Hosting Online Games on Wide-Area Computing
Utilities Using Model-Based Resource Provisioning

Weiquan Yuan

School of Computer Science
McGill University
Montreal, Canada

February 2007

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

(© 2007 Weiquan Yuan

2007/02/02

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-32807-1
Our file Notre référence
ISBN: 978-0-494-32807-1
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Constant improvements in computer communications, microprocessors and operating systems
are finally making wide-area public computing utilities (PCUs) a reality. The core idea of a CU
is to connect resources that are geographically distributed and potentially heterogeneous into a
single networked system such that clients can obtain on-demand the necessary resources for their
computing needs from this system. Several PCUs have been created in the recent past using the
Grid technology for both research and commercial purposes. Because PCUs often bring together
resources from geographically distributed locations, they are ideally suited for applications that
have geographically distributed resource demands. An example application with geographically
distributed demand is online gaming. A popular online game can be a meeting point for a large
number of players from diverse network locations. Often the gameplay can generate network
and process intensive transactions that should be carried out by the game servers in a timely
fashion for positive player experience. Using PCUs and distributed game server architectures, it
is possible to locate game servers closer to major concentrations of the player population, which
can satisfy the quality of service requirements of vast majority of the players.

In this thesis, I present an approach for online game hosting on wide-area computing utilities.
My approach is based on virtual clusters (VCs) that are equivalent to virtual organizations (VOs).
A VC can be considered as a “slice” of the PCU resource pool that is allocated for a single game
or class of games. Because I was only concerned about the resource allocation problem, I refer
to the slice as VC instead of VO.

This study has two parts. In the first part, a performance model is developed for an online
game that can be used for hosting purposes. Quake, as a sequential (from Quake I to Quake IV),
publicly available, multiplayer game server became my study object because it is a commercial
server application that has been used extensively and exhibits many of the required character-
istics. The performance modeling methodology, however, is sufficiently generic and should be
applicable to other online games. In the second part, a resource allocation algorithm is developed
for multiple VCs creation. This algorithm is capable of creating multiple VCs with different de-
mand profiles. The multiple VCs creation problem is equivalent to a facility location problem that
is proven to be NP-hard, which is concerned with optimally placing a number of facilities (equiv-
alent to serving resources) to cover demands at a predefined set of points. The assumption is that
placing a facility at a given candidate location incurs a fixed cost and each facility has a limited
capacity of covering the demands. An efficient heuristics is developed, which can be deployed

i

at short time scales. To minimize the multiple VCs reconfigurations, redundancy is built into the
multiple VCs model. Extensive simulation studies were used to evaluate the performance of the
multiple VCs model. The experimental results prove that the developed algorithm for multiple
VCs model can treat each VC in a fair and efficient way.

Résumé(Francais)

L’volution constante dans le domaine des communications informatiques, des microprocesseurs
et systmes dexploitation rendent finalement possible le dploiement des rseaux tendus des grilles
informatiques (GI). L’ide centrale des GI est de permettre aux clients d’accder aux ressources in-
formatiques d’innombrables units, quels que soient leurs endroits gographiques ou leurs systmes
d’exploitation. De nombreux GI fin commerciale et de recherche fut rcemment cr, utilisant
I’informatique en grille. La nature des GI se prte trs bien aux applications ayant besoin de
ressources sur diffrente location gographique. Un exemple d’une telle application est les jeux
en ligne. Certains jeux populaires deviennent un endroit de rencontre pour de nombreux joueurs
provenant d’endroits divers. Le volume de trafic et 1a demande des ressources gnres par les jeux
en ligne doivent tre traits rapidement par des serveurs afin de crer un rsultat satisfaisant pour le
joueur. L’utilisation des GI coupl avec une architecture distribue des serveurs de jeux en ligne,
permettent de localiser les serveurs le plus proche des concentrations de joueurs, permettant ainsi
de rencontrer les exigences attendues des joueurs.

Je prsente avec cette thse une approche permettant d’hberger des jeux en ligne sur des GI en
rseau tendu. Mon approche est constitue de grappe virtuelle (GV), quivalente aux organisations
virtuelles. Une GV peut tre considr comme un ‘morceau’ dans la rserve de ressource qui est
alloue pour un jeu ou une classe de jeu. Veuillez noter que je rfre au ‘morceau’ comme un GV au
lieu d’un VO, tant donn que ma seule proccupation est d’adresser le problme de 1’allocation des
ressources.

Cette tude s’tend sur deux parties. La premire partie concerne le dveloppement d’un modle
de performance pouvant tre utilise comme station d’hbergement pour les jeux en ligne. Aux fins
de cette tude, le jeu en ligne Quake est tudi, car il rpond aux critres requis (application serveur
commerciale, disponible au public en gnral, trs populaire et massivement multi joueur). II est
noter que la mthodologie utilise pour la modlisation de la performance est assez gnrique pour
tre appliqu aux autres jeux en ligne. Dan la deuxime partie je dveloppe un nouvel algorithme
d’allocation de ressources pour la cration des GV. Cet algorithme est capable de crer plusieurs
GV, ayant chacun un diffrent profil de demande de ressources. tant donne la similitude entre
la rsolution du problme de la cration des GV et du problme de la rsolution de la location de
ressources, tous deux NPhard, de trs bonnes heuristiques furent dveloppes et dployes trs rapi-
dement. Afin de minimiser la reconfiguration des GV inutilement, un modle de redondance fut
aussi intgr dans le modle des GV. Des tudes extensives propos des simulations furent utilises

iv

dans I’valuation de la performance du modle des GV. L’exprimental les rsultats montrent que
I’algorithme dvelopp pour le modle multiple de VCs peut traiter chaque VC d’une manire juste

et efficace.

Acknowledgments

I would like to thank Prof. Muthucumaru Maheswaran for his continuous guidance and supervi-
sion on my thesis research. His advice and suggestions are invaluable for this thesis achievement.

Thanks should be given to everyone in the Advanced Network Research Lab for their valu-
able comments. Special thanks to Balasubramaneyam Maniymaran, Arindam Mitra and Shah
Asaduzzaman, who provided lots of help on the testing and debugging of my program, general
computer knowledge and thesis correcting.

I'd also like to express my thanks to Sheng Lu, who gave me much convenience and some
advice during the process of thesis. Furthermore, I would like to thank Jacques Boucher and
Steve McCutchen’s unselfishness contribution on my thesis correction and content refinement.

And last, but not least, I convey my heartiest thanks to my parents Xiuling Cheng and Chang-
ping Yuan, my uncle ChangWu Yuan and my cousin Amy Yuan and her husband Rui Gong for

their continuous moral support in my entire life and career.

vi

Contents

Introduction

Related Work

2.1 Adaptive Resource Management
2.1.1 Resource Management for Single Server
2.1.2 Resource Management for Cluster Utility
2.1.3 Model-Based Resource Management

2.2 Online game Platform Related Projects

Model-Based Resource Provisioning

Performance Model for an Online Game

4.1 Introduction of Server Side Bot and ClientSideBot
4.2 Set of Basic Benchmarks Experimentation
4.3 Game-Aware Performance Model of Game Server Capacity
4.4 Performance Model Validation

Resource Provisioning Algorithms for Multiple Services

5.1 Resource Allocation for Single Service

5.2 Resource Allocation for Multiple Services

5.3 Heuristic for Solving Resource Allocation for Multiple Services
5.3.1 Sufferage Preference Algorithm
5.3.2 Deficiency Preference Algorithm
5.3.3 The Optimized Mapping Algorithm

5.4 An Example of the Creation for Multiple VCs

10

13
14
16
19
20

Contents vii

6 Experimental Results and Discussions 39
6.1 Assumptions e 39
6.2 SimulationSetup e 40
6.3 Resultsand Discussions. 43

6.3.1 PerformanceMetrics L. 43
6.3.2 Simulationand Discussion, 44

7 Conclusions and Future Work 49
7.1 Contributions e e e 49
7.2 Limitationand Future Work 50

A Abbreviations and Acronyms 51

References 52

viii

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Adaptive resource management for mapping online games on PCUs 11
MMOG active subscriptionso oL L oo 14
Comparison between MikeBot and human player on server utilization. 15
Server utilization under server-side botbenchmark. 17
Server-side botbenchmark. 0 00000 17
Server utilization under client-side bot benchmark. 17
Client-side botbenchmark. 17
Measured vs expected server capacity. L., 17
Demand-provision formula graph, witha=1andb=1 31
The flowchart of resource provisioning algorithms 33
Resource allocation pseudocode for multiple services 35
Creation of multiple VCs in PCU resource management system 41
Performance of multiple VCs with mean session interval 45
Performance of muitiple VCs with window-framed loading 45
Performance of multiple VCs with asymmetrical loading 46
Resource utilization withineach VC 47
Unit utilization costofeach VC 47

ix

List of Tables

5.1
52
53
54
5.5
5.6
5.9
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

6.1
6.2
6.3

Single VC network notation L oL 23
Multiple VCs network notation oo 26
Sufferage preference algorithmnation 28
Expected execution time matrix L Lo 29
Converted by sufferage preference algorithm 29
sufferage preference values L 0oL, 29
Machine mapping decision Lo oo 29
Deficiency sufferage preference algorithm notation 31
Matrix element L. 32
APRandom Selection Lo o 37
Matrix C for the covering cost between APandserver 37
Matrix A for the average covering costofeach VC 37
Matrix B generated by sufferage preference algorithm 38
Matrix H normalizedby Matrix B 38
Matrix T generated by demand-provision formula 38
Matrix F, the sum of Matrix TandMatrix H 38
Mappingdecision e 38
Server allocationineach VC 44
Window-framed loading details 45
Asymmetrical loading details 0 L L. 47

Chapter 1
Introduction

The Internet user base has increased to hundreds of million of people in recent years. AOL’s
Web caches service over 10 billion hits a day [1]. The number of concurrent sessions and hits
per day to Internet sites results into an even higher number of I/O and network requests, which
places enormous demands on underlying resources. Meanwhile, online game services such as
PlayStation online, Xbox Live, GameSpy Arcade,and other independent PC-based services are
becoming increasingly more popular than ever. Based on statistics on online games [2], popular
online role-playing game titles have large numbers of subscribers, which has reached 120 million
by July 2006. This existing situation makes deployment of game services that can provide re-
sponsive, robust, and continuous service to clients a computer systems problem of unprecedented
scale.

Solving the game services deployment problem is challenging and resource intensive. The
most common approach used by current service providers is to significantly overprovision the
amount of resources needed to support such applications by tailoring the resources to maximum
expected load. As this is not a good way to use Internet resources efficiently to meet dramatically
growing demand, new system design techniques must be developed to manage game workloads.

One alternative approach is to design deployment infrastructures based on the “utility com-
puting model,” which automatically manages the resources used by the system based on the
demand for the services. How to build such infrastructures is receiving more and more attention
from academic and industrial communities which have been proposing innovative solutions and
trying to implement them. The on-demand business model provided by IBM [3, 4] addresses
similar problems with business applications, where the issue of infrastructure cost strongly mo-

2007/02/02

1 Introduction 2

tivates new on-demand business models for utility computing offerings. These models provide
the flexibility to scale an application or service in response to user demand by rapidly adding or
removing resources (e.g., servers, storage, databases, network bandwidth, etc.) from a pool that
may be shared among multiple applications or customers. With this on-demand infrastructure,
service providers could enjoy benefits by reducing initial investment, scaling rapidly according to
demand and adding new services. For this technology, Hewlett-Packard is another active member
in the community to line up. HP introduces a Utility Data Center (UDC) [5, 6] which provides
a flexible, cost-effective solution by using advanced management software, allowing resources
to be automatically reassigned in response to changing business and IT requirements. The UDC
architecture is an ideal platform to support the efficient hosting of applications for Internet ser-
vices. Its infrastructure provides a set of new management capabilities for requesting/releasing
the system resources to dynamically provision the application demands.

There is a growing amount of research focusing on how to take advantage of this on-demand
infrastructure to help traditional services benefit from the resource management. In [7] a new
model-based approach to dynamically provisioning multiple resources that interact in complex
ways for hosted Web services is demonstrated. Cherkasova et al. ([8]) show a workload-aware
performance model of streaming media application in UDC infrastructure. Both experimental re-
sults positively show that on-demand consumption of multiple resources can be predicted to meet
the service loads with the performance model, suggesting the model-based resource provisioning
(MBRP) is flexible enough to adjust to resource constraints or surpluses exposed during resource
assignment within the on-demand infrastructure. Because traditional services such as Web and
online media services can benefit from it, online games might as well.

Online game services that enable multiple players to simultaneously interact in a “game
world” face the same pain points related to the provision and demand problems traditional ser-
vices have met recently. Due to the high risk of over-and under-allocation of resources and poten-
tially poor resource utilization, gaming service providers have to install a dedicated infrastructure
for each game title to meet the challenges brought by dynamics of the users. This situation may
become worse as the number of commercially operated game titles has increased dramatically in
recent years.

While not indicative of all online games, the “first-person shooter” (FPS) has clearly domi-
nated much of the observed gaming industry. With a large list of popular games such as Quake,
Doom, Half-Life, etc., these games are representative of what online games of the future are
moving towards. In my work, Quake has been chosen as the game service to be investigated.

1 In@roduc@iop) 3

The topic of the thesis is how to apply the on-demand infrastructure to online game. Given
the similarities between game and Web/media services, the public computing utility (PCU) model
presented in [9] can be extended to solve the game hosting problem from an infrastructure per-
spective. PCU has unique ways of providing a cost-effective, guaranteed quality of service (QoS)
and service specific resource management infrastructure, better suited for online game. For ex-
ample, due to interactivity requirements, FPS games require that the server resources be placed
geographically close to the players, which can be considered as a cost-driven and demand-driven
resource allocation problem in PCU. Because the concentration of player populations can vary
dramatically, QoS guaranteed by PCU is also critical to optimize server utilization while maxi-
mizing game playing satisfaction.

However, the existing models for Web or media services can not be applied directly, due to
unique aspects of online gaming, such as player behavior, map complexity, game engine and
game design. Therefore, a performance model was developed for the game Quake to address
these and merged with an underlying PCU infrastructure. Another contribution of this work is a
heuristic algorithm to create multiple virtual clusters to host multiple services at the same time.
Additionally, while our architecture is geared initially toward FPS games, the performance model
can also be applied to massively multi-player online role playing games (MMORPG) as well.

This thesis is organized as follows: Chapter 2 provides some related works on resource man-
agment. Chapter 3 describes how a model-based resource provisioning process works in detail.
In Chapter 4, a performance model of Quake game application is presented, while Chapter 5
presents a heuristic of resource allocator for multiple services. The details of a simulation study
and the results of model-based service provisioning are presented in Chapter 6. Finally, Chapter
7 concludes this thesis. Appendix A gives a list of abbreviations used in this thesis.

Chapter 2

Related Work

The first section discusses some projects that have a direct connection with, or share the vision
of, adaptive resource management to solve the problem mentioned in Chapter 1. Because my
work is applied to the FPS genre of online game, the final section of this chapter talks about some

existing online game platform approaches for the resource management.

2.1 Adaptive Resource Management

A number of research efforts have been put forward in addressing various issues of resource
management for various computing environment. The objective of all research efforts is to solve
the problem on how to allocate resource efficiently for task under any circumstance. And thus
tasks can be served decently with enough resource. The following sections describe some of the

research works that try to implement resource management infrastructures.

2.1.1 Resource Management for Single Server

Welsh et al. ([10]) propose a new design framework for highly concurrent server applications,
which is called the staged event-driven architecture (SEDA). It is intended to support massive
concurrency demands and simplify the construction of well-conditioned services. SEDA com-
bines aspects of threads and event-based programming models to manage the concurrency, I/O,
scheduling, and resource management needs of Internet services. In SEDA, Applications are
constructed as a network of stages, each with an associated incoming event queue. Each stage
represents a robust building block that may be individually conditioned to load by thresholding

2007/02/02

2 Related Work 5

or filtering its event queue. In addition, making event queues explicit allows applications to make
informed scheduling and resource-management decisions, such as reordering, filtering or aggre-
gation of requests. SEDA makes use of dynamic resource throttling to control the allocation and
scheduling of application components, allowing the system to adapt to overload conditions. This
architecture allows services to be well-conditioned to load, preventing resources from being over-
committed when demand exceeds service capacity. SEDA emphasizes request admission control
to degrade gracefully in overload. A utility can avoid overload by expanding resource slices and
recruiting additional servers as traffic increases, but it only reactively provisions CPU resources
(by varying the number of threads) across multiple service stages within a single server.

One point SEDA does not address, however, is performance isolation for shared servers which
can be implemented by my model-based approach. In my simulation, VC slices provide perfor-
mance isolation and enable the utility to use its resources efficiently. The VC slices are chosen
to allow each hosted service to meet service quality targets (such as response time) negotiated in
service level agreements (SLAs) with the utility. And VC slices vary dynamically to respond to
changes in load and resource status.

2.1.2 Resource Management for Cluster Utility

IBM’s Océano project [11] incorporates management of SLA into its system to use a simple event
driven system to decide the resource allocation. Its similarity to my VC resource management
concept is that it includes two tiers: a large pool of “dolphin” servers that serve as protection
layer for the system while demand is in spike and a fixed small pool of “whale” servers. Whale
servers are permanently allocated to services to guarantee the minimum level of agreed QoS,
while “dolphin” servers are dynamically included into and expelled from the service-specific
server pools depending on the load conditions of the services. SLAs are observed by event
driven mechanisms. But the difference from my VC resource management algorithm is that VC
spans multiple geographical locations and VC resource pre-allocation is regarded as a facility
location problem (FLP) based process which deals with capability and capacities in terms of the
applications.

The more recent Neptune [12] work proposes an alternative to provisioning (or partitioning)
cluster resources. Neptune maximizes an abstract SLA yield metric and each server schedules
requests locally to maximize per-request yield. Neptune has no explicit provisioning; it distrib-
utes requests for all services evenly across all servers, and relies on local schedulers to maximize

2 Related Work 6

global yield. While this approach is simple and fully decentralized, it precludes partitioning the
cluster for software heterogeneity which can be implemented by my model-based approach in-
tegrated with PCU environment. My performance model can be customized for heterogeneous
games with the available benchmarks for measuring the performance of commercial game servers

and then used separately to partition the VCs.

2.1.3 Model-Based Resource Management

Modeling system behavior is a good way to understand application and enable the system to
achieve important resource management goals. Many studies have been performed to understand
the system model and its impact on the Internet.

For the streaming media application, Cherkasova et al. [8] introduce a set of basic bench-
marks to measure the basic capacities of streaming media systems and reveals the main sys-
tem/application bottlenecks and properties. The set of basic benchmarks allows one to derive the
scaling rules of server capacity for media files encoded at different bit rates and delivered from
memory versus disk. Using experimental testbed, it shows that these scaling rules are non-trivial.
It designs a performance model of media server which uses the basic benchmark measurements
for estimating multiple resource requirements of a particular stream in order to compute the
server capacity for delivering a realistic workload. But it fails to combine the proposed media
server performance model with workload analysis output to design the admission control strate-
gies. The model-based admission control infrastructure can be expected to prove that a streaming
media service can efficiently determine whether sufficient CPU, memory and disk resources will
be available for the lifetime of a particular request as a function of the requests already being
delivered from the server. In my work, my performance model is integrated with an admission
control scheme with content simulation results. With my resource management system, given
the real-time requirements of each client, a server has the ability to employ admission control
algorithms to decide whether a new client request can be admitted without violating the quality
of service requirements of the already accepted requests.

For the web service utility, Doyle et al. [7] demonstrate the potential of MBRP for resource
management. It shows how MBRP policies can adapt to resource availability, request traffic and
service quality targets. These policies leverage the models to predict the performance effects of
candidate resource allotments, creating a basis for informed, policy-driven resource allocation.
Their positive experimental results illustrate that MBRP is a powerful way to deal with com-

2 Related Work 7

plex resource management challenges, which enables the system to achieve differentiated service
quality, performance isolation and storage aware caching.

Depending on the game genre, there are many different internal methodologies to run the
services from normal web or media service. Abdelkhalek et al. [13] mention that both client and
server side processing in FPS online games are based on “round”. That is to say, when a client
joins a game session it enters a loop performing the following actions in well defined iterations:
(1) get the player input and send it to the server, (ii) receive server updates for all relevant entities
for the request the client sent in the previous time slot, (iii) perform prediction on all entities
(e.g., players and objects with associated actions), and (iv) render the next frame. On the server
side, upon receiving client input, the server determines how this interacts with the rest of the
virtual world in a compute intensive task. The server replies only to explicit client requests,
assuming that clients are always active sending frequent requests with user actions. Ideally, the
server replies with updates to client requests within the same client time slot that the client sent
the request. Each round may last several hundred milliseconds depending on the game genre.
This specific characteristic means that the established models for Web service behavior can not
be applied to generate the performance model for game service. Another reason why the game
service can not use the existing models is that requests to static web objects follows a Zipf-like
popularity distribution mentioned in [14, 15] but traffic distribution to the game service depends
much on the game features mentioned in [16, 17, 18].

For most Internet applications, server performance can be modeled by the arrival rate pro-
posedin [19]. Ye and Cheng ([20]) choose this feature to build performance model for MMORPGs
and demonstrate that the performance metrics at the server side have a strong linear relationship
with the number of concurrent players. With these results service providers can reasonably pre-
dict resource requirements for their gaming infrastructure at runtime in an automated way. Ye and
Cheng’s effort has not considered the effect of an FPS game’s server side bot, which plays auto-
matically and intelligently without human control and brings more overload to the server resource
than human player. It also does not present validation for the proposed model for MMORPG
game.

My proposed performance model is generated based on the FPS game server to meet its
specific characteristics. And then it is validated and then merged with the computing utility
resource management algorithm. With the help of this performance model, FPS game service
provider could benefit from the game which requests the necessary resources to meet variable
demands. The simulation result suggests that this integration can be applied for other automated

2 Related Work | o 8

IT resource allocations at runtime in the context of on-demand utility computing systems.

2.2 Online game Platform Related Projects

An on-demand service platform for hosting large-scale multiplayer games is proposed in [21].
The proposed idea is sharing IT resources across multiple game titles or customers by dynam-
ically provisioning and deprovisioning resources for a title or customer from a shared resource
pool. This pool has IBM Tivoli Intelligent Orchestrator (TIO) as a fully dynamic resource allo-
cation scheme that helps allocate resources with the information of the CPU utilization on the
active game server. If the utilization crosses a threshold, TIO installs the appropriate game server
software on a new idle server and adds it to the active set. TIO then executes a custom workflow
that notifies the redirection server that a new game server is available for joining players. Simi-
larly, when players leave a game server and it becomes idle, TIO removes it from the active set
and returns it to the idle pool after all players have disconnected. The redirection server is an in-
stance of a game server with a slight modification to the communication protocol to allow clients
to first issue a server assignment query and receive a redirect response to connect to the appro-
priate server, rather than connecting directly. This one-by-one server addition/subtraction makes
this on-demand platform more dynamic than the VC mentioned in [9]. Although its performance
is found to be stable over a range of loading conditions, it is less cost-effective since it can not
avoid the disadvantage of frequent reallocations during transient fluctuation, game performance
or server utilization. This resource allocation algorithm in [21] was not compared with mine,
but my simulation results show that the VC holds its metric steady during the scaled simulation
time and [9] already proved that resource utilization in VC outperforms the one in Service Grid
dynamic algorithm presented in [22] with underloaded or nominally loaded conditions.

Deen (23] successfully uses IBM OptimalGrid middleware to build up an on-demand plat-
form for MMORPGs. IBM OptimalGrid technology is research middleware designed to hide
the complexity of creating, managing and running large-scale parallel applications on any kind
of heterogeneous computational grid. OptimalGrid was created, in particular, to address scien-
tific and technical computing problems that are parallel and connected, so the OptimalGrid object
model is general enough to handle a wide variety of other coupled parallel applications, including
MMORPGs. OptimalGrid automates the task of resource allocation on a computational utility or
grid to optimize the performance of running applications. It efficiently and automatically parti-
tions a given problem throughout a large collection of computers. OptimalGrids runtime model

2 Related Work 9

uses three different services that are placed on computers in the grid: autonomic program man-
ager (APM), computer agents (CAs) and TSpaces servers. The APM oversees the execution of
the application and contains any load-balancing and global-scheduling control used by an appli-
cation. The APM directs the work assigned to and executed by each of the CAs, which has a
variable problem partition (VPP), that is, the set of work units assigned to the CA. The Optimal-
Grid object model assumes that an application can be described as a graph where the nodes on the
graph contain data, methods and pointers to neighbors. In OptimalGrid terminology, these nodes
are called original problem cells (OPCs). OPCs are the “atomic” problem units (the smallest
pieces) of a problem that represents a unit of computation. In general, OPCs interact with their
neighbors, sharing information to produce a larger, big-picture computation. Therefore, an OPC
must communicate its state with its neighboring OPCs. During load time, OPCs are grouped into
collections, which are precomputed and have predefined dependencies on other collections. Each
computational node is assigned one or more OPC collections. This defines both the computa-
tional workload and the communication workload (the collection edges) for that node. The VPP
for each CA is assigned zero or more OPC collections, the actual number of which is changeable
through a load-balancing operation by the APM. Thus, a computer runs a CA that holds a VPP,
which in turn holds zero or more OPC collections that are each made up of one or more OPCs.
Given these considerations, [23] consider the map in Quake II as the entry point for the
OPC creation. Because the positions and orientations of walls and other surfaces in the map are
used to create a binary space partitioning (BSP) tree, it divides the entire map into a number
of small, irregular convex polyhedrons, each of which corresponds to a “leaf” in the tree. A
typical leaf collection may be the size of a portion of a room on the map. Therefore, the BSP
tree leaf collections of a Quake II map is chosen as the OPCs. This solution may not be the
best to apply to different game engines that face different resource limitations when required to
host large numbers of players. The ability to partition and distribute the computational needs of
these alternate engines would require analysis of the particular design and behavior of the engine
to make the appropriate partitioning decision. This feature makes the OptimalGrid solution not
capable of hosting several different games at the same time. This limitation can be solved in my
multiple VCs solution, which can host different services with different design features and can

easily be customized and generalized.

10

Chapter 3
Model-Based Resource Provisioning

A computing utility (CU) aggregates computing power from various owners and distributes it to
the subscribers. The computing power from a CU can be used to construct a web-server cluster, to
perform distributed computing or to setup a storage area network. The hosted services can impose
varying loads on the infrastructure to respond to changes in workload demand and resource status.
In order to manage hosted services efficiently, we need to answer these questions: (i) What is the
available capacity? (ii) What capacity is required to service user requests without degradation
of quality? Model-based resource provisioning (MBRP) mechanism can be used to answer these
questions because the applications hosted on CUs have predictable resource demand and then the
resource demands could be a function of load with stable, observable characteristics.

MBRP is an adaptive resource management technique that departs from traditional ones us-
ing reactive heuristics with limited assumptions about application behavior. The basis of MBRP
is that internal model capturing service workload and behaviour can enable the utility to predict
the effect of resource choices on application service quality and workload intensity. This per-
formance model needs to continuously monitor load and plan resource allotments by estimating
the value of their effects on service performance. MBRP can address the provisioning problem
of how the service automatically requests the necessary resources from the infrastructure to meet
service level agreement (SLA) targets at its projected load level. To conclude, MBRP can achieve

the following goals quite easily:

e On-the-fly server capacity prediction: The models can determine aggregated resource re-
quirements for all hosted services at observed load levels. This is useful for admission

control or to vary hosting capacity with offered load.

2007/02/02

3 Model-Based Resource Provisioning 11

o Differentiated service quality: Because the system can predict the effects of resource allo-
cation on service quality, it can plan efficient resource allotment to SLA targets.

o VC Resource management for diverse services: Each game has a distinct CPU-resource
request characteristic. This model can be applied to capture these properties, enabling the

resource manager to pick up allotment to meet performance goals.

The flexibility and diversity of MBRP make it a powerful tool for interactive resource man-
agement mechanism in public computing utilities (PCUs).

In this thesis, the potential of a MBRP for resource management is demonstrated. Figure 3.1
shows a block diagram of an adaptive resource management process that is typically necessary

to deploy online games on PCUs.

SLA
requirements

Performance
mode!

Sﬁ'\Game play

requests
Game play
responses

Game
deployment

Resource
allocator
Load
balancer

Resources

Fig. 3.1 Adaptive resource management for mapping online games on PCUs

In our scheme, each game deployment is allocated a VC. VCs are service specific collections
of resources with minimized allocated resources cost and maximized the capability of the PCU
system to provide better services. A VC can include server slices from geographically distributed
servers. Figure 3.1 shows the major modules necessary to implement the resource management
process. The user workload measurement module estimates the number of active player sessions
in the game. Long-term and short-term averages of this estimate are used by the resource manage-
ment process. The short-term average is used for redirecting the requests based on the predicted
service statuses among the servers that are already part of a VC. In addition to the server load, the
redirections consider proximity. For instance, if multiple replicas of the game are available, the

closest (in terms of network distance) is chosen to map the player session. The long-term load

3,Modelr-§a§g§l‘ “Rg_source Provisioning - - 12

average is used for reallocating resources to the VC. The resource allocation process dedicates
some resources from the common pool held by the PCU to the particular VC.

Because the resource allocation is a competitive process among diverse applications it is nec-
essary to resolve the workloads from game specific units (e.g., number of active player sessions)
to resource units. This conversion is performed by the performance model module. The resource
allocator module takes the workload expressed in terms of server units and performs the reallo-
cation exercise which incrementally changes the VC configuration. This incremental change in
VC configuration takes the SLA requirements into consideration as well.

In this thesis, the performance model and resource allocator modules are evaluated. The
performance model presented is derived for Quake — a popular online game. It converts the
game workload into server capacity requirements. For this work, only server CPU utilization is
measured. We use this performance model to evaluate a resource allocation heuristic.

13

Chapter 4

Performance Model for an Online Game

Multiplayer online games have become a very popular form of multimedia service on the Inter-
net, and popular massively multiplayer online role-playing (MMORPG) game titles have large
numbers of subscribers shown in Figure 4.1 up to July 2006. Among them, the class of games
known as FPS has dominated much of today’s large-scale, highly interactive virtual gaming in-
dustry. In virtually all cases, multiplayer games are enabled by a central server. Clients connect to
this server, which is responsible for interpreting their actions, maintaining consistency and pass-
ing information among them. These kinds of traditional games rely on a rigid centralized-server
approach, causing games to become prone to performance bottlenecks and downtime. I intend to
create an infrastructure that provides a superior game playing experience. Using on-demand grid
technology as the underlying infrastructure for hosting online games is a good way to solve the
provision and demand problem, which is proposed in [21] and [24]. These grid based systems
can provide a flexible, cost-effective platform to support the hosting of applications for Internet
services, but a key challenge for them is to enable the design of a “utility-aware” game whose
capacity scales with the service demand to maintain the quality target at the least cost.

To achieve such a design that a game which automatically requests the necessary resources
from the computing utility infrastructure adapts to variable demand, the capacity of game servers
is measured in order to evaluate the amount of available system resources for admitting new client
requests. In this work, a load-aware performance model was devised for online game applications
to predict the necessary values of the candidate resource allotments under changing loads.

2007/02/02

4 Performance Model for an Online Game 14

Fig. 41 MMOG active subscriptions

4.1 Introduction of Server Side Bot and Client Side Bot

Normally the game server works by accepting the human player connections from various loca-
tions to run on itself, but when the game server is short of human players, or there is need to
control participation for testing and debugging purposes, the Quake engine has a built-in server
side bot (S/S bot) [25] that plays just like a human opponent. The S/S bot can move like a real
player, uses all the weapons available to the player and features the best level navigation - it
knows where to go and how to win the game. With the release of the Quake I source code, bot
authors can finally add bots directly to the game code. Alternatively, the S/S bot can also be
coded in QuakeC, which is a scripting language for Quake engine based games [26] to modify
and organize players, monsters, buttons and weapons in the Quake world. With complicated Al
knowledge coded, the S/S bot can be a challenging opponent against the human player. In my ex-
perimentation, the server side bot FrikBotX [27] coded in QuakeC is used. FrikBotX is a classic
bot for the game Quake and it interfaces with the game engine as a real client world.

A client side bot has a similar purpose to a server side bot, but it plays by connecting to the
game server from another machine, just like a human player. In order to make the benchmarking

4 Performance Model for an Online Game 15

procedure automated, the human player was replaced by Mikebot, an optimized client side bot
[28]. By replacing the human player with automated players client traffic can be created actually.

Due to the lack of human participation in my experimentation, a demo-recording tool is used
to record the keyboard and mouse events for later playback. The game engine was then modified
to obtain user input from this previously recorded file. Thus, there is no need for the intervention
of human players. From my collected data, the recorded file can generate almost the same work-
load as my client side bot. Note that the goal of the recorded file was not to accurately recreate
real player movements and actions; rather, they were meant to create load on the server to com-
pare with the client side bot. In order to remove the effect of different map complexity, the same
map type - deathmatch (dm) is chosen in my experimentation, so the map size on disk in KB can
simply represent the map complexity in this scenario. Figure 4.2 compares the overload brought
by Mikebot and a real human player and shows no significant difference in CPU utilization. My
experimentation proves that Mikebot can emulate the human player and the gameplay is still very
interactive and logical with the client-side bot. Therefore, Mikebot can be used to automate the
benchmarking procedure.

Accordingly, a simple set of basic benchmarks is introduced to analyze the main bottlenecks
of this game server to build this model:

server utiization
IS
o

- =% Mikebot at map i 7KB ——
— Hurman Player at map dm3(bigges)927KB -
Mikebot at map 1 K

Human Player at map dmé(middk KB -

8 Mikobot at map dmimé._9(smaliesti34KB -« -
0 Human Player at map dmm4_ 134KE
16 18 20 2 % 2 28 30

number of piayers

Fig. 4.2 Comparison between MikeBot and human player on server utilization.
1. Server-side (S/S) bot benchmark: measures game server capacity when all the players are
bots playing on the server side.

2. Client-side (C/S) bot benchmark: measures game server capacity when all the players are
bots, simulating human players on client side.

4 Performance Model for an Online Game 16

Twilight, derived from the Quake engine, is chosen as the game server since it is an open
source based application that can run on several platforms (Win32, Linux, MacOS, etc.). Its map
format is compatible with the one of Quake I and Quake II and makes much more use of the
graphics hardware, using vertex programming adds many visual improvements and makes the
game run faster. It is also one Quake engine that can support my C/S and S/S bots well together.

4.2 Set of Basic Benchmarks Experimentation

With these benchmarks, a server overload metric is used to determine whether a server has
reached its maximum capacity for the applied workload. This metric is defined as server ca-
pacity saturation percentage (L), where 1 equals the game server CPU consumption at 100%
(can not accept any more player requests). S/S benchmark is a completely automated benchmark
which runs a sequence of tests with an increasing number of S/S bots. During each test, two
performance data are collected: (a) the size of the map and (b) the CPU usage percentage. In
order to make sure that none of the bots remain in the server’s buffer cache (memory), each test
is launched from the beginning point every time.

During the game play, besides the S/S bot interaction itself, the game map complexity is
another effect to be considered. The complexity of the map of the same type is defined by its
layout and the number of objects it includes. In order to ignore the type effect of different map
to make my performance model easier to be investigated, the same type (dm) is also chosen to
run my S/S bot benchmark. The main goal of S/S bot benchmark is to determine the number of
S/S bots that can make the game server saturated under a specific map. Figure 4.3 shows that
the smaller the map is, the smaller number of bots the game server can support. That is to say,
the maximum achievable number of bots depends on the size of the map. The induced higher
level of interaction among players in the smaller map with less complexity makes the server run
computation more fiercely and easily reach its saturation proximity.

An observation from Figure 4.3 is that the game server capacity increases with map complex-
ity, but in different scale. Increase the complexity by a factor of 27.26 (from 34KB to 927KB),
the number of S/S bot supported by the game server only increases by a factor of 2 (from 12 to
24). Figure 4.4 illustrates that in more detail. It also displays non-linear relationship between map
complexity and the number of S/S bots supported. The game server experiences more overload
when handling a larger number of S/S bots in a map of less complexity than handling a smaller
number of S/S bots in a map of more complexity. Under the S/S bots benchmark, the game server

_4 Performance Model for an Online Game

17

server utilization

server utilization

120

100 + q
80 | E
60 }]
40}
20t g {
Pl
m4(middle e
0 " dmm4_9 ((smallsst):}4KB e
0 5 10 15 20 25
number of server side bots
Fig. 4.3 Server utilization under server-

side bot benchmark.

120 T T T T T T

dm3(biggest)927KB ——
dmé(middle)346KB ---x---
dmgM_S (smlallest)uKB‘ FE——

20 22 24 26 28 30

number of client side bots

Fig. 4.5 Server utilization under client-
side bot benchmark.

map size(KB)

map size(KB)

1000

800 r-
700

T

600 +

500 r

400

200

Server Side Benchmark ——
24

8 16
number of server side bots

Fig. 4.4 Server-side bot benchmark.

1000

700

600 4

400 | 1
300

Client Side Banchmark ——
24

L

28
number of client side bots

32

Fig. 4.6 Client-side bot benchmark.

-
o
T

number of server side bots
(-3

Measured Server Capacity at o=1/3 ——
Expected Server Capacity at a=1/3 -—---
Measured Server Capacity at a=1/2 -
Expected Server Capacity at a=1/2 -~ e
Measured Server Capacity at a=2/3
 Expected Server Capacity at =2/3 --o--

0 L L
0 100 200 300

400

500
map size(KB)

600

700 800 900 1000

Fig. 4.7 Measured vs expected server capacity.

4 Performance Model for an Online Game 18

is CPU bounded: CPU usage percentage reaches 100%. It is the main resource limiting the server
performance.

C/S bot benchmark measures the game server capacity in Figure 4.5, when each client side
bot accesses the game server. Similar to the S/S bots benchmark, the C/S bot benchmark is
completely automated using all three maps of the same type and runs a sequence of tests with an
increasing number of clients, where those clients run on one machine. Figure 4.2 shows that the
C/S bot can match the human player behavior and won’t introduce much difference on the client
side.

Figure 4.6 shows the maximum capacity of C/S bots achievable by the game server across
three maps of different complexities in the C/S bots benchmark. First, the larger map needs less
clients to saturate the game server compared to the smaller map. This is because the larger map
has the information of more objects and much more elaborate layout in the packet sent to the
game server, which makes the processing time at the server increase a lot. As a consequence of
the increased server processing time and the size of the incoming request queue, server response
rate drop and the number of C/S bots the server can hold properly drops as well.

Secondly, the curve in Figure 4.6 follows the opposite direction compared to the S/S bots
curve in Figure 4.4. In the smallest map (dmm4_9), 12 S/S bots can saturate the server. However,
in the same map the game server is saturated with 30 C/S bots. That means one C/S bot brings less
overload to the server compared to one S/S bot, and one S/S bot brings the higher CPU utilization
with memory access in the game server compared to one C/S bot, which brings communication
and computation cost with network access. The S/S bot, coded by complicated AI knowledge and
stored entirely in memory and interpreted by the engine, works via artificial intelligence routines
pre-programmed to suit the game map, game rules, game type and other parameters unique to
the game. The game engine takes much time for analysis or prediction and then computes the
response for the constantly changing condition between S/S bots. But C/S bots only send the
packet request to the game engine, which processes it with some preprogrammed routines and
then sends out a response, causing the C/S bot to perform its own computation of this response
packet without hogging server resource. In this way, the game engine can eliminate unnecessary

analysis time to be in a less resource intensive condition compared to the one brought by S/S bot.

4 Performance Model for an Online Game 19

4.3 Game-Aware Performance Model of Game Server Capacity

In this section, a game-aware performance model is presented for the game server capacity based
on a cost function derived from the set of basic benchmark measurements explained in Section
4.2. This cost function defines a fraction of the system resources needed to support a particular
client as a function of the map complexity. Because the CPU utilization is caused by memory
and network access type, the cost is matched with a resource access type with S/S or C/S bots

that accesses the game server. I categorize the resource access into two types:

e Memory access: if the bot exists on the server side, it introduces only computation overload
at the game server with code stored in memory running in CPU.

e Network access: if the bot connects to the server through the network resource, it introduces

both computation and communication overload at the game server.
The following notations are used in this thesis:

) N;,,‘, — The maximum measured S/S bot number under the S/S bots benchmark at a map M;

once the server is saturated

® Ny, — the maximum measured C/S bot number under the C/S bots benchmark at a map M;

once the server is saturated
e Nj; — The current measured S/S bot number under the S/S bots benchmark at a map M;
e Nji — the current measured C/S bot number under the C/S bots benchmark at a map M;
e Cjy. —a value of cost function for a bot with memory access at a map M;

e C};. —avalue of cost function for a bot with network access at a map M;

Under the S/S bots, all the bots have a memory access type because all bots exist on the server
side, and hence each bot requires a fraction of server capacity defined by the Cy,- Under the C/S
bots, all the bots have a network access type and requires a fraction of server capacity defined by
the Cyy..

The following capacity equation describes the maximum server capacity measured under a
set of basic benchmarks for each map complexity, where 1 indicates the state of server being

saturated.

4 I__’grformance Model for an Online Game 20

O = 1 @.1)
o Cl = 1 4.2)

By solving these equations, the cost function values can be derived

1
Cy = 4.3
M; NI{'I ,' (4.3)
R _ (4.4)
i Nfl,
Let L be a current workload as server loading metric presented by a game server, where
L = Ny Cyt, + Ny Ciy, (4.5)

This model is cheap to evaluate the server performance and it captures the key behaviors that
determine application performance. This was originally developed to improve the understanding
of service behavior and to aid in static design of server infrastructure. Because it predicts how
resource demands change as a function of offered load, it can help act as a basis for the dynamic
provisioning in a shared hosting utility. At any given time, it is impossible to run two maps on

one game server, so the above equation can be simplified as:

L = NyjCy; + NifCy, (4.6)
MmN Cy

If L > 1 then the game server is overloaded and its capacity is exceeded. Otherwise, the game

server operates within its capacity.

4.4 Performance Model Validation

This performance model of game server is validated by comparing the predicted and measured
server capacity for a set of synthetic workloads.

Let the number of bots from an outside connection and the number of bots from within the
server be defined as the following:

® Ny, where o < 1 and Ny, is the measured server capacity under the S/S bot benchmark

4 Performance Model for an Onli})g Game 21

¢ (1—)Ny, where Ny, is the measured server capacity under the C/S bot benchmark

If my performance model of server capacity is correct, then under the set of synthetic work-
load the server maximum capacity should be reached.

The mix workload is ran for o = % % and % In these workloads, the S/S bots is fixed accord-
ing to a formula defined above and slightly increased the number of the C/S bots to determine
when the server capacity is reached. Figure 4.7 shows the variation of the measured capacity with
the expected server capacity, where it can be observed that the measured server capacity closely

follows the expected capacity for different values of a.

22

Chapter 5

Resource Provisioning Algorithms for
Multiple Services

This chapter develops an optimization model for the creation process of multiple virtual clusters
on the basis of the mathematical model proposed in [9]. This model is aimed to achieve the best
resource utilization and mathematically reduce the entire system cost. Section 5.1 introduces the
basic components in the public computing utility and the resource allocation for a single service
based on this infrastructure. In Section 5.2 the mathematical model is presented for resource
allocation of multiple services and analyzes the practical validity of such model. The solution
methods of the developed model is analyzed and a heuristic that solves this model is explained
in Section 5.3. Some contributions in my heuristic algorithm are also mentioned in the end of
Section 5.3. An example of this heuristic applied is illustrated in Section 5.4

5.1 Resource Allocation for Single Service

A public computing utility (PCU) connects resources belonging to various organizations into a
single system such that clients can get necessary resources for their computing needs in an on-
demand basis and has the CU’s features mentioned in the beginning of Chapter 3. Therefore,
the PCU model is proposed as an infrastructure to host various wide-area services considering
service resource cost and QoS aspects and then allocates partitions of these resources to different
hosted applications. These resource partitions are called virtual clusters (VCs). Another object in
this PCU model is the anchor point (AP), which represents centroids of the demand distribution

2007/02/02

5 Resource Provisioning Algorithms for Multiple Services 23

in a geographical area to provide us an abstraction of service request intensity in a network. AP
has several attributes such as location, demand intensity and type. A VC has to be designed with
sufficient resources allocated from the big resource pool of a PCU such that the APs are covered
at or above a predefined level of service. An efficient and fast solution to solve the resource
allocation for single service is already presented in [9].

The problem of resource allocation to create a VC is regarded as a facility location problem
(FLP) [29]. In general, a FLP is concerned with optimally placing a number of facilities (such
as serving resources) to cover demands at a predefined set of points (such as APs). When a
server is initially mapped into a VC, the application or operating system needs to be installed
and then the initial data should be loaded from the appropriate data sources. This implies a fixed
cost for mapping a server into a VC. Servers that are part of a given VC have a fixed capacity
to handle a fixed number of concurrent requests. Therefore, the capacity of the serving nodes
should be considered while allocating the serving resources to cover the demand. So the VC
creation is further regarded as a capacitated fixed-charge location problem (CFCLP). The CFCLP
assumes that placing a facility at a given candidate location incurs a fixed cost and each facility
has a limited capacity of covering the demands. Further, the serving resources bound by the VC
creation process to a particular AP have to provide the best coverage for the demand originating
from that AP. This is achieved by minimizing the covering cost in a capacitated fixed-charge
location problem (CFCLP) model equation 5.1.

Parameter | Notation

Yij network delay between AP; and server;

bij bandwidth between AP; and server j

k; capacity of server; that denotes the maximum number of
sessions it can handle

Cij cost of covering AP; by server j

h; demand of AP; that denotes the number of created sessions

1 fixed cost for allocating node j as a facility

Table 5.1 Single VC network notation

The PCU system can be imagined as a graph with the servers and APs as the nodes and the
network links as the edges. Let S be the set of potential server nodes and V, be the set of APs.
In addition, we define the following parameters in Table 5.1. In the PCU network, the lower
bandwidth can increase the cost of providing better services over the network traffic to cover the

5 Resource Provisioning Algorithms for Multiple Services 24

AP demand, on the contrary, the higher delay can increase the cost. Therefore the covering cost
cij is defined as ¢;; = (ayi i+ 77%) where a and P are VC specific. And the QoS of a service is
also decided by the network bandwidth and the delay since in most cases the QoS is represented
by the response time and the throughput. To be concluded, the covering cost ¢;; can be considered
as the inverse of the delivered QoS.

The decision variables defined in [9] listed as follows:

1 if server; is part of the VC
s§; =
! 0 otherwise

ujj =

1 ifserver j € S covers APi€V,
0 otherwise

With these parameters, the optimization problem for creating a VC becomes (with i € V, and
5 keSy

minimize) fjs;+)) hicijui; (5.1)
Subject to ’ i
Zuij > 1 Vi (5.2)
J
Zh,-u,-j < kjsj Vi (5.3)
l (5.4)

The objective function given in (5.1) tries to minimize the number of servers (with s j) in the
VC while maximizing the delivered QoS (with ¢;;). Using demand-weighted cost (k;c; 1) places
the server closer to the APs with high demand.

The Constraint (5.2) guarantee that every AP is covered. The Constraint (5.3) makes sure that
each server is serving under its capacity. Here only some essential formulation constraints are
listed.

A centralized heuristic algorithm to solve this formulation is developed in [9]. This algorithm
is based on the drop heuristic given in [29], using a local search technique [30]. It works in two
phases: firstly, one feasible configuration is found for a VC that includes all available servers
and each AP is greedily assigned to a server minimizing the covering cost c; j. Once the feasible
allocation is found, the second phase is initiated to predrop each of the already selected servers

5 Resource Provisioning Algorithms for Multiple Services 25

to find out the servers, which can produce the largest reduction for objective function 5.1 and can
be removed without hurting other APs allocation.

The static content of this algorithm is that it can choose the best server resource greedily to
cover the AP demand considering to minimize the value of objective function. This algorithm can
be applied to other Internet single applications though the simulation study in [9] only considers
document retrieval service. But this solution heuristic is a centralized algorithm, which makes it

infeasible to scale to a large infrastructure.

5.2 Resource Allocation for Multiple Services

Resource allocation for multiple services is different from the allocation for single service. We
need to take into account several aspects (i) the fairness on allocating resources to each VC based
on the demand from AP group side. That means each VC has the equal right to get the relatively
best resource from the public resource pool without following the order by some human-defined
priority. (ii) The system-wide resource utilization, which means not only the resource utilization
in each VC, but also the entire PCU has the resource utilization as maximized as possible. (iii)
Another point to be considered is that the entire cost in the PCU can be minimized as much as
possible and QoS for all the VCs can be maximized instead of for any individual VC.

Considering the above conditions, we again model the creation of multiple VCs as an op-
timization problem that tries to allocate facilities to demand points while maximizing the total
preference, g;; which is explained in Table 5.2. For the creation of multiple VCs, the model is
very similar to the one for the creation of single VC. Therefore, the model have many same ideas
as the above one in Section 5.1, such as facilities, demand points, QoS metric and demand allo-
cation cost. But the difference is that demand point is considered as AP group during the creation
of multiple VCs. We group APs with demand for the same service, so for the purpose of multiple
VCs creation, we have multiple AP groups to be considered as demand point. Also they share
some assumption like a fixed cost for using each facility. Obviously, the multiple VC problem
can also be modeled as allocation of resources incur a fixed cost (resource rental) and capacity of
each resource is always limited.

The PCU system is modelled as a graph with the servers and AP groups as the nodes and
the network links as the edges. Let S be the set of potential server nodes and V be the set of AP
groups. In addition, the following parameters are defined in Table 5.2. The covering cost ¢;; is
defined as ¢;; = (ocy,- i+ BB—) where o and 3 are VC specific.

ij

5 Resource Provisioning Algorithms for Multiple Services 26

Notation | Description (i € V and j € §)

hi demand at AP; group

k; the server; capacity that denotes the maximum
number of concurrent sessions it can handle

Cij the sum of covering cost between each member in the

AP group and server;

1 fixed cost for allocating node j as a facility
YVij the sum of network delay between each member in the

AP group i and server;
bi; the sum of bandwidth between each member in the

AP group i and server;
Pij sufferage preference of allocating server; to AP group i detailed in Section 5.3.1
tij deficiency preference of allocating server; to AP group i detailed in Section 5.3.2
8ij 8ij =tij + pij

Table 5.2 Multiple VCs network notation

Here the S is divided into several VCs, each one is represented by VC; (i € V). The decision

variables are defined as follows:

I 1 if server j is part of the VC;
/ 0 otherwise

T 1 if server j € S covers AP groupi €V
v 0 otherwise

With these parameters, the optimization problem for creating multiple VCs becomes (with i € V

5 Resource Provisioning Algorithms for Multiple Services 27

and j,k € §):
maximize Z Sy ZZgiju,-j (5.5)
FR L

Subject to
(5.6)
Uij S §; Vi,j (57)
Yuj > 1 Vi (5.8)

J

§; = 0,1 (59)
wj = 0,1 (5.10)

The objective function given by Equation 5.5 has two parts: first part is based on the number
of servers in the VC and the second part is the total preference value g;;. By maximizing the
objective function, the first part reduces the total priming cost of the VC, while the second part
increasing the allocation preference value and thus increasing delivered QoS. The preference
value given in the second part is used to place the server closer to the AP group which has the
bigger sum of sufferage preference value and deficiency preference value.

The intra-VC bandwidth requirement is defined by the Constraint (5.6). The Constraint (5.7)
denotes that a server can cover an AP group only if it is part of VC. The Constraint (5.8) makes
sure that every AP group is covered.

The above formulation maximizes the delivered QoS based on the sufferage preference value
and maximized the resource utilization in the entire PCU system based on the deficiency value.
But it does not guarantee a given QoS level. This becomes an issue when a value for QoS is
agreed upon on the SLA.

5.3 Heuristic for Solving Resource Allocation for Multiple Services

Before this new algorithm is developed — optimized mapping algorithm (OMA) to multiple ser-
vices resource allocation, an alternative way to solve this problem is also considered, just iter-
atively run the resource allocation mechanism for single service mentioned in [9] for each AP
group. First, the suitable servers are chosen from the big resource pool to create one VC for the
first AP group and then run this algorithm again with the rest of servers to create another VC for

5 Resource Provisioning Algorithms for Multiple Services 28

the second AP until all VC are created or all the servers are picked up. But there is some prob-
lems behind this iterative solution. (i) It requires to consider the different order to create VC for
AP group with some defined priority (ii) This algorithm is not run simultaneously to create each
VC fairly enough. (iii) Though every time allocation can find the best server choice to create one
VC, it can not guarantee that the final allocation for the multiple VCs system is the best in terms
of QoS. (iv) The solution doesn’t consider the balance of demand and provisioning when allocat-
ing resource to create VC. My current heuristic solution is going to solve these problems, which
defines the allocation matrix with sufferage preference algorithm in Section 5.3.1 and deficiency
preference algorithm in Section 5.3.2 to create multiple VCs in the PCU.

5.3.1 Sufferage Preference Algorithm

Sufferage preference algorithm is a concept of resource scheduling heuristic, which is already
proved in [31] to be the best batch mode heuristic compared to Min-min heuristic and Max-min
heuristic mentioned in [31]. It is earlier applied to machine allocation to task. Here the task can be
generally considered such as a fragment of codes, a process or even a job executed on computer
machine. The idea behind this algorithm is based on that better mappings can be generated by
assigning a machine to a task that would “suffer” most in terms of expected completion time if

that particular machine is not assigned to it. The sufferage value is defined as below:

Tij = Wix — Wij G.11)

where parameters’ details are listed in the Table 5.3.

Notation | Description

rij Sufferage value of a task ¢; if machine m; can not be assigned to it.

wij Task ¢; earliest completion time on some machine m;.
i.e. using m; is the best completion time for ;.

Wix Task t; second earliest completion time on some machine m, compared to m;.
i.e. assuming m, is the second best completion time for ¢;.

Table 5.3 Sufferage preference algorithm nation

Here is an example to understand this algorithm more clearly. Starting with Table 5.4 which
shows the expected execution time values for four tasks on four machines (all initially idle),

5 Resource Provisioning Algorithms for Multiple Services 29

ny | My my m3 mo | ny | my | mj
fo| 40 | 48 | 134 | 50 | 8 210 |84
fp | 50|82 8 | &9 t]132] 6 1 0
tp | 55168 | 94 | 93 1312510 1
t3 5260 78 | 108 31 8 [18 30| O
Table 5.4 Expected execution time Table 5.5 Converted by sufferage
matrix preference algorithm
mg | m ny ms Task | Mapped to
rp | 0.25 | 0.08 0 1 fo ms3
1 1 0.24 | 0.033 0 H mo
| 041 1 0 0.011 1] m
1310251 0.72 I 0 I3 mp
Table 5.6 sufferage preference val- Table 5.7 Machine mapping deci-
ues sion

sufferage preference algorithm converts Table 5.4 to Table 5.5 using the Equation 5.11, in which
each column has the sufferage values for each task on each machine. For example, compared to
the execution time 40 for #y on my, 48 is the second earliest execution time on m; for task . So
sufferage value is equal to 48 —40 = 8 for #. i.e., if my can not be assigned to #y, task 75 would
suffer 8 execution time units longer. And in the first column, 32 is the biggest sufferage value
for 11, so sufferage preference algorithm decides that mg should be mapped to task ¢#;. In order to
make mapping decision easier, the values in Table 5.5 are normalized by the biggest value in each
column to get sufferage preference value (P) in Table 5.6. For example, based on the machine mg
the value p for task #; is 32/32 = 1, compared to the value 8/32 = 0.25 for task 7. Obviously,
the task with the biggest p can get the machine. The same logical way to be applied to generate
other columns and in the end the machines mapping decision is achieved in Table 5.7 based on
the p values in Table 5.6.

The sufferage preference heuristic considers the “loss” in completion time of a task if it is
not assigned to its first choice in making the mapping decisions. By assigning their first choice
machines to the tasks that have the highest sufferage values among all contending tasks, the suf-
ferage heuristic reduces the overall completion time. Though the sufferage preference algorithm
can not make sure each allocation for the task to get the fastest machine from the machine pool, it
can guarantee that all the tasks can be executed in the shortest time period. It considers the whole

system instead of the individual task.

5 Resource Provisioning Algorithms for Multiple Services 30

5.3.2 Deficiency Preference Algorithm

If the sufferage heuristic is applied to allocate resource from the PCU resource pool to AP, the
allocation decision would only consider from the AP point-of-view. But for the entire PCU
network system, the allocated server resource utilization has to be another important aspect to
be taken into account. Motivated by this consideration, the deficiency preference algorithm is
introduced in this section.

The deficiency preference algorithm tries to allocate resource to AP with optimizing that the
allocated server resource can server the AP demand exactly. i.e., from the server point-of-view
the perfect allocation is that server is allocated to AP when the demand is equal to the server’s
capacity. If the server’s capacity is very close to the AP demand , then this server is highly
expected to be assigned to this AP since this allocation is the most efficient use of resource
consumption on server side and the most satisfactory meet for AP demand as well. If the server’s
capacity is much more than AP demand, the preference to assign this server to AP is much lower,
because this would waste some spare resources on the server side. If the server’s capacity is
much smaller than AP demand, the preference is also much lower because this server is not able
to satisfy the AP demand completely. In the extreme case, if the server’s capacity is infinity
and the AP demand is O, the preference to assign this server to the AP would be 0 since this
assignment wastes sever resource entirely, which is never expected. For the PCU system with
single service, the deficiency preference value can be expressed by the equation as

i = ad,-j OSd,'jSl
T be) >

where parameters’ details are listed in the Table 5.8.

This formula is also called demand-provision formula to express the relationship between
demand and provision shown in Figure 5.1, in which 1 stands for the biggest preference value.
This allocation is modelled as an optimization problem as well.

The decision variables are defined as follows:

Uij =

1 ifnode j € Scovers AP groupic V
0 otherwise

5 Resource Provisioning Algorithms for Multiple Services

31

Parameter | Notation

k; capacity of server; that denotes the maximum number of
concurrent sessions it can handle

h; demand at AP;

d,' j d,‘ = k j /h,‘

Lij the deficiency preference value of allocating server; to AP;

Table 5.8

Deficiency sufferage preference algorithm notation

With these parameters, the optimization problem for creating a VC becomes (with i € V and

J,k€S):

linear functionsa= 1 ——
713? exponential function b=1 -
s 08¢ 1
Q
Q
c
2 06} .
Q2
[0)
a
> 04r .
c
0
o
T 02} .
Z
0 L L T \1 ~~~~~~~~~~~~~~~
0 1 2 3 4

maximize Z Z tijUij
i

i

Subject to
2 uij
J

u,-j = 0,1

v

1 Vi

(5.12)

(5.13)

(5.14)

d (difference value as k/h)

Fig. 5.1 Demand-provision formula graph, witha= 1 and b = 1

5 Resource Provisioning Algorithms for Multiple Services 32

5.3.3 The Optimized Mapping Algorithm

The OMA is run by two parts: one is sufferage preference algorithm, and the other is deficiency
preference algorithm. The OMA objective is to find out AP group with the maximized preference
value generated from both algorithms to be assigned a server.

Here the sufferage preference heuristic is based on the idea that better mappings can be gen-
erated by assigning a server to the VC that would “suffer” most in terms of expected cost if that
particular server was not assigned to that VC. The expected cost ¢;; is considered as the covering
cost between the AP group i and server;, which creates the matrix C. Later the deficiency pref-
erence algorithm presents the demand-provision relationship as d;; shown in Table 5.9. And the
deficiency preference value #;; is the function of d;; shown in Figure 5.1. The algorithm still runs
to realize the goal of Equation 5.12 with some constraints mentioned above.

Element (1 <i<Vand 1< j<8) | Description

n; the number of nodes in AP group i

qajj Cij / ni

k; the server; capacity that denotes the maximum
number of concurrent sessions it can handle

h; demand at AP group i

rij (sufferage value) rij = ajx - a;j (x is the server position in the row i that gives
the AP group i the second smallest value than a;;)

pij(sufferage preference value) rij over the biggest value in the column;
Pij =Tij /Max(rij)

dl' j d,' j= k j /h,'

qij if server; is assigned to VC;, g;; = 1.
Otherwise, ¢;; =0

8ij 8ij = tij + Pij

Table 5.9 Matrix element

The OMA flowchart in Figure 5.2 illustrates how my heuristic works by step and that two
processed phases are indicated as well. In the first phase, because each AP group is supposed to
contact one VC for demanding service, the number of VCs is equal to the number of AP groups.
In order to solve this allocation problem, a V X § matrix is composed where V is the number of
VCs and S is the number of available resources.

Starting with the covering cost matrix C, the matrix A is computed by averaging the matrix
C with ¢;; over the number of APs in each AP group. This way can help remove the possibility

5 Resource Provisioning Algorithms for Multiple Services

33

6art to set the number of AP Sets equal toVX

s

| Generate the members in each AP group J

Generate the MatrixC=V* S
Cjj = the sum of the covering cost between server jand

each member in the AP group i
group Sufferage
l Preference
Generate the Matrix A=V * S, a;= ¢,/ n, Algorithm
steps

Generate the Matrix R=V* S, r; = ay - a;
X is the position in the matrix A where the value of ayis
the second smallest value than the value of g;

Normalized the Matrix B to generate the refractional
sufferage Matrix
P =V*§, p; = r;/ the max value in the column f

inish allocating al
servers to VCs?
Or
Il VCs are satisfied?

For each VC i, Generate Matrix
D=V"S, dj=k/h

Deficiency
Preference
Generate a Matrix T = function (D), Algorithm
this function follows a formula shown in Fig 5.1 steps
O<= t,; <=1

4

Generate aMatrix G =V * S, g;=p; +

[___| Ineach column j, search the position x where it gives
the Max value g,;and allocate the server jto that VC,
and update the demand h, for that VC,

Finish b

Al

Fig. 5.2 The flowchart of resource provisioning algorithms

5 Resource Provisioning Algorithms for Multiple Services 34

that higher number or lower number of APs in some given AP group can have more preference
to get resource than other AP groups in sufferage preference algorithm and try to make the final
allocation be fair for each AP group. After running the sufferage preference algorithm on the
matrix A, the first phase ends up with the matrix R stated in the first for loop in Figure 5.3,
which can give enough information on which server should be mapped to what AP group in
terms of sufferage covering cost. But this first allocation that uses this metric sufferage value
only considers the covering cost from the AP perspective in terms of AP group satisfaction and
minimizing total covering cost, and never considers the overall resource utilization on the server
side. To make the final allocation more practical and efficient, the second step considers the
deficiency algorithm in Section 5.3.2 to adjust the preallocation. Here the demand-provision
relationship is represented as d;; = (i—f) And ¢;; is the preference value of server; allocation to
VC; which follows the trend with d;; shown in Figure 5.1, where 1 stands as the top value for
deficiency preference.

If d;j is smaller than 1, #; and d;; both increase. But if d;; is greater than 1, f; decrease
exponentially. i.e., if the server capacity k; is very close to the VC’s remaining demand 4;, then
this server; should be assigned to VC; since this allocation is the most efficient use of resource
consumption on both sides. If the server capacity k; is larger than VC remaining demand 4;, the
preference to assign this server; to VC; is lower, as this would waste some spare resources on
the server side. If the server capacity k; is smaller than VC remaining demand #;, the preference
is also lower since this server; is not a best choice for this VC; as this wouldn’t satisfy the VC
completely. In the extreme case, if £; is infinity and &; is 0, d; j 1s infinity so #;; should be almost
0. This formula can be customized by modifying the coefficient value of a or b in terms of the
requirement to make the final allocation decision more flexible.

Fitting with the second phase, the matrix R created in the first phase is normalized by being
divided by the biggest value in each column to matrix P. Then both p;; and #;; are added up to
generate the matrix G. The final server allocation decision is made from the resultant matrix G,
in which for each column the position with the greatest value is found and allocate the server
to that VC located at that position. The selection process is in a loop until all the servers are
selected or each AP group’s demand is satisfied with the allocation decision. The pseudocode
for the heuristic is shown in Algorithm 5.3. Of course, with the purpose of customization, more
weight can be put on p;; or #; to change the value of g;; in order to modify the final mapping
decision.

This OMA take into consideration three main points:

5 Resource Provisioning Algorithms for Multiple Services

35

Start with the covering cost matrix C and then generate matrix A as a;; = ¢;; / n
for each j (1 < j < §and in a fixed arbitrary order) do
foreachi(1 <i<V)do
compute r;j = Qi -a;j
(where x is the position in the row / that gives the second smallest value than a;)
Pij = rij / max(r,-j)
end for
end for
Initially assign flag g;; =0 (Vi € V,Vj €)
repeat
for each j (1 < j < §andin a fixed arbitrary order) do
foreachi (1 <i<V)do
compute d;; = k; /h;
compute t;; = ad;; (0 < d;; < 1) org; = be(l“d"f)(d,-,- > 1)
compute g;; =t;j + p;j
In matrix G, search the position x where it gives the biggest value in column j and
assign ¢y; =1 and update hy = hy —k;
end for
end for
untit 4, SO (Vi€ V)org,=1(Vj€S)

Fig. 5.3 Resource allocation pseudocode for multiple services

5 Resource Provisioning Algorithms for Multiple Services 36

¢ It considers the balance between demand and provision during the resource allocation with
the metric deficiency preference value to make the resource utilization in the whole system

as big as possible. At the meanwhile, make the entire system cost minimized.

¢ It can be customized by putting different weight on both preference values, sufferage pref-
erence value and deficiency preference value, to change the resultant matrix value based on

the different SLA requirement from different AP group.

e For the large-scale network, it is much simpler and faster to run compared to the algorithm
presented in [9]. OMA running simulation time is only one tenth of the one spent for the

algorithm in [9] based on the same number of nodes in the network.

5.4 An Example of the Creation for Multiple VCs

Here a simple example of the creation process is illustrated for multiple VCs on a 15-node net-
work. The interconnection topologies among the resources were generated using an Internet
topology generator called the Tiers [32]. The Tiers creates a network with WAN-MAN-LAN
topology. The network initialization code written in Matlab accepts this network information file
and places the 11 APs at randomly chosen as LAN nodes and assume the rest of 4 nodes to be
possible candidates for the location of serving resources. It also assigns random demands for the
APs and random capacities and capabilities for the servers and then generates the covering cost
matrix between each AP and server for the network. The VC randomly selected AP to be served
as shown in Table 5.10.

The output of this initialization is a text file that is processed to be Table 5.11, of which each
element is the sum of the covering cost. For example, there are 5 APs connecting to VCj, so
c11 represents the sum of the covering cost between each AP in VC; and S;. In order to ignore
the effect of the number of APs in each VC and treat each VC fairly in terms of covering cost
for the future resource allocation, Table 5.11 is transformed to be Table 5.12 for the average cost
of each VC. Therefore, none of the VCs can have higher priority to get resources in terms of
the bigger number of AP members inside. In this simulation, VC; has 5 AP members inside as
shown in Table 5.10, so aj; = ¢y; / 5, with the same way to compute the other elements in Table
5.12 (starting with Table 5.12, the multiple VCs creation code, written in Matlab, contains codes
for implementing OMA heuristic).

5 Resource Provisioning Algorithms for Multiple Services 37

Number of APs
VG 5
VG, 3
|4 &) 3

Table 5.10 AP Random Selection

M Sy S3 M S Sy | S3 | S84
VCp | 1600 | 1920 | 3600 | 2000 VCp | 320 | 384 | 720 | 400
VC, | 1200 | 1968 | 2112 | 2136 VC, | 400 | 656 | 704 | 712
VCs | 1320 | 1632 | 2256 | 2232 VC; | 440 | 544 | 752 | 744
Table 5.11 Matrix C for the cover- Table 5.12 Matrix A for the average
ing cost between AP and server covering cost of each VC

The creation of multiple VCs is carried out in two stages: in stage one, the VC creation
code is run with the sufferage preference algorithm, which generates Table 5.13. With the way
mentioned in the pseudo-code shown in Figure 5.3, if VC; is assigned Sy, it will result in the best
covering cost for Vj. But if S;, which is the second best, is assigned to VC;, VC; would suffer
more 64 in terms of covering cost than by being assigned S;. Therefore, the sufferage element by
= ayz - an. After every element r;; is generated, for the server;, we can decide which VC would
get most sufferage if that server; isn’t assigned to this VC;. For example, S; should be assigned
to VC, since by has the greatest value (256) in Table 5.13. In order to make it consistent with
the next stage, Table 5.13 is normalized to Table 5.14 by column.

In the second stage, considering the difference between VC demand and server provision,
Table 5.15 is created. In Table 5.15, the element is computed based on the formula in Equation
5.12. Here, the coefficients a and b are equal to 1. In this example, p; (1519) is smaller than
r1(2917), so the difference ;Ll‘ is smaller than 1. Therefore, the first formula is chosen to get the
t11. Element #;, however, is created in the second way of this formula. Here p, (2456) is bigger
than r»(725), so their difference is bigger than 1. t; = el =92 where dy = py Irp. To consider
both effects of matrix T and H on the allocation decision, Table 5.14 and Table 5.15 are added
by corresponding matrix element to get Table 5.16. In each column, the server is mapped to the
VC which gives the biggest number. From these results, the initial mapping decision is shown
in Table 5.17. This example shows that all the servers are allocated to VCs in the first loop. It
already meets one of the conditions mentioned in my algorithm so the allocation ends up with

this mapping decision.

5 Resource Provisioning Algorithms for Multiple Services

38
S S | S35 84 S1 Sy 1853 Sy
VC; | 64 | 16 | O | 320 \{ & 0.25 0.08 | 0 1
VC, 1256 | 48 | 8 0 VC, 1 024 | 1 0
VC; | 104 1200 | O 8 VCs3 | 0.40625 1 0 |0.025
Table 5.13 Matrix B generated by Table 5.14 Matrix H normalized by
sufferage preference algorithm Matrix B
S1 AV S Sa S1 SH S3 S4
VC; | 05207 | 0.1395 | 0.1503 | 0.1711 VC; | 07707 | 0.2195 | 0.1503 | 1.1711
VG, | 0.0355 | 0.03379 | 0.1302 | 0.1376 VCy | 1.0355 | 0.2737 | 1.1302 | 0.1376
VCs { 0.4068 | 0.7089 | 0.1375 | 0.7871 VC; | 0.81305 | 1.7089 | 0.1375 | 0.8121

Table 5.15 Matrix T generated by
demand-provision formula

Server | Mapped to
S A\)
S, VC;
S3 VG,
S4 VG,

Table 5.17 Mapping decision

Table 5.16 Matrix F, the sum of Ma-
trix T and Matrix H

39

Chapter 6
Experimental Results and Discussions

This chapter explains the simulation study to evaluate the performance of multiple VCs configu-
rations based on the performance model of an online game service. This performance is compared
with the one of the creation mechanism for single VC described in [9]. Section 6.1 discusses the
assumptions made in performing the simulation. Section 6.2 describes the simulation in detail.

The obtained results and detailed discussion are given in Section 6.3.

6.1 Assumptions

For this study, the computation time at the server is assumed to be proportional to the session size
and there is sufficient bandwidth assumed between the player and the game server to meet the
requirement.

For the session attributes, Chang and Feng ([18]) already proved that the probability density
JSunction (PDF) of player session duration can be fitted accurately with a Weibull distribution as
Equation 6.1, which has three parameters B, 1) and y. In this form, B is a shape parameter or slope
of the distribution, M is a scale parameter, and 7 is a location parameter. As the location of the
distribution is at the origin, 7 is set to zero, giving the two-parameter form for the Weibull PDF
as Equation 6.2. They use a probability plotting method [33] to estimate the shape (B) and scale
(n) parameters of the PDF of the session time. A Weibull distribution with p = 0.5, 1 = 20, and
Y =0 closely fits the PDF of the measured session times for the one-week trace of a popular first
person shooter online game — Counter-Strike.

2007/02/02

6 Experimental Results and Discussions 40

_ (BT =Yg (5P
o= (B) (6.1)
5= (B) 62)

The session length in my simulation is assumed to follow this Weibull distribution with the
same parameters (B = 0.5, 1 =20, and y=0). Sessions are assumed to arrive at the VCs with
Poisson distributed inter-arrival time. It is assumed that for different APs, the mean session
intervals vary in the range of 1 to 10 seconds and the mean session lengths vary in the range of
100 to 720 seconds. The average demand from each AP can be generated by the mean session
length divided by the mean session inter-arrival.

The demands at the APs are assumed to be steady over the run time of the simulation. It may
be not totally realistic but acceptable for the purpose of this study. The purpose of this simulation
study is not to address such complicated situations but to evaluate the fundamental performance

of the proposed system.

6.2 Simulation Setup

The simulation study is carried out in three phases. The first phase is to create the large scale
network with Tiers [32], which has a total of 314 nodes, 179 of them being APs. The Tiers-created
network is a WAN-MAN-LAN topology illustrating the node locations, connectivity details, and
the delay and bandwidth of the links.

In the second phase, the network initialization code written in Matlab accepts this network
information file, places the APs at randomly chosen LAN nodes and distributes them into dif-
ferent AP groups. The rest of the nodes are candidates for the servers and assigned random
capacities and capabilities. And then the code generates the cost matrix c;; for the network. Later
the centralized optimized mapping algorithm (OMA) heuristic is run to create the multiple VCs.
The created VC has the information on what servers are mapped to serve which AP group. The
example of the phase implementation is illustrated in the Chapter 5.4.

The final phase creates the working network model, generates the load and evaluates the per-

6 Experimental Results and Discussions 41

VCM

IAP

AP group 2

Fig. 6.1 Creation of multiple VCs in PCU resource management system

formance of the created VC with a discrete event simulator called Parsec [34]. Figure 6.1 shows
the main components in the simulation setup: AP, VC and virtual cluster manager (VCM) es-
tablished in a server node that is not participating in any VC. However, in real cases, the VCM
can be distributed in each VC. The VCM is dedicated to coordinate the scheduling of sessions.
When the VCM receives the request from AP, it uses the output of the performance model de-
scribed in Chapter 4 to make a decision. This performance model has the following primitives
as input: (i) the number of current server and client bots on that selected game server (ii) the
current map (iii) two corresponding values for the given map: one is the Cj; and the other is Cy,.
In this simulation, the output of the performance model is expressed in the percentage of the used
capacity on a given server with these input information. Because the candidate server has not
yet served this session, the predicted result is based on the condition that this session is already
served on that server. If the result is bigger than one, the VCM will send rejection to the AP and
AP will wait until VCM notices this AP group of free capacity in this VC to server this session.
Otherwise, the VCM will send acceptance decision to the AP. The Parsec codes consist of entities
which are the templates of different types of nodes in the network: AP, server, and VCM. And it

6 Experimental Results and Discussions 4?2

can provide the functionalities of the individual type, such as session generation, communication,
session processing. The entities communicate through application level messaging.

The simulation process starts with AP;, sending the request to the VCM (process 1). VCM
processes this request to map the session to one server, and then informs the AP}, (process 2)
with one decisions. After receiving the successful mapping decision, AP;; will communicate
with the assigned server in VC; (process 3 and 4). At the same time, VC talks to the VCM
periodically about its status (process 5 and 6) such as the number of the current bots, the number
of real players and map type. Because the second phase has already made the decision of multiple
VCs allocation to serve the AP group, the VCM knows which VC can serve the session from the
given AP group, i.e., the request 1 will be scheduled on VCy, and the request 9 will be scheduled
on VC,.

Generally the maps in the game world are switched periodically based on the game service
configuration. This scenario can be simulated by switching maps at scheduled times. The simu-
lation time is divided into three identical slots. When the game proceeds, the number of current
bots varies randomly in the range of 1 to 12 to increase the game competition interest or pre-
vent the boredom with the lack of real players on the game server. Depending on the conditions
present in the SLA, the multiple VCs creation can be triggered periodically to make different
decision on scheduling the demand from the AP group.

There is an optional component — overload partition (OLP) in the working network model
shown in Figure 6.1. It is used to handle the variations in demand from the expected value. The
OLP can be considered as a protection layer of the actual VC. For each VC, OLP is created in two
steps. At first, a resource partition is created for the service considering an increase in demand
condition. And then the VC nodes are extracted from the resource partition obtained from the first
step by rerunning the allocation process with nominal demand condition. The resources outside
the VC set, but inside the resource collection from the first step, are allocated as the OLP nodes.
When the VC is created, the resources are dedicated for the exclusive use of the service hosted by
the VC, while the resources in the overload partition are shared among VCs to handle unexpected
spikes in demand from APs. If VCM can not select one available resource to serve the upcoming
session in the specific VC, it will try to map one suitable server in the OLP to handle this session.

Because a VC is a large-scale system with a wide geographical presence, it is unrealistic to
assume the demand is uniform across the VCs. The simulation study analyzes the performance
of multiple VCs under different load conditions: nominal load, underload and overload. The

following styles of load variations are considered in this simulation:

6 Experimental Results and Discussions 43

e Fixed loading: Demands from all APs in each AP group are increased by the same factor.

o Window-framed loading: The demand change factors for AP groups are randomly selected
from a “window”, so that some of them are above nominal values and others are below. The
center of the window is shifted moving the overall loading pattern of the system towards

underloaded or overloaded condition.

o Asymmetrical loading: The demands in a small percentage of the AP groups are increased
by a particular factor and the demands in the rest are reduced so that the whole system is at

the nominal load conditions.

These different loading schemes are used to represent different practical loading scenarios.

Demands of the APs are varied either by changing the session intervals or the session lengths.

6.3 Results and Discussions

6.3.1 Performance Metrics

In our experimental setup, there are three main performance metrics to determine whether multi-
ple VCs configuration by OMA can make the whole system work efficiently and fairly under the
applied workload. One of these metrics is collected at the server side, one is at the client side and
another one is for both sides considering cost c;; between them:

o Client side metric: A performance metric satisfaction factor (SF) shows how much per-
centage of sessions served satisfied in the AP group. Before computing the metric SF, a
threshold cost (TC) should be defined firstly. TC helps to decide whether this session can
be served with content or not. If the session is served with cost above TC, the session is
served unhappily. Otherwise, it is served with content. SF is defined as the number of
sessions served under TC divided by the whole number of sessions.

e Server side metric: A resource utilization percentage (RUP) is another performance met-
ric introduced to consider the server part in VC system, which is computed by the used

capacity in a VC over the VC’s entire capacity.

e Client-server metric: The system is also tested with another metric called unit utilization
cost (UUC), Let 6 be the number of servers acquired at any given time, T be the fixed

6 Experimental Results and Discussions 44

cost of using the server per unit time, and A be the overall resource utilization. With these
parameters, the unit utilization cost is defined as 6 x ©/A. A lower value for this metric

indicates a cost-effective configuration.

6.3.2 Simulation and Discussion

Generated from the large scale 314-node network, the multiple VCs created for AP groups are

shown in Table 6.1. The simulations are carried out for a fixed duration of time.

VC nodes | AP Group nodes | AP Group demand
A\ 5 19 1512
VG, 11 33 3163
VCs 10 36 3049
VC4 6 23 1592
Vs 6 13 1226
VCq 15 55 4413
Total 53 179 14955

Table 6.1 Server allocation in each VC

TC is defined considering the SLA of each AP group and the network cost condition. If the
TC is set to a big number, the session can be served with content easily. Otherwise, it is hard to
server the session under this TC. For the extreme example, the cost between every AP and the
allocated VC ranges from 100 to 400. If the TC is set to 410, all the sessions would served with
content and the SF is 100%. Otherwise, if we set TC to 50 for this network, the SF will be 0.
In my simulation 500 is chosen as a testing TC based on the cost range from 147 to 4280 in my
network model. The more accurate way to compute TC for each AP group will be done in future
investigation. Particular attention is paid to the set of sessions that are served under the threshold
cost. All the values presented in these plots are averages of at least five runs.

Figure 6.2 shows the performance with varying normalized mean session intervals. The nor-
malized session interval represents the nominal load condition for each VC. The longer the mean
session interval, the lower the normalized load and the higher the satisfaction factor can be. The
same session length and different intervals are chosen to test the satisfaction factor. The plot
shows that for each VC, the satisfaction factor moves smoothly from underloaded to nominal
loaded and then goes to overloaded conditions. It also proved that this resource allocation based

6 Experimental Results and Discussions

45

on the AP group demand can serve the AP without SF spikes which can be brought by the variant

loaded condition.

satisfaction factor

RV —
09 v§§ B
L ve e
osf VS
o7} VG o

06 |

086 09

normalized session interval

Fig. 6.2 Performance of multiple VCs
with mean session interval

0.5
0.45
04

035

0.25
02+

satisfaction factor

016 +
01

005

03F

au

N

windowed loading

Fig. 6.3 Performance of multiple VCs

with window-framed loading

Window-framed
loading condition tag

Session interval
window size

Session interval
window center

Session length
window size

Session length
window center

1 0 1 0 1
2 0.67 1.33 0 1
3 1.5 1.25 0 |
4 0 1 0.5 1
5 0 1 1.5 1.25

Table 6.2 Window-framed loading details

The VC configurations is simulated under different demand situations to verify whether the

VC is able to fairly treat the demand from the nodes with average satisfaction factor. Figure 6.2

shows the performance under window-framed loading. Here the demand varies in a window. The

session length and session interval at each AP group are selected from a uniformly distributed

window with details shown in the Table 6.2. The first row of the table presents the nominal

loading condition. The second and third row keeps session length at the nominal loading and

varies session interval. For example, the third row shows demands generated with a window of

width 1.5 - centered at 1.25 times nominal loading for session interval. Therefore, the maximum

value for this window-framed loading is 2 times the nominal loading and the minimum value is

6 Experimental Results and Discussions 46

0.5 times the nominal loading, with session length being the same. The fourth and fifth row varies
session length but keeps the session interval constant as nominal loading.

The results shown in the Figure 6.3 indicate that VC3 can handle this window-framed situation
better than the other VCs with higher SF. All the SF lie within 10% and 45% and the SF for each
AP group follows the similarly symmetrical trend shaped like V. The bottom point of the shape is
positioned at the window-framed loading condition tag 3. Because each AP group can response
similarly to the same window-framed loading conditions, it suggest that this allocation algorithm
can treat every VC relatively fairly.

Figure 6.4 shows the result in asymmetrical loading conditions. The APs in each group to
be overloaded are randomly selected. Table 6.3 indicates the asymmetrical loading details for
each conditions tag shown in X axis of Figure 6.4. For example, for the condition tag 2, 25%
randomly selected APs are overloaded by the factor 1.1, the rest 75% APs in each AP group
are underloaded so that the final load can be at nominal loading conditions. From this plot, the
satisfaction factor lies mainly from 10% to 45%. The results are similar: there is no significant
difference between each VC, though VCj can handle this situation better than the other VCs.

05 _— .
045 | o
04 f
5 o035t g
B , o e o]
& o3t g T -
s e ®
S o2t e
& ozt
2
S o5t
NGy ST
01 F VCj s
Ve
. 4 O
005 | ved
VCq -0~
0 .
1 2 3 4

asymmetrical loading

Fig. 6.4 Performance of multiple VCs with asymmetrical loading

Figure 6.5 shows the RUP for each VC with the simulation time proceeding. The horizontal
axis shows the scaled simulation time while the vertical axis shows the total used capacity per-
centage in each VC cluster. Among all the VCs, VCs has the most spikes in RUP from 65% to
75% during the whole simulation time. VCs and VCg have increasing value in RUP from 65%
to 80% during the time slot from 20 to 40 but keep stable RUP in other time periods. Other VCs
have RUP with less variation than VCj from 72% to 80%. Even though the RUP follows different

6 Experimental Results and Discussions

47

Asymmetrical loading Normalized % of
condition tag overload factor | overloaded APs
| 1 1
2 1.1 0.25
3 1.2 0.25
4 L5 0.25

Table 6.3 Asymmetrical loading details

trend for each VC in this simulation, the whole VC system can keep RUP mainly from 65% to
80% , which helps to suggest that OMA can give each VC efficient resource utilization from the
point of server side view.

Figure 6.6 shows that most VCs configurations hold UUC metric steadily and VC; keeps the
UUC with the least oscillations. The smallest UUC for VC; means that VC; works in the most
cost-effective way when serving the AP group. Even though OMA can not keep every VC to
work in a cost-efficient way, each VC can work with the resources allocated by OMA in a similar
way that UUC keeps little oscillated.

1 — . . ; . - . . 60 — —
® 0.9 r
=) S 50 b, o s o 4

il R b8l ¢ 209 2 2 o L PRI,

S 08 fp § SRR A A S EE, PV P AT R iy
3 o7 f =
g x
S o6} -
2 [7]
S o5l 8
©
2 &
8 o4} 2
3 N
@ o3f £
3 VC; —— 5
5 02} VCyp ——xeen j =
s ve2 c
e il VC, - o 3

: VCs -] .-

0 1 " i 1 1 1 Vce © 0 1 1 i 1 - Vce Faie

0 10 20 30 40 5 60 70 80 90 20 40 60 80 10 120 t40

scaled simulation time scaled simulation time

Fig. 6.5 Resource utilization within

cach VO Fig. 6.6 Unit utilization cost of each VC

Furthermore, my resource allocation algorithm (OMA) for multiple services is compared with
the one (SSA) studied in [9] for single service. The comparison is made from the perspective
of two different scenarios (with OLP and without OLP) in terms of RUP. The average RUP
computed out of all 6 VCs by OMA is compared to the RUP obtained from one single VC by
SSA. Figure 6.7 shows that with OLP the OMA outperforms SSA although by a smaller margin

6 Experimental Results and Discussions 48

of RUP, but the RUP by OMA is not as stable as the one by SSA because the RUP range from 53%

to 57% by SSA is covered inside the RUP range from 52% to 60% by OMA. On the contrary,
SSA outperforms OMA without OLP condition by 20% in terms of RUP.

The comparison is also made on RUP under two different scenarios from the same algorithm.

It is shown apparently that the RUP is reduced with OLP condition from without OLP condi-

tion for both OMA and SSA algorithms. This result is expected because the OLP resources are

shared with multiple VCs and they by design should have low utilizations when observed from

an individual VC. The OLP resources can expect loading from VC when overloading comes to

it.
1
oo w:%@‘::&%’@p ﬁ%:@w mﬁ ;ﬂ;%ﬁﬂgﬁ i %“&&

08 H

el x

07

0.6

05
04
03

02

total used capacity percentage

OMA with OLP -~]
0.1 SSAwith OLP —o—

' OMA Without OLP --x.---

0 . . L . SSA without OLP -6~
0 20 40 60 80 100 120 140 160
scaled simulation time

Fig. 6.7 Algorithm comparison runs with and without OLP

Overall, OMA is relatively insensitive to OLP (the average difference in RUP is 13% with or
without OLP) while SSA is quite sensitive to OLP (the average difference in RUP is 48% with or
without OLP). OMA can make the VC system more independent on OLP under different loading
conditions.

Based on the above simulated experimentations, it can be concluded that OMA can handle
fairly for multiple VCs from both AP group side in terms of SF and server side in terms of
RUP under different loading conditions. But there is still much space to improve this algorithm
because OMA fails to keep every VC in high value in terms of UUC.

49

Chapter 7

Conclusions and Future Work

7.1 Contributions

This thesis makes the following contributions to online games hosting on wide-area computing

utilities:

o Utility-aware performance model for online game: In this work, a set of basic benchmarks
is introduced to measure the basic capacities of a game system and to reveal the main
CPU bottleneck. They allow one to derive the scaling rules of server capacity. Using
experimental testbed, a utility-aware performance model for the game server “Twiligh” is
designed. It uses the basic benchmark measurements to estimate resource requirements for
a particular session, in order to compute the server capacity for delivering a realistic quality

of service.

e Adaptive resource management system design: This work integrates the game performance
model with a PCU on-demand infrastructure, which gives a convenient, flexible system to
dynamically support games. Generally, clusters are designed for maximum demand condi-
tions resulting in poor overall resource utilization. Here, an alternative approach (MBRP
merged approach) is presented with VC to host online games. Simulation results shows

that MBRP is an effective way to deal with complex resource management challenges.

e Resource allocation algorithm for multiple VCs : This algorithm deals with how to allocate

resources for multiple services simultaneously in PCU environment. Simulations show that

2007/02/02

7 Conclusions and Future Work 50

this resource allocation can treat each VC fairly based on the demand generated by each

AP group.

7.2 Limitation and Future Work
Limitations listed below provide opportunities to my work.

e Mixed Service Types. The service type considered in my simulation study is the online FPS
game. Other types of popular games such as MMORPG can be merged into this system
but the performance models needs further modifications to be more accurate to match their
special features because game design and player behavior exert a significant impact on the
resource usage model at the server end. The heuristic code for multiple services resource

allocation needs no modifications.

o More Realistic Testbed. In this study LAN environment and simulated trace is used to
develop the performance model; a more realistic estimate would consider more resource

consumption and constraint in WAN environment with real trace.

o Distributed Algorithms. The distributed version of the proposed sufferage preference and
deficiency preference algorithm can be developed to make the allocation process on-line.

51

Appendix A

Abbreviations and Acronyms

AP
FLP
PCU
QoS
SLA
vC
C/S
S/8
CPU
FPS
TIO
SNMP
MMORPG
PDF
SSA
LAN
WAN
APM
CAs
VPP
MMOG
SPV
SF

TC
RUP
uuc

2007/02/02

Anchor Point

Facility Location Problem

Public Computing Utility

Quality of Service

Service Level Agreement

Virtual Cluster

Client Side

Server Side

Center Processor Unit

First Person Shooter

Tivoli Intelligent Orchestrator
Simple Network Management Protocol
Massively Multiplayer Online Role Playing Game
Probability Density Function

Single Service Algorithm

Local Area Network

Wide Area Network

Autonomic Program Manager
Computer Agents

Variable Problem Partition
Massively Multiplayer Online Game
Sufferage Preference Value
Satisfaction Factor

Threshold Cost

Resource Utilization Percentage
Unit Utilization Cost

52

References

[1] “AOL Corporation America Online Press Data Points.” http://corp.aol.com/press/press-
datapoints.html.

[2] “An analysis of mmog subscription growthcversion 21.0, mmogchart.com online publica-
tion.” http://www.mmogchart.com/.

[3] “IBM Corporation The On Demand Operating Environment.”
http://www.ibm.com/ebusiness/ondemand/us/overview/operating-environment.shtml.

[4] “On Demand Business IBM Corporation.” http://www.ibm.com/ondemand.

3

[5] “HP Corporation Utility Data Center: Solutions.’
http://www.hp.com/solutions1/infrastructure/solutions/utilitydata/index.html.

[6] “HP Corporation Utility Data Center: HP’s First Proof Point for Service-Centric Comput-
ing. IDC white paper..” http://www.idc.com.

[7] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat, “Model-based resource provisioning in
a web service utility,” in Fourth USENIX Symposium on Internet Technologies and Systems,
pp- 57-71, January 2003.

[8] L. Cherkasova and L. Staley, “Building a performance model of streaming media appli-
cations in utility data center environment,” in Proceedings of ACM/IEEE Conference on
Cluster Computing and the Grid (CCGrid), pp. 36—43, May 2003.

[9] B. Maniymaran and M. Maheswaran, “Virtual clusters: A dynamic resource coallocation
strategy for computing utilities,” in 16th International Conference on Parallel and Distrib-
uted Computing and Systems (PDCS 2004), pp. 166168, November 2004.

[10] M. Welsh, D. E. Culler, and E. A. Brewer, “SEDA: An Architecture for Well-Conditioned,
Scalable Internet Services,” in SOSP °01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pp. 230-243, April 2001.

References 53

[11] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and et al., “Océano — SLA based manage-
ment of a computing utility,” in IEEE/IFIP International Symposium on Integrated Network
Management, pp. 24-26, May 2001.

[12] K. Shen, H. Tang, T. Yang, and L. Chu, “Integrated resource management for cluster-based
internet services,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 225-238, 2002.

[13] A. Abdelkhalek, A. Bilas, and A. Moshovos, “Behavior and performance of interactive
multi-player game servers,” in In the Proc. International IEEE Symposium on the Perfor-
mance Analysis of Systems and Software, November 2001.

[14] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like distrib-
utions: evidence and implications,” in INFOCOM, pp. 126-134, March 1999.

[15] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M. Levy, “On the
scale and performance of cooperative web proxy caching,” in SOSP ’99: Proceedings of the
seventeenth ACM symposium on Operating systems principles, pp. 16-31, December 1999.

[16] F.Chang, W. Feng, W. Feng, and J. Walpole, “Provisioning on-line games: a traffic analysis
of a busy counter-strike server,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 18-
18, 2002.

[17] T. Henderson and S. Bhatti, “Modelling user behaviour in networked games,” in MUL-
TIMEDIA '01: Proceedings of the ninth ACM international conference on Multimedia,
pp. 212-220, May 2001.

[18] F. Chang and W. Feng, “Modeling player session times of on-line games,” in NetGames '03:
Proceedings of the 2nd Workshop on Network and System Support for Games, pp. 23-26,
June 2003.

[19] D. Menasce and V. Almeida, Capacity Planning for Web Performance: metrics, models,
and methods. Prentice Hall PTR, 1998.

[20] M. Ye and L. Cheng, “System-performance modeling for massively multiplayer online role-
playing games,” IBM System Journal., vol. 45, no. 1, pp. 45-49, 2006.

[21] A. Shaikh, S. Sahu, M. C. Rosu, M. Shea, and D. Saha, “On demand platform for online
games,” IBM System Journal., vol. 45, no. 1, pp. 7-11, 2006.

[22] B.Lee and J. Weissman, “Dynamic replica management in the Service Grid,” in IEEE 2nd
International Workshop on Grid Computing, pp. 433434, November 2001.

[23] G. Deen, M. Hammer, J. Bethencourt, 1. Eiron, J. Thomas, and J. H. Kaufman, “Running
quake II on a grid,” IBM System Journal., vol. 45, no. 1, pp. 21-25, 2006.

References 54

[24] D. Saha, S. Sahu, and A. Shaikh, “A service platform for on-line games,” in NetGames '03:
Proceedings of the 2nd workshop on Network and system support for games, pp. 180-184,
September 2003.

[25] “Quakebot c/s.” www.unconventional-wisdom.org/QuakeBot/quakebot.htm.
[26] “Quake-c tutorial.” http://www.inside3d.com/qcspecs/qc-menu.htm.

[27] “Frikbot tutorial.” http://www.inside3d.com/frikbot/projects.shtml.

[28] “Mikebot tutorial.” http://www.planetquake.com/mikebot/table-index.html.

[29] M. Daskin, Network and Discrete Location: Models, Algorithms, and Applications. John
Wiley & Sons, Inc., 1995.

[30] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a local search heuristic
for facility location problems,” in SODA '98: Proceedings of the ninth annual ACM-SIAM
symposium on Discrete algorithms, pp. 1-10, January 1998.

[31] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping of
a class of independent tasks onto heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, vol. 59, no. 2, pp. 107-131, 1999.

[32] M. B. Doar, “A better model for generating test networks,” in IEEE Globecom, pp. 86-93,
November 1996.

[33] R. Corporation, “Life Data Analysis and Reliability Engineering Theory and Principles
Reference from Reliasoft,” 2003. http://www.weibull.com/lifedatawebcontents.htm.

[34] “Parsec: Paralle] simulation enviornment for complex systems.”
http://pcl.cs.ucla.edu/projects/parsec/.

