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Abstract
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This thesis focuses on the development of more sustainable aldehyde reduction and oxidation
reactions in air and water, as an effort towards both minimizing the necessity of hazardous
reductant/oxidant and organic solvent, and expanding the adaptability/application for such

processes.

As the beginning of the thesis, chapter 1 will give a brief survey on historic aldehyde reduction
and oxidation methods. The survey will mainly be conducted in a chronological manner. Both
homogeneous and heterogeneous methods will be discussed. We will also separately discuss

examples using relatively abundant metal, as it being part of the focus of our research interest.

At the ending of chapter 1, we will summarize both achievements as well as limitations of the
current aldehyde reduction/oxidation reactions. Then we will move on to discuss our inspirations
to develop an alternative catalyst to resolve the above-mentioned limitations in chapter 2. We will
first talk about some of the important previous work, followed by our hypothesis on how our

designed catalyst can provide good catalytic efficiency and substrate adaptability.

The chapter 3 will mainly talk about our silver(I)-catalyzed aldehyde reduction system. The
reduction was achieved in a transfer hydrogenation manner with formate as naturally abundant
reductant. Relatively more abundant silver catalyst serves as a more sustainable alternative
compared to traditional catalysts such as ruthenium, iridium, etc. The reduction was conducted in
air and water, thus eliminating the need for inert gas protection and air/moisture-tight operating,
which is required by most of the previous systems. A satisfying substrate scope of this reduction

was achieved with both aliphatic and aromatic aldehydes in good efficiency.

In the beginning of chapter 4, we will introduce how we were inspired by nature and classic
examples to design our silver catalyst towards the oxidation of aldehyde. We will include the result
and discussion regarding our catalytic Tollens’ reaction — a widely adaptable silver-catalyzed
aerobic oxidation of aldehyde in water, along with its optimization, scope investigation, and

mechanism proposal.



The chapter 5 will focus on the attempt of using even more abundant metal than silver to conduct
efficient aerobic aldehyde oxidation in water. Inspired by the classic Fehling’s reaction, a similar
aerobic oxidation of aldehyde catalyzed by copper in water, a catalytic Fehling’s reaction was
developed. High efficiency of oxidation was obtained with wide substrate adaptability. We will

also present our efforts on investigating the mechanism of our catalytic Fehling’s reaction.



Résumé

Cette these est centrée sur le développement de réactions de réduction plus environnementale des
aldéhydes et de réactions d'oxydation dans l'air et dans I'eau, en minimisant la nécessité de
réducteur et/ou oxydant dangereux, de solvant organique tout en élargissant l'application de tels

procédés.

Initialement, le chapitre 1 donnera un bref aper¢u des méthodes historiques de réduction et
d'oxydation des aldéhydes. Cet apergu se déroulera principalement de maniére chronologique.
Les méthodes homogenes et hétérogenes seront discutées. De plus, nous discuterons séparément
des exemples utilisant un métal relativement abondant, puisque cela fait partie de 1'intérét de

notre recherche.

En fin de chapitre 1, nous résumerons les réactions actuelles de réduction/oxydation des
aldéhydes, ainsi que leurs limites. Ensuite, nous discuterons de nos inspirations pour développer
un catalyseur alternatif afin de surmonter les limitations mentionnées dans le chapitre 2. D'abord,
nous parlerons de certaines études antérieures et importantes, suivis de la présentation de notre
hypothese sur la fagon dont notre catalyseur congu peut fournir une bonne activité catalytique et

s’adapter a une grande diversité de substrats.

Le chapitre 3 discutera principalement de notre systéme de réduction des aldéhydes, catalysé par
l'argent (I). La réduction a été réalisée grace a la technique de transfert d’hydrogene avec du
formiate comme réducteur naturellement abondant. Le catalyseur d'argent relativement plus
abondant sert d'alternative plus durable par rapport aux catalyseurs traditionnels tels que le
ruthénium, I'iridium, etc. La réduction a été effectuée dans l'air et dans I'eau, éliminant ainsi la
nécessité de protection de la réaction par des gaz inertes et évitant un fonctionnement étanche a
l'air et a 'humidité, un prérequis pour la majorité des systemes précédents. Cette réduction des
aldéhydes a été réalisée de manicre satisfaisante et efficace sur une grande variété de substrats

comprenant des aldéhydes aliphatiques et aromatiques.

Au début du chapitre 4, nous présenterons comment nous nous sommes inspirés de la nature et
des exemples traditionnels afin de concevoir notre catalyseur d'argent pour l'oxydation

d'aldéhyde. Nous inclurons le résultat et la discussion concernant notre réaction catalytique de



Tollens - une oxydation aérobique d'aldéhyde catalysée par 1'argent dans I'eau, son optimisation,

notre étude sur son applicabilité a diverse substrats et une proposition de mécanisme.

Le chapitre 5 se concentrera sur la tentative d'utiliser un métal encore plus abondant que I'argent
pour mener une oxydation aérobique et efficace dans I'eau. Inspiré par la traditionnelle réaction
de Fehling, une oxydation similaire aérobique d'aldéhyde catalysée par le cuivre dans l'eau, a été
développée. Un rendement ¢élevé de la réaction d'oxydation a été obtenu avec une large diversité
de substrat. Nous présenterons également nos efforts pour étudier le mécanisme de notre réaction

catalytique.
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Chapter 1 — A brief survey for aldehvde reduction and oxidation

1.1 Aldehvde and its importance regarding reduction and oxidation

Oxidation and reduction are 2 fundamental reactions in chemistry. Every day, there are mass
quantities of chemical products manufactured by those reactions. Among them,
oxidation/reduction between alcohol/aldehyde/carboxylic acid series are among the most
important and demanding oxidation/reduction reactions [1]. Being in the center of this series,
aldehyde is regarded as one of the most important chemical products. The global production of
aldehyde is under a constant increase. Only counting hydroformylation process, aldehydes are
produced in over 10-million-ton scale annually [2]. This is majorly due to the potential for
aldehyde to be either readily oxidized into the corresponding carboxylic acids or reduced into the
corresponding alcohols, which are extremely useful in vast number of daily products (Figure 1.1).
Historically, the industry oxidation/reduction processes rely heavily on the use of stoichiometric
hazardous reagents such as NaBH4, LiAlH4, K2Cr207, KMnOg, etc. [3], and sometimes in harsh
reaction conditions. The synthesis of those materials, practice of such processes, and extrusion of
remaining waste all contributed a major part to the great pollution problem in early ages of industry

revolution [4].
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Figure 1.1 Applications of alcohol/aldehyde/carboxylic acid



1.2 Reduction of aldehvde

1.2.1 Meerwein-Ponndorf-Verley Reduction

Realizing such problems, chemists started to seek methods that can give efficient desired
transformation, at the same time minimizing the environmental impact. Among them, one
particularly notable example is the Meerwein-Ponndorf-Verley (MPV) reduction (or the
Oppenauer OPP oxidation for its reverse process) (Figure 1.2a) [5]. The hydride was transferred
from the hydrogen source, which usually represented by isopropyl alcohol, to the target aldehyde
via a 6 member-ring transition state, catalyzed by Lewis acidic aluminum alkoxide. The downside
of'the MPV reduction, however, is the requirement of high aluminum alkoxide catalyst load, which

generates large quantities of waste.

In 1990, Joo reported the use of Ru catalyst to conduct the MPV reduction, in attempt to reduce
the required catalyst load [6]. Compared to 20 mol% to 50 mol% catalyst loads in certain cases,
the new Ru catalyst only requires 1 mol% catalyst load, showing the enhanced stability of the
catalytic cycle by Ru. The reduction mechanism is generally similar to the 6-member ring
transition state of the classic MPV reduction (Figure 1.2b). Although only aromatic and
unsaturated aldehyde was reported in the substrate scope, the reported reaction shows good

functional tolerance.
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Figure 1.2 The Traditional and new MPV reduction



However, despite wide application of the MPV reduction and its derivatives, such reduction
usually give low atom-economy, as stoichiometric amount of ketone waste is often generated.
Alternative method with higher atom-economy for aldehyde reduction is also necessary, especially

when it comes to certain case that require low environmental impact.
1.2.2 Homogeneous catalyzed hydrogenation and transfer hydrogenation

1.2.2.1 Discovery and early attempts

Alongside the development of the MPV transfer hydrogenation, the direct hydrogenation was also
considered a highly desirable approach to achieve reduction of compounds, especially due to its
great atom economy. As early as 19" century, people started to realize that certain metals, such as
Pt or Ni, are capable of directly activating hydrogen gas to do reduction of various compounds [7].
Importantly, those reduction reactions in most cases give very clean reduction and generate very
little amount of side-reactions and wastes, which is very difficult to achieve using other reducing
reagents. With such discoveries, development of methods to achieve hydrogenation of aldehyde is

imminent.

In 1975, a homogeneous Rh-catalyzed hydrogenation of aldehyde was developed [8]. The catalyst
was composed of single molecule containing only one Rh atom. Although only 2 substrates,
cinnamaldehyde and croton aldehyde, was reported, the reported transformation achieved the first
selective hydrogenation of C=0 instead of C=C, reducing cinnamaldehyde into the corresponding
unsaturated alcohol. It was demonstrated that the addition of amine affects the above-mentioned

selectivity greatly (Figure 1.3).

0.7 mol% RhCl;
= trace N.D. trace
Ha
(0] r.t., 60min OH (0] OH

o R oot

0.7 mol% RhCl,
0.5 equiv Et3N
S~ 56 % 28 % 14 %
Ha
r.t., 60min

Figure 1.3 Homogeneous Rh-catalyzed hydrogenation in 1975 and the effect of amine



Four years later in 1979, Ru catalyst was also developed for aldehyde hydrogenation [9]. In such
case, triphenylphosphine was applied as ligand to efficiently boost the catalyst activity and stability.
It was also demonstrated that CO ligand can also increase the catalyst activity. Despite that a
hazardous pressure of hydrogen was required (68 bar), there are still 6 substrates reported to be
efficiently reduced to the corresponding alcohol (Table 1.1). The substrate scope includes both
aliphatic and aromatic compounds, both aldehydes and ketones. Ever since this report, ligands

tuning became the focus for designing hydrogenation catalyst.

Table 1.1. Ru-catalyzed aldehyde hydrogenation in 1979

OH

[Ru] E ocC PPh
H ——> H | [Ru] = SRul ?
68 bar H, ; H Cl
r.t. X
OH
OH OH
H H
98 % 96 % 56 %
OH
96 % 72 % 98 %

Though efforts have been made towards aldehyde hydrogenation, however, mechanistic study was
never conducted regarding how the hydrogen is transferred from bi-molecular gas to the aldehyde
and become the a-hydrogen of the corresponding alcohol. In 1981, Grey and Pez synthesized
anionic Ru and Ir hydride complexes and demonstrated that those anionic hydride complexes
represent important intermediates in Ru and Ir-catalyzed hydrogenation of aldehyde [10].
Although the possibility for oxidative addition of metal catalyst, which is common for olefin
hydrogenation, was not excluded, the author hypothesized that the mechanism of aldehyde
hydrogenation is more likely to undergo bi-molecular hydrogen heterolysis into hydride and proton

(Figure 1.4). It was also demonstrated that decarbonylation is a major side reaction in aldehyde



hydrogenation. It also serves as the main reason for catalyst poisoning due to the generation of

metal carbonyl. Notably, such problem was generally not observed in ketone hydrogenation.

Mx) + H-H M(x) + H heterolysis
H
Mx) + H-H ——= H-M(x+2) oxidative addition
O 0] 'T'
M(x) + . J\H > )J\ H ™ R-M(x+2) catalyst poisoning
M ]
(x+2) Co

Figure 1.4. Two potential pathways for hydrogen activation and catalyst poisoning

Since then, many efforts have been made to design more efficient catalyst for aldehyde
hydrogenation. It was not difficult for chemists to realize that the aldehyde hydrogenation catalyst
activity can be further increased by even more electron-rich ligands, as such process facilitates
potential oxidative addition towards hydrogen at the same time inhibit the undesired

decarbonylation. In 1982, Tani and Otsuka demonstrated that the use of fully alkylated phosphine,

Table 1.2. Aldehyde hydrogenation in 1982 using electron-rich phosphine

0 [Rh] oH Pr.
H —— H | [Rh = SR > clo,
1 atm H, : N}
or i-Pry
10 equiv i-PrOH
OH
OH
H
H
t1/2 =4 min t1/2 = 5.5 min
OH OH OH
4 A QOH
)\/ O O OH HO
t1/2=70 min t1/2=81 min t1/2=20h t1/2= 10 min t1/2=6min



which is generally much more electron-rich than previous arylated phosphine, increased the
efficiency of catalyzed aldehyde hydrogenation in almost every substrate examined (Table 1.2)
[11]. The experiments also shown that the catalyst’s increase in electron density significantly
inhibited the undesired decarbonylation as well as the B-H elimination, which resulted in the re-
oxidation of the reduction product. It was also shown that bidentate diphosphine ligands generally

functions more efficiently than monodentate ligands (Table 1.3).

Table 1.3. Reactivity comparison for mono- and bi-dentate phosphine

/(jo [Rh] OH
t-Bu TatmHy;  tBy

or
10 equiv i-PrOH

Fmmmm e e e e o

P P = 2 P(i-Pr); i-ProP o ~_ -~ Pi-Pr, PhQP\/\/\Pth

t1/2=24h t1/2=2.7 min to = 14 h

Similar result was also obtained in 1994, when Burk demonstrated a powerful Rh hydrogenation
catalyst [12]. Very electron-rich bidentate 1,1’-bis(diisopropylphosphino)ferrocene was shown to
also be the key to achieve high efficiency and low H» pressure. Many substrates, including aliphatic,
aromatic and even protected carbohydrate carbonyl compounds were claimed to be successfully
reduced to the corresponding alcohol (Table 1.4). However, it was also observed that for
unsaturated aldehydes, the undesired C=C hydrogenation was facilitated rather than C=0O
hydrogenation (Scheme 1.1).

In 1986, Sanchez-Delgado concluded that 3 factors were necessary when designing efficient
aldehyde hydrogenation catalyst [13]: 1) at least one empty coordination site for substrate
coordination; 2) the ability for metal to afford a stable pair of oxidation state x/x+2; 3) one CO
ligand to minimize the undesired decarbonylation, since such process was observed when catalyst
contains only hydride and phosphine ligand, which possibly promote the initial oxidative addition
of aldehyde C-H (Figure 1.5). The author also made an enhancement for the current catalyst by
switching the anion to carboxylate. The author hypothesized that the bidentate carboxylate is very

labile and its carbonyl coordination to the metal can dissociate to open empty coordination site for



substrate. It was also demonstrated that more electron-poor carboxylate facilitates the desired

transformation, which is consistent with the author’s hypothesis.

Table 1.4. Substrate scope of Rh-catalyzed hydrogenation in 1994

' i'Prz
o [Rh] OH N
, | ! - -
H H | [Rh= | Fe rRh_J ]| clo;
4 bar Hj ©)\ p” S
[ ) : @—i_Prz

Substrate Scope:
OAc OAc O

CHO o (0] 9] 0O 0
ACO\/k/\)J\
©/ /\/\)J\H %J\H ©)J\H ©)J\H r ¢ H
\ 0] \ S OAc OAc

0 0 o
o) 0
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CO,Et
FsC t-Bu
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Scheme 1.1. Selectivity for C=C over C=0
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Figure 1.5 The ideal catalyst for aldehyde hydrogenation according to Sanchez-Delgado’s design



As relatively limited examples was reported for Ir as aldehyde hydrogenation catalyst, in 1989, a
[Ir(CO)(PPh3)2]ClO4 catalyst was developed to conduct aldehyde hydrogenation in room
temperature under atmospheric hydrogen [14]. However, the substrate is relatively limited, for
bulkier iso-butanal did not react in the reported condition (Table 1.5). Aromatic-containing
aldehydes also shown inferior reactivity. For unsaturated aldehydes, the reported catalyst seemed

to prefer C=C hydrogenation rather than C=0, as C=C reduction was mainly observed.

Table 1.5. Ir-catalyzed aldehyde hydrogenation in 1989

(@] OH E PPh *
fir] ol = |oc-IKl B clo,
W ——— T PPh;
1 atm H2 '
OH OH OH OH (o]
)\H \)\H \/\)\H MH ¥ /\)J\H
82 % 70 % 58 % 22 % 48 %
OH OH
OH 0 OH
+ H H
\)\H \)J\H \H\H
N.D. 63 % N.D. 15 % 10 %
(@] OH
OH
H * H )\
47 % 100 %* 1%

* After increase the pressure of H, to 3 bar

In 2002, Ir catalyst containing bidentate phosphine was developed for aldehyde hydrogenation
catalyst [15]. The experiment depicted in the research shown that the bidentate phosphine
functions more efficiently compared to 2 similar monodentate phosphine ligands. It was also
shown that Ir exhibits even better selectivity of C=0 rather than C=C (Table 1.6), which contrasts
with previous reports where Ir usually shown inferior catalyst activity when compared to Ru or

Rh.



Table 1.6. Investigation over bi-dentate phosphine in efficiency and selectivity

/\)OJ\ - /\)O\H
_—
R H 50 bar H, RO H
Citral Cinnamaldehyde
(I
Conversion Selectivity Conversion Selectivity
F|>F>h3
PhyP
* Sir—co 3% 71% 11 % 35%
PhaP” |
H
::h2TPh3
P>I|r—co 8% 61% 27 % 19 %

Ph,H
P/ o 0 0 0
P/Ilr—PPh3 12 % 92 % 45 % 13 %
PhyH
Phaco
P o 0 0 0
O P/Ilr—PPh3 19 % 96 % 21% 77 %
PhyH

Ph,

P\Cl:o
(:( /Ilr—PPh3 59 % 96 % 58 % 9%

P H

PPh,

| H

- co 14 % 43% 52 % 1%
a’l

PPh,

One of the biggest disadvantage for homogeneous catalysis compared to heterogeneous is the

difficulty in clean and facile isolation of product. In 2001, the group of Monflier described an
interesting solution, where a water-soluble phosphine was used as ligand and cyclodextrin as phase
transfer catalyst [16]. The Ru catalyst was successfully conducted in an organic/water biphasic
reaction system. The hydrogenation took place in water phase and the alcohol product was
enriched in the organic phase (Figure 1.6). Such report not only partially addressed the isolation

problem for homogeneous catalysis, but also shown the potential to easily modify the reactivity of



aldehyde hydrogenation catalyst just by tuning the ligand, implying the great potential of ligand in

modern catalysis.

Organic phase

Aqueous layer

Figure 1.6 Aqueous phase Ru catalysis using cyclodextrin

1.2.2.2 The Novori hydrogenation and transfer hydrogenation of aldehvyde

Inspired by the demonstrated potential for bidentate diphosphine ligand in catalytic aldehyde
hydrogenation, in 1987, Noyori and co-workers reported the use of a Ru catalyst chelated by a
specialized phosphine to carry out carbonyl hydrogenation [17]. By introducing BINAP as a chiral
ligand, high-efficiency asymmetric hydrogenation of carbonyl compound was achieved for the
first time. The catalyst was shown to functioned via the hydrogen heterolysis mechanism, rather
than the oxidative addition mechanism (Figure 1.7). This work is considered the precursor of the
later known name reaction Noyori Asymmetric Hydrogenation/Transfer hydrogenation (NAH or
NATH). Though significant, however, such system only functions with activated ketone, in most

cases, -ketocarbonylic derivatives. Aldehyde was not active towards the reduction.
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Figure 1.7. Mechanism for the 1% generation Noyori catalyst

As early as the report in 1975 [8], chemists started to realize that the presence of amine in the
catalyst system can greatly enhance the aldehyde hydrogenation efficiency. Although the
mechanism behind this phenomenon was not fully investigated at the time, this effect was later
demonstrated to be of great potential. In 1997, Noyori demonstrated the use of asymmetric diamine,
rather than diphosphine, as ligand and achieved asymmetric transfer hydrogenation using
alternative alcohol as hydrogen source [18]. It was hypothesized that the hydrogen heterolysis
involves both the Ru and the nitrogen ligand. The hydride coordinated to the Ru and become a
covalent ligand, the anionic nitrogen captured the proton and become a dative ligand. No oxidation
state change was observed throughout the whole process (Figure 1.8). Although the hydride
transfer between different substrate is reversible and cannot go to completion, the discovery of this
nitrogen-assisted activation of hydrogen set the stage for the development of the next generation
Noyori catalyst. Notably, it was later demonstrated that this catalyst is also capable of conducting

direct hydrogenation of aldehyde and ketone, giving satisfying efficiency.
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In 2001, the milestone work by Noyori greatly expanded the efficiency and versatility of

hydrogenation and transfer hydrogenation processes [19]. At the same time, the enantioselectivity

of the previous Noyori catalyst was also preserved. The efficient catalytic activity and good

functional tolerance of the Noyori catalyst for carbonyl reduction relies heavily on the diamine bi-

dentate ligand. [20] The mechanism of Noyori system is shown in Figure 1.9. A donor-acceptor

[21] H-Ru-N-H complex generated by heterolysis of hydrogen gas with Ru-N is mainly

responsible for the high efficiency activation of carbonyl via a 6-member ring transition state.
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Figure 1.9 The 2" generation Noyori hydrogenation / transfer hydrogenation of aldehyde
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Sterically hindered substrates have been a long-persisting issue for methodology studies. For
Noyori system, tert-butyl carbonyl compound shows much inferior reactivity in both yield and ee.
In 2005, Noyori and Ohkuma demonstrated that this problem can be solved by switching the
symmetric diamine into an asymmetric amine/pyridine hybrid ligand, a-picolylamine [22]. This
modification potentially allows a wider empty coordination site for bulkier substrates. As a result,

excellent efficiency was obtained for bulky aldehydes/ketones (Table 1.7).

Table 1.7. The Noyori catalyst for bulky substrates

0 [Ru] | / \N—Bd P
O
5-8 atm H, NH;
! R

iso. yield (ee)
EtO ‘OH
W m o*ﬁ A
96 % (97 %) 91 % (97 %) 95 % (98 %) 98 % (97 %)
97 % (97 %) 98 % (98 %) 91 % (84 %) 99 % (90 %)

1.2.2.3 Other hydrogenation and transfer hydrogenation system utilizing N-M ligand-metal

bifunctional catalysis

Since the Noyori reaction is widely practiced, countless works were introduced to improve the
Noyori ligand-metal donor-acceptor catalyst. Those developed systems generally consist an
electron-rich phosphine donor to facilitate metal hydride interaction, and a bifunctional nitrogen

donor to capture the proton.

As ‘Pincer’ terdentate ligand, which usually contains a non-labile anionic covalent donor and up
to 3 labile dative donors, has received intensive research interest especially in the 1990s [23],
however, they have not yet been applied to the Noyori system. In 2005, Baratta first reported the

use of a C, N, N,-tridentate pincer ligand in Ru hydrogenation and transfer hydrogenation system.
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The design of this pincer ligand was inspired by the above-mentioned asymmetric amine/pyridine
hybrid ligand, which was also applied in the Noyori system for hydrogenation of bulkier substrate.
By adding a covalent C donor to the amine/pyridine, the new tridentate ligand gave impressive
efficiency and selectivity over substrates (Table 1.8). It was also demonstrated that the same

catalyst also functions efficiently with transfer hydrogenation from 2°-alcohol.

Table 1.8. Ru-catalyzed transfer hydrogenation of aldehyde using pincer ligand

OH

R ;
: Ru] =
©)}\ 2- propanol propanol ©)\ H : Rl
OH OH OH OH
©)\ Meo\©)\ C|\©)\
98 % 98 % 99 % 99 %
OH OH
P Yﬂ
cl
97 % 99 % 97 % 98 %

As the asymmetric Noyori catalyst often involves 2 chiral ligands, which is difficult to prepare, in
2007, a P, N, N- tridentate ligand was developed to replace such requirement [24]. The sole ligand
contains all the required donors for the Noyori catalyst, at the same time the enantioselectivity of
the traditional catalyst was greatly preserved. Compared to preparation of 2 chiral ligands at the
same time, the cost for synthesizing this new catalyst was also significantly reduced. The catalyst
complex was identified and shown good catalyst efficiency. However, high-pressure hydrogen gas
is required to obtain efficient transformation. In addition, the reported hydrogenation shown

limitations in selectivity by also reducing ester group (Table 1.9).

To further improve the activity of the existing hydrogenation and transfer hydrogenation catalyst,

it is not difficult for chemists to realize that Os, which is just one slot down to Ru in the periodic
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Table 1.9. Ru-catalyzed aldehyde hydrogenation in 2007

5 Cl
Q [Ru] ; NRT_PPh,
O i (0 O
40 - 60 bar H, : “N
| H,Cl DMSO
iso. yield (ee) |
OH OH OH OH
X - : 2
F2
76 % 99 % (77 %) 99 % (90 %) 99 %*

* Reducing from the corresponding methyl ester

table, forms stronger metal-ligand coordination to generally soft ligands used in the Noyori catalyst.
Such effect can potentially increase the catalyst stability and allows greater TON. In 2008-2009,
Baratta demonstrated the use of Os to replace Ru in the Noyori catalyst (Figure 1.10) [25-27]. As

i SO
2 H2
P H
7 Nrs A P\RV/N
—/(¢ | P/H\H
NH, Ph,
R

= H
Phoc | @—P (F| N2

Ph,oP P/,, T Ny Fe Os’
N-gs—p - N <5 ¢ N
H|  Ph, P, Ph, ~ 2

NH,

Figure 1.10. Os catalyst designed from their corresponding Noyori’s Ru catalyst
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they have designed, enhancement in catalyst efficiency and enantioselectivity was observed in all
cases, which allows those catalysts to be extremely active for both hydrogenation and transfer
hydrogenation of both aldehydes and ketones. However, as Os being an expensive and usually
toxic metal, Ru catalysts remain the most widely-applied choice. Nevertheless, the development
of Os catalyst opened an alternative solution for more efficient hydrogenation and transfer
hydrogenation requiring better enantioselectivity.

Another potentially active metal for hydrogenation and transfer hydrogenation of aldehyde is Pt.
Historically, Pt was the first metal to show hydrogenation activity [7]. It was also widely applied
in heterogeneous hydrogenation of carbonyl compound (will be discussed in heterogeneous
section). Nevertheless, Pt was never used as homogeneous carbonyl hydrogenation catalyst.
Although the mechanistic reason behind this disagreement remains uninvestigated, in 2009, Wang
reported the use of a simple PtO»-triethyl amine system to conduct hydrogenation of aldehyde [28].
No additional phosphine or chiral amine ligand was necessary, the simple metal oxide shows
remarkable hydrogenation efficiency and selectivity by reducing many natural products. Many of
those natural products contain multiple carbonyl groups, surprisingly, only one of them was
reduced into the desired enantiomeric pure alcohol (Scheme 1.2). Despite mechanistic study was
absent, it was presumably agreed that the EtsN functions similar to the N-M ligand-metal
bifunctional catalyst in the Noyori system. This study shows great potential to explore Pt as

hydrogenation catalyst.

@)
Hy (1 atm)/PtO,/EtgN ps

95% EtOH/24h N
yield 90% HO ,-

Scheme 1.2. Example of natural product reduction using Pt/Etz:N system

1.2.2.4 The Shvo hydrogenation of aldehyde

As early as 1986, one year earlier than Noyori’s discovery of Ru-BINAP and Ru-diamine system,
Shvo had developed an alternative ligand-metal bifunctional catalyst for the donor-acceptor

reduction of aldehyde [29], which is composed of a cyclopentadienone-Ru-carbonyl catalyst
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complex. It was suggested that this catalyst system also functions via ligand-metal bifunctional
pathway. The heterolysis of hydrogen was accomplished by Ru and the carbonyl of
cyclopentadienone, generating the corresponding Ru-H and hydroxycyclopentadiene complex,

which can efficiently undergo donor-acceptor hydrogenation of aldehyde (Figure 1.11).

Ar = Ph, Tol H2 >,_\\
%Ph Ph ﬁf \5@(’

Ar . . .R
oC CO ocC oC

Hz

Figure 1.11. Typical mechanism for the Shvo hydrogenation

Since the discovery of the Shvo catalyst, many mechanistic studies were conducted [30]. Similar
to the Noyori system, the hydrogenation of the Shvo catalyst also involves the donor-accepter 6-
member ring intermediate. It was also shown that the dimerization of catalyst poses the main factor
that inhibits the catalytic cycle and limits the efficiency of the Shvo catalyst. To overcome this
barrier, the first solution was proposed by Casey in 2002 [31]. In his study, the cyclopentadienone
ligand in the Shvo catalyst was replaced by Cp-NHPh (Figure 1.12). It was shown that the bulky -
NHPh was efficient in preventing catalyst dimerization, however, the new Shvo catalyst requires

the addition of strong acid (TfOH) to stabilize the ammonium intermediate.
>/\< rh
P ”_né-
P Fllu\
oc’"j (l: - \_/ oc
H,

Figure 1.12. Casey’s catalyst for acidic hydrogenation of aldehyde

A better solution was proposed by Casey 4 years later [32]. It was later discovered that the
substituent on the Cp ring can greatly inhibit the dimerization. In his study, the most efficient
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hydrogenation was obtained with [2,5-(SiMe;3)2-3,4-(CH20CH2)(n5-C4COH)]Ru(CO)H
[33],where a bulky -TMS group significantly improve the stability of catalytic cycle (Figure 1.13).

Both hydrogenation and transfer hydrogenation was efficiently obtained with satisfying substrate

scope.
TMS o ™S
™S

g 0 o OC@}O\”\ \@O\
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Figure 1.13 Mono-metallic intermediates for Casey’s system in 2016

1.2.2.5 Donor-acceptor reduction by nanoparticle

As the noble metal catalyst in the previously described system usually cannot be reused, efforts
have been made towards catalyst recycling for hydrogenation and transfer hydrogenation. Notably,

Table 1.10. Donor-acceptor hydrogenation pathway for AuNP

R; R;
Au L1 ——= | Au o)
H2 A% \
H-H Y
O o

S OH OH OH OH
: H \/\/\)\ /\/\)\ )\/k X
@ H Ny " /\)\H
95 % 99 % 94 % 95 % 95 % 95 %
OH OH OH
H
N Ny \)\H /\/\/\H
O,N FZ NC
95 % 61 % 99 % 95 % 42 % 90 %
OH OH OH 0 OH OH OH
\ \
N © S HOOC MeOOC
86 % 94 % 99 % 99 % 99 % 99 %
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in 2014, van Leeuwen group reported a Gold-nanoparticle-(AuNP)-secondary phosphine
oxide(SPO) system and achieved efficient aldehyde hydrogenation and recyclability of catalyst
(Table 1.10) [34]. The catalyst functions through a similar donor-acceptor mechanism, in which
the hydride coordinates to the AuNP and the SPO captures proton. Although the recyclability of
the catalyst still needs improvement (only 4 cycles), this work demonstrated that the application

of the ligand-metal donor-acceptor system can also be applied towards mesoscopic system.

1.2.2.6 Hydrogenation and transfer hydrogenation catalyzed by abundant metal

Historically, among all the effort towards aldehyde hydrogenation, noble metals were
predominantly used as catalyst, such as Pt, Ru, Rh, Ir, etc., for their great affinity towards hydrogen.
The use of abundant metal as hydrogenation catalyst is extremely scarce. However, in fact,
abundant metals such as Fe are among the earliest developed aldehyde hydrogenation catalysts
[35]. However, since the migratory insertion of substrate carbonyl in the Fe-H is generally slow,

the application of such catalyst was greatly limited (Figure 1.14).
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OH ;
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Figure 1.14. Early discovery of Fe-catalyzed hydrogenation and its limitation

19



In 2009, a copper catalyst bearing triphenylphosphine ligand and nitrate anion was developed [36].
Although great hydrogen pressure is required (5.0 MPa), the catalyst achieve impressive substrate
scope with both aromatic and aliphatic aldehydes (Table 1.11). Notably, the catalyst shown
exceptional selectivity where in an unsaturated aldehyde, only carbonyl was reduced into the

corresponding alcohol. No reduction or isomerization of the C=C was observed.

Table 1.11. Cu-catalyzed aldehyde hydrogenation in 2009

0 CU(NOS)(PPhs)z OH
H —————> H
50 bar H,
OH OH OH OH OH
¢ g Y p
91 % 98 % 87 % 96 % 85 %
OH OH OH OH
H
H H NSH Xy H
OH
90 % 76 % 10 % 68 % 99 %
OH
O on OH OH o
-, H
O H N\ o
96 % 92 % 72 % 94 % 92 %

As Noyori and Shvo introduced the more efficient donor-accepter catalyst for aldehyde
hydrogenation, the use of abundant mental in such system had attracted considerable interests. In
1999, a new Shvo’s catalyst uses Fe instead of traditional Ru (later known as the Knolker catalyst)
was developed [37]. Impressive substrate scope was achieved using very low load of Fe catalyst
(Figure 1.15). Computational study also demonstrated that the Kndlker-type catalyst shows better
tolerance of bulky substrate [38].
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Figure 1.15. Aldehyde hydrogenation catalyzed by the Knolker catalyst

Another particularly notable example comes from a great Canadian Chemist [39]. The Morris
hydrogenation/transfer hydrogenation of aldehyde/ketone using a pincer-type iron catalyst
achieved good efficiency and adaptability, with very low load of Fe. The catalyst also functions
via ligand-metal donor-acceptor model to achieve high efficiency (Table 1.12). Wide substrate

scope was achieved with good enantioselectivity for ketones.



Table 1.12. The Morris hydrogenation/transfer hydrogenation of aldehyde/ketone

5 [ PR Cl Ph T
o el | 3—|
H . [Fel= sper 4 BF
©)J\ ex. 2 -propanol ©)\ : p”” | \ 4
: th e Ph2
iso. yield (ee) L ) _
QH
OH OH  Fc : OH OH
F3
99 % 99 % (90 %) 99%(98% 84 % (83 %) 73 %
OH
> <OH L))\ m ©/\)\
88 % 67 % 98 % 84 % 55 %

1.2.2.7 Transfer hydrogenation in water

Although using abundant metal, those above-mentioned methods generally require the use of an
excess of organic solvent, which has become one of the most important environmental challenges

for all pharmaceutical industry nowadays. [40]

Some great efforts for aldehyde reduction were also made using water as the sole solvent and
transfer hydrogenation from alternative hydrogen source. Those methods possess great potential
especially in small scale aldehyde reduction, e.g. in pharmaceutical chemistry, for eliminating the
need of organic solvent, pressure-withstanding equipment and spark-sensitive environment, which
are generally required in direct hydrogenation. In 1999, Ogo reported a bi-metallic [Cp*IrOH],
catalyst and achieved the first transfer hydrogenation of aldehyde in water [41]. The hydride was
extracted and give a stable Ir-H-Ir bridging intermediate (Figure 1.16). However, only water-
soluble aldehydes were reported in the substrate, which significantly limits the application of the
Ogo system. In addition, the hydroxyl-Ir bi-metallic intermediate is less stable, which result in

very high catalyst load (10 mol%).
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Figure 1.16. Ogo’s Ir-catalyzed transfer hydrogenation in water

Inspired by the hydrogenase enzyme in nature, which involves a Ni-Fe bi-metallic catalyst center,
in 2012, a similar Ni-Rh bridging system was also reported for direct hydrogenation in water [42].
Although more abundant Ni was used, the system cannot evade the bimetallic Ni-H-Rh
intermediate. As a result, only 5 substrates were reported to underwent the desired transformation
(Figure 1.17), which greatly limits the application of this method. However, the success of a bio-

mimic catalyst still indicates interesting potential for further application with this catalyst.
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Figure 1.17. Ni-Rh bi-metallic catalyst for hydrogenation in water
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Compared to the classic Noyori catalyst, by simply switching to a water-soluble Noyori diamine,
aqueous transfer hydrogenation of aldehyde was also efficiently achieved by Xiao [43]. Those
reported methods gave good catalyst efficiency and satisfying scope of substrates. Less than 1 mol%
catalyst load was required for the system. Another catalyst for transfer hydrogenation in water was
later developed by Xiao using an N, C-acetophenone imine ligand [44], which is similar to the a-
picolylamine ligand in the 2" generation Noyori catalyst. The reported transfer hydrogenation

gave impressive efficiency (Figure 1.18).
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Figure 1.18. Xiao’s a) 1% generation and b) 2"¢ generation catalyst for transfer hydrogenation in

water
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1.2.3 Heterogeneous catalyst for aldehyde hydrogenation

Heterogeneous catalysts receive more attention from industry and larger-scale production, as good
catalyst recyclability was obtained and usually fixed instead of various product was required to
manufacture. In early times, heterogeneous catalytic hydrogenation of carbonyl compounds poses
a great challenge, as selectivity over C=C to C=0 was difficult to obtain. The mechanism
rationalization of such selectivity remained unclear for decades until 21% century, as the
development of microscopic instruments. It was demonstrated than the choice over catalyst,
support and even geometry of the catalyst and hydrogen absorption all contributed to the selectivity
over the desired hydrogenation (Figure 1.19) [45]. Generally, 1) an activated carbonyl (e.g. by
Lewis acid), 2) the steric proximity for hydride to attack carbonyl, plus 3) partial poisoning of
catalyst to minimize undesired C=C hydrogenation will lead to efficient hydrogenation of the

desired carbonyl.

Figure 1.19. Principle and selectivity for heterogeneous carbonyl hydrogenation

1.2.3.1 Heterogeneous Pt catalyst for aldehyde hydrogenation

Pt was the first metal discovered for hydrogenation chemistry [7]. In early times, as other factors
were difficult to manipulate due to limitations of techniques, support was chosen to be the focus
for catalyst tuning towards better C=0 hydrogenation. In 1995, Pt catalyst was synthesized with
silica or alumina support (Pt@silica or Pt@alumina) for selective hydrogenation of acrolein to
product unsaturated alcohol [46]. However, as gaseous phase reaction was necessary, substrate

was limited to volatile aldehydes. Alternatively, Pt@clay was also developed to examine the
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selectivity in hydrogenating cinnamaldehyde, crotonaldehyde and citral in room temperature [47].
Despite significant selectivity obtained, the desired product was still produced in lower yield and

in mixture, especially for crotonaldehyde and citral.

As new techniques were proven of concept in many research areas, more in-depth tuning of
hydrogenation catalyst was enabled. In 2000, ultra-sonication of the catalyst prior to reaction was
demonstrated to enhance the hydrogenation efficiency [48]. Good selectivity of C=0 over C=C
was obtained especially in lower H, pressure. However, as H» pressure decreasing, reaction

efficiency as well as yield of product was also diminishing.

As the development of modern electronic microscopy, in 2008, Pt nanoparticle supported on
carbon (PINP@C) was synthesized and successfully introduced into hydrogenation of aldehyde
[49]. It was demonstrated that the shape, size, and surface of the NP all contributed to the
selectivity and efficiency of Pt-catalyzed hydrogenation of aldehyde. It was demonstrated that the
hexagonal Pt nanocrystal shows better selectivity of C=0O over C=C for crotonaldehyde and
cinnamaldehyde. The corresponding unsaturated alcohol was obtained. It was also demonstrated
that the catalyst activity was strongly dependent on the surface of exposed unsaturated Pt, which

in this study was only observed in crystal corner and edges.

In 2011, it was demonstrated that the use of a second metal along with Pt can potentially enhance
the catalytic hydrogenation selectivity and efficiency [50]. A series of M-Pt bi-metallic
nanocrystals was generated and examined towards the hydrogenation of cinnamaldehyde. It was
hypothesized that the second metal functions via 1) blocking unselective low coordination metal
and 2) optimizing the surface electronics of Pt. The best result was obtained with Co-Pt bi-metallic

nanocrystal and shown good selectivity over the desired cinnamyl alcohol.

As people realize that the blocking of low coordination metal site can be beneficial to the selective
hydrogenation, another possible solution was to only enable the reaction to occur in
microscopically confined space. The steric constraint in the reaction space could potentially inhibit
undesired C=C coordination. In 2013, such confined reaction space was successfully generated
using well-defined zeolite as template [51]. Within the nanochannels across zeolite, PtNP was
deposited along with Lewis acid to further facilitate C=O activation. As designed, molecules with
terminus C=0, represented by aldehydes, shows exceptional selectivity for the desired

hydrogenation.
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In 2014, the above-mentioned system was further enhanced with synthesis of PtNP dispersed in
hyperbranched polystyrene [52]. In addition to the steric constraint enhancement, in this report,
hydrophilic ammonium salt was decorated on the surface of hydrophobic polystyrene. The
decoration was well-controlled so that the reaction environment within polystyrene nanochannel
remained hydrophobic. The catalyst achieved great selectivity and efficiency, especially with
water as solvent, for the hydrophobic substrates were ‘forced’ by repelling from hydrophilic
solvent and polystyrene surface into the hydrophobic nanochannel. This mechanism was
demonstrated to be very successful, as very bulky substrates, which are difficult to react in other

systems, also gave excellent yield of the corresponding alcohol.

1.2.3.2 Heterogeneous Pd catalyst for aldehyde hydrogenation

One slot upper than Pt on the periodic table, Pd is extremely widely used for C=C hydrogenation.
However, C=0 hydrogenation of Pd was extremely limited. In 1994, Sautet concluded from
experimental and computational studies that the reason behind such poor C=0 affinity is due to
weaker electronic repulsion between C=C and Pd, which presented in 5s°4d'® electron
configuration. [53] Therefore, the C=C is greatly favored over C=0 in Pd-catalyzed hydrogenation.
However, certain examples of Pd-catalyzed hydrogenation of C=0 also presents [54], as Lewis
acid doping (FeCl» in this case) activated the C=0. Still, low selectivity and efficiency was

obtained.

1.2.3.3 Heterogeneous Au catalyst for aldehyde hydrogenation

In addition to the example described in 1.2.2.4 where AuNP-phosphine oxide was used as a
powerful catalyst for hydrogenation of aldehyde, in 2009, Volpe studied the hydrogenation of
unsaturated aldehyde catalyzed by AuNP [55]. It was demonstrated that AuNP functioned more
efficiently on iron oxide support. The catalytic efficiency does not relate to the redox property of
the iron oxide. Interestingly, the size of AuNP does not play an important role in catalytic
hydrogenation. However, the morphology affected the selectivity of C=0 over C=C greatly,

possibly due to the presence of Au ion that activates the carbonyl.

1.2.3.4 Heterogeneous Ru/Rh catalyst for aldehyde hydrogenation
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The development of heterogeneous Ru/Rh catalyst focuses heavily on methods to efficiently
recycle their homogeneous counterpart, as excellent efficiency and selectivity have already

obtained with them.

The pioneering work for homogeneous Ru/Rh recycling was done by Grosselin in 1991 [56]. An
aqueous/organic bi-phase reaction mixture was proposed. The Ru/Rh was immobilized in the
aqueous phase with the help of water-soluble sulfonated phosphine ligand. This proof-of-concept
study was generally successful, as the substrate/product can be easily extracted into the organic
phase to recycle the aqueous catalyst. This approach was widely accepted especially for smaller-
scale synthesis, for example pharmaceutical and cosmetic industry where reactions were mostly
carried out in small-scale solution, and continue to be used even nowadays. Recently in 2011, this
system was improved by Melean and co-workers to give better selectivity of C=0 hydrogenation

over C=C [57].

Despite being significant, the problem for the biphasic recycling system is obvious, as hydrophobic
substrates are generally difficult to enter the aqueous catalyst phase. This issue become particularly
problematic for aldehydes with larger molecular mass. In 1993, Fache compared the catalyst
efficiency and recyclability between biphasic system and the stationary system using SiO> [58], in
which homogeneous Ru or Ir catalyst was immobilized on solid phase, which poses a great
advantage for this system due to its simple synthesizing step. It was demonstrated that in this case
Ir functions more efficiently and easier to recover. However, two problems prevail, as 1) the
reaction can only be conducted in non-polar solvent, as severe leaching was observed in polar
solvent; 2) product and catalyst are difficult to isolate, even in non-polar media, as poisonous

absorption of various organic compounds by SiO».

Realizing such problem, the development of alternative support was desirable for heterogeneous
Ru/Rh catalysts. In 1993, Galvano and co-workers uses active carbon as heterogenization support
for Ru catalyst and successfully conducted aldehyde hydrogenation [59]. A bi-metallic Ru-Sn
catalyst was also examined on active carbon support. It was demonstrated that increasing Sn/Ru
ratio leads to less exposure of Ru. At the same time, addition of Sn®* facilitates the desired

hydrogenation, as Lewis acidic Sn?* activates carbonyl into cationic form.

In 1997, Kaneda described the use of polystyrene as support to immobilize Rh catalyst for
hydrogenation [60]. Rhs(CO)6 cluster was used as active catalyst and afforded [Rhe(CO)15sH] as
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intermediate. It was advantageous for the use of metal carbonyl clusters as catalyst as they are very
easy to prepare, even possible to do direct carbonylation inside mines [61]. It was also suggested

that the basicity and hydrophilicity of support all contributed to the efficiency of catalyst.

Based on the previous result, in 2008, CO; saturated poly(ethylene glycol) (PEG/CO,) was
developed as a new generation catalyst support [62]. Due to the easy synthesizing steps for catalyst,
eco-friendly nature and great mechanical feature of the support, it was widely accepted into various
industry. Compared to polystyrene, PEG is much more hydrophilic, therefore good efficiency and
functional tolerance was observed for the hydrogenation. Great selectivity of C=0 over C=C was

also observed for unsaturated substrates.

1.2.3.5 Abundant metal as heterogeneous aldehyde hydrogenation catalyst

1.2.3.5.1 Cu catalyst

Cu are among the earliest developed heterogeneous hydrogenation catalyst for aldehyde. In 1980,
the pioneer work by Jenck and Germain using copper chromite as catalyst achieved hydrogenation
of aldehyde, ketone and olefin in various conditions [63]. In contrast with noble metal catalyst
system, the olefin was the least reactive compared to aldehyde or ketone in this report. Despite the
decarbonylation and other potential side-reactions, this system was widely adapted especially in

polymer, fine chemical, and farm industries for decades.

However, the use of chromite poses significant environmental hazard. In 1988, an alternative Cu
catalyst with SiO; support was developed [64]. The hydrogenation was able to proceed in less than
2 atm of hydrogen pressure. The deuterium isotope experiment confirmed that the 2 added
hydrogen in alcohol are both from the hydrogen gas. Though the condition was very promising,
the reaction happens in gaseous phase, thus very limited product was reported to be successfully
reduced. The catalyst was also able to catalyze reduction of ester in the same condition, therefore

limits its functional tolerance.
1.2.3.5.2 Ni catalyst

In late 20™ century, started by the development of previous-mentioned copper chromite system for
aldehyde hydrogenation, the aldehyde industry received a blooming period. With copper chromite

hydrogenation, especially when coupled with hydroformylation process, various industry products
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were readily manufactured in facile steps. However, as chromium leaching and pollution become
a more and more serious issue, alternative transfer hydrogenation catalysts need to be immediately
developed. Ni, as one of the earliest developed and very important hydrogenation catalyst [65],
has attracted considerable attention from the chemistry society. Fe-doped Ni-B alloy was
developed as hydrogenation catalyst in 2003 for furfural industry [66]. It was suggested that the
aldehyde C=0 was coordinated at electron deficient Fe or Fe3*, the Ni, however, receives
considerable electron enrichment and weakens the C=0 bond by donating electron to the C=0
antibonding orbital. However, this catalyst system requires careful control over Fe-dopant during
the catalyst synthesis. A higher Fe-dopant resulted in inactivation of the Ni, as many active sites
will be covered; a lower Fe-dopant resulted in undesirable side-reaction, as remaining Fe become

too active.

Another developed system for aldehyde hydrogenation is the Ni-Mo/ALxO; catalyst. This catalyst
was extensively applied previously for hydrodesulfurization and hydrogenitrogenation of fossil
fuel [67]. Many reports were dedicated to enable better understanding of catalyst character [68-
72]. Generally, reduced Ni-Mo catalyst performs better than NiMoS sulfurized catalyst. S or CO
represent major poisoning reagent for the catalyst. Despite the draw-backs, efficient hydrogenation

and good functional tolerance was achieved.

Despite the significance of Ni-Mo catalyst, the hydrogenation catalyzed by such catalyst generally
requires high hydrogen pressure (around 70 bar). Furthermore, long-chain aldehyde reduction is
generally inactive. In 2016, a Cu/Ni/Cr system was developed [73]. The catalyst possesses a high
surface area from its porous structure. Long-chain nonyl aldehyde was used as model compound
and achieved efficient hydrogenation at 180°C and 25 bar of hydrogen. Despite deactivation of
catalyst after many catalytic cycles, majorly by the formation of carbonaceous fouling film inside
the porous catalyst, the regeneration of catalyst can be done by aerobic oxidation by low-

concentration oxygen within nitrogen flow.
1.2.3.5.3 Co catalyst

As early as 1969, selective hydrogenation of unsaturated aldehyde into the corresponding
unsaturated alcohol was reported by Co [74]. Later kinetic investigation shown that Co possess

better selectivity for aldehyde hydrogenation compared to Ni [75]. With Raney-Co catalyst, 2-
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methyl-2-pentenal was first successfully reduced to the corresponding unsaturated alcohol.

Promising selectivity over unsaturated alcohol was observed, however, demands enhancement.

As chemist realized the function of proper support over heterogeneous catalyst, various support,
including silica [76] and alumina [77] were developed for Co-catalyzed aldehyde hydrogenation.
It was determined that the size and shape of Co particle dispensed on the support play critical role
on the application of the reported catalyst to various substrates. As a result, over 70 % selectivity
of C=0 over C=C was observed for supported Co-catalyzed hydrogenation of unsaturated

aldehyde.

The bi-metallic hydrogenation catalyst was also developed, in 2015, as a supported Co-Cu catalyst
[78]. This catalyst shows important reactivity over furfural, which is an important bio-renewable
material and can be easily obtained in farm crops. Over 80 % selectivity was obtained in generating
the corresponding furfuryl alcohol, which is a crucial substrate in polymer industry. Milder
reaction condition (170°C, 20 bar Hy) was enough to achieve such selectivity. Indicating very

promising potential for Co as aldehyde hydrogenation catalyst.

1.3 Oxidation of aldehyde

1.3.1 Historic methods and challenges for aldehyde oxidation

As established in 1.1, oxidation of aldehyde composes the other important counterpart to the
interest of the organic chemistry community. [79] Although it seems autoxidation of aldehyde in
air can be significant, however, high yields of the corresponding carboxylic acids are very hard to
achieve, as mixtures of products were often obtained with autoxidation and other common oxidants.
In fact, oxidation of aldehyde poses a highly challenging task for chemists. Kinetically, the
interaction between electrophilic aldehyde and also-electrophilic oxidant is difficult. (Figure 1.20,
left) Furthermore, the well-established single electron transfer (SET) mechanism for alcohol
oxidations [80] is impractical for aldehydes, as the sp2-hybridized radical-cation intermediate
generated from aldehyde is much more unstable than the sp3-intermediate from alcohol. (Figure

1.20, right)
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Figure 1.20. Challenges for aldehyde oxidation

Historically, the most important aldehyde oxidation methods are the Fehling oxidation [81] and
the Tollens oxidation [82]. Using metallic oxidants such as Cu(Il) or Ag(I), remarkably efficient
aldehyde oxidation was readily achieved in very short reaction time. Both the reactions use water
as the sole solvent and mild reaction temperature (warm water bath). After reaction, it was
demonstrated that almost every type of aldehyde, aromatic, aliphatic, unsaturated, and even aldose
such as glucose and fructose, are efficiently oxidized into the corresponding carboxylic acid
(aldonic acid). This versatility made the Fehling and the Tollen oxidation among the most
important aldehyde oxidation method in the history, especially for titration analysis and the
production of aldonic acid, which is extremely difficult to achieve using other methods (Figure
1.21). The mechanism for those reactions are still controversial nowadays [83]. One hypothesis
suggests the aldehyde was first hydrated in to the corresponding gem-diol and deprotonated in
basic aqueous, then the Ag(I)/Cu(Il) coordinated to the deprotonated gem-diol and extract one
electron in SET, generating the gem-diol radical, which was further extracted of one electron and
give the carboxylic acid. Another hypothesis involves the formation of Ag(I)/Cu(Il)-OH
intermediate. The aldehyde was activated by the metal and the anionic -OH give nucleophilic
attack into the activated carbonyl. The generation of the tetrahedral intermediate was followed by
B-H elimination. Since the Ag(I)/Cu(Il)-H was not stable without additional ligand, the metal

hydride collapse into lower valency metal and proton.
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Figure 1.21. The Fehling and the Tollens reagent in aldehyde oxidation

Another notable example of important historic aldehyde oxidation is the Jones oxidation [84].
Although mainly used for alcohol oxidation, the Jones reagent has made significant contribution
in the oxidation of aldehyde due to good functional tolerance and selectivity. The mechanism of
the Jones oxidation involves the initial formation of alcohol perchromate ester (general formula
CrO3(OCH2R)). The ester then collapses with Cr(VI) obtained 2 electrons and become Cr(IV),
releasing the carboxylic acid. Even nowadays, the Jones’ oxidation of aldehyde is still of great
application. Very recently, in Hao’s total synthesis of Perforanoid A [85], Jones’ reagent played a

key role for selectively oxidizing specific acetal into the corresponding ester (Figure 1.22).

Cr03

o Jones reagent _
AN (75 %)

Perforanoid A

Figure 1.22. The Jones reagent and its application in aldehyde oxidation
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Although achieving great utility and efficiency, the stoichiometric metallic wastes generated in
those above-mentioned methods are particularly hazardous and difficult to process. As more and
more restrictions were added regarding metal waste generation, the development of new aldehyde
oxidation method without generation of metallic waste is eagerly demanded by academia and
industry. In 1973, Lindgren first demonstrated the use of chlorite (ClO2") as oxidant towards
oxidation of aldehyde [86]. Though very limited substrate scope was obtained, the scope includes
both aliphatic and aromatic aldehyde. Later in 1981, Pinnick demonstrated the oxidation of
unsaturated aldehyde in same system [87]. The above-mentioned system was later recognized as
the Pinnick oxidation. As one of the most widely applied aldehyde oxidation method even
nowadays, many products in chemical industry, especially pharmaceuticals, was synthesized via
this method (Figure 1.23) [88]. Despite the great utility achieved by the Pinnick oxidation, certain
problems still remain. Since the oxidation generates stoichiometric amount of sodium hypochlorite
(HOCI), which consumes the C10; oxidant and inhibits the desired transformation, scavenger was
generally required to eliminate HOCI. The most commonly used scavenger was 2-methyl-2-butene,
which was added stoichiometrically in almost every practice. Furthermore, some aldehydes show
unsatisfying reactivity. For example, aliphatic conjugated C=C, unprotected amine/pyrrole and

thioether containing aldehyde are easily oxidized in Pinnick oxidation condition.
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Figure 1.23. The Pinnick oxidation and its application in pharmaceutical synthesis

As early as 1979, Evans and co-workers have studied the effect of anion towards aldehyde
oxidation using electrochemistry with different electrodes. [89] The result showed that the addition
of OH" to the aldehyde can dramatically boost its tendency towards oxidation. The generated gem-

diol have a great oxidation potential shift. (which can be as great as 3.6 V) Indicating the potential
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to conduct aldehyde oxidation using this alternative approach. The persistent radical (TEMPO,
bicyclic-nitroxyl, etc.) /NOx-catalyzed method, which was often used for alcohol oxidation [90],
has been directly applied to the oxidation of gem-diol of the corresponding aldehyde (Figure 1.24)
[91]. However, with those persistent radicals, which are generally volatile and reactive, poor

functional-tolerance was also obtained.
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Figure 1.24. A typical mechanism for aldehyde oxidation using persistent radical system
1.3.2 Enzymatic oxidation of aldehyde

Despite the challenges and difficulties in developing aldehyde oxidation method, such process also
widely exists in nature and even human body [92]. Those biochemical oxidations of aldehyde in
vivo are generally catalyzed by fine-engineered enzyme from nature, using water as the sole
solvent in mild temperature (in most cases 37 °C). Dissolved oxygen is either directly used from
water, or consumed through biochemical oxidative cascade. Although most natural enzymes
exhibit specificity towards substrate, many functionalized enzymes were isolated and investigated
to catalyst different aldehydes oxidation. Only with human dehydrogenase family in our liver cell,
the combined substrate scope has already covered almost all common aldehydes, including
aliphatic, aromatic and unsaturated aldehydes [93]. Those processes are well adapted in some of
the specific synthesizing processes. However, it is usually difficult for many industries to carry on
in vivo or bio-mimic reactions due to the lack of equipment, etc. Furthermore, the enzyme
specificity usually demands the industry to obtain many of those specific enzymes, and many of

them require different storage and reaction conditions.

1.3.3 New oxidants for catalyzed aldehyde oxidation
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Generally, due to the difficulty described in 1.3.1, up till now, methods which can carry out
efficient and widely applicable oxidation of aldehyde is very limited. In attempts to solve these
problems, at first, chemists are looking forward to alternative oxidants that does not require or
generate undesirable materials. Those oxidants generally consist of high-valency or electron-
deficient center, and anionic oxygen to increase the affinity towards the already-electrophilic
carbonyl (Figure 1.25). The mechanism of those aldehyde oxidation is generally initiated by
anionic oxygen attack of the carbonyl to generate the tetrahedral intermediate, then the tetrahedron
collapses and electron was extracted by the electron deficient oxidant to generate the desired

product.
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Figure 1.25. Typical mechanism for previous aldehyde oxidation

Among those catalysts, potassium hydropersulfate (oxone) shown great potential for its structural

stability and cost-effectiveness. In 2003, Borhan systematically studied the use of oxone towards

Table 1.13. Oxidation of aldehyde using oxone
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oxidation of aldehyde (Table 1.13) [94]. The oxidation shown good efficiency and functional
tolerance in mild reaction condition (50°C, DMF, 3h). Furthermore, the oxidation can also afford
the desired ester by switching solvent to the corresponding alcohol. However, the oxone oxidation
is not effective for unsaturated aldehyde and hydroxyl/alkoxyl containing substrates. Bulky tert-

pentanal and even less bulky iso-butanal was not reactive either.

Another effort towards the development of alternative oxidant was introduced in 2005. While
pyridinium chloroperchromate (PCC) was developed as a highly efficient alcohol oxidation
reagent, Hunsen developed the combined use of catalytic PCC and stoichiometric periodate as
efficient oxidation of aldehyde [95], which generates the active oxidant chlorochromatoperiodate
in situ (Table 1.14). A satisfying substrate scope was achieved. However, excessive amount of

periodate oxidant was required, which potentially result in side reactions such as C-C cleavage

[96].

Table 1.14. PCC catalyzed aldehyde oxidation using periodic acid

cat. PCC
O 1.1 equiv H5I0g O
R™ 'H MeCN R™ "OH
(0] (0] ) (0]
©)J\OH /@)J\OH /@)J\OH /@)J\OH /@*OH 02N\©)J\OH

Cl Br 02N

98 % 99 % 95 % 96 % 95 % 99 %
% o)
o] (o] (0]
OH OH /VJ\OH =~ OH
MeO

97 % 97 % 97 % 95 % 43 % 96 %

To circumvent the undesired side-reaction caused by excessive oxidant, one solution is to use
gaseous oxidant that can be introduced slowly in a controlled manner. As ozonolysis with alkene
into the corresponding aldehyde/ketone is well established [97], it is natural to assume that ozone
can also oxidize aldehyde into the corresponding carboxylic acid. In 2008, Johnson summarized
the ozone oxidation of aldehyde attempts [98]. While achieving significant result, however, poor
functional tolerance was obtained due to the harsh oxidation by ozone. In 2016, nitrous oxide was
examined as a milder alternative for ozone to oxidize aldehyde [99]. It was demonstrated that

nitrous oxide oxidation of cyclohexanecarboxyaldehyde was very efficient under atmospheric
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pressure and room temperature (Scheme 1.3). Although decarbonylation side-reaction was also

observed, the use of nitrous oxide still poses an interesting potential.

cat. [Ni] !
(@] (o) | _
1 atm N,O ! N
H > OH ! [Ni]= N—Ni—N
MeCN, r.t. . k/lll >

Scheme 1.3. Nitrous oxide oxidation of aldehyde

Another possible solution is the use of milder oxidant in aldehyde oxidation. Peroxide (OOH7/0>*")
is more desirable for its cost-effectiveness and high atom economy. Inspired by the mechanism of
a common bioluminescence, flavin, which undergoes catalytic nucleophilic addition of peroxide
to the fatty aldehyde followed by the collapse of tetrahedral intermediate to eject fatty acid and a
photon, a flavin-catalyzed bio-mimic oxidation of aldehyde was reported by Carbery using
hydrogen peroxide in 2012 [100]. Impressive substrate scope was obtained, even bulky tart-
pentanal gave a satisfying yield (60 %). However, unsaturated aldehydes were not reactive (Table
1.15).

Table 1.15. Flavin-catalyzed bio-mimic oxidation of aldehyde

: l_l OH
0 15echf}Ho 0 5 N O H,0 NdN 0
: 22 ' 2V2
1 X, o e = it
' pZ p7
ROH MeCN R™OH FsC N FoC N
| 0 0
o} 0 0 O
/©)‘\OH OQN\©)‘\O OH /@J\OH /@)J\OH /@)‘\OH
NO, ¢l MeO
89 % 80 % 90 % 94 % 77 % 23 %
0 0 0 o
0 0
OH Ny oH on M =L
L N OH OH OH
~
73 % 90 % 99 % 88 % 98 % 60 %
0 OH
OH
64 % 55 % 42%
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In 2017, Hlavac noticed that hydrazine, under certain circumstances, can oxidize aldehyde into the
corresponding carboxylic acid by cleavage of C-N bond and the ejection of nitrogen gas [101]. He
later further developed the system using resin linker and presynthesized hydrazone [102]. A series
of aromatic aldehydes successfully underwent the desired transformation (Table 1.16). Despite the
scope of substrate was limited to aromatic aldehyde, this approach still shows interesting potential
by 1) avoiding the use of transition metal catalyst; 2) using resin support that can be easily cleaved,

facilitating the purification of product.

Table 1.16. Catalytic oxidation of hydrazone

H H TMSOK (0.5 M) o K
R™Ng + HN \© — R/%N,N\© THF, r.t, 16 h R/go
hydrozone

R:
k‘Ll. X E‘ S E’ S hLLL‘
| ol o

HO 7
0O 83% 63 % 57 % 43 %
" o O or
©/ O,N cl HO
60 % 48 % 81 % 95 %
9 * %,
HO 0 \ﬂ/\/\o o
87 % © 82 %

1.3.4 Catalyzed aerobic oxidation of aldehyde

Aerobic oxidation of aldehyde is probably one of the most exciting approach towards carboxylic
acid, as no hazardous oxidant was used and the highest atom economy was achieved. Despite the
promising outcome, this area of research has received very limited attention. The autoxidation of
aldehyde by aerobic oxygen is generally significant, however, giving incomplete conversion and
mixture of products. The mechanism for the autoxidation has been thoroughly studied (Figure 1.26)

[103]. The process involves hydrogen extraction by oxygen radical, generating a peracid, which
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oxidizes another aldehyde similarly to Baeyer-Villiger mechanism to generate 2 carboxylic acids.
The process involves the generation of 1) a carbonyl radical and 2) a peracid. Both species are
very reactive and causes many side reactions, which potentially contributed to the low efficiency

of autoxidation and many attempts of catalytic aerobic oxidation of aldehyde.

O
o 00 o M o
Jor” Jvoon —— B on M.
"O-OH J_oH »
R™ 'H R R™ "0 Baeyer-Villiger =~ R~ "OH
carbonyl radical peracid oxidation

Figure 1.26. Mechanism of autoxidation of aldehyde

In 2009, Tada reported the synthesize of a SiO2 supported Ru-p-cymene catalyst for aerobic
oxidation of aldehyde [104]. A labile p-cymene ligand was designed to generate empty
coordination site for oxygen (Figure 1.27). The catalyst shows good recyclability, and ability to
catalyze the aerobic oxidation of a variety of substrates. However, the catalyst is also shown to

catalyze epoxidation of alkene, thus greatly limits the substrate scope of this method.

—=< om0

\// /RU\CI o\\S// /R:U\CI
NH2 N
\\/ \__NH:
C4He 0, C4Hg
-Si Si
O ~N I
§ o OX §Q & OX
= -
S|02 SIOZ
R R H
O:=O RCHO Q&OH 0 RCHO o0 Ru
Ru O“Ry -rcoon R Ru I
I Y v \Y

Figure 1.27. Ru-catalyzed aerobic oxidation of aldehyde

In 2009, Chechik and co-workers reported the aerobic oxidation of aldehyde using simple oxygen

and gold-nanoparticles as catalyst. [105] Although significant, those oxidations did not avoid the
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generation of the above-mentioned unstable sp?-hybridized carbonyl radical and the peracid

(Figure 1.28), which resulted in low reaction efficiency and limited scope of substrates.

- H,0+ 0O,
O,
AuOOr AuOOH (o2

R

R_\< R—G} _< — = termination

0 0 (e}
propagation
H O—OH RCHO OH
R—\< R Q —_— R \
0 e} Baeyer-Villiger o)

Figure 1.28. Mechanism of AuNP-catalyzed aerobic oxidation of aldehyde

In 2008, aerobic oxidation of aldehyde using heterogeneous Ag>O/CuO catalyst in water was
reported [106]. A few examples of substrate were reported to be efficiently oxidized (Table 1.17).
However, in addition to the requirement of high catalyst load, limited substrate scope and side

reactions were also obtained.
Table 1.17. Ag20/CuQO-catalyzed aldehyde aerobic oxidation

o Ag,0/Cu0O 0

R™ OH 0, R” “OH
0 (@] 0O
@)ko,_, on  Meo OH OH OH
\
O HO O,N MeO
92 % 75 % 81 % 78 % 73 %

In 2009, N-Heterocyclic Carbene was developed as aerobic oxidation organocatalyst. [107]
Significantly different from the previous aerobic oxidation mechanism, the oxidation proceeds via
the nucleophilic attack of the carbene to generate the Breslow intermediate, which was further
hydrolyzed to build the carboxylic group (Figure 1.29). Oxygen was then involved to restore

aromaticity of the system. However, the activation of oxygen was driven by the restoring of



aromaticity, therefore substrate was limited to aromatic aldehyde. Furthermore, this method cannot
evade the requirement of organic solvents, which are necessary to be kept in air-free and dry

environment.

0 OH Ar

@* e @J~ @J~ @J

Figure 1.29. NHC-catalyzed aerobic oxidation of aromatic aldehyde

1.4 Conclusion

In this chapter, a brief survey over historic development of aldehyde reduction/oxidation was given.
With precise designing over the catalyst, especially over various functionalized ligand for
homogeneous catalysis or specific doping/geometry/support for heterogeneous catalysis, the
desired selectivity and efficiency of the aldehyde reduction can be achieved via multiple methods.
However, improvements are also desirable, as either organic solvent or scarce noble metal is still
necessary. Furthermore, the development of innovative aldehyde oxidation with improved
selectivity and adaptability, remains highly challenging. The development of those reactions will
not only facilitate the transformation process of aldehyde into various everyday products, but will
also likely to initiate the discovery of unprecedented aldehyde reduction/oxidation mechanisms,
which can enable further innovative transformations and contribute to fundamental chemistry

knowledge.
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Chapter 2 — Designing a more sustainable aldehyde reduction

2.1 Initial discovery: silver-catalyzed A3/ A2 — coupling

As established in chapter 1, although current methodology development already enables fine-
control over the reaction selectivity and efficiency, the main problem for aldehyde reduction
nowadays is the requirement of scarce noble metals or organic solvents. We therefore set our
research focus onto the development of more sustainable and efficiency aldehyde reduction

method.

In the past years, our group has developed a series of transition metal catalysts that can efficiently
catalyze the Aldehyde/Alkyne/Amine-(A%)-coupling reaction in water (Figure 2.1a) [1], which
involves the activation of aldehyde by amine into iminium to accept nucleophilic attack from
alkyne. In 2003, our group developed the first silver-catalyzed A*-coupling in water [2]. The
catalyst shown impressive efficiency. With as little as 1.5 mol% of Ag load, a variety of substrate
was successfully coupled. Notably, the couplings of aliphatic aldehydes were particularly efficient
[3]. Such efficiency cannot be achieved by other A3-coupling catalysts such as Au or Cu [1], whose

substrate scopes were generally limited to aromatic aldehydes.

a) A3-coupling
1-5mol% AgCl_ N
R-CHO 4
water or ionic liquids R
b) A%-coupling

OH
0 cat. [Ag] p
o+ h—=—r = RTNS
R H water H X
R i

7

Figure 2.1. Ag-catalyzed A%/A2-coupling reaction in water

With demonstrated exceptional catalytic activity by silver(I), our group began to further explore
the potential for Ag as catalyst. Two years later in 2005, our group discovered that after the catalyst

was further stabilized by phosphine ligand, the silver-catalyzed A3-coupling became extremely
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efficient. The necessary step required by previous A*-coupling catalyst, which is the activation of
aldehyde by 2°-amine to generate iminium, was generally unnecessary when 5 mol% Cy;PAgCl
was applied as catalyst (Figure 2.1b) [4]. The therefore established aldehyde/alkyne (A?)-coupling
achieves very good efficiency, both aliphatic and aromatic aldehydes successfully underwent the
coupling without amine activation. As far as we are concerned, Ag is the only catalyst that capable

of efficiently catalyzing such transformation.

2.2 Our hypothesis for developing aldehyde reduction using silver system

Impressed by the silver-catalyzed A3/A%-coupling reaction, we were interested in the further
development of other potential silver catalyst. In the previous methodology development, silver
reagents are, in most cases, applied stoichiometrically or as Lewis acid. Examples using silver as
catalyst are relatively limited [5]. To fully explorer the potential for silver as powerful catalyst for
carbonyl chemistry, we hypothesized that silver possesses the potential to also serve as efficient

catalyst for aldehyde reduction catalyst (Figure 2.2).

After examining the proposed mechanism of the previous transformations, we suggested that the
high efficiency of silver catalyst came from 3 factors: 1) strong Ag" Lewis acidity; 2) weak Ag-
Nu coordination; 3) long Ag-Nu bond length.

Donor-Acceptor system + Qur system
R H M = Ru, Ir, Fe, etc... -H from various hydrogen sources

H/) \'jH requires either noble metal
M—-N or organic solvent

--Ag
R /}%\f ’ relatively abundant metal
“~H in air and water

Figure 2.2. Our hypothesized silver-catalyzed aldehyde reduction mechanism

It has been well-established that carbonyl group can be activated by Lewis acid to generate stronger
partial positive charge on C=O carbon [6]. The carbonyl group is relatively ‘inert’ if no such
activation was applied. Ag" possess +1 positive charge, which enables its Lewis acidity.
Furthermore, the 4d shell of Ag" cannot effectively shield the electrostatic force from positive
charged nucleus, as shown by the electrochemical series in which silver is almost at the bottom
(E%Ag'/Ag) = +0.799 V) [7]. Though the charge is distributed due to larger ionic radius, many

excellent reports have indicated Ag" as a powerful Lewis acid for organic catalysis [8].
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Although enables strong Lewis acidity from its weak shielding, the 4d!° shell of Ag® is in an
energetically stable state. Among all group 11 elements in the periodic table (Cu, Ag, Au), Ag
possesses the greatest 2" ionization energy [9], which indicates that in most cases silver can only
afford +1 oxidation state. Such low charge is difficult to maintain a strong coordination between
ligands and Ag" center. In most organometallic complexes, although exhibits very unsaturated 14e
state, silver shows only linear 2-coordination geometry [10]. The ligand coordinated to Ag" is
therefore relatively labile [11]. This is particular advantageous for nucleophiles, as most of their
nucleophilicity were preserved even after coordination to Ag®, which results in powerful

nucleophilic attack catalyzed by Ag.

As mentioned before, Ag* possess a relatively large ionic radius (around 1.29 A) [12]. The Ag-Nu
bonds were therefore relatively long (Ag-C: 2.1 A, Ag-H: 1.7 A) [13]. Compared to shorter C=0O
length (1.16 A)[14], when Ag-Nu aligns with C=0, Ag-Nu shows good alignment with the LUMO
of C=0O (Figure 2.2 right) [15]. Nu attack on carbonyl can thus be enhanced with Ag catalyst.
When Nu is represented by hydride, reduction of aldehyde can therefore be established.

2.3 Proposed research

a)
-Ag

(@) A O/ + OH

cat. Ag /}I\) ‘ H y

R H  [H] RH Ly R™H

b) c) d)
0 H——SiR() O H—H gl
(+) Alg—OIH ) (+) Ag--- base (-) Ag@ﬁ

Figure 2.3. Our proposed silver-catalyzed aldehyde reduction

Based on our previous assumption and the demonstrated excellent efficiency for Ag towards
carbonyl chemistry, we suggest the silver catalyzed hydrogenation/transfer hydrogenation from
Ag-H intermediate can serve as a potential choice to efficiently reduce aldehyde into the
corresponding alcohol (Figure 2.3a). In 2006, Stradiotto described the extraction of hydride from
silane by silver (Figure 2.3b) [16]. The activation of molecular hydrogen was long reported by
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Halpern (Figure 2.3c) [17]. Also, transfer hydrogenation by formate/2-propanol was suggested by
many reports (Figure 2.3d) [18]. We then propose to use silane, hydrogen gas, and formate/2-

propanol as hydrogen sources, to examine the potential for Ag as aldehyde reduction catalyst.

2.4 Conclusion

In the designing table, we have summarized the previous notable reports on silver as a powerful
catalyst for carbonyl chemistry. A plausible mechanism was proposed for the efficiency of silver-
catalyzed nucleophilic addition. Such mechanism inspires us of the potential for using silver as

aldehyde reduction catalyst. Further development to fulfill our hypothesis is imminent.
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Chapter 3 — Silver(I)-catalvzed transfer hvdrogenation of aldehvyde in air and water

Angew. Chem. Int. Ed. 2013, 52, 11871-11874
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Figure 3.1 Developments of our silver-catalyzed reduction system
3.1 Objective

Inspired by the excellent catalytic efficiency of silver towards aldehyde, our group has
demonstrated the potential of using hydride from various hydrogen sources as the nucleophile in
our silver(I) system, via a key silver(I)-hydride intermediate [1], towards the development of
aldehyde reduction. We have introduced silver-catalyzed reduction of aldehyde using silane [2] or
hydrogen gas [3] as hydrogen source in water (Figure 3.1). Those methods achieved impressive
substrate scope under mild reaction conditions. However, the shortcomings of these methods are
the requirements of either silane, which is highly flammable and provides less atom economy [4],
or hazardous hydrogen pressure (40 bar), which also involves pressure-resisting equipment and
potential hazardous, as stoichiometric reductant. To address these challenges, transfer
hydrogenation using non-toxic and inexpensive reagent as hydrogen source can serve as an

appealing solution, as many reports have demonstrated such potential [5].

3.2 Results and discussion

3.2.1 Condition optimization

Isopropyl alcohol and formate have been widely applied as very good hydrogen source for transfer
hydrogenation [6]. To begin our investigation, we attempted to use these two reagents as reductants

under our previous transfer hydrogenation conditions (Table 3.1) [2], with pre-mixed AgPFg salt
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and 1,1°-bis(diphenylphosphino)ferrocene (dppf) ligand as catalyst at 100 °C in water. Surprisingly,
although in low yield, the reaction with sodium formate gave the desired product successfully
(entry 1). We then focused our research into optimization of reaction conditions. Keeping the
same ligand, when silver salt anion was switched from PFs to F-, the yield slightly increased (entry
2). Although the increase was not significant, considering the better air- and moisture-stability of
AgF compared to AgPFs, we decided to use AgF for the optimization. Further switching the anion
to Cl, Br, and I shut down the reaction (entries 3, 4, 5), indicating the necessity for weak
coordinating anion. Similar yield was obtained with AgOTTf (entry 6). Keeping AgF as the salt,
switching dppf ligand to other common ligands such as 2,2’-bipyridyl (L») and triphenylphosphine
(L3) resulted in the elimination of product again (entries 7, 8). However, when slightly different
tris(4-fluorophenyl)phosphine (L4) was used, the yield increased to 6 % (entry 9). This result
probably implied that hemilabile ligand, with one strong coordinating atom and another weak
coordinating atom, can be beneficial to this reaction. Similar hemilabile ligand tris(2-
furyl)phosphine (Ls) diminished the product (entry 10). Other chelating ligand such as diphos (Ls)
and binap (L7) also resulted in the elimination of product (entries 11, 12). For electron-rich
Buchwald-type ligand, XPhos (Ls) did not give desired product (entry 13), while hemilabile ligand
RuPhos (Lo) gave an astonishing 61 % yield (entry 14). Using less bulky SPhos (Li0) gave a further
increased 66 % yield (entry 15). --BuDavePhos (L11) gave 50 % yield while DavePhos (L12) gave
an almost quantitative yield (entries 16, 17). N-Heterocyclic Carbene ligand IMes (Li3) did not
give the desired product (entry 18). Keeping the optimized ligand, switching the salt from AgF to
AgPF¢ gave a decreased 38 % yield (entry 19). AgCl, AgBr, and Agl gave decreasing yields of
85 %, 11 %, and 0 %, respectively (entries 20, 21, 22). Salt or ligand alone were proven to be
unable to catalyze the reaction (entries 23, 24). When the reaction was performed without DIPEA
as base, yield dropped to 33 % (entry 25). Neat reaction without solvent gave 26 % yield (entry
26). Switching solvent to ethanol, acetonitrile, acetone and DMF, the yield decreased to 80 %, 9 %,
0 % and 0 %, respectively (entries 27, 28, 29, 30). These results indicate the necessity of protonic

solvent to this reaction.
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Table 3.1 First condition optimization

S —ppn,
Ph,P— CFe

PCy>

L
i-Pr: ! i-Pr

1
i-

0 silver salt 10 mol% Om
ligand 20 mol%

H 4 HCO,Na % H
DIPEA 20 mol%

H,0 0.25 mL
0.1 mmol 0.6 mmol 2 L 2a
100°C, 24h, in air NMR Yield %

F F
a0 QT an O
D o oot

F
L Ls L7

L, L3 Ls
) ® ® ) -
PCy2 PCy> P(t-Bu), PCy2 N._N
o) o _0 0. Me,N Me,N .
Pr O i-Pr  Me O Me O O

Pr

Lg Lo L1o L4 L1z L1

Entry Silver Salt Ligand NMR Yield @ Entry Silver Salt Ligand NMR Yield @
1 AgPFs Ly 2% 16 AgF L 50 %
2 AgF L1 3% 17 AgF L1z >99 % (92 %)°
3 AgCl L1 N.D. 18 AgF L1z N.D.
4 AgBr L1 N.D. 19 AgPFs L1z 38%
5 Agl Ly N.D. 20 AgCl L 85%
6 AgOTf L1 3% 21 AgBr L 11%
7 AgF L. N.D. 22 Agl L1z N.D.
8 AgF Ls N.D. 23 /! L1z N.D.
9 AgF La 6% 24 AgF // N.D.
10 AgF Ls N.D. 25 AgF L 33 %¢
11 AgF Le N.D. 26 AgF L1z 26 %9
12 AgF Ly N.D. 27 AgF L2 80 %°
13 AgF Ls N.D. 28 AgF L1z 9 %f
14 AgF Lo 61 % 29 AgF Lz N.D.8
15 AgF Lio 66 % 30 AgF L N.D.h

* 'THNMR yields were determined by using mesitylene as the internal standard;

" Isolated Yield;

¢ Reaction was performed without base.

d Reaction was carried out without solvent

°Reaction was carried out in Ethanol

Reaction was carried out in Acetonitrile

£ Reaction was carried out in Acetone

" Reaction was carried out in N-N-dimethylformamide
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3.2.2 First scope investigation

With the optimized conditions in hand, we then move on to test the substrate scope tolerance of
this chemistry (Table 3.2). With nearly quantitative NMR yield, benzaldehyde gave 92 % isolated
yield of benzoic acid (2a) after chromatography purifying. 4-tolualdehyde (2b) gave a similar 91 %
isolated yield. 4-bromobenzaldehyde (2¢) gave 95 % yield, indicating good tolerance of bromo-
substitution. Electron-rich 4-anisaldehyde (2d) gave a slightly reduced 83 % yield, possibly due to
undesired coordination of the methoxy- to silver. Electron-poor 4-trifluoromethyl-benzaldehyde
(2e) gave 60 % yield, possibly due to poor affinity for electron-poor carbonyl towards Lewis-acidic
silver. 1-naphthaldehyde (2f) gave an excellent 90 % yield. However, when substrate was switched
to fluorine-substituted benzaldehyde, regardless of ortho- (2g), meta- (2h), or para- (2i)
substitution, the yield decreased dramatically, with 2i slightly better than 2g than 2h. Aliphatic
aldehydes such as hydrocinnamaldehyde (2j) and octanal (2k), along with ketones such as
acetophenone (2I) and cyclohexanone (2r), did not give any desired product. Since aliphatic
aldehydes plays particularly important roles in chemistry society, further optimization of this

reaction is desirable in order to expand its reactivity.

Table 3.2 First scope optimization

0] OI"_|
AgF + 2 L45] 10 mol%
R NTH 4 HCONa [Ag 12] © R N H
L DIPEA 20 mol% L

H,0 0.25 mL

0.5 mmol 3.0 mmol 100°C, 24h, in air isolated yield %
HO H H
o o o h o o
saealvaricaloalivelos
Br MeO F3C F
2a 2b 2c 2d 2e 2f 2g
92 % 91 % 95 % 83 % 60 % 90 % 26 %*
OI—‘_I OI—LI OI-LI OI—LI OI—Ll OI—L|
F\©)<H /@XH ©/\)<H /\/MH ©)§ 6
F
2h 2i 2j 2k 2 2r
9 %* 33 %* <3 %* N.D. N.D. N.D.

*NMR yield, not isolated

3.2.3 Condition re-optimization
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Table 3.3 Condition optimization for aliphatic aldehyde

AgF 10 mol%

Q ligand mol 20% oH,
H + H-souce — > H
0,
6 equiv. basg ?O mol%
0.1mmol additive 10% 2j
extractor 7 equiv. NMR Yield %

120°C, 24h, 0.25 mL Hy0, in air

) °' A0
O =N n-Bu\P,n-Bu H FsC~ O CF, p
0.p-0 Oup O P
n-Bu P \© P c o 07 CR,

PPh,
99 oy °

j F3C)\CF3
SOsNa
L1g Lis L4

6 L1z Lig
MeO OMe MeO OMe MeO OMe O
\©\ P/©/ \Q:K /\Q/ MeO PCy,
OMe P OMe

Cl

MeO OMe
OMe sl
OMe
Lag L1 Lay
Entry H-Source base Ligand additive extractor NMR Yield
1 HCO2Na DIPEA L1z // /! 3%:*
2 HCO.H // L1p // /! n.d.?
3 HCO,H-DIPEA DIPEA L12 // // 6%*
4 HCO,H-DIPEA CsF L12 // // 7%*
5 HCO,H-DIPEA CsF L12 LiF // n.d.?
6 HCO,H-DIPEA CsF L2 // // 11%
7 HCO,H-NH;3 CsF L12 // // n.d.
8 HCO;H-1/2TMEDA CsF L1 /! /! n.d.
9 HCO,H-1/2DABCO CsF L12 // // n.d.
10 HCO,H-DBU CsF L12 // // 10%
11 HCO,H-DIPEA CsF Ly /! /! n.d.
12 HCO,H-DIPEA CsF L, /! /! n.d.
13 HCO,H-DIPEA CsF Ls /! /! n.d.
14 HCO,H-DIPEA CsF Ls // // n.d.
15 HCO,H-DIPEA CsF Ly // // n.d.
16 HCO,H-DIPEA CsF L1a // // n.d.
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Entry H-Source base Ligand additive extractor NMR Yield

17 HCO,H-DIPEA CsF Lg // // trace
18 HCO,H-DIPEA CsF Li3 // // n.d.
19 HCO,H-DIPEA CsF Lis // // n.d.
20 HCO,H-DIPEA CsF Lis /! // trace
21 HCO,H-DIPEA CsF L1z /! /! n.d.
22 HCO,H-DIPEA CsF Lig /! /! n.d.
23 HCO,H-DIPEA CsF L1o // // n.d.
24 HCO,H-DIPEA CsF Lao // // n.d.
25 HCO,H-DIPEA CsF L2z // // n.d.
26 HCO,H-DIPEA CsF L2z /! // 21%
27 HCO,H-DIPEA CsF Lo /! /! 15%
28 HCO,H-DIPEA CsF Lo /! DIPEA 30%
29 HCO,H-DIPEA CsF Lo /! PhCI 30%
30 HCO,H-DIPEA CsF Lo TfOH PhCI 55 %
31 HCO,H-DIPEA CsF Lo Benzoic Acid PhCI 12 %
32 HCO,H-DIPEA CsF Lo CF3COH PhCl 11%
33 HCO,H-DIPEA CsF Lo TfOH PhCl 75 %°
34 HCO,H-DIPEA CsF L2 TfOH PhCl 99 %
35 HCO,H-DIPEA // Lo TfOH PhCl 42 %

We used hydrocinnamaldehyde (2j) as the standard substrate, formate as hydrogen source, to
examine various reaction condition towards successful transfer hydrogenation of aliphatic
aldehyde (Table 3.3). Considering the weaker tolerance of base for aliphatic aldehydes compared
to aromatic aldehydes due to side reactions, for example, aldol condensation, we first tried
switching sodium formate into formates in less basic form. Acidic formic acid did not give the
desired product (entry 2). By pre-mixing aqueous formic acid and DIPEA, we obtained a
homogeneous neutral solution. (HCOOH<DIPEA) Using this solution as hydrogen source instead
of sodium formate increased the yield to 6 %. (entry 3) Keeping this hydrogen source, considering
the benefit of fluorine anion in the previous condition optimization, switching the extra 20 mol%
base DIPEA into CsF gave 7 % yield (entry 4). Further increasing the fluorine anion by addition
of LiF resulted in the elimination of product (entry 5). Increasing the reaction temperature to 120°C

also increased the yield to 11 % (entry 6). We then tried to generate the neutral formate salt using
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formic acid and ammonia, TMEDA, DABCO and DBU (entries 7, 8, 9, 10), but none of them
surpasses the yield given by DIPEA. We then tried to examine various ligands from a much wider
selection, including electron-rich ligands from previous condition optimization, electron poor
phosphites, and other phosphine ligands. However, most of the candidates failed to give a better
yield (entries 11-25). At the same time the Buchwald-type ligand BrettPhos (L22) and SPhos (L)
increased the yield to 21 % and 15 % (entries 26, 27) respectively. Coincidentally, from an
experimental error, we discovered that adding excessive amount of DIPEA increased the yield to
30 % (entry 28), which potentially functioned by generating a bi-phasic reaction mixture. The
equilibrium was therefore pushed forward by enriching alcohol product in organic phase.
Switching the excessive extractor from DIPEA to chlorobenzene did not affect the yield (entry 29);
however, we still accept the more cost-effective and non-basic chlorobenzene rather than DIPEA
as extractor. We then found that using non-distilled cinnamaldehyde rather than re-distilled
benzaldehyde increased the reaction yield, implying the benefit of adding extra acid into the
reaction. We examined the addition of extra trifluoromethane sulfonic acid (TfOH), benzoic acid
or trifluoroacetic acid into reaction mixture (entries 30, 31, 32); among them, TfOH increased the
yield to 55 %. Keeping all the other reaction condition unchanged, increasing the water amount
raised the yield to 75 %(entry 33), while same reaction using L>> gave almost quantitative yield
(entry 34). The yield also decreased to 42 % if CsF was absent from the reaction mixture (entry

35).

3.2.4 Final scope investigation

Table 3.4 Final substrate scope

AgF 10 mol%
0 SPhos 20 mol% OHH
RXH +  [HCO,H+DIPEA] R)<H
CsF 20 mol%, TfOH 10 mol%
PhCI 7 equiv. iso. Yield %

120°C, 24h, 1 mL H,0, in air

H
HO |_H
Ol-h Ol-h Ol-h Om Ol-h Ol-h . Ol-h Ol-h
salealifealisalicalicelicalhoalica
Br MeQO FiC F F
2a 2b 2c 2d 2e 2f 2g 2h 2i
98 %*

> 99 %* > 99 %* > 99 %* 51 %* 90 %* > 99 %* 91 %* 96 %*

Ol
h OH, h G O h OH, iy
OH x H

H W H H X X
H H H
H
2j 2k 21 2m 2n 20 2p 2q
73 % 76 % N.D. 43 %* 82 % <5%* <3 %* <3 %*

* NMR yield, not isolated
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We then examined the re-optimized conditions with a much wider scope of substrates, including
different aliphatic/aromatic/unsaturated aldehydes, towards successful transfer hydrogenation to
give their corresponding alcohol (Table 3.4). For convenience, we only calculated NMR yield
using internal standard for aldehydes which were already successfully reduced efficiently with the
previous condition. Benzaldehyde (2a), 4-tolualdehyde (2b), and 4-bromobenzaldehyde (2¢) all
gave quantitative NMR yield. 4-anisaldehyde (2d), while giving 83 % isolated yield with the
previous conditions, only gave 51 % NMR yield. At the same time 4-trifluoromethylbenzaldehyde
(2e) gave an excellent 90 % NMR vyield, while only 60 % was obtained with the previous
conditions. These results indicate that the new conditions might function better with more electron-
poor substrates compared to the previous conditions. 1-naphthaldehyde (2f) gave also quantitative
NMR yield. The yield of mono-fluoro-substituted benzaldehyde, regardless of ortho- (2g), meta-
(2h), and para- (2i) substitution, all gave excellent isolated yields. Aliphatic hydrocinnamaldehyde
(2j) gave a good 73 % isolated yield. Octanal (2k) also gave a good 76 % isolated yield.
Acetophenone (21) still gave quantitative starting material recovery, indicating good selectivity of
our method towards aldehydes rather than ketones. a-phenylpropionaldehyde (2m) gave a reduced
43 % isolated yield, probably due to stronger enolization. Unsaturated aldehyde cinnamaldehyde
(2n) also gave a good 82 % isolated yield, while substrates with non-conjugated C=C bond, such
as perillaldehyde (20), citral (2p), and 2,6,6-trimethyl-1-cyclohexene-1-acetaldehyde (2q) gave
poor yields. These results are possibly due to the catalyst’s better affinity towards more electron-

rich C=C coordination.

3.3 Conclusion and perspective

In conclusion, we have developed the first example of homogeneous silver(I)-catalyzed transfer
hydrogenation of aldehyde. Designed from our silver(I)-catalyzed hydride nucleophilic addition
mechanism, under two different sets of reaction conditions, great substrate adaptability was
achieved including both aromatic aldehydes and aliphatic aldehydes. The reaction uses
environmentally benign water as solvent. Inert atmosphere was not necessary in the reduction
procedures. Relatively abundant silver was used as the sole catalyst. The successful development
of such system potentially represents an unprecedented catalyst system for achieving
hydrogenation/transfer hydrogenation of aldehyde. The potential future works include transfer

hydrogenation/direct hydrogenation of other substrates, such as ketone, imine, etc. The use of
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chiral ligand on silver(I) catalyst is also plausible to further enable asymmetric transfer
hydrogenation/direct hydrogenation of those substrates. Some of the above-mentioned works have

already underway in our lab.

3.4 Contributions of authors

The inspiration of this research came from previous work by Dr. Zhenhua Jia. During the
development of this reaction, the designing of all the experiments described in this chapter was the
result of discussion between Prof. Chao-Jun Li and me. I was also in charge of carrying out all
those experiments (including but not limited to all the condition optimization and all the substrate
scope investigation), with technical help from Dr. Feng Zhou, and operating the NMR
spectrometer for all the necessary acquisitions. The manuscript was prepared by me too, with

revisions from Prof. Chao-Jun Li and Dr. Zhenhua Jia.

3.5 Experimental Section

3.5.1 General Information

All transfer hydrogenation reactions were carried out under air. All manipulation and
purification procedures were carried out with reagent-grade solvents. Analytical thin-layer
chromatography (TLC) was performed using E. Merck silica gel 60 F2s4 precoated plates (0.25
mm). Flash chromatography was performed with Biotage Isolera One Flash Purification System,
using Biotage SNAP Ultra 25g prepared column. Nuclear magnetic resonance (NMR) spectra were
recorded on Varian MERCURY plus-300 spectrometer ('"H 300 MHz, 1*C 75 MHz) or a Varian
MERCURY plus-400 spectrometer (‘H 400 MHz, 1*C 100 MHz). Chemical shifts for '"H NMR
spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance
as the internal standard (CDCls: 8 7.26 ppm). Chemical shifts for 13C NMR spectra are reported in
parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCls: 6
77.0 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd
= doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad signal), and integration.

3.5.2 General Procedures

(Synthesis of AgF-DavePhos complex; all the other complexes used in the study were

prepared in the same way). To an oven-dried reaction vessel, charged with silver (I) fluoride
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(12.6 mg , 0.1 mmol, 1 equiv) and 2-dicyclohexylphosphino-2’-(N,N-dimethylamino)biphenyl
(DavePhos, 78.7 mg, 0.2 mmol, 2 equiv), is flushed with argon 3 times. 2.5 mL of dry, air-free
methylene chloride (DCM) is added into the vessel. The vessel is then sealed and stirred at room
temperature. After stirring overnight (12 h), the mixture is stripped of solvent and the resulting

solid is kept under vacuum for 1 h before ready to use.

(General procedures for the reduction of aromatic aldehydes). To a stirred solution of sodium
formate (81.6 mg, 1.2 mmol, 6 equiv) in 0.5 mL distilled H>O in air, pre-formed AgF-DavePhos
complex (9.1 mg, 0.02 mmol, 0.1 equiv) is added, along with benzaldehyde (20.5 pL, 0.2 mmol,
1 equiv) and diisopropylethylamine (DIPEA, 7 pL, 0.04 mmol, 0.2 equiv). The vessel is then
sealed and stirred at 100°C for 24h. Then, the reaction mixture is cooled to room temperature,
extracted with methylene chloride, and the organic phase is washed with brine. The organic phase
is then stripped of solvent and the oily crude product is collected. Further purification can be

carried out with flash chromatography to give the product in 19.5 mg (92% yield).

(General procedures for the reduction of aliphatic aldehydes). To a stirred vial of 2 mL H,O
in air, formic acid (45uL, 1.2 mmol, 6 equiv) and diisopropylethylamine (DIPEA, 209 uL, 1.2
mmol, 6 equiv) are added. The mixture is kept stirring until the whole solution is transparent and
clear. All the solution is then transferred into a reaction vessel which is charged with pre-formed
AgF-SPhos complex (9.5 mg, 0.02 mmol, 0.1 equiv) and cesium fluoride (6.2 mg, 0.04 mmol, 0.2
equiv) in air. Hydrocinnamaldehyde (26.4 pL, 0.2 mmol, 1 equiv), trifluoromethanesulfonic acid
(1.8 uL, 0.02 mmol, 0.1 equiv) and chlorobenzene (142 pL, 1.4 mmol, 7 equiv) are then added and
the reaction vessel is sealed. The vessel is stirred at 120°C for 24h before cooled down to room
temperature. The mixture is extracted with methylene chloride and the resulting organic phase is
washed with brine. The solution is then concentrated and subject to flash chromatography to give

the desired product in 19.0 mg (71% yield.)

3.5.3 Identification of Products

All compounds are literature known and the data reported herein are consistent with the literature

reports.

Compound 2a:
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OH

Cr

"H-NMR (ppm): 7.38 (m, 5H), 7.30 (m, 1H), 4.70 (s, 2H), 1.62 (br, 1H).
BC-NMR (ppm): 140.8, 128.5, 127.7, 127.0, 65.3.

Compound 2b:

OH

g

"H-NMR (ppm): 7.27 (m, 2H), 7.18 (m, 2H), 4.65 (s, 2H), 2.36 (s, 3H), 1.63 (br, 1H).
BC-NMR (ppm): 137.9, 137.4, 129.3,127.2, 65.2, 21.1.
Compound 2c:

OH

Bog

"H-NMR (ppm): 7.48 (m, 2H) 7.23 (m, 2H), 4.64 (s, 2H), 1.86 (br, 1H).
BC-NMR (ppm): 139.7, 131.7, 128.6, 121.4, 64.5.
Compound 2d:

OH

L

'H-NMR (ppm): 7.29 (m, 2H), 6.89 (m, 2H), 4.63 (s, 2H), 3.81 (s, 3H), 1.59 (br, 1H).
I3C-NMR (ppm): 133.1, 129.4, 128.5, 113.9, 65.1, 55.3.

Compound 2e:
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OH

F3C/©)

"H-NMR (ppm): 7.62(d, J=8.19Hz, 2H); 7.50 (d, J=8.19Hz, 2H); 4.78(s, 2H), 1.67 (br, 1H).
BC-NMR (ppm): 144.6, 130.5, 126.8, 125.4(q, Jr-c=4.02Hz), 122.3, 64.5.
Compound 2f:

HO

'H-NMR (ppm): 8.07 (m, 1H), 7.89 (m, 1H), 7.80 (m, 1H), 7.53 (m, 2H), 7.46 (m, 2H), 5.06(s,
2H), 2.49 (br, 1H).

BC-NMR (ppm): 136.3, 133.7, 131.2, 128.6, 128.5, 126.3, 125.8, 125.4, 125.3, 123.6, 63.4.
Compound 2j:

OH

o™

'H-NMR (ppm): 7.29 (m, 2H), 7.20 (m, 3H), 3.68 (t, ]=6.44Hz, 2H), 2.72 (t, ]=6.41 Hz, 2H),
1.90 (m, 2H), 1.64 (br, 1H).

BC-NMR (ppm): 141.8, 128.4 (2 peaks), 125.9, 62.3,34.2, 32.1.
Compound 2k:

OH

/\/\/\)

'H-NMR (ppm): 3.64 (t, J=6.73Hz, 2H), 1.55 (q, J=6.73Hz, 2H), 1.49 (br, 1H), 1.41-1.20 (m,
10H), 0.88 (m, 3H).

I3C-NMR (ppm): 63.1, 32.8, 31.8, 29.3 (2 peaks), 25.6, 22.7, 14.1.
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Compound 2n:

OH
©/v
TH-NMR (ppm): 7.43-7.19 (m, 5H), 6.62 (d, J=16.09Hz, 1H), 6.36 (dt, J= 16.09, 5.56Hz, 1H),
4.32 (d, 1=5.56 Hz, 2H), 1.72 (br, 1H).
BC-NMR (ppm): 136.6, 131.1, 128.6, 127.7, 126.4, 63.7.
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Chapter 4 — ‘Silver Mirror’ from stoichiometric to catalytic

4.1 Hypothesis and objective

As established in chapter 1, oxidation of aldehyde represents the important counterpart of our
research interest. Impressed by the high-efficiency of our previous developed silver(I)-catalyzed
nucleophilic attack system towards carbonyl compounds [1], especially towards aldehydes
activation, we started to question the feasibility of the silver(I) system to efficiently conduct
desired aldehyde oxidation using this system. Our first inspiration came within our own human
body — the nature’s oxidation of aldehyde catalyzed by aldehyde dehydrogenase (ALDH) in liver
cell (Figure 4.1a) [2]. The oxidation was initiated by a nucleophilic attack from the thiol-anion of
cysteine residue in ALDH, followed by the aldehyde hydride extracted by NAD". It came to our

notice that it could be very efficient to utilize our silver(I) system to deliver this initial nucleophilic

a) Biological oxidation of aldehyde (key step)

0) o ® 0
o — )ﬁ NADy  —— ]l + NADH
R t H R Su R §
é@ ‘ALDH ALDH
ALDH ALDH = aldehyde dehydrogenase

b) The classic Tollens reaction

_-Ag _
2 DA . 9 T 8 a0
_ g
R*H Rj \(OH ﬁo% : R)\OH R OH
c) Our hypothesis
~ 02~
'l- @
L
_-Ag L '
i %5 & & i
RJ\H Rj f OH ﬁg# H R)\OH RJ\OH

Figure 4.1. Our design for silver-catalyzed oxidation of aldehyde

attack. However, B-hydride elimination is rare in silver chemistry. It then came to our delight that

the well-known Tollens oxidation (the ‘silver mirror’ test) also proceeds via a similar nucleophilic
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attack/B-hydride elimination mechanism (Figure 4.1b) [3]. Such B-hydride elimination was
possibly facilitated by electron lone pair on the neighbouring gem-diol anion [4]. These
suggestions enable great potential for silver(I) to serve as a powerful catalyst towards oxidation of
aldehyde, only by the introduction of oxygen to re-oxidize the Ag(0) generated in the Tollens
oxidation back to Ag(I), and use ligand to stabilize the catalyst from precipitation (Figure 4.1c¢).

4.2 Results and discussion

4.2.1 Condition optimization

We then started our research using silver fluoride salt, pre-mixed with an electron-rich
dicyclohexylphenylphosphine (Cy,PPh) ligand in order to facilitate its interaction with molecular
oxygen, as catalyst. 5 mol% DIPEA was added as base with water for its activity in the heterolysis
of diatomic gas molecule (Table 4.1) [5]. The reaction vessel was directly sealed in air without
flushing to enable the oxidation of benzaldehyde by oxygen sealed in the reaction vessel. After
stirring at 50°C overnight, to our surprise, no oxidation occurred and there was no benzoic acid
detected (entry 1). However, we were very delighted to find that the addition of a sodium salt,
sodium formate, (NaCO;H) gave 11 % yield of the benzoic acid with no benzyl alcohol detected
(entry 2). Oxygen was also found to be responsible as oxidant as only less than 3 % yield was
obtained when reaction vessel was flushed with argon (entry 3). Other sodium salt, for example,
sodium fluoride (NaF), sodium chloride (NaCl), sodium bromide (NaBr), and sodium
tetrafluoroborate (NaBF4) was also examined (entry 4-7). NaF and NaBF4 both gave 20 % yield
with the later consume slightly more starting material. Keeping the fluoride anion, switching the
counter-ion of the additional salt was ineffective, as all the other salt additive such as lithium
fluoride (LiF), potassium fluoride (KF), magnesium fluoride (MgF>), and aluminum fluoride (AlF3)
all gave complete starting material recovery (entry 8-11). Various catalyst ligands were also
examined. The bidentate BINAP gave 21 % yield (entry 12). 2,2’-bipyridyl (bipy) gave 22 % yield
(entry 13). Surprisingly, keeping bipy as ligand, switching AgF with AgPFs gave quantitative
oxidation of benzaldehyde to the corresponding benzoic acid (entry 14). This yield boost can be
explained as non-coordinative anion PFs opens empty coordination site on silver to facilitate
substrate binding. When then reaction was repeated using pure atmospheric oxygen instead of air,
quantitative yield of benzoic acid was isolated (entry 15). The reaction is inefficient without the

catalyst as only trace amount of benzoic acid was detected (entry 16).
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Table 4.1. First condition optimization

0 [Ag] 5 % 0
additive 5 %
Ho* 0 DIPEA 5 % OH
1 mL water, 50°C, 12h
(0.1 mmol) (air)®
o0 o, _
O O PPh, /
Cy,PPh BINAP
Entry [Ag] additive Starting Material Conversion NMR YieldP®

1 AgF/Cy,PPh — 0% 0%

2 AgF/Cy,PPh  NaCO,H 19 % 11 %
3¢ AgF/Cy,PPh  NaCO,H 5 % <3%
4 AgF/Cy,PPh NaF 27 % 20 %

5 AgF/Cy,PPh NaCl 0 % 0 %

6 AgF/Cy,PPh NaBr 0% 0%

7 AgF/Cy,PPh NaBF, 30 % 20 %

8 AgF/Cy,PPh LiF 0 % 0 %

9 AgF/Cy,PPh KF 0 % 0 %
10 AgF/Cy,PPh MgF, 0% 0%
11 AgF/Cy,PPh AlF5 0% 0%
12 AgF/BINAP NaF 31 % 21 %
13 AgF/bipy NaF 30 % 22 %
14 AgPF¢/bipy NaF 100 % > 99 %
159 AgPFg/bipy NaF 100 % >99% ©
164 — NaF trace trace

@ All reactions were carried out in sealed 10 mL reaction vessels filled with atmospheric air or pure

oxygen

® TH-NMR Yield was determined using 1,3,5-mesitylene as an internal standard

¢ Reaction was carried out under atmospheric argon
d Reactions were carried out under atmospheric pure oxygen
€ Isolated Yield

4.2.2 First scope investigation
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We then examined this condition with a handful of aldehyde substrates (Table 4.2). Other than
benzaldehyde which gave quantitative isolated yield, aliphatic aldehyde octanal also gave
quantitative isolated yield. Hydrocinnamaldehyde gave good 86 % isolated yield as well. 1-
naphthaldehyde gave 88 % isolated yield. However, as we started to examine the tolerance of
various other functional group substitution, we found ortho-fluorobenzaldehyde gave a reduced
34 % yield as 60 % starting material was converted. Ortho-chlorobenzaldehyde gave all starting
material recovered. Cinnamaldehyde did not gave the desired product while all the starting
material was converted. 4-allyloxybenzaldehyde also did not gave the desired product while 71 %
starting material was converted. These results indicates the poor tolerance of our catalyst towards
C=C bond, possibly due to catalyst’s preference over more electron-rich C=C rather than more
electron-poor C=0. 4-anisaldehyde also gave all starting material recovered, possibly due to
relatively strong coordination of the oxygen atom. Similar piperonal also resulted in all starting

material recovery.

Table 4.2. First scope examination

AgPFg/bipy 5 %

0 NaF 5 % o
Jiv 0 o
R DIPEA 5 % R “OH
01mmol  1b 1 mlL H0 Iso. Yield
.1 mmo ar 12h, 50°C (Iso. Yield)
0 o 0 COOH 0
I
©)L OH CHa(CH,)6COH OH OO OH
>99 % >99 % 86 % 88 % F 34 %2
o 0 (0] (0] (0]
0
saclven e on i on.
0 %" O Towe MO © CI™ oo

260 % of starting material was converted
b Starting material all converted
€71 % of starting material was converted
d Starting material all recovered

4.2.3 Re-optimization of condition

To further optimize the functional tolerance of our oxidation, considering our previously obtained
data in Table 4.1, the possible reasons could be the instability of catalyst, since stronger-

coordinating heteroatoms and C=C bond eliminates the formation of desired product. To tackle
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this problem, 2 strategies were proposed: 1) use electron-poor ligand to increase the oxidation
potential of the catalyst; 2) use stronger-coordinating ligand to increase the stability of the catalyst.
Piperonal was used as standard substrate for our optimization. To extract the product and push the
equilibrium forward, 1 equiv. of NaOH was also added to transform the acid product into
carboxylate form (Table 4.3). Under this condition, previous AgPFs/bipy catalyst still gave all
starting material recovered (entry 1). We first examine our above-proposed strategy one using
electron-poor tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite as ligand, premixing with AgPF¢ to
generate the catalyst. As expected, the yield increased to 21 % (entry 2). However, on the other
hand, 50 % starting material was consumed and we observed the loss of formaldehyde acetal
substitution on piperonal. This probably indicates a milder oxidation is necessary. We then
examined strategy two using stronger-coordinating trifurylphosphine. The yield also increased to
a good 66 % with 80 % starting material consumption (entry 3). When examined even stronger-
coordinating N-Heterocyclic Carbene (NHC) ligand 1,3-bis(2,6-diisopropylphenyl)imidazol-2-
ylidene (IPr), which was generated by pre-mixing its imidazolium precursor with DBU as base,
along with AgPFs added, the generated catalyst gave only 5 % yield (entry 4). Considering it is
our first time trying to employ NHC ligand and our protocol might be inaccurate, we examined
again a well-studied NHC-silver complex, IPr-Ag-Cl [6], generated by directly mixing IPr
imidazolium chloride with silver oxide (AgO). To our delight, almost quantitative yield of
piperonylic acid was obtained (entry 5). At the same time, the post-experiment work-up was
extremely facile and effective: just by washing the aqueous reaction mixture with minor organic
solvent, such as dichloromethane or diethyl ether, then acidifying with hydrochloric acid (HCI)
and extracting by diethyl ether, analytical-pure grade of product can be obtained very easily.
Chromatography was generally unnecessary. Then, the attempt of reducing base load of this
reaction resulted in decreased yield of product (entry 6). When Ag>O alone was directly introduced
to the reaction, only trace amount of product was obtained (entry 7). Using only free-carbene
ligand also resulted in elimination of product (entry 8). AgCl alone was not effective either (entry
9). When we switched the reaction atmosphere with argon, we still can obtain 66 % yield with 69 %
starting material consumed (entry 10). The reaction cannot be shut down unless we also degas the
water solvent (entry 11). Considering most silver salt are light-sensitive, we conducted the reaction

in dark and the same nearly-quantitative yield was obtained (entry 12).
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Table 4.3. Re-optimization of condition

9] AgX 5% 0]
H o/.a
<O H o+ 0, Ligand 5 % - <O OH
o 1 eq. NaOH o
1 mL H,0, 50°C, 12h
0.1 mmol 1 bar
F3C CF
3 Y 3 / \ (6] \ _
FsC._O.__O o) = N_ N
Ty 1 7
| .o
CF; OYCF3 Z 0
CF; —
[(CF3),CHO]3P trifurylphosphine IPr
Entry AgX Ligand Starting Material NMR Yield®
Conversion

1 AgPFg bipy 0% 0%
2 AgPFg [(CF3),CHO]5P 50 % 21 %
3 AgPFg trifurylphosphine 81 % 66 %
4 AgPF° IPrd 9% 5%
5 Ag,0° =% 99 % 99 %
69 Ag,0 IPr 50 % 50 %
7 Ag,0 o <3% trace
8 — IPrh 0% 0%
9 AgCl — 0% 0%
10/ Ag,0 IPr 69 % 66 %
11] Ag,0 IPr 7% 5%
12k Agy0 IPr 99 % 99 %

2 Silver(l) salt and the corresponding ligand were premixed in CH,Cl, under inert gas at room temperature for 12h
to generate the catalyst.

® NMR yields were determined using 1,3,5-mesitylene as an internal standard.

¢d This catalyst can be generated via mixing 5 mol % AgPFg, 5 mol % imidazolium chloride corresponding to the
NHC catalyst, and 5 mol % DBU in CH,Cl, under inert gas at room temperature for 12h.

ef This catalyst can be generated via mixing 5 mol % Ag,0 with 5 mol % imidazolium chloride corresponding to the
NHC catalyst. The mixture was stirred in acetonitrile under argon for 12h. The AgOH precipitate can either be
filtered or left in the solution. The result is unaffected. The actual catalyst load is still 5 mol % due to half amount of
silver being precipitated via AQOH.

9 This reaction is conducted with 0.5 eq. of NaOH.

P This controlled experiment is conducted by mixing imidazolium chloride with DBU

" This reaction is done under argon with normal water

J This reaction is done under argon with degassed water

K This reaction is done in dark
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4.2.4 Second scope investigation

Inspired by the highly-efficient optimized condition in hand, along with the facile work-ups, we
collected almost all the aldehydes in our inventory and examined the functional tolerance of our
new condition (Table 4.4). Benzaldehyde gave quantitative yield of benzoic acid (3a). 4-
tolualdehyde also gave quantitative yield of 4-toluic acid (3b). l-indancarboxyaldehyde gave
nearly quantitative yield of 1-indancarboxylic acid (3¢). 1-naphthaldehyde gave quantitative yield
of 1-naphthalic acid (3d). Piperonal gave nearly quantitative yield of piperonylic acid (3e). Other
electron-rich aromatic aldehyde such as 4-anisaldehyde gave quantitative yield of 4-anisic acid
(3f). 2-anisaldehyde gave a slightly reduced 97 % yield of 2-anisic acid (3g), possibly due to
coordination of methoxy- group. At the same time 2,5-dimethoxybenzaldehyde gave quantitative
yield of 2,5-dimethoxybenzoic acid (3h). 3,4,5-trimethoxybenzaldehyde also gave quantitative
yield of eudesmic acid (3i). The purification of 4-pentoxybenzaldehyde and 4-
hexoxybenzaldehyde require flash chromatography due to strong emulsifying during the extraction,
possibly resulted in the slightly reduced 94 % and 90 % yield of 4-pentoxybenzoic acid (3j) and
4-hexoxybenzoic acid (3k), respectively. 4-allyloxybenzaldehyde gave quantitative yield of 4-
allyloxybenzoic acid (31), leaving the C=C bond intact and no Claissen Rearrangement observed.
However, 4-benzyloxybenzaldehyde gave a reduced 65 % yield of 4-benzyloxybenzoic acid (3m),
possibly due to hydrolysis of the ether since benzyloxy- is a better leaving group. 5-bromo-2,4-
dimethoxybenzaldehyde also gave a reduced 77 % yield of 5-bromo-2,4-dimethoxybenzoic acid
(3n).  5-bromobenzo[1,3]dioxole-4-carboxyaldehyde gave 72 %  yield of 5-
bromobenzo[ 1,3]dioxole-4-carboxylic acid (30) either. Suspecting the possible influence of the
halogen substitution, we examined 2-fluorobenzaldehyde and 4-fluorobenzaldehyde and gave the
corresponding 2-fluorobenzoic acid (3p) and 4-fluorobenzoic acid (3q) in quantitative yield,
indicating good tolerance of fluoro- substitution. 2-chlorobenzaldehyde, 3-chlorobenzaldehyde,
2,3-dichlorobenzaldehyde, 3,4-dichlorobenzaldehyde, and 2,6-dichlorobenzaldehyde all gave
quantitative yield of the corresponding 2-chlorobenzoic acid (3r), 4-chlorobenzoic acid (3s), 2,3-
dichlorobenzoic acid (3t), 3,4-dichlorobenzoic acid (3u), 2,6-dichlorobenzoic acid (3v), indicating
very good tolerance of chloro-substitution either. 2-bromo-5-fluorobenzaldehyde also gave
quantitative yield of 2-bromo-5-fluorobenzoic acid (3w), implying good tolerance of bromo-
substitution either. A group of electron-deficient aromatic aldehyde was also examined. 4-

cyanobenzaldehyde gave quantitative yield of 4-cyanobenzoic acid (3x). Terephthaldehyde gave
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quantitative oxidation and complete selectivity towards 4-formylbenzoic acid (3y) under current
condition, possibly due to the deprotonation of product and separation with the hydrophobic
catalyst. However, when we increased the base load to 2 equiv., oxidation of both the formyl group
was observed and approx. 30 % NMR yield was obtained. 4-acetylbenzaldehyde gave quantitative
yield of 4-acetylbenzoic acid (3z). 4-acetaminobenzaldehyde gave quantitative yield as well (3A).
4-(hydroxymethyl)-benzaldehyde gave quantitative yield of 4-(hydroxymethyl)-benzaldehyde
(3B). indicating good tolerance for alcohol hydroxyl- group. 4-quinolinecarboxyaldehyde gave a
reduced 57 % yield of 4-quinolinecarboxylic acid (3C), possibly due to strong coordination of the
nitrogen atom. Other heterocyclic aromatic aldehydes such as 2-furaldehyde and 2-
thiophenecarboxyaldehyde gave quantitative and 60 % yield of 2-furic acid (3D) and 2-
thiophenecarboxylic acid (3E), respectively. Nitro- substituted benaldehydes including 4-, 3-, and
2,4-disubstituted substrate all gave quantitative yield of the corresponding 4-nitrobenzoic acid (3F),
3-nitrobenzoic acid (3G), and 2,4-dinitrobenzoic acid (3H). 4-trifluoromethylbenzaldehyde also
gave quantitative yield of 4-trifluoromethylbenzoic acid (3I). Aliphatic aldehydes were then
examined. Hexanal, heptanal, octanal, and decanal all gave quantitative yield of hexanoic acid (3J),
heptanoic acid (3K), octanoic acid (3L), and decanoic acid (3M), respectively. Branched chain
aldehyde, including 2-methylbutanal, 2-methylpentanal, 2-ethylbutanal, and 2-ethylhexanal,
resulted in quantitative yield of the corresponding 2-methylbutanoic acid (3N), 2-methylpentanoic
acid (30), 2-ethylbutanoic acid (3P), and 2-ethylhexanoic acid (3Q). 3,3-dimethylacrolein gave
3,3-dimethylacrylic acid (3R) in 77 % yield. Citronellal gave citronellic acid (3S) in 60 % yield.
Citral gave geramic acid (3T) in 86 % yield. Cinnamaldehyde gave the corresponding cinnamic
acid (3U) in quantitative yield. 2-methylcinnamaldehyde also gave 2-methylcinnamic acid (3V) in
quantitative yield. Hydrocinnamaldehyde gave quantitative yield of hydrocinnamic acid (3W). 2-
phenylpropionaldehyde gave quantitative yield of 2-phenylpropionic acid (3X). 4-
nitrocinnamaldehyde gave an excellent 91 % yield of 4-nitrocinnamic acid (3Y). Natural product
perillaldehyde gave quantitative oxidation of perillic acid (3Z). A much more complex natural
product derivative, abietadien-18-al, with multiple unsaturated fuse-ring and a sterically hindered
3°-formyl group, was also succeeded in oxidizing to the corresponding abietic acid in 67 % yield
with increased temperature and elevated oxygen pressure (Scheme 4.1), indicating the potential

applicability of this method towards modern synthesis. Gram-scale oxidation was also successful
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with only 2 mg of catalyst (360 ppm load) giving 82 % isolated yield when oxidizing 1.4 mL
benzaldehyde (Scheme 4.2), indicating the potential applicability of this method in industrial scale.

5 % Ag,O/IPr

10 bar O,
1 eq. NaOH
?
60 °C, 1 mL H,0, 12h
0 MMz 0
H OH
abietadien-18-al abietic acid
0.1 mmol (53)
67 %
Scheme 4.1. Aerobic oxidation of natural product
O Ag-0/IPr 2 mg 0
s NaOH 1 eq. sas  AlE
il | + O > T TOH
L _#J 5022, 10 mL water, 48h I
1.4 mL 1 bar 1449
(balloon) iso. yield = 82 %
Scheme 4.2. Gram-scale oxidation test
0 Ag,O/IPr 5 mol % 0
0, 1 atm
H . OH  + Hyl
NaOH 1 eq.
0.1 mmol water, 50°C, 12h iso. yield >99 %  approx. 15 umol

Scheme 4.3. Detection of hydrogen generated in our aerobic oxidation

4.2.5 Mechanism discussion

Lastly, we were interested in the mechanism behind this transformation. Our first proposal is that
the oxidation proceeds through aldehyde C-H activation, which was suggested by some previous
examples. [7] We then intended to examine the post-reaction atmosphere in the vessel, since
decarbonylation was known for most transition-metals in catalysis involving such intermediate.
Surprisingly, we did not observe the presence of carbon monoxide, (CO) instead a considerable

amount of hydrogen was observed, (~10 puL in 0.1 mmol scale reaction, see Scheme 4.3) which
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Table 4.4. Final scope investigation
Ag,O/IPr 5 %

o] o]
)J\ . 0, NaOH 1eq. J\
R H 1 n:L H,O R OH
0.1 mmol 1 bar 50°C 12h (Iso. Yield)
0 o] o] COOH o]
o O Ay Gy
o]

(3a) > 99 % (3b) > 99 % (3¢) 99 % (3d) > 99 % (3e) 99 %

o] o] COOH COOH 0

o ot oW o
MeO OMe MeO CsHq1O
(3f) > 99 % (39) 97 % (3h) > 99 % (3-) > 99 % (3j) 94 %
" 0 0 Br COOH COOH

OH & OH Ph OH j@: Br 0
L 0 OMe )

CeH130 (¢ (6] 3 0 0
(3K) 90 % (31) > 99 % (3m) 65 % (Bn) 77 % (30)72%

(e} (0} (e} 0 Cl
(o]

(3p) > 99 % (39)> 99 % (3r)> 99 % (3s)>99 % (3t) >99 %
cl COOH cl COOH COOH COOH
cl NC HC

cl
(3u) > 99 % (3v) > 99 % (3w) > 99 % (3x)> 99 % (3y) > 99 %

COOH Q 0
o] OH OH
o )J\N/©)L HO\/©)J\
(32)>99 % H3a) > 99 % (3B)>99 %
@\ COOH  o,N COOH
s~ ~COOH
O;N
(3E) 60 % (3F)> 99 % (3G) >99 %
o] o] o]
\HfJ\OH \MéJ\OH \MgLOH
(3J)>99 % (3K) > 99 % (3L)> 99 %

/\)\H/OH
o

(30)>99 %

(0}
/\/\iLOH

(3Q) > 99 %

(e}
/\G\OH
(3P) >99 %

Q o]
OH A OH

COOH

)

(3C) 57 %

O,N NO,

(3H) > 99 %

0]

\(\%\OH

(3M) > 99 %

\
:;O
o

I

(BR)77 %
0]
OH

(3T) 86 % (3U)>99 % (3V)>99 % (3W) > 99 %
| COOoH COOH
(3Y) 91 % (32)> 99 %

~

\
o~ ~COOH

(3D) > 99 %

/©/COOH
FiC

3 >99 %

ﬁ)k

N) > 99 %

N

(3S) 60 %

OH
(0]

(3X) > 99 %
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also diminished when oxidation was shut down. (e.g. by removing base in the reaction) We then
proposed the possible presence of a silver-hydride intermediate, which could result from B-hydride
elimination after nucleophilic attack on aldehyde carbonyl. We believe the silver-hydride was
possibly responsible for activating molecule oxygen. The hydride can either reduce the oxygen
into -OH and enter the next catalytic cycle, or reduce into -OOH hydroperoxyl species, which
oxidizes another aldehyde molecule. We believe the later one is more consistent with our

experiment result, since stoichiometric amount of hydroxide is necessary for our oxidation.

Ago0 + IPr-HCI

MeCN
IPr H0 N IPr
Agow

‘\J\Ag OH
P JJ\ IPr-Ag-
-lPr — R H
@Ag R O,Ag IPBH, )
1. ) R O NaOH/H0
R \ﬂ/ IPr

H
O\OH Ox.yge.n O IPr-Ag-OH Hydride )
Activation Extraction /\\
Cycle IPr-Ag-H Cycle
o !Pr }
()J-\-Ag-O—OH 0:‘%
R \J IPr-Ag-H e P
~oH Ag-H
o‘>\ IPr-Ag-0-OH <~ JL Jk g
R H

Figure 4.2. Proposed mechanism for our aerobic oxidation

A tandem mechanism was then proposed based on our experiment data and assumptions. The silver
catalyst first delivers the nucleophilic attack of hydroxide to the aldehyde carbonyl, followed by
B-hydride elimination of the tetrahedral intermediate to release the carboxylic acid and generate
silver-hydride intermediate, which enters the oxygen activation cycle and generate silver-
hydroperoxyl species. The hydroperoxyl is more likely to nucleophilic attack another aldehyde
carbonyl due to enhanced nucleophilicity by a-effect, followed by similar B-hydride elimination.
The generated peroxyl acid oxidize the extracted hydride and afford the carboxylate product,

which was released by substitution of hydroxide and regenerate the catalyst.

4.3 Conclusion and perspective

In summary, we have developed an unprecedented method as the first homogeneous silver(I)-

catalyzed aerobic oxidation of aldehyde in water. In this study, we address 3 major challenges in

77



this area of research: 1) eliminating the need of stoichiometric oxidant; 2) reliability and widely-
adapted substrate scope; 3) abandoning the need of chromatography in most purification. In our
new method, atmospheric oxygen served as the sole oxidant, generating only water after oxidation.
Over 50 examples of substrates with different structure and functionality were efficiently
transformed into the corresponding carboxylic acid in excellent to quantitative yield, including
complex nature product and gram-scale reaction. With extremely easy post-reaction work-ups,
analytical pure grade products were obtained generally without the need of chromatography. This
indicates that this method can be readily applicable outside laboratory and in industrial scale.
Nowadays, among organic methodology researches, although many innovative results were
published every day, most real-life industries are still applying very basic and traditional methods
to do synthesis. In this way, our method could serve as an appealing solution to these problems. In
the future, the efficiency for silver catalyst to activate molecular oxygen could potentially inspires
silver-catalyzed aerobic oxidation of other substrates. For example, aerobic oxidative cleavage of
1,2-diol, which serves as another important method to install carboxylate group in the molecule,

can be interesting. The above-mentioned work has already underway in our lab.

4.4 Contributions of authors

The initial discovery of this reaction was done by me. All the experiments depicted in this chapter,
including but not limited to condition optimization, substrate scope investigation, and mechanism
study, was carried out by me, with advices from Prof. Chao-Jun Li. Dr. Haining Wang did the
computational study regarding the mechanism. Dr. Huiying Zeng contributed in repeating the
oxidation of octanal and benzaldehyde under the optimized reaction condition and the gram-scale
oxidation of benzaldehyde. Identifications of the products was mainly done by me using NMR
spectrometer, with technical help from Dr. Huiying Zeng. The manuscript was prepared by me,

with revisions from Prof. Chao-Jun Li, Dr. Haining Wang, and Dr. Huiying Zeng.

4.5 Experimental

4.5.1 General information

Unless otherwise noted, all oxidations were carried out in Biotage Microwave Reaction Vials size
2-5 mL equipped with a magnetic stir bar unless otherwise noticed. All reactions were in sealed

closed system, no open-vial reaction is involved. No microwave is involved during the whole
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investigation. All manipulation and purification procedures were carried out with reagent-grade
solvents. Aldehydes which are in liquid form under normal conditions were redistilled under
reduced pressure. abietadien-18-al was synthesized from abietic acid purchased from Sigma-
Aldrich (purity ~ 75%) according to the previously reported method [8]. Pressurized oxidation was
carried out using Biotage Endeavor Catalyst Screening System. Analytical thin-layer
chromatography (TLC) was performed using E. Merck silica gel 60 F2s4 precoated plates (0.25
mm). Flash chromatography was performed with Biotage Isolera One Flash Purification System,
using Biotage SNAP Ultra 25g prepared column. Nuclear magnetic resonance (NMR) spectra were
recorded on Varian MERCURY plus-300 spectrometer ('"H 300 MHz, '*C 75 MHz) or a Bruker
Ascend 500 spectrometer (‘H 500 MHz, '3C 125 MHz). Chemical shifts for '"H NMR spectra are
reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the
internal standard (CDCls: § 7.26 ppm, DMSO: § 2.46 ppm). Chemical shifts for '*C NMR spectra
are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal
standard (CDCls: 6 77.0 ppm, DMSO: 6 40.0 ppm). Data are reported as following: chemical shift,
multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet,
br = broad signal), and integration.

4.5.2 General procedures

(General procedures for the catalyst generation). An oven-dried reaction vessel, charged with
25.3 mg silver (I) hexafluorophosphate (0.1 mmol, 1 equiv.) and 15.6 mg 2,2’-bipyridine (bipy,
0.1 mmol, 1 equiv.), is flushed with argon 3 times. 2.5 mL of dry, air-free methylene chloride
(DCM) is added into the vessel. The vessel is then sealed and stirred at room temperature overnight
(12 h). The mixture can then be stripped of solvent with rotary evaporator in atmosphere and the

resulting solid should be kept at a desiccator if not intend to use at once.

(Procedures for the synthesize of silver(I)-NHC catalyst). An oven-dried reaction vessel,
charged with 23.2 mg silver (I) oxide (0.1 mmol, 1 equiv.; 2 equiv. of silver(I)) and 42.5 mg 1,3-
bis(2,6-diisopropylphenyl)imidazolium chloride (IPr in imidazolium form, 0.1 mmol, 1 equiv), is
flushed with argon 3 times. 3 mL of dry, air-free acetonitrile is added into the vessel. The vessel
is then sealed and stirred at room temperature overnight (12 h). The reaction mixture can then be

filtered or avoid so, the catalyst efficiency is unaffected. The mixture can then be stripped of
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solvent with rotary evaporator in atmosphere and the resulting solid should be kept at a desiccator

if not intend to use at once.

(General procedures for the oxidation of aldehydes using silver(I)-bipy catalyst). A reaction
vessel, charged with 2.1 mg silver(I)-bipy catalyst (0.005 mmol, 5 mol %) and 2.1 mg sodium
fluoride (0.005 mmol, 5 mol %), is gently flushed with oxygen of ordinary purity with a balloon
or gas valve. After this, 1 mL of distilled water is added to the vessel, followed by the addition of
0.8 uL of N,N-diisopropylethylamine (DIPEA, 0.005 mmol, 5 mol %). The reaction mixture is
then warmed up to 50°C before the aldehyde (0.1 mmol, lequiv.) can be added. The reaction vessel
is then sealed and kept at 50°C for 12 h. After this, the pH of the reaction mixture is adjusted to 12
with 0.1M NaOH. The reaction mixture is then washed with methylene chloride (DCM) three
times with a total DCM volume of 10 mL and the pH of the aqueous phase is adjusted to 2 with
0.1M HCI. The aqueous is then extracted with ethyl ether 3 times with a total ether volume of 10
mL and the combined organic phase is dried over anhydrous sodium sulfate and evaporated to

obtain the carboxylic acid product.

(General procedures for the oxidation of aldehydes using silver(I)-NHC catalyst). A reaction
vessel, charged with 2 mg silver(I)-IPr catalyst (0.005 mmol, 5 mol %; if the AgCl precipitate has
not been removed during the catalyst generation, 3.4 mg catalyst should be used.), is gently flushed
with oxygen of ordinary purity with a balloon or gas valve. After this, I mL of distilled water with
4 mg NaOH (1 equiv.) dissolved inside is added to the vessel, followed by the addition of
aldehydes (0.1 mmol, 1 equiv.). The reaction vessel is then sealed and kept in a 50°C oil bath for
12 h. After this, the reaction mixture is washed with methylene chloride (DCM) three times with
a total DCM volume of 10 mL and the pH of the aqueous phase is adjusted to 2 with 0.1M HCI.
The aqueous is then extracted with ethyl ether 3 times with a total ether volume of 10 mL and the
combined organic phase is dried over anhydrous sodium sulfate and evaporated to obtain the
carboxylic acid product. Flash chromatography is generally not required but can be performed in

order to obtain an even higher purity level.

4.5.3 Identification of products.

All compounds are literature known and the data reported herein are consistent with the literature

reports.
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Compound 3a:

0
©)‘\OH

'H-NMR (ppm): 8.14 (m, SH), 7.63 (tt, 3J=7.32Hz, 4J=2.05Hz, 1H), 7.49 (t, 3J=7.32Hz, 2H)
13C-NMR (ppm): 172.7, 133.8, 130.2, 129.3, 128.5

Compound 3b:

@)
/©)‘\OH
"H-NMR (ppm): 12.77 (br, 1H), 7.82 (d, *J=8.19Hz, 2H), 7.28 (d, 3J=8.19Hz, 2H), 2.35 (s, 3H)
BC-NMR (ppm): 167.7, 143.5, 129.8, 129.6, 128.5, 21.6
Compound 3c:
0]

C©)\0H

'H-NMR (ppm): 7.96 (s, 1H), 7.92 (d, 3J=7.90Hz, 1H), 7.30 (d, 3J=7.90, 1H), 2.97 (t, 3J=7.61Hz,
4H), 2.13 (m, 3=7.61Hz, 2H)

BC-NMR (ppm): 172.5, 151.1, 144.7, 128.6, 127.3, 126.1, 124.3,33.1, 32.5,25.4
Compound 3d:

COOH

'H-NMR (ppm): 9.10 (d, 3J=8.78Hz, 1H), 8.44 (dd, 3J=7.32Hz, 4J=1.46Hz, 1H), 8.11 (d,
3J=7.90Hz, 1H), 7.93 (d, 3J=7.90Hz, 1H), 7.68 (m, 1H), 7.57 (m, 2H)

BBC-NMR (ppm): 173.2, 134.7, 133.9, 131.9, 131.6, 128.7, 128.1, 126.3, 125.9, 125.5, 124.5
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Compound 3e:

O
<I>)L
0]
"H-NMR (ppm): 12.63 (br, 1H), 7.55 (dd, 3J=8.24Hz, 4J=1.83Hz, 1H), 7.36 (d, *J=1.83Hz, 1H),
7.00 (d, *J=8.24Hz, 1H), 6.12 (s, 3H)
BC-NMR (ppm): 167.1, 151.6, 147.9, 125.4, 125.1,109.2, 108.5, 102.4
Compound 3f:

0

/©)‘\OH
MeO

'H-NMR (ppm): 12.60 (br, 1H), 7.88 (dt, 3J=9.07Hz, 4J=2.05Hz, 2H), 7.00 (dt, 3J=9.07Hz,
4J=2.05Hz, 2H), 3.80 (s, 3H)

I3C-NMR (ppm): 167.4, 163.3, 131.8, 123.4, 114.3, 55.9
Compound 3g:
O
o
OMe
"H-NMR (ppm): 7.61 (dd, 3J=7.90Hz, 4J=2.05Hz, 1H), 7.48 (m, 1H), 7.10 (d, 3J=8.49Hz, 1H),
6.97 (dt, 3J=7.32Hz, 4J=0.88Hz, 1H), 3.79 (s, 3H)

BC-NMR (ppm): 167.8, 158.5, 133.5, 131.0, 121.7, 120.4, 112.9, 56.1

Compound 3h:
COOCH
OMe
MeO

'H-NMR (ppm): 12.55 (br, 1H), 7.14 (m, 1H), 7.05 (m, 2H), 3.74 (s, 3H), 3.71 (s, 3H)
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BC-NMR (ppm): 167.5, 153.0, 152.6, 122.4, 118.8, 115.7, 114.6, 56.8, 56.0

Compound 3i:
MeO COOH
MeO

OMe

"H-NMR (ppm): 7.21 (s, 2H), 3.80 (s, 6H), 3.70 (s, 3H)
BC-NMR (ppm): 167.4, 153.1, 141.8, 126.4, 107.0, 60.6, 56.4
Compound 3j:

0

o™
CsH110

'H-NMR (ppm): 8.06 (dt, 3J=9.07Hz, “J=2.05Hz, 2H), 6.94 (dt, 3J=9.07Hz, 4J=2.05Hz, 2H), 4.02
(t, 3J=6.44Hz, 2H), 1.82 (m, 3J=7.61Hz, 3J=6.44Hz, 2H), 1.43 (m, 4H), 0.94 (t, 3J=7.02Hz, 3H)

BC-NMR (ppm): 171.8, 163.7, 132.3, 121.3, 114.2, 68.3, 28.8, 28.1, 22.4, 14.0

Compound 3k:

0

o
CeH430

"H-NMR (ppm): 8.05 (dt, 3J=8.78Hz, 4J=1.76Hz, 2H), 6.93 (dt, 3J=8.78Hz, *J=1.76Hz, 2H), 4.02
(t, 6.73Hz, 2H), 1.81 (m, 3J=7.90Hz, 3J=6.73Hz, 2H), 1.47 (m, 2H), 1.35 (m, 4H), 0.91 (m, 3H)

BC-NMR (ppm): 171.1, 163.7, 132.3, 121.3, 114.2, 68.3, 31.5, 29.0, 25.6, 22.6, 14.0

Compound 31:
0
Sok:
0
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'H-NMR (ppm): 12.59 (br, 1H), 7.86 (dt, 3J=9.07Hz, 4]=2.05Hz, 2H), 7.00 (dt, 3J=9.07Hz,
4J=2.05Hz, 2H), 6.02 (m, 1H), 5.32 (m, J=17.26Hz, J=10.53, 2H), 4.62 (dt, 3J=5.27Hz,
4J=1.46Hz, 2H)

BC-NMR (ppm): 167.4, 162.2, 133.6, 131.8, 123.5, 118.3, 114.9, 68.8
Compound 3m:
O

S

o)
"H-NMR (ppm): 12.61 (br, 1H), 7.86 (d, *J=9.07Hz, 2H), 7.38 (m, 5H), 7.08 (d, 3J=9.07Hz, 2H),
5.16 (s, 2H)
IBC-NMR (ppm): 162.4, 137.0, 131.8, 128.9, 128.4, 128.2, 115.1, 69.9
Compound 3n:

iji::[COOH
MeO OMe
'"H-NMR (ppm): 12.47 (br, 1H), 7.83 (s, 1H), 6.76 (s, 1H), 3.93 (s, 3H), 3.86 (s, 3H)

BC-NMR (ppm): 165.8, 160.8, 159.7, 135.5, 100.6, 98.5, 57.1, 56.7

Compound 3o:

COOH
Br o)

)

0]
'H-NMR (ppm): 13.69 (br, 1H), 7.10 (d, 3J=8.19Hz, 1H), 6.94 (d, 3J=8.19Hz, 1H), 6.12 (s, 2H)
13C-NMR (ppm): 165.1, 147.8, 146.7, 126.0, 118.3, 111.1, 109.7, 103.1

Compound 3p:
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0

L™
F

'H-NMR (ppm): 13.21 (br, 1H), 7.84 (m, 1H), 7.53 (m, 1H), 7.20 (m, 2H)

BC-NMR (ppm): 165.5, 163.3 159.9 (Jc.r=256.91Hz), 134.9 134.8 (Jcr=8.62Hz), 132.3 132.30
(Jer=1.15Hz), 124.7 124.6 (3Jc#=3.45Hz), 119.8 119.7 (Jc.r=10.35Hz), 117.3, 117.0 (Jc-
F=22.41Hz)

Compound 3q:

o

/O)‘\OH
F

'H-NMR (ppm): 13.04 (br, 1H), 7.98 (m, 3J=9.07Hz, 3Ju=5.56Hz, 2H), 7.30 (m, 3J=9.07, 2H)

13C-NMR (ppm): 167.0 163.7 (Jc.5.=250.59Hz), 166.8, 132.6 132.5 (3Jc=9.20Hz), 127.8 127.8
(*Jer=2.87Hz), 116.2 115.9 (2J=22.41Hz)

Compound 3r:

0

o
Cl

"H-NMR (ppm): 13.36 (br, 1H), 7.76 (m, 1H), 7.52 (m, 2H), 7.42 (m, 1H)
BC-NMR (ppm): 167.2, 133.0, 132.0, 131.9, 131.2, 131.1, 127.7
Compound 3s:

0]

'H-NMR (ppm): 13.31 (br, 1H), 7.88 (m, 2H), 7.69 (m, 1H), 7.52 (t, 3J=7.90Hz, 1H)
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BC-NMR (ppm): 166.5, 133.8, 133.3, 133.2, 131.1, 129.3, 128.4
Compound 3t:

Cl
Cl COOH

'H-NMR (ppm): 13.63 (br, 1H), 7.78 (dd, 3J=8.19Hz, 4J=1.46Hz, 1H), 7.68 (dd, 3J=7.90Hz,
4J=1.46Hz, 1H), 7.43 (t, ]=8.19Hz, 3J=7.90Hz, 1H)

BC-NMR (ppm): 166.8, 135.0, 133.3, 133.1, 129.6, 129.2, 128.9

Compound 3u:

cl COOH
B0

'H-NMR (ppm): 13.45 (br, 1H), 8.04 (d, 4J=2.05Hz, 1H), 7.86 (dd, 3J=8.19Hz, “J=2.05Hz, 1H),
7.76 (d, 31=8.19Hz, 1H)

I3C-NMR (ppm): 165.9, 136.2, 132.0, 131.9, 131.5, 131.4, 129.8

Compound 3v:

Cl
@COOH
Cl

"H-NMR (ppm): 14.00 (br, 1H), 7.52 (m, 3H)
BC-NMR (ppm): 165.8, 131.9, 130.4, 128.7 (2 signals)

Compound 3w:
F COCH
\@Br
"H-NMR (ppm): 13.66 (br, 1H), 7.74 (dd, 3J=8.78Hz, Jn.r=4.97, 1H), 7.57 (dd, *Ju.r=8.78Hz,

4J=3.22Hz, 1H), 7.32 (dt, *J=T1.7=8.78Hz, *J=3.22Hz, 1H)
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13C-NMR (ppm): 166.7, 163.0 159.7 ({Jc.r.=246.56Hz), 136.1 136.0 (Jc+=8.05Hz, 2C), 120.3
120.0 (3Jcr=22.91Hz), 118.0 117.7 (Jc5=22.91Hz), 115.0 115.0 (*Jc.r=2.87Hz)

Compound 3x:

/O/COOH
NC

'H-NMR (ppm): 13.46 (br, 1H), 8.06 (d, >J=8.49Hz, 2H), 7.96 (d, *J=8.49Hz, 2H)
13C-NMR (ppm): 166.5, 135.3, 133.1, 130.4, 118.6, 115.5

Compound 3y:

/©/COOH
OHC

'H-NMR (ppm): 13.37 (br, 1H), 10.09 (s, 1H), 8.12 (d, 3J=8.49Hz, 2H), 8.00 (d, 3J=8.49Hz, 2H)
3C-NMR (ppm): 193.4, 167.0, 139.3, 136.1, 130.4, 130.0

Compound 3z:

0
"H-NMR (ppm): 13.28 (br, 1H), 8.03 (m, 4H), 2.61 (s, 3H)
BC-NMR (ppm): 198.1, 167.1, 140.3, 134.9, 130.0, 128.8, 27.4

Compound 3A:

0]

)CLH Q)LOH

'H-NMR (ppm): 12.64 (br, 1H), 10.12 (s, 1H), 7.86 (d, 3J=8.78Hz, 2H), 7.66 (d, 3J=8.78Hz, 2H),
2.06 (s, 3H)
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BC-NMR (ppm): 169.3, 167.4, 143.8, 130.8, 125.3, 118.6, 24.6

Compound 3B:

0]

OH
HO

'H-NMR (ppm): 12.81 (br, 1H), 7.88 (d, 3J=8.19Hz, 2H), 7.40 (d, 3J=8.19Hz, 2H), 5.32 (br, 1H),
4.55 (s, 2H)

BC-NMR (ppm): 167.7, 148.2, 141.3, 129.6, 126.7, 126.6, 62.9
Compound 3C:

COOH
X

~

N

'H-NMR (ppm): 9.04 (d, 3J=4.39Hz, 1H), 8.68 (dd, 3J=8.49Hz, *J= 0.88Hz, 1H), 8.10 (dd,
3]=8.49Hz, *J=0.88Hz, 1H), 7.92 (d, 3J=4.39Hz, 1H), 7.83 (dt, 3J=8.49Hz, “J=1.46Hz, 1H), 7.72
(m, 1H)

BC-NMR (ppm): 168.0, 150.8, 148.7, 130.3, 130.0, 128.5, 126.0, 124.8, 122.4

Compound 3D:

(iy\COOH

o

'H-NMR (ppm): 7.65 (m, 1H), 7.34 (dd, 3J=3.51Hz, 4J=0.88Hz, 1H), 6.56 (dd, 3J=3.51Hz,
4J=1.76Hz, 1H)

I3C-NMR (ppm): 163.1, 147.4, 143.8, 120.1, 112.3

Compound 3E:

[i§\COOH

S
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'H-NMR (ppm): 7.91 (dd, 3J=3.80Hz, “J=1.17Hz, 1H), 7.66 (dd, 3J=4.97Hz, 4J=1.15Hz, 1H),
7.15 (dd, 3J=3.80Hz, 3]=4.97, 1H)

BC-NMR (ppm): 167.4, 135.0, 134.0, 132.8, 128.1

Compound 3F:

/©/COOH
O,N

'H-NMR (ppm): 13.56, 8.30 (d, 3J=9.07Hz, 2H), 8.15 (d, 3J=9.07Hz, 2H),
I3C-NMR (ppm): 166.2, 150.5, 136.9, 131.1, 124.2

Compound 3G:

OZN\O/COOH

'H-NMR (ppm): 8.59 (m, 1H), 8.44 (m, 1H), 8.32 (m, 1H), 7.79 (t, *J=8.19Hz, *]=7.90Hz, 1H)
I3C-NMR (ppm): 166.0, 148.3, 135.8, 132.9, 131.0, 127.8, 124.1

Compound 3H:

O,N NO,
'H-NMR (ppm): 8.76 (d, 4J=2.34Hz, 1H), 8.56 (dd, 3J=8.49Hz, 4J=2.34Hz, 1H), 8.10 (d,
3J=8.49Hz, 1H)

13C-NMR (ppm): 165.3, 149.2, 148.4, 133.0, 131.9, 128.4, 120.0

Compound 3I:

/©/COOH
FsC

'H-NMR (ppm): 13.5 (br, 1H), 8.1 (d, 3J=7.90Hz, 2H), 7.8 (d, 3J=7.90Hz, 2H)
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13C-NMR (ppm): 167.4, 135.8, 133.7 (q, 2Jcr=31.61Hz), 131.3, 126.8 (q, *Jc.r=4.02Hz), 123.2

Compound 3J:

CHy(CH,)4COH
'H-NMR (ppm): 2.35 (t, 3J=7.61Hz, 2H), 1.64 (m, 2H), 1.32 (m, 4H), 0.90 (m, 3H)
3C-NMR (ppm): 179.9, 34.0, 31.2, 24.3,22.3, 13.9

Compound 3K:

CHy(CH,)sCOH

H-NMR (ppm): 2.35 (¢, 3J=7.61Hz, 2H), 1.63 (m, 2H), 1.30 (m, 6H), 0.89 (m, 3H)
BC-NMR (ppm): 178.3, 33.7, 31.4, 28.7, 24.6, 22.5, 14.0

Compound 3L:

0
CHa(CH,)sCOH

"H-NMR (ppm): 2.35 (t, *J=7.61Hz, 2H), 1.63 (m, 2H), 1.29 (m, 8H), 0.88 (m, 3H)
BC-NMR (ppm): 180.8, 34.6, 32.2,29.6,29.5,25.2,23.2, 14.6
Compound 3M:

0
I
CHs(CH,)sCOH

'H-NMR (ppm): 2.35 (t, 3J=7.61Hz, 2H), 1.63 (m, 2H), 1.26 (m, 12H), 0.88 (m, 3H)
I3C-NMR (ppm): 179.0, 33.8, 31.8, 29.4, 29.2, 29.0, 24.7, 22.6, 14.1

Compound 3N:

0]

o
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'H-NMR (ppm): 2.40 (m, 3J=6.73Hz, 2H), 1.69 1.50 (dm, 2H), 1.18 (d, 3J=7.02Hz, 3H), 0.95 (t,
3J=7.32Hz, 3H)

BC-NMR (ppm): 183.1, 40.8,26.5,16.3, 11.5
Compound 30:
WOH

O

'H-NMR (ppm): 2.47 (m, 3J=7.02Hz, 1H), 1.66 1.43(dm, 2H), 1.37 (m, 2H), 1.18 (d, 3J=6.73Hz,
3H), 0.92 (m, 3H)

13C-NMR (ppm): 183.1, 39.1, 35.7, 20.3, 16.8, 13.9

Compound 3P:

0
/\il\OH

'H-NMR (ppm): 2.23 (m, 1H), 1.57 (m, 4H), 0.94 (t, 3J=7.32Hz, 6H)
I3C-NMR (ppm): 183.2, 49.2, 25.3, 12.3

Compound 3Q:

0

M&OH

"H-NMR (ppm): 2.29 (m, 1H), 1.57 (dm, 4H), 1.30 (m, 4H), 0.93 (m, 6H)
3C-NMR (ppm): 182.4,47.0,31.4,29.5,25.2,22.6,13.9, 11.7

Compound 3R:

I
NNoH

"H-NMR (ppm): 5.71 (m, 1H), 2.18 (d, 4J=1.17Hz, 3H), 1.93 (d, ¥J=1.17Hz, 3H)
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BC-NMR (ppm): 170.6, 159.7, 115.3, 27.7, 20.5
Compound 3S:

0]

OH
A

'H-NMR (ppm): 5.09 (m, 1H), 2.37 2.15 (dm, 2J=14.92Hz, 3J=5.85Hz, 2H), 1.99 (m, 2H), 1.68
(s, 3H), 1.60 (s, 3H), 1.31 (dm, 2H), 0.98 (d, 3J=6.44Hz, 3H)

13C-NMR (ppm): 178.7, 131.7, 124.1, 41.3, 36.7, 29.8, 25.7, 25.4, 19.6, 17.6

Compound 3T:

0

" N0H

NN
'H-NMR (ppm): 5.70 (m, 1H), 5.07 (m, 1H), 2.18 (m, 7H), 1.69 (s, 3H), 1.61 (s, 3H)
3C-NMR (ppm): 170.5, 163.0, 132.7, 122.8, 114.7, 41.2, 26.0, 25.7, 17.7(2 signals)

Compound 3U:

©/\)‘\0H

'H-NMR (ppm): 12.26 (br, 1H), 7.66 (m, 2H), 7.58 (d, Jians=16.09Hz, 1H), 7.39 (m, 3H), 6.51
(d, 3Jirans=16.09Hz, 1H)

BC-NMR (ppm): 168.0, 144.4, 134.7, 130.7, 129.3, 128.6, 119.7

Compound 3V:

'H-NMR (ppm): 12.54 (br, 1H), 7.58 (d, J=1.46Hz, 1H), 7.44 (m, 5H), 2.00 (d, “J=1.46Hz, 3H)
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3C-NMR (ppm): 169.8, 138.1, 136.0, 130.0, 128.9, 128.8, 14.4
Compound 3W:
0]
©/\)‘\OH
"H-NMR (ppm): 7.31 (m, 2H), 7.23 (m, 3H), 2.97 (t, *J=8.19Hz, 2H), 2.70 (t, 3J=8.19Hz, 2H)
BC-NMR (ppm): 179.1, 140.1, 128.6, 128.3, 126.4, 35.6, 30.6

Compound 3X:

OH
)

'H-NMR (ppm): 11.96 (br, 1H), 7.36 (m, SH), 3.78 (q, 3J=7.32Hz, 1H), 1.56 (d, 3J=7.32Hz, 3H)
I3C-NMR (ppm): 181.2, 139.8, 128.7, 127.6, 127.4, 45.4, 18.1

Compound 3Y:

COOCH

O,N

'H-NMR (ppm): 12.77 (br, 1H), 8.22 (d, 3J=8.78Hz, 2H), 7.96 (d, 3]=8.78Hz, 2H), 7.68 (d, *Jirans.
=16.09Hz, 1H), 6.72 (d, *Jians=16.09Hz, 1H)

BC-NMR (ppm): 167.5, 148.4, 141.8, 141.2, 131.1, 129.7, 124.4

Compound 3Z:

COOH

'H-NMR (ppm): 12.11 (br, 1H), 6.86 (m, 1H), 4.71 (m, 2H), 2.28 2.08 (dm, 2H), 2.07 (m, 1H),
1.78 1.38 (dm, 2H), 1.70 (s, 3H)
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BC-NMR (ppm): 168.4, 149.0, 138.7, 130.5, 109.7, 30.8, 27.1, 24.7, 21.0 (one signal was
blocked by DMSO-d6 solvent signal)

Compound 53:

OH

'H-NMR (ppm): 5.80 (s, 1H), 5.40 (m, 1H), 2.25 (m, 1H), 2.10 (m, 3H), 1.97 (m, 1H), 1.90 (m,
1H), 1.83 (m, 2H), 1.70 (m, 1H), 1.60 (m, 1H), 1.28 (s, 3H), 1.26 (m, 3H), 1.03 (m, 6H), 0.91(m,
1H), 0.86 (s, 3H)

BC-NMR (ppm): 185.4, 145.2, 135.6, 122.4, 120.5, 51.0, 46.4, 44.9, 38.3,37.2, 34.9, 34.5, 27.5,
25.6,21.4,20.9,16.7, 14.0
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Chapter 5 — Catalytic Fehling, a copper-catalyzed aerobic oxidation of aldehyde in water

5.1 Background and hypothesis

In chapter 4, we have developed an efficient silver(I)-catalyzed aerobic oxidation of aldehyde
towards the carboxylic acid. However, certain problems remain, as silver is still a relatively
expensive element, which will be endangered in the next 100 years [1]. To develop efficient
oxidation of aldehyde towards carboxylic acid, we noticed that historically, the Fehling oxidation
and the Tollens oxidation were both of great application. They require water as the sole solvent.
The oxidation is carried on at very mild condition (only require a warm water bath). Vast variety
of different aldehydes can all be transformed into the corresponding carboxylic acid very quickly,
making those reactions even applicable for titration analysis. The Achilles’ heel, however, is the
requirement of stoichiometric amount of copper(Il) and silver(I) salt, which generates vast amount
of silver(0) and copper(I) waste. It would be highly desirable to eliminate the need of
stoichiometric metal for these reactions. We then started to question the feasibility of using similar
strategy in developing our catalytic Tollens’ reaction (Figure 5.1), towards the development of a
new generation of aldehyde aerobic oxidation catalyst that use more abundant copper as catalyst

— a catalytic Fehling’s oxidation.

O Fehling's Reaction O

J - N
R™OH /L-CU\ R” “OH
\_/

O

Figure 5.1 Our proposed catalytic Fehling’s reaction

5.2 Feasibility investigation

Historically, copper has been widely used as aerobic oxidation catalyst, which can afford a variety
of oxidation mechanisms [2]. One of the common examples is the Cu(I)/Cu(II)/O> ‘electron relay’.
Since aerobic oxidation of Cu(I) into Cu(Il) is generally fast [3], in such step, electron in Cu(I) is
efficiently extracted by oxygen to generate Cu(Il). The active Cu(Il) species can then extract
electrons from a variety of substrates and oxidize them into the desired product (Figure 5.2). The
most well-known application for the above-mentioned relay is the classic Wacker’s process [4].

After B-hydride elimination, the electron was extracted from Pd(II)-H to generate H" and Cu(),

95



which transfer the electron to oxygen as the terminal electron acceptor. A similar process was used
by Adimurthy and co-workers in their Cu-catalyzed aerobic oxidation of amine to imine [5], where
Cu(Il) extracted electrons from amine and ultimately transfer those electrons to oxygen. Other than
those examples in which 2 electrons were relayed, single electron transfer (SET) of such ‘electron
relay’ with copper is also well-studied, such as the Cu-catalyzed oxidative cyclization of
hydrazonoketone and ammonium into 1,2,3-triazole [6], and copper-catalyzed aerobic oxidation

of amine into formamide [7].

L—Pd—H
Ho
R/C\NHZ
/\ﬁi/ (SET)
O
N. SET
cu(ll) Phk NH (SET)
O
—N
cu(l) O steps HN-N
N. el N Lin et.al. 2015
Phk SNHO T N
+e
. steps
/\Jrr\j/ —;Fi ZSNTXg  Toure et.al. 2015
| ’ |
H
C Adimurthy et.al. 2011

Il
L—Pd + H* Wacker Chemie 1956

Figure 5.2 Applications of Cu(I)/Cu(Il)/O: relay

Among all the example of Cu-catalyzed aerobic oxidation, alcohol oxidation is probably one of
the most intensively-studied. Although the fixation of oxygen was still done by Cu(I) to generate
Cu(Il), however, an additional hydrogen-extractor is often required to achieve homolysis of the a-
C-H bond (Figure 5.3). For example, TEMPO [8] and other hydroxyamine-based radical reagent.
[9] In 2004, Marko and co-workers reported the use of di-tert-butyl azodicarboxylate as hydrogen-
extractor to achieve alcohol oxidation [10]. Although innovative, the requirement of hydrogen-

extractor was still irreplaceable. In 2015, Lumb and Arndtsen reported a bio-mimic copper-
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catalyzed aerobic oxidation of alcohol without hydrogen-extractor [11]. However, this method
suffers from the requirement of strict anhydrous condition and hazardous solvent (CH2Cl).
Recently, Kumar and co-workers demonstrated the feasibility of O, fixation by Cu(II) [12], which
is different from the classic O> fixation by Cu(I) and achieved B-hydrogen extraction without the
need of additional extractor. However, the Cu(Ill) intermediate involved in this report is still
relatively rare and unstable.

R

R H}_
/ )LR Jd .

3 R,NOH
(bpy)Cu—0
R,NO - %

y (bpy)Cu!'
Hy R 112 0,
(bpy)Cu'"-0

H,0 1/2 [(bpy)Cu'"]2(O2)

HO/_R (bpy)Cu"—OH ‘/(\ RzNOH

R,NO-

Figure 5.3 A typical Cu-catalyzed alcohol oxidation with hydrogen extractor (R2NO in this case)

Based on our preliminary investigation, we concluded that the re-oxidation of Cu(I) generated in
Fehling’s oxidation back into Cu(Il) is potentially feasible. As stoichiometric Cu(Il) alone can
readily achieve aldehyde oxidation, no hydrogen-extractor shall be necessary in our chemistry.
The introduction of ligand can facilitate the re-oxidation by pushing the equilibrium forward and

stabilize the Cu catalyst.

5.3 Result and discussion

5.3.1 Condition optimization

To begin our investigation, we used a common copper(II) salt, CuCl», which was premixed with
2,2’-bipyridyl ligand as catalyst, along with stoichiometric amount of NaOH to consume the
product and push the equilibrium forward. In 100 °C water and atmospheric oxygen sealed in the

reaction vessel (Table 5.1), our standard substrate benzaldehyde (1a) gave 5 % oxidation product
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of the corresponding benzoic acid (2a, entry 1). When Cu(I)Cl was used, the yield decreased to 1 %
(entry 2). The same reaction using CuCl, gave 13 % yield when the reaction temperature was
lowered to 50 °C (entry 3). Keeping the other condition unchanged, switching CuCl, to CuBr» gave
a reduced 3 % yield (entry 4), and the use of CuO eliminates the formation of product (entry 5).
To our delight, the use of Cu(OAc). increased the yield to 68 % (entry 6), and Cu(acac), gave
almost quantitative oxidation (entry 7). The yield dropped to 50 % in the absence of bipy ligand
(entry 8). When examine the current condition with piperonal (1b), a more functionalized aldehyde,

increased Lewis acidity
. >

-Ag E _-Cu
oV L0y
s
RAA | L RAY
H oW | H TOH
et »

reduced nucleophilicity

Figure 5.4 Comparison of silver and copper in our catalysis

no product of the corresponding piperonylic acid (2b) was obtained (entry 9). Considering the
great functional tolerance of our previous silver(I) catalyst (Figure 5.4), we designed a solution to
overcome this problem by using very electron-rich ligand to make copper cation into a softer acid,
that is, more ‘silver like’. The use of electron-rich Buckwald-type ligand also did not overcome
this limitation (entry 10, 11). When more electron-rich N-heterocyclic carbene (NHC) ligand IMes
was used, 50 % 2b was obtained (entry 12). Other NHC ligands such as IPr, SIMes, SIPr gave
33 %, 80 %, 41 % yield of 2b, respectively (entry 13-15). Keeping Cu(acac), and SIMes as the
optimized catalyst, lowering the catalyst load to 5 mol% only gave a slightly yield drop into 78 %
(entry 16). The free carbene cannot give the desired oxidation by itself (entry 17). And no product

was obtained without pre-mixing Cu salt and the carbene ligand (entry 18).

5.3.2 Scope investigation

A series of selected aldehyde candidate was examined towards our aerobic oxidation condition, in
order to investigate its functional tolerance (Table 5.2). Benzaldehyde gave quantitative yield of
benzoic acid (3a). Other aromatic aldehydes such as S5-indancarboxaldehyde and 2-
naphthalenecarboxaldehyde also gave quantitative oxidation of their corresponding carboxylic

acid (3¢, 3d). Piperonal gave 77 % yield of the corresponding piperonylic acid (3e). Other electron-
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Table 5.1. Optimization of reaction condition

=\
N\/

10 mol % Cu(acac),/L e}
1 atm 02 0
< OH
1 eq. NaOH (o)
piperonal 50°C, 1 mL water 12h NMR Yield %
N~
Cy,P Cy,P
-Pr
- pr© O Osicpr
i-Pr
XPhos RuPhos
N.R.

G0 &S §93

i-Pr i-Pr i-Pr i-Pr
IMes IPr SIMes SIPr
50 % 33 % 80 % 41 %
Entry [CuJL? NMR Yield Entry [CuJL? NMR Yield ®
1 CuCly/bipy © 5% 10 Cu(acac),/XPhos ¢ N.R.
2 CuCl/bipy © 1 % 11 Cu(acac),/RuPhos d N.R.
3 CuCl,/bipy 13 % 12 Cu(acac),/IMes ¢ 50 %
4 CuBr,/bipy 3% 13 Cu(acac),/IPr ¢ 33 %
5 CuO/bipy N.R. 14 Cu(acac),/SIMes ¢ 80 %
6 Cu(OAc),/bipy 68 % 15 Cu(acac),/SIPr ¢ 41 %
7 Cu(acac),/bipy 99 % 16 Cu(acac),/SIMes 9 78 % (77 %)
8  Cu(acac),/no ligand 50 % 17 no copper/IMes? N.R.
9 Cu(acac),/bipy ¢ N.R. 18 Cu(acac),/SIMes 9 N.R.

a

: The copper catalyst was generated prior to the oxidation by mixing copper salt with

the ligand under argon in acetonitrile. Cu(acac),/NHC type catalyst can be generated
either by mixing Cu(acac), salt with the corresponding imidazolium salt in acetonitrile
under argon for 24 h, or treating the imidazolium salt with n-BuLi under argon in THF
then adding Cu(acac), salt. The result was unaffected,

b.
c
d
e
f

9

: NMR yields were determined by 1,3,5-mesitylene as the internal standard;

: This reaction was performed with 100 °C temperature;

: This reaction was performed using piperonal as starting material;

: This reaction was performed with 5 mol % catalyst loading;
. Isolated yield,;

: Cu(acac), and SIMes were directly introduced to the reaction without premix.
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Table 5.2. Scope investigation

0]

PN

H

5 mol % Cu(acac),/SIMes

1 atm O, 0

—

1 eq. NaOH R® OH

01 mmol 50 OC, 1 mL Water, 12 h iSO. yleld %a

(0] O COOH (0] (0]
O oar o ot o
o OMe
3a 3c 3d 3e 39
>99 % >99 % 62 % 77 % >99 %
MeO COOH @) O O 0
R raldealivaliioca
OMe CeH130 6) Cl
3i 3k 3l 3r 3s
>99 % 92 % 93 % 90 % 86 %

(0] (0] O (0] O
C|:©)J\OH F\©\)J\OH /©)J\OH /@)J\OH OH
Cl Br NC OHC

3u 3w 3x 3y 0] 3z
67 % 97 % >99 % >99 % >99 %
0 o} o}
O (0]
(0] OH (0] S OH OH
)J\ \ / ©OH \ / TOH
” O,N CF,
3A 3D 3E 3F 3r
>99 % 99 % >99 % 90 % >99 %
(0] i (0] (0] 0
AN
/\/\/\)J\OH /\/\ik X 0oH X OH ©/\)‘\
3L 3Q 3R 38 3uU
>99 % >99 % 91 % 94 % >99 %
OH Q
/\)\H/OH X OH
o Et,N
4a 4b
>99 % 55 %

@ All reaction were conducted with the standard oxidation procedure (details available in electronic supporting

information). Aldehyde (0.1 mmol), Cu catalyst (0.005 mmol, 5 mol %), NaOH (0.1 mmol, 1 equiv.) was mixed in 1 mL
water and non-pressurized oxygen with stirring at 50 °C for 12 h

rich aromatic aldehydes such as 2-anisaldehyde, 3,4,5-trimethoxybenzaldehyde, 4-

hexoxybenzaldehyde and 4-allyloxybenzaldehyde all gave satisfying oxidation, giving
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quantitative, quantitative, 92 % and 93 % yield of the corresponding carboxylic acid respectively
(3g, 3i, 3k, 31). No C=C bond oxidation or rearranging was observed for 31. Halogen substituted
aromatic  aldehyde, such as  2-chlorobenzaldehyde, 3-chlorobenzaldehyde, 3.,4-
dichlorobenzaldehyde, and 2-bromo-5-fluorobenzaldehyde gave 90 %, 86 %, 67 %, and 97 %
isolated yield of their corresponding carboxylic acid (3r, 3s, 3u, 3w). Electron-deficient aromatic
aldehyde such as 4-cyanobenzaldehyde, terephthalaldehyde, and 4-acetylbenzaldehyde all gave
quantitative oxidation into their corresponding carboxylic acid (3x, 3y, 3z). Further oxidation of
3y into the dicarboxylic acid was not observed, possibly due to strong water-solubility of 3y in
basic aqueous solution separate it from hydrophobic catalyst. 4-acetaminobenzaldehyde also gave
90 % isolated yield of 4-acetaminobenzoic acid (3A). Other substrate examples include furfural
and 2-thiophenecarboxaldehyde, which all gave almost quantitative yield of 2-furoic acid and 2-
thiophenecarboxylic acid (3D, 3E). 4-nitrobenzaldehyde gave 62 % isolated yield of 4-
nitrobenzoic acid (3F), possibly due to side reactions on the phenyl ring or nitro group. a, o, o-
trifluoro-2-tolualdehyde gave the corresponding acid quantitatively (3I’). Simple long-chain
aliphatic aldehyde such as octanal and 2-ethylhexanal gave quantitative yield of their
corresponding carboxylic acid too (3L, 3Q). Unsaturated aliphatic aldehyde, such as 3,3-
dimethylacrolein, citronellal and cinnamaldehyde gave 91 %, 94 %, and quantitative yield of their
corresponding carboxylic acid (3R, 3S 3U). 2-hydroxypentanal gave quantitative oxidation of the
corresponding 2-hydroxypentanoic acid (4a). p-diethylaminocinnamaldehyde gave a reduced 55 %
yield of p-diethylaminocinnamic acid (4b), possibly due to this unnatural amino acid is in constant
ionic form, therefore increased its water-solubility. Gram-scale oxidation of benzaldehyde was
also achieved with 10 mg of [Cu(acac):]/SIMes catalyst oxidizing 1 mL benzaldehyde in a
prolonged time. 71 % isolated yield of benzaldehyde was obtained (Scheme 5.1).

o 10 mg Cu(acac),/SIMes o

1 atm O, (balloon)
H » OH
1 eq. NaOH

L SmL water, 50°C, 48h 5o yield 71 %

Scheme 5.1. Gram-scale experimental result

5.3.3 Mechanism investigation
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At this stage, we were very curious about the mechanism behind this oxidation. We started by
investigating the composition of our catalyst, as to the best of our knowledge no previous report
concerns the reaction between Cu(acac); and in situ generated NHC. According to Nechaev’s work
[13], most Cu(I[)-NHC complexes are unstable, unless chelated by covalent oxygen donor from
either NHC or acetate. The green-colored catalyst of our oxidation was then recrystallized in
hexane/chloroform by slow diffusion. Two types of crystal were isolated. The X-ray diffraction
experiment suggest one of the crystal being a 2-coordinated Cu(I) complex, NHC-Cu-Cl and the
other being Cu(acac),. No NHC-Cu(Il) complex was detected. Under our standard oxidation
conditions, the NHC-Cu-Cl alone was able to catalyze the aerobic oxidation of piperonal and gave
55 % yield, whereas no oxidation was observed when Cu(acac): alone was used. However, keeping
the overall [Cu] load unchanged, when the 2 crystals were mixed, 73 % yield of piperonylic acid
was granted, which is similar to the 77 % yield obtained under our optimized condition (Figure
5.5A). We suggested that the NHC-Cu-Cl is the actual catalyst of our reaction, while Cu(acac)
serves as an efficient additive which function is so far unknown. One possibility is that the Cu(II)
is oxidizing the Cu(I) in NHC-Cu-Cl into Cu(II), then regenerated by oxygen oxidation, similar to
the Wacker’s process [4] whereas Cu(Il) was used to oxidize Pd(0) to Pd(II) and the generated
Cu(I) was re-oxidized by oxygen. Oxidizing Cu(I) to Cu(Il) is also much easier than oxidizing
Pd(0) to Pd(II) judging by standard redox electrode potential [14]. To examine this possibility, our
oxidation of piperonal was performed in argon with freeze-pump-thaw-degassed water and air-
tight equipment. We first found that stoichiometric amount of NHC-Cu-OH, which was generated
by anion exchange from previous NHC-Cu-Cl, was able to oxidize piperonal into piperonylic acid
in 91 % yield, whereas no product was obtained with stoichiometric amount of NHC-Cu-Cl. This
not only indicating the possibility of NHC-Cu-Cl can transform into NHC-Cu-OH in the presence
of NaOH in our system and become the active catalyst species, but also suggest that at least the
first step of our oxidation does not necessarily need oxygen and oxidation of Cu(I) into Cu(II).
Then we lower the NHC-Cu-OH load into 5 mol%, and the yield of piperonylic acid also dropped
to approximately 5 %. Keeping other reaction conditions unchanged, 1 equiv of Cu(acac), was
added to the system. Surprisingly, the yield of piperonylic acid was still approximately 5 % (Figure
5.5B). Although we still cannot completely rule out the possibility for a Wacker-like mechanism,
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5 mol% [Cu]

A
! 0 1atm O i
atm O,
0 0
ey - Sy
o) 1 eq. NaOH o)

0.1 mmol 1 mL water, 50°C, 12h iso. yield %
[Cu] = NHC-Cu-Cl 55 %
= Cu(acac), N.R.
= 2.5 mol % NHC-Cu-ClI
+ 73 %
2.5 mol % Cu(acac),
= NHC-Cu-OH 55 %

[Cu] o)

B) 0 "
r
O o)
STy - oYY
0 1 eq. NaOH 0

0.1mmol 1 mL degassed water, 50°C, 12h g0 yield %

[Cu] =1 eq. NHC-Cu-OH 91 %
=5 mol % NHC-Cu-OH ~5 %
=5 mol % NHC-Cu-OH

+ ~5 %
C) 1 eq. Cu(acac),
0 5 mol% Cu(acac),/SIMes

0O
1atm O,
H - OH, 2T
1 eq. NaOH
1 mmol 1 mL water, 50°C, 12h (~ 5 umol hydrogen gas was
detected in the reaction vessel)

D)
0 5 mol% Cu(acac),/SIMes 0
1 eq. H202
H . OH
1 eq. NaOH
degassed H,O iso. yield = 77 %
argon, 50°C, 12h
E)
160 5 mol% Cu(acac),/SIMes X0
1 atm 10,
H » *OH
1eq. Na'80H @
H,'80, 50°C, 12h GC yield %
m/z =122 124 . 126
=28% : 60% : 13%
ratio= 2 . 4 o1
x=16o0r18
a: Na'®0H was generated by reacting NaH with H,'80
F)

160 5 mol% Cu(acac),/SIMes

X0
1 atm 80,
©)‘\H - *OH
1eq. Na'®0H @

H,'®0, 50°C, 12h GC yield %

m/iz =122 : 124 © 126
=68% : 23% : N.D.

ratio= 3 | 0
x=16or 18

Figure 5.5. Mechanism investigation
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as the true function of Cu(Il) in our system is still unknown, those experimental data we obtained
strongly oppose such suggestion. Then, the atmosphere in the sealed reaction vessel of our standard
aerobic oxidation was examined. A low but notable concentration of hydrogen was detected
(Figure 5.5C), suggesting a possible metal-hydride intermediate which can undergo minor
hydrolysis. This similar phenomenon was also observed in the previous catalytic Tollens reaction
in chapter 4. Considering this similarity and both Cu(I) and Ag(I) being coinage metal, we
proposed that the first stage of these 2 transformations are similar via -OH nucleophilic attack/p-
H elimination to give the desired metal-hydride species. The hydride is then reducing molecular
oxygen. If the reducing product is -OH, the active catalyst species will be directly regenerated and
the next catalytic cycle shall begin with no external hydroxide necessary. This is inconsistent with
our observations as 50 % yield of benzaldehyde was obtained when NaOH load dropped to 0.5
equiv. Another possibility is that the metal-hydride is reducing oxygen into a hydroperoxyl-
species. The nucleophilic attack of this hydroperoxyl to aldehyde carbonyl should be easier than
previous -OH attack due to a-effect, then the hydroperoxyl oxidize the aldehyde hydride and give
the carboxylate product, which is substituted by external hydroxide anion to release the product
and regenerate the active catalyst species. We conducted the experiment using H2O> instead of
oxygen as the oxidant, the result was consistent with our hypothesis (Figure 5.5D). To further
examine this hypothesis, an isotope-labelling experiment was conducted for the standard aerobic
oxidation of benzaldehyde. When isotope-labelled H2'#0 and Na'®OH was introduced with normal
1605, an m:m+2:m+4 product ratio of 2:4:1 was observed (Figure 5.5E). Although the presence of
m+4 product indicates not all the oxygen atom of the product came from oxygen, we realized that
oxygen in benzaldehyde can spontaneously exchange with oxygen in water without the oxidation
[15]. Therefore another isotope-labelling experiment using isotope-labelled '®0, and normal
H,'°0/Na'®OH was conducted, showing m:m+2:m+4 ratio of 3:1:0 (Figure 5.5F). This is
consistent with our hypothesis and previous experiment, indicating the oxygen in carboxylic acid
product does not fully come from oxygen, supporting our second mechanism hypothesis involves
hydroperoxyl intermediate, whereas the first mechanism hypothesis, which suggests metal hydride
reduce oxygen into -OH, was negated, as all the oxygen in carboxylic acid product should come

from oxygen in that case.

We concluded our mechanism assumptions and experimental observations, and came up with a

proposed reaction mechanism (Figure 5.6). The first phase of reaction mechanism is similar to our
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previous catalytic-Tollens reaction: the nucleophilic attack of —OH on copper to the aldehyde
carbonyl, followed by B-H elimination to release the product and generate the copper-hydride
intermediate. The minor hydrolysis of this intermediate is responsible for the detection of hydrogen
gas. The hydride then fixes one molecule of oxygen, generating a copper-hydroperoxide
intermediate. This hydroperoxyl group attacks another molecule of aldehyde, then oxidizing the
aldehyde hydride and generates the carboxylate product, which is released by hydroxide anion

substitution to regenerate the active catalyst species at the same time.

SIMes~Cu—Cl

O

— OH
0] ©)J\H

Ok ) SIMes~Cu—OH

SIMes SIMes*(Ilu—OH
, Y,
:' H
H2O

SIMeSE(::u_ SIMeS*Cl:u
o \\
\ o)
£ OH N ( >OH
\ O T H2 \‘\\ H
_SIMes N /K PhCOOH
KU ’ SIMes—Cu—H
0 ) H,O >
H \ /
O.
@OH OH OH
SlMeS’CIIu—O SIMes~Cu—0

Figure 5.6. Proposed mechanism of our catalytic Fehling’s reaction

5.4 Conclusion and perspective
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In this chapter, we have developed a highly efficient and cost-effective aldehyde oxidation method,
using oxygen as the sole oxidant and water as the sole solvent. The development of this method
was inspired by both the classical Fehling’s reaction and the function of copper as a classic aerobic
oxidation catalyst. Using a copper-NHC complex as the optimized catalyst, proceeding via an
unprecedented copper-catalyzed aerobic oxidation mechanism, extremely high efficiency and
wide functional tolerance were both obtained. With our newly developed method added to the
arsenal of copper-catalyzed aerobic oxidations, the development of copper catalyst towards the
oxidation of more complex substrates can be enabled. For example, the aerobic oxidative cleavage
of biomass, which can serve as an effort towards the development of sustainable alternative carbon

source than fossil. Such work has already underway in our lab.

5.5 Contributions of authors

The designing of research directions and experiments in this project was the result of discussions
between Prof. Chao-Jun Li and me. I was in charge of carrying out all the experiments (including
but not limited to condition optimization, substrate scope investigation, and all mechanism study
experiments except for the X-ray Crystallography, which was carried out by Dr. Thierry Maris in

Université de Montréal.) and identifications using NMR spectrometer.

5.6 Experimental

5.6.1 General information

Unless otherwise noted, all oxidations were carried out in Biotage Microwave Reaction Vials size
10-15 mL equipped with a magnetic stir-bar unless otherwise noticed. All reactions were in sealed
closed system: no open-vial reaction was involved and no balloon containing extra volume of gas
was attached to the vessel unless otherwise noted. No microwave was involved during the entire
investigation. All manipulation and purification procedures were carried out with reagent-grade
solvents. Aldehydes which are in liquid form under normal conditions were redistilled under
reduced pressure. The corresponding aldehyde of 4a was generated via oxidation of 1,2-pentadiol
according to reported method [16]. SIMes-Cu-Cl was also synthesized via reported method [17].
Drying of solvent was performed with IOCB AS CR Pure-Solv solvent purification system.
Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F2s4 pre-

coated plates (0.25 mm). Flash chromatography was generally not necessary, but could be
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performed using Biotage Isolera One Flash Purification Systemequipped with Biotage SNAP Ultra
25g prepared column for further purification requirements. Nuclear magnetic resonance (NMR)
spectra were recorded on a Varian MERCURY plus-300 spectrometer (‘H 300 MHz, '*C 75 MHz)
or a Bruker Ascend 500 spectrometer ('"H 500 MHz, '*C 125 MHz). Chemical shifts for 'H NMR
spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance
as the internal standard (CDCls: § 7.26 ppm, DMSO: § 2.46 ppm). Chemical shifts for 3C NMR
spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the
internal standard (CDClz: 6 77.0 ppm, DMSO: 6 40.0 ppm). Data are reported as following:
chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet,

m = multiplet, br = broad signal), and integration.

5.6.2 General procedures

General procedures for the catalyst generation: Method A: An oven-dried reaction vessel,
charged with copper(Il) acetylacetonate (26.2 mg, 0.1 mmol, 1 equiv) and 1,3-bis(2,4,6-
trimethylphenyl)-4,5-dihydroimidazolium chloride (SIMes-HCI, 34.2 mg, 0.1 mmol, 1 equiv), was
flushed with argon 3 times. Dry acetonitrile (2.5 mL) was added into the vessel. The vessel was
then sealed and stirred at room temperature for 24 h. Method B: An oven-dried reaction vessel
was charged with 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazolium chloride (SIMes-HCI,
34.3 mg, 0.1 mmol, 1 equiv) and flushed with argon 3 times. of dry tetrahydrofuran (2.5 mL) was
added into the vessel. n-butyllithium hexane solution (40 pL, 0.1 mmol, 2.5 M concentration) was
added into the reaction mixture and allowed to stir for 5 min. A clear, pale-white solution was
obtained followed by the addition of copper(Il) acetylacetonate (26.2 mg, 0.1 mmol, 1 equiv) and
further stirred for 5 min. The resulting mixture in both cases were then stripped of solvent with

rotary evaporator and the resulting solid were kept in a desiccator for later use.

General procedure for the oxidation of aldehydes: A reaction vessel, charged with
Cu(acac)/SIMes catalyst (4.7 mg, 0.005 mmol, 5 mol %) and sodium hydroxide (4 mg, 0.1 mmol,
1 equiv) was gently flushed with oxygen of ordinary purity using a balloon or gas valve. After this,
distilled water (1 mL) was added to the vessel. The reaction mixture was then warmed up to 50 °C
before the aldehyde (0.1 mmol, 1 equiv) was added. The reaction vessel was then sealed and kept
at 50 °C for 12 h. After this, the reaction mixture was washed with methylene chloride (DCM)

three times with a total DCM volume of 10 mL and the pH of the aqueous phase was then adjusted
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to 2 with 0.1 M HCI. The aqueous phase was then extracted with ethyl ether 3 times with a total
ether volume of 10 mL and the combined ether phase was dried over anhydrous sodium sulfate

and evaporated in vacuo to obtain the carboxylic acid product.

Procedure for oxidation with SIMes-Cu-OH: A reaction vessel, charged with SIMes-Cu-Cl (2.0
mg, 0.005 mmol, 5 mol%) and KOH (0.6 mg, 0.0107 mmol, 10.7 mol %), was flushed with argon
and anhydrous THF (0.1 mL) was added. The vessel was then sealed and stirred at 50 °C for 12 h
before it was cooled to room temperature and filtered through a syringe filterer plug. Additional
THF (0.5 mL) was used to rinse the reaction vessel and the filterer. The combined organic phase
was evaporated in a standard 10 mL reaction vessel before piperonal (15 mg, 0.1 mmol) and NaOH
(4 mg, 0.1 mmol, 1 equiv) was added. Oxygen was then gently flushed into the reaction vessel
followed by the addition of 1 mL distilled water. The reaction vessel was then sealed and stirred
at 50 °C for 12 h. The reaction mixture was then washed with dichloromethane (DCM) 3 time with
a combined volume of 10 mL, acidified to pH =2 with 0.1 M HCl, and extracted with diethyl ether
3 times with a combined volume of 10 mL. The combined ether phase was then evaporated using

rotary evaporator to give the piperonylic acid product (55 % yield).

Procedure for stoichiometric [Cu] experiment: A reaction vessel, charged with SIMes-Cu-OH
(38 mg, 0.1 mmol, 1 equiv) and NaOH (4 mg, 0.1 mmol, 1 equiv), was flushed with argon 3 times
before 1 mL Freeze-Pump-Thaw degassed distilled water was added. The resulting mixture was
stirred for 5 min at room temperature followed by the addition of piperonal (15 mg, 0.1 mmol, 1
equiv). The reaction vessel was then sealed and stirred at 50 °C for 12 h before allowed to cool to
room temperature. The organic phase was washed with DCM 3 times, then acidified and extracted
with ether 3 times. The combined ether phase was dried and evaporated to give piperonylic acid

product (91 % yield).

Procedure for the hydrogen detection: Following a standard oxidation procedure, with a reaction
with 10 times the scale compared to the above general procedure (1 mmol of the aldehyde and
NaOH, 0.05 mmol catalyst, 10 mL water, in a 50 mL reaction vial) was conducted. Upon
completion, a 5 mL syringe equipped with a 15 gauge needle was inserted into the sealed plug for
the reaction vessel and 5 mL gas sample inside the reaction vessel was taken. The needle was
plugged using a normal septum before it was inserted into a heat-conductivity-GC and injected all

its component at once. About 0.5 umol H, was detected for the 5 mL gas sample.
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Procedure for the oxidation with hydrogen peroxide: A reaction vessel, charged with
Cu(acac)2/SIMes (4.7 mg, 0.005 mmol, 5 mol %) and NaOH (0.4 mg, 0.1 mmol, 1 equiv), was
flushed with argon 3 times before water (1 mL, degassed carefully with freeze-pump-thaw for 5
cycles) was added along with benzaldehyde (10 pL, 0.1 mmol) and 30 % commercially available
hydrogen peroxide (10.2 pL, 0.1 mmol, 1 equiv). The reaction vessel was sealed and stirred at 50
°C for 12 h before cooled to room temperature. The aqueous reaction mixture was washed with
DCM 3 times, acidified, and extracted with ether. The combined ether phase was evaporated to

give benzoic acid product in 77 % yield.

Procedure for the H>'®0 isotope labelled experiment™: A reaction vessel, charged with
Cu(acac)/SIMes (4.7 mg, 0.005 mmol, 5 mol %) and NaH (0.3 mg, 0.12 mmol, 1.2 equiv), was
added benzaldehyde (10 pL, 0.1 mmol) and H>'%0 (0.1 mL). The reaction vessel was then sealed
and stirred for 12 h at 50 °C before cooled to room temperature. The aqueous reaction mixture was
washed with DCM 3 times, acidified, extracted with ether 3 times and evaporated to give the

product, which was used for GC-MS analysis.

Procedure for the '®0; isotope labeling experiment: A reaction vessel, charged with
Cu(acac)2/SIMes (4.7 mg, 0.005 mmol, 5 mol %) and NaOH (0.4 mg, 0.1 mmol, 1 equiv), was
vacuumed with oil pump before a balloon of '*0, was plugged on, followed by the addition of
benzaldehyde (10 pL, 0.1 mmol) and Freeze-Pump-Thaw degassed H>O (0.1 mL). The reaction
vessel was then sealed and stirred for 12 h at 50 °C before cooled to room temperature. The aqueous
reaction mixture was washed with DCM 3 times, acidified, extracted with ether 3 times and

evaporated to give the product, which was used for GC-MS analysis.

*: Note that the m+4 product of this experiment was possibly generated by oxidation of
benzaldehyde-'30, which resulted from the fast hydration-dehydration process in basic aqueous

conditions. [8]

5.6.3 Identification of products.

All compounds are previously known and the data reported herein are consistent with the literature

reports.!?]

Compound 3a:
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0

@JKOH

'H-NMR (CDCls, 500 MHz, ppm): 11-13 (br, 1H), 8.16 (m, 2H), 7.65 (tt, 3]=7.32Hz, 4J=2.05Hz,
1H), 7.50 (t, 3J=7.32Hz, 2H),

BC-NMR (CDCls, 125 MHz , ppm): 172.3, 133.8, 130.2, 129.3, 128.5

Compound 3e:

O
<I>)L
0]

"H-NMR (DMSO-Ds, 500 MHz, ppm): 12.5-13.0 (br, 1H), 7.55 (dd, *J=8.24Hz, *J=1.83Hz, 1H),
7.36 (d, 4J=1.83Hz, 1H), 7.00 (d, 3J=8.24Hz, 1H), 6.12 (s, 2H)
BC-NMR (DMSO-Dg, 125 MHz, ppm): 167.1, 151.6, 147.9, 125.4, 125.1, 109.2, 108.5, 102.4
Compound 3g:

O
Sy

OMe
"H-NMR (DMSO-Ds, 500 MHz, ppm): 12.57 (br, 1H) 7.61 (dd, *J=7.90Hz, J=2.05Hz, 1H), 7.48
(m, 1H), 7.10 (d, 3J=8.49Hz, 1H), 6.97 (dt, *J=7.32Hz, 4J=0.88Hz, 1H), 3.79 (s, 3H)
BC-NMR (DMSO-Dg, 125 MHz, ppm): 167.8, 158.5, 133.5, 131.0, 121.7, 120.4, 112.8, 56.1
Compound 3i:
MeO COOH
MeO /T\

OMe

'H-NMR (DMSO-Ds, 300 MHz, ppm): 12.7-13.0 (br, 1H), 7.21 (s, 2H), 3.80 (s, 6H), 3.70 (s,
3H)
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BC-NMR (DMSO-Ds, 75 MHz, ppm): 167.4, 153.1, 141.8, 126.4, 107.0, 60.6, 56.4
Compound 3k:

0

o
CgH¢30

'H-NMR (DMSO-Ds, 500 MHz, ppm): 12.58 (br, 1H), 7.88 (d, 3J=8.78Hz, 2H), 7.00 (d,
3J=8.78Hz, 2H), 4.04 (t, 3J=6.73Hz, 2H), 1.73 (m, 1.42 (m, 2H), 1.32 (m, 4H), 0.88 (m, 3H)

BC-NMR (CDCls, 125 MHz, ppm): 171.1, 163.7, 132.3, 121.7, 114.2, 68.3, 31.5, 29.0, 25.6,
22.6, 14.01

Compound 3I:

0
¢ @A o
(0]
'H-NMR (DMSO-Ds, 300 MHz, ppm): 12.59 (br, 1H), 7.86 (dt, 3J=9.07Hz, 4]=2.05Hz, 2H),

7.00 (dt, 3J=9.07Hz, 4J=2.05Hz, 2H), 6.02 (m, 1H), 5.32 (m, J=17.26Hz, J=10.53, 2H), 4.62 (dt,
3J=5.27Hz, *J=1.46Hz, 2H)

BC-NMR (DMSO-Ds, 75 MHz, ppm): 167.4, 162.2, 133.6, 131.8, 123.5, 118.3, 114.9, 68.8

Compound 3I’:

@COOH
CF;

"H-NMR (DMSO-Dg, 500 MHz, ppm): 13.57 (br, 1H), 7.70-7.85 (m, 4H)

13C-NMR (DMSO-Ds, 125 MHz, ppm): 168.3, 133.1, 132.8 (m), 131.6, 130.1, 127.0 (q, ] =
5.49Hz), 125.1, 122.9

Compound 3x:
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/©/COOH
NC

'H-NMR (DMSO-Ds, 500 MHz, ppm): 13.55 (br, 1H), 8.09 (d, 3J=8.49Hz, 2H), 7.98 (d,
3J=8.49Hz, 2H)

13C-NMR (DMSO-Ds, 125 MHz, ppm): 166.5, 135.3, 133.1, 130.4, 118.6, 115.5

Compound 3z:

0
"H-NMR (DMSO-Ds, 300 MHz, ppm): 13.18 (br, 1H), 8.03 (m, 4H), 2.61 (s, 3H)
BC-NMR (DMSO0-Ds, 75 MHz, ppm): 198.1, 167.1, 140.3, 134.9, 130.0, 128.7, 27.4

Compound 3F:

/©/COOH
O,N

'H-NMR (DMSO-Ds, 300 MHz, ppm): 13.61 (br, 1H), 8.30 (d, 3]=9.07Hz, 2H), 8.15 (d,
3J=9.07Hz, 2H),

13C-NMR (DMSO-Ds, 75 MHz, ppm): 166.2, 150.5, 136.9, 131.1, 124.2

Compound 3y:

/©/COOH
OHC

'H-NMR (DMSO-Ds, 500 MHz, ppm): 13.37 (br, 1H), 10.11 (s, 1H), 8.15 (d, 3J=8.49Hz, 2H),
8.05 (d, 3J=8.49Hz, 2H)

BC-NMR (DMSO-Ds, 125 MHz, ppm): 193.5, 167.0, 139.4, 136.1, 130.4, 130.0

Compound 3A:
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0

o) /©)\0H
A
H

'H-NMR (DMSO-Ds, 300 MHz, ppm): 12.64 (br, 1H), 10.22 (s, 1H), 7.86 (d, 3J=8.78Hz, 2H),
7.66 (d, 37=8.78Hz, 2H), 2.06 (s, 3H)

BC-NMR (DMSO-Ds, 75 MHz, ppm): 169.3, 167.4, 143.8, 130.8, 125.3, 118.6, 24.6
Compound 3r:

0

L
Cl

"H-NMR (DMSO-Dg, 500 MHz, ppm): 13.36 (br, 1H), 7.79 (m, 1H), 7.55 (m, 2H), 7.43 (m, 1H)
BC-NMR (DMSO-Dg, 125 MHz, ppm): 167.2, 133.0, 132.0, 131.9, 131.3, 131.1, 127.7
Compound 3s:

0]

'H-NMR (DMSO-Ds, 500 MHz, ppm): 13.31 (br, 1H), 7.91 (m, 2H), 7.70 (m, 1H), 7.55 (t,
3J=7.90Hz, 1H)

3C-NMR (DMSO-Ds, 125 MHz, ppm): 166.5, 133.8, 133.3, 133.2, 131.1, 129.3, 128.4

Compound 3u:

Clj@/COOH

cl

'H-NMR (DMSO-Ds, 300 MHz, ppm): 13.47 (br, 1H), 8.04 (d, J=2.05Hz, 1H), 7.86 (dd,
3J=8.19Hz, 4J=2.05Hz, 1H), 7.76 (d, 3J=8.19Hz, 1H)

BC-NMR (DMSO-Dg, 75 MHz, ppm): 165.9, 136.2, 132.0, 131.9, 131.5, 131.4, 129.8
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Compound 3w:
F COOH
|06
"H-NMR (DMSO-Ds, 300 MHz, ppm): 13.66 (br, 1H), 7.74 (dd, 3J=8.78Hz, *Jur=4.97, 1H),

7.57 (dd, 3Jur=8.78Hz, 4J=3.22Hz, 1H), 7.32 (dt, *J=*Ju.r=8.78Hz, 4J=3.22Hz, 1H)

BC-NMR (DMSO-Dg, 75 MHz, ppm): 166.7, 163.0, 159.7 (Jc.,=246.56Hz), 136.1, 136.0 (*Jc.
7=8.05Hz, 2C), 120.3, 120.0 (3Jc-r=22.91Hz), 118.0, 117.7 ((Jcr=22.91Hz), 115.0 115.0 (*Jc-
r=2.87Hz)

Compound 3c:
0]

C@*w

'H-NMR (DMSO-Ds, 500 MHz, ppm): 12.70 (br, 1H), 7.79 (s, 1H), 7.72 (d, 3J=7.90Hz, 1H),
7.33 (d, 31=7.90, 1H), 2.91 (t, 3J=7.61Hz, 4H), 2.04 (m, }J=7.61Hz, 2H)

13C-NMR (DMSO-Ds, 125 MHz, ppm): 172.5, 151.0, 144.7, 128.6, 127.3, 126.1, 124.3, 33.1,
32.5,25.4

Compound 3d:

COOCH

'H-NMR (DMSO-Ds, 300 MHz, ppm): 13.12 (br, 1H), 8.84 (m, 1H), 8.14 (m, 2H), 7.99 (m, 1H),
7.57 (m, 3H)

BC-NMR (DMSO-Ds, 75 MHz, ppm): 169.1, 133.9, 133.4, 130.5, 130.3, 129.1, 128.7, 126.6,
126.5, 125.9, 125.3

Compound 3L:
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0]

/\/\/\)J\OH

'H-NMR (CDCls, 500 MHz, ppm): 11.2-12.0 (br, 1H), 2.35 (t, 3J=7.61Hz, 2H), 1.63 (m, 2H),
1.29 (m, 8H), 0.88 (m, 3H)

BC-NMR (CDCls, 125 MHz, ppm): 180.8, 34.6, 32.2, 29.6, 29.5, 25.2, 23.2, 14.6
Compound 3Q:
0]

M&OH

'H-NMR (DMSO-Ds, 300 MHz, ppm): 12.00 (br, 1H), 2.10 (m, 1H), 1.43 (dm, 4H), 1.22 (m,
4H), 0.82 (m, 6H)

13C-NMR (DMSO-Ds, 75 MHz, ppm): 177.3, 46.9, 31.6, 29.6, 25.3, 22.6, 14.3, 12.1

Compound 3R:

It
X" 0H

'H-NMR (DMSO-Ds, 500 MHz, ppm): 12.21 (br, 1H), 6.74 (m, 1H), 1.75 (m, 6H)
13C-NMR (DMSO-Ds, 125 MHz, ppm): 170.6, 159.7, 115.3, 27.7, 20.5

Compound 3U:

©/\)‘\0H

"H-NMR (DMSO-Ds, 500 MHz, ppm): 12.30 (br, 1H), 7.69 (m, 2H), 7.60 (d, 3Jans-=16.09Hz,
1H), 7.42 (m, 3H), 6.53 (d, *Jirans=16.09Hz, 1H)

13C-NMR (DMSO-Ds, 125 MHz, ppm): 168.0, 144.4, 134.7, 130.7, 129.4, 128.7, 119.7

Compound 3S:
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OH
A

'H-NMR (DMSO-Ds, 500 MHz, ppm): 11.99 (br, 1H), 5.08 (m, 1H), 1.70-2.22 (m, 5H), 1.65 (d,
3H), 1.57 (d, 3H), 0.99-1.36 (m, 2H), 0.88 (d, 3H)

BC-NMR (CDCls, 125 MHz, ppm): 178.5, 131.7, 124.1, 41.3, 36.7, 29.8, 25.7, 25.4, 19.6, 17.6
Compound 4b:

0]

/[::T/Qv)kOH
Et,N

'H-NMR (DMSO-De, 500 MHz, ppm): 11.9 (br, 1H), 7.46 (m, 3H), 6.66 (d, 2H), 6.16 (d,
3Jeans=15.80Hz, 1H), 3.39 (m, 4H), 1.11 (t, *J=7.02Hz, 6H)

BC-NMR (DMSO-Dg, 75 MHz, ppm): 168.7, 149.4, 145.1, 130.5, 121.1, 112.7, 111.5, 44.2, 12.9
Compound 4a:

O

o

OH

'H-NMR (DMSO-Ds, 500 MHz, ppm): 12.32 (br, 1H), 3.92 (t, 1H), 1.45-1.65 (m, 2H) 1.36 (m,
2H), 0.88 (t, 3J=7.32Hz, 3H)

13C-NMR (DMSO-Ds, 125 MHz, ppm): 176.4, 69.8, 36.5, 18.5, 14.2

Compound 3D:

@\COOH

o

'H-NMR (DMSO-Ds, 300 MHz, ppm): 12.92 (br, 1H), 7.90 (m, 1H), 7.20 (dd, 3J=3.51Hz,
4J=0.88Hz, 1H), 6.63 (dd, 3J=3.51Hz, 4J=1.76Hz, 1H)

BC-NMR (DMSO-Ds, 75 MHz, ppm): 159.7, 147.5, 145.3, 118.1, 112.5
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Compound 3E:

@\COOH

S

'H-NMR (DMSO-Ds, 300 MHz, ppm): 13.31 (br, 1H), 7.87 (dd, *J=3.80Hz, “=1.17Hz, 1H),
7.71 (dd, 3J=4.97Hz, “J=1.15Hz, 1H), 7.17 (dd, *J=3.80Hz, *J=4.97, 1H)

BC-NMR (DMSO-Ds, 75 MHz, ppm): 163.3, 135.1, 133.6, 128.7

5.6.4 X-ray single crystallography result

CHAOJ1(1) - Colorless Crystal 0.17 * 0.20 * 0.22 mm?3, T = 100 K

Unit Cell:
a/A 8.7675(7)
b/A 15.3649(1)
c/A 30.137(2)
o/ 90
B/ 90
v/ 90
v /A 4059.8(6)
Space Group Pbca

Identified as (SIMes)CuCl, CSD REFCODE PAPDOA (J. Org. Chem 70 (2005) p4784).
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CHAO0J2(1) - Blue Needle 0.04 * 0.04 * 0.35 mm?3, T = 100 K

Unit Cell:
a/A 10.2721(19)
b/A 4.6297(9)
c/A 11.288(2)
o/ 90
B/ 92.360(3)
y/° 90
v /A3 536.34(18)
Space Group P21/n

Identified as Cu(acac),, CSD REFCODE ACACCUO02.
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Chapter 6 — Contribution to fundamental knowledge

In this thesis, we have established a series of silver/copper catalyzed aldehyde reduction and
aerobic oxidation methods. We have discussed the first homogeneous silver-catalyzed transfer
hydrogenation of aldehyde in water using formate as reductant, which implying the first
decarboxylation of silver(I)-formate (AgO>CH) to afford silver(I)-hydride. The discovery of such
process potentially enables cost-effective and environmental-friendly reduction of other substrates,

such as ketone, etc.

Inspired by Silver-Mirror reaction, as one of the most powerful aldehyde oxidations in the history,
we have developed an innovative silver-catalyzed aerobic oxidation of aldehyde. The developed
reaction, like the historic Silver-Mirror reaction, shows powerful functional tolerance and
adaptability for a wide section of aldehyde, including natural products, in mild condition. This is
the first report concerning [B-H elimination of a silver(I)-(gem-diol-anion) complex
[AgOCH(OH)R]. Generally, B-H elimination of silver(I) complex was rarely reported. It is also
the first time that hydrogen gas was detected in aerobic oxidation of aldehyde, implying the
effectiveness of a silver(I)-hydride in activating molecular oxygen, which is unprecedented in

aldehyde oxidation chemistry.

The catalytic version of another historically important aldehyde reaction, the Fehling’s reaction,
was also developed. While achieving most of the advantages for the previous catalytic-silver-
mirror, including wide adaptability, high catalyst efficiency, mild condition, and easy purification,
the catalytic-Fehling is particularly advantageous since global silver conservation is suffering from
fast depletion. Among all the previous Cu-catalyzed aerobic oxidation chemistry, no report

demonstrated that the activation of oxygen was done by Cu-H, which was suggested by our study.

Also, notably, it was suggested that all the described reactions, both reduction and oxidation,
proceed via a unified nucleophilic attack mechanism. All reactions involve a key metal-hydride
intermediate, which attacks the carbonyl to give alkoxide in reduction and activates oxygen into
hydroperoxide in oxidation. Such unified mechanism implies that the complex relationship
between reduction and oxidation in chemistry may also be unified in mechanistic level. This
hypothesis has already inspired us to pursue further examinations and developments of new

applications from those ideas.
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2[6.6432 .. 7.04101569653  561482201e+9 1.01569653 2 7.00 35005 | 01115
3[7.0797 . 7.1§100260115  554243123e+9 1.00260115 3 713 3567.0 | 0.0941
4[7.4380 . 7.551 02180201 564857498e+9 1.02180207 4 7.51 37556 | 0.0683
5[7.5745 .. 7.64099970474  552641946e+9 0.99970472 5 7.63 38163 | 0.0952
6124202 . 1 7 552713984e+9 0.99983507 5 7.64 28221 | 00915
7 1257 | 62876 | 00248
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File Name CWsers\dminiCloudCrivei\Revised Fehling Scopelimxd-re97-Cu-scope-A L3N2id Frequency (MHz) 125.81
Nucleus 13¢ Numberof Transients 512 Origin AVIIIS00HD Original Points Count 32768
Oumer megilinme Points Count 32768 Puise 2gpg30 Receiver Gain 192.72
SWcyctica) (Hz) 30000.00 Sofvent DMSO-d6 Offset(Hz)  12578.9238 Spectrum Type STANDARD
Sweep Width (Hz) 29999.08 Te (degree €) 26.000
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Chemical Shit (ppm)

No. | (epm) (Hz) | Height
5616 | 70652 | 01919
112.88 | 142017 | 03479
120.46 151557 03220
12176 | 153196 | 01829
131.06 16489.6 03335
13347 | 167926 | 02804
15851 | 199421 | 01810
167.78 | 21109.3 | 01590
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File Name CiWUsers\AdminiCloudDrive\Revised Cehling Scopelmxd-re97-Cu-scope-AL52 PROTON_01 fidifid Frequency (MHz) 299,63
Nucleus 1H Numberof Transients 8 Original Points Count 9818 Points Count 16384
Puise s2pul Receiver Gain 30.00 Solvent DMS 0-d6 Offsef(Hz)  1797.7788
5; Type STANDARD Sweep Width (Hz) 4793.86 [ (degree C) AMBIENT TEMPERATURE
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Chemical Shift (opm)
No. (om) | value Absolute Value Non-Negative Value || No. {opm) (Hz) Height
1[3.6645 . 3.763.01674771__ 354445888e+8 3.01674771 1 3.71 11106 | 0.6424
2[37601 .. 3.896.4366149¢  7.56255360e+8 6.43661499 2 3.80 11395 | 1.0000
3[7.11336 .. 7.281.9907001  234060784e+8 1.69979019 3 7.21 2160.8 | 0.3467
27879 . 12053541083 6.20068720e+7 0.53541082 4 1289 | 38620 | 0.0042
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File Name CWsers\dminiCloudCrivei\Revised Fehling Scopelimxd-re97-Cu-scope-ALS2 CARBON 01 fid¥fid Frequerncy (MHz) 7535
Nucleus 13C Nurber of Transients 1700 Ovigginal Points Court 19624 Points Count 32768
Puise s2pul Receiver Gain 3000 Sofvent DMSO-d6 S, Offsef(Hz)  5287.6016
Spectrum Type STANDARD Sweep Width (Hz) 1883239 Te (degree C)  AMBIENT TEMPERATURE
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Chemical Shift (apm)
No. {ppm) (Ha) Height
1 5635 42483 0.8369
2 6054 45619 04982
3 106.98 80809 0.7444
4 | 12633 | 95190 | 03419
5 141.81 10685.1 01737
[ 153.08 | 115346 | 08362
7 167.34 | 12609.3 | 04420
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Aoqui'si tion Tine (sec) 3. 7768 | comment L 1d_PROTCN [WEO ! home ningid n 1 Date 10 fpr 2016 19: 23 dd
te Stanp 10_Apr 2016 19 23 44 Ale Mo C 4 User s\ MAVMVDRsL oph | nxd- 87 19-224 141 d
Frequency (M) 500,30 Nl es 1H Muber of Transients 18 aigin AV 11500-D
Giginal Fonis Gt 32788 Quer negi | Poinls Quet 68 P se Sequence Qa0
FRecalver Gin 12,72 SWeyclical) (M) 10000. 00 Sol vent TG d6 Spectrum(Ffset (M)  3089.5574
Spect rum Type STAD¥D Sepep Wath (1) 9569 70 e (degree O 25204
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Chemical Shift (ppm)
[ No. (ppm) Annotation Layer No. | Created By Greated At Modified By Mocified At
1 [249 252 | DMSO 1 MMLWW 201674110 21 5439
2 [3.30..335] | Water 1 WML 2016/4/10 21:54:39
No.  (ppm)  Value Absolute Value | Non-Negative Value | No.  (ppm)  Value Absolute Value  Non-Negalive Value
10,8049 . 0.922.85096547  1.83443136e+9 295996547 5[3.9799..4.082.11609244  1.371144307e+8 211608244
212327 132315522671 1.05544307e40 315522671 6[6.0522 . 7.062.02479744 1 25486323e+9 202474744
3[1.3340 . 1.462.41851428 _ 1.498565220+0 241851425 7[7.8192 . 7.032.0031068% 124142054040 200310683
4[1.6380 . 1.792.19599414 _1.36096192e+8 219599414 | Pl24128 . 126127523362 7 8 127523363 |
No.  (ppm) (z) | Height | No. | (ppm) | (Hz) | Height | No. | (ppm) | (Hz) | Hegnt |[ No. (ppm)  (Hz)  Height | MNo. | (ppm) | (Hz) | Heignt
1 088 4423 | 04701 | 3 | 143 7176 | 00217 | 5 | 402 | 20130 | 00578 || 7 405 20262 00574 9 | 701 | 35081 | 0.1085
[z 132 659.0 | 00835 | 4 | 173 | 8641 | 00387 | 6 | 404 | 20188 | 01240 || 8 6.99 34993 01118 | 10 | 7.7 | 39354 | 0.1383 |
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Aequisition Tine (seq) 1.0923 ‘me 17 Sep 2015 03:21:36 Dite Sap 17 Sep 2015 03:21:36
Fie Nae C\User s\MMVWV O oudDy| vel Revi sed Fehl i ng Scopeh | nxd-r e97-Q hexoxy\ 4 fid Frequency (M) 125. 81
Nrieus 13C Nrber of Transient 51 Qigin A 500D Qiginal Pints Qunt 3276
Quer negi | nne Rints Qurt 3276 Ri se Sequeice gog30 Receiver Gain 192
SWeyclical) (H) 30000, 00 Solvert CHORFORAd (He) 12578 9238 SpectrumTipe STANDARD
Seeep Wt h (1) 29909, 0 Terperature (degree Q 000
Jmxa g V& actor = 1 _
3 g
0354 o <
E 0 = ]
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g 0.15
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210 200 190 180 170 160 150 140 130 120 110 100 90
Chemical Shitt (ppm)
No. | (ppm) (Hz) Height
i 14.02 17643 01013
2 2259 28418 02182
3 2566 3228.2 0.0821
4 29.06 3656.7 0.1587
5 3155 3968.8 0.1841
6 68.31 8594.1 0.1404
7 114.21 14369.2 03264
8 121.31 15261.9 0.0907
9 13233 16648.9 03192
10 163.69 20594.8 0.0873
11 171.41 21566.2 0.0855
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Acquisition Time (sec) ~ 3.2768 | comment Li 1d_PROTON DMSO /home mingxin 2 Date 08 Apr 2016 11:10:56
Date Stamp 08 Apr 2016 11:10:56 Fite Name cw g pe-Ap id
Frequency (MHz) 500.30 Nucteus 1H Number of Transients 16 onigin AVIIIS00HD
Original Points Count 32768 Owmer megilinme Points Count 32768 Pulse Sequence 2g30
Recelver Gain 106.56 SWicyctical) (Hz) 10000.00 Solvent DMSQ-d6 Spectrum Offset(Hz)  3088.5574
Spectrum Type STANDARD | Sweep Width (Hz) 9999.70 (degree C) 25.198
Imixd-1e97-Cu-scape- Apr-AgRTE AR CARF actor = 1 33
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Chemical Shift {ppm)
No (ppm) Annotation Layer No. Greated By Created At Modified By Modified At
1 [249..2.52] DMSO 1 Admin___[Sun 4/1012016 10:26:50 PN
No. (pprm) Value Absolute Value Non-Negative Value
1[4.5203 .. 4 702.03203274  9.05142003e+9 2.03293276
2[5.1346 .. 5.351.0306185  4.50379046e+9 1.03061855
3[5.3564 .. 5.471.02172697  4.55415808e+9 1.02172607
4[5.9706 .. 6.140.97249734  4.33472614e+0 097248734
5[6.9261 .. 7.002.0302786¢ _9.04956976e+9 2.03027668
6[7.8134 .. 7.941.99954307 _ 8.91259187¢+9 199954307
7124031 . 12.80.9177807  4.09083699+9 091778070
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File Name C Wsers\AdminiCloudDrive\Revised Fehling Scopelimxd-re97-Cu-scope-AL134 CARBON_01 fidifid Frequency (MHz) 75.35
Nucleus 13¢ Nurnber of Transients 1700 Original Points Count 19624 Points Count 32768
Puise s2pul Receiver Gain 30.00 Sofvent DMSO-d6 Offset (Hz) 8287.8016
P Type STANDARD Sweep Width (Hz) 1883239 Te (degree €) AMBIENT TEMPERATURE
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Chemical Shift (ppm)
No. | (ppm) (Hz) Height
1 68.81 51849 04031
2 114.90 8657 4 0.8265
3 [ 11828 | 89121 [ 02504
4 123.50 93057 0.1535
5 | 13175 | 99276 | 06965
6 13363 | 10069.0 | 0.2049
7 16219 | 122208 | 0.1804
8 167.39 | 126128 | 02847
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jor Time (sec) 32768 [ Date 12 Jul 201519:25:52 Date Stamp 12Jul 2015 19:25:52
File Name ClUsersWdminiCloudDrive\Revised Fehling Scopellmxd-re97-Cu-seope-ALB\\id Frequency (MHz) 500.30
Nurcleus H Number of Transients 15 Origin AVIII500HD Oriyinal Points Count 32768
Ouner megillnme Points Count 32768 Pulse 2930 Receiver Gain 10656
SW(cyclical) (Hz) 10000.00 Solvent DMSO-d6 Spectrum Offset (Hz) __ 3089.5574 Type STANDARD
Sweep Width (Hz) 9999.70 (degree €} 26,004
Imxd-re97-Cu-scope-A L8 QR 8IS cale Factor = 1
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Chemical Shit (ppm)
[No. | ¢opm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
1 | [249.252 |pM™mso 1 | Admin [Tue 9/15/2015 10:20:11 AN | |
21 m27.339 |water | 1 | Admin [Tue 9/15/2015 10:20:11 AN | |
[[No. T topm) | Value | AbsoluteValue | Non-Negative Value |[ No (ppm) (Hz) Height
| 177043 . 7.85400000000  2.22094950e+10 | 400000000 || 1 7.73 3867.0 | 03747
| m3hk439 . 136093945548 521620787e+0 | 093945545 || 2 7.77 3887.1 | 04754
3 7.8l 3906.1 0.5240
4 7.84 39201 | 04946
5 7.85 3927.7 | 03634
6 13.57 6788 4 0.0887
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jor Time (sec) 10923 [ Dat= 12.Jul 2015 19:53:36 Date Stamp 12 Jul 2015 19:53:36
File Name C:ilUsersWdmintiCloudDrivelRevised_Fehling_Scopelimxd-re97-Cu-scope-ALBI2\id Frequency (MHz) 125.81
Nurcleus 13¢ Nurmber of Transients 512 Origin AVIIS00HD Original Points Count 32768
Ouner megilinmr Points Count 32788 Pulse 2gpg30 Receiver Gain 19272
SW(cyclical) (Hz} 30000.00 Solvent DMSO-d6 Offset(Hz) 125789238 s, Type STANDARD
Sweep Wilth (Hz) 29999.08 T (degree C) 25.999
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Chemical Shift (ppm)

No. {ppm) (Ha) Height
12294 | 15467.0 | 00388
12510 | 15739.8 | 00385
126.97 | 159751 0.0937
130.13 16371.5 03923
13165 | 165628 | 0.1325
133.11 16746.9 | 0.1447
168.28 | 211716 | 01093
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Acquisition Tine (sec) 32768 [pate 17 Sep 2015 13,551 Dite Sarp 17 Sep 2015 13,551
Fle N C\Lser s\ MAVWVI Q@ oudDY | ve\ Revi sed Fehl i ng_Scopel | mxd-r e97-G 2 \ffid Frequency (ME) 50030
Neleus 1H Nunkeer of Transiert Qign AILIS00D Cigiml Pins Cant 3278
Quer egi [ n Roints Count 3278, Aise Seqence 430 Recei ver_Gain 10656
SWcyclical) (H) 10000.00 Sol vert MO 0B (H) 3089 5574 Spect rum Type STANDARD
Sweep Wobh (H) 9000 70 Terperat ire (degree Q 002
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Chermical Shift (opm)
[(No. | (ppm) [ Annetation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
1] 1249.2521 |o | 1 MMLVWAY | 2015/9/17 17:05:27] |
No. | (opm) | Value Absolute Value | Non-Negative Value | [ No. | (opm) (Hz) | Heignt
1[7.5205 . 03200000000 _1.50756393¢+10 200000000 1 797 | 3987.5 | 07159
2[8.0556 .. 5.131.08039201 _1.49278444e+10 1.98039203 2 | 709 | 39964 | 0.8736
B13.5135 . 13.70.9310252] _ 7.01790054+9 093102527 3 | 808 | 40400 | 1.0000
4 | 1355 | 67802 | 0.0193
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Acquisition Tine (seq) 1.0023 ‘me 17 Sep 2015 14:22:56 Dite Sap 17 Sep 2015 14: 6
Fle Narm C\User s MMYWI O oudDyi vel Revi sed Fehl i ng Scopel | nxd-r e97-Q 4 AAfid Frequency (M) 125.81
Neleus 13C Nrber of Transient 1| Qigin AV S00HD Qiginal Pints Quuk 32768
Quer megi || nm Rints Quug 32768 Aise Sequerce gog30 Receiver Gain 19;
SWeyclical) (i) 30000, 00 Sofvert VED d6 (i) 12578, 9238 SpectrumTipe. STANDARD
Seeep Wokh (H) 29509 0 Terperature (degree Q 003
1.0-Jimxd-reS7-Cu-scope-4-cyanghenzabiSR R Factor = 1
094
0.8-
07 OH
z B LX)
& oey 88
£ 7 3C-NMR Ll
- 054
3
E
= -
£ 045 @
5 8
R o
03 2
3 =
0.2 2 g
E 3 i
8 =
014 T |
. | i
i T T T T T T i) T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
220 210 200 130 180 170 160 150 140 130 120 110 0 8 70 & 5 4 30 20 10 0 -0 -2
Chemical Shit (opm)
No. | (ppm) (Hz) Height
1 11553 14534.9 00735
2 118.64 14926.8 01733
3 130.38 16403.5 05160
4 133.13 16749.6 05034
& 13533 17026.1 0.0586
6 166.51 20949.1 03028
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| Aoquisition Time (sec) 3.2768  Coment i 1d PROTON DMBO/ hone mingxin 56 Date 11 Mar 2016 13:28: 20
pte Sfanp A Me 206132920 0000000000000 |Flehee G hlkers\MAWWDeskl op\ NWR resubmiti | mxd-red7- Q- scope-peve 4-acetyl\Ivfid
Frequency (M) 500, 30 Nl et 1H Nber o Tramsients 16 aigin A |1500HD
Giginal Fints Count 32768 Quner ougi Ll om Poi nts Cound 22768 Al se Sequence
Receiver Gin 106. 56 SWeyslical) (H) 10000. 00 Sof vent EMEO dB SpectrumOfsel (M) — 3089.5574
Spect rum Type STAD¥D Sueen Wath (Hr) 26080 70 Tenperatire (ckgree Q  27.016
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Chemical Shift (ppm)
[ No (ppm) Annatation Layer No. | Created By Created At Modified By Maodified At
K 1249 ..2.52] DMSO 1 | Mo 2016/4/3 14:09:46 |
No. (ppm) Value Absolute Value Non-Negative Value | No.  (ppm) (Hz) Height
1[2.5725 .. 2.672.96881557  3.36275272e+10 2.96881557 1 263 13145 1.0000
2[7.9430 .. 8.114.00011253  4.53068403e+10 4.00011253 2 805 40284  0.5898
}13.2460 .. 12.30.91622418  1.03779952e+10 0.91622418 3 1330 66545  0.0337
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jon Time (sec)  1.0420 [ pate Jul 13 2015 | Date Stamp Jul 132015
File Name C WserstAdminiCloudDrive\Revised Fehling Scopelimxd-red7-Cu-scope-AL78 CARBON_01 fidifid Frequency (MHz) 75.35
Nucleus 13¢ Nurmber of Transients 1709 Original Points Court 19624 Points Count 32768
Puise s2pul Receiver Gain 30.00 Sofvent DMSO-d6 Offsef (Hz) 8287.8018
P Type STANDARD Sweep Width (Hz) 18832.39 Terp (degree €) AMBIENT TEMPERATURE
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Chemical Shit (ppm)

No. | (epm) (Hz) | Height
2745 | 20687 | 03649
12876 | 97023 | 08639
129.98 9794.3 0.9491
13493 | 10167.3 | 01579
14028 | 10570.2 | 0.1544
167.08 12589.2 00718
198.17 | 149318 | 01029
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File Name C:WUsers\AdminiCloudD: Fehling_Scopeimxd-re97-Cu-scope-AL46-shin_PROTON_01fidvid Frequency (MHz) 209,63
Nucleus H Number of Transients 8 ‘ Original Points Count 9818 Points Count 16384
Pulse s2pul Receiver Gain 36.00 | sotvent DMSO-d6 Offset(Hz)  1797.7788
s, Type STANDARD Sweep Width (Hz) 4793.86 [ (degree C) AMBIENT TEMPERATURE
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Chemical Shift (ppm)
[No. ] Cppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
IR [2.46..251] | DMSO 1 Admin___|Wed 9/16/2015 3:32:36 PM | |
No. | (opm) | Value Absolute Value | Non-Negative Value | [ No. | (ppm) (Hz) Height
1[8.0896 .. 8.212.0406363__ 270860096¢+8 2.04063630 1 814 | 24376 | 0.6300
2[8.p535 .. 837200006199 265474528¢+8 2.00006199 2 816 | 24464 | 1.0000
BI3.5206 .. 13.70.60130537 _ 7.98131600e+7 0.60130537 3 820 | 24844 | 0.9221
4 832 | 24935 | 06745
5 | 1361 | 40788 | 0.0206

This report was created by ACD/NMR Processor Academic E
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jon Time (sec) _ 1.0420 [ Dat= Jul 172015 | pate stamp Jul 172015
File Name C:\Users\WdminiCloudDrivelRevised_Fehling_Scopellmxd-re87-Cu-scope-AL46-shin_CARBON 01 fidid Frequency (MHz) 75.35
Nurleus 13¢ Number of Transients 1700 Original Points Count 19624 Points Count 2768
Puise s2pul Receiver Gain 30.00 Solvent DMS0-d6 Spectrum Offset(Hz) _ 8287.6016
Spectrum Type STANDARD Sweep Width (Hz) 1883239 (degree €) AMBIENT TEMPERATURE
1.0-5Imxd-re97-Cu-scope-A L4Wﬂéaf§@ﬁg1;%1mor =1
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220 200 180 160 140 120 100 80 60 40 20 0 -20
Chemical Shift (ppm)
No. | _(ppm) (Hz) | Height
1 | 12419 | 93575 | 07532
2 | 13114 | 98816 | 06261
3 136.81 10308.7 0.0953
4 | 15049 | 11338.7 | 0.0761
5 166.24 12526.0 0.1091
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This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

2016/4/3 14:11: 26

| Aoquisition Time (sec) 3.2768  Coment Li 1d_PROTON OMEO / hone_mingxi n_5; Date 11 Mar 2016 14:31: 1
Date Stanp 11 Mer 2016 14:31:12 Fle N €\ User s\ MLVWNDeskt op) NV 1 esubni 11| - re07- Q- scope- news 4- formyl A 14 d |
Frequency (M) 00. 30 Mol eus H Nrber o Tramients 16 Cigin AV | 1500HD
Griginal Paints Gunt 37768 CQuner rmgi {1 nm Foints Cound 32768 P se Sequence
Receiver Gain 106, 58 SWeyslical) (H) 10000. 00 Sof vent EMEC dB SpectrumOfsel (M) — 3089.5574
Spectrum Type STAD¥D Sugep VWath (H) 9699 70 Termeratire (degree Q 26955
Imyd-re87-Cu-soope-new-4-iemy S eeeF actor = 1 =
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Chemical Shift (ppm)
[ No (ppm) Annatation Layer No. | Created By Created At Modified By Maodified At
K [2.49 .. 2.52] DMSO 1 | Mo 2016/4/3 14:11:01 |
No. (ppm) Value Absolute Value Non-Negative Value | No.  (ppm) (Hz) Height
1[7.9768 .. 8.082.0000000C _1.71397550e+10 2.00000000 1 8.01 40092 07440
2[B.0894 . 8.171.82507861 1.56406998e+10 1.82507861 2 803 40177  0.0556
F0.0710 .. 10.10.90882002  7.78847642e+9 0.90882003 3 813 40666  0.7567
M3.2572 . 13.40. 93068838  B.05301453e+8 0.93968838 4 814 40748 05948
5 1041 50580  1.0000
& 1339 6697.8  0.0834
This report was created by ACD/NMR Processor Academic E n. For more information go to www.acdlabs.com/nmrproc/
9/15/2015 11:29:19 AM
jon Time (sec) 1.0923 | Date 12 Jul 2015 22:08:00 Date Stamp 12 Jul 2015 22:08:00
File Name C WserstAdminiCloudDrive\Revised Fehling Scopelimxd-red7-Cu-scope-ALAAAfd Frequency (MHz) 125.81
Nucleus 13¢ Nurnber of Transients 312 QOrigin AVIIIZ00HD Original Points Count 32768
Ouner megilinmr Points Count 32768 Pulse 290930 Receiver Gain 192.72
SW(cyctical) (Hz) 30000.00 Sofvent DMSO-d6 Offset(Hz)  12578.9238 5; Type STANDARD
Sweep Wilth (Hz) 29999.08 Te (degree C) 26.003
Jmxd-re97-Cu-scop e-AL4ZLRFBIG cale Factor = 1
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Chemical Shift (ppm)
No. (ppm) (Ha) Height
1 130.01 16356.8 | 0.2634
2 | 13039 | 164045 | 0.1512
3 136.10 | 171231 0.0210
4 130.35 | 175324 | 0.0854
3 167.02 | 210132 | 00183
8 193.46 | 243393 | 00938
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ion Time (sec)  2.0480 [ Date Jul 14 2015 [ Date saamp Jul 14 2015
Fite Name CiUserstAdminiCloudDrive\Revised_Fehling_Scopellmxd-re97-Cu-scope-AL110_PROTON_01 fidiid Frequency (MHz) 29963
Nucleus 1H Number of Transients 8 [ Original Poinss count 9818 Points Count 16384
Puise s2pul Receiver Gain 30.00 | sotvent DMSO-d6 Offset(Hz)  1797.7788
Spectrum Type STANDARD Sweep Width (Hz) 4793.86 | Temperature (degree ¢} AMBIENT TEMPERATURE
mxd-re97-Cu-scope-A L1 \@e RRQFENaf Factor = 1
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Chemical Shift (ppm)
[No. ] ¢ppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
1| [246.2511 |DM™mso 1 | Admin |wed 9/16/2015 4:02:30 PM [ |
No. [ (ppm) | Value Absolute Value | Non-Negative Value |[ No. | (pprm) (Hz) Height
1[1.p982 . 2.108.06015086__ 2.35231488e+8 3.06015086 1 206 6164 | 1.0000
7.731.96540081  1.51078880e+8 1.98540082 2 7.65 22021 | 02271
1.53807648e+8 2.00089979 3 7.68 23009 | 03087
7.21323600e+7 0.93837738 4 7.84 23492 | 03343
5121875 . 12.8057581961  4.42628200e+7 0.57581961 5 7.87 23580 | 0.2364
6 1022 | 30623 | 0.1341
7 1263 | 37830 | 00081
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
9/16/2015 4:03:53 PM
ion Time (sec)  1.0420 [ Date Jul 142015 [ Date stamp Jul 142015
Fite Name CiUsersiAdminiCloudDrive\Revised_Fehling_Scopellmxd-re97-Cu-scope-AL110_CARBON_01 fidifid Freguency (MHz) 75.35
Nuicleus 13¢ Nurnber of Transierts 1700 Original Points Count 19624 Points Caunt 32768
Pulse s2pul Receiver Gain 30.00 Solvent DMSO-d6 Offset(Hz)  8287.5016
P Type STANDARD Sweep Width (Hz) 1883239 Te (degree €) AMBIENT TEMPERATURE
1.0-jimxd-re97-Cu-scope-A L1 PR8N Factor = 1
093
0.8
073
. g
g 06 I
T a
£
- 053
i 8
T 4 @
5 04 =
z = ©
a ~
@t I
034 g “tg o _ 2
E g = 7 3
0.2 &
014
0 m 4
T T T T T T T T T T T T T T T T T T T
220 200 180 160 140 120 100 80 80 40 20 0 -20
Chemical Shift (ppm)
No. [ (ppm) (Hz) Height
1 2459 | 18531 | 01802
2 | 11880 | 89382 | 03559
3 [ 12531 | 94420 [ 0.1386
4 | 13080 | 98558 | 05128
5 | 14377 | 10833.4 | 02082
6 | 167.36 | 12610.5 | 0.2331
7 | 16028 | 127553 [ 0.1926
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Time (sec)  3.2768 [ Date 12 Jul 2015 18:51:44 Date Stamp 12 Jul 2015 18:51:44
File Name Ci\Users\A dminiCloudD Fehling_Scopellmxd-re97-Cu-scope-A La\Iid Frequency (MHz) 500.30
Nucleus 1H Number of Transients 16 Origin AVIII500HD Original Points Count 32768
Ouner megilinmr Points Count 32768 Pujse 2930 Receiver Gain 108.56
SWcyclica)) (Hz) 10000.00 Soivent DMSO-d6 Offset(Hz)  3089.5574 Type STANDARD
Sweep Width (Hz) 9999.70 (degree €) 25.997
| mxd-re 97-Cu-scope-A L4 QIS cal eFactor = 1 8
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Chemical Shitt (ppm)
[No. ] Cppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
T4 | [249.252 |p™so | 1 Admin__ [Tue 9/15/2015 10:16:11 AM | |
21 [328.338 |water | 1 | Admin [Tue 2/15/2015 10:16:11 AM | |
No. | (ppm) | Value Absolute Value Non-Negative Value | [ No, (ppm) (Hz) Height
1[7.3697 .. 7.481.0022819]  544317594e+9 1.00228190 1 7.42 37107 | 0.2371
7.5d1.85872541  1.00943350e+10 1.85872543 2 7.45 3727.2 | 0.3382
7.861.0001719]  543171686e+9 1.00017190 3 7.55 3776.4 | 1.0000
#3.£392 . 134090182797  4.89763226¢+9 0.90182793 4 7.78 38920 | 0.3899
5 7.79 3899.0 | 0.4626
5 1336 | 66850 | 0.0502
This report was created by ACD/NMR Processor Academic E n. For more information go to www.acdlabs.com/nmrproc/
9/15/2015 10:18:38 AM
on Time (sec)  1.0823 [ Dat= 12Jul 2015 19:19:28 Date Stamp 12 Jul 201519:19:28
Fite Name CilUsersiAdminiCloudDrive\Revised_Fehling_Scopellmxd-re97-Cu-scope-ALAZfd Frequency (MHz) 125.81
Nuicleus 13¢ Number of Transients 512 Origin AVIIIS00HD Original Points Count 32768
Ouner megilinmr Points Count 32788 Pulse 2gpg30 Receiver Gain 19272
SWcyclica)) (Hz) 30000.00 Sofvent DMSO-d6 Offset(Hz) 125789238 4 Type STANDARD
Sweep Width (Hz) 20999.08 T (degree C) 26,002
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Chemical Shift (ppm)
No. {ppm) (Ha) Height
1 127.69 | 16064.8 | 02415
2 | 131.25 | 16513.4 | 0.1684
3 | 13202 | 16609.5 | 0.0478
4 | 13303 | 16736.8 | 0.1010
5 [ 167.17 | 210324 | 00214
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This report was created by ACD/NMR Processor Academic E

ion Time (sec)  3.2768 [ Date 12 Jul 2015 21:06:08 Date Stamp 12 Jul 2015 21:06:08
Fite Name CiUsers\hdminiCloudDrive\Revised_Fehling_Scopelimxd-re97-Cu-scope-AL34vI\id Frequency (MHz) 50030
Nucleus 1H Number of Transients 16 Origin AVIII500HD Original Points Court 32768
Oumer megilinme Points Count 32768 Puise 2930 Receiver Gain 192.72
SWcyclica)) (Hz) 10000.00 Soivent DMSO-d6 Spectrum Offset (Hz) ~ 3089.5574 Spectrum Type STANDARD
si i 9999.70 (degree €) 26,003
| mxd-re97-Cu-scope-A L34,AH; #8iS cale Factor = 1 i
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Chemical Shift (ppm)
[No. ] ¢ppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
1 [2.49..252] | DMSO [ 1 [ Admin  [Tue 9/15/2015 10:53:47 AM
No. [ (ppm) | Value Absolute Value | Non-Negative Value |[ No. | (oprm) (Hz) Height
1[7.#550 .. 7.6201.0000000]  6.81458432e+9 1.00000000 1 7.55 37782 | 1.0000
2[7.5596 .. 7.7608831945]  6.01860352e+9 0.88319451 2 7.70 38526 | 0.3487
3[7.8134 . 7.08174249648  1.18743890e+10 1.74249649 3 7.72 3861.8 | 0.2802
#301880 . 13.4083838874  571327078e+9 0.83838874 4 7.91 3956.1 | 09318
5 1332 | 66627 | 0.0353
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
9115/2015 11:25:04 AM
on Time (sec)  1.0823 [ Dare 12 Jul 2015 21:33:52 Date Stamp 12 Jul 2015 21:33:52
Fite Name CiUsersiAdminiCloudDriveiRevised_Fehling_Scopelimxd-re97-Cu-scope-A L3412\ id Frequency (MHz) 125.81
Nuicleus 13¢ Numberof Transkents 512 Origin AVIIIS00HD Original Points Count 32768
Ouner megilinmr Points Count 32768 Pulse 290930 Receiver Gain 192.72
SWcyclica)) (Hz) 30000.00 Sotvent DMSO-d6 Offset(Hz)  12578.9238 S Type STANDARD
Sweep Width (Hz) 20999.08 Té (degree ) 26.001
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Chemical Shift (ppm)

No. {ppm) (Ha) Height
12838 | 16151.8 | 0.1542
129.28 | 162853 | 00874
13112 | 164989 | 0.2231
133.17 16755.1 0.0900
133.80 | 16833.8 | 0.0840
166.52 | 209500 | 0.0819
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Time (sec) 20480 [ Dat= Jul 132015 [ Date stamp Jul 132015
File Name Gi\Users\A dminiCloudD Fenling_Scopelmxd-re97-Cu-scope-AL76_PROTON_01 fidifid Frequency (MHz) 29963
Nucleus 1H Number of Transients & [ originai Poinss count 9818 Points Count 16384
Puise s2pul Receiver Gain 36.00 | Sotvent DMSO-d6 Offset(Hz)  1797.7788
s Type STANDARD Sweep Width (Hz) 479386 [ (degree €) AMBIENT TEMPERATURE
|mxd-re 97-Cu-scope-A L76,BRREMAle Factor = 1 N
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Chemical Shitt (ppm)
[No. ] Cppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
1| [246.2511 |p™so 1 Admin__ |Wed 9/16/2015 3:46:25 PM | |
No. [ (ppm) | Value Absolute Value | Non-Negative Value |[ No. [ (ppm) (Hz) Height
117.6799 .. 7.811.42338884  167815584e+8 1.42338884 1 7.75 23211 | 0.5629
2[7.5165 .. 7.921 42919219 1.68499792¢+8 1.42919219 2 7.77 23203 | 1.0000
3[7.B804 .. 8.081 00024463 1.17927472¢+8 1.00024462 3 7.85 2351.0 | 0.5296
#3}977 86823279 1.02363456e+8 0.86823279 4 7.88 23609 | 0.3371
5 8.04 24083 | 0.6036
6 8.04 24104 | 0.5628
7 1347 | 40355 | 0.0376
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
9/16/2015 3:48:10 PM
Time (sec)  1.0420 [ Date Jul 132015 [ Date stamp Jul 132015
Fite Name CiUsers\AdminiCloudDrivelRevised_Fehling_Scopelimxd-re97-Cu-scope-AL76_CARBON_01 fid¥id Frequency (Miz) 75.35
Nuicleus 13¢ Nurmber of Transients 1700 Origiriaf Poirts Court 19624 Points Count 32768
Pulse s2pul Receiver Gain 30.00 Sofvent DMSO-d8 Offsef(Hz)  8287.50186
P Type STANDARD Sweep Width (Hz) 18832.39 Terp (degree €) AMBIENT TEMPERATURE
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Chemical Shift (opm)
No. | (epm) | (Hz) | Heignt
1 | 12975 | err7o | 04213
2 | 13140 | 99012 | 04093
3 | 13151 | sa092 | 03840
4 | 13184 | 99339 | 04932
5 | 13196 | 99431 | 04719
6 | 13623 | 102650 | 01407
7 | 165.86 | 12407.3 | 01793
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on Time (sec)  2.0480 [ Dae Jul 132015 [ Date samp Jul 132015
File Name Gi\Users\A dminiCloudD Fenling_Scopelmxd-re97-Cu-scope-AL70_PROTON_01 fidifid Frequency (MHz) 29963
Nucleus 1H Number of Transients 8 [ ortginat Points Count o818 Points Count 16384
Puise s2pul Receiver Gain 36.00 | Sotvent DMSO-d6 Offset(Hz)  1797.7788
s Type STANDARD Sweep Width (Hz) 479386 [ (degree €) AMBIENT TEMPERATURE
|mxd-re 97-Cu-scope-A L78, BRREMAle Factor = 1 OMSO
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14 13 12 Rl 10 ] 8 7 3 5 4 3 Z 1 0 -1 2
Chemical Shitt (ppm)
[No. ] Cppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
IR [2.46..251] | DMSO 1 Admin___|Wed 9/16/2015 3:43:18 PM | |
No. [ (ppm) | Value Absolute Value | Non-Negative Value |[ No. [ (ppm) (Hz) Height
1[7.019 .. 7.4d1.0000000  2.11924352e+8 1.00000000 1 7.33 21968 | 0.4568
2[7.4887 . 7.6310161927¢  215356000e+8 1.01619279 2 7.56 22664 | 0.4952
3[7.5389 .. 7.8%0.980542668 207800864 +8 0.98054266 3 7.58 22722 | 0.5508
#3.p523 . 13.805087947  1.26899192¢+8 0.59879476 4 7.71 23115 | 0.5430
5 7.76 23255 | 0.4855
6 1362 | 40809 | 0.0357
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
9/16/2015 3:45:14 PM
ion Time (sec)  1.0420 [ Date Jul 132015 [ Date stamp Jul 132015
Fite Name CiUsers\AdminiCloudDrivelRevised_Fehling_Scopelimxd-re97-Cu-scope-AL70_CARBON_01 fid¥id Frequency (Miz) 75.35
Nuicleus 13¢ Nurmber of Transients 1700 Origiriaf Poirts Court 19624 Points Count 32768
Pulse s2pul Receiver Gain 30.00 Sofvent DMSO-d8 Offsef(Hz)  8287.50186
P Type STANDARD Sweep Width (Hz) 18832.39 Terp (degree €) AMBIENT TEMPERATURE
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Chemical Shift (ppm)
No. [ (ppm) (Hz) Height
1 11503 | 86672 | 00989
2 | 11770 | 88684 | 0.2557
3 [ 11802 | 88931 [ 02702
4 | 12027 | 90621 | 0.1790
5 | 13602 | 10249.5 [ 03029
6 | 15070 | 12033.4 | 0.0938
7 | 16297 | 12280.0 | 0.1202
8 | 16689 | 12559.9 | 00729
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Time (sec) _ 3.2768 [ Date 12 Jul 2015 20:00:00 Dat= Stamp 12 Jul 2015 20:00:00
File Name Ci\Users\A dminiCloudD Fenling_Scopelmxd-re97-Cu-scope-A L26\ 11fid Frequency (MHz) 500.30
Nucleus 1H Number of Transients 16 Origin AVIII500HD Original Points Count 32768
Ouner megilinmr Points Count 30768 Pujse 2930 Receiver Gain 108.56
SWcyclica)) (Hz) 10000.00 Soivent DMSC-d6 Offset(Hz)  3089.5574 s, Type STANDARD
Sweep Width (Hz) 9999.70 (degree €) 26,004
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Chemical Shitt (ppm)
[Ne. | (ppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modifed By | Modified At |
T4 | [249.252 |p™so 1 Admin__ [Tue 9/15/2015 10:39:39 AM | |
21 329.338] |water | 1 | Admin  [Tue 2/15/2015 10:39:39 AM | |
No. | (pprm) | Value Absolute Value | Non-Negative Value |[ No. | (ppm) (Hz) Height
1[1.5269 . 2.1320388124_ 9.05753702e+9 2.03881240 1 2.04 10228 | 0.8222
2[2.7800 89189410 172899553410 3.89189410 2 2.91 14546 | 07728
3[7.p844 . 7.39092156684  4.09411174e+8 0.92156684 3 7.33 36689 | 0.4111
4[7.6769 . 7.76099987531]  4.44200141e+9 0.99987531 4 772 38624 | 0.3331
577622 . 7 5 381707930e+8 0.85020805 5 779 38957 | 0.5485
6125908 .. 127091213864 4.05222656e+9 0.91213864 6 1270 | 63545 | 0.0768
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No. {ppm) (Ha) Height
1 2545 32026 02918
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3 3288 41384 0.1203
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5 12557 | 157984 | 02720
3 12809 | 161151 0.1608
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1| [246.2511 |p™so [ 1 | Admin [Tue 2/15/2015 10:36:00 AM | |
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7.643.34839940 382502432e+8 3.34839940
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821220281911 251637744e+8 2.20281911
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Chemical Shift (ppm)

No {pom) Value Absolute Value Non-Negative Value || No. | (ppm) (Hz) Height
1_p386..0.97.99810982) 1.77927250e+10 299810982 1 0.89 4432 0.4041
2 11273479 4.81462190e+10 811273479 2 0.0 4505 1.0000
3 p592..1.691.98731005 1.17939845e+10 1.98731005 3 0.91 457.3 .2975
4 p023..2.40PR.00001955 1.18694103e+10 200001955 4 1.30 650.4 0.3829
S_}200.. 1230.91786152]  5.44718438e+9 0.91786152 5 184 8192 0.1778
6 165 826.8 0.2216
7 167 8342 0.1583
8 235 1175.3 0.544
9 236 1183.0 7190
10 238 1190.3 4671
1 11.50 57548 .0034
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1 1402 17633 | 04043
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3 2467 31037 | 08957
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7 18062 227243 | 0.5626
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1| [246.2511 |DM™mso 1 Admin | Wed 9/16/2015 3:40:02 PM [ |
No, (ppm) | Value |  Absolute Value Non-Negative Value |[ No. (ppm) (Hz) Height
1[0.f417 56917459248 5.97185469 1 082 2450 | 1.0000
2[1.p558 4.12611392e+8 4.32917309 2 122 3668 | 02099
3[1.5153 4.01380192¢+6 4.21133375 3 1.40 4206 | 01618
4[1.0982 .. 2.16099952000  9.52646240e+7 0.99952900 4 143 4276 | 02307
£11.5865 . 121077842957 7.41917440e+7 0.77842957 5 145 4352 | 02244
3 148 4428 | 01368
7 210 6208 | 01185
8 1200 | 35963 | 0.0506
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5 | 2058 | 22000 | 05483
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1 | [249..253 |DMSO 1 | MMLAw [ B B 2015/11/8 806:10 | I
Non-Negative Value No. (ppm) (Hz) Height
6.00000000 1 174 8696 | 08218
0.92587304 2 1.76 8790 | 04505
156381214 3 672 | 33619 | 00321
2 673 | 33689 | 0.1081
B 675 | 33760 | 0.1106
6 676 | 33818 | 00344
7 1221 | 61085 | 0005
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[ 1] 1249.2521 |omso | 1 MMLVWAY | 2015/9/17 9:14:16 |
2] 1326.353 | water | 1 [ Mvoww | 2015/9/17 9:14:16 | | |
No. | (opm) | Value Absolute Value | Non-Negative Value | [ No. [ (ppm) (Hz) | Height
1[6.4681 .. 6.580.05600998 31004211269 095609999 1 651 | 32594 | 0.8309
2[7.8688 .. 7.482.8523185]  9.24943872e+9 285231853 2 | 655 | 32753 | 07619
3[7.5490 . 7.650.99996567 3242667786+ 0.99996567 3 | 742 | 37098 | 1.0000
4]7.6503 .. 7.791.8344653 _ 504876621e+9 1.83446538 4 | 758 | 37922 | 05142
51,6134 . 12083167171 269692774e+9 0.83167171 5 | 761 | 38084 | 05030
6 | 769 | 38456 | 0.4171
7 | 1230 | 61521 | 00037
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No. [ (ppm) (Hz) | Height
1 | 119.66 | 150550 | 0.1127
2 | 12865 | 161856 | 05010
3 | 12037 | 162763 | 04521
4 | 13069 | 164429 | 01469
5 | 13467 | 169437 | 01174
6 | 14440 | 18167.8 | 0.2000
7 | 16802 | 211386 | 00426
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[No. | (ppm) [ Annotation | LayerNo. | CreatedBy | Created At | Modified By | Modified At |
[T 1249.2520 [pmso | 1 [ mmoww | | |
[ 2] [330..336 | water | i | MMLWW | i |
No. | (ppm) | Value | Absolute Value | Non-Negative Value
1[0.8179 .. 0.944.16401482__ 3.38978534e+9 4.16401482
2[0.9404 . 1.377.52050031 _ 6.12226099¢+9 7.52059031
3[1.5306 .. 1.602.79261613 _ 2.27337549e+9 2.79261613
4[1.6086 .. 1.692.85137415 _ 2.32120832+9 2.85137415
5[1.8647 .. 2.265.84150184 _ 4.75544474e+9 5.84159184
6[5.0052 .. 5.110.99994230__8.14019584e+8 0.99994230
711.8320 .. 120161374533 1.31369613e+9 1.61374533
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No. | (ppm) (Hz) Height
1 1765 | 22202 | 00944
2 1958 | 24528 | 00247
3 | 2540 | 31961 | 00759
4 | 2570 | 32337 | 04107
5 | 2084 | 37546 | 00762
6 | 3870 | 48170 | 00421
7 | 4130 | 51986 | 00990
8 | 12414 | 156189 | 0.0530
9 | 131.66 | 165647 | 0.0257
10 | 17848 | 22455.2 | 0.0251
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
2016/ 4/ 15 22: 52: 09
| Acowisition Tine (sec) 32768 | Conmest Ll 1d PROTGN DNGO/hone mngxin 2 mate 15 Apr 2016 22:37:52
Dete Stanp 15 Ay 2016 223752 Ale Nane C\ Ler 5| MUWVDssk! op\ | nxcl- £ 67- Cu- scope- cit ral - (1 nal L1 fid.
Frequency (M) 500, 30 Nt ews H Muber of Trarsients 16 Qigin A1 1500HD
Qiginal Pdnts Gut 32768 arer gl LL o Rints Qo 2768 R se Sequence 430
Receiver Gin 192,72 SWeyclical) (He) 10000. 00 Sdl vent MG 06 Spectrum Ffset (H)  3089.5574
Spect rum Type STADVD Sweep Wdth (H) 9900 70 Tenperature {cbgree §  25.189
Imxd-re87-cu-scope-citrak-ige #atSRaleF actor = Water DMsO|
i '
0.08
1 o
0,07 3 3‘ e
0.08
z 2 g
2 EH 1 i
Soos 2x H-NMR i
E
o 0,043
£
g
Z 0.03= @
F =
0.02] 2
: 2 & 2 | |
1 i b
0.01 . g I i | } u f ‘é\
3 T { ‘ I
. 3 A Sk £ i J ”\,,J.J!Ju AN
198 100 108 1.20 173130 3.08 218
] ] 4 o] L E U
T T T T T T T T - — — ama - T
18 15 14 1 12 11 10 ] 8 7 6 5 4 3 2 1 0 2 -2 -3
Chemical Shift (ppm)
[ No. {ppm) Annctation LayerNo. | Created By Created At Modified By Modified At
1 [249..2.52) DMSO 1 MMLAWW 2016/4/15 22.51:22]
2 [2.30..3.34] | Water 1 MMLWW 2016/4/15 22:51:22)
No.  (ppm)  Vale Absolute Vialue | Non-Negative Value | No. | (ppm)  Value Absolute Value  Non-Negative Value
1[1.0804 . 1.162.1508753€  1.00977600e+9 215387530 5[3.5800 .. 3.761.10096274  5.610016002+8 1.19996274
2[1.1799 .. 1.312.07761958  1.43883597e+0 2.07761955 _ B[4.7161.. 4.871.0452321€  4.88662624e48 1.04523218
3[1.7987 .. 1.931.29493767 _ 6.521555640+8 139493787 715.5560 .. 5.670.9981308¢ _ 4.66642016e+48 0.99813086
4[2.0418 .. 213173084044 9185328 +8 173084044 | [1.6330 121105850002  0.15620824e+8 1.85850003
No.  (ppm) (Hz) | Height | No. | (ppm) (Hz) | Height || No. | (ppm) (Hz) | Height |[ No. (ppm) (Hz) _ Height
1 116 578.1 | 0.0808 1.86 9324 | 00205 | 5 368 | 18408 | 0.0100 7 583 28160  0.0113

3
[2 122 6108 | 00634 | 4 | 200 | 10438 | 0.0478 6 | 481 | 24076 | 00081 || 8 1198 58813  0.0022
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Chemical Shift (ppm)

No. (ppm} Hz) Height
17.71 2284 0.0530
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jor Time (sec) 20480 [ Date Jul 20 2015 [ Date semp Jul 20 2015
File Name CilUsersWdminiCloudDrive\Revised_Fenling_Scopelimxd-re97-Cu-scope-AL91_PROTON_01 fid¥id Frequency (MHz) 20963
Nurcieus H Number of Transients 8 [ ortgimat Poinss count 9818 Points Count 15384
Pulse s2pul Receiver Gain 36,00 | sowvent DMSO-ds Offset(Hz)  1797.7788
Spectrum Type STANDARD Sweep Width (Hz) 4793.86 [ Temperature (degree ) AMBIENT TEMPERATURE
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Chemical Shit (ppm)
[No. | ¢opm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
1| [246.2511 |DM™mso 1 Admin__ |Wed 9/16/2015 3:55:57 PM [ |
No. | (opm) | Value Absolute Value | Non-Negative Value
1[1.0379 . 1.116.44441037__ 3.03145408e+8 6.44441032
2[3.5311 .. 3.414.8174505]  2.26613136e+8 4.81745052
3(6.0890 .. 618099568617 468371320847 0.99568617
416.5955 .. 6 6% 12280107 9.98566720e+7 2.12280107
5[7.5900 .. 7.473.0111863F _ 1.41646368e+8 3.01118636
611.5953 .. 120068278217 3.21181100e+7 0.68278217
This report was created by ACD/NMR Processor Academic E n. For more information go to www.acdlabs.com/nmrproc/
9/16/2015 4:00:33 PM
Time (sec)  1.0420 [ Date Jul 20 2015 [ Date stamp Jul 202015
File Name CilUsersWdmintiCloudDrive\Revised_Fehling_Scopelimxd-re97-Cu-scope-ALO1_CARBON_01 fid¥id Frequency (MHz) 7535
Nurcleus 13¢ Nurnber of Transients 1700 Original Points Count 19624 Points Count 32768
Puise s2pul Receiver Gain 3000 Sofvent DMSO-d§ Offset(Hz)  8287.6016
p Type STANDARD Sweep Width (Hz) 18832.39 Temp (degree C) AMBIENT TEMPERATURE
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Chemical Shift (opm)
No. | (ppm) (Hz) Helght
1 12,88 9703 | 01373
2 | 4418 | 33201 | 00735
3 | 111.53 | 84040 | 00783
4 | 11285 | 84879 | 0.0461
5 | 12111 | 91259 | 0.0279
6 | 13051 | 98339 | 0.1736
7 | 14512 | 109351 | 0.0411
8 | 14940 | 112576 | 0.0234
9 | 16889 | 12711.1 | 0.0854
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Date Stanp 5
File Nane kt op\ \| nxd- r 97- Qu- scope- 20151107- hydroxy- A 1\ fid Frequency (M¥) 500.30
Nucl eus 1H Nunber of Transients 16 Qigin AV 11 500HD Qiginal Points Count 32768
Quner negi | | nox Points Count 32768 BAul se_Sequence Receiver Giin 106. 56
SWeyclical) (H) 10000. 00 Sol vent VB0 d6 Spectrum Ofset (H) 3089, 5574 Spectrum Type. STANDARD
Sweep Wath (H) 9999, 70 Tenperature (degree § 27.005
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Chemical Shift (ppm)
[No. | (ppm) | Annotation LayerNo. | CreatedBy | Created At | Modified By | Modified At
[1 ] 1249.2521 |[pbmso 1 [ mmoww | 2015/11/8 7:58:55 | |
No. | (ppm) | Value Absolute Value | Non-Negative Value
1[0.8442 .. 0.903.5021650¢ _1.92036782e+10 3.50216508
2[1.8045 .. 1.402.1836721 1.19738900e+10 2.18367219
3[1.4456 .. 1.632.40971994  1.3213393%e+10 2.40971994
4[3.982 .. 3.950.99948967 _5.48057498e+9 0.99948967
B12.0413 . 12.50.61682671 _3.38229094e+9 061682671
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Chemical Shift (ppm)
No. m} Hz) Height
1 14.18 1784.4 0.2260
2 18.46 23227 0.4224
3 B 4596.9 0.3497
- 69.83 8785.4 0.0959
S 17641 221942 | 0.2954
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jor Time (sec) 20480 [ Date Jul 13 2015 [ Date samp Jul 132015
File Name CilUsersWdminiCloudDrive\Revised_Fenling_Scopelimxd-re97-Cu-scope-furyl_PROTON_01 fid¥id Frequency (MHz) 209.63
Nucleus H Number of Transkents 8 ‘ Original Points Count 0818 Points Count 16384
Pulse s2pul Receiver Gain 39.00 | sotvent DMSO-d6 Offset(Hz) _ 1797.7788
s, Type STANDARD Sweep Width (Hz) 4793.86 [ (degree C) AMBIENT TEMPERATURE
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Chemical Shit (ppm)
[No. ] ¢ppm) [ Annotation [ LayerNo. | CreatedBy | Created At [ Modified By | Modified At |
IR [2.46..251] | DMSO 1 [ Admin  |wed 9/16/2015 4:27:43 PM | |
No. | (ppm) | Value Absolute Value Non-Negative Value | [ No. (oprm) (Hz) Height
1[6.5873 .. 6.681.25392854  267382656e+8 1.25392854 1 6,62 19849 | 07582
2[7.1336 .. 724115573204 2.46443632e+8 1.15573204 2 6,64 1988.4 | 07615
3(7.8301 .. 7.951.0002828 _ 2.13206288e+8 1.00028288 3 7.20 21561 | 07368
#12.5694 . 13.200.88215148  1.88106416e+8 0.88215148 4 7.90 23659 | 07015
5 1292 | 38708 | 00232
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jon Time (sec)  1.0420 [ Date Jul 132015 | Date Stamp Jul 132015
File Name ClUsersdminiCloudCriveiRevised Fehling Scopelimxd-re97-Cu-scope-furyl CARBON_01.fid¥fid Frequency (MHz) 7535
Nucleus 13¢C Nurmber of Transierts 1700 Qriginal Points Count 19624 Points Count. 32768
Puise s2pul Receiver Gain 30.00 Solvent CMSO-d6 Spectrum Offset (Hz) 8287 6018
Spectrum Type STANDARD Sweep Width (Hz) 1883239 Te (degree C) AMBIENT TEMPERATURE
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Chemical Shift (ppm)
No. | (ppm) (Hz) Height
3 11252 8478.7 0.5951
- 118.14 8901.7 06015
= 145.33 10950.6 0.1285
4 147.49 111133 05508
5 159.73 12035.7 0.2291
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Time (sec) 20480 [ Date Jul 13 2015 [ pate smmp Jul 132015
File Name CiUsers\hdminiCloudDrive\Revised_Fehling_Scopelimxd-re97-Cu-scope-thiophene_PROTON_01.fdifid Frequency (MHz) 299,63
Nucleus 1H Number of Transients & [ original Points Count 9818 Points Count 16384
Pujse s2pul Receiver Gain 36.00 | sovent DMSO-ds Offset (Hz)  1797.7788
s Type STANDARD Sweep Width (Hz) 4793.86 [ (degree C) AMBIENT TEMPERATURE
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Chemical Shift (opm)
No. ¢ppm) Annotation Layer No Created By Created At Modified By Modified At
1 [2.46 .. 251] DMSO 1 Admin___|vved 9/16/2015 4:29:37 PI
No. | (ppm) | Value | AbsoluteValue | Non-Negative Value |[ No. | (ppm) (Hz) Height
17199 . 7211 072544:% 2.16503792e+8 1.07284439 1 7.15 21426 | 09361
53 .. 7.7711.00008297  2.01820272e+8 1.00008297 2 7.18 21511 | 09652
165 .. 7.93085965359  1.73481120e+8 0.85965353 3 7.71 2308.8 | 1.0000
#2470 . 131070630933 1.42535712e+8 0.70630932 4 7.85 23536 | 08234
5 7.87 23586 | 08235
6 13.01 3896.8 | 0.0436
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jon Time (sec)  1.0420 [ Date Jul 132015 | pate starmp Jul 132015
File Name C WserstAdminiCloudDrive\Revised _Fehling Scopelimxd-red7-Cu-scope-thiophene CARBON_01.fid\fid Frequency (MHz) 7535
Nucleus 13¢ Nurnber of Transients 1700 Original Points Count 19624 Points Courtt 32768
Puise s2pul Receiver Gain 30.00 Sofvent DMS 0-d6 5 Offset (Hz) 8287 8016
Spectrum Type STANDARD Sweep Width (Hz) 1883239 (degree €) AMBIENT TEMPERATURE
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Chemical Shift (ppm)
No. | (ppm) (Hz) Height
1 128,66 9694 8 04882
2 13384 | 10069.6 | 05485
3 | 13507 | 10177.6 | 0.0986
4 163.3¢ | 123076 | 02915
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