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AB8TRACT

The case-crossover design is a new epidemiological method that evolved around

binary exposures and the binomial distribution. We develop a new approach of data

analysis for this design based on the actual exposure occurrence times, such as thase

available from computerized prescription databases. Assuming an exponential

distribution for the inter-exposure onset times, we derive two new matched-paired

estimators of the odds-ratio, one weighted the other unweighted. A simulation study

demonstrates that both new estimators based on the exponential distribution are more

efficient than the c1assical estimator based on the binomial distribution and that the

unweighted estimator appears to be the mast valide These new estimators of the odds­

ratio are also more flexible and amenable to verifying some of the assumptions behind

the case-crossover design. We illustrate this approach with data on 54 asthma deaths

identified from the Saskatchewan Health databases, to assess the association with the use

of inhaled beta-agonists.
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RÉSUMÉ

Le devis cas-chassé-croisé représente une méthode épidémiologique récente

s'appuyant sur l'analyse d'expositions binaires et la distribution binomiale. Nous

présentons une nouvelle approche d'analyse de données spécifique à ce devis et basée sur

les dates exactes cl' exposition, telles que celles disponibles daIls les bases de dùru1~es

infonnatisées de santé. En émettant l'hypothèse que les durées des périodes entre les

expositions suivent une distribution exponentielle, deux nouveaux estimateurs appariés

des rapports de cotes, l'un pondéré et l'autre non-pondéré, ont été développés. Une étude

de simulation démontre que ces deu.x nouveau.x estimateurs, issus de la distribution

exponentielle, sont plus précis que l'estimateur traditionnel basé sur la distribution

binomiale. De plus, l'estimateur pondéré semble être le plus valide. Ces nouveaux

estimateurs des rapports de cotes sont également plus flexibles et pennettent la

vérification de certaines hypothèses inhérentes au devis cas-chassé-croisé. Cette

approche est illustrée à l'aide de données provenant des bases de données de rassurance­

santé de la Saskatchewan, afin d'étudier l'association entre 54 décès dus à 1"asthme et

l'utilisation de bêta-agonistes en inhalation.
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1.1 From crossover design to case-crossover design

The randomized crossover design is a special type of controlled c1inical trial in which the

study subjects are assigned to various treatments at different times during the study.

Treatment effects are estimated by comparing the responses to the treatments within a

subject. There are severa! advantages to this study design: First't each subject fooos his

own control, therefore. except for the distractions of order and time. the control and

treatment group are identical. With within-subject comparisons't we can avoid

confounding by subject-specific attributes that are constant over time. This is most

appealing when sorne confounding factors are not measurable. Second~ for a limited

sample size, this study design can give more power than parallel group designs. Other

advantages include better control, more reliability and less ethical problems. The

limitation of this study design is that the effects of the treatments must be acute and

transient otherwise the treatment effects may "carry over" and alter the response to

subsequent treatments.

The case-crossover design is an extension of the crossover design to observational

studies. It was introduced in 1991 as a new epidemiological technique to examine the

transient effects of a brief exposure on the onset of an acute outcome (Maclure 1991).

Similar to the crossover design, the study subjects altemate at varying frequencies

between exposure and non-exposure to a agent of interest, but the investigator does not

decide when and how to assign the study subjects to exposure or non-exposure. Instead,

the history ofexposure and non-exposure are observed. Instead of observing an entire
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cohort, Maclure (1991) demonstrated that the rate ratio can be estimated only from the

cases that occur within the cohort. Thus, in the case-crossover design, as its name

implies, only the exposure history of cases is needed for the analysis, so it is aise called a

case design.

Tu ~xplain Lh~ casè-crossovc:r d~sign intuitiveiy, we can imagine that we have coiiected

severa! cases, and sorne of the cases occurred when they \vere under the exposure of a

specifie agent. Then we ask: is the treatment associated with the outcome or do the

treatment and outcome happen concurrently just by chance? Ta answer this question~ we

need to know: a) the proportion of cases occurring under the expasure and~ b) ho\v often

each subject is usually exposed to the treatment. One extreme situation may occur when

ail of the case events happen concurrently with the treatment. and none of the subjects are

exposed to the agent when the outcome does not occur. In this scenario. it is strongly

suggested that the agent induced the outcome. The other extreme situation is that aIl the

events happened when the subjects \vere not exposed to the agent~ and these subjects

were exposed to the agent aIl the time before or after the outcome occurred~ then it is

strongly suggested that the agent is protective. In reallife, the data we observe can not

reveal the association as explicitly as these extreme scenarios. The case-crossover design

provides the statistical technique needed to analyze these kinds of data.

The case-crossover design can be interpreted as analogous ta a highly stratified case­

control study or a highly stratified cohort study, where each subject forms a stratum.
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For the case-crossover design based on a cohort study, we can imagine that it is stratified

to the point that there is only one subject in each stratum, and each subject forros a 2x2

table. Depending on whether the event occurs concurrently with the exposure, we fill

(l,0) or (0, 1) in the tirst column of the 2x2 table. According to the history of exposure

before the event took place, the person-time data can be filled in the second column of

the 2x2 table. The person time data are the number oftime windows that the subject is

under the exposure and the number of time windows that the subject is under non­

exposure. Strata \vith no outcome event contribute no information to the rate ratio

estimate, which means the cohort is reduced to a cases-only study. In this way, the

analysis of a case-crossover study with n cases may be viewed as a pooled analysis of n

retrospective cohort studies, each with a sample size of one. The data can be analyzed

using standard Mantel-Haenszel methods for tollow-up studies with sparse data in each

stratum or with maximum likelihood methods.

For the version of case-crossover design that resembles the case-control study, we can

imagine it as a matched case-control design where each subject forms a stratum and each

control is the same persan as the case, but with exposure data at different time points. As

in the classic case-control study, we can apply different strategies of sampling such as

one-to-one matching, M: 1 matching, or a variable number of controls matched ta each

case. For instance, if the exposure in the hazard period is defined as the I-hour period

immediately preceding myocardial infraction onset, the control can be chosen as the

comparable l-hour period at the same time of the day, on the day preceding the

infarction. For the same study, we can aIso choose 25 Cl-hour) periods preceding

4
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myocardial infarction onset as 25 controis for each case. For the data analysis, the

Mantei-Haenszei estimator or a conditionallogistic regression is applied.

With this extension of the crossover design ta observationai studies, the study subjects

can be a large population rather than the very limited sample in a clinical triaL sa this

technique can be used ta assess post-marketing Jrug effects. CÙ111pared tü othef

observational studies such as the cohort-study and case-control study. this design inherits

the advantages of the crossover design in a clinicai trial. that is. the case and its control in

a case-crossover study from the same subject, so that the case and control are

automatically matched on aIl characteristics that do not change within individuaIs. such

as genetic characteristics.

Like the classical crossover design. the case-crossover design is aiso limited ta the study

of the transient effects of exposure on acute outcomes. If the effect period of the exposure

is longer than the assumed time window, the assumption of the study design is violated

and the validity of the study may be challenged. Another assumption of the case­

crossover design is that the distribution of exposure must remain the same along the

whole control period of time, otherwise a bias due to time trends in exposure may occur.

Ta solve this problem, the case-time-control design was proposed (Suissa 1995).

1.2 RationaIe and objectives

In the case-crossover design, the estimate of the rate ratio and its confidence limits is

based on the comparison of the exposure distributions at the time of the outcome
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occurrence and during the control period. [n practice, the control period is divided into

several units oftime window consecutively or separately. The distribution of the

exposure is assumed to be binomial, which means that the estimate of rate ratio is based

on whether the subjects are exposed or not in each time window. This design \vas first

proposed to study the onset of myocardial infarction associated with sexual activity and

~offee drinking in which the past exposure is asscssed by intcr·;ie~i, where it is casier tù

record exposure in the control period as a proportion of the time rather than to obtain

exact time of exposure.

In pharmacoepidemiology, database studies provide more precise data on the time of

exposure. For example, we ean obtain the exact date that a drug was dispensed so that the

time ofexposure to a specifie drug can be assessed. [n this situation. we may be wasting

information by dichotamizing the inter-exposure onset times to mold the data into the

form required far the binomial distribution, as proposed by Maclure (1991). For instance,

using the binomial distribution, we only need to know whether a subject is expased or not

to a drug in a certain time window, but we do not use the information about the frequency

of drug use in this time window, which may provide more power of inference.

The objective ofthis thesis is ta propose a new approach of data analysis for the case­

crossover design, so that the information from databases about drug usage may be used

more efficiently and more flexibly. For this purpose, we will evaluate exposure history in

terms of the exact times at which these exposures occurred, and not only whether they

occurred or not in each time window. We assume an exponential distribution for the
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inter-exposure onset times, and derive severa! matched-paired estimators of the odds­

ratio. For each odd-ratio estimator, we estimate the variance either analytically or

numerically 50 that the confidence interval can be provided.

To illustrate our new methods of data analysis, we use the Saskatchewan Health database

lu asst:ss lht: ~IT~cl of b~la-agonislson tht: outCUffit: uf asthma death. Tnere have been

severa! case-control studies, including the Saskatchewan Health database study, showing

that the use of beta-agonists is a risk factor for asthma death, but these case-control

studies have two limitations: a) the result may be confounded by indication, which means

that the beta-agonists appear to increase risk since the patients for whom the medications

are prescribed more frequently are more likely to die because they have more severe

asthma~ b) these case-control studies did not reveal whether the association ofbeta­

agonist and asthma death is an acute or chronic effect.

The object ofthis thesis is ta propose an efficient method of data analysis for the case­

crossover design in situations where precise data on exposure time are available. We also

apply this new method to the study of acute transient effects of beta-agonist associated

with asthrna death.

7



•

•

CHAPTER 2 LITERATURE REVIEW



•

•

The case-crossover design (Maclure, 1991) was introduced in 1991 as a ne\v

epidemiological technique to assess the effect of transient exposures on the risk of acute

events, which is difficult to deal with by conventional epidemiological methods such as

cohort or case-control studies (Meittinen, 1989; Guess, 1989). To review the application

and development ofthis new technique, we searched in Medline databases trom IlJlJ 1 to

1999, with the key word 'case-crossover', and collected 30 related publications. Among

these publications, 6 studies are about myocardial infarction (Meier, 1998; Millteman

1995: Mittleman, 1997; Muller, 1996; Willich, 1994) or myocardial ischemia (Gullette.

1997); 6 studies are about traffic accident (Barbone. 1998; Redelmeier. 1997: Roberts.

1995) or injury (Petridou. 1998: Burdor, 1997; Vinson, 1995); other outcomes under

study are hemorrhagic fever (Dixon, 1997), vulvo-vaginal candidiasis (Sturkenboom.

1995) and asthma death (Suissa 1995). There are aIso two papers applying the technique

of the case-crossover design to the study of injury of racehorses (Carrier. 1998; Estberg.

1998). The other publications are all about method development or reviews. We note that

the list of publications is not long because the case-crossover design is limited to the

study of transient exposure on the risk ofacute events, and many study topics are not

amenable to this. Nevertheless, the advantage of this technique over the conventional

epidemiological design and the ability of this technique to solve the problem which is

difficult for conventional epidemiological design make it a very important alternative in

epidemiological research.
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There is a common point among the case-crossover design, the case-genotype design

(Falk, 1987; Self, 1991; Schaid'l 1993~ Khoury, 1996; flanders,1996) and the case­

specular design (Zaffanella, 1998). That is, all these designs use prior theory or

assumptions to replace the information supplied by controls in a case-control study. So

Greenland (1998) labeled the case-crossover design and these two ather designs as case­

distribution designs and provided a unified likelihood-based approach to the analysis of

the three designs.

The case-crossover design is a novel approach to epidemiological study design. but it is

not independent 0 f the conventional methods. Actually, it has borrowed the idea 0 f study

design and data analysis from different conventional study designs. In order to reveal this

relationship and to compare the strength and limitation of different approaches. we tirst

briefly review ccnventional study design of pharmacoepidemiology.

2.1 Conventional study design and case-crossover design

According to Strom' s review (1994), conventional study designs available for pharmaco­

epidemiology are summarized as Fig.2.I. The figure shows that case reports are the least

costly, but also provide the least evidence of causality. On the ather hand. experimental

studies are the most convincing designs, but they are the most costly.

Case reports are simply reports of single patients. As used in pharmacaepidemiology, a

case report describes a single patient who was exposed to a drug and experienced a

particular, usually adverse, event. Case reports are useful for raising hypotheses, but they

10
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usually can not make a statement about causation. An exception is when the treatment

causes a change in disease course, but the change is reversible and the patient can receive

the same treatment again after the treatment is withdrawn. In this situation~ case reports

cao reveal sorne infonnation about causation if the change in disease course responds to

the treatment. The case-crossover design is based on the same principle as this situation

when the exposure cao be compared within an individual.

Case series are collections of patients who have exposed to sorne agent. and whose

clinical outcomes are evaluated and described. This kind of study actually reveals the

distribution of exposure arnong the cases. If the predicted distribution of exposures is

available, sorne information about causation cao be deduced from this study. For

instance, if 80% of cases are male, it reveals the possibility that the outcome is associated

with gender~ because the predicted distribution proportion of males is 50% provided the

procedure of collecting cases is independent of gender. Another example is a Japanese

asthma death study (Mutsui, 1996) in which it is found that fenoterol was prescribed in

more than half of the asthrna deaths at a time when it only had a 18.3 percent market

share. The market share of the drug represents the distribution of exposure in controls and

the difference in the two distributions reveals the association between the drug and

asthma death. This assumes, of course, that there are no confounders. such as asthma

severity. However, in most circumstances, the predicted distribution of exposure is not

available. For instance, when we collected the cases of asthma death from the

Saskatchewan databases, we found that 87% ofthese cases used beta-agonists in the last

30 days before death, but this information is not sufficient to determine the causation
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because we don't know whether this is higher, the same, or lower than would have been

expected. As in the case series srndy, a case-crossover study collects data only on cases,

but the information about exposure in different time \Vindows is collected separately. If

the exposure is transient and the effect is acute, the distribution of exposure of the cases

before the outcome occurs will represent the exposure distribution of the cases provided

the outcome didn't occur, thus representing the control distribution.

Analyses of secular trend, also called '~ecologic studies". examine trends in an exposure

which is a presumed cause and trends in a disease which is a presumed etTect. and test

whether the coinciding trends can reveal the association of disease and exposure. For

instance, the coincidence of an asthma mortality epidemic with the introduction of beta­

agonists raised the hypothesis that beta-agonists can induce asthma death (Beasley 1991).

This method is useful for rapidly providing evidence for. or against, an hypothesis, but it

ooly studies groups. No data on individual is under the consideration. 50 it unable ta

control for confounding variables. ln case-crossover design. it is assumed that there is no

time trend and the distribution of exposure is stable if outcome does not oecUf. The data

analysis is based on this assumption and sorne kind of adjustment needs to be made if

there is time trend of exposure. For the asthma data, there is an increasing time trend of

beta-agonist usage, and this trend leads to overestimation of odds ratio of association of

asthma death or near death with beta-agonist usage (Suissa, 1995).

Case-control studies are studies that compare cases with a disease ta contrais without the

disease, looking for differences in antecedent exposures. This study design is particularly
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useful when one wants to study multiple possible causes of a single disease and when one

is studying a relatively rare disease. The main challenge of this study design is to

properly select contraIs, and it is most difficult when sorne confounding variables can not

be easily measured, such as disease severity and socioeconomic status. The case­

crossover design can be regarded as a matched case-control design~ and the technique for

data analysis is the same as case-control study, such as Iogistic regression and Mantel­

Haenszel estimator. The main difference between case-crossover design and case-control

design is that the case-crossover study use the cases themselves as their control. but

information of exposure is for different time periods, that is~ the time period \vhen the

outcome occurs (risk period) and the time period when the outcome does not occurs

(reference period). The fundamental principle used in selecting contraIs is that selected

contraIs should be representative of the source population which gave rise ta the cases

(Rothman, 1986). Because the control that matches a case best is the case itself. the case­

crossover design sunnounts the difficulty of selecting control as found in the case-control

study. Another obstacle in the case-control study is that, when dealing with acute adverse

events, the timing of the interview or data collection is crucial, but it is often difficult ta

get data for the control with good timing in the case-control study. Again, the case­

crossover design provides a solution to this problem (Suissa 1994).

Cohort studies are studies that identify subsets of a defined population and follo\v them

over time, looking for differences in their outcome. The main advantages of the cohort

study are: a) this design is free of the problem of selecting controls without bias; b) an

association demonstrated by a cohort study is more likely to be a causal association than

13
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one demonstrated by a case-control study; c) cohort studies are particularly useful when

one is studying multiple possible outcomes from a single exposure, especially a relatively

uncommon exposure; d) cohort studies can provide excess risk. The main disadvantage of

the cohort study is that it requires extremely large sample sizes to study relatively

uncommon outcomes and prospective cohort studies can require a prolonged time period

to study delayed adverse effects. With the prospective cohort study, it is very difficult to

study acute effect of transient exposure (Schneeweiss, 1997), as this kind of study needs

to make sure that exposure is correctly recorded for even very short units of time on a

routine basis so that when an event occurs at a time not anticipated. the data 0 f exposure

shortly before the time of event is available, and that is not practical. One of the

approaches of case-crossover design closely resembles a retrospective cohort study that is

stratified to the point that there is only one subject in each stratum. Strata with no

outcome events contribute no information to the relative risk estimate. which means the

cohort is reduced to a cases-only study ( Maclure. 1991). Because the cohort is reduced

to only cases, it is easy to obtain the information of exposure shortly before the time of

event. Contrary to the convention cohort study, the case-crossover study is very useful in

the study of the effect of transient exposure on acute outcome.

Randomized clinical trials (Ren are experimental studies in which the investigator

controis the treatment that is to be received by each participant., and the participants are

randomly allocated to the study groups. There is no other method for studying the merits

of clinical treatment regimens which can approach the precision of estimating effects and

the strength of inference pennitted by sound ReTs (Baillar, 1983). It is often impossible,
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however, to perform a ReT for ethical or logistic reasons. For instance, it is prohibited to

recroît children or pregnant women for RCTs. There are four broad classes of research

approaches to the clinical evaluation of treatment: parallel studies, crossover studies, self­

controlled studies, and extema11y controlled studies. In a crossover study each patient

receives in succession two or more treatments under evaluation. Self-controlled studies

evaluate a single treatment and each subject serves as their own control. Responses to

treatment are compared with those measured during periods oftime when no treatment

was offered to the subject. The case-crossover design closely resembles the above t\VO

approaches in that each subject serves as their own control. The distinguishing factor is

that the investigator can not control the allocation of the study subjects. Thus. the case­

crossover design is considered as observational design that poses fewer ethical concems

than RCTs in the study of such topics as alcohol use and injury (Vison, 1995).

2.2 Definition and examples of case-crossover design

[n practice, the tirst step in a case-crossover study is to define a time window and then

deterrnine whether the exposure was present during the last time window before outcome.

The time window corresponds to the time needed for the exposure to cause the outcome

under study. The time window should be detined according to the characteristics of

exposure and the outcome. For instance, in the study of alcohol and injury, the time

window is defined as 6 hours (Vinson 1995), while in the study about vulvo-vaginal

candidiasis associated with acitretin, the time window is defined as 20 days

(Sturkenboom, 1995). On the other hand, in the study of urban traffic environment and

the risk of child pedestrian injury, the time window is extremely short so that an altemate
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method is needed to estimate probability of exposure in the reference period (Roberts,

1995). Sometimes, for the same kind of exposure and same outcome, the definition of the

time window may vary according to the assurnption about the effect and the way ta

interpret the results. For instance, in the study of beta-agonists associated with asthma

death, a one-year time window is defined ta access whether asthma death is associated

with increase use ofbeta-agonists in a year before asthma death. This is analogous to the

previous case-control study (Spitzer, 1992) and cohort study (Suissa" 1994). The

assurnption behind the study design is that the effect of beta-agonists on asthma death is

From long-term regular excessive use, 50 it studied the chronic effeet or indirect effect of

the drug. On the other hand, we cao also design a study assuming the time \vindow is 4

hours (Suissa., 1994). This time windo\v is defined according to the elimination halr-life

of the drug and it is assumed that the drug has an effect on asthma death only before it is

metabolized. This design studies the direct acute effect of the drug. With specifie data..

the longer the time window is defined, the more the result favors the null hypothesis that

there is no association between the treatment and outcome.

After the time window is defined and it is determined whether the outcome occurs when

under exposure (Ci=Q or Ci=1), the next step is ta measure the ·usual' frequency \vith

whieh the subject was under exposure (Pi). For this step. various strategies of sampling

the reference period and methods ofmeasuring the frequeney are involved, which \vill be

discussed later.
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Maclure proposed that the case-crossover design be taken as a matched case-control

design where the contraIs are the same persans as the cases before the event under study

occurred~ or a retrospective cohort crossover study that is stratified to the point that there

is only one subject in each stratum. With this consideration~ an estimator of relative risk

and variance of logarithm of relative risk were derived by adoption of the Mantel­

Haenszel method (Rothman, 1986).

Marshall proposed a maximum Iikelihood method to analyse the case-crossover design

(Marshall 1993). This method is based on a proportional hazards model (Kalbtleisch.

1980) and it is quite general sa that.. in principle, it can be used to analyse the joint effects

of several transient exposures. The method cannat only be used for binary exposure

variables~ but aIso continuous exposure variables. Marshall also discussed a mixed

distribution model when the distribution of exposure is mixed~ consisting of a discrete

probability at zero and a continuous part with a normal distribution. This model is used

when an exposure is measured as a continuous variable, but whether this exposure

happens or not, is measured as a binary variable.

Marshall showed that when the exposure is measured as a single binary variable. say X.

and Pi=fi(I) is the probability ofX=l for case i, then the sarne formula proposed by

Maclure as the Mantel-Haenszel estimator is derived as an approximation to the

maximum likelihood solution. It is important ta note that here the Pi represents the prior

probability of the event X=I, which is different from the Pi defmed by Maclure in

estimating the relative risk. For instance, if a case is asked about their frequency of
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• exposure, say Â.i in units oftime-1
, the response ofonce a day means À- j=l/24. Then

assuming that occurrences of the exposure happen at random, that is, as a Poisson process

with intensity Â. j, the probability of at least one occurrence in a period ta, is,

Pi= l-exp (- À.ito )

but the value of Pi used by Maclure is,

Pj==Â.jto

(2.1 )

(2.2)

•

It is easy to see that if 10 is short, the above two equations are approximately the same~ but

when the 10 is long, the difference between the t\VO equations is significant. Marshall took

the data from the Auckland Heart Study (Jackson, 1991) as an example to reveal this

difference. The data are based on a survey and it is about a1cohol consumption associated

with myocardial infarction. Under the assumption of a 24 br time window. the related risk

is 1.87 (95% CI, 1.35-2.58) when Pi is calculated ,vith equation (2.2). but when Pi is

calculated with equation (2.1), the relative risk is 0.48 (95% Cr. 0.27-0.84). One analysis

concluded a harmfuI effect while the other analysis concluded a protective effect~ The

difference lies with the 20 cases who said they drink once a day. with an assigned

probability of one. when Pi is calculated by (2.2), yet did not drink in the 24 hours before

their myocardial infarction. Their contribution outweighs the effects of other cases. But

when Pi is calculated using Poisson probabilities, it is only 0.632 as calculated by

equation (2.1). The tirst analysis takes 'once a day' as drinking in every 24-hour period.

However, it seems more realistic ta assign a Pi of less than l, on the basis of Poisson

probabilities. Perhaps, Pi=! is tao high and Pj=O.63 is tao Iow. However, this is difficult

to judge because the data collection did not intend to elicit Pi directly. Consequently, the

author suggested that an instrument to elicit the prior probability distribution be carefully
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developed. For instance, instead of letting the respondents choose among "once a day' ,

'every 3 or 4 days', 'once a week', "once a fortnight' categories, they should be asked

how many times did they drink in an average fortnight, month or year. From this example

we can see the advantage of database studies of pharmacoepidemiology, in which the

exposure is based on the record of exact times of prescription, thus avoiding the problem

as discussed above.

2.3 Study settings and methods of data analysis

Since Maclure introduced the case-crossover design. it has been applied in different fields

such as occupational epidenliology. injury epidemiology. environmental epidemiology

and pharmacoepiderniology. For these settings, different strategies of design and data

analysis have been adapted, though they are all under the principle of the case-crossover

design as it was originally proposed. This section discusses sorne of the related issues that

have arisen in the various situations.

2.3.1 Effeet modification

[n the case-crossover design, aIl variables such as age, sex and socioeconomic status are

automatically matched, so this variable will have no confounding potential. These

variables can have effect modification, which is of interest in sorne studies. In this

situation, the study cases need to be grouped by these variables. In the study of triggering

acute myocardial infarction onset by episodes of anger (Mittleman, 1995), the cases were

grouped by age, sex, clinical history, and medication. The relative risk was then
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estimated for each suhgroup. The study found mat the relative risk was significantly

lower among regular users of aspirin compared with non-users (P<O.OS); the relative risk

tended to be lower in men than in women and among regular users of beta-adrenergic

antagonists than nonusers, but these differences were not statistically significant. In the

study about alcohol and injury (Vinson 1995), the cases \vere grouped by age, sex,

weight, severity of injury, socioeconomic status, etc, but no significant effect

modification was found.

2.3.2 Multiple risk factor

As in a case-control study, the case-crossover design cao be used to study multiple

possible causes of an outcome. In the study of transient exposures associated with the risk

ofchildhood injury (Petridou, 1998), several different kinds of activities such as

strenuous physical activity, intellectual exertion. involvement in family quarreL school

examination, and pleasing events, are assumed to be risk tàctors of childhood injury.

Using the case-crossover design, a rate riatio was estimated for cach of those risk factors.

In this study, confounding is possible among correlated transient events, for example.

when sorne individuals experienced during the same time period both strenuous physical

activity and intellectual exertion. For this reason, multivariate conditionallogistic

regression needed to be applied to control for such within-person confounding. In

addition, time of day was considered an important potential confounder because exposure

to the determinants ofinterest varies with time ofday, as does the risk of injury, 50 a

variable as an indicator of time of day was aIso included in the conditionallogistic

models.
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2.3.3 Continuous exposure

When the case-crossover design was originally proposed~ the exposure was considered as

binary data, that is~ a subject can only be exposed or non-exposed in a certain period of

time. In sorne studies~ exposure needs to be measured as a continuous variable~ and the

dose-response gradient is an important evidence of causation tHill~ 1971 ~ Sackett. 1991).

Marshall proposed a technique to estimate the relative risk of a continuous exposure

based on the maximum likelihood method (Marshall, 1993). The continuous risk factor

can be included in the logistic model directly or be transfonned into a categorical

variable. In the study of asthma death and beta-agonist use (Suissa, 1995). the quantity of

beta-agonists used in a month is defined as a continuous variable in the logistïc model

and the resulting odds ratio is per canister per month. In the same study, beta-agonist use

was aIso defined as trichotomous and odds ratios of 13-24 vs ~ 12 and >24 vs s 12 were

obtained separately. In the study of the association ofroad-traffic accidents with

benzodiazepine use, a dose-response relation was studied by classifying each dose

prescribed as low, intermediate, or high according to the recommended prescribing dose

ranges of the British National Fonnulary (Barbone, 1998).

2.3.4 Discrete period of exposure

In sorne studies, the period of exposure is discrete and the effect period coincides \vith the

exposure period. For instance, in the study of urban traffic environment and the risk 0 f

chiId pedestrian injury, a high volume trafflc road is the risk factor of interest (Roberts,

1995). As a child can only get hit by a car when crossing a street, it is a discrete period of
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exposure unlike heavy physical exertion, or alcohol and drug uses, \vhich rnight be 2

hours, 6 hours, or months. In this case, the time window approach is not applicable. In

this study, Roberts calculated the relative risk ofhigh-volurne-traffic vs lo\v-volume-

traffic with the Mantel-Haenszel estimator, but the expected odds of crossing a high-

volume street for a student was determined by the ratio of high-volume-traffic streets ta

low-volume-traffic streets that he crossed every day, while the observed odds was the

odds that the student was injured on a high-volume-traffic street. This setting is different

from other studies in which the expected odds was determined by the proportion oftime a

study subject is exposed. This setting is also useful in studies of occupational injury

(Mittleman, 1997).

2.3.5 Conditional distribution of exposure.

In the study of cellular-telephone caUs and motar vehicle collisions (Redelmeier~ 1997a),

a conditional distribution is involved. Here, the distributions of cellular phone use

provided the user is driving in the risk periad and in the reference period must be

compared. That is,

OR = P(EIC,D)/P(ËIC,D)
P(EIC,D)/P(~C,D)

Here, E, C, and D respectively represent exposure, outcome and another conditional

variable like driving. Untortunately, it is difficult ta obtain the conditional distribution of

cellular phone use provided the user is driving, sa a marginal distribution was used

mstead. This may lead ta overestimating exposures immediately prior ta the outcome or

underestimating exposures during control intervals (Redelmeier, 1997 b). For instance,
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overestimating the amount of driving on the reference period would dilute the apparent

intensity of cellular activity during the control interval and inflate the measure of relative

risk. To control for this kind ofbias., two procedures couid be done: a) adjust for

intermittency of driving with a factor determined by the proportion of subjects who did

not drive during the reference period (BresIow., 1980; Efron., 1991); b) recalculate relative

risks by limiting the analysis to subjects who can remember his or her driving pattern on

both the risk period and the reference period and who were confident that they had driven

a motor vehicle during both periods. The problem related to the conditionai distribution

of exposure also existed in the study of the association of road-traffic accidents \vith

benzodiazepine use and it may exist in other studies about work related injury.

2.3.6 The effect-period

ln most of the published case-crossover studies, the effect time of exposure is really short

and it is easily defined. When this study design is applied to pharmacoepidemiolgy in

which the presumed risk factor is sorne kind of drug, the time window is usually longer

and it is more complicated to define. When the case-crossover design was originally

proposed, Maclure suggested a model that considers delay of effect. exposed time.

dwation of effect time, and discounting of overlap (MacIure, 1991). Application of this

model should vary according to the nature of exposure and outcome under the study. For

the database study in which the information of exposure is solely based on record of

prescription., it is more complicated in that the prescribed duration ofuse of a drug aiso

needs to be estimated and taken into consideration. In the study ofvuivo-vaginai

candidiasis associated with acitretin, the period is defined as the prescribed duration of
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use of acitretin plus 20 days to control for residual effects due ta slow elimination. The

study also defined a carry over time as the tirst 30 days after every exposure period, if no

subsequent prescription was tilled \vithin this period. Then non-exposure time was

defined as the reference time subtracting exposure and carry-over time (Sturkenboom.

1995).

2.3.7 Different sampling strategy

In the case-crossover design, bath case and control information are taken from the same

person, but from different time periods. Because no contrais need to be sampled, bias in

the selection of a control persan is impossible, but improper selection of the control time

window will still result in bias. Thus, selecting a valid strategy of selecting control

periods that can avoid bias yet gain best efficiency is an important t2 ~k of any case­

crossover study. The principle of the case-base paradigm (Miettinen, 1985) should aiso

he followed in the selection of the reference period and usually, periodicity of events

should he considered. For instance, in the study of physical exertion as a trigger of acute

myocardial infarction, the time window is defined as 1 hour, and the periodicity is

considered as 24 hours, so an 1hour time window 24 hours before myocardial infarction

is selected as the reference period (Willich, 1993). [n the study of the association between

celluiar-telephone caUs and motor vehicle collisions, the periodicity of bath driving

pattern and cellular phone use are considered as a week, so the day of the work-week

preceding the collision is selected as the control period (Redelmeier, 1997). In the study

of acute respiratory-tract infections and risk of frrst-tÏme acute myocardial infarction

(AMI), however, the exposure is assumed to vary with seasons, so the date exactly 1 year
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before the date of AMI is selected as the reference period (Meier, 1998). In addition to

the above method called pair-matched intervaI approach by Mittleman, a so-called

multiple intervals approach and usuaI frequency approach were aIso applied ta the study

ofheavy physical exertion and acute myocardial infarction onset (Mittleman, 1995). The

multiple interval approach contrasts exposure in the hazard period with a variable number

of control periods sampled from the 25 (l-hour) periods preceding myocardial infarction

onset, for which exposure data were obtained. This approach is anaIogous to case-control

studies in which a variable number of controls are matched to each case. As in case­

control studies, conditionallogistic regression can be used in this approach. and

according to different assumptions about the effect of time of day on the baseline hazard

of infarction onset, the time of day variable enters the logistic regression model in

different forms. The usual frequency approach contrasts exposure in the hazard period

with the expected exposure, based on each individual's usual frequency of exposure over

the entire reference period. This approach is analogous ta a highly stratified retrospective

cohort study in which each stratum has exactly one case event. and aIl of the person-time

is contributed by a single individual based on cumulated exposed time in the retèrence

period. Mittleman empirically compared the relative efficiency of these three approaches.

and the results show that the pair-matched interval approach, with the least information

being used, has the lowest relative efficiency; the efficiency of the multiple intervals

approach is intermediate and the efficiency greatly increased as the number of control

periods sampled increased; the usual frequency approach has the highest efficiency

among the three, but it can ooly be used when within-person confounding by clock-time

was negligible. Selection of the sampling strategy should depend upon the length of the
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hazard period, the induction time from exposure to outcome anset, the degree of within­

person confounding and the quality of the data availabie. It is a trade-off between

precision and potential biases of the estimate.

2.4 Time trend

The principle of selecting controis in conventional case-control studies is that controis

shouid be selected independently of their exposure status. That is. the contrais should be

representative of the source population with respect to exposure (Rothman. I998~

Wacholder 1992). This principle is followed weIl in the case-crossover design. as the best

representatives of the source population that produced the cases wouid be the cases

themselves. However. a strong assumption behind this design is that neither exposure nor

confounders are changing over time in a systematic way, which means the distributions

of exposure in the risk period and reference periods should be the same under the null

hypothesis. If the case and control time windows are very long, or if they are short but far

apart, this assumption may be challenged because the distribution of exposure may

change with time regardiess of outcome. Suissa first raised this question with an example

of a case-crossover analysis ofheta-agonist use associated with asthma mortality. In that

study, the time window is defined as 1 year because of the strong seasonal variations in

disease and drug use. The reference period was taken to be the year immediately

preceding the l-year current period. Over a period of 2 years, there may be a ··natural

increase " ofdrug use over time because of changing medical practice, greater

recognition of the drug's benefits, more assurance with prescription of the drug, a wider

spectrum of indications, increasing patient reliance on the drug, and aggressive marketing
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(Suiss~ 1995). When this time trend occurs and we do not adjust for it in our analysis, we

may conclude that a drug is a risk factor of the outcome, when in fact there is no

association between the drug and the outcome, apart from time trends. In a limited

number of papers about case-crossover studies that have been published to date, three

methods of controlling the time trend bias have been used and are listed belo\v.

Case-lime control design. This study design was proposed by Suissa in 1995 and was

anaIyzed with a proportional-hazards model by Greenland in 1998. The original purpose

ofthis design was to use within-subject comparisons to adjust for confounders that are

not measurable, such as severity ofdisease, and which result in confounding by

indication of drugs. Compared with the case-crossover design. this new design used a

non-case control group to adjust for the control-time selection bias in the case-crossover

design, which includes the time trend bias. With the case-time control design, the odds

ratio from the case-crossover analysis can be divided into two portions - one portion due

to time trends and the other portion due to the drug effect. The resulting odds ratio is

adjusted for time trend and controls for between-person confounding. Ifthere is no

naturai time trends in drug use exposure, the coefficient for the external control-time

becomes 0 and the design is reduced to the case-crossover design.

Population time trend control. In the study on the association between road-traffic

accidents and benzodiazepine use (Barbone, 1998), a strategy that is similar to the case­

time-control design is used ta control the time trend bias. In the analysis, a term is added

to the logistic model of the case-crossover design to control for the time trend. However,
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this term is not for external control selected to match each case, as in a case-time control

design. It is for quarterly drug-utilization patterns in the study population. This term

adjusted for the likelihood that a doctor would prescribe such a drug in the population..

thus, it adjusted for the time trend of drug use. This strategy does not need to select

external controls, but it is under an assumption that aIl subjects have the same drug­

utilization pattern.

Two-direclion sampling control. In all case-crossover studies we have discussed abave..

the control time couId only be a time period that preceded the event because the study

outcome was likely to affect subsequent exposures. So, sampling control time after the

event could result in reverse-causality bias. However.. in sorne studies such as that of the

effect of environmental rather than behavioral exposures, the outcome does not affect

subsequent exposure. In this situation, select the control time period after outcome is

applicable. Navidi (1998) proposed and analyzed a so-called bidirectioal case-crossover

design in which the control times were taken both before and after the outcome. With a

simulation study.. Navidi showed that relative risk estimates by this bidirectional case­

crossover design are resistant to the time-trend confounding. Unfortunately, in mest of

the pharmacoepidemiology studies, the outcome will strongly affect subsequent

exposures, so that the strategy is not applicable.

2.5 Summary

In this review, we compared the case-crossover design with conventional epidemiological

study designs. The case-crossover design is based on the same principle ofother
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abservationaJ studies such as the cahort and case-control study, and the techniques of

data anaJysis of these conventianal studies are applied. However, this novel approach

borro\ved the advantages of the case-series study with respect ta cast and feasibility, and

as weil as the advantages of the randomized crossover clinical trial with respect to the

power to control for variations among subjects. The main advantages of the case­

crossover design can be summarized as follows:

1) No separate group of control subjects needs ta be identitied. This will save a lot of

time and expense and no case needs be dropped from a study because an adequate

control could not be found. Also, there is no possibility of bias in the selection of

control subjects, although bias could occur in the selection of control periods.

2) Case and control data are from the same subject. This within-subject comparison

automatically matches on aIl characteristics that do not change within individuals. As

a result, proper (matched) analysis of case-crossover data will control for aIl such

non-varying (fixed) confounders. This advantage salves the vexing difficulty of

controlling for confounders that are unknown or not measurable in the conventional

case-control study.

The case-crOSSQver design, on the other hand, has the following limitations:

1) The exposure must vary over time within individuals rather than stay constant. If the

exposure does not vary within an individual, then there is no basis for comparing

exposed and unexposed time periods ofrisk within the individuaJ. For instance, if
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blood type is assumed to be associated with sorne kind ofoutcome, this assumption

cao not be tested by the case-crossover design beeause the exposure is constant for

every individual, and in this case, extemal controls must be sampled for the study.

For the same reason~ in pharmacoepidemiology, the ease-crossover design is not

applicable ta drugs with regular patterns ofuse that vary ooly minimally within an

individual.

2) Time window or effeet periad needs to be weIl defined. This is the main reason that

the case-erossover design has been applied to a limited number of studies in which

the effect time of exposure is very short and is easily detined. [f there are carry-over

effects and the time of these carry-over etTects are unknown. the case-crossover

design is not applicable because of the difficulty of defining the time window. The

application of the case-crossover design can be extended from short transient

exposures to longer chronic exposures as long as the time window can be reasonably

defined. In this situation, a time trend effeet may confound the result and if it accurs.

case-time-control design is an option.

3) Within-individual confounding threatens the validity of the design. Using the subjects

as their own controls eliminates confounding by subject characteristics that remain

constant, but not by characteristics that change over time. Time trend effect is aIso a

within-individual confounding that happens when the time window is long.

In conclusion, the case-crossover design has provided a new technique to study the effect

oftransient exposures on acute outcome. 115 application is restricted to a narrow range of
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scientific questions, but when it is applicable, it can ingeniously solve sorne problems

that are challenging by conventional design.
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Fig 2.1 Summary of conventional study designs in phannacoepidemiology.
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3.1 Saskatchewan Healtb Databases

In this study, the data of exposure history and other information for each case of asthma

death carne from the computerized databases of Saskatchewan Health.

Saskatchewan is one of 10 nrovinces in Canada. It has a population of about one million
l • •

people, which is 40/0 of the total population of Canada. For more than 20 years. the

Saskatchewan Department of Health has been accumulating a very large amount of heath

care information in computerized databases. These databases record aIl kinds of health

services for each individual such as. hospitalization. outpatient drug prescription. and

physician services. In addition. the Vital Statistics Division of Saskatchewan Health also

provides death information such as the time and the course of death.

The main strength of the Saskatchewan Health databases is the tàct that 95 percent of the

population in the province is covered by the universal health program. This facto plus the

more than 20 years of accumulation of data, makes the Saskatchewan Health databases a

unique model for pharmacoepidemiologic study in the entire population. Another

strength of the Saskatchewan Health databases is the fact that individuals are identitied

by an unique Health Service Number (HSN). This number is used to code almost aIl

healthcare services and hence can be used to electronically link data From any of the

computerized databases.

The databases of Saskatchewan Health used in this study are the Health Insurance

Registration File, the Prescription Drug Data and the Hospital Inpatient Data.
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Health Insurance Registration File (HIRF) is a registry of aU Saskatchewan residents who

have registered with Saskatchewan Health for a Health Services Cardo This file contains

sociodemographic information for 95 percent of the Saskatchewan population such as

name, address, sex, date of birth, dates of effective coverage and family status. The HSN

of this file allows the linkage of this file with all the other computerized files.

Prescription Drug Data records all prescriptions of medications dispensed out of hospitals

to residents who have a valid Health Services Cardo thus eligible for benetits under the

Prescription Drug Plan. with the exception of about 6% who have their prescription costs

paid for by another government agency. The prescription drug data from September 1975

to June 1987, and from January 1989 to date, includes the information of each

individual's HSN, the identification number COIN) of drug dispensed, the quantity of the

drug dispensed. and the date of dispensing. Data between July 1,1987 and December 31.

1998 are not available on an individual basis. The HSN can link this data file to the other

health data files and DIN can he matched to information about the brand, strength.

phannaceutical preparation. and manufacturer through linkage with a "drug ruIes" file.

The Hospital Services Data includes the HSN, date ofbirth. date of discharge. length of

stay, and diagnostic and treatment information (e.g., discharge diagnoses and primary

surgical procedure). Oischarge diagnostic data are coded for bath primary and secondary

diagnoses by using the International Classification of Oisease (ICD).
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As the information about history of drug exposure is from the Prescription Drug Data and

this database only records the outpatient prescription, the database can not provide valid

data for the patients hospitalized for a long period oftime, sa we used the Hospital

Serviced Data for checking the hospitalization history of each subject and the subjects

with long time hospitalization should be excluded from the study.

3.2 Source population

The source population is defined as all beneficiaries aged between 5 and 44 years oid

who received at least one prescription of an anti-asthma medication bet\veen September

1975 and December 1991. The anti-asthma medications include all anti-asthma

medications covered by the health insurance plan, such as beclomethasone. budesonide.

triamcinolone acetate, t1unisolide, sodium cromoglycate. ketotifen. nedocromil.

salbutamoI, fenoterol, terbutaline, isoproterenot metaproterenol. procaterol. epinephrine

bitartrate. ipratropium bromide.. and any compound of theophylline. Oral corticosteriods

were not included in the list because the prescription of this drug alone may be given to

patients with sorne disease other than asthma. In the Prescription Drug Data.. each of the

drugs listed above has a specifie code. By linking this database with the HIRF file.

31,307 subjects were identified to form the source population.

3.3 Case Identification

The source population was followed from 1977 to 1993 .. or until age 55, and a total of

467deaths of all causes occurred during this follow up. Death certificates for 427 deaths
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were obtained from Saskatchewan Health and were reviewed blindly and independently

by two respirologists to detennine the cause of death. To determine whether a death was

caused by asthma, a procedure was carefully predefined and the main criteria were: a)

whether asthma was the cause or a direct antecedent cause as listed in Part 1 of the death

certificate, or the course of death listed in Part 1 suggested that the patient died of sorne

disease other than asthma; b) whether Part 2 of the death certificate mentioned asthma as

another significant condition while the cause listed in Part 1 appeared to be a direct

consequence of asthma~ c) whether the course of death was suggestive of processes

which may accompany an acute exacerbation of asthma. In addition~ other evidence such

as clinical note, coroner's assessment, macroscopy and histological descriptions were also

reviewed if it was necessary to confirm the classification of the cause of death. Any

discrepancy was resolved on the basis of consensus.

After the subjects who died of asthma were identified, further including criteria were then

established as: a) information about drug prescriptions of at least 365 days before death

was available and b) there was at least one prescription of beta-agonists in the 365 days

before death. With these criteria, we excluded the cases that did not have sufficient

exposure data and the cases that did not provide any information for the estimate.

3.4 Exposure history of the cases

For each death identified above, the HSN was obtained and the Prescription Drug Data

was linked by this number to obtain all records of drug prescriptions for these cases. A

smaller data set was then built by including ooly the records ofprescriptions dated within
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365 days before death and including only the records of prescriptions of beta-agonists.

The beta-agonists include terbuterline, isoproterenol, metaproteranol, salbutarnol,

fenoterol, and procaterol. As the data between July 1,1987 and December 31 ~ 1998 were

not available on individual basis in this Prescription Drug Data, The death date of the

study cases must have been before, or one year after, this --dark period".

The HSN number for each cases was aIso used to link Hospital Services Data and the

Health Insurance Registration File to obtain hospitalization information and

sociodemographic information for each case.
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• Source Population
N=31307

Total Death
N=427

•

Eligible Cases
N=54

Asthma Death
N=71

Excluded Cases
N=17

Fig 3.1 Selection of the study cases.
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• 4.1 New estimation based on Poisson distribution

In general, the odds ratio can be written as,

p( ElCase)/ p( ElCase)
OR = -------.;..--.....;....-

p( El Control)/ p( El Control)

r ,- ""_ ,
_ ~I- PtEICaseJJ/PtEICaseJ
- [1- P(EIControl)]/P(EIControl)

(4.1 )

•

From the above equation we can see that the main task of a case-control study is ta

compare the exposure distribution of the cases ta that of the contraIs. Under the null

hypothesis, the distribution of exposure for the cases and for the contraIs is the same, 50

that OR is 1. OR> 1 means the probability ofexposure is Iarger in cases than in contraIs.

implying that the drug is harmful. On the contrary, OR<l means the treatment is

protective. As discussed in Chapter 1 and Chapter 2, the case-crossover study design uses

the cases themselves as controis and compares the distribution of exposure of the subjects

when the event occurs to the distribution of exposure of the same subject when the event

did not happen to them.

In classical case-crossover design, the statistical technique provided to estimate the case-

crossover rate ratio and its confidence limits is based on the binomial distribution for

exposure. Thus, exposure data in each pre-specified time window is dichotomized as

exposure or non-exposure. Considering that a database study in phannacoepidemiology

can provide precise data on the actual exposure times, it is assumed that sorne
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• infonnation may be wasted by simply reducing exposure data into the dichotomized form

required for the binomial distribution.

4.1.1 Estimation using exposure times

\Vith the databasc providing precise dates of drug prescriptions, 'ove can obtain data cf

precise inter-exposure onset times. We assume that the number of prescriptions during a

given time interval follows a Poisson process, that is, the distribution of inter-exposure

onset time is an exponential distribution.

Suppose that the distribution of inter-exposure onset time for cases is exponential <.~.I)

and the distribution of inter-exposure onset times for the contrais is exponential 0..0)' then

fol1owing 4.1, and the tàct that P( E) =1- P( E) = 1-e-Àt , we have,

(1 -)../),1 -)../
OR = - e lie

(1 -).i)/ -~t- e / e

,il 1e -
· = lote -1

(4.2)

Applying the Delta method, the estimator of the variance of OR can be derived as follow.

•
_t50_1?_ _ t eÀ.t
Ô )..1 e~t - 1
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where,

Therefore,

L =(var il co~J
Cov Var À.

, ., ~ /
2re-All

( )

20RCOV
eÀo/-1

(4.4)

(4.5)

•

Assuming cov=O, we have,

Moreever, using the logarithmic transfonnation for the ratio to avoid problems of

asymmetry, we have,

.... (OIOgOR)2 ....
Var(1og0R) ~ êOR VarOR

.,
= r- 2 (e2Â.l1var il + e 2À.ot OR2Var io)

CeÂ )! - 1)
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• For Poisson mode!, we have,

(4.8)

Where j=O for controls and 1 for cases, Tj is the total duration of time and Nj is the total

number of prescriptions in Tj time period.

4.1.2 Variance-weighted average estimator

We can consider each case as a stratum where the contraIs are taken from a different time

period. Thus, we have n strata corresponding to the n cases along with their own control

times. To obtain an overall estimate of OR.. we can either use standardization or pooling.

Here we used peeling in which the weights were determined solely by the data and the

homogeneity assumption. To assign the weights that ret1ect the amount of information in

each stratum, and to minimize the variance of the overall weighted average without

introducing bias, the weights should be assigned to the stratum specifie values as

inversely proportional to the estimated variance ofeach stratum-specifie estimator. Thus,

we pooled the n log (OR), by a weighted average~ weighting by the inverse of the

variance oflag OR.

Let,

•

Var (log (OR d) = Vi,

n 1
........-...... .L -V.logORi

log OR = .=...1_=~I_' _

~ _1

i =1Vi
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• Then we have,

------­
Var(logOR) =

n 1
L­

i = 1 Vi

2

n 1
L -2-VarlogORi

i = 1 Vi

=--

= 1 ] 2 n 1
~ -.,Vif _1 i = 1Vi

i = 1Vi
1

n 1
y-

i:- 1Vi

(4.11 )

Here, n is the number of cases.

For the equation above, we can use the nurnber of prescriptions in the last time window

period divided by the length of the time window (Td as an estimator of À L and the

number of prescriptions before the last time window divided by the length of control time

CTo) as an estimator of Ào. That is,

•

... # of Rx hefor the time window period
Ào= T

o

A # of Rx during the las! rime window period
Â.l=

Tl
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• For the study of the association ofbeta-agonists \vith asthma death, it is assumed that the

effect time window is 30 days. For each case, we divided Üle one year period before

asthma death into case periods and control periods. The case period is from 30 days

before death to the date of death, that is, the last time window period. The control period

is from 365 days before death to the date of30 days before death. The number ofbeta-

agonist prescriptions in the case-period and the control period were counted and Ào and À-,

were estimated by equation (4.12) and (4.13) respectively. [n the equation (4.6) and (4.7).

Àa and À, cannot be 0, but in practice, it happens that sorne patients do not have any

prescriptions either in the last time window period or in the control period.. which makes

il and Âo equal to 0 and the estimate oflog(OR) and Var(logOR) intinite. To avoid

introducing bias by discarding these cases, we used the reciprocal of time duration from

the date 0 f last prescription to the date 0 f death as an estimate 0 f À, if the number 0 f

prescriptions in the last time windo\v period was O. We used the reciprocal of time

duration from the date of 365 days before death to the date of tirst prescription as an

estimate of Ào if the number of prescriptions was 0 in the control period.

4.1.3 Unweighted estimator

Another way to estimate the overall odds ratio is to separately pool À-a and À, with equal

weight across subjects and to use the overall Àoand À1 to estimate OR:

•
n

L iifi. =_i=_I__

) n
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• n

l lu
Tf Tf ;-1
~ar À.. = ~ar----

J n

....

__1 f' À:j

- ., L.
n- '::1 T,

Then the overall estimate of odds ratio is,

....

eÂl t - 1
OR =----=-....--

eÀo
t - 1

(4.15)

(4.16)

•

A A

The VarlogOR can be derived by equation (4.7) and (4.15). For this method~ li, and ~).

for sorne subjects were allowed to be 0, sa that the adjustrnent in the previous method is

not necessary.

4.2 Classic estimation based on binomial distribution

To compare our new method with the classical method based on the binomial

distribution, we aIso calculated the OR and Variance of OR in the same way as originally

proposed for the case-crossover design (Maclure, 1991). In this method, there are two

elements for the estimation ofRR and i15 variance, Pxi and Cxi•

Pxi is the probability that the ith subject was in a state ofaltered risk due to exposure x.

There are two ways to calculate Pxi• First, the reference period is divided into time
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windows, and Pxi is calculated as the number oftime windows the subject i is exposed

divided by the total number of time windows in the reference period for the subject i. For

the second way~ the Pxi is calculated as the proportion oftime the subject is exposed to

the total time of the reference period.

Cxi is an indication ofwhether a case are classified as exposed (Cxj=l) or not (Cxi=O)

during the assumed effect-period.

[t is assumed that the time window is 30 days~ which means that if a patient was given a

prescription of beta-agonists~the patient was exposed to the drug for 30 days follo\ving

the prescription. This effect-period is rather long as compared with the frequency of

prescriptions~so there are overlaps among the eftèct-periods. As proposed by Mclure.

tms overlap should be discounted.

Occasionally a patient may have more than one prescription of beta-agnoists on the same

day. Ifthis happens and we calculate the Pxj as above. the effect-period of one

prescription on one day will he the same as two or three prescriptions on that same day.

which is not reasonable. Ta adjust for this, we assumed that if there is more than one

prescription on the same day, these prescriptions are evenly distributed in the period

between this day and next the prescription day.

To determine the value of Cxi, we just need to know the date of the last prescription of

beta-agonists. If the date of last prescription of beta-agonists is less then 30 days before

the date ofdeath, then the case is defined as exposed and Cxi=1. Otherwise, the case is
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• defined as not-exposed and Cxi=O. The way of calculating Pxi and Cxi is illustrated in Fig.

4.1.

When the Pxj and Cxj are defined, the Mantel-Haenszel estimator of rate ratio can be

calculated by the formula,

n
L Cxi(l- Pxi)

RR i = 1
MH=~~----

n
L (1- Cxi) Pxi

i = 1

The variance of the RRMH can be calculated by the fonnula,

n
L Pxi(1- Pxi)

(4.17)

(4.18)

•

A confidence interval can be estimated according to this estimate of variance under the

assumption that In(RRMH ) is normal distributed.

4.3 Simulation

Ta assess the performance of the different estimators mentioned above and to compare

the efficiency of the new estimators with the classical estimator of the case-crossover

design, a simulation study using Monte Carlo methods was conducted.
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In the simulation study, the events were generated under the following assumptions:

1) The events of prescriptions in the case periods and the control periods are Poisson

distributed with rates Â 1 and Ào respectively, that is, the lengths oftime between the

events follow exponentiai distributions.

2) The rate of exposure during the control period varies arnong subjects~ but aH cases

have a common odds ratio. That is, the rate of exposure for the case time-windo\v is

adjusted accordingly.

With these two assumptions, the following steps were conducted:

1) The number of cases, n, and E(Ào) were fixed as a priori, and then n Àos were

generated from a gamma distribution.

2) With a predetermined odds ratio, À1 for each case was determined by its À,o and the

predetermined OR.

3) For the case period, an event was generated with the time interval between the event

and death to be exponential 0.1). Then another event was successively generated, with

the time interval between this event and the previous event to he exponential (À,j),

until the cumulated time reached the predetermined time window, and the number of

events were counted. Events in the control period were also generated by the same

process with exponential (Âo) distribution.

4) After a set of data with n cases was generated, odds ratios were estimated from the

different estimators given above.
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• Suppose R is an estimator of the odds ratio, Rk =f (Àk), where Àk is the generated matrix

of Â, and k=1,2, ... ,N represents the N simulations. Then we have,

_ 1 N ...
R =- L Rk

N k=l

BYthe Law of Large Numbers,

R~E(R)

The standard error of Ris thus

As we don't know the variance ofR, it was estirnated by the fonnula,

(4.19)

(4.20)

(4.21)

(4.22)

To compare the efficiency of the two estimator Ra and Rb, by definition, the relative

efficiency is,

Var(Ra ) Sa 2

Var(Rb) '" Sb2 (4.23)

•

The simulations study was performed \vith SAS macro language. We created three

macros ta fulfill a simulation proc~ss. The first macro was used to generate a data set as

above. In this macro, the presumed time window, odds ratio (OR), /,,0, and seed for

generating random variables were passed as macro parameters, so these variables could

be easily changed when recalling this macro. The second macro was ta calculate
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log(OR), OR and Variance oflog(OR) for a data set generated by the tirst macro. The

name of data set was passed as parameter. 50 this macro can not only used for this

simulation study, but aIso cao be used independently to calculate 0 R and Variance for a

specifie real data set. The third macro was to iterate recalling the tirst two macros and to

generate a data set by concatenating the results from recalling the second macro. For each

iterating, the seed was automatically incremented by 1 sa that different data sets were

generated for each iterating.
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Fig 4.1 Calculation Pxi and Cxi in Mantel-Haenszel estimator. The arrow represents the

effect period of each prescription; the filled block represents the time the subject is at

altered risk due to the exposure; the empty block represents the last time windo\v: the X

represents event, and the Cxi is determined by whether or not there is a prescription of

beta-agonists in this time window.
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5.1 General description of data

In this study, the source population was all beneficiaries of the Saskatche\van Health

Program aged between 5 and 44 years oid who received at least one prescription of an

anti-asthma medication between September 1975 and December 1991. This source

population \vas fcHowed from July 1977 to December 1993 or until age 55. The subjects

were censored at age 55 because chronic obstructive pulmonary disease usually becomes

symptomatic around this age, which makes the diagnosis of asthma uncertain. During this

follow-up. a total of 467 deaths of all causes were identified by the Health [nsurance

Registration File (HIRF). The death certificates of 4270f them (91.4%) were reviewed

and 71 cases were identified as due to asthma death (16.90/0). Because the Prescription

Drug Data were not available on an individual basis between July 1. 1987 and December

31, 1988. the follow up time was divided into 4 calendar periods and the number of cases

of asthma death in each period was shown in Fig 5.1.

The 14 cases in periods 2 and 3 were excluded because there was [ess than one year 0 f

prescription data for these cases. Among the remaining 57 cases, we exc1uded 3 cases

who did not have any prescriptions of beta-agonists in the year before death and thus

would not provide any infonnation for the estimate of the odds ratio. As a resu[t. our tinal

study case series was 54 asthma deaths.

Table 5.1 summarizes the distribution of the deaths of ail causes, of the total asthma

deaths and of the 54 study cases. The data show that the proportion of males in the 427

deaths ofall causes and in the 71 asthma deaths were 61.4 and 57.1 respectively. The
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mean age at death for asthrna was 30.1 and the mean age of death for all causes was 52.7.

The proportion of young people (age<15) who died of asthma and died of all causes was

16.9% and 6.4% respectively. The time ofasthma onset was defined as the time that

subjects entered the asthma cohort by the three prescription criteria., that is., the time they

received three asthma drug prescriptions in a consecutive 365 days after the first

prescription ofasthma drugs. The mean age at onset for the people who died of asthma

was 23.3, and for the people who died ofail causes., it was 30.0.

As we have mentioned before., \ve couId only obtain information on outpatient

prescriptions from the Saskatchewan Health databases. Thus. we needed to obtain the

hospitalization information for the study cases ta check the validity of the data for the

drug use. The Hospital Service Data provided the date of discharge~ length of stay and

ICD-9 code for diagnostic and treatment information for our study cases. Table 5.2

summarizes this data for the 365 days before death. The table shows that patients had 1.7

hospitalizations on average in the year preceding deaths and most of the hospitalizations

were for asthma (88.2%). The average duration ofhospita1 stay for the 54 cases was 8.4

days in a year, which was a very small portion (2.3°ftl) of total exposure time. However,

the maximum hospital duration in a year was 57 days, which was 15.6% of total exposure

time, and there were 5 of the 54 cases who had hospitalization duration over 30 days.

Thus, the analysis was repeated after excluding these 5 cases.

We identified all inhaled beta-agonist prescriptions for the study cases. During the 365

days before death, the 54 study subjects received a total of 959 beta-agonis! prescriptions.
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and these 959 records accounted for 1558 canisters ofbeta-agomsts (1.6

canisters/prescription). It was found that the majority of beta-agonist prescriptions for

these 54 study cases in the year before death were for salbutamol and fenoterol (93.4%).

Only one patient used metaproteranol as well as salbutamol. There were 6 people who

used both salbutarnol and fenoterol. No other beta-agonists, such as terbutaline.

isoproterenol and procaterol were used by these 54 study cases (Table 5.3). It is important

to note that fenoterol was prescribed in 38.9% of patients who died asthma. but the

market share of this drug is only about 100/0, which suggests that tènoterol may be

associated with asthma death.

5.2 Estimate of OR and confidence interval

5.2.1 New Metbod: Poisson distribution estimation

Under the Poisson distribution assumption, we considered each case as a stratum and

used two different approaches to obtain the pooled estimate of the odds ratio and its

confidence interval. The tirst approach was to average the log(OR), \veighted by the

inverse of the variance of the log(OR). The estimate of the 10g(OR) and the variance of

log(OR) are given by equations 4.5-4.11. The second approach was to pool ~ 1 S and Âu s

with equal weight to estimate the overall Al and À-o(equation 4.14-4.16).

Table 5.4a provides the estimates ofÀ.1and Â.o under different time window assumptions.
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It shows that i o remains stable when the time \vindow changes, but il increases as the

length of the time window decreases. It aIso shows that il is larger thania. Table 5Ab

lists the same data as Table 5.4a, except that the adjustment was done to avoid ~II and

~IO being 0, as described in the method section. In Table 5.4b, il) also remains stable

when the time window changes and it is very close to that in Table 5.4a, and il also

increase as the length oftime \\Iindow decreases. The il in Table 5.4b is larger than il

in Table 5.4a and this difference became bigger as the size of the time window decreased.

This is because more cases were needed to adjust il in order ta avoid it being 0 when the

size of the time \vindow decreases.

The odds ratios and the confidence intervals were calculated as shown in Table 5.5.

When the time window was assumed to be 30 day, the OR was 1.58 (950/0 CI: 0.98-2.57)

for the \veighted method and 1.54 (95% CI: 0.99-2.41) for the unweighted method. When

the time window was assumed ta be 25 days, the OR increased ta 1.92 (95% CI: 1.19­

3.09) for the weighted method and 1.81 (950/0 CI: 1.17-2.81) for the unweighted method~

while the 95% crs no longer included 1. When the assumed time window decreased

further, the odds ratio monotonely increased for bath methods, and the highest estimate

of odds ratio was obtained when the time window was 10 days, the smallest time \vindow

tested. The highest estimate of OR obtained was 2.90 (0.95 CI 1.81-4.67) for the

weighted method and 2.46 (0.95 cr 1.60-3.79) for the unweighted method.
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The five cases with hospitalization durations longer than 30 days in the year before death

may challenge the validity of our estimation. We repeated the same analyses when these

5 cases were removed and the results are shown in Table 5.6. After removing the 5 cases.

no major difference was found for the estimate of OR under any time window

assumption. However, we can see that the estimation of OR was uniformly higher when

the 5 cases were excluded. This is because the patients tended to have mor~

hospitalizations just before death, sa that the number of prescriptions of any drug will be

underestimated in the period just before death.

5.2.2 Classic method: Binomial distribution

We analyzed the same data to estimate the RR using Maclure's method and the results

are shawn in Table 5.7. In this analysis, the estimates were given by equations (4.17) and

(4.18). In Table 5.7, Methods 1 and 2 refer to different ways of calculating the P:(j. For

Method 1. PxiS were calculated as proportion of alerted risk time to the whole reference

period oftime. For Method 2, the PxiS were calculated as the proportion of the number of

alerted risk time windows to the total number oftime windows in the reference period of

time, as described in Chapter 4.

In Method l, a RR of 4.57 (95% CI: 1.60-13.02) was obtained when the lime windo\v

was assumed to be 30 days. This is much higher than the estimate with the Poisson

approach, and the confidence interval is much wider. When the time window decreases

to 10 days, the estimate of OR is 2.62 (0.95 CI 1.45-4.70), an estimate very close to the

result of the Poisson approach. The estimates of variance are aIso close for the two
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approaches when the time window decreases to 10 days. We can see from Table 5.7 that

the two methods ofcalculating Pxi give very similar results.

5.3 Simulation

Using the approach described in the Methods section1 '.ve simulated data based on a one-

year exposure1a time window of 30 days1 and mean Àoof 1/30daY1 1.5/30daY1 and

2/30day. The true OR varied from 0.5 to 5.01increasing with step of 0.51and we

considered two sample sizes, n=60 and n=300. Ail simulations were based on 1000

replications.

Table 5.8 lists the simulation results when the number of cases was set as 60. In this

table1Mean 10g(OR) represents E(logOR) and Mean VariogOR represents E(VarlogOR).

as demonstrated by equation (4.20). Var(logOR) is S2 as in equations (4.22) and (4.23).

In the binomial distribution method1Pxi was calculated as the proportion of alerted risk

time to the whole reference period of time. The Poisson distribution method 1 is to pool

log(OR)s by the weight of the inverse of the variance of the log(OR) and the Poisson

distribution method 2 is to pool id and i ,o with equal weights.

We can evaluate the accuracy of the estimation oflog(OR) by comparing Mean log(OR)

with True log(OR) and evaluate the accuracy of the estimation of the variance of the

log(OR) by comparing Mean Varlog(OR) with Varlog(OR).
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The data in Table 5.8 show that for the binomial distribution method and the unweighted

Poisson distribution method~ the estimates of the variance of log(OR) are very close to

the "true" variance of log(OR). On the other hand. for the weighted Poisson distribution

method, the estimates of the variance of log(OR) are overestimated.

For the binomial distribution method, the estimate of log(OR) is uniformly higher than

the true 10g(OR) and the bias increases as Â.o increases from l/30day to 2l3Dday. For the

Poisson distribution methods, the direction of bias is more complicated and it varies

according to both À.O and true OR. In order to reveal the accuracy of the diffèrent

methods of estimation. \ve plotted the estimated log(OR) to the true log(OR). Fig 5.2

shows the plot when Â.o is 1.5/30day. We can see from this graph that when the true OR is

0.5-2.5. the Un\veighted Poisson method uniformly gives the best estimate. The estimate

of log(OR) by weighted Poisson method is severely biased to\vards the null when the true

OR is less than 1.

RE 1 and RE2 in Table 5.8 are the relative efficiencies of the Poisson distribution

methods 1 and 2 ta the binomial distribution. [t was calculated by equation (4.23) as the

ratio ofVar(logOR). The relative efficiency can be simply interpreted as the proportion

of the sample size needed for the two estimators if the variances of the two estimators are

equal (Suissa, 1991). The table shows that the relative efficiency for the weighted

Poisson method is 0.16-0.3, which means less than one third of the sample size is needed

by this method to achieve the same precision as the binomial distribution method. For the

unweighted Poisson method, the relative efficiency is 0.2 -0.50, which means less than
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half of the sample size is needed for this method to achieve the same precision as the

binomial distribution method.

Fig 5.3 plots the variance of Iog(OR) against the true OR when 1..0 is 1.5/30days. ft

shows that the variance of Iog(OR) for the binomial distribution method increases as the

true OR increases from 0.5 to 5.0, but the variance of Iog(OR) for the Poisson method is

stable as the true OR changes. It aiso shows that the weighted Poisson method has the

smallest variance of 10gOR.

To illustrate the performance of the binomial method estimator compared to that of the

Poisson method, we compared the histograms of OR estimates from the two approaches.

Fig 5.4 gives an example comparing the binomial method with the weighted and

unweighted Poisson methods when the true OR=2 (logOR=0.69), 1..0 is 1.5/30days. and

with 1000 simulations. Compared to the Poisson distribution method. the distribution of

the estimated 10g(OR) by the binomial method more dispersed and skewed.

To test the effect of sample size on the performance of these estimators. we conducted

another simulation with the sample size increased by five-fold, that is. the sample size

\vas increased from 60 to 300. The results are listed in Table 5.9. It sho\vs that when the

sample size was increased by five-fold, the variance of the estimated log(OR) decreased

proportionately for aIl three methods and that the relative findings of aIl three methods

remained the same.
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Table 5.1. Population distribution of deaths

AH deaths Asthma deaths Eligible cases

'T_A"'''' ~_"'71 N=54l ... ---t~ , L -, 1

Number (percent)

Male 262 (61.4) 41 (57.7) 33 (61.1)

Age>15 403 (94.6) 59(83.1) 43 (79.6)

Age at Onset > 15 340 (79.6) 45 (63.4) 35 (64.8)
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Table 5.2 Number of records and duration ofhospitalization.

Number of Records Ouration (day)

mean min Max mean min max

Total Hospitalization 1.7 0 10 8.4 0 57

Asthma Hospitalization* 1.5 0 10 7.1 0 46

Other Hospitalization 0.2 0 3 1.4 0 27

* Identified by ICO-9 code.
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• Table 5.3 Distribution of the use of different beta-agonists .

Total Number

Prescriptions Canisters

Total 959 1558

Terbutaline 0 0

Isoproterenol 0 0

Metaproterano1 63 109

Salbutamol 418 662

Fenoterol 478 787

Procaterol 0 0

Users*

54

o

o

39

21

o

•

* There were 6 people use both salbutarnol and fenoterol, the the patient using
metaproteranol was also a salbutamol user.
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• Table 5.4a Estimate of number of beta-agonists prescriptions per 100 days for
different lime window assunlption *

Reference period Risk period

Time Window (days) Mean Min Max Mean Min Max

30 4.78 0 20.89 5.80 a 20.00

25
,. ..,..,

0 20.59 6 :: 0 20.00"'t. 1 1

20 4.77 a 20.29 6.57 0 20.00

15 4.80 0 20.00 6.42 0 20.00

10 4.81 a 19.72 6.85 a 30.00

lie No adjustment was made, allow the rate ta be O.

Table 5Ab Estimate of number of beta-agonist prescriptions per 100 days for
different time window assumption*

Reference period Risk period

Time Window (days) Mean Min Max Mean Min Max

30 4.79 0.27 20.89 5.94 0.28 20.00

25 4.77 0.27 20.59 6.56 0.28 20.00

20 4.77 0.27 20.28 7.31 0.28 20.00

15 4.80 0.27 20.00 8.26 0.28 25.00

10 4.81 0.27 19.72 9.25 0.28 30.00

lie The adjustment was made 50 that the rate cao not be O.

•
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Table 5.5 Estimate of odds ratio (OR) for the asthma death associated with the use of
beta-agonists under the Poisson distribution assumption.

Weighted * Unweighted**

Time window OR 95%CI Var(logOR) OR 95%CI Var(logOR)

30 1.58 0.98-2.57 0.06 1.54 0.99-2.41 0.05

25 1.92 1.19-3.09 0.059 1.81 1.17-2.81 0.05

20 2.24 1.40-3.60 0.058 2.01 1.35-3.20 0.048

15 2.57 1.61-4.12 0.058 2.32 1.51-3.56 0.047

10 2.90 1.81-4.67 0.058 2.46 1.60-3.79 0.049

* logOR pooled by l/VarlogOR
** Àij was pooled with equal weight for each cases
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Table 5.6 Sensitivity study: Estimate OR under the Poisson distribution assumption when
the five cases \vere removed.

Weighted • Unweighted **

Th"11c \vindo\v OR 95~'oCI Var(logOR) OR 95~'oCI Var(logOR)

30 1.71 1.04-2.81 0.07 1.65 1.05-2.58 0.05

25 2.05 1.25-3.36 0.06 1.93 1.24-3.00 0.05

20 2.38 1.46-3.87 0.06 2.20 1.42-3.39 0.05

15 2.77 1.71-4.49 0.06 2.50 1.63-3.83 0.05

la 3.06 1.89-4.97 0.06 2.60 1.69-4.00 0.05

* log0R pooled by INarlogOR
.* À. .• was pooled with equal weight for each cases

IJ
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Table 5.7 Estimate of odds ratio (OR) for asthma death associated with the use ofbeta­
agonists under the binomial distribution assumption

Method 1* Method 2**

Time window OR 95%CI Var(logOR) OR 95%CI Var(logOR)

30 4.57 1.60-13.02 0.29 4.38 1.68-11.43 0.24

25 3.23 1.44-7.24 0.17 2.48 1.22-5.08 0.13

20 2.59 1.34-5.02 0.11 2.21 1.18-4.16 0.10

15 2.46 1.32-4.58 0.10 2.27 1.23-4.18 0.10

10 2.62 1.45-4.70 0.09 2.41 1.33-4.37 0.09

* The Px is calculated as proportion of alerted risk time to the whole reference period of
time.
Ife Ife The Px is calculated as the ratio of number of alerted risk time \vindows to the total
number of time windo'N in reference period of time.
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Table 5.8 Accuracy of estimation of the different methods for n=6D cases.

Binomial Distribuiton Poisson Distribution Method 1** Poisson Distribution Method 2***

True True Mean Var Mean Mean Var Mean Mean Var Mean
lamdaO OR logOR logOR logOR VarlogOR logOR logOR VarlogOR logOR loUOR VarlogOR RE1 RE2----
0.033 0.5 -0.69 -0.60 0.12 0.10 -0.05 0.02 0.06 -0.60 0.06 0.06 0.20 0.50
(1130) 1.0 0.00 0.12 0.11 0.09 0.31 0.03 0.06 0.01 0.05 0.05 0.24 0.48

1.5 0.41 0.52 0.12 0.10 0.57 0.03 0.06 0.35 0.05 0.05 0.25 0.42
2.0 0.69 0.81 0.11 0.11 0.76 0.03 0.06 0.60 0.04 0.05 0.29 0.37
2.5 0.92 1.04 0.13 0.11 0.92 0.03 0.06 0.79 0.05 0.05 0.28 0.37
3.0 1.10 1.23 0.14 0.12 1.05 0.04 0.06 0.95 0.05 0.05 0.26 0.35
3.5 1.25 1.39 0.15 0.13 1.16 0.04 0.06 1.09 0.05 0.05 0.25 0.34
4.0 1.39 1.53 0.17 0.14 1.26 0.04 0.06 1.20 0.05 0.05 0.23 0.28
4.5 1.50 1.68 0.17 0.15 1.35 0.04 0.06 1.31 0.05 0.05 0.23 0.29
5.0 1.61 1.77 0.19 0.16 1.43 0.04 0.06 1.40 0.05 0.05 0.21 0.28

~ 0.050 0.5 -0.69 -0.56 0.10 0.10 -0.27 0.03 0.06 .a.57 0.05 0.05 0.26 0.48
0 (1.5/30) 1.0 0.00 0.14 0.12 0.11 0.15 0.03 0.06 0.00 0.05 0.05 0.28 0.41

1.5 0.41 0.55 0.14 0.12 0.43 0.04 0.06 0.34 0.05 0.05 0.27 0.36
2.0 0.69 0.86 0.16 0.13 0.64 0.04 0.06 0.59 0.05 0.05 0.23 0.30
2.5 0.92 1.09 0.18 0.15 0.81 0.04 0.06 0.79 0.05 0.05 0.22 0.31
3.0 1.10 1.28 0.20 0.16 0.94 0.04 0.06 0.95 0.05 0.05 0.20 0.26
3.5 1.25 1.42 0.19 0.17 1.06 0.04 0.06 1.08 0.05 0.05 0.21 0.27
4.0 1.39 1.56 0.24 0.19 1.16 0.04 0.07 1.19 0.06 0.56 0.18 0.23
4.5 1.50 1.68 0.25 0.20 1.25 0.05 0.07 1.29 0.06 0.06 0.19 0.23
5.0 1.61 1.80 0.26 0.22 1.34 0.05 0.07 1.39 0.05 0.06 0.18 0.21

0.067 0.5 -0.69 -0.55 0.13 0.11 -0.40 0.03 0.06 -0.55 0.04 0.05 0.23 0.34
(2/30) 1.0 0.00 0.16 0.14 0.13 0.04 0.04 0.06 0.00 0.05 0.05 0.27 0.37

1.5 0.41 0.56 0.02 0.14 0.33 0.04 0.06 0.34 0.05 0.05 2.50 3.37
2.0 0.69 0.87 0.18 0.16 0.55 0.04 0.06 0.58 0.05 0.05 0.23 0.31
2.5 0.92 1.11 0.21 0.18 0.71 0.04 0.07 0.77 0.05 0.06 0.19 0.25
3.0 1.10 1.29 0.23 0.20 0.86 0.04 0.07 0.92 0.06 0.06 0.19 0.25
3.5 1.25 1.45 0.15 0.22 0.98 0.05 0.07 1.06 0.06 0.06 0.31 0.41
4.0 1.39 1.59 0.27 0.24 1.09 0.05 0.07 1.18 0.06 0.06 0.18 0.23
4.5 1.50 1.71 0.29 0.26 1.18 0.05 0.07 1.30 006 0.06 0.17 0.22

5.0 1.61 1.83 0.32 0.28 1.28 0.05 0.07 1.40 0.06 0.06 0.16 0.20

.. PoollogOR by the weight of inverse of VariogOR

.... PoollamdaO and lamdal by equal weight for each cases.
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Table 5.9 Accuracy of estimation of the different methods for n=300 cases

Binomial Dislribuilon Poisson Distribution Method 1** Poisson Distribution Method 2***
True True Mean Var Mean Mean Var Mean Mean Var Mean

lamdaO OR logOR logOR logOR VarlogOR logOR logOR VarlogOR logOR logOR VarlogOR RE1 RE2--- ---
0.033 0.5 -0.69 -0.59 0.02 0.02 -0.05 0.00 0.01 -0.59 0.01 0.01 0.21 0.50
(1130) 1.0 0.00 0.01 0.02 0.02 0.31 0.01 0.01 0.00 0.01 0.01 0.28 0.52

1.5 0.41 0.51 0.02 0.02 0.57 0.01 0.01 0.35 0.01 0.01 0.28 0.44
2.0 0.69 0.79 0.02 0.02 0.76 0.01 0.01 0.60 0.01 0.01 0.28 0.44
2.5 0.92 1.01 0.02 0.02 0.92 0.01 0.01 0.79 0.01 0.01 0.31 0.39
3.0 1.10 1.20 0.03 0.02 1.05 0.01 0.01 0.96 0.01 0.01 0.29 0.39
3.5 1.25 1.35 0.03 0.02 1.16 0.01 0.01 1.09 0.01 0.01 0.28 0.38
4.0 1.39 1.48 0.03 0.02 1.26 0.01 0.01 1.21 0.01 0.01 0.29 0.36
4.5 1.50 1.61 0.03 0.02 1.35 0.01 0.01 1.32 0.01 0.01 0.24 0.32
5.0 1.61 1.72 0.04 0.03 1.44 0.01 0.01 1.41 0.01 0.01 0.21 0.31

0.050 0.5 -0.69 -0.56 0.02 0.02 -0.27 0.01 0.01 -0.55 0.01 0.01 0.25 0.46
~ (1.5/30) 1.0 0.00 0.13 0.02 0.02 0.14 0.01 0.01 0.00 0.01 0.01 0.29 0.45

1.5 0.41 0.53 0.03 0.02 0.42 0.01 0.01 0.34 0.01 0.01 0.27 0.39
2.0 0.69 0.82 0.03 0.02 0.62 0.01 0.01 0.59 0.01 0.01 0.29 0.36
2.5 0.92 1.04 0.03 0.03 0.78 0.01 0.01 0.78 0.01 0.01 0.26 0.36
3.0 1.10 1.22 0.03 0.03 0.92 0.01 0.01 0.95 0.01 0.01 0.29 0.37
3.5 1.25 1.37 0.03 0.03 1.04 0.01 0.01 1.08 0.01 0.01 0.24 0.29
4.0 1.39 1.50 0.04 0.03 1.15 0.01 0.01 1.20 0.01 0.01 0.25 0.30
4.5 1.50 1.62 0.04 0.03 1.24 0.01 0.01 1.31 0.01 0.01 0.26 0.29
5.0 1.61 1.74 0.04 0.04 1.32 0.01 0.01 1.40 0.01 0.01 0.21 0.25

0.067 0.5 -0.69 -0.54 0.02 0.02 -0.42 0.01 0.01 -0.55 0.01 0.01 0.27 0.40
(2/30) 1.0 0.00 0.15 0.03 0.02 0.02 0.01 0.01 0.00 0.01 0.01 0.29 0.39

1.5 0.41 0.54 0.03 0.03 0.31 0.01 0.01 0.34 0.01 0.01 0.30 0.41
2.0 0.69 0.84 0.03 0.03 0.52 0.01 0.01 0.06 0.01 0.01 0.24 0.31
2.5 0.92 1.06 0.03 0.03 0.69 0.01 0.01 0.78 0.01 0.01 0.25 0.35
3.0 1.10 1.23 0.04 0.03 0.83 0.01 0.01 0.94 0.01 0.01 0.24 0.29
3.5 1.25 1.38 0.04 0.04 0.96 0.01 0.01 1.08 0.01 0.01 0.21 0.28
4.0 1.39 1.53 0.05 0.04 1.06 0.01 0.01 1.20 0.01 0.01 0.21 0.27
4.5 1.50 1.65 0.05 0.04 1.16 0.01 0.01 1.31 llOl 0.01 0.19 0.24
5.0 1.61 1.76 0.05 0.05 1.25 0.01 0.01 1.40 0.01 0.01 0.20 0.25

... PoollogOR by the weight of inverse of VarlogOR

..... PoollamdaO and lamdal by equal weight for each cases.



•

•

Pl P2 P3 P4-Oï/19ïï Oï/198ï i 2/1 988 i2/1 989 i2il993

# of cases 50 9 5 7

Fig. 5.1 Calendar time of follow up and number of asthma deaths in each calendar time
period.
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CHAPTER 6 DISCUSSION AND CONCLUSION
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6.1 Efficiency and flexibility

The case-crossover design was tirst proposed to study the onset of myocardial infarction

associated with sexual activity and coffee drinking (Maclure 1991). In that study, the

time window was assumed to be 2 hours. Compared to the 1 year period used as a

rcfcrcnce timc in the present study, that tirnc \vindow is very smalL and the ntlI'nbcr 0 f

time windows in the reference period is large (n=4380). In that situation. the estimator of

OR with the binomial distribution and the Poisson distribution are very close, as in the

limit when n -+ ~, a-+ o. and n(} =À. remains constant, the binomial distribution

converges ta the Poisson distribution (Freund 1992). In pharmacoepidemiology. the time

window is defined according to the effect time of the drugs, patterns of drug prescriptions

and drug use. The time window can be rather long compared to the whole reference time.

In this ease, the binomial and Poisson distributions may differ significantly beeause the

number oftime windows in the reference period is small.

In studies where the data is ohtained by survey, it is more objective to colleet exposure

data in dichotomous forrn, partieularly when the exposure is drug use. In datahase

studies, however, databases provide more precise data on the actual exposure times. In

this situation, we may be wasting information if we try to mold the data into the

dichotomous form required for the binomial distribution.

ln this thesis, we proposed an estimator of OR and its confidence interval for the ease­

crossover design assuming a Poisson distribution for the inter-exposure times. We used

simulations to compare this new approach with the classic binomial approaeh. The result
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• shows that the new approach is more efficient, in that its variance is smaller and the

confidence limits are tighter. In the simulation study, the data were generated according

to the real data used for illustration, that is, the time \VÎndo\v was 30 days and the total

observation time was one year. In this situation. the relative efficiency was 50% or less.

For the classic case-crossover study analysis that \ve revie\ved in Chapter 2. the risk

factor was dichotomized as exposed and non-exposed. This is a 'single hit' mode!. This

"single hit' model means that an exposure needs to happen only once for a subject to be

considered ·"exposed". Whether the exposure occurs once or more than once does not

change the exposure. The method we have proposed is also a "single" hit mode!. but uses

ail the information to arrive at its estimate. It can aIso be amended for other models. For

instance. for a "double hit' mode!. the equation (4.1) cau be amended as.

[1- P(E < 2ICase)]/P(E < 21 Case)

OR= [1- P(E < 21 Control)]/P(E < 21 Control)

(6.1 )

•
For the same model as above, the binomial distribution approach can dichotomize the

exposure as less than 2 times and greater or equal to 2 times, but this dichotomization

also wastes sorne infonnation which may lead to lower efficiency.
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6.2 Exposure time trend

An important assumption behind the case-crossover study is that the distribution of

exposure does not change with time during the reference period. In both the binomial and

the Poisson approaches, the distribution ofexposure in the reference period was

estimated under this assumption. OnIy if this assu!nption is valid, can 'ove asSll..'l1e t.~at t.hjs

estimate represents the reference period and that the estirnate of OR is valid. In case there

is a time trend in the exposure, as certain drugs may he more frequently prescribed than

before. the basic assumption of the case-crossover design is challenged. The case-time­

control design (Suissa 1995) provided a model to control the time trend. but an external

control group was needed. Compared ta the binomial distribution approach. which needs

to tediously calculate the proportion of alerted time while considering the overlapping of

effective time of drug use, the Poisson approach's estimate of the OR are functions of

only the rate of drug use. This makes the new approach not only convenient but also

more t1exible and amenable to verifying sorne of the assurnptions behind the validity of

the case-crossover design. For the time trend problem, we can fit Ao as a function oftime

using a regression mode!. This form of time data is easily amendable to a wide variety of

models, including splines, which can identify heterogeneity of exposure over time during

the reference period.

It can be predicted that if exposure increase with time, ignoring the time trend in data

analysis will make Â.o to he less estimated, which lead to the overestirnation of OR and on

the other hand~ ignoring decreasing time trend willlead to underestimation of OR.
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6.3 Independence of i and i
1 0

In deriving the variance for equation (4.6) and (4.7), we assumed that the ~ and ~ were

independent. This assumption is based on the consideration that for each individuaL the

drug use in one period is independent of the drug use in another periode The fact that a

patient who has a higher rate of drug use in the reference period may also have a higher

rate of drug use in the risk period does not imply that this assumption is invalide This is

confirrned by the result of our simulations. In the simulation~we first randomly generated

.ta, but ÀI was determined by fixing OR and Ào. Thus, the subject with a higher Ào will

also have a higher Àr. When we randomly generated the exposures, however. we

generated them independently for the risk and the reference periods. This implies that an

exposure in the reference period will have nothing to do with whether an exposure

happened in the risk period, except from the higher rate. This suggests independence of

~ and lu, which is confinned by the unbiased variance estimators that are denved under

the assumption of independence.

6.4 Limitation of the Poisson distribution method

The tirst limitation of the method is that it can only be applied to the study of a randomly

occurring exposure. In phannacoepidemiologic studies, the drug under evaluation must

be used irregularly(e.g. use as needed) in arder to satisfy the Poisson distribution

assumption. In addition, the Poisson distribution method cannot be applied to case-

crossover studies in which the time-window of the ecposure is extremely short. For

instance, in a study of the risk ofchild pedestrian injury in an urban traffic environment
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(Roberts et. al. 1995), the exposure was defined as to whether a child was crossing a high

traffic street or not when the accident occurred. In this case, only the Bernoulli

distribution is appropriate. Similarly, the Poisson distribution method is inappropriate to

use in the analysis of survey dat~ when the exact time of exposure is not available, as the

basic requirement of the Poisson distribution approach cannot be met. Thus. this method

is most usefui in pharmacoepidemiological database studies where the drug is taken as

needed, the time window is sufficiently long to allow for repeated exposure and the exact

time of drug prescription is available.

6.5 Discussion about asthma data

We illustrated this new method based on the Poisson distribution with data from a study

of asthma deaths associated with the use ofbeta-agonists and compared this result \vith

that of the classical case-crossover design. When the time window is assumed to be 10

days, the results from the binomial and Poisson distribution approaches are very close.

but when the time window is assumed to he 30 days, the results from the two approaches

are clearly different. The binomial approach gave odds-ratios of4.57 or 4.38, while the

Poisson distribution approach gave ORs of 1.58 or 1.54, which are clearly smaller. We

can first explain this difference from the simulation analyses, which show that the

binomial distribution method gives higher estimates of the odds-ratÏo. Second, we can

see that the confidence interval (CI) given by the binomial distribution approach is wide,

and the 95% CYs from the two methods are overlapping, which implies that the difference

between the two methods could be due to random error. To further explain the difference
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• between the two types ofestirnators, we need ta check the data in detail, which are listed

below.

ID W W W W W W W W W W W W Numerator Denominator
1 2 3 4 5 6 7 8 9 10 Il 12

12092 2 0 2 3 3 0 3 a 0.2727 0.0000
16385 2 2 1 1 0 1 1 0.0909 0.0000
17804 :! 0 :! 0.0909 0.0000
22198 1 1 1 1 1 0 1 2 1 1 2 0.0909 0.0000
37059 1 1 2 1 1 1 0 2 2 1 0 0.1818 0.0000
14120 5 2 3 2 2 2 2 3 4 2 3 0.0000 0.0000

In the above table. WI-W12 are the 30-day time window counted back from the date of

death, sa that W 1 is the risk period, and W2-W 12 are reference period. The table lists the

nurnber of prescriptions in each time window. Nurnerator and denominator are

respectively the contribution of the subjects ta the numerator and denominator of RR as

in equation (4.17). We can see that the tirst 5 subjects aU have the numerator greater than

oand the denominator of O. This means that these subjects favor the hypothesis that

RR> 1. For the Poisson distribution method, however, we can see that aIl these subjects

favor the hypothesis that RR<L because, for these subjects, the rate of prescription in the

risk period is higher than in the reference period. Subject 14120 is a contrasting example.

For the Poisson distribution method, this subject favors the hypothesis that RR> 1 but for

the binomial distribution method this subject favors the hypothesis that RR=l. For our 54

study cases there are 19 cases that are clearly in the tirst situation and 6 cases in the

contrasting situation. By its nature, it will not happen that for the Poisson distribution

•
approach a subject will favor the hypothesis that RR> 1and the hypotbesis that RR<1 for

the binomial distribution method. AlI these are reason for the estimator of RR from the
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binomial distribution method to be higher than the RR from the Poisson distribution

method.

In the case control study on which these data are based in part (Spitzer et. al. 1992). the

exposure was defined as the use ofbeta-agonists during the 12 months before the index

date, which means that the time window is defined as 12 months. When the analysis is

based on continuous exposure of any inhaled beta-agonists, the odds ratio is 2.6 (950/0 CI

1.7-3.9) per canister per month. Later. Suissa developped a new technique named the

case-time-control design (Suissa (995) and applied this method to the same study \vith

the same data, to better control for the confounding by indication present under the case­

control design. His approach showed that for the continuous forms afbeta-agonist use.

the odds ratio is 1.7 (95°/() CI=0.9-3.0) per canister ofbeta-agonist per month. This odds

ratio is lower than that from the case-control study because the latter is based on a better

control for confounding by indication and time trends in drug use.

In the present study, we obtained an odds ratio of 1.54 (95% CI=O.99-2.41) for the

Poisson distribution approach and a relative risk of 4.57 (95% CI=1.60-13 .02) for the

binomial distribution approach when the time \vindow is defined as 30 days. According

ta the previous discussion, the Poisson distribution approach is assumed to produce better

estimation. These results and the results from the previous studies are related but they are

not comparable. First, the measure of exposure is different. In the previous studies, the

odds ratio compares the risk of using 1 additional canister of beta-agonist per month. In

the present study, we try to compare the risk of patients who use beta-agonists in a time
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window of 30 days, with the risk of asthma death for the patient who does not use beta­

agonist in this time \VÏndow. Second, the present study and the previous studies are based

on different assumptions and they are trying to answer different questions. In the previous

studies, the time window is defined as 12 months, 50 it studied a chronic effect of these

drugs. An assumption behind this design is that the effect of beta-agonist use to asthma

death will last for one year and the use of a beta-agonist at any time during a year has the

same effect on asthma death. In the present studies, the time window is defined as 30

days.. so it studied a transient effect. The assumption behind this study is that the effect of

beta-agonist can and only can last for 30 days, 50 the drug use 30 days before asthma

death do not have such a transient effect to asthma death. Third. the two kinds of studies

are related. There may be different explanations for the result of previous studies. A) AlI

the excess risk from the previous studies is due to the increased beta-agonist use in the

last month before asthma death~ the cases and contraIs have the same distribution of beta­

agonist use between one month before asthma death and one year before asthma death. 50

there is only transient effect and no chronic effect. B) There is only chronic effect and no

acute effect. In that case, the distribution of beta-agonist use in the risk period is the same

as the reference period of case-crossover study, and for the whole year. the use of the

drug is at a higher level than the external control. C) The effect of beta-agonists ta asthma

death is a combination of chronic and transient effects. Our present study suggested that

there is a transient effect of heta-agonists ta asthma death, 50 that situation B) is

excluded.
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6.6 Strength and limitation of the study

This is the frrst study to reveal the transient effect of beta-agonists to asthma death.

Compared with the previous study from the same cohort. this study has 6 more years of

follow-up and the sample size ofasthma deaths increased from 44 to 54, a 200/0 increase.

This study is based on the Saskatchewan health databases and thus inherits the

advantages of a database study over a field study. First, the Saskatchewan database is

population-based and it includes health care record of more than 950/0 of the population of

the province. With this database. we collected aH cases of asthma death in a well-detined

cohort that was followed up for 16 years. Since aIl the cases that meet the criteria are

collected, this study is immune from selection bias. Second, in this database study. we

can obtain precise information about the date of drug prescription, quantity and category

of drug, date and stay ofhospitalization, date of death etc, 50 the outcome and exposure

are precisely measured and the study is immune from recall bias.

The main limitation of this study is that the drug usage is completely based on the record

of prescription, and the information about compliance is not available. Also. the time

widow is defined based on drug prescriptions, that is, after the date of drug prescription. a

patient will be exposed to the drug for a certain number of days. It is not easy ta validate

this assumption.

6.7 Conclusion

The case-crossover design is a new epidemiological technique ta assess the transient
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effects of a brief exposure on the onset ofan acute outcome. Two apparent advantages

make it a prospective technique in pharmacoepidemiology studies. First, this study design

compares the exposure within subject, 50 that sorne confounders that are not rneasurable

cao be easily controlled. This advantage is very helpful in pharmacoepidemiology studies

in which confounding by indication is a challenge. Second, this study design only needs

information from cases, and no contraIs need to be sampled, so it reduces effort and

expense and eliminates problems arising from control selection.

ln this thesis, we discussed the application of the case-crossover design to

pharmacoepidemiology database studies, where the time window is usually rather long,

and multiple exposure may happen within a time \\'indow. On the other hand, in database

studies, precise information about time and quantity of drug prescriptions are often

available. In this situation, if we still use the case-crossover design based on the binomial

distribution and ignore the number and times of prescriptions in the time windows. we

may waste information and lose efficiency. For this reason, we proposed a new approach

of data analysis for the case-crossover design based on exponential distribution for the

inter-exposure onset times. We derived an estimator of the odds ratio and the variance of

the logarithm of odds ratio sa that a confidence interval of odds ratio can be calculated.

We developed a SAS macro ta carry out a simulation study to compare this newapproach

with the conventional case-crossover study. The results show that the new approach is

indeed more efficient in that its confidence liroits are tighter, than the conventional case­

crossaver design.
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We also illustrated this approach with data on 54 asthma death identified from the

Saskatchewan Health databases, and this is the tirst study ta assess the transient effect of

inhaled beta-agonists on asthma death. Our result demonstrates that asthma death is

associated with an acute increase of usage of inhaled beta-agonists in the 30 days before

death.

The main assumption behind the case-crossover design is that the distribution of

exposure remains stable over time during the reference period, so time trends of exposure

are the main challenge of validity of this method. We have discussed the possibility of

generalizing the Poisson distribution model to adjust for the time trend. [t is believed that

the Poisson distribution model is more t1exible to verify the assumptions behind the

validity 0 l' the case-crossover design. but further research is needed.
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