
NOTE TO USERS

The original manuscript received by UMI contains pages with
slanted print. Pages were microfilmed as received.

This reproduction is the best copy available

UMI

(

(

(

Tree Search and SingularValue Decomposition:

A Comparison of Two Strategies For Point-Pattern Matching

by

Philip Ifrah

B. Eng.

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements

for the degrcc of Master of Engineering

Department of Electrical Engineering

McGill University

Montréal, Canada

August, 1996

© Philip Ifrah, 1996

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
OttawaON K1A0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A ON4
Canada

The author has granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microfonn,
paper or electronic fonnats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29602-4

Canada

(

(

(

Abstract

Two approaches for solving point-pattern matching probl~ms are compared;

namely, a graph-matching algorithm [IJ and an SVD-based procedure [2J. In both

cases, the features that are used in the matching process are point coordinates in

Euclidean n-space, !En. The patterns being matched are assumed to be related by a

combination of two transformations: (1) a permutation of the feature points which

establishes the correspondence between the feature points of the different patterns

and (2) a global geometric transformation based on rigid motions which aligns the

patterns once the point correspondences are known. The problem of finding the first

transformation, known as the point correspondence problem, is the most demanding

part of the matching process in terms of computational requirements; accordingly, the

focus is placed on the algorithms' ability to establish point correspondences. Computer

simulations are used to evaluate the performance of the algorithms' respective search

strategies in terms of both the accuracy of the final solution and the speed with which

the solution is obtained. In aIl of the experiments, the performance of the graph

matching algorithm is clearly superior to that of the SVD-based method in terms of

both speed and accuracy; however, it is shown that the computational requirements of

the tree search procedure used by the graph matching algorithm are strongly dependent

on factors such as the magnitude of the noises that are contained in the patterns and

on the mutual distances between the feature points. The major weakncss of the SVD­

based algorithm is its inconsistency in converging to the expected solution, especiaIly

when extra or occluded points are present in one or more of the patterns to be matched.

(

(

(

Sommaire

Deux façons pour résoudre de divers problèmes d'association de formes sont

comparées; à savoir, un algorithme d'association de graphes [1J et une procedure

basée sur la décomposition en valeurs singulières (DVS) [2]. Dans les deux cas, les

charactéristiques utilisées dans le procédé d'association sont des points dans l'éspace

euclidéen de dimension n, lE". Les formes en question sont presumées etre liées

par une combinaison de deux transformations: (1) une permutation des points char­

actéristiques qui établit la mise en correspondence des points charactéristiques des

diverses formes, et (2) une transformation géometrique globale basée sur l'hypothèse

des mouvements rigides qui est supposée aligner les formes lorsque la mise en corre­

spondence est connue. Le problème pour trouver la première transformation, connue

comme le problème de mise en correspondence des points, est la plus astreignante par­

tie du procédé d'association en terme des exigeances de calcul; par conséquent, la

concentration est surtout placée sur la compétence des algorithmcs d'établir la misc

en correspondcnce des points. Des simulations sont éffectuées pour evaluer la perfor­

mance des strategies de recherche de chaque algorithme, en termes de la précision de la

solution finale ainsi que la rapidité avec laquelle la solution est obtenue. Dans toutcs

les experiences, la performance de l'algorithme d'association de graphes est nettement

supérieure à celle de la méthode DVS en terme de vitesse et de précision; cepen­

dant, il cst démontré que les exigeances de calcul de la procedurc de travcrsée d'arbre

qui est utilisée par l'algorithme d'association de graphes sont fortement dependants de

plusieurs facteurs tels que l'intensité des bruits et des distances mutuels entre les points

charactéristiques. La majeure faiblesse de la procedure DVS est son inconsistence à

converger vers la solution attendue, particulièrement dans le cas où le nombre de points

dans les deux forwes n'est pas ègale.

(

(

{

Acknowledgments

First of ail, 1 would like to thank my thesis supervisor, Dr. S.D. Morgera, for

his careful guidance and support throughout the course of my research. His enthusiasm

and encouragement vis-à-vis my work was truly inspiring and has helped me to learn

a great deal about the research process.

1 would like to thank my friends in the INSL lab who were always there to lend

a helping hand: Sam Torrente, Helgi Sigurdsson, Dan Gravelle, Pietro Fionda, and

Jihad Hallik, to name only a few. Without thelll, my experience would surely have

been greatly diminished.

Finally, 1would like to express my deepest gratitude to my family whose support

was of paramount importance in completing this thesis. Their advice, guidance, and

support throughout my studies has helped me to achieve my goals with relative case

and with great success.

(

Contents

1.2 Outline of the Thcsis

1 Introduction

1.1 Overview of Point-Pattern Matching

1.1.1 The Motion Estimation Problem

2.3 Survey of Approaches . . .

2.2 Overview of Applications.

2 Literature Review

2.1 Introduction ..

(

(

1.1.2

2.2.1

2.2.2

2.2.3

2.3.1

2.3.2

The Point Correspondence Problem .

Vision-Based Applications

Image Processing Applications.

Other Applications

Early Approachcs .

Methods Based on Projective Relations .

ii

1

2

2

3

3

5

5

5

6

9

10

11

11

12

(
2.3.3

2.3.4

2.3.5

Methods Based on Optical Flow . . .

Methods Based on Unit Quaternions

Methods For Finding Point Correspondences .

13

14

15

3.1 Introduction.

3.2 The Elements

3.3 Summary

3 Elements of Pattern Matching 18

18

19

19

22

28

29

32

Feature Spaces

Search Strategies .

Geometrie Transformations

Similarity Metrics .

3.2.1

3.2.2

3.2.3

3.2.4(

4.2 Problem Formulation

4.5 Extensions of the Theory .

4.4 The Algorithm .

4 An SVD-Based AIgorithm 33

33

34

35

39

40

41

45

49

Matching of Point Sets With Different Cardinality .

Matching of Point Sets from Different Dimensions

Matching of Point Sets With the Same Cardinality

Point-Matching As a Function Optimization Problem

4.2.1

4.2.2

4.2.3

Introduction

4.3

4.1

(

iii

(
4.6 Summary . .. 52

5 A Graph Matching Aigorithm

5.1 Introduction ...

5.2 Graph Matching .

5.2.1 Graphs.

5.2.2 Trees ..

5.2.3 Tree-Based Search Procedures

5.3 Graph Matching Algorithm

5.3.1 Basic Strategy. .

5.3.2 Occluded Points.

5.3.3 A Data Splitting Strategy

5.4 Summary

6 Comparison of Aigorithms

6.1 Introduction

6.2 Experimental Set-Up

6.2.1 Hardware/Software Considerations

6.2.2 Data Sets ..

6.3 Algorithm Dynamics

(
6.3.1 Graph Matching Algorithm

6.3.2 SVD-Based Algorithm

iv

53

53

54

54

5ï

59

62

62

68

69

71

73

73

74

74

74

79

79

85

(

(

(

6.4 Speed/Accuracy Comparisons ...

6.4.1 Graph Matching Algorithm

6.4.2 SVD-based Algorithm

7 Conclusions

7.1 Summary of the Matching Algorithms

7.1.1 The SVD-Based Procedure

7.1.2 The Tree-Based Algorithm .

7.1.3 Simulation Results .

7.2 Concluding Remarks

7.3 Future Research ...

Bibliography

Appendix A

v

92

93

104

114

114

115

115

116

118

119

120

128

{

List of Tables

6.5 Motion parameters associated with the 3-D house object

6.4 Motion parameters obtained by the SVD-based algorithm .

(

6.1

6.2

6.3

Two randomly generated point sets

Two randomly generated point sets with p > q .

Randomly gcnerated point sets with a2 = 0.5 ..

;6

ïï

81

88

92

(

6.6 Results of graph matching algorithm for severalnoise variances and k = 3 95

6.; Results of graph matching algorithm for severalnoise variances and k = 10 95

6.8 Results of the graph matching algorithm using the data splitting strategy

with k =3, M = 2 98

6.9 Results of the graph matching algorithm using the data splitting strategy

with k = 10, M = 2 . 98

6.10 Results using point sets with various cardinalities and a2 =0.10 100

6.11 Results using point sets with various cardinalities and a2 = 0.25 100

6.12 Results using point sets with various cardinalities and a2 = 0.50 100

6.13 Results using point sets with various cardinalities, M =2 and a2 = 0.10 101

vi

(

(

6.14 Results using point sets \Vith various cardinalities, M = 2 and a2 = 0.25 101

6.15 Results using point sets \Vith various cardinalities, M = 2 and a 2 = 0.50 101

6.16 Results using point sets \Vith various cardinalities, k = 3, M = 2, a2 = 1.0103

6.17 Results using point sets \Vith various cardinalities, k = 3, M = 0, a2 = 1.0103

6.18 Results of the graph matching algorithm in the case of unmatched points 105

6.19 Results of the SVD-Based algorithm for several noise variances and 1=

1O,m = 25 106

6.20 Results of the SVD-Based algorithm for several noise variances and 1=

10, m =50 .. 106

6.21 Results of the SVD-Based algorithm for several noise variances and 1=

1O,m =100 106

6.22 Results of the SVD-Based algorithm for several noise variances and 1=
25,m =25 107

6.23 Results of the SVD-Based algorithm for several noise variances and 1=

25,m =50 107

6.24 Results of the SVD-Based algorithm for several noise variances and 1=

25,m = 100 , 107

6.25 Results of the SVD-based algorithm using point sets of various sizes and

a2 = 0.1 . 110

6.26 Results of the SVD-based algorithm using point sets of various sizes and

a2 = 0.25 110

6.27 Results of the SVD-based algorithm in the case of unmatched points. 112

vii

(

List of Figures

2.1 A general paradigm in object recognition. i

3.2 An example of 2D global and local transformations

3.1 A pair of radiographie images from the same patient

« 3.3 Two-dimensional rigid body rotation

20

23

25

3.4 Axis-and-angle description of three-dimensional rigid body rotation 26

4.1 Example illustrating the point-correspondence problem , 38

4.2 A point-matching example in which the data sets have different cardi-

nalities , 39

(

5.1 A graph .

5.2 A Graph Isomorphism

5.3 A Subgraph Isomorphism .

5.4 A Few Examples of Trces .

5.5 Exploring A Tree Using Depth-First Search

5.6 Exploring A Tree Using Breadth-First Search

viii

55

56

5i

58

60

61

5.7 Matching congruent triangles 65

6.1 Two views of an artificially generated 3-D abject. 78

6.2 Result of running the graph matching algorithm . 80

6.3 Result of running the graph matching algorithm when the noise variance

a2 is increased .. 82

6.4 Numher of nodes visited in the matching process, under various conditions 83

6.5 Result of matching two views of the 3D "house" object 84

6.6 A Block Representation of Morgera and Lie Chin Cheong's algorithm 85

6.7 Least Squares Error Curve for SV01

6.8 Least Squares Error Curve for SV02

6.9 Effects of noise on the SVO-based algorithm

6.10 Result of matching two views of the 3D "house" object

87

87

90

91

6.11 Trends in CPU requirements as a function of noise variance, k =3 . 96

6.12 Trends in CPU requirements as a function of noise variance, k = 10 96

6.13 Plot of data splitting results, k = 3, M = 2 .

6.14 Plot of data splitting results, k =10, M =2

99

99

(

6.15 cru requirements as a function of the number of points being matched 102

ix

(

(

(

Chapter 1

Introduction

Pattern matching problems that involve two or more data sets which are related

by a geometric transformation have applications in a broad range of scientific areas.

In computer vision, pattern matching plays a key role in applications such as object

recognition, target tracking, autonomous vehicle navigation, robot guidance, and the

dynamic monitoring of production processes. The inherent usefulness of pattern match­

ing problems has also led to significant applications in areas such as photogrammetry,

image registration, aerial reconnaissance, image coding, and others. In many cases,

the application in which the matching problem arises has a strong influence on the

development, or use, of a particular algorithm to find the solution. This situation has

led to the development of enumerable methodologies for solving various forms of the

basic pattern matching problem. In this study, two recently proposed algorithms, one

based on the singular-value decomposition (SVD) of a matrix [2J, and the other based

on a recursive tree search procedure [1], are compared.

(
Chapter 1. Introduction

1.1 Overview of Point-Pattern Matching

2

(

(

When the data sets ta be matched consist of point coordinates in n-dimensional Eu­

clidean space lE", where n > 0, the problem is called point-pattern matching, or simply

point matching. The two algorithms compared in this study are point-matching tech­

niques. In general, point-matching is composed of two distinct subproblems, which are

commonly called the motion estimation problem and the point correspondence prob­

lem. These subproblems are often solved separately from one another, using dilferent

techniques; however, a single algorithm is sometimes used which encompasses both

problems. An overview of the two previous point-matching subproblems is given in the

sequel.

1.1.1 The Motion Estimation Problem

In this subproblem, a geometric transformation is sought which aligns the data sets as

closelyas possible. If the poiut coordinates in the data sets to be matched are obtained

from 2- or 3-dimensional objects, then the geometric transformation aligns the data sets

such that corresponding objects in the data sets have the same orientation and position

in a given frame of reference; furthermore, if the objects are rigid, or undeformable,

then the geometric transformation describes a rotation through one or more angles

and a translation. In the previous case, the goal of the motion cstimation problcm

is to recover thc so-called motion parameters (i.e., rotation angle(s) and translation

vector) from the estimated geometric transformation. The assumption of rigid objects

applies in many cases, and is used in a large majority of the matching algorithms in

the literature. Both the SVD-based algorithm and the tree search procedure which are

compared in this thesis assume rigid point configurations.

Chapter 1. Introduction

1.1.2 The Point Correspondence Problem

3

(

In this subproblem, a transformation is sought which establishes the correspondences

between the points in the two data sets to be matched. Many point matching problems

involve data sets for which point-to-point correspondenccs between the data sets have

not been established; moreover, the feature points in one of the data sets may not

appear in the other set duc to occlusion from other objects, self-occlusion as points

rotate out of view, shadows, etc. This situation can be represented by an appropriate

permutation of the points in one of the data sets.

If the data sets to be matched arc called the template set and the sensed set,

then the goal of the point correspondence problem can be stated as follows: for each

point in the template set, the corresponding point in the sensed set must be found,

if it exists. The mapping of points in the template set onto the sensed set which is

obtained as the solution to this problem is the desired transformation. In general, the

computational complexity of the point correspondence problem is significantly greater

than that of the motion estimation problem; accordingly, the emphasis in this study is

placed on the problem of finding point correspondenccs.

1.2 Outline of the Thesis

The thesis is organized as follows:

In Chapter 2, a review of the pertinent literature on pattern matching is pre­

sented. This chapter provides both an overview of various applications in which match­

ing problems arise and a survey of the different techniques which are used to solve them.

The overview of applications section presents several practical uses of matching tech­

niques, while introduCÎng sorne of the commonly used terminology. The survey section

presents a historical perspective on pattern matching and provides references ta the

Chapter 1. Introduction 4

(

(

numerous approaches which have been used to solve the point matching problem.

Chapter 3 presents the fundamental concepts which are nsed in most pattern

matching schemes. Specifically, a number of "basic elements" are described which are

commonly found in the literature on point-matching techniques. The latter elements

are useful for describing matching problems in general terms, and provide a framework

for comparing the two matching techniques which are the foc us of attention in this

study.

The SVD-based algorithm is described in detail, in Chapter 4. This algorithm

is based on a function optimization approach for solving both the motion estimation

problem and the point correspondence problem. The SVD-based procedure is essen­

tially a specifie implementation of the theoretical framework developed by Brockett [31.

In Chapter 4, an overview of the concepts behind the approach is given, and ail of the

relevant aspects of the aigoritilln are described in detai1.

The tree search procedure is described in detail in Chapter 5. This algorithm, by

Cheng and Don [1], is a graph-matching approach for solving the point correspondence

problem. Sorne basic concepts related to graph theory and tree search methods are

provided as background material before describing the graph-based point matching

algorithm.

Ali comparisons between the two matching algorithms are made in Chapter 6.

For the most part, this chapter describes the computer simulations that were used

to compare the two algorithms. Both the dynamic behaviour of the algorithms and

the relative speed and accuracy with which an optimal match is obtained using these

techniques are examined. A summary and discussion of the computer simulations is

given in Chapter 7.

(

(

(

Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of the pertinent literature on pattern matching. In

Section 2.2, an overview of applications in which matching problems arise is presented.

The overview gives a broad perspective on matching problems and their practicalllses,

and also provides a context in which specifie techniques can be discussed. Section 2.3

gives a survey of existing methodologies for solving point pattern matching problems.

In the survey, a broad range of techniques is presented, to provide a global view of the

different approaches which are used to solve various point pattern matching problems.

2.2 Overview of Applications

A broad perspective on matching problems and associated techniques can be acquired

by considering a number of different applications where pattern matching has been

used. In this section, sorne of the most prevalent applications in areas such as computer

vision, image registration, and a few others will be discussed.

5

Chapter 2. Literature Review

2.2.1 Vision-Based Applications

6

(

(

In computer vision, pattern matching is fundamental to many applications such as

object recognition, scene analysis, motion prediction, and trajectory planning. His­

torically, the computer vision and robotics communities have been among the most

productive in developing matching algorithms and also in publishing literature on the

subject. The important role which pattern matching plays in vision-based systems,

combined with steady improvements in both sensor and computing technologies, have

spurred a great amount of activity related to matching techniques over the past felV

decades. Moreover, fairly recent developments in range sensing devices have made

matching techniques using 3-dimensional data points popular in computer vision ap­

plications.

Matching strategies play a key role in object recognition, where the goal of the

vision system is to locate and identify objects in a particular scene. Typically, a vision

system is equipped with a camera and other sensing devices IVhich it uses to gather

data from its environment. From this data, it must derive an interpretation of objects

in a scene before proceeding to carry out a given task. Common tasks include the

assembly or inspection of manufactured parts, the analysis of microscopic images, and

the navigation of robots or autonomous vehicles. A general paradigm in model-based

object recognition is illustrated in Figure 2.1. At the data collection stage, a camera

or sorne other sensing device is used to obtain raw data which usually needs to be

processed before yielding any useful information. Once the data has been collected, it

is passed through a number of low-Ievel processing stages to extract an appropriate set

of so-called features which are later used by the matching algorithm. Low-level tasks

such as segmentation, where individual objects in an image are separated from one

another, and the process of extracting the same features on an object for each image

used in the matching process, are important problems in their own right; however, such

issues are beyond the scope of this study and will not be covered here. Once the low-

(
Chapter 2. Literature Reden' 7

On-line
Da..,

Description

1

Interpret:uion
Malching ,

---------==:t===--
Madel i--L-__--'

Orf-Iine

(

Figure 2.1: A general paradigm in object recognition. Adapted from [3J.

level processing is complete, the data is Ilsed to establish a rOllgh object representation

which is eventllally compared with object models that have been previously stored in

memory.

Object models are typically constructed either using actual objects or an ap­

propriate computer-aided design (CAO) system. When actual objects arc used, data

points on the object arc collected from several viewpoints and are then integrated in

a coherent fashion to form the mode!. In the case of CAO systems, a set of predefined

primitives are used by a computer programmer to interactively describe a particular

object. When the vision system is operated, the object models serve as a basis against

which object descriptions derived from the data are compared. By using an appropriate

matching strategy, an object sensed by the vision system may be identified as one of

the known object models, and its orientation relative to the model can be determined

as weil. A recent and comprehensive survey of techniques used in model-based object

recognition is found in [4J.

Pattern matching also plays an important role in computer vision problems

where the motion and structure of moving objects is to be inferred from a sequenCè

of images. Many applications exist in which relative motions between objects and

sensing devices are captured by time varying imagery. Common applications include

(
Chapter 2. Literature Review 8

«

(

target tracking, dynamic monitoring of production processes, cloud and weather sys­

tems tracking and robot guidance. Typically, the problems of recovering both the

structure and motion of objects from a time-ordered sequence of images can be solved

independently [5]. In structure estimation, the main objective is to estimate the po­

sitions of one or more objeets in space from the observation of a number of feature

points in two or more distinct images 1. When the objects are static, their positions

are typically derived from a pair of images taken from different viewpoints. The prob­

lem of recovering scene geometry just described is referred to as stereoscopie depth

measurement when the relative displacement of the two viewpoints is known a priori.

Given the displacement between two views of an object, a simple method based on

triangulation can be used to recover depth information from a pair of 2-D images [6].

Often, however, the ctisplacement between the two viewpoints is not known and the

method of triangulation cannot be used. Instead, the 3-D locations of objects in space

and the displacement between views must be inferred from two or more 2-D images.

Once the three-dimensional object positions are known, the so-called motion

parameters can be obtained which describe the relative motion between object~ and

sensors in the time varying images. When image sequences are used to derive the

motion parameters, the results can either be extrapolated to predict future motions or

interpolated to recover intermediate motions [7]. Such predictions are key elements in

planning safe trajectories for autonomous vehicle navigation or in determining grasp

sites for robot manipulators. In botll structure recovery and motion estimation, pattern

matching plays an important role. Details regarding the use of matching techniques in

both of the previous problems are deferred to Section 2.3.

1Alternatively, a number of laser-based techniques may be used to directly obtain a set of 3D

coordinates, or so-called range data, from the environment (4).

(
Chapter 2. Literature Re\"Îew

2.2.2 Image Processing Applications

9

«

(

Another widely nsed application of pattern matching is image registration [8J. A prob­

lem freqnently enconntered in image analysis is the need to compare images which have

been acquired at different times, by different sensors or from dilferent viewpoints. The

goal of image registration in such cases is to align the images such that meaningful

disparities between them are highlighted. A similar problem which commonly arises

in image processing involves the search for a template or reference structure within an

image. The previous problems are actually quite similar to the ones described earlier

in the context of computer vision systems; in fact, matching techniques developed for

image registration are often used in vision systems and vice-versa. Cornmon uses of im­

age registration techniques include character recognition, diagnostic medical imaging,

and remotely sensed data processing for both civilian and military applications.

The use of image registration techniques in medical image analysis illustrates

an important application, where data acquired from dilferent sensors is integrated to

provide complementary information. For each of the various modalities used in medical

imaging, including X-Ray Computed Tomography (CT), Magnetie Resonance Imag­

ing (MRI), Positron Emission Tomography (PET), and others, a particlliar type of

sensor technology is used to collect data from patients. In each case, the range of

imaging applications in which the sensors are suitable is limited. For instance, CT and

MRI are partieularly weil suited for displaying anatomical structures, but provide little

functional information [9]. On the other hand, PET scans are mostly useful for delin­

eating functional and metabolic activity, but delineate anatomy poorly [9]; therefore,

images obtained from the dilferent modalities provide complementary information. CT

and MRI also provide complementary morphologie information, since CT is especially

weil suited for depicting bony structures while MRI is better for visualizing soft tis­

sue pathology and nervous tissue [10]. By combining the data clJtained from dilferent

modalities, the shortcomings of various imaging techniques, taken individually, can be

{
Chapter 2. Literature Review

overcome to yield images with more complete diagnostic information.

10

(

As an example, consider a case where a patient's liver is to be examined from a

set of medical images. An image of the patient's liver using MRl would be appropriate

to depict anatomical structures and could be used to plan a medical procedure since

it resembles what a surgeon would see during an operation [8J. However, functional

information is poorly illustrated by the MRI image and must be obtained through sorne

other imaging modality. A SPECT (Single Photon Emission Computed Tomography)

image could be used for this purpose, after administering a suitable radio-nuclide com­

pound to the same anatomical region depicted in the MRI image [8]. The SPECT

image would highlight sorne of the functional behaviour of the liver and could be used

to distinguish between cancers and other benign lesions. By combining the complemen­

tary information available in the MRI and SPECT images, both improved diagnosis

and better surgical planning are possible. But, since the two images are typically taken

at different times, using different resolutions, and from different viewpoints they cannot

simply be overlaid [8]. By using a matching technique, the transformation mapping

image points in one image directly onto image points in the other image can be found,

and can then used to effectively combine the information provided by the MRI and

SPECT modalities.

2.2.3 Other Applications

Matching problems also arise in other areas such as astronomy, psychology, and telecom­

munications. In astronomy, a problem frequently encountered is the matching of star

lists against catalog information. Based on two-dimensional photometrie data, the

centroids (i.e. center of mass locations) of star positions can be derived to establish

so-called star lists [11]. Both new and previously acquired star lists may need to be

compared with cataloged information either for identification or to observe possible

chang- 's. Since the information used to derive separate star lists is obtained at dif-

(
ClIapter 2. Literature Reviel\" 11

(

ferent times, and from different viewpoints, cataloged star lists are not likely to be

the same as newly acquired ones. Typically, star lists differ in cardinality (i.e. , the

number of points in the lists), ordering of points, and a transformation which includes

translation, rotation and scaling [11]. The star matching problem, therefore, consists

of finding point correspondences between two star lists and the rigid transformation

which best relates the two point sets. In psychology, researchers sometimes need to

compare data obtained via non-metric multidimensional scaling techniques with sim­

ilar data compiled using more traditional factor-analytic techniques [12]. Since data

obtained using the previous techniques can be related through an appropriate choice

of rotation, translation, and scaling, a matching scheme can be used to lind the rigid

transformation which allows meaningful comparisons to be made [12]. In telecom­

munications, matching techniques have been used for inter-frame image coding [13J,

[14] [15]. By estimating the trajeetories of moving objects in a sequence of images, a

signilicant gain in data compression can be achieved [14].

2.3 Survey of Approaches

2.3.1 Early Approaches

Early approaches for solving point-matching prcblems can be traced back to Thomp­

son [16], in the area of photogrammetry. The problem studied in [16] is a classic

photogrammetric task, known as the problem of absolute orientatiotl: given measure­

ments of the coordinates of several points in different coordinate systems, the objective

is to lind the transformation which relates the two systems. In [16], Thompson linds

a least-squares solution for the absolute orientation problem for the case in which ex­

actly three points are measured. Techniques developed later by Oswal [17] and then

Horn [18J are somewhat more general and have the advantage of being able to handle

more than three points. Schiinemann and Carroll [12] treat a similar problem, while

Chapter 2. Literature Review 12

(

attempting to compare point configurations obtained through the multidimensional

scaling of psychological data. Like Horn [18], Schiinemann and Carroll develop closed­

form expressions which can be solved noniteratively. In particular, the latter authors

use an Eckart-Young decomposition [19J of an arbitrary symmetric matrix to find a

solution. The SVD-based method developed by Arun et al [20], and later refined by

Umeyama [21], is closely related to the previous approach.

2.3.2 Methods Based on Projective Relations

A substantial number of point matching algorithms have been developed, in the con­

text of computer image analysis, for the purpose of deriving both the motion and

structure of moving objects from a series of images. Early studies in motion estimation

include methods for analyzing the two-dimensional movement of clouds from a series

of satellite images [22] [23], techniques for reducing the bandwidth of television signais

through motion-compensated video coding [24] [25J, and others. Since then, numerous

algorithms have been devised with the specific intent of extracting not only motion

estimates, but also object structure from a series of images.

In many cases, the motion and structure of objects is described in terms of image

positions, recorded from different viewpoints of a given scene. Typically, approaches

to solving the pattern matching problem based on the use of image positions heavily

depend on a geometric description of the image formation process used in obtaining the

observed images. Based on the imaging model used, a number of projective relations

involving both the three-dimensional coordinates of the points and the parameters of

motion are exploited to derive a set of equations. Most often, the so-called central

projection model is used to formulate the problem, although other possibilities include

spherical, and parallel projection models. As a result, large sets of complicated non­

linear equations are derived, which usually must be solved using iterative numerical

algorithms (e.g. , [26]). Moreover, the solutions obtained are often sensitive to noise

(
Chapter 2. Literature Re"iew 13

(

and to the choice of initial guesses for the unknowns [26], [27]. Smoothing, or overdeter­

mination of the estimation equations, by using a much larger number of match points

than equations, has been suggested to reduce the effects of noise [26]. Alternatively, a

larger number of image frames may be used [28], [29].

Matching strategies baE,~d on projective relations alone have generally been

considered too computationally complex for many applications; consequently, a wide

variety of simplifying assumptions have been used to render the problem tractable.

Some of these simplifications include the use of parallel projections to model the imag­

ing process [30J, restricted motion (e.g. ,small angle rotation [31], and pure translation

or pure rotation [32]), restricted geometric configuration of objects (e.g. planar patches

[33], curved surfaces [34], points on a convex hull [35]) and known object geometry [28].

Unfortunately, matching algorithms derived under the previous restrictions are often

only approximately applicable to real images; therefore, alternatives to solving the ba­

sic nonlinear equations have been sought. Notably, some researchers have shown that

when a sufficient number of point correspondences are available (usually 7 or more),

the matching problem can be uniquely solved with a set of !inear equations [36], [34];

however, solutions obtained with the linear algorithms appear to be highly sensitive to

noise [27].

2.3.3 Methods Based on Optical Flow

Another way to describe the motion and structure of objects in images is in terms of

optiea! ftow. In rnany computer vision applications, the motion of objects is recorded

in terms of "optical velocities", or the projection of the three-dirnensional velocities

of points moving in space onto a two-dirnensional image plane. The resulting field

of two-dirnensional velocities on the image plane, a!so called the "retinal surface", is

referred to as optiea! ftow. Matching problems formu!ated in terms of optica! flow

are generally based on one of two broad classes of techniques used ta compute this

Cl18pter 2. Literature Re\'iew 14

(

(

quantity. The first class of methods compute optical flow by tracking characteristic

brightness patterns from one frame to another in a time-ordered sequence of images,

and are col1ectively referred to as Jeature-based techniques [6]. The second class of

methods, known as gradient-based techniques, derive optical flow through an equation

which relates optical velocities to spatial and temporal changes in an image, i.e.,

aJu+aJv+aJ =0
ax ay at '

where J is the image function, t is time, and u and v are the x and y components of op­

tical velocity [6]. Again, a set of nonlinear equations is generally derived by exploiting

projective relations involving point positions, and by decomposing motion into a rota­

tion and a translation [37], [38], [6]. Hence, aside from the problems associated with

obtaining accurate velocity measurements, the difficulties involved in solving systems

of nonlinear equations still remain.

2.3.4 Methods Based on Unit Quaternions

When matching is performed over three-dimensional space, a different approach to the

matching problem, based on unit quaternions, is possible. Essentially, a 3-D rotation

can be represented by a quaternion of unit norm, q, where

Ci = { Q } = { Xsin(9/2) },
q cos(9/2)

X is a (3 x 1) column vector representing the axis of rotation, and 9 is the angle

of rotation about X [39]. If the rotation matrix 6 is written in tenns of the latter

(4 x 1) vector, a quadratic expression for the matching error, e(6), can be obtained

[40]. Shuster [401 appears to have been the first to show that the optimal quaternion

which minimizes e(6) is the eigenvector associated with the largest eigenvalue of a

symmetric (4 x 4) matrix. Similar results have been obtained by Faugeras and Hebert

[41] and Horn [42], although the latter two references extend Shuster's results somewhat

to resolve issues that arise in 3-D scene analysis.

(
Chapter 2. Literature Review

2.3.5 Methods For Finding Point Correspondences

15

Ali of the techniques previously mentioned tacitly assume that the point sets to be

matched are ordered; specifically, they assume that the so-called point correspondence

problem has been solved. Several approaches for solving the point correspondence

problem alone have been devised (e.g., [IJ, [43], [44], [45], [46], [47]).]\Iany of these

approaches employa tree search procedure to execute an "exhaustive" search of ail

possible solutions to the problem. Actually, the extent of the search is usually limited

by applying various constraints which mie out unlikely paths in the search tree. With­

out such constraints, the computational requirements of an exhaustive search could

quickly become unwieldy. For instance, if the data sets contain p points and q points,

respectively, then the total number of potential pairings between the points in the two

data sets is [47]:

(p(p-l)(p-2) ... (p-q+l) , (2.1)

(

when p ~ q. If the number of points in the data sets is roughly equal (i.e., P"'" q), then

the total number of potential solutions to the matching problem is O(p!); accordingly,

the computational complexity of the tree search can quickly become unmanageable as

the number offeature points to be matched increases. The efliciency of the tree search

can, however, be vastly improved by identifying and eliminating the paths in the tree

that do not lead to an optimal solution. This is done either by incorporating simple

calculations, such as "forward checking" or "Iooking ahead" [44] in the search procedure

or by guiding the search according to an application-specific similarity metric. Often,

so called geometric constraints serve as the basis for constructing the similarity metric;

although, different criteria are sometimes used (e.g., [45]).

The use of geometric constraints to reduce the complexity of the tree search is

common in the literature. Grimson and Lozano-Perez [43] have devised a technique

for identifying and locating objects which can be modeled as polyhedra, by generating

an exploring a so-called interpretation tree. The number of potential paths to be

(
Chapter 2. Literature RevielV 16

(

(

explored in the search tree is reduced by using local constraints on distances between

object faces, angles between face normals, and angles of vectors between sensed points.

The approach proposed by Chen and Huang [47] is based on the assumption that the

point patterns are subjected only to rigid, or undeformable, motions; in this case,

local distance and angular constraints are used to reduce the size of the search tree.

Cheng and Don [1] exploit similar relationships between the feature points that are

based on the rigid motion assumption. Their method uses the point sets to construct

connected graphs whose vertices are matched by a recursive tree traversai algorithm.

Other graph-based approaches include: [48], [49], [50], [51]; notably, Gmür and Bunke

[48] use a tree search algorithm whose efficiency depends on a combination of geometric

constraints and neighbourhood relations between adjacent nodes in the graphs that are

being matched.

Several methods have been devised to solve for both point correspondences and

rigid motion parameters in a single unified approach. In Part l of Lin et al. [52], a joint

Fourier transform and correlation method is proposed to determine the 3-D motion

parameters for point sets without correspondences. Unfortunately, the cost functions

used in the algorithm, in addition to the parameters involved in their evaluation, appear

to have been selected in an ad hoc manner; moreover, the important effects of noise

and occluded points are not taken into consideration. The so-called iterative closest

point (ICP) algorithm proposed by Besl and McKay [53] handles both noisy data and

occluded points, provided that every point in the sensed data set can be paired with

a corresponding point in the template, or "model", set. This method solves the point

correspondence problem by computing the closest point on a geometric entity to a

given point in the sensed data set. The specific geometric entity that is used in the

computation depends on the internai representation of the model data and must be

known a priori. Once the closest point procedure is completed, the motion parameters

are obtained using a quaternion-based algorithm, such as the one described by Horn

[18]. The entire procedure (i.e., closest point computation and registration) is repeated

(
Chapter 2. Literature Review 17

:(

(

until a mean-square distance metric is minimized. The rate at which the ICP algorithm

converges to a local minimum is dictated by the choice of a set of initial rotations and

translations which are selected according to the "shape complexity" of the model data.

A theoretical treatment of the matching problem for both ordered and unordered

point sets has been presented by Brockett [3] and is based on the theory of Lie groups

and Lie algebras. The theoretical framework laid down in [3] essentially transforms

the point-matching problem from a diflicult combinatorial optimization problem to a

significantly simpler "calculus-type" one; consequently, a number of matrix equations

are derived, for various types of matching problems, which can be optimized in a

minimax sense. Morgera and Lie Chin Cheong [54, 2] have adopted the theory in [3] to

develop an iterative algorithm for solving the equations that were derived by Brockett.

The latter algorithm is implemented using a combination of the steepest ascent/descent

method and singular value decomposition (SVD) to find the point correspondences

and the motion parameters, respectively; although, either of the two previous methods

could be used alone to solve the general unordered point-matching problem. The use

of the SVD for solving point-pattern matching problems has many precedents in the

Iiterature. Schonemann and Carroll [121, Horn [18], Arun et al. [20], and Umeyama

[21] have aIl devised techniques which are based on the SVD for solving the motion

estimation problem; however, none of the previous approaches attempt to solve the

point correspondence problem.

In this study, the algorithm proposed by Morgera and Lie Chin Cheong [2] is

implemented, using the SVD to find both the point correspondences and the motion

parameters. This implementation is used to make comparisons, in terms of speed and

accuracy, with the graph matching approach proposed by Cheng and Don [1]. AIl

comparisons are made with regard to the point correspondence problem; although, the

SVD algorithm is used to find the motion parameters at times, for ilIustrative purposes.

{{

(

(

Chapter 3

Elements of Pattern Matching

3.1 Introduction

Given the diversity of both existing matching problems and the techniques that are

available for solving these problems, it is useful to identify sorne common attributes

that can be used for purposes of general discussion and comparative analysis. In

this chapter, sorne basic elements are described which are cornmon to most matching

schemes. The latter elements are useful for describing matching problems in general

terms, and provide a framework within which various matching techniques can be

compared.

Methodologies for solving point-matching problems can be characterized through

different combinations of choices for the fol1owing components: a feature space, a ge­

ometric transformation, a search strategy, and a similarity metric. The feature space

defines the type of information in each data set that will he used for matching. This

information typical1y describes the salient features of the data sets that can he used in

the matching process. Given the feature space, a class of mathematical transformations

is selected that can presumably he used to align the patterns. This class of transfor-

18

(
Chapter 3. Elements of Pattern kIatching 19

mations defines al! the possible relationships that can exist between the data sets to be

matched. A s€arch strategy is then devised, which determines how the features which

have been extracted from the data are to be tested in the search for an optimal trans­

formation. At this point, the definition of an optimal match is determined. The degree

of success in matching that has been achieved is measured by the similarity metrie.

Typically, matching proceeds according to the search strategy until a transformation

is found which optimizes the similarity metric in sorne sense. In virtual!y al! matching

schemes, both the design and success of the technique are influenced by the choices

made for each of the four previous components. Accordingly, these components may be

viewed as basic elements of pattern matching. In the sequel, each element is considered

in detail.

3.2 The Elements

(

3.2.1 Feature Spaces

Most matching techniques avoid analyzing large amounts of data by using only a char­

acteristic subset of the data in the matching process. This subset is typical!y obtained

through a preprocessing step which both identifies and extracts a set of so-called fea­

tures or tokens from the raw data. Commonly used features include: points, edges,

contours, surfaces, and image intensities; statistical features such as centroids or mo­

ment invariants; and, higher-level structural and syntactic descriptions [8]. The group

of features obtained from the preprocessing step defines the feature space of a partic­

ular matching procedure. If the same type of feature is extracted from each data set

involved in the matching process, only elements that are contained in the feature space

need to be matched. In this way, the amount of data to be analyzed in the matching

process is significantly reduced.

(
Cllapter 3. Elements of Pattern Matclling 20

As an example illustrating the selection of a feature space, consider the problem

of aligning two radiographie images of a patient at different times, as shown in Figure

3.1. The objective, in this case, is to lind a transformation which can correct for

differences between the two images, so that comparisons can be made for diagnostic

purposes. Instead of nsing ail of the data available in both images, a preprocessing step

can be used to remove extraneous information and to extract a set of useful features.

One approach might be to use a standard edge detection scheme as a preprocessing

step, in which case image intensities corresponding to both edges and regions of highest

contrast would deline the feature space. AnGther possibility would be to select a set of

2-dimensional positions in each image which correspond to the same set of recognizable

points in the region of interest. In this case, the features used in the matching process

would be 2-D point coordinates.

.J

.'

':~:;'~'~.." ';.\ '
" .~

.~~..4lJ4
~...,... ,,,,,(

Figure 3.1: A pair of radiographie images from the same patient

A large number of matching algorithms use so-called point features as tokens

for matching, since:

(

• point features can be obtained accurately and with relative ease,

• mathematical manipulations of points are both direct and simple,

• point-based techniques can be used over a broad range of applications.

Scanning devices that measure the 3-D coordinates of points in space have become

both accurate and readily available, due to recent improvements in laser technology

[1]. Consequently, point-based matching techniques have become increasingly attrac­

tive in a number of applications, including computer vision, remote sensing, and others.

When the data to be matched involves two-dimensional imagery, point features can be

relatively easy to identify and extract, either automatically or through human inter­

action. The automatic location of feature points is preferable when large amounts of

data are to be matched. In such cases, the features are frequent1y dominant points

along curves such as corners, !ine intersections, inflection points, points of maximum

curvature, and points along discontinuities [8]. When a small set of points is suflicient

for the matching application, landmarks can be manually selected which are known to

be stationary and can be easily pin-pointed in both data sets. Another way to obtain

feature points for matching, in image-related applications, is to place markers in the

scene which can be used as reference points. For instance, in medical imaging, identifi­

able structures, called fiducial markers, are placed in known positions in the patients to

act as reference points, or stereotactic frames are aflixed to a patient's head to provide

an identifiable three-dimensional coordinate reference frame [8].

An advantage of matching techniques which use points as tokens, instead of

using more complex features, is their ability to handle patterns of arbitrary shape.

Features having greater structural complexity, sucb as surfaces for example, often im­

pose constraints which prohibit the analysis of arbitrarily shaped patterns. There

are also several cases where matching is performed on data which does not describe

physical objects (e.g. , multidimensional scaling of data in psychology [12]); other ap­

plications exist in which point-like data is readily available (e.g. , star-matching, in

astronomy [11]). Consequent1y, point-based techniques can be useful over a wide va­

riety of applications. On the other hand, matching on the basis of individual point

comparisons, rather than using more complex features, can require a greater amount

of computational effort, since generally more comparisons have to be made.

(

:(

(

Chapter 3. Elements of Pattern lHatching 21

Chapter 3. Elements of Pattern Matching

3.2.2 Geometrie Transformations

22

(

Having chosen a feature space for matching, a mathematical transformation must be

selected which is presumably capable of bringing the data set to be matched into

alignment. In most cases, the transformation can be el'pressed as a matril' which

describes the computations that are necessary for mapping point-coordinates in one

data set onto point-coordinates in the other data set. When the mapping is geometric in

nature (i.e. , angles, lengths, etc. are involved), it is called a geometric transformation.

A few important assumptions must be made when selecting an appropriate

transformation for a particular matching problem. One of these assumptions involves

the dimensionality of the data points that will be manipulated by the transformation.

Most methods assume that the data to be matched lie in two- or three-dimensional

space; however, matching problems can arise in any dimension. For instance, a 4-D

problem arises when matching a time series of 3-D images [55J. Matching can also

be performed on data sets of different dimensionality. For el'ample, data Iying in the

n-dimensional Euclidean space, IEn
, may be matched with data in the m-dimensional

Euclidean space, IEm
, where m # n [2J.

Another important consideration is the domain over which transformations in

the search space are applicable to the data. Essentially, matching transformations can

either be global or local. A global transformation has parameters which influence the

transformation of a data set as a whole. In contrast, the parameters of a local trans­

formation affect only certain parts of the data set; hence, the mapping effected by a

local transformation may be considered as the union of several smaller maps which are

applicable to different parts of the data. The difference between local and global trans­

formations is illustrated in Figure 3.2. Local transformations can account for many

types of variations between data sets in a computationally efficient manner vis-à-vis

global ones. For instance, in image processing applications, local transformations may

be necessary to describe position-dependent variations such as object deformations,

Chapter 3. Elements of Pattern 1I1atching

Glnhlll Mapplnll of A - D

Pllltern A Puncrn A

Lc.~W Marl"ing uf A - B

23

«

(

Figure 3.2: An example of 20 global and local transformations

perspective distortions of complex 3-D scenes, or nonlinear distortions due to sensors

[8]. Global transformations are generally inelfective in such cases, since they assume

that only one variation exists over the entire image and, therefore, preclude the pos­

sibility of independent local changes. Nevertheless, the use of a global transformation

is applicable in many cases; hence, the increase in complexity involved in finding local

mappings is often unjustified. Moreover, it is always possible to apply "global" tech­

niques to local areas in the data, and then describe the overall mapping in a piecewise

fashion. The point-matching approaches that are compared in this study search for

global transformations.

The selection of a particular class of transformations which best suits the data

to be matched is yet another important consideration. The most commonly used

transformation classes in pattern matching are: rigid, affine, perspective, and curved.

Rigid transfonnations preserve a number of mathematical relationships, such as the

distances between points and the angles between lines, when mapping points in one

data set onto points in another data set. Consequently, this class of transformations

is useful for describing the motion of undeformable, or rigid, objects. Affine transfor­

mations are characterized by the property that straight lines are mapped onto straight

lines, while preserving parallelism; therefore, this class of transformations can account

for distortions such as scaling, which may or may not be uniform, and shearing. Per-

speetive transfannatians appear mostly in image-related applications and can account

for distortions that arise from the projection of objects at varying distances to the sen­

sor onto the image plane [8]. Curved transfannatians map straight !ines onto curves,

and can account for any type of object distortion. Sorne important properties of the

previous transformation classes will be discussed in the seque!.

(
C1Japter 3. Elements of Pattern MatclJing 24

Rigid transformations can be decomposed into a rotation through one or more

angles, and a translation [3iJ. Accordingly, the mapping of an m-dimensional coor­

dinate vector Pl onto an n-dimensional vector P2 by a rigid transformation can be

expressed by the equation:

P2 = SPI +t, (3.1)

where S is an (n x m)-dimensional rotation matrix, and t is an n-dimensional transla­

tion vector. In most matching schemes, m =n; nevertheless, the previous equation is

expressed in general terms to include the possibility of matching data sets from differ­

ent dimensions. Imp!icit in (3.1) is the constraint that the rotation matrix S must be

orthogonal, when m = n. This mathematical property ensures that the lengths of a11

!ines in the data set and the angles between them arc preserved by the mapping. The

(n x n)-dimensional matrix S is orthogonal if

(3.2)

where ln is the n-dimensional identity matrix. When mi' n, the (n x m)-dimensional

matrix S(::,) must satisfy the equation:

(3.3)

(

where ST(::,) is (m x n)-dimensional, and lm is the m-dimensional identity matrix

[2]. Since, in the previous case, S(::,) is not a square matrix, only its columns arc

orthonormal to each other and, therefore, the product ST(::,)S(::') i' ln; hence, the

matrix which satisfies (3.3) is not an orthogonal transformation but is known instead as

a partial isametry matrix [56]. In both cases, the transformation S is a proper rotation

(
Cllapter 3. Elements of Pattern Matching 25

(

(

matrix if and only if its determinant is +1; a transformation 8 having a determinant

of -1 is called an improper rotation, or a reflection [39].

Orthogonal rotation matrices that satisfy (3.1) can he expressed in terms of the

geometric quantities which define a rigid-body motion. For instance, when ni = n =2,

the rotation of a two-dimensional rigid body is expressed in terms of a rotation angle,

'P, as

8 2D =(c~s 'P ± sin 'P) . (3.4)
sm 'P 'f cos 'P

A two-dimensional rigid body rotation is illustrated in Figure 3.3. When ni = n = 3,

Figure 3.3: Two-dimensional rigid body rotation

many different representations are possible for the rotation matrix, including Euler

angles, the Gibbs vector, Cayley-Klein parameters, Pauli-spin matrices, axis-and-angle

systems, and Hamilton's quaternions [39]. In particular, Euler angles and axis-and­

angle systems are often used in the literature on pattern matching. When Euler angles

are used, the three-dimensional rotation of a rigid body is described as the result of

rotating the body through tlnee angles: Oz> Oy, and Oz> about the x, y, and z axes,

respectively. Equivalently, a rigid body that has undergone any sequence of rotations

can be described by a single rotation of that body through an angle 0 about an axis n;

hence, the axis-and-angle representation. If the previous representation is used, then

Cbapter 3. Elements of Pattern lIJatcbing

the 3D rotation matrix, El3D is given by,

(

n~(l - c) + c nxny(l - c) - n,s

El3D ,;, nxny(l - c) + nzs n;(1 - c) + c
nxn,(l - c) - nys nyn,(l - c) + nxs

nxn,(l - c) + nys)
nynz(l - c) - nxs ,

n;(1- c) + c

26

(3.5)

where s = sin Il, c = cos Il, and (nI> ny, nz) is the directional cosine of the rotation a.xis,

ft, such that n~+n; +n; = 1. The axis-and-angle description of 3D rigid body rotation

is illustrated in Figure 3.4.

y

(

R

x

z

Figure 3.4: Axis-and-angle description of three-dimensional rigid body rotation

Affine transformations can be decomposed into a linear transformation and a

translation. Accordingly, n-dimensional affine transformations can be expressed in a

form similar to (3.1),

P2 = ApI +t, (3.6)

(

where Pl , P2 and t are the same as in (3.1) and A is a real-valned matrix. The main

dilference between affine and rigid transformations is that the matrix A of (3.6) is not

necessarily orthogonal and, therefore, angles and lengths are no longer preserved by

the mapping; however, parallel lines still remain parallel [8]. Affine transformations

(
Cllapter 3. Elements of Pattern MatdJing 2ï

are useful when the relationships between the points involve changes in aspect ratio,

or other scalc-rclated distortions.

Perspective transformations are typically used to account for the distortion

which occurs when a 30 scene is projected onto a 20 image plane. This class of

transformations maps straight lines in one data set onto straight lines in the other

data set, but does not necessarily presen'e any parallel relationships that may exist

between the lines [5ï]. Projective transformations can be mathematically expressed as

a linear transformation in a higher dimensional space. For instance, a 20 mapping of

the point (x, y) onto the point (x', y') can be expressed as [5ï]:

(') (/) (u) (au a12 a
13

) (X)~I = ~/: ,where v = a21 a22 a23 y,
w a31 a32 a33 1

(3.i)

(
and w represents the extra so-called homogeneous coordinate.

Curved transformations can map a straight line onto a curve, and are generally

expressed by a real-valued function in 11 variables, for 11-0 mappings. A well-known

class of curved transformation functions are the transformations of polynomial type.

For instance, a polynomial function in 20 can be expressed as [5i]:

x' (3.8)

(

yi boo + blOx + bOl Y + b20x2 + bu xy + b02y2 + ... ,

where (x, y) and (x', yi) are the 2D points before and after the transformation, respec­

tively. Curved transformations can account for any type of (object) distortion and,

therefore, represent the most general type of transformation described in this section;

however, the nonlinear nature of the equations which describe the mapping of points

between the data sets makes them diflicult to solve.

Chapter 3. Elements of Pattern l'vlatching

3.2.3 Search Strategies

28

(

The search strategy of a matching technique dictates how the search for an optimal

transformation is conducted. In many cases, the choice of a particular search strategy

is largely influenced by the characteristics of the feature space. For example, the

generalized Hough transform was developed with the specific intent of matching shapes

from contours [8]. AIso, data sets which have been stored as trees or relational graphs

are efficiently matched by search strategies which are specifically developed to hanclle

such data structures [44]. Other important considerations in selecting a search strategy

are: how the strategy deals with missing information, whether the strategy can be

implemented in parallel, what assumptions are made by the strategy, and what the

typical storage and computational costs are.

Search strategies can be roughly classified into two categories: direct or search­

oriented [57]. Direct methods compute the transformation parameters in a straight­

forward manner, and are usually based on lists of corresponding points [57]. A short­

coming of direct methods is that simplifications of a matching problem are often needed

to permit the use of straight-forward calculations in finding the required transforma­

tion [57]. Such simplifications usually either limit the usefulness of the technique or

significantly reduce the accuracy of its result.

Search-oriented techniques typically start from one or more initial guesses, and

use a similarity metric to guide the search for an optimal transformation. Consequently,

the success of a search-based method is largely affected by the characteristics of the

similarity metric which it employs. A key objective in the design of a search-based

method is to construct a similarity metric, or rating function, that rates candidates

in a reasonable way. Typically, the rating function needs to be evaluated very often;

therefore, a comprise between the accuracy of the rating function and the computa­

tional speed of the algorithm is sometimes necessary [57]. The general behaviour of

the rating function is another important consideration in search-based methods. If the

(
Cllapter 3. Elements of Pattern Matching 29

(

rating function has only one extremum, then simple and relatively fast strategies such

as the method of steepest descent can be used to find the optimal transformation. In

many cases, however, the rating function is not weil behaved, in the sense that many

local extrema exist, which usually calls for a compromise between the speed and the

accuracy of the search strategy [57]. AIso, search strategies that employ ill-hehaved

rating functions often lead to sub-optimal results [57].

3.2.4 Similarity Metrics

The similarity metrie measures how closely two patterns are matched. Based on this

metrie, potential matches can he compared to determine which transformation from the

search space minimizes the error in matching. Perfect matches (i.e., solutions with zero

error) cannot he obtained in reai applications, since noises duc to optics, scanners, or

other factors, such as quantization and feature extraction, invariably corrupt the data.

An important source of errors in range images is attributed to inaccuracies in the x, y

and z coordinate measurements that are obtained using a variety of methods [58,59].

These inaccuracies are typically modeled as additive Gaussian stochastic processes and

are often assumed to exist largely in the z (i.e., depth) coordinate [41; however, the

noise level inherent in each coordinate measurement is not equal, in practice, and

depends on hoth the characteristics and the physicallimitations of the sensors [58, 591.

Other errors, which may be introduced by the matching strategy itself, must also he

taken into account. Consequently, matching techniques strive to obtain an optimal

transformation, which yields the best match vis-à-vis the similarity metric.

A large number of pattern matching techniques use a particular instance of the

so-called Lp-norm as the similarity metric, viz. , :

where x is a vector in n-dimensional Euclidean space,]En, f(x) and g(x) are real-
(

(fs If(x) - g(xWdx) llP, (3.9)

valued funetionals defined over the region S c lE", and 1 :5 p < 00. A similar criterion

exists for discrete-time applications, known as the fp-norm, where the integral in the

expression above is replaced by an appropriate number of summations, and finite limits

are imposed on S. If the functionals f(x) and g(x) are interpreted as the reference

pattern and the approximation to the reference pattern, respectively, then (3.9) can be

re-written as:

(
Cllapter 3. Elements of Pattern Matcbing

(Is le(x) IPdx) l/p ,

30

(3.10)

(

where e(x) is a real-valued functional defined over the region S c lE", and which

represents the error of the matching process. From the previous equation, it is seen

that the Lp-norm decreases with increasing similarity between the two patterns being

matched; moreover, the smallest value of the metric is attained when f(x) = g(x) or,

equivalently, when the error e(x) =o.

Two commonly used instances of the Lp-norm in pattern matching are the LI­

norm and the L2-norm. When the value of pin (3.9) is p = l, the LI-norm is given

by:

Is If(x) - g(x)1 dx, (3.11)

which is also known as the sum of absolute differences. This metric has been shown to

work weil for the registration of images when the transformation involves only small

rotations, translations, or scale changes [60]. Perhaps the most commonly used metric

in pattern matching is the sum of squares of differences, also known as the [east squares

criterion:

Is If(x) - g(x)l2 dx, (3.12)

(

which is the L2-norm squared. A disadvantage of methods that are based on least­

squares estimation is that they perform poody in the presence of outliers (e.g. points

severely corrupted by noise) or point correspondence mismatches [61]. ln such in­

stances, methods based on the so-called [east median of squares estimator (LMedS) are

better suited to solve the motion estimation problem [61, 62].

(
Chapter 3. Elements of Pattern Matching 31

A similarity measure which is closely related to the L2-norm is the cross­

correlation metric. Cross-correlation is mostly used in image processing applications

such as template matching or pattern recognition, where the location and orientation of

a template or pattern in an image is to be determined. Many image registration tech­

niques use cross-correlation both as a similarity metric and as a sem'ch strategy [63],

[52], [64]. The goal of these techniques is to maximize the so-called cross correlation

junction, which can be expressed in two-dimensional real space as:

C(u, v) = lx J. j(x, y)g(x - u, y - v)dxdy, (3.13)

(

(

where j is the template, 9 is the image, and the dimensions of the template are much

smaller than those of the image. If the template and the image are exactly equal

at a translation (u, v) = (i,j), then the match is indicated by a peak in the eross­

correlation at C(i,j) [8]. Conventional cross correlation techniques generally have the

desirable properties of being simple, flexible and amenable to digital, optical, and

electro-optical implementation [54]. Moreover, the latter techniques are robust in the

presence of random, or white, noise, which is usually an adequate way to represent

the noise sources responsible for corrupting the data to be matched. Since the cross­

correlation metric needs to computed for each allowable transformation and for each

position in an image, however, the computational costs quickly become unmanageable

as the number of possible transformations grows. Hence, the usefulness of conventional

cross correlation methods is generally limited to low-dimensional matching problems

(n ~ 2) which are further restricted to small rigid or affine transformations [8].

Other similarity measures exist, many of which are largely dependent on the

properties of the data or on the specific nature of the search strategy. The so-called

"fitness function" that is used in the genetic algorithm by Ansari et al. [45] is a good

example of this. Also, in structural or syntactic techniques, where patterns are stored

as hierarchical structures including trees and graphs, specialized metrics are devised,

based on the properties of the data structures or on various relations of interest. A

(
Chapter 3. Elements of Pattern Matching 32

(

(

few examples include: the distance between candidate graphs [48] and the change of

entropy between "random" graphs [51]. Tree-search methods sometimes use the error

accumulated in searching a specific path of the tree as the similarity metric (e.g. [1],

[4i]). The so-called k-th order errormeasure, which is used in the tree-search procedure

proposed by Cheng and Don [1], is an example of the previous similarity metric. A

detailed description of this error measure is given in Chapter 5.

3.3 Summary

In this chapter, four basic elements which can be identified in virtually ail pattern

matching techniques were presented; namely, the feature space, the geometric trans­

formation, the search strategy, and the similarity metric. By selecting an appropriate

feature space, the data which is used in the matching process can be significantly

reduced. Commonly used feature spaces include: points, edges, surfaces, image inten­

sities, and others. The choice of a geometric transformation determines in what way

the data sets being matched can be brought into alignment. The transformation can

either be global or local, depending on whether a single transformation is sufficient

for aligning the data sets, or whether several transformations need to be applied to

various local regions in the data sets, respectively. The transformation must also be

selected from among the various existing classes of transformations, which include:

rigid transformations, affine transformations, projective transformations, and curved

transformations. Search strategies for obtaining the assumed transformation were dis­

cussed in a general manner. Two types of search strategies were discussed; namely,

direct methods, and search-oriented methods. In the latter case, the similarity metric

is intimately involved in the searching process. Some of the similarity metrics that

were discussed include: the sum of absolute differences, the method of least squares,

and cross-correlation. The previous metrics are commonly used in pattern matching.

A few other similacity metrics, which are less frequently encountered in the literature,

were also briefly discussed.

(

«

(

Chapter 4

An SVD-Based Algorithm

4.1 Introduction

The task of finding point correspondences, in matching problems for which the data

sets are unordered, is known to be combinatorial in nature; consequently, the number

of computations which are required to find an optimal solution to the point correspon­

dence problem, can quickly becorne unmanageable. Brockett [3] has demoustrated,

however, that this difficnlt cornbinatorial optirnization problem cau be cast into a dif­

ferentiable, or "calculus-type" setting, which greatly reduces its inherent complexity.

This reduction in complexity is achieved by formulating the rnatching problern using

the theory of Lie groups and Lie algebras, making it possible to recast various types

of point matching problerns as function optimization problems. Morgera and Lie Chin

Cheong [54] have taken Brockett's work one step further, by developing an algorithrn

for solving these function optimization problems. The algorithrn is iterative, and uses

the SVD as a primary tool for finding the optimal solution. In this chapter, the iter­

ative point matching algorithrn proposed by Morgera and Lie Chin Cheong [54, 2J is

reviewed.

33

Cbapter 4. An SVD-Based .41goritbm 34

(

(

In Section 4.2, a mathematical description of various point matching problems is

given. For convenience, the mathematical formulations in this section use the same no­

tation as in [54, 2]; notwithstanding, the matching problems which arc presented in this

chapter are not specilic to any application or technique. In Section 4.3, the background

behind Morgera and Lie Chin Cheong's approach is briefly presented; specilically, the

functionals that are involved in the optimization process are discussed, for a particular

type of point matching problem. The algorithm for solving the previous problem is

described in Section 4.4. Extensions of the theory, to include other point matching

problems, arc discussed in Section 4.5.

4.2 Problem Formulation

In this section, a formai mathematical description of various point-matching problems is

addressed. Let the two point sets {Xi: i = 1,2, ... ,p} E]En and {Yi: i = 1,2, ... ,q}

E]Em represent the patterns to be matched, where]En and]Em denote n- and m­

dimensional Euclidean spaces, respectively. Using this general notation, Il number of

different point-matching problems can be delined, according to whether or not the

point sets have the same cardinality (i. e. , equal number of points) and whether the

point sets are from spaces having the same or different dimensionality. The cardinality

of the point sets is denoted by the pair (p, q); whereas, the dimensionality of the data

is denoted by the pair (m, ni. In realistic applications, the number of points in the

data sets are not equal (i.e. , p # q). This difference in cardinality between the point

sets is often the result of occlusion. In the previous case, certain points may disappear,

or others may arise because objects are either partially or completely hidden by the

presence of other objects or shadows, or because certain features are rotated out of

view [65]. When p = q, it is still possible to have points in both data sets which have

no correspondences; hence, matching problems in which p =q do not necessarily imply

that a one-to-one correspondence exists between the points in the two patterns. In

(
Chapter 4. An SVD-Based AIgorithm 35

(

most cases, the data sets contain points which have been measured in spaces having

the same dimensionality (i.e. , m = n); however, sorne applications exist where point

sets from dilferent dimensions need to be matched.

Point-matching problems can also be defined as ordered or unordered, depending

on whether or not the correspondences between the feature points in the two data sets

are known. If the data sets are arranged such that XI corresponds to YI, X2 corresponds

to Y2, and so on, then the point sets are said to be ordered. In general, the data is not

arranged in this way and, therefore, the ordering of the points in the data sets should be

considered arbitrary. An exception to this is when the features are extracted explicitly

by the user, in which case the correspondences are known a priori; thus, whether or

not ordered data can be assumed depends on the application. In the sequel, several of

the previous point-matching problems will be formulated in mathematical terms.

4.2.1 Matching of Point Sets With the Same Cardinality

Case A: Ordered Data

Suppose the two patterns take the form of orderedn-tuples, {Xi: i = 1,2, ., . ,p},

and {Yi: i = 1,2, ... ,p}, which will be called the the sensed data set and the template

data set, respectively, from now on. Further, assume that both patterns lie in the

n-dimensional Euclidean space, !En. If the geometric transformation is assumed to

belong to the class of rigid transformations, then the points in the sensed data set and

the template data set are related by a noisy rigid motion model, which is given by [54]:

Xi = </J(Yi) +b + ni , (4.1)

(

where </J(Yi) denotes the rotated version of the vector Yi, b is an n-dimensional column

vector representing a translation in !En, and the ni are stochastic zero mean noise

vectors which are mutually statistically independent. The operator </J is used to denote

;(
Chapter 4. .<ln SVD-Based Algorithm 36

rotations, in the context of Lie groups; specifically, cf> E <I>, a representation of the

orthogonal Lie group [54, 2]. By the same token, we assume that cf> acts linearly on a

vector x E !En such that cf>(x) ~ STx , where S is an n-dimensional rotation matrix.

The operator cf> must also preserve lengths, such that

(4.2)

where the notation 11·11 denotes the Euclidean norm, and Ilx; 11 2 = xlXi is the square of

the length of the vector Xi'. Note that (4.2) is equivalent to the constraint: SST = In,

which was discussed in Section 3.2.2.

If the least squares criterion is used as the similarity metric, then the objective

of this matching problem is to minimize the function

p

((S, b) = L 11r/J(xi) - Yi - bll 2
,

i=l

(4.3)

with respect to (S, b). The previous equation can be simplified, by virtue of the so­

called centroid coincidence theorem [52], which states: if the least-squares solution to

(4.3) is (S', b'), where S'and b' are the optimal rotation matrix and the optimal

translation vector, respectively, then the two point sets {Xi} and {X; == S'Yi + b'}

have the same centroid; that is, if the centroids of the patterns {Xi}, {X' i}, and {Yi}

are given by:

x' S'y+b' ,

(4.4)

(4.5)

(4.6)

(

respectively, then x = x'. The previous theorem is useful in demonstrating that the

translation vector b can be eliminated from (4.3) if, for each of the patterns to be

IThe Euclidean norm of a vector x E En is defined as IIxll = (E~=l e~) 1/2 , where ek are the

elements of the vector x [39].

(
Chapter 4. An SVD-Based Algorithm 37

matched, the corresponding centroid is removed before applying the matching tech­

nique; specifically, let

x~' Xi -x and

Then,

y~'

Xi - (aYi+b)

Yi-Y'

x~' - ey~' ,

(4.7)

(4.8)

since x = x' = ay + b. Hence, (4.3) can be rewritten as,

p p

E(a) =L II</>(xi) - ydl 2 =L lIaTxi - ydl 2
,

i::;l i=l
(4.9)

where {Xi} and {y;} represent the sensed data set and the template data set, respec­

tively, with their corresponding centroids removed. Given the optimal rotation matrix

a' which minimizes (4.9), the optimal translation, b', is given by:

b' =x-a'y,

where x and Y are the centroids of the patterns {Xi} and {Yi}, respectively.

Case B: Unordered Data

(4.10)

(

Now, suppose that {Xi: i = 1,2, ... ,pl, and {Yi: i = 1,2, ... ,pl, are unordered.

In this case, the search space must be extended to include not only the set of ail pos­

sible rigid transformations, but also the set of ail permutations of the integers Zp ==

{1, 2, ... ,pl. To include permutations in the noisy rigid motion model, we first define

the (n x p)-dimensional matrices X = [Xl X2 .,. xp] and Y = [YI Y2 ... Yp]. The

shuming, or reordering, of data points can then be represented by a p-dimensional

permutation matrix II which acts on the point set {Xi : i =1, 2, ... , p} according to

(
Chapter 4. An SVD-Based Algorithm 38

{X~(i) : i = 1,2, ... ,p} -+ XII. The matrix II reorders the columns of X according to

the correspondence which exists between the feature points of the two patterns. For

the unordered problem, the noisy rigid motion model can be written as:

X~(i) = .p(y;} +b + ni , (4.11)

(

where X~(i) denotes the point in the sensed data set which corresponds to the ith point

in the template data set. A simple example illustrating the relationships between the

point sets {Xi}' {X~(i)}, and {Yi} is given in Figure 4.1.

Pt. Correspondences:

Xl-YI

X~-Y2
XS- Y3

XI - Y4

X2- YS

Optimal Soiution:

xn' =[x) X
4

X
5

xI x2J

Figure 4.1: Example illustrating the point-correspondence problem

Since the shuflling operation does not affect the computation of the centroids,

translations do not neccl to be considered in the optimization procedure, as in Case A;

therefore, only e and II need to be solved for. If the centroids of {x;} and {Yi} are

removed, as before, then the objective of the noisy point-pattern matching problem

with permutations is to jointly determine the matrices e and II such that the function
p

€(e, II) =L Il.p(x~(i)) - Yil1 2 = IleTXII - YII~
i::;l

(4.12)

(

is minimized, where Il'IIF denotes the Frobenius (Hilbert-Schmidt) norm2 . As in case

2The Frobenius norm of a matrix A is defined as IIAIIF = (EiE;ar;)'/2, where ai; arc the

clements of the matrix A [39J.

(
Chapter 4. An SVD-Based Algorithm 39

A, the optimal translation, b' can be determined using the optimal rotation estimate

e' and the centroids of the patterns, according to (4.10).

4.2.2 Matching of Point Sets With Different Cardinality

In this problem, the two patterns to be matched take the form {Xi: i = 1,2, ... ,pl
and {Yi: i = 1,2, ... , q}, where p > q. Specifically, we consider the case where ail of

the points in the template set have a correspondence with q out of the p points in the

sensed data set, leaving p - q points unmatched. This type of matching problem can

arise, for example, when sorne of the points in the sensed data set are either missing

or occluded in the template data set. Equivalently, the template data set may have

more points than the sensed data set, in which case al! of the sensed points have a

correspondence in the template. An example of the former problem is illustrated in

Figure 4.2.

Template Data Sel Point
Correspondc:nc\'s

'16- YI

'17- Y2

'IS- Y3

'21- Y4

'S- YS

'9- Y6
x20- Y7

'19- Ys

'23- Y9

'15- YIO

(

Figure 4.2: A point-matching example in which the data sets have different cardinal­

ities

Chapter 4. An SVD-Based Aigorithm 40

This matching problem can be formulated as in the previous subsection, for

the general unordered case, with the following exception: instead of searching for the

p-dimensional permutation matrix II which is a permutation of the integers Zp =
{l, 2, ... ,pl, we now look for the (p x q)-dimensional matrix II(~) which is a permu­

tation of q integers out of a possible p integers. To lind the optimal transformation

e", in this case, we must determine which of the q points in the sensed data set pro­

vide the best match between the patterns. It should be noted that, unlike the square

(p x p)-dimensional matrix II, where IITII = IIIIT = Ip , the (p x q)-dimensional

matrix II(~) consists of (p - q) row vectors which are zero; consequently, the prod­

uct IIT(~)II(~) = I q, where I q is the q-dimensional identity matrix, while the product

II(~)IIT(~) is a diagonal matrix with q ones and (p- q) zeros as its diagonal elements.

Deline the (n x p)- and (n x q)-dimensional matrices

{ x
y

[Xl Xz •• , Xp] ,

[YI yz .. , Yq] ,

(4.13)

(4.14)

where {Xi} and {y;} are the sensed points and the template points, respectively, with

their corresponding centroid removed 3. Then, the function to be minimized with

respect to (e, II(~)) is:

(4.15)

(

Once again, the optimal translation b" can be determined using the optimal rotation

estimate e" and the centroids of the patterns, according to (4.10).

4.2.3 Matching of Point Sets from Different Dimensions

In the previous subsections, the point patterns to be matched were always assumed to

lie in the same Euclidean space !En. Now, suppose that the patterns {Xi : i = 1,2, ... , p}

3Note that the centroid of the template set now becomes y = ~ L:1=1 Yi

and {Yi: i =1,2, ... , p} consist of vectors in lEn and lEm, respectively, where n > m.

This problem is essentially the same as the one in the previous subsection, except that

the dimensions of the matrix El are nm-; <:hanged from (n x n) to (n x m). To maintaill

the rigidity constraint, the rotation matrix El(::,) must satisfy the relation:

(
Chapter 4. An SVD-Based Algorithm 41

(4.16)

(

where lm is the m-dimensional identity matrix. Under this new cOllstraint, the func­

tional f(El(::'), II) to be minimized with respect to (El(::,), II), for the gelleral case of

unordered data, is given by

p

f(El(::'), II) =L 11q,(x'(i») - ydl 2 = IIElT (;:')XII - YII~ , (4.1 i)
i=l

where X = [Xl X2 .. _ XpJ is an (n x p)-dimensiollal matrix, and Y = [YI Y2 ... ypJ is

an (m x p)-dimensiollal matrix. When the data sets have a different number of points

(i.e. p # q), (4.1i) becomes:

p

f(El(~.), II(~)) = L 1Iq,(x'(i») - Yil1 2 = IIElT(;:')XII(~) - YII~ , (4.18)
i=l

where II(~) is the (p x q)-dimensional permutation matrix discussed in Section 4.2.2,

and Y = [YI Y2 .. , Yql is an (m x q)-dimensional matrix.

4.3 Point-Matching As a Function Optimization Prob­

lem

In this section, the theory behind Morgera and Lie Chin Cheong's 111gorithm [2, 54] is

brielly presented. The objective is to describe the basic approach, and to introduce

the functionals which are illvolved in the optimization process, for a particular type of

matching problem; namely, the point matching problem in which the data sets have

the same cardinality (c.f. Section 4.2.1). The theory of Lie groups and Lie algebras

(
Chapter 4. An SVD-Based Algorithm 42

which, indeed, is an integral part of the approach, is beyond the scopc of this discussion

and will not be considered here. Interested readers are referred to [66] for a general

treatment of the subject; also, the application of Lie groups and Lie algebras in point

matching problems is discussed in detail in [2, 3, 54].

Consider, once again, the problem of matching two data sets having the same

cardinality, and whose points are unordered. In this case, the objective is to minimize

the least squares error function,

P

€(0, II) =L 1Iet>(x'(i») - Yil1 2 = 110T XII - YII},
i=l

(4.19)

(

(

with respect to (0, II). One way to solve this problem, while reducing its complexity,

is to assume that the optimization problems in 0 and II are separable, and to solve

for one of the transformation matrices, while keeping the other fixed. In this way, it

is possible to derive functions of one variable only, which can be solved in an iterative

manner; hence, the least squares problem defined by (4.19) is recast as a function

optimization problem. The previous approach was first presented by Brockett [3], and

was later adopted by Morgera and Lie Chin Cheong [2], who also providcd a proof for

the separability of the matching problem.

Suppose that the solution for 0 is sought first, while keeping II constant4 • This

can be done by searching for the symmetric functions of the sensed data points that are

independent of the permutation II and which will map under et> to the same symmetric

functions, when evaluated on the template points. For example, the centroid of the

sensed data set, Je = ~ Ef=l Xi, maps under et> to the centroid of the template data set,

y = ~ Ef=l Yi· Similarly, the second moment of the sensed data set, Q = ~ Ef=l XiX;'

maps under et> onto the corresponding second moment for the template data set, N =
~ Ef=l Yiyr In the method proposed by Morgera and Lie Chin Cheong, the previous

symmetric functions are used in the matching procedure for finding 0', the optimal

'The case where TI is found first, while El is kept fixed, is not discussed here, for the sake of brevity.

Interested readers are referred ta [54J or [2] for details.

Chapter 4. .4.n SVD-Based AIgorithm 43

rotation matrix. That is, the symmetric (second moment) functions are matched, such

that the functional

is minimized.

a = I!t/J(Q) - Nil} (4.20)

No\\", if t/J E <P, a representation of the orthogonal Lie group, and if, further, t/J

acts linearly on vectors in !En, then the orthogonal group acts on the (n x n) symmetric

matrix Q via the tensor product a <8> a; that is [541:

(4.21)

Using the previous fact, it can be shown that minimizing a, in (4.20), is equivalent to

maximizing the function

g(a) = tr(aTQaN), (4.22)

where tr(-) denotes the trace of an n-dimensional matrix 5, and \Vith a restricted

to belong to the (n x n) orthogonal group of matrices O(n) [54]. Once the optimal

rotation matrix a' is found, the objective is to find the permutation matrix II that

will minimize f(a',II), in (4.19). This can be achieved by maximizing the function

f(II) = tr(ZIIyT) (4.23)

(

as shown in [54], where Z = a,Tx. Further, if the p-dimensional diagonal matrices

Dz; and Dy; are formed from the ith rows of Z and Y, respectively, then (4.23) can

be rewritten as [54]:
n

f(II) = Ltr(IITDziIIDyJ (4.24)
i==l

Since the permutation matrices are a subset of the orthogonal matrices [54], (4.24) can

be seen as a special case of the functional g(a) (c.f. (4.22)).

To minimize the least squares error function f(a, II), in (4.19), Morgera and

Lie Chin Cheong have proposed the following three-step procedure [2]:

5The trace of an n·dimensional matrix A = [~" {" ... , ~nl, where ~i, i = 1,2, ... ,71 are n­

dimensional column vectors, is given by: tr(A} = ~?=l ~I(i}.

1. Find the orthogonal matrix ë' E O(n) which maximizes the function 9(a) =
tr(aTQaN), where Q = XXT and N =yyT.

(
Chapter 4. An SVD-Based Algorithm 44

2. Find the permutation matrix II' which ma.ximizes the function f(II) = tr(Z'IIyT),

where Z· = S·TX .

3. Find the exact transformation matrix a' by computing M-T(M™)1/2, where

M =XII'yT.

Note that, in Step 2, the function f(II) is ma.ximized over the set of (p xp)-dimensional

permutation matrices II, which are actually a subset of the (p x p)-dimensional orthog­

onal matrices 'li E O(p); consequently, the initial value of a that is obtained in Step 1

might not correspond exactly to the optimum transformation matrix for the solution of

the permutation matrix II'. By considering the transformation matrices a E O(n) as

a continuous set, or space, and the permutation matrices {II} as a discrete set, there

exists a range of rotation estimates a' that can yield the same optimal permutation

matrix II', when f(II) is maximized in Step 2 of the algorithm [2J. But, once II' is

determined, it can be shown that minimizing {(a, II') is equivalent to ma.ximizing a

function having the form f(a) = tr(MaT) [54]. The previous optimization problem

turns out to have a unique solution a' which can be obtained from the closed-form

expression [54]

(4.25)

{

where M = XII'yT, and the square root matrix (MTM)lf2 is taken to be positive

definite; hence, a', in Step 3, is referred to as the exact transformation matrix. It

should be noted that, when the data sets are ordered (i.e. II =1), the optimum

solution to the point-matching problem can be obtained via the closed-form expression

of (4.25), where M = XyT [2].

(
Chapter 4. .4.n SVD-Based .4.lgoritllm

4.4 The Algorithm

45

(

Given the functionals that were presented in Section 4.3, a number of well-known

iterative optimization algorithms such as: the method of steepest descent/ascent, re­

cursive least squares estimation, and others, can be used to devise an iterative matching

procedure. In [54, 2], Morgera and Lie Chin Cheong demonstrate the utility of two

optimization procedures, for implementing the three step procedure that was outlined

in Section 4.3; namely, the method of steepest descent/ascent, and an SVD-based pro­

cedure which will be discussed shortly. The previous authors have also shown that

a hybrid technique, composed of both the SVD-based algorithm and the steepest de­

scent/ascent method could be used to carry out their three step matching procedure

[2].

For the funetionals involved in the three step matching procedure, the singular

value decomposition (SVD) of a symmetric matrix having the form M™ can be used

as the primary tool in a recursive optimization procedure. Recall, from Section 4.3,

that the functional f(6) = tr(M6T
) which arises when the patterns are ordered (i.e.,

II = 1) reaches its optimum point when

(4.26)

where M = XyT and (MTM)I/2 is the real, symmetric positive definite square root

matrix of (MTM). The matrix (MTM)-1/2 in (4.26) is readily computed byemploying

the SVD of the matrix P = MTM, which is given by

(4.27)

(

where I: is a diagonal matrix and U and V are orthogonal. In (4.27), the diagonal

elements of I: are the singular values of P, and the columns of U and V are the left

and right singular vectors ofP, respectively [67]. Using the decomposition of (4.27), it

(
ClJapter 4. An SVD-Based Aigoritllm

is straightforward to show that6

46

(4.28)

(

The function 1(8) = tr(M8T
) can have severallocal extrema. If the (n x 11)­

dimensional matrix M is nonsingular, and the product M™ has n distinct positive

eigenvalues {.Xi : i = 1,2, ... ,n}, it can be shown that there exist 2n distinct real sym­

metric square root matrices (M™1/2) [54]. From (4.26), it can be seen that 2n equiv­

alued ma.xima are, therefore, possible for 1(8). However, only one ma.ximum point

exists for which the (n x n)-dimensional real symmetric square root matrix (MTM)l/2

is positive delinite (i.e., aIl ofits eigenvalues are positive) and only one minimum point

exists for which (M™)1/2 is negative delinite (i.e. , aIl of its eigenvalues are negative)

[54]. The remaining 2n - 2 stationary points are saddle points of 1(8).

In the case of g(8) = tr(8T Q8N), which needs to be maximized in Step 1 of

the three step procedure, a closed form expression, such as the one in (4.26), cannat

be derived to compute the optimal orthogonal matrix 8*. However, it can be shown

that, at the extreme point for g(8), we have [54J:

(4.29)

where Q = XXT, N = yyT, and the matrix (Q8N) is assumed to be nonsingular.

If we deline the matrix R(8) = Q8N, then (4.29) can be rewritten as

(4.30)

(

which is similar, in form, to (4.26). From (4.30), it is seen that the optimum orthog­

onal matrix 8* which maximizes g(8) can be obtained by recursively computing 8,

according to (4.29), until it converges to the optimum point. Step 1 of the three step

procedure in Section 4.3 can, therefore, be implemented by employing the following

recursive procedure:

"Note that U =V wheu P is bath square and symmetric; this is the case wheu P =M™

(
Chapter 4. An SVD-Based Algorithm

SVD-based Procedure for Maximizing 9(8)

1. Choose an initial point, 8(0)

2. For k = 0, 1,2, ..., compute:

A(k)

B(k)

8(k+1)

Q8(k)N

[AT(k)A(kJrl/2

A(k)B(k).

47

(4.31)

(4.32)

(4.33)

(

At each step of the recursive procedure, the SVD is employed to compute the inverse

positive delinite square root matrix of AT(k)A(k) in (4.32), as previously described.

As in most iterative algorithms, the choice of the initial condition 8(0) has

a strong influence on the convergence of the algorithm. In general, 8(0) can be any

orthogonal matrix; but, as discussed in [54], 8(0) can be chosen such that the recursive

algorithm converges to different local maxima. For example, when 8 is a (2 x 2)­

dimensional orthogonal matrix, if 8(0) = 12 is chosen, where 12 is the two-dimensional

identity matrix, then the algorithm should converge to the optimum orthogonal matrix

8' having a determinant of +1 (i.e. , the optimum rotation matrix). In faet, setting

8(0) to any 2D matrix whose determinant is positive will yield the same result [54].

If, on the other hand, 8(0) =J is chosen, where

or J= [1 0]a -1 '
(4.34)

(

then the algorithm should converge to the optimum reflection matrix, having a de­

terminant of -1. The same result is obtained if 8(0) is set to any other orthogonal

matrix whose determinant is negative [54].

The permutation matrix II which maximizes the function f(II) can be found

using a similar recursive procedure, by simply replacing the matrices Q and N of (4.29)

by the appropriate diagonal matrices Dzi and Dyi , respectively. Step 2 of the matching

procedure can, therefore, be implemented using the following algorithm:

(
Chapter 4. An SVD-Based :Ugorithm 48

SVD-based Procedure for Maximizing f(Il):

1. Choose an initial point, Il(a).

2. For k =0,1,2, ..., compute:

A(k)

B(k)

8(k+1)

,.
I:Dzill(k)DYi
i::::l

[AT (k)A(kW 1
/
2

A(k)B(k).

(4.35)

(4.36)

(4.37)

:(

(

The previous algorithm converges to the orthogonal matrix Il'Dlp, where Il' is a

permutation matrix and D lp is the diagonal square root of the p-dimensional identity

matrix, I p [54]; that is, D lp = diag(a[, a2, .. . , ap), where ai = ±1 , i = i, 2, ... ,p.

Since there are 2P distinct diagonal square roots of Ip , and p! permutations are possible,

the number of stationary points for f(ll) is 2Pp!, of which 2P are equivalued local

minima, and 2P are equivalued local maxima [54]. Following the same Hne of reasoning,

since the optimum point of g(8) can be shown to involve a permutation of DI", the

diagonal square root of the n-dimensional identity matrix 1", the total number of

stationary points for g(8) is 2"n!, of which 2" are equivalued local minima, and 2"

are equivalued local maxima [54]. To avoid the stationary points of f(Il), the initial

condition Il(a) should not be set equal to the identity matrix I p , or any other matrix of

the fOrIn IIDlp . Aside from the previous restriction, any (pxp)-dimensional orthogonal

matrix can be used as the initial condition.

Having completed Steps 1 and 2 of the matching procedure, the exact transfor­

mation matrix 8' can be computed, according to (4.26). It should be noted that the

(
ClJapter 4. An SVD-Based Algoritllm 49

matrix product M™ of (4.26) is not required to be nonsingular, since the SVD proce­

dure for computing the inverse symmetric square root matrix can still be carried out in

pseudoinverse form. Specifically, the pseudoinverse or the Moore-Penrose generalized

inverse of a matrix A is defined as [68J

A# = U[D-
1 0] yT

o 0 '
(4.38)

(4.39)yTAU = [D 0]
o 0 '

where Dis a (wxw)-dimensional diagonal matrix, and D = diag(>'l' >'2, ... , >'w), which

contains the non-zero eigenvalues of A. The pseudoinverse form of the SVD, in (4.39),

can also be used in the recursive algorithms for maximizing the functions 9(8) and

f(II) which were previously described, in the event that the matrix products Q8(k)N

or L:~I Dz;II(k)Dy ;, respectively, are nonsingular. It is to be noted, however, that

when the pseudoinverse is required, the recursive algorithms previously described will

not converge to orthogonal matrices, in general; moreover, the points of convergence

for the algorithms arc highly dependent on the initial guesses, 8(0) and II(O) [54J.

where D- 1 = diag(>'ï l
, >'2"1, ... , >.;;;J), such that (>'[, >'2, ... , >'w) are the eigenvalues of

the matrix A, and w is the rank of A. The matrice" U and Y are two orthogonal

matrices such that

4.5 Extensions of the Theory

(

As discussed in [54, 2], the theory behind the previous approach for point matching

can be extended to incJude other matching problems. Specifically, Morgera and Lie

Chin Cheong have shown that their matching procedure could be extended to incJude

patterns from EucJidean spaces of different dimensions (i.e. , m i' n), and also to

handle patterns where the number of feature points are not the same (i.e. , p i' q).

This subsection deals with the latter case only, for the sake ofbrevity, and also since it is

more commonly encountered in practice than the former problem. Interested readers

are referred to [2, 54] for details regarding the matching of patterns from different

dimensions, under the previous framework.

(
Chapter 4. An SVD-Based Algorithm 50

Consider, once again, the matching problem in which the patterns have different

cardinalities i.e., the patterns to be matched have the form: {Xi: i = 1,2, ... ,pl, and

{Yi: i = 1,2, ... , q}, where p > q. In this case, the function to be minimized with

respect to (e,II(~)) is

(4.40)

where II(~) is a (p x q)-dimensional permutation matrix. It can be shown that the

minimization of (4.40) is equivalent to the minimization of the function

(4.41)

(

(

in the case p > q7, where DQ = diag(XTX) is a p-dimensional matrix whose elements

are the diagonal clements of the symmetric matrix XTX [54].

As discussed in [54], the previous minimization problem is not separable, but

can still be implemented using a procedure similar to the one described in Section 4.3:

1. Determine the orthogonal matrix 8' E O(n) which ma.ximizes the function

g(e) = tr(eTQeN), where Q = ~XXT and N = ~yyT.

2. Determine the permutation matrix II'(~) which minimizes the function h(II(~)) =
tr[IIT(~)DQII(~)]- 2tr[Z'II(~)yT], where Z' = 8·T

X.

3. Determine the exact transformation matrix e' E O(n) which maximizes the

function f(e) = tr(MeT), where the matrix M = XII(~)yT.

In Step 1, an approximation to e' is obtained by mapping the normalized

second moment of the sensed pattern onto the corresponding normalized moment of

7A similar function is minimized in the case p < q [54]

the template pattern. The approximate value ëo is then used in Step 2 to minimize

the function h(0, Il(;)) and, hence, obtain the optimum permutation matrix IlO(;).

Given the previous permutation estimate, the exact rotation estimate 0° is found

by substituting IlO(;) back into (4.40) and minimizing the function f(0,IlO(;)) with

respect to 0. Since this matching problem is not separable, the previous minimization

is only approximately equivalent to the ma.ximization of the function f (0). In sorne

cases, and especially when ëo and 0° are not close, IlO(;) may not be the same for

both of the two previous orthogonal matrices. When this happens, Steps 2 and 3 must

be recursively repeated until the optimum transformation matrix 0° and the optimum

permutation matrix IlO(;) are found.

(
Chapter 4. An SVD-Based Algorithm 51

(

Since the function g(0) to be optimized in Step 1 is the same as in the case

for which p = q, the recursive SVD-based algorithrr for minimizing g(0) that was

presented in Section 4.4 can also be used here. Step 2 is handled by notidilg that

the second term of (4.41) is essentially the function f(Il(;)); hence the expression for

h(Il(;)) can be rewritten as:

n

h(Il(;)) = tr[IlT (~)DQIl(;)] - 22: tr[IlT (~)Dz,Il(;)DyJ,
i::;l 1

(4.42)

where, in this case, D z:and D Yi are (p xp)- and (q x q)-dimensional diagonal matrices,

respectively. The function h(Il(;)) can, therefore, be minimized using the SVD-based

procedure for minimizing f(Il) that was described in Section 4.4, with the following

changes. First, the expression for A(k) in (4.35) is replaced by

n

Ad;) = DQIlk(;) - 22: Dz,Ilk(;)Dyp
i::;;l 1

(4.43)

(

and, second, the negative inverse symmetric square root matrix [Af(~)Ak(;)]-1/2 must

be chosen, for h(Il(;)) to converge to its minimum point. As for Step 3, the solution

is directly computed from (4.26), where (now) M = XIlO(;)yT, and the square root

is the inverse symmetric positive definite square root matrix.

1(
Chapter 4. .4n SVD-Based Algorithm

4.6 Summary

52

(

(

Various types of point-matching problems can be defined, as shown in this chapter.

In specific cases, the theory of Lie groups and Lie algebras can be used to derivc an

equivalent function optimization problem; accordingly, the optimal solution can be

found by minimizing (or maximizing) an appropriate functional, in the least-squares

sense. For the general unordered point matching problem, the solution is obtained by

jointly optimizing two functionals: one in terms of e, an orthogonal rotation matrix,

and the other in terms of II, a permutation matrix. This can be accomplished by

following a threc-step procedure. In the first step, an initial estimate of e (or II) is

obtained; this initial estimate is used in the second step, to obtain the optimal estimate

for II (or e); the third step is used to refine the initial estimate obtained in step 1.

Many different optimization algorithms exist, which can be used to implement

the previous three step procedure. In [2, 54J, the method of steepest ascent/descent

is used to solve step 1 of the the three-step procedure, while step 2 is solved using an

SVD-based algorithm and vice-versa. The two previous iterative algorithms can also

be used alone, to solve the first two steps of the matching procedure. In this chapter,

the focus is placed on the SVD-based iterative algorithm. The convergence properties

of the previous algorithm are such that the choice of the initial condition has a strong

influence on the convergence of the algorithm. Many local extrema can exist, which

minimize the error in matching, and the final solution to which the algorithm converges

is somewhat dependent on the choice of the initial guess; however, this guess does not

need to be close to the true solution for the algorithm to converge.

(

(

Chapter 5

A Graph Matching Algorithm

5.1 Introduction

In this chapter, a second approach for solving the point correspondence problem is

reviewed. This approach is fundamentally dilferent from the one that was discussed

in Chapter 4. The matching technique proposed by Cheng and Don [1], which is

discussed in this chapter, is a graph-theoretic approach for solving the point corre­

spondence problem. The method is based on concepts taken from graph theory, and

uses both the point features and additional structural information, such as the inter­

relationships between features, for matching purposes. To find the optimal solution to

the correspondence problem, a tree-based search strategy is employed, which is guided

by a specially designed similarity metric.

The context behind this graph-matching approach is established in Section 5.2.l.

Sorne basic concepts from graph theory are presented, and these ideas arc used to for­

mulate the point correspondence problems that were described in Chapter 4 (c.f. Sec­

tion 4.2) as graph-matching problems. A number of definitions related to trees, which

are derived from the previous graph theoretic concepts, are given in Section 5.2.2.

53

(
Chapter 5. .4. Graph AJatching Algorithm 54

(

These definitions are then used to describe two widely known tree-based search tech­

niques in Section 5.2.3. Having provided the relevant background, the graph matching

approach proposed by Cheng and Don [1J is reviewed in Section 5.3.

5.2 Graph Matching

Graph-based matching techniques arc commonly used in applications for which relevant

information is available for matching purposes in addition to the selected features.

This information can often be employed in the search strateg)' of a matching technique

and can reducc the computational requirements for finding the optimal solution to

the correspondencc problem. In a graph-based approach, each of the patterns to be

matched is considered as a graph, composed of both the features any other information

which is used in the matching process. The solution to the correspondence problem is

found by comparing the graphs, which is commonly achieved by employing a tree-based

search procedure. The fundamental concepts related to graphs, trees, and trcc-based

procedures arc discussed in this section.

5.2.1 Graphs

Sorne relevant definitions associated with graphs can be summarized as follows [69, 701:

• A graph G is generally defined as a pair G = (V, E), where V = {V" V2 , ••• , Vn }

is a set of points, called vertices, and E = {E" E2 , ••• , E rn }, m # n, is a set of

lines, called edges, which join together certain pairs of vertices.

• Two vertices are called adjacent is there is an edge joining them.

• A path of length s is a sequence of vertices (Va, V" V;, ... , v,) such that l'i is

adjacent to Vk+l' for 0:5 k < s.

(
Chapter 5. .4. Graph Matching Algorithm

• A graph is connected if there is a path between any two vertices of the graph.

• A cycle is a path of length three or more from a vertex to itself.

55

(

(

The previous nefinitions are illustrated in Figure 5.1, which shows a connected graph

with six vertices and nine edges. In the figure, the vertex B is adjacent to verticcs

A

E_---+_---. C
D

Figure 5.1: A graph

A, C, D, and F, but not to vertex E; there are two paths of length two from B to

D, namely (B, C, D) and (B, F, D). AIso, several cycles can be identified, including

(A,F,B,A).

In general, graphs can be used to model a wide variety of situations. For exam­

pie, the graph in Figure 5.1 couId be used to represent a simple telecommunications

network, in which case the vertices of the graph indicate telephones, switching cen­

ters, computers, or other communications devices, and the edges of the graph denote

physical links, such as telephone lines. The same graph of Figure 5.1 couId be used to

represent other situations in which sets of elements are connected together by physical

links, like electrical networks, road maps, oil pipelines, and subway systems, for exam­

pie. In the context of pattern matching, the graph in Figure 5.1 may be used in the

so-called structural description of an object; this type of description is commonly used

in object recognition, to store complex models of objects in a database. In this case,

(
Cllapter 5. A Grapll Matclling Algoritllm 56

(

the vertices in the figure could represent the features which have been extracted for

matching purposes, and the edges could represent the interrelationships between the

features; for instance, the edge joining vertices A and B, in Figure 5.1, might indicate

the location of feature A relative to feature B (c.g. , A is above B).

When a point-matching problem is formulated using graphs, the objective is

to find either a graph isomorphism or a subgraph isomorphism. The two previous

graph matching problems can be described through the following example. Let T

and S be two graphs, representing the template data set and the sensed data set,

respectively. In a graph matching procedure, T and Sare compared vertex-by-vertex

to determine any correspondences which may exist between the two graphs. If a one­

to-one correspondence can be established between the vertices of T and S such that

pairs of adjacent vertices are preserved, then the two graphs are said to be isomorphic

[70]. An example of two graphs which are isomorphic is shown in Figure 5.2. Note

Correspondenccs

I-A
2-B

~=~ A ..- "'"

5-E

E

B~-----"""

Graph s =(1.2,3,4.5) Graph T= (A.B.C.D.El

(

Figure 5.2: A Graph Isomorphism

that the exact positions of the vertices do not matter when drawing a graph; only

the relationships between the vertices are important. For this reason, two graphs do

not have to look the same to be isomorphic, as shown in Figure 5.2. The problem of

finding a graph isomorphism is analogous to the point matching problem in which both

(
Chapter 5. A Graph Matching .41gorithm 5i

point sets have the same cardinality; moreover, no extra or missing points are aUowed

in either of the two point sets being matched. In other words, a one-to-one mapping

must exist between every point feature in the data sets that are being matched. When

one of the patterns involved in the matching process has sorne elements which are

missing with respect to the other pattern to be rnatched, it may still be possible to

find a subgraph isomorphism, in which one-to-one correspondences exist between only

a subset of the vertices in Sand T. The problem of finding a subgraph isornorphism is

analogous ta the point matching problem in which the data sets being matched have

different cardinalities (c.f. Section 4.2.2). An exarnple of a subgraph isomorphism is

shown in Figure 5.3.

1(

Graph S = (1.2.3.4.5.6.7.8.9.10)

Corrcspondenccs
6-A
7-B
s-c
9~[)

IO-E

A

B~--JL.----lr--~ C

E

Graph T = (A.B.C,D.E)

(

Figure 5.3: A Subgraph Isornorphism

5.2.2 Trees

One way to search for an isomorphism between two graphs is through a brute-force

enumeration of aU possible solutions to the matching problem. This exhaustive strategy

is actuaUy used to solve a number of diflicult problems in graph theory, including graph

(
Chapter 5. A Graph Matc1Iing Algorithm 58

(

(

Figure 5.4: A Few Examples of Trees

isomorphism. In most cases, the enumeration process is carried out using a special type

of graph, called a tree. Specifically, a tree is a graph with a designated vertex called a

raot such that a unique path exists from the root to any other vertex in the tree [70J.

From the previous definition, it can easily be deduced that trees are connected graphs

that have no cycles [70]. Two examples of trees are illustrated in Figure 5.4.

Referring to Figure 5.4, a few basic concepts regarding trees can be discussed.

Note that the trees Tl and T2 in Figure 5.4 are almost identical. The only difference

between the two trees, apart from the way they are drawn, is that Tl is a directed

graph, while T2 is an undirected one. Until now, only undirected graphs have been

discussed. The major difference between the two types of graphs is that the edges in a

directed graph are ordered pairs of vertices of the form (Vi, Yj), i i j, to indicate that

the two endpoints V; and Yj are joined by a directed edge, or an arc, from V; to Yj.

Directed edges are drawn with arrows, as shown in the tree Tl. If a tree is a directed

graph, it is sometimes called a raoted tree, to emphasize the fact that it has a unique

root. On the other hand, a tree which is an undirected graph can have any vertex

as the root; this can easily be seen in the tree T2 • In general, a tree can be viewed

as a collection of smaller subtrees which are somehow connected together. From the

previous perspective, it follows that every vertex of a tree is the root of sorne subtree.

For example, the root A, in Tb has three subtrees: {B, E, F, J(, N}, in which vertex B

is the root; {C, G}, in which vertex C is the root; and {D, H,I, J, L, M, O}, in which

vertex D is the root. The sarne could be said of the tree T2 , if the vertex A is designated

as the root of the entire tree.

(
Chapter 5. A Graph Matching .4lgoritllffi 59

{

(

The standard terrninology which is used to describe trees consists largely of ge­

nealogical words which are taken frorn the terrninology of farnily trees [69]. In general,

the vertices of a tree are discussed with respect to sorne type of parent-child relation­

ship. For instance, each vertex of a tree is the father of the roots of its subtrees, and

the latter vertices are caIled brothers or siblings. Sirnilarly, the terrns ancestor and

descendant are used to describe a relationship that rnay span severallevels of the tree.

Referring to Figure 5.4, vertex B is the father of vertices E and F, and is also an

ancestor of J(and N; at the sarne tirne, B is the child of A and is also the brother of

C and D. When a vertex of a tree has no descendants, it is caIled a leaf or a terminal

node; hence, in Figure 5.4, the vertices {F, G, H, J, N, O} in trees Tl and T2 are leaves.

5.2.3 Tree-Based Search Procedures

Having introduced sorne of the relevant terrninology and a few basic concepts regarding

trees, the relationship between trees and the "brute force" enurneration strategy that

was rnentioned earlier can now be discussed. In searching for an isornorphisrn between

two graphs, the task of pairing a vertex in the ternplate graph with sorne vertex in

the sensed graph is equivalent to the general problern of selecting one out of a (finite)

nurnber of possible choices, according to sorne selection criteria. Rooted trees provide

a natural framework for solving this type of problem. One of the properties of a rooted

tree which makes it particularly useful for this type of application is its structure.

Inherent in the structure of a rooted tree is a way to organize the possible choices

to be made such that a systernatic search though aIl the paths contained in the tree

yields a complete enurneration of aIl possible solutions. In the sequel, two tree-based

approaches for enumerating the potential solutions of a problem are briefly described.

(
Chapter 5. A Graph Matching A/gorithm 60

One approach for exploring the different paths of a tree is to use a method

called depth-first search, or backtracking. The objective of this method is to trace the

deepest possible path in the tree to sorne leaf, starting from the root. If this path

is not the solution, or if ail possible solutions are needed, the search is continued by

backtracking up the same path to the parent of the leaf, which represents the previous

choice, and by then following a different edge in building a path to a new leaf. ACter ail

the edges leaving this parent vertex have been tried, the search backtracks up one level

higher, and the procedure continues in the same manner. Eventually, the patlls from

the root to ail the leaves of the tree are explored by this method; hence, a complete

enumeration of ail possible alternative sequences is achieved. If, however, only one

solution is required, the method can be terminated as soon as a path is found which

is a solution. An examp\e which illustrates the progression of the depth-first search

(
procedure is shown in Figure 5.5.

I? ? ()t {j\ 6\ ~

(a) (b) (c) (dl

(

Figure 5.5: Exp!oring A Tree Using Depth-First Search: The seareh progresses from (a)­
(d); arrows indieate the direction of the traversa!.

Another way to explore a tree is to use the so-called breadth-first search method.

In this procedure, the search begins by determining ail the edges leaving the root. Then,

ail the edges leaving each of the root's children are determined, and so on; hence, the

search is conducted by fanning out uniformly through the tree, starting from the root.

An example which illustrates the progression of the breadth-first search procedure is

shown in Figure 5.6. For problems in which only one solution is required, it may be

advantageous to search for l' 'c deepest path in the tree, rather than building a large

(
Chapter 5. A Graph Matching Algorithm 61

~~ ~~
<al (bl

Figure 5.6: Exploring A 'Ifec Using Breadth-First Search: The search progresses from
(a)-(b); arrows indicate the direction of the traversaI.

number of partial paths, only one of which is potentially useful. On the other hand,

for problems in which the shortest path is required, or if long dead-end paths can

be encountered while the solution paths tend to be relatively short, the breadth-lirst

search may be preferable over backtracking [70].

(

C!early, the previous enumeration procedures are meant to be thorough, rather

than efficient, in linding a solution to a problem. If the solution to a pl'Oblem involves

a sequence of choices, then a brute-force investigation of every possible combination of

alternatives quickly becomes unwieldy as the number of choices increases. For instance,

in the point-matching problem, if the graphs representing the patterns to be matched

have p and q vertices, respectively, where p 2: q, then the total number of potential

pairings between the vertices of the two graphs is [47]:

p(p - l)(p - 2) ... (p - q + 1) (5.1)

(

When q "" p, (5.1) shows that the total number of potential solutions to the matching

problem is of the order O(P!). Consequently, as the number of features to be matched

increases, the brute-force enumeration approach quickly becomes unmanageable. For

this reason, a major challenge in devising tree search strategies, which tend to be

exhaustive, lies in eliminating as many of the search paths in the tree as possible

without actually traversing them. Specilically, if a vertex can be shown not to lead to

a desirable solution, then that vertex, and the entire subtree below it, can be ignored,

or pruned, in the search process. Pruning can drastically reduce the number of tests

involved in the enumeration process and effectivel.v determines the speed with which

a tree search method can find the optimal solution to a problem. When tree search

procedures are applied to point matching problems, pruning is typically achieved by

applying geometric constraints such as the distance between two points, or the angle

between two lines, when potential pairings are tested. These geometric constraints are

typically derived from the assnmption that is made about the geometric transformation

which is presumed to be capable of aligning the data sets (c.f. Section 3.2.2). A few

examples of techniques which use geometric constraints to prune the search tree are

found in [43, 44, 47, 1, 48J; notably, Grimson and Lozav0-Perez [43] show that simple

geometric constraints can be extremely powerful in reducing the number of potential

search paths.

(
Chapter 5. A Graph Matching Algorithm 62

(

5.3 Graph Matching Algorithm

The concepts related to graphs, trees, and tree-searching, which were discussed in the

previous section, are an integral part of the graph matching algorithm proposed by

Cheng and Don [1]. In this section, the algorithm is reviewed. The basic strategy,

which applies to the case of unordered data sets with the same cardinality, is described

in Section 5.3.1. Extensions to include the possibility of missing or extraneous points

in one or both of the patterns to be matched are discussed in Section 5.3.2. A data

splitting strategy, which can be used to speed up the matching process, is presented in

Section 5.3.3.

5.3.1 Basic 8trategy

Recall the problem of matching two unordered point sets with the same cardinality,

which was discussed in Section 4.2.2. This problem can be viewed as a graph matching

problem where {Xi: i = 1,2, ... ,pl and {Yi: i = 1,2, ... ,pl represent the two point

To find the optimal graph t, Cheng and Don's algorithm uses the backtracking

tree search procedure which was described earlier. In this case, the search tree is

organized such that each vertex represents a pairing of one sensed point with one

template point; therefore, paths of Iength p in the search tree can be viewed as potential

solutions to the problem. While traversing the patlls of the tree, the vertices are

examined one at a time, in depth-first order, and any vertex which is inconsistent

with its ancestors is discarded; moreover, the entire subtree which is rooted at the

inconsistent vertex is rejected by the matching algorithm. To verify that a vertex is

consistent with its ancestors, two types of tests are made. The first test determines

whether or not the structures which are formed by the two partially matched point sets

are congruent. The congruence of matched structures is established using a geometric

constraint, which exploits the principle of invariance of distance measures under rigid

body motion. SpecificaIly, the latter principle states that the distance between any two

sets to be matched. Further, define a graph T = (Yl,y2, ... ,yp), whose vertices are

the position vectors in the template set {y;}. The objective of the graph matching

problem is to construct a graph t = (X~(l)' X~(2), •.. , X~(p»), from the points in the

sensed data set {x;}, such that a graph isomorphism between T and t is found. The

vertices of tare written as x~(;) to designate sensed data points which have been

reordered such that the ith vertex of t corresponds to the ith vertex of T; hence,

the sequence of integers which describes the reordering process is the solution to the

point correspondence problem. Since no structural relationships between the feature

points are assumed to be known, the edges of the previous graphs are not considered in

the matching process. Consequently, the graphs used in this algorithm are described

solely by their respective vertices. AIso, the feature points are not assumed to have

any attributes; however, any such a priori information can be embedded into the graph

and used to guide the matching processl [IJ.

(

(

Chapter 5. A Graph Matching Algorithm 63

(
IThis is not attempted as part of the computer simulations, in Chapter 6, since the use of a priori

information is considered to be beyolld the scope of this thesis.

points which have been extracted from the same rigid object remains fixed, regardless

of the position or orientation of the object [47]. A similar geometric constraint, based

on the angle between two !ines, could also be employed to prune the search, but was not

used in Cheng and Don's algorithm to save computation time for the angle calculation.

The second test which is used to verify the consistency of a vertex with its ancestors

is based on the error accumulated in traversing a path. Essentially, this test ensures

that the accumulated error between corresponding points in traversing a given path is

smaller than the error of the best previous candidate solution; hence, only paths which

are progressively doser to the optimal solution, with respect to the accumulated error,

are explored.

(
Chapter 5. f\ Graph Matching Algorithm 64

«

For illustration, consider the set of template points {Yi} as a polygon, such that

Yi is a vertex of T and the distance d(Yi,yi+Il is the length of the ith edge YiYi+l. In

this case, the objective is to construct a polygon from the points in the sensed data set

such that the geometric structures of the two matched point sets are congruent. This is

accomp!ished using a backtracking tree search procedure, in combination with the two

pruning mechanisms previously described. The matching algorithm begins by finding

two points in the sensed data set, say Xi and Xi, whose distance d(XiXi) is within a

threshold f of the length of the first edge Y1Y2 in the template graph T. Specifically,

the condition on the pair of points (Xi, Xi) is:

(5.2)

(

where 1 . 1 denotes the absolute value of a real number. According to Cheng and Don,

the value chosen for the so-called edge threshold f is not crucial in their algorithm,

provided that it is large enough. That is, beyond sorne critical value, the choice of a

larger f does not affect the results of the algorithm [1]. If the points in both data sets

contain Gaussian noises with zero mean and a variance (72, it can be shown that an

upper bound on f is 8V3(7 [1].

Having found the points Xi and Xi which satisfy equation (5.2), twa distinct

(
Chapter 5. A Graph Matching Algorithm 65

(

initial pairings are possible: {(Yl,Xi) (Y2,Xj)} and {(Yt>Xj) (Y2,Xi)}. Both of the

previous cases are separately considered as possible initial pairings in the matching

process. When the first case is used as a starting point, the algorithm proceeds to

search for a third point in the sensed data set, say Xk, such that the triangle f),XiXjXk

formed by the sensed points {Xi,Xj,Xk} is congruent to the triangle f),Y1Y2Y3 formed

by the corresponding template points {Yt,Y2,Y3}. This implies that XiXk must be

closed to Y1Y3 and that XjXk must be closed to Y2Y3. To find the next corresponding

point, say XI, a similar approach is taken; that is, X, is chosen such that the triangles

f),XjXkXt and f),Y2Y3Y4 are congruent. This procedure is repeated until ail p points

in the sensed data set have been visited. An example iIlustrating the previolls steps

is shown i!1 Figure 5.7. If a match exists between the two point configurations, then

Initial Pairing Grow Malch: (3rd point)

13 'j .'k
"l>' p'k// '-,

'1/Y2 / "-.;4

L___// ----_/? 'i. .',. '1 .,
YI YS 'm YI YS m

Grow M1tch: (4th poinl) Grow Match: (Iast point)

"é' ./~
Y3 :'rli'/1>' 'iL___ L_ '1. "YI YS 'm YI YS 'm

Figure 5.7: Matching congruent triangles: Dashed lines show established edges. Solid lines
show edges heing compared.

the last remaining point in the sensed data set to be visited when traversing a given

path of the search tree, represents a leaf. Once the leaf has been visited, the algorithm

backtracks to the previous vertex and continues to search for other solutions with a

smaIler accumulated error. After the entire tree has been explored (i.e. , ail possible

solutions have been enumerated), a number of potential solutions, or so-called candidate

(
Chapter 5. A Graph Matching .4.1gorithm

graphs, have been found.

66

To determine which of the candidate graphs is the optimal solution T, each

graph is rated according to a similarity metric called the kth arder errar. Essentially,

the kth order error measures the accumulated error between the vertices in a candidate

graph T and the corresponding vertices in the template graph T, when k edges in both

T and Tare used to test for congruent structures. The triangle comparison previously

described is a specifie example in which k = 2. A formai definition of the k-th order

error measure between the graphs i' and T is [1]

p min(k,m-l)

li' - Tlk = L L Id(xm,xm-n) - d(Ym,Ym-n)1.
m:;2 n:;;:}

(5.3)

(

(

where T = (Yl,YZ, ... ,Yp) , i' = (xJ,xz, ... ,xp), and the vertices {Xi} are points in

the sensed data set that have been selected by the matching algorithm. Note that

this similarity metrie is somewhat dilferent than the least-squares error metric that is

used in the SVD-based algorithm. The k-th order error involves the mutuai distances

between the points within each data set; specifically, it attempts to reorder the points

in the sensed data set such that the mutuai distances between the feature points match

the corresponding mutual distances between the feature points in the template data

set. In the case of the least-squares error metric, the aim is to minimize the square of

the distance between each point in the sensed data set and each point in the template

data set.

ACter a candidate graph is found, its kth order error measure from the reference

graph T is computed using (5.3). The measure is then used to compare the newly

generated graph with previously obtained candidate solutions. If the new candidate

graph has the lowest kth order error of any other graph previously generated by the

algorithm, it is kept as the best solution; otherwise, it is discarded, and a better solution

is sought. Once the entire search tree has been explored, only the candidate graph with

the smallest k-th order error is retained; consequently, the optimal solution i' is the

(
Cllapter 5. .4. Graph Matching .4.1gorithm

candidate graph which satisfies [1]

li' - Tlk :5 IÎ/ - Tlk, for ail 1= 1,2,3, ... ,

6i

(5.4)

(

where 7], 1 = 1,2,3, ..., are the candidate graphs that have been found by the tree­

search procedure.

In addition to its role as a similarity metric , the k-th order error is closely

related to a so-called graph threshold, which is used to prune the search tree. Initially,

the graph threshold 0 is set to the value p(p-1)€/2, since there are p(p-1)/2 edges in

a p-node complete graph and each edge difference is not more than € [11; an assumption

that represents a worst-case scenario. After a candidate graph is found, its kth order

error is adopted as the new graph threshold, and the search is backtracked to find

the next lower-error solution. In general, a sensed point XI is added as the (i + 1)th

vertex of the working candidate graph only if it passes two kinds of tests. First, edge

differences in the candidate graph must be less than the edge threshold €. Second,

the accumulated k-th order error of the working candidate graph, with the new point

included as the (i + l)th vertex Xi+l' must be less than the graph threshold O. The

accumulated kth order error Cl! in a working candidate graph with i + 1 vertices is given

by [1]
i+l min{k,m-l)

Cl! = L L Id(xm,xm- n) - d(Ym,Ym-n)1 ,
m=2 n=1

where {XI, X2, ... ,Xi+l} are the vertices of the working candidate graph.

(5.5)

(

To see how the threshold tests are used in the tree search procedure, consider

an example in which k = p and a working candidate graph with i nodes has been

generated. In this case, adding the lth point in the sensed data set XI as the (i + l)th

vertex of the working candidate graph produces i new edges. To establish whether or

not the new vertex is consistent with the other vertices in the working graph, the i new

edges are compared with the a~sociated edges in T. If any edge difference exceeds the

edge threshold €, or if the accumulated kth order error Cl! exceeds the graph threshold 0,

then Xl is not considered to be the (i+ l)th vertex of t, and the point Xl+! is considered

next. If aIl the remaining points Xl, Xt+l,"" xp in the sensed data set fail to satisfy

the threshold tests, the ith vertex Xi is identified as a bad node ad is deleted from

the working candidate graph. The traversaI is then backtracked to the previous vertex,

and the search continues. A pseudocode description of the entire matching algorithm

can be found in Appendix A.

(
Chapter 5. A Graph MatclJing A.Igorithm 68

«

(

5.3.2 Occluded Points

The matching algorithm described in Section 5.3 can also be used to identify occluded

points in one or both of the point sets being matched. In this case, the sensed data set

and the template data set are given by {Xi: i = 1,2, ... ,p} and {Yi: i = 1,2, ... , q},

respectively, where p may be dilferent than q. For the case in which p > q, if every

point in the template data set has a corresponding point in the sensed data set, the

matching algorithm can be used to find the q sensed points that have a matching

point in the template data set. The remaining p - q points in the sensed data set are

identified as occluded points. Conversely, if q > p and aIl points in the sensed data set

have corresponding points in the template data set, the same procedure is employed

but with the roles of the two data sets switched.

If occluded points can occur in both of the data sets to be matched, a similar

matching algorithm can still be used. In this case, every point in the template set

is initially viewed as an extra point; hence, the template points are aIl matched to

so-called nul! points at the outset of the tree search procedure. The objective of the

modified algorithm is to find a feasible graph which satisfies edge constraints and has a

maximal number of successfully paired points. If several candidate graphs exist which

have the same number of matched points, then the one whose accumulated kth order

error is the least is chosen as the optimal solution.

(
Cllaptcr 5. A Grapll Matching Algorithm

5.3.3 A Data Splitting Strategy

69

(

(

In principle, the computation time of a backtracking tree search procedure grows expo­

nentially with the number of vertices to be visited in the tree [44]. Having recognized

this fact, Cheng and Don devised a so-called data sp/itting stratcgy which reduces the

computation time of their algorithm. The strategy is initiated by dividing the set of

template points into m subsets. Then, each of the subsets is matched, one at a time,

against the sensed point set, using the algorithm in Section 5.3. The matching process

is handled as described in Section 5.3.2, for the case in which p > q. Each time a sub­

graph isomorphism is found, the size of the sensed data set is reduced by removing ail

of the points for which correspondences have been established. The splitting algorithm

is as follows [1]:

Splitting Algorithm

Notation:

El ={Yi : i = 1,2, , q} : template point set

Ez ={Xi : i = 1,2, ,p} : sensed point set

Ci : subset of El, such that U~l Ci = El and Ci nCj =0, for ail i # j

A/gorithm:

Begin

1. Split El mutually exclusively into m subsets CI,CZ,··· ,cm.

2. For i = 1 ta m do steps 3-4.

Begin

3. Call matching algorithm for Ci and Ez.

4. Remove points in 'Î' from Ez. Recall that the vertices of 'Î' are the points in Ez

which match the points in Ci.

End

(
Cllapter 5. A Grapll Matching Algorithm

End

iD

(

When Ez and el are matched, the points in ez, e3, .•. , em are considered as occluded

points. Having established the correspondences between the two previous point sets,

the points in Ez which are found to match those in the subset e, are subsequently

removed. The remaining points in Ez are then matched \Vith the subset ez. In this

case, the points in e3, e4, ... , em are considered as occluded points. The same procedure

as before is repeated until ail m subsets of E, are matched.

As discussed in [1], a significant reduction in the computational requiremellts of

the matching algorithm cali be achieved with the data splitting strategy. The gain in

speed is largely attributed to a reduction in the depth of the search tree to be traversed

when subgraph isomorphisms are attempted. When El and Ez are matched, the depth

of the longest path in the tree is q; consequently, the total number of edges visited, in

the worst case, is [1J

C(p)-=-_P!
q - q!(p-q)! '

(5.6)

where a! == a(a-1)(a-2)·· ·1, such that a is a nonzero integer. Now, let Si denote the

size of the i-th subset ei of the pattern El. Using the same argument as above, when

Ez and el are matched using the data splitting strategy, the depth of the search tree

is SI; moreover, when Ez and ez are matched, the algorithm traverses only the subtree

beneath the path X" xz, ... ,xs " whose depth is Sz. The total number of edges visited

in the worst case, for the data splitting strategy is, therefore [lJ,

(5.i)

(

which is much smaller than worst case scenario described by (5.6), since Si < p, for ail

i.

(
Chapter 5. A Graph Matching Aigorithm

5.4 Summary

il

(

This chapter illustrates a graph-based approach for solving point matching problems.

The structural approach is based on the premise that auxiliary information may be

available which can be used in addition to the features in the matching process. Graphs

are used to represent the patterns, such that the vertices describe the features and the

edges hold relational information between pairs of vertices. In this study, only the

vertices are considered, as no additional information is assumed; nevertheless, such

information can easily be embedded in the formulation.

The point-matching problems which are described in Chapter 4 can be formu­

lated as equivalent graph-matching problems; specifically, the problem of matching

point sets with the same cardinality, when a one-to-one correspondence exists between

ail points, involves the search for a graph isomorphism, while other problems involve

the search for a subgraph isomorphism. Both types of ,raph-matching problems can

be solved using a tree-search procedure, which enumerates ail possible solutions to the

problem. If an appropriate pruning mechanism is used, a large number of patlls in the

search-tree can be eliminated without traversing them; hence, the search need not be

completely exhaustive.

The method proposed by Cheng and Don [1] uses a backtracking tree-search

procedure, in conjunction with two pruning mechanisms. The first mechanism is

the so-called edge threshold, which exploits the principle of invariance of distance

measures under rigid body motion. The second pruning mechanism is the so-called

graph-threshold, which ensures that the error accumulated in traversing new patlls

decreases monotonically. For each candidate solution, the accumulated kth order error

is computed, and a lower-error solution is sought by backt.racking through the tree and

traversing unexplored paths. The final solution is the candidate matching graph which

has the smallest kth order error.

(
Chapter 5. A Graph Matching Algorithm 72

(

When extra or missing points exist in one of the data sets being matched, the

graph-matching algorithm can be used to identify them, as described in Section 5.3.2.

The case in which occluded points exist in both of the data sets can also be handled

using the same approach, but requires a significant modification to the basic strategy.

The approach for handling occluded points in one of the data sets can be used to

execute a data splitting strategy which can significantly improve the speed with which

a solution is found; the price to be paid for this increase in speed is a decrease in the

accuracy of the final solution in terms of the number of incorrect matches.

:{

(

Chapter 6

Comparison of Aigorithms

6.1 Introduction

The two algorithms compared in this study are clearly different in many respects. The

graph-matching algorithm, in Chapter 5, is a graph-theoretic approach for solving the

point-correspondence problem. The search strategy is based on an exhaustive tree

search procedure which is guided by a specially constructed similarity metric (i.e. the

k-th order error). In contrast, the SVD-based algorithm is a function optimization

approach that is largely founded on algebraic group theory. The search strategy in

this approach is based on straightforward iterative computations which are aimed at

minimizing a predetermined error function in the least squares sense. Both of the

algorithms yield an optimal solution to the point correspondence problem; yet, the

search strategies which are employed by the algorithms to find this solution are quite

different.

In this chapter, both approaches for solving the point-correspondencil problem

are compared through computer simulations. The algorithms are compared from two

viewpoints. First, the dynamic behaviour of the two algorithms is considered in Sec-

73

(
Chapter 6. Comparison of Algorithms 74

(

tion 6.3. This is achieved by observing the progress of each algorithm from an initial

solution, through several intermediate results, to the final solution. The latter ob­

servation can provide insight into the computational requirements of the algorithms

for finding a solution, under various sets of running conditions. The second basis of

comparison, which is discussed in Section 6.4, is the speed and accuracy with which an

optimal match is obtained. Here, the trends in both speed and accuracy under various

conditions are compared, rather than the absolute values.

6.2 Experimental Set-Up

6.2.1 Hardware/Software Considerations

Both the SVD-based algorithm and the graph matching algoritum were implemented

in C and \Vere run on a SUN SPARCIO computer. This cornmon hardware/software

platform was used to reduce any hardware or software related dependencies which couId

affect the interpretation of the results.

Ali programs that were used to generate input data for the matching algorithms

were written in C. A number of three-dimensional graphical objects were created using

the PHIGS programming library for 3D graphies [71] to obtain point features derived

from a 3-D scene. Point features were also randomly generated within volumes of

predefined sizes. A complete description of the data sets, and the methods that were

used for generating them, is given in Section 6.2.2.

6.2.2 Data Sets

Two types of synthetic data were used as inputs to the matching algorithms. In the

first type, 3D data points were gellerated randomly withill a volume of size 1 x 1 x 1

(
Chapter 6. Comparison of AIgorithms 75

and centered at the point (1/2,1/2,1/2). This was done by randomly selecting a real

number in the range [0,1], according to a uniform probability distribution function, for

each coordinate of a given data point. The data points generated in this way were

subsequently used as the template feature points: {Yi: i = 1,2, ... ,p}. The sensed

feature points. {Xi: i = 1,2, ... ,p}, were obtained from the template points according

to the noisy rigid motion model

Xi = 8Yi + b + ni , (6.1)

(

(

where 8 is a 3D rotation matrix, b is a 3D translation vector and the ni arc 3D

stochastic noise vectors which are mutually statistically independent. The noise vectors

were generated such that each component of a noise vector was a normal (Gaussian)

random variable with zero mean and variance (72. The order of the sensed points was

then shuffied, using a known permutation matrix II, to establish new correspondences

between the feature points in the two data sets. The centroids of the patterns were

removed from the data points (c.f. Section 4.2.1) as a preprocessing step in both of the

matching algorithms.

An example of two randomly generated data sets is shown in Table 6.1. The

template points in the table were obtained by randomly generating ten points in a

volume of size 50 x 50 x 50 and centered at (25,25,25). These points were then rotated

0.27 radians about the axis passing through the origin and the point (0.20,0.50,0.84),

and were translated by the vector b = [-1 1 0]. The order of the rotated points

was then arbitrarily shuffied, and the permutation was recorded in order to verify the

result of running the algorithm. Gaussian noises with zero mean and variance (72 =0.1

were added to the reordered points. The resulting "sensed" data points are shown in

Table 6.1, such that corresponding points are listed in the same row.

To generate two point sets with different cardinalities: {Yi: i = 1,2, ... , q}, and

{Xi: i = 1,2, ... ,p}, where p f. q, the following procedure was followed. For the case

in which p < q, a set of q template points was randomly generated and was then used

(
Cbapter 6. Comparison of Algoritbms ï6

1(

(

Reference Points Sensed Points

point
Coordinates

point
Coordinates

number x y z number x y z

1 48.2426 12.7479 3.5168 2 43.0443 24.1119 - 1.4199

2 6.1924 26.3169 8.0042 3 0.2728 28.0280 8.6220

3 25.8854 5.2592 42.0788 8 28.9075 10.0625 38.8497

4 18.4281 21.1945 16.3614 6 14.0978 25.1482 15.6389
5 35.6773 28.8388 43.5942 7 33.0104 35.9032 40.3433
6 37.9123 41.8299 34.9896 9 31.4444 49.1609 32.3048
7 19.4530 46.7621 30.2801 4 11.6454 50.1038 30.3856
8 18.1042 26.9752 22.7536 5 13.6982 30.1867 22.3697
9 20.0846 12.0220 4.1543 1 15.9446 17.3434 2.5225
10 21.0789 23.6190 14.4883 10 16.2216 27.8915 13.5441

Table 6.1: Two randomly gcncratcd point scts

ta compute q sensed points, as described previously. Then, q - p points were removed

from the sensed data set, leaving p points. These p points were then shulIled according

ta a predetermined p-dimensional permutationmatrix. For the case in which p > q, the

same procedure was used, except that p - q points were added ta the q sensed points.

An example of two data sets with p > q is shawn in Table 6.2. In this case, nine

template points were randomly generated in a volume of size 50 x 50 x 50 and centered

at (25,25,25). The same motion parameters and noise as in the previous example

were used ta compute the nine sensed points with correspondences in the reference

set. Three additional points were generated in the same volume that was used for the

template points; these were appended ta the list of sensed points. The arder of the

twelve sensed points was then arbitrarily shulIled, and the permutation was recorded.

The two data sets are shawn in Table 6.2 such that corresponding points arc listed in

the same row.

The second type of synthetic data sets involved feature points that were obtained

from one or more artificially generated 3-D graphies abjects. A graphical user interface

{
Chapter 6. Comparison of AIgorithms ï7

(

(

Reference Points Scnscd Points

point
Coordinatcs

point
Coordinales

numbcr x y z numbcr x y z

1 10.9480 2.3522 33.9432 12 13.4161 4.6849 32.5308
2 33.9648 46.7346 19.1751 9 23.7653 53.7317 17.9755
3 25.9708 41.5483 1.7286 8 14.9329 47.1077 1.6211
4 2.6731 26.4850 33.5575 2 0.3778 25.7955 35.0103
5 0.3849 19.1708 3.3421 11 4.7116 19.9326 4.5613
6 20.8743 34.3386 29.4488 4 16.0089 37.7784 28.7652
7 46.5218 42.3083 26.3464 6 38.3476 52.0146 22.6924
8 4.5982 32.6959 20.8000 5 0.6090 32.7235 22.2999

9 35.0595 45.5160 38.1099 3 27.8748 52.1977 36.2233
1 48.8668 19.2696 12.0344
7 11.7977 3.6799 36.8224
10 15.6421 32.7621 37.4600

Table 6.2: Two randomly generated point sets with p > q

(GUI) was created, which permitted the user to cither select the template points on

the object(s) manually, or to employa predetermined set of reference points. The GUI

also provided a means of observing a number of intermediate results in the matching

process, using 3-D objects. Given the feature points in the template data set, the sensed

points were obtained in the same way as in the case of the randomly generated data

sets. This type of data was used to simulate applications, such as in computer vision

or image processing, for which the patterns to be matched represent three-dimensional

objects. In the previous type of application, the template pattern and the sensed

pattern are obtained from two views of the same scene, which are taken from different

perspectives. Figure 6.1 illustrates an example in which the scene consists of a single

object. The numbers shown in Figure 6.1 illustrate both the physicallocation of data

points on the object, and the order in which they appear in the respective pattern.

(

Chapter 6. Comparison of Algorithms

Il

~ l '
JDOs i' ,lU

2~~~' U~ '~3 ~ ~ 9
i -

(a)

78

(
(h)

Figure 6.1: Two Views of an artificially generated 3-D abject: (a) View 1 (Template Image)
(b) View 2 (Sensed Image)

(
Chapter 6. Comparison of.4.1g,rithms

6.3 Aigorithm Dynamics

79

(

In this section, the dynamic behaviour of the two matching algorithms is examined.

SpecificaIly, the two algorithms are compared in terms of how they progress from an

initial solution to the final result. By observing this type of progression, some insight

into the nature of the search strategies, for both of the matching algorithms, can be

gained.

6.3.1 Graph Matching Aigorithm

One way to observe the dynamic behaviour of the graph matching algorithm is to

examine the tree that is traversed by the algorithm as it searches for the optimal

solution. Consider an example in which the two sets of randomly generated points

in Table 6.1 (c.f. Section 6.2.2) arc used as inputs to the algorithm. The tree that

was generated by running the algorithm with these two data sets is shown in Figure

6.2. This tree can be used to describe the progression of the matching process, as

follows. The algorithm first tried to find pairs of sensed points whose mutual distances

are within a tolerance f (i.e., the edge threshold) of the two reference points YI and

Y2. Seven pairs of sensed points which satisfied the distance criterion were found by

the algorithm, in total. Fourteen initial pairings were generated for the two reference

points YI and Y2, since two different orders arc possible for each pair of sensed points.

Five of these initial pairings, which grew to at least the second level of the tree, arc

shown in Figure 6.2. These pairings are represented by nodes in the first level of the

tree. Initial pairings which did not grow past the first level of the tree are not shown

in the figure. The numbers in parentheses next to each node in the figure denote the

pairing between a reference point and a sensed point; specifically, the left number in the

parentheses denotes a reference point and the right number denotes the corresponding

sensed point.

(
Chapter 6. Comparison of Algorithms

11.2),12.3)

(3,8)

(4,6)

15.7)

(6,9)

(3.3) (3,3)

0,8),(2,3

IJ.2)l

80

(

::::: j
(9,J)

(10,10)

k.-th ordererror =5.751

Figure 6.2: Result of running the graph matching a1gorithm

Each of the pairings at the first level of the tree initiated a separate matching

process. For the first partial match (i.e. (1,2), (2,3)), reference point 3 was matched

to sensed point 8, since the latter point satisfied the distance criterion and since the

accumulated error with this new point was less than the current graph threshold.

Other nodes along the same branch of the search tree were established in the same

way, until a complete match was found. The k-th order error of the first candidate

solution, which is shown below the last oode in the branch, was then used as the graph

threshold for finding the next best solution. In backtracking up the same path, none

of the untried sensed points were able to satisfy both the distance criterion and the

new graph threshold. Ail of the matching processes which were initiated by the other

initial pairings proceeded in this manner; however, none of the partial matches were

able to grow beyond the second levcl of the tree.

The effects of noise on the dynamic behaviour of the graph matching algorithm

is illustrated by the following example. Consider the data sets shown in Table 6.3,

which were generated in exactly the same way as in the first example, except that the

(
Chapter 6. Comparison of .4.1gorithms 81

(

(

Reference Points Sensed Points

point
Coordinates

point
CoordÊnates

number x y z number x y z

1 40.6633 27.8418 36.9498 6 36.6700 36.7538 33.0836

2 15.8004 6.7666 26.4274 7 16.9167 10.5210 23.7908

3 15.5369 29.4060 25.9042 5 11.8337 31.4830 25.6312
4 21.5424 12.9421 18.5113 10 20.1889 17.0706 16.5221
5 19.6509 22.3433 23.7948 2 17.0278 25.5883 22.6240
6 19.3916 13.9647 3.9132 4 15.9867 18.3827 2.0326

7 18.4871 12.6961 33.5892 8 19.5363 15.9299 31.3038

8 33.8118 25.6968 36.4304 1 31.7224 31.6118! 33.5448

9 36.0384 47.2376 23.0349 3 25.7509 54.5714 21.9845

10 47.0082 16.0780 23.0217 9 44.7324 26.5068 17.1901

Table 6.3: Randomly generated point sets with 0-2 = 0.5

variance 0-2 of the noise in the sensed data set was increased from 0.1 to 0.5. The tree

that was generated by running the algorithm with these two data sets is shown in Figure

6.3. In this case, more partial matches were generated than in the previous example.

This is because the increased noise level adds more embedded local symmetries in the

sensed data set; hence, a greater number of sensed points were able to satisfy the

distance constraint. However, only four out of the twenty-two initial partial matches

generated by the algorithm grew past the second level of the tree, and only two grew

past the third level. The maximal match, which grew to the ninth level of the tree, is

the correct match.

The search tree in Figure 6.3 shows that incorrect matches are detected carly

in the matching process. This is due to the power of the two pruning mechanisms

which are employed by the algorithm. Naturally, the effectiveness of the pruning

constraints is weakened when the similarity in the interdistances between the feature

points increases; this is especially truc when the distance between points is smaller than

the edge threshold, f. In general, computer simulations have shown that the number of

(
Chapter 6. Comparison of Algorithms 82

(

(

(5,2) (5.2)

(6.4)

(7.8)

(8.1)

(9.3)

(IO.9)

Figure 6.3: Result ofrunning the graph matching algorithw when the noise variance ,,2 is
increased

partial matches which are obtained by the matching algorithm rapidly increases as the

number of feature points [ying within an enclosing volume of a given size is increased

and/or the noise added to the points is increased. This observation is supported by

the curves shown in Figure 6.4. These curves were obtained by running the graph

matching algorithm with data sets that were randomly generated within an enclosing

volume of size 2003
. For each curve, the noise variance that was added to the sensed

data set was kept fixed, while the number of feature points being matched was varied

from 10 to 100.

Another way to observe the dynamic behaviour of the graph matching algorithm

is iIlustrated in Figure 6.5. In this case, the two views of the 3-D "house" object shown

in Figure 6.5 (a) - (b) were matched using the graph matching algorithm. Three

candidate solutions were obtained, which are shown in Figure 6.5 (c) - (e). The first

candidate solution, in Figure 6.5 (c), contains only 4 correct point correspondences

(i.e., points 8-11); however, it can be seen that the sensed feature points are already

grouped together in the appropriate regions. For example, the points {l, 2, 3, 4, 5},

Chapter 6. Comparison of Algoritllms

Number of nodes v1slted vs. number 01 'ealure points
lBOOr----,----,----r---,---.,--~--,_-...,..-___,

1600

83

~ 1400

8
~ 1200

"Il
:~ 1000

~_ BOO
ë
~i 600

~ 400

_ noise:varlance:= 0.0

~, noise variance =0.25

-, noise variance:, 0.50

,,,
~:

200

o ----- .. ,:-:~-.:.-... : --
10 20 30 40 50 60 70 80

number of leaturs points belng rnalched
90 100

(

Figure 6.4: Number of nodes visited in the matching process, under various conditions

{6, 7, 8}, and {g, 10, lI} are grouped together in the same regio:Js on the object, in

both Figure 6.5 (a) and Figure 6.5 (c). This observation can be explained in terms

of the triangle comparisons that are carried out by the algorithm in traversing the

search tree, when k = 3. The triangles formed by the points marked {l, 2, 3}, {2, 3, 4},

{4, 5, 6}, and so on, in both Figure 6.5 (a) and Figure 6.5 (c) are matched such that, for

each pair of triangles compared, the edges are the same (to within the edge threshold).

Also, the accumulated error of ail such triangles is less than the graph threshold. In the

second candidate solution, the k-th order error of the first solution is used as t,he graph

threshold; consequently, the triangles formed by the points marked {l, 2, 3}, {2, 3, 4},

{4,5,6}, and so on, in Figure 6.5 (d) are more closely matched with the corresponding

triangles in Figure 6.5 (a) than in the case of the first candidate solution. For this

reason, the number of erroneous correspondences in the second candidate solution is

sigllificantly lower than in the case of the first candidate solution. The same argument

can be used to explain the results in the third, and final, solution in Figure 6.5 (e) in

which ail point correspondences are correct.

(

ClJapter 6. Comparison of Algorithms

(a) (h)

84

(c) (d) (e)

(
Figure 6.5: Result of matching two views 0f the 3D "house" object: (a) View 1 (Template
Image) (b) View 2 (Sensed Image) (c) First candidate solution (d) Second candidate solution
(e) Final solution

(
Chapter 6. Comparison of Algorithms

6.3.2 SVD-Based Algorithm

85

The dynamic behaviour of the SVD-based algorithm can be observed by tracking the

success of each of the component parts of the algorithm in minimizing the (east squares

mismatch between the two data sets. To see how this is done, consider the block

diagram in Figure 6.6, which summarizes the three-step matching procedure in Section

4.3. In the lirst step of the procedure (i.e. SVD1), a rough estimate 8 of the optimal

,.------------------------_._------------.----------.
, :, ,, ,
: ' n*

_<_X_,Y_l--+-:-l SVD 1 e SVD2 r-;.:_--l

i··········i··············~·············1··········.:

SVD3
e'

(Figure 6.6: A Block Representation of Morgera and Lie Chin Cheong's algorithm

rotation matrix S' is obtained by matching the normalized second moments of the

patterns: Q = !XXT and N = !yyT, where X and Y represent the sensed pattern
p q

and the template pattern, respectively. This requires l iterations of the SVD-based

algorithm described in (4.32) - (4.36). After each iteration i of the algorithm, the least

squares error of the matching process can be computed according to

a(i) 110(WQ8(i) - NIIF
tr[(8(WQ8(i) - N)(8(i)TQ8(i) - N)T],

(6.2)

(6.3)

where 8(i) denotes the estimated rotation matrix after i iterations of SVDl. The

matching process, for SVD1, can he observed by plotting the least squares error func­

tion a(i) for;. =1,2, ... , l. A similarleast squares error function TI(i) can be computed,

which describes the progression of the search for the permutation matrix Il', in the

second step of the matching procedure (SVD2); specilicaIly,

(
TI(i) = 110(WXÏÏ(i) - YIIF (6.4)

(
Chapter 6. Comparison of AIgorithms

= tr[(e(lfxÎi(i) - y)(e(WXÎÏ(i) - yf],

86

(6.5)

(

where ÎÏ(i) is the estimated permutation matrix after i iterations of SVD2 and e(l) is

the estimated rotation matrix after 1 iterations of SVDl. The progression of SVD2 can

be observed by plotting the least squares error function TJ(i) for i = 1,2, ... , m. The

permutation matrix ÎÏ(m) which is obtained after m iterations of SVD2 is takcn as

the optimal permutation matrix II' in subsequent calculations; specifically, it is used

in computing the optimal rotation matrix e' in SVD3, which consists of cvaluating

(4.25).

The result of running the SVD-based algorithm with the two randomly gen­

erated point sets in Table 6.1 and 1 = m = 50 is shown in Figures 6.7 - 6.8. The

least squares error curve in Figure 6.7 shows that approximately 30 iterations of step

1 (SVD1) were required for the algorithm to converge to a stable initial estimate of

the rotation matrix. Step 2 of the matching algorithm was initiated after 1 = 50 itera­

tions of SVDI and progressed in roughly the same manner, as illustrated by the least

squares error curve in Figure 6.8. The matrix ÎÏ(50) obtained after m =50 iterations

of SVD2 was very close to IIDl, where II is the exact permutation matrix and Dl is

the diagonal square root of the identity matrix 1. In the final step of the algorithm

(SVD3), the matrix ÎÏ(50) was used to compute the optimal rotationmatrix e'. This

matrix was used to obtain the final estimated motion parameters, which are shown in

Table 6.4. Note that the accuracy in estimating the motion parameters is improved as

the number of iterations in SVD1 and SVD2 are increased.

In general, it is dilficult to determine ahead of time how many iterations of

SVDI and SVD2 are needed for the algorithm to converge to accurate solutions for

e' and II'; however, the following trends were observed, for a number of experiments

similar to the previous example:

• The rotation matrix e in SVD1 did not need to converge to a stable solution,

to obtain the expected results for e' and II'; in fact, for small rotations (i.e.

(

(

Chapter 6. Comparison of Algorithms

°OL-:--"-"":-5--=J20=:::2~5=:30;:::::;35;:::4:;;O=:4;5=~5O
nurri>er 01 ilerations in SVD1 (k)

Figure ij ..7: Least Squares Errar Curve for SVDI

87

Ise in estimating pelTTlutations

45 50

(Figure 6.8: Least Squares Errar Curve for SVD2

(
Chapter 6. Comparison of Algorithms

Rotation Axis Angle Translation Vector

n x n v nz b x by b z

True 0.200 0.500 0.843 0.270 - 1.000 1.000 0.000

Estimated 0.175 0.519 0.836 0.265 - 1.377 0.950 0.319

Table 6.4: Motion parameters obtained by the SVD-based algorithm

88

«

(

rotation angles (J < 0.5 rad), very few iterations of SVD1 were required for the

algorithm to converge to the expected results (for both SVD1 and SVD2)

• As the dimensionality and/or cardinality of the point sets being matched was

increased, so did the requirement on the number of Iterations needed for the

algorithm to converge to the expected results.

The results that were obtained in matching the data sets in Table 6.1 provide a good

example of the first observation. Recall that approximately l = 30 Iterations of SVD1

were required before obtaining a stable solution 0. When the same experiment was

mn with m = 50 and various values of l, it was found that the results for II(50) and

e' were virtually independent of the number of Iterations (1) used in SVD1; in fact, it

was possible to obtain the same results without running SVDI altogether (i.e., l = 0).

An explanation for the previous observation is that the initial estimate 0(0) = 1 was

close enough to the optimal solution e' that SVD2 could converge, using this rough

estimate.

The effect of noise on the dynamic behaviour of the SVD-based algorithm is

illustrated in Figures 6.9 (a) - (b). The least squares error curves in the two previous

figures are the results of matching four pairs of data sets that were created as follows. A

reference data set containing twelve randomly generated 3-D feature points was created.

This reference pattern was then used to compute a sensed pattern, as described in Sec-

(
Chapter 6. Comparison of Algorithms 89

«

(

tion 6.2.2, with the motion parameters: 0 = 0.785 rad, [nx ny n.l = [0.27 0.89 0.37],

b = [bx by b.l = [-2.7 0.85 12.4), and no noise (i.e. a2 = 0). The order of the

sensed points was then shuffied using a predetermined permutation matrix II. Three

other sensed patterns were obtained in exactly the same way, except that Gaussian

noises with variances: a2 = 0.25,0.50, and 1.0 were added to the points in the three

sensed patterns, respectively. Each of the four sensed patterns was then matched with

the reference pattern, using the SVD-based algorithm. Two least squares error curves

(one for SVD1 and one for SVD2) were obtained for each of the noise cases. The eight

resulting curves are shown in Figures 6.9 (a)- (b). These curves show that the rate of

convergence of both SVD1 and SVD2 is not significantly affected by differences in noise

variance. The rotation estimate 8 which is obtained by SVD1 varies significantly with

differences in noise variance, as illustrated in Figure 6.9 (a); however, this variation

does not significantly affect the permutation estimate il, which is obtained by SVD2,

and the overallleast squares error of the matching process, as shown in Figure 6.9 (b).

Another way to illustrate the matching process using the SVD-based algorithm

is shown in Figure 6.10. In this case, the two views of the 3-D "house" object shown

in Figure 6.10 (a) - (b) were matched using the SVD-based algorithm. The image

in Figure 6.10 (c) is the result after 1 = 25 iterations of SVD1. The orientation in

the previous image was adjusted according to the estimated rotation matrix that was

obtained in SVD1. The estimated motion parameters were quite close to the actual

values, as shown in Table 6.5. The result of matching after m = 100 iterations of

SVD2 is shown in Figure 6.10 (d). Comparing the previous figure with the template

image in Figure 6.10 (a), it is seen that ail point correspondences are correct. The final

solution, after executing SVD3, is shown in Figure 6.10 (e). The small adjustment in

the orientation of the house that is applied in the final solution is hardly noticeable,

since the initial rotation estimate was already very close to the actual solution.

(
Chapter 6. Comparisoll of AIgorithms 90

Ise in estimatlng rolations

....... ~ ; .

60 80 100 120 140 160 180 200
number ot Iterations ln SV02(m)

1009060

_ noise variance = 0.0
--... noise variance = 0.25
-, noise varianCe = 0.5
... noise varianCe = 1.0

_ noise variance = 0.0
- noise variance"" '0.25
-. no1s9 varianCe = 0.5
... notsS varianCe = 1.0

(a)

Ise ln estimallng permutations

30 40 50 60 70
number 01 Iterations ln SVDl (1)

40

20

..
1
l,,
""

20

la

1000

900

600

700

~ BOO

i 500
~

.S1
400

300

200

100

aa

(
10000

9000

6000

7000

~ 6000

15000

'" 4000
.S1

3000

2000

1000

00

(b)

Figure 6.9: Effects of noise on the SVD-based algorithm: (a) LSE curves for SVDl (b)
LSE curves for SVD2

(

(

(

Chapter 6. Comparison of .4Igorithms

(a) (h)

91

(c) (d) (e)

(
Figure 6.10: Result ofmatching two views of the 3D "honse" object: (a) View 1 (Template
Image) (b) View 2 (Sensed Image) (c) Result after 25 iterations of SVDI (d) Result after 100
iterations of SVD2 (e) Result aCter SVD3 (final solution)

(
Chapter 6. Comparison of Algorithms

Rot:1tion (Euler) Angles Translation Veclor

a• a Oz b b b
Y . Y z

Estimated Values 0.185 0.324 ·0.119 ·1.075 1.808 -0.172

Actual Values 0.20 0.30 ·0.11 ·1.0 2.0 0.0

Table 6.5: Motion parameters associated with the 3-D house object

6.4 Speed/Accuracy Comparisons

92

(

(

ln this section, the two matching algorithms are compared in terms of the speed and

accuracy with which a solution to the point correspondence problem is found; in par­

ticular, the attention is placed on the following:

1. The effects of both noise and "object size" 1 on the speed and accuracy of the

two algorithms. The average cpu time (in milliseconds) that is required to find

a solution to the correspondence problem is used as a measure of computational

speed. Accuracy is measured as the total number of incorrect matches, summed

over the number of trials used for averaging.

2. The average cpu time required to find a solution to the correspondence problem,

as a function of the number of point features to be matched.

The two previous points describe important factors which typically affect the perfor­

mance of a inatching algorithm. Virtually ail practical matching applications must be

able to handle data sets which are corrupted by noise; consequently, it is important

to determine to what extent the speed and accuracy of the matching algorithms are

affected when the data set,s are noisy. It also important to understand how the speed of

the matching algorithms is affecteù when the numher of points to be matched is varied,

1This is actually the size of the enclosing volume in which the feature points were randomly

generated. Sec section 6.2.2 for more details.

(
Chapter 6. Comparison of Algorithms 93

(

(

since sorne applications require many points to be matched, while others require very

few.

It should be noted that the term "incorrect match" only applies, in a strict

sense, to the graph matching algorithm. This is because the graph matching algorithm

yields a permutation matrix whose entries are exactly 1 or 0; consequently, it is possible

to determine whether a match is correct or incorrect by comparing the result of the

matching algorithm with the expected result. In the case of the SVD-based algorithm,

the permutation matrix fi does not have entries which are exactly 1 or 0; instead,

the permutation matrix approaches IlDI, where DI is the diagonal square root of the

identity matrix 1, such that the overall error of the estimated solution is minimized, in

the least squares sense. To compare the results of the two aIgorithms, sorne processing

was applied to the permutation estimate fi such that ail entries were either 1 or O.

Specifically, the largest element in each column of fi that exceeded a predetermined

threshold ~ was rounded up to 1.0, while ail other elements were rounded down to 0.0.

Note that this modified version of fi was used only to determine the number of "error"

correspondences and was not used in any computations (e.g., in SVD3).

The data sets that were used in the speed and accuracy measurements were ail

randomly generated, as described in Section 6.2.2. A program was written in C to

measure the cpu time that was used in running the algorithms. Ali of the speed and

accuracy results were averaged over 100 trials.

6.4.1 Graph Matching Aigorithm

Matching of Point Sets With the Same Cardinality

The speed and accuracy measurements in this section reflect the performance of the

graph-matching algorithm under the following conditions:

Chapter 6. Comparison of Algorithms 94

(

• point patterns having 10 point features each,

• no occluded or extra points in either of the t\Vo data sets

• the following set of motion parameters: rotation a.xis: nx =0.23, ny =0.44, nz =

0.87; rotation angle: B = 0.97 radian; translation vector: t x = 70, t y = -9,

t: =0.5,

• noises \Vith variances a2 ranging from 0.01 - 3.0,

• three different enclosing volumes: 253 ,503 and 100\

• two different values of k: k = 3, 10, 2

The effect of k on both the speed and accuracy of the algorithm can be observed

by comparing the results in Tables 6.6 - 6.7, for which k = 3 and 10, respectively. It

can be seen that the accuracy of the solutions obtained with the matching algorithm

improves as k is increased. On the other hand, the computational requirements of

the algorithm increase as k is increased. The previous trend becomes increasingly

marked as the size of tbe volume in which feature points arc generated decreases and

as the noise variance increases. An increase in the computational requirements of the

algorithm is expeeted as k is increased, since the number of comparisons that arc

performed whenever a new node in the search tree is visited is directly proportional to

k; however, if the edge threshold f is chosen appropriately, the chances that the node

will be rejected are greater as k increases.

The results in Tables 6.6 - 6.7 arc plotted in Figures 6.11 - 6.12, respectively,

to iIlustrate the computational requirements of the algorithm as a function of the noise

variance. In general, it can be observed that the computational requir,'ments of the

algorithm increase rapidly with increases in the noise variance; moreover, the sharpness

of the increase in computational requirements is strongly dependent on the size of the

volume in which the feature points have been randomly gencrated.

2Rccall, from Chapter 5, that the parameter k determines the kth arder errar rncasure to he uscd

in the matching process.

(
Chapter 6. Comparison of Algorithms

P=IO # incorrect matches Average cpu lime (ms)
q=1O in 100 simulations for cach simulation

Noise "abject" Sile "abject" Sile
a 2 100' 50' 25' 100' 50' 25'

0.00 0 0 0 2.7 2.8 3.2
0.10 0 0 0 3.3 4.1 7.6
0.25 0 0 2 3.8 5.3 23.7
0.50 0 0 6 4.4 9.9 96.9
0.75 0 0 21 5.3 15.0 275.1
1.00 0 0 23 6.0 21.8 528.6
1.50 0 4 53 7.3 43.1 1006.8
2.00 0 6 88 9.2 95.0 1494.3
3.00 2 21 197 14.5 248.4 3016.1

95

(

(

Table 6.6: Results of graph matching algorithm for several noise variances and k = 3

p=1O # incorrect ma1ches Average cpu time (ms)
q=10 in 100 simulations for each simulation

Noise "abject" Sile "abject" Sile

a 2 100' 50' 25' 100' 50' 25 3

0.00 0 0 0 2.8 3.1 3.0
0.10 0 0 0 3.3 4.7 8.2
0.25 0 0 0 4.1 6.7 23.7
0.50 0 0 4 5.0 10.7 128.8
0.75 0 0 6 5.6 15.2 353.2
1.00 0 0 8 6.4 23.4 962.2
1.50 0 0 12 7.9 46.2 4343.2
2.00 0 2 31 10.3 133.8 9074.8
3.00 2 4 68 17.3 312.7 24923.6

Table 6.7: Results of graph matching algorithm for several noise variances and k = 10

(
Chapter 6. Cnmparison of Algorithms

CPU time vs. noise variance (k:3.M=O)
500,----,------.,.,----,----,----,..--------,

450

400

96

350

ûi'300
.5-.
:§ 250

K
0200

150

100

50

25"3

50"3

100"3

(

°0!-~====;0":.5;;,;;~;;=====::,.<::5====!====;2.~5===j
noise variance

Figure 6.11: Trends in CPU requirements 3S a function of noise variance, k = 3

CPU tlme vs. noise variance (k~10.M=O)

500

450

400

350

:[300

~250

K
0200

150

100

50 100"3·

00 2.5

Figure 6.12: Trends in CPU requirements 3S a function of noise variance, k = 10

(
Chapter 6. Comparison of Algorithms 9ï

«

(

The result of using Cheng and Don's data splitting strategy is shown in Tables

6.8 - 6.9. The differences in the performance of the algorithm with and without data

splitting is seen by comparing the speed measurements in Tables 6.8 and 6.6 and also

in Tables 6.9 and 6.ï, respectively. Comparisons can also be made between Figures

6.13 and 6.11 and between Figures 6.14 and 6.12. Note that the variable AI has been

introduced to indicate the size of the subsets to be matched when Cheng and Don's data

splitting strategy is invoked. When AI = 0, l, no data splitting is used. When AI = 2,

the data sets are split equally into two subsets, and so on. In Figures 6.13 - 6.14, it

can be seen that the data splitting strategy significantly reduces the computational

requirements of the algorithm; however, the cost of this improvement in speed is an

increase in the number of incorrect matches, as shown in Tables 6.8 - 6.9.

The computational requirements of the algorithm as a function of the number

of feature points to be matched was investigated under the following conditions:

• three different noise variances: a2 = 0.1,0.25,0.5

• two different enclosing volumes: 1003 and 2003,

• k fixed at k = 3,

• M = 0 (i.e. no data splitting) and M = 2.

The results are shown in Tables 6.10 - 6.12, for M = 0, and in Tables 6.13 - 6.15,

for M = 2. Once again, the effects of noise and "object size" were investigated. In

general, the following is observed:

• The computational requirements of the algorithm increase rapidly as the number

of feature points to be matched increases; this is clearly seen in Figure 6.15.

• The sharpness of the increase in computational requirements is strongly depen­

dent on both the enclosing volume in which the feature points were generated and

the variance of the noises added to the feature points; this is clearly illustrated

in Figure 6.15.

• When the mutua! distances between the feature points is large and the the pertur­

bations in point positions due to additive noises is small, data splitting provides

{
Cbapter 6. Comparison of .41goritbms

p=1O # incorrect matches Average epu time (ms)
q=1O in 100 simulations for eaeh simulation

Noise "Objeet" Sile "Objeet'· Sile
(}"2 100' 50' 25' 100' 50' 25'

0.00 0 0 0 2.5 2.6 2.7

0.10 0 2 17 3.1 3.9 6.8

0.25 0 9 36 3.7 5.8 11.7
0.50 0 18 123 4.2 7.6 17.4

0.75 0 24 190 4.7 10.1 22.7

1.00 12 26 249 5.5 12.2 28.2

1.50 8 48 383 6.6 15.9 35.7

2.00 29 124 440 7.6 19.8 40.9

3.00 40 215 615 9.4 25.2 47.5

98

(

Table 6.8: Results of the graph matehing algorithm using the data splitting strategy with
k= 3,M =2

p=1O # incorrect matches Average cpu lime (ms)
q=1O in 100 simulations for each simulation

Noise "Object" Sile "Object" Sile
(}"2 100' 50' 25' 100' 50' 25'

0.00 0 0 0 2.5 2.4 2.4

0.10 0 0 0 3.3 3.6 6.4

0.25 0 7 21 3.8 5.5 14.5

0.50 4 18 78 4.3 7.7 24.7

0.75 11 24 133 4.9 10.4 32.5

1.00 7 52 229 5.6 13.3 40.5

1.50 11 55 345 6.5 19.8 50.2

2.00 17 81 493 8.2 23.6 57.5

3.00 28 163 544 10.7 32.6 70.4

Table 6.9: Results of the graph matehing algorithm using the data splitting strategy with
k = 10,M =2

(
Chapter 6. Comparison of Algorithms 99

Cpu time vs. noise variance (k=3.M=2)
50r------r----.---.....,.---=-...;.--.-:.-~,.__--....,

45

40
25"3

35

50"3

15

0.5 1.5
noise variance

2.S

(Figure 6.13: Plot of data splitting results, k = 3, M = 2

CPU tlme vs. noise variance (k".10,M..2)
80

70

60

25"3

:["0

œ
:§ 40
=>
0-
u

30

20

(
Figure 6.14: Plot of data splitting resuIts, k = 10, M = 2

Chapter 6. Comparison of .4.1gorithms 100

Noise 0 2

0.1

fc.lIure pts

10
20
30
40

50

60
70
80

90
100

#1 incorrect matches
in 100 simulations

"Object" Size

o
o
o
o
o
o
o
o
2

o

Avcrnge cpu lime (ms)
for each simulation

3.3 2.8

17.5 14.8

50.2 38.3
107.4 79.2

205.8 140.7
365.0 215.3

562.0 34·U
838.2 5~.2

12%.1 6HZ
1915.9 919.5

«

(

Table 6.10: Results using point sets with various cardinalities and ,,2 = 0.10

Noise 0 2 #1 incorrect matches Avernge cpu lime (ms)
0.25 in J()() simulations for each simulation

#1 feature pts "Object" Size "Object" Sile

100' 200' 100' loci

10 0 4.1 3.0

20 0 22.3 17.3

30 0 73.8 44.3

40 0 171.5 94.3

SO 0 374.6 171.8

60 0 700.4 290.2

70 0 1168.7 443.2

80 0 2121.6 660.1

90 0 3248.9 985.9

100 2 6113.3 1400.3

Table 6.11: Results using point sets with varions cardinalities and ,,2 = 0.25

Noise 0 2 #1 incorrect matches Avernge cpu lime (ms)

0.50 in 100 simulations for cach simulation

#1 fcalure pts "Object" Size "Object" Size
100' 200' 100' 200'

10 0 0 4.2 3.2

20 0 0 32.3 19.1

30 2 0 128.0 52.6

40 0 0 323.8 111.3
SO 2 0 952.4 226.9

60 4 0 2658.9 378.4

70 4 0 5608.4 635.5

80 4 0 12439.7 1000.7

90 6 0 31724.7 1475.1

100 8 2 69080.1 2443.2

Table 6.12: Results using point sets with various eardinalities and ,,2 = 0.50

(
Chapter 6. Comparison of .4.Igorithms 101

Noise 0'2
0.10

fe3ture pts

incorrect malchcs
in 100 simulations

Avcragecpu lime (ms)
for cath simulation

"Object" Sile

10 , 0

20 0 0

30 30 30

40 122 40

30 100 0

60 " 30

70 3. '42
80 329 80

90 818 180

100 854 200

3.9 3.2

16.9 13.8
5.5.4 37.5
108.6 76.1
205.0 140.6
358.7 224.2
.563.2 340.1
905.8 491.9
1240.5 69-U
1850.9 998.6

Table 6.13: Results using point sets with various cardinalities, M = 2 and ,,2 =0.10

Noise 0'2 # incorrect matches Averagccpu lime (ms)
0.25 in 100 simulations for cach simulation

#feature pts
"Object" Size "Object" Sin::

100' ZOO} 100' 200'

(10 12 0 3.6 .lS

20 '6 0 23.3 15.9

30 92 4' 80.9 43.3

40 180 20 17.5.3 93.8

'0 "" 100 362.5 173.6

60 307 lS2 669.4 2R8.7

70 747 10' 1169.8 458.5

80 488 322 1944.5 6.56,4

90 866 '40 3028.6 940,4

100 1156 6'0 5008.2 1401.3

Table 6.14: Results using point sets with various cardinalities, M = 2 and ,,2 = 0.25

Noise 0'2 # incorrect matches Average cpu lime (ms)

0..50 in 100 simulations for cach simulation

(calure pts "Object" Size "Object" Size

100' 200' '00' 200'

10 4 0 4,7 3.4

20 44 20 31.9 11.7

30 137 47 121.9 54.9

40 331 200 306.0 117.3

30 481 '" 792.7 233.5

60 7S8 214 1654.2 402.5

70 1241 420 3602.4 678.9

80 1303 724 7289.3 1025.0

(90 1814 458 18729.4 1433.7

100 1718 1010 35422.5 2284.2

Table 6.15: Results using point sets with various cardinalities, M = 2 and ,,2 = 0.50

(
Chapter 6. Comparison of Algorithms 102

CPU lime vs. number 01 'eature points being matched (k=3.M=O)
2Soo,--....-__,_---..--....--r-----,,.--....--r--'--.--.,

2000

Volume",,1()(}/'3

<il 1500
S
m
~

~
U 1000

SOO

°0~--:10:--~~~:=.-;40:c----,S==0,--:6':-0---::70:c-,-6==0----:9':-0--,,.!00
number 01 'eature points

«
(a)

CPU lime vs. number olleature poir.ts belng matched (k",,3,Mz::O)
2S00,---r--,.-----,--....--.--~--_r_-__,_--.,

'00

,.,.,,

,,,,
i,,

var=O.5 "
),,.

2000
Volume=2QOA3

l'SOO

j
::>
~ 1000

SOO

0
20'0

(b)

Figure 6.15: CPU requirements as a function of the number of points being matched (a)
Enclosing volume: 1003 , (b) Enclosing volume: 2003

(

(
Chapter 6. Comparison of AIgorithms 103

(

little, if any, reduction in the computational requirements of the algorithm; this

is seen by comparing the results in Tables 6.10 - 6.12 with those in Tables 6.13

- 6.15.

• As the mutual distances between the feature points decreases and/or the per­

turbations in the point positions increases, significant improvements in compu­

tational speed are obtained at the expense of an increased number of incorrect

matches. The results shown in Tables 6.16 - 6.17, which were obtained using

an enclosing volume of (50)3 and noises having variance a2 = 1.0, support this

observation.

Noise 0'2 ft incorrect matches Average cpu lime (ms)
1.0 in 100 simulations for cach simulation

[calure pts
"Object" SilC "Objcct" Sile

50' 50'

10 58 11.4

15 159 82.7

20 297 696.6

25 382 m5.t

30 517 40946.4

Table 6.16: Results using point sets with varions cardillalities, k =3, M = 2, a 2 = 1.0

Noise 0'2 # incorrect matches Averagc cpu timc (ms)

1.0 in 100 simulations for cach simulation

fcalurc pts
"Object" Sile "Objecl" Sile

50' 50'

10 2 19.7

15 4 283.7

20 18 8915.6

25 24 207793.5

30

Table 6.17: Results using point sets with various cardinalities, k = 3, M = 0, a 2 = 1.0.
Entries marked - toak tao long ta execute 100 tirnes

(
Chapter 6. Comparison of Algorithms

Matching of Point Sets With Different Cardinalities

104

«

(

For the correspondence problem in which the point sets to be matched have different

cardinalities, Cheng and Don's algorithm [1] was implemented as described in Section

5.3.2. The results for p = 30 and q = 5, 15,25 3 are shown in Table 6.18. Once again, it

can be seen that boti1 the endosing volume and the variance of the added noise have a

strong influence on the computational requirements of the algorithm. The average cpu

time required to find the solution is always greater in the case of the smaller enclosing

volume (1003) than in the case of the larger one (2003); moreover, the effects of noise

on both the speed and accuracy of the algorithm are significantly less pronounced in

the case of the larger enclosing volume. In ail cases, the computational requirements of

the algorithm increase as the namber of points in the template set increase from 5 to

25 points, but the average cpu time required to find a solution to the correspondence

problem is always less than in the case of p = q = 30 feature points. The previous

observation is supported by the results in Tables 6.10 - 6.12, for the noise variances

0-2 =0.1,0.25, and 0.5.

6.4.2 SVD-based Algorithm

Matching of Point Sets With the Same Cardinality

The results for Morgera and Lie Chin Cheong's SVD-based iterative algorithm are

presented in this section. The point patterns to be matched were generated in exactly

the same manner as in the case of the graph matching algorithm, and the experiments

were also organized in a similar manner; that is, the effects of noise, "object size", and

the number of feature points to be matched on both the speed and accuracy of the

algorithm were investigated.

3 Here, p is the cardinality of the sensed data set, and q is the cardinality of the template, or

referencc, data set

(
Chapter 6. Comparison of Algorithms 105

P=30

"Object" Sue

incorrect matches Average cpu lime (ms)
in 100 simulations for each simulation

Noise

a' 15 25 15 25

0.00 0 13.6 19..5 26.3
0.10 0 32.1 38.8 46.3
0.25 0 47.8 59.2 67.7
0.50 1 0 72.5 98.4 115.9
1.00 3 4 127.8 246.2 321.1
2.00 32 16 17 247.2 1793.5 6272.2
3.00 63 31 21 32,5.7 9754.8 12161.0

0.00 12.0 19.0 26.4

0.10 22.3 28.1 34.1
0.25 26.4 33.7 40.8

0.50 35.4 42.4 52.2
1.00 46.9 59.2 69.8
2.00 68.6 105.8 117.6
3.00 102.1 154.8 196.1

(

Table 6.18: Results of the graph matching algorithm in the case of unmatched points

For this algorithm, two paramctcrs which arc specifie to Morgera and Lie Chin

Cheong's algorithm arc of interest:

1. The number of iterations 1 used in SVDI to establish a rough estimate 0 of the

rotation matrix 8.

2. The number of iterations m used in SVD2 to find the permutation matrix ÎÏ,

which represents the desired solution to the correspondence problem.

The role of these two parameters in the matching algorithm is illustrated in the block

diagram in Figure 6.6 (cI Section 6.3.2). Note that the last step of the SVD-based pro­

cedure (SVD3) was not executed when making the speed and accuracy measurements,

since it does not contribute to the solution of the point correspondence problem.

Since the SVD-based algorithm is iterative, it is expected that the accuracy of

the estimates for (0, ÎÏ) depends on the values of 1and m; therefore, results have been

compiled for various combinations of values for 1 and m. The results given in Tables

{
Chapter 6. Comparison of Algoritllms

p=1O # incorrect matches Average cpu time (ms)
q=1O in 100 simulations for each simulation

Noise "Object"' Sile "Object" Sile
0'2

1003 503 25 3 1003 503 25'

0.00 269 269 270 569.8 568.2 587.4

0.10 254 271 268 615.1 592.0 588.8

0.25 244 278 274 590.6 582.0 585.0

0.50 282 294 254 589.6 569.0 579.0

1.00 284 312 308 599.3 568.4 567.9

2.00 296 264 372 569.7 590.6 571.6

3.00 323 374 515 589.6 580.3 586.6

106

(

(

Table 6.19: Results of SVD-Based algorithm for several nOIse vanances and 1= 10, nt = 25

p=1O # incorrect matches Average cpu time (ms)
q=1O in 100 simulations for each simulation

Noise "Obiect" Sile "Object" Sile
0'2

1003 50' 25' 100' 50' 25'

0.00 195 264 225 1169.6 1173.2 1127.1

0.10 197 253 261 1142.1 1124.9 1120.6

0.25 242 204 285 1149.0 1136.1 1121.4

0.50 260 252 217 1095.5 1101.0 1112.0

1.00 257 251 244 1095.1 1146.0 1118.4

2.00 292 277 431 1122.7 1099.8 1101.8

3.00 262 277 516 1098.1 1100.0 1098.2

Table 6.20: Results of SVD-Based algorithm for several noise variances and 1= 10, nt = 50

p=1O # incorrect matches Average cpu time (ms)
q=1O in 100 simulations for each simulation

Noise "Object" Sile "Object" Sile
0'2

100' 503 25' 100' 50' 25'

0.00 75 102 106 2188.7 2178.2 2158.3

0.10 108 157 78 2187.2 2181.3 2185.1

0.25 125 107 115 2180.5 2172.0 2175.9

0.50 105 100 113 2168.9 2171.9 2179.1

1.00 101 96 165 2173.2 2183.6 2178.9

2.00 164 137 329 2166.1 2181.8 2169.2

3.00 148 230 521 2187.3 2192.0 2185.6

Table 6.21: Results of SVD-Based algorithm for severalnoise variances and 1= 10, m = 100

(
Chapter 6. Comparison of Algorithms lOï

p=1O # incorrect matches Average cpu time (ms)
q=1O in 100 simulations for each simulation

Noise "Object" Sile "Object" Sile
cr 2

1003 503 25 3 1003 503 25 3

0.00 201 203 202 581.6 583.5 586.6

0.10 197 188 170 587.3 580.4 588.8
0.25 156 178 233 580.9 602.3 609.4

0.50 195 201 175 599.3 592.8 582.3
1.00 192 223 264 610.2 594.5 584.9

2.00 167 266 329 597.7 580.6 575.7

3.00 237 297 518 584.5 579.9 574.8

Table 6.22: Results of SVD-Based algorithm for several noise variances and 1= 25, m = 25

«

(

p=1O # incorrect matches Average cpu time (ms)
q=IO in 100 simulations for each simulation

Noise "Object" Sile "Object" Sile
cr 2

1003 503 25 3 100' 503 25'

0.00 119 107 144 1136.6 1124.5 1119.8

0.10 145 159 130 1120.2 1153.8 1119.5

0.25 154 161 13t 1119.2 1130.9 1125.4

0.50 89 153 157 1117.6 1116.0 1120.1

1.00 139 148 176 1181.5 1113.3 1139.6

2.00 139 184 329 1124.0 1118.2 1127.7

3.00 185 278 508 1121.1 1124.5 1119.3

Table 6.23: Results of SVD-Based algorithm for severalnoise variances and 1= 25, m = 50

p=1O # incorrect matches Average cpu lime (ms)
q=10 in 100 simulations for each simulation

Noise "Object" Sile "Object" Sile
cr 2

100' 503 25 3 1003 50' 25'

0.00 120 99 134 2198.6 2210.5 2237.1

0.10 86 107 102 2209.3 2210.8 2182.7

0.25 87 112 131 2218.7 2199.9 2192.2

0.50 128 134 99 2224.2 2179.8 2187.3

1.00 115 119 139 2196.3 2199.0 2194.2

2.00 123 158 300 2180.7 2182.4 2188.2

3.00 146 195 495 2189.7 21P.4.2 2207.1

Table 6.24: Results of SVD-Based algorithm for several noise variances and 1= 25, m = 100

{
Chapter 6. Comparison of Algorithms IDS

(

(

6.19 - 6.24 illustrate the performance of the algorithm, in terms of speed and accuracy,

for several noise variances and enclosing volumes. The following observations can be

made from these results:

• The computational requirements of the algorithm are determined solely by the

number of iterations performed in SVD1 and SVD2 (i.e. the values of 1 and m);

consequently, the noise variance and object size are not crucial factors, as in the

case of the graph matching algorithm. However, given an "acceptable" level of

least-squares error in matching, both the noise and the object size can have an

effect on the number of iterations that arc required by the SVD-based procedure.

• The accuracy of the algorithm is not strongly affected b~' variations in noise, for

variances ranging between 0.0 and 3.0.

• Increasing the number of iterations in SVD1 and SVD2 (especially m) helps

to improve the accuracy of the algorithm; however, the priee paid, in terms of

computational requirements, is quite high.

Comparing the results in Tables 6.6 - 6.7 with those in Tables 6.19 - 6.24, it is

clear that the accuracy of the graph matching algorithm is far superior to that of the

SVD-based algorithm, in ail cases. This is largely duc to the fact that the SVD-based

procedure can converge to any one of several equivalued local extrema. Depending on

which of these extrema the algorithm converges to, the linal correspondences obtained

may or may not be correct; although, the overallleast squares error of the linal solution

is the same in ail cases. AIso, the processing of the permutation matrix that was used

to determine whether or not the correspondences were "correct" may have contributed

to sorne of the observed errors.

The linal solution to the point correspondence problem is generally obtained

much more quickly using the grar:-h matching algorithm than the SVD-based method,

as shown in Tables 6.6 - 6.7 and Tables 6.19 - 6.24. As the mutual distances between

(
Chapter 6. Comparison of .4.lgorithms 109

(

(

the feature points decrease (i.e., the enclosing volume decreases) and the noise corrupt·

ing the data increases, the computational speed of the two algorithms becomes more

comparable. Eventually, the SVD-based method is faster than the graph matching

algorithm in finding the optimal solution; however, the size of the enc\osing volume

and the noise level required for the SVD·based method to overtake the graph matching

algorithm render the solutions obtained with the SVD-based method virtually useless,

in terms of accuracy.

As the number of feature points to be matched increases, the computational

requirements of the SVD-based algorithm increase very rapidly, as shown in Tables

6.25 - 6.26. For the two enc\osing volumes in Tables 6.25 - 6.26 and in Tables 6.10 ­

6.11, the results indicate that the rate of increase in computational requirements as the

number of feature points increases is greater for the SVD-based algorithm than for the

graph matching algorithm. Clearly, the computational speed of the graph matching

algorithm is far superior to that of the SVD-based algorithm. The same can be said

regarding the a~curacy of the two methods, as the number of feature points increases.

The results in Tables 6.25 - 6.26 also show that the sharpness of the increase in

computational requirements is independent of both the noise variance and the object

size; however, there is a limit on the magnitude of the noise variance beyond which the

SVD-based algorithm breaks down; specifically, the magnitude of the additive noise

must be less than one-half of the shortest distance betweer. any two feature points in

the template data set [54].

Matching of Point Sets With Different Cardinalities

When the point sets to be matched have different cardinalities, the SVD-based algo­

rithm must be modified as described in Section 4.5. These modifications are described

here once again, for convenience.

(
Chaptcr 6. Comparison of Algorithms

Noise (12 # incorrect matches Average cpu time (ms)
0.1 in 10 simulations for each simulation

feature pts "Object" Size "Object" Size
((xi' 2<lO' 100" 200'

10 11 21 1091.0 1109.0

20 76 49 7861.0 7777.0

30 137 169 29779.0 28814.0

40 317 221 62514.0 61703.0

50 352 357 120754.0 121516.0

110

(

(

Table 6.25: Results of the SVD-based algorithm using point sets of various sizes and
a2 = 0.1

Noise (12 # incorrect matches Average cpu time (ms)

0.25 in JO simulations for each simulation

feature pts "Object" Size "Object" Size
100' 200" 100" 200'

10 13 21 1103.0 1094.0

20 57 48 7810.0 7812.0

30 150 136 29227.0 29078.0

40 197 217 62265.0 61766.0

50 358 346 122341.0 120841.0

Table 6.26: Results of the SVD-based algorithm using point sets of various sizes and
a 2 = 0.25

(
Chapter 6. Comparison of Algorithms

In the case for which p > q, the goal is to minimize the function

111

(6.6)

(

with respect to (e, Il(~)), where Il(~) is a (p x q)-dimensional permutation matrix and

D Q = diag(XTX) is a p-dimensional matrix whose elements are the diagonal elements

of the symmetric matrix XTX [54] 4. The minimization of the function h(e, Il(~)) in

6.6 is only required in Step 2 of the SVD-based algorithm (SVD2); hence, SVD1 and

SVD3 are the same as in the case for which p = q and SVD2 is modified as follows:

1. The expression for Ak in (4.35) is replaced by
n

Ak(~) = DQIlk(~) - 2L Dz,Ilk(~)Dy"
i=l 1

2. The negative definite inverse square root matrix [ArAkt 1/
2 is computed, such

that h(e, Il(~)) converges to its minimum point.

The negative definite inverse square root of the matrix ArAk is obtained by comput­

ing the singular value decomposition of ArAk , which is given in 4.27, and using the

orthogonal matrix V and the diagonal matrix I;-1/2 in the following equation:

(6.7)

(

The performance of the SVD-based algorithm in the case of unmatched points

was evaluated through computer simulations, under the following conditions:

• sensed data sets contained p = 30 feature points,

• template data sets contained q =5, 15,25 feature points,

• ail of the feature points were generated within an enclosing volume of 1003
,

• the sensed data sets were obtained from the template feature points as described

in Section 6.2.2, subject to the following motion parameters: () = 0.97 rad,

[nx ny] = [0.23 0.44], and [tx tu t.] = [0 2 - 5], and

4A similar function is minimized in the case for which p < q.

(
Cllapter 6. Comparison of Algoritllms 112

P=30 # incorrect matches Average cpu time (ms)
in 100 simulations for each simulation

"Objeet" Size Noise
cr 2

15 25 15 25

0,00 241 655 1247 2847.3 15631.7 37678.6
0.\0 238 658 1215 2833.5 16748.1 36379.8
0.25 221 673 1265 2833.8 14208,2 35763.3

100' Clin 216 684 1199 2871.2 13 278.9 35727.2

1.00 228 686 1231 2816.6 14260.8 35629.5
1,00 229 699 1279 2849.1 13 257.1 35516.2
3.00 222 686 1214 2829.6 13353.0 35599.8

Table 6.27: ResuUs of the SVD-based algorithm in the case of unmatched points

• the number of recursions used in SVD1 and SVD2 were 1 = 25 and ln = 100,

respectively.

The results of the computer simulations are shown in Table 6.27. These results

indicate that:

• The computational complexity of Step 2 of the SVD-based algorithm (SVD2) is

not dominated by the size of the larger data set, when p of. '1; this is illustrated

by the much smaller cpu requirements for '1 = 5 and '1 = 15 (where '1 « pl, as

compared with those for '1 = 25 (where '1 "" p)

• The accnracy of the SVD-based algorithm is poor when unmatched feature points

exist in the data sets to be matched.

(

The first observation regarding Table 6.27 is to be expected, sinee the matrix

operations that are required in SVD2 involve (p x '1)-, (p x plo, and ('1 x p)- dimen­

sional matrices; hence, the number of feature points '1 in the template data set have

a significant impact on the total number of computations that are required in Step 2

of the algorithm. Most importantly, the inverse square root matrix (AIAkt l
/

2 which

is computed for each iteration k = 1,2, ... , m of SVD2 requires the SVD of a ('1 x '1)-

(
Chapter 6. Comparison of Algorithms 113

«

(

dimensional matrix. This computation accounts for a large part of the total number of

computations in SVD2. The observation regarding the accuracy of the the algorithm

when p i- q is explained by the fact that the SVD-based procedure can converge to any

one of 2Pp! local minima of the function h(8, n(~), which may contain any number of

correct or incorrect correspondences. In the case where p i- q, the recursive procedure

in Step 2 of the SVD-based algorithm seems to converge less frequently to the ex­

pected solution than in the case where p = q; nonetheless, the estimated permutation

matrix II' is always a partial isometry matrix and is, indeed, a solution to the function

optimization problem.

Once again, the results obtained with the SVD-based algorithm are inferior to

those obtained with the graph matching algorithm. Comparing the results in Table

6.27 with those in Table 6.18, it is clear that the performance of the graph matching

algorithm, in terms of both the computational speed in finding the solution and of the

accuracy of the estimated solution, is far superior to that of the SVD-based algorithm

in the case of unmatched points.

(

(

(

Chapter 7

Conclusions

7.1 Summary of the Matching Aigorithms

In this thesis, we have compared two algorithms for solving various point pattern

matching problems. The patterns involved in the matching proccss were assumed to

contain feature points in the Euclidean n-space]En; although, specific attention was

placed on the case of 3-dimensional feature points. AIso, a global geometric transfor­

mation based on rigid motions was assumed to be sufficient for aligning the patterns,

once the point correspondences were al! known.

The focus in this study was mainly placcd on solving the point correspondencc

problem, since it is known to be a highly complex part of the matching process. Two

specific cases were considered. In the first case, the patterns contained an equalnumber

of feature points and no extra or occluded points were al!owed in the data sets. In

the second case, one of the two patterns contained sorne extra or occluded points for

which no correspondence could be established with the points in the other pattern.

Computer simulations were conducted to compare the efficiency of the two algorithms

in both cases.

114

Chapter 7. Conclusions

7.1.1 The SVD-Based Procedure

115

(

(

The first algorithm that was reviewed in this thesis is the SVD-based method by

Morgera and Lie Chin Cheong [2, 54J. This method is a function optimization approach

for solving both the motion estimation problem and the point correspondence problem,

and is based on the theory of Lie groups and Lie algebras. For the general unordered

point matching problem, the solution is obtained by jointly optimizing two functionals:

one in terms of El, an orthogonal rotation matrix, and the other in terms of II, a

permutation matrix. This is accomplished by following a three-step procedure. In the

first step, an initial estimate of El (or II) is obtained; this initial estimate is used in

the second step, to obtain the optimal estimate for II (or El); the third step is used to

refine the initial estimate obtained in step 1.

To implement this procedure, the singular value decomposition of a matrix

having the form (ATA)-1/2 is used at each step. This SVD-based implementation

of the 3-step procedure is executed in an iterative fashion and can converge to any

one of several equivalued local extrema. The number of possible solutions to the point

correspondence problem (i.e., step 2 of the 3-step procedure) is given by 2Pp!, where p is

the number of point features being matched; consequently, the probability of obtaining

incorrect matches rapidly increases as the cardinality of the point patterns increases.

This observation is supported by the simulation results presented in Chapter 6. The

specific extremum to which the algorithm converges is somewhat dependent on the

choice of the initial solution; nevertheless, the initial guess does not need to be close

to the true solution for the algorithm to converge.

7.1.2 The Tree-Based Aigorithm

The second algorithm that is reviewed in the thesis is the graph matching algorithm

of Cheng and Don [11. This method is a graph theoretic approach for solving the

Chapter i. Conclusions 116

«

(

point correspondence problem. The graph-based formulation makes it possible to in­

cIude auxiliary information, such as the relationships between features, in the matching

process. This attribute of the graph matching algorithm was neither exploited nor ex­

amined in this study for purposes of comparison with the SVD-based algorithm.

The graph matching algorithm differs from the SVD-based method in two im­

portant respects. First, the graph-based approach uses a backtracking tree search pro­

cedure as the search strateg)'. In the SVD-based method, the search strategy consists

of straightforward iterative computations which are aimed at minimizing the similarity

metric. The backtracking approach uses the similarity metric in the search strategy to

guide the search for the optimal solution to the correspondence problem. Specifically,

the k-th order error is incorporated into the two pruning mechanisms that are used to

reduce the number of paths that need to be traversed in the search procedure. The

first mechanism is the so-called edge threshold, which exploits the principle of invari­

ance of distance measures under rigid body motion. The second pruning mechanism is

the so-called graph-threshold, which ensures that the error accumulated in traversing

new paths decreases monotonically. For each candidate solution, the accumulated kth

order error is computed, and a lower-error solution is sought by backtracking through

the tree and traversing unexplored paths. The final solution is the candidate matching

graph which has the smallest kth order error. The differences in the similarity metrics

that are employed by the two algorithms is the second important distinguishing factor;

namely, the k-th order error, in the case of the graph matching algorithm, and the

least squares error, in the case of the SVD-based method.

7.1.3 Simulation Results

Computer simulations were performed to illustrate the differences in the computational

requirements of the two algorithms in finding a solution to the point correspondence

problem. Two distinct types of results were obtained from the simulations. The first

(
Chapter 7. Conciusions !li

(

type of results dealt with the dynamic behavior of the algorithms. In this case, ex­

periments were conducted to observe the progress of each algorithm from an initial

solution, through several intermediate results, to the final solution. The second type of

simulation results involved direct measurements on the speed and accuracy of the al­

gorithms, for specific matching problems. In ail of the experiments, the effects of both

noise and the density of feature points within an enclosing volume on the computational

requirements of the algorithms were considered.

The simulation results in the algorithm dynamics section illustrate the differ­

ences in the search strategies that are employed by the matching algorithms; moreover,

these results provide insight which helps to interpret the simulation results on compu­

tational spced and accuracy. In the case of the graph matching algorithm, the solution

to the point correspondence problem is obtained both quickly and accurately when the

distances between the feature points are largely dissimilar. That is a consequence of

the distance constraint which is used as a pruning mechanism in the search procedure.

As the similarity in the inter-point distances between the feature points in a data set in­

creases, the effectiveness of the pruning mechanisms is weakened; accordingly, a greater

number of partial matches is generated by the algorithm, in this case. This effect has

a direct impact on the computational requirements of the graph matching procedure,

as illustrated by the results on computational speed and accuracy. In particular, it is

shown that the computational requirements of the algorithm significantly increase as

the density of feature points within an enclosing volume increases. Equivalently, for a

fixed number of feature points and a fixed level of additive noise, the cpu time required

to find the optimal solution significantly increases as the enclosing volume in which the

feature points are (randomly) generated is reduced. The addition of Gaussian noise

to the feature points has the effect of increasing the similarity in the inter-point dis­

tances between the feature points; hence, as the noise variance is increased, the effect

of reducing the enclosing volume in which the feature points are generated is greatly

accentuated. This effect is not observed in the case of the SVD-based procedure, due

(
Chapter Î. Conclusions 118

to the fundamentally dilferent search strategy that is used in this method. The com­

putationaI requirements of the SVD-based algorithm are entirely determined by the

number of iterations 1 and m that are used in the first two steps of the procedure,

SVDI and SVD2, respectively. Still, the graph matching algorithm is shown to be

much faster than the SVD-based procedure in finding the optimal solution, in aIl of

the cases attempted; however, the elfects of increasing the additive noise limit this

advantage in computational speed. The accuracy of the solutions obtained with the

graph matching algorithm is also shown to be superior, in comparison with the SVD­

based algorithm. The solutions obtained using the SVD-based procedure are seen to

be somewhat dependent on the initial guesses 8(0) and IT(O) that are used in SVDI

and SVD2, respectively; consequently, the solutions given by the SVD-based algoritilln

are not as consistently accurate as those obtained by the graph matching algorithm.

«
7.2 Concluding Remarks

(

This study has reveaIed the strengths and weaknesses of two matching algorithms that

are based on widely dilfering search strategies. The graph matching aIgorithm is found

to be both very accurate and exceptionally efficient in obtaining the optimal solution

to the point correspondence problem, under certain conditions. The most significant

limitation of this algorithm is its sensitivity, in terms of computational speed, to both

noise and the similarity of the inter-distances between the feature points in the data sets

to be matched. The cornputational speed of the graph matching algorithm is largely

dependent on the elfectiveness of the pruning rnechanisms in reducing the number of

paths to be traversed in the search tree. When the distance-based pruning mechanisms

cease to function elfectively, the algorithm breaks down, from a computational stand­

point. The simulation results have demonstrated that perturbations in the positions of

the feature points and the density of feature points in a fixed endosing volume have a

compound elfect on the ability of the tree search procedure to prune out invalid paths.

(
Cbapter 7. Conclusions 119

The SVD-based algorithm, on the other hand, is much more robust in the

presence of noise and is not affected by the distribution of inter-distances between the

feature points. However, the solution obtained by the SVD-based procedure is not as

consistently accurate as the one obtained by the graph matching algorithm, due to the

multiplicity of local extrema to which the algorithm can converge. As the number of

feature points to be matched increases, the number of potential solutions to which the

SVD-based algorithm can converge, albeit equivalued in terms of least squares error,

rises very rapidly. The computational speed of the SVD-based procedure is clearly

inferior to that of the graph matching algorithm, as demonstrated by the simulation

results, except in cases when the previously mentioncd noise and distance factors cause

the graph matching algorithm to break down.

(7.3 Future Research

(

Givcn that the robustness of a matching algorithm in the presence of both noisy data

and occluded or missing points is an important consideration, future research involving

tree search algorithms should concentrate on the efficiency of the pruning mechanisms.

In the case of Cheng and Don's algorithm [1], the pruning mechanisms are simple

and are, in fact, efficient for matching data sets containing a small number of feature

points. It may be possible to increase the number of points that can be efficiently

accommodated by the graph matching algorithm, under most practical conditions,

by enhanCÎng the existing pruning mechanisms. This might be done by including

additional geometric constraints in the search strategy, such as those used by Chen and

Huang [47]. Another possibility would be to combine mechanisms such as "looking­

ahead" [44] with the geometric constraints in the tree search. The effectiveness of using

a priori information in the graph matching procedure to guide the search should also

be investigated.

Chapter Î. Conclusions 120

(

Regarding the SVD-based procedure of Morgera and Lie Chin Cheong [21,

the computational speed of the algorithm might be illlproved by using the hybrid

SVD/Steepest-Ascent approach that is described in [54]. There may also be consider­

able merit in investigating the use of other techniques for maximizing/minimizing the

functionals that are described in Section 4.3. Also, the effect of statistical outliers on

the performance of the SVD-based algorithm \Vas considered to be beyond the scope of

this study and \Vas not investigated; consequently, the robustness of the algorithm in

the presence of one or more severely corrupted or mismatched feature points remains

to be tested.

(

(

Bibliography

[1] J.C. Cheng and H.S. Don. A Graph Matching Approach to 3-D Point Correspon­

dences. Intem. Joum. Pattern Recognition and Artificial Intelligence, 5:399-412,

1991.

[2] S.D. Morgera and P. Lie Chin Cheong. Rigid Body Constrained Noisy Point

Pattern Matching. IEEE Trans. Image Proc, 4(5):630-641, May 1995.

[3J R.W. Brockett. Least Squares Matching Problems. Linear Algebra and its Appli­

cations, 122/123/124:761-777, September/October/November 1989.

[4] F. Arman and J.K Aggarwal. Model-Based Object Recognition in Dense-Range

Images-A Review. ACM Computing Surveys, 25(1):5-43, March 1993.

[5] Y.F. Wang, N. Karandikar, and J.K Aggarwal. Analysis of Video Image Sequences

Using Point and Line Correspondences. Pattern Recognition, 24(11):1065-1084,

March 1991.

[6J A. Mitiche and J.K Aggarwal. A Computational Analysis of Time Varying Im­

ages. In T.Y. Young and KS. Fu, editors, Handbook of Pattern Recognition and

Image Processing. Academie, New York, 1986.

[7] J. Weng, T.S. Huang, and N. Ahuja. 3-D Motion Estimation, Understanding, and

Prediction from Noisy Image Sequences. IEEE Trans. Patt. Anal. Machine Intell.,

PAMI-9(3):370-389, 1987.

121

(
BIBLIOGRAPHY 122

«

(

[8] L.G. Brown. A Survey of Image Registration Techniques. ACM Computing Sur­

veys, 24(4):325-3i6, December 1992.

[9] D.N. Levin, C.A. Pelizzari, G.T. Chen, et al. Retrospective Geometric Correlation

of MR, CT, and PET Images. Radiology, 169(3):81i-823, December 1988.

[IOJ D.L. Hill, D.J. Hawkes et al. Registration of MR and CT Images for Skull Base

Surgery Using Point-Like Anatomical Features. British Journal of Radiology,

64(i6i):1030-1035, November 1991.

[11] F. Murtagh. A New Approach to Point-Pattern Matching. Publications of the

Astronomical Society of the Pacifie, 104:30l-30i, April 1992.

[12J P.H Schiinemann and R.M. Carroll. Fitting One Matrix To Another Under Choice

of A Central Dilation and A Rigid Motion. Psychometrika, 35:245-255, 19iO.

[13] A.N. Netravali and J.D. Robbins. l\'!otion-Compensated Television Coding: Some

New Results. Bell Systems Technical Journal, 59:1i35-1i45, 1980.

[14J J.R. Jain and A.K. Jain. Displacement Measurement and Its Application in Inter­

frame Image Coding. IEEE Transactions on Communications, COM-29(12):1i99­

1808, December 1981.

[15J R. Lenz and A. Gerhard. Image Sequence Coding Using Scene Analysis and

Spatio-Temporal Information. In T.S. Huang, editor, Image Sequence Processing

and Dynamic Scene Analysis, NATO ASI, pages 264-2i4. Springer-Verlag, Berlin,

1983.

[16J E.H. Thompson. An Exact Linear Solution of the Problem of Absolute Orienta­

tion. Photogrammetria, 15(4):163-1i9, 1958.

[1 i] H.L. Oswal and S. Balasubrammanian. An Exact Solution of Absolllte Orientation.

Photogrammetric Engineering, 34:10i9-1083, 1968.

(
BIBLIOGRAPHY 123

«

(

[18] B.K.P. Horn. Closed-form Solution of Absolute Orientation Using Orthonormal

Matrices. Journ. Opt. Soc. Amer. A, 5:1127-1135, 1987.

[19] C. Eckart and G. Young. The Approximation of One Matrix by Another of Lower

Rank. Psychometrika, 1:211-218, 1936.

[20] K.S. Arun, T.S. Huang, and S.D. Blostein. Least-Squares Fitting ofTwo 3-D Point

Sets. IEEE Trans. Pattern Anal. Machine Intell., PAMI-9:698-700, September

1987.

[21] S. Umeyama. Least-Squares Estimation of Transformation Parameters Between

Two Point Patterns. IEEE Trans. Patt. Anal. Machine Intell., 13:376-380, April

1991.

[22] R.M. EndIich, D.E. Wolf, D.J. Hall, and A.E. Brain. Use of a Pattern Recogni­

tion Technique for Determining Cloud Motions from Sequences of Satellite Pho­

tographs. J. Appl. Meteorol., 10:105-117, February 1971.

[23] J.A. Leese, C.S. Novak, and V.R. Taylor. An Automated Technique for Obtaining

Cloud Motion from Geosynchronous Satellite Data using Cross-Correlation. J.

Appl. Meterol., 10:118-132, February 1971.

[24] F. Rocca and S. Zanoletti. Bandwidth Reduction Via Movement Compensation

On A Model of the Random Video Process. IEEE Trans. Commun, COM-20:960­

965, October 1972.

[25J J.O. Limb and J.A. Murphy. Measuring the Speed of Moving Objects From Tele­

vision Signais. IEEE Trans. Commun., COM-23:474-478, April 1975.

[26] J.W. Roach and J.K. Aggarwal. Determining the Movement of Objects From a

Sequence of Images. IEEE Transactions on Pattern Analysis and Machine Intel­

ligence, PAMI-2(6):554-562, 1980.

(
BIBLIOGRAPHY 124

(

[27] J. Weng, N. Ahuja, and T.S. Huang. Optimal Motion and Structure Estimation.

Trans. Patt. Anal. Machine Intell., 15(9), September 1993.

[28] T.J. Broida and R. Chellappa. Estimation of Object r-Iotion Parameters from

Noisy Images. IEEE Trans. Patt. Anal. Machine Intell., PAMI-8:90-99, 1986.

[29] H. Shariat and KE. Priee. Motion Estimation with More Than Two Frames.

IEEE Trans. Patt. Anal. Machine Intell., 12(5):417-434, May 1990.

[30J S. Ullman. The Interpretation of Structure From Motion, chapter The Interpre­

tation of Visual Motion, pages 145-170. MIT Press, Cambridge, MA., 1979.

[31] J.Q. Fang and T.S. Huang. Uniqueness and Estimation of 3-D Motion Parameters

of Rigid Bodies with Curved Surfaces. PAMI-6, 1:13-27, 1984.

[32] T.S. Huang. Determining Three-Dimensionsal Motion and Structure from Two

Perspective Views. In T.Y. Young and Eds. K.S. Fu, editors, Handbook of Pattern

Recognition and Image Processing. Academie, New York, 1986.

[33] R.Y. Tsai and T.S. Huang. Estimating 3-D Motion Parameters of a Rigid Plallar

Patch. IEEE Trans. ASSP, 29(6):1147-1152, 1981.

[34] R.Y. Tsai and T.S. Huang. Uniqueness and Estimations of 3-D Motion Parameters

of Rigid Bodies with Curved Surfaces. IEEE Trans. on Patt. Anal, and Machine

Intell, PAMI-6(1):13-27, 1984.

[35] A. Goshtasby and G.C. Stockman. Point Pattern Matching Using Convex Hull

Edges. IEEE Transactions On Systems, Man and Cybernetics, SMC-15(5):631­

637, Sept/Oct 1985.

[36] H.C. Longuet-Higgins. A Computer Program for Reconstructing a Scene from

Two Projections. Nature (London), 293:133-135, 1981.

(
BIBLIOGRAPHY 125

(

(

[37J A.R. Bruss and B.K.P. Horn. Passive Navigation. Computer Vision, Graphies,

and Image Processing, 21(3):3-20, 1983.

[38] D.H. Ballard and O.A. Kimball. Rigid Body Motion from Depth and Optical

Flow. Computer Vision, Graphies, and Image Processing, 22(1):95-115, 1983.

[39J G.A. Korn and T.M. Korn. Mathematical Handbook for Scientists and Engineers.

McGraw Hill, New York, 1968.

[40] M.D. Shuster. Approximate Algorithms for Fast Optimal Attitude Computation.

In Proc. AIAA Guidance and Control Conf., pages 88-95, Palo Alto, CA, August

1978.

[41] 0.0. Faugeras and M. Hebert. The Representation, Recognition, and Locating of

3-D Objects. Int. J. Robotics Research, 5(3):27-52, 1986.

[42] B.K.P. Horn. Closed-Form Solution of Absolute Orientation Using Unit Quater­

nions. Journ. Opt. Soc. Amer. A, 4:629-642, April 1987.

[43] W.E.L. Grimson and T. Lozano-Perez. Localizing overlapping parts by searching

the interpretation tree. IEEE Trans. Patt. Anal. Mach. Intell., PAMI-9(4):469­

482, 1987.

[44] L.G. Shapiro and R.M. Haralick. Structural Descriptions and Inexact Matching.

IEEE Trans. Patt. Anal. Mach. Intell., PAMI-3(5):504-519, 1981.

[45] N. Ansari, M-H Chen, and E.S.H. Hou. Point Pattern Matching By A Genetic

Algorithm. In IECON 'go: 16th Annual Conference of IEEE Industrial Electronics

Society, volume II, pages 1233-1238, Pacifie Grave, California, November 1990.

[46] M. Herman. Matching Three-Dimensional Symbolic Descriptions Obtained from

Multiple Views of a Scene. Proc. Computer Vision Pattern Recognition, pages

585-590, 1985.

BIBLIOGRAPHY 126

rf."\'i

(

[47J H.H. Chen and T.S. Huang. Ma.ximal Matching of 3-D Points for l\lultiple-Object

Motion Estimation. Pattern Recognition, 21:75-90, 1988.

[48] E. Gmür and H. Bunke. 3-D Object Recognition Based on Subgraph Matching

in Polynomial Time. In T. Pavlidis R. Mohr and A. Sanfeliu, editors, Structural

Pattern Analysis, volume 19, pages 131-147. World Scientific, 1990.

[49] KS. Fu A. Sanfeliu. A Dis,ance l\leasure Between Attributed Relational Graphs

for Patte"n Recognition. IEEE Transactions on Systems, Man, and Cybemetics,

SMC-13(3):353-362, 1983.

[50] E.K Wong and KS. Fu. A Graph-Theoretic Approach to 3-D Object Recognition

and Estimation of Position and Orientation. In J.T. Tou, editor, Computer Based

Automation, pages 305-343, New York and London, 1985. Plenum Press.

[51J A.K Wong and M. You. Entropy and Distance of Random Graphs with Applica­

tion to Structural Pattern Recognition. IEEE Trans. Patt. Anal. Machine Intell.,

PAMI-7(5):599-609, September 1985.

[52] Z-C. Lin, T.S. Huang, S.D. Blostein, H. Lee, and E.A. Margerllm. Motion Esti­

mation l'rom 3-D Point Sets With and Without Correspondences; Part 1. In Proc.

IEEE Conf. Computer Vision and Patter:: Recognition, pages 194-198 (Part I),

198-201 (Part II), Miami Beach, FL, June 1986.

[53] P.J. Besl and N.D. McKay. A Method for Registration of 3-D Shapes. IEEE

Trans. Patt. Anal. Machine Intell., 14(2):239-256, 1992.

[54J P. Lie Chin Cheong. Geometrically Constrained Matching Schemes. PhD thesis,

McGill University, Montreal, Quebec, Canada, May 1992.

[55J T.L. Faber, R.W. McColi, R.M. Opperman et al. Spatial and Temporal Regis­

tration of Cardiac SPECT and MR Images: Methods and Evaluation. Radiology,

179(3):857-861, 1991.

(
BIBLIOGRAPHY 12ï

«

(

[56] T.L. Boullion and P.L. Odell. Generolized Inverse Matrices. Wiley-Interscience,

19ï1.

[5ï] R.A. van den EIsen, E.D. Pol, and M.A. Viergever. Medical Image Matching-A

Review with Classification. IEEE Engineering in Medicine and Biology, 12(1):26­

39, March 1993.

[58] R.A. Jarvis. A Perspective on Range Finding Techniques for Computer Vision.

IEEE Trons. PaU. Anal. Mach. Intell., 5(2):122-139, 1983.

[59] P.J. Besl. Advances in Machine Vision, chapter Active optical range imaging.

Springer-Verlag, New York, NY, 1989.

[60] D.l. Barnea and H.F. Silverman. A Class of Algorithms for Fast Digital Registra­

tion. IEEE Trons. Comput., C-21:lï9-186, 19ï2.

[61] S. Chaudhuri and S. Chatterjee. Robust Estimation of 3-D Motion Parameters in

the Presence of Correspondence Mismatches. In Conference Record of the Twenty­

fifth Asilomar Conference on Signais, Systems and Computers, volume 2, pages

1195-1199, Los Alamitos, California, November 1991.

[62] D. Mintz, P. Meer, A. Rosenfeld. Analysis of the Least Median of Squares Estima­

tor for Computer Vision Applications. In 1992 IEEE Computer Society Confer­

ence on Computer Vision and PaUern Recognition, pages 621-623, Los Alamitos,

California, June 1992.

[63] W.K. Pratt. Digital Image Processing. Wiley and Sons, New York, 19ï8.

[64] E. De Castro and C. Morandi. Registration of Translated and Rotated Images

Using Finite Fourier Transforms. IEEE Trons. Pattern Anal. Machine Intell,

PAMI-9:ïOO-ï03, 198ï.

[65] V. Saiari and l.K. Sethi. Feature Point Correspondence in the Presence of Occlu­

sion. IEEE Trans. PaU. Anal. Machine Intell., 12(1):8ï-91, January 1990.

(
BIBLIOGRAPHY 128

(

(

[66] J.G.F. Belinfante and B. Kolman. A Survey of Lie Groups and Lie Algebras with

Applications in Computational Methods. SIAl\'!, Philadelphia, 19ï2.

[67J S. Haykin. Adaptive Filter Theory. Prentiee Hall Ine., New Jersey, 2 edition, 1991.

[68] G.W. Stewart. Introduction to Matrix Computations. Academie Press, New York,

1973.

[69J D.E. Knuth. The Art of Computer Programming, volume 1. Addison Wesley,

1968.

[70] A. Tueker. Applied Combinatorics. John Wiley and Sons, New York, 2 cdition,

1984.

[7l] T. Gaskins. PHIGS Programming Manual. O'Reilly and Assoeiatcs, Ine., Se­

bastopol, California, 1992.

(

(

(

Appendix A

Graph Matching Algorithm

Cheng and Don's graph matehing algorithm is given as follows [1]:

Notation:

El ={Yi : i = 1,2, ,p} : template point set.

E2 ={Xi : i = 1,2, ,p} : sensed point set.

T = (YI, Y2, , Yp) : template graph.

T = (XI, X2, ,xp) : working graph whose vertiees arc found from E2 •

T = (X~(I)' X~(2),' .. , X~(p)) : optimal solution graph. Vertex X~(i) corresponds

to the i-th vertex of T.

a = standard deviation of the zero-mean Gaussian noise added to the point featnres.

Initialization:

T is empty

edge thrcshold f =8/(3)a

graph threshold li = p(p - 1)/f/2

Algorithm:

Begin

1. Calculate the distances d(Yi,Yj) and d(xj,xj), i ~ l,j:s; p.

129

(
APPENDIX A

2. For i = 1 ta p - 1 do
3. For j = i + 1 to P - 1 do steps 4-6.

Begin
4. If Id(x;, xi) - d(Yb Y2)1 < € then do steps 5-6.

Begin
5. Xl -t X;, X2 -t Xi, Next(2).
6. XI -t xi' X2 -t x;, Next(2).

End

End End

Procedure Next(i) (i is the number of vertices in the working graph):

130

Begin

1. If i = p then do steps 2-3.

Begin

(2.

3.
'Î'-tT
6 -t k-th order error of 'Î'

(

End
4. Eise do steps 5-8.

Begin
5. For 1= 1 ta p do

If Xl not in T, then do steps 6-8

Begin
6. If Id(x/,x;_j) - d(YHbYH)! < € and accumulated error a < 6,

for ail 0 :5 j :5 min(k, i) - 1 then do steps 7-8

Begin
7. XHI -t X,
8. Next(i + .)

End

End

End

End

