NOTE TO USERS

This reproduction is the best copy available.

UMI'

High throughput study of the translational effect of human single nucleotide polymorphisms

By
Yang Lu

Department of Experimental Medicine McGill University, Montreal

August, 2008

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Master of Science.

Library and Archives Canada	Bibliothèque et Archives Canada Published Heritage
Branch	Direction du Patrimoine de l'édition
	Ottawa ON K1A 0N4 Canada
	395, rue Wellington Ottawa ON K1A ON4
	Canada

Your file Votre réference ISBN: 978-0-494-67031-6 Our file Notre reférence ISBN: 978-0-494-67031-6

NOTICE:
The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique etou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.
Canada' ${ }^{\prime}$

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Table of Contents

1. Abbreviations 1
2. Abstracts 3
2.1 English Version 3
2.2 French Version (Résumé). 4
3. Introduction and Literature Review 5
3.1 The association between genetic variations and complex traits 5
3.2 The Gene Regulators In Disease (GRID) project 6
3.3 Translational control 8
3.4 Genetic variations with translational effects 14
3.5 Objective of this project 18
4. Methods 20
4.1 Subjects 20
4.2 Polysome fractionation 21
4.3 RNA extraction and assessment. 22
4.4 Precise quantification of mRNA in the fractions 23
4.5 Translational imbalance (TI) assay 24
4.5.1 Resequencing 24
4.5.2 Microarray 26
4.6 Data analysis 38
5. Results 40
5.1 Polysome fractionation 40
5.2 The Agilent assay of fraction RNA samples. 41
5.3 Expression profiles of six genes in the fractions. 43
5.4 Oligo-dT assay to quantify fraction poly(A) RNA 45
5.5 The fractionated RNA sample bank 47
5.6 TI assay on the Illumina beadarray 49
5.7 Confirmation of the Illumina results by resequencing 53
6. Discussion 60
6.1 A novel approach to cover an aspect of functional genomics. 60
6.2 The exclusion of non-causative SNPs. 61
6.3 The analysis of the TI mechanism 67
7. Conclusion 71
8. Acknowledgement. 73
9. References 74

Abbreviations

AI, allelic imbalance;
ASOs, allele-specific oligos;
cDNA, complementary DNA;
CEPH, Centre de l'Étude du Polymorphisme Humain;
CPE, cytoplasmic polyadenylation element;
CPSF, cleavage and polyadenylation specificity factor;
DIG, digoxigenin;
DNA, deoxyribonucleic acid;
DTT, dithiothreitol;
EDEN, embryonic deadenylation element;
eIFs, eukaryotic initiation factors;
FBS, Fetal Bovine Serum;
FRP, ferritin repressor protein;
GD, Graves' disease;
gDNA, genomic DNA;
GRID, Gene Regulators in Disease project;
$H B B$, the hemoglobin, beta gene;
IFIH1, the interferon induced with helicase C domain 1 gene;
ILIORA, the interleukin 10 receptor, alpha gene;
IRE, iron-responsive element;
IREBP, IRE-binding protein;
IRES, internal ribosome entry site;
IRF, iron regulatory factor;
IRPs, iron-regulatory proteins;
ITGB1BP1, integrin beta 1 binding protein 1 ;
LCL, lymphoblastoid cell lines;
LD, linkage disequilibrium;
LSOs, locus-specific oligos;
$L T B 4 R$, the including leukotriene B4 receptor gene;

MFE, minimum free energy; miRNA, microRNA;

NAHR, non-allelic homologous recombination;
NHEJ, non-homologous end-joining;
nsSNP, nonsynonymous SNP;
OD, optical density;
PABP, poly(A)-binding protein;
PBS, phosphate buffered saline;
RNA, ribonucleic acid;
SNP, Single-nucleotide polymorphism;
sSNP, synonymous SNP;
T1D, type 1 diabetes;
TAP2, the transporter 2, ATP-binding cassette, sub-family B;
TI, translational imbalance;
uAUGs, upstream AUGs;
UCPAS, upstream core polyadenylation signal sequence;
uORFs, upstream open-reading frames;
VNTR, rariable number of tandem repeats;
WBCs, white blood cells;
X-DC, X-linked dyskeratosis congenital.

1.1 Abstract

Introduction: As a part of the Gene Regulators in Disease project (GRID), this study aims to create a novel high throughput method to discover the genetic effect on gene translation, taking advantage of the rationale that efficiently translated mRNAs associate with multiple ribosomes, while less active ones with fewer or none.

Methods: Lymphoblastoid cell lines (LCLs) from 44 HapMap European individuals were used for polyribosomal fractionation and establishing the sample bank for the future study. The fractionated mRNA samples of 10 out of the 44 individuals were run on an Illumina GoldenGate Beadarray to detect allelic imbalance (developed by the group of T.J. Hudson and T.M. Pastinen).

Results: This study established a high-quality RNA bank, including 1,100 RNA fraction samples. By the Illumina chip, translational imbalance was detected in 75 out of 1483 (5.06\%) assays, and 63 out of 269 (23.4\%) genes. The translational effect was well replicable by the resequencing method.

Conclusion: This study found that genetic effect on gene translation is a common mechanism of expression regulation. Our best hit found in the integrin beta 1 binding protein 1 gene (ITGB1BP1) highlights the role of mRNA 3'UTR secondary structure in gene translation.

Keywords: Gene translation, High throughput genotyping, Human genetics, Polyribosome, RNA, Single nucleotide polymorphism

1.2 Résumé

Introduction: Cette étude qui s'inscrit dans le cadre du projet sur les régulateurs des gènes dans les maladies (GRID) vise à développer une nouvelle méthode de détection à haut débit des effets génétiques sur la traduction des gènes en prenant avantage du fait que lorsque traduits efficacement, les ARNm s'associent à de multiples ribosomes alors que ces associations sont plus rares ou inexistantes lorsque les ARNm sont moins actifs.

Méthodes: Des lignées cellulaires lymphoblastoïdes (LCL) dérivées de 44 individus Européens caractérisés dans HapMap on été utilisées pour le fractionnement des ribosomes. Les échantillons d'ARNm fractionné de dix individus ont été analysés sur la plateforme matricielle GoldenGate Beadarray d'Illumina pour la détection de déséquilibres alléliques (développé par le groupe de T.J. Hudson et T.M. Pastinen).

Résultats: Cette étude a permit d'établir une banque d'ARN de grande qualité, incluant 1100 échantillons d'ARN fractionné. Grâce aux puces d'Illumina, un déséquilibre de traduction a été détecté dans 75 tests sur 1483 (5,06\%) et 63 gènes sur $269(23,4 \%)$. Ces effets sur la traduction ont été confirmés par la méthode de séquençage.

Conclusion: Cette étude a démontré que les effets génétiques sur la traduction sont des mécanismes fréquents dans la régulation de l'expression génique. Notre meilleur candidat, trouvé dans le gène ITGB1BP1, met en lumière le rôle d'une structure secondaire de la région non-traduite en 3' de l'ARNm dans la traduction génique.

3. Introduction and Literature Review

3.1 The association between genetic variations and complex traits

Deoxyribonucleic acid (DNA) is a long chain of nucleotides, and carries the genetic information for unicellular organisms, plants, and animals. There are four types of nucleotides, and each contains one of the four base molecules, i.e. Adenine (A), Cytosine (C), Guanine (G), or Thymine (T). In the human nuclear genome, DNA sequences exist in the form of a double helix DNA structure. Two complementary DNA sequences are connected by hydrogen bonds through A-T pairing or C-G pairing. About 3 billion DNA base pairs (Human Genome Sequencing 2004) are found on 22 pairs of autochromosomes and two sex chromosomes (X and Y) in the human. Human genetic variation is the difference between genomes of individuals. The most common type of DNA variation is single nucleotide polymorphisms (SNPs) due to a change in which one nucleotide is replaced by another in the DNA sequence. SNPs with frequencies $>1 \%$ occur every 100 to 300 bases along the human genome. Besides SNPs, copy number variations (i.e. deletions, inversions, insertions and duplications) from non-allelic homologous recombination (NAHR), non-homologous end-joining (NHEJ), variable number of tandem repeats (VNTR), and retro-transposition, are attracting more and more attention in recent years (Kidd, Cooper et al. 2008).

There is increasing evidence that genetic variations play an important role in the determination of individual susceptibility to complex disease traits (Couzin and

Kaiser 2007; Wellcome Trust Case Control Consortium 2007). Allele-specific effects on gene expression appear relatively common, as determined by several recent studies (Ge, Gurd et al. 2005; Pastinen, Ge et al. 2005; Dixon, Liang et al. 2007; Zhang, Duan et al. 2008). The role of regulatory polymorphisms in determining susceptibility to a number of complex disease traits is supported by multiple reports of robustly replicated associations of phenotypes with DNA variation that does not involve protein sequence change. Direct observation of such effects include, for example, studies in my supervisor's laboratory on type 1 diabetes (T1D) regarding the role of a variation at the VNTR of the INS gene (Vafiadis, Bennett et al. 1997; Barratt, Payne et al. 2004), and a regulatory polymorphism of CTLA4, the gene encoding cytotoxic T lymphocyte antigen (Ueda, Howson et al. 2003; Anjos, Tessier et al. 2004; Anjos, Shao et al. 2005). Therefore, identification of human sequence polymorphisms that regulate gene expression is a key to understanding human genetic diseases (Hudson 2003). SNPs on transcribed sequences have been used as markers to discriminate allele-specific ribonucleic acid (RNA) levels as a powerful approach in screening for regulatory polymorphisms (Ge, Gurd et al. 2005; Pastinen, Ge et al. 2005).

3.2 The Gene Regulators In Disease (GRID) project

The Gene Regulators in Disease project (GRID, http://www.regulatorygenomics.org/index.html) is funded by Genome Canada and Genome Quebec since April 1, 2006. Its objective is the systematic screening of human genetic variations that affect gene expression and the identification of the
cascade of biological steps that modify the genetic risk of common complex diseases. The discoveries of this project will form a solid basis for the development of new diagnostic and therapeutic targets.

SNPs can change a gene's RNA levels through different mechanisms: (1) For a SNP at the gene promoter region, it may abolish the promoter function, thus impair the gene transcription (Menzaghi, Paroni et al. 2006); (2) For a SNP at the gene transcription region, it may change the mRNA secondary structure and mRNA stability (Wang, Johnson et al. 2005); (3) For a nonsense SNP at the gene coding region producing a premature stop codon, a specific mRNA degradation mechanism known as nonsense-mediated decay can result (Richards, Laidlaw et al. 2007). The RNA allelic imbalance (AI, i.e. two alleles have different RNA levels) method developed by Pastinen et al. (Ge, Gurd et al. 2005; Pastinen, Ge et al. 2005) has been successfully used to identify genetic variations that change the gene RNA level.

My supervisor's laboratory has recently demonstrated computational evidence of widespread effects of synonymous polymorphisms in the third codon position (Qu, Lawrence et al. 2006). They found excess of C-->T over G-->A polymorphisms at the fourfold degenerate sites. This finding supports for the importance of polymorphisms affecting RNA function post-transcriptionally. SNPs may change the levels of different mRNA isoforms, resulting from genetic effects on alternative promoters, exon skipping, alternative splicing, intron
retention, or alternative polyadenylation. J. Majewski has used the exon tiling microarray method to analyze the mRNA levels of different isoforms successfully (Kwan, Benovoy et al. 2007; Kwan, Benovoy et al. 2008). Effect of RNA polymorphism on translation, by contrast, has received little attention to date.

3.3 Translational control

The gene translation follows three stages, i.e. initiation, elongation, and termination (Fig.1). (1) Translation initiation is the process of forming 80S initiation complex. It commences with the 40S ribosomal subunit carrying methionine-tRNA binding to the mRNA 5^{\prime} end (the $\mathrm{m}^{7} \mathrm{G}$ cap), with the help of eukaryotic initiation factors (eIFs) and the poly(A)-binding protein (PABP) (Wells, Hillner et al. 1998). Binding of both the 5^{\prime} and the 3^{\prime} end results in RNA circularization. Next, the 40 S subunit scans the mRNA from the 5 ' to the 3^{\prime} direction until it finds the AUG codon in the translation start site. Right then, the 60 S subunit binds to the 40 S subunit, and forms the 80 S initiation complex (Pestova and Hellen 2006). (2) The 80S ribosome has 3 functional binding sites, i.e. the aminoacyl (A) site, the peptidyl (P) site, and the exit (E) site. After the initiation step, the 80 S ribosome begins the repetitive cycles of peptide elongation. In each cycle, an aminoacyl-tRNA enters the A site; a peptide bond forms between the peptidyl-tRNA at the P site and the new amino acid residue, and the tRNA at the P site moves to the E site and then is released; the ribosome moves to the next mRNA codon, and the peptidyl-tRNA moves from the A site to the P site (Spahn, Gomez-Lorenzo et al. 2004). (3) At the termination stage, one of the three
stop codons, UAA, UGA, or UAG, enters the A site, and the complete peptide is released (Merrick 1992). Translational control is complicated and can be regulated at multiple levels during initiation, elongation, and termination, and even after termination. Most well-studied mechanisms of translational control occur in the translation initiation stage (Sonenberg and Hinnebusch 2007).

Fig. 1. The three stages of gene translation, i.e. initiation, elongation, and termination: (1) Translation initiation forms the 80S initiation complex; (2) The 80 S ribosome is responsible for peptide elongation; (3) At the stop codon, the 80S ribosome releases the peptide, and splits to 60 S subunit and 40S subunit.

3.3.1 Recognition of the $\mathrm{m}^{\mathbf{7}} \mathbf{G}$ cap

The initiation of translation requires the help of numerous eIFs. The eIF4E recognizes the $\mathrm{m}^{7} \mathrm{G}$ cap (Pestova and Kolupaeva 2002; Sonenberg 2008). The eIF4G interacts with eIF4E and PABP as the scaffold protein to circularize the
mRNA by bringing the 3^{\prime} UTR in close proximity to the 5 ' end of the mRNA, and to facilitate the binding of the 40S ribosome subunit (Wells, Hillner et al. 1998; Gebauer and Hentze 2004).

3.3.2 The 5'UTR in translational control

After binding with the $\mathrm{m}^{7} \mathrm{G}$, the 40 S subunit scans the mRNA to find the translation start site. Multiple cis-acting factors in the 5^{\prime} UTR region can influence the 40S subunit scanning. Upstream AUGs (uAUGs) and upstream open-reading frames (uORFs) in the mRNA 5'UTR can enable the formation of 80S ribosome, thus reducing the number of 40 S subunit reaching the authentic or main AUG start codons (Wang and Rothnagel 2004). The inhibitory effect of translation by blocking the scanning of the 40S subunit to the downstream coding region depends on the distance between uORF and the downstream coding region, i.e. a shorter distance has stronger inhibitory effect (Vattem and Wek 2004). Nonspecifically, the mRNA 5'UTR secondary structure inhibits the efficiency of the 40S scanning for the translation start site (Lee, Guertin et al. 1983). Specifically, some particular 5'UTR secondary structures can regulate translation by RNAprotein interaction. One example is the iron-responsive element (IRE), a specific translational inhibition element found in the 5'UTR of the ferritin mRNA (Leibold and Guo 1992). IREs have hairpin structure, and can be recognized by iron-regulatory proteins (IRPs), such as IRE-binding protein (IREBP), iron regulatory factor (IRF), or ferritin repressor protein (FRP) (Hentze and Kuhn 1996). The RNA-protein interaction of a $\mathrm{m}^{7} \mathrm{G}$ cap-proximal IRE and IRP control
the mRNA translation efficiency by preventing the 40 S subunit from binding to the $\mathrm{m}^{7} \mathrm{G}$ cap (Muckenthaler, Gray et al. 1998). Also, the trans-acting protein IRPs, e.g. IRF-2, may decrease mRNA stability (Hentze and Kuhn 1996).

The internal ribosome entry site (IRES) is a mRNA 5^{\prime} UTR sequence found in viral RNAs, which can regulate translation by initiating translation independent of $\mathrm{m}^{7} \mathrm{G}$ (Pelletier and Sonenberg 1988). In eukaryotes, the empirical evidence for the existence of IRES is still controversial (Kozak 2003). It is worth noting that, because of the important roles of 5^{\prime} UTR in translational control, mRNA isoforms with different 5 ' UTRs, as the result of alternative promoter, exon skipping, alternative splicing, or intron retention, may have different translational efficiency.

3.3.3 The Kozak sequence

Once the 40S subunit finds the AUG start codon, the 80S ribosome forms and peptide synthesis starts. The translation site around the start codon is also an important factor of translation efficiency. A common sequence of the translation start site is gccRCCAUGG, known as Kozak sequence (Kozak 1991). The A nucleotide of the AUG start codon is referred as position 1, and the preceding C nucleotide is referred as position $-1 . R$ at the position $-3\left(R^{-3}\right)$ represents A or G. The AUG is essential. The G at position $+4\left(\mathrm{G}^{+4}\right)$ and R^{-3} are the most conserved. In vertebrate mRNAs, 46% have G^{+4}, and 97% have R^{-3} (Kozak 1991). The replacement of G^{+4} (Kozak 1997) or R^{-3} (Kozak 1986) with another nucleotide has dramatic impact on translation efficiency. The other positions are less
conserved. The strength of the Kozak consensus sequences ranges from 'strong' to 'weak' and in descending order are $\mathrm{A}^{-3}+\mathrm{G}^{+4}>\mathrm{G}^{-3}+\mathrm{G}^{+4}>\mathrm{A}^{-3}+\mathrm{A}^{+4}>\mathrm{G}^{-3}+\mathrm{A}^{+4}>$ $\mathrm{U}^{-3}+\mathrm{G}^{+4}>\mathrm{U}^{-3}+\mathrm{A}^{+4}$ (Wang and Rothnagel 2004).

3.3.4 The coding sequence in translational control

Little is known about the role of the coding sequence in translational control. A recent study from my supervisor's group observed asymmetrical distribution of synonymous SNPs (sSNPs) on the two DNA strands across the human genome. An excess of C-->T over G-->A polymorphisms was found in non-CpG site fourfold degenerate (FFD) site SNPs but was absent from iSNPs and CpG site FFD SNPs. This finding suggests widespread selective pressure due to functional effects of sSNPs (Qu, Lawrence et al. 2006). An empirical observation suggests that the coding sequence may regulate gene translation through the change of the mRNA secondary structure (Nackley, Shabalina et al. 2006).

3.3.5 The 3'UTR in translational control

Although translation begins at the 5^{\prime} end of the mRNA, the 3^{\prime} UTR plays an important regulatory role that governs the spatial and temporal gene expression (Kuersten and Goodwin 2003; Gebauer and Hentze 2004). The translational control of the 3'UTR is facilitated through mRNA circularization by the interaction of eIF4G and PABP, which brings the 3' UTR in close proximity to the translation initiation site (Prévôt, Darlix et al. 2003). There is a dramatic correlation between the length of poly(A) tail and translational efficiency (the rate
and the amount of protein production), i.e. longer $\operatorname{poly}(\mathrm{A})$ tail corresponds to higher and shorter poly (A) tail to lower translational efficiency (de Moor, Meijer et al. 2005). The 3' UTR contains the functional elements that regulate the length of the poly (A) tail, e.g. the cytoplasmic polyadenylation element (CPE), and the embryonic deadenylation element (EDEN). The CPE consists of UUUUUAU or other similar sequences, and binds with CPE binding protein to promote the extension of the poly(A) tail (Simon, Tassan et al. 1992). The core EDEN sequence consists of a repetition of $U(A / G)$ dinucleotides, and binds to the EDEN-specific RNA-binding protein (EDEN-BP) to mediate embryonic deadenylation of mRNAs (Paillard, Omilli et al. 1998).

The upstream core polyadenylation signal sequence (UCPAS) can modulate the efficiency of gene translation by regulating the formation of the poly-A tail at the mRNA 3 'UTR. UCPAS is located at the 3 ' UTR on the 5 ' side in proximity to the pre-mRNA cleavage site, and has the consensus hexamer sequence AAUAAA (Zhao, Hyman et al. 1999). By binding with cleavage and polyadenylation specificity factor (CPSF), UCPAS controls the cleavage of 3' flanking region of pre-mRNA and the synthesis of Poly(A) tail (Takagaki and Manley 1997). In addition, the 3 ' UTR contains other cis-acting elements that control mRNA stability and localization (Chen, Ferec et al. 2006), and that regulate translation initiation and elongation (Kuersten and Goodwin 2003; de Moor, Meijer et al. 2005). As a research highlight in recent years, microRNAs
(miRNAs) bind to the 3^{\prime} UTR of target mRNAs, and promote mRNA degradation or repress translation initiation (Du and Zamore 2007).

3.4 Genetic variations with translational effects

It is obvious that genetic variation in any of the sequence elements enumerated above could affect translational efficiency. To date, most known genetic variations with translational effects are rare mutations causing Mendelian diseases (Scheper, van der Knaap et al. 2007), which will be introduced in details in the subsequent sections. The role of common DNA variations on gene translation in common complex diseases has received surprisingly little attention, likely because of the lack of appropriate methodology for high-throughput screening at the nucleotide (rather than at the protein) level.

3.4.1 5' UTR variants with known functional effects

The uORF is an important element of cis translational regulation. A $516 \mathrm{G} \rightarrow \mathrm{T}$ mutation at the 5^{\prime} UTR of the thrombopoietin gene (THPO) mRNA truncates a uORF with potent inhibition on the mRNA translation. By the disruption of the inhibition effect, this gain-of-function mutation increase the production of thrombopoietin dramatically. Consequently, the over-expression of THPO increases platelet production, and causes hereditary thrombocythemia (Kikuchi, Tayama et al. 1995; Ghilardi, Wiestner et al. 1999). On the other hand, a loss-offunction mutation producing an upstream AUG or uORF can inhibit the mRNA translation. The case can be seen in the finding of the $\mathrm{G} \rightarrow \mathrm{T}$ mutation at the

5'UTR of the cyclin-dependent kinase inhibitor 2A gene (CDKN2A) mRNA, which produces a strong matched Kozak consensus sequence 34 nt upstream of the wild type translation start site (Liu, Dilworth et al. 1999). The wild type sequence is 5^{\prime}-gcgGAGAGGG-3', and the $\mathrm{G} \rightarrow$ T mutation produces 5^{\prime} 'gcgGAGATGG-3', which strongly matches the Kozak consensus sequence 5'-gccRCCATGG-3'. The $C D K N 2 A$ gene encodes a low-molecular-weight protein p 16 , which is a CDK4 kinase inhibitor (Kamb, Gruis et al. 1994). As a tumor suppressor, p16 can inhibit cell growth by arresting cells at G_{1} phase (Serrano, Hannon et al. 1993). The impaired production of the wild type p16 protein may increase the susceptibility to melanoma (Liu, Dilworth et al. 1999).

The IRE is a 30 nt motif at the 5^{\prime} UTR of the ferritin mRNA, and the 3^{\prime} UTR of transferrin receptor mRNAs. The consensus structure of IRE is a stem loop (Hentze and Kuhn 1996). There is a bulge in the middle of the stem. The 6 nt loop at the end of the stem is highly conserved with the consensus sequence of 5^{\prime} -CAGUGX-3', where X can be any nucleotide except G (Jaffrey, Haile et al. 1993; McCallum and Pardi 2003). Mutations change the stem loop structure of IRE of the ferritin mRNA, and disrupt the interaction of IRE-IRF, which consequently impairs the control of the ferritin translation and causes anomalous expression of ferritin, a genetic syndrome known as hereditary hyperferritinemia-cataract syndrome (Allerson, Cazzola et al. 1999).

Mutations may impair the IRES-dependent translation, e.g. the finding of the mutations of the dyskeratosis congenita 1 , dyskerin gene ($D K C 1$), which cause X linked dyskeratosis congenita (X-DC)(Yoon, Peng et al. 2006). On the other hand, a single nucleotide change may also increase the function of an IRES element, as the finding in the v-myc myelocytomatosis viral oncogene homolog (avian) gene (MYC) (Paulin, Chappell et al. 1998). However, the consensus sequence of IRES is unclear.

Allele-specific alternative splicing can lead to the production of mRNA isoforms with different 5^{\prime} UTR. Because of the importance of the functional elements in the mRNA 5'UTR, these isoforms differing only in their 5'UTR may have different translational efficiency. A typical case can be seen in the THPO gene. The $\mathrm{G} \rightarrow \mathrm{C}$ transversion at position +1 of intron 3 of the THPO gene leads to the production of an mRNA isoform with a shortened 5^{\prime} UTR. The translational inhibitory elements are missing in the isoform with shortened 5^{\prime} UTR. This gain-of-function mutation by splicing effect is also a cause of hereditary thrombocythemia (Wiestner, Schlemper et al. 1998).

3.4.2 The Kozak consensus sequence

Genetic variations in the Kozak sequence have also been reported in the study of human genetic diseases. $A(G \rightarrow C)$ mutation, found in a thalassaemia intermedia family, maps to position -6 of the Kozak sequence of the β-hemoglobin gene, i.e. $5^{\prime}-(\mathrm{G} \rightarrow \mathrm{C})$ ACACCATGG-3' (De Angioletti, Lacerra et al. 2004). Although the
position -6 of the Kozak sequence is not highly conserved, De Angioletti et al. found that the mutation decreased the translational efficiency of the β-globin chain by about 30%. By this slight effect on gene function, the mutation alone is not disease-causing, but can worsen the clinical phenotype of thalassaemia intermedia when it coexists with a thalassaemia mutation (De Angioletti, Lacerra et al. 2004).

A common C/T SNP (NCBI dbSNP ID rs1883832, average heterozygosity=0.344) maps to the position -1 of the Kozak sequence of the CD40 molecule, TNF receptor superfamily member 5 gene (CD40) mRNA. It is a strong matched Kozak sequence, i.e. $5^{\prime}-\mathrm{GC}(\mathrm{C} / \mathrm{T})$ ATGG-3', whereas the SNP is a nonconservative change in the Kozak sequence. Tomer et al. reported that this SNP was associated with Graves' disease (GD) (Tomer, Concepcion et al. 2002). However, the association has not been replicated by later studies (Heward, Simmonds et al. 2004; Hsiao, Tien et al. 2008) and remains controvensial.

3.4.3 The coding region

Genetic variations in the coding region may change the translational efficiency by the effect on mRNA secondary structure. An example is the finding in the COMT gene. COMT encodes the enzyme Catechol-O-Methyltransferase, which modulates pain sensitivity (Mannisto and Kaakkola 1999; Diatchenko, Slade et al. 2005). The haplotypes of three synonymous SNPs, rs4633, rs4818, and rs4680, have different mRNA secondary structures. The C-C-G haplotype has a local
stem-loop mRNA secondary structure which is more stable than the other haplotypes. This stable stem-loop decreases the efficiency of protein expression, and corresponds to the clinical phenotype of high pain sensitivity (Nackley, Shabalina et al. 2006).

3.4.4 The $\mathbf{3}^{\prime}$ UTR

Genetic variations in the UCPAS consensus sequence, the hexamer AAUAAA, may lead to alternative splicing of the pre-mRNA 3' end, and produce alternative mRNA isoforms with different 3' UTR structure and poly(A) tail, therefore different translational properties. By impairing the normal production of the major transcript and the corresponding peptide isoform, variations of the hexamer AAUAAA may cause genetic diseases (Chen, Ferec et al. 2006). The hemoglobin, beta gene ($H B B$) encodes β-globin. Absence of β-globin by mutations in the $H B B$ gene causes β^{0}-thalassemia (Pirastu, Galanello et al. 1987). Reduced amounts of β-globin by mutations in the $H B B$ gene causes β^{+}-thalassemia. A number of studies have found that mutations in the UCPAS consensus sequence can impair the translation of $H B B$, and cause β^{+}-thalassemia (Orkin, Cheng et al. 1985; Rund, Dowling et al. 1992).

3.5 Objective of this project

The studies discussed above highlight the potential translational effect of common DNA polymorphisms in the human genome. Despite the importance of this potential mechanism of genetic translational control, up to now, there is no high
throughput method to investigate the SNPs' effect on gene translation. As part of the GRID project, the objective of our project is the systematic screening of human genetic variations that affect gene expression through effects on translational efficiency using a unique approach. Our hypothesis is a substantial portion of human phenotypic variation may be due to the effects of common polymorphisms on RNA translational efficiency. The method is developed on the basis of the high throughput AI detection developed by Pastinen et al. (Ge, Gurd et al. 2005; Pastinen, Ge et al. 2005). To search for exonic polymorphisms that alter translational efficiency, I took advantage of the fact that efficiently translated RNAs associate with multiple ribosomes, while less active ones with fewer or none. Clusters of ribosomes (polysomes) can be separated from single ribosomes and soluble RNA by ultracentrifugal fractionation according to size. In the presence of translational imbalance (TI, i.e. two alleles have different translational efficiency), the less active allele is associated with fewer ribosomes, thus is lighter in weight and has less sedimentation rate. By ultracentrifuge, the less translated allele will be found in higher abundance in the upper fractions, with reversal of the ratio towards the lower ones.

4. Methods

4.1 Subjects

Human immortalized lymphoblastoid cell lines (LCL) were acquired from the Centre de l'Étude du Polymorphisme Humain (CEPH) CEU. The CEPH CEU samples have been used for the international HapMap project. These LCLs have publicly available genotypes for \sim four millions SNPs up to March 2008 (http://www.hapmap.org/). The CEPH CEU samples are U.S. Utah residents with ancestry from northern and western Europe. All together, 90 individuals from 30 parent-child trios were provided by the Coriell Institute for Medical Research (http://ccr.coriell.org/Sections/Collections/NHGRI/hapmap.aspx?PgId=266\&coll= HG, New Jersey, USA). The cells were cultured using RPMI-1640 containing $15 \% \mathrm{FBS}, 1 \%$ L-glutamine, 1% penicillin and 1% streptomycin, in $37^{\circ} \mathrm{C} 5 \% \mathrm{CO}_{2}$ incubator. The Research Ethics Board of the Montreal Children's Hospital and other participating centers approved the study.

Our study needs to investigate AI or TI on hetezygous SNPs. For a rare SNP, there will be very few or no hetezygous sample. To supplement this limit, our lab has established a LCL bank, consisting of more than 300 individuals from T1D families. These individuals have been genotyped with 550,000 SNPs genomewidely using the Illumina Infinium ${ }^{\text {TM }}$ II HumanHap550 BeadChip technology (Illumina, San Diego CA)(Gunderson, Steemers et al. 2005; Steemers, Chang et al. 2006). I have used these LCLs to map genetic effect of gene expression
(Hakonarson, Grant et al. 2007; Qu, Lu et al. 2007; Qu, Marchand et al. 2007). The immortalization of LCLs from fresh peripheral blood lymphocytes follows the standard EBV transformation protocol with minor revisions (Pattengale, Smith et al. 1973).

4.2 Polysome fractionation

RNA molecules were fractionated on the basis of the number of ribosomes they were associated with, by sedimentation velocity in viscous media (10\% $\sim 50 \%$ sucrose gradients). The larger aggregates of the more actively translated RNA move faster than smaller aggregates, while RNA not associated with ribosomes remains at the top. From each LCL, 1×10^{8} cells were incubated with $100 \mathrm{ug} / \mu \mathrm{l}$ cycloheximide (to stop translation and fix the ribosomes on the mRNAs) for 5 mins at $37^{\circ} \mathrm{C}$, and then were washed with phosphate buffered saline (PBS) containing $100 \mu \mathrm{~g} / \mathrm{ml}$ cycloheximide. Then, cells were collected by centrifugation at $1,000 \mathrm{rpm}$ for 10 min . Cell pellets were lysed with hypotonic polysome lysis buffer [$5 \mathrm{mmol} / \mathrm{L}$ Tris-HCL (pH 7.5), $2.5 \mathrm{mmol} / \mathrm{L} \mathrm{MgCl} 2,1.5 \mathrm{mmol} / \mathrm{L} \mathrm{KCL}$, $100 \mu \mathrm{~g} / \mathrm{mL}$ cycloheximide , $2 \mathrm{mmol} / \mathrm{L}$ dithiothreitol (DTT), 10% Triton X-100, and 10\% sodium deoxycholate], then transferred to a prechilled Eppendorf tube. After 2 min of incubation on ice with occasional vortexing, the extracts were centrifuged for 2 mins at $13,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ to remove cellular debris. The supernatant was directly loaded on a $10 \%-50 \%$ linear sucrose gradient [20 $\mathrm{mmol} / \mathrm{L}$ HEPES-KOH (PH 7.6), $100 \mathrm{mmol} / \mathrm{L} \mathrm{KCl}, 5 \mathrm{mmol} / \mathrm{L} \mathrm{MgCl}_{2}$] and then centrifuged in a Beckman SW41 rotor for 120 minutes at $35,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$. As
stated earlier, mRNA directing enhanced protein synthesis is expected to be more abundant in the larger polysome fractions, whereas mRNA subjected to repressed translation should be more abundant in fractions spanning low-number polysomes, monosomes, and free ribosome subunits. Polyribosomal fractions were collected using the Brandel fraction collector (Gaithersburg, Maryland) with real-time monitoring of UV optical density at 254 nm using an Isco type 11 optical unit connected with a recorder. There were 24 fractions/cell line. This project obtained technical support and protocols from Dr. Nahum Sonenberg's laboratory (Kahvejian, Svitkin et al. 2005), and advice from Dr. Francis Robert.

4.3 RNA extraction and assessment

After the fractions were collected, RNA from each fraction was extracted using standard Trizol (Invitrogen, California) followed by the phenol-chloroform method. RNA was dissolved in $15 \mu \mathrm{l}$ of DEPC $\mathrm{H}_{2} \mathrm{O}$. The total RNA concentration of each fraction was quantified by optical density (OD), and the relative abundance of ribosomal RNA subunits assayed on the Agilent 2100 bioanalyzer with the RNA 6000 Nano LabChip ${ }^{\circledR}$ kit (Agilent Technologies, Santa Clara CA). RT-PCR amplification of multiple genes known to be expressed in LCLs had been done to assess the mRNA distribution in the fractions, including IFIHl (interferon induced with helicase C domain 1), LTB4R (leukotriene B4 receptor), IL10RA (interleukin 10 receptor, alpha), CD40, TAP2 (transporter 2, ATP-binding cassette, sub-family B), and the Cyclophilin housekeeping gene. Except Cyclophilin, the other genes have important immune functions and may be
involved in the pathogenesis of type 1 diabetes. Genetic effects on these genes' expression are the interest of my supervisor's group.

4.4 Precise quantification of mRNA in the fractions

Because of the fractionation procedure, abundance of total mRNA is no longer reflected by the OD measurement, the bulk of which is due to ribosomal RNA. Therefore, the mRNA in each fraction needs to be precisely quantified. To quantify the poly(A) RNA in the polysome fractions, fraction aliquots were slotblotted on a nylon membrane and quantified using an oligo(dT) probe labeled wtih digoxigenin, using the DIG Oligonucleotide 3'-End Labeling Kit (Roche, Indiana). This assay involves the following 5 steps:
a) Labeling the 3^{\prime} end of the nucleotide probe with DIG;
b) Immobilization of target fraction mRNA on a nylon membrane;
c) Prehybridization and hybridization DIG-labeled probe onto the membrane;
d) Binding of anti-DIG antibody conjugates ;
e) The hybridization signal was detected by an enzyme-linked immunoassay with anti-DIG-AP antibody conjugate, and a chemiluminescence reaction;
f) The final concentration of Poly(A) RNA was quantified by the densitometry image analysis (Bio-Rad GS-700 imaging densitometer and Bio-Rad Quantity One 4.2, Bio-Rad, France) against a standard curve of the commercial human pancreas Poly(A) RNA at the standard concentrations.

4.5 Translational imbalance (TI) assay

Two methods were used to measure the relative proportions of each allele of mRNA SNPs: the resequencing method and the Illumina Golden Gate beadarray assay.

4.5.1 Resequencing

Fractionated mRNA samples can be assayed for AI at any transcribed SNP, by RT-PCR and sequencing. However, this is too slow a method for a large-scale genome screen. Therefore, the re-sequencing method was mainly used to study candidate genes and to confirm the beadarray results. To determine the allele levels, heterozygous CEU individuals were selected based on the genotyping data of HapMap. Allelic expression was analyzed by sequencing in both directions. Sequencing was done in parallel for amplified genomic DNA (gDNA) and complementary DNA (cDNA) samples using the 3700 DNA Analyzer (Applied Biosystems, Foster City, CA). To design the PCR/sequencing primers, these steps were followed: (1) Obtain the DNA or RNA reference sequence from the NCBI database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore); (2) Using the SNPmasker 1.0 program (http://bioinfo.ebc.ee/snpmasker/) to mask all SNPs and repeat regions in the given sequences, and to keep from designing primers from these regions (Andreson, Puurand et al. 2006); (3) PCR/sequencing primers for the gDNA and the cDNA were designed by the Primer3 program (http://primer3.sourceforge.net) (Rozen and Skaletsky 2000); (4) Secondary structure analysis of the oligos using the Gene Runner program
(http://www.generunner.net/, Hastings Software). Repeat Step 2-4 until appropriate primers are obtained. The cDNA synthesis was carried out using Superscript II RNase H Reverse Transcriptase (Invitrogen, California). The PCR amplification was done in a 25μ l reaction system using the Taq DNA polymerase kit (Invitrogen, California) on the Gene Amp PCR system 9700 (Applied Biosystems).

Two approaches were used to quantify the allelic ratio: (1) To assess the allelic ratio at the mRNA levels, we used allelic proportions in heterozygous gDNA RT-PCR product to establish 1:1 stoichiometry and to correct for relative expression levels of the two alleles in the unfractionated mRNA samples; (2) To assess the allelic ratio in the polysome fractions, allelic proportions in heterozygous unfractionated mRNA RT-PCR product were used to establish 1:1 stoichiometry and to correct for relative expression levels of the two alleles in the various fractions of the mRNA samples. The software PeakPicker developed by Bing Ge and Tomi Pastinen can quantify the allele ratio by correcting for adjacent peaks (Ge, Gurd et al. 2005). The AI pattern was depicted in Fig.2.

a. unfiactionated mRNA

b. light polysome mRNA

FIG. 2. A typical allelic imbalance (AI) pattern by the re-sequencing method.
The nucleotide letter corresponding to the heterozygous SNP is highlighted in black. With the allelic ratio of unfractionated mRNA (a) as $1: 1$ stoichiometry control, the allelic ratio of fraction mRNA (b) was calculated (in this case, $\mathrm{C}: \mathrm{T}=1$: 4.3).

4.5.2 Microarray

For a much-higher throughput, our fractions were run on the Illumina Golden Gate genotyping array platform (Illumina, San Diego, CA), using a modification allowing relative quantification of the two alleles to detect AI, developed by the group of T.J. Hudson and T.M. Pastinen (Pastinen and Hudson 2004).

4.5.2.1 Samples

Ten unrelated CEPH CEU individuals, i.e. NA07357, NA11992, NA11993, NA12003, NA12043, NA12145, NA12155, NA12156, NA12761, and NA12815, were assayed on an Illumina Golden Gate array. For each individual, 6 samples were run on the array: (1) The genomic DNA; (2) The unfractionated mRNA in duplicate assays; and (3) Four mRNA fractions, corresponding to pre-80S mRNA, light polysome mRNA, medium polysome mRNA, and heavy polysome mRNA, each in triplicate.

4.5.2.2 The Illumina Golden Gate beadarray

(1) The plate design: The Illumina Golden Gate beadarray is a flexible, customized technology. The beadarray assay included 375 SNPs from 272 genes (Table 1). These genes were from the ENCODE regions (http://www.hapmap.org/downloads/encodel.html.en), chromosome 21, and genes with high variance in their expression among individuals (Serre, Gurd et al. 2008). The ENCODE regions had been extensively resequenced for SNP discovery and linkage disequilibrium (LD) mapping. In addition, these genes were known to be transcribed in LCLs by expression microarray assay. There were 371 SNPs from 269 genes which had at least one heterozygote, i.e. informative for the allelic translation assay. For the 371 SNPs, there were 105^{\prime} UTR SNPs, 47 nonsynonymous SNPs (nsSNPs), 79 synonymous SNPs (sSNPs), and 2353^{\prime} UTR SNPs. The chromosome distribution of the 371 SNPs is shown in Fig.3.

FIG. 3. The chromosome distribution of the 371 SNPs assayed for the allelic translation using the Illumina Golden Gate beadarray.

Table 1 The SNPs in the Illumina Golden Gate beadarray for the translational assay

rs	chr	pos	gene	region	HET n*
rs1203651	1	13,981,700	PRDM2	sSNP	2
rs10889205	1	40,478,312	RLF	nsSNP	3
rs12855	1	51,212,680	CDKN2C	3'UTR	4
rs7308	1	51,593,577	EPS15	3'UTR	9
rs17567	1	51,599,508	EPS15	nsSNP	6
rs7374	1	55,088,909	DHCR24	3'UTR	8
rs8535	1	111,587,451	CHI3L2	3'UTR	10
rs1056825	1	111,587,452	CHI3L2	3'UTR	12
rs1056831	1	111,587,534	CHI3L2	3'UTR	9
rs6573	1	112,056,911	RAP1A	3'UTR	2
rs14804	1	115,051,365	NRAS	3'UTR	3
rs878471	1	148,814,370	MCL1	3'UTR	7
rs11552229	1	149,050,608	ARNT	3'UTR	6
rs2228099	1	149,075,512	ARNT	sSNP	7
rs8401	1	151,800,521	S100A2	3'UTR	2
rs3753565	1	184,583,110	TPR	nsSNP	5
rs4245739	1	202,785,464	MDM4	3'UTR	4
rs4252745	1	202,785,809	MDM4	3'UTR	3
rs11240353	1	203,322,923	RBBP5	3'UTR	4
rs3024496	1	205,008,486	IL10	3'UTR	5
rs873	1	234,207,361	NID	3'UTR	4
rs10593	2	9,463,480	ITGB1BP1	3'UTR	3
rs4798	2	9,464,255	ITGB1BP1	3'UTR	3
rs1049500	2	10,498,417	ODC1	sSNP	2
rs 162549	2	38,148,959	CYP1B1	3'UTR	7
rs2855658	2	38,150,393	CYP1B1	3'UTR	6
rs1800935	2	47,876,618	MSH6	sSNP	3
rs848291	2	58,242,199	FANCL	sSNP	5
rs2271627(rs6886)	2	85,475,569	CAPG	nsSNP	3
rs3731828	2	85,659,776	VAMP8	sSNP	9
rs1058588	2	85,662,381	VAMP8	3'UTR	10
rs1010	2	85,662,492	VAMP8	3'UTR	9
rs1304037	2	113,248,706	IL1A	3'UTR	6
rs 17561	2	113,253,693	IL1A	nsSNP	5
rs1071676	2	113,303,903	ILIB	3'UTR	6
rs4556933	2	158,152,134	ACVR1C	sSNP	5
rs2066459	2	190,416,956	PMS1	nsSNP	1
rs7224	2	201,426,154	CLK1	3'UTR	2
rs1061157	2	203,129,443	BMPR2	sSNP	3
rs1048829	2	203,138,700	BMPR2	3'UTR	4
rs3731696	2	203,140,048	BMPR2	3'UTR	4
rs2229571	2	215,353,708	BARD1	nsSNP	5
rs2070096	2	215,353,789	BARD1	sSNP	6
rs207906	2	216,721,145	XRCC5	sSNP	3
rs1051677	2	216,778,492	XRCC5	3'UTR	2
rs1051685	2	216,778,620	XRCC5	3'UTR	6

Continuation of Table 1

rs7626117	3	10,115,670	FANCD2	3'UTR	2
rs 1642742	3	10,166,942	$V H L$	3'UTR	4
rs1051208	3	12,600,746	RAF1	3'UTR	2
rs2470352	3	14,161,830	$X P C$	3'UTR	6
rs2228000	3	14,174,888	$X P C$	nsSNP	5
rs 1046048	3	38,499,745	$A C V R 2 B$	SSNP	5
rs2953	3	41,256,391	CTNNB1	3'UTR	8
rs3448	3	49,371,754	RHOA	3'UTR	9
rs1061474	3	50,119,954	RBM5	sSNP	5
rs 1043261	3	53,874,315	ILI7RB	nsSNP	4
rs3774729	3	63,957,121	ATXN7	nsSNP	4
rs6441516	3	101,949,707	$T F G$	sSNP	8
rs7297	3	101,950,365	$T F G$	3'UTR	9
rs2305035	3	106,921,715	CBLB	sSNP	5
rs2681417	3	123,307,886	CD86	nsSNP	2
rs1129055	3	123,321,008	CD86	nsSNP	7
rs1131274	3	135,359,104	RYK	3'UTR	5
rs2227928	3	143,764,301	ATR	nsSNP	4
rs3182285	3	150,231,069	SMARCA3	3'UTR	5
rs2290725	3	150,242,014	SMARCA3	sSNP	5
rs568408	3	161,196,160	IL12A	3'UTR	2
rs3772172	3	171,560,406	SKIL	5'UTR	5
rs 1131542 rs 1131535	3	173,706,619	TNFSF10	3'UTR	3
rs 1131535 rs 1131532	3	173,706,768	TNFSF10	3'UTR	7
rs 1131532 rs11919795	3	173,706,996	TNFSF10	sSNP	3
rs11919795 rs6141	3	185,373,561	DVL3	3'UTR	6
rs6141 rs1047148	3	185,572,959	THPO	3'UTR	5
rs1047148	3	187,990,450	RFC4	3'UTR	8
rs406271 rs17788379	3	197,261,372	TFRC	3'UTR	7
rs17788379 rs2245466	3	197,261,607	TFRC	3'UTR	2
rs2245466 rs2305948	4	39,875,240	RHOH	5'UTR	4
rs2305948 rs1042040	4	55,674,314	KDR	nsSNP	4
rs1042040 rs3733326	4	56,955,054	$P P A T$	3'UTR	6
rs3733326 rs4150052	4	56,955,990	PPAT	3'UTR	3
rs4150052 rs958	4	78,298,795	CCNG2	sSNP	1
rs958 rs10965	4	87,156,897	MAPK10	3'UTR	6
rs10965	4	89,217,106	PKD2	3'UTR	5
rs3747676	4 4	110,829,534	CASP6	3'UTR	. 9
rs 1049216	4	124,037,523	FGF2	3'UTR	5
rs702689	4	185,787,082	CASP3	3'UTR	6
rs832582	5	56,213,199	MAP3K1	nsSNP	9
rs832583	5	56,213,499	MAP3K1	nsSNP	6
rs3730089	5	66,213,973	MAP3K1 PIK 3 l	sSNP	6
rs300239	5	73,966,506	ENC1	nsSNP sSNP	6
rs 1805355	5	80,001,784	MSH3	sSNP	2
rs 184967	5	80,185,736	MSH3	nsSNP	8
rs 1056503	5	82,684,732	XRCC4	sSNP	2
rs2229085	5	108,161,865	$F E R$	sSNP	3
rs2229992	5	112,190,752	$A P C$	sSNP	6

rs397768	5	112,209,474	APC	3'UTR	5
rs3317	5	112,240,049	C5orf18	3'UTR	12
rs2545166	5	112,241,703	C5orf18	3'UTR	7
rs1549181	5	112,390,738	MCC	3'UTR	4
rs1051643	5	126,199,897	$L M N B 1$	3'UTR	5
rs1059110	5	138,294,444	CTNNAI	SSNP	4
rs1059829	5	151,022,221	SPARC	3'UTR	10
rsl059279	5	151,022,371	$S P A R C$	3'UTR	4
rs 1054204	5	151,022,742	$S P A R C$	3'UTR	7
rs299290	5	162,835,093	HMMR	nsSNP	1
rs17759	5	177,570,487	$H N R P A B$	3'UTR	11
rs9605	5	179,595,856	MAPK9	3'UTR	11
rs1013062	6	18,345,639	DEK	SSNP	7
rs1045537	6	26,204,726	HFE	3'UTR	5
rs2857713(rs2229094)	6	31,648,534	LTA	nsSNP	4
rs805256(rs14365)	6	31,743,688	CSNK2B	sSNP	4
rs522162	6	32,027,895	$R D B P$	3'UTR	
rs760070	6	32,027,934	$R D B P$	3'UTR	1
rs8084	6	32,519,012	HLA-DRA	SSNP	10
rs7194	6	32,520,457	HLA-DRA	3'UTR	11
rsl6871435	6	32,735,729	$H L A-D Q B 1$	3'UTR	3
rs9273960(rs1049133)	6	32,737,824	$H L A-D Q B 1$	sSNP	7
rsl1244	6	32,888,701	$H L A-D O B$	3'UTR	10
rs2070121	6	32,889,531	$H L A-D O B$	nsSNP	1
rs8807	6	33,140,828	HLA-DPA1	3'UTR	6
rs7905	6	33,140,952	HLA-DPA1	3'UTR	2
rs9277534	6	33,162,784	HLA-DPB1	3'UTR	3
rs9277535	6	33,162,838	HLA-DPB1	3'UTR	5
rs210135(rs210135)	6	33,648,670	BAK1	3'UTR	2
rs8510	6	36,186,157	MAPK14	3'UTR	2
rs3025039	6	43,860,513	$V E G F$	3'UTR	5
rs4712138	6	56,571,368	DST	nsSNP	4
rs2172710	6	91,282,457	MAP3K7	3'UTR	2
rs2235481	6	146,098,540	EPM2A	5'UTR	7
rs220721	6	160,248,609	MAS1	sSNP	4
rs998075	6	160,388,267	$I G F 2 R$	sSNP	7
rs 1040	6	169,358,271	THBS 2	3'UTR	4
rs8770	6	170,728,455	PDCD2	3'UTR	13
rs1805321	7	5,993,513	$P M S 2$	nsSNP	0
rs2066853	7	17,345,634	$A H R$	nsSNP	1
rs10259620	7	27,168,813	HOXA9	3'UTR	3
rs3735135	7	39,994,008	CDC2L5	nsSNP	2
rs10228436	7	55,205,761	EGFR	3'UTR	3
rs9530	7	65,063,328	$G U S B$	nsSNP	13
rs1202283	7	86,920,227	$A B C B 4$	sSNP	5
rs3750105	7	94,132,617	PEG10	3'UTR	2
rs13073	7	94,134,704	PEG10	3'UTR	5
rs7810469	7	94,135,749	PEG10	3'UTR	1
rs6706	7	100,308,979	TRIP6	3'UTR	6
rs4710	7	115,684,627	TES	sSNP	4

Continuation of Table 1

rs2896181	7	115,685,119	TES	3'UTR	4
rs8713	7	115,987,032	CAV1	3'UTR	3
rs1049334	7	115,987,615	CAV1	3'UTR	5
rs6867	7	115,987,758	CAVI	3'UTR	3
rs1061285	7	128,640,543	SMO	3'UTR	7
rs4731575	7	128,855,382	KIAA0828	3'UTR	8
rs 1665105	7	128,856,213	KIAA0828	3'UTR	2
rs2250788	8	11,389,464	BLK	5'UTR	4
rs1044011	8	12,986,079	DLC1	3'UTR	3
rs1047275	8	22,936,106	TNFRSF10B	3'UTR	5
rs3182143	8	29,263,763	DUSP4	5'UTR	4
rs1800392	8	31,093,498	WRN	sSNP	5
rs 1346044	8	31,144,195	$W R N$	nsSNP	5
rs10503929	8	32,733,524	NRG1	nsSNP	5
rs1043782	8	38,187,480	$B A G 4$	3'UTR	8
rs3242	8	41,238,710	SFRP 1	3'UTR	3
rs1061302	8	91,027,597	NBS 1	sSNP	12
rs1063045	8	91,064,194	NBS 1	5'UTR	6
rs3812471	8	125,567,727	RNF139	sSNP	5
rs7460	8	141,738,041	PTK2	3'UTR	7
rs2294008	8	143,758,932	PSCA	3'UTR	8
rs9071	8	145,721,313	LRRC14	3'UTR	12
rs2230724	9	5,071,779	$J A K 2$	sSNP	3
rs7048717(rs2230724)	9	5,071,779	$J A K 2$	sSNP	3
rs3088440	9	21,958,158	CDKN2A	3'UTR	3
rsl1515	9	21,958,198	CDKN2A	3'UTR	5
rs4142496(rs5812)	9	35,792,582	NPR2	sSNP	5
rs 17062695	9	71,030,837	TJP2	sSNP	2
rs3812536	9	71,059,292	TJP2	3'UTR	9
rs $16909910(\mathrm{rs} 1805155$)	9	97,278,199	PTCH	sSNP	5
rs4978877	9	111,970,683	AKAP2	3'UTR	1
rs11681	9	111,972,149	$\begin{aligned} & \text { PALM2- } \\ & \text { AKAP2 } \end{aligned}$	3'UTR	2
rs8083	9	129,591,999	CDK9	3'UTR	5
rs 1056209	9	132,752,410	ABL1	3'UTR	2
rsl1254401	10	17,228,823	DNMT2	3'UTR	1
rs3817405	10	20,546,423	PLXDC2	nsSNP	4
rs 1042058	10	30,768,106	MAP3K8	sSNP	7
rs1131510	10	35,339,090	CUL2	3'UTR	3
rs 1871446	10	62,223,768	CDC2	3'UTR	3
rs 1468063	10	90,765,270	$F A S$	3'UTR	6
rs 14401	10	112,035,160	MXII	3'UTR	7
rs 17658	10	112,036,139	MXII	3'UTR	10
rs2459216	10	126,076,315	OAT	3'UTR	1
rs8839	11	1,730,711	$C T S D$	3'UTR	2
rs8234	11	2,826,683	KCNQ1	3'UTR	4
rs10798	11	2,826,740	KCNQ1	3'UTR	7
rs2239731	11	6,933,563	ZNF215	sSNP	6
rs 1042359	11	8,202,756	LMO1	sSNP	5
rs 1049403	11	9,567,380	WEE 1	3'UTR	2

Continuation of Table 1

rs4447177	11	22,602,600	FANCF	3'UTR	1
rs7357	11	33,686,836	CD59	3'UTR	6
rs842	11	33,687,981	CD59	3'UTR	3
rs8193	11	35,207,893	CD44	3'UTR	5
rs13347	11	35,209,847	CD44	3'UTR	3
rs1061810	11	43,834,509	HSD17B12	3'UTR	2
rs1057233	11	47,333,023	SPII	3'UTR	4
rs4246215	11	61,320,874	FEN1	3'UTR	6
rs947894(rs1695)	11	67,109,264	GSTP1	nsSNP	11
rs4891	11	67,110,545	GSTP 1	sSNP	12
rs14983	11	101,896,634	MMP7	3'UTR	2
rs4445669	11	114,550,446	IGSF4	3'UTR	8
rs488219	11	118,125,906	DDX6	3'UTR	8
rs487728	11	118,126,704	DDX6	3'UTR	10
rs1047417	11	118,677,745	$C B L$	3'UTR	5
rs11217234	11	118,683,147	$C B L$	3'UTR	5
rs506504	11	125,030,404	CHEK1	nsSNP	3
rs8705	11	127,834,122	ETS1	3'UTR	11
rs4937333	11	127,835,729	ETS1	3'UTR	12
rs4980809	12	276,552	JARID1A	sSNP	8
rs7310449	12	892,375	RAD52	3'UTR	5
rs7301931	12	892,444	RAD52	3'UTR	5
rs3217926	12	4,281,943	CCND2	3'UTR	3
rs1049612	12	4,283,022	CCND 2	3'UTR	3
rs3217933	12	4,283,260	CCND2	3'UTR	6
rs2302371	12	6,728,386	MLF2	sSNP	2
rs2301262	12	6,926,120	PTPN6	5'UTR	4
rs1058028	12	11,935,461	ETV6	3'UTR	6
rs7330	12	12,766,183	CDKN1B	3'UTR	12
rs921	12	14,986,428	ARHGDIB	3'UTR	4
rs4703	12	14,986,824	ARHGDIB	sSNP	4
rs8664	12	15,664,687	EPS8	3'UTR	4
rs 12587	12	25,250,094	$K R A S$	3'UTR	6
rs 13096	12	25,251,107	$K R A S$	3'UTR	5
rs9266	12	25,253,483	$K R A S$	3'UTR	8
rs1137282	12	25,254,043	$K R A S$	3'UTR	4
rs2230375	12	26,624,328	ITPR2	sSNP	5
rs2291264	12	26,702,043	ITPR2	sSNP	3
rs 1900941	12	26,759,588	ITPR2	sSNP	6
rs4251545	12	42,466,561	IRAK4	nsSNP	2
rs11183605	12	45,445,234	SLC38A4	3'UTR	3
rs769412	12	67,519,481	MDM2	sSNP	4
rs4135113	12	102,900,822	$T D G$	nsSNP	0
rs14035	12	129,927,193	$R A N$	3'UTR	7
rs546782	13	21,173,945	$F G F 9$	3'UTR	3
rs144848	13	31,804,728	BRCA2	nsSNP	5
rs 1801406	13	31,809,887	BRCA2	sSNP	4
rs1047775	13	42,579,426	DNAJD1	3'UTR	3
rs5351	13	77,373,313	EDNRB	sSNP	8
rs2389910	13	96,915,164	$R A P 2 A$	3'UTR	9

Continuation of Table 1

rs12873919	13	96,917,524	RAP2A	3'UTR	14
rs17655	13	102,326,002	ERCC5	nsSNP	6
rs10131	13	107,657,846	LIG4	3'UTR	3
rs2289047	13	109,205,815	IRS2	3'UTR	6
rs2289046	13	109,205,906	IRS2	3'UTR	4
rs 1061386	13	110,171,368	ING1	3'UTR	6
rs 1803479	14	22,103,829	DAD1	3'UTR	2
rs4981429(rs7621)	14	22,113,841	DAD1	3'UTR	5
rs1051101	14	22,127,923	DAD1	5 'UTR	3
rs11569620	14	34,940,706	NFKBIA	3'UTR	2
rs10782383(rs1050851)	14	34,942,676	NFKBIA	sSNP	1
rs1957106	14	34,943,520	NFKBIA	sSNP	5
rs1051861	14	57,908,453	ARID4A	sSNP	8
rs 11549465	14	61,277,309	HIF1A	nsSNP	3
rs1131877	14	102,411,801	TRAF3	nsSNP	3
rs705	15	22,770,604	SNRPN	5'UTR	9
rs743581	15	72,115,193	PML	3'UTR	7
rs9479	15	72,115,628	PML	3'UTR	14
rs3129	15	77,001,269	CTSH	3'UTR	6
rs3826007	15	78,050,271	BCL2A1	nsSNP	3
rs859	15	79,388,376	IL16	3'UTR	9
rs1131445	15	79,388,836	IL16	3'UTR	11
rs17273563(rs2227933)	15	89,138,482	BLM	sSNP	6
rs17274095(rs2227934)	15	89,147,926	$B L M$	sSNP	6
rs 1063147	15	89,155,508	BLM	sSNP	7
rs4777755	15	91,311,606	CHD2	sSNP	1
rs2272457	15	91,337,200	CHD2	sSNP	5
rs1048326	15	99,427,167	LRRK1	3'UTR	4
rs393521	16	277,678	AXIN1	3'UTR	3
rs1051771	16	2,078,584	TSC2	sSNP	1
rs1054028	16	22,834,714	HS3ST2	3'UTR	3
rs7593	16	24,490,906	RBBP6	sSNP	6
rs3135500	16	49,324,386	CARD15	3'UTR	6
rs2066852	16	49,385,018	$C Y L D$	sSNP	1
rs 10748	16	52,062,221	RBL2	sSNP	7
rs3929	16	52,081,808	RBL2	3'UTR	6
rs28216	16	63,579,614	CDH11	sSNP	5
rs1800566	16	68,302,645	NQO1	nsSNP	4
rs2239359	16	88,376,980	FANCA	nsSNP	6
rs 12727	17	1,747,814	RPA1	3'UTR	4
rs2270121	17	9,757,395	GAS7	3'UTR	6
rs 1047365	17	9,759,694	GAS7	3'UTR	7
rs4792219	17	11,986,629	MAP2K4	3'UTR	9
rs 1801052	17	26,532,900	NF1	sSNP	4
rs2285892	17	26,577,610	NF1	sSNP	0
rs7505	17	26,668,977	EVI2A	3'UTR	8
rs13695	17	35,798,718	TOP2A	3'UTR	8
rs3198502	17	37,716,519	STAT5A	3'UTR	5
rs 1053004	17	37,719,617	STAT3	3'UTR	8
rs1799966	17	38,476,619	BRCAI	nsSNP	5

Continuation of Table 1

rs16942	17	38,497,525	BRCA1	nsSNP	5
rs799917	17	38,498,461	BRCA1	nsSNP	5
rs16940	17	38,498,762	BRCA1	sSNP	5
rs1049620	17	44,836,512	PHB	3'UTR	4
rs1061237	17	45,617,773	COL1AI	3'UTR	5
rs4626	17	46,295,420	TOBI	sSNP	3
rs3088093	17	59,560,169	ERNI	3'UTR	2
rs8905	17	64,039,396	PRKAR1A	3'UTR	1
rs6958	17	64,040,372	PRKAR1A	3'UTR	6
rs9367	17	71,265,255	ITGB4	3'UTR	3
rs2239680	17	73,731,377	BIRC5	3'UTR	4
rs1042489	17	73,731,800	BIRC5	3'UTR	2
rs699517	18	663,015	TYMS	3'UTR	7
rs2790	18	663,085	TYMS	3'UTR	8
rs1061035	18	712,117	YES 1	3'UTR	2
rs1060922	18	712,401	YES 1	3'UTR	6
rs677688	18	20,274,540	IMPACT	nsSNP	1
rs1053474	18	20,287,258	$I M P A C T$	3'UTR	8
rs 10470	18	46,860,013	SMAD4	3'UTR	2
rs2229082(rs2229082)	18	49,190,992	$D C C$	sSNP	7
rs7614	18	49,935,241	MBD2	3'UTR	11
rs6567211(rs8766)	18	51,046,528	TCF4	sSNP	8
rs8766	18	51,046,528	TCF4	sSNP	9
rs1059442	18	54,567,672	MALT1	3'UTR	5
rs4987853	18	58,944,634	BCL2	3'UTR	6
rs4987852	18	58,944,900	$B C L 2$	3'UTR	1
rs1564483	18	58,945,633	$B C L 2$	3'UTR	3
rs6810	18	59,149,380	FVT1	3'UTR	10
rs2288288	18	59,705,945	SERPINB2	5'UTR	1
rs6104	18	59,721,508	SERPINB2	nsSNP	3
rs8259	19	533,926	$B S G$	3'UTR	3
rs3752174	19	2,465,564	GNG7	3'UTR	3
rs1053395	19	6,445,370	TUBB4	3'UTR	4
rs3093032	19	10,257,335	ICAM1	3'UTR	2
rs7935	19	10,966,607	SMARCA4	SSNP	7
rs2482	19	14,591,108	EMR3	3'UTR	1
rs16982300(rs9413)	19	18,251,867	JUND	3'UTR	2
rs6554	19	18,546,963	UBA52	3'UTR	10
rs1406	19	35,006,951	CCNE1	3'UTR	11
rs2070132	19	41,419,204	ZNF146	nsSNP	4
rs4806293	19	41,420,129	ZNF146	3'UTR	6
rs3547	19	48,739,389	XRCC1	sSNP	10
rs7026	19	50,016,355	$L U$	3'UTR	3
rs1052559(rs13181)	19	50,546,758	ERCC2	nsSNP	6
rs13181	19	50,546,758	ERCC2	nsSNP	6
rs1049698	19	50,668,597	$F O S B$	3'UTR	3
rs1049739	19	50,670,214	$F O S B$	3'UTR	5
rs4645900	19	54,156,174	$B A X$	3'UTR	2
rs 704243	19	54,156,782	$B A X$	3'UTR	1
rs 10413435	19	57,420,841	PPP2R1A	sSNP	4

Continuation of Table 1

rs16997057(rs3197744)	20	1,866,486	PTPNSI	3'UTR	5
rs8156	20	3,734,636	CDC25B	3'UTR	2
rs7828	20	10,567,013	JAG1	3'UTR	2
rs6061216	20	30,245,773	PLAGL2	3'UTR	5
rs2424932	20	30,860,196	DNMT3B	3'UTR	3
rs2076546	20	45,701,899	NCOA3	sSNP	2
rs7121	20	56,912,201	GNAS	3'UTR	2
rs3730171	20	56,917,635	GNAS	3'UTR	1
rs1059293	21	33,731,562	IFNGR2	3'UTR	6
rs3165	21	37,517,781	DSCR3	3'UTR	2
rs1051420	21	39,117,333	ETS2	3'UTR	3
rs9975285(rs2230688)	21	45,720,739	COL18A1	sSNP	0
rs1548410	22	19,634,462	CRKL	3'UTR	3
rs1043242	22	19,636,742	CRKL	3'UTR	5
rs 180817	22	21,988,006	BCR	3'UTR	6
rs5030612(rs2229354)	22	22,497,512	SMARCB1	sSNP	4
rs1049583	22	30,682,790	YWHAH	3'UTR	4
rs763121	22	37,209,885	DDXI7	3'UTR	3
rs86796	22	37,211,399	DDX17	3'UTR	4
rs5750609	22	37,214,720	DDXI7	3'UTR	1
rs2272857	22	49,041,794	MAPKI2	sSNP	4
rs1057403	X	100,491,336	BTK	3'UTR	5
rs700	X	100,491,412	BTK	3'UTR	6
rs5956583	X	122,862,191	BIRC4	nsSNP	4
rs9856	X	122,873,321	BIRC4	3'UTR	6
rs8371	X	122,873,595	BIRC4	3'UTR	2
rs5958343	X	122,873,952	BIRC4	3'UTR	4
rs1059701	X	152,937,676	IRAK1	sSNP	1
rs12877	X	153,283,448	DNASE1L1	3'UTR	4
rs11887	X	154,120,650	VBP1	3'UTR	4

[^0](2) The Illumina Golden Gate assay: For the RNA samples to be run on the Illumina assay, all the unfractionated and fractionated RNA samples were standardized based on the poly(A) RNA quantification, to their equivalent in total RNA. Exactly 250 ng of $50 \mathrm{ng} / \mu \mathrm{g}$ gNA or equivalent amount of cDNA was activated for binding to paramagnetic particles, and immobilized on a solid support. Consequently, two allele-specific oligos (ASOs) and a locus-specific oligo (LSO) were hybridized to the template gDNA or cDNA. Following hybridization, several wash steps were performed to reduce noise and to remove excess and mis-hybridized probes. Because of the immobilization of the DNA templates, extra washing was permitted. The two ASOs and the LSO carried common complementary sequences for universal primers, which allowed universal PCR amplification. The two ASOs carried the complementary sequences for the universal primers P1 and P2 respectively. The LSO carried the complementary sequences for the universal primer P3. After hybridization and clean-up, the appropriate ASO was extended and ligated to the LSO, and formed the templates for the following universal PCR. During the PCR reaction, the universal primers P1 and P2 introduced two different dyes into the PCR products. The PCR products were hybridized to complementary beads according to the unique address sequences carried by the LSOs. The fluorescence signals introduced by the universal primers P1 or P2 were analyzed by the BeadArray Reader, and the allele ratio were called on the heterozygotes (http://www.Illumina.com/pages.ilmn?ID=11) (Fan, Chee et al. 2006).

4.6 Data analysis

As described in the resequencing method, we adapted two approaches to quantify the allelic ratio. To quantify the allelic ratio in the unfractionated mRNA, we used allelic proportions in heterozygous gDNA as $1: 1$ control; to quantify the allelic ratio in the polysome fractions, we used allelic proportions in heterozygous unfractionated mRNA as 1:1 control. Compared with allelic ratios in unfractionated mRNA, SNPs showing different AI pattern in the fractions were considered as an indication of cis translational effects of variants contained in the gene transcript.

To assess the translational effect, I used this scoring system: (1) Statistical significance between the two light fractions (pre-80S and light polysome) and the two heavy fractions (medium polysome and heavy polysome) at $=0.05$ by the Student's t test of the average of three replicates for each fraction; (2) Biologically meaningful difference between the two light fractions and the two heavy fractions, i.e. the difference of the allele proportion was more than 0.10 , which is an empirical cutoff to judge AI generally used in our study; (3) Progressive change of allele proportions from pre-80S to heavy polysome, i.e. the correlation coefficient r between the allele ratio and the fraction points was more than 0.90 ; (4) Biologically meaningful difference of allele proportions from pre-80S to heavy polysome, i.e. the slope of the line was more than 0.05 by the regression analysis, which is set up according to the empirical AI threshold. Each of the four criteria was given one point with the total score of 4 . If the accumulated score was
≥ 3, the CEPH individual would be taken as showing a possible translational effect at this genetic locus. Concordant results from different SNPs in the same gene were further evidence for TI .

5. Results

5.1 Polysome fractionation

Forty LCL lines from the samples of European individuals used for the HapMap project have been fractionated. The realtime OD monitoring profile is shown in Fig.4.

Fig.4. Realtime OD detection of the 24 polysome fractions. Fractions were monitored using an ISCO UA-6 UV detector. The positions of 80S ribosomes, light polysomes, and heavy polysomes, in the gradients are labeled. X-axis: the fraction number (from Fraction 1 to Fraction 24); Y-axis: the UV absorbance. Increases in polysome size by a single ribosome are indicated by secondary peaks in the up-slope of the broad polysome peak.

5.2 The Agilent assay of fraction RNA samples

The Agilent Lab-on-a-Chip assay verifies the amount of the 18 S and 28 S peaks by electrophoresis on a chip. Applied to my fractions (Fig.5) it shows that there is neither 18S nor 28S in Fraction1-6 (pre-40S RNA), which is exactly concordant with our realtime OD detection, which suggests these fractions contain mainly free proteins and RNA. From Fraction 7, we begin to see 18S RNA. From Fraction $7-10$, there is only 18 S , which is corresponding to the 40 S realtime OD monitoring profile. From Fraction 11, we begin to see 28 S peaks. The ratio of $28 \mathrm{~S} / 18 \mathrm{~S}$ increases with fraction numbers. From Fraction 18 , the ratio of $28 \mathrm{~S} / 18 \mathrm{~S}$ begins to be >2, and increases until the last fraction, in a pattern perfectly concordant with the theoretically expected distribution of the subunits.

Fig.5. The Agilent assay of fraction RNA. From top to down, the five panels are the assays of unfractionated RNA, pre-40S RNA, light polysome RNA, medium polysome RNA, and heavy polysome RNA. From left to right, three sharp peaks seen in the panels correspond to $5 \mathrm{~S}, 18 \mathrm{~S}$, and 28 S respectively.

5.3 Expression profiles of six genes in the fractions

In order to determine the optimal fractions to sample for TI measurements, we studied six genes (IFIH1, LTB4R, IL10RA, CD40, TAP2, and the Cyclophilin housekeeping gene) with widely different expression levels in LCLs. Except Cyclophilin, these genes have important immune functions and may be involved in the pathogenesis of type 1 diabetes. Shown by the gene expression profiles, no gene transcript can be amplified in fractionl-2. In addition, different genes showed different expression profiles in the fractions, compatible with the expectation that different mRNAs have different translational property (Fig.6).

Fig.6. Gene expression profiles in the fractions. Each panel represents one gene. We can see that the mRNA of each gene has a different distribution in the polysome fractions. The Cyclophilin (a.) mRNAs are distributed in all the light, medium, and heavy fractions. The IFIH1 (b.) mRNA can be seen mainly in heavy fractions. LTB4R (c.) mRNA has higher levels in light and medium fractions. The IL10RA (d.) can be seen mainly in medium and heavy fractions. The CD40 (e.) gene is mainly seen in medium and heavy fractions. The TAP2 (f.) gene has similar pattern with Cyclophilin.

5.4 Oligo-dT assay to quantify fraction poly(A) RNA

Fractionated RNA was diluted to $150 \mathrm{ng} / \mu \mathrm{l}$ based on the OD assay. An $1 \mu \mathrm{l}$ sample from each fraction was used for the $\operatorname{Poly}(\mathrm{A})$ assay. The image of hybridization with DIG-labeled oligo(dT) is shown in Fig.7. We can see that mRNA is mainly seen in the middle and lower fractions, but none in the upper fractions. The highest peak is commonly seen in Fraction 7-11 (the original OD values right after RNA extraction are also the highest in these fractions), and the second peak is seen in Fraction 15-21. This pattern is concordant with the gene expression profiles. In my study, I established a robust standard curve to quantify fraction poly(A) RNA (Fig.8). According to the densitometry quantification, the poly(A) RNA normally accounts for 2-3\% of total RNA in the middle fractions, and 1-2\% of total RNA in the bottom fractions.

5	4	3	2	1	0.5	0.2	0.1
	standard curve ($\mu \mathrm{g}$ of polyA	RNA)					

	1	3	5	7	9	
fraction \#pical						

$\begin{array}{llllll}11 & 13 & 15 & 17 & 19 & 21\end{array}$

Fig.7. The DIG-labeled oligo-dT assay to quantify fraction poly(A) RNA. The first lane shows the commercial human pancreas Poly(A) RNA at the standard concentrations of $5 \mathrm{ng} / \mu \mathrm{l}, 4 \mathrm{ng} / \mu \mathrm{l}, 3 \mathrm{ng} / \mu \mathrm{l}, 2 \mathrm{ng} / \mu \mathrm{l}, 1 \mathrm{ng} / \mu \mathrm{l}, 0.5 \mathrm{ng} / \mu \mathrm{l}, 0.2 \mathrm{ng} / \mu \mathrm{l}$, and $0.1 \mathrm{ng} / \mu \mathrm{l}$ respectively. The lower two lanes represent a typical profile of LCLs. The fraction numbers are shown under the bands. "0" represents unfractionated RNA.

Fig. 8. The stand curve of the Poly(A) densitometry quantification. X -axis: Poly(A) concentration ($\mathrm{ng} / \mu \mathrm{l}$); Y -axis: OD value.

5.5 The fractionated RNA sample bank

I established a fractionated RNA sample bank, including 44 European CEU individuals used for the international HAPMAP project. Except one individual (NA10839), 43 individuals are the parents from the HAPMAP CEPH CEU families. The sample list is shown in Table 2. Each individual has a DNA sample, 1 unfractionated RNA sample, and 24 RNA samples from polysome fractions. Serving as a quality control, two cell lines (NA12872 and NA12146) were cultured and fractionated twice by myself. Four cell lines (NA06994, NA10839, NA12043, and NA12239) were cultured and fractionated twice by a different person (Chee LK Lam).

Table 2 The HAPMAP CEU individuals with fractionated RNA in my RNA bank

HAPMAP	Gender	Family ID
ID		female
NA12145	EU1334	
NA12146	male	EU1334
NA12239	female	EU1334
NA06994	male	EU1340
NA07000	female	EU1340
NA07056	female	EU1340
NA07034	male	EU1341
NA07055	female	EU1341
NA06993	male	EU1341
NA06985	female	EU1341
NA12056	male	EU1344
NA12057	female	EU1344
NA07357	male	EU1345
NA07345	female	EU1345
NA12043	male	EU1346
NA11881	male	EU1347
NA11840	female	EU1349
NA11829	male	EU1350
NA11830	female	EU1350
NA11831	male	EU1350
NA11832	female	EU1350
NA11992	male	EU1362
NA11993	female	EU1362
NA11994	male	EU1362
NA11995	female	EU1362
NA12234	female	EU1375
NA12154	male	EU108
NA12155	male	EU1408
NA12156	female	EU1408
NA12248	male	EU1416
NA10839*	female	EU1420
NA12003	male	EU1420
NA12004	female	EU1420
NA12006	female	EU1420
NA12750	male	EU1444
NA12760	male	EU147
NA12761	female	EU1447
NA12812	male	EU1454
NA12813	female	EU1454
NA12814	male	EU1454
NA12815	female	EU1454
NA12872	male	EU1459
NA12873	female	EU1459
NA12874	male	EU1459
NA12892	female	EU1463
	$0 f 5 p$	

* Offspring with the father NA12005 and the mother NA12006.

5.6 TI assay on the Illumina beadarray

TI was detected in 75 out of 1483 (5.06\%) assays, and 63 out of 269 (23.4\%)
genes (Table 3). These results suggested that genetic effect on gene translation is a common mechanism of gene expression regulation.

Table 3 The interesting genes showing TI on the Illumina Golden Gate assay
SNP ID chr position Gene Sample $\quad \mathrm{B}$ allele ratio

SNPID	chr	position	Gene	Sample	B allele ratio					$\begin{aligned} & \hline P \\ & \text { value }{ }^{1} \end{aligned}$	Difference ${ }^{2}$	r^{3}	slope ${ }^{4}$	score
					Unfractionated RNA	pre-80S	light polyso -me	medium polysome	heavy polyso -me					
rs17567	1	51,599,508	EPS15	NA07357	0.578	0.332	0.395	0.548	0.520	0.139	0.063	0.992	0.033	4
rs6573	1	112,056,911	RAP1A	NA12815	0.806	0.806	0.802	0.556	0.529	0.484	0.033	0.748	0.021	4
rs 10593	2	9,463,480	ITGB1BP1	NA12043	0.583	0.227	0.422	0.503	0.537	0.186	0.195	0.941	0.101	3
rs17561	2	113,253,693	IL1A	NA12043	0.349	0.793	0.650	0.537	0.489	0.894	0.013	0.524	0.028	3
rs2070096	2	215,353,789	BARD1	NA12156	0.611	0.595	0.592	0.394	0.438	0.037	0.049	0.790	0.018	3
rs2953	3	41,256,391	CTNNB1	NA12815	0.382	0.465	0.356	0.293	0.255	0.144	0.140	0.981	0.072	3
rs1043261	3	53,874,315	IL17RB	NA12155	0.637	0.306	0.330	0.462	0.510	0.024	0.168	0.966	0.074	4
rs7297	3	101,950,365	TFG	NA12156	0.753	0.693	0.746	0.548	0.544	0.548	0.020	0.748	0.015	3
				NA12815	0.730	0.677	0.697	0.494	0.524	0.867	0.002	0.323	0.002	3
rs2681417	3	123,307,886	CD86	NA12155	0.495	0.198	0.282	0.400	0.420	0.059	0.170	0.970	0.078	3
rs2227928	3	143,764,301	ATR	NA12761	0.696	0.446	0.621	0.639	0.682	0.171	0.050	0.978	0.026	3
rs3772172	3	171,560,406	SKIL	NA12761	0.476	0.340	0.358	0.485	0.467	0.010	0.127	0.885	0.051	3
rs6141	3	185,572,959	THPO	NA11992	0.325	0.627	0.526	0.394	0.204	0.071	0.340	0.996	0.163	3
rs1047148	3	187,990,450	RFC4	NA12043	0.700	0.636	0.584	0.465	0.437	0.735	0.010	0.507	0.009	4
rs3733326	4	56,955,990	PPAT	NA12156	0.386	0.607	0.651	0.467	0.490	0.355	0.026	0.383	0.007	3
rs702689	5	56,213,199	MAP3K1	NA12043	0.552	0.433	0.449	0.572	0.627	0.031	0.158	0.964	0.071	4
rs2229992	5	112,190,752	APC	NA12156	0.638	0.637	0.662	0.461	0.509	0.728	0.019	0.133	0.004	3
rs3317	5	112,240,049	C5orf18	NA12156	0.434	0.695	0.767	0.521	0.549	0.861	0.007	0.464	0.011	3
rs1054204	5	151,022,742	SPARC	NA12815	0.380	0.510	0.459	0.281	0.341	0.305	0.126	0.465	0.038	3
rs299290	5	162,835,093	HMMR	NA12043	0.586	0.386	0.459	0.546	0.564	0.073	0.132	0.972	0.062	3
rs17759	5	177,570,487	HNRPAB	NA12156	0.395	0.048	0.111	0.175	0.259	0.197	0.105	0.981	0.057	3
rs9605	5	179,595,856	MAPK9	NA12155	0.793	0.759	0.703	0.522	0.502	0.851	0.012	0.562	0.020	4
rs2857713	6	31,648,534	LTA	NA12156	0.595	0.279	0.377	0.488	0.547	0.052	0.254	0.871	0.105	3
rs7194	6	32,520,457	HLA-DRA	NA07357	0.659	0.480	0.470	0.638	0.679	0.322	0.027	0.872	0.015	4
rs9273960	6	32,737,824	HLA-DQB1	NA12815	0.523	0.466	0.361	0.226	0.193	0.066	0.204	0.977	0.096	3
rs8807	6	33,140,828	HLA-DPA1	NA12156	0.791	0.750	0.753	0.535	0.561	0.817	0.010	0.485	0.012	
rs7905	6	33,140,952	HLA-DPA1	NA12815	0.542	0.598	0.500	0.409	0.304	0.319	0.146	0.919	0.088	3

rs9277534	6	33,162,784	HLA-DPB1	NA12156	0.599	0.534	0.547	0.390	0.414	0.062	0.052	0.691	0.017	3
rs2066853	7	17,345,634	AHR	NA11993	0.418	0.249	0.334	0.380	0.410	0.148	0.104	0.974	0.053	3
rs10228436	7	55,205,761	EGFR	NA11992	0.787	0.861	0.844	0.773	0.675	0.124	0.129	0.959	0.063	3
rs13073	7	94,134,704	PEG10	NA07357	0.697	0.872	0.809	0.741	0.518	0.088	0.099	0.946	0.046	3
rs2896181	7	115,685,119	TES	NA12156	0.408	0.833	0.782	0.544	0.532	0.138	0.063	0.968	0.032	4
rs8713	7	115,987,032	CAV1	NA12815	0.534	0.680	0.593	0.488	0.476	0.071	0.155	0.963	0.072	3
rs10503929	8	32,733,524	NRG1	NA12156	0.812	0.780	0.773	0.556	0.562	0.537	0.012	0.626	0.007	3
				NA12815	0.777	0.744	0.739	0.536	0.525	0.017	0.022	0.928	0.009	4
rs1063045	8	91,064,194	NBS1	NA12043	0.671	0.258	0.324	0.480	0.488	0.029	0.193	0.952	0.085	4
rs3812536	9	71,059,292	TJP2	NA07357	0.417	0.571	0.636	0.402	0.449	0.472	0.036	0.096	0.003	3
rs1131510	10	35,339,090	CUL2	NA12145	0.580	0.417	0.545	0.564	0.620	0.202	0.076	0.983	0.042	3
rs14401	10	112,035,160	MX11	NA12156	0.452	0.726	0.781	0.526	0.556	0.717	0.014	0.169	0.004	3
rs17658	10	112,036,139	MX11	NA12145	0.684	0.504	0.535	0.578	0.678	0.172	0.109	0.962	0.057	3
rs10798	11	2,826,740	KCNQ1	NA12155	0.710	0.660	0.606	0.457	0.453	0.367	0.039	0.908	0.025	4
				NA12156	0.814	0.794	0.798	0.561	0.605	0.722	0.001	0.185	0.000	3
rs7357	11	33,686,836	CD59	NA12156	0.663	0.754	0.732	0.515	0.537	0.044	0.052	0.917	0.022	3
rs947894	11	67,109,264	GSTP1	NA12145	0.796	0.365	0.440	0.658	0.697	0.023	0.275	0.965	0.121	4
rs506504	11	125,030,404	CHEK1	NA12156	0.548	0.462	0.460	0.348	0.330	0.076	0.108	0.776	0.041	4
rs7310449	12	892,375	RAD52	NA11993	0.747	0.510	0.659	0.690	0.731	0.244	0.126	0.930	0.069	3
rs3217933	12	4,283,260	CCND2	NA12815	0.535	0.430	0.405	0.313	0.303	0.032	0.090	0.978	0.041	3
rs4703	12	14,986,824	ARHGDIB	NA11993	0.628	0.287	0.351	0.435	0.463	0.056	0.126	0.984	0.059	3
rs8664	12	15,664,687	EPS8	NA12155	0.485	0.198	0.215	0.341	0.383	0.005	0.187	0.888	0.075	4
rs13096	12	25,251,107	KRAS	NA12043	0.628	0.505	0.554	0.637	0.652	0.045	0.115	0.971	0.052	4
rs9266	12	25,253,483	KRAS	NA11993	0.634	0.486	0.477	0.657	0.602	0.651	0.027	0.224	0.008	3
rs1047775	13	42,579,426	DNAJD1	NA11993	0.449	0.683	0.748	0.481	0.501	0.949	0.002	0.303	0.006	3
				NA12043	0.916	0.922	0.916	0.609	0.637	0.736	0.003	0.631	0.003	3
rs17655	13	102,326,002	ERCC5	NA07357	0.699	0.745	0.767	0.470	0.524	0.363	0.050	0.270	0.009	3
rs1061386	13	110,171,368	ING1	NA12043	0.417	0.678	0.654	0.515	0.496	0.381	0.080	0.349	0.020	4
rs10748	16	52,062,221	RBL2	NA12043	0.475	0.292	0.394	0.428	0.462	0.199	0.102	0.956	0.054	3
rs2239359	16	88,376,980	FANCA	NA12145	0.266	0.124	0.132	0.387	0.362	0.003	0.247	0.876	0.097	3
rs1053004	17	37,719,617	STAT3	NA12815	0.632	0.344	0.345	0.223	0.215	0.044	0.223	0.982	0.103	4
rs16942	17	38,497,525	BRCA1	NA12043	0.466	0.531	0.465	0.451	0.315	0.223	0.069	0.971	0.039	3

rs1042489	17	$73,731,800$	BIRC5	NA12761	0.542	0.753	0.668	0.480	0.522	0.229	0.127	0.970	0.072
rs1053474	18	$20,287,258$	IMPACT	NA12815	0.487	0.191	0.327	0.465	0.442	0.107	0.194	0.915	0.089
rs6567211	18	$51,046,528$	TCF4	NA11993	0.401	0.204	0.385	0.465	0.493	0.181	0.184	0.940	0.095
				NA12155	0.667	0.336	0.410	0.625	0.619	0.051	0.219	0.943	0.097
rs7935	19	$10,966,607$	SMARCA4	NA12155	0.557	0.162	0.298	0.354	0.455	0.089	0.215	0.963	0.102
rs6554	19	$18,546,963$	UBA52	NA07357	0.825	0.359	0.538	0.767	0.768	0.758	0.014	0.526	0.014
rs1406	19	$35,006,951$	CCNE1	NA12145	0.503	0.461	0.482	0.293	0.342	0.170	0.145	0.934	0.073
				NA12155	0.527	0.674	0.456	0.273	0.312	0.179	0	3	
				NA12761	0.528	0.513	0.547	0.383	0.399	0.101	0.238	0.952	0.118
		0.929	0.110	3									
rs16997057	20	$1,866,486$	PTPNS1	NA12003	0.122	0.119	0.158	0.305	0.306	0.048	0.185	0.938	0.082
rs8156	20	$3,734,636$	CDC25B	NA12145	0.398	0.471	0.547	0.625	0.627	0.530	0.034	0.146	0.005
rs7121	20	$56,912,201$	GNAS	NA12815	0.351	0.450	0.314	0.304	0.242	0.280	0.109	0.935	0.064
rs5030612	22	$22,497,512$	SMARCB1	NA12043	0.655	0.300	0.285	0.490	0.462	0.020	0.213	0.802	0.078
rs5958343	X	$122,873,952$	BIRC4	NA12145	0.313	0.244	0.286	0.369	0.390	0.039	0	3	
				NA12156	0.772	0.890	0.873	0.516	0.512	0.004	0.179	0.977	0.052
				NA12815	0.751	0.872	0.836	0.578	0.564	0.005	0.283	0.929	0.075

5.7 Confirmation of the Illumina results by resequencing

To confirm the Illumina beadarray results, I selected 6 genes with the TI score ≥ 3 (Table 4) and repeated the TI assay by resequencing. The resequencing results confirmed the TI results on the Illumina beadarray. Different TI patterns were seen in these genes, and reflected different types of effects on gene translation.

Table 4 The PCR primers for the confirmation of the Illumina beadarray results by resequencing

SNP	Gene	Primers for cDNA
rs 10593	ITGB1BPI	L: 5'- TTTTAGCATGAGCGGTAATCTTT -
		3';
		R: 5'- tgaggaagactgaggaCATGG -3'.
rs2953	CTNNB1	L: 5'- GGTGGGCTGGTATCTCAGaa -3';
		R: 5'- agagctacttcaaagcaagcaaa -3'.
rs16997057	PTPNS1	L: 5'- CCATCTCTACGCGCTTTCTT -3';
(rs3197744)		R: 5'- aggggaggtgggatttct -3 '
rs1406	CCNE1	L: 5'- AGTACACCAGCCACCTCCAG -3';
		R: 5'- GCAGCACTTACaaaacagttcatc -3'.
rs947894	GSTPI	L: 5'- GGAGACCTCACCCTGTACCA -3';
(rs1695)		R: 5^{\prime} - GGACAGCAGGGTCTCAAAAG -3'.
rs1053474	IMPACT	L: 5'- GATGggaattgcagaagctg -3';
		R: 5'- accattttatggaaagaaaaataacc -3 '

5.7.1 Opposite AI direction in the light polysome fraction and heavy polysome fraction: the case of ITGBIBPI (Fig.9) and CTNNB1 (Fig.10). The allele abundant in the light polysome fraction has lower translational efficiency, while the other allele abundant in the heavy fraction has higher translational efficiency.

Fig.9. The TI of the two alleles of the $I T G B 1 B P 1$ gene. We can see that the T allele is higher in the light polysome fraction, but lower in the heavy polysome fraction, which suggests that the T allele has lower translational efficiency.

Fraction (G/T) FO: 1

F7: 1.40

F12: 0.71

F16: 0.44

F19: 0.84

Fig.10. The TI of the two alleles of the CTNNB1 gene. Referring to the unfractionated RNA (F0), we can see that the G allele proportion is higher in the light polysome fraction, but lower in the heavy polysome fraction, which suggests that the G allele has lower translational efficiency.
5.7.2 Abundant allele in the heavy fraction: the case of $P T P N S 1$ (Fig.11). The abundance of the allele in the heavy fraction suggests that this allele has higher translational efficiency. If only a small proportion of mRNA went to the heavy fractions, the allele ratio in the light polysome fraction may not have obvious difference.

Fig.11. The TI of the two alleles of the PTPNS1 gene. Referring to the unfractionated RNA (F0), we can see that the G allele has similar proportion with $F 0$ in the light polysome fraction, but higher in the heavy polysome fraction, which suggests the G allele has higher translational efficiency.
5.7.3 Abundant allele in the light fraction: the cases of CCNE1(Fig.12) and GSTP1
(Fig.13) The similar ratio of the two alleles in the heavy polysome fraction suggests that both alleles are actively translated with similar efficiency. The abundance of the allele in the light fraction suggests that this allele may have higher stability in the free mRNA status. If the major proportion of the gene mRNA goes to the heavy polysome fractions, the effect of free mRNA stability on the total mRNA level can be small.

Fraction (A/G)
F0: 1

F9: 0.19

F13: 0.51

F17: 0.83

F21: 0.87

Fig.12. The TI of the two alleles of the CCNE1 gene. Referring to the unfractionated RNA (F0), we can see that the G allele is much more abundant in the light polysome fraction than in the heavy polysome fraction.

Fig.13. The TI of the two alleles of the GSTP1 gene. Referring to the unfractionated RNA (F0), we can see that the A allele has similar proportion with F0 in the heavy polysome fraction, but higher in the light polysome fraction.
5.7.4 The detection of TI without referable unfractionated RNA: the cases of IMPACT (Fig.14). In this case, the unfractionated RNA has the mixture of un-translated isoforms. We cannot correct the polysome fractions using F0. Instead, I calculated the allele ratio using neighboring nucleotides around the SNP site.

Fraction (T/C) F0:-

F9: 1.30

F12: 1.38

F16: 0.71

F19: 0.82

Fig.14. The TI of the two alleles of the IMPACT gene. We can see that the T allele proportion is higher in the light polysome fraction, but lower in the heavy polysome fraction, which suggests the T allele has lower translational efficiency.

6. DISCUSSION

6.1 A novel approach to cover an aspect of functional genomics

Because of the rapid development of genotyping technology and availability of high throughput genotyping microarray (www.affymetrix.com, Affymetrix, Santa Clara, CA; www.Illumina.com, Illumina, San Diego CA), a large number of disease-associated loci have been found in the past one or two years (Duerr, Taylor et al. 2006; Easton, Pooley et al. 2007; Saxena, Voight et al. 2007; Sladek, Rocheleau et al. 2007; Wellcome Trust Case Control Consortium 2007). However, many disease loci have extended linkage disequilibrium for more than a few hundred kb , and may include several genes, as shown in the discovery of a novel T1D locus by our group (Hakonarson, Qu et al. 2008). There may be multiple variants in multiple genes in the same LD block that can explain the association because of LD. It is difficult to clarify the disease causative gene in a locus. When the limits of genetic dissection have been reached, functional studies must be undertaken. The approach to identify genes with functional genetic variation(s) is an important supplement to locate a disease gene. For a gene without functional variation, it cannot be the cause of a genetic disease. On the other hand, if a gene is identified to have functional DNA variation, its potential role in a genetic disease will be highlighted.

Better understanding of the genetic regulation of gene function is likely to be valuable in devising effective disease prevention and risk prediction. To date, studies on the function of DNA variations have focused on two major directions: (1) how an amino acid substitution caused by a nsSNP changes the protein function (Smyth, Cooper et al.

2006; Burke, Worth et al. 2007); (2) how a regulatory SNP change the mRNA levels (Cheung, Spielman et al. 2005; Kiekens, Vercauteren et al. 2006). However, the DNA variations with translational effect will likely neither change amino acid nor affect transcription levels. Because no high throughput method was available to study the genetic effect on gene translation, the effect on gene translation of DNA variations has been poorly understood. The results of this study suggest that genetic effect on gene translation is a common mechanism of gene expression regulation, which needs further study. My study creates a novel additional approach to cover an aspect of functional genomics that has not received much attention so far. Therefore, this study adds an important tool in the evaluation of loci associated with complex disorders.

6.2 The exclusion of non-causative SNPs

Our study suggests that as many as 23.4% genes have the change of gene translational efficiency by genetic variations (more extensive confirmation pending), which suggests that the translational effect of DNA variations is a common phenomenon (Table 3). It is worth noting that the SNPs used for the TI assay on the Illumina Golden Gate beadarray, or the resequencing, are only genetic markers. A real causative SNP that affects gene translation change can be located anywhere in the gene transcription region. There is no simple way to test the translational effect of a SNP. However, a SNP can be excluded to have translational effect explicitly by our high throughput method. If a SNP is the cause of the change of gene translation, each of the two alleles should always correspond to a specific change in different samples, i.e. either increased or decreased in all the different
samples, but cannot be increased in some samples and decreased in some other samples. We will take the case of the $I T G B 1 B P 1$ gene to explain this approach.

The ITGB1BPI gene maps to Chr2p25.2, and encodes the integrin beta 1 binding protein 1, which may play important roles in integrin-dependent cell adhesion (Chang, Wong et al. 1997). This gene is highly expressed in lymphocytes (Fig.15). In our study, ITGB1BP1 was found to have strong evidence of genetic effect on translation by a common polymorphism. Numerous SNPs have been found in the mRNA. However, most SNPs in the mRNA are found in the 3'UTR (Fig.16). Only one nsSNP and one sSNP are found in the coding region. Altogether, only two 3^{\prime} UTR SNPs have common frequencies, i.e. rs 10593 (minor allele G, frequency $=0.175$ in European) and rs4798 (minor allele A, frequency $=0.125$ in European). All other SNPs in the mRNA are rare (minor allele frequency <0.05). Therefore, one of these two SNPs, rs 10593 and rs4798, may be TI causative. Both 3'UTR SNPs rs10593 and rs4798 have been used for TI marker in our study. The two SNPs are only 775bp from each other. However, the poor linkage disequilibrium (LD) between the two SNPs (Fig.17) enables us to identify which SNP is non-causative. The details of the methodology will be shown in the following paragraphs.

ITGB1BP1 203336_s_at

Fig. 15. The $I T G B 1 B P 1$ gene expression profile as shown by the SymAtlas database (http://symatlas.gnf.org/SymAtlas/).

Fig. 16. The SNPs in the $I T G B 1 B P 1$ gene region (the NCBI dbSNP database, http://www.ncbi.nlm.nih.gov/SNP).
$\stackrel{\text { Chr2 }}{\stackrel{+1}{4}}$

13
77

Fig. 17. The LD of the two ITGB1BP1 SNPs based on the European HapMap data (http://www.hapmap.org) (2003; 2007), produced by Haploview v4.0 software(www.broad.mit.edu/personal/jcbarret/haploview) (Barrett, Fry et al. 2005). D' value (\%) is shown in the box. $\mathrm{D}^{\prime}<100 \%$ suggests the existence of recombination between the two SNPs.

Each of the two SNPs rs10593 (A/G) and rs4798(A/G) have two alleles. Therefore, four haplotypes are expected in general population, i.e. rs10593 A-rs4798 A, rs10593 Ars4798 G, rs10593 G-rs4798 A, and rs10593 G- rs4798 G. Each haplotype represents a type of chromosome, tagged by a rs 10593 allele and a rs4798 allele. If there is no LD, the probability of each haplotype in the general population is equal to the product of the frequencies of each SNP allele. If there is LD, the probability of a specific haplotype will be higher or lower than the expected random frequency (Boehnke 2000). A major factor of LD is the physical proximity of the two SNPs. There are two criteria to describe the LD, i.e. D' and r^{2}. When there is no recombination between two SNPs, we can only see three of the four haplotypes at most. In this condition, $D^{\prime}=1$. In addition to no recombination $\left(D^{\prime}=1\right)$, when the frequencies of the two SNPS are exactly the same, we can only see two haplotypes $\left(r^{2}=1\right)$, i.e. one allele of one SNP always co-occurs with a specific allele of the other SNP. If $\mathrm{r}^{2}=1$, we cannot exclude one SNP as TI causative based on LD. In the case of rs10593 and rs4798, this approach is feasible because of $r^{2}=0.041$. The expected frequency and empirical frequency of each haplotype is shown in Fig. 18.

Fig. 18. The four haplotypes of the $I T G B 1 B P 1$ gene. Because of LD between the two SNPs, the two haplotypes A-G and G-G have lower frequencies than expected, and the other two haplotypes have higher frequencies than expected.

Of the 10 HapMap CEU LCL samples that were run in our Illumina Golden Gate TI assay, there are 3 heterozygotes of rs10593 (NA07357, NA12043, and NA12761), and 3 heterozygotes of rs4798 (NA11993, NA12043, and NA12815). For the 3 heterozygotes of rs10593, dramatic TI can be seen in NA12043, i.e. the G allele of NA12043 has higher translation. However, no TI was seen in either NA07357, or NA12761. On the other hand, all three heterozygotes of rs4798 showed TI in the same direction, i.e. the minor A allele has lower translational efficiency. These results excluded rs10593 as TI causative. Because there are only these two common SNPs in the gene region, rs4798 is the candidate causing the translational effect. When I looked back at the rs 10593 results, both the two samples NA07357 and NA12761 without TI have GG genotype of rs4798. For
the sample NA12043, the TI of rs10593 is concordant with the TI of rs4798 (Table 5). Therefore, none of these data is against rs4798 of the translational effect and the effect is likely due to it, or to an unknown SNP in tight linkage disequilibrium with it.

Table 5 The genotypes and haplotypes of the ITGB1BPI SNPs

sample	rs10593	rs4798	rs10593-rs4798
NA07357	A/G	G/G	A-G/G-G
NA12043	A/G	A/G	A-A<G-G
NA12761	A/G	G/G	A-G/G-G
NA11993	A/A	A/G	A-A<A-G
NA12815	A/A	A/G	A-A<A-G

6.3 The analysis of the TI mechanism

As explained in the introduction part of my thesis, DNA variations may cause TI by many potential mechanisms. A 5'UTR SNP located at an uAUG, an uORF, or a conservative IRE sequence, can be expected to have a translational effect. For the 3'UTR SNP rs4798, the conserved RNA sequence motif UCPAS, with the consensus hexamer sequence AAUAAA, CPE with the consensus UUUUUAU, EDEN with the consensus sequence of a repetition of $U(A / G)$ dinucleotides, are not involved.

6.3.1 The miRNA target site

Besides the UCPAS, the 3'UTR of genes contains miRNA target sites (Du and Zamore 2007). MicroRNAs (miRNAs) are highly conserved, small RNA molecules (around 21 nucleotides) that regulate the expression of genes by binding to the complementary mRNAs (Ambros 2004). Up to now, 3518 miRNAs have been identified in different organisms, and 326 miRNAs have been found in human (miRBase release 7, http://microrna.sanger.ac.uk/sequences/help/summary.shtml). One miRNA can control the expression of thousands of target mRNAs (Lim, Lau et al. 2005). On the other hand, one mRNA moleculer may be targeted by multiple microRNAs (Pillai 2005). In recent years, miRNAs have received extensive attention and the list of reported miRNA functions is growing rapidly. Present studies have shown the roles of miRNAs on development (Alvarez-Garcia and Miska 2005), viral infection (Sullivan and Ganem 2005), and oncogenesis (Hammond 2006).

To target at a mRNA molecular, the seed region of the miRNA (nucleotides 2-8) needs to bind with a complementary conserved sequence at the mRNA 3'UTR (Lewis, Burge et al. 2005). A number of bioinformatics tools can be used to predict the miRNA target sites, such as PicTar (http://pictar.bio.nyu.edu/)(Krek, Grun et al. 2005), TargetScan (http://www.targetscan.org/) (Lewis, Burge et al. 2005), and microInspector (http://www.imbb.forth.gr/microinspector) (Rusinov, Baev et al. 2005). Using these tools, we did not find any miRNA target sites involving rs4798. For the other genes found to have evidence of TI, further mapping of candidate SNPs with translational effect is needed for the purpose of the prediction of miRNA target sites.

6.3.2 The mRNA secondary structure change

The change of mRNA secondary structure caused by a SNP may influence the gene translation by multiple mechanisms. A SNP in the 5'UTR may change the mRNA secondary structure, and hamper the 40 S subunit scanning for the AUG start codon(Lee, Guertin et al. 1983; de Smit and van Duin 1994). The change of mRNA secondary structure by a SNP in the gene coding region may block the sliding of the 80 S ribosome along the mRNA molecular for peptide elongation (Shen, Basilion et al. 1999). The change of mRNA secondary structure by a SNP in the 3'UTR region may influence the binding of miRNAs and PABP, thus impair the translational efficiency. We will look at the case of the $I T G B 1 B P 1$ gene as an example.

The 3'UTR SNP rs4798 is located 158 bp downstream of the coding region of the ITGBIBP1 mRNA NM_004763. This SNP does not map to any known regulatory motif. The functional effect of this SNP may be from its effect on mRNA secondary structure. Changes in the minimum free energy (MFE, is the goal of mRNA secondary structure prediction) of the mRNA can be used to determine the effect of rs4798 on the mRNA secondary structure in silico. MFE of full-length mRNA is computed on the basis of an energy minimization algorithm (Zuker and Stiegler 1981), by the Vienna RNA Package (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) (Hofacker 2003). As illustrated in Fig.19, we can see that the 3 'UTR SNP rs4798 may have an obvious effect on the mRNA MFE and the secondary structure by the in silico prediction. Therefore, in the absence of any other known mechanism, it is likely that the TI observed in the ITGB1BP1 gene is due to effects on the mRNA secondary structure, a possibility that needs to be explored further.

b.

d.

Fig. 19. The mRNA secondary structure change of the $I T G B 1 B P 1$ transcript NM_004763 by the 3 'UTR SNP rs4798. The two upper panels are the plot of the minimum free energy and pair probabilities. The red line is the minimum free energy, and the green line is the pair probabilities. The two lower panels are the predicted mRNA secondary structure. The two left panels correspond to the A allele of the $I T G B 1 B P 1 \mathrm{mRNA}$, and the two right panels correspond to the G allele of the $I T G B 1 B P 1$ mRNA.

7. Conclusion

1. This study creates a novel high throughput method to discover the genetic effect on gene translation. This method covers an aspect of functional genomics that has not received much attention so far, and adds an important tool in the evaluation of genetic loci associated with complex disorders.
2. By the study of 269 genes, we found 23.4% genes with evidence of genetic effect on gene translation, which suggest that genetic effect on gene translation may be a common mechanism of gene expression regulation.
3. Shown by our best hit found in the ITGB1BP1 gene, the role of the mRNA 3'UTR secondary structure in the genetic control of gene translational may be important.
4. As a fundamental study, this study has established a high-quality RNA bank, including 1,100 RNA fraction samples, for further research work. To broaden the discovery study of genome-wide translational effect, the assay on a high throughput platform, such as the 454 re-sequencing technology, can be performed on these RNA samples, following the mature methodology created in this study. To fine map the causative DNA variations of translation effect, this study will provide the methodological reference for the experimental assay of computationally predicted candidate SNPs, and a sample bank.

Abstract

5. A biological validation of these findings, by transfecting epitope-tagged constructs of the two cDNA alleles will be needed in future studies.

8. Acknowledgements

I would like to thank all the people for all their great contributions to my project.

My sincere thanks to my supervisor, Dr. Constantin Polychronakos, for mentoring me with his great intelligence and knowledge in human genetics, with his great patience and encouragement.

My gratitude to Dr. Francis Robert, for his tremendous help in establishing the method of polysome RNA fractionation. Thanks to Dr. Tomi Pastinen and Dr. Eef Harmsen for their helpful advices on the high throughput allelic imbalance study. Thanks to Kevin Lam for his technical support.

My gratitude to our super technician, Luc Marchand, for huge tons of technical help and advices from him. My thanks to my teachers and colleagues, Rosemary Grabs for her always available help, and Marylene Rousseau for her help in developing the poly(A) RNA quantification assay. Thanks to Dr. Cindy Goodyer for her help as my academic advisor.

My special thanks to Dr. Huiqi Qu, for his technical advices as a scientist, and his care as my husband. Thanks for my son, Jingchun Qu. Thanks for my family and my husband's family far away in China. They gave me so much support spiritually and financially.

Thanks for the salary support from the Huntley Macdonald Sinclair Fund Studentship of the Faculty of Medicine, McGill University, and the Maria Raiche Graduate Student Scholarship of the Montreal Children's Hospital Research Institute.

Thanks Dr. Hugues Beauchemin for the help of the French translation of the Résumé.

9. Reference

(2003). "The International HapMap Project." Nature 426(6968): 789-796.
(2007). "A second generation human haplotype map of over 3.1 million SNPs." Nature 449(7164): 851-861.

Allerson, C. R., M. Cazzola and T. A. Rouault (1999). "Clinical Severity and Thermodynamic Effects of Iron-responsive Element Mutations in Hereditary Hyperferritinemia-Cataract Syndrome." J. Biol. Chem. 274(37): 26439-26447.

Alvarez-Garcia, I. and E. A. Miska (2005). "MicroRNA functions in animal development and human disease." Development 132(21): 4653-62.

Ambros, V. (2004). "The functions of animal microRNAs." Nature 431(7006): 350.
Andreson, R., T. Puurand and M. Remm (2006). "SNPmasker: automatic masking of SNPs and repeats across eukaryotic genomes." Nucleic Acids Res 34(Web Server issue): W651-5.

Anjos, S. M., W. Shao, L. Marchand and C. Polychronakos (2005). "Allelic effects on gene regulation at the autoimmunity-predisposing CTLA4 locus: a re-evaluation of the 3^{\prime} $+6230 \mathrm{G}>$ A polymorphism." Genes Immun 6(4): 305-11.

Anjos, S. M., M. C. Tessier and C. Polychronakos (2004). "Association of the cytotoxic T lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block." J Clin Endocrinol Metab 89(12): 6257-65.

Barratt, B. J., F. Payne, C. E. Lowe, R. Hermann, B. C. Healy, D. Harold, P. Concannon, N. Gharani, M. I. McCarthy, M. G. Olavesen, R. McCormack, C. Guja, C. IonescuTirgoviste, D. E. Undlien, K. S. Ronningen, K. M. Gillespie, E. Tuomilehto-Wolf, J. Tuomilehto, S. T. Bennett, D. G. Clayton, H. J. Cordell and J. A. Todd (2004). "Remapping the insulin gene/IDDM2 locus in type 1 diabetes." Diabetes 53(7): 1884-9.

Barrett, J. C., B. Fry, J. Maller and M. J. Daly (2005). "Haploview: analysis and visualization of LD and haplotype maps." Bioinformatics 21(2): 263-5.

Boehnke, M. (2000). "A look at linkage disequilibrium." Nat Genet 25(3): 246-247.
Burke, D. F., C. L. Worth, E. M. Priego, T. Cheng, L. J. Smink, J. A. Todd and T. L. Blundell (2007). "Genome bioinformatic analysis of nonsynonymous SNPs." BMC Bioinformatics 8: 301.

Chang, D. D., C. Wong, H. Smith and J. Liu (1997). "ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin." J Cell Biol 138(5): 1149-57.

Chen, J. M., C. Ferec and D. N. Cooper (2006). "A systematic analysis of diseaseassociated variants in the 3^{\prime} regulatory regions of human protein-coding genes I: general principles and overview." Hum Genet 120(1): 1-21.

Chen, J. M., C. Ferec and D. N. Cooper (2006). "A systematic analysis of diseaseassociated variants in the 3^{\prime} regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3^{\prime} UTR variants." Hum Genet 120(3): 301-33.

Cheung, V. G., R. S. Spielman, K. G. Ewens, T. M. Weber, M. Morley and J. T. Burdick (2005). "Mapping determinants of human gene expression by regional and genome-wide association." Nature 437(7063): 1365-9.

Couzin, J. and J. Kaiser (2007). "GENOME-WIDE ASSOCIATION: Closing the Net on Common Disease Genes." Science 316(5826): 820-822.

De Angioletti, M., G. Lacerra, V. Sabato and C. Carestia (2004). "Beta+45 G --> C: a novel silent beta-thalassaemia mutation, the first in the Kozak sequence." Br J Haematol 124(2): 224-31.
de Moor, C. H., H. Meijer and S. Lissenden (2005). "Mechanisms of translational control by the 3^{\prime} UTR in development and differentiation." Semin Cell Dev Biol 16(1): 49-58.
de Smit, M. H. and J. van Duin (1994). "Control of Translation by mRNA Secondary Structure in Escherichia coli: A Quantitative Analysis of Literature Data." Journal of Molecular Biology 244(2): 144-150.

Diatchenko, L., G. D. Slade, A. G. Nackley, K. Bhalang, A. Sigurdsson, I. Belfer, D. Goldman, K. Xu, S. A. Shabalina, D. Shagin, M. B. Max, S. S. Makarov and W. Maixner (2005). "Genetic basis for individual variations in pain perception and the development of a chronic pain condition." Hum. Mol. Genet. 14(1): 135-143.

Dixon, A. L., L. Liang, M. F. Moffatt, W. Chen, S. Heath, K. C. Wong, J. Taylor, E. Burnett, I. Gut, M. Farrall, G. M. Lathrop, G. R. Abecasis and W. O. Cookson (2007). "A genome-wide association study of global gene expression." Nat Genet 39(10): 1202-7.

Du, T. and P. D. Zamore (2007). "Beginning to understand microRNA function." Cell Res 17(8): 661-3.

Duerr, R. H., K. D. Taylor, S. R. Brant, J. D. Rioux, M. S. Silverberg, M. J. Daly, A. H. Steinhart, C. Abraham, M. Regueiro, A. Griffiths, T. Dassopoulos, A. Bitton, H. Yang, S. Targan, L. W. Datta, E. O. Kistner, L. P. Schumm, A. T. Lee, P. K. Gregersen, M. M. Barmada, J. I. Rotter, D. L. Nicolae and J. H. Cho (2006). "A genome-wide association
study identifies IL23R as an inflammatory bowel disease gene." Science 314(5804): 1461-3.

Easton, D. F., K. A. Pooley, A. M. Dunning, P. D. Pharoah, D. Thompson, D. G. Ballinger, J. P. Struewing, J. Morrison, H. Field, R. Luben, N. Wareham, S. Ahmed, C. S. Healey, R. Bowman, K. B. Meyer, C. A. Haiman, L. K. Kolonel, B. E. Henderson, L. Le Marchand, P. Brennan, S. Sangrajrang, V. Gaborieau, F. Odefrey, C. Y. Shen, P. E. Wu, H. C. Wang, D. Eccles, D. G. Evans, J. Peto, O. Fletcher, N. Johnson, S. Seal, M. R. Stratton, N. Rahman, G. Chenevix-Trench, S. E. Bojesen, B. G. Nordestgaard, C. K. Axelsson, M. Garcia-Closas, L. Brinton, S. Chanock, J. Lissowska, B. Peplonska, H. Nevanlinna, R. Fagerholm, H. Eerola, D. Kang, K. Y. Yoo, D. Y. Noh, S. H. Ahn, D. J. Hunter, S. E. Hankinson, D. G. Cox, P. Hall, S. Wedren, J. Liu, Y. L. Low, N. Bogdanova, P. Schurmann, T. Dork, R. A. Tollenaar, C. E. Jacobi, P. Devilee, J. G. Klijn, A. J. Sigurdson, M. M. Doody, B. H. Alexander, J. Zhang, A. Cox, I. W. Brock, G. MacPherson, M. W. Reed, F. J. Couch, E. L. Goode, J. E. Olson, H. Meijers-Heijboer, A. van den Ouweland, A. Uitterlinden, F. Rivadeneira, R. L. Milne, G. Ribas, A. GonzalezNeira, J. Benitez, J. L. Hopper, M. McCredie, M. Southey, G. G. Giles, C. Schroen, C. Justenhoven, H. Brauch, U. Hamann, Y. D. Ko, A. B. Spurdle, J. Beesley, X. Chen, A. Mannermaa, V. M. Kosma, V. Kataja, J. Hartikainen, N. E. Day, D. R. Cox and B. A. Ponder (2007). "Genome-wide association study identifies novel breast cancer susceptibility loci." Nature 447(7148): 1087-93.

Fan, J.-B., M. S. Chee and K. L. Gunderson (2006). "Highly parallel genomic assays." Nat Rev Genet 7(8): 632-644.

Ge, B., S. Gurd, T. Gaudin, C. Dore, P. Lepage, E. Harmsen, T. J. Hudson and T. Pastinen (2005). "Survey of allelic expression using EST mining." Genome Res 15(11): 1584-91.

Gebauer, F. and M. W. Hentze (2004). "Molecular mechanisms of translational control." Nat Rev Mol Cell Biol 5(10): 827-835.

Ghilardi, N., A. Wiestner, M. Kikuchi, A. Ohsaka and R. C. Skoda (1999). "Hereditary thrombocythaemia in a Japanese family is caused by a novel point mutation in the thrombopoietin gene." British Journal of Haematology 107(2): 310-316.

Gunderson, K. L., F. J. Steemers, G. Lee, L. G. Mendoza and M. S. Chee (2005). "A genome-wide scalable SNP genotyping assay using microarray technology." Nat Genet 37(5): 549-54.

Hakonarson, H., S. F. Grant, J. P. Bradfield, L. Marchand, C. E. Kim, J. T. Glessner, R. Grabs, T. Casalunovo, S. P. Taback, E. C. Frackelton, M. L. Lawson, L. J. Robinson, R. Skraban, Y. Lu, R. M. Chiavacci, C. A. Stanley, S. E. Kirsch, E. F. Rappaport, J. S. Orange, D. S. Monos, M. Devoto, H. Q. Qu and C. Polychronakos (2007). "A genomewide association study identifies KIAA0350 as a type 1 diabetes gene." Nature 448(7153): 591-4.

Hakonarson, H., H. Q. Qu, J. P. Bradfield, L. Marchand, C. E. Kim, J. T. Glessner, R. Grabs, T. Casalunovo, S. P. Taback, E. C. Frackelton, A. W. Eckert, K. Annaiah, M. L. Lawson, F. G. Otieno, E. Santa, J. L. Shaner, R. M. Smith, C. C. Onyiah, R. Skraban, R. M. Chiavacci, L. J. Robinson, C. A. Stanley, S. E. Kirsch, M. Devoto, D. S. Monos, S. F. Grant and C. Polychronakos (2008). "A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study." Diabetes 57(4): 1143-6.

Hammond, S. M. (2006). "MicroRNAs as oncogenes." Curr Opin Genet Dev 16(1): 4-9.
Hentze, M. W. and L. C. Kuhn (1996). "Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress." Proceedings of the National Academy of Sciences 93(16): 8175-8182.

Heward, J. M., M. J. Simmonds, J. Carr-Smith, H. Foxall, J. A. Franklyn and S. C. Gough (2004). "A single nucleotide polymorphism in the CD40 gene on chromosome 20 q (GD-2) provides no evidence for susceptibility to Graves' disease in UK Caucasians." Clin Endocrinol (Oxf) 61(2): 269-72.

Hofacker, I. L. (2003). "Vienna RNA secondary structure server." Nucleic Acids Res 31(13): 3429-31.

Hsiao, J. Y., K. J. Tien, C. T. Hsiao and M. C. Hsieh (2008). "A C/T Polymorphism in CD40 Gene is Not Associated with Susceptibility and Phenotype of Graves' Disease in Taiwanese." Endocr J.

Hudson, T. J. (2003). "Wanted: regulatory SNPs." Nat Genet 33(4): 439-40.
Human Genome Sequencing, C. (2004). "Finishing the euchromatic sequence of the human genome." Nature 431(7011): 931-945.

Jaffrey, S. R., D. J. Haile, R. D. Klausner and J. B. Harford (1993). "The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure." Nucleic Acids Research 21(19): 4627-4631.

Kahvejian, A., Y. V. Svitkin, R. Sukarieh, M. N. M'Boutchou and N. Sonenberg (2005). "Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms." Genes Dev 19(1): 104-13.

Kamb, A., N. A. Gruis, J. Weaver-Feldhaus, Q. Liu, K. Harshman, S. V. Tavtigian, E. Stockert, R. S. Day, 3rd, B. E. Johnson and M. H. Skolnick (1994). "A cell cycle regulator potentially involved in genesis of many tumor types." Science 264(5157): 43640.

Kidd, J. M., G. M. Cooper, W. F. Donahue, H. S. Hayden, N. Sampas, T. Graves, N. Hansen, B. Teague, C. Alkan, F. Antonacci, E. Haugen, T. Zerr, N. A. Yamada, P. Tsang, T. L. Newman, E. Tuzun, Z. Cheng, H. M. Ebling, N. Tusneem, R. David, W. Gillett, K. A. Phelps, M. Weaver, D. Saranga, A. Brand, W. Tao, E. Gustafson, K. McKernan, L.

Chen, M. Malig, J. D. Smith, J. M. Korn, S. A. McCarroll, D. A. Altshuler, D. A. Peiffer, M. Dorschner, J. Stamatoyannopoulos, D. Schwartz, D. A. Nickerson, J. C. Mullikin, R. K. Wilson, L. Bruhn, M. V. Olson, R. Kaul, D. R. Smith and E. E. Eichler (2008). "Mapping and sequencing of structural variation from eight human genomes." Nature 453(7191): 56-64.

Kiekens, R., A. Vercauteren, B. Moerkerke, E. Goetghebeur, H. Van Den Daele, R. Sterken, M. Kuiper, F. van Eeuwijk and M. Vuylsteke (2006). "Genome-wide screening for cis-regulatory variation using a classical diallel crossing scheme." Nucleic Acids Res 34(13): 3677-86.

Kikuchi, M., T. Tayama, H. Hayakawa, I. Takahashi, H. Hoshino and A. Ohsaka (1995). "Familial thrombocytosis." Br J Haematol 89(4): 900-2.

Kozak, M. (1986). "Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes." Cell 44(2): 283-292.

Kozak, M. (1991). "An analysis of vertebrate mRNA sequences: intimations of translational control." J Cell Biol 115(4): 887-903.

Kozak, M. (1997). "Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6 ." EMBO Journal 16(9): 2482-2492.

Kozak, M. (2003). "Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation." Gene 318(1-2): 1-23.

Krek, A., D. Grun, M. N. Poy, R. Wolf, L. Rosenberg, E. J. Epstein, P. MacMenamin, I. da Piedade, K. C. Gunsalus, M. Stoffel and N. Rajewsky (2005). "Combinatorial microRNA target predictions." Nat Genet 37(5): 495-500.

Kuersten, S. and E. B. Goodwin (2003). "The power of the 3' UTR: translational control and development." Nat Rev Genet 4(8): 626-37.

Kwan, T., D. Benovoy, C. Dias, S. Gurd, C. Provencher, P. Beaulieu, T. J. Hudson, R. Sladek and J. Majewski (2008). "Genome-wide analysis of transcript isoform variation in humans." Nat Genet 40(2): 225-31.

Kwan, T., D. Benovoy, C. Dias, S. Gurd, D. Serre, H. Zuzan, T. A. Clark, A. Schweitzer, M. K. Staples, H. Wang, J. E. Blume, T. J. Hudson, R. Sladek and J. Majewski (2007). "Heritability of alternative splicing in the human genome." Genome Res 17(8): 1210-8.

Lee, K. A., D. Guertin and N. Sonenberg (1983). "mRNA secondary structure as a determinant in cap recognition and initiation complex formation. ATP-Mg2+ independent cross-linking of cap binding proteins to m7I-capped inosine-substituted reovirus mRNA." J Biol Chem 258(2): 707-10.

Leibold, E. A. and B. Guo (1992). "Iron-dependent regulation of ferritin and transferrin receptor expression by the iron-responsive element binding protein." Annu Rev Nutr 12: 345-68.

Lewis, B. P., C. B. Burge and D. P. Bartel (2005). "Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets." Cell 120(1): 15-20.

Lim, L. P., N. C. Lau, P. Garrett-Engele, A. Grimson, J. M. Schelter, J. Castle, D. P. Bartel, P. S. Linsley and J. M. Johnson (2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs." Nature 433(7027): 769-73.

Liu, L., D. Dilworth, L. Gao, J. Monzon, A. Summers, N. Lassam and D. Hogg (1999). "Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma." Nat Genet 21(1): 128-132.

Mannisto, P. T. and S. Kaakkola (1999). "Catechol-O-methyltransferase (COMT): Biochemistry, Molecular Biology, Pharmacology, and Clinical Efficacy of the New Selective COMT Inhibitors." Pharmacol Rev 51(4): 593-628.

McCallum, S. A. and A. Pardi (2003). "Refined Solution Structure of the Iron-responsive Element RNA Using Residual Dipolar Couplings." Journal of Molecular Biology 326(4): 1037-1050.

Menzaghi, C., G. Paroni, C. De Bonis, T. Soccio, A. Marucci, S. Bacci and V. Trischitta (2006). "The $-318 \mathrm{C}>\mathrm{G}$ single-nucleotide polymorphism in GNAI2 gene promoter region impairs transcriptional activity through specific binding of Spl transcription factor and is associated with high blood pressure in Caucasians from Italy." J Am Soc Nephrol 17(4 Suppl 2): S115-9.

Merrick, W. C. (1992). "Mechanism and regulation of eukaryotic protein synthesis." Microbiol. Mol. Biol. Rev. 56(2): 291-315.

Muckenthaler, M., N. K. Gray and M. W. Hentze (1998). "IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F." Mol Cell 2(3): 383-8.

Nackley, A. G., S. A. Shabalina, I. E. Tchivileva, K. Satterfield, O. Korchynskyi, S. S. Makarov, W. Maixner and L. Diatchenko (2006). "Human Catechol-O-Methyltransferase Haplotypes Modulate Protein Expression by Altering mRNA Secondary Structure." Science 314(5807): 1930-1933.

Orkin, S. H., T. C. Cheng, S. E. Antonarakis and H. H. Kazazian, Jr. (1985).
"Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene." Embo J 4(2): 453-6.

Paillard, L., F. Omilli, V. Legagneux, T. Bassez, D. Maniey and H. B. Osborne (1998). "EDEN and EDEN-BP, a cis element and an associated factor that mediate sequencespecific mRNA deadenylation in Xenopus embryos." Embo J 17(1): 278-87.

Pastinen, T., B. Ge, S. Gurd, T. Gaudin, C. Dore, M. Lemire, P. Lepage, E. Harmsen and T. J. Hudson (2005). "Mapping common regulatory variants to human haplotypes." Hum Mol Genet 14(24): 3963-71.

Pastinen, T. and T. J. Hudson (2004). "Cis-acting regulatory variation in the human genome." Science 306(5696): 647-50.

Pattengale, P. K., R. W. Smith and P. Gerber (1973). "Selective transformation of B lymphocytes by E.B. virus." Lancet 2(7820): 93-4.

Paulin, F. E. M., S. A. Chappell and A. E. Willis (1998). "A single nucleotide change in the c-myc internal ribosome entry segment leads to enhanced binding of a group of protein factors." Nucl. Acids Res. 26(13): 3097-3103.

Pelletier, J. and N. Sonenberg (1988). "Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA." Nature 334(6180): 320-5.

Pestova, T. V. and C. U. T. Hellen (2006). "Translation, interrupted." Nat Struct Mol Biol 13(2): 98-99.

Pestova, T. V. and V. G. Kolupaeva (2002). "The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection." Genes Dev. 16(22): 2906-2922.

Pillai, R. S. (2005). "MicroRNA function: Multiple mechanisms for a tiny RNA?" RNA 11(12): 1753-1761.

Pirastu, M., R. Galanello, M. A. Doherty, T. Tuveri, A. Cao and Y. W. Kan (1987). "The Same \{beta\} -globin Gene Mutation is Present on Nine Different \{beta\}-thalassemia Chromosomes in a Sardinian Population." Proceedings of the National Academy of Sciences 84(9): 2882-2885.

Prévôt, D., J.-L. Darlix and T. Ohlmann (2003). "Conducting the initiation of protein synthesis: the role of eIF4G." Biology of the Cell 95(3-4): 141-156.

Qu, H. Q., S. G. Lawrence, F. Guo, J. Majewski and C. Polychronakos (2006). "Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms." BMC Genomics 7: 213.

Qu, H. Q., Y. Lu, L. Marchand, F. Bacot, R. Frechette, M. C. Tessier, A. Montpetit and C. Polychronakos (2007). "Genetic control of alternative splicing in the TAP2 gene: possible implication in the genetics of type 1 diabetes." Diabetes 56(1): 270-5.

Qu, H. Q., L. Marchand, R. Frechette, F. Bacot, Y. Lu and C. Polychronakos (2007). "No association of type 1 diabetes with a functional polymorphism of the LRAP gene." Mol Immunol 44(8): 2135-8.

Richards, A. J., M. Laidlaw, S. P. Meredith, P. Shankar, A. V. Poulson, J. D. Scott and M. P. Snead (2007). "Missense and silent mutations in COL2A1 result in Stickler syndrome but via different molecular mechanisms." Hum Mutat 28(6): 639.

Rozen, S. and H. J. Skaletsky (2000). Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. S. Krawetz and S. Misener, Humana Press, Totowa, NJ, pp 365-386.

Rund, D., C. Dowling, K. Najjar, E. A. Rachmilewitz, H. H. Kazazian, Jr. and A. Oppenheim (1992). "Two mutations in the beta-globin polyadenylylation signal reveal extended transcripts and new RNA polyadenylylation sites." Proc Natl Acad Sci U S A 89(10): 4324-8.

Rusinov, V., V. Baev, I. N. Minkov and M. Tabler (2005). "MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence." Nucl. Acids Res. 33(suppl_2): W696-700.

Saxena, R., B. F. Voight, V. Lyssenko, N. P. Burtt, P. I. de Bakker, H. Chen, J. J. Roix, S. Kathiresan, J. N. Hirschhorn, M. J. Daly, T. E. Hughes, L. Groop, D. Altshuler, P. Almgren, J. C. Florez, J. Meyer, K. Ardlie, K. Bengtsson Bostrom, B. Isomaa, G. Lettre, U. Lindblad, H. N. Lyon, O. Melander, C. Newton-Cheh, P. Nilsson, M. Orho-Melander, L. Rastam, E. K. Speliotes, M. R. Taskinen, T. Tuomi, C. Guiducci, A. Berglund, J. Carlson, L. Gianniny, R. Hackett, L. Hall, J. Holmkvist, E. Laurila, M. Sjogren, M. Sterner, A. Surti, M. Svensson, M. Svensson, R. Tewhey, B. Blumenstiel, M. Parkin, M. Defelice, R. Barry, W. Brodeur, J. Camarata, N. Chia, M. Fava, J. Gibbons, B. Handsaker, C. Healy, K. Nguyen, C. Gates, C. Sougnez, D. Gage, M. Nizzari, S. B. Gabriel, G. W. Chirn, Q. Ma, H. Parikh, D. Richardson, D. Ricke and S. Purcell (2007). "Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels." Science 316(5829): 1331-6.

Scheper, G. C., M. S. van der Knaap and C. G. Proud (2007). "Translation matters: protein synthesis defects in inherited disease." Nat Rev Genet 8(9): 711-723.

Serrano, M., G. J. Hannon and D. Beach (1993). "A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4." Nature 366(6456): 704-707.

Serre, D., S. Gurd, B. Ge, R. Sladek, D. Sinnett, E. Harmsen, M. Bibikova, E. Chudin, D. L. Barker, T. Dickinson, J.-B. Fan and T. J. Hudson (2008). "Differential Allelic Expression in the Human Genome: A Robust Approach To Identify Genetic and Epigenetic Cis-Acting Mechanisms Regulating Gene Expression." PLoS Genetics 4(2): e1000006.

Shen, L. X., J. P. Basilion and V. P. Stanton, Jr. (1999). "Single-nucleotide polymorphisms can cause different structural folds of mRNA." Proc Natl Acad Sci U S A 96(14): 7871-6.

Simon, R., J. P. Tassan and J. D. Richter (1992). "Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element." Genes Dev 6(12B): 2580-91.

Sladek, R., G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T. J. Hudson, A. Montpetit, A. V. Pshezhetsky, M. Prentki, B. I. Posner, D. J. Balding, D. Meyre, C. Polychronakos and P. Froguel (2007). "A genome-wide association study identifies novel risk loci for type 2 diabetes." Nature 445(7130): 881-5.

Smyth, D. J., J. D. Cooper, R. Bailey, S. Field, O. Burren, L. J. Smink, C. Guja, C. Ionescu-Tirgoviste, B. Widmer, D. B. Dunger, D. A. Savage, N. M. Walker, D. G. Clayton and J. A. Todd (2006). "A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region." Nat Genet 38(6): 617-9.

Sonenberg, N. (2008). "eIF4E, the mRNA cap-binding protein: from basic discovery to translational research." Biochem Cell Biol 86(2): 178-83.

Sonenberg, N. and A. G. Hinnebusch (2007). "New modes of translational control in development, behavior, and disease." Mol Cell 28(5): 721-9.

Spahn, C. M., M. G. Gomez-Lorenzo, R. A. Grassucci, R. Jorgensen, G. R. Andersen, R. Beckmann, P. A. Penczek, J. P. Ballesta and J. Frank (2004). "Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation." Embo J 23(5): 1008-19.

Steemers, F. J., W. Chang, G. Lee, D. L. Barker, R. Shen and K. L. Gunderson (2006). "Whole-genome genotyping with the single-base extension assay." Nat Methods 3(1): 313.

Sullivan, C. S. and D. Ganem (2005). "MicroRNAs and viral infection." Mol Cell 20(1): 3-7.

Takagaki, Y. and J. L. Manley (1997). "RNA recognition by the human polyadenylation factor CstF." Mol. Cell. Biol. 17(7): 3907-3914.

Tomer, Y., E. Concepcion and D. A. Greenberg (2002). "A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease." Thyroid 12(12): 1129-35.

Ueda, H., J. M. Howson, L. Esposito, J. Heward, H. Snook, G. Chamberlain, D. B. Rainbow, K. M. Hunter, A. N. Smith, G. Di Genova, M. H. Herr, I. Dahlman, F. Payne, D. Smyth, C. Lowe, R. C. Twells, S. Howlett, B. Healy, S. Nutland, H. E. Rance, V.

Everett, L. J. Smink, A. C. Lam, H. J. Cordell, N. M. Walker, C. Bordin, J. Hulme, C. Motzo, F. Cucca, J. F. Hess, M. L. Metzker, J. Rogers, S. Gregory, A. Allahabadia, R. Nithiyananthan, E. Tuomilehto-Wolf, J. Tuomilehto, P. Bingley, K. M. Gillespie, D. E. Undlien, K. S. Ronningen, C. Guja, C. Ionescu-Tirgoviste, D. A. Savage, A. P. Maxwell, D. J. Carson, C. C. Patterson, J. A. Franklyn, D. G. Clayton, L. B. Peterson, L. S. Wicker, J. A. Todd and S. C. Gough (2003). "Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease." Nature 423(6939): 506-11.

Vafiadis, P., S. T. Bennett, J. A. Todd, J. Nadeau, R. Grabs, C. G. Goodyer, S. Wickramasinghe, E. Colle and C. Polychronakos (1997). "Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus." Nat Genet 15(3): 28992.

Vattem, K. M. and R. C. Wek (2004). "Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells." Proceedings of the National Academy of Sciences 101(31): 11269-11274.

Wang, D., A. D. Johnson, A. C. Papp, D. L. Kroetz and W. Sadee (2005). "Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant $3435 \mathrm{C}>\mathrm{T}$ affects mRNA stability." Pharmacogenet Genomics 15(10): 693-704.

Wang, X.-Q. and J. A. Rothnagel (2004). "5'-Untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation." Nucl. Acids Res. 32(4): 1382-1391.

Wellcome Trust Case Control Consortium (2007). "Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls." Nature 447(7145): 661-78.

Wells, S. E., P. E. Hillner, R. D. Vale and A. B. Sachs (1998). "Circularization of mRNA by Eukaryotic Translation Initiation Factors." Molecular Cell 2(1): 135-140.

Wiestner, A., R. J. Schlemper, A. P. van der Maas and R. C. Skoda (1998). "An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia." Nat Genet 18(1): 49-52.

Yoon, A., G. Peng, Y. Brandenburg, O. Zollo, W. Xu, E. Rego and D. Ruggero (2006). "Impaired Control of IRES-Mediated Translation in X-Linked Dyskeratosis Congenita." Science 312(5775): 902-906.

Zhang, W., S. Duan, E. O. Kistner, W. K. Bleibel, R. S. Huang, T. A. Clark, T. X. Chen, A. C. Schweitzer, J. E. Blume, N. J. Cox and M. E. Dolan (2008). "Evaluation of genetic variation contributing to differences in gene expression between populations." Am J Hum Genet 82(3): 631-40.

Zhao, J., L. Hyman and C. Moore (1999). "Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis." Microbiol Mol Biol Rev 63(2): 405-45.

Zuker, M. and P. Stiegler (1981). "Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information." Nucleic Acids Res 9(1): 133-48.

[^0]: * The number of heterozygotes for the allelic translation assay.

