
Reproducibility and Reusability
in

Deep Reinforcement Learning

Peter Henderson

Master of Science

School of Computer Science
McGill University

Montreal, Quebec, Canada

December 2017

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

c©Peter Henderson, 2017

Abstract

Reinforcement learning (RL) has been shown to be an effective mechanism for learning
complex tasks via interaction with the environment. Recent advances in combining deep
neural networks with RL have resulted in powerful tools that outperform previous state-
of-the-art methods for many domains including: robotics, video games, and board games.
However, due to the interactive nature of these algorithms, as well as both intrinsic and ex-
trinsic stochasticity, learning performance can be highly variant and difficult to reproduce.
Furthermore, reusing information between tasks using these techniques can be problem-
atic since they may overfit to a single task or environment. In this thesis, we investigate
both reproducibility and reusability in deep RL. We begin by demonstrating the difficulty
in reproducing a subset of deep RL algorithms: policy gradient methods for continuous
control. We propose guidelines for rigorous experimental methodology and several statisti-
cal methods to help prevent misleading results. Next, we provide open-source reproducible
environments for multitask RL. We evaluate simple sequential learning on sets of these
tasks to show their effectiveness as benchmarks for multitask learning. Finally, we lever-
age these benchmark environments to investigate the notion of reusability. We focus on
one-shot transfer learning in inverse RL. That is, given expert demonstrations from a mix-
ture of environments with different dynamics is it possible to learn to properly complete
a task in a previously unseen environment with different dynamics. To do this, we extend
the options framework with the notion of reward options and develop a method for learning
join reward-policy options in the context of generative adversarial inverse RL. This method
is able to reuse information from a mixture of different environments to successfully learn
a task in its current environment and significantly outperforms inverse RL without options.

i

Abrégé

L’apprentissage par renforcement (AR) s’est avéré être un mécanisme efficace pour ap-
prendre à résoudre des tâches complexes par interaction avec l’environnement. Les progrès
récents dans la combinaison de réseaux neuronaux profonds avec l’AR ont abouti à des out-
ils puissants qui surpassent les précédentes méthodes de pointe dans des domaines tels que:
la robotique, les jeux vidéo et les jeux de société. Cependant, en raison de la nature inter-
active de ces algorithmes, ainsi que de la stochasticité intrinsèque et extrinsèque, leurs per-
formances d’apprentissage peuvent être très variables et difficiles à reproduire. En outre, la
réutilisation d’informations entre plusieurs tâches à l’aide de ces techniques peut être prob-
lématique, car elles peuvent être adaptées à une tâche ou un environnement unique. Dans
cette thèse, nous étudions à la fois la reproductibilité et la réutilisabilité dans l’AR profond.
Nous commençons par démontrer la difficulté à reproduire un sous-ensemble d’algorithmes
d’AR profonds: les méthodes de gradient de politique pour le contrôle continu. Nous
proposons plusieurs méthodes basées sur l’analyse statistique pour aider à éviter les ré-
sultats trompeurs et donner des lignes directrices pour une méthodologie expérimentale
plus rigoureuse. Ensuite, nous fournissons des environnements de référence reproductibles
open-source pour l’apprentissage multi-tâche et évaluons l’apprentissage séquentiel simple
sur des ensembles de tâches en tant que référence. Enfin, nous tirons parti de ces environ-
nements de référence pour étudier la notion de réutilisabilité. Nous nous concentrons sur
le transfert d’apprentissage en un coup dans l’AR inverse. C’est-à-dire, donné des démon-
strations d’experts venant d’environnements variés avec des dynamiques différentes, il est
possible d’apprendre à accomplir correctement une tâche dans un environnement inconnu
avec des dynamiques différentes. Pour ce faire, nous poussons le cadre des options avec la

ii

notion d’options de récompense et développons une méthode d’apprentissage des options
de récompense-politique dans le contexte de l’AR adversariale génératrice. Cette méth-
ode est capable de réutiliser des informations provenant d’un mélange d’environnements
variés pour réussir l’apprentissage d’une tâche dans son environnement actuel et surclasse
significativement le cas de l’approximateur unique.

iii

Contributions

The main contributions of this thesis are tools and methods for reproducible and reusable
deep reinforcement learning algorithmic and experimental methods. In particular, this the-
sis introduces the following:

• Experimental investigation of factors affecting reproducibility in deep RL methods
(Chapter 3)

• Proposal of proper experimental procedures, evaluation methodologies, and future
lines of investigations for reproducibility in RL (Chapter 3)

• Proposal and public release of reproducible benchmark environments for multitask
learning in RL (Chapter 4)

• Extension of the options framework to reward options (Chapter 5)

• Creation of OptionGAN, an optionated version of Generative Adversarial Inverse Re-
inforcement Learning, for use of extended options framework in inverse RL (Chap-
ter 5)

• Empirical results demonstrating this extension’s effectiveness in continuous control
tasks and one-shot transfer learning in inverse RL (Chapter 5)

The contributions described here have been published in several works during the
course of the development of this thesis (Islam et al., 2017; Henderson et al., 2018b;

iv

Henderson et al., 2017; Henderson et al., 2018a). As such, the co-authors of the related
publications contributed in varying degrees to the relevant chapters of this thesis.

• The work in (Islam et al., 2017; Henderson et al., 2018b) correlates to Chapter 3. The
co-authors on (Islam et al., 2017) were Riashat Islam, Maziar Gomrokchi, and Doina
Precup – though this work is primarily not used here, the subsequent work (Hender-
son et al., 2018b) is based on this workshop paper. The co-authors of (Henderson
et al., 2018b) were Riashat Islam, Philip Bachman, Joelle Pineau, David Meger, and
Doina Precup.

• The work in (Henderson et al., 2017) correlates to Chapter 4. The co-authors of
this work are Wei-Di Chang, Florian Shkurti, Johanna Hansen, David Meger, and
Gregory Dudek.

• The work in (Henderson et al., 2018a) correlates to Chapter 5. The co-authors of this
work are Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau, and Doina
Precup.

The author of this thesis was the primary author1 on all related works and the co-authors
acknowledge the use of these works in this thesis.

1The author of this thesis shares first authorship with Riashat Islam in (Henderson et al., 2018b; Islam
et al., 2017).

v

Acknowledgements

This thesis could not have been completed without the support, advice, and generosity of
many people.

Both of my supervisors, David Meger and Joelle Pineau, always go above and beyond
in their support, constantly finding time and ways to help when I thought it would not be
possible. They are role models for both their students and what supervisors should be, and
I am extremely grateful for this. David Meger has been an amazing supervisor in encour-
aging me to pursue interesting problems, always being around for helpful and enlightening
discussions, and understanding of an unusual path to the completion of this thesis. Equally,
Joelle Pineau is a fantastic supervisor who is always there for her students no matter what,
is a constant source of wise advice and steady support, and has helped me become a better
researcher than I thought possible.

I would also like to thank all my co-authors on publications stemming from the ideas
in this thesis. The discussions, encouragement, and help from all co-authors made these
impactful ideas possible.

A special thank you to my family for inspiration and support throughout this experi-
ence. In particular, my mother, Julia, is a source of inspiration for overcoming adversity
against all odds and I am grateful to Jieru, who has always been understanding, reassuring,
and always finds time to read through last minute drafts for any mistakes.

Finally, I would like to thank the National Science and Engineering Research Council of
Canada for the financial support which has made it possible for me to pursue this research.

vi

Contents

Acronyms 1

I Foundations 2

1 Introduction 3

2 Background 7
2.1 Reinforcement Learning . 7

2.1.1 The Sequential Decision-Making Framework 8

2.1.2 Value Functions . 8
2.1.3 Learning Value Functions . 9

2.1.4 Policy Gradient Methods . 10

2.1.5 The Options Framework . 14

2.1.6 Inverse Reinforcement Learning 16

2.1.7 Benchmark Tasks and Domains 17
2.2 Reusability: Multitask, Transfer, Lifelong Learning 18

2.3 Reproducibility . 21

II Reproducibility 23

3 Reproducibility in Deep Reinforcement Learning 24
3.1 Technical Background . 26

3.2 Experimental Analysis . 27

3.2.1 Hyperparameters . 29

vii

3.2.2 Network Architecture . 29
3.2.3 Reward Scale . 31
3.2.4 Random Seeds and Trials . 34
3.2.5 Environments . 34
3.2.6 Codebases . 36

3.3 Reporting Evaluation Metrics . 37

3.4 Discussion . 39

4 Benchmark Environments for Multitask Learning in Continuous Domains 42
4.1 Environments . 44

4.1.1 Continuous Control in MuJoCo 44
4.1.2 2D Navigation . 46

4.2 Multitask Sets . 47
4.3 Baseline Experiments . 48

4.4 Related Work . 53
4.5 Discussion . 53

III Reusability 55

5 OptionGAN: Learning Joint Reward-Policy Options using Generative Adver-
sarial Inverse Reinforcement Learning 56
5.1 Preliminaries and Notation . 57
5.2 Reward-Policy Options Framework . 60

5.3 Learning Joint Reward-Policy Options . 61

5.4 Mixture-of-Experts as Options . 63

5.4.1 Regularization Penalties . 64

5.5 Experiments . 66

5.5.1 Experimental Setup . 66

5.5.2 Simple Tasks . 67

5.5.3 One-Shot Transfer Learning . 67

5.5.4 Complex Tasks . 68

5.6 Ablation Investigations . 68

viii

5.7 Related Work . 71
5.8 Discussion . 72

IV Final Conclusion & Future Work 74

6 Final Conclusion & Future Work 75
6.1 Summary . 75

6.1.1 Reproducibility . 75

6.1.2 Reusability . 76

6.2 Future Work . 77
6.2.1 Reproducibility . 77

6.2.2 Reusability . 78

6.2.3 Biologically Plausible Reinforcement Learning 78

List of Publications 80

Bibliography 82

A Supplemental Material : Reproducibility 95
A.1 Literature Reviews . 95

A.1.1 Hyperparameters . 95

A.1.2 Reported Results on Benchmarked Environments 96

A.1.3 Reported Evaluation Metrics in Related Work 97

A.2 Experimental Setup . 98

A.2.1 Modifications to Baseline Implementations 100

A.2.2 Hyperparameters: Network Architecture 101

A.2.3 Proximal Policy Optimization (PPO) 102

A.2.4 Actor Critic using Kronecker-Factored Trust Region (ACKTR) . . . 103

A.2.5 Trust Region Policy Optimization (TRPO) 105

A.2.6 Deep Deterministic Policy Gradient (DDPG) 106

A.3 Reward Scaling Parameter in DDPG . 108

A.4 Batch Size in TRPO . 109

ix

A.5 Random Seeds . 110
A.6 Environments . 111
A.7 Codebases . 112
A.8 Significance . 118

B Supplemental Material : Reusability 122
B.1 Expanded Equations . 122

B.2 Expert Collection . 123

B.3 Experimental Setup and Hyperparameters 123

B.3.1 Simple Tasks and Transfer Tasks 124

B.3.2 RoboschoolHumanoidFlagrun-v1 126

B.4 Reward Decomposition over Expert Demonstrations 126

x

List of Figures

2.1 The core RL process. 8

3.1 Growth of published RL papers. 24

3.2 Significance of Policy Network Structure and Activation Functions PPO . . 30

3.3 DDPG reward rescaling effects on HalfCheetah-v1 30

3.4 Performance of policy gradient algorithms on benchmark environments. . . 32

3.5 Effect of random seeds on algorithm performance. 35

3.6 Codebase comparison. 37

4.1 Example environment images. 43

5.1 OptionGAN and IRLGAN diagrams. 59

5.2 Examination of interpretable behaviours for derived options. 64

5.3 OptionGAN Learning curves. 69

5.4 Effect of uniform distribution regularizer. 70

5.5 Distribution of option activations on original expert demonstrations. 71

A.1 PPO Policy and Value Network activation 102

A.2 PPO Policy Network structure . 102

A.3 PPO Value Network structure . 103
A.4 ACKTR Policy Network structure . 103

A.5 ACKTR Value Network structure . 103
A.6 ACKTR Policy Network Activation . 104

A.7 ACKTR Value Network Activation . 104
A.8 TRPO Policy Network structure . 105

A.9 TRPO Value Network structure . 105

xi

A.10 TRPO Policy and Value Network activation 105

A.11 TRPO Policy and Value Network activation 106

A.12 Policy or Actor Network Architecture experiments for DDPG on HalfChee-
tah and Hopper Environment . 106

A.13 Significance of Value Function or Critic Network Activations for DDPG
on HalfCheetah and Hopper Environment 107

A.14 DDPG reward rescaling on Hopper-v1, with and without layer norm. 108

A.15 DDPG reward rescaling on HalfCheetah-v1, with and without layer norm. . 108

A.16 TRPO (Schulman et al., 2015) original code batch size experiments. 109

A.17 TRPO (Schulman et al., 2017) baselines code batch size experiments. . . . 109

A.18 Two different TRPO experiment runs, with same hyperparameter configu-
rations, averaged over two splits of 5 different random seeds. 110

A.19 Two different DDPG experiment runs, with same hyperparameter configu-
rations, averaged over two splits of 5 different random seeds. 111

A.20 Comparing Policy Gradients across various environments 112

A.21 TRPO Policy and Value Network structure 113

A.22 TRPO Policy and Value Network activations. 113

A.23 TRPO rllab Policy Structure and Activation 114

A.24 DDPG rllab++ Policy and Value Network structure 114

A.25 DDPG rllab++ Policy and Value Network activations. 115

A.26 DDPG rllab Policy and Value Network structure 116

A.27 DDPG rllab Policy and Value Network activations. 116

A.28 DDPG codebase comparison using our default set of hyperparameters . . . 117

A.29 TRPO codebase comparison using our default set of hyperparameters . . . 118

B.1 One-shot transfer learning curves. 124

B.2 Simple environment learning curves. 125

B.3 Complex environment learning curves. 125

B.4 Distribution of policy activations over expert states. 127

B.5 Projection of expert state distributions into 2D space. 127

xii

List of Tables

3.1 Effects of policy architecture permutations. 31

3.2 Effects of value function permutations. 32

3.3 Confidence intervals and average performance of algorithms on benchmark
environments. 33

4.1 Gravity environment variations benchmark results. 49

4.2 Agent bodypart size variations benchmark results. 50

4.3 Agent with obstacle variation benchmark results. 51

4.4 Arm-based environment variations benchmark results. 51

5.1 OptionGAN results. 66

A.1 Evaluation Hyperparameters of baseline algorithms reported in related lit-
erature . 96

A.2 Comparison with Related Reported Results with Hopper Environment . . . 97

A.3 Comparison with Related Reported Results with HalfCheetah Environment 97

A.4 Number of trials reported during evaluation in various works. 97

A.5 Reported Evaluation Metrics of baseline algorithms in related literature . . 98

xiii

A.6 HalfCheetah significance metrics. 119

A.7 Hopper significance metrics. 119

A.8 Walker2d significance metrics. 120

A.9 Swimmer significance metrics. 120

A.10 Bootstrap analysis of environment results. 120

A.11 Power analysis of environment results. 121

xiv

Acronyms

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

ACKTR Actor-Critic using Kronecker-Factored Trust Region

DDPG Deep Deterministic Policy Gradients

DQN Deep Q-Network (Learning)

ELU Exponential Linear Unit

GAIL Generative Adversarial Imitation Learning

GAN Generative Adversarial Network

IRL Inverse Reinforcement Learning

IRLGAN Generative Adversarial Inverse Reinforcement Learning

KFAC Kronecker Factorization

KL DIVERGENCE Kullback-Leibler divergence

MDP Markov Decision Process

ML Machine Learning

MLP Multilayer Perceptron

MOE Mixture-of-Experts

OPTIONGAN Optionated Generative Adversarial Networks

PG Policy Gradients

PPO Proximal Policy Optimization

RBF Radial Basis Function

RELU Rectified Linear Unit

RL Reinforcement Learning

TRPO Trust Region Policy Optimization

1

Part I

Foundations

2

1
Introduction

Reinforcement learning (RL) provides a methodology for solving sequential decision-
making problems through interaction with the environment. This technique has proven to
be an effective method for accomplishing complex tasks such as: controlling continuous
systems in robotics (Lillicrap et al., 2015), playing Go (Silver et al., 2016), Atari (Mnih
et al., 2013), and competitive video games (Vinyals et al., 2017; Silva and Chaimowicz,
2017). To solve such complex scenarios, classic RL methods such as Q-Learning (Watkins,
1989) and Policy Gradient (PG) methods (Sutton et al., 2000) are combined with neural
network function approximators to formulate deep RL techniques (as we will describe in
Chapter 2). To illustrate the points in this section, let us use the example of a robot manip-
ulator tasked with picking up a toy block. In such a case, RL optimization will try moving
the manipulator in different ways until it successfully picks up the block (exploration).
Then, the methodology will refine this policy to pick up the block consistently (exploita-
tion). However, such methodologies can have various problems relating to reproducibility

and reusability.

As the authors of (Cacioppo et al., 2015) state, “Reproducibility refers to the ability
of a researcher to duplicate the results of a prior study using the same materials as were
used by the original investigator. (...) Reproducibility is a minimum necessary condition
for a finding to be believable and informative.” We can use this as the basic definition of re-

producbility, expanding upon it in Section 2.3. RL methods may experience highly variant
learning due to their need for interaction with an environment, sequential objective func-

3

Introduction

tions, and non-differentiable rewards. For example, returning to the robotic manipulator
task, if the manipulator does not take the same exploratory actions in each learning trial,
the time it takes to find the block my vary significantly. In one trial, it may accidentally
come across the block quickly. In subsequent trial, it may explore the wrong region of
space for a long time before finding the block. Furthermore, due to the large continuous
space of actions and states in this task, the predictions as to which states and actions are
valuable may vary highly between steps in a single learning trial. Several works investigate
ways to address variance in RL methods, including using advantage estimation (Schulman
et al., 2015, 2017, 2016; Mnih et al., 2016), n-step backups (Sutton and Barto, 1998; Mnih
et al., 2016), and multiple function approximators (Van Hasselt et al., 2016; Bellemare
et al., 2017).

However, just as important as addressing the variance in RL methods is addressing
proper experimental techniques under highly variant conditions such that proper repro-

ducible comparisons can be made between novel algorithms and baselines. In such con-
ditions, where small perturbations to random initializations or changes in the environment
can affect learning significantly, it is important to ensure proper experimental methodology
to differentiate real improvements from favourable selection of conditions. To this end, this
thesis investigates the factors affecting reproducibility in RL algorithms and suggests pos-
sible proper experimental methodologies based in statistical analysis when evaluating RL
algorithms. To narrow the scope of our experiments, we focus on policy gradient methods
for benchmark continuous control tasks.

Stemming from the problem of variance and reproducibility is the notion of reusability.
We define reusability as the capability of reusing knowledge from one setting in another
– an expanded definition is provided in Section 2.2. That is, can information be learned
and reused for accomplishing different tasks (i.e., multitask, transfer, or lifelong learning
as defined in Section 2.2). As demand drives systems to generalize to various domains and
problems, the study of multitask, transfer and lifelong learning has become an increasingly
important pursuit. In discrete domains, performance on the Atari game suite (Bellemare
et al., 2013) has emerged as the de facto benchmark for assessing multitask learning. How-
ever, in continuous domains there is a lack of agreement on standard multitask evaluation
environments which makes it difficult to compare different approaches fairly. This thesis

4

Introduction

describes a benchmark set of tasks that we have developed in an extendable framework
based on OpenAI Gym (Brockman et al., 2016). We run a simple baseline using Trust Re-
gion Policy Optimization (Schulman et al., 2015) and release the framework publicly to
be expanded and used for the systematic comparison of multitask, transfer, and lifelong
learning in continuous domains.

RL methods rely on a reward function to provide a signal that can be optimized. How-
ever, in most cases, currently, this reward function is hand-crafted. In our example robot
manipulation task, somehow the environment must provide a reward to the RL agent such
that it can know that it has successfully picked up the block. Currently, a human might
hand-craft a reward function such that, for example, a reward of `1 is provided when a
sensor in the block feels an upward velocity. While RL methods provide a useful way to
solve tasks with a predefined objective, manually specifying a good reward function can
be difficult, especially for intricate tasks. Inverse reinforcement learning (IRL) refers to
the problem of learning this reward function from expert demonstrations. In the context of
our example, the robotic manipulator could learn a reward signal from a human-controlled
demonstration of the manipulator moving in the proper way to complete the task. We use
our created multitask learning benchmark environments as a platform for proposing a novel
method for one-shot transfer learning in IRL – that is, reusing information from many dif-
ferent experts in differing environments and conditions. Returning to our robotic manipu-
lator, this notion of one-shot transfer learning would augment the IRL task such that the
demonstrations may be from several different tasks. For example, the manipulator could be
shown picking up objects on many different kinds of surfaces or in settings with obstacles
impeding its progress. The manipulator must learn to infer the underlying structure of the
task from these many demonstrations to successfully learn to complete a task in its current
setting.

IRL offers a useful paradigm to learn the underlying reward function directly from ex-
pert demonstrations. Yet in reality, the corpus of demonstrations may contain trajectories
arising from a diverse set of underlying reward functions rather than a single one. Thus, in
IRL, it is useful to consider such a decomposition. The options framework in RL is specif-
ically designed to decompose policies in a similar light. We therefore extend the options
framework and propose a method to simultaneously recover reward options in addition to

5

Introduction

policy options. We leverage adversarial methods to learn joint reward-policy options using
only observed expert states. We show that this approach works well in both simple and
complex continuous control tasks and shows significant performance increases in one-shot
transfer learning. Thus, we present a novel method for reusability of demonstrations in
different contexts through an extension of the options framework.

Overall, the goals of this thesis are two-fold: (1) to highlight and provide tools and
methodologies for reproducible RL to drive the field forward and (2) to provide new meth-
ods for reusability by extending the options framework for decomposable reward functions
and IRL.

6

2
Background

There are a number of concepts throughout this work which may require technical back-
ground. We introduce several core concepts here, revisiting and expanding them in each
section as relevant.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is primarily a method for solving sequential decision-making
problems. The material in this section provides a minimal overview of RL methodology
required to understand the subsequent material. Sutton and Barto (1998) provide a thorough
overview of RL, and the curious reader can further detailed conceptual explanations there.

Generally, RL provides a means for optimizing an entire sequence of decision-making
events to achieve the overall best optimum across the predicted trajectory of decisions.
Given a sequential decision-making task, RL algorithms leverage interaction with a task
environment as a means to explore and exploit possible decisions, rather than requiring an
explicitly pre-gathered dataset.

The central decison-making unit in an RL optimization problem is the RL agent. Given
its current state, the agent can take an action within its environment. This provides the agent
with some reward. This reward can be used to determine the effectiveness of its actions and
optimize its decision-making policy. Its state information will also be updated such that it

7

2.1 Reinforcement Learning

Agent

Environment

Action atNew state st`1 Reward rt`1

Figure 2.1: The core RL process. Reproduced with permission from: https://gist.
github.com/pierrelux/6501790

can take a new action according to its updated state and policy. This process can be seen in
Figure 2.1.

2.1.1 The Sequential Decision-Making Framework

We generally define RL in the context of the Markov Decision Process (MDP) (Bellman,
1957) – the environment that an RL agent can act in. MDPs consist of states S, actions
A, a transition distribution P : S ˆ A Ñ pS Ñ Rq, and a reward function r : S Ñ

R. We formulate our methods in the space of continuous control tasks (A P R, S P R)
using measure-theoretic assumptions as described in Bacon et al. (2017). Thus we define
a parameterized policy as the probability distribution over actions conditioned on states
πθ : S ˆAÑ r0, 1s. The distribution of actions in a stochastic policy can be modeled by a
stochastic policy πθpa|sq. For continuous action spaces such a policy can be modeled by a
Gaussian πθ „ N pµ, σ2q where θ are the policy parameters. An agent can take an action a
in its environment (the MDP) such that it transitions to a new state with some probability.
Here, we focus on model-free methods where the probability of correctly transitioning to a
new state is not explicitly known or defined.

2.1.2 Value Functions

The goal of an RL agent is to maximize the cumulative reward (also known as the return)
across the trajectory of a given episode. We define an episode as the sequential MDP where
there is a finite number of timesteps T that can be taken and a starting state at timestep t0

8

https://gist.github.com/pierrelux/6501790
https://gist.github.com/pierrelux/6501790

2.1 Reinforcement Learning

which can be returned to. To maximize the cumulative reward of an episodic task, there
must be a notion of how good a state is. This is known as the value function V pstq. Simi-
larly, there must be a notion of how good an action is to take in a certain state. This is known
as an action-value function Qpst, atq. Generally, the advantage function in this context can
be defined as the advantage of an action over all other actionsApst, atq “ Qpst, atq´V pstq.
The value function of a policy (π) can be defined as Vπpsq “ Eπr

řT
t“0 γ

trt`1|s0 “ ss

and the action-value is Qπps, aq “ Eπr
řT
t“0 γ

trt`1|s0 “ s, a0 “ as, where γ P r0, 1q
is the discount factor. The discount factor is used to emphasize shorter term goals during
optimization (discounting the effect of rewards many steps away). This can be leveraged
for planning at different time horizons (François-Lavet et al., 2015). However, as is noted
by Thomas (2014) and Schulman et al. (2016), the discount factor reduces variance at the
cost of some bias. However, this is acceptable, as performance is usually better with the
biased discount factor (as is specifically noted in the Discussion section of Bacon et al.
(2017)).

2.1.3 Learning Value Functions

Sutton and Barto (1998) describe a myriad of methods for learning the aforementioned
value functions. However, in this subsection we focus on the singular case of temporal

difference (TD) learning, which will aid in future discussions. In the case of deep RL – as
we focus on in this thesis – the value functions (Qπpst, atq and V πpstq) can be modeled via
neural networks. We will sometimes refer to these as function approximators. To explain
and define TD learning, let us start with the specific example of deep Q-learning (Mnih
et al., 2015). A neural network approximator for the value function can be referred to as
a Q-network. To derive an update rule for this neural network based on an RL agents step
tuple pst, at, rt, st`1q, we can start be defining the optimal action-value function Q˚ps, aq
as the maximum cumulative return achievable by any policy. Using the notation of (Mnih
et al., 2015), the so-called Bellman equation states that the optimal action-value function
must obey the following criterion:

Q˚ps, aq “ Est`1PE

„

rt ` γmax
at`1

Q˚pst`1, at`1q|st, at



. (2.1)

9

2.1 Reinforcement Learning

Using this Bellman equation, an iterative update can be derived for the function ap-
proximator for the optimal value function. Given a function approximator for the optimal
Q-value function (Qps, a; θq), this update comes in the form:

Lipθiq “ Es,a„ρp¨q
“

pyi ´Qpst, at; θiqq
2
‰

(2.2)

where yi “ Est`1PE
“

rt ` γmaxat`1 Qpst`1, at`1; θi´1q|st, at
‰

. Here, i is the update iter-
ation and ρps, aq is the behaviour distribution (i.e., the state-action pairs possible for a
trajectory given the current policy for this Qps, a; θiq). In the Q-learning case, actions to
collect samples for this update are taken by sampling an ε-greedy. That is, with probability
1´ε samples are collected according to the greedy strategy, at “ maxaQps, a; θq, and with
probability ε the action is sampled at random. It can be noted that the error in Equation 2.2
is the TD error for the action-value function, hence Q-learning is a form of TD learning.
Importantly, the action selection strategy described here in Q-learning requires a discrete
action space so as to enumerate the action with the maximum Q-value. However, as will be
subsequently described, other methods can make use of a continuous action space by the
action selection method in the form of a policy.

2.1.4 Policy Gradient Methods

Throughout this work, we focus on Policy Gradient (PG) (Sutton et al., 2000) methods. This
allows for the modeling of both continuous and discrete action spaces. Rather than using
the value function to take actions, these methods demonstrate a way to explicitly optimize
a parameterized policy πθ through stochastic gradient ascent. In the discounted setting,
PG methods optimize ρpθ, s0q “ Eπθ

”

řT
t“0 γ

trpstq|s0

ı

. To derive a gradient update rule,

the PG theorem states: δρpθ,s0q
δθ

“
ř

s µπθps|s0q
ř

a
δπθpa|sq

δθ
Qπθps, aq, where µπθps|s0q “

řT
t“0 γ

tP pst “ s|s0q (Sutton et al., 2000).

REINFORCE and the Likelihood Ratio

Given some Monte Carlo rollouts τ of a sequence decision making process consisting of
tuples (st, at, rt, st`1), the gradient with respect to the policy parameters can be estimated
using the log likelihood ratio (Aleksandrov et al., 1968; Glynn, 1987). This became better

10

2.1 Reinforcement Learning

known as REINFORCE (Williams, 1992). This policy gradient algorithm uses an update for
the policy parameters based on the log likelihood such that ∆θt “ α∇θ log πθpat|stqvt. In
this case vt is the Monte Carlo return for timestep t and is an unbiased sample ofQπpst, atq.

Trust Region and Proximal Policy Optimization

In Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) and Proximal Policy
Optimization (PPO) (Schulman et al., 2017) this Monte Carlo REINFORCE update is con-
strained and transformed into the advantage estimation view such that the above becomes
a constrained optimization problem

max
θ

Et
„

πθpat|stq

πθoldpat|stq
Atpst, atq



, (2.3)

subject to Et rKL rπθoldp¨|stq, πθp¨|stqss ď δ where Atpst, atq is the generalized advantage
function (GAE) according to Schulman et al. (2016). This is defined as

Ât
GAEpγ,λq

“

T
ÿ

l“0

pγλqlδt`l, (2.4)

where δt`l “ ´V pstq`rt`γrt`1` ..`γ
kV pst`kq. Advantage estimation is used to reduce

the variance of updates. Schulman et al. (2016) provide an analysis of possible methods for
expressing a policy gradient update, where Qps, aq can be replaced with slightly different
expressions. Which can add some bias in exchange for variance reduction. The authors
show a correlation between the different expressions and derive a generalized formula as
seen in Equation 2.4. It can be noted that the λ and γ are hyperparameters which allow
bias-variance tradeoff to be tuned to some extent.

In TRPO, this is solved as a constrained conjugate gradient descent problem, while in
PPO the constraint is transformed into a penalty term or clipping objective. In both of these
methods, the value function is found via Monte Carlo rollouts (that is, trying out the policy
in the environment for the life of the trajectory).

11

2.1 Reinforcement Learning

Actor-Critic Methods

While TRPO and PPO use constrained REINFORCE-style updates where the advantage
function is estimated via Monte Carlo sampling, another option is to use the actor-critic

methodology. In this context, a policy (the actor) is learned by using another function ap-
proximator for the value function (the critic) in the policy update rather than using full
Monte Carlo rollouts. Then, the value function (critic) is updated according to the TD
error, just as described in Section 2.1.3. Compared to the solely value-based method of
Q-learning with an ε-greedy strategy, the actor-critic methodology allows for learning the
value function and a complementary action selection strategy in both continuous and dis-
crete action spaces.

To elucidate how actor-critic methods work, we will focus on and describe advantage
actor-critic (A2C). This is the synchronous version of asynchronous advantage actor-critic
described in (Mnih et al., 2016). In the asynchronous version, multiple agents execute in
an environment at once using the same policy and gradient updates are calculated in each
thread asynchronously and then aggregated together. To simplify the explanation of the
A3C updates, we instead present the synchronous version where Monte Carlo samples are
collected with a single policy and the gradients are computed in a synchronous manner
with these samples. The synchronous version, A2C, is seen in works such as (Schulman
et al., 2017; Wu et al., 2017) as a baseline comparison.

The general idea of A2C is to take N steps in the environment where N can be defined
by the researcher as a hyperparameter. These N -steps are collected into a batch. The ad-
vantage function is then calculated based on a critic value function Vθpstq such that for a
given sample the advantage is defined as:

Aθpst, atq “
N´1
ÿ

i“0

γirt`iγ
kVθpst`kq ´ Vθpstq. (2.5)

Using this advantage function, the same policy gradient update as in REINFORCE
can be used – that is, the gradient of log πθ1pat|stqpAθpst, atqq with respect to the policy
parameters θ1. Subsequently, the value function parameters are updated according to the
TD-error, just as in Q-learning. That is Vθ is updated with the gradient of

12

2.1 Reinforcement Learning

˜

N´1
ÿ

i“0

γirt`iγ
kVθpst`kq ´ Vθpstq

¸2

(2.6)

with respect to the value function parameters θ.

There is actually some notable similarity between the two methods of advantage es-
timation in PPO and A2C. A key difference between them is the reliance on the critic
approximation in the case of A2C. For A2C, N is typically small – for example, in the
OpenAI baselines implementation, N “ 5 by default (Hesse et al., 2017). Thus the major-
ity of the gradient signal comes from the critic. PPO, on the other hand, typically collects
full Monte Carlo rollouts of a complete episode, thus emphasizing the use of the value
function approximator as a baseline rather than as the main gradient signal. Hence, actor-
critic methods are a blend of policy gradients and value function learning which can be
used to provide more sample efficient methodologies.

Actor Critic Kronecker-factorized Trust Region Policy Optimization

In the case of Actor Critic using Kronecker-Factored Trust Region (ACKTR) (Wu et al.,
2017), the same methodology of A3C (Mnih et al., 2016) is followed. However, instead
of the unconstrained REINFORCE-style policy updates of A3C, ACKTR adds trust re-
gion optimization and distributed Kronecker factorization (KFAC) for improved sample
efficiency and scalability. The use of natural gradients with constraints mirrors the trust re-
gions of TRPO. However, TRPO uses Hessian-free optimization via conjugate gradient de-
scent, whereas ACKTR uses KFAC updates which are less computationally expensive. Wu
et al. (2017) claim that this allows for the sample efficiency of actor-critic to be combined
with the stability of trust region methods, while still being computationally inexpensive (as
compared to conjugate gradient descent methods).

Deep Deterministic Policy Gradients

Deep deterministic policy gradients (DDPG) (Lillicrap et al., 2015) is another actor-critic
method which uses Q-learning and a deterministic version of the policy gradient theorem
to learn a deterministic policy (that is, a “ πpsq) in a continuous action space. In this

13

2.1 Reinforcement Learning

case, the action-value function (the critic) is learned via TD learning. That is, a parameter-
ized Qπ

θ ps, aq is learned by optimizing the negative TD error (for example, in Q-learning,
ETD “ Qπ

θ pst, atq´prt`γmaxQπ
θ pst`1, at`1q). Once the action-value function is learned,

the parameterized policy is optimized according to the parameterized critic. In the case of
DDPG, this is done via a deterministic version of the policy gradient theorem. In this case,
the gradient of the action-value function approximator with respect to a given batch of N
sampled state-action pairs is used to update the policy via the chain rule. Thus the sampled
policy gradient (∇θJ) takes the form:

∇θJ «
1

N

ÿ

i

∇aQps, a|θ
Q
q|s“si,a“πpsiq∇θππps|θ

π
q|si . (2.7)

Often, this allows for the agent to avoid Monte Carlo rollouts, and instead optimize
the actor and critic with each step in the environment (i.e., online learning). However, this
comes at the cost of increased variance as seen in (Henderson et al., 2018b).

2.1.5 The Options Framework

In interactive tasks, different courses of action may be needed at different parts of the state
space or at different time scales. For example, let us examine a robotics task, where a robot
must pick up dishes from a sink and place them in a drying rack. In such a complex task,
four broad courses of action can be defined: moving to the sink, grasping a dish, mov-
ing it to the drying rack, and placing it properly. The concept of temporal abstraction in RL
allows for the division of such courses at different time scales. The options framework (Sut-
ton et al., 2000; Precup, 2000) provides a useful paradigm for learning and planning such
courses of action using this notion of temporal abstraction. As aforementioned, these com-
ponents are particularly useful for reusability as different temporally abstracted options can
be reused in different tasks – for example, as in Hawasly and Ramamoorthy (2013).

In RL, an option (ω P Ω) can be defined by a triplet (Iω, πω, βω). In this definition,
πω is called an intra-policy option, Iω Ď S is an initiation set, and βω : S Ñ r0, 1s is a
termination function (i.e., the probability that an option ends at a given state) (Sutton et al.,
1999). Furthermore, πΩ is the policy-over-options. That is, πΩ determines which option

14

2.1 Reinforcement Learning

πω an agent picks to use until the termination function βω indicates that a new option
should be chosen. Many works have investigated different methods for learning options,
including (Bacon et al., 2017; Stolle and Precup, 2002; Sutton et al., 1999; Precup, 2000).
As we base our work in reusability within the context of the option-critic framework (Bacon
et al., 2017), we will focus on introducing this as an example method for learning options
in RL.

Algorithm 1: The Option-Critic framework for Q-Learning. Reproduced with per-
mission from (Bacon et al., 2017).
sÐ s0 Choose ω according to an ε-soft policy-over-options (πΩpstq) repeat

Choose at according to πω,θpat|stq ;
Take action at in state st, observe st`1, rt;
δ Ð r ´QUpst, ω, atq
if st`1 is non-terminal then

δ Ð δ ` γp1´ βω,ϑpst`1qqQΩpst`1, ωq ` γβω,ϑpst`1qmaxω̄QΩpst`1, ω̄q
end
QUpst, ω, atq Ð QUpst, ω, atq ` αδ

θ Ð θ ` αθ
δ log πω,θpat|stq

δθ
pQΩpst`1q, ωq ´ VΩpst`1qq

ϑÐ ϑ´ αϑ
δβω,ϑpst`1q

δϑ
pQΩpst`1q, ωq ´ VΩpst`1qq

if βω,ϑ terminates in st`1 then
choose new ω according to ε-soft policy-over-options st Ð st`1

end
until st`1 is terminal;

The execution model in the option-critic framework is called the call-and-return op-
tion execution model. That is, an option ω is picked by the policy-over-options πΩ. The
agent then follows the intra-option policy πω until termination is indicated by the termi-
nation function βω. This procedure is then repeated until the episode is terminated. To
learn the optimal parameterized termination function βω,ϑ and intra-option policies πω,θ
(parameterized by ϑ and θ respectively), an update rule can be derived. We summarize
this derivation quickly here. We can start with the option-value function: QΩps, ωq “
ř

a πω,θpa|sqQUps, ω, aq. Here, QU : S ˆ Ω ˆ A Ñ R is the value of an action with a
state option pair: QUpst, ω, atq “ rpst, atq ` γ

ř

st`1
P pst`1|st, atqUpω, st`1q.

Here, U : Ω ˆ S Ñ R is the option-value function upon entering a state st`1, or
“upon arrival” (Bacon et al., 2017; Sutton et al., 1999). This is given by: Upω, st`1q “

15

2.1 Reinforcement Learning

p1 ´ βω,ϑpst`1qqQΩpst`1,ωq ` βω,ϑpst`1qVΩpst`1q. Using this key set of equations, the gra-
dients with respect to ϑ, θ can be calculated with respect to the option-value function (i.e.,
the critic). These update rules are summarized in Algorithm 1, as replicated from (Bacon
et al., 2017). As can be seen, these gradient based updates are very similar to the actor-critic
framework previously mentioned. In this case, though a set of policies (options) are learned
in one step instead of a singular policy. Option-Critic has been shown to improve perfor-
mance in Atari tasks, and as we will see in Chapter 5, learning options can be particularly
useful for reusability.

2.1.6 Inverse Reinforcement Learning

While in most scenarios where RL is currently used, the reward function for an MDP is
assumed to be known, a proper reward specification can be extremely difficult to hand-
craft – especially for complex scenarios in continuous control. As such, much recent work
has investigated Inverse Reinforcement Learning (IRL). That is, a reward function is learned
from demonstrations of an expert agent – possibly a human – performing the proper actions
in an MDP.

IRL was first formulated in the context of an MDP by Ng and Russell (2000). In this
framework, learning a reward function generally refers to finding a reward function of the
expert R˚ such that E r

ř

t γ
tR˚pstq|π

˚s ě E r
ř

t γ
tR˚pstq|πs , @π. One of the key insights

of Ng and Russell (2000) was to point out that this problem leaves ambiguity in the reward
function. Since the expert policy π˚ is typically unknown, only knowing traces or samples
from the policy, this leaves room for several solutions. For example, in such a settingR “ 0

is a solution.

In later work, a parametrization of the reward function is learned as a linear combi-
nation of the state feature expectation so that the hyperdistance between the expert and
the novice’s feature expectation is minimized (Abbeel and Ng, 2004). It has also been
shown that a solution can be formulated using the maximum entropy principle, with the
goal of matching feature expectation as well (Ziebart et al., 2008). Such feature matching
approaches rely on the theorem from Abbeel and Ng (2004) that for a policy π to perform
as well as the expert policy π˚, the feature expectations must match ||µpπq ´ µpπ˚q||1 ď ε.

16

2.1 Reinforcement Learning

This implies that for all w with ||w||8 ď 1, |w˚Tµpπq ´ w˚Tµpπ˚q| ď ε. That is, there can
be an optimal mapping of feature vectors. This allows the formulation of an optimization
problem as described by Abbeel and Ng (2004) and Ziebart et al. (2008).

Generative adversarial imitation learning (GAIL) (Ho and Ermon, 2016) is a more re-
cent formulation of IRL which makes use of adversarial techniques from Goodfellow et al.
(2014) to perform a similar feature expectation matching with deep neural networks. In this
case, a discriminator uses state-action pairs (transitions) from the expert demonstrations
and novice rollouts to learn a binary classification probability distribution. The probability
that a state belongs to an expert demonstration can then be used as the reward for a policy
optimization step. A more detailed description of this technique is in Section 5.1 of this
thesis.

2.1.7 Benchmark Tasks and Domains

There are many sequential decision-making problems where RL can be applied. Due to its
interactive nature, the development of novel RL methods has recently mainly taken place
in simulated environments. Board-games (Silver et al., 2016), Atari Games (Mnih et al.,
2013), and real-time strategy games (Vinyals et al., 2017) have been used as benchmarking
environments for RL algorithm development. However, typically these involve discrete
decision-making problems (choosing an action from a finite set). While RL methods have
shown great success in discrete action spaces (e.g., playing Atari (Mnih et al., 2015)), new
techniques demonstrate viable alternatives to model-based learning in continuous control
tasks such as robotic manipulation or locomotion (Schulman et al., 2015; Lillicrap et al.,
2015; Schulman et al., 2016, 2017; Ho and Ermon, 2016). Such continuous control tasks
add another layer of complexity by requiring an action to be chosen from a large continuous
action space.

Such tasks are particularly desirable for the notion of reusability due to the complex and
interconnected nature of learning robotics-based tasks (Finn et al., 2017; Christiano et al.,
2016; Gupta et al., 2017; Rusu et al., 2017; Higuera et al., 2017). In these settings, many
core actions can be reused in the continuous action space. For example, moving a robotic
manipulator from one place to another can be a learned macro-action that can be reused in

17

2.2 Reusability: Multitask, Transfer, Lifelong Learning

many different tasks. Due to these complexities and the particularly relevant nature of reuse
in these settings, we focus on such continuous control tasks and environments throughout
this thesis.

To this end, OpenAI Gym (Brockman et al., 2016) provides several benchmark environ-
ments in continuous control settings that we use and expand upon. These are built with the
MuJoCo (Todorov et al., 2012) simulator. The main environments on which we focus here
are ones involving locomotion: Hopper, HalfCheetah, Walker2d, Humanoid, and Swim-
mer. The goal of all these agents is to learn to move at the fastest horizontal rate possible,
encouraging the development of useful gaits. Briefly, the Hopper environment consists of
a single leg that must learn to hop at the fastest velocity possible in the horizontal direc-
tion. The HalfCheetah is a bipedal agent with cheetah-like features. Walker2d is a bipedal
agent with humanoid legs with no torso. Humanoid is a full anthropomorphic agent with
a much larger state and action space. Swimmer is a simple snake-like agent which must
learn locomotion in a fluid like environment. In all cases the state space consists of the
joint angles and location, while the action space consists of torque applied to the joints.
These environments are meant to scale in complexity as the number of joints increase and
thus the coordination required to learn a proper gait is multiplied.

2.2 Reusability: Multitask, Transfer, Lifelong Learning

We can define reusability in the context of RL as the capability of reusing knowledge from
one setting in another (as in transfer learning or multitask learning) through the identifica-
tion of underlying structure in the underlying policy space. According to (Fernández and
Veloso, 2013) the notion of policy reuse has these properties:

Policy Reuse identifies classes of similar policies revealing a basis of core-
policies of the domain. (...) In general, Policy Reuse contributes to the overall
goal of lifelong reinforcement learning, as (i) it incrementally builds a policy
library; (ii) it provides a mechanism to reuse past policies; and (iii) it learns an
abstract domain structure in terms of core-policies of the domain.

18

2.2 Reusability: Multitask, Transfer, Lifelong Learning

We can extend this notion of policy reuse to the context of IRL, by adding to definition
the notion of one-shot transfer learning in IRL: the concept of transferring knowledge from
expert demonstrations in different settings (exempli gratia, tasks or environment dynamics)
by learning in a new environment with no demonstrations of the new setting. We call this
one-shot since the novice agent must reuse or transfer information from the expert settings
while learning in one-shot on the new environment.

The concept of reusability is particularly useful in the context of multitask, transfer, or
lifelong learning. Generally, in these categories of learning, an agent must be able to use
or distill knowledge for many tasks into a single policy (though it may be decomposed
internally into several sub-policies). This can come in the form of sequential learning (e.g.,
learning one task at a time while not forgetting the previous tasks) or one-shot (where you
can transfer knowledge already known from a different task to the current task at hand or
where you learn many tasks at once).

Multitask learning has been defined in several ways in relevant RL literature. For exam-
ple, in (Calandriello et al., 2014), it is defined as where “the objective is to simultaneously
learn multiple tasks and exploit their similarity to improve the performance with respect to
single-task learning.” While, in (Wilson et al., 2007) it is stated that multitask reinforcement
learning is, “where an agent is confronted with a sequence of MDPs chosen independently
from a fixed distribution. The agent’s goal is to quickly find an optimal policy for each
MDP.” Several other works in multitask learning for RL derive similar definitions to these
two sources (Yang et al., 2017; Mujika, 2016; Teh et al., 2017). Throughout this work, we
generally refer to multitask learning as learning to execute multiple tasks while exploiting
their similarity either in a sequential fashion or simultaneously.

The sequential version of this multitask learning problem is also referred to as the life-

long learning problem. Thrun (1995) provides an eloquent definition, stating that, “Life-
long learning addresses situations where a learner faces a stream of learning tasks. Such
scenarios provide the opportunity for synergetic effects that arise if knowledge is trans-
ferred across multiple learning tasks.” The lifelong learning problem in RL has witnessed
many different approaches to varying degrees of success (Ammar et al., 2015b; Brunskill
and Li, 2014; Ammar et al., 2015a).

19

2.2 Reusability: Multitask, Transfer, Lifelong Learning

A single step in lifelong learning can be called transfer learning. That is, can knowledge
be transferred from solving known problems to a new, previously unseen, problem or envi-
ronment. A partial overview of transfer learning in the RL setting can be found in (Taylor
and Stone, 2009) and several newer works combine deep learning transfer methodologies
with RL techniques (Barreto et al., 2017; Parisotto et al., 2015).

Such scenarios are particularly useful for robotics or other continuous control tasks. In
these settings, complex controllers must be learned to encompass the fine-grained nature
of continuous action spaces. Transferring knowledge or reusing knowledge between tasks
or sub-parts of a task is necessary to build efficient controllers and solve complex scenar-
ios. Many such works also investigate transferring knowledge from simulation to the real
world (Higuera et al., 2017).

Several works investigate multitask, transfer, or lifelong learning with MuJoCo (Todorov
et al., 2012) simulated continuous control tasks. These tasks include: navigating around a
wall (where a wall separates an agent from its goal); the OpenAI Gym Reacher environment
with an added image state space of the environment; jumping over a wall using a model
similar to the OpenAI Half-Cheetah environment (Finn et al., 2017); varying the gravity
of various standard OpenAI Gym benchmark environments (Reacher, Hopper, Humanoid,
HalfCheetah) and transferring between the modified environments; adding motor noise to
the same set of environments (Christiano et al., 2016); simulated grasping and stacking
using a Jaco arm (Rusu et al., 2017); and several custom grasping and manipulation tasks
to demonstrate learning invariant feature spaces (Gupta et al., 2017).

Other works investigate using classical control systems and robotics simulations with a
set of varied hyperparameters for each environment. These include: a simple mass spring
damper task, cart-pole with continuous control; a three-link inverted pendulum with con-
tinuous control; a quadrotor control task (Ammar et al., 2014); a double-linked pendulum
task; a modified cartpole balancing task which can transfer to physical system (Higuera
et al., 2017).

20

2.3 Reproducibility

2.3 Reproducibility

As Cacioppo et al. (2015) state, “Reproducibility refers to the ability of a researcher to
duplicate the results of a prior study using the same materials as were used by the orig-
inal investigator. (...) Reproducibility is a minimum necessary condition for a finding to
be believable and informative.” In the context of deep RL, we can extend existing defi-
nitions (Cacioppo et al., 2015; Buckheit and Donoho, 1995) to define reproducibility as
the ability of a researcher to duplicate prior results, particularly such that algorithm per-
formance holds in similar environmental conditions, complete software is released to re-
produce results, a complete description of all methodologies and settings used to generate
the reported results is provided, and reported results constitute a fair comparison against
other algorithms. The notion of reproducibility in scientific literature has recently gained
notoriety as many potentially breakthrough works and experiments have been difficult to
replicate across many fields (Baker, 2016; Collins and Tabak, 2014; Kenall et al., 2015;
Henderson et al., 2018b). However, this lack of replication is likely not due to fraudulent
behaviour by the original authors of non-reproducible works, but rather a deficit in proper
experimental methodological theory or practices. As the authors of (Collins and Tabak,
2014) eloquently describe it:

Let’s be clear: with rare exceptions, we have no evidence to suggest that ir-
reproducibility is caused by scientific misconduct. In 2011, the Office of Re-
search Integrity of the US Department of Health and Human Services pursued
only 12 such cases. Even if this represents only a fraction of the actual prob-
lem, fraudulent papers are vastly outnumbered by the hundreds of thousands
published each year in good faith.

Factors include poor training of researchers in experimental design; increased
emphasis on making provocative statements rather than presenting technical
details; and publications that do not report basic elements of experimental de-
sign. Crucial experimental design elements that are all too frequently ignored
include blinding, randomization, replication, sample-size calculation and the
effect of sex differences. And some scientists reputedly use a ‘secret sauce’
to make their experiments work – and withhold details from publication or

21

2.3 Reproducibility

describe them only vaguely to retain a competitive edge. What hope is there
that other scientists will be able to build on such work to further biomedical
progress?

While this problem plagues the machine learning (ML) and other scientific communi-
ties (Wagstaff, 2012; Boulesteix et al., 2013; Stodden et al., 2014; Bouckaert and Frank,
2004; Bouckaert, 2004; Vaughan and Wawerla, 2012), it is exacerbated by the interactive
nature of RL. Because small changes in stochastic environments can take significantly dif-
ferent directions in learning, it is extremely difficult to reproduce results across various
different random initializations. As environment dynamics become more stochastic, these
problems are only made worse. While the best evaluation techniques and experimental pro-
cedures in this context are still open questions, the work presented here attempts to take
steps toward addressing the problems of reproducibility in RL, encouraging and suggesting
proper experimental practice, and providing an initial suggestion of evaluation metrics and
statistical measures which account for difficult-to-reproduce learning performance.

22

Part II

Reproducibility

23

3
Reproducibility in Deep Reinforcement

Learning

Reinforcement learning (RL) is the methodology of how an agent can interact with its
environment to learn a policy which maximizes expected cumulative rewards for a task.
Recently, RL has experienced dramatic growth in attention and interest due to promis-
ing results in several areas: controlling continuous systems in robotics (Lillicrap et al.,
2015), playing Go (Silver et al., 2016), Atari (Mnih et al., 2013), and competitive video
games (Vinyals et al., 2017; Silva and Chaimowicz, 2017). Figure 3.1 illustrates growth
of the field through the number of publications per year. To maintain rapid progress in
RL research, it is important that existing works can be easily reproduced and compared to
accurately judge improvements offered by novel methods.

Figure 3.1: Growth of published RL papers. Shown are the number of RL-related publica-
tions (y-axis) per year (x-axis) scraped from Google Scholar searches.

24

Reproducibility in Deep Reinforcement Learning

However, reproducing deep RL results is seldom straightforward, and the literature
reports a wide range of results for the same baseline algorithms (Islam et al., 2017). Re-
producibility can be affected by extrinsic factors (e.g., hyperparameters or codebases) and
intrinsic factors (e.g., effects of random seeds or environment properties). We investigate
these sources of variance in reported results through a representative set of experiments. For
clarity, we focus our investigation on policy gradient (PG) methods in continuous control.
Policy gradient methods with neural network function approximators have been particu-
larly successful in continuous control (Schulman et al., 2015, 2017; Lillicrap et al., 2015)
and are competitive with value-based methods in discrete settings. We note that the diver-
sity of metrics and lack of significance testing in the RL literature creates the potential for
misleading reporting of results. We demonstrate possible benefits of significance testing
using techniques common in machine learning and statistics.

Several works touch upon evaluating RL algorithms. In (Duan et al., 2016), the authors
benchmark several RL algorithms and provide the community with baseline implementa-
tions. Generalizable RL evaluation metrics are proposed in (Whiteson et al., 2011). Another
work (Machado et al., 2018) revisits the Arcade Learning Environment to propose better
evaluation methods in these benchmarks. However, while the question of reproducibil-

ity and good experimental practice has been examined in related fields (Wagstaff, 2012;
Boulesteix et al., 2013; Stodden et al., 2014; Bouckaert and Frank, 2004; Bouckaert, 2004;
Vaughan and Wawerla, 2012), to the best of our knowledge this is the first work to address
this important question in the context of deep RL.

In each section of our experimental analysis, we pose questions regarding key fac-
tors affecting reproducibility. We find that there are numerous sources of non-determinism
when reproducing and comparing RL algorithms. To this end, we show that fine details of
experimental procedure can be critical. Based on our experiments, we conclude with pos-
sible recommendations, lines of investigation, and points of discussion for future works to
ensure that deep reinforcement learning is reproducible and continues to matter.

25

3.1 Technical Background

3.1 Technical Background

This work focuses on several model-free policy gradient algorithms with publicly avail-
able implementations which appear frequently in the literature as baselines for comparison
against novel methods. Section 2.1 of this thesis reviews these methods in more detail,
but we briefly recap here. We experiment with Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015), Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al.,
2015), Proximal Policy Optimization (PPO) (Schulman et al., 2017), and Actor Critic using
Kronecker-Factored Trust Region (ACKTR) (Wu et al., 2017). These methods have shown
promising results in continuous control MuJoCo domain tasks (Todorov et al., 2012) from
OpenAI Gym (Brockman et al., 2016). Generally, they optimize

ρpθ, s0q “ Eπθ

«

8
ÿ

t“0

γtrpstq|s0

ff

,

using the policy gradient theorem:

δρpθ, s0q

δθ
“
ÿ

s

µπθps|s0q
ÿ

a

δπθpa|sq

δθ
Qπθps, aq.

Here, µπθps|s0q “
ř8

t“0 γ
tP pst “ s|s0q (Sutton et al., 2000). TRPO (Schulman et al.,

2015) and PPO (Schulman et al., 2017) use constraints and advantage estimation to perform
this update, reformulating the optimization problem as:

max
θ

Et
„

πθpat|stq

πθoldpat|stq
Atpst, atq



.

In this case, At is the generalized advantage function (Schulman et al., 2016). TRPO
uses conjugate gradient descent as the optimization method with a KL constraint:

Et rKL rπθoldp¨|stq, πθp¨|stqss ď δ.

26

3.2 Experimental Analysis

PPO reformulates the constraint as a penalty (or clipping objective). DDPG and ACKTR
use actor-critic methods which estimate Qps, aq and optimize a policy that maximizes the
Q-function based on Monte-Carlo rollouts. DDPG does this using deterministic policies,
while ACKTR uses Kronecketer-factored trust regions to ensure stability with stochastic
policies.

3.2 Experimental Analysis

We pose several questions about the factors affecting reproducibility of state-of-the-art RL
methods. We perform a set of experiments designed to provide insight into the questions
posed. In particular, we investigate the effects of: specific hyperparameters on algorithm
performance if not properly tuned; random seeds and the number of averaged experiment
trials; specific environment characteristics; differences in algorithm performance due to
stochastic environments; differences due to codebases with most other factors held con-
stant.

Hyperparameters – that is, configurable parameters not learned in the model – can be
crucial in deep learning algorithm performance. For example, in (Melis et al., 2018) it is
shown that a simple Long-Term Short-Term memory networks can outperform complex
neural network architectures when hyperparameters are properly tuned. The significant
effect of these settings, as we demonstrate in this section of the thesis, can be found in RL.

Random seeds can also have a large effect on algorithm performance. In fact, Bengio
(2012) suggests tuning random seeds in deep learning algorithms as one would any hyper-
parameter. As we will show here, random seeds have a significant effect on performance
in RL algorithms. This can be problematic when coupled with few numbers of reported
random seeds. Tuning random seeds in RL does not constitute a fair comparison, as this
can augment the environment conditions (similar to changing the dataset for comparisons
in ML).

Furthermore, as RL algorithms can be considered optimization methods, environments
are comparable to defining datasets and loss functions in deep learning. The optimization
method may not perform as well in all settings, hence we investigate the effect of the task

27

3.2 Experimental Analysis

at hand when comparing different algorithms. We also investigate ways in which these
properties might cause performance differences.

Finally, reimplementations of the same algorithm across different publications can re-
sult in performance variations due to uncaught code errors or underlying differences in
code libraries. However, in research publications, to ensure a fair comparison between al-
gorithms, it is necessary that the used implementation performs as well as the original
publication. As such, we compare different algorithm implementations used for baseline
comparison in a number of works to determine if the codebases affect the fair reporting of
results.

For most of our experiments1, except for those comparing codebases, we use the Ope-
nAI Baselines2 implementations of the following algorithms: ACKTR (Wu et al., 2017),
PPO (Schulman et al., 2017), DDPG (Plappert et al., 2018), TRPO (Schulman et al.,
2017). We use two benchmark MuJoCo (Todorov et al., 2012) environments from Ope-
nAI Gym (Brockman et al., 2016): Hopper-v1 and HalfCheetah-v1. These two environ-
ments provide contrasting dynamics (the former being more unstable). We choose these
algorithms as they have open-source implementations which are used in several publica-
tions. We choose the environments due to their contrasting characteristics. For example, the
Hopper-v1 environment provides more unstable dynamics, so the agent can fail an episode
easily if exploration is done in an unsafe manner. Conversely, the HalfCheetah-v1 environ-
ment provides stable dynamics where exploration can potentially be beneficial.

To ensure fairness we run five experiment trials for each evaluation, each with a dif-
ferent preset random seed (all experiments use the same set of random seeds). In all cases,
we highlight important results here, with full descriptions of experimental setups and ad-
ditional learning curves included in Appendix A.2. Unless otherwise mentioned, we use
default settings whenever possible, while modifying only the hyperparameters of interest.

We use multilayer perceptron function approximators in all cases. We denote the hid-
den layer sizes and activations as pN,M, activationq, where N and M are the sizes of the
first and second hidden layers, respectively, and activation is the type of activation we use

1Specific details can be found in Appendix A.2 and code can be found at: https://git.io/vFHnf
2https://www.github.com/openai/baselines

28

https://git.io/vFHnf
https://www.github.com/openai/baselines

3.2 Experimental Analysis

between all layers – for example, a Rectified Linear Unit (ReLU) or Exponential Linear
Unit (ELU). For default settings, we vary the hyperparameters under investigation one at a
time. For DDPG we use a network structure of p64, 64,ReLUq for both actor and critic. For
TRPO and PPO, we use p64, 64, tanhq for the policy. For ACKTR, we use p64, 64, tanhq for
the actor and p64, 64,ELUq for the critic.

3.2.1 Hyperparameters

What is the magnitude of the effect hyperparameter settings can have on baseline perfor-

mance?

Tuned hyperparameters play a large role in eliciting the best results from many algorithms.
However, the choice of optimal hyperparameter configuration is often not consistent in
related literature, and the range of values considered is often not reported3. Furthermore,
poor hyperparameter selection can be detrimental to a fair comparison against baseline al-
gorithms. Here, we investigate several aspects of hyperparameter selection on performance.

3.2.2 Network Architecture

How does the choice of network architecture for the policy and value function approxima-

tion affect performance?

Islam et al. (2017) show that policy network architecture can significantly impact results in
both TRPO and DDPG. Furthermore, certain activation functions such as ReLU have been
shown to cause worsened learning performance due to the “dying ReLU” problem (Xu
et al., 2015). As such, we examine network architecture and activation functions for both
policy and value function approximators. In the literature, similar lines of investigation
have shown the differences in performance when comparing linear approximators, radial
basis functions (RBFs), and neural networks (Rajeswaran et al., 2017). Tables 3.1 and 3.2
summarize the final evaluation performance of all architectural variations after training on
2M samples (i.e., 2M timesteps in the environment). All learning curves and details on
setup can be found in Appendix A.1. We vary hyperparameters one at a time, while using

3A sampled literature review can be found in the Appendix A.1.

29

3.2 Experimental Analysis

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−2000

−1000

0

1000

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−750

−500

−250

0

250

500

750

1000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Policy Network Activation)

tanh

relu

leaky relu

Figure 3.2: Significance of Policy Network Structure and Activation Functions PPO (top-
left), TRPO (top-right) and DDPG (bottom).

a default setting for all others. We investigate three multilayer perceptron (MLP) architec-
tures commonly seen in the literature: p64, 64q, p100, 50, 25q, and p400, 300q. Furthermore,
we vary the activation functions of both the value and policy networks across tanh, ReLU,
and Leaky ReLU activations.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Reward Scale, Layer Norm)

rs=1e-4

rs=1e-3

rs=1e-2

rs=1e-1

rs=1

rs=10

rs=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Reward Scale, No Layer Norm)

rs=1e-4

rs=1e-3

rs=1e-2

rs=1e-1

rs=1

rs=10

rs=100

Figure 3.3: DDPG reward rescaling effects on HalfCheetah-v1, with and without layer
norm.

Results Figure 3.2 shows how performance can be affected by simple changes to the
policy or value network activations. We find that usually ReLU or Leaky ReLU activations

30

3.2 Experimental Analysis

Algorithm Environment 400,300 64,64 100,50,25 tanh ReLU LeakyReLU
TRPO Hopper-v1 2980 ˘ 35 2674 ˘ 227 3110 ˘ 78 2674 ˘ 227 2772 ˘ 211 -

(Schulman et al., 2015) HalfCheetah-v1 1791 ˘ 224 1939 ˘ 140 2151 ˘ 27 1939 ˘ 140 3041 ˘ 161 -
TRPO Hopper-v1 1243 ˘ 55 1303 ˘ 89 1243 ˘ 55 1303 ˘ 89 1131 ˘ 65 1341˘ 127

(Duan et al., 2016) HalfCheetah-v1 738 ˘ 240 834 ˘ 317 850˘378 834 ˘ 317 784 ˘ 352 1139 ˘364
TRPO Hopper-v1 2909 ˘ 87 2828 ˘ 70 2812 ˘ 88 2828 ˘ 70 2941 ˘ 91 2865 ˘ 189

(Schulman et al., 2017) HalfCheetah-v1 -155 ˘ 188 205 ˘ 256 306 ˘ 261 205 ˘ 256 1045 ˘ 114 778 ˘ 177
PPO Hopper-v1 61 ˘ 33 2790 ˘ 62 2592 ˘ 196 2790 ˘ 62 2695 ˘ 86 2587 ˘ 53

(Schulman et al., 2017) HalfCheetah-v1 -1180 ˘ 444 2201 ˘ 323 1314 ˘ 340 2201 ˘ 323 2971 ˘ 364 2895 ˘ 365
DDPG Hopper-v1 1419 ˘ 313 1632 ˘ 459 2142 ˘ 436 1491 ˘ 205 1632 ˘ 459 1384 ˘ 285

(Plappert et al., 2018) HalfCheetah-v1 5579 ˘ 354 4198 ˘ 606 5600 ˘ 601 5325 ˘ 281 4198 ˘ 606 4094 ˘ 233
DDPG Hopper-v1 600 ˘ 126 593 ˘ 155 501 ˘ 129 436 ˘ 48 593 ˘ 155 319 ˘ 127

(Gu et al., 2017) HalfCheetah-v1 2845 ˘ 589 2771 ˘ 535 1638 ˘ 624 1638 ˘ 624 2771 ˘ 535 1405˘ 511
DDPG Hopper-v1 506 ˘ 208 749 ˘ 271 629 ˘ 138 354 ˘ 91 749 ˘ 271 -

(Duan et al., 2016) HalfCheetah-v1 850 ˘ 41 1573 ˘ 385 1224 ˘ 553 1311 ˘ 271 1573 ˘ 385 -
ACKTR Hopper-v1 2577 ˘ 529 1608 ˘ 66 2287 ˘ 946 1608 ˘ 66 2835 ˘ 503 2718 ˘ 434

(Wu et al., 2017) HalfCheetah-v1 2653 ˘ 408 2691 ˘ 231 2498 ˘ 112 2621 ˘ 381 2160 ˘ 151 2691 ˘ 231

Table 3.1: Results for our policy architecture permutations across various implementations
and algorithms. Under a single variation, all other parameters left on default settings as
discussed in Appendix A.1. Final average ˘ standard error across 5 trials of returns across
the last 100 trajectories after 2M training samples. For ACKTR, we use ELU activations
instead of leaky ReLU.

perform the best across environments and algorithms. The effects are not consistent across
algorithms or environments. This inconsistency demonstrates how interconnected network
architecture is to algorithm methodology. For example, using a large network with PPO
may require tweaking other hyperparameters such as the trust region clipping or learning
rate to compensate for the architectural change4. This intricate interplay of hyperparam-
eters is one of the reasons reproducing current policy gradient methods is so difficult. It
is exceedingly important to choose an appropriate architecture for proper baseline results.
This also suggests a possible need for hyperparameter agnostic algorithms—that is algo-
rithms that incorporate hyperparameter adaptation as part of the design—such that fair
comparisons can be made without concern about improper settings for the task at hand.

3.2.3 Reward Scale

How can the reward scale affect results? Why is reward rescaling used?

4We find that the KL divergence of updates with the large network p400, 300q seen in Figure 3.2 is on
average 33.52 times higher than the KL divergence of updates with the p64, 64q network.

31

3.2 Experimental Analysis

Algorithm Environment 400,300 64,64 100,50,25 tanh ReLU LeakyReLU
TRPO Hopper-v1 3011 ˘ 171 2674 ˘ 227 2782 ˘ 120 2674 ˘ 227 3104 ˘ 84 -

(Schulman et al., 2015) HalfCheetah-v1 2355 ˘ 48 1939 ˘ 140 1673 ˘ 148 1939 ˘ 140 2281 ˘ 91 -
TRPO Hopper-v1 2909 ˘ 87 2828 ˘ 70 2812 ˘ 88 2828 ˘ 70 2829 ˘ 76 3047 ˘ 68

(Schulman et al., 2017) HalfCheetah-v1 178 ˘ 242 205 ˘ 256 172 ˘ 257 205 ˘ 256 235 ˘ 260 325 ˘ 208
PPO Hopper-v1 2704 ˘ 37 2790 ˘ 62 2969 ˘ 111 2790 ˘ 62 2687 ˘ 144 2748 ˘ 77

(Schulman et al., 2017) HalfCheetah-v1 1523 ˘ 297 2201 ˘ 323 1807 ˘ 309 2201 ˘ 323 1288 ˘ 12 1227 ˘ 462
DDPG Hopper-v1 1419 ˘ 312 1632 ˘ 458 1569 ˘ 453 971 ˘ 137 852 ˘ 143 843 ˘ 160

(Plappert et al., 2018) HalfCheetah-v1 5600 ˘ 601 4197 ˘ 606 4713 ˘ 374 3908 ˘ 293 4197 ˘ 606 5324 ˘ 280
DDPG Hopper-v1 523 ˘ 248 343 ˘ 34 345 ˘ 44 436 ˘ 48 343 ˘ 34 -

(Gu et al., 2017) HalfCheetah-v1 1373 ˘ 678 1717 ˘ 508 1868 ˘ 620 1128 ˘ 511 1717 ˘ 508 -
DDPG Hopper-v1 1208 ˘ 423 394 ˘ 144 380 ˘ 65 354 ˘ 91 394 ˘ 144 -

(Duan et al., 2016) HalfCheetah-v1 789 ˘ 91 1095 ˘ 139 988 ˘ 52 1311 ˘ 271 1095 ˘ 139 -
ACKTR Hopper-v1 152 ˘ 47 1930 ˘ 185 1589 ˘ 225 691 ˘ 55 500 ˘ 379 1930 ˘ 185

(Wu et al., 2017) HalfCheetah-v1 518 ˘ 632 3018 ˘ 386 2554 ˘ 219 2547 ˘ 172 3362 ˘ 682 3018 ˘ 38

Table 3.2: Results for our value function (Q or V) architecture permutations across various
implementations and algorithms. Under a single variation, all other parameters left on de-
fault settings as discussed in Appendix A.1. Final average ˘ standard error across 5 trials
of returns across the last 100 trajectories after 2M training samples. For ACKTR, we use
ELU activations instead of leaky ReLU.

Figure 3.4: Performance of several policy gradient algorithms across benchmark MuJoCo
environment suites

32

3.2 Experimental Analysis

Environment DDPG ACKTR TRPO PPO
HalfCheetah-v1 5037 (3664, 6574) 3888 (2288, 5131) 1254.5 (999, 1464) 3043 (1920, 4165)

Hopper-v1 1632 (607, 2370) 2546 (1875, 3217) 2965 (2854, 3076) 2715 (2589, 2847)
Walker2d-v1 1582 (901, 2174) 2285 (1246, 3235) 3072 (2957, 3183) 2926 (2514, 3361)
Swimmer-v1 31 (21, 46) 50 (42, 55) 214 (141, 287) 107 (101, 118)

Table 3.3: Bootstrap mean and 95% confidence bounds for a subset of environment exper-
iments. We use 10, 000 bootstrap iterations and the pivotal method.

Reward rescaling has been used in several recent works (Duan et al., 2016; Gu et al., 2017)
to improve results for DDPG. This involves simply multiplying the rewards generated from
an environment by some scalar (r̂ “ rσ) for training. Often, these works report using a
reward scale of σ “ 0.1. In Atari domains, this is akin to clipping the rewards to r0, 1s.
By intuition, in gradient based methods (as used in most deep RL) a large and sparse
output scale can result in problems regarding saturation and inefficiency in learning (LeCun
et al., 2012; Glorot and Bengio, 2010; Vincent et al., 2015). Therefore clipping or rescaling
rewards compresses the space of estimated expected returns in action value function based
methods such as DDPG. We run a set of experiments using reward rescaling in DDPG (with
and without layer normalization) for insights into how this aspect affects performance.

Results Our analysis shows that reward rescaling can have a large effect (full experi-
ment results can be found in the Appendix), but results were inconsistent across environ-
ments and scaling values. Figure 3.3 shows one such example where reward rescaling af-
fects results, causing a failure to learn in small settings below σ “ 0.01. In particular, layer
normalization changes how the rescaling factor affects results, suggesting that these im-
pacts are due to the use of deep networks and gradient-based methods. With the value func-
tion approximator tracking a moving target distribution, this can potentially affect learning
in unstable environments where a deep Q-value function approximator is used. Further-
more, some environments may have untuned reward scales (e.g., the HumanoidStandup-v1
of OpenAI gym which can reach rewards in the scale of millions). Therefore, we suggest
that this hyperparameter has the potential to have a large impact if considered properly.
Rather than rescaling rewards in some environments, a more principled approach should
be taken to address this. An initial foray into this problem is made in (van Hasselt et al.,
2016), where the authors adaptively rescale reward targets with normalized stochastic gra-
dient, but further research is needed.

33

3.2 Experimental Analysis

3.2.4 Random Seeds and Trials

Can random seeds drastically alter performance? Can one distort results by averaging an

improper number of trials?

A major concern with deep RL is the variance in results due to environment stochasticity
or stochasticity in the learning process (e.g., random weight initialization). As such, even
averaging several learning results together across totally different random seeds can lead to
the reporting of misleading results. We highlight this in the form of an experiment.

Results We perform 10 experiment trials, for the same hyperparameter configuration,
only varying the random seed across all 10 trials. We then split the trials into two sets of
five and average the five trials together. As shown in Figure 3.5, we find that the perfor-
mance of algorithms can be drastically different. We demonstrate that the variance between
runs is enough to create statistically different distributions just from varying random seeds.
Unfortunately, in recent reported results, it is not uncommon for the top-N trials to be se-
lected from among several trials (Wu et al., 2017; Mnih et al., 2016) or averaged over only
small number of trials (N ă 5) (Gu et al., 2017; Wu et al., 2017). Our experiment with
random seeds shows that this can be potentially misleading. Particularly for HalfCheetah,
it is possible to get learning curves that do not fall within the same distribution at all, just by
averaging different runs with the same hyperparameters, but different random seeds. While
there can be no specific number of trials specified as a recommendation, it is possible that
power analysis methods can be used to give a general idea to this extent as we will discuss
later. However, more investigation is needed to answer this open problem.

3.2.5 Environments

How do the environment properties affect variability in reported RL algorithm perfor-

mance?

To assess how the choice of evaluation environment can affect the presented results, we use
our aforementioned default set of hyperparameters across our chosen testbed of algorithms
and investigate how well each algorithm performs across an extended suite of continu-
ous control tasks. For these experiments, we use the following environments from OpenAI

34

3.2 Experimental Analysis

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Different Random Seeds)

Random Average (5 runs)

Random Average (5 runs)

Figure 3.5: TRPO on HalfCheetah-v1 using the same hyperparameter configurations aver-
aged over two sets of 5 different random seeds each. The average 2-sample t-test across
entire training distribution resulted in t “ ´9.0916, p “ 0.0016.

Gym: Hopper-v1, HalfCheetah-v1, Swimmer-v1 and Walker2d-v1. The choice of environ-
ment often plays an important role in demonstrating how well a new proposed algorithm
performs against baselines. In continuous control tasks, often the environments have ran-
dom stochasticity, shortened trajectories, or different dynamic properties. We demonstrate
that, as a result of these differences, algorithm performance can vary across environments
and the best performing algorithm across all environments is not always clear. Thus it is
increasingly important to present results for a wide range of environments and not only
pick those which show a novel work outperforming other methods.

Results As shown in Figure 3.4, in environments with stable dynamics (e.g., HalfCheetah-
v1), DDPG outperforms all other algorithsm. However, as dynamics become more unsta-
ble (e.g., in Hopper-v1) performance gains rapidly diminish. As DDPG is an off-policy
method, exploration noise can cause sudden failures in unstable environments. Therefore,
learning a proper Q-value estimation of expected returns is difficult, particularly since
many exploratory paths will result in failure. Since failures in such tasks are character-
ized by shortened trajectories, a local optimum in this case would be simply to survive
until the maximum length of the trajectory (corresponding to one thousand timesteps and
similar reward due to a survival bonus in the case of Hopper-v1). As can be seen in Fig-
ure 3.4, DDPG with Hopper does exactly this. This is a clear example where showing only
the favourable and stable HalfCheetah when reporting DDPG-based experiments would be
unfair.

35

3.2 Experimental Analysis

Furthermore, let us consider the Swimmer-v1 environment shown in Figure 3.4. Here,
TRPO significantly outperforms all other algorithms. Due to the dynamics of the water-
like environment, a local optimum for the system is to curl up and flail without proper
swimming. However, this corresponds to a return of „130. By reaching a local optimum,
learning curves can indicate successful optimization of the policy over time, when in reality
the returns achieved are not qualitatively representative of learning the desired behaviour,
as demonstrated in video replays of the learned policy5. Therefore, it is important to show
not only returns but demonstrations of the learned policy in action. Without understanding
what the evaluation returns indicate, it is possible that misleading results can be reported
which in reality only optimize local optima rather than reaching the desired behaviour.

3.2.6 Codebases

Are commonly used baseline implementations comparable?

In many cases, authors implement their own versions of baseline algorithms to compare
against. We investigate the OpenAI baselines implementation of TRPO as used in (Schul-
man et al., 2017), the original TRPO code (Schulman et al., 2015), and the rllab (Duan et al.,
2016) Tensorflow implementation of TRPO. We also compare the rllab Theano (Duan et al.,
2016), rllab++ (Gu et al., 2017), and OpenAI baselines (Plappert et al., 2018) implementa-
tions of DDPG. Our goal is to draw attention to the variance due to implementation details
across algorithms. We run a subset of our architecture experiments as with the OpenAI
baselines implementations using the same hyperparameters as in those experiments6.

Results We find that implementation differences which are often not reflected in pub-
lications can have dramatic impacts on performance. This can be seen for our final evalu-
ation performance after training on 2M samples in Tables 3.1 and 3.2, as well as a sample
comparison in Figure 3.6. This demonstrates the necessity that implementation details be
enumerated, codebases packaged with publications, and that performance of baseline ex-
periments in novel works matches the original baseline publication code.

5https://youtu.be/lKpUQYjgm80
6Differences are discussed in the Appendix (e.g., use of different optimizers for the value function base-

line). Leaky ReLU activations are left out to narrow the experiment scope.

36

https://youtu.be/lKpUQYjgm80

3.3 Reporting Evaluation Metrics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Codebase Comparison)

Schulman 2015

Schulman 2017

Duan 2016

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Codebase Comparison)

Duan 2016

Gu 2016

Plapper 2017

Figure 3.6: TRPO and DDPG codebase comparisons using our default set of hyperparam-
eters (as used in other experiments).

3.3 Reporting Evaluation Metrics

In this section we analyze some of the evaluation metrics commonly used in the reinforce-
ment learning literature. In practice, RL algorithms are often evaluated by simply present-
ing plots or tables of average cumulative reward (average returns) and, more recently, of
maximum reward achieved over a fixed number of timesteps. Due to the unstable nature of
many of these algorithms, simply reporting the maximum returns is typically inadequate
for fair comparison; even reporting average returns can be misleading as the range of per-
formance across seeds and trials is unknown. Alone, these may not provide a clear picture
of an algorithm’s range of performance. However, when combined with confidence inter-
vals, this may be adequate to make an informed decision given a large enough number of
trials. As such, we investigate using the bootstrap and significance testing as in ML (Ko-
havi, 1995; Bouckaert and Frank, 2004; Nadeau and Bengio, 2000) to evaluate algorithm
performance.

Online View versus Policy Optimization An important distinction when reporting re-
sults is the online learning view versus the policy optimization view of RL. In the online
view, an agent will optimize the returns across the entire learning process and there is not
necessarily an end to the agent’s trajectory. In this view, evaluations can use the average
cumulative rewards across the entire learning process (balancing exploration and exploita-
tion) as in (Hofer and Gimbert, 2016), or can possibly use offline evaluation as in (Mandel
et al., 2016). The alternate view corresponds to policy optimization, where evaluation is

37

3.3 Reporting Evaluation Metrics

performed using a target policy in an offline manner. In the policy optimization view it
is important to run evaluations across the entire length of the task trajectory with a sin-
gle target policy to determine the average returns that the target can obtain. We focus on
evaluation methods for the policy optimization view (with offline evaluation), but the same
principles can be applied to the online view.

Confidence Bounds The sample bootstrap has been a popular method to gain insight
into a population distribution from a smaller sample (Efron and Tibshirani, 1994). Boot-
strap methods are particularly popular for A/B testing, and we can borrow some ideas from
this field. Generally a bootstrap estimator is obtained by resampling with replacement many
times to generate a statistically relevant mean and confidence bound. Using this technique,
we can gain insight into what is the 95% confidence interval of the results from our sec-
tion on environments. Table 3.3 shows the bootstrap mean and 95% confidence bounds
on our environment experiments. Confidence intervals can vary wildly between algorithms
and environments. We find that TRPO and PPO are the most stable with small confidence
bounds from the bootstrap. In cases where confidence bounds are exceedingly large, it may
be necessary to run more trials (i.e., increase the sample size).

Power Analysis Another method to determine if the sample size must be increased is
bootstrap power analysis (Tufféry, 2011; Yuan and Hayashi, 2003). If we use our sample
and give it some uniform lift (for example, scaling uniformly by 1.25), we can run many
bootstrap simulations and determine what percentage of the simulations result in statisti-
cally significant values with the lift. If there is a small percentage of significant values, a
larger sample size is needed (more trials must be run). We do this across all environment
experiment trial runs and indeed find that, in more unstable settings, the bootstrap power
percentage leans towards insignificant results in the lift experiment. Conversely, in stable
trials (e.g., TRPO on Hopper-v1) with a small sample size, the lift experiment shows that
no more trials are needed to generate significant comparisons. These results are provided
in the Appendix A.8.

Significance An important factor when deciding on an RL algorithm to use is the sig-
nificance of the reported gains based on a given metric. Several works have investigated
the use of significance metrics to assess the reliability of reported evaluation metrics in
ML. However, few works in reinforcement learning assess the significance of reported

38

3.4 Discussion

metrics. Based on our experimental results which indicate that algorithm performance can
vary wildly based simply on perturbations of random seeds, it is clear that some metric is
necessary for assessing the significance of algorithm performance gains and the confidence
of reported metrics. While more research and investigation is needed to determine the best
metrics for assessing RL algorithms, we investigate an initial set of metrics based on results
from ML.

In supervised learning, k-fold t-test, corrected resampled t-test, and other significance
metrics have been discussed when comparing machine learning results (Bouckaert and
Frank, 2004; Nadeau and Bengio, 2000). However, the assumptions pertaining to the un-
derlying data with corrected metrics do not necessarily apply in RL. Further work is needed
to investigate proper corrected significance tests for RL. Nonetheless, we explore sev-
eral significance measures which give insight into whether a novel algorithm is truly per-
forming as the state-of-the-art. We consider the simple 2-sample t-test (sorting all final
evaluation returns across N random trials with different random seeds); the Kolmogorov-
Smirnov test (Wilcox, 2005); and bootstrap percent differences with 95% confidence in-
tervals. All calculated metrics can be found in Appendix A.8. Generally, we find that
the significance values match up to what is to be expected. Take, for example, compar-
ing Walker2d-v1 performance of ACKTR versus DDPG. ACKTR performs slightly better,
but this performance is not significant due to the overlapping confidence intervals of the
two: t “ 1.03, p “ 0.334, KS “ 0.40, p “ 0.697, bootstrapped percent difference 44.47%
(-80.62%, 111.72%).

3.4 Discussion

Through experimental methods focusing on PG methods for continuous control, we inves-
tigate problems with reproducibility in deep RL. We find that both intrinsic (e.g., random
seeds, environment properties) and extrinsic sources (e.g., hyperparameters, codebases) of
non-determinism can contribute to difficulties in reproducing baseline algorithms. More-
over, we find that highly varied results due to intrinsic sources bolster the need for using
proper significance analysis. We propose several such methods and show their value on a
subset of our experiments.

39

3.4 Discussion

What recommendations can we draw from our experiments?

Based on our experimental results and investigations, we can provide some general rec-
ommendations. Hyperparameters can have significantly different effects across algorithms
and environments. Thus it is important to find the working set which at least matches
the original reported performance of baseline algorithms through standard hyperparameter
searches. Similarly, new baseline algorithm implementations used for comparison should
match the original codebase results if available. Overall, due to the high variance across
trials and random seeds of reinforcement learning algorithms, many trials must be run with
different random seeds when comparing performance. Unless random seed selection is ex-
plicitly part of the algorithm, averaging multiple runs over different random seeds gives
insight into the population distribution of the algorithm performance on an environment.
Similarly, due to these effects, it is important to perform proper significance testing to de-
termine if the higher average returns are in fact representative of better performance.

We highlight several forms of significance testing and find that they give generally
expected results when taking confidence intervals into consideration. Furthermore, we
demonstrate that bootstrapping and power analysis are possible ways to gain insight into the
number of trial runs necessary to make an informed decision about the significance of algo-
rithm performance gains. In general, however, the most important step to reproducibility is
to report all hyperparameters, implementation details, experimental setup, and evaluation
methods for both baseline comparison methods and novel work. Without the publication
of implementations and related details, wasted effort on reproducing state-of-the-art works
will plague the community and slow down progress.

What are possible future lines of investigation?

Due to the significant effects of hyperparameters (particularly reward scaling), another pos-
sibly important line of future investigation is in building hyperparameter agnostic algo-
rithms. Such an approach would ensure that there is no unfairness introduced from external
sources when comparing algorithms agnostic to parameters such as reward scale, batch
size, or network structure. Furthermore, while we investigate an initial set of significance
metrics here, they may not be the best fit for comparing RL algorithms. Several works
have begun investigating policy evaluation methods for the purposes of safe RL (Thomas

40

3.4 Discussion

and Brunskill, 2016; Thomas et al., 2015), but further work is needed in significance test-
ing and statistical analysis. Similar lines of investigation to (Nadeau and Bengio, 2000;
Bouckaert and Frank, 2004) would be helpful to determine the best methods for evaluating
performance gain significance.

How can we ensure that deep RL matters?

We discuss many different factors affecting reproducibility of RL algorithms. The sensi-
tivity of these algorithms to changes in reward scale, environment dynamics, and random
seeds can be considerable and varies between algorithms and settings. Since benchmark
environments are proxies for real-world applications to gauge generalized algorithm per-
formance, perhaps more emphasis should be placed on the applicability of RL algorithms
to real-world tasks. That is, as there is often no clear winner among all benchmark envi-
ronments, perhaps recommended areas of application should be demonstrated along with
benchmark environment results when presenting a new algorithm. Maybe new methods
should be answering the question: in what setting would this work be useful? This is some-
thing that is addressed for machine learning in (Wagstaff, 2012) and may warrant more
discussion for RL. As a community, we must not only ensure reproducible results with fair
comparisons, but we must also consider what are the best ways to demonstrate that RL
continues to matter.

41

4
Benchmark Environments for Multitask

Learning in Continuous Domains

As we discuss in Section 2.2, one general definition seen in literature of multitask learning
involves training a single agent in a lifelong context across a series of tasks. This defini-
tion encompasses three research areas: lifelong learning, multitask learning, and transfer
learning. In these settings, when tasks share similar characteristics, there is potential for
the learning agent to reuse information, potentially achieving greater performance or learn-
ing more rapidly on down-stream tasks than would be possible by learning each task from
scratch.

The promise of multitask learning has been previously demonstrated in several con-
texts. It has been shown that transfer learning on multiple related tasks improves the abil-
ity of the agent to learn a larger variety of domains while using less training data over-
all (Thrun, 1996). This naturally renders the agent more applicable to real-world scenarios.
Additionally, by training on multiple tasks the agent can exploit common traits to gain ef-
ficiency and improve generalization to unseen settings (Caruana, 1998; Murugesan et al.,
2016; Finn et al., 2017).

In discrete domains, several works have investigated the transferring of playing knowl-
edge acquired between various Atari games. It is intuitive that there should be some knowl-
edge transfer between Atari games (Breakout and Pong are similar in catching a ball; De-
monAttack, Carnaval, Assault, and AirRaid share a goal in shooting upwards to destroy

42

Benchmark Environments for Multitask Learning in Continuous Domains

Figure 4.1: Example environments: 2D navigation task with several sample paths, Hopper
with a wall, Walker2d with big and small feet, from left to right respectively.

enemies). Several works demonstrate multitask learning in both Atari tasks and the Deep-
Mind Lab Labyrinth (Parisotto et al., 2015; Rusu et al., 2016; Jaderberg et al., 2017). These
environments stand as useful benchmarks which can be used to induce further progress in
multitask, transfer and lifelong learning in discrete domains.

On the contrary, in continuous domains, there are no de facto benchmark environments.
Many novel works for continuous domain multitask learning have utilized a unique set of
environments with little mutual overlap. As such, there is a need for such open-source
standard benchmarks in this setting. This problem is one that has been recognized by
other research groups. Particularly, OpenAI lists the need for benchmark environments
and investigation of multitask learning in continuous domains in a request for research1.
As they mention, the current OpenAI Gym (Brockman et al., 2016) environments do not
share enough characteristics to likely pose as effective multitask or lifelong learning bench-
marks. The contribution of this work is a set of benchmark environments that are suitable
to evaluate continuous domain multitask learning. Our environments are constructed using
an expandable software framework built on top of OpenAI Gym.

Here, we show over 50 new environment variations (spread among 12 broad groups
of variation types) for challenging new continuous domain tasks. We verify the utility of
these environments for evaluating multitask learning by reporting the performance of a
well-known reinforcement learning algorithm on our multitask benchmark environments
as a simple baseline.

1See: https://openai.com/requests-for-research/#multitask-rl-with-continuous-actions

43

https://openai.com/requests-for-research/#multitask-rl-with-continuous-actions

4.1 Environments

4.1 Environments

In our initial release of the gym-extensions framework2, we include a number of modifi-
cations of the standard gym environments as well as novel continuous domains, and pro-
vide a framework which allows easy modification of environment characteristics. When
choosing how to modify environments or construct new multitask learning tasks, we look
to the existing literature described in the previous section. We choose common modifi-
cations as a starting point. Furthermore, we look to the description of lifelong learning
in (Thrun, 1995) for inspiration of the desiderata: “Such scenarios provide the opportunity
for synergetic effects that arise if knowledge is transferred across multiple learning tasks.”
Hence, we choose modifications where significant portions of multiple environments can
be reused. For example, we add a wall in one modification such that a gait from a non-wall
environment can be reused for a portion of the walled task.

4.1.1 Continuous Control in MuJoCo

We base our modified environments on the existing “running” (Humanoid, Hopper, Half-
Cheetah, and Walker2d) and “arm-based” (Pusher and Striker) environments in OpenAI
Gym. First, we provide a high-level overview of our modifications and suggested grouping,
then we show the specific environment names in our benchmarking results.

Gravity Modifications

For the running agents, we provide ready environments with various scales of simulated
earth-like gravity, ranging from one half to one and a half of the normal gravity level (´4.91

to´12.26m ¨s´2 in increments of .25gearth). We propose that a successful multitask learn-
ing algorithm will extract the underlying walking action structure and reuse the applicable
knowledge without forgetting how to walk in varying gravity conditions.

2Found at: https://github.com/Breakend/gym-extensions/. Pull requests and issues are welcome.
More details for each environment will be provided in the open-source repository as well as a place to upload
new benchmark algorithm runs.

44

https://github.com/Breakend/gym-extensions/

4.1 Environments

Wall and Sensor Environments

Inspired by the wall jumping experiment in (Finn et al., 2017), we build a set of similar
environments by extending the OpenAI running tasks to use a multi-beam noiseless range
sensor. We emit ray-beams from the torso of the runner for the measurements (with an arc of
90 degrees, 10 beams, a maximum sensing distance of 10 meters, and readouts normalized
to a range of r0, 1s). We provide the usual running tasks with the sensor perception enabled
(with no readings since there is no wall), and extra environments with a wall set in the path
of the agent at a location drawn from a uniform distribution from 1.8 to 3.8 meters ahead
of the agent’s start location.

Morphology Modifications

For the running agents, we provide environments which vary the morphology of a spe-
cific body part of the agent. The modifications made to each agent are seen in Table 4.2.
We define “Big” bodyparts as scaling the mass and width of the limb by 1.25 and “Small”
bodyparts as being scaled by 0.75. We also group categories of limbs for environments with
multiple appendages (i.e., humanoid torso includes the abdomen; humanoid thigh also in-
cludes the hips; all appendages encompass both the left/right or front/back simultaneously
such that a modified thigh includes both thighs).

Robot Arm Modifications

In the OpenAI Striker and Pusher tasks, a 7 DoF arm tries to hit a ball into a hole or push
a peg to a goal position respectively. We extend these tasks to randomly move the goal
position for the Pusher task, and randomly move the ball start position for the Striker task.
As in the original tasks, we bound the varied goal or start state within a reasonable area
that the arm can reach. The exact bounding areas can be found in the accompanying code.3

Humanoid Multitask

We provide a humanoid multitask environment which combines the rewards for standing
up and running in the same environment. The reward scale for this task is rather large, but

3https://github.com/Breakend/gym-extensions/

45

4.1 Environments

aligns with the HumanoidStandup-v1 environment from OpenAI Gym. Additionally we
provide a version of each environment with a sensor readout as in Section 4.1.1. When no
wall is used, all sensors read zero. When a wall is used, each returns a distance to the wall
as previously described.

4.1.2 2D Navigation

We also provide several novel 2D environments that focus on navigation tasks with contin-
uous action spaces to enable benchmarking of learning tasks requiring an implicit memory.
The tasks take place in a given occupancy grid map, similar to (Tamar et al., 2016). We
opt to make the layout and shape of the obstacles as the only disambiguating feature for
localizing within the map. Aside from that information, the environment does not have any
texture mapping or other distinctive features.

We provide three different types of navigation tasks, increasing in level of difficulty:

‚ Image-based navigation where the agent has access to the entire map, including its own

position within the map and the destination in the map as part of the image data.

‚ State-based navigation, where the agent has access to its own position in the map and the

distance and bearing to the closest obstacle. A simpler version also contains the destination

coordinates.

‚ Navigation based only on local range-and-bearing data around the agent using ray-tracing. It

has to perform mapping and estimate its own position within the map, while at the same time

exploring to find the goal location, and learning to avoid obstacles. We also modify this with

a simpler version, where the goal and current position are known as well.

We provide a reward of -1 for every timestep, -5 for obstacle collisions, and +10 for
reaching the goal (which also ends the task, similarly to the MountainCar-v0 environment
in OpenAI Gym). The action space is the bounded velocity to apply in the x and y directions
with a maximum velocity of 5 m{s and map dimensions 640mˆ 480m (where meters are
simulated in this case and correspond with pixels).

46

4.2 Multitask Sets

4.2 Multitask Sets

We develop several sets of intuitive task groups which can serve as simple benchmarks
which increase in complexity both within the group and in our listing order. We select these
task groupings once again according to the criteria that the “scenarios provide the oppor-
tunity for synergetic effects that arise if knowledge is transferred across multiple learning
tasks” (Thrun, 1995). More specifically, we suggest groupings that can have significant
overlap in task goals, but significant differences in dynamics or settings. The goal is to
cause failure when using an overfit policy in two different environments within a single
group, but to be able to learn both tasks more efficiently given information reuse. The spe-
cific environment names can be found in Table 4.1, 4.2, 4.3, and 4.4. For the navigation
tasks, we list the environments inline here.

We introduce the following environment groups:

‚ Modified environments with different gravity parameters

‚ Modified environments with sensor readouts (simply reading zero if no wall) and permuted

with a random wall in the runner path

‚ The OpenAI Gym Striker environment with both random start position of the object as well

as random goal state

‚ The OpenAI Gym Pusher environment with both random start position of the object as well

as random goal state

‚ Learning to standup and run for a Humanoid model

‚ Learning to standup, run, and jump over walls for a Humanoid model

‚ Learning to run with different sized limbs with the base set of limbs encompassing {Torso,

Leg, Thigh, Foot} and specific extra limbs listed below (i.e., example combinations look like:

HumanoidBigArm-v0, HopperSmallFoot-v0).

‚ Learning to navigate and search in 2D environments using only current position and distance

to closest obstacles (State-Based-Navigation-2d-Map{0-9}-Goal{0-2}-v0)

‚ Learning to navigate and search in 2D environments observing current position, distance to

closest obstacles, and known goal position (State-Based-Navigation-2d-Map{0-9}-Goal{0-

2}-KnownGoalPosition-v0)

47

4.3 Baseline Experiments

‚ Learning to navigate and search in 2D environments observing only raytracing distance read-

outs (Limited-Range-Based-Navigation-2d-Map{0-9}-Goal{0-2}-v0)

‚ Learning to navigate and search in 2D environments observing current position, raytracing

distance readouts, and known goal position (Limited-Range-Based-Navigation-2d-Map{0-

9}-Goal{0-2}-KnownPositions-v0)

‚ Learning to navigate and search in 2D environments observing only the 2D map image with

goal location and current position highlighted in different colors (Image-Based-Navigation-

2d-Map{0-9}-Goal{0-2}-v0)

4.3 Baseline Experiments

We develop a basic experiment to run on the aforementioned groupings of the environ-
ments to demonstrate learning on a series of similar tasks consecutively. We then evaluate
the generalized performance across all of the environments using the final learned policy.
For an initial baseline, we simply run the rllab (Duan et al., 2016) implementation of Trust
Region Policy Optimization (Schulman et al., 2015) (TRPO) using an identical policy net-
work to (Gu et al., 2017)4. We train the same policy consecutively on each environment
in a group in the same order as listed in Tables 4.1-4.4. After having trained on a specific
environment, we evaluate the current policy on that environment by running 20 sample roll-
outs. We then train on the next environment in the group, starting from that same policy.
We finally evaluate the reward across 20 sample rollouts on each environment in a group
using the final learned policy (which by then has been trained on every variation of the
environment). While this is not a specialized multitask learning approach as in (Yang et al.,
2017; Mujika, 2016; Teh et al., 2017), this provides basic insights (using a well-known
reinforcement learning algorithm) into forward transfer and generalization of a policy on
these task groupings.

Our baseline experiment results are found in Tables 4.1, 4.2, 4.3, 4.4. In the case of
modified Hopper tasks, modifying gravity and body part size has a profound effect on the
system dynamics. As a result, we see that catastrophic forgetting (McCloskey and Cohen,

4Size 100, 50, 25 hidden layers with rectified linear activations and a tanh output activation, and hyperpa-
rameters: step-size, 0.01; GAE lambda, 1.0; regularization coefficient, 1.0 ¨ 10´5; number of epochs, 1000;
batch size, 50000

48

4.3 Baseline Experiments

Environment Fully Trained After Env Training First Step Single Env
HopperGravityHalf-v0 1495.93 ˘ 823.51 2352.19 ˘ 580.53 13.48 ˘ 8.71 1843.89 ˘ 485.25
HopperGravityThreeQuarters-v0 413.77 ˘ 252.67 2245.13 ˘ 872.16 697.96 ˘ 210.79 2328.09 ˘ 834.35
Hopper-v1 668.52 ˘ 159.90 2622.31 ˘ 1032.45 781.88 ˘ 262.35 3232.87 ˘ 582.55
HopperGravityOneAndQuarter-v0 922.76 ˘ 128.71 3006.17 ˘ 847.30 818.08 ˘ 255.85 3028.04 ˘ 875.81
HopperGravityOneAndHalf-v0 2690.57 ˘ 1110.39 2792.72 ˘ 1075.30 658.15 ˘ 117.14 2169.07 ˘ 825.75
Average for Grouping 990.95 ˘ 1022.32 2603.704 ˘ 881.54 593.91 ˘ 184.43 2520.39 ˘ 720.74
Walker2dGravityHalf-v0 1366.07 ˘ 1126.59 3485.19 ˘ 1054.06 5.35 ˘ 10.30 2231.86 ˘ 902.31
Walker2dGravityThreeQuarters-v0 3686.37 ˘ 287.96 3962.69 ˘ 1061.71 1071.95 ˘ 267.35 2431.87 ˘ 935.14
Walker2d-v1 4030.00 ˘ 85.76 3732.04 ˘ 1314.89 930.92 ˘ 264.88 2570.15 ˘ 915.58
Walker2dGravityOneAndQuarter-v0 4115.23 ˘ 90.33 4090.30 ˘ 1058.62 926.06 ˘ 303.76 3505.52 ˘ 1626.58
Walker2dGravityOneAndHalf-v0 4201.08 ˘ 684.37 3988.62 ˘ 971.43 925.93 ˘ 290.33 2435.21 ˘ 1391.00
Average for Grouping 3479.76 ˘ 1230.72 3851.768 ˘ 1092.1 772.04 ˘ 227.32 2634.92 ˘ 1154.12
HalfCheetahGravityHalf-v0 1495.93 ˘ 823.51 1107.50 ˘ 784.31 -369.31 ˘ 113.71 2048.93 ˘ 761.03
HalfCheetahGravityThreeQuarters-v0 1671.76 ˘ 594.15 2142.78 ˘ 818.99 1410.25 ˘ 529.41 3268.26 ˘ 703.43
HalfCheetah-v1 1743.97 ˘ 100.32 2410.50 ˘ 137.30 1867.99 ˘ 251.58 2554.01 ˘ 115.69
HalfCheetahGravityOneAndQuarter-v0 2649.13 ˘ 143.43 2939.14 ˘ 164.62 1966.66˘ 171.88 2572.64 ˘ 90.80
HalfCheetahGravityOneAndHalf-v0 3421.21 ˘ 165.60 3402.83 ˘ 204.00 2143.76 ˘ 236.60 2276.82 ˘ 93.30
Average for Grouping 2196.41 ˘ 867.75 2400.55 ˘ 421.84 1403.87 ˘ 260.63 2544.13 ˘ 352.85
HumanoidGravityHalf-v0 416.41 ˘ 76.41 421.12 ˘ 95.61 89.60 ˘ 10.92 849.29 ˘ 213.81
HumanoidGravityThreeQuarters-v0 356.74 ˘ 52.52 385.54 ˘ 72.98 293.14 ˘ 66.12 637.33 ˘ 170.51
Humanoid-v1 310.09 ˘ 55.31 326.59 ˘ 59.78 267.11 ˘ 52.74 483.35 ˘ 106.12
HumanoidGravityOneAndQuarter-v0 261.01 ˘ 31.75 269.03 ˘ 40.59 233.82 ˘ 39.41 576.98 ˘ 124.25
HumanoidGravityOneAndHalf-v0 227.17 ˘ 33.62 226.94 ˘ 29.09 208.74 ˘ 34.43 538.24 ˘ 113.17
Average for Grouping 314.28 ˘ 85.41 325.84 ˘ 59.61 218.48 ˘ 40.72 617.03 ˘ 145.57

Table 4.1: Average and standard deviation (µ ˘ σ) of reward across a set of 20 sample rollouts.
We show samples immediately after training on a particular environment and the reward obtained
by the final trained policy on all previously seen environments. A group of tasks is defined by a
bold separator and the total average across all final rollouts is presented. “Fully Trained” lists the
final evaluation result using the fully trained policy which has seen all the environments. “After Env
Training” lists the evaluation immediately after training on that specific environment (having seen
all the previous environments up until that point in the group). The “First Step” column indicates
the reward at the first iteration of training on the new environment after having trained on the
previous environments in the group. “Single Env” indicates rollouts on a policy trained solely on
that environment (with all the same training parameters).

49

4.3 Baseline Experiments

Environment Fully Trained After Env Training First Step
HopperSmallFoot-v0 591.91 ˘ 150.73 1330.65 ˘ 402.07 9.83 ˘ 4.52
HopperSmallLeg-v0 2074.58 ˘ 800.61 1359.85 ˘ 311.91 744.35 ˘120.50
HopperSmallThigh-v0 919.87 ˘ 343.57 1492.44 ˘ 486.72 1719.34 ˘757.42
HopperSmallTorso-v0 1094.85 ˘ 319.94 1492.97 ˘ 518.47 1636.30 ˘298.22
HopperBigFoot-v0 2823.58 ˘ 887.25 1819.91 ˘ 812.33 559.61 ˘145.24
HopperBigLeg-v0 1020.13 ˘ 454.74 2148.57 ˘ 795.95 689.58 ˘96.23
HopperBigThigh-v0 2799.39 ˘ 748.89 1827.48 ˘ 767.09 674.14 ˘ 101.72
HopperBigTorso-v0 1971.50 ˘ 794.24 2090.68 ˘ 693.34 1110.46 ˘ 213.74
Average for Grouping 1661.98 ˘ 1025.19 1695.31 ˘ 598.48 892.95 ˘ 203.69
Walker2dSmallFoot-v0 2497.10 ˘ 1309.80 531.08 ˘ 329.00 -2.87 ˘ 2.56
Walker2dSmallLeg-v0 3181.14 ˘ 1131.29 1120.19 ˘ 597.09 318.20 ˘ 229.00
Walker2dSmallThigh-v0 3106.65 ˘ 641.34 1735.39 ˘ 880.44 1317.72 ˘ 737.66
Walker2dSmallTorso-v0 3132.88 ˘ 991.48 1838.79 ˘ 965.60 979.32 ˘ 582.14
Walker2dBigFoot-v0 2751.34 ˘ 1216.07 1873.60 ˘ 1047.41 789.32 ˘ 289.65
Walker2dBigLeg-v0 2820.94 ˘ 1108.26 2133.64 ˘ 1246.53 1743.53 ˘ 1106.90
Walker2dBigThigh-v0 892.54 ˘ 212.46 2756.79 ˘ 1238.62 805.31 ˘147.40
Walker2dBigTorso-v0 3097.45 ˘ 1383.43 2701.94 ˘ 1473.47 3045.06 ˘ 967.83
Average for Grouping 2685.01 ˘ 1280.70 1836.42 ˘ 972.27 1124.45 ˘ 507.89
HalfCheetahSmallFoot-v0 2003.46 ˘ 933.59 898.51 ˘ 363.85 -502.264 ˘ 97.99
HalfCheetahSmallLeg-v0 2327.16 ˘ 702.69 1494.03 ˘ 310.11 904.82 ˘ 330.37
HalfCheetahSmallThigh-v0 2555.16 ˘ 96.80 1672.22 ˘ 110.11 1311.60 ˘ 281.24
HalfCheetahSmallTorso-v0 2294.72 ˘ 109.20 1845.20 ˘ 86.03 1515.53 ˘ 94.68
HalfCheetahBigFoot-v0 2211.92 ˘ 65.81 1997.73 ˘ 101.36 1789.90 ˘ 82.31
HalfCheetahBigLeg-v0 2269.78 ˘ 95.57 2101.74 ˘ 95.98 1908.53 ˘ 99.49
HalfCheetahBigThigh-v0 2424.95 ˘ 94.19 2345.88 ˘ 381.33 1925.04 ˘ 347.83
HalfCheetahBigTorso-v0 2686.13 ˘ 97.96 2620.46 ˘ 297.88 2456.04 ˘ 421.03
Average for Grouping 2346.66 ˘ 464.81 1871.97 ˘ 218.33 1413.64 ˘ 207.11
HumanoidSmallFoot-v0 391.70 ˘ 124.75 228.46 ˘ 62.80 94.85 ˘ 106.57
HumanoidSmallLeg-v0 438.90 ˘ 113.80 290.88 ˘ 82.86 253.81 ˘ 68.12
HumanoidSmallThigh-v0 378.47 ˘ 113.70 347.38 ˘ 99.89 322.97 ˘ 93.28
HumanoidSmallTorso-v0 433.04 ˘ 88.76 341.22 ˘ 89.69 313.71 ˘ 82.52
HumanoidBigFoot-v0 456.39 ˘ 85.60 399.96 ˘ 95.84 355.16 ˘ 92.07
HumanoidBigLeg-v0 430.82 ˘ 105.41 380.20 ˘ 97.58 347.26 ˘ 87.78
HumanoidBigThigh-v0 365.79 ˘ 72.06 331.80 ˘ 84.06 303.13 ˘ 77.17
HumanoidBigTorso-v0 397.91 ˘ 109.04 392.66 ˘ 108.20 374.94 ˘ 102.12
HumanoidSmallHead-v0 422.33 ˘ 112.20 395.75 ˘ 101.70 386.14 ˘ 96.37
HumanoidBigHead-v0 507.29 ˘ 146.50 409.66 ˘ 109.13 411.98 ˘ 119.99
HumanoidSmallArm-v0 429.93 ˘ 113.26 416.41 ˘ 94.45 400.16 ˘ 91.75
HumanoidBigArm-v0 466.13 ˘ 129.87 411.23 ˘ 111.20 392.53 ˘ 115.21
HumanoidSmallHand-v0 450.07 ˘ 76.72 423.29 ˘ 101.61 417.45 ˘ 99.08
HumanoidBigHand-v0 409.46 ˘ 69.38 420.65 ˘ 100.29 415.04 ˘ 108.38
Average for Grouping 427.02 ˘ 112.56 370.68 ˘ 95.66 342.08 ˘ 95.23

Table 4.2: Results for modified body-part running task groups. Same parameters as de-
scribed in Table 4.1. Number of training iterations lowered to 500 per environment due
to the larger number of environments. Environments are grouped together by motif and
trained in order as listed here.

50

4.3 Baseline Experiments

Environment Fully Trained After Env Training First Step
HopperWithSensor-v0 747.67 ˘ 27.06 2881.79 ˘ 623.11 15.51 ˘ 14.88
HopperWall-v0 687.58 ˘ 58.81 695.00 ˘ 93.70 695.94 ˘ 102.96
Walker2dWithSensor-v0 1897.74 ˘ 1101.13 3357.76 ˘ 1142.85 -2.27 ˘ 8.84
Walker2dWall-v0 1271.78 ˘ 881.57 974.83 ˘ 664.29 635.45 ˘ 303.73
HalfCheetahWithSensor-v0 2924.83 ˘ 165.69 2754.58 ˘ 151.81 -296.32 ˘ 110.45
HalfCheetahWall-v0 2022.90 ˘ 826.91 2159.17 ˘ 805.27 2043.85 ˘ 807.09
HumanoidWithSensor-v0 339.37 ˘ 47.38 285.70 ˘ 51.99 67.37 ˘ 8.31
HumanoidWall-v0 334.03 ˘ 51.49 328.90 ˘ 57.41 284.55 ˘ 49.07
Humanoid-v1 252.38 ˘ 12.05 269.23 ˘ 75.11 72.398 ˘ 2.56
HumanoidStandup-v0 75861.96 ˘ 19951.32 75906.45 ˘ 22390.07 70659.6 ˘ 19479.4
HumanoidStandupAndRun-v0 71269.19 ˘ 16689.99 73919.85 ˘ 19215.23 70021.9˘18660.3
HumanoidWithSensor-v0 112.74 ˘ 23.09 114.75 ˘ 13.48 64.6059 ˘ 1.76
HumanoidStandupWithSensor-v0 53124.35 ˘ 15136.53 58335.81 ˘ 16259.60 52029.5 ˘ 13585.10
HumanoidStandupAndRunWithSensor-v0 59263.15 ˘ 12285.51 62570.26 ˘ 14258.35 55929.7 ˘ 15432.20
HumanoidStandupAndRunWall-v0 61468.03 ˘ 16135.02 66789.60 ˘ 14405.80 61764.5 ˘ 15150.20

Table 4.3: Results for modified running tasks with sensors, walls, or multiple goals. Envi-
ronments are grouped together by motif and trained in order as listed here.

Environment Fully Trained After Env Training First Step
Striker-v0 -124.87 ˘ 47.33 -114.61 ˘ 36.93 -590.61 ˘ 78.77
StrikerMovingStart-v0 -163.08 ˘ 76.29 -146.06 ˘ 60.21 -171.06 ˘ 92.10
Average for Grouping -143.97 ˘ 66.29 -130.33 ˘ 43.57 -380.83 ˘ 85.44
Pusher-v0 -24.83 ˘ 2.39 -24.59 ˘ 4.01 -209.57 ˘ 7.46
PusherMovingGoal-v0 -28.01 ˘ 7.24 -27.76 ˘ 6.20 -34.90 ˘ 9.38
Average for Grouping -26.42 ˘ 5.62 -26.17 ˘ 5.11 -122.24 ˘ 8.42

Table 4.4: Results for arm-based task groups. Same parameters as described in Table 4.1.
Environments are grouped together by motif and trained in order as listed here.

51

4.3 Baseline Experiments

1989) in the policy prevents generalization to earlier tasks. This can be seen in Tables 4.1
and 4.2. First, when evaluating the final policy on all of the previously trained environ-
ments (the “Fully Trained” column), performance decreases monotonically as we move
backwards over the environments. Additionally, immediately after training on the earlier
environments (the “After Env Training” column), the performance on the sample rollouts
is much higher than that of the final policy (which has seen all the environments). This in-
dicates that these groups of environments are good indicators for demonstrating and over-
coming catastrophic forgetting in multitask learning.

In other environment variations (modified HalfCheetah and Walker2d environments),
the agent’s final policy outperforms both training from scratch (as in Table 4.1) and the ‘Af-
ter Env Training” result (as in Tables 4.1 and 4.2), which is evidence of positive forward
transfer. The dynamics of these environments are not significantly perturbed by changes in
physics, as the models have inherent stability. There remains significant room for future im-
provement upon our baseline. Future methods may achieve more efficient forward transfer
between sequential environments. Furthermore, generalization across multiple tasks may
come at a cost of higher variance in the policy (e.g., in Walker2d environments). Future im-
provements may also focus on generalization with constrained variance across trials (and
thus higher safety when learning on new environments).

For the Humanoid-exclusive variations and Wall variations (as in Tables 4.2 and 4.3),
TRPO is not able to learn a policy which can jump over a wall or learn a good policy
on Humanoid tasks in the small number of iterations which we ran (1000 iterations). The
results we see are on a comparable scale to (Duan et al., 2016).

In our new map navigation tasks, rewards remain at -1000, which is the initial lowest
reward. That is, the agent never learns to find the goal using our default parameters and
TRPO. This is to be expected as TRPO may not be suited for such a navigation task which
requires large amounts of exploration with an extremely delayed reward. Other methods
which encourage principled exploration and have a memory component to the policy may
be more suitable for such tasks. We nevertheless share these environments with the com-
munity in an effort to drive investigation into creating complex policies for simultaneous
localization, exploration and goal searching in settings where goals and obstacles vary be-
tween tasks.

52

4.4 Related Work

4.4 Related Work

Several works investigate multitask or transfer learning with MuJoCo tasks. These tasks
include: navigating around a wall (where a wall separates an agent from its goal); the
OpenAI Gym Reacher environment with an added image state space of the environment;
jumping over a wall using a model similar to the OpenAI Half-Cheetah environment (Finn
et al., 2017); varying the gravity of various standard OpenAI Gym benchmark environ-
ments (Reacher, Hopper, Humanoid, HalfCheetah) and transferring between the modified
environments; adding motor noise to the same set of environments (Christiano et al., 2016);
simulated grasping and stacking using a Jaco arm (Rusu et al., 2017); and several custom
grasping and manipulation tasks to demonstrate learning invariant feature spaces (Gupta
et al., 2017).

Other works investigate using classical control systems and robotics simulations with a
set of varied hyperparameters for each environment. These include: a simple mass spring
damper task, cart-pole with continuous control; a three-link inverted pendulum with con-
tinuous control; a quadrotor control task (Ammar et al., 2014); a double-linked pendulum
task; a modified cartpole balancing task which can transfer to physical system (Higuera
et al., 2017).

4.5 Discussion

Our initial release investigates adding flexibility to standard OpenAI gym MuJoCo envi-
ronments: modifying gravity, adding sensor readouts and a random wall obstacle, perturb-
ing body-part sizes, and adding random goal/start state positions for arm environments.
We also add an original set of environments for learning policies in continuous naviga-
tion tasks. In future releases we also plan to add standard environments for adding motor
noise, arm environments where the end-goal position has a velocity (such that the arm must
track the target), and making the sensor-based environments more realistic (and thus more
transferable to real-world systems).

The release of benchmark multitask learning environments for RL in continuous do-
mains is an important endeavor. As we have seen in the previous section, reproducibility

53

4.5 Discussion

for RL algorithms is already difficult. In continuous control multitask learning settings,
this difficulty is multiplied since often different novel works compare their algorithms in
specialized environments – specific only to that work and commonly unreleased to the pub-
lic. Without a standard set of benchmark environments, it is extremely difficult to discern
which is in fact the best multitask learning approach. Here, we present an initial set of such
environments. While, they are relatively simple in nature, we hope that these environments
will be expanded and used by the community in future evaluations. We hope that as algo-
rithms master these problems, more complex ones can be added to this benchmark set for
reproducibility in settings addressing reusability.

54

Part III

Reusability

55

5
OptionGAN: Learning Joint

Reward-Policy Options using Generative
Adversarial Inverse Reinforcement

Learning

A long term goal of Inverse Reinforcement Learning (IRL) is to be able to learn underly-
ing reward functions and policies solely from human video demonstrations. We call such a
case, one-shot transfer learning in IRL. This is the concept of transferring knowledge from
expert demonstrations in different settings (e.g., tasks or environment dynamics) by learn-
ing in a new environment with no demonstrations in the new setting. We call this one-shot

since the novice agent must reuse or transfer information from the expert settings while
learning in one-shot on the new environment. For example, given only demonstrations of a
human walking on earth, can an agent learn to walk on the moon?

However, such demonstrations would undoubtedly come from a wide range of settings
and environments and may not conform to a single reward function. This proves detri-
mental to current methods which might over-generalize and cause poor performance. In
forward RL, decomposing a policy into smaller specialized policy options has been shown
to improve results for exactly such cases (Sutton et al., 1999; Bacon et al., 2017). Thus, we
extend the options framework to IRL and decompose both the reward function and policy.

56

5.1 Preliminaries and Notation

Our method is able to learn deep policies which can specialize to the set of best-fitting
experts. Hence, it excels at one-shot transfer learning where single-approximator methods
waver.

To accomplish this, we make use of the Generative Adversarial Imitation Learning
(GAIL) framework (Ho and Ermon, 2016) and formulate a method for learning joint reward-
policy options with adversarial methods in IRL. As such, we call our method OptionGAN.
This method can implicitly learn divisions in the demonstration state space and accordingly
learn policy and reward options. Leveraging a correspondence between Mixture-of-Experts
and one-step options, we learn a decomposition of rewards and the policy-over-options in
an end-to-end fashion. This decomposition is able to capture simple problems and learn
any of the underlying rewards in one shot. This gives flexibility and benefits for a variety
of future applications (both in reinforcement learning and standard machine learning).

We evaluate OptionGAN in the context of continuous control locomotion tasks, con-
sidering both simulated MuJoCo locomotion OpenAI Gym environments (Brockman et al.,
2016), modifications of these environments for task transfer (Henderson et al., 2017), and
a more complex Roboschool task (Schulman et al., 2017). We show that the final policies
learned using joint reward-policy options outperform a single reward approximator and
policy network in most cases, and particularly excel at one-shot transfer learning.

5.1 Preliminaries and Notation

Reinforcement Learning, Markov Decision Processes (MDPs), and Policy Gradients
For an introduction to these topics, please refer to Section 2.1.

The Options framework We will briefly review again the notion of options and con-
textualize it within the work for this section. In reinforcement learning, an option (ω P Ω)
can be defined by a triplet (Iω, πω, βω). In this definition, πω is called an intra-policy op-
tion, Iω Ď S is an initiation set, and βω : S Ñ r0, 1s is a termination function (i.e., the
probability that an option ends at a given state) (Sutton et al., 1999). Furthermore, πΩ is the
policy-over-options. That is, πΩ determines which option πω an agent picks to use until the
termination function βω indicates that a new option should be chosen. Other works explic-
itly formulate call-and-return options, but we instead simplify to one-step options, where

57

5.1 Preliminaries and Notation

βωpsq “ 1; @ω P Ω, @s P S. One-step options have long been discussed as an alternative
to temporally extended methods and often provide advantages in terms of optimality and
value estimation (Sutton et al., 1999; Dietterich, 2000; Daniel et al., 2012). Furthermore,
we find that our options still converge to temporally extended and interpretable actions.

Mixture-of-Experts The idea of creating a Mixture-of-Experts was initially formalized
to improve learning of neural networks by dividing the input space among several networks
and then combining their outputs through a soft weighted average (Jacobs et al., 1991). It
has since come into prevalence for generating extremely large neural networks (Shazeer
et al., 2017). In our formulation of joint reward-policy options, we leverage a correspon-
dence between Mixture-of-Experts and options. In the case of one-step options, the policy-
over-options (πΩ) can be viewed as a specialized gating function over experts:

ÿ

ω

πΩpω|sqπωpa|sq, (5.1)

where intra-option policies are denoted by πωpa|sq. Several works investigate convergence
to a sparse and specialized Mixture-of-Experts (Jacobs et al., 1991; Shazeer et al., 2017).
We leverage these works to formulate a Mixture-of-Experts which converges to one-step
options.

Generative Adversarial Networks Borrowing from game theoretic principles in ad-
versarial games, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are
a method for training generative models. Typically a GAN consists of a generator G and
a discriminator D. The goal of the discriminator is to label samples as belonging to an
expert (the real data) or a novice (the generated data). The goal for the generator is to gen-
erate samples from noise such that they fool the discriminator into labeling the samples as
expert-made. This can be formulated as a minimax game (as will be described later). GANs
have been used for a myriad of applications including image and video generation (Dong
et al., 2017; Tulyakov et al., 2017), natural language generation (Subramanian et al., 2017),
and even malware generation (Hu and Tan, 2017). However, for discrete domains the end-
to-end back-propagation proposed in the original setting of (Goodfellow et al., 2014) is
typically modified. This is due to the fact that additive noise is used to generate samples

58

5.1 Preliminaries and Notation

in the original setting, while in discrete spaces it is very difficult to add small amounts of
noise as this would constitute a step to an entirely different discrete state. Instead, methods
in such settings (Li et al., 2017a) leverage reinforcement learning and the log likelihood
trick. This approach is nearly identical to the approach taken in generative adversarial imi-
tation learning (Ho and Ermon, 2016), which we will describe in the next section.

States, Actions

Policy
Optimization

Novice Rollouts
(States, Actions,

Rewards)

Expert Rollouts
(States, Actions,

Rewards)

DiscriminatorRewards

Expert and
Novice

Observations
(States)

Expert and
Novice

Observations
(States)

Policy over
Options

Discriminator n

Discriminator 0

States, Actions

Novice Rollouts
(States, Actions,

Rewards)

Expert Rollouts
(States, Actions,

Rewards)

Rewards

......

Policy
Optimization 0

......

Policy
Optimization n

Expert and
Novice

Observations
(States)

Expert and
Novice

Observations
(States)

Rewards

Figure 5.1: Generative Adversarial Inverse Reinforcement Learning (left) and OptionGAN
(right) Architectures

Inverse Reinforcement Learning Inverse Reinforcement Learning was first formu-
lated in the context of MDPs by (Ng and Russell, 2000). In later work, a parametrization
of the reward function is learned as a linear combination of the state feature expectation
so that the hyperdistance between the expert and the novice’s feature expectation is min-
imized (Abbeel and Ng, 2004). It has also been shown that a solution can be formulated
using the maximum entropy principle, with the goal of matching feature expectation as
well (Ziebart et al., 2008). Generative adversarial imitation learning (GAIL) make use of
adversarial techniques from (Goodfellow et al., 2014) to perform a similar feature expec-
tation matching (Ho and Ermon, 2016). In this case, a discriminator uses state-action pairs
(transitions) from the expert demonstrations and novice rollouts to learn a binary classifica-
tion probability distribution. The probability that a state belongs to an expert demonstration
can then be used as the reward for a policy optimization step. However, unlike GAIL, we
do not assume knowledge of the expert actions. Rather, we rely solely on observations in
the discriminator problem. We therefore refer to our baseline approach as Generative Ad-
versarial Inverse Reinforcement Learning (IRLGAN) as opposed to imitation learning. It
is important to note that IRLGAN is GAIL without known actions, we adopt the different

59

5.2 Reward-Policy Options Framework

naming scheme to highlight this difference. As such, our adversarial game optimizes:

max
πΘ

min
RΘ̂

´ rEπΘ
rlogRΘ̂psqs ` EπE rlogp1´RΘ̂psqqss (5.2)

where πΘ and πE are the policy of the novice and expert parameterized by Θ and E, re-
spectively, and RΘ̂ is the discriminator probability that a sample state belongs to an expert
demonstration (parameterized by Θ̂). We use this notation since in this case the discrimi-
nator approximates a reward function. We use TRPO during the policy optimization step
for simple tasks. However, for complex tasks we adopt PPO. We use these methods as they
are the most stable methods seen in Chapter 3. We use TRPO in simple settings as we find
it achieves more stable results than PPO. We use PPO in more complex settings as it is
able to adapt the trust region to allow for more exploration. We find that this significantly
decreases the number of samples required to achieve acceptable returns as compared to
TRPO. Figure 5.1 and Algorithm 2 show an outline for the general IRLGAN process.

Algorithm 2: IRLGAN
Input : Expert trajectories τE „ πE .
Initialize Θ, Θ̂
for i “ 0, 1, 2, . . . do

Sample trajectories τN „ πΘi

Update discriminator parameters (Θ̂) according to:

LΘ̂ “ Es„τN rlogRΘ̂psqs ` Es„τE rlogp1´RΘ̂psqqs

Update policy (with constrained update step and parameters θ) according to:

EτN r∇Θ log πΘipa|sqEτN rlogpRΘ̂i`1
psqq|s0 “ s̄ss

end

5.2 Reward-Policy Options Framework

Based on the need to infer a decomposition of underlying reward functions from a wide
range of expert demonstrations in one-shot transfer learning, we extend the options frame-
work for decomposing rewards as well as policies. In this way, intra-option policies, de-

60

5.3 Learning Joint Reward-Policy Options

composed rewards, and the policy-over-options can all be learned in concert in a cohesive
framework. In this case, an option is formulated by a tuple: (Iω, πω, βω, rω). Here, rω is
a reward option from which a corresponding intra-option policy πω is derived. That is,
each policy option is optimized with respect to its own local reward option. The policy-
over-options not only chooses the intra-option policy, but the reward option as well: πΩ Ñ

prω, πωq. For simplicity, we refer to the policy-over-reward-options as rΩ (in our formula-
tion, rΩ “ πΩ). There is a parallel to be drawn from this framework to Feudal RL (Dayan
and Hinton, 1993), but here the intrinsic reward function is statically bound to each worker
(policy option), whereas in that framework the worker dynamically receives a new intrinsic
reward from the manager.

To learn joint reward-policy options, we present a method which fits into the framework
of IRLGAN. We reformulate the discriminator as a Mixture-Of-Experts and re-use the
gating function when learning a set of policy options. We show that by properly formulating
the discriminator loss function, the Mixture-Of-Experts converges to one-step options. This
formulation also allows us to use regularizers which encourage distribution of information,
diversity, and sparsity in both the reward and policy options.

5.3 Learning Joint Reward-Policy Options

The use of one-step options allows us to learn a policy-over-options in an end-to-end fash-
ion as a Mixture-of-Experts formulation. In the one-step case, selecting an option (πω,θ)
using the policy-over-options (πΩ,ζ) can be viewed as a mixture of completely specialized
experts such that: πΘpa|sq “

ř

ω πΩ,ζpω|sqπω,θpa|sq. The reward for a given state is com-
posed as: RΩ,Θ̂psq “

ř

ω πΩ,ζpω|sqrω,θ̂psq, where ζ, θ P Θ, θ̂ P Θ̂ are the parameters of
the policy-over-options, policy options, and reward options, respectively. Thus, we refor-
mulate our discriminator loss as a weighted mixture of completely specialized experts in
Eq. 5.3. This allows us to update the parameters of the policy-over-options and reward
options together during the discriminator update:

LΩ “ Eω
”

πΩ,ζpω|sqLθ̂,ω

ı

` Lreg. (5.3)

61

5.3 Learning Joint Reward-Policy Options

Here, Lθ̂,ω is the sigmoid cross-entropy loss of the reward options (discriminators).
As will be discussed later on, Lreg is a penalty, or set of penalties, which can encourage
certain properties of the policy-over-options or the overall reward signal. As can be seen in
Algorithm 3 and Figure 5.1, this loss function can fit directly into the IRLGAN framework.

Algorithm 3: OptionGAN
Input : Expert trajectories τE „ πE .
Initialize θ, θ̂
for i “ 0, 1, 2, . . . do

Sample trajectories τN „ πΘi

Update discriminator options parameters θ̂, ω and policy-over-options
parameters ζ , to minimize:

LΩ “ Eω
”

πΩ,ζpω|sqLθ̂,ω

ı

` Lreg

Lθ̂,ω “ EτN rlog rθ̂,ωpsqs ` EτE rlogp1´ rθ̂,ωpsqqs

Update policy options (with constrained update step and parameters θω P ΘΩ)
according to:

EτN r∇θ log πΘpa|sqEτN rlogpRΩ,Θ̂psqq|s0 “ s̄ss

end

Having updated the parameters of the policy-over-options and reward options, standard
PG methods can be used to optimize the parameters of the intra-option policies. This can
be done by weighting the average of the intra-option policy actions with the policy-over-
options πΩ,ζ . While it is possible to update each intra-option policy separately as in (Bacon
et al., 2017), this Mixture-of-Experts formulation is equivalent, as discussed in the next
section. Once the gating function specializes over the options, all gradients except for those
related to the intra-option policy selected would be weighted by zero. We find that this end-
to-end parameter update formulation leads to easier implementation and smoother learning
with constraint-based methods.

62

5.4 Mixture-of-Experts as Options

5.4 Mixture-of-Experts as Options

To ensure that our Mixture-of-Experts formulation converges to options in the optimal case,
we must properly formulate our loss function such that the gating function specializes over
experts. While it may be possible to force a sparse selection of options through a top-k
choice as in (Shazeer et al., 2017), we find that this leads to instability since for k “ 1 the
top-k function is not differentiable. As is specified in (Jacobs et al., 1991), a loss function
of the form L “ py ´ 1

||Ω||

ř

ω πΩpω|sqyωpsqq
2 draws cooperation between experts, but a

reformulation of the loss, L “ 1
||Ω||

ř

ω πΩpω|sqpy ´ yωpsqq
2, encourages specialization.

If we view our policy-over-options as a softmax (i.e., πΩpω|sq “
exppzωpsqq

ř

i exppzipsqq
), then the

derivative of the loss function with respect to the gating function becomes:

dL

dzω
“

1

||Ω||
πΩpω|sq

`

py ´ yωpsqq
2
´ L

˘

(5.4)

This can intuitively be interpreted as encouraging the gating function to increase the
likelihood of choosing an expert when its loss is less than the average loss of all the experts.
The gating function will thus move toward deterministic selection of experts.

As we can see in Eq. 5.3, we formulate our discriminator loss in the same way, us-
ing each reward option and the policy-over-options as the experts and gating function re-
spectively. This ensures that the policy-over-options specializes over the state space and
converges to a deterministic selection of experts. Hence, we can assume that in the opti-
mal case, our formulation of an Mixture-of-Experts-style policy-over-options is equivalent
to one-step options. Our characterization of this notion of Mixture-of-Experts-as-options is
further backed by experimental results. Empirically, we still find temporal coherence across
option activation despite not explicitly formulating call-and-return options as in (Bacon
et al., 2017).

63

5.4 Mixture-of-Experts as Options

Figure 5.2: The policy-over-options elicits two interpretable behaviour modes per option,
but temporal cohesion and specialization is seen between these behaviour modes across
time within a sample rollout trajectory.

5.4.1 Regularization Penalties

Due to our formulation of Mixture-of-Experts as options, we can learn our policy-over-
options in an end-to-end manner. This allows us to add additional terms to our loss function
to encourage the appearance of certain target properties.

Sparsity and Variance Regularization

To ensure an even distribution of activation across the options, we look to conditional
computation techniques that encourage sparsity and diversity in hidden layer activations
and apply these to our policy-over-options (Bengio et al., 2016). We borrow three penalty
termsLb,Le,Lv (adopting a similar notation). In the minibatch setting, these are formulated
as:

Lb “
ÿ

ω

||EsrπΩpω|sqs ´ τ ||2, (5.5)

Le “ Es

«

||

˜

1

||Ω||

ÿ

ω

πΩpω|sq

¸

´ τ ||2

ff

, (5.6)

Lv “ ´
ÿ

ω

varωtπΩpω|squ, (5.7)

64

5.4 Mixture-of-Experts as Options

where τ is the target sparsity rate (which we set to τ “ 0.5 for all cases). Here, Lb encour-
ages the activation of the policy-over-options with target sparsity τ “in expectation over
the data” (Bengio et al., 2016). Essentially, Lb encourages a uniform distribution of options
over the data while Le drives toward a target sparsity of activations per example (doubly
encouraging our mixtures to be sparse). Here, Lv also encourages varied πΩ activations
while discouraging uniform selection.

Mutual Information Penalty

To ensure the specialization of each option to a specific partition of the state space, a mutual
information (MI) penalty is added.1 In a similar manner as Liu and Yao (2002), we thus
minimize mutual information pairwise between option distributions

IpFi;Fjq “ ´
1

2
logp1´ ρ2

ijq, (5.8)

where Fi and Fj are the outputs of reward options i and j respectively, and ρij the correla-
tion coefficient of Fi and Fj , defined as ρij “

ErpFi´ErFisqpFj´ErFjsqs

σ2
i σ

2
j

.

The resulting loss term is thus computed as:

LMI “
ÿ

ωPΩ

ÿ

ω̂PΩ
ω‰ω̂

Ipπω, πω̂q. (5.9)

Thus the overall regularization term becomes:

Lreg “ λbLb ` λeLe ` λvLv ` λMILMI. (5.10)
1While it may be simpler to use an entropy regularizer, we found that in practice it performs worse.

Entropy regularization encourages exploration (Mnih et al., 2016). In the OptionGAN setting, this results
in unstable learning, while the mutual information term encourages diversity in the options while providing
stable learning.

65

5.5 Experiments

5.5 Experiments

To evaluate our method of learning joint reward-policy options, we investigate continuous
control tasks. We divide our experiments into 3 settings: simple locomotion tasks, one-
shot transfer learning, and complex tasks. We compare OptionGAN against IRLGAN in
all scenarios, investigating whether dividing the reward and policy into options improves
performance against the single approximator case.2 Table 5.1 shows the overall results of
our evaluations and we highlight a subset of learning curves in Figure 5.3. We find that
in nearly every setting, the final optionated policy learned by OptionGAN outperforms the
single approximator case.

Task Expert IRLGAN OptionGAN (2ops) OptionGAN (4ops)
Hopper-v1 3778.8 ˘ 0.3 3736.3 ˘ 152.4 3641.2 ˘ 105.9 3715.5 ˘ 17.6

HalfCheetah-v1 4156.9 ˘ 8.7 3212.9 ˘ 69.9 3714.7 ˘ 87.5 3616.1 ˘ 127.3
Walker2d-v1 5528.5 ˘ 7.3 4158.7 ˘ 247.3 3858.5 ˘ 504.9 4239.3 ˘ 314.2

Hopper (One-Shot) 3657.7 ˘ 25.4 2775.1 ˘ 203.3 3409.4 ˘ 80.8 3464.0 ˘ 67.8
HalfCheetah (One-Shot) 4156.9 ˘ 51.3 1296.3 ˘ 177.8 1679.0 ˘ 284.2 2219.4 ˘ 231.8

Walker (One-Shot) 4218.1 ˘ 43.1 3229.8 ˘ 145.3 3925.3 ˘ 138.9 3769.40 ˘ 170.4
HopperSimpleWall-v0 3218.2 ˘ 315.7 2897.5 ˘ 753.5 3140.3 ˘ 674.3 3272.3 ˘ 569.0

RoboschoolHumanoidFlagrun-v1 2822.1 ˘ 531.1 1455.2 ˘ 567.6 1868.9 ˘ 723.7 2113.6 ˘ 862.9

Table 5.1: True Average Return with the standard error across 10 trials on the 25 final
evaluation rollouts using the final policy.

5.5.1 Experimental Setup

All shared hyperparameters are held constant between IRLGAN and OptionGAN evalua-
tion runs. All evaluations are averaged across 10 trials, each using a different random seed.
We use the average return of the true reward function across 25 sample rollouts as the eval-
uation metric. Multilayer perceptrons are used for all approximators as in (Ho and Ermon,
2016). For the OptionGAN intra-option policy and reward networks, we use shared hidden
layers. That is rω, @ω P Ω all share hidden layers and πω, @ω P Ω share hidden layers. We
use separate parameters for the policy-over-options πΩ. Shared layers are used to ensure a
fair comparison against a single network of the same number of hidden layers. For simple
settings we use fully connected layers of sizes p64, 64q and for complex experiments are
p128, 128q – that is, two fully connected layers of equal size in each case. For the 2-options

2Extended experimental details and results can be found in Appendix B.1. Code is located at:
https://github.com/Breakend/OptionGAN.

66

https://github.com/Breakend/OptionGAN

5.5 Experiments

case we set λe “ 10.0, λb “ 10.0, λv “ 1.0 based on a simple hyperparameter search and
reported results from (Bengio et al., 2016). For the 4-options case we relax the regularizer
that encourages a uniform distribution of options (Lb), setting λb “ 0.01.

5.5.2 Simple Tasks

First, we investigate simple settings without transfer learning for a set of benchmark loco-
motion tasks provided in OpenAI Gym (Brockman et al., 2016) using the MuJoCo sim-
ulator (Todorov et al., 2012). We use the Hopper-v1, HalfCheetah-v1, and Walker2d-v1
locomotion environments. The results of this experiment are shown in Table 5.1 and sam-
ple learning curves for Hopper and HalfCheetah can be found in Figure 5.3. We use 10
expert rollouts from a policy trained using TRPO for 500 iterations.

In these simple settings, OptionGAN converges to policies which perform as well or
better than the single approximator setting. Importantly, even in these simple settings, the
options which our policy selects have a notion of temporal coherence and interpretability
despite not explicitly enforcing this in the form of a termination function. This can be seen
in the two option version of the Hopper-v1 task in Figure 5.2. We find that generally each
option takes on two behaviour modes. The first option handles: (1) the rolling of the foot
during hopper landing; (2) the folding in of the foot in preparation for floating. The second
option handles: (1) the last part of take-off where the foot is hyper-extended and body
flexed; (2) the part of air travel without any movement.

5.5.3 One-Shot Transfer Learning

We also investigate one-shot transfer learning. In this scenario, the novice is trained on a
target environment, while expert demonstrations come from a similar task, but from envi-
ronments with altered dynamics (i.e., one-shot transfer from varied expert demonstrations
to a new environment). To demonstrate the effectiveness of OptionGAN in these settings,
we use expert demonstrations from environments with varying gravity conditions as seen
in (Henderson et al., 2017; Christiano et al., 2016). We vary the gravity (0.5, 0.75, 1.25,
1.5 of Earth’s gravity) and train experts using TRPO for each of these. We gather 10 expert
trajectories from each gravity variation, for a total of 40 expert rollouts, to train a novice

67

5.6 Ablation Investigations

agent on the normal Earth gravity environment (the default -v1 environment as provided in
OpenAI Gym). As aforementioned, the target environment has no expert demonstrations in
it, and the novice agent must infer a behaviour for its current environment from the varied
settings of the expert demonstrations. We repeat this for Hopper-v1, HalfCheetah-v1, and
Walker2D-v1.

These gravity tasks are selected due to the demonstration in Chapter 4 that learning se-
quentially on these varied gravity environments causes catastrophic forgetting of the policy
on environments seen earlier in training. This suggests that the dynamics are varied enough
that trajectories are difficult to generalize across, yet still share some state representations
and task goals. As seen in Figure 5.3, using options can cause significant performance in-
creases in this area, but performance gains can vary across the number of options and the
regularization penalty as seen in Table 5.1.

5.5.4 Complex Tasks

Lastly, we investigate slightly more complex tasks. We utilize the HopperSimpleWall-v0
environment provided by the gym-extensions framework (Henderson et al., 2017), as well
as the RoboschoolHumanoidFlagrun-v1 environment used in (Schulman et al., 2017). In
the first, a wall is placed randomly in the path of the Hopper-v1 agent and simplified sensor
readouts are added to the observations as in (Wang et al., 2017). In the latter, the goal
is to run and reach a frequently changing target. This is an especially complex task with
a highly varied state space. In both cases we use an expert trained with TRPO and PPO
respectively, to generate 40 expert rollouts. For the Roboschool environment, we find that
TRPO does not allow enough exploration to perform adequately, and thus we switch our
policy optimization method to the clipping-objective version of PPO.

5.6 Ablation Investigations

Convergence of Mixtures to Options

To show that our formulation of Mixture-of-Experts decomposes to options in the opti-
mal case, we investigate the distributions of our policy-over-options. We find that across

68

5.6 Ablation Investigations

0 100 200 300 400 500
Iterations

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

−1000

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (One Shot Transfer)

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

−1500

−1000

−500

0

500

1000

1500

2000

2500
A

ve
ra

ge
R

et
ur

n

HalfCheetah-v1 (One Shot Transfer)

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ct

iv
at

io
n

%

Hopper-v1 Gating Activations

Option1

Option2

Option3

Option4

0 100 200 300 400 500
Iterations

0.0

0.1

0.2

0.3

0.4

A
ct

iv
at

io
n

%

HalfCheetah-v1 Gating Activations

Option1

Option2

Option3

Option4

Figure 5.3: Top Row: Simple locomotion curves. Error bars indicate standard error of
average returns across 10 trials on 25 evaluation rollouts. Middle Row: One-shot transfer
experiments with 40 expert demonstrations from varied gravity environments without any
demonstrations on the novice training environment training on demonstrations from 0.5G,
0.75G, 1.25G, 1.5G gravity variations. Bottom Row: Activations of policy-over-options
over time with 4 options on training samples in the one-shot transfer setting with λb “ 0.01.

69

5.6 Ablation Investigations

0 100 200 300 400 500
Iterations

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (Uniform Distribution Penalty)

OPTIONGAN (4 ops, λb = 10)

OPTIONGAN (4 ops, λb = .01)

Figure 5.4: Effect of uniform distribution regularizer. Average πΩ across final sample
novice rollouts: λb “ 10.0, r.27, .21, .25, .25s; λb “ .01, r0., 0., .62, .38s.

40 trials, 100% of activations fell within a reasonable error bound of deterministic se-
lection across 1M samples. That is, in 40 total trials across 4 environments (Hopper-v1,
HalfCheetah-v1, Walker2d-v1, RoboschoolHumanoidFlagrun-v1), policies were trained
for 500 iterations (or 5k iterations in the case of RoboschoolHumanoidFlagrun-v1). We
collected 25k samples at the end of each trial. Among the gating activations across the
samples, we recorded the number of gating activations within the range t0 ` ε, 1 ´ εu for
ε “ 0.1. All of the recorded activations (100%) fell within this range, and 98.72% fell
within range ε “ 1´3. Thus at convergence, both intuitively and empirically we can refer
to our gating function over experts as the policy-over-options and each of the experts as
options.

Effect of Uniform Distribution Regularizer

We find that forcing a uniform distribution over options can potentially be harmful. This
can be seen in the experiment in Figure 5.4, where we evaluate the 4 option case with
λb “ t0.1, 10u. However, relaxing the uniform constraint results in rapid performance
increases, particularly in the HalfCheetah-v1 environment where, as seen in Figure 5.3,
there are increases learning speed with 4 options.

There is an intuitive explanation for this. In the 4-option case, with a relaxed uniform
distribution penalty, we allow options to drop out during training. In the case of Hopper
and Walker tasks, generally 2 options drop out slowly over time, but in HalfCheetah, only

70

5.7 Related Work

Figure 5.5: Probability distribution of πΩ over options on expert demonstrations. Inherent
structure is found in the underlying demonstrations. The .75G demonstration state spaces
are significantly assigned to Option 1 and similarly, the 1.25G state spaces to Option 0.

one option drops out in the first 20 iterations with a uniform distribution remaining across
the remaining options as seen in Figure 5.3. We posit that in the case of HalfCheetah there
is enough mutually exclusive information in the environment state space to divide across 3
options, quickly causing a rapid gain in performance, while the Hopper tasks do not settle
as quickly and thus do not see that large gain in performance.

Latent Structure in Expert Demonstrations

Another benefit of using options in the IRL transfer setting is that the underlying latent
division of the original expert environments is learned by the policy-over-options. As seen
in Figure 5.5, the expert demonstrations have a clear separation among options. We sus-
pect that options further away from the target gravity are not as specialized due to the
fact that their state spaces are covered significantly by a mixture of the closer options
(see Appendix B.4 for supporting projected state space mappings). This indicates that the
policy-over-options specializes over the experts and is thus inherently beneficial for use in
one-shot transfer learning.

5.7 Related Work

One goal in robotics research is to create a system which learns how to accomplish complex
tasks simply from observing an expert’s actions (such as videos of humans performing ac-
tions). While IRL has been instrumental in working towards this goal, it has become clear

71

5.8 Discussion

that fitting a single reward function which generalizes across many domains is difficult. To
this end, several works investigate decomposing the underlying reward functions of expert
demonstrations and environments in both IRL and RL (Krishnan et al., 2016; Sermanet
et al., 2017; Choi and eung Kim, 2012; Babes et al., 2011; van Seijen et al., 2017). For
example, in (Krishnan et al., 2016), reward functions are decomposed into a set of subtasks
based on segmenting expert demonstration transitions (known state-action pairs) by ana-
lyzing the changes in “local linearity with respect to a kernel function”. Similarly, in (Ser-
manet et al., 2017), techniques in video editing based on information-similarity are adopted
to divide a video demonstration into distinct sections which can then be recombined into a
differentiable reward function.

However, simply decomposing the reward function may not be enough, the policy must
also be able to adapt to different tasks. Several works have investigated learning a latent
dimension along with the policy for such a purpose (Hausman et al., 2017; Wang et al.,
2017; Li et al., 2017b). This latent dimension allows multiple tasks to be learned by one
policy and elicited via the latent variable. In contrast, our work focuses on one-shot trans-
fer learning. In the former work, the desired latent variable must be known and provided,
whereas in our formulation the latent structure is inherently encoded in an unsupervised
manner. This is inherently accomplished while learning to solve a task composed of a wide
range of underlying reward functions and policies in a single framework. Overall, this work
contains parallels to all of the aforementioned and other works emphasizing hierarchical
policies (Daniel et al., 2012; Dietterich, 2000; Merel et al., 2017), but specifically focuses
on leveraging Mixture-of-Experts and reward decompositions to fit into the options frame-
work for efficient one-shot transfer learning in IRL.

5.8 Discussion

We propose a direct extension of the options framework by adding joint reward-policy op-
tions. We learn these options in the context of generative adversarial inverse reinforcement
learning and show that this method outperforms the single policy case in a variety of tasks
– particularly in transfer settings. Furthermore, the learned options demonstrate temporal
and interpretable cohesion without specifying a call-and-return termination function.

72

5.8 Discussion

Our formulation of joint reward-policy options as a Mixture-of-Experts allows for: po-
tential upscaling to extremely large networks as in (Shazeer et al., 2017), reward shaping in
forward RL, and using similarly specialized Mixture-of-Experts in generative adversarial
networks. This work presents an effective and extendable framework. Our optionated net-
works capture the problem structure effectively, which allows strong generalization in one-
shot transfer learning. Moreover, as adversarial methods are now commonly used across
a myriad of communities, we believe the embedding of options within this methodology
is an excellent delivery mechanism to exploit the benefits of hierarchical RL in many new
fields.

73

Part IV

Final Conclusion & Future Work

74

6
Final Conclusion & Future Work

6.1 Summary

This thesis has presented several lines of investigation, methods, and tools into repro-
ducibility and reusability in deep reinforcement learning. Overall, we hope that the content
presented in this thesis represents a building block which can be used to further the field
and be used in other fields. In the context of reproducibility, we hope that novel works
begin to use and expand on our methodology proposed here to ensure that correct exper-
imental methodology pushes the field further at a faster rate. Furthermore, our goal with
the introduction of OptionGAN is a framework which can be leveraged in both reinforce-
ment learning and in other fields for better ways to build robust algorithms which can reuse
information.

6.1.1 Reproducibility

We discuss several factors affecting reproducibility of reinforcement learning algorithms.
The sensitivity of these algorithms to changes in reward scale, environment dynamics, and
random seeds can be considerable and varies between algorithms and settings. We suggest
experimental methodology and evaluation methods which can begin to help address the
problem with reporting misleading or irreproducible results. This includes: running many
trials with different random seeds and presenting the confidence intervals of the policies
across trials; using statistical testing methods to evaluate whether reporting boosts in per-

75

6.1 Summary

formance were in fact significant; avoiding reporting only maximum metrics or top-N re-
sults without the full range; careful detailing of all hyperparameters; release of codebases.
We present these methodologies such that deep reinforcement learning can move forward
as a field without misdirection from misleading or irreproducible results.

We also present a set of benchmark environments that begin to help standardize evalu-
ation for multitask, transfer, or lifelong learning. While many current works in the area use
custom evaluation environments that are not open-source, these benchmark environments
can be used as a tool to better understand standardized performance of algorithms on an
open-source available set of environments. We also are actively maintaining this repository
for expansion to more interesting and complex environments.

6.1.2 Reusability

Lastly, we investigate the notion of reusability from the perspective of inverse reinforce-
ment learning. The aim is to reuse information from expert demonstration in environments
with different dynamics to learn a task in an unseen environment. We leverage the bench-
mark environments previously mentioned to investigate this notion of one-shot transfer
learning (i.e., reusability).

We propose a direct extension of the options framework by adding joint reward-policy
options. We learn these options in the context of generative adversarial inverse reinforce-
ment learning and show that this method outperforms the single policy case in a variety
of tasks – particularly in transfer settings. This work presents an effective and extendable
framework. Our optionated networks capture the problem structure effectively, which al-
lows strong generalization in one-shot transfer learning. Moreover, as adversarial methods
are now commonly used across a myriad of communities, we believe the embedding of
options within this methodology is an excellent delivery mechanism to exploit the benefits
of hierarchical reinforcement learning and reusability in many new fields.

76

6.2 Future Work

6.2 Future Work

While this work presents a step forward in both the notions of reproducibility and reusabil-
ity in deep reinforcement learning, there is still much work to be done in both of these
areas.

6.2.1 Reproducibility

Due to the high variance in learning for these algorithms, there are many possible lines
of investigations to address the issues of reproducibility. As aforementioned, due to the
significant effects of hyperparameters (particularly reward scaling), one potential line of
future investigation is in building hyperparameter agnostic algorithms. Such an approach
would ensure that there is no unfairness introduced from external sources when comparing
algorithms agnostic to parameters such as reward scale, batch size, or network structure.
Furthermore, while we investigate an initial set of evaluation methods here, they may not
be the best fit for comparing reinforcement learning algorithms. Several works have be-
gun investigating policy evaluation methods for the purposes of safe reinforcement learn-
ing (Thomas and Brunskill, 2016; Thomas et al., 2015), but further work is needed in
significance testing and statistical analysis. Similar lines of investigation to (Nadeau and
Bengio, 2000; Bouckaert and Frank, 2004) would be helpful to determine the best methods
for evaluating performance gain significance.

Furthermore, since benchmark environments are proxies for real-world applications to
gauge generalized algorithm performance, perhaps more emphasis should be placed on the
applicability of reinforcement learning algorithms to real-world tasks. That is, as there is
often no clear winner among all benchmark environments, perhaps recommended areas
of application should be demonstrated along with benchmark environment results when
presenting a new algorithm. Perhaps novel works in reinforcement learning should also be
answering the question: in what setting would this work be useful? This puts an emphasis
on the usefulness of reinforcement learning algorithms in different fields rather than on
performance gains in difficult to reproduce benchmarks.

77

6.2 Future Work

That being said, the difficulty in reproducing reinforcement learning algorithms in sim-
ple benchmarks is perhaps also a problem with the stability of the algorithms themselves.
Overall, increased effort is also needed to bring these algorithms to stable learning and
reproducible behaviour.

6.2.2 Reusability

The notion of reusability in deep reinforcement learning covers a large range of techniques
and problems. While we focus here on reusability of demonstrations from noisy and dif-
fering settings, there are many other areas where the techniques we present here can be
applied. The optionated reward functions shown here can be used for optionated model-
based reinforcement learning or reward shaping. Furthermore, the convergence of Mixture-
of-Experts-as-options can be utilized in building large distributed optionated architectures
for large-scale deep reinforcement learning. This work presents a stepping stone to future
novel improvements in reusability in deep reinforcement learning in many areas.

6.2.3 Biologically Plausible Reinforcement Learning

One line of investigation that we would also like to highlight is the notion of biologi-
cally plausible deep reinforcement learning – an area of research (Rivest et al., 2005; Flo-
rian, 2007) that can gain inspiration from similar approaches in deep learning (Bengio
et al., 2015, 2017). This notion could help to address some issues in reproducibility and
reusability. While reinforcement learning in general finds a basis in human learning pro-
cesses, there are still significant differences in learning mechanisms which some works
try to address (Rivest et al., 2005; Florian, 2007). Some efforts in deep learning have be-
gun to investigate possible methods for aligning methodologies with how the human brain
learns (Bengio et al., 2015, 2017). However, with notions such as hyperparameters and
simple random seeds affecting results of deep reinforcement learning algorithms, perhaps,
to avoid such problems, more emphasis should be placed in reusing information about
how the human brain uses reinforcement learning. For example, let us take the work we
present: OptionGAN. While here, we add another set of hyperparameters (e.g., the num-
ber of options), perhaps a more biologically plausible notion of reward signal learning can
avoid such added pre-specifications by using notions of neuroplasticity (e.g., rewiring the

78

6.2 Future Work

options or actively changing the number of options). Overall, aligning methodologies with
biological plausibility may be beneficial to both reinforcement learning techniques and the
understanding of our own neurocomputational processes. Current improvements to rein-
forcement learning that hold no basis in biological plausibility may be useful – and may
even outperform current biologically plausible algorithms as we understand them. How-
ever, as we improve algorithms which are biologically plausible, we step closer to under-
standing and replicating our own intelligence such that reproducibility and reusability can
be ensured.

79

List of Publications

Published or submitted during Master of Science Program:

‚ Peter Henderson, Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau,
and Doina Precup. "OptionGAN: Learning Joint Reward-Policy Options using Gen-
erative Adversarial Inverse Reinforcement Learning." In AAAI. 2018.

‚ Peter Henderson, Wei-Di Chang, Florian Shkurti, Johanna Hansen, David Meger,
and Gregory Dudek. "Benchmark Environments for Multitask Learning in Contin-
uous Domains." In ICML Lifelong Learning: A Reinforcement Learning Approach

Workshop. 2017.

‚ Peter Henderson, Matthew Vertescher, David Meger, and Mark Coates. "Cost Adap-
tation for Robust Decentralized Swarm Behaviour." In Submission to IROS. 2018.

‚ Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke,
Genevieve Fried, Ryan Lowe, and Joelle Pineau. "Ethical Challenges in Data-Driven
Dialogue Systems." In AIES. 2018.

‚ Peter Henderson*, Riashat Islam*, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. "Deep reinforcement learning that matters." In AAAI. 2018.

‚ Peter Henderson*, Thang Doan*, Riashat Islam, and David Meger. "Bayesian Pol-
icy Gradients via Alpha Divergence Dropout Inference." In Bayesian Deep Learning

Workshop at NIPS. 2017.

‚ Riashat Islam*, Peter Henderson*, Maziar Gomrokchi, and Doina Precup. "Repro-
ducibility of benchmarked deep reinforcement learning tasks for continuous control."
In ICML Reproducibility in ML Workshop. 2017.

‚ Florian Shkurti, Wei-Di Chang, Peter Henderson, Md Jahidul Islam, Juan Camilo
Gamboa Higuera, Jimmy Li, Travis Manderson, Anqi Xu, Gregory Dudek, and Ju-

80

List of Publications

naed Sattar. "Underwater multi-robot convoying using visual tracking by detection."
In IROS. 2017.

‚ Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau.
"A survey of available corpora for building data-driven dialogue systems." In Dia-

logue and Discourse. 2018.

* indicates shared first authorship

81

Bibliography

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship Learning via Inverse Reinforcement
Learning. In Proceedings of the International Conference on Machine Learning (ICML),
pages 1–, New York, NY, USA. ACM.

Aleksandrov, V. M., Sysoyev, V. I., and Shemeneva, V. V. (1968). Stochastic Optimization.
Engineering Cybernetics, 5:11–16.

Ammar, H. B., Eaton, E., Luna, J. M., and Ruvolo, P. (2015a). Autonomous Cross-Domain
Knowledge Transfer in Lifelong Policy Gradient Reinforcement Learning. In Proceed-

ings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 3345–
3351.

Ammar, H. B., Eaton, E., Ruvolo, P., and Taylor, M. (2014). Online Multi-Task Learn-
ing for Policy Gradient Methods. In Proceedings of the International Conference on

Machine Learning (ICML), pages 1206–1214.

Ammar, H. B., Tutunov, R., and Eaton, E. (2015b). Safe Policy Search for Lifelong Rein-
forcement Learning with Sublinear Regret. In Proceedings of the International Confer-

ence on Machine Learning (ICML), pages 2361–2369.

Babes, M., Marivate, V., Subramanian, K., and Littman, M. L. (2011). Apprenticeship
Learning about Multiple Intentions. In Proceedings of the International Conference on

Machine Learning (ICML), pages 897–904.

Bacon, P.-L., Harb, J., and Precup, D. (2017). The Option-Critic Architecture. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, pages 1726–1734.

Baker, M. (2016). 1,500 Scientists Lift the Lid on Reproducibility. Nature, 533(7604):452–
454.

82

BIBLIOGRAPHY

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., Silver, D., and van Hasselt,
H. P. (2017). Successor Features for Transfer in Reinforcement Learning. In Advances

in Neural Information Processing Systems, pages 4056–4066.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspective on
Reinforcement Learning. In Proceedings of the International Conference on Machine

Learning (ICML).

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelli-

gence Research, 47:253–279.

Bellman, R. (1957). A Markovian Decision Process. Journal of Mathematics and Mechan-

ics, pages 679–684.

Bengio, E., Bacon, P.-L., Pineau, J., and Precup, D. (2016). Conditional Computation in
Neural Networks for Faster Models. Proceedings of the International Conference on

Learning Representations (ICLR) Workshop.

Bengio, Y. (2012). Practical Recommendations for Gradient-based Training of Deep Ar-
chitectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards Biologi-
cally Plausible Deep Learning. arXiv preprint arXiv:1502.04156.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., and Wu, Y. (2017). STDP-compatible
Approximation of Backpropagation in an Energy-based Model. Neural computation.

Bouckaert, R. R. (2004). Estimating Replicability of Classifier Learning Experiments. In
Proceedings of the International Conference on Machine Learning (ICML).

Bouckaert, R. R. and Frank, E. (2004). Evaluating the Replicability of Significance Tests
for Comparing Learning Algorithms. In Proceedings of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD), pages 3–12. Springer.

Boulesteix, A.-L., Lauer, S., and Eugster, M. J. (2013). A Plea for Neutral Comparison
Studies in Computational Sciences. PloS one, 8(4):e61562.

83

BIBLIOGRAPHY

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540.

Brunskill, E. and Li, L. (2014). PAC-inspired Option Discovery in Lifelong Reinforcement
Learning. In Proceedings of the International Conference on Machine Learning (ICML),
pages 316–324.

Buckheit, J. B. and Donoho, D. L. (1995). Wavelab and Reproducible Research. In
Wavelets and statistics, pages 55–81. Springer.

Cacioppo, J. T., Kaplan, R. M., Krosnick, J. A., Olds, J. L., and Dean, H. (2015). Social,
Behavioral, and Economic Sciences Perspectives on Robust and Reliable Science.

Calandriello, D., Lazaric, A., and Restelli, M. (2014). Sparse Multi-Task Reinforcement
Learning. In Advances in Neural Information Processing Systems, pages 819–827.

Caruana, R. (1998). Multitask Learning. In Learning to Learn, pages 95–133. Springer.

Choi, J. and eung Kim, K. (2012). Nonparametric Bayesian Inverse Reinforcement Learn-
ing for Multiple Reward Functions. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems, pages
305–313. Curran Associates, Inc.

Christiano, P., Shah, Z., Mordatch, I., Schneider, J., Blackwell, T., Tobin, J., Abbeel, P., and
Zaremba, W. (2016). Transfer from Simulation to Real World through Learning Deep
Inverse Dynamics Model. arXiv preprint arXiv:1610.03518.

Collins, F. S. and Tabak, L. A. (2014). NIH Plans to Enhance Reproducibility. Nature,
505(7485):612.

Daniel, C., Neumann, G., and Peters, J. R. (2012). Hierarchical Relative Entropy Policy
Search. In International Conference on Artificial Intelligence and Statistics, pages 273–
281.

Dayan, P. and Hinton, G. E. (1993). Feudal Reinforcement Learning. In Advances in

Neural Information Processing Systems, pages 271–278.

84

BIBLIOGRAPHY

Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value
Function Decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dong, H., Yu, S., Wu, C., and Guo, Y. (2017). Semantic Image Synthesis via Adversarial
Learning. In The IEEE International Conference on Computer Vision (ICCV).

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking
Deep Reinforcement Learning for Continuous Control. In Proceedings of the Interna-

tional Conference on Machine Learning (ICML).

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press.

Fernández, F. and Veloso, M. (2013). Learning Domain Structure through Probabilistic
Policy Reuse in Reinforcement Learning. Progress in Artificial Intelligence, 2(1):13–
27.

Finn, C., Yu, T., Fu, J., Abbeel, P., and Levine, S. (2017). Generalizing Skills with Semi-
Supervised Reinforcement Learning. Proceedings of the International Conference on

Learning Representations (ICLR).

Florian, R. V. (2007). Reinforcement Learning through Modulation of Spike-Timing-
Dependent Synaptic Plasticity. Neural Computation, 19(6):1468–1502.

François-Lavet, V., Fonteneau, R., and Ernst, D. (2015). How to Discount Deep Reinforce-
ment Learning: Towards New Dynamic Strategies. arXiv preprint arXiv:1512.02011.

Glorot, X. and Bengio, Y. (2010). Understanding the Difficulty of Training Deep Feedfor-
ward Neural Networks. In Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, pages 249–256.

Glynn, P. W. (1987). Likelilood Ratio Gradient Estimation: An Overview. In Proceedings

of the 19th Conference on Winter Simulation, pages 366–375. ACM.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. In Advances in

Neural Information Processing Systems, pages 2672–2680.

85

BIBLIOGRAPHY

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S. (2017). Q-Prop: Sample-
Efficient Policy Gradient with An Off-Policy Critic. Proceedings of the International

Conference on Learning Representations (ICLR).

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., Schölkopf, B., and Levine, S. (2017).
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for
Deep Reinforcement Learning. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information

Processing Systems, pages 3846–3855. Curran Associates, Inc.

Gupta, A., Devin, C., Liu, Y., Abbeel, P., and Levine, S. (2017). Learning Invariant Feature
Spaces to Transfer Skills with Reinforcement Learning. Proceedings of the International

Conference on Learning Representations (ICLR).

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., and Lim, J. J. (2017). Multi-Modal
Imitation Learning from Unstructured Demonstrations using Generative Adversarial
Nets. In Advances in Neural Information Processing Systems.

Hawasly, M. and Ramamoorthy, S. (2013). Lifelong Transfer Learning with an Option Hi-
erarchy. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 1341–1346.

Henderson, P., Chang, W.-D., Bacon, P.-L., Meger, D., Pineau, J., and Precup, D. (2018a).
OptionGAN: Learning Joint Reward-Policy Options using Generative Adversarial In-
verse Reinforcement Learning. In Proceedings of the AAAI Conference on Artificial

Intelligence.

Henderson, P., Chang, W.-D., Shkurti, F., Hansen, J., Meger, D., and Dudek, G. (2017).
Benchmark Environments for Multitask Learning in Continuous Domains. Lifelong

Learning: A Reinforcement Learning Approach Workshop at ICML.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018b). Deep
Reinforcement Learning that Matters. In Proceedings of the AAAI Conference on Artifi-

cial Intelligence.

86

BIBLIOGRAPHY

Hesse, C., Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y. (2017). OpenAI
Baselines.

Higuera, J. C. G., Meger, D., and Dudek, G. (2017). Adapting Learned Robotics Be-
haviours through Policy Adjustment. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA).

Ho, J. and Ermon, S. (2016). Generative Adversarial Imitation Learning. In Advances in

Neural Information Processing Systems, pages 4565–4573.

Hofer, L. and Gimbert, H. (2016). Online Reinforcement Learning for Real-Time Ex-
ploration in Continuous State and Action Markov Decision Processes. arXiv preprint

arXiv:1612.03780.

Hu, W. and Tan, Y. (2017). Generating Adversarial Malware Examples for Black-Box
Attacks Based on GAN. arXiv preprint arXiv:1702.05983.

Islam, R., Henderson, P., Gomrokchi, M., and Precup, D. (2017). Reproducibility of Bench-
marked Deep Reinforcement Learning Tasks for Continuous Control. Reproducibility in

Machine Learning Workshop at ICML.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive Mixtures
of Local Experts. Neural Computation, 3(1):79–87.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and
Kavukcuoglu, K. (2017). Reinforcement Learning with Unsupervised Auxiliary Tasks.
Proceedings of the International Conference on Learning Representations (ICLR).

Kenall, A., Shanahan, D. R., Goodman, L., Bal, L., Flintoft, L., Edmunds, S., and Shipley,
T. (2015). Better Reporting for Better Research: A Checklist for Reproducibility.

Kingma, D. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. Proceedings

of the International Conference on Learning Representations (ICLR).

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), volume 14, pages 1137–1145.

87

BIBLIOGRAPHY

Krishnan, S., Garg, A., Liaw, R., Miller, L., Pokorny, F. T., and Goldberg, K. (2016). HIRL:
Hierarchical Inverse Reinforcement Learning for Long-Horizon Tasks with Delayed Re-
wards. arXiv preprint arXiv:1604.06508.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient Backprop. In
Neural Networks: Tricks of the Trade. Springer.

Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. (2017a). Adversarial
Learning for Neural Dialogue Generation. In Empirical Methods in Natural Language

Processing (EMNLP).

Li, Y., Song, J., and Ermon, S. (2017b). InfoGAIL: Interpretable Imitation Learning from
Visual Demonstrations. In Advances in Neural Information Processing Systems, pages
3815–3825.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D. (2015). Continuous Control with Deep Reinforcement Learning. arXiv preprint

arXiv:1509.02971.

Liu, Y. and Yao, X. (2002). Learning and Evolution by Minimization of Mutual Infor-
mation. In International Conference on Parallel Problem Solving from Nature, pages
495–504. Springer.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling,
M. (2018). Revisiting the Arcade Learning Environment: Evaluation Protocols and Open
Problems for General Agents. Journal of Artificial Intelligence Research, 61:523–562.

Mandel, T., Liu, Y.-E., Brunskill, E., and Popovic, Z. (2016). Offline Evaluation of On-
line Reinforcement Learning Algorithms. In Proceedings of the AAAI Conference on

Artificial Intelligence.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic Interference in Connectionist Net-
works: The Sequential Learning Problem. Psychology of Learning and Motivation,
24:109–165.

88

BIBLIOGRAPHY

Melis, G., Dyer, C., and Blunsom, P. (2018). On the State of the Art of Evaluation in
Neural Language Models. Proceedings of the International Conference on Learning

Representations (ICLR).

Merel, J., Tassa, Y., Srinivasan, S., Lemmon, J., Wang, Z., Wayne, G., and Heess, N.
(2017). Learning Human Behaviors from Motion Capture by Adversarial Imitation.
arXiv preprint arXiv:1707.02201.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.
In Proceedings of the International Conference on Machine Learning (ICML), pages
1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-
miller, M. (2013). Playing Atari with Deep Reinforcement Learning. In Deep Learning

Workshop, NIPS.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level Control through Deep Reinforcement Learning. Nature, 518(7540):529–
533.

Mujika, A. (2016). Multi-Task Learning with Deep Model Based Reinforcement Learning.
arXiv preprint arXiv:1611.01457.

Murugesan, K., Liu, H., Carbonell, J., and Yang, Y. (2016). Adaptive Smoothed Online
Multi-Task Learning. In Advances in Neural Information Processing Systems, pages
4296–4304.

Nadeau, C. and Bengio, Y. (2000). Inference for the Generalization Error. In Advances in

Neural Information Processing Systems.

Ng, A. Y. and Russell, S. J. (2000). Algorithms for Inverse Reinforcement Learning. In
Proceedings of the International Conference on Machine Learning (ICML), pages 663–
670, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

89

BIBLIOGRAPHY

Parisotto, E., Ba, J., and Salakhutdinov, R. (2015). Actor-Mimic: Deep Multitask and
Transfer Reinforcement Learning. Proceedings of the International Conference on

Learning Representations (ICLR).

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R., Chen, X., Asfour, T., Abbeel,
P., and Andrychowicz, M. (2018). Parameter Space Noise for Exploration. Proceedings

of the International Conference on Learning Representations (ICLR).

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. PhD thesis, Univer-
sity of Massachusetts Amherst.

Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade, S. M. (2017). Towards General-
ization and Simplicity in Continuous Control. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural

Information Processing Systems, pages 6550–6561. Curran Associates, Inc.

Rivest, F., Bengio, Y., and Kalaska, J. (2005). Brain Inspired Reinforcement Learning. In
Advances in Neural Information Processing Systems, pages 1129–1136.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R.,
Mnih, V., Kavukcuoglu, K., and Hadsell, R. (2016). Policy Distillation. Proceedings of

the International Conference on Learning Representations (ICLR).

Rusu, A. A., Vecerik, M., Rothörl, T., Heess, N., Pascanu, R., and Hadsell, R. (2017).
Sim-to-Real Robot Learning from Pixels with Progressive Nets. Proceedings of the 1st

Annual Conference on Robot Learning (CoRL).

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust Region Policy
Optimization. In Proceedings of the International Conference on Machine Learning

(ICML), pages 1889–1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-Dimensional
Continuous Control Using Generalized Advantage Estimation. In Proceedings of the

International Conference on Learning Representations (ICLR).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347.

90

BIBLIOGRAPHY

Sermanet, P., Xu, K., and Levine, S. (2017). Unsupervised Perceptual Rewards for Imita-
tion Learning. In Robotics: Science and Systems.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. (2017).
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
Proceedings of the International Conference on Learning Representations (ICLR).

Silva, V. d. N. and Chaimowicz, L. (2017). MOBA: A New Arena for Game AI. arXiv

preprint arXiv:1705.10443.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the
Game of Go with Deep Neural Networks and Tree Search. Nature, 529(7587):484–489.

Stadie, B. C., Abbeel, P., and Sutskever, I. (2017). Third-Person Imitation Learning. In
Proceedings of the International Conference on Machine Learning (ICML).

Stodden, V., Leisch, F., and Peng, R. D. (2014). Implementing Reproducible Research.
CRC Press.

Stolle, M. and Precup, D. (2002). Learning Options in Reinforcement Learning. In Interna-

tional Symposium on Abstraction, Reformulation, and Approximation, pages 212–223.
Springer.

Subramanian, S., Rajeswar, S., Dutil, F., Pal, C., and Courville, A. C. (2017). Adversarial
Generation of Natural Language. In Proceedings of the 2nd Workshop on Representation

Learning for NLP, ACL.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, USA.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in

Neural Information Processing Systems, pages 1057–1063.

91

BIBLIOGRAPHY

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A
Framework For Temporal Abstraction in Reinforcement Learning. Artificial intelligence,
112(1-2):181–211.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. (2016). Value Iteration Net-
works. In Advances in Neural Information Processing Systems, pages 2154–2162.

Taylor, M. E. and Stone, P. (2009). Transfer Learning for Reinforcement Learning Do-
mains: A Survey. Journal of Machine Learning Research, 10(Jul):1633–1685.

Teh, Y., Bapst, V., Pascanu, R., Heess, N., Quan, J., Kirkpatrick, J., Czarnecki, W. M., and
Hadsell, R. (2017). Distral: Robust Multitask Reinforcement Learning. In Advances in

Neural Information Processing Systems, pages 4497–4507.

Thomas, P. (2014). Bias in Natural Actor-Critic Algorithms. In Proceedings of the Inter-

national Conference on Machine Learning (ICML), pages 441–448.

Thomas, P. and Brunskill, E. (2016). Data-Efficient Off-Policy Policy Evaluation for Rein-
forcement Learning. In Proceedings of the International Conference on Machine Learn-

ing (ICML), pages 2139–2148.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M. (2015). High-Confidence Off-
Policy Evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence.

Thrun, S. (1995). Lifelong Learning: A Case Study. Technical Report CMU-CS-95-208,
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA.

Thrun, S. (1996). Is Learning The n-th Thing Any Easier Than Learning The First? In
Advances in Neural Information Processing Systems, pages 640–646. The MIT Press.

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A Physics Engine for Model-based
Control. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5026–5033.

Tufféry, S. (2011). Data Mining and Statistics for Decision Making, volume 2. Wiley
Chichester.

92

BIBLIOGRAPHY

Tulyakov, S., Liu, M.-Y., Yang, X., and Kautz, J. (2017). MoCoGAN: Decomposing Mo-
tion and Content for Video Generation. arXiv preprint arXiv:1707.04993.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning with
Double Q-Learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 2094–2100.

van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V., and Silver, D. (2016). Learning Val-
ues Across Many Orders of Magnitude. In Advances in Neural Information Processing

Systems, pages 4287–4295.

van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes, T., and Tsang, J. (2017). Hy-
brid Reward Architecture for Reinforcement Learning. In Advances in Neural Informa-

tion Processing Systems. Curran Associates, Inc.

Vaughan, R. and Wawerla, J. (2012). Publishing Identifiable Experiment Code and Con-
figuration is Important, Good and Easy. arXiv preprint arXiv:1204.2235.

Vincent, P., de Brébisson, A., and Bouthillier, X. (2015). Efficient exact gradient update for
training deep networks with very large sparse targets. In Advances in Neural Information

Processing Systems, pages 1108–1116.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani,
A., Küttler, H., Agapiou, J., Schrittwieser, J., et al. (2017). StarCraft II: A New Challenge
for Reinforcement Learning. arXiv preprint arXiv:1708.04782.

Wagstaff, K. (2012). Machine Learning that Matters. In Proceedings of the International

Coference on International Conference on Machine Learning (ICML).

Wang, Z., Merel, J., Reed, S., Wayne, G., de Freitas, N., and Heess, N. (2017). Robust
Imitation of Diverse Behaviors. arXiv preprint arXiv:1707.02747.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge.

93

BIBLIOGRAPHY

Whiteson, S., Tanner, B., Taylor, M. E., and Stone, P. (2011). Protecting Against Evaluation
Overfitting in Empirical Reinforcement Learning. In Proceedings of the IEEE Sympo-

sium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), pages
120–127.

Wilcox, R. (2005). Kolmogorov–Smirnov test. Encyclopedia of Biostatistics.

Williams, R. J. (1992). Simple Statistical Gradient-following Algorithms for Connectionist
Reinforcement Learning. Machine learning, 8(3-4):229–256.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. (2007). Multi-Task Reinforcement Learn-
ing: A Hierarchical Bayesian Approach. In Proceedings of the International Conference

on Machine Learning (ICML), pages 1015–1022. ACM.

Wu, Y., Mansimov, E., Liao, S., Grosse, R., and Ba, J. (2017). Scalable Trust-Region
Method for Deep Reinforcement Learning using Kronecker-factored Approximation.
arXiv preprint:1708.05144.

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical Evaluation of Rectified Activa-
tions in Convolutional Network. Deep Learning Workshop, ICML.

Yang, Z., Merrick, K., Abbass, H., and Jin, L. (2017). Multi-Task Deep Reinforcement
Learning for Continuous Action Control. In Proceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 3301–3307.

Yuan, K.-H. and Hayashi, K. (2003). Bootstrap Approach to Inference and Power Analysis
Based on Three Test Statistics for Covariance Structure Models. British Journal of

Mathematical and Statistical Psychology, 56(1):93–110.

Ziebart, B. D., Maas, A., Bagnell, A. J., and Dey, A. K. (2008). Maximum Entropy Inverse
Reinforcement Learning. In Proceedings of the 23rd National Conference on Artificial

Intelligence, pages 1433–1438. AAAI Press.

94

A
Supplemental Material : Reproducibility

In this supplemental material, we include a detailed review of experiment configurations of
related work with policy gradient methods in continuous control MuJoCo (Todorov et al.,
2012) environment tasks from OpenAI Gym (Brockman et al., 2016). We include a detailed
list of the hyperparameters and reported metrics typically used in policy gradient literature
in deep RL. We also include all our experimental results, with baseline algorithms DDPG
(Lillicrap et al., 2015), TRPO (Schulman et al., 2015), PPO (Schulman et al., 2017) and
ACKTR (Wu et al., 2017)) as discussed in the paper. Our experimental results include fig-
ures with different hyperparameters (network architectures, activation functions) to high-
light the differences this can have across algorithms and environments. Finally, as discussed
in the paper, we include discussion of significance metrics and show how these metrics can
be useful for evaluating deep RL algorithms.

A.1 Literature Reviews

A.1.1 Hyperparameters

In this section, we include a list of hyperparameters that are reported in related literature,
as shown in figure A.1. Our analysis shows that often there is no consistency in the type of
network architectures and activation functions that are used in related literature. As shown
in the paper and from our experimental results in later sections, we find, however, that

95

A.1 Literature Reviews

these hyperparameters can have a significant effect in the performance of algorithms across
benchmark environments typically used.

Table A.1: Evaluation Hyperparameters of baseline algorithms reported in related literature

Related Work
(Algorithm)

Policy
Network

Policy
Network
Activation

Value
Network

Value
Network
Activation

Reward
Scaling

Batch
Size

DDPG 64x64 ReLU 64x64 ReLU 1.0 128

TRPO 64x64 TanH 64x64 TanH - 5k

PPO 64x64 TanH 64x64 TanH - 2048

ACKTR 64x64 TanH 64x64 ELU - 2500

Q-Prop
(DDPG)

100x50x25 TanH 100x100 ReLU 0.1 64

Q-Prop
(TRPO)

100x50x25 TanH 100x100 ReLU - 5k

IPG
(TRPO)

100x50x25 TanH 100x100 ReLU - 10k

Param Noise
(DDPG)

64x64 ReLU 64x64 ReLU - 128

Param Noise
(TRPO)

64x64 TanH 64x64 TanH - 5k

Benchmarking
(DDPG)

400x300 ReLU 400x300 ReLU 0.1 64

Benchmarking
(TRPO)

100x50x25 TanH 100x50x25 TanH - 25k

A.1.2 Reported Results on Benchmarked Environments

We then demonstrate how experimental reported results, on two different environments
(HalfCheetah-v1 and Hopper-v1) can vary across different related work that uses these
algorithms for baseline comparison. We further show the results we get, using the same
hyperparameter configuration, but using two different codebase implementations (note that

96

A.1 Literature Reviews

these implementations are often used as baseline codebase to develop algorithms). We high-
light that, depending on the codebase used, experimental results can vary significantly.

Table A.2: Comparison with Related Reported Results with Hopper Environment

Metric rllab QProp IPG TRPO
Our Results
(rllab)

Our Results
(Baselines)

Number of Iterations 500 500 500 500 500 500
Average Return 1183 - - - 2021 2965
Max Average Return - 2486 3669 3229 3034

Table A.3: Comparison with Related Reported Results with HalfCheetah Environment

Metric rllab QProp IPG TRPO
Our Results
(rllab)

Our Results
(Baselines)

Number of Iterations 500 500 500 500 500 500
Average Return 1914 - - - 3576 1046
Max Average Return - 4734 2889 4855 5197 1046

Work Number of Trials

(Mnih et al., 2016) top-5
(Schulman et al., 2017) 3-9

(Duan et al., 2016) 5 (5)
(Gu et al., 2017) 3

(Lillicrap et al., 2015) 5
(Schulman et al., 2015) 5

(Wu et al., 2017) top-2, top-3

Table A.4: Number of trials reported during evaluation in various works.

A.1.3 Reported Evaluation Metrics in Related Work

In Table A.5 we show the evaluation metrics, and reported results in further details across
related work.

97

A.2 Experimental Setup

Table A.5: Reported Evaluation Metrics of baseline algorithms in related literature

Related Work
(Algorithm)

Environments
Timesteps

or Episodes
or Iterations

Evaluation Metrics

Average
Return

Max
Return

Std
Error

PPO
HalfCheetah

Hopper
1M

„1800
„2200

- -

ACKTR
HalfCheetah

Hopper
1M

„2400
„3500

- -

Q-Prop
(DDPG)

HalfCheetah
Hopper

6k (eps)
„6000

-
7490
2604

-
-

Q-Prop
(TRPO)

HalfCheetah
Hopper

5k (timesteps)
„4000

-
4734
2486

-
-

IPG
(TRPO)

HalfCheetah
Hopper

10k (eps)
„3000

-
2889

-
-

Param Noise
(DDPG)

HalfCheetah
Hopper

1M
„1800
„500

-
-

-
-

Param Noise
(TRPO)

HalfCheetah
Hopper

1M
„3900
„2400

-
-

-
-

Benchmarking
(DDPG)

HalfCheetah
Hopper

500 iters
(25k eps)

„2148
„267

-
-

702
43

Benchmarking
(TRPO)

HalfCheetah
Hopper

500 iters
(925k eps)

„1914
„1183

-
-

150
120

A.2 Experimental Setup

In this section, we show detailed analysis of our experimental results, using same hyper-
parameter configurations used in related work. Experimental results are included for the
OpenAI Gym (Brockman et al., 2016) Hopper-v1 and HalfCheetah-v1 environments, us-
ing the policy gradient algorithms including DDPG, TRPO, PPO and ACKTR. Our exper-

98

A.2 Experimental Setup

iments are done using the available codebase from OpenAI rllab (Duan et al., 2016) and
OpenAI Baselines. Each of our experiments are performed over 5 experimental trials with
different random seeds, and results averaged over all trials. Unless explicitly specified as
otherwise (such as in hyperparameter modifications where we alter a hyperparameter under
investigation), hyperparameters were as follows.

‚ DDPG

‚ Policy Network: (64, relu, 64, relu, tanh); Q Network (64, relu, 64, relu, linear)

‚ Normalized observations with running mean filter

‚ Actor LR: 1e´ 4; Critic LR: 1e´ 3

‚ Reward Scale: 1.0

‚ Noise type: O-U 0.2

‚ Soft target update τ “ .01

‚ γ “ 0.995

‚ batch size = 128

‚ Critic L2 reg 1e´ 2

‚ PPO

‚ Policy Network: (64, tanh, 64, tanh, Linear) + Standard Deviation variable;
Value Network (64, tanh, 64, tanh, linear)

‚ Normalized observations with running mean filter

‚ Timesteps per batch 2048

‚ clip param = 0.2

‚ entropy coeff = 0.0

‚ Optimizer epochs per iteration = 10

‚ Optimizer step size 3e´ 4

‚ Optimizer batch size 64

‚ Discount γ “ 0.995, GAE λ “ 0.97

‚ learning rate schedule is constant

99

A.2 Experimental Setup

‚ TRPO

‚ Policy Network: (64, tanh, 64, tanh, Linear) + Standard Deviation variable;
Value Network (64, tanh, 64, tanh, linear)

‚ Normalized observations with running mean filter

‚ Timesteps per batch 5000

‚ max KL=0.01

‚ Conjugate gradient iterations = 20

‚ CG damping = 0.1

‚ VF Iterations = 5

‚ VF Batch Size = 64

‚ VF Step Size = 1e´ 3

‚ entropy coeff = 0.0

‚ Discount γ “ 0.995, GAE λ “ 0.97

‚ ACKTR

‚ Policy Network: (64, tanh, 64, tanh, Linear) + Standard Deviation variable;
Value Network (64, elu, 64, elu, linear)

‚ Normalized observations with running mean filter

‚ Timesteps per batch 2500

‚ desired KL = .002

‚ Discount γ “ 0.995, GAE λ “ 0.97

A.2.1 Modifications to Baseline Implementations

To ensure fairness of comparison, we make several modifications to the existing imple-
mentations. First, we change evaluation in DDPG (Plappert et al., 2018) such that during
evaluation at the end of an epoch, 10 full trajectories are evaluated. In the current imple-
mentation, only a partial trajectory is evaluated immediately after training such that a full
trajectory will be evaluated across several different policies, this corresponds more closely

100

A.2 Experimental Setup

to the online view of evaluation, while we take a policy optimization view when evaluating
algorithms.

A.2.2 Hyperparameters: Network Architecture

Below, we examine the significance of the network configurations used for the non-linear
function approximators in policy gradient methods. Several related work have used dif-
ferent sets of network configurations (network sizes and activation functions). We use the
reported network configurations from other works, and demonstrate the significance of
careful fine tuning that is required. We demonstrate results using the network activation
functions, ReLU, TanH and Leaky ReLU, where most papers use ReLU and TanH as ac-
tivation functions without detailed reporting of the effect of these activation functions. We
analyze the significance of using different activations in the policy and action value net-
works. Previously, we included a detailed table showing average reward with standard er-
ror obtained for each of the hyperparameter configurations. In the results below, we show
detailed results of how each of these policy gradient algorithms are affected by the choice
of the network configuration.

101

A.2 Experimental Setup

A.2.3 Proximal Policy Optimization (PPO)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Value Network Activation)

tanh

relu

leaky relu

Figure A.1: PPO Policy and Value Network activation

Experiment results in Figure A.1, A.2, and A.3 in this section show the effect of the policy
network structures and activation functions in the Proximal Policy Optimization (PPO)
algorithm.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−2000

−1000

0

1000

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (PPO, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

Figure A.2: PPO Policy Network structure

102

A.2 Experimental Setup

Figure A.3: PPO Value Network structure

A.2.4 Actor Critic using Kronecker-Factored Trust Region (ACKTR)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (ACKTR, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (ACKTR, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

Figure A.4: ACKTR Policy Network structure

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (ACKTR, Value Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (ACKTR, Value Network Structure)

(64,64)

(100,50,25)

(400,300)

Figure A.5: ACKTR Value Network structure

103

A.2 Experimental Setup

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (ACKTR, Policy Network Activation)

tanh

relu

elu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (ACKTR, Policy Network Activation)

tanh

relu

elu

Figure A.6: ACKTR Policy Network Activation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (ACKTR, Value Network Activation)

tanh

relu

elu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000
A
ve

ra
ge

R
et

ur
n

Hopper-v1 (ACKTR, Value Network Activation)

tanh

relu

elu

Figure A.7: ACKTR Value Network Activation

We then similarly, show the significance of these hyperparameters in the ACKTR algo-
rithm. Our results show that the value network structure can have a significant effect on the
performance of ACKTR algorithm.

104

A.2 Experimental Setup

A.2.5 Trust Region Policy Optimization (TRPO)

Figure A.8: TRPO Policy Network structure

Figure A.9: TRPO Value Network structure

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−750

−500

−250

0

250

500

750

1000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Policy Network Activation)

tanh

relu

leaky relu

Figure A.10: TRPO Policy and Value Network activation

105

A.2 Experimental Setup

Figure A.11: TRPO Policy and Value Network activation

In Figures A.8, A.9, A.10, and A.11 we show the effects of network structure on the
OpenAI baselines implementation of TRPO. In this case, only the policy architecture seems
to have a large effect on the performance of the algorithm’s ability to learn.

A.2.6 Deep Deterministic Policy Gradient (DDPG)

Figure A.12: Policy or Actor Network Architecture experiments for DDPG on HalfCheetah
and Hopper Environment

106

A.2 Experimental Setup

We further analyze the actor and critic network configurations for use in DDPG. As in
default configurations, we first use the ReLU activation function for policy networks, and
examine the effect of different activations and network sizes for the critic networks. Sim-
ilarly, keeping critic network configurations under default setting, we also examine the
effect of actor network activation functions and network sizes.

Figure A.13: Significance of Value Function or Critic Network Activations for DDPG on
HalfCheetah and Hopper Environment

107

A.3 Reward Scaling Parameter in DDPG

A.3 Reward Scaling Parameter in DDPG

Figure A.14: DDPG reward rescaling on Hopper-v1, with and without layer norm.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Reward Scale, Layer Norm)

rs=1e-4

rs=1e-3

rs=1e-2

rs=1e-1

rs=1

rs=10

rs=100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Reward Scale, No Layer Norm)

rs=1e-4

rs=1e-3

rs=1e-2

rs=1e-1

rs=1

rs=10

rs=100

Figure A.15: DDPG reward rescaling on HalfCheetah-v1, with and without layer norm.

Several related work (Gu et al., 2017; Gu et al., 2017; Duan et al., 2016) have often reported
that for DDPG the reward scaling parameter often needs to be fine-tuned for stabilizing the
performance of DDPG. It can make a significant impact in performance of DDPG based on
the choice of environment. We examine several reward scaling parameters and demonstrate
the effect this parameter can have on the stability and performance of DDPG, based on
the HalfCheetah and Hopper environments. Our experiment results, as demonstrated in
Figure A.15 and A.14, show that the reward scaling parameter indeed can have a significant
impact on performance. Our results show that, very small or negligible reward scaling
parameter can significantly detriment the performance of DDPG across all environments.
Furthermore, a scaling parameter of 10 or 1 often performs well. Based on our analysis,

108

A.4 Batch Size in TRPO

we suggest that every time DDPG is reported as a baseline algorithm for comparison, the
reward scaling parameter should be fine-tuned, specific to the algorithm.

A.4 Batch Size in TRPO

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (TRPO, original, Batch Size)

1024

2048

4096

8192

16384

32768

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, original, Batch Size)

1024

2048

4096

8192

16384

32768

Figure A.16: TRPO (Schulman et al., 2015) original code batch size experiments.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (TRPO, baselines, Batch Size)

1024

2048

4096

8192

16384

32768

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−600

−400

−200

0

200

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, baselines, Batch Size)

1024

2048

4096

8192

16384

32768

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

Walker2d-v1 (TRPO, baselines, Batch Size)

1024

2048

4096

8192

16384

32768

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−135

−130

−125

−120

−115

−110

A
ve

ra
ge

R
et

ur
n

Reacher-v1 (TRPO, baselines, Batch Size)

1024

2048

4096

8192

16384

32768

Figure A.17: TRPO (Schulman et al., 2017) baselines code batch size experiments.

109

A.5 Random Seeds

We run batch size experiments using the original TRPO code (Schulman et al., 2015) and
the OpenAI baselines code (Schulman et al., 2017). These results can be found in Ex-
periment results in Figure A.16 and Figure A.17, show that for both HalfCheetah-v1 and
Hopper-v1 environments, a batch size of 1024 for TRPO performs best, while perform
degrades consecutively as the batch size is increased.

A.5 Random Seeds

To determine much random seeds can affect results, we run 10 trials total on two environ-
ments using the default previously described settings usign the (Gu et al., 2017) implemen-
tation of DDPG and the (Duan et al., 2016) version of TRPO. We divide our trials random
into 2 partitions and plot them in Figures A.18 and Fig A.19. As can be seen, statistically
different distributions can be attained just from the random seeds with the same exact hy-
perparameters. As we will discuss later, bootstrapping off of the sample can give an idea
for how drastic this effect will be, though too small a bootstrap will still not give concrete
enough results.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Different Random Seeds)

Random Average (5 runs)

Random Average (5 runs)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (TRPO, Different Random Seeds)

Random Average (5 runs)

Random Average (5 runs)

Figure A.18: Two different TRPO experiment runs, with same hyperparameter configura-
tions, averaged over two splits of 5 different random seeds.

110

A.6 Environments

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Different Random Seeds)

Random Average (5 runs)

Random Average (5 runs)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

250

500

750

1000

1250

1500

1750

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, Different Random Seeds)

Random Average (5 runs)

Random Average (5 runs)

Figure A.19: Two different DDPG experiment runs, with same hyperparameter configura-
tions, averaged over two splits of 5 different random seeds.

A.6 Environments

We previously demonstrated that the performance of policy gradient algorithms can be
highly biased based on the choice of the environment. In this section, we include further
results examining the impact the choice of environment can have. We show that no single
algorithm can perform consistently better in all environments. This is often unlike the re-
sults we see with DQN networks in Atari domains, where results can often be demonstrated
across a wide range of Atari games. Our results, for example, shows that while TRPO can
perform significantly better than other algorithms on the Swimmer environment, it may
perform quite poorly n the HalfCheetah environment, and marginally better on the Hop-
per environment compared to PPO. We demonstrate our results using the OpenAI MuJoCo
Gym environments including Hopper, HalfCheetah, Swimmer and Walker environments. It
is notable to see the varying performance these algorithms can have even in this small set of
environment domains. The choice of reporting algorithm performance results can therefore
often be biased based on the algorithm designer’s experience with these environments.

111

A.7 Codebases

Figure A.20: Comparing Policy Gradients across various environments

A.7 Codebases

We include a detailed analysis of performance comparison, with different network struc-
tures and activations, based on the choice of the algorithm implementation codebase.

112

A.7 Codebases

Figure A.21: TRPO Policy and Value Network structure

Figure A.22: TRPO Policy and Value Network activations.

113

A.7 Codebases

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

−250

0

250

500

750

1000

1250

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, rllab, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (TRPO, rllab, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

−250

0

250

500

750

1000

1250

1500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, rllab, Policy Network Activation)

tanh

relu

leaky relu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (TRPO, rllab, Policy Network Activation)

tanh

relu

leaky relu

Figure A.23: TRPO rllab Policy Structure and Activation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab++, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab++, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab++, Value Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab++, Value Network Structure)

(64,64)

(100,50,25)

(400,300)

Figure A.24: DDPG rllab++ Policy and Value Network structure

114

A.7 Codebases

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab++, Policy Network Activation)

tanh

relu

leaky relu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab++, Policy Network Activation)

tanh

relu

leaky

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab++, Value Network Activation)

tanh

relu

leaky relu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab++, Value Network Activation)

tanh

relu

leaky relu

Figure A.25: DDPG rllab++ Policy and Value Network activations.

Similarly, Figures A.26 and A.27 show the same network experiments for DDPG with
the Theano implementation of rllab code (Duan et al., 2016).

115

A.7 Codebases

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab, Policy Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

250

500

750

1000

1250

1500

1750

2000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab, Value Network Structure)

(64,64)

(100,50,25)

(400,300)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab, Value Network Structure)

(64,64)

(100,50,25)

(400,300)

Figure A.26: DDPG rllab Policy and Value Network structure

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab, Policy Network Activation)

tanh

relu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab, Policy Network Activation)

tanh

relu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, rllab, Value Network Activation)

tanh

relu

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

200

400

600

800

1000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, rllab, Value Network Activation)

tanh

relu

Figure A.27: DDPG rllab Policy and Value Network activations.

116

A.7 Codebases

Often in related literature, there is different baseline codebase people use for implemen-
tation of algorithms. One such example is for the TRPO algorithm. It is a commonly used
policy gradient method for continuous control tasks, and there exists several implementa-
tions from OpenAI Baselines (Plappert et al., 2018), OpenAI rllab (Duan et al., 2016) and
the original TRPO codebase (Schulman et al., 2015). In this section, we perform an anal-
ysis of the impact the choice of algorithm codebase can have on the performance. Figures
A.21 and A.22 summarizes our results with TRPO policy network and value networks,
using the original TRPO codebase from (Schulman et al., 2015). Figure A.23 shows the
results using the rllab implementation of TRPO using the same hyperparameters as our
default experiments aforementioned. Note, we use a linear function approximator rather
than a neural network due to the fact that the Tensorflow implementation of OpenAI rllab
does not provide anything else. We note that this is commonly used in other works (Duan
et al., 2016; Stadie et al., 2017), but may cause differences in performance. Furthermore,
we leave out our value function network experiments due to this.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

1000

2000

3000

4000

5000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (DDPG, Codebase Comparison)

Duan 2016

Gu 2016

Plapper 2017

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

250

500

750

1000

1250

1500

1750

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (DDPG, Codebase Comparison)

Duan 2016

Gu 2016

Plapper 2017

Figure A.28: DDPG codebase comparison using our default set of hyperparameters (as
used in other experiments).

117

A.8 Significance

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

−500

0

500

1000

1500

2000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (TRPO, Codebase Comparison)

Schulman 2015

Schulman 2017

Duan 2016

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps ×106

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (TRPO, Codebase Comparison)

Schulman 2015

Schulman 2017

Duan 2016

Figure A.29: TRPO codebase comparison using our default set of hyperparameters (as used
in other experiments).

Figure A.29 shows a comparison of the TRPO implementations using the default hy-
perparamters as specified earlier in the supplemental. Note, the exception is that we use a
larger batch size for rllab and original TRPO code of 20k samples per batch, as optimized
in a second set of experiments. Figure A.24 and A.25 show the same network experiments
for DDPG with the rllab++ code (Gu et al., 2017). We can then compare the performance
of the algorithm across 3 codebases (keeping all hyperparameters constant at the defaults),
this can be seen in Figure A.28.

A.8 Significance

Our full results from significance testing with difference metrics can be found in Table A.6
and Table A.7. Our bootstrap mean and confidence intervals can be found in Table A.10.
Bootstrap power analysis can be found in Table A.11. To performance significance testing,
we use our 5 sample trials to generate a bootstrap with 10k bootstraps. From this confidence
intervals can be obtained. For the t-test and KS-test, the average returns from the 5 trials
are sorted and compared using the normal 2-sample versions of these tests. Scipy1 and
Facebook Boostrapped2 are used for the KS test, t-test, and bootstrap analysis. For power

1https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.
stats.ks_2samp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_
ind.html

2https://github.com/facebookincubator/bootstrapped

118

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://github.com/facebookincubator/bootstrapped

A.8 Significance

analysis, we attempt to determine if a sample is enough to game the significance of a 25%
lift. This is commonly used in A/B testing (Tufféry, 2011).

- DDPG ACKTR TRPO PPO

DDPG -

t “ 1.85, p “ 0.102

KS “ 0.60, p “ 0.209
61.91 % (-32.27 %, 122.99 %)

t “ 4.59, p “ 0.002

KS “ 1.00, p “ 0.004
301.48 % (150.50 %, 431.67 %)

t “ 2.67, p “ 0.029

KS “ 0.80, p “ 0.036
106.91 % (-37.62 %, 185.26 %)

ACKTR

t “ ´1.85, p “ 0.102

KS “ 0.60, p “ 0.209
-38.24 % (-75.42 %, -15.19 %) -

t “ 2.78, p “ 0.024

KS “ 0.80, p “ 0.036
147.96 % (30.84 %, 234.60 %)

t “ 0.80, p “ 0.448

KS “ 0.60, p “ 0.209
27.79 % (-67.77 %, 79.56 %)

TRPO

t “ ´4.59, p “ 0.002

KS “ 1.00, p “ 0.004
-75.09 % (-86.44 %, -68.36 %)

t “ ´2.78, p “ 0.024

KS “ 0.80, p “ 0.036
-59.67 % (-81.70 %, -46.84 %) -

t “ ´2.12, p “ 0.067

KS “ 0.80, p “ 0.036
-48.46 % (-81.23 %, -32.05 %)

PPO

t “ ´2.67, p “ 0.029

KS “ 0.80, p “ 0.036
-51.67 % (-80.69 %, -31.94 %)

t “ ´0.80, p “ 0.448

KS “ 0.60, p “ 0.209
-21.75 % (-75.99 %, 11.68 %)

t “ 2.12, p “ 0.067

KS “ 0.80, p “ 0.036
94.04 % (2.73 %, 169.06 %) -

Table A.6: HalfCheetah Significance values and metrics for different algorithms. Rows in
cells are: sorted 2-sample t-test, Kolmogorov-Smirnov test, bootstrap A/B comparison %
difference with 95% confidence bounds.

- DDPG ACKTR TRPO PPO

DDPG -

t “ ´1.41, p “ 0.196

KS “ 0.60, p “ 0.209
-35.92 % (-85.62 %, -5.38 %)

t “ ´2.58, p “ 0.033

KS “ 0.80, p “ 0.036
-44.96 % (-78.82 %, -20.29 %)

t “ ´2.09, p “ 0.070

KS “ 0.80, p “ 0.036
-39.90 % (-77.12 %, -12.95 %)

ACKTR

t “ 1.41, p “ 0.196

KS “ 0.60, p “ 0.209
56.05 % (-87.98 %, 123.15 %) -

t “ ´1.05, p “ 0.326

KS “ 0.60, p “ 0.209
-14.11 % (-37.17 %, 9.11 %)

t “ ´0.42, p “ 0.686

KS “ 0.40, p “ 0.697
-6.22 % (-31.58 %, 18.98 %)

TRPO

t “ 2.58, p “ 0.033

KS “ 0.80, p “ 0.036
81.68 % (-67.76 %, 151.64 %)

t “ 1.05, p “ 0.326

KS “ 0.60, p “ 0.209
16.43 % (-27.92 %, 41.17 %) -

t “ 2.57, p “ 0.033

KS “ 0.60, p “ 0.209
9.19 % (2.37 %, 15.58 %)

PPO

t “ 2.09, p “ 0.070

KS “ 0.80, p “ 0.036
66.39 % (-67.80 %, 130.16 %)

t “ 0.42, p “ 0.686

KS “ 0.40, p “ 0.697
6.63 % (-33.54 %, 29.59 %)

t “ ´2.57, p “ 0.033

KS “ 0.60, p “ 0.209
-8.42 % (-14.08 %, -2.97 %) -

Table A.7: Hopper Significance values and metrics for different algorithms. Rows in cells
are: sorted 2-sample t-test, Kolmogorov-Smirnov test, bootstrap A/B comparison % differ-
ence with 95% confidence bounds.

119

A.8 Significance

- DDPG ACKTR TRPO PPO

DDPG -

t “ ´1.03, p “ 0.334

KS “ 0.40, p “ 0.697
-30.78 % (-91.35 %, 1.06 %)

t “ ´4.04, p “ 0.004

KS “ 1.00, p “ 0.004
-48.52 % (-70.33 %, -28.62 %)

t “ ´3.07, p “ 0.015

KS “ 0.80, p “ 0.036
-45.95 % (-70.85 %, -24.65 %)

ACKTR

t “ 1.03, p “ 0.334

KS “ 0.40, p “ 0.697
44.47 % (-80.62 %, 111.72 %) -

t “ ´1.35, p “ 0.214

KS “ 0.60, p “ 0.209
-25.63 % (-61.28 %, 5.54 %)

t “ ´1.02, p “ 0.338

KS “ 0.60, p “ 0.209
-21.91 % (-61.53 %, 11.02 %)

TRPO

t “ 4.04, p “ 0.004

KS “ 1.00, p “ 0.004
94.24 % (-22.59 %, 152.61 %)

t “ 1.35, p “ 0.214

KS “ 0.60, p “ 0.209
34.46 % (-60.47 %, 77.32 %) -

PPO

t “ 3.07, p “ 0.015

KS “ 0.80, p “ 0.036
85.01 % (-31.02 %, 144.35 %)

t “ 1.02, p “ 0.338

KS “ 0.60, p “ 0.209
28.07 % (-65.67 %, 71.71 %)

t “ ´0.57, p “ 0.582

KS “ 0.40, p “ 0.697
-4.75 % (-19.06 %, 10.02 %) -

Table A.8: Walker2d Significance values and metrics for different algorithms. Rows in
cells are: sorted 2-sample t-test, Kolmogorov-Smirnov test, bootstrap A/B comparison %
difference with 95% confidence bounds.

- DDPG ACKTR TRPO PPO

DDPG -

t “ ´2.18, p “ 0.061

KS “ 0.80, p “ 0.036
-36.44 % (-61.04 %, -6.94 %)

t “ ´4.06, p “ 0.004

KS “ 1.00, p “ 0.004
-85.13 % (-97.17 %, -77.95 %)

t “ ´8.33, p “ 0.000

KS “ 1.00, p “ 0.004
-70.41 % (-80.86 %, -56.52 %)

ACKTR

t “ 2.18, p “ 0.061

KS “ 0.80, p “ 0.036
57.34 % (-80.96 %, 101.11 %) -

t “ ´3.69, p “ 0.006

KS “ 1.00, p “ 0.004
-76.61 % (-90.68 %, -70.06 %)

t “ ´8.85, p “ 0.000

KS “ 1.00, p “ 0.004
-53.45 % (-62.22 %, -47.30 %)

TRPO

t “ 4.06, p “ 0.004

KS “ 1.00, p “ 0.004
572.61 % (-73.29 %, 869.24 %)

t “ 3.69, p “ 0.006

KS “ 1.00, p “ 0.004
327.48 % (165.47 %, 488.66 %) -

t “ 2.39, p “ 0.044

KS “ 0.60, p “ 0.209
99.01 % (28.44 %, 171.85 %)

PPO

t “ 8.33, p “ 0.000

KS “ 1.00, p “ 0.004
237.97 % (-59.74 %, 326.85 %)

t “ 8.85, p “ 0.000

KS “ 1.00, p “ 0.004
114.80 % (81.85 %, 147.33 %)

t “ ´2.39, p “ 0.044

KS “ 0.60, p “ 0.209
-49.75 % (-78.58 %, -36.43 %) -

Table A.9: Swimmer Significance values and metrics for different algorithms. Rows in
cells are: sorted 2-sample t-test, Kolmogorov-Smirnov test, bootstrap A/B comparison %
difference with 95% confidence bounds.

Environment DDPG ACKTR TRPO PPO

HalfCheetah-v1 5037.26 (3664.11, 6574.01) 3888.85 (2288.13, 5131.96) 1254.55 (999.52, 1464.86) 3043.1 (1920.4, 4165.86)

Hopper-v1 1632.13 (607.98, 2370.21) 2546.89 (1875.79, 3217.98) 2965.33 (2854.66, 3076.00) 2715.72 (2589.06, 2847.93)
Walker2d-v1 1582.04 (901.66, 2174.66) 2285.49 (1246.00, 3235.96) 3072.97 (2957.94, 3183.10) 2926.92 (2514.83, 3361.43)

Swimmer-v1 31.92 (21.68, 46.23) 50.22 (42.47, 55.37) 214.69 (141.52, 287.92) 107.88 (101.13, 118.56)

Table A.10: Envs bootstrap mean and 95% confidence bounds

120

A.8 Significance

Environment DDPG ACKTR TRPO PPO

HalfCheetah-v1

100.00
0.00
0.00

79.03
11.53
9.43

79.47
20.53
0.00

61.07
10.50
28.43

Hopper-v1

60.90
10.00
29.10

79.60
11.00
9.40

0.00
100.00
0.00

0.00
100.00
0.00

Walker2d-v1

89.50
0.00

10.50

60.33
9.73

29.93

0.00
100.00
0.00

59.80
31.27
8.93

Swimmer-v1

89.97
0.00

10.03

59.90
40.10
0.00

89.47
0.00

10.53

40.27
59.73
0.00

Table A.11: Power Analysis for predicted significance of 25% lift. Rows in cells are: %
insignificant simulations,% positive significant, % negative significant.

121

B
Supplemental Material : Reusability

B.1 Expanded Equations

The expectation over the discriminator loss for the option case can be expanded to

LΩ “ Eω
”

πΩ,ζpω|sqLθ̂,ω

ı

` Lreg

“
ÿ

ω

πΩ,ζpω|sqLθ̂,ω ` Lreg.
(B.1)

Likewise, the regularization terms can also be expanded:

Lb “
ÿ

ω

||ErπΩpωqs ´ τ ||2

«
ÿ

ω

||
1

mb

mb
ÿ

i

pπΩpω|siqq ´ τ ||2

(B.2)

Le “ E

«

||

˜

1

||Ω||

ÿ

ω

πΩpωq

¸

´ τ ||2

ff

«
1

mb

mb
ÿ

i

||

˜

1

||Ω||

ÿ

ω

πΩpω|siq

¸

´ τ ||2

(B.3)

122

B.2 Expert Collection

Lv “ ´
ÿ

ω

varωtπΩpsqu

« ´
ÿ

ω

1

mb

mb
ÿ

i

˜

πΩpω|siq ´

˜

1

mb

mb
ÿ

i

πΩpω|siq

¸¸ (B.4)

B.2 Expert Collection

The expert demonstration rollouts (state sequences) for all OpenAI Gym (Brockman et al.,
2016) environments were obtained from policies trained for 1000 iterations using Trust
Region Policy Optimization (Schulman et al., 2015) with parameters KLmax “ 0.01, gen-
eralized advantage estimation λ “ 0.97, discount factor γ “ 0.99 and batch size 25, 000

(rollout timesteps shared when updating the discriminator and policy). For the Roboschool
(Schulman et al., 2017) Flagrun-v1 environment, the rollouts were obtained using the PPO
pre-trained expert provided with Roboschool.

B.3 Experimental Setup and Hyperparameters

Observations are not normalized in all cases as we found that it did not help or hurt per-
formance. In all cases for advantage estimation we use a value approximator as in (Schul-
man et al., 2015), which uses L-BFGS optimization with a mixing fraction of 0.1. That
is, it uses the current prediction Vθpsq and mixes it with the actual discounted returns with
0.1 belonging to the actual discounted returns and 0.9 belonging to the current predic-
tion. This is identical to the original Trust Region Policy Optimization (TRPO) code as
provided at: https://github.com/joschu/modular_rl/. We perform a maxi-
mum of 20 L-BFGS iterations per value function update. For all the environments, we let
the agent act until the maximum allowed timesteps of the specific environment (as set by
default in OpenAI Gym), gather the rollouts and keep the number of timesteps per batch de-
sired. For all policy optimization steps in both IRLGAN and OPTIONGAN, we use TRPO
with the with parameters set to the same values as the ones used for the expert collection
(KLmax “ 0.01, generalized advantage estimation λ “ 0.97, discount factor γ “ 0.99 and

123

https://github.com/joschu/modular_rl/

B.3 Experimental Setup and Hyperparameters

batch size 25, 000), except for the Roboschool Flagrun Experiment where PPO was used
instead, as explained in its respective section below.

B.3.1 Simple Tasks and Transfer Tasks

For simple tasks we use 10 expert rollouts while for transfer tasks we use 40 expert rollouts
(10 from each environment variation).

0 100 200 300 400 500
Iterations

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1 (One Shot Transfer)

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

−1500

−1000

−500

0

500

1000

1500

2000

2500

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1 (One Shot Transfer)

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

Walker2d-v1 (One Shot Transfer)

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

Figure B.1: Experiments from 40 expert demonstrations from varied gravity environ-
ments without any demonstrations on the novice training environment. Average returns
from expert demonstrations across all mixed environments: 3657.71 (Hopper-v1), 4181.97
(HalfCheetah-v1), 4218.12 (Walker2d-v1).

IRLGAN

We use a Gaussian Multilayer Perceptron policy as in (Schulman et al., 2015) with two
64 unit hidden layers and tanh hidden layer activations. The output of the network gives
the Gaussian mean and the standard deviation is modeled by a single learned variable
as in (Schulman et al., 2015). Similarly for our discriminator network, we use the same
architecture with a sigmoid output, tanh hidden layer activations, and a learning rate of

124

B.3 Experimental Setup and Hyperparameters

0 100 200 300 400 500
Iterations

0

500

1000

1500

2000

2500

3000

3500

A
ve

ra
ge

R
et

ur
n

Hopper-v1

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

−1000

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

HalfCheetah-v1

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

Walker2d-v1

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

Figure B.2: Simple locomotion task learning curves. The True Average Return provided by
the expert demonstrations are: 3778.82 (Hopper-v1), 4156.94 (HalfCheetah-v1), 5528.51
(Walker2d-v1). Error bars indicate standard error of True Average Return across 10 trial
runs.

.

0 1000 2000 3000 4000 5000
Iterations

−500

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

R
et

ur
n

RoboschoolHumanoidFlagrun-v1

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

0 100 200 300 400 500
Iterations

0

1000

2000

3000

4000

A
ve

ra
ge

R
et

ur
n

HopperSimpleWall-v0

IRLGAN

OPTIONGAN (2 ops)

OPTIONGAN (4 ops)

Figure B.3: Evaluation on RoboschoolHumanoidFlagrun-v1 environment (Schulman et al.,
2017). Average expert rollout returns: 2822.13.

1 ¨ 10´3 for the discriminator. We do not use entropy regularization or l2 regularization
as it resulted in worse performance. For every policy update we perform 3 discriminator
updates as we found the policy optimization step is able to handle this and results in faster
learning.

125

B.4 Reward Decomposition over Expert Demonstrations

OPTIONGAN

Aligning with the IRLGAN networks, we make use of a Gaussian Multilayer Perceptron
policy as in (Schulman et al., 2015) with 2 hidden layers of 64 units with tanh hidden
layer activations for our shared hidden layers. These hidden layers connect to ||Ω|| options
depending on the experiment (2 or 4). In this case the output of the network gives the
Gaussian mean for each option and the standard deviation is modeled by a single learned
variable per option. The policy-over-options is also modeled by a neural network of size
p64, 64q – two hidden layers of size 64 each – with tanh activations and a softmax output
corresponding to the number of options. For our discriminator, we use the same architecture
with tanh hidden layer activations, a sigmoid output and ||Ω|| outputs, one for each option.
We use the policy over options to create a specialized mixture of experts model with a
specialized loss function which converges to options. We use a learning rate of 10´3 for
the discriminator. Same as in IRLGAN, we do not make use of entropy regularization or l2
regularization as we found either regularizers to hurt performance. Instead we use scaling
factors for the regularization terms included in the loss: λb “ 10.0, λe “ 10.0, λv “ 1.0 for
the 2 options case and λb “ 0.01, λe “ 10.0, λv “ 1.0 for the 4 options case. Again, we
perform 3 discriminator updates per policy update

B.3.2 RoboschoolHumanoidFlagrun-v1

For Roboschool experiments we use proximal policy optimization (PPO) with a clipping
objective (Schulman et al., 2017) (clipping parameter set to ε “ 0.02). We perform 5
Adam (Kingma and Ba, 2015) policy updates on the PPO clipping objective with a learn-
ing rate of 10´3. The value function and advantage estimation parameters from previous
experiments are maintained while our network architecture sizes are increased to p128, 128q

and use ReLU activations instead of tanh.

B.4 Reward Decomposition over Expert Demonstrations

We show that the trained policy-over-options network shows some intrinsic structure over
the expert demonstrations.

126

B.4 Reward Decomposition over Expert Demonstrations

Figure B.4: Probability distribution of πΩ over options on expert demonstrations. Inherent
structure is found in the demonstrations.

Figure B.5: State distribution of expert demonstrations projected onto a 2D plane to pair
with Figure 5.5. Axes correspond to projected state dimensions from the original 6-D state
space using SVD.

In Figure B.4 are shown the activation of the gating function across expert rollouts after
training. We see that the underlying division in expert demonstrations is learned by the
policy-over-options, which indicates that our method for training the policy-over-options
induces it to learn a latent structure to the expert demonstrations and thus can benefit in the
transfer case since each option inherently specializes to be used in different environments.
We find that options specialized more clearly over the experts with environments closest
to the normal gravity environment, while the others use an even mixture of options. This
is due to the fact that the mixing specialized options are able to cover the state space of

127

B.4 Reward Decomposition over Expert Demonstrations

the non-specialized options as we can observe from the state distribution of the expert
demonstrations shown in Figure B.5.

128

	Acronyms
	I Foundations
	Introduction
	Background
	Reinforcement Learning
	The Sequential Decision-Making Framework
	Value Functions
	Learning Value Functions
	Policy Gradient Methods
	The Options Framework
	Inverse Reinforcement Learning
	Benchmark Tasks and Domains

	Reusability: Multitask, Transfer, Lifelong Learning
	Reproducibility

	II Reproducibility
	Reproducibility in Deep Reinforcement Learning
	Technical Background
	Experimental Analysis
	Hyperparameters
	Network Architecture
	Reward Scale
	Random Seeds and Trials
	Environments
	Codebases

	Reporting Evaluation Metrics
	Discussion

	Benchmark Environments for Multitask Learning in Continuous Domains
	Environments
	Continuous Control in MuJoCo
	2D Navigation

	Multitask Sets
	Baseline Experiments
	Related Work
	Discussion

	III Reusability
	OptionGAN: Learning Joint Reward-Policy Options using Generative Adversarial Inverse Reinforcement Learning
	Preliminaries and Notation
	Reward-Policy Options Framework
	Learning Joint Reward-Policy Options
	Mixture-of-Experts as Options
	Regularization Penalties

	Experiments
	Experimental Setup
	Simple Tasks
	One-Shot Transfer Learning
	Complex Tasks

	Ablation Investigations
	Related Work
	Discussion

	IV Final Conclusion & Future Work
	Final Conclusion & Future Work
	Summary
	Reproducibility
	Reusability

	Future Work
	Reproducibility
	Reusability
	Biologically Plausible Reinforcement Learning

	List of Publications
	Bibliography
	Supplemental Material : Reproducibility
	Literature Reviews
	Hyperparameters
	Reported Results on Benchmarked Environments
	Reported Evaluation Metrics in Related Work

	Experimental Setup
	Modifications to Baseline Implementations
	Hyperparameters: Network Architecture
	Proximal Policy Optimization (PPO)
	Actor Critic using Kronecker-Factored Trust Region (ACKTR)
	Trust Region Policy Optimization (TRPO)
	Deep Deterministic Policy Gradient (DDPG)

	Reward Scaling Parameter in DDPG
	Batch Size in TRPO
	Random Seeds
	Environments
	Codebases
	Significance

	Supplemental Material : Reusability
	Expanded Equations
	Expert Collection
	Experimental Setup and Hyperparameters
	Simple Tasks and Transfer Tasks
	RoboschoolHumanoidFlagrun-v1

	Reward Decomposition over Expert Demonstrations

