ := ψ ◦ T is

a continuous linear functional on D1,p
a (U, x0). Since uα ⇀ u in D1,p

a (U, x0),

φ(uα)→ φ(u), as α→∞.

Put otherwise, this means that ψ(∇uα) → ψ(∇u) as α → ∞. Conversely, assume

that ∇uα ⇀ ∇u in E. Given a continuous linear functional φ on D1,p
a (U, x0), define

ψ := φ ◦ T−1, which is a continuous linear functional on E. Clearly,

ψ(∇uα)→ ψ(∇u), as α→∞.

However, this is equivalent to writing φ(uα) → φ(u). We infer that uα ⇀ u in

D1,p
a (U, x0).

In short, we have shown that weak convergece in D1,p
a (U, x0) is equivalent to the

weak convergence of the gradients in the subspace E of Lpa(U, x0). Now, since every

continuous linear functional ϕ on E admits a continuous linear extension to the whole

space Lpa(U, x0) by the Hahn-Banach theorem, the assertion readily follows.

Lemma 2.5.2. Let X be a Banach space with norm ‖·‖ and let E be a closed subspace

of X . If (xα) is a sequence in E that converges weakly to x ∈ X , then x ∈ E.

Especially, xα ⇀ x in E.

Proof. If x /∈ E, the Hahn-Banach theorem guarantees the existence of a continuous

linear functional φ : X → R vanishing on E such that φ(x) 6= 0. However, this

contradicts the fact that φ(xα)→ φ(x) as α→∞. Hence, we have x ∈ E.

Given a bounded sequence in D1,p
a (U, x0), it is natural to ask whether there exists
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a subsequence that converges weakly in D1,p
a (U, x0).

Theorem 2.5.1. Let (uα) be a bounded sequence in D1,p
a (U, x0). There exists a

function u ∈ D1,p
a (U, x0) and a subsequence (uβ) such that

(1) uβ ⇀ u in D1,p
a (U, x0);

(2) uβ → u pointwise almost everywhere on U .

For simplicity and elegance, we divide the proof into two main steps.

Step 1. Every bounded sequence (uα) in D1,p
a (U, x0) has a subsequence converging

weakly to a function in this same space.

Proof of Step 1. First, note that (∇uα) is bounded in Lpa(U, x0). Now, as Lpa(U, x0)

is reflexive, there exists a vector w ∈ Lpa(U, x0) and a subsequence (uβ) such that

∇uβ ⇀ w in Lpa(U, x0). Next, let

T : D1,p
a (U, x0)→ Lpa(U, x0), u 7→ ∇u

be the isometry used in the proof of Proposition 2.5.1. Since D1,p
a (U, x0) is complete,

the image Im(T ) is a closed subspace of Lpa(U, x0). Citing Lemma 2.5.2, Im(T ) is

weakly closed whence w ∈ Im(T ). Then, u := T−1(w) is the weak limit of (uβ) in

D1,p
a (U, x0) by Proposition 2.5.1.

Next, we show that bounded weakly convergent sequences have subsequences that

converge almost everywhere.

Step 2. Let (uα) be a sequence converging weakly to u in D1,p
a (U, x0). There exists

a subsequence (uβ) that converges pointwise almost everywhere to u on U .

Proof of Step 2. After an extension by zero outside of U , it follows from Proposition

2.5.1 that uα ⇀ u in D1,p
a (Rn, x0). Thus, we can assume without loss of generality

that U = Rn. Now, for k ≥ 1, we define Ak to be the open annulus

Ak := B(x0, k + 1) \B(x0, 1/k)
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and observe that (uα) forms a bounded sequence in W 1,p(Ak). Following the proof

used in Theorem 2.4.1, we can construct a family {(uα,k)}k≥1 of subsequences of (uα)

such that

(i) (uα,k+1) is a subsequence of (uα,k) for all k ≥ 1;

(ii) uα,k converges pointwise almost everywhere on Ak and strongly to a function

wk ∈ Lp(Ak), for all k ≥ 1.

In particular, uα,k converges weakly to wk in Lp(Ak). Now, let ` be a continuous linear

functional on Lp(Ak). By (2.5) and Lp-inclusion theory, there exists a constant C > 0

such that, after a possible relabeling,

|`(u)| ≤ C ‖u‖Lp(Ak) ≤ C ‖u‖Lq(Ak) ≤ C ‖u‖Lq(Ak,|x−x0|−bq) ≤ C ‖u‖D1,p
a (Rn,x0) .

Put otherwise, the continuous linear functionals on Lp(Ak) restrict to continuous

linear functionals on D1,p
a (Rn, x0). This implies that uα,k ⇀ u on Lp(Ak) whence

wk = u almost everywhere on Ak, for each k ≥ 1. Clearly, the diagonal subsequence

{uα,α} is the subsequence we seek.

Finally, combining Step 1 and Step 2 implies Theorem 2.5.1 at once.

Corollary 2.5.3. The space D1,p
a (U, x0) is a reflexive Banach space.

As pointed out in the previous section, Theorem 2.5.1 yields the following refor-

mulation of Lemma 2.4.5:

Theorem 2.5.2. Let (uα) be a bounded sequence in D1,p
a (Rn, x0). There exists

a function u ∈ D1,p
a (Rn, x0) and a subsequence (uβ) converging strongly to u in

Lploc(Rn, |x− x0|−ap) and pointwise almost everywhere on Rn, as β → ∞. That is,

the natural embedding D1,p
a (Rn, x0) ↪→ Lploc(Rn, |x− x0|−ap) is compact.

Proof. By Theorem 2.5.1, we can assume that uα ⇀ u in D1,p
a (Rn, x0) and that

uα(x)→ u(x) for almost every x ∈ Rn. Applying Lemma 2.4.5 to uα − u, given any

ball B = B(0, k), we can extract a subsequence of (uα) converging strongly to u in

Lp(B, |x− x0|−ap). The theorem then follows from a standard diagonal argument.
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2.5.1 A Riesz-Representation Theorem for D1,p
a (U, x0)

We now provide a complete characterization of the bounded linear functionals on

D1,p
a (U, x0). Let

T : D1,p
a (U, x0)→ Lpa(U, x0), u 7→ ∇u

be the canonical isometry and denote by Im(T ) the image of T in Lpa(U, x0). If φ is

a continuous linear functional on D1,p
a (U, x0), then the composite

φ ◦ T−1 : Im(T )→ R

is a continuous linear functional on Im(T ). Hence, by the Hahn-Banach theorem,

φ◦T−1 admits an extension to a continuous linear functional ϕ on Lpa(U, x0). In fact,

we can assume that ‖ϕ‖op = ‖φ ◦ T−1‖op. Citing the classical Riesz-representation

theorem, there exists g = (g1, . . . , gn) ∈ Lp′(U, |x− x0|−ap) such that

ϕ(f) =

∫
U

f · g |x− x0|−ap dx, ∀f ∈ Lpa(U, x0)

and ‖g‖Lp′ (U,|x−x0|−ap) = ‖ϕ‖op. In particular, for all ∇u ∈ Im(T ), we have

(φ ◦ T−1)(∇u) = ϕ(∇u) =

∫
U

∇u · g |x− x0|−ap dx.

Put otherwise, we have

φ(u) =

∫
U

∇u · g |x− x0|−ap dx

for all u ∈ D1,p
a (U, x0). Finally, we observe that

‖g‖Lp′ (U,|x−x0|−ap) = ‖ϕ‖op =
∥∥φ ◦ T−1

∥∥
op

= sup
v∈Im(T )
v 6=0

|(φ ◦ T−1)(v)|
‖v‖Lpa(U,x0)

= sup
u∈D1,p

a (U,x0)
u6=0

|φ(u)|
‖u‖D1,p

a (U,x0)
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so that ‖g‖Lp′ (U,|x−x0|−ap) = ‖φ‖op. To summarize, we have established the follow-

ing generalization of the Riesz-Representation Theorem for W 1,p
0 (U) (see Adams-

Fournier [2]).

Theorem 2.5.3. If φ is a continuous linear functional on D1,p
a (U, x0), there exist

functions g1, . . . , gn ∈ Lp
′
(U, |x− x0|−ap) such that

φ(u) =
n∑
j=1

∫
U

gi(x)∂iu(x) |x− x0|−ap dx (2.6)

for all u ∈ D1,p
a (U, x0). Furthermore, ‖φ‖op = ‖(g1, . . . , gn)‖Lp′ (U,|x−x0|−ap).

2.6 Pointwise Convergence of the Gradients

In the previous section, we showed that bounded sequences in D1,p
a (U, x0) have sub-

sequences that converge weakly and almost everywhere on U . In this section, we

instead give conditions under which we can find a subsequence whose gradients con-

verge pointwise. Following the ideas put forth in Mercuri-Willem [17], we require

the following lemma of Alves [1].

Lemma 2.6.1. Fix 1 < p <∞ and define A : Rn → Rn by the rule A(y) := |y|p−2 y.

Let ω : U → [0,∞) be positive almost everywhere on U and Lebesgue measurable.

Let µ be the measure given by dµ := ωdx. If (uα) is bounded in Lp(U, dµ) and uα

converges pointwise almost everywhere to a function u, then

lim
α→∞

∫
U

|A(uα)− A(u)− A(uα − u)|p/(p−1) dµ = 0.

Proof. The case p ≥ 2 can be treated using a straightforward adaptation of the

argument used in Lemma 3 of Alves [1]. When 1 ≤ p < 2, the proof from Lemma

3.2 in Mercuri-Willem [17] can be used without modification.



2.6. POINTWISE CONVERGENCE OF THE GRADIENTS 43

We have the following notable immediate consequence:

Corollary 2.6.2. Fix 1 < p < ∞ and let A, ω be as in Lemma 2.6.1. Let µ be the

measure given by dµ := ωdx. If uα → u strongly in Lp (U, dµ) and pointwise almost

everywhere as α→∞, then

lim
α→∞

∫
U

|A(uα)− A(u)|p/(p−1) dµ = 0.

That is, A(uα)→ A(u) in L
p
p−1 (U, dµ) as α→∞.

Proof. By Lemma 2.6.1 it is clear that ‖A(uα)− A(u)− A(uα − u)‖
L

p
p−1 (Ω,dµ)

= o(1)

as α→∞. Since uα → u strongly in Lp(Ω, dµ), we also have

‖A(uα − u)‖
L

p
p−1 (Ω,dµ)

=

(∫
Ω

|uα − u|(p−1)· p
p−1 dµ

)(p−1)/p

= ‖uα − u‖p−1
Lp(Ω,dµ) = o(1).

The claim therefore follows from the Minkowski inequality for Lp-spaces.

In order to establish our next result, we first make a crucial observation. For any

u ∈ D1,p
a (Rn, x0) and c ∈ R, we claim that

∇u ≡ 0 a.e. on {x ∈ Rn : u(x) = c}.

To see this, consider for each k ∈ N the open annulus

Ak =

{
x ∈ Rn :

1

k
< |x− x0| < k + 1

}
and notice that u ∈ W 1,p(Ak). It is therefore known that

m (Ak ∩ {x ∈ Rn : u(x) = c,∇u(x) 6= 0}) = 0,

with m being the Lebesgue measure on Rn. Taking the union over all k ∈ N, it

readily follows that m({x ∈ Rn : u(x) = c,∇u(x) 6= 0}) = 0. This means that ∇u
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vanishes almost everywhere on any level set of u.

Lemma 2.6.3. Let T : R → R be the Lipschitz continuous function defined by the

rule

T (x) :=

x if |x| ≤ 1,

x
|x| if |x| > 1,

(2.7)

and fix a function u ∈ D1,p
a (U, x0). Then, T (u) ∈ D1,p

a (U, x0).

Remark 2.6.1. We mollify the function T using a sequence of standard mollifiers η1/k

to obtain a sequence Tk of smooth functions that approximate T . It is well known

(see Evans [14]) that since T is continuous, Tk → T locally uniformly. In fact, since

T is constant for x ≤ −1 and x ≥ 1, it follows that Tk → T uniformly on all of R.

Proof. Since T is piecewise smooth and u ∈ W 1,1
loc (U \ {x0}), the composite T (u) is

weakly differentiable away from the singularity x0 (see, for instance, Brézis [4] or

Ziemer [26]). Moreover, the chain rule ∇(T (u)) = T ′(u)∇u must hold away from x0.

Using these facts, it is clear that T (u) ∈ E1,p
a (Ux0). Indeed, since |T (u)| ≤ |u| and

|∇(T (u))| ≤ |∇u|,

‖T (u)‖Lqb(U,x0) <∞, ‖∇(T (u))‖Lpa(U,x0) <∞.

Mollifying T , we obtain a sequence of smooth functions (Tk) such that

(1) Tk → T uniformly on R as k →∞;

(2) |T ′k(x)| ≤ 1 for all x ∈ R and all k ∈ N;

(3) T ′k(x)→ T ′(x) as k →∞ for all x 6= ±1.2

Note that this last two properties hold because, since T ∈ W 1,∞(R), the derivative

of Tk is precisely the mollification of T ′. Furthermore, we can ensure that Tk(0) = 0

2For each x 6= ±1, the sequence T ′k(x) is eventually equal to T ′(x).
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for all k ≥ 1. Next, let (uα) be a sequence in C∞c (U) converging to u in D1,p
a (U, x0)

and pointwise almost everywhere. Given any k, α ∈ N, we have

‖Tk(uα)− T (u)‖D1,p
a (U,x0) ≤ ‖Tk(uα)− T (uα)‖D1,p

a (U,x0) + ‖T (uα)− T (u)‖D1,p
a (U,x0)

≤ ‖Tk(uα)− T (uα)‖D1,p
a (U,x0)

+ ‖T ′(uα)(∇uα −∇u)‖Lpa(U,x0)

+ ‖(T ′(uα)− T ′(u))∇u‖Lpa(U,x0)

We now fix ε > 0 and consider the set

E = {x ∈ U : u(x) = ±1}.

Since ∇u vanishes almost everywhere on E,

‖(T ′(uα)− T ′(u))∇u‖pLpa(U,x0) =

∫
EC

|T ′(uα)− T ′(u)|p |∇u|p |x− x0|−ap dx.

Because |T ′(uα)− T ′(u)|p |∇u|p ≤ 2p |∇u|p and T ′ is continuous away from ±1,

lim
α→∞

‖(T ′(uα)− T ′(u))∇u‖pLpa(U,x0)

by the Dominated Convergence Theorem. Therefore, for all α ∈ N large,

‖(T ′(uα)− T ′(u))∇u‖Lpa(U,x0) <
ε

3
. (2.8)

Since uα → u in D1,p
a (U, x0), we also have

‖uα − u‖D1,p
a (U,x0) <

ε

3

for all α large. Therefore, for all but finitely many α,

‖T ′(uα)(∇uα −∇u)‖Lpa(U,x0) ≤ ‖uα − u‖D1,p
a (U,x0) <

ε

3
(2.9)
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Fix any α ∈ N such that (2.8)-(2.9) hold true. As ∇uα vanishes on the level set

{uα = ±1}, we have

lim
k→∞

∫
U

|T ′k(uα)− T ′(uα)|p |∇uα(x)|p |x− x0|−ap dx

= lim
k→∞

∫
U

|T ′k(uα)− T ′(uα)|p |∇uα(x)|p 1{uα(x) 6=±1} |x− x0|−ap dx

= 0

by the Dominated Convergence Theorem. It follows that

‖Tk(uα)− T (uα)‖D1,p
a (U,x0) <

ε

3
.

for all k ∈ N sufficiently large. Combining the above with equations (2.8) and (2.9),

we have

‖Tk(uα)− T (u)‖D1,p
a (U,x0) < ε

As ε > 0 was arbitrary, this procedure outlines the construction of a subsequence

(uβ) of (uα) and a subsequence (Tβ) of (Tk) such that

lim
β→∞

‖∇ (Tβ(uβ)− T (u))‖Lpa(U,x0) = 0.

Since uα has compact support in U and Tk(0) = 0 for each k, Tk(uα) ∈ C∞c (U).

Especially, Tk(uα) ∈ E1,p
a,0(U, x0). Now, it follows from the above that (Tβ(uβ)) is

Cauchy in E1,p
a,0(U, x0). Therefore, there exists a function v ∈ E1,p

a,0(U, x0) such that

lim
β→∞

‖Tβ(uβ)− v‖E1,pa (U,x0) = 0.

Since Tβ → T uniformly on R and uβ → u pointwise a.e. on U ,

Tβ(uβ)→ T (u)

almost everywhere on U , as β →∞. Ergo, v = T (u) and T (u) ∈ E1,p
a,0(U, x0).
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Thanks to this, the following is within reach:

Lemma 2.6.4. Let (uα) be a bounded sequence in E1,p
a (U, x0) converging pointwise

almost everywhere to u ∈ E1,p
a (U, x0), as α → ∞. Let T : R → R be the Lipschitz

continuous function defined in (2.7). If

lim
α→∞

∫
U

(
|∇uα|p−2∇uα − |∇u|p−2∇u

)
· ∇T (uα − u) |x− x0|−ap dx = 0, (2.10)

then there exists a subsequence (uβ) such that ∇uβ → ∇u pointwise almost every-

where on U .

Proof. We adapt the proof from Szulkin-Willem [21]. For each α ∈ N we consider

the set

Eα := {x ∈ U : |uα(x)− u(x)| ≤ 1} .

Then, (2.10) can be written as

lim
α→∞

∫
Eα

(
|∇uα|p−2∇uα − |∇u|p−2∇u

)
· (∇uα −∇u) |x− x0|−ap dx = 0. (2.11)

Since the integrand is non-negative and 1Eα(x)→ 1 for almost every x ∈ U , passing

to a subsequence if necessary, we see that

(
|∇uα|p−2∇uα − |∇u|p−2∇u

)
(∇uα −∇u)→ 0

pointwise almost everywhere on U . Appealing to Lemma 2.1 from Szulkin-Willem

[21], we infer that ∇uα → ∇u pointwise a.e. on U .

Thus, we obtain a weighted version of Theorem 3.3 in Mercuri-Willem [17].

Theorem 2.6.1. Let (uα) be a bounded sequence in D1,p
a (U, x0) converging pointwise

almost everywhere to u ∈ D1,p
a (U, x0) as α → ∞. Let T be defined as in Lemma

2.6.4 and assume that (Uk) is an increasing sequence of open subsets of U such that
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⋃
k≥1 Uk = U . Assume further that

lim
α→∞

∫
Uk

(
|∇uα|p−2∇uα − |∇u|p−2∇u

)
· ∇T (uα − u) dµ = 0

for each k ≥ 1, where dµ = |x− x0|−ap dx. Then, there exists a subsequence (uβ)

with the following properties:

(1) ∇uβ → ∇u pointwise almost everywhere on U ;

(2) lim
β→∞

(
‖uβ‖pD1,p

a (U,x0)
− ‖uβ − u‖pD1,p

a (U,x0)

)
= ‖u‖pD1,p

a (U,x0)
;

(3) and

|∇uβ|p−2∇uβ − |∇uβ −∇u|p−2 (∇uβ −∇u)→ |∇u|p−2∇u

strongly in L
p
p−1 (U, dµ).

Proof. By using a diagonal argument together with successive applications of Lemma

2.6.4, it is easy to see that (1) holds true. Moreover, we may assume by Theorem

2.5.1 that uα ⇀ u in D1,p
a (U, x0). Next, we note that (2) is a direct consequence of

the Brézis-Lieb Lemma (Theorem 2.1.1). Finally, (3) follows from Lemma 2.6.1.

2.7 Homogeneity

For simplicity take a function u ∈ E1,p
a (Rn, 0), fix x0 ∈ Rn, and let λ > 0. Consider

the following rescaling of u:

v(x) := λγu(λ(x+ x0)), (2.12)

with γ > 0 being the homogeneity exponent defined by

γ :=
n− bq
q

=
n

q
− b =

n− p(1 + a− b)
p

− b =
n− p(1 + a)

p
. (2.13)

Since ∇u exists in the weak sense away from the origin, it is not hard to verify that

∇v exists weakly away from the singular point −x0. Now, after a simple change of
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variables, we find that∫
Rn
|v(x)|q |x+ x0|−bq dx = λγq

∫
Rn
|u(λ(x+ x0)|q |x+ x0|−bq dx (2.14)

= λn−bq
∫
Rn
|u(λ(x+ x0)|q |x+ x0|−bq dx (2.15)

= λ−bq
∫
Rn
|u(z)|q

∣∣∣z
λ

∣∣∣−bq dz (2.16)

=

∫
Rn
|u(z)|q |z|−bq dz. (2.17)

Similarly, a straightforward calculation yields∫
Rn
|∇v(x)|p |x+ x0|−ap dx = λ(γ+1)p

∫
Rn
|∇u(λ(x+ x0))|p |x+ x0|−ap dx (2.18)

= λn−ap
∫
Rn
|∇u(λ(x+ x0))|p |x+ x0|−ap dx (2.19)

=

∫
Rn
|∇u(z)|p |z|−ap dz. (2.20)

Therefore, we see that the rescaling in (2.12) satisfies

‖v‖Lqb(Rn,−x0) = ‖u‖Lqb(Rn,0) and ‖∇v‖Lpa(Rn,−x0) = ‖∇u‖Lpa(Rn,0) .

In particular, v ∈ E1,p
a (Rn,−x0). This invariance property (known as homogeneity)

will live at the heart of our main result. Equally important, however, is the following

simple observation:

Lemma 2.7.1. Let u ∈ D1,p
a (Rn, 0), fix x0 ∈ Rn and let λ > 0. If we define

v ∈ E1,p
a (Rn,−x0) by (2.12), then v ∈ D1,p

a (Rn,−x0).

Proof. By definition of D1,p
a (Rn, 0), there exists a sequence (ϕα) of smooth functions

with compact support in Rn converging to u in D1,p
a (Rn, 0) as α → ∞. Clearly, for

each α ∈ N, the function ψα(x) := λγϕα(λ(x+ x0)) also belongs to C∞c (Rn). By the

calculations carried out above, it follows that ψα → v in E1,p
a (Rn,−x0). Therefore,

v ∈ D1,p
a (Rn,−x0) as was asserted.
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Chapter 3

A Compactness Result for Critical

Weighted p-Laplace Equations

We now turn towards the original problem discussed within the first chapter. Namely,

we consider the problem (1.7) when Ω ⊂ Rn is a non-empty bounded domain contain-

ing the origin. Note that we do not impose any smoothness or regularity assumptions

on the boundary of Ω. In this chapter, we first discuss the basic technical properties

of Palais-Smale sequences for this problem and identify the possible limiting prob-

lems that our “bubbles” will solve. We then apply these technical results and the

theory developed in the previous chapter to conduct a concentration/compactness

analysis for Palais-Smale sequences associated to (1.7). The results presented within

this chapter are based on a work in progress and part of a paper in preparation

(Chernysh [8]).

3.1 The Weak Formulation of The Problem in Ω

Let Ω ⊂ Rn be a bounded domain containing the origin. For the sake of clarity

with regards to the current literature, recall that D1,p
a (Ω, 0) is precisely the space

D1,p(Ω, |x|−ap) from (1.7).

Definition 3.1.1. A function u ∈ D1,p
a (Ω, 0) is said to be a weak solution to the

51
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weighted critical p-Laplace problem (1.7) whenever one has∫
Ω

|∇u|p−2∇u · ∇h |x|−ap dx =

∫
Ω

|u|q−2 uh |x|−bq dx (3.1)

for all test functions h ∈ C∞c (Ω).

Consider now the nonlinear functional φ : D1,p
a (Ω, 0)→ R given by the rule

φ(u) :=
1

p

∫
Ω

|∇u|p

|x|ap
dx− 1

q

∫
Ω

|u|q

|x|bq
dx.

By (2.5), it is easy to see that φ is continuous on D1,p
a (Ω, 0). In fact, it is readily seen

that φ is Fréchet differentiable on the space D1,p
a (Ω, 0) with derivative

〈φ′(u), h〉 =

∫
Ω

(
|∇u|p−2∇u · ∇h |x|−ap − |u|q−2 uh |x|−bq

)
dx (3.2)

for all u, h ∈ D1,p
a (Ω, 0). Note that by Hölder’s inequality, for each fixed function

u ∈ D1,p
a (Ω, 0), the map 〈φ′(u), ·〉 is a bounded linear functional on D1,p

a (Ω, 0). Thus,

since C∞c (Ω) is dense in D1,p
a (Ω, 0) by definition, we see that u is a weak solution to

(1.7) if and only if

〈φ′(u), h〉 = 0, ∀h ∈ D1,p
a (Ω, 0).

The functional φ is called the energy functional associated to the problem (1.7).

In light of this, whilst attempting to find a solution to the problem (1.7), it is

natural to search for critical points of the energy functional φ. With this in mind,

the following definition is easily motivated.

Definition 3.1.2 (Palais-Smale Sequences). Let (uα) be a sequence in D1,p
a (Ω, 0).

We say that (uα) is a Palais-Smale sequence for (1.7) provided each of the following

hold true:

(I) φ(uα) is bounded uniformly in α;

(II) φ′(uα)→ 0 strongly in D−1,p′
a (Ω, 0) as α→∞.
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In particular, subsequences of Palais-Smale sequences are again Palais-Smale.

It is not a priori obvious that a Palais-Smale sequence (for (1.7)) is bounded in

D1,p
a (Ω, 0). In the next result, we show that this is indeed the case.

Proposition 3.1.1. A Palais-Smale sequence (uα) for (1.7) is bounded.

Proof. We follow the argument used in Struwe [19, Lemma 2.3]. Let (uα) be a

Palais-Smale sequence for (1.7). A simple calculation shows that

‖uα‖pD1,p
a (Ω,0)

= pφ(uα) +
p

q

∫
Ω

|uα|q

|x|bq
dx

≤ C +
p

q

∫
Ω

|uα|q

|x|bq
dx

where we have used that φ(uα) is bounded in α. Next, observe that

pφ(uα)− 〈φ′(uα), uα〉 =

(
1− p

q

)∫
Ω

|uα|q

|x|bq
dx

where the left hand side is bounded in absolute value by

C + o(1) ‖uα‖D1,p
a (Ω,0)

by virtue of (I) and (II). Put otherwise, we have∫
Ω

|uα|q

|x|bq
dx ≤ C̃ + o(1) ‖uα‖D1,p

a (Ω,0)

for a suitable constant C̃ > 0. It then follows that

‖uα‖pD1,p
a (Ω,0)

≤ C +
p

q

∫
Ω

|uα|q

|x|bq
dx

≤ C +
p

q
C̃ + o(1) ‖uα‖D1,p

a (Ω,0)

whence (uα) is bounded in D1,p
a (Ω, 0).
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Using this, we show that in the limit Palais-Smale sequences for φ are uniformly

bounded from below by zero in energy. More precisely, we have the following:

Lemma 3.1.2. Let (uα) be a Palais-Smale sequence for (1.7). Then, (uα) has non-

negative limiting energy. More precisely,

lim inf
α→∞

φ(uα) ≥ 0.

Proof. Since (uα) is bounded and a Palais-Smale sequence, it is readily seen that

〈φ′(uα), uα〉 =

∫
Ω

|∇uα|p |x|−ap dx−
∫

Ω

|uα|q |x|−bq dx→ 0

as α→∞. Therefore, given ε > 0, we have

‖∇uα‖pLpa(Ω,0)
− ‖uα‖qLqb(Ω,0)

> −ε

for all α ∈ N large. Consequently, for all such α,

φ(uα) =
‖∇uα‖pLpa(Ω,0)

p
−
‖uα‖qLqb(Ω,0)

q

>

(
1

p
− 1

q

)
‖uα‖qLqb(Ω,0)

− ε

p

≥ −ε
p
.

Hence, we obtain

lim inf
α→∞

φ(uα) ≥ −ε
p
.

Since ε > 0 was arbitrary, the claim follows.

3.2 Technical Lemmas

Here we establish two main ingredients for the proof of our main result. The first

lemma allows us to extract a solution to the original problem (1.7) in Ω, while the
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second result extracts the bubbles our Palais-Smale sequence may encode.

Lemma 3.2.1. Let (uα) in D1,p
a (Ω, 0) be a Palais-Smale sequence for φ such that,

as α→∞,

(1) uα ⇀ u in D1,p
a (Ω, 0);

(2) uα → u a.e. on Ω;

(3) φ(uα)→ c.

Then, passing to a subsequence if necessary, there holds

(i) ∇uα → ∇u a.e. on Ω and φ′(u) = 0;

(ii) ‖uα‖pD1,p
a (Ω,0)

− ‖uα − u‖pD1,p
a (Ω,0)

= ‖u‖pD1,p
a (Ω,0)

+ o(1);

(iii) φ(uα − u)→ c− φ(u) as α→∞.

Furthermore, one has

φ′(uα − u)→ 0

strongly in D−1,p′
a (Ω, 0).

Proof. We borrow ideas from Mercuri-Willem [17]. Let T : R→ R be the Lipschitz

continuous function defined in (2.7) and note that |T ′| ≤ 1 almost everywhere. Now,

since the functions |x|−ap and |x|−bq are bounded above and below locally by positive

constants away from the origin, D1,p
a (Ω, 0) ⊆ W 1,p

loc (Ω \ {0}). Furthermore, it is a

consequence of Lemma 2.6.3 that T maps D1,p
a (Ω, 0) back to itself, i.e. there holds

T (v) ∈ D1,p
a (Ω, 0) for all v ∈ D1,p

a (Ω, 0).

Let us now define vα := uα − u. Since T is continuous and bounded, the Domi-

nated Convergence Theorem implies that∫
Ω

|T (vα)|r |x|−bq dx→ 0, as α→∞ (3.3)

for every 0 < r <∞. As (vα) is bounded in D1,p
a (Ω, 0), it is easy to check that (T (vα))

is bounded in D1,p
a (Ω, 0) as well. Citing Theorem 2.5.1 and passing to a subsequence,
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we may assume that T (vα) ⇀ η in D1,p
a (Ω, 0) and pointwise almost everywhere on

Ω. Since vα → 0 almost everywhere on Ω, we must have η = 0. Using this, we will

show that, up to a subsequence, ∇uα → ∇u pointwise almost everywhere on Ω.

With the hope of applying Theorem 2.6.1, let us consider for each α ∈ N the

expression

Γα :=

∫
Ω

(
|∇uα|p−2∇uα − |∇u|p−2∇u

)
· ∇T (uα − u) |x|−ap dx.

Clearly, Γα can be written as follows:

〈φ′(uα), T (uα − u)〉 −
∫

Ω

|∇u|p−2∇u · ∇T (uα − u) |x|−ap dx︸ ︷︷ ︸
=:I1

+

∫
Ω

|uα|q−2 uαT (uα − u) |x|−bq dx︸ ︷︷ ︸
:=I2

.

Now, since φ′(uα) converges strongly to zero in D−1,p′
a (Ω, 0) and

T (uα − u) = T (vα)

is bounded in D1,p
a (Ω, 0), the first term 〈φ′(uα), T (uα − u)〉 converges to 0. Next, the

estimate

|I1| ≤
(∫

Ω

|∇T (uα − u)|p |x|−ap dx

)1/p(∫
Ω

|∇u|p |x|−ap dx

)(p−1)/p

= ‖T (vα)‖D1,p
a (Ω,0)

(∫
Ω

|∇u|p |x|−ap dx

)(p−1)/p

shows that the map

f 7→
∫

Ω

|∇u|p−2∇u · ∇f |x|−ap dx

is a continuous linear functional on D1,p
a (Ω, 0). Using that T (vα) ⇀ 0 in D1,p

a (Ω, 0),

it follows that I1 → 0 as well. To handle the final term, we observe that, by Hölder’s
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inequality,

|I2| ≤
∫

Ω

|uα|q−1 |T (vα)| |x|−bq dx

≤
(∫

Ω

|T (vα)|q |x|−bq dx

)1/q (∫
Ω

|uα|q |x|−bq dx

)(q−1)/q

where (uα) is bounded in Lqb(Ω, 0) by (CKN) and∫
Ω

|T (vα)|q |x|−bq dx→ 0

as α → ∞ by (3.3). Consequently, we see that Γα → 0 as α → ∞. Applying

Theorem 2.6.1, we can assume that ∇uα → ∇u almost everywhere on Ω as α→∞.

Next, we assert that φ′(u) vanishes on D1,p
a (Ω, 0). That is, we claim that

〈φ′(u), h〉 = 0

for all h ∈ D1,p
a (Ω, 0). Since φ′(uα)→ 0 strongly in D−1,p′

a (Ω, 0), it would be enough

to check that

〈φ′(uα), h〉 → 〈φ′(u), h〉

as α→∞ for each fixed h ∈ D1,p
a (Ω, 0). Fixing h ∈ D1,p

a (Ω, 0), we calculate

〈φ′(uα), h〉 − 〈φ′(u), h〉

=

∫
Ω

(
|∇uα|p−2∇uα − |∇u|p−2∇u

)
· ∇h |x|−ap dx︸ ︷︷ ︸

=:J1

−
∫

Ω

(
|uα|q−2 uα − |u|q−2 u

)
h |x|−bq dx︸ ︷︷ ︸

=:J2

where both J1 and J2 converge to 0 as α → ∞ by Theorem 2.1.2. It follows that

φ′(u) = 0 and (i) is therefore proven. The second conclusion follows at once from
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Theorem 2.6.1-(ii). Combining this with the Brézis-Lieb lemma gives

φ(vα) =

∫
Ω

[
|x|−ap |∇vα|p

p
− |x|

−bq |vα|q

q

]
dx

=
1

p
‖uα − u‖pD1,p

a (Ω,0)
− 1

q
‖uα − u‖qLqb(Ω,0)

=
1

p

(
‖uα‖pD1,p

a (Ω,0)
− ‖u‖p

D1,p
a (Ω,0)

)
− 1

q

(
‖uα‖qLqb(Ω,0)

− ‖u‖q
Lqb(Ω,0)

)
+ o(1)

= φ(uα)− φ(u) + o(1)

→ c− φ(u).

Finally, fix h ∈ D1,p
a (Ω, 0) with ‖h‖ = 1. The last claim follows by applying Hölder’s

inequality and Lemma 2.6.1.

3.2.1 An Iterative Bubbling Lemma

We now identify the limiting problems that our bubbles can solve. The results that

we present in this section will allow us to iterate within the proof of our main theorem.

Given a point x0 ∈ Rn we define the functional

φx0,∞(u) :=

∫
Rn

(
|∇u(x)|p

p
|x+ x0|−ap −

|u(x)|q

q
|x+ x0|−bq

)
dx

for u ∈ D1,p
a (Rn,−x0). As before, φx0,∞ is Fréchet differentiable on D1,p

a (Rn,−x0)

with derivative given by

〈
φ′x0,∞(u), h

〉
=

∫
Rn
|∇u(x)|p−2∇u(x) · ∇h(x) |x+ x0|−ap dx

−
∫
Rn
|u(x)|q−2 u(x)h(x) |x+ x0|−bq dx

for u, h ∈ D1,p
a (Rn,−x0). The map φx0,∞ is the energy functional corresponding to
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the limiting problem− div
(
|x+ x0|−ap |∇u|p−2∇u

)
= |x+ x0|−bq |u|q−2 u in Rn,

u ∈ D1,p
a (Rn,−x0).

(3.4)

Before proceeding further we check that every non-trivial critical point of φx0,∞ has

strictly positive energy. More precisely, we establish the following result:

Proposition 3.2.2. Let C > 0 be such that (2.5) holds true for all x0 ∈ Rn. Fix a

point x0 ∈ Rn and let u 6= 0 be a critical point of φx0,∞. Then,

C−
n

1+a−b

(
1 + a− b

n

)
≤ φx0,∞(u).

Proof. Since u ∈ D1,p
a (Rn,−x0) is a critical point of φx0,∞, we have

0 =
〈
φ′x0,∞(u), u

〉
=

∫
Rn
|∇u|p |x+ x0|−ap dx−

∫
Rn
|u|q |x+ x0|−bq dx.

Therefore, by (2.5),

C−p ‖u‖p
Lqb(Rn,−x0)

≤ ‖∇u‖p
Lpa(Rn,−x0)

= ‖u‖q
Lqb(Rn,−x0)

whence

0 < C−p ≤ ‖u‖q−p
Lqb(Rn,−x0)

.

Or, rather,

0 < C−
pq

(q−p) ≤ ‖u‖q
Lqb(Rn,−x0)

.

It follows that

φx0,∞(u) =
‖∇u‖p

Lpa(Rn,−x0)

p
−
‖u‖q

Lqb(Rn,−x0)

q

=
‖u‖q

Lqb(Rn,−x0)

p
−
‖u‖q

Lqb(Rn,−x0)

q
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whence

φx0,∞(u) = ‖u‖q
Lqb(Rn,−x0)

(
1

p
− 1

q

)
≥ C

pq
−(q−p)

(
1

p
− 1

q

)
= C−

n
1+a−b

1 + a− b
n

> 0.

This completes the proof.

We now give an iterative result for φx0,∞ that is similar to Lemma 3.2.1. First,

however, we introduce the notion of a bubble for problem (1.7).

Definition 3.2.1. Let (λα) be a sequence of positive real numbers converging to 0 as

α→∞. A 0-bubble1 (Bα) associated to (λα) is a sequence of functions in D1,p
a (Rn, 0)

of the form

Bα(x) := λ−γα v

(
x

λα

)
with v ∈ D1,p

a (Rn, 0) solving− div
(
|x|−ap |∇u|p−2∇u

)
= |x|−bq |u|q−2 u in Rn,

u ∈ D1,p
a (Rn, 0)

and γ > 0 given by (2.13).

Remark 3.2.1. We note that, up to a subsequence, every 0-bubble (Bα) must satisfy

(i) Bα ⇀ 0 in D1,p
a (Rn, 0) as α→∞;

(ii) Bα(x)→ 0 for almost every x ∈ Rn;

(iii) ∇Bα(x)→ 0 pointwise almost everywhere on Rn.

1The term 0-bubble is used to emphasize that our bubbles always concentrate near the origin.
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Indeed, fix ε > 0 and compute∫
B(0,ε)C

|∇Bα(x)|p |x|−ap dx = λ−(γ+1)p
α

∫
B(0,ε)C

∣∣∣∣∇v( x

λα

)∣∣∣∣p |x|−ap dx

= λ−(γ+1)p+n−ap
α

∫
B(0, ε

λα
)
C
|∇v (z)|p |z|−ap dz

=

∫
B(0, ε

λα
)
C
|∇v (z)|p |z|−ap dz

where the last term converges to 0 by the monotone convergence theorem. Pass-

ing to a subsequence, we infer that ∇Bα(x) → 0 pointwise almost everywhere on

Rn \ B(0, ε). As ε > 0 was arbitrary, a diagonal argument gives the existence of a

subsequence such that ∇Bα → 0 almost everywhere on Rn. Since (∇Bα) is bounded

in Lpa(Rn, 0) by a simple change of variables, applying Theorem 2.1.2 and Proposi-

tion 2.5.1 implies that Bα ⇀ 0 in D1,p
a (Rn, 0). By Theorem 2.5.1, there is a further

subsequence converging to zero pointwise almost everywhere.

Lemma 3.2.3. Fix a bounded sequence (uα) in D1,p
a (Ω, 0) and extend it by zero

outside of Ω. Fix x0 ∈ Rn and let (λα) ⊂ (0,∞) be such that λα → 0 as α → ∞.

Given α ∈ N, let us define

vα(x) := λγαuα(λα(x+ x0))

with γ > 0 as in (2.13) and assume that

(1) vα ⇀ v in D1,p
a (Rn,−x0) and pointwise almost everywhere as α→∞;

(2) φ(uα)→ c and φ′(uα)→ 0 strongly in the dual of D1,p
a (Ω, 0).

Then, passing to a subsequence if necessary, we have ∇vα → ∇v pointwise almost

everywhere on Rn. Furthermore, let φx0,∞ be the energy functional associated to the

limiting problem (3.4). Then φ′x0,∞(v) = 0. Finally, the sequence in D1,p
a (Rn, 0)

wα(z) := uα(z)− (λα)−γv

(
z

λα
− x0

)
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satisfies

(i) ‖uα‖pD1,p
a (Rn,0)

− ‖wα‖pD1,p
a (Rn,0)

= ‖v‖pD1,p
a (Rn,−x0)

+ o(1);

(ii) φ0,∞(wα)→ c− φx0,∞(v);

(iii) φ′0,∞(wα)→ 0 strongly in D−1,p′
a (Ω, 0).

Proof. We adapt the argument from Mercuri-Willem [17]. Given k ∈ N, let Bk

denote the open ball B(0, k) ⊂ Rn. As a first step, we claim that φ′x0,∞(vα) → 0

strongly in D−1,p′
a (Bk,−x0) as α→∞. Indeed, fix h ∈ C∞c (Bk) and define

hα(z) := λ
p(1+a)−n

p
α h

(
z

λα
− x0

)
= λ−γα h

(
z

λα
− x0

)
Clearly,

∇hα(z) = λ
a−n

p
α ∇h

(
z

λα
− x0

)
.

Then, each hα is supported in λαB(x0, k) which approaches zero as α → ∞. Thus,

for all α large, we have hα ∈ C∞c (Ω) (using that Ω is an open set containing the

origin). Now, we compute∫
Rn
|∇vα|p−2∇vα · ∇h |x+ x0|−ap dx

=

∫
Rn
λ

(np−a)(p−1)
α |∇uα(λα(x+ x0))|p−2∇uα(λα(x+ x0)) · ∇h(x) |x+ x0|−ap dx

= λn−ap−n/p+aα

∫
Rn
|∇uα(z)|p−2∇uα(z) · λ

n
p
−a

α ∇hα(z) |z|−ap λap−nα dz

=

∫
Rn
|∇uα(z)|p−2∇uα(z) · ∇hα(z) |z|−ap dz.

Similarly, a simple change of variables yields∫
Rn
|vα(x)|q−2 vα(x)h(x) |x+ x0|−bq dx

= λγ(q−1)
α

∫
Rn
|uα(λα(x+ x0)|q−2 uα(λα(x+ x0))h(x) |x+ x0|−bq dx
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= λγ(q−1)
α

∫
Rn
|uα(z)|q−2 uα(z)λγαhα(z)λbq−nα |z|−bq dz

= λγq−n+bq
α

∫
Rn
|uα(z)|q−2 uα(z)hα(z) |z|−bq dz

=

∫
Rn
|uα(z)|q−2 uα(z)hα(z) |z|−bq dz.

In this last step, we have used that

γq = n− bq.

Combining these two identities shows that, for all α ∈ N large,

∣∣〈φ′x0,∞(vα), h
〉∣∣ = |〈φ′(uα), hα〉| ≤ ‖φ′(uα)‖D−1,p′

a (Ω,0)
‖hα‖D1,p

a (Ω,0)

= ‖φ′(uα)‖D−1,p′
a (Ω,0)

‖h‖D1,p(Bk,−x0) .

It follows that φ′x0,∞(vα)→ 0 strongly in D−1,p′
a (Bk,−x0). Using this, we will extract

a subsequence such that ∇vα → ∇v pointwise on Rn, almost everywhere. Let now

ρ ∈ C∞c (Rn) be a bump function such that
0 ≤ ρ ≤ 1 on Rn,

ρ ≡ 1 in Bk,

ρ ≡ 0 outside Bk+1.

Consider the vector-valued map

fα := |∇vα|p−2∇vα − |∇v|p−2∇v,

which satisfies fα · (∇vα−∇v) ≥ 0 almost everywhere (see Szulkin-Willem [21]). Let
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T be as in (2.7). For each fixed k ∈ N, an easy computation shows that∫
Bk

fα · ∇T (vα − v) |x+ x0|−ap dx ≤
∫
Rn
fα · ρ∇T (vα − v) |x+ x0|−ap dx

=

∫
Rn
fα · ∇ [ρT (vα − v)] |x+ x0|−ap dx︸ ︷︷ ︸

=:I1

−
∫
Rn
fα · T (vα − v)∇ρ |x+ x0|−ap dx︸ ︷︷ ︸

=:I2

.

By Hölder’s inequality and the fact that supp(ρ) ⊆ Bk+1, it is easily seen that

|I2| ≤ C ‖fα‖
L

p
p−1 (Rn,|x+x0|−ap)

(∫
Bk+1

|T (vα − v)|p |x+ x0|−ap dx

)1/p

.

Now, as (∇vα) is uniformly bounded in Lpa(Rn,−x0), we see that

‖fα‖
L

p
p−1 (Rn,|x+x0|−ap)

can be bounded independently of α ∈ N. Since T is bounded, continuous, and vα → v

pointwise almost everywhere on Rn, the Dominated Convergence Theorem ensures

that ∫
Bk+1

|T (vα − v)|p |x+ x0|−ap dx→ 0, as α→∞.

We infer that I2 → 0 as α → ∞. It remains to check that I1 also vanishes in the

limit. To achieve this, note that we can write

I1 =
〈
φ′x0,∞(vα), ρT (vα − v)

〉
+

∫
Rn
|vα|q−2 vαρT (vα − v) |x+ x0|−bq dx︸ ︷︷ ︸

=:J1

−
∫
Rn
|∇v|p−2∇v · ∇(ρT (vα − v)) |x+ x0|−ap dx︸ ︷︷ ︸

=:J2

.
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Clearly,
〈
φ′x0,∞(vα), ρT (vα − v)

〉
→ 0 as α → ∞ since φ′x0,∞(vα) → 0 strongly in

D−1,p′
a (Bm,−x0) for each m ≥ 1.2 Next, using (2.5) together with Hölder’s inequality

shows that

|J1| ≤ ‖vα‖q−1
Lqb(Rn,−x0)

(∫
Rn
ρ(x)q |T (vα − v)|q |x+ x0|−bq dx

)1/q

→ 0

by virtue of the Dominated Convergence Theorem. Finally, treating J2, we have

J2 =

∫
Rn
|∇v|p−2∇v · ∇ρT (vα − v) |x+ x0|−ap dx

+

∫
Rn
ρ |∇v|p−2∇v · T ′(vα − v) (∇vα −∇v) |x+ x0|−ap dx

with this first term also converging to zero by Hölder’s inequality and the Dominated

Convergence Theorem. The second integral can be written as∫
Rn
ρ |∇v|p−2∇v · ∇(vα − v) |x+ x0|−ap dx

−
∫
{|vα−v|>1}

ρ |∇v|p−2∇v · ∇(vα − v) |x+ x0|−ap dx.

Since vα ⇀ v in D1,p
a (Rn,−x0) as α→∞, it is clear from Hölder’s inequality that

lim
α→∞

∫
Rn
ρ |∇v|p−2∇v · ∇(vα − v) |x+ x0|−ap dx = 0.

Now, another application of Hölder’s inequality yields for a suitable C > 0∫
{|vα−v|>1}

∣∣∣ρ |∇v|p−2∇v · ∇(vα − v)
∣∣∣ |x+ x0|−ap dx (3.5)

≤ C ‖vα − v‖D1,p
a (Rn,−x0)

(∫
Bk+1∩{|vα−v|>1}

|∇v|p |x+ x0|−ap dx

)(p−1)/p

.

(3.6)

2Since ρ is a test function, T is bounded and (vα) is uniformly bounded in D1,p
a (Rn,−x0), the

sequence (ρT (vα − v))α∈N is bounded in D1,p(Bm,−x0) for sufficiently large m.
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Using that vα → v pointwise almost everywhere on Rn, it follows that this last

integral converges to zero as α→∞. Indeed, the ball Bk+1 has finite measure with

respect to dµ = |x+ x0|−ap dx whence

µ ({x ∈ Bk+1 : |vα(x)− v(x)| > 1})→ 0

as α→∞. Especially, J2 → 0. To summarize, we have shown that

lim
α→∞

∫
Bk

fα · ∇T (vα − v) |x+ x0|−ap dx = 0

for all k ∈ N. Citing Theorem 2.6.1, we may assume after passing to a subsequence

that ∇vα → ∇v pointwise almost everywhere on Rn. Furthermore, this result says

that

‖vα‖pD1,p
a (Rn,−x0)

− ‖vα − v‖pD1,p
a (Rn,−x0)

= ‖v‖pD1,p
a (Rn,−x0)

+ o(1) (3.7)

and

|∇vα|p−2∇v − |∇vα −∇v|p−2 (∇vα −∇v)→ |∇v|p−2∇v (3.8)

in Lp
′
(Rn, |x+ x0|−ap). By a simple change of variables, it is clear that (3.7) implies

(i) directly. Next, write

1

p

∫
Rn
|∇wα(x)|p |x|−ap dx =

1

p

∫
Rn

∣∣∣∣∇uα(x)− λ−(γ+1)
α ∇v

(
x

λα
− x0

)∣∣∣∣p |x|−ap dx

=
λ
−(γ+1)p
α

p

∫
Rn

∣∣∣∣∇vα( x

λα
− x0

)
−∇v

(
x

λα
− x0

)∣∣∣∣p |x|−ap dx

=
λ
−(γ+1)p
α

p

∫
Rn
|∇vα(z)−∇v(z)|p λ−ap+nα |z + x0|−ap dz

=
1

p

∫
Rn
|∇vα(z)−∇v(z)|p |z + x0|−ap dz.
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Similarly,

1

q

∫
Rn
|wα(x)|q |x|−bq dx =

1

q

∫
Rn

∣∣∣∣uα(x)− λ−γα vα

(
x

λα
− x0

)∣∣∣∣q |x|−bq dx

=
λ−γqα

q

∫
Rn

∣∣∣∣vα( x

λα
− x0

)
− v

(
x

λα
− x0

)∣∣∣∣q |x|−bq dx

=
λ−γq+n−bqα

q

∫
Rn
|vα(z)− v(z)|q |z + x0|−bq dz

=
1

q

∫
Rn
|vα(z)− v(z)|q |z + x0|−bq dz.

Combining these, the Brézis-Lieb lemma ensures that

φ0,∞(wα) = φx0,∞(vα − v) = φx0,∞(vα)− φx0,∞(v) + o(1)

= φ(uα)− φx0,∞(v) + o(1)

= c− φx0,∞(v) + o(1).

Next, we assert that φ′x0,∞(v) = 0. That is, we claim that v solves (3.4). Equivalently,

we show that
〈
φ′x0,∞(v), h

〉
= 0 for all h ∈ C∞c (Rn). Now, since φ′x0,∞(vα) → 0

strongly in D−1,p′
a (Bk) for each k ≥ 1, it suffices to check that

lim
α→∞

〈
φ′x0,∞(vα), h

〉
=
〈
φ′x0,∞(v), h

〉
.

Certainly, by Theorem 2.1.2 with dµ = |x+ x0|−ap dx, we see that∫
Rn

|∇vα(x)|p−2∇vα(x) · ∇h(x)

|x+ x0|ap
dx→

∫
Rn

|∇v(x)|p−2∇v(x) · ∇h(x)

|x+ x0|ap
dx.

Similarly, as α→∞,∫
Rn

|vα(x)|q−2 vα(x)h(x)

|x+ x0|bq
dx→

∫
Rn

|v(x)|q−2 v(x)h(x)

|x+ x0|bq
dx

whence
〈
φ′x0,∞(vα), h

〉
→
〈
φ′x0,∞(v), h

〉
. Finally, in order to prove claim (iii) we fix
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an arbitrary g ∈ C∞c (Ω) with ‖g‖D1,p
a (Ω,0) = 1. After rescaling, we see that

〈
φ′0,∞(wα), g

〉
=
〈
φ′x0,∞(vα − v), gα

〉
(3.9)

where gα(x) = λ
n−p(1+a)

p
α g(λα(x + x0)). Then, applying Hölder’s inequality together

with Theorem 2.6.1-(3) and the usual rescaling, it follows that

〈
φ′0,∞(wα), g

〉
=
〈
φ′x0,∞(vα − v), gα

〉
=
〈
φ′x0,∞(vα), gα

〉
−
〈
φ′x0,∞(v), gα

〉
+ o(1)

= 〈φ′(uα), g〉+ o(1)

uniformly for g ∈ C∞c (Ω) with ‖g‖D1,p
a (Ω,0) = 1. We infer that φ′0,∞(wα)→ 0 strongly

in D−1,p′
a (Ω, 0) and the proof is complete.

3.3 Convergence of Domains

In this section we formalize some of the notation that will be helpful in the proof of

our main result. We continue to denote by Ω an arbitrary bounded domain (i.e. a

non-empty open connected bounded set) containing the origin. In particular, there

exists δ > 0 such that B(0, δ) ⊆ Ω. Let now (λα) be a sequence in (0,∞) converging

to some λ ≥ 0 as α→∞ and fix a point x0 ∈ Rn. For each α ∈ N, let us consider

Ωα :=
Ω

λα
− x0 =

{
x

λα
− x0 : x ∈ Ω

}
.

Since the map x 7→ x
λα
−x0 is a homeomorphism Rn → Rn for each α ∈ N, it is clear

that Ωα is a bounded domain for every such index and that

Ωα =
Ω

λα
− x0, ∀α ∈ N.

Definition 3.3.1. Let Ω∞ ⊆ Rn be a domain. We say that Ωα → Ω∞ as α → ∞
provided the following two conditions are met:
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(1) for each compact set K ⊆ Ω∞, there exists N ∈ N such that K ⊆ Ωα for all

α ≥ N ;

(2) if K ⊆
(
Ω∞
)C

is compact, then K ∩ Ωα = ∅ for all α ∈ N sufficiently large.

In our case there are only two possible limiting domains Ω∞ that are of interest.

Proposition 3.3.1. Let (λα) and Ωα be as above. Define

Ω∞ :=

Rn if λ = 0,

Ω

λ
− x0 if λ > 0.

Then, Ωα → Ω∞ as α→∞.

Proof. We first treat the case where λ = limα→∞ λα = 0. Clearly,

Ωα ⊇
B(0, δ)

λα
− x0 = B

(
0,

δ

λα

)
− x0 = B

(
−x0,

δ

λα

)
which eventually contains every fixed compact set K. Hence, Ωα → Rn.

Let us now assume that we are in the case λ > 0 and fix a compact set K ⊆ Ω∞.

Then, λ(K + x0) is a compact subset of Ω. Since Ω is open, the Lebesgue Number

Lemma guarantees the existence of ε > 0 such that B(x, ε) ⊆ Ω for all x ∈ λ(K+x0).

Let M > 0 be such that

sup
z∈K
|z + x0| ≤M.

Since λα → λ as α→∞, we can find N ∈ N such that

|λα − λ| <
ε

M
, ∀α ≥ N.

Fix now a point z ∈ K; for all α ≥ N we obtain

|λ(z + x0)− λα(z + x0)| = |(λ− λα)(z + x0)|

≤ |λ− λα|M

< ε
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whence λα(z + x0) ∈ B(λ(z + x0), ε) ⊆ Ω. Thus, whenever α ≥ N ,

z ∈ Ω

λα
− x0 = Ωα.

It follows that K ⊆ Ωα for every α ≥ N .

Finally, assume that K ⊆
(
Ω∞
)C

is compact; we claim that K ∩ Ωα = ∅ for

all α ∈ N sufficiently large. Otherwise, passing to a subsequence if necessary, there

exists a sequence (zα) in K such that zα ∈ Ωα for each α ∈ N. Since K is compact,

we may assume that zα → z ∈ K as α → ∞. Now, for every index α there exists

xα ∈ Ω such that

zα =
xα
λα
− x0.

Passing to yet another subsequence, we can assume that xα → x in Ω. Therefore,

z = lim
α→∞

zα = lim
α→∞

[
xα
λα
− x0

]
=
x

λ
− x0.

Hence, z ∈ Ω∞ which is a contradiction.

Finally, we verify the following elementary property:

Lemma 3.3.2. Fix r > 0. Within the setting of the previous proposition, there

exist countably many balls {B(xj, r)}j, with xj ∈ Ω∞, and countably many balls

{B(y, εy)}y such that

(i) B(y, εy) ⊆
(
Ω∞
)C

for each y;

(ii)
⋃
j B(xj, r) ∪

⋃
y B(y, εy) = Rn.

Proof. If λα → 0 then Ω∞ = Rn for which the assertion is trivial. We may therefore

assume that λα → λ > 0. Clearly, the family

{B(y, r) : y ∈ Ω∞}

forms an open cover of the compact set Ω∞. Therefore, it admits a finite subcover Σ

of Ω∞. Now, given a point in
(
Ω∞
)C

, there exists εy > 0 such that B(y, εy) ⊂
(
Ω∞
)C

.
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Then, the family

Σ ∪
{
B(y, εy) : y /∈ Ω∞

}
is an open cover of Rn. Since Rn is second countable and therefore Lindelöf, we may

pass to a countable subcover.

3.4 The Global Compactness Theorem

We now show that the global compactness theorem established by Mercuri-Willem

in [17] for unweighted critical p-Laplace equations can be extended to the weighted

problem (1.7). Again, we do not impose any regularity assumptions on the boundary

of Ω and we continue to assume that the conditions in (1.6) hold.

Theorem 3.4.1. Let Ω ⊂ Rn be a bounded domain containing the origin and let (uα)

be a Palais-Smale sequence for (1.7). Assume a 6= b and let γ > 0 be the homogeneity

exponent from (2.13). Then, there exists a subsequence (uβ) of (uα) along with

(1) a solution v0 of (1.7);

(2) finitely many non-trivial functions w1, . . . , wk;

(3) sequences (λ
(j)
β ) in (0,∞) for j = 1, . . . , k,

such that

λ
(j)
β → 0, as β →∞,

and each wj solves− div
(
|x|−ap |∇u|p−2∇u

)
= |x|−bq |u|q−2 u in Rn,

u ∈ D1,p
a (Rn, 0).
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Furthermore, as β →∞,∥∥∥∥∥uβ − v0 −
k∑
j=1

(
λ

(j)
β

)−γ
wj

(
·
λ

(j)
β

)∥∥∥∥∥
D1,p
a (Rn,0)

→ 0,

‖uβ‖pD1,p
a (Ω,0)

→ ‖v0‖pD1,p
a (Ω,0)

+
k∑
j=1

‖wj‖pD1,p
a (Rn,0)

,

φ(uβ)→ φ(v0) +
k∑
j=1

φ0,∞(wj).

The Proof of Theorem 3.4.1

We take inspiration from the proof of Theorem 2 in Mercuri-Willem [17].

Step 1. Referring to Proposition 3.1.1, the sequence (uα) is bounded inD1,p
a (Ω, |x|−ap).

Therefore, by applying Theorem 2.5.1, we may assume that uα converges weakly to

some v0 ∈ D1,p
a (Ω, 0), with pointwise convergence almost everywhere on Ω, as α→∞.

Next, invoking Lemma 3.2.1 shows that the sequence (u1
α) defined by u1

α := uα − v0

satisfies

(i) ‖u1
α‖

p

D1,p
a (Ω,0)

= ‖uα‖pD1,p
a (Ω,0)

− ‖v0‖pD1,p
a (Ω,0)

+ o(1);

(ii) φ(u1
α)→ c− φ(v0);

(iii) φ′(u1
α)→ 0 in D−1,p′

a (Ω, 0).

Moreover, this same lemma asserts that φ′(v0) = 0 and ∇uα → ∇v0 almost every-

where on Rn as α→∞.

Step 2. We claim that the proof is complete in the case where u1
α → 0 strongly in

Lqb(Ω, 0). First note that the boundedness of (u1
α) in D1,p

a (Ω, 0) gives us that

∣∣〈φ′(u1
α), u1

α

〉∣∣ ≤ ∥∥φ′(u1
α)
∥∥
D−1,p′
a (Ω,0)

sup
α∈N

∥∥u1
α

∥∥
D1,p
a (Ω,0)

→ 0
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as α→∞. Put otherwise,

lim
α→∞

∫
Ω

(
|x|−ap

∣∣∇u1
α(x)

∣∣p − |x|−bq ∣∣u1
α(x)

∣∣q) dx = 0

whence we see that ∇u1
α → 0 strongly in Lpa(Ω, 0). By definition, this implies that

uα → v0 strongly in D1,p
a (Ω, 0) at which point the criteria of our theorem are satisfied

for k = 0 since

φ(v0) = lim
α→∞

φ(uα).

Step 3. In light of this previous step, we may assume without harm that u1
α does not

converge strongly to 0 in Lqb(Ω, 0) as α→∞. Passing to a subsequence if necessary,

let us assume that

inf
α>1

∫
Ω

∣∣u1
α

∣∣q |x|−bq dx > δ

with δ > 0 such that

0 < δ <

(
Sp
2p

) p
q−p

. (3.10)

Here, Sp > 0 is any positive constant such that, for all ξ ∈ Rn,

Sp ‖w‖pLqb(Rn, ξ) ≤ ‖∇w‖
p
Lpa(Rn, ξ) , ∀w ∈ D1,p

a (Rn, ξ).

Note that the existence of such a Sp is guaranteed by (2.5). By Proposition 2.4.1, after

an extension by zero outside Ω, we can interpret (u1
α) as a sequence in D1,p

a (Rn, 0).

Let us now consider the family {Qα}α>1 of Lévy concentration functions each

defined by

Qα(r) := sup
y∈Ω̄

∫
B(y,r)

∣∣u1
α

∣∣q |x|−bq dx.

We observe that every Qα is continuous on [0,∞) as a direct consequence of Propo-

sition 2.1.3. Clearly,

Qα(0) = 0 and lim
r↗∞

Qα(r) > δ

for all α ≥ 1. It then follows from the Intermediate Value Theorem that, for each
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α ∈ N, there exists a smallest λ1
α > 0 with the property that

Qα(λ1
α) = sup

y∈Ω̄

∫
B(y,λ1α)

∣∣u1
α

∣∣q |x|−bq dx = δ.

Clearly, since Ω is bounded and we are choosing the smallest possible λ1
α > 0 at

each stage, the sequence (λ1
α) is bounded by 2 diam(Ω). In particular, passing to a

subsequence, it can be assumed that λ1
α → λ1 ≥ 0 as α→∞. Finally, for each index

α ∈ N, there exists (by the Dominated Convergence Theorem) y1
α ∈ Ω such that

Qα(λ1
α) = sup

y∈Ω̄

∫
B(y,λ1α)

∣∣u1
α

∣∣q |x|−bq dx =

∫
B(y1α,λ

1
α)

∣∣u1
α

∣∣q |x|−bq dx = δ.

As above, we can assume that y1
α → y1 ∈ Ω.

Step 4. We claim that the sequence of points y1
α/λ

1
α is bounded in Rn. Arguing by

contradiction and passing to a subsequence if necessary, we may assume that

y1
α

λ1
α

→∞, as α→∞,

and that |y1
α| > 4λ1

α > 0 for each α ∈ N. Fix now a cutoff function η ∈ C∞c (Rn)

having the property that 
0 ≤ η ≤ 1 in Rn,

η ≡ 1 on B
(
0, 1

2

)
,

η ≡ 0 outside B(0, 1).

It is readily verified that
η

(
2

|y1
α|
(
z − y1

α

))
≡ 0 if

∣∣z − y1
α

∣∣ ≥ |y1
α|
2
,

η

(
2

|y1
α|
(
z − y1

α

))
≡ 1 if

∣∣z − y1
α

∣∣ ≤ |y1
α|
4
.

(3.11)
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Let us also make the elementary observation that

B(y1
α, λ

1
α) ⊂ B

(
y1
α,
|y1
α|
4

)
⊂ B

(
y1
α,
|y1
α|
2

)
(3.12)

for all α ∈ N. Clearly, if z ∈ B(y1
α, |y1

α|/2) then

|y1
α|
2
≤ |z| ≤ 3 |y1

α|
2

. (3.13)

We now consider the function

vα(x) :=

(
λ1
α

|y1
α|

)b (
λ1
α

)γ
u1
α(λ1

αx+ y1
α)η

(
2λ1

αx

|y1
α|

)
with γ > 0 defined as in (2.13). Note that vα is weakly differentiable on Rn by

Lemma 2.4.4.3 In particular, ∇vα exists almost everywhere on Rn and vα obeys the

product rule. Now, a straightforward calculation shows that

∇vα(x) =

(
λ1
α

|y1
α|

)b (
λ1
α

)γ+1∇u1
α(λ1

αx+ y1
α)η

(
2λ1

αx

|y1
α|

)
(3.14)

+ 2

(
λ1
α

|y1
α|

)b+1 (
λ1
α

)γ
u1
α(λ1

αx+ y1
α)∇η

(
2λ1

αx

|y1
α|

)
. (3.15)

Denote by T1 and T2 be the terms in (3.14) and (3.15), respectively. Then, using a

change of variables together with (3.13), we obtain

‖T1‖pLp(Rn) =

∫
Rn

(
λ1
α

|y1
α|

)bp (
λ1
α

)(γ+1)p ∣∣∇u1
α(λ1

αx+ y1
α)
∣∣p η(2λ1

αx

|y1
α|

)p
dx

=

(
λ1
α

|y1
α|

)bp (
λ1
α

)p(γ+1)
∫
Rn

∣∣∇u1
α(z)

∣∣p η(2λ1
α

|y1
α|
· z − y

1
α

λ1
α

)p (
λ1
α

)−n
dz

=

(
λ1
α

|y1
α|

)bp (
λ1
α

)p(γ+1)−n
∫
Rn

∣∣∇u1
α(z)

∣∣p η(2 (z − y1
α)

|y1
α|

)p
dz

3Indeed, since ∇u1α exists away from 0, the map x 7→ u1α(λ1αx+ y1α) has weak derivatives of the

first order away from −y1α/λ1α. Since η
(

2λ1
αx
|y1α|

)
is supported away from this point, the claim follows.
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=

(
λ1
α

|y1
α|

)bp (
λ1
α

)p(γ+1)−n
∫
B

(
y1α,
|y1α|
2

) ∣∣∇u1
α(z)

∣∣p η(2 (z − y1
α)

|y1
α|

)p
dz

≤ (λ1
α)
bp+(γ+1)p−n

|y1
α|
bp

∫
B

(
y1α,
|y1α|
2

) ∣∣∇u1
α(z)

∣∣p |z|−ap |z|ap dz

≤ C
(λ1

α)
bp+(γ+1)p−n

|y1
α|
bp−ap

∫
B

(
y1α,
|y1α|
2

) ∣∣∇u1
α(z)

∣∣p |z|−ap dz

for a constant C > 0 independent of α ∈ N. This implies that

‖T1‖pLp(Rn) ≤ C
(λ1

α)
bp+(γ+1)p−n

|y1
α|

(b−a)p
‖uα‖pD1,p

a (Rn,0)

= C
(λ1

α)
(b−a)p

|y1
α|

(b−a)p
‖uα‖pD1,p

a (Rn,0)
.

where in this last step we have used that

bp+ (γ + 1)p− n = bp+ γp+ p− n

= bp+ [n− p(1 + a)] + p− n

= bp− ap.

To summarize, since (uα) is bounded in D1,p
a (Rn, 0),

‖T1‖pLp(Rn) ≤ C

(
|y1
α|
λ1
α

)(a−b)p

‖uα‖pD1,p
a (Rn,0)

→ 0

as α→∞. Next we treat T2. In a similar vein,

‖T2‖pLp(Rn) = 2p
(
λ1
α

|y1
α|

)p(b+1) (
λ1
α

)γp ∫
Rn

∣∣u1
α(λ1

αx+ y1
α)
∣∣p ∣∣∣∣∇η(2λ1

αx

|y1
α|

)∣∣∣∣p dx

= 2p
(λ1

α)
p(b+1)+γp−n

|y1
α|
p(b+1)

∫
Rn

∣∣u1
α(z)

∣∣p ∣∣∣∣∣∣∇η
2λ1

α ·
z−y1α
λ1α

|y1
α|

∣∣∣∣∣∣
p

dz
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= 2p
(λ1

α)
p(b+1)+γp−n

|y1
α|
p(b+1)

∫
Rn

∣∣u1
α(z)

∣∣p ∣∣∣∣∇η(2(z − y1
α)

|y1
α|

)∣∣∣∣p dz

≤ C
(λ1

α)
p(b+1)+γp−n

|y1
α|
p(b+1)

∫
B

(
y1α,
|y1α|
2

) ∣∣u1
α(z)

∣∣p dz

with C := 2p supRn |∇η|. Then, using Hölder’s inequality,

‖T2‖pLp(Rn) ≤ C
(λ1

α)
p(b+1)+γp−n

|y1
α|
p(b+1)

∫
B

(
y1α,
|y1α|
2

) ∣∣u1
α(z)

∣∣q dz

p/q∫
B

(
y1α,
|y1α|
2

) dz

1−p/q

= C̃
(λ1

α)
p(b+1)+γp−n

|y1
α|
p(b+1)

(
|y1
α|
2

)n−np
q

∫
B

(
y1α,
|y1α|
2

) ∣∣u1
α(z)

∣∣q |z|−bq |z|bq dz

p/q

with C̃ > 0 a constant independent of α ∈ N. Invoking the Caffarelli-Kohn-Nirenberg

inequality then implies that

‖T2‖pLp(Rn) ≤ C̃
(λ1

α)
p(b+1)+γp−n

|y1
α|
p(b+1)

∣∣y1
α

∣∣n−npq +bp

∫
B

(
y1α,
|y1α|
2

) ∣∣u1
α(z)

∣∣q |z|−bq dz

p/q

≤ C
(λ1

α)
p(b−a)

|y1
α|
p(b+1)−n+np

q
−bp

∥∥u1
α

∥∥p
D1,p
a (Rn,0)

= C
(λ1

α)
p(b−a)

|y1
α|
p(b−a)

= C

(
λ1
α

|y1
α|

)p(b−a)

after a possible relabeling of C. We infer that T2 → 0 in Lp(Rn) as α → ∞.

Combining all our work, it follows that ∇vα → 0 strongly in Lp(Rn). Now, a change

of variables now familiar to us shows that, after a possible relabeling of some constant
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Cα > 0, there holds∫
Rn
|vα(x)|p

∗
dx = Cα

∫
Rn

∣∣∣∣u1
α(λ1

αx+ y1
α)η

(
2λ1

αx

|y1
α|

)∣∣∣∣p∗ dx

= Cα

∫
Rn

∣∣u1
α(z)

∣∣p∗ ∣∣∣∣η(2(z − y1
α)

|y1
α|

)∣∣∣∣p∗ dz

≤ Cα

∫
B

(
y1α,
|y1α|
2

) ∣∣u1
α(z)

∣∣p∗ dz.

Using that u1
α ∈ D1,p

a (Rn, 0), it is clear that u1
α ∈ Lq (B (y1

α, |y1
α|/2)). Recalling that

q > p, we obtain u1
α ∈ Lp (B (y1

α, |y1
α|/2)). Similarly, ∇u1

α ∈ Lp (B (y1
α, |y1

α|/2)) and

so u1
α ∈ W 1,p (B (y1

α, |y1
α|/2)). By the Sobolev Embedding Theorem, we infer that

uα ∈ Lp
∗

(B (y1
α, |y1

α|/2)) so that vα ∈ D1,p(Rn). Since ∇vα → 0 strongly in Lp(Rn),

it follows that vα → 0 in Lp
∗
(Rn). Especially, because q ≤ p∗, we have that vα → 0

strongly in Lqloc(Rn).

On the other hand, for each index α ∈ N a straightforward calculation yields∫
B(0,1)

|vα(x)|q dx =

(
λ1
α

|y1
α|

)bq (
λ1
α

)γq ∫
B(0,1)

∣∣u1
α(λ1

αx+ y1
α)
∣∣q η(2λ1

αx

|y1
α|

)q
dx

=

(
λ1
α

|y1
α|

)bq (
λ1
α

)γq−n ∫
B(y1α,λ

1
α)

∣∣u1
α(z)

∣∣q η(2 (z − y1
α)

|y1
α|

)q
dz

=

(
λ1
α

|y1
α|

)bq (
λ1
α

)γq−n ∫
B(y1α,λ

1
α)

∣∣u1
α(z)

∣∣q dz

where we have used (3.11)-(3.12) in this last step. Therefore, for a constant C > 0

independent of α, we obtain∫
B(0,1)

|vα(x)|q dx =

(
λ1
α

|y1
α|

)bq (
λ1
α

)γq−n ∫
B(y1α,λ

1
α)

∣∣u1
α(z)

∣∣q |z|−bq |z|bq dz

≥ C
(
λ1
α

)bq (
λ1
α

)γq−n ∫
B(y1α,λ

1
α)

∣∣u1
α(z)

∣∣q |z|−bq dz

= Cδ > 0.
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But this contradicts the fact that vα → 0 strongly in Lqloc(Rn).

In light of Step 4, we may assume after passing to a subsequence that

y1
α

λ1
α

→ x0 ∈ Rn, as α→∞.

We then consider the family of functions defined by

v1
α(x) =

(
λ1
α

)γ
u1
α(λ1

α(x+ x0)).

Since every u1
α is supported on Ω, it is clear that v1

α has support in

Ωα :=
Ω

λ1
α

− x0.

As a direct consequence of Lemma 2.7.1, v1
α ∈ D1,p

a (Rn,−x0) for each α ∈ N. Fur-

thermore, by the rescaling property in (2.18)-(2.20), the sequence (v1
α) is bounded

in D1,p
a (Rn,−x0). Once again citing Theorem 2.5.1, we may assume without loss of

generality that v1
α ⇀ v1 in D1,p

a (Rn,−x0) with v1
α(x) → v1(x) almost everywhere as

α → ∞. Next, for each fixed α ∈ N, φ′(u1
α) is a continuous linear functional on

D1,p
a (Ω, 0). By Theorem 2.5.3 we can find functions f

(1)
α , . . . , f

(n)
α ∈ Lp

′
(Ω, |x|−ap)

such that

〈
φ′(u1

α), h
〉

=
n∑
i=1

∫
Ω

f (i)
α (x)∂ih(x) |x|−ap dx, ∀h ∈ D1,p

a (Ω, 0).

Moreover, since φ′(u1
α)→ 0 strongly, we have

n∑
i=1

∫
Ω

∣∣f (i)
α (x)

∣∣p′ |x|−ap dx→ 0, as α→∞. (3.16)

Step 5. For each h ∈ D1,p
a (Ωα,−x0) define

hα(x) := h

(
x

λ1
α

− x0

)
.
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As in Lemma 2.7.1, it is not hard to check that hα ∈ D1,p
a (Ω, 0). Next, consider the

functions

g(i)
α (x) :=

(
λ1
α

)n−ap
p′ f (i)

α

(
λ1
α(x+ x0)

)
with p′ being the Hölder conjugate exponent of p. Note that by (3.16),

n∑
i=1

∫
Ωα

∣∣g(i)
α (x)

∣∣p′ |x+ x0|−ap dx

=
n∑
i=1

∫
Ωα

(
λ1
α

)n−ap ∣∣f (i)
α (λ1

α(x+ x0))
∣∣p′ |x+ x0|−ap dx

=
n∑
i=1

∫
Ω

(
λ1
α

)−ap ∣∣f (i)
α (z)

∣∣p′ |z|−ap (λ1
α

)ap
dz

=
n∑
i=1

∫
Ω

∣∣f (i)
α (z)

∣∣p′ |z|−ap dz

= o(1)

as α→∞. Furthermore, given any h ∈ D1,p
a (Ωα,−x0), we claim that

〈
φ′x0,∞(v1

α), h
〉

=
n∑
i=1

∫
Ωα

g(i)
α (x)∂ih (x) |x+ x0|−ap dx. (3.17)

Indeed,∫
Rn

∣∣∇v1
α

∣∣p−2∇v1
α · ∇h |x+ x0|−ap dx

=
(
λ1
α

)(γ+1)(p−1)
∫
Rn

∣∣∇u1
α(λ1

α(x+ x0))
∣∣p−2∇u1

α(λ1
α(x+ x0)) · ∇h(x) |x+ x0|−ap dx

=
(
λ1
α

)(γ+1)(p−1)−n+ap
∫
Rn

∣∣∇u1
α(z)

∣∣p−2∇u1
α(z) · ∇h

(
z

λ1
α

− x0

)
|z|−ap dx

=
(
λ1
α

)(γ+1)(p−1)−n+ap+1
∫
Rn

∣∣∇u1
α(z)

∣∣p−2∇u1
α(z) · ∇hα (z) |z|−ap dx

=
(
λ1
α

)−γ ∫
Ω

∣∣∇u1
α(z)

∣∣p−2∇u1
α(z) · ∇hα (z) |z|−ap dx
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where we have used that u1
α is supported on Ω and (2.13). In a similar vein one has∫

Rn

∣∣v1
α(x)

∣∣q−2
vα(x)h(x) |x+ x0|−bq dx

=
(
λ1
α

)γ(q−1)
∫
Rn

∣∣u1
α(λ1

α(x+ x0))
∣∣q−2

u1
α(λ1

α(x+ x0))h(x) |x+ x0|−bq dx

=
(
λ1
α

)γ(q−1)−n+bq
∫
Rn

∣∣u1
α(z)

∣∣q−2
u1
α(z)h

(
z

λ1
α

− x0

)
|z|−bq dz

=
(
λ1
α

)γ(q−1)−n+bq
∫

Ω

∣∣u1
α(z)

∣∣q−2
u1
α(z)h

(
z

λ1
α

− x0

)
|z|−bq dz

=
(
λ1
α

)−γ ∫
Ω

∣∣u1
α(z)

∣∣q−2
u1
α(z)hα (z) |z|−bq dz.

Combining these last two identities yields

〈
φ′x0,∞(v1

α), h
〉

=
(
λ1
α

)−γ 〈
φ′(u1

α), hα
〉

=
(
λ1
α

)−γ n∑
i=1

∫
Ω

f (i)
α (z)∂ihα(z) |z|−ap dz

=
(
λ1
α

)−γ−1
n∑
i=1

∫
Ω

f (i)
α (z)∂ih

(
z

λ1
α

− x0

)
|z|−ap dz

=
(
λ1
α

)−γ−1−ap+n
n∑
i=1

∫
Ωα

f (i)
α (λ1

α(x+ x0))∂ih (x) |x+ x0|−ap dx

=
(
λ1
α

)(n−ap)−(n−app )
n∑
i=1

∫
Ωα

f (i)
α (λ1

α(x+ x0))∂ih (x) |x+ x0|−ap dx

=
n∑
i=1

∫
Ωα

g(i)
α (x)∂ih (x) |x+ x0|−ap dx.

This verifies (3.17) and ends the proof of Step 5.

Step 6. We claim that v1 6= 0. By way of contradiction, let us assume that v1 = 0

so that v1
α ⇀ 0 weakly in D1,p

a (Rn,−x0) and pointwise almost everywhere on Rn

as α → ∞. Appealing to Theorem 2.5.2, we can assume that v1
α → 0 strongly in

Lploc(Rn, |x+ x0|−ap). In particular, (v1
α) is bounded in Lploc(Rn, |x+ x0|−ap). Recall
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that λ1 := limα→∞ λ
1
α ≥ 0. Define

Ω∞ :=

Rn if λ1 = 0,

Ω

λ1
− x0 if λ1 > 0,

and fix a point y ∈ Ω∞. Clearly (see Proposition 3.3.1), y ∈ Ωα for all α sufficiently

large. Let now h ∈ C∞c (Rn) be such that supp(h) ⊂ B(y, 1). Combining Hölder’s

inequality and (2.5) gives∫
Rn
|h|p

∣∣v1
α

∣∣q |x+ x0|−bq dx

=

∫
supp(h)

∣∣v1
αh
∣∣p ∣∣v1

α

∣∣q−p |x+ x0|−bq dx

≤

(∫
supp(h)

∣∣v1
α

∣∣q |x+ x0|−bq dx

) q−p
q
(∫

supp(h)

∣∣hv1
α

∣∣q |x+ x0|−bq dx

)p/q

≤ S−1
p

(∫
supp(h)

∣∣v1
α

∣∣q |x+ x0|−bq dx

) q−p
p
(∫

supp(h)

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx

)

≤ S−1
p δ

q−p
p

(∫
supp(h)

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx

)
,

(3.18)

where we have used that

sup
y∈Ωα

∫
B(y,1)

∣∣v1
α(x)

∣∣q |x+ x0|−bq dx = sup
w∈Ω

∫
B(w,λ1α)

∣∣u1
α(z)

∣∣q |z|−bq dz = δ.

Next, using that v1
α → 0 in Lploc(Rn, |x+ x0|−ap), we obtain∫

Rn

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx ≤ 2p−1

∫
Rn
|h|p

∣∣∇v1
α

∣∣p |x+ x0|−ap dx+ o(1)

= 2p−1

∫
Rn

∣∣∇v1
α

∣∣p−2∇v1
α · ∇

(
|h|p v1

α

)
|x+ x0|−ap dx+ o(1).
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This implies that∫
Rn

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx ≤ 2p−1

∫
Rn

∣∣∇v1
α

∣∣p−2∇v1
α · ∇

(
|h|p v1

α

)
|x+ x0|−ap dx+ o(1)

= 2p−1

[〈
φ′x0,∞(v1

α), |h|p v1
α

〉
+

∫
Rn

∣∣v1
α

∣∣q |h|p |x+ x0|−bq
]

+ o(1).

As (|h|p v1
α) is bounded in D1,p

a (Ωα,−x0), one has by (3.17) that

〈
φ′x0,∞(v1

α), |h|p v1
α

〉
=

n∑
i=1

∫
Ωα

g(i)
α ∂i

(
|h|p v1

α

)
|x+ x0|−ap dx = o(1)

as α→∞. Therefore, combining this with (3.18), we find∫
Rn

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx ≤ 2p−1

∫
Rn

∣∣v1
α

∣∣q |h|p |x+ x0|−bq + o(1)

≤ 2p−1S−1
p δ

q−p
p

(∫
supp(h)

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx

)
+ o(1)

≤ 1

2

∫
Rn

∣∣∇(hv1
α)
∣∣p |x+ x0|−ap dx+ o(1).

It follows that
∫
Rn |∇(hv1

α)|p |x+ x0|−ap dx→ 0 as α→∞. Taking h to be such that

h ≡ 1 on B(y, 1/2), we see that ∇v1
α → 0 in Lpa (B (y, 1/2) ,−x0) for all y ∈ Ω∞.

Furthermore, if K is a compact set contained in the complement of Ω∞, then v1
α

vanishes on K for all α large. By Lemma 3.3.2, this implies that ∇v1
α → 0 in

Lploc(Rn, |x+ x0|−ap) as α→∞.

Given a compact set Λ ⊂ Rn, we can choose a cutoff function η ∈ C∞c (Rn) that

is equal to 1 in a neighbourhood of Λ. As before, by Proposition 2.4.3, one has

ηv1
α ∈ D1,p

a (Rn,−x0). Since v1
α,∇v1

α → 0 in Lploc(Rn, |x+ x0|−ap), it readily follows

that ηv1
α → 0 strongly in D1,p

a (Rn,−x0). Applying the Caffarelli-Kohn-Nirenberg

inequality then implies that v1
α → 0 strongly in Lqb(Λ,−x0). Since Λ was arbitrary,

v1
α → 0 strongly in Lqloc(R

n, |x+ x0|−bq)
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as α→∞. On the other hand, for all α ∈ N sufficiently large, one has

B

(
y1
α

λ1
α

− x0, 1

)
⊆ B(0, 2)

whence a familiar change of variables gives∫
B(0,2)

∣∣v1
α

∣∣q |x+ x0|−bq dx ≥
∫
B

(
y1α
λ1α
−x0,1

) ∣∣v1
α

∣∣q |x+ x0|−bq dx

= (λ1
α)γq

∫
B

(
y1α
λ1α
−x0,1

) ∣∣u1
α(λ1

α(x+ x0))
∣∣q |x+ x0|−bq dx

= (λ1
α)γq−n+bq

∫
B(y1α,λ

1
α)

∣∣u1
α(z)

∣∣q |z|−bq dx

= δ > 0.

This is a contradiction.

Step 7. We claim that λ1 = limα→∞ λ
1
α = 0. Once again, we argue by contradiction

and assume that λ1 > 0. Fix a test function ϕ ∈ C∞c (Rn;Rn) and note that∫
Rn
∇v1

α(x) · ϕ(x) |x+ x0|−ap dx

= (λ1
α)(γ+1)

∫
Rn
∇u1

α(λ1
α(x+ x0)) · ϕ(x) |x+ x0|−ap dx

= (λ1
α)(γ+1)−n+ap

∫
Rn
∇u1

α(z) · ϕ
(
z

λ1
α

− x0

)
|z|−ap dz.

As the sequence (λ1
α) is bounded, there exists a compact set Λ ⊂ Rn such that

supp

(
ϕ

(
·
λ1
α

− x0

))
⊆ Λ, ∀α ∈ N.

Hence,∣∣∣∣∫
Rn
∇v1

α(x) · ϕ(x) |x+ x0|−ap dx

∣∣∣∣ ≤M(λ1
α)(γ+1)−n+ap

∫
Λ

∣∣∇u1
α(z)

∣∣ |z|−ap dz.
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where M := ‖ϕ‖L∞(Rn). Since ∇u1
α → 0 pointwise almost everywhere on Rn and is

bounded in Lpa(Rn, 0), an application of Theorem 2.1.2 shows that∫
Λ

∣∣∇u1
α(z)

∣∣ |z|−ap dz → 0, as α→∞,

Finally, since λ1
α → λ1 > 0, we see that (λ1

α)(γ+1)−n+ap is bounded. It follows that∫
Rn
∇v1

α(x) · ϕ(x) |x+ x0|−ap dx→ 0, as α→∞.

Let ε > 0 be given and fix g ∈ Lp′(Rn, |x+ x0|−ap). By Theorem 2.2.1, we can

find ϕ ∈ C∞c (Rn,Rn) such that ‖g − ϕ‖Lp′ (Rn,|x+x0|−ap) < ε. Then, by our calculations

above, we find that∫
Rn
∇v1

α(x) · g(x) |x+ x0|−ap dx =

∫
Rn
∇v1

α(x) · (g − ϕ)(x) |x+ x0|−ap dx

+

∫
Rn
∇v1

α(x) · ϕ(x) |x+ x0|−ap dx

=

∫
Rn
∇v1

α(x) · (g − ϕ)(x) |x+ x0|−ap dx

+ o(1)

as α→∞. By Hölder’s inequality, we obtain∣∣∣∣∫
Rn
∇v1

α(x) · g(x) |x+ x0|−ap dx

∣∣∣∣ ≤ Cε+ o(1)

with C := supα∈N ‖v1
α‖D1,p

a (Rn,−x0) <∞. It follows that

lim sup
α→∞

∣∣∣∣∫
Rn
∇v1

α(x) · g(x) |x+ x0|−ap dx

∣∣∣∣ ≤ Cε.

Since ε > 0 was arbitrary, we infer that

lim
α→∞

∫
Rn
∇v1

α(x) · g(x) |x+ x0|−ap dx = 0
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for all g ∈ Lp′(Rn, |x+ x0|−ap). That is, ∇v1
α ⇀ 0 in Lpa(Rn,−x0). By Proposition

2.5.1, this means that v1
α ⇀ 0 in D1,p

a (Rn,−x0), which contradicts Step 6.

Step 8. Since v1 ∈ D1,p
a (Rn,−x0) and Ωα → Rn in the sense of Definition 3.3.1 (see

Proposition 3.3.1), we can assume that there exist functions ψα ∈ C∞c (Ωα) such that

ψα → v1 strongly in D1,p
a (Rn,−x0) as α→∞. Passing to a subsequence if necessary,

we claim that the sequence in C∞c (Ω) given by

ψ̃α(x) :=
(
λ1
α

)−γ
ψα

(
x

λ1
α

− x0

)
(3.19)

satisfies the following:

(i)
(
ψ̃α

)
is bounded in D1,p

a (Ω, 0) and converges weakly to 0 as α→∞;

(ii) ψ̃α → 0 and ∇ψ̃α → 0 pointwise almost everywhere on Rn.

Certainly, we first note that∥∥∥ψ̃α∥∥∥
D1,p
a (Rn,0)

= ‖ψα‖D1,p
a (Rn,−x0)

for each α ∈ N. Therefore, by Theorem 2.5.1, we may pass to a subsequence con-

verging weakly and pointwise almost everywhere to a function ψ ∈ D1,p
a (Ω, 0). On

the other hand, an easy change of variables shows that

ψ̃α(·)−
(
λ1
α

)−γ
v1

(
·
λ1
α

− x0

)
→ 0 in D1,p

a (Rn, 0).

Our assertions then readily follow from the observations made in Remark 3.2.1.

Step 9. We now begin our iteration process. Applying Lemma 3.2.3, we get that

the sequence

u2
α(x) := u1

α(x)−
(
λ(1)
α

)−γ
v1

(
x

λ
(1)
α

− x(1)
0

)
,
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for x
(1)
0 := x0 and λ

(1)
α := λ1

α, satisfies

∥∥u2
n

∥∥p
D1,p
a (Rn,0)

= ‖uα‖pD1,p
a (Ω,0)

− ‖v0‖pD1,p
a (Ω,0)

−
∥∥v1
∥∥p
D1,p(Rn,−x(1)0 )

+ o(1),

and φ0,∞(u2
α)→ c− φ(v0)− φ

x
(1)
0 ,∞(v1),

φ′0,∞(u2
α)→ 0 in D−1,p′

a (Ω, 0).

Next, consider the auxiliary sequence

ũ2
α(x) := u1

α(x)− ψ̃α(x)

which is bounded in D1,p
a (Ω, 0). Because ψα → v1 strongly in D1,p

a (Rn,−x(1)
0 ),φ (ũ2

α)→ c− φ(v0)− φ
x
(1)
0 ,∞(v1),

φ′(ũ2
α)→ 0 in D−1,p′

a (Ω, 0).

We may therefore apply Steps 2-9 to this new sequence (ũ2
α), at each stage removing

another solution vj. By Lemma 3.1.2 and Proposition 3.2.2, this procedure can only

happen finitely many times before ũkα → 0 strongly in Lqb(Ω, 0), at which point we

will find ourselves in Step 2. To summarize, there exists

(1) a subsequence (uβ) of (uα);

(2) a solution v0 of (1.7);

(3) finitely many non-trivial functions v1, . . . , vk;

(4) sequences (λ
(j)
β ) ⊂ (0,∞) for j = 1, . . . , k;
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such that each vj solves− div

(∣∣∣x+ x
(j)
0

∣∣∣−ap |∇u|p−2∇u
)

=
∣∣∣x+ x

(j)
0

∣∣∣−bq |u|q−2 u in Rn,

u ∈ D1,p
a (Rn,−x(j)

0 )

and limλ
(j)
β = 0. Furthermore, as β →∞,∥∥∥∥∥uβ − v0 −

k∑
j=1

(
λ(j)
α

)−γ
vj

(
·
λ

(j)
β

− x(j)
0

)∥∥∥∥∥
D1,p
a (Rn,0)

→ 0,

‖uβ‖pD1,p
a (Ω,0)

→ ‖v0‖pD1,p
a (Ω,0)

+
k∑
j=1

∥∥vj∥∥pD1,p(Rn,−x(j)0 )
,

φ(uβ)→ φ(v0) +
k∑
j=1

φ
x
(j)
0 ,∞(vj).

Step 10. For each index j = 1, . . . , k we define the function

wj(x) := vj
(
x− x(j)

0

)
.

Since vj is a solution to the problem− div

(∣∣∣x+ x
(j)
0

∣∣∣−ap |∇u|p−2∇u
)

=
∣∣∣x+ x

(j)
0

∣∣∣−bq |u|q−2 u in Rn,

u ∈ D1,p
a (Rn,−x(j)

0 ),

an easy change of variables shows that wj solves− div
(
|x|−ap |∇u|p−2∇u

)
= |x|−bq |u|q−2 u in Rn,

u ∈ D1,p
a (Rn, 0).
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Furthermore,

∥∥vj∥∥pD1,p
a (Rn,−x(j)0 )

= ‖wj‖pD1,p
a (Rn,0)

and φ
x
(j)
0 ,∞(vj) = φ0,∞(wj).

Since

vj

(
·
λ

(j)
β

− x(j)
0

)
= wj

(
·
λ

(j)
β

)
,

the theorem readily follows from the conclusions of Step 9.



90 CHAPTER 3. A GLOBAL COMPACTNESS THEOREM



Chapter 4

Conclusion

A natural follow up to Theorem 3.4.1 is to ask what occurs in the limit case where

a = b. Given that this would include the model unweighted p-Laplace problem−∆pu+ a |u|p−2 u ≡ |u|p
∗−2 u in Ω,

u ∈ W 1,p
0 (Ω)

as a special case, we expect many of the same difficulties present in Merucri-Willem

[17] to arise, in particular involving the boundary of the domain Ω.

By inspecting the proof of Theorem 3.4.1, we see that the conclusions drawn in

Step 4 fail when a = b. Instead, Step 4 only implies that the sequence (vα) is bounded

in D1,p(Rn). Therefore, we cannot obtain the desired contradiction if we allow for the

possibility that a = b. As a consequence, we anticipate bubbles different from those

obtained when a 6= b. Additionally, it is a priori possible that the sequences (y
(j)
α )

converge to a point in Ω different from 0. In particular, without any sign assumptions

on the Palais-Smale sequence, it is reasonable to expect potential bubbling on the

boundary of Ω. Here, we suspect the bubbles to solve the same type of limiting

problem, but in a half space. Therefore, in order to obtain an extension of Theorem

3.4.1 including the extremal case a = b, we strongly suspect that one would need to

impose regularity conditions upon the boundary of Ω.

We also point out that, when a = b, the sequence of points y
(j)
α /λ

(j)
α obtained in

91
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the proof of Theorem 3.4.1 need not be bounded, as far as the author can tell. In

this case, the rescaling law exploited in the main proof is no longer well defined and

we must consequently find a different rescaling of u. However, as Steps 5 - 8 rely on

precisely this rescaling law, the remainder of the proof will also require modification.

Namely, we must extract a bubble directly from the sequence (vα) used in the proof

of Step 4. Interestingly, such a bubble would likely live in D1,p(Rn) and solve a

problem not involving weights (either in Rn or in a half-space). The treatment of

this limit case is a work in progress and the subject of a paper in preparation.

Finally, in future endeavours, we hope to use the compactness result in Theorem

3.4.1 to address questions relating to the existence of non-trivial solutions to (1.7).

To achieve this, we hope to provide conditions under which one can construct suitable

Palais-Smale sequences for (1.7) that converge strongly to a non-trivial solution. In

addition, we also hope to treat questions of multiplicity for the problem (1.7) in

future works.
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