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Stiffness and strength of tridimensional periodic lattices
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Abstract

This paper presents a method for the linear analysis of the stiffness and
strength of open and closed cell lattices with arbitrary topology. The method
hinges on a multiscale approach that separates the analysis of the lattice in
two scales. At the macroscopic level, the lattice is considered as a uniform
material; at the microscopic scale, on the other hand, the cell microstructure
is modelled in detail by means of an in-house finite element solver. The
method allows determine the macroscopic stiffness, the internal forces in the
edges and walls of the lattice, as well as the global periodic buckling loads,
along with their buckling modes. Four cube-based lattices and nine cell
topologies derived by Archimedean polyhedra are studied. Several of them
are characterized here for the first time with a particular attention on the
role that the cell wall plays on the stiffness and strength properties. The
method, automated in a computational routine, has been used to develop
material property charts that help to gain insight into the performance of
the lattices under investigation.

Keywords: lattice materials, periodic cellular materials, multiscale
mechanics, stiffness and strength properties, periodic buckling, material
property charts

1. Introduction

Lattices are regular structures obtained by tessellating a unit cell along
independent periodic vectors. A lattice can be tailored by design to obtain
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unprecedented mechanical properties and access unexplored areas of the ma-
terial property space (Banhart, 2001; Ashby, 2005; Fleck, 2010; Ashby, 2011).
Recent manufacturing techniques enable to build complex lattice components
at the micrometer length scale with high accuracy, acceptable costs (Bidanda
and Bartolo, 2008; Ramirez, 2011), and from a variety of solid materials, in-
cluding metal alloys, polymers, glass and silicon rubbers.

The microscopic characteristics of a lattice component govern its macro-
scopic behaviour. When the scale of the component is significantly larger
than the scale of the lattice, a direct approach involving the modelling of
each cell is impractical. This strategy would result in considerably large
models, which are likely unfeasible to manage. On the other hand, an appro-
priate alternative is the substitution of the discrete model with an equivalent
continuum (Noor, 1988). At the cost of loosing minor local details, this ap-
proach permits a substantial reduction of the computational effort, while still
providing high accurate results.

In literature, there exist several methods to model the macroscopic prop-
erties of lattice materials. A force-based approach has been often applied
to the unit cell of a lattice subjected to a multiaxial load. The elastic con-
stants of the lattice have then been determined by solving each equilibrium
problem individually. For example, Gibson et al. (1982) obtained a first or-
der estimate of the in-plane stiffness of hexagonal honeycombs, by assuming
the lattice edges behave as Bernoulli beams. Warren and Kraynik (1987)
examined hexagonal lattices with non-constant edge thickness and modelled
lattice edges as continua under plane stress. Zhu et al. (1997) and Gong
et al. (2005) expressed the Young’s modulus and the Poisson’s ratio of open
cell tetrakaidecahedral foams as a function of the relative density. For this
cell topology, Ohno et al. (2010) derived the buckling and yielding strength
under uniaxial compression. Among other cell topologies, pin-jointed fully
triangulated lattices have attracted a remarkable interest for their excellent
structural properties. Deshpande et al. (2001b) studied in detail the perfor-
mance of the regular-octet lattice, and derived the lattice stiffness, and the
von Mises surfaces for buckling and yielding. Elsayed (2010) applied shape
transformers (Pasini, 2007) to study the effect of the edge cross section on
the stiffness and strength of columns made out of octet lattices. Wallach
and Gibson (2001) analysed a lattice based on tetrahedral units, and evalu-
ated the effect of the cell aspect ratios on the stiffness, and on the buckling
strength of alternative lattice. Wang and McDowell (2004) calculated the in-
plane stiffness and strength of a selected bidimensional cell topologies, with
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respect to the onset of plastic yielding.
Other works proposed a more general analysis of the mechanics of lattices

based on topology optimization. Bendsoe and Kikuchi (1988), and later
Hassani and Hinton (1998), for example, derived a constitutive model for
porous materials considering an elementary unit cell of size ε, with ε → 0.
The virtual work principle was first applied to determine the deformation
energy of the unit cell. The effective stiffness of the porous material was
then obtained as the average, over the unit cell volume, of the stiffness of the
solid material, weighted by the unit cell deformation energy.

The interest in vibration reduction and bandgaps has motivated the
search for other approaches (Langley, 1996; Phani, 2006). The following can
be loosely specified as procedural steps of these methods. (i) A displacement
model is first proposed to approximate the displacements of the continuous
medium within the unit cell; (ii) physical quantities of interest, such as nat-
ural frequency, stiffness, and strain energy, are calculated for the discrete
lattice; (iii) the parameters of the continuous model are then determined
by equating the relevant quantities of the discrete to those of the uniform
model. While a Taylor series expansion is generally used to approximate the
continuous displacement, the various methods might differ for the quantities
to be equated in the models. For example, Kumar and McDowell (2004)
selected the Cosserat description of the continuum to take into account the
node rotations and the bending of the lattice elements. A second order Taylor
series expansion was used for the displacements, and the coefficients of the
equivalent micropolar continuum were found by comparing the expressions of
the strain energy for the discrete lattice to those of the continuous medium.
The suitability of the method was restricted to cell topologies with a single
internal joint. Gonella and Ruzzene (2008) studied the in-plane properties of
hexagonal and auxetic lattices and derived the parameters of the equivalent
continuum by comparing the coefficients of the in-plane wave equations of
a discrete lattice to those of an equivalent continuum model. Suiker et al.
(2001) derived the parameters of a micropolar continuum considering the
dispersion relations of harmonic waves. In both studies, a continuous model
was used and provided a satisfactory approximation of the properties of the
discrete lattice only for wavelengths longer than six times the dimension of
the unit cell. For shorter wavelengths, local effects could not be captured.
Gonella and Ruzzene (2010) recently observed that the use of the Taylor
series approximation at short wavelength is the main culprit for the poor
accuracy of the continuous model. Since it is not possible to increase the

3
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order of the expansion, which is limited by the number of boundary con-
ditions that can be imposed, the authors proposed a representative volume
element (RVE) made of multiple unit cells. Likewise with the aim of increas-
ing the accuracy of the continuous model in capturing the local effects of
wave propagation, Lombardo and Askes (2011) presented an approach based
on a higher order approximation of the inertia terms only.

More recent works resorts to the application of concepts of crystals’ the-
ory. Hutchinson and Fleck (2006) proposed a method based on the Bloch
theorem for the statement of the equilibrium problem over an infinite lattice,
and relied on the Cauchy-Born assumption to interpolate the displacement in
the unit cell. The method was applied to estimate the stiffness of the Kagome
and the triangular-triangular lattice. The existence of inextensional periodic
collapse modes was observed for the Kagome lattice, a stretching dominated
material. Elsayed and Pasini (2010a) extended this approach to the analysis
of more generic bidimensional stretching dominated lattices. Vigliotti and
Pasini (2012) presented a matrix based method for the analysis of arbitrary
bidimensional stretching and bending dominated lattices.

Works available in the literature are mainly focused on the evaluation
of the lattice stiffness for pin-jointed open cell configurations. This paper
presents a general procedure for the linear analysis of both open and closed
cell three-dimensional lattices of arbitrary topology with either pin and rigid
joints. The method hinges on a multiscale approach and makes no assump-
tion on the displacements of the internal points of the unit cell; rather the
change in the microscopic periodic directions is expressed as a function of the
macroscopic strain filed, and the displacements of the deformed lattice are
obtained by imposing equilibrium conditions. Besides stiffness, the proce-
dure also permits the assessment of the strength of an arbitrary-cell lattice,
with respect to both buckling and plastic yielding. Global buckling load and
buckling modes are estimated by solving a generalized eigenvalue problem
for the unit cell with prescribed periodic boundary conditions. The method
is here applied to characterize the properties of 3D lattice topologies. Some
topologies have been characterized here for the first time. In addition, since
the method is based on the evaluation of the lattice strain energy by means
of a finite element model of the unit cell, it can be extended to account
for the effect of geometric and material non linearity. The method can also
be applied recursively to analyse structure with multiple hierarchic levels of
lattice structure.

The paper is structured as follows. First the multiscale approach is de-
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scribed in its general aspects in section 2. In section 3, the method for the
lattice analysis is explained in detail. Section 4 applies the procedure for a
comprehensive analysis of four lattice topologies based on the cubic unit cell.
Here are given closed-form expressions of the stiffness and internal forces
on lattice elements. The results of the analysis of the cubic-based topolo-
gies, and of nine lattices obtained from Archimedean solids, are finally used
to develop material charts. A discussion comparing stiffness and strength
properties of the lattices under investigation is given in section 5, before the
conclusion.

2. The multiscale approach

Structures built of lattice materials generally present at least two distinct
length scales: the scale of the component, at the macroscopic level, and the
scale of the unit cell, at the micro-level. Here, we formulate a comprehensive
model consisting of two nested structural models. At the macroscopic level,
the stiffness of the lattice component is determined by assuming the lattice
material as a uniform continuum. At the microscopic level, we calculate the
lattice stiffness and the internal forces in each lattice element, both essential
for the analysis of the lattice strength.

The virtual work principle requires to equate the variation of the potential
energy of the external forces to the variation of the strain energy, calculated
through the constitutive relation of the material. For uniform materials, a
functional relation exists between the stress and strain tensors and it reduces
to the material stiffness matrix for the linear case. For lattice materials, since
the relation depends on the properties of the lattice, it cannot be expressed
directly as a functional dependence. Yet, a boundary value problem can
be formulated to calculate the lattice strain energy and to express it as a
function of the macroscopic strain. Figure 1 summarizes the steps of the

1) macro displacement 2) macro deformation 3) micro disp. and strain 4) micro stress

Macro Micro

7) macro VWP8) macro forces 5) micro def. work6) macro stress

Figure 1: Multiscale scheme

multiscale scheme, which is largely based on the work by Kouznetsova et al.

5
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(2002). At the component level (1,2), given the macroscopic displacements,
uM , we determine the components of the Cauchy strain tensor, εM , and the
deformed lattice periodic vectors, ai; the micro-displacements of the unit cell
nodes are expressed as a function of the macroscopic strain (3); the micro-
stress of the uniform solid material is obtained via the Hooke’s law (4); the
micro-deformation work is calculated by means of a finite element model
of the unit cell (5); the macro-stress tensor is calculated as the gradient of
the strain energy density with respect to the macroscopic strain (6); macro-
forces are obtained applying the virtual work principle at the macroscopic
level (7,8).

Two conditions are imposed to define the equilibrium problem of the
unit cell: a kinematic condition to preserve the periodicity of the unit cell
boundaries; a static condition to ensure the equilibrium of the confining cells.
The formulation enables the analysis of a lattice with arbitrary cell topology
and any number of either pin or rigid joints both on the boundary and inner
of the unit cell. Once the equilibrium of the unit cell has been solved, the
deformation work and the forces in the cell elements can be determined as a
function of the macroscopic strain tensor.

The components of the macroscopic stress field can be obtained by apply-
ing the virtual work principle on the unit cell. Equating the virtual work at
the micro- with that at the macro- scale, and recalling that the macroscopic
quantities are assumed uniform over the unit cell, we obtain

δW =

∫
Vuc

σm : δεmdVuc = Vuc σM : δεM (1)

where Vuc is the volume of the unit cell. The virtual variation of the defor-
mation work can also be expressed as δW = ∂W

∂εM
δεM ; hence the macroscopic

stress tensor can be obtained as

σM =
1

Vuc

∂W

∂εM
(2)

The method is based on a finite element model of the unit cell for the calcu-
lation of the deformation work. Since this paper focuses on a linear analysis,
the lattice stiffness matrix, Kε, can be calculated as the Hessian of the de-
formation work with respect to components of the macroscopic deformation
tensor.

6
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3. Analysis of three-dimensional periodic lattices

In this section, we apply periodic boundary conditions to derive the prop-
erties of the infinite lattice as a function of the properties of a single cell. We
start with the kinematic constraints applied at the nodes of the cell bound-
aries, which must guarantee the lattice periodicity.

(a) replicated cell

a
1

a
3

a
2

181920

17

16 15

14

2
1

3

4

13

12

56

7 89

10

11

6 8
5

9

1

2
3

4

9

(b) unit cell

Figure 2: Body centred cubic cell

The position rk of a given node, edge, wall, and any other entity of the
infinite lattice, is linked to the position r0 of the same entity in the reference
unit cell through the periodic vectors, ai, as shown in Figure 2a for the Body
Centred Cubic lattice. Hence rk can be expressed as

rk = r0 + ki ai
i = 1, 2, 3

ki ∈ N
(3)

Under a uniform macroscopic stress, an infinite lattice deforms while main-
taining its periodicity. If ai are the deformed periodic vectors, the position
of the lattice entities in the deformed configuration, and their displacements,
uk, can be written as

r
′

k = r
′
0 + ki a

′
i (4)

The nodal displacement can be obtained subtracting equation (4) from equa-
tion (3), which yields the following

uk = u0 + ki ∆ai (5)

7
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where ∆ai is the change of the i − th periodic direction, and u0 is the dis-
placement of the point r0.
With reference to the nodes of a single cell, we can identify two separate
classes of nodes: the internal nodes connecting elements of the same unit
cell, and the boundary nodes that connect elements of the confining cells.
Due to periodicity, we observe that the boundary nodes must correspond
along the periodic vectors. Hence, a subset of the unit cell nodes is sufficient
to generate all the nodes of the lattice. These independent nodes comprise
the internal nodes, which have no corresponding node in the unit cell, and
a selection of the boundary nodes. Through equation (5), the displacements
of all the nodes of the lattice can be expressed as a function of the displace-
ments of the independent nodes.
With reference to Figure 2b, we can verify that node 9 is the only internal
node; all other nodes are boundary nodes and any of them can be considered
as the independent node. In particular, selecting select node 1 as independent
node, the following relations hold

r2 = r1 + a1 r3 = r1 + a2 r4 = r1 + a3

r5 = r1 + a1 + a3 r6 = r1 + a2 + a3 r7 = r1 + a1 + a2

r8 = r1 + a1 + a2 + a3

(6)

Further details on the derivation of equations (3) and (5) for a generic lattice
are given in Appendix A.

In the following, we assume that a finite element model of the unit cell
is available and each node has 6 DoFs. Hence, the status of the cell can be
fully described by the array of nodal DoFs, d. The DoFs of the unit cell can
be expressed as a function of d0, the array of the DoFs of the independent
nodes, and of the change in the periodic directions, through the equation

d = B0d0 + Ba∆a (7)

where the array ∆a collects the components of the ∆ai vectors, and B0 and
Ba are block matrices which depend of the lattice topology. The derivation
and properties of the matrices B0 and Ba are explained in Appendix A.

We now consider the static equilibrium of the infinite lattice. In the
deformed configuration, the internal forces of any cell of the lattice must
balance the forces applied by the surrounding cells. In the linear case, the
nodal forces of the unit cell can be expressed as

F = Kuc d (8)

8
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where Kuc is the unit cell stiffness matrix. As described in Appendix A, the
periodic equilibrium conditions can be expressed in a compact form as

A0F = A0Kucd = 0 (9)

where A0 is a block matrix, such that A0 = BT
0 . Combining equations (9)

and (7), and separating the term in d0 from the term in ∆a, we obtain the
following equation for the independent DoFs

BT
0 KucB0 d0 = −BT

0 KucBa ∆a (10)

We observe that the left hand side of equation (10) represents the unbalance
forces due to d0, if the periodic vectors are kept fixed. In contrast, the right
hand side is the force unbalance due to a variation of the periodic vectors,
if the independent DoFs are zero. Thus, the solution of equation (10) is the
array of the independent DoFs of the unit cell that equilibrates the forces due
to surrounding cells, originated by the lattice deformation; and the matrix
BT

0 KucB0 effectively represents the constrained stiffness matrix of the unit
cell.

Since both sides of equation (10) belong to the column space of the matrix
BT

0 , non trivial solutions will always exist. Being Kuc the stiffness matrix
of the unconstrained unit cell, its null space is not empty, and so is the
null space of BT

0 KucB0. Hence, the solution of (10) is not unique; rather it
represents an affine space (Strang, 2006). A particular solution is given by
the equation (11), where + denotes the Moore-Penrose pseudo-inverse.

d0 = −(BT
0 KucB0)+ BT

0 KucBa ∆a = D0 ∆a (11)

Combining equations (7) and (11), we obtain the generalized displacements
of the unit cell nodes, d, that satisfy both the equilibrium condition, and
the displacement periodicity requirement, as a function of the change in the
periodic vectors, ∆a,

d = (B0D0 + Ba) ∆a = Da∆a (12)

Equation (12) can be used to evaluate the deformation work of the unit cell
as a function of the change in the periodic vectors, as follows

W = 1
2
dTKucd = 1

2
∆aTDT

a KucDa∆a = 1
2
∆aTK∆a∆a (13)

9
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As it was noted earlier, the solution to equation (10) is an affine space.
Nevertheless, since the columns of B0 are independent, the members of
Null(BT

0 KucB0) do not produce any mechanical work, it follows that expres-
sion (13) is unique with respect to the deformation work. In other words, all
the elements of the affine space, i.e. the solutions of equation (10), produce
the same unit cell deformation work, and lead to the same expression of the
lattice stiffness.

If we examine the eigenvalues and eigenvectors of K∆a in the tridimen-
sional case, we note that K∆a has dimensions 9 × 9 . Three of the nine
eigenvalues are zero as they correspond to rigid lattice rotations. If addi-
tional null eigenvalues appear, they correspond to mechanisms that might be
present in the lattice. The eigenvectors corresponding to the largest eigen-
value represent the deformation modes for which the lattice offers the highest
stiffness. Thus along these load directions, the structural performance of the
lattice is maximum. On the other hand, the eigenvectors related to the
smallest non-zero eigenvalue correspond to load conditions for which the lat-
tice has maximum compliance. If the lattice has to withstand a multiaxial
load, it will exhibit the largest deformation, and eventually fail, along these
directions.

3.1. Strain-displacement model and lattice stiffness

In this section, the deformation work is first derived as a function of the
components of a uniform macroscopic strain field acting on the lattice; then
it is used to obtain the lattice macroscopic stiffness. From the definition
of the Cauchy strain tensor (Asaro and Lubarda, 2006), the change in the
periodic vectors can be related to the macroscopic strain field as follows

a′ = (I + εM) a ⇒ ∆a = εMa (14)

where εM is the Cauchy strain tensor. For the three dimensional case, the
components of ∆a are given by[∆ax

∆ay
∆az

]
=
[ εx εxy εxz
εxy εy εyz
εzx εyz εz

] [
ax
ay
az

]
(15)

the above equation can be rearranged, and expressed in terms of the compo-
nents of the macroscopic engineering strain field, as

[∆ax
∆ay
∆az

]
=

[
ax 0 0

ay
2

0 az
2

0 ay 0 ax
2

az
2

0

0 0 az 0
ay
2

ax
2

]  εx
εy
εz
γyz
γzx
γxy

 (16)

10
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where γij = 2εij. The equations for all periodic vectors can be grouped, in a
compact form, in one array as

∆a = BεεM with Bε =



a1x 0 0
a1y
2

0
a1z
2

0 a1y 0
a1x
2

a1z
2

0

0 0 a1z 0
a1y
2

a1x
2

a2x 0 0
a2y
2

0
a2z
2

0 a2y 0
a2x
2

a2z
2

0

0 0 a2z 0
a2y
2

a2x
2

a3x 0 0
a3y
2

0
a3z
2

0 a3y 0
a3x
2

a3z
2

0

0 0 a3z 0
a3y
2

a3x
2


(17)

Substituting equation (17) into equation (12) and (13), allows to express
the unit cell nodal DoFs, and the unit cell deformation work as a function of
the components of the macroscopic strain field, as

d = DaBεεM = DεεM (18)

W =
1

2
εTMBT

ε K∆aBεεM (19)

The expression for the lattice macroscopic stiffness can be derived from equa-
tion (19); since the material stiffness is equal to the Hessian of the strain
energy with respect to the deformation components, Kijhk = ∂2W

∂εij∂εhk
, we can

write the following expression

Kε =
1

V
BT
ε K∆aBε with V = |a1 · a2 × a3| (20)

where V is the volume of the unit cell. Because the change in the periodic
vectors is now expressed in terms of the components of the macroscopic
strain field, Kε does not include any rigid rotation mode; nevertheless, zero
eigenvalues can still exist if the unit cell holds a mechanism, such as in the
case of pin-jointed statically indeterminate lattices.

3.2. Determination of the internal forces

The multiscale approach presented in this paper can be used to determine
the stress and strain field in the lattice elements as a function of an applied
macroscopic stress or strain field. When a macroscopic stress field is acting
on the lattice, the resulting internal forces in the lattice elements can lead
to either a microscopic plastic yielding or buckling. To assess the lattice
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strength, the effective buckling load and the buckling modes of the lattice
elements should be calculated as a function of the macroscopic stress, and of
the lattice parameters.

When a lattice is modelled as a continuum by means of its equivalent
stiffness, the result of the analysis is a macroscopic stress field. To assess
the lattice strength, the macroscopic stress field of the continuum should
be expressed in terms of the stress of the solid material of the lattice. The
components of the microscopic stress and strain tensors can be calculated
by the steps from 1 to 4 of the multiscale scheme illustrated in Figure 1.
In the linear case, these steps are grouped in the array Dε of equation (18)
which expressed the components of the macroscopic strain as a function of
the DoFs of the unit cell joints. The DoFs of the unit cell can be expressed
in terms of the macro-stress as follows

d = DεCεσM (21)

where Cε = K−1
ε , is the lattice compliance matrix. Given the DoFs of the unit

cell nodes, Kε can be used to calculate the forces in the lattice elements. For
instance, if the cell edges are modelled as Euler-Bernoulli beams, linear shape
functions are assumed for the stretching and torsion, and cubic functions are
assumed for the bending, the following holds (Zienkiewicz and Taylor, 2005)

s = u2−u1
L

χy = x
(

12w1−w2

L3 − 6 θy1+θy2
L2

)
+ 6w2−w1

L2 + 22θy1+θy2
L

χz = x
(
12v1−v2

L3 + 6 θz1+θz2
L2

)
+ 6v2−v1

L2 − 22θz1+θz2
L

φ = θx2 − θx1

(22)

where x varying from 0 to L is the abscissa along the element, s is the edge
stretching, χi is the curvature around the −i axis, φ is the angle of twist.
The components of the nodal DoFs are specified in Figure 3. The normal
force, the bending moments and the torsion moments are, thus, given by the
following

N = EsA s

My = EsIzz χy
Mz = EsIyy χz

T = GsJp
L
φ

(23)

where Es and Gs are the Young’s and the shear moduli of the solid material,
A and Iii are the cross section area and the second moments of area with
respect to the −i axis, and Jp is the polar moment of inertia.

12
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L
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u1

v1

w1

u2

v2

w2

Figure 3: Edge and nodal DoFs

3.3. Lattice strength and periodic buckling

The occurrence of local buckling should be verified if the macroscopic
stress produces compression in a lattice element. Deshpande et al. (2001b)
calculated the buckling strength of the pin-jointed regular octet with open
cell. If the lattice is rigid-jointed, this assumption yields an underestimation
of the actual buckling load. A given joint stiffness can delay, or even prevent,
the occurrence of a buckling mode, especially if there are cell walls that
stiffen the cell edges along their length. Thus, to estimate accurately the
buckling load resistance, we need to formulate the generalized eigenvalue
problem, including the periodic boundary conditions, as described in the
previous section.

The buckling loads and buckling modes for a structure can be found by
solving the following (Cook et al., 1989).

(K + λKσ) x = 0 (24)

where K and Kσ are the stiffness matrix and the stress stiffness matrix of
the structure. To order to calculate the global lattice critical loads, we need
to take into account the effective loads on a single cell and its constraints
induced by the surrounding cells. For a given macroscopic stress, the stress
stiffness matrix can be obtained by imposing node displacements, as given
by equation (20). Since the matrix B0, in equation (21), introduces periodic
boundary conditions on the unit cell, BT

0 KucB0 represents the constrained
stiffness matrix of the unit cell. It follows that buckling loads and modes of
the lattice can be obtained by solving the following(

BT
0 KucB0 + λBT

0 KucσB0

)
d0 = 0 (25)

where Kucσ is the unconstrained stress stiffness matrix of the unit cell.
For a prescribed macroscopic stress field, the corresponding stress stiffness

13
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matrix is first obtained and, through equation (25), the eigenvalues and eigen-
vectors pairs corresponding to the buckling loads and modes can be deter-
mined. The smallest eigenvalue, λcr, is the multiplying factor for the applied
stress that triggers buckling on the cell elements. Thus, if λcr = 1, buckling
occurs. The relative eigenvector, d0cr , contains the independent DoFs of the
buckling mode; the DoFs of all nodes of the unit cell can then be obtained
via equation (7). Figure 4 shows the first buckling modes, corresponding to
three distinct stress states, for the Body Centred Cube (BCC) topology.

(a) Hydrostatic (b) Bending (c) Shear

Figure 4: BCC topology, buckling modes

4. Analysis of selected topologies

The procedure described in the paper is applied to determine the proper-
ties of 13 different lattices. We consider here four cell topologies derived from
the regular cubic topology (Figure 5), and nine based on the tessellation of
a selection of Archimedean polyhedra (Table 6). Since all cells have cubic
symmetry, there exist nine mutually orthogonal planes of symmetry, and the
stiffness matrix can be written, in a reference system with the axes defined
by intersection of the symmetry planes (Asaro and Lubarda, 2006), as

Kmat =


α β β 0 0 0
β α β 0 0 0
β β α 0 0 0
0 0 0 γ 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ

 (26)

For an isotropic material, the terms of the material stiffness matrix depend
on two independent parameters only (the Young’s Modulus, Es, and the
Poisson’s ratio, ν). On the other hand, for the lattice materials under inves-
tigation α , β and γ are independent. Yet, the stiffness matrix of a uniform
material has identical eigenvectors, as reported in Table 1. Hence, to com-
pare the lattice stiffness to the stiffness of a solid material, we can compare

14
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Solid material Lattice Eigenvector
λ1s = Es

1−2ν
λh = α + 2β εh = [1, 1, 1, 0, 0, 0] 1√

3

λ2s = Es
ν+1 λd = α− β εd1 = [1,−1, 0, 0, 0, 0] 1√

2

εd2 = [1, 0,−1, 0, 0, 0] 1√
2

λ3s = Es
2(ν+1) λs = γ

εs1 = [0, 0, 0, 1, 0, 0]
εs2 = [0, 0, 0, 0, 1, 0]
εs3 = [0, 0, 0, 0, 0, 1]

Table 1: Eigenvalues and eigenvectors for the selected topologies obtained
from Kmat

the eigenvalues of the same eigenvectors. The first eigenvalue, λh corresponds
to the pure hydrostatic stress state; its algebraic multiplicity is three, while
the associate eigenspace is monodimensional. Usually, it is the largest. The
second eigenvalue, λd , has both algebraic and geometrical multiplicity two
and defines the deviatoric stress states. The third eigenvalue is determined
by pure macroscopic shear stress, has geometrical multiplicity three and is
generally the smallest. A characteristic property of lattice materials is the
deformation behaviour, which can be bending or stretching dominated (Desh-
pande et al., 2001a). Stretching dominated lattices basically respond with
element stretching to any macroscopic load, whereas for bending dominated,
under some loading conditions, the lattice elements essentially flex. In the
latter case, the stiffness of the lattice is significantly smaller, or even null for
pin jointed connections. It follows that for a stretching dominated lattice, all
the eigenvalues of the stiffness matrix have the same order of magnitude, and
scale with ρ∗. On the other hand, for bending dominated lattices, the modes
that are absorbed as bending correspond to smaller eigenvalues, which scale
significantly faster to zero, as the power law is controlled by ρ∗

2
.

4.1. Finite element modelling of the unit cells

The numerical results presented in this paper have been obtained by
means of in-house finite element scripts. The lattice edges have been modelled
as Euler Bernoulli beams neglecting shear. When not triangular, the walls
have been meshed with triangular elements, adding a node in the centre of
the face. The in-plane behaviour of the walls has been modelled with first
order plane stress elements, while the bending behaviour has been modelled
as BCIZ plates Bazeley et al. (1965), to ensure an exact representation of each

15
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constant curvature mode. This aspect eases the evaluation of the buckling
loads in the edges. Since the first beam buckling load has constant curvature,
the stiffening effect of the adjacent walls can be calculated accurately.

With respect to the cell geometry, the thickness t of the cell walls is
assumed constant. If we then define L as the length of the selected edges
and d as the side of edges cross section, which is considered square, then the
lattice geometry can be readily normalized and expressed with respect to the
dimensionless parameters

l1 =
L

d
10 ≤l1 ≤ 50

l2 =
t

d
0 ≤l2 ≤

1

4

(27)

where l1 is the slenderness ratio of the edges, and l2 is the ratio of the wall
thickness with respect to the edge cross section side. The bounds on l1 derives
from the assumption of slender beams, while the bound on l2 is necessary to
avoid the overestimation of mass and of joint stiffness.

4.2. Construction of the lattice property charts

Material property charts (Ashby, 2005) are a visual mean to compare ma-
terial performance. In this section, the properties of the lattices are plotted
into material charts. Each map shows the attainable range of the stiffness
and strength of each lattice as a function of the relative density. Since the
lattice parameters are controlled by the ratios l1 and l2, the design space of
the lattice is represented as a region of the plane. Figure 7 shows a contour
plot of the relative density of the cubic lattice as a function of l1 and l2; the
material charts are obtained by calculating the range of the values of each
property on lines with constant relative density.

In the next sections, the symbolic expressions of the stiffness matrix en-
tries, given for the cubic-based topologies, are used to plot stiffness and
strength properties. The ordinates of each chart have been normalized to
produce dimensionless plots. With reference to yield, the lattice strength
is controlled by the yield of the solid material. For a given applied macro-
scopic stress, the maximum von Mises stress of the cell has been compared to
the yield of the solid material, which is assumed linear elastic and perfectly
plastic, with a proportional limit of εL = 0.01. With respect to the lattice
buckling strength, the first critical load of the edges has been considered
as representative of the lattice global strength. This choice stems from the

16
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observation that the critical load on the walls is very small and the edges
provide a considerable strength.

4.3. Cubic topologies

This section focuses on the analysis of four lattice topologies obtained
from a cubic envelope. The cell symmetry yields to simplified closed-form
expressions for the entries of the lattice stiffness matrix. The properties are
found in a reference system with axes aligned with the sides of the base
cube, see Figure 2b. Due to the linearity assumptions, the bending and the
stretching contribution to the material stiffness can be determined separately.
Thus the weight of each contribution can be expressed with respect to the
overall lattice stiffness.

(a) Regular cubic (b) FCC (c) BCC (d) Regular Octet

Figure 5: Cubic topologies

(a) Regular cubic (b) FCC (c) BCC (d) Regular Octet

Figure 6: Primitive cells of cubic cell topologies, Figure 5

4.3.1. Regular cube

Figure 5a shows the regular cubic topology. Its primitive cell consists of
three edges and three walls (Figure 6a) from which the infinite lattice can
be generated. For the primitive cubic topology, the linear expression of the
relative density is given by

ρ∗ = 3
(
A
L2 + t

L

)
(28)
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Edges Walls
Axial Bending In-plane Bending

α
Es

A
L2 0 t

L
2

1−ν2 0

β
Es

0 0 t
L

1
1−ν2 0

γ
Es

0 6I
L4

t
L

1
2(1+ν)

t3

L3

8(153−48ν−4ν2)
27(1−ν2)(7−2ν)

Table 2: Stiffness matrix entries of the cubic topology

Equation (28) is approximate, since the overlapping volume of the nodes
and adjacent edges and walls are not removed from the expression. Yet,
the approximation is acceptable for the parameter ranges defined by the
inequalities (27). Table 2 lists the entries of the stiffness matrix for the cubic
lattice. We can observe that:

• For an open-cell lattice, the wall terms are zero, and the shear stiff-
ness term, γ, of the edges is the smallest. Therefore, under multiaxial
loading the largest material deformation is triggered by shear, which
is only supported by edge bending. Hence, the cubic lattice is bending
dominated.

• For a closed-cell lattice, the in-plane wall terms have all the same
order of magnitude, o

[
t
L

]
. Moreover, the wall contribution becomes

comparable to the edges axial contribution if A
L2 ≈ t

L
2

1−ν2 ; for edges

with square cross section, the condition is t
d
≈ 1−ν2

2

(
d
L

)2
. As a result,

the membrane contribution of the walls becomes dominant for very
small values of the wall thickness, and the lattice behaves as stretching
dominated.

Figure 8a shows the design space for the stiffness matrix eigenvalues,
as a fraction of the eigenvalues of the solid material. It can be observed
that the shear stiffness attains very small values, that reach a ratio of 10−8.
For this reason they have been omitted in Figure 8a. The smallest values
correspond to the open-cell configuration, for which the lattice is bending
dominated. In contrast, for a closed-cell configuration, the shear eigenvalue
becomes comparable with the others. As a result, the closed cell lattice is
capable of producing higher stiffness.
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Figure 7: Cubic topology, relative density, line ρ∗ = 0.01 is highlighted

(a) Stiffness (b) Buckling strenght

Figure 8: Cubic topology, macroscopic stiffness and microscopic strength

Figure 8 and 9 report the strength charts and the von Mises surfaces for
the cubic lattice. The surfaces in Figure 8 refer to the plane defined by the
first deviatoric and the first shear stresses (Table 2), for a relative density
of ρ∗ = 0.01. Each Figure reports two cases: the open cell, l2 = 0, and the
closed cell for the maximum wall thickness corresponding to l2 = 0.1467.
These charts analyse the strength of the cubic lattice in open and closed cell
configurations, for different loading conditions. Figure 8 shows that the shear
buckling strength of the cubic lattice is order of magnitudes smaller than the
other stress states. As noted earlier, the lattice edges do not provide any
effective axial contribution to load bearing; therefore the cell walls are subject
to high compressive loads that produce early buckling. This is confirmed by
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the von Mises surface for buckling reported in Figure 9a, where the buckling
strength of open cells cannot be defined in shear, since no compression is
developed in the cell edges. For closed cell, the buckling strength is very low
as it corresponds to the maximum slenderness ratio, l2 = 50. The detail of
the yield surface for the closed cell case is shown at the top right corner of
Figure 9a.

(a) Buckling (b) Yielding

Figure 9: Cubic topology, von Mises surfaces for buckling and yielding for
ρ∗ = 10−2 and εL = 0.01

Figure 9a shows the plastic yielding von Mises surfaces for both edges and
walls. As it can be observed, for the open cell case, the lattice strength is
very low, being the cubic topology bending dominated. The shear strength is
considerably smaller than the deviatoric strength, and it reduces to a small
segment in the plot. Hence under combined loadings, even a very small
shear component will inevitably cause the lattice to fail. In the closed cell
case, the material limits are generally determined by the walls. As shown in
Figure 9b, the cell walls have considerably smaller yield strength since they
take most of the shear load. The higher yield load of the edges in a closed
cell lattice shows that a significant strength is ensured by the lattice struts,
which guarantee substantial load bearing capability after plastic yielding has
occurred in the cell walls. We can thus conclude that the effect of the walls
is to provide higher stiffness for the bending dominated mode. In addition,
the walls provide considerably higher strength, since the shear compliance is
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very low.

4.3.2. Face centred cube

Figure 6b shows the face centred cubic topology (FCC). Similarly to the
cubic topology, the relative density can be written as

ρ∗ = 3
[
(2
√

2 + 1) A
L2 + t

L

]
(29)

The contributions to the material stiffness are reported in Table 3. We

Edges Walls
Axial Bending In-plane Bending

α
Es

(1+
√

2)A
L2

24
√

2I
L4

2
1−ν2

t
L

0

β
Es

A√
2L2 −12

√
2I

L4
1

1−ν2
t
L

0

γ
Es

A√
2L2

6(2(2+
√

2)ν+4
√

2+5

4ν+5
I
L4

1
2(1+ν)

t
L

8(153−48ν−4ν2)
27(1−ν)(1+ν)(7−ν)

t3

L3

Table 3: Stiffness matrix entries of the FCC topology

can observe that, since I
L4 � A

L2 , the bending contribution to the stiffness
can be neglected with respect to stretching; thus, the lattice is stretching
dominated. This can be also observed in Figure 10a, where the maps of
the three eigenvalues of the lattice stiffness matrix lie in the same region
of the design space. Figure 10b reports the relative buckling load. As it
can be noted, for all relative densities, and for all stress states, the mapped
regions in the material chart are quite narrow. This suggests that the cell
walls have a negligible impact on the buckling strength of the FCC lattice
when compared to the other topologies examined in this paper. Figure 11
maps the von Mises surfaces for buckling and yield. The buckling surfaces of
the closed cell FCC and the cubic lattice are quite similar. In contrast, the
buckling strength of the open cell FCC is sensibly reduced. Compared to the
cubic lattice, the yield surfaces of the walls have similar shape, although the
strength of the FCC is slightly reduced. This can be explained by recalling
that the two cell topologies have the identical wall configurations; for the
same relative density, however, the cubic topology has thicker walls, as there
are no diagonal edges. With reference to the yield surfaces, the strength of
the open cell case is considerably lower than its closed cell counterpart; thus
the lattice walls collaborate efficiently to withstand the external loads.
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(a) Stiffness (b) Buckling strenght

Figure 10: FCC topology, macroscopic stiffness and microscopic strength

(a) Buckling (b) Yielding

Figure 11: FCC topology, von Mises surfaces for buckling and yielding for
ρ∗ = 10−2 and εL = 0.01

4.3.3. Body centred cube

The Body centred cube (BCC) unit cell is shown in Figure 5c and in
Figure 6c. The relative density of the BCC topology is given by

ρ∗ = (3 + 4
√

3) A
L2 + 3(1 +

√
2) t

L
(30)

Table 4 reports the terms of the material stiffness matrix. In contrast to
the cubic and the FCC, all lattice elements contribute in both bending and
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Edges Walls
Axial Bending In-plane Bending

α
Es

(
1 + 4

3
√

3

)
A
L2

128
3
√

3
I
L4

4+3
√

2
2−2ν2

t
L

82
√

2
9(1−ν2)

t3

L3

β
Es

4
3
√

3
A
L2 − 64

3
√

3
I
L4

4(1+
√

2)ν+
√

2

4−4ν2
t
L

41
√

2
9(ν2−1)

t3

L3

γ
Es

4
3
√

3
A
L2

(
6 + 32

3
√
3

)
I
L4

3
√
2+2−2(1+

√
2)ν

4(1−ν2)
t
L

9(272+189
√
2)−6(128+81

√
2)ν−64ν2

54(7−2ν)(1−ν2)
t3

L3

Table 4: Stiffness matrix entries of the BCC topology

stretching to each entry of the material stiffness matrix. This suggests that
the BCC topology has a better structural performance since all elements fully
contribute to bear the load. This observation is confirmed by the charts in
Figure 12, in which the stiffness and buckling strength for the BCC lattice
are shown to be generally higher than the cubic and the FCC.

(a) Stiffness (b) Buckling strenght

Figure 12: BCC topology, macroscopic stiffness and microscopic strength

The buckling and yield surfaces for the BBC lattice are depicted in Figure
13. With reference to buckling, we observe that the BCC lattice has a lower
shear strength than the deviatoric one. Figure 13b gives the plastic yielding
surfaces. Similarly to the other lattices, the walls generally improve the
lattice strength.
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(a) Buckling (b) Yielding

Figure 13: BCC topology, von Mises surfaces for buckling and yielding for
ρ∗ = 10−2 and εL = 0.01

4.3.4. Regular octet

The regular octet unit cell is shown in Figure 5d and Figure 6d. The
pin-jointed open cell version of this lattice has been extensively analysed by
Deshpande et al. (2001b), and Elsayed and Pasini (2010b). The results found
in this paper agree with those available in the literature. Here, we present
the extension to the closed cell and the rigid joint case. The relative density
of the regular octet is

ρ∗ = 6
√

2 A
L2 + 2

√
6 t
L

(31)

The entries of the lattice stiffness matrix are reported in Table 5. Figure 14
shows that the relative stiffness and the buckling load of the regular octet are
consistently higher than the other cubic topologies for any value of relative
density. In addition, the stiffness and the strength are similar to each other
in each stress state. This topology is excellent for applications where both
lightweight and strength are critical, since the properties of the lattice do not
change significantly with the load orientation.

The von Mises stress for buckling is shown in Figure 15a for the regular
octet lattice. As in the previous cases, the presence of the walls generally
deteriorates the strength of the lattice. For the range of density considered
here, the strength of the regular octet, for both open and closed cell, is lower
than that of the BCC; nevertheless, the properties of the octet are more
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Edges Walls
Axial Bending In-plane Bending

α
Es

√
2A
L2

12
√

2I
L4

8
√

2
3

3−3ν2
t
L

− 512
√

2
3

27(ν2−1)
t3

L3

β
Es

1√
2
A
L2 −6

√
2I

L4 −2
√

2
3

(3ν+1)

3(ν2−1)
t
L

256
√

2
3

27(ν2−1)
t3

L3

γ
Es

1√
2
A
L2

6
√

2I
L4

√
2
3

(3ν−5)

3(ν2−1)
t
L

− 128
√

2
3

27(ν2−1)
t3

L3

Table 5: Stiffness matrix entries of the regular octet lattice

(a) Stiffness (b) Buckling strenght

Figure 14: Regular octet, macroscopic stiffness and microscopic strength

uniformly distributed than those of the BCC.
Figure 15b illustrates the yield surfaces for the regular octet. The lattice

behaves almost isotropically; with respect to yield the regular octet has the
best performance among the cubic lattices investigated in this paper.

4.4. Archimedean polyhedra

Archimedean polyhedra are a group of thirteen semi-regular convex poly-
hedra, whose faces are composed of different polygons. Their edges have
identical vertices and equal length.

Despite of their high degree of symmetry, only a reduced set of Archimedean
solid is able to produce lattices with cubic symmetry. While a group of four
polyhedrons (Figure 16) cannot be tessellated, another group of four (Figure
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(a) Buckling (b) Yielding

Figure 15: Von Mises surfaces of regular octet topology for buckling and
yielding for ρ∗ = 10−2 and εL = 0.01

17) is able to produce lattices, although this latter group is not examined in
this paper because these lattices do not hold cubic symmetry.

(a) Icosidodecahedron (b) Snub Cube (c) Snub Dodecahedron (d) Truncated Tetrahe-
dron

Figure 16: Archimedean not tessellate-able topologies

The four polyhedra able to produce equilibrated lattices are: the Cuboc-
tahedron (CBO), the Great Rombicuboctahedron (GRCO), the Small Rom-
bicuboctahedron (SRCBO), the Truncated Cube (TC) and the Truncated
Octahedron (TO). Table 6 lists the lattice that can be obtained by a regular
tessellation of Archimedean polyhedra. Some polyhedra yield more than one
lattice, depending on the tessellation directions chosen. Table 1 also lists
the packing factor, ν+, of the lattices analysed in this paper. The packing
factor is the ratio between the volume enclosed within the unit cell and the
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(a) Great Rhombicosido-
decahedron

(b) Truncated Dodecahe-
dron

(c) Truncated Icosahe-
dron

(d) Small Rhombicosido-
decahedron

Figure 17: Archimedean not orthogonally symmetric topologies

volume defined by the tessellation vectors. As it can be noted, the Truncated
Octahedron is the only polyhedron capable to tile the space without gaps.
Torquato and Jiao (2009) showed that a unitary packaging factor is possible
also for other arrangements of Archimedean polyhedral; yet, these tessella-
tions do not produce cubic symmetry, and hence are disregarded here. With
reference to the determinacy of the pin-jointed open cell lattices, among the
lattices listed in Table 6, only the Cuboctahedron is statically determinate
and has stretching dominated nature, while the others are bending domi-
nated. The properties of the Archimedean lattices, along with the properties
of the cubic lattices, are discussed in the next section.

5. Discussion

Bar-charts are here presented to contrast the order of magnitude of the
lattice properties and comparatively discuss the lattice performance. The
range of relative density and relative stiffness are plotted in Figures 18a and
18b. Among the cell topologies under investigation, the cubic based topolo-
gies can be denser than their Archimedean counterparts. With reference to
the stiffness, we can observe that the highest stiffness for all the lattices cor-
responds to the hydrostatic macroscopic stress, for which the elements are
mainly axially loaded. In contrast, the lowest stiffness generally corresponds
to the pure shear macroscopic stress, for which the lattice elements are sub-
jected to combined axial and bending loads. It can also be noted that the
bending dominated lattices yield the smallest shear and deviatoric stiffness.
This can be explained by recalling that bending dominated lattices under
deviatoric stress respond essentially with edges and walls bending; therefore
their microstructure is more compliant to these stress states.

The bar-charts in Figure 19 allow the comparison of the buckling and
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(∗) stretching dominated lattices

(a) Relative densities (b) Relative stiffness

Figure 18: Relative densities and relative stiffness

yield strength. In Figure 19b, the buckling resistance was determined from
the load necessary to induce buckling in both the edges and walls of the
lattices. The smallest values of strength are relative to the hydrostatic stress,
for which lattice elements are subject to higher normal loads. We also note
that while the BCC and the octet have a superior buckling resistance, the
latter presents more uniform yield strength for each stress state.

Figure 19b shows the yield strength of the lattices, obtained by assum-
ing an elastic-perfect-plastic model for the solid material, with ε = 0.001.
Stretching dominated lattices have higher strength than those bending dom-
inated. Moreover, since the buckling and yield strength of stretching dom-
inated topologies exhibit ranges which are comparable for different stress
conditions, the strength of a stretching dominated lattice does not depends
on the directions of the applied loads.

Figure 20 shows the charts for the shear eigenvalue. We observe that the
lattice properties cluster into different regions. The stretching dominated
lattices are lighter and stiffer with reduced property ranges, as opposed to
the bending dominated. We also note that the stiffness of stretching domi-
nated lattices scales with the first power of the relative density, as illustrated
by the top and bottom boundaries of the property regions in Figure 20a. In
contrast, with reference to bending dominated lattices, the stiffness of the
open cell configurations, which occupy the lower border of chart 20b, scales
with ρ∗

2
. For closed cell configurations, on the other hand, are located at

the upper boundary; their stiffness scales with the first power of ρ∗, typi-
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(∗) stretching dominated lattices

(a) Buckling strength (b) Yield strength

Figure 19: Lattice strength

cal of a stretching dominated behaviour. Furthermore, bending dominated
lattices with closed cell have stiffness similar to the stretching dominated.
These observations confirm what already noted for the cubic lattice. The
effect of the walls is to induce a stretching dominated behaviour in those
topologies that are bending dominated in the open cell configuration. Figure

(a) Stretching dominated lattices (b) Bending dominated lattices

Figure 20: Lattice stiffness for macroscopic shear stress

21 illustrates the buckling strength for a shear macroscopic stress. In this
case, both the classes of lattices, with either open or closed cells, scale with
the second power of the density. One exception is the open cell cubic lat-
tice, which cannot withstand buckling. Furthermore, although the stretching
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dominated lattices generally possess higher strength, the bending dominated
ones are generally stronger for medium to low ranges of density.

(a) Stretching dominated lattices (b) Bending dominated lattices

Figure 21: Buckling strength for macroscopic shear stress

Figure 22 shows the yield charts for shear stress. As in the charts for stiff-
ness, closed cell lattices always behave as stretching dominated, as opposed
to open cell. With respect to the maximum achievable strength, stretching
dominated lattices are stronger, although the properties overlap at the in-
tersection between the lower bound of the stretching dominated lattices and
the upper bound of the bending dominated ones.

(a) Stretching dominated lattices (b) Bending dominated lattices

Figure 22: Yielding strength for shear macroscopic stress
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In Figure 23, the lattice buckling strength is plotted against the relative
stiffness for shear stress. A distinct separation exists among the two lattice
classes. The stretching dominated can reach higher stiffness and strength,
and map a reduced area of the design space. In contrast, the bending domi-
nated lattices span a larger area with reduced strength and stiffness.

(a) Stretching dominated lattices (b) Bending dominated lattices

Figure 23: Buckling strength vs relative stiffness for macroscopic shear stress

From the above charts, we draw an important remark. Lattices with
bending dominated behaviour in open cell configuration behave as stretching
dominated in closed cell configuration. As shown in more detail for the cubic
lattice, the in-plane stiffness of the walls in closed-cell lattices reduces the
bending load on the edges, and ensures stretching dominated behaviour. We
also note that the highest values of stiffness and strength are reached by
the open cell stretching dominated lattices, while the properties of bending
dominated lattices span over larger ranges. Hence for applications requiring
high compliance, the bending dominated topologies are better suited than the
stretching dominated ones, which are more suitable for applications requiring
high strength and low weight.

It can also be noticed that the property ranges of bending and stretching
dominated lattices are generally distinct and cover complementary regions in
the material charts; they overlap only in limited cases. Some topologies have
a larger span of properties with respect to others; however, none of them can
envelope all.

The multiscale procedure and the charts presented in this paper can be
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used to optimize the macroscopic stiffness of a complex component made of
lattice material and to assess its buckling and yield strength. The method can
be readily automated and integrated with optimization algorithms for opti-
mal material design. The charts, presented in the paper confirm how critical
the choice of a cell topology might be. They are general since the properties
are normalized for a given solid material. When material selection is coupled
to topology selection and lattice geometric parameters optimization, a large
variety of mechanical behaviours can be obtained to satisfy different design
requirements and conflicting objective functions (Vigliotti and Pasini, 2011).

6. Conclusions

A multiscale procedure for the analysis of three-dimensional open and
closed cell lattices has been presented. The procedure allows the macro
and microscale analysis of unit cells with arbitrary topology with both pin
and rigid joints. At the macroscale, the lattice stiffness is determined by
modelling the discrete lattice as a continuous medium. At the microscale, the
stress induced by a macroscopic stress field in each cell element is assessed to
verify the occurrence of yield and buckling failure. Buckling load and modes
have been also determined.

The procedure has been applied to the analysis of four cubic-based lattices
and nine lattices based on Archimedean polyhedra. For open and closed
cell topologies, the influence of edges cross section and wall thickness has
been quantified. The stiffness and strength properties have been plotted on
material charts. While the results found in this paper for the pin-jointed
regular octet and the truncated dodecahedron are consistent to those found
in literature (Zhu et al., 1997; Deshpande et al., 2001b; Wallach and Gibson,
2001; Gong et al., 2005), the properties of the other cell topologies have been
provided here for the first time. The results show that wall in-plane forces
effectively contribute to the stiffness and yield strength of the lattice; hence
if the walls are present, open cell topologies that are bending dominated
behave as stretching dominated.

The study described in this paper is limited to a linear analysis of lat-
tice properties. Geometric non linearities, however, have a considerable im-
pact on the effective behaviour of a lattice, especially for bending dominated
topologies, and they will be the subject of future studies.
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Appendix A. Derivation of the lattice topology matrices

This section describes the derivation of the property matrices of the Body
Centred Cubic topology, which is here selected as a paradigm cell (Figure
A.24) to demonstrate the procedure. The matrices are necessary to find
the expression for the specific strain energy and macroscopic stiffness matrix
of the lattice. The following analysis is general and can be applied to any
arbitrary topology.
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(b) primitive cells

Figure A.24: BCC nodes and edges numbering

To obtain the deformation work, it is necessary to identify the primitive
cell that is used to tessellate the space and generate the lattice. With this
purpose, the duplicated elements that are corresponding along any periodic
direction have to be removed. Figure A.24 shows both the unit cell and
the primitive cell, obtained by removing the edges from 12 to 19. We start
considering the matrices B0 and Ba of equation (7), which expresses, in a
concise form, the DoF of all the nodes of the unit cell as a function of the DoFs
of the independent nodes, and of the change in the periodic vectors. As shown
in Figure A.24, the BCC topology includes only one internal node, node 9,
and eight boundary nodes. According to equation (5), the components of
the displacement of the node 4 can be expressed as

u4 = u1 + ∆a3x

v4 = v1 + ∆a3y

w4 = w1 + ∆a3z

(A.1)

where the components of the displacements are defined in as shown in Figure
3. Introducing the array di = [ui, vi, wi, θxi, θyi, θzi]

T , and collecting all DoFs
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of the node allows to write in compact form

d4 = d1 + It∆a3 with It =

[ 1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

]
(A.2)

We remark that in equation (A.2) we assume that a change in the periodic
vectors directly produces only relative displacements of the boundary nodes,
whereas the rotational DoFs are determined by imposing the periodic equi-
librium conditions.
As it can be verified, the DoFs of all the nodes of the BCC topology can be
expressed as a function of the DoFs of nodes 1 and 9, and of the change in
the periodic vectors as follows

d2 = d1 + It∆a1 d3 = d1 + It∆a2

d4 = d1 + It∆a3 d5 = d1 + It∆a1 + It∆a3

d6 = d1 + It∆a2 + It∆a3 d7 = d1 + It∆a1 + It∆a2

d8 = d1 + It∆a1 + It∆a2 + It∆a3

(A.3)

Introducing the block matrices, we obtain the equation (7), that we rewrite
here as

d = B0d0 + Ba∆a

where the following positions hold

d =


d1
d2
d3
d4
d5
d6
d7
d8
d9

 B0 =


I 0
I 0
I 0
I 0
I 0
I 0
I 0
I 0
0 I

 d0 =
[

d1
d9

]
Ba =


0 0 0
It 0 0
0 It 0t
0 0 It
It 0 It
0 It It
It It 0
It It It
0 0 0

 ∆a =
[

∆a1
∆a2
∆a3

]

(A.4)
d is a block array collecting the DoFs of all the nodes of a unit cell.
B0 expresses the dependencies among the nodes of the unit cell in

relation to the periodic vectors; it has as many row blocks as the number
of nodes of the unit cell and as many column blocks as the numbers of
independent nodes; for each row only one column block is non zero; the
blocks are identity matrices of the size of the number of DoFs for each node.

d0 is an array collecting the DoFs of the independent nodes.
Ba expresses the relative displacement between corresponding bound-

ary nodes of the unit cells, as a function of the change in the periodic vectors;
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it has as many row blocks as the number of nodes of the unit cell; it has also
as many column blocks as the number of independent periodic vectors; the
blocks are signed to take into account negative translations.

∆a is an array collecting the change of the periodic vectors.

We will now consider the expression of the periodic equilibrium condition
and matrix A0, in equation (9). Under the action of a macroscopic stress,
each cell is subjected to the action of the surrounding cells. Due to peri-
odicity, the internal forces in the elements that are corresponding along the
translational vectors must be equal; thus we can express the action of the
surrounding cells in terms of the internal forces of a single primitive cell. The
equilibrium problem of the infinite lattice is finally reduced to the equilibrium
of a single cell.

Let us consider node 2 in the BCC primitive cell (Figure A.24). The
edges connecting at node 2 from the surrounding cells are: (i) edges 1, 2 and
3, through the vector a1, whose internal force sum is the force in node 1; (ii)
edges 3 and 7, through a1 − a3, whose sum of internal force is the force in
node 4; (iii) edges 1 and 6, through a1 − a2, whose sum of internal forces
is the force at node 3; (iv) edge 10, which connects on node 2 through a
translation along the vector −a2, whose internal force is equal to the force
in node 7. Summarizing the periodic equilibrium condition for node 2 is the
following

F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 = 0 (A.5)

It can be easily verified that the same equation is obtained, if the procedure
is applied to all boundary nodes. For node 9, which is internal and only
connect edges of the same cell, the equilibrium condition is simply: F9 = 0.
In general, the periodic equilibrium conditions for the primitive cell can be
expressed as follows: (i) for the internal nodes, the nodal forces must be zero
since the internal nodes connect only elements of the unit cell, and no body
force is applied; (ii) for the boundary nodes, the sum of the nodal forces
of all the nodes that are corresponding along the periodic vectors must be
zero. In matrix form, the periodic equilibrium condition can be expressed by
equation (9), which here reported

A0F = A0Kucd = 0

where A0 is a block matrix assembled as follows. Each block is a square
matrix and its dimension is equal to the number of DoFs of each node. A0

35



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

has as many row blocks as the number of independent nodes in the primitive
cell, and as many column blocks as the total number of nodes of the unit
cell. Each block row corresponds to a single independent node. For each
internal node, all column blocks entries are zero except for an identity block
corresponding to the DoFs of the node; on the other hand for the boundary
nodes, all column blocks corresponding to the DoFs of the nodes belonging
to the same class are identity matrices, the others are zero.
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Table 6: Archimedean topologies

41


