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ABSTRACT

The generalized local-spin-density functional (G-LSD) theory is proposed
which avoids (a) the physical restriction used in the generalized exchange local-
spin-density functional (dX-LSD) theory; (b) the homogeneous electron-density
approximation in the Hartree-Fock-Slater (HFS) theory and in the Gaspar-Kohn-
Sham (GKS) theory; and (c) the time-consuming step to search the optimal ex-
change parameter for each atom or ion in the Xa and Za theories. Theoretically,
the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and Za theories.
Numerically, the statistical total energies for atoms are better in the G-LSD theory

than in the GKS theory.

Ionization potentials and electron affinities of atoms, the stability of singly
and doubly charged negative ions, and the electronegativities, and hardnesses of the

fractional charged atoms with Z < 37 are calculated by the SIC-GX-LSD theory

with the GWB Fermi-hole parameters and electron-correlation correction.

The self-interaction correction (SIC) is introduced into the multiple-Scat-
tering Xa (MS-Xa) method and used to calculate some molecules and molecular
anions. The results show that the ionization potentials from the negative of the one-
electron eigenvalues are as good as those obtained in the transition state calculation

and in very good agreement with experiment.
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Une théorie alternative de fonctionelle de densité a €té proposée. Cette
théorie évite (a) la restriction physique utilisée dans la théorie de la fonctionelle
de densité locale de spin d’ échange généralisée (GX-LSD); (b) I’ approximation de
la densité d’électrons homogéne dans les traitements de Hartree-Fock-Slater (HFS)
et de Gaspar-Kohn-Sham (GKS); et (c) la recherche du parameétre optimal dans
la méthode Xa ou Za, qui consomme beaucoup de temps-machine. La méthode
G-LSD est plus rigoureuse que GX-LSD, HFS, GKS et la théorie Za et les résultats
numériques de I’ énergie totale statistique des atomes avec G-LSD sont meilleurs
que dans le cas de GKS.

Les potentiels d’ ionisation (PI) et les affinités électroniques (AE), la stabilité
des ions négatifs de charges -1 et -2 a été étudiée et les électonégativités et duretés
des atomes de charge fractionnaire (Z < 37) ont été calculés avec la SIC-GX-LSD

en tenant compte de la corrélation électronique avec les parameétres de GWB.

La correction d’auto-intéraction (SIC) a été introduite en premier dans la
méthode Xa de diffusion multiple (MS-Xa) et a été utilisée pour calculer quelques
molécules et anions mo'4culaires. Les résultats montrent que les PI obtenus comme
I’ inverse additif des valeurs propres de I’ énergie d’ un électron sont aussi bons que

ceux qu’ on obtient avec le calcul de I’ état de transition.
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CHAPTER 1

THE GENERALIZED LOCAL-SPIN-DENSITY
FUNCTIONAL THEORY

I-1. Introduction

For an N-electron closed-shell atom, the normalized wave function is a Slater

determinant!+?

Yi(x1)  Yi(x2) ... i(xn)

1 Ya(x1)  to(x2) ... a(xn)

N (1-1)

U(X) = — det

Yn(x1) ¥n(x2) ... PNn(xN)
in which {t,(x,)} is a set of spin-orbitals and x; stands for spatial and spin coor-

dinates, r; and g,, and the Hamiltonian is

2=y (-v-Z)+x 2 (-2

t 1>]

in Rydberg atomic units. The expectation value of the Hamiltonian gives a total

energy
1 1
B S il o 2 LS it o _ LS < it s
2<z|f|z>+2§]j<zjlg|zy> 2;<mgm> (1-3)

where the first term is the sum of the kinetic energy and the Coulomb interaction
between the electrons and nucleus; the second and third terms are the Coulomb and
exchange energies for the atom. In equation (1 3), the one-electron and two-electron

integrals are
<ilfli > = [y fiitxaddna (1-9)

and
<ijlglht > = [ 4G Gt b Ca)ixidxs  (1-5)
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respectively, with
hi=-vi— (1-6)

and

. 2
g12 = — 1-17
T12

By means of the variational principle, the one-electron Schrédinger equation

is written®
~ 0 = V) + Vi )| () = () (1-8)
in which u,(r;) is the spatial part of the spin-orbital ,(x, ), namely,
hi(x1) = u(r1)x:(01) (1-9)
the Coulomb potential is
Vi)=Y / w2 (02 )iz, (2 )dr (1-10)
3
and the Hartree-Fock exchange potential
Vx,(r1) = ViiF(ry)

_ 3, 6(xex5) J ug (01)u (r2)gr2w, (r1)us (r2 )dre

= a1 Jun(rs) (1-1)

The off-diagonal Lagrange multipliers in the right-hand side of equation (1-8) were
neglected. In fact, the wave functions satisfying equation (1-8) without the off-
diagonal Lagrange multipliers can be obtained from the wave functions {,(x,)}
by an unitary transformation. The wave function u,(r;) is solved from equation
(1-8) with equations (1-10) and (1-11) in the Hartree-Fock (HF) theory by the

self-consistent-field (SCF') procedure.




The HF theory is the foundation of theoretical atomic, molecular, and solid
state physics. Unfortunately, its most interesting feature, the HF exchange en-
ergy, is rather unwieldy computationally, especially for molecular and solid state
calculations?. Consequently, a long history of simple approximations to the HF ex-
change energy has developed, beginning with the early work of Dirac® and Slater®,

and progressing to current efforts in the local-density functional (LDF) theory.
In 1951, Slater® derived an approximation to simplify the HF exchange po-
tential expression, the Hartree-Fock-Slater (HFS) theory. The Slater statistical

exchange approximation is

1/3
VEPS(r) = —G[S%p(n )] (1-12)

where p(r;) is the total electron density of a system. Equation (1-12) is based on the
homogeneous electron gas. Slater’s statistical exchange potential in the one-electron

Schréodinger equation is only dependent on the local electron density.

Géspar’, Kohn and Sham® (GKS) developed an approximation to the HF
exchange potential expression. The exchange potential in the GKS theory differs

from that due to Slater, equation (1-12), by a factor of 2/3, that is,

1/3
VIS (1)) = —a [gf;p(n )] (1-13)

which is exact for systems of slowly varying high electron density.

The HFS theory describes the homogeneous free-electron system with slowly
varying low electron density, and the GKS theory is exact for an inhomogeneous
interacting electron system with slowly varying high electron-density. For interme-
diate conditions, Slater® proposed that the exchange potential in equation (1-12)

could be scaled by an adjustable factor, a,
3 1/3
V() = -6 Soatr) (1-14)

3




creating the Xa theory. The scaling factor a varies between 1 and 2/3 and is
determined by matching the approximate exchange energy to the HF exchange

10,11

energy , or by requiring the total energy and kinetic energy to satisfy the virial

theorem?!?,

In 1968, Slater’® introduced the spin-polarization concept in the Xa theory,
Obviously, in the HF exchange energy expression, there is no exchange effect of
the electrons with different spins. Therefore, the spin-polarized Xa (SP-Xa) theory

should be more accurate than the Xa theory.

Herman et al.'*!® derived an Xaf theory based on the Slater statistical
exchange approximation to introduce the inhomogeneity of a real system. In the

Xaf theory, the exchange potential is
o 2
Vi w) = [+ 560)| 5o (1-19)

where V,{¥5(r;) is given in equation (1-12); G(p) is

_ 1[4\ () _
G“”‘mumwsh( mn)) Ty ] (=19

and f is an additional scaling factor determined by the minimum-energy principle
or the virial theorem. Boring!® calculated some atoms and found the value of 8 to

be very small (less than 0.01) slightly changing for different atoms.

The self-interaction terms in the Coulomb-interaction energy integral and
the exchange energy integral of equation (1-3) in the HF theory cancel exactly, but
not in the LDF theory, which employs the local-density approximation. In 1977,
Gopinathan!” proposed the Za theory to correct the self-interaction problem in the
Xa theory with a correct asymptotic form for the potential, as r approaches infinity.
The scaling exchange parametei, a, in the Za theory was determined by matching

the statistical total energy in the Za theory to the HF total encrgy'® or by the virial

4



theorem or theoretically!®. The Za theory remarkably improves the one-electron
eigenvalues for atoms?® compared to the Xa theory, and compares well with HF.

Unfortunately, the Za theory was based on the classical approximation,

1/N, = pi(r1)/ps(r1) (1-17)

proposed by Kutzelnigg, et al.?! and valid at large interelectronic distances. In
equation (1-17), p(r and p,(r) are the charge densities of the i** electron and the

electrons with spin s; N, 1s the total number of spin s electrons.

To avoid the homogeneous free-electron-gas approximation of the Slater
model®, at least in part, the time-consuniing step of searching for the optimal ex-
change parameters for each atom in the Xa theory?, and the classical approximation
in the Za theory!”, Manoli and Whitehead®?'2?® introduced the boundary con itions
of the Fermi-correlation factor from the HF' limit into the LDF theory and pre-
sented the generalized exchange local-spin-density finctional (GX-LSD) theory, in
which the exchange potential in the oune-electron Schrédinger equation is orbital-
dependent and the exchange parameters are fixed once either the Fermi-hole shape
is chosen or the free-electron limit is used. Unfortunately, the GX-LSD theory was

based nn physical restrictions related to the Fermi-correlation factor.

An alternative LDF theory, the generalized local-spin-density functional (G-
LSD) theory was proposed by the author and Whitehead?* and is introduced in this
chapter. The G-LSD theory is based on the boundary conditions and the sum rule
of the Fermi-correlation factor obtained from the limit of HF theory and possesses
the same features as the GX-LSD theory, that is, an orbital dependent potential and
identical exchange parameters for all atoms in the periodic table once the Fermi-hole
shape has been chosen but without any physical restriction on the Fermi-correlation

factor.

In section I-2, the boundary conditions and the sum rule of the Fermi-hole

5
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correlation factor will be introduced from both the traditional density-matrix®® the-
ory and the HF limit. Section -3 introduces and emphasizes the significance of the
G-LSD theory, which avoids the homogeneous free-clectron-gas approximation of
the conventional LDF' theory, the time-consuming step in searching the optimal ex-
change parameters for each atom in the Xa theory, the classical approximation in
the Za theory, and the physical restrictions in the GX-LSD theory. Comparison of
the G-LSD theory with the GX-LSD theory??, the Xa theory®, the Za theory'?, and
the exchange-only LSD (XO-LSD) theory™® (i.e., the GKS theory), will be gi'en in
section I-4. The self-interaction problem and the self-interaction correction (SIC)
will be introduced and discussed in section I-5. The one-electron Schrédinger equa-
tion is obtained by the variational principle and given in section I-6 for the G-LSD
theory. Finally, the Coulomb-correlation, the correlation of electrons with differ-
ent spins, and the relativistic correction, which is very important for calculating

molecules with heavy atoms, will introduced in sections I-7 and I-8.



I-2. The Fermi Hole

The definition of one- and two-electron density matrices?5:26

o(ry) = N/|¢(x1,xg,...,xN)|2dr2dr3...drNdaldaz .don (1-18)

and

p(rl,l‘z) = N(N - 1)/ |¢(X1,x2,...,XN)|2dl‘3...dl‘Nd0'1d02...dO'N (1 - 19)

allows p(r;) to be interpreted as the probability of finding an electron at point r;,
and p(r;,ry) as the probability of finding any of the N electrons at the point ry
and simultaneously another electron at the point r;. In equations (1-18) and (1-
19), ¥(x1,X2,...,Xn) is the wave function of the system with spatial coordinates
ry,re,...,ry and spin coordinates oy,02,...,0n; N is the total number of electrons.
When the electrons in the system are divided into two groups, one contains the
electrons with spin s () and another with spin s' (]), the one- and two-electron

density matrices can be written in a spin-polarized form

p(r1) = ps(r1) + por(r1) (1-20)

and

p(r1,02) = pss(r1,r2) + porst (F1,02) + pagr (r1,T2) + psrs(ry,r2) (1 —21)

It is obvious that ps(ry) is the probability of finding an electron with spin
s at Iy, pss(r1,re) the probability of finding an electron with spin s at r; and

simultaneously another with spin s at ry, etc.
When electronic motion is correlated, the pair-electron distribution pys(ry,r: )i
is
M Pss(r1,T2) = ps(r1)ps(r2) + ps(r1)ps(r2)fos(r1,r2) (1-22)

7
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and

Psst (T1,r2) = py(T1)psr (r2) + ps(r1)Par (¥2)fosr (r1,12)

with similar expressions for p,y(ri,r2) and py,(ry,ry).

It can be shown that??

/Pa(l‘l)dl‘l = N,,
/ ps (r1)dr; = Ny

/p“(rl,rz)drl dr; = Ny(N, - 1)
/p,l,l(l‘l,l‘g)dl‘l dl‘z = N,t(N,I - 1)

/p,,(l‘l,l‘z)dl‘z = (Na - l)pa(rl)

and
/p,,:(rl,rg)drldrg = /p,:,(l‘l,rg)dl‘ldl‘g
= N, Ny
where
N =N, + Ny

(1 - 23)
(1 — 24)
(1 —25)
(1 - 26)
(1-27)
(1 - 28)
(1 -29)

and N, and N, are the numbers of electrons with spin s and s, respectively.

The total interelectronic interaction energy, by means of the pair-electron

distribution p(ri,r2), can be expressed as

8
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1 2 1 2

- r;,r ———-——drdr:—/ r; )p(ry )—————dr;dr

2/P(1 2)Ir1_r2| 1dry = 2 p(r1)p( 2)|r1—r2| 1dr
1

2
a (] 8 88 ’ —d
+3 /P (r1)ps(r2)fas(r1 r2)|r1 “ ] r1dr;

1 2
+ 5 /p,:(l‘l )p,:(l‘g )f,r,l (rl ,rz)l—r';—_—l"z—l'drl dl‘2

1 2
+5 /pa(rl )pst (T2 )fu'(l’l,l'z)mdrx dr,

[4

1 2
+ = / pst (r1)ps(r2)fors(r1,r2);———dridr; (1 - 30)
2 Ir1 — ra|

in Rydberg atomic units.

The first term in the right-hand side of equation (1-30) is the total Coulomb-
interaction energy including the self-interaction of the electrons; the second and
third terms are the exchange energy, which is the main topic of this chapter; and the
last two terms are the electron Coulomb-correlation energy. Before evaluating the
Fermi- and Coulomb-correlation energies, the Fermi-correlation factors, f,,(r;,rz2)
and fy 4 (r;,r2), and the Coulomb-correlation factors, fss (r1,r2) and fo4(r;,r2)
have to be determined. Traditionally, the Fermi-correlation factors satisfy the fol-
lowing conditions:

(i) by the Pauli exclusion principle and equation (1-22), the probability of

finding two electrons at the same position at the same time is zero,
fos(r1,72) = ~1 (1-31)

when |r; — ry| equals zero;

(ii) the electrons move independently at large interelectronic distances and

equation (1-22) appears to become
nd

Pas” (r1,72) = pa(r1)pa(r2) (1 - 32)

9




when |r; — r;| approaches infinity. However, this expression is wrong because it
does not preserve normalization?”. Kutzelnigg et al.?! have shown that the correct

form of the independent pair-electron distribution function is

in 1
Pl (r1,72) = py(ry)p, (ra) — FP:("I )ps(r2) (1-33)
Therefore,
faslF,2) = == 34
ss 1’2——N, (1-34)

as |r; — rp| approaches infinity;

and (iii) the conditional probability of finding an electron with spin s at r;,

when one is known to be at r; with spin s, is, from equation (1-22)

’@‘;%;;—;2) = ps(r2) + ps(r2)fss(r1,12) (1-35)
ps(r2)fss(r1,r2), therefore, represents the modification of the charge distribution
ps(re) caused by the presence of an electron with spin s at r;. However, the prob-
ability of finding an electron with spin s at r, without the presence of any electron

with spin s at r; is p,(rz ). Consequently, the difference of the probability generated

by the presence of an electron with spin s at r; is

/Pa(l'z)f.n(l'l,l‘2)dl‘2 = ;‘-&l—)/ﬁ'u(l‘l,h)d!‘z - /Pa(l‘z)drz
=1 (1 - 36)

Equations (1-24) and (1-27) were used to give the last equality in equation (1-
36). This is the sum rule of the Fermi-correlation factor; the total amount of the
exchange charge removed by the presence of an electron with spin s at ry is -1, a

Fermi hole.

The Xa theory and the LSD theory with the exchange-only (the XO-LSD

22,23

theory) can be generated from the Fermi-correlation factor®®*”, which was written

10
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directly to satisfy the boundary conditions, equations (1-31) and (1-34), and the
sum rule, equation (1-36).
Alternative boundary conditions can be obtained by modifying the exchange

energy expression in the HF theory??, where the exchange energy is®

B =3 | o) 0 ()
5(x.,x1)| 2 Idrldrz (1-37)

u,(r) and u,(r) are the one-electron spatial wave functions for the states i and j, and
X, and x, are the corresponding spin wave functions; the sum is over all electrons
in the system. & is the Kronecker delta function, which means the Fermi-correlation
only occurs for electrons with the same spin. Introducing a Fermi-correlation factor

into the HF exchange energy expression (1-37) gives

2
1 HF 2
+ 5 2 pa’(rl )Pa (l‘g )fs 7 gt (1‘1,1'2)| 'drl drs (1 - 38)

1 2
E{f = /Pa(l‘l)Pa(rz)ng(rl,l‘z)mdl‘ldrz

Therefore the Fermi-correlation factor ff1# in the HF theory may be written as

Doy (v Juf(r )u, (e Juy ()
ps(r1)ps(re)

FRF(r1,r0) = - (1-39)

and similarly for f7F(r;,r;). Equation (1-39) shows that the HF Fermi-correlation
factor is the sum of election-pair Fermi-correlation interactions, each electron-pair

was of a Fermi-correlation factor.

As r; approaches r;, equation (1-39) becomes

HF __Z,P:(rl)__ _
faa (rlarl)— Pa(rl) = -1 (1 40)

in which the sum is over the electrons with spin s. And as |r; — r2| approaches

infinity, the overlapping of the wave functions, v} (r;) with u;(r1) and uj(rz) with

11




u,(rz), goes to zero, except for the terms with i=j. Hence, the HF Fermi-correlation

factor reduces to

Lol
pa(ry )ps(r2)

’I-:F,md(rl T2 ) —

(1 -41)

Comparing the boundary conditions of the Fermi-correlation factor, equa-
tions (1-40) and (1-41), in the HF theory with those in equations (1-31) and (1-34) in
the density-matrix theory?®, shows that equations (1-31) and (1-40) are exactly the
same, but that equation (1-34) differs from equation (1-41). However, the boundary
condition of equation (1-34) is obtained fiom equation (1-33), in which the second
term is somewhat arbitrarily introduced in order to satisfy the normalization of
equation (1-25). Equation (1-41) is from the HF limit of the Fermi-correlation

1

without any approximation. Furthermore, if the factor 3~ in the second term of

equation (1-33) is replaced by the right-hand side of equation (1-41), that is
P (r1,r2) = ps(r1)ps(r2) — Y pu(r1)pu(r2) (1 -42)

it is easily seen?” that integrating both sides of equation (1-42) over dr; and dr
leads to an identical equality, N> — N, = N2 — N,. Equation (1-42) thercfore
satisfies the normalization condition. Consequently, equation (1-41) is considered to
be a boundary condition of Fermi-correlation factor as |r; — ra| approaches infinity.
Comparing equation (1-38) with the Fermi-correlation energy term in equation (1-
30) shows that both the Fermi-correlation factors play the same role in the exchange

energy expression.

I-3. The Generalized Local-Spin-Density
Functional Theory

The GX-LSD theory???3 assumed that the Fermi-correlation factor in equa-

12
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tion (1-22) was a sum over the one-electron Fermi-correlation factors

Pos(r1,72) = ps(£1)Pa (r2) + a(r1)Pu(r2) ) f1,(r1,¥2) (1-43)

where the summation is over the electrons with spin s. The boundary conditions of

the Fermi-hole correlation factor, from equations (1-40) and (1-41), become

Y fiatraim) = -2updt) (1 -a4)
and
; ind r 23 pt(rl )pl (!‘2) _
Z (F1or2) = ps(r1)ps(r2) (1-4)

and the sum rule equation (1-36) was rewritten as

/ > [P= e2)f3, (r1,r2) + BEDRED e (1 - 46)
ps(r1)
Then, the GX-LSD theory put each component on both sides of equations (1-44)-
(1-46) equal
1 P (rl)
o(r1,r) = - 1 —47
Fulenm) == @) -4
when r; approaches r;,
l md Py (1‘1 )pi(rZ)
r),rp) = ———=o—-=o 1-48
(r1m2) = ps(r1)ps(r2) ( )

when |r; — rz| approaches infinity, and

[ e fiater s = —f—j—ﬁ—‘;—)) (1 - 49)

This may not be true. Equations (1-47)-(1-49) cannot be obtained from equations
(1-44)-(1-46). If equations (1-47)-(1-49) are satisfied by p and f, then, so are equa-
tions (1-44)-(1-46). This is a physical restriction and consequently the GX-LSD

13




theory is based on more precise boundary conditions and sum rules for the Fermi-

correlation factor than the Fermi-correlation factor f},(r;,s2) itself imposes.

The Fermi-correlation factor, f,,(r;,r2), of the electrons with spin s in equa-
tion (1-22) gives the average correlation effect of the electron densities, p,(r;) and
ps(ry), at positions r; and rp, which are the sum of the electron densities of all
states at r; and rp, respectively. The contribution from each state is different, since
the electron density is not homogeneous. Manoli and Whitehead?%:?® noted this
and expanded equation (1-22) into equation (1-43). The summation ), f;,(ry,r2)

still describes the average effect of the correlation.

In this work the imhomogeneity of the electron density distribution will be

reflected, in part, by requiring equation (1-22) to be

Pas(r1,T2) = py(r1)ps(r2) + ps(r1) Y pu(X2)fi(r1,12) (1 -50)

where the sum is over the electrons with spin s. Comparing equation (1-50) with
equation (1-22), it can be seen that the interelectronic interaction energy caused by

the electrons with spin s is

1 2
§/Pss(r1,r2)mdrldr2
1 2
/ ps(r1)ps(r2 ) ———=dr1dr;
T2 Ir1 — 1
/Pa(PI)ZPa(I‘z)fu Pl,l'z)l ldl‘ldl‘z (1-51)

If the second term of equation (1-51) is compared to the first term of equation
(1-38), the HF expression, it can be seen that 3 p(r2)f,,(r1,r2) in equation (1-51)
plays the same role as p,(r2)fss(r1,r2) in equation (1-38). Therefore, the boundary

conditions of the Fermi-correlation factor in equation (1-51) may be expressed as

Zﬂu (r2)fss(r1,r2) = ZP-(H) (1 -352)

14



when |r; — r;| approaches zero, and

E p(r2)f 3" (re,0) = —E' p;(,?!i/;‘(rz) (1 —353)

when |r; — r;| approaches infinity; the sum rule becomes
/ Y pu(r2)fas(ry,ma)dry = -1 (1 —54)
'

Following the procedure to derive the LDF theory and writing the Fermi-
correlation factor to reflect the HF boundary conditions given by equations (1-52)

and (1-53) gives
S nten) (e r) = | 2SR 57 ) e )

_ E: p;)(:&;z/;a (!‘2) (1 _ 55)

where the Fermi-hole function k(r;.r;) approaches 1 as |r; — r2| approaches zero

and approaches zero as |r; — rp| approaches infinity. Substitution of the Fermi-

correlation factor (1 55) into the sum rule (1-54) gives

/ [Z. pi(r1)pi(r2) E (1 )] h(ry,rz)dr;

ps(r1) -
_ [ Zupim)en(r2)
ps(r1) :
-1 (1 = 56)

The equations developed so far are exact.

Now, however, the local-density approximation is used to simplify equation

(1-56). The conventional local-density approximation is

ps(r2) = ps(ry) (1 -57)

which means the total density in the Fermi-hole is very slowly varying. If the charge

density of electron i at point r; also changes slowly, then,

pi(r2) = pu(ry) (1-58)

15




Ecquations {1-57) and (1-38) are a drect conseqr 1ce of the local-denwity approx-
imation. The Fermi-hole functicn is assumed spherically syinmetric and localized

within a radius rp. The sum rule equation (1-56) gives the radius of the Feimi-hole

TF
-1/3
TF = P:/a(rl){47fA2 Z Pu("l)[Ps(l‘l) + B2Pt(r1)] } (1 —59)
[ ]
where
Ay = / h(u)uzdu;u =1y [TF {1 — 60)
uy
is an integral of a Fermi-hol¢ function, and
1
B; = 3" A2)/ A2 (1 —61)

From equation (1-51), the exchange energy of ‘.e electrons with spin s can

be written as

(SRR

5 [ L AU ea)ds = 5 5 [ prie) LI

+ fasl 1,12 ) 7————dr dr; (1 — 62)

2
ry — 1o
US(r,) is the single-particle exchange energy density in the present work. Substi-

tuting equation (1-55) into (1-62) gives

Zp.<r1)vﬁ(n>=p,<n)/{[z e = ) )

Ps(rl)

>, 2.(r1)pi(r2)
.h(l‘],l‘g)— p,(rl) } ll‘l —l‘gldr2 (1 —-63)

SV ]

If the local-density approximatior, equations (1-57) and (1-58), is used again, and

the Fermi-hole function is assumed spherically symmetric, equation (1-63) becomes

Y peUS() = sarkn { o aelates) = )]
- LI )} (1 - o)
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where rp is the radius of he Fermi-hole, and A; is a parameter depending on the

shape of the Fermi-hole and defined as
Ay =/ h(u)uduju =r2frp (1-65)
uF
and
1
B = (5 - A)/A4 (1-66)
When equation (1-59) is used, equation (1-64) gives
2\ /3 2s
S =—4(3) 4a{ Sl + B}
-2/3
ALE{ X raloa(ra) + Bap ()} (1-67
’
Letting

1/3
9ca®™ = 4(%) A4, A2—-2/3 (1-68)

equation (1-67) gives
U3(0:) = -02a"™ . e1) + B e )|

~2/3
APE 5o ala) + Bap o)} (1 - 69)
J

This is an orbital-dependent, single-particie exchange energy density in the gener-
alized (G) local-spin-density functional (G-LSD) theory; it is distinguished the gen-
eralized exchange (GX) local-spin-density functional (GX-LSD) theory, since there
are no physical restrictions used to derive equations (1-69) in the G-LSD theory,
whereas the physical restrictions are imposed in the GX-LSD theory by assuming

equations (1-47)-(1-49) to be correct.
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TABLE I-1

The exchange parameters in equation (1-69) obtained
using the Homogeneous (H), GWB, Wigner, and the
Free-Electron Limit (FEL) Fermi holes

H? GWB?*  Wigner?6:28 FEL*
A 0.500000 0.166667  0.142256 0.119647
Ay 0.333333  0.083333  0.069849 0.057785
B, 0.0 2.0 2.514776 3.178952
B, 0.0 3.0 3.772147 4.768428
alim 0.866173 0.727539 0.698526 0.666667

In equation (1-69), c=(2)!/® and o/'™ = %(2-’3'—2—)1/3A1 A7 which is only
dependent on the Fermi-hole shape. If the Fermi-hole function h(u) is known, it

can be easily used to calculate the parameters for all atoms.

Slater® assumed the charge density to be uniform, ie., homogeneous (H),

hence

R (rp) =1,0 <y <rp (1 - 70)

Gopinathan, Whitehead, and Bogdanovic?” (GWB) assumed the Fermi-hole

a linear function of r, that is,

hYB(r)) =1 —r2/rp;0<ry <7p (1-1T1)

Gézquez and Keller’® modified Wigner's approximation®® (W) to the pair-

correlation function of free electrons with spin s, in a seemingly more realistic form
w bra |y ey 72
R (r) = |1+ + W —)* {exp(=bra/rF) (1-172)

TF TF

determining b by requiring the free-electron-gas limit, when the number of the

electrons goes to mfinity.
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Manoi and Whitchead?® noted that a, goes to 2/3, when the number of
electrons in the system goes to infinity, and obtained the parameters, A;, A,, Bi,
and B, iudependent of the Fermi-hole shape to give the free-electron-limit (FEL)
Fermi-hole parameters.

Table I-1 lists the values of A;, Az, B;, and B;, and o"™ defined as in
equations (1-60), (1-61), (1-65), (1-66), and (1-68) and calculated by using the
Fermi-hole functions (1-70)-(1-72) and Manoli and Whitehead’s FEL Fermi-hole??.

I-4. The GX-LSD, Za, XO-LSD, and Xa Theories

The G-LSD is the master theory of a whole series of theories. Thus, the
single-particle exchange energy density expressions in the GX-LSD, Za, XO-LSD,
and Xa theories can be easily obtained from the G-LSD single-particle exchange

energy density formula by usii.g additional approximations.

The GX-LSD theory is based on the physically restricted boundary condi-
tions, equations (1-47)-(1-49), instead of the general boundary conditions of the
Fermi-correlation factor, equations (1-44)-(1-46), used in the G-LSD theory. The
boundary conditions of the Fermi-correlation factor used in both the G-LSD and
GX-LSD theories are generated from the HF limit of the exchange energy expres-

sion. Hence, the GX-LSD theory is a restricted G-LSD theory.

Mathematically, the G-LSD theory generates the GX-LSD theory with an
additional approximation: if the p,(r;) in the term [......] of the last factor of equa-

tion (1-69) is approximated by p,(r; ), equation (1-69) becomes

~2/3
USY(r1) = —9cal™™ | pu(e1) + Byt )] [psm) $Bop(m)|  (1-73)

This is the single-particle exchange energy density in the GX-LSD theory. It can

be seen that the only difference from the G-LSD theory is in the last factor.
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The Za theory is based on the classical approximation, equation (1-17), in
deriving the single-particle exchange energy density expression, which can be gen-
erated from equation (1-73). Letting B; = —1, B, = 0, and a'"™ = a,, cquation
(1-73) reduces to

UZ2(e1) = —96a, | pa(01) = (0| [ (o) - (1 - 74)

where a, is an adjustable parameter. This is the expression of a single-particle

exchange energy density in the Za theory!”

The boundary conditions of the Fermi-correlation factor used in the G-LSD
and Xa theories are however different. The Xa theory can be derived from the
G-LSD theory by assuming the free-electron gas homogeneous and using the ho-
mogeneous Fermi-hole parameters listed in the column 2 of Table -1, B; = 0 and

B; = 0. The single-particle exchange energy density, equation (1-69), reduces to

UH(r;) = —9ca"™ p}/3(r;) (1—75)

lim

The exchange parameter, a*™, is treated as an adjustable parameter, varying be-

tween 2/3 and 1 in the Xa theory®.

The single-particle exchange er.ergy density expression in the XO-LSD theory
can be produced from equation (1-73) for a system with very high and slowly varying
electron density. Expanding the last factor on the right-hand side of equation (1-73)

as a Taylor series, equation (1-73) reduces to

USX(ry) = —9cal™ [Pa(l'l )] " [1 + Eplsf('lf_—::)}—)]

=% Bepi(ry) | (=3)N=3-1) B}pi(r1) _
o3 2 COCm DA ] e

Using the fact that £ E:‘; goes to zero, when p,(r;) approaches infinity, and ne-

glecting the higher order terms, equation (1-76) becomes

Us;(r]) = —9ca“m [1 + (Bl Bg)pl Erl ;] ‘1]/3 (!‘1) (1 - 77)
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Using the FEL parameters in the column 5 of Table I-1, equation (1-77) reduces to
U9~ 5P (01) = —6cpy/* (r1) (1-18)

the single-particle exchange energy density expression in the XO-LSD theory®.

Consequently, the GX-LSD, Za, XO-LSD, and Xa are derived from the G-

LSD theory using further approximations.

I-5. The Self-Interaction
Correction in the G-LSD Theory

The self-interaction energy in the exchange energy expression, equation (1-
37), is cancelled exactly by the identical term in the Coulomb-interaction energy
expression; there is no self-interaction problem in HF theory. However in the LDF
theory the self-interaction energy term in the Coulomb-energy integral cannot be
cancelled by that in the exchange-energy integral, because of the local-density ap-
proximation. The self-interaction problem in the LDF theory can be avoided?®—32
by introducing self-interaction correction terms into the Coulomb-energy integral

and exchange-energy integral, separately.

The non-zero boundary condition of the Fermi-correlation factor in the G-
LSD theory, equation (1-41), as |r; — rz| goes to infinity, occurs because of self-
interaction. The last t.sm on the right-hand side of equation (1-55) is clearly the
self-interaction. Consequently, the self-interaction Fermi-correlation factor may be

written as

> pire) f35 (r1,ms) = 2 p;&;i/;i (r2) (1-19)

in contrast to equation (1-55). The self-exchange energy is, then,

% / z.:/)n(rl)fol(Pl )dry
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= %/ps(rl)z oo (02 ) f151 (x4, vy ) ———dry dry (1 — 80)

r1 — ro|

for electrons with spin s. Substituting equation (1-79) into (1-80), the single-particle

self-exchange energy density is

Uil (e) = /Pi(l‘z)l—;i—;ﬂdl‘z (1-81)

where the integral is carried cut over the self-interaction Fermi-hole. Applying
the local-density approximation, the local and single-particle self-exchange cnergy

density, equation (1-81), reduces to
UsI(ry) = 4np,(r1)rk; (1-82)

where rgy is the self-exchange Fermi-hole radius generated by the electron den-
sity pi(r1). Excluding the contributions from all other orbitals except for p,(r;),

equation (1-59) reduces to

3\ 1/3 13
Ts1=(z,;) p (1) (1-83)

equation (1-82) for US! becomes
US(ry) = 9¢a® p!* (1)) (1 - 84)

1/3 1/3
where ¢ equals (3-) and o1 = %’(i) . Finally, the self-exchange energy

4r 4

is
9
EST = §m5’/§ o3 ey )dry (1 —85)

The summation in equation (1-85) is over all electrons in the system, including both

spin-up and spin-down electrons.
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I-6. The One-Electron Schrédinger Equaticn

In the self-interaction corrected G-LSD (SIC-G-LSD) theory, the statistical

total energy may be written as

E=Y <ulrlfilum)>+5 3 <@l @) >

1.2(1#))

+ % Z < uy(r)|USG (r1)|uy(ry) > +% Z < u(r)[U7 (r1)lu(r1) >
1S S () >
+ -;— Y <u(r)|UF (rn () > (1 -86)

where the one-electron operator f is

. 22
h=-vi-=— (1-87)

* T1
and the two-electron operator

2

=ll‘1—l'2| (1_88)

In equation (1-86), the first term is the sum of the kinetic and nucleus-electron
attraction energies. The second term is the electron-electron Coulomb interaction
energy excluding the self-Coulomb interaction. The third and forth terms corre-
spond to the exchange energies of the electrons with spin up and spin down, respec-
tively. The last two terms are the self-exchange energy corrections. The electron
Coulomb-correlation, the correlation of the electrons with different spins (it will be
discussed later), is ignored in equation (1-86). The one-particle exchange energy
densities, US(ry) and US,(r1), and the one-particle self-exchange energy densities,

USI(ry) and US!(ry) are given in equations (1-69) and (1-84), respectively.
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Kohn and Sham® obtained the one-electron Schrédinger equation by minimiz-
ing the total energy, equation (1-86), with respect to a variation in the one-electron

wave functions, u,(r; ), and preserving normalization
}:j <up(ry (1) > = / py(r1)dry = N, (1 - 89)
i
so that,
[ V) + VR 00 + T G0l =) (-0

where ¢ is the one-electron eigenvalue of orbital k resulting from the Lagrange
multiplier required by the normalization condition of the one-electron wave function;
the electron-electron Coulomb-interaction potential, V,, (r;), for the k** orbital,

excluding the self-interaction, is

Vae) = | [pa(rz) - pk(m] dry (1-91)

Ir; — 1

and the one-electron exchange potential, V)ﬁ (r;), and the self-exchange potential,

V}‘?{ (ry), are

5, < w(E)| U (e () > ]
26pi(ry)

)
V! S (ey) = [ (1 -92)

in the LDF theory.

Substituting for U® from equations (1-69) and US! from equation (1-84) into

equation (1-92) gives
9
V(1) = 5o {2l o0 + Buputen)| 5 (e0)

[Z ? (rl)(p’(r‘) + Bzpy (1 )>] -
J
F 2[5 e (o) + Buaten) | or e
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[Ep] (rl)(p’(rl) + Bzp, (v )>] -
_ g[ﬂs(rl)+B2pk(l‘l)] [ZP:(U)(/Ja(rl) +Blpz(r1)>J 2/3 (p,)

o
[Ej:m(rl)(pa(n) +Bun )]} (1 -93)

Vgl (r1) = 6ca! p/3(r1) (1-94)

which are used in equation (1-90).

I-7. Electronic Correlation Correction

In the G-LSD, GX-LSD, and HF theories, the correlation of the electrons
with different spins, the Coulomb-correlation of the last two terms in equation (1-
30), is ignored. This is because, firstly, the Coulomb-correlation is much smaller
than the Coulomb-repulsion interaction between electron-electron and the Fermi-
correlation; secondly, the Coulomb-correlation effect is difficult to describe accu-

rately, although it is important in atomic and molecular calculations.

The Coulomb-hole concept is a fundamental idea developed by Wigner?®
for the electron-corr lation correction. The hole volume is directly related to the

electron density.

A lot of work has been done to define the Coulomb-correlation expression

based on the boundary conditions and sum rule of the Coulomb-correlation fac-

3

tors, fss'(ri,r2) and fy4(ry,ry). For example, Keller and Gézquez®® assumed the

Coulomb-correlation charge density to be

Ao e) = —po e e | 22| cos | 32 (1 - 9)

Ta 2ra
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where the constants ¢ and r, were determined by the sum rule and boundary condi-
tions of the Coulomb-correlation factor. Assuming the radius of the Coulomb-hole
equal to the radius of the Fermi-hole in the modified Wigner’s Fermi-hole model?®,

the Coulomb-correlation energy can be written

1 s
ECorr = 5 Z < ut(rl)IUscoul(rl )!u,(l‘]) >

n :1:2; < u (e )™ ()1 ) > (1 - %)

where the single-particle Coulomb-correlation energy density is

3.7723
N,

—2/3
UCeu(p,) = —0.1538 [1 + ] per (r1)p5 23 (xy) (1-97)

34,35

Normally, the correlation energy correction can be written as

Be = [lpa(e) + o @lecl(5) v () (1 - 98)

The function € [p,(r), ps (r)] is the single-particle correlation energy density of the
homogeneous electron gas with partial densities p,(r) and py (r) for the spin-up and
spin-down electrons. Before evaluating the Coulomb-correlation energy, equation

1-98), the single-particle correlation energy density must be determined.
gle-p gy y

Alternative parametrized electron correlation expressions have ficquently
emerged in the literature. Ceperley®® calculated the energy of a uniform clectron
gas over a wide range of densities. He used Monte Carlo techniques to sample a cor-
related wave function for electrons in a finite volume, subject to periodic boundary

conditions, and extrapolated the energy per electron to infinite volume. Letting
4 -1/3
ry = [—:—;—r—p(r)] (1 —99)
and

¢ =(ps — s )/ (ps + ps) (1 — 100)
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with
p(r) = ps(r) + ps(r) (1-101)
Ceperley's parametrization of the correlation energy for ry > 1 is
e =m/(1 +8ira? + B3ra) (1-102)

where i=U (unpolarized, (=0) or P (polarized, {(=1). For atomic calculations, the
€c at high densities (r, < 1) and arbitrary polarization 0< { <1 is also needed. The

leading term of the high-density expansion is
€, = A,Inrs + B, + C,rglnrg + Diry (1 - 103)

The parametrized constants v, 8}, 53, 4i, Bi, C,, and D, for i=U and P were
given in Perdew and Zunger's paper3?. Equations (1-102) and (1-103) were used
according to whether r, > 1 or ry < 1.

For intermediate spin polarizations 0 < ¢ < 1, Barth and Hedin37 first
proposed a standard interpolation formula, in which the correlation energy has the

same polarization dependence as the exchange energy:

ee(ran) = P (ra) + 1) [ef (ra) - ef(m] (1 - 104)
where
L+ +( -4 -2
f(¢) = VIR (1 - 105)

and the superscripts P and F denoted the para- and ferro-magnetic states according

to whether ¢ =0 or 1.

Stoll, Pavlidou, and Preuss®® (SPP) proposed that the single-particle cor-

relation energv density €. for the para- and ferro-magnetic states can be written

as

é(ry) = ~C; [(1 +x':*>zn(1 + Xl) +ii-x -1 = PP - 109)
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with
xp =71s/11.4,xF =1,/15.9,Cp = 0.0666,Cr = 0.0406 (1 -107)

Stoll et al.*® suggested that the correlation energies of clectrons with the
same spin should be removed from the correlation energy expression, equation (1-

98), to give the pure Coulomb correlation energy expression

E, = /[Pa(r) + PS’(")]GC [Ps(r),Ps' (r)]dr - /[pg(r)]ec[ps(r),O]dr
—/M@m@muma (1 - 108)

Recently, Vosko, Wilk, and Nusir®® (VWN) emphasized refining the correla-
tion part of the energy functional and pointed out inaccuracies in existing formulas
for the correlation energy based on interpolating between para- and ferro-magnetic
state results. To improve the correlation terms in the LDF theory, Vosko, Wilk,
and Nusir used Ceperley and Alder’s*® accurately determined clectron liquid cor-
relation energies which had been extended to cover both para- und ferro-magnetic
regimes. These results were combined with a new interpolation proceduie to im-
prove the accuracy of the spin dependence of the correlation-energy density €.(r4,()
in the range of metallic densities. In the VWN representation, the single-particle

correlation energy density for the para- or ferro-magnetic states is

V) = Ad I X2 2 by
) = A{in s + 5F00 - g
(x = x0)% | 2(b+2x0) a
(OSSN e

where A, xo, b, and c are parameters determined separately for i=P and F, and

Q=(4c—0)" X(x)=x"+bx+e (1 -110)
with
—tan-' 9 _
F(x) =tan Cx 15 (1-111)
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TABLE I-2

Fit parameters determined by Vosko, Wilk and
Nusair for interpolation of ¢/ (r,) and
and a(rs) over the range of r, < 6

A b c X0
ac(rs) —0.033774 1.13107 13.0045 —0.0047584
P (ry) +0.0621841  3.72744 129352  —0.10498
ef (rs) +0.0310907 7.06042 18.0578 —0.32500

Here x = r:/ 2 These parameters are listed in Table I-2.
In the LDF theory, the potential is related to the energy by equation (1-92).
The correlation potential is

() = oo [ (1 -112)

for the spin-up (+) or spin-down (-) orbital. Hence, the correlation potential for an

electron of given spin is

3ec

ra 3ec

p (r) = eo(rs, () - (1 F05F (1-113)

Expressing the r, differentiation in terms of the x parametrization of equation (1-
109) [x = ri/ 2 ], the cerrelation potentials for spin-up and -down electrons are,

1/2

WE(r) = eolr, [u ¢ FO1 % +¢ﬂo

£(¢) P, ()
Umna]*“lchwm

cvmmmni§£§%9m+om_u_mn]u_nq

+(1-

where ac(rs), the spin stiffness, is also represented in the form of equation (1-109)

with the fit parameters given in Table I-2. Letting g(x) represent the functions
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P (x), €F(x), and a.(x), then the change in g(x) with y is,

4 _ {2X_1 _ [1 _ _bxo ] (x+bH) __ 2x
dx X(xo)] X0 (x = x0)X(x0)
(b +2x0) - ;
- 4b[1 — m){o] [Q2 + (‘ZX + b)Z] ! } (l - ]15)
Equations (1-114) and (1-115) give the correlation potentials with
8.r) = 2 () - ) -1 (1 - 10

I-8. Relativistic Correction

The relativistic effect is important for high-Z atoms, but the full” relativistic
calculation for atoms and molecules is complicated, because the "large'” and ”small”
components should be calculated simutaneously by solving the Dirac equation®!.
Cowan and Griffin*? described an approximate solution to the Dirac-Hartree-Fock
(DHF) equations for atoms. Wood and Boring*?, and Selvaraj and Gopinathan?!

used this approach in the Dirac-Hartree-Fock-Slater (DHFS) and Za theories.

The equations for the Dirac ”central-field” problem*5—47 ar-
dPpni(r K 2 «a
—'—:i’:j(——)- + - k() — {E + 3 [enk - Vnk(r)} }an(r) =0 (1-117)

and

Rntl0) _ Eouur) + {g [e,,k - vnk(r)] }Pnk(r) =0 (1-118)

where Vi (r) is the "central-field” potential, €, is the eigenvalue (minus the rest

energy of the electron), and « is the relativistic quantum number,

_J=(1+1), when _j.—:l+i7 B
" {’, when j=I-1. (1 —119)
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a is the fiue-structure constant gz Pak(r) and Qne(r) are the large and small

components, respectively.

The second-order differential equation used by Cowan and Griffin? is ob-

tained by substituting Qnx(r) from equation (1-117) into equation (1-118) to give

L Ps) = (0 + NPulr) (1 - 120)

w.th
g = —€nk + l(l:; ) + Vak(r) (1-121)

and

f = ke = Vot ke 41 xp 1] st

dr dr
= Hp(r) + Hp(r) + Hso(r) (1-122)
where
K =ad?/4,
1 -1
3= [1 + Za2(€"k - Vnk)] (1 -123)

The operator f is the sum of the mass-velocity H,,, Darwin Hp (r), and spin-orbital
coupling Hso(r) terms. For the present the spin-orbital term in the potential is

neglected.

When r approaches zero, the asymptotic form of the potential is
2Z
Va(r) = == (1~ 124)

The Darwin correction is positive for all orbitals with 1 = 0, and zero for all others
fi.e., 1£0). The equation used by Cowan and Griffin*? is

O Y (S 2 2
{"a‘r'g"*‘j(kr—:—)‘*‘vk(r)“%[ﬁk—vk(r)]

b1+ Sl -] BOALE gy

= ex P (r) (1 —125)
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In the SIC-GX-LSD and SIC-G-LSD theories, the potential is
Vil = 22 GA/G 'SI.
k(r) = -t Va(r)+Vy, 7 (r) + Vi, (1) (1 —126)

and the Coulomb potential, V¢, (r), excluding the self-Coulomb potential, the gen-
eralized exchange potential, V)?kx/ ¢ (r), including the self-exchange potential, and
the self-exchange potential, V)af (r), for the orbital i were given by equations (1-93)

and (1-94) in the SIC-G-LSD theory. In the SIC-GX-LSD theory, the generalized

exchange potential V,ZX (r) is
9c : _
V() = =5 | @) + Ben, (90,0
3

B g E[ps (r) + Bip,(r)][ps (r) + Bz2p, (r)]—S/s p;(r)
J

+ [ps (r) + 2By pi(1)][ps (r) + Bapi (r)] 72/

2 — +
— 3B2lps(r) + Bipi(r)][os(r) + Bz pi(r)] Bo(r)| (1 -127)
and the self-exchange potential, "}'{Sf (r), is

V)fk[(r) = 6ca5"p}c/3(r) (1 —128)
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CHAPTER 1II

EIGENVALUE AND TOTAL ENERGY

II-1. Eigenvalues and Total Energies for
Atoms in the SIC-G-LSD and SIC-GX-LSD Theories

Equation (1-90) for the one-electron eigenvalue and wave function using equa-
tions (1-91) for the Coulomb-potential, (1-93) for the exchange-potential, and (1-94)
for the self-exchange potential in the SIC-G-LSD theory was solved for each orbital
by standard self-consistent-field (SCF) procedures*®; outward numerical integration
of each equation was started by means of a small-i <eries solution, and inward nu-
merical integration by the analytical exponent wave function. The (i+1)*" iteration
potential was calculated by mixing electron densities from the i** iteration and the
(i-1)** iteration. The SCF procedure was complete, when the difference in the wave
function between the i** iteration and the (i-1)** iteration was less than 10~7 at all
mesh points. The statistical total energy, E, in equation (1-86), was obtained from

the converged wave function.

Following conventional LDF calculations, the one-electron densities, p;(r;),
were spherically averaged and, then, used to evaluate the potentials and statistical
total energy for the system. This ”central field” approximation is most severe
for the 2p state, which makes a sizable contribution to the total self-interaction
correction. However, Perdew and Zunger®® showed that the self-Coulomb energy
for a hydrogenic 2p state (with m; = 0) was only 4 percent larger than it would be

for the spherically averaged orbital density in the SIC-LSD theory.

Calculations were performed on atoms helium to krypton by means of (i)
the SIC-G-LSD theory with the FEL, Wigner, GWP Fermi-hole parameters (hence-
forth, the SIC-G-LSD-FEL, SIC-G-LSD-W, and SIC-G-LSD-GWB, respectively);
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(ii) the SIC-G-LSD theory with the homogeneous Fermi-hole parameters (SIC-G-
LSD-H), which is equivalent to the Xa theory with a a=0.866173; (iii) the original
SIC-GX-LSD theory with FEL Fermi-hole parameters?? (SIC-GX-LSD-FEL); and
(iv) the self-interaction corrected exchange-only LSD (SIC-XO-LSD) theory*?, be-
cause the correlation of electrons with different spins is ignored in both the SIC-
XO-LSD and SIC-G-LSD theories. Calculations (i) and (ii) were performed to test

the new SIC-G-LSD theory, and calculations (iii) and (iv) were for comparison.

II-1.1 Exchange Energy

Table II-1 shows the statistical total exchange energies including the self-
exchange for the four low-Z closed-shell atoms in the SIC-G-LSD theory and com-
pares with those in the SIC-XO-LSD theory*?, and with the total exchange cnergies
in the HF theory®®. It is clear that the FEL Fermi-hole paramcters in the SIC-G-
LSD theory gives the best total exchange energy among all Fermi-hole parameters,
although it is slightly bigger than the HF exchange energy, because there is no as-
sumption about the Fermi-hole shape in obtaining the FEL Fermi-hole parameters.
The difference in percentage between the total exchange cuergics in the SIC-G-
LSD-FEL theory and in the HF theory decreases as the atomuc number increases.
The SIC-G-LSD theory with the GWB, Wigner, and homogeneous Fermi-hole pa-
rameters, in which the exchange parameters are based on an assumed Fermi-hole
shape overestimates the exchange effect. This implies that the GWB, Wigner, and
homogeneous models overestimate the Fermi-correlation for ical systems. But the
SIC-XO-LSD theory, which is equivalent to the SIC-G-LSD-H theory with af'™
equal to 2/3, instead of 0.866173, underestimates the exchange cffect. It is obvious

that the Gaspar’, and Kohn and Sham® model underestimates the Fermi-correlation
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for a system with low electron density.

Theoretically, the XO-LSD theory is exact for a system with very high and
slowly varying electron density and, therefore, underestimates the Fermi-correlation
for real systems with finity electron density, since the exchange parameter a, as
proven in the Xa theory, increases with the number of total electrons in the sys-
tem decreases. However, the G-LSD theory with the homogeneous Fermi-hole pa-
rameters overestimates the Fermi-correlation, because the exchange parameter, a,

decreases as the total electrons increases in the Xa theory.

TABLE II-1

The negative of the total exchange energies (Ry)
for some closed-shell atoms calculated using the SIC-G-LSD
theory with the FEL, GWB, Wigner, and Homogeneous
Fermi-hole parameters, compared with those from the
SIC-XO-LSD and HF theories

v Atom FEL GWB W H XO-LSD*  HF®

2 He 2.30 2.30 2.30 2.30 1.77 2.05
10 Ne 25.38 26.29 25.84 28.92 22.08 24,22
18 Ar 62.21 65.02 63.64 72.85 55.74 60.37
36 Kr 190.26 201.74 196.15 231.49 177.27 188.31

a. The XO-LSD exchange energy in the SIC-XO-LSD theory, Ref. 4;
b. The HF exchange energy in HF theory, Ref. 50.
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I1I-1.2 Self-Exchange Energy

The self-exchange energies of the four closed-shell atoms listed in Table II-2 in
the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogencous Fermi-hole
parameters are compared with those from the SIC-XO-LSD and HF theories. The
self-exchange energies for the same atom in the SIC-G-LSD theory using different
Fermi-hole parameters are almost the same. This is reasonable, because the formu-
las of the self-exchange energy expressions are exactly the same and independent of
the Fermi-hole parameters in the SIC-G-LSD theory with the FEL, GWB, Wigner,
and homogeneous exchange parameters. It is clear that the SIC-G-LSD theory over-
estimates the self-exchange energies for these atoms and the SIC-XO-LSD theory

underestimates them, in comparison with the HF self-exchange encigies®?.

In the present theory, the radius of the self-exchange Fermi-hole for the or-
bital i, equation (1-83), is only dependent on its own electron density. It is clear that
the environment of the self-exchange Fermi-hole disturbs it. As in equation (1-59),
the radius of the exchange Fermi-hole, rr, decreases as the number of total elee-
trons in the system increases. This implies the Fermi-hole is squeezed by increasing
the electrons in the system. Hence, the self-exchange Fermi-hole radius also should
decreases as the electrons increases. Furthermore, the total sclf-exchange energy,
equation (1-85), is exactly equal to the total exchange eneigy for the helium iso-
electronic systems. Consequently, the present sclf-exchange coirection, equations
(1-84) and (1-85) overestimate the self-exchange for the systeins other than hydro-
gen and helium isoelectronic systems. However, in the SIC-XO-LSD theory, the
self-exchange may be determined in order to cancel the self-interaction for the he-
lium isoelectronic systems. The exchange effect has been already underestimated by
the XO-LSD theory for the low-electron density systems. Heuce, the sclf-exchange

correction in the SIC-XO-LSD theory is also underestimated.
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The exchange energy is exactly equal to the self-exchange energy for the

; helium isoelectronic system in both the HF and the self-interaction corrected LDF

4
theories, as shown in Tables II-1 and II-2.
TABLE I1-2
Self-exchange energies (Ry) for some closed-shell atoms
calculated using the SIC-G-LSD theory with the FEL, GWB,
Wigner, and Homogeneous Fermi-hole parameters, compared with
those from the SIC-XO-LSD and HF theories

Z Atom  FEL GWB w H  XO.LsD®* HF®
2 He 2.30 2.30 2.30 2.30 .77 2.05
10 Ne 21.98 22.04 22.01 22.23 17.02 19.79
18 Ar 50.65 50.75 50.70 51.04 39.13 45.42
36 Kr 136.37 136.60 136.49 137.16 105.24 121.55

a. The XO-LSD self-exchange energy in the SIC-XO-LSD theory, Ref. 4;

{ b. The HF self-exchange energy in the HF theory, Ref. 50.
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I1-1.3 Pure Exchange Energy

Obviously, the effective contribution of the exchange cnergy to the total
energy is the pure exchange energy, excluding the self-exchange energy in any sclf-
interaction corrected LDF theory. Hence, it is interesting to compare the pure
exchange energy in the SIC-G-LSD theory with that in the SIC-XO-LSD and the
HF theories. In Table II-3, the pure-exchange energies for these atoms in the SIC-
G-LSD theory with the FEL, GWB, and Wigner Fermi-hole parameters are less
negative than the corresponding pure HF exchange energy. The total exchange
energies and the self-exchange energies for these atoms were overestimated by the
SIC-G-LSD-FEL, -GWB, and -W theories. Because of the opposite contributions of
the total exchange energy and the self-exchange to the statistical total energy, the
total exchange energy without the self-exchange correction decreasing the statistical
total energy and the total self-exchange energy increasing it, the overestimation of
the energies is partly cancelled. Further, the best prediction of the pute exchange
energies among all the Fermi-hole parameters in the SIC-G-LSD theory is given
by the GWB Fermi-hole parameters in which the overestimation was well balanced
by the overestimation of the self-exchange energy. To give an accwate prediction
of the statistical total energy in the SIC-G-LSD-FEL theory in which there is no
assumption of a Fermi-hole shape, the description of the sclf-exchange energy has
to be improved. The total exchange and self oxchange encigies are both underes-
timated in the SIC-XO-LSD theory. But the cancellation of the underestimation
due to the total exchange and the self-exchange is worse in the SIC-XO-LSD theory
than in the SIC-G-LSD-GWB theory. Consequently, the SIC-G-LSD-GWDB theory

gives the best total energies for atoms.
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TABLE 1I-3

The negative of the pure exchange energies (Ry) for some
closed-shell atoms calculated using the SIC-G-LSD theory with
the FEL, GWB, Wigner, and Homogeneous Fermi-hole parameters,
compared with those from the SIC-XO-LSD and HF theories

Y/ Atom FEL GWB W H XO-LSD*® HF?
2 He 0.00 0.00 0.00 .00 0.00 0.00
10 Ne 3.40 4.24 3.82 6.70 5.06 4.43
18 Ar 11.56 14.26 12.93 21.81 16.61 14.96
36 Kr 53.89 65.15 59.66 94.32 72.30 66.76

a. The XO-LSD exchange energy in the SIC-XO-LSD theory, Ref. 4;
b. The HF exchange energy in the HF theory, ref. 50.

II-1.4 Total Energy

The negative of the total energies for the ground states of the atoms helium to
krypton in the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogeneous
Fermi-hole parameters is summarized in Table II-4, and compared with the HF
total energies®!. As e>vected, the SIC-G-LSD theory with the GWB Fermi-hole
parameters gives the best total energies for these atoms in the present theory with
the FEL, GWB, Wigner, and homogeneous Fermi-hole parameters. The differences
between the total energies in the SIC-G-LSD-GWB theory and in the HF theory

are very small. For example, this difference is about 1 Ry for krypton whose total

energy is about 5504.11Ry.

Fig. 2-1 plots the differences of the total energies of the atoms helium to
krypton in the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogeneous
Fermi-hole paraineters compared to the HF theory, against the atomic number.
The effect of the different Fermi-hole parameters is shown in Fig. 2-1. The SIC-

G-LSD-FEL theory underestimates the total energies for these atoms, because of
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TABLE II-4
. The negative of the total energies for the ground state
of atoms Helium to Krypton in the SIC-G-LSD theory with the
FEL, GWB, Wigner, and Homogeneous Fermi-hole parameters, compared
with the HF total energies (Ryg)

Z Atom FEL GWB w H Hee
2 He 5.7234 5.7234 5.7234 5.7234 5.7234
3 L 14.8576 14.8623 14.8599 14.8805 14.8655
4 Be 29.1209 29.1368 29.1288 29.1970 29.1460
5 B 48,9557 49.0168 48,9859 49.2292 49.0581
6 C 75.1684 75.3185 75.2435 75.7914 75.3772
7 N  108.4442 108.7306 108.5886 109.5749 108.8018
8 0O 149.0975 149.5020 149.3012 150.7100 149.6187
9 F 198.1035 198.6797 198.3941 200.3743 198.8186
10 Ne  256.1397 256.9426 256.5457 259.2463 257.0941
11 Na  322.5438 323.5099 323.0326 326.2697 323.7178
12 Mg 397.8445 398.9804 398.4195 402.2139 399.,2292
13 Al 482.1055 483.4321 482.7771 487.2063 483.7533
14 S1  575.7674 577.3153 576.5514 581.7002 577.7086
15 P 679.1633 680.9617 680.0750 686.0222 681.4373
16 S 7924124 794.4526 793.4468 800.1824 795.0097
17 Cl 916.0141 918.3294 917.1886 924.8031 018.9637
18 Ar 1050.2881 1052.9103 1051.6193 1060.1968 1053.6348
19 K 1194.6424 1197.5301 1196.1091 1205.5274 1198.3291
20 Ca 1349.5044 1352.6626 1351.1091 1361.3827 1353.5161
21 Se 1515.1127 1518.6101 1516.8909 1528.22038 1519.4710
22 Ti 1692.0550 1695.9256 1694.0246 17064977 1696.8115
23 V  1880.6255 1884.9005 1882.8029 1896.5017 1885.7684
24 Cr 2081.2253 2086.0119  2083.6664 2098.8%79 2086.7104
25 Mn 2293.7767  2298.9525  2296.4182 2312 8157 2299.7314
26 Fe 2518.5277  2524.1553  2521.4013 2539.1621 2524.8864
27 Co 2755.9982 2762.1096 2759.1209 27783283 2762.8234
28 Ni 3006.4665 3013.0931 3009.8%49 3030.5918 3013.7410
29 Cu 3270.2884  3277.53356 3273 9977 3296.5485 3277.9256
30 Zn  3547.4991 3555.2510  3551.46387 35755198 3555.6954
31 Ga 3837.7057 3845.9679 3841.93381 3867.5152 3346.5208
32 Ge 4141.2764 4150.0685 4145.7520 4172.9414 4150.7182
33 As 44583837  4467.7248  4463.1723 4491.9651 4168.4764
! 34 Se 4789.0232  4798.9001 4794.0878 48244866 4799.7316
‘ 35 Br 5133.5323  5143.9697  5138.8857 5170.9579 5144.8816
36 Kr 5492.0866 5503.1068  5497.7404 5531.5448 5504.1092

a. Reference 51.
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the underestimation of the pure exchange energies; but the SIC-G-LSD-H theory

overestimates the total energies of atoms due to the overestimation of the pure
exchange energies.

Theoretically, the SIC-G-LSD theory with the FEL Fermi-hole parameters
should be better than that with the GWB, Wigner, and homogeneous Fermi-hole
parameters in giving the statistical total energies of atoms, because the FEL Fermi-
hole parameters were based on the asymptotic trend of the exchange parameters,
when the number of the electrons in the system goes to infinity. Also the FEL Fermi-
hole has the correct high electron-density limit, and does not assume a specific,
approximate shape of the Fermi-hole. Table II-1 also showed that the FEL Fermi-
hole parameters in the SIC-G-LSD theory gave the best prediction of the total
exchange energies for the closed-shell atoms among all the Fermi-hole parameters.
Consequently, the deviation of the SIC-G-LSD-FEL theory from the HF theory

is mainly attributed to the self-exchange correction, which overestimated the self-
exchange interaction.
The SIC-G-LSD theory «"*h the GWB Fermi-hole parameters, as expected,

gives very good statistical total energies for atoms in the agreement with the HF

results and should therefore be very useful in molecular calculations where the total

energy of a molecule is of interest.
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FIGURE 2-1

The differences between the total energies of the atoms helium
to krypton in the SIC-G-LSD theory with the FEL,
GWB, Wigner, and homogeneous Fermi-hole
parameters and in the HF theory
vs the atomic number Z
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II-1.5 One-Electron Eigenvalue

Tables II-5 and II-6 give the negative of the one-electron eigenvalues for neon
and argon, respectively, in the SIC-G-LSD theory with the FEL, GWB, Wigner, and
homogeneous Fermi-hole parameters and compares with those in the HF theory. All
the one-electron eigenvalues in the SIC-G-LSD theory are less negative than the HF
one-electron eigenvalues, except for the 3p orbital in the SIC-G-LSD-H theory. All

the 1s- and 2p-orbital eigenvalues are slightly less negative than in the HF theory.

The negative or the one-electron eigenvalue for krypton is presented in Table
II-7 and compared with the HF eigenvalues. All the one-electron eigenvalues in
the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogeneous Fermi-hole
parameters are slightly less negative than those in the HF theory. The one-electron
eigenvalues in the SIC-G-LSD-H theory are the most negative among all the Fermi-
hole parameters, except for the 1s-orbital. In addition, the one-electron eigenvalues
in the SIC-G-LSD-GWB theory are more negative than those in the SIC-G-LSD-
FEL and SIC-G-LSD-W theories and less negative than those in the SIC-G-LSD-H

theory except for the 1s orbital.

The ionization potential of an atom is exactly equal to the negative of the one-
electron eigenvalue of the corresponding orbital in the HF theory, when the frozen
orbital approximation is used (Koopmans’ theorem). Section II-1.4 has shown that
the SIC-G-LSD-GWB theory gives the statistical total energies for atoms in the
excellent agreement with the HF total energies. It secems that the one-electron
eigenvalues of atoms in the SIC-G-LSD-GWB theory should also be very close to
HF, since the self-interaction correction has already been invoked in the SIC-G-LSD
theory. But the agreement of the one-electron eigenvalues in the SIC-G-LSD theory
with those in the HF theory is not as good as expected. The reason might be as

follows.
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The ionization potential of the k** orbital of an atom, Ik, can be expressed

as
1[ & &
[ ~ —SIC-G-LsD | 1 G SI 0 _
where efl C-G-LSD i the one-electron eigenvalue of the kt* orbital in the SIC-G-

LSD theory; E§ is the total exchange energy, which is given by the second and third
terms in equation (1-86); E/ is the self-exchange energy in equation (1-85); and
Ny is the occupation number of the k** orbital. With these substitutions, equation

(2-1) becomes

3
Iy v —e1C-G-LSD-H | 0.866173( .~ )3

[ Awf o o) - bae 2-2)

in the SIC-G-LSD theory with the homogeneous Fermi-hole parameters, under the

Pk (r)

frozen orbital approximation. The second term in the right-hand side of equation
(2-2) is always positive, except for the helium isoelectronic series including helium,

that is

Ik S —GfIC—G_LSD (2 _ 3)

Consequently, the negative of the one-electron eigenvalue is less than the

corresponding ionization potential under the frozen orbital approximation.



TABLE II-5

The negative of the one-electron eigenvalues (R{]& for
Neon in the SIC-G-LSD theory with the FEL, GWB, Wigner, and
Homogeneous Fermi-hole parameters

Orbital FEL GWB W H HF?
1s 65.5424 65.4190 65.4792 65.1097 65.5449
2s 3.1170 3.1785 3.1476 3.3744 3.8609
2p 1.4858 1.5512 1.5189 1.7323 1.7009
a. Reference 51.
TABLE 1I1-6

The negative of the one-electron eigenvalues (Ry)
for Argon in the SIC-G-LSD theory with the FEL, GWB, Wigner, and
Homogeneous Fermi-hole parameters

Orbital FEL GWB W H HF*®

1s 236.7366 236.5968 236.6634 236.3323 237.2208
2s 22.7611 229157 22.8384 23.3956 24.6444
2p 18.3898 18.5558 18.4735 19.0303 19.1430
3s 2.0736 2,1158 2.0946 2.2473 2.5547
3p 1.0118 1.0578 1.0352 1.1837 1.1820

Since the exchange and the self-interaction potentials in the SIC-G-LSD the-
ory are orbital-dependent, the wave functions will be non-orthogonal to those with
the same angular quantum number ! and different principal quantum number n, at

self-consistency. The orthogonalization can be carried out during the SCF proce-

a. Reference 51.

II-1.6 Orthogonal Wave Functions

dure. Table II-8 shows the negative of the one-electron eigenvalues for krypton in
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TABLE II-7

The negative of the one-electron eigenvalues (Ry)
for Krypton in the SIC-G-LSD theory with the FEL, GWB, Wigner, and
Homogeneous Fermi-hole parameters

Orbital FEL GWB W H Hre

1s 1038.5165 1038.2977 1038.3972 1038.0930 1040.3306
2s 135.1716 135.5321 135.3505 136.6746 139.8064
2p 123.6149 124.0036 123.8096 125.1497 126.0198
3s 19.4203 19.6063 19.5155 20.0886 21.6990
3p 14.9873 15.1754 15.0841 15.6438 16.6630
3d 7.1007 7.2686 7.1874 7.6768 7.6505
4s 1.9030 1.9443 1.9236 2.0676 2.3058
4p 0.8957 0.9362 0.9163 1.0468 1.0482

a. Reference 51.

the SIC-G-LSD theory with the FEL parameters. Column 2 was obtained with-
out wave function orthogonalization, and column 3 with wave function orthogo-
nalization. The percentage differences of the one-electron eigenvalues between the
orthogonal and nonorthogonal calculations are less than 0.03 percent (2p-orbital)
for krypton. The effect of orthogonalizing the wave function is so small that the
one-electron eigenvalues in Tables II-5, II-6, and II-7 were obtained without orthog-
onalization of the wave function. The same conclusion was reached in Refs. 22 and

30.

II-1.7 Comparison of the Total Energy in the SIC-G-LSD Theory
with those in the SIC-GX-LSD and SIC-XO-LSD Theories

Table I1-9 compares the total energies of the atoms helium to argon in the
SIC-G-LSD-FEL theory with those in the original SIC-GX-LSD thcory with the

FEL Fermi-hole parameters and the conventional SIC-XO-LSD theory. The results
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TABLE II-8

Comparison of the one-electron eigenvalues (Ry)
of Krypton calculated using the orthogonal
and non-orthogonal wave functions in the SIC-G-LSD
theory with the FEL Fermi-hole parameters

Orbital Nonorthogonal Orthogonal
1s 1038.5165 1038.6725
2s 135.1716 135.2054
2p 124.6149 124.6585
3s 19.4203 19.4210
3p 14.9873 14.9883
3d 7.1007 7.0997
4s 1.9030 1.9030
4p 0.8957 0.8957

show that there is no significant difference of the total energies between the SIC-
G-LSD and SIC-GX-LSD theories, although the SIC-GX-LSD theory was based
on a physical restriction to the Fermi correlation correction, equations (1-47) to
(1-49). The SIC-G-LSD total energies for these atoms are slightly better than the
SIC-GX-LSD results. The agreement of the total energies in the SIC-G-LSD and
SIC-GX-LSD theories with the same Fermi-hole parameters are the same up to the
fifth digit. The total energies of atoms are slightly underestimated by both the
SIC-G-LSD and SIC-GX-SIC theories with the FEL parameters, because of the
underestimation of the pure-exchange energy (section II-1.3). The SIC-XO-LSD
theory slightly overestimated the total energies for these atoms in comparison with
the HF results. This is reasonable, because the SIC-XO-LSD theory overestimated

the pure exchange energies listed in Table II-3 for atoms.

Comparing the total energies listed in the column 4 of Table II-4 and the
column 5 in Table II-9 with those in the HF theory listed in column 6 of Table
I1-9 shows that the SIC-G-LSD theory with the GWB Fermi-hole parameters gives
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much better results than the SIC-XO-LSD theory, because the SIC-G-LSD theory
with the GWB parameters correctly estimates the pure exchange energies for these

atoms.

Comparison of the statistical total energies for the atoms in the SIC-G-LSD
and SIC-GX-LSD theories shows that the physical restriction made in deriving
the GX-LSD theory, equations (1-47) to (1-49) is theoretically and mathematically
significant, but does not result in large numerical error. Theiefore, the GX-LSD

theory is still useful for atomic calculations.

In conclusion, the G-LSD theory was derived based on the general boundary
conditions of the Fermi-correlation factor which are from the Hartiee-Fock limit,
compared to the GX-LSD theory which was based on physically restricted bound-
ary conditions. Consequently, the G-LSD theory is an extension of the GX-LSD
theory and more general in describing the inhomogeneous electron-density system

theoretically.

The exchange parameters in the G-LSD theory are fixed once the Fermi-
hole shape is chosen or by using the frec-election-limit propored by Manoli and
Whitehead??. This avoided the time-consuming step in scarching the optimal ex-

change parameters in the Xa theory for each atom or ion.

Numerically, the SIC-G-LSD theory gives the statistical total eneigies for
atoms in excellent agreement with the HF thecry, and 15 much better than the SIC-
XO-LSD theory, when the GWB exchange parameters are employed Furthermore,
the one-electron eigenvalues in the SIC-G-LSD theory with the GWB Fermi-hole

parameters are reasonable good compared with those in the HF theory.



TABLE 11-9

Comparison of the negative of the total energies (Ry) for the
ground state of atoms (Z=1-18) in the SIC-G-LSD-FEL theory with
those in the SIC-GX-LSD-FEL, SIC-XO-LSD, and HF theories

7 Atom G-LSD GX-LSD® XO-LSD? HF*
2 He 5.7234 5.7234 5.7234 5.7234
3 L 14.8576 14.8565 14.8678 14.8655
4 Be 29.1209 29.1173 29.1554 29.1460
5 B 48,9557 48.9498 49.0971 49.0581
6 C 75.1684 75.1608 75.4894 75.3772
7 N 108.4442 108.4352 109.0125 108.8018
8 @] 149.0975 149.0854 149.9250 149.6187
9 F 198.1035 198.0893 199.2707 193.8186
10 Ne 256.1397 256.1242 257.7178 257.0941
11 Na 322.5438 322.5265 324.4349 323.7178
12 Mg 397.8445 397.8260 400.0554 399.2292
13 Al 482.1055 482.0864 484.6824 483.7533
14 St 575.7674 575.7495 578.7554 577.7086
15 P 679.1633 679.1471 682.5983 681.4373
16 S 792.4124 792.3985 796.2969 795.0097
17 Cl 916.0141 916.0037 920.3935 918.9637
18 Ar 1050.2881 1050.2%16 1055.1990 1053.6348

a. The statistical total energy in the SIC-GX-LSD theory, Ref. 22;
b. The statistical total energy in the SIC-XO-LSD theory, Ref. 30;
c. The HF total energy, Ref. 51.

II-2. Eigenvalues and Total Energies for Negative Ions

The investigation of negative ions is very interesting topic, because it not only
leads to understanding the microscopic electronic structure and to understanding
the stability of the matter®?, but it also tests the theory itself. The accurate de-
scription for the electron structure of negative ions is much more difficult than that
of neutral atoms and positive ions, because it is very sensitive to the exchange and

sclf-interaction potentials and the electron-correlation.
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Theoretically, the G-LSD theory is more rigorous than the GX-LSD theory in
deriving their single-particle exchange energy-density expressions. But, numerically,
as shown in the above section, the statistical total emergies of atoms m the G-
LSD theory and the GX-LSD theory are very close (up to the first five digits).
All the following calculations were done by the GX-LSD theory and preceded the
development of the G-LSD theory.

The SCF calculation for the negative ions B=, C~, O, F~, Na—, Al~, Si~

b

S™, and Cl~ and the corresponding neutral atoms were performed using the SIC-
GX-LSD theory, equation (1-90) combining equatious (1-91), (1-127), and (1-128),
with the FEL, Wigner, GWB, and homogeneous Fermi-hole parameteis (heneeforth
called the GX-FEL, GX-W, GX-GWB, and GX-H, respectively). The results are

as follows.

II-2.1 One-Electron Eigenvalues

Table II-10 gives the one-electron eigenvalues and averaged one-electron

eigenvalues of each orbital; the averaged one-electron eigenvalue was defined as
€nte, = (€nit Nnit + €niy Nut) )/ (Nuip + Nuay) (2-4)

They are compared to the Za eigenvalues of Sen®?® and the HF cigenvalues of

Clementi and Roetti®!.

The GX-FEL, GX-W, GX-GWB, and GX-H eigenvalues of the 1s clectrons
for all the negative ions are in very good agicement with those of HF. Almost all
the eigenvalues of the 2s orbital are dlightly hivner than those of HF as are the
eigenvalues of the 2p electron which are not in the outermost clectron  The GX-

H eigenvalues of the 2p electron are very close to the HF eigenvalues They are
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better than those calculated with the Za theory3?. For the outermost electrons, the
GX-FEL, GX-W, and GX-GWB eigenvalues are greater than those of HF, while
the GX-H eigenvalues are closer to those of HF except for Na=. All of the GX

eigenvalues are closer to those of HF than the Za eigenvalues.

According to Koopmans’ approximation3?, the one-electron eigenvalues in
the HF theory are equal to the binding energies of the electrons, under the frozen
orbital approximation Table II-10 shows that the SIC-GX-LSD theory is the best

in describing the electron binding energies of negative ions.

In both the SIC-GX-LSD and Za theories, the self-interaction of the electron
has been removed; therefore, the one-electron eigenvalue in both theories should
approximately equal the corresponding one-electron energy (i.e. the orbital energy)
in the HF theory. However, this is not true for the negative ions. The accuracy of the
self-interaction correction is measured by comparing the one-electron eigenvalues.
From Table II-10, the one-electron eigenvalues for the 1s and np electrons are in
much better agreement with those of the HF than those in the Za theory. For the
2s and 3s electrons, the Za theory is a little better than the SIC-GX-LSD theory.
Table II-10 shows that the self-interaction cortection in both the SIC-GX-LSD and
Za theories is not perfect for the negative ions. Nevertheless, the self-interaction

correction in the SIC-GX-LSD theory is more accurate than that in the Za theory.
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parameters, compared to the results from the Za

TABLE 1I-10

The negative of the one-electron eigenvalues (Ry) of the
ground states of several negative ion calculated using

the SIC- GX LSD theory with the FEL, Wigner, GWB, and H Fermi-hole

dnd HFE theories.

Ion (nl), FEL W GWB H = H
B~ 1s I 14.9855 14.9406 14.8982  14.6855
1s 14.9675 14.9197 14.8741 14.6372
184y  14.9765 14.9302 14.8861 14.66 14 14.8494
2s 0.5536 0.5416 0.5321 0.5250
2s 0.4575 0.4289 0.4021 0.2777
284y,  0.5055 0.4853 04671 0.4014 0.4847
2pT  0.0186 0.0228 0.0276 0.0700 0.0526
Cc- 1s I 22.0403 21.9910 21 2447 21.7125
1s 21.9856 21.9292 21.8757  21.5947
1sq, 22.0129 21.9601 21.9102  21.6536 21.9122
2s 0.7392 0.7425 0.7475 0.8096
2s 0.5304 0.5032 0.4781 0.3605
2s,,  0.6348 0.6228 0.6128 0.5850 0.7454
2p T  0.0792 0.0906 0.1025 0.1815 0.1538
o~ s I 40.5383 40.4786 40.4209  40.1102
1s 40.4919 40.4271 40.3616  40.0257
1sqy  40.5151 40.4528 40.3928  40.0679  39.417  40.3963
2s 1.3457 1.3595 1.3731 14610
23 1.2304 1.2302 1.2309 1.2592
254y 1.2881 1.2948 1.3020 1.3605 1574 1.6265
2p 0.2651 0.2813 0.2970 0.3862
2p 0.0795 0.0875 0.0961 0.1573
2pay  0.1908 0.2038 0.2167 0.2946  0.479 0 2585
F~ 1s 1] 51.7489 51.6768 51.608 512429 50.529  51.6590
2s 1 1.6171 1.6306 1.64:45 1.7417  2.009 2.1489
2p T 0.2504 0.2675 0.28416 0.3860 0.628 0.3617
Na— 1s T| 80.5681 80.5084 80.4511  R0.1506 80 6628
2s 1 4.3615 4.4027 44129 4.6777 5.2995
2p 1 2.4311 2.4697 2.5077 27253 27418
3s i 0.0273 0.0277 0.0250 0.0295 0.0249
Al™  1s I 116.4973  116.4254  116.336%  116.0076
1s | 116.4945 116.4223  116.3533  116.0014
1sqy 116.4959  116.4238  116.3550  116.0045 116.6161
2s 1 8.2902 8.3316 8.3721 8.6207
23 |  8.2858 8.3267 8.3669 R 6123
284,  8.2880 8.3291 8.3697 R 6165 9.4323
2p 5.7088 5.7474 5.785% 6.0172
2p 5.7035 5.7414 57791 6.0068
2pay  5.7062 5.7444 5.782.4 6.0120 6.9503
3s 0.4878 0.4801 0.4735 0.4611
3s 0.4374 0.4209 0.4052 0.3281
3sqy,  0.4626 0.4505 0.4394 0 3946 0.4176
3p7 0.0163 0.0191 0.0222 00479 0.0397
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TABLE II-10 (Continued)

The negative of the one-electron eigenvalues (Ry) of the
ground states of several negative ion calculated using
the SIC-GX-LSD theory with the FEL, Wigner, GWB, and H Fermi-hole
parameters, compared to the results from the Za and HF theories

Ion (nl)y  FEL W GWB H =¢ HF®
Si— 1s I 136.9239 136.8526 136.7849  136.4491

1s | 136.9138 136.8414 136.7728  136.4302

1sq, 136.9188 136.8470 136.7789  136.4396 137.1058

2] 105079 10.5561  10.6041  10.8968

28§ 10.4926 10.5395 10.5862 10.8724

234y 10.5002 10.5478 10.5951 10.8846 11.7933

2p 7.5867 7.6326 7.6785 7.9565

2p 7.5684  7.6126  7.6569  7.9260

2pay 7.5776 7.6226 7.6677 7.9416 7.9957

3s I 0.6223  0.6233  0.6255  0.6602

3s 0.5069  0.4906 04756  0.4050

3sqv 0.5646 0.5570 0.5505 0.5326 0.6030

3p T 0.0619 0 0697 0.0778 0.1297 0.1230
S” ls I 183.0350 182.9661 182.9006 182.5783

1s 183.0265 182.9568  182.8907 182.5637

1s,, 183.0308 182.9615 182.8956 182.5710 183.3519

2s 15.7820 ! 3446  15.9062  16.2721

2s 157703 158320  15.8927  16.2547

284y 15.7762 15.8383 15.8995 16.2634 17.3503

2p 12.1556 12 2168 12.2774 12.6335

2p 12.1414 12.2014 12.2610 12.6123

2pq, 12,1485 122081  12.2692 12,6229 12.7099

3s 0.9662 0.9746 0.9833 1.0451

3s 0.9088 09099  0.9118  0.9395

3sqy 09375 09423  0.9476  0.9923 1.1586

3p 0.1671 01794 0.1916 0.2615

3p 0.1004 0.1069 0.1138 0.1608

3pay 01404 01504  0.1604  0.2213 0.2148
Cl™ 1s 208.6252 208.5544 208.4875 208.1638 207.647  209.0103

2s 18.7515  18.8182  18.8842  19.2790  20.203  20.4578

2p 14.7599  14.8258  14.8912  15.2790  16.165  15.3907

3s 1.1256 1.1347  1.1442 1.2123  1.386 1.4659

3p 0.2008 02139 02267 03031 0468  0.2998

a. Reference 53;
b. Reference 51.
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I1-2.2 Difference of Total Energies

Table II-11 gives the negative of the statistical total energies of the ground
state for several atoms and negative ions and the HF energies®!. The total energies
of the atoms and the corresponding negative ions are calculated separately by using
equation (1-86) in the SIC-GX-LSD theory. The binding cnergies of the outermost
electron for these negative ions in the corresponding ground states caleulated by
using the difference of the statistical total eneigies between the atoms and the
corresponding negative ions, and those obtained using experimental methods given

by Refs. 55 and 56 are listed in Table II-11.

It can be seen that the GX-GWB and GX-H results are closer to the exper-
imental values than those of the GX-FEL and GX-W. But the GX-GWDB binding
energies are smaller, and the GX-H binding energies larger, than the cortesponding
experiment; they are better than the HF and Xa 1esults It is difficult to estimate
the binding energies of the negative ions by using the HF and Aa theories, since
they are unreliable: for example, the binding enecigy for B~ is negative m the HF

and Xa theories, and therefore B~ is unstable; but experimentally B~ is stable.

The differences between the theoretical and experimentual values in Table
1I-11 occur for two reasons. First, the binding energy is expressed as a small differ-
ence between two large quantities, one is the total energy for the neutral atom, and
another is for the corresponding negative ion, aund therefore subject to munerical
errors; secondly, the correlation effects between electrons of different spin directions
are neglected. Raghavachari®” has used Moller-Plessert perturbation theory to cal-
culate the binding energies for the first row negative 10ns and discussed the clectron
correlation effects on the negative ions. The election corielation correction has to

be considered in calculating negative ions of atoms.
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TABLE II-11

The negative of the statistical total energies of the ground
states for several atoms and negative ions, calculated using
the SIC-GX-LSD theory with the FEL, Wigner, GWB, and H,
Fermi-hole, and the energy differences Agcr, compared to the
results obtained using the HF and Xe, and experiment (Ry).

Z FEL  Wigner GWB H HF® Xa®  Expt.©
B~ 48.9294 48.9759 49.0222 49.3103 49,0384
B 48.9506 48.9841 49.0180 49.2292 43.0581
DAscr —0.0212 —0.0082 0.0042 0.0811 -0.0197 —0.054 0.0204
Cc~ 75.1910 75.2944 75.3854 75.9832 754176
C 75.1615 75.2417 75.3209 13.7914 75.3772
DscF 0.0295 0.0527 0.0745 0.1918 0.0404 —-0.013 0.0932
10 149.0626 149.2973 149.5257 150.8395 149.5790
0] 149.0C59 149.2999 149.5083 150.7101 149.6187
Ascr —0.0233 —0.0026 0.0174 0.1294 —0.0397 0.098 0.1075
F- 198.1983 198.5355 198.8624 200.7074 198.9187
F 198.0899 198.3934 198.6884 200.3743 198.8186

AscFr 0.1084  0.1421 0.1740 0.3331 0.1001 0.168 0.2498

Na~ 322.5245 323.0327 323.5237 326.2713 323.7093
Na 322.5269 323.0341 323.5246 326.2697 323.7178
Ascr —0.0025 -0.0014 —0.0009 00016 —0.0085 0.012 0.0401

AlT 482.0873 482.7921 483.4724 487.2719 483.7556
Al 482.0869 482.7835 483.4561 487.2063 483.7534
AscFr 0.0004  0.0086 0.C163 0.0656 0.0022 —0.028 0.0325
SiT 575.8010 576.6279 577.4252 581.8577 577.7789
Si 575.7500 576.5619 577.3450 581.7002 577.7086
AscF 0.0510  0.0660 0.0802 0.1575 0.0703 0.022 0.1018
ST 792.4631 793.5459 794 5879 800.3543 795.0764
S 792.3992 793.4676 794.4957 800.1825 795.0097
Ascr 0.0639  0.0783 0.0922 0.1718 0.0667 0.147 0.1527
Cl~ 916.1712 917.4046 918.5906 925.1231 919.1534
Cl 916.0045 917.2156 918.3801 924.8032 918.9637

Ascr 0.1667  0.1890 0.2105 0.3199 0.1897 0.221 0.2657

a. Reference 51;
b. Reference 55;
c. References 56 and 58.
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CHAPTER III

IONIZATION POTENTIAL AND ELECTRON AFFINITY

I11I-1. Introduction

The local-density functional (LDF') theory is often used to calculate atoms,

molecules, and the solid state, and has been successful in describing the molec-

59,60 61—63 61-—64

ular bonding , cohesion , surface electronic properties of

, magnetism

65,66 and semiconductors®? Y. However. the calculation of accurate clectron

metals
affinities and the stability of negative ions has proved difficult®™: most stable neg-
ative ions, such as H=,7 O~,"! F~, and Cl=5% are unstable in the Xa and other
LDF theories. The correlation effect of the electrons with different spins is often
neglected in these theories and consequently, the results are not in good agreement

1 compared the Xa and HF exchange potentials for some

with experiment. Schwarz’
stable negative ions, and showed that the stability of the negative 10ns is related
to the one-electron energies in the two theories. Sen®? calculated the one-clection
eigenvalues for the negative ions O~, F~, and CI~ with the Za theory, and suggested

that the instability of the stable negative ions arises from too crude a treatment of

the self-interaction potential.

The existence of stable negative ions is well known®® 7. Most neutral atoms
in the periodic table bind an extra clectron to form stable negative ions. Theoretical
investigation of the structures is difficult because the contiibution of the clectron
correlation correction to the electron affinity of an atom might be laiger than the
kinetic, Coulomb, and exchange energies®”’®7!. Therefore the HF theory, which is
an accurate and simple procedure but does not meclude election correlation, usually

gives wrong electron affinities for atoms™.

56



F )

Since the papers which dealt with the self-interaction correction®®—31:7% and
electron correlation correction®®3%75 in the LDF theory, the SIC-LDF theory with
electron correlation correction has successfully predicted electronic structures of
negative ions3%'4?. The calculated electron affinities for most atoms are in excellent
agreement with experiment.

The ionization potentials and electron affinities for atoms have attracted
experimental measurements and theoretical calculations using the HF and LDF
theories, especially using the accurate multiconfiguration self-consistent field (MC-
SCF) and configuration interaction (CI) methods. Most of these methods have
been quite successful in describing ionization potentials for atoms, but the HF, Xa,
spin-polarized Xa (SP-Xa), Hyper-Hartree-Fock (HHF'), and the SIC-GX-LSD the-
ories cannot describe the negative ions exactly, because the Coulomb correlation is

neglected.

Obviously, the ionization potential and electron affinity are the very impor-
tant concepts in understanding the microscopic structure of matter. Theoretical
calculations of ionization potentials and electron affinities can be used to test the
theory itself. Therefore, the SIC-GX-LSD theory will be applied to evaluate the

ionization potentials and electron affinities for the ordinary atoms.
By the definition, the ionization potential is

(1) approximately the negative of the one-electron eigenvalue in the self-

interaction corrected LDF (SIC-LDF) theory under the frozen orbital approxima-

tion, that is
Iy ~ —eS1C-LDF (5-1)

(ii) the difference between the total energies, which include the statistical

total energy from equation (1-86) and the electron-correlation energy from equation
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(1-98), of the original system and the ionized system, under the frozen orbital

approximation is,

I = Egi™! (N = 0) — Efgi! (N = 1) 3-2)

(iii) the negative of one-electron eigenvalue generated by removing a half-
electron from the corresponding orbital to infinity in the self-interaction uncorrected

LDF theory (Slater transition state theory) is,
Iy ~ —€k|n, =1/2 (3 -3)

and finally, (iv) the ionization potential equals the difference between two
statisticul total energies, one for the non-ionized system and another for the ionized

system obtained by two separated self-consistent-field calculations
I = Eg{(Nk = 0) — Ej/(Ni = 1) (3-4)

The electron affinity is identical to the ionization potential for the corresponding
negative ion of an atom. Each method has its own advantages and disadvantages.
For example, although (i), (ii), and (iii) are computationally easicr than (iv), the
relaxation effect in the ionization process is totally neglected in (1) and (ii) and partly
ignored in (iii). Method (iv) is computationally expensive and can have munerical
errors, since the ionization potential and electron affinity are small differences of two

large numbers, although the relaxation of the ionization process is fully considered.

The self interaction uncorrected GX-LSD (GX-LSD) theory and self interac-
tion corrected GX-LSD (SIC-GX-LSD) theory will be applied for atoms, and tested

for the efficiency for atoms.
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I11-2. Ionization Potential and Electron Affinity
under the Frozen-Orbital Approximation

In the LDF theory, the statistical total energy of an atom is a function of the

occupation number, N,. A Taylor-series expansion of the energy around the neutral

atom value is

E(N1,Nay ooy Noyooy Ny) = E(Ni, Ng ooy Nigy ooy Ny
JOE
= (N' - N'O)gN—"INl=N|Q

L NN PP
2 ON?

IN,:N.O + wes (3 - 5)

The first term in the right-hand side of equation (3-5) is the electronegativity’®
and the second term, the hardness’” of the atom. Because the electronegativity
and hardness are related to the chemical potential and the hardness and softness
of acids and bases, they have received much attention®%78-8%, Equation (3-5) gives
th= ionization potential of the atom for N, — iV;, = —1 and the electron affinity for
N, — N,, = 1 under the frozen orbital approximation.

In the GX-LSD theory, the statistical total energy for an atom is given in

equation (1-86). The total energy of the system is a function of the occupation num-

ber N,; therefore, the first through fourth derivatives with respect to the occupation

number are®!
oF e / ,

[ﬁj No%N =< Uy (r)iflu, (r) > +Z N < u(r)u, (0] u, (Pu, (') >
- g’cahm < u,(r)|[f,(r) + Bip, (r)]g;z/s (r) + Z N,p.(r)gi_Q/a (r)
- § 3" Nop(r)(1+ Bobiy ) fulr)g P (1), () >
=% (3 -6)

[Z%EQ]N L =S (e () > ~Seat™ < @I+ By ()

3 IN N,
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and

|

- a

- g[u + B)fj(r) + (By + Bz + By By, (v))g "/ (r)

+ ng (2 + B2)p; (1), (r)g; " (r) ~ g Y Nip(r)g > (r)

+ -2—2 Nip(0) fo(r)g7 3 (x)]u2 (r) > @-7)

2z

ON3 NN = —9¢ca*™ < u:;(l‘)l - 2(1 + Bl)(l + B, )g—s/s(r)
J 1 )'

;
+ 2{3(1 + B)*f,(r) + [332(1 +Bi1)(1 + B2) + 2B,
+3B150 + By (6) 070

- ;‘;32(1 + Bp)(2 + Ba)p, (r) 5 (r)g; 1/ (r)

+ g ZN (1) [3 +(B; + sz)ﬁ.J}g} ¥ (v)

- S N+ Bb )M ) > (3-9)

35

i 20 B
BT | = 0 <HEIF B0+ B @)
' J

_:'—;(1 +BZ){2(1+B2)2fJ(r)+ [232(1+Bl)(1 +By) |
+ By + 2B, B; + B2]PJ(I')}91—H/3 (r)
+ 32 Ba(2 4 Bo)(1 4 B0, (1), 1)y (r)

-7 ZN'P*("){Z t [232 +(1+By)(Br + Bz)] 511}9.—“/3(1')
+ 50 LN+ B PAOS M Whi@) > (-9
In equations (3-6)-(3-9)

fi(r) = ps(r) + Bipi(r) (3 -10)
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6:(r) = ps(r) + B2pu(r) (8 -11)

76,77

Using the definitions of the electronegativity and hardness gives
OF ]
X==|35" = —€; 3-12
[aNj N,#N, ! ( )
n = l[—azE (3 -13)
2 <9N]2 N, %N,
1 [63E
w=z| 22 (3-14)
6 [ON? N,#N,
1 [&E
A=— [—— (3 - 15)
24 |ON} |y 4 N,
then the ionization potential and electron affinity can be written as
Ix+n p+A (3 -16)
and
Axyxy—n—p—2A (3 -17)

Usually, the third and fourth derivatives are neglected in equations (3-16)

and (3-17), and the ionization potential and electron affinity become®5:82

I~ x+n (3 -18)

and

Axy—-1 (3 -19)
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This is because the third and fourth derivatives are very small in the Xa and SP-
Xa theories, and equations (3-18) and (3-19) ame essentially correct. This might
be not true in the GX-LSD theory with the FEL Fermi-hole parameters, the GX-
LSD-FEL theory, particularly for the calculation of the electron affimty  Table
ITI-1 gives the absolute values of the second, third, and fourth denvatives of the
exchange energy in the GX-LSD-FEL theory and the SP-Xa theory, with 1espect
to the occupation number. The third and fourth derivatives in the GX-LSD-FEL
theory effect the ionization potential and election affinity more than in the SP-Xa
theory. In the GX-LSD-FEL theory the fifth, sixth, etc. terms rapidly decrease to

zero both absolutely and when divided by N

When the electron-correlation energy correction is considered, equations (3-

16) and (3-17) become

I'=x+n-u+A+E,, — o (3 - 20)
and

EA=x-n=p=A+Egor, — Eg,,, (3-21)
where Eg orrs E&orrs and EZ,  are the Coulomb-correlation energy corrections of

the positive ion, neutral atom, and negative ion, respectively. given by equations

(1-96) of Keller and Gézquez's®*3 Coulomb-corielation formula.

The elements were classified into two ('at.egorics: (1) elements which involved
one-orbital in going from the positive ion to the negative ion, and (ii) clements
which involved two orbitals in going from the positive ion to the negative ion. The
electronegativities, hardnesses, second ionization potentials and electron affinities
for the first category elements of Z < 36 weie calculated using the GX-LSD-FEL
theory. The first ionization potentials for some atoms (Z=2 - 20, 31, 32, 34, 35)

were calculated using the same theory. The results are listed in Tables II1-2 to I11-6.
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TABLE III-1

The absolute values of the second, third, and fourth derivatives of
the exchange energy with respect to the occupation number (Ry)
in the SP-Xa and GX-LSD-FEL theories

SP-Xa GX-LSD
Atomn N, 2nd 3rd 4th 2nd 3rd 4th

3 0.0876 0.0269 0.0216 0.1693 0.0924 0.1210
5 0.1348 0.0210 0.0083 0.3117 0.0951 0.0328
Ar 9 0.0745 0.0116 0.0047 0.1699 0.0513 0.0183
7 0.0506 0.0108 0.0062 0.1073 0.0431 0.0376

I11-2.1 Ionization Potential

In Table III-2, column 3 gives the results using the approximation equa-
tion (3-18). Column 4 lists the results including the third and fourth derivatives,
equation (3-16), column 5 presents the results involving the Coulomb-correlation
correction, equation (3-20). Other theoretical®® and experimental®® values are also

given.

Comparing columns 3 and 6 with the experimental results in column 7 (six
comparisons), shows that the first ionization potentials using (3-18) in the GX-LSD-

FEL theory are better chan those in the Xa theory.

Columus 3 and 4 compared with experiment show that the effects of the third
and fourth derivatives of the total energy with respect to the occupation number

are too large to be neglected in the GX-LSD theory.

Mathematically, equation (3-16) is more accurate than equation (3-18) under
the frozen-orbital approximation. But the results in column 4 of Table III-2 are not

overall better, some aie better and some worse than those from (3-16). Compar-
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ing column 5 with experiment shows that all the results including the Coulomb-
correlation correction and the frozen-orbital approximation are bigger than exper
iment. The real total energies for the neutral atom, positive, and negative jon are
shown as solid lines in Fig. 3-1; and the positive and negative ious calculated by
using he wave functions of the neutral atom under the frozen-orhital approximation
are shown as dotted lines in Fig. 3-1. The relaxation effect is neglected correspond-
ing to Koopmans' theorem in the HF theory Fom the vanation punciple, the
minimum value of the total energy for the many-body system corresponds to the
self-consistent solution of the Schrodinger equation Relaxation lowers the total en-
ergy of the system; therefore, gomg fiomn the positive 10n to neutral atom decreases
the total energy of the positive ion, and going fiom the neutral atom to the nega-
tive ion decreases the total energy of the negative ion. Thercfore, the real statistieal
total energy for the positive and negative ions, the solid line of Fig 3-1, are lower
than those without relaxation. The calculated ionization potentials are thus lugher
than experiment. Therefore, the results which mclude the Coulomb-cortelation cor-
rection and the frozen arbital approximation we higher than experiment I order
to obtained more accurate results, the relaxation and correlation must both be

included in calculating the ionization potential.

Comparing columns 3-5 with experiment shows that the third and fourth
derivative correction to the ionization potenti- 1 are almost the same as the Coulomb-
correlation coriection in absolute values. However, the correction of the third
and fourth derivatives decreases the ionization potential, whereas the Coulomb-
co.relation increases it, consequently (3-18) 1s a useful approximation for calculating

the ionization potentials.

Table III-3 shows the second ionization potentials for the second category

elements with Z < 36 from the GX-LSD-FEL theory with equation (3-18) and
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experiment. Equation (3-18) is very good approximation for calculating the second

ionization potentials for the low-Z atoms in the GX-LSD-FEL theory.

TABLE III-2

The first ionization potentials (Ry) for some atoins in the
GX-LSD-FEL theory under the frozen-orbital approximation,
compared with other calculations and experiment

This Work Xa

Z Atom 1 1° I¢ I Expt
2 He 2.0716 1.9897 2.0160 1.8067
3 L 0.4450 0.4272 0.4368 03962
4 Be 0.6890 0.6635 0.6882 0.6850
5 B 0.6131 0.5927 0.6141 0.6313 0.6098
6 C 0.8679 0.8515 0.8743 0.8725 0.8279
7 N 1.1317 1.1199 1.1442 1.0687
8 0 1.0677 1.0329 1.1029 1.3723 1.0007
9 F 1.4032 1.3777 1.4483 1.6325 1.2804
10 Ne 1.7430 1.7258 1.7985 1.5846
11 Na 0.4280 0.4122 0.4344 0.3777
12 Mg 0.5773 0.5577 0.5869 0.5619
13 Al 0.4126 03997 0.4301 0.4398
14 S1 0.5822 0.5722 0.6040 0.5990
15 P 0.7551 0.7483 0.8099 0.8085
16 S 0.7496 0.7293 0.7909 0.7613
17 Cl 0.9539 0.9396 1.0003 1.0716 0.9563
18 Ar 1.1618 1.1525 1.2139 1.1580
19 K 0.3517 0.3394 0.3639 0.3189
20 Ca 0.4519 0.4373 0.4729 0.4492
31 Ga 0.4219 0.4101 0.4447 0.4410
32 Ge 0.5695 0.5607 0.5974 0.5792
34 Se 0.7011 0 6842 0.7465 0.7166
35 Br 0.8636 0.8520 0.9136 0.9460 0.8703

a. Eq. 3-18%;

b. Eq. (3-16);

c. Eq. (3-20);

d. Eq. (3-18) in the Xa theory (Ref. 55);

e. Reference 83.
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FIGURE 3-1

The ground-state energy levels for the neutral
atom, and positive and negative ions with
(solid lines) and without (dotted
lines) relaxation

positive ion

neutral atom
EA

negative ion
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TABLE III-3

The second ionization potentials (Ry) for the
second category elements with
Z < 36 in the GX-LSD-FEL theory,
compared with experiment

Z Atom 1 It
5 B 1.8473 1.8485
6 C 1.8079 1.7971
8 (0] 2.6294 2.5833
9 F 2.6355 25711
13 Al 1.4010 1.3835
14 St 1.1685 1.2010
16 ) 1.6818 1.7200
17 Cl 1.7242 1.7494
31 Ga 1.5228 1.5075
32 Ge 1.1414 1.1709
34 Se 1.5361 1.5803
35 Br 1.5516 1.5877

a. Eq. (3-18);

b. Reference 83.

I1I-2.2 Electron Affinity

Table II1-4 gives the electron affinities for the second category elements with
Z < 36 calculated using equation (3-19), column 3, (3-17), and column 4, which
involve the third and fourth derivatives, (3-19) plus the Coulomb-correlation cor-

rectior,, column 5, and (3-17) plus the correlation-energy correction, column 6,

74,76 56,58

together with other theoretical values and experimental results

The Coulomb-correlation correction is very important in calculating the elec-
tron affinity for an atom, although its absolute value is very small For some atoms,
say Al and Ga, the contribution is bigger than that of the kinetic energy, Coulomb

interaction, and exchange energies. Almost all the theoretical values of the electron
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TABLE III-4

The electron affinities (Ry) for the second category clements with
Z < 36 in the GX-LSD-FEL theory, compared with
other calculations and experiment

This Work Other Work
7 Atom EA® EA? EAS EAY EA® EAS EAY

Erpt

5 B -—-0.0308 —0.0412 -0.0114 -0.0233 —0.0823 —0.0212 0.0204
6 ¢ 00015 —0.0091 0.0233 0.0111  -0.0272 00295 0.0932
8 O -—-0.0454 —0.0632 0.0154 —0.0024 0.1176 =0 0233  0.1075
9 F 00407 0.0214 0.1049 0.0383 0.2065 GUIONT 02198

13 Al 0.0103 00039 0.0357 0.0293 --0.0529 00004 00325
14 S: 00551 0 0487 0.0829 0.0761 0.0007 00510 01018
16 S 00744 0.0642 0.1288 0.1134 0.133% 0.0639  0.1527
17 Cl 01574 0.1482 0.2129 0.2037 0.2132 0.1667 020657

31 Ga 0.0050 -0 90009 0.0370 00311  —0.0669 0.0222
32 Ge 0.0551 0.0494 0.0897 00840 —0.0074 0.0897
34 Se 0.0838 0.0753 0 1404 01319 0.1213 0. 1485
35 Br 0.1616 0.1541 0.2195 02120 0.1926 0.2473

a. Eq. (3-19%;

b. Eq. (3-17);

c. Eq. (3-19) plus the correlation energy contribution;

d. Eq. (3-17) plus the correlation energy contribution;

e. Reference 76, calculated from eq. A = 2y - I in the Xa theory;

{. Reference 74;

g. References 56 and 58.

affinities are smaller than experiment. This is because the relaxation eftect has
been neglected. As shown in Fig. 3-1, the relaxation lowers the total energy of the
negative ions and increases the difference between the total energies of the neutral

atom and the negative ion.
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TABLE III-5

The electronegativities (Ry) for the second category
elements with Z < 36 calculated by using GX-LSD-FEL
theory, compared with other theoratical values

f/ Atom This work? HHF® Xat SP-Xat
5 B 0.2912 0.2168 0.2506 0.2999
6 C 0.4347 0.3021 0.3778 0.4734
8 O 0.5112 0.5079 0.6571 0.7064
9 F 0.7219 0.6314 0.8093 0.8181
13 Al 0.2114 0.1977
14 S1 0.3186 0.3234
16 S 0.4120 0.5057
17 Cl 0.5556 0.5380 0.5968 0.6005
31 Ga 0.2135 0.1867
32 Ge 03123 0.3014
34 Se 0.3925 0.4572
35 Br 0.5126 0.5020 0.5329 0.5358
. Eq. (3-12);

a.
b. Reference 55;
¢. Reference 55;
d. Reference 84.

II1I-2.3 Electronegativity and Hardness

Table III-5 gives the electronegativities for the second category elements
with Z < Jb calculated by equation (3-12) in the GX-LSD-FEL theory. The elec-
tronegativities from the GX-LSD-FEL theory arve larger than those from HHF, and
the electronegativities for the atoms in which the valence-electron is spin-up are
larger than those in the Xa theory. The electronegativities for atoms in which the
valence-election is spin-down are smaller than those in both the Xa and SP-Xa
theories.

Orsky and Whitehead™ developed definitions of ha-dnesses for acids A and

bases B by using the original definition of n which is equal to %g—j\,—%. The hardness
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can be written
1
na = Z(IA+ — Ayo) (3 -22)
and
1
nB = Z(Iao ~ Ap-) (3 -23)

where 74 and 7p are the nardnesses for acids A and bases B. Igo and 14+ are the
first and second ionization potentials and Ao and Ag- are the first and second
electron affinities for atom A. Orsky and Whitehead cliumed that 4g-, the second
electron affinity of A, is very small and can be neglected n equation (3-23). Then,

np reduces to

1
nB = ZIBO (3 -24)

The hardnesses for the second category elements with Z < 36 calculated
with equations (3-13), (3-22), and (3-24) in the GX-LSD-FEL theory are given in
Table III-6. The values given in the last two columns are obtained with equations
(3-22) and (3-24), using the experimental first and second ionization potentials and
electron affinities, other theoretical values obtained with equation (3-13) in the HHF
and Xa theories are also listed. The hardnesses for these atoms in the GX-LSD-
FEL theory are smaller than those in both the HHF and Xa theories. Cowmparing
the results in columns 4 and 5 with those in the last two columns, shows that the
hardnesses for acid A and base B in the GX-LSD-FEL theory are very close to

experiment.
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TABLE III-6

The hardnesses (Ry) for the second category elements
with Z < 36 calculated by using GX-LSD-FEL Theory
compared with other calculated values

This  Work® Other Work® Expt.©

Z Atom 7 14 ng  ntHE gXe n4 nB

5 B 03219 0.4647 0.1533 0.4027 0.3807 0.4570 0.1525
6 C 04332 0.4462 0.2170 0.5123 0.4947 0.4246 0.2070
8 O 0.5566 0.6539 0.2669 0.7240 0.7152 0.6190 0.2502
9 F 06813 0.6327 0.3508 0.8291 0.8232 0.5803 0.3201
13 Al 0.2012 03413 0.1032 0.3378 0.1100
14 5@ 0.2636 0.2714 0.1461 0.2748 0.1498
16 S 03376 0.3883 0.1874 0.3918 0.1903
17 Cl 03983 0.3778 0.2385 0.4741 0.4748 0.3709 0.2391
31 Ga 02084 0.3715 0.1055 03713 0.1103
32 Ge 02572 0.2629 0.1423 0.2703 0.1448
34 Se 03086 0.3489 0.1752 0.3580 0.1792
35 Br 03510 0.3330 0.2159 0.4142 0.4131 0.3351 0.2176

a. 1 is equal to the second derivative of the total energy.
N4 = ';‘(IA-f- — Ayo0), and 7B = %IBo; Igo, 4+, and I 40
were taken from Table III-2 (column 3 ), III-3 (column 3),
and III-4 (column 5) respectively;

b. Reference 55. "™ and ¥ are equal to the second
derivative of the total energy in the HHE and Xa theories,
respectively.

c¢. The values are calculated with eqs. (3-22) and (3-24), using
the expelimental first and second ionization potentials
and electron affinities.

ITI-3. Ionization Potential and Electron
Affinity Calculated from the Relaxed Total Energies

As shown in Table II-11, the SIC-GX-LSD theory combining the GWB
Fermi-hole parameters gives the best prediction to the statistical totle energies for
the atoms among all the Fermi-hole shapes in comparison with HF. Therefore, the

SIC-GX-LSD theory with the GWB parameters is expected to give good ionization
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potentials and electron affinities for atoms, when they are calculated by the differ-
ences of the relaxed statistical total energies. Consequently, the self-interaction cor-
rected GX-LSD theory with the GWB?" Fermi-hole paramecters (henceforth called
the SIC-GX-LSD-GWB theory) has been used to calculate the statistical total ener-
gies of the neutral atoms and positive ions of clements helium to strontium, and the
stable negative ions of elements hydrogen to potassium and copper to rubidium sep-
arately. The wave functions are used to calculate the corresponding self-interaction
corrected SPP3® (SPP-SIC) and the self-interaction corrected VIVN®? (VIVN-SIC)
correlation energy corrections, equation (1-108), for these atoms and positive and
negative ions. The effect of the correlation potential on the one-election cigenvalue,
ionization potential, and electron affinity is very small®®, wo that it is neglected in
the present calculation. The ionization potentials and election affinities for these

atoms are obtained by equation (3-4).

Table III-7 gives the ionization potentials of the atoms helium to titanium,
chromium to iron, and copper to strontium. In Table III-7, column 3 gives the
results including the relaxation without correlation correction, columns 4 and 5 show
the values involved in the SPP-SIC and VWN-SIC correlation-eneigy correction;

t83

other theoretical®:#485:87 yalues and experiment®® are listed in colummns 6, 7, 8,

and 9, respectively.

From Table II1-7, it may be seen that although the relaxation is involved in
the calculation, the ionization potentials in the SIC-GX-LSD-GWD theory (column
3) are still far away fiom experiment, unless the correlation-encigy cotrection is
included. The differences betwcen these results and the experimental values are
almost equal to those in the HF theory in which the relaxation cftect is also included.
Comparing the results in columns 3, 6, 7, and 9 shows that the jonization potentials

did not improve much, even though the relaxation effect in the process of ionization
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TABLE 1II-7

Ionization potentials (Ry) for ato: s in the SIC-GX-LSD-GWB
theory with correlation correction (The value in parentheses

are equal to 100 - (Jtheor _ Jezpt)/rezpt)

10

11
12
13
14

16
17

19

20

21
22

No With With

Atom Correl. SPP-SIC VWN.SIC SP-Xa* HF*  HF or CI Expt.°

He 1.722 1.823 1.839 1.994 1.724 1.807
(—4.7)  (0.9)  (1.8)  (10.3)  (—4.6)

Li 0.390 0.392 6.393 0.416 0.393 0.396
(-15) (-1.0) (-—0.8) (5.1) (—0.8)

Be 0.592 0.649 0.661 0.670 0.591 0.685
(—13.6) (=5.3) (=3.5) (=22) (~13.7)

B 0.564 0.591 0.598 0.615 0.584 0.610
(-75) (-31) (-2.0) (0.8) (—4.3)

C 0.801 0.820 0.827 0.868 0.794 0.828
(=33) (-1.0) (=0.1) 48)  (-4.1)

N 1.045 1.059 1.066 1.117 1.022 1.069
(=22) (-0.9) (—0.3) @5  (—4.4)

C 0.867 0.964 0971 1.285 0.875 1.001
(—134) (=3.7) (=3.0) (28.4) (-12.6)

F 1.190 1.265 1.271 1.435 1.154 1.280
—7.0) (-12) (=0.7) (12.1)  (-9.8)

Ne 1.510 1.571 1.579 1.638 1.463 1.585
(-4.7)  (-0.9) (~04) (3.3) (=7.7)

Na 0.382 0.387 0.389 0.385 0.368 0.378
(1.1)  (24)  (2.9) (L9)  (-2.6)

Mg 0.506 0.555 0.566 0.554 0.485 0.562
(=10.0) (-12)  (0.7) (-14) (-13.7)

Al 0.386 0.407 0412 0.406 0.404 0.440
(—12.3)  (-7.5) (=64) (=7.7)  (-82)

St 0.554 0.570 0.575 0.583 0.559 0.590
(=7.5) (-4.8) (=4.0) (=2.7)  (=6.7)

P 0.793 0.805 0.810 0.757 0.742 0.808
(=1.9) (=04)  (0.2) (-63) (-8.2)

S 0.661 0.739 0.748 0.878 0.662 0.761
(—13.1) (-2.9) (=17) (154) (—13.0)

Cl 0.874 0.935 0.942 0.993 0.867 0.956
~8.6) (-22) (=1.5) (3.9) ~9.3)

Ar 1.085 1.136 1.143 1.141 1.088 1.158
(—=6.3) (~1.9) (=1.3) (-1.5) ~6.0)

i 0.317 0.324 0.326 0.317 0.294 0.319
(—=0.6)  (1.6)  (22) (=06) (=7.8)

Ca 0.401 0.443 0.452 0.432 0.375 0.449
(—10.7)  (~1.3)  (0.7) (=3.8) (—16.5)

Sc 0.420 0.470 0.480 0.476 0.390 0.482
(—12.9)  (-2.5) (=0.4) (~197) (—19.1)

T 0.434 0.489 0.500 0.504 0.404 0.502
(—13.5)  (-2.6) (=04)  (1.0) (—19.5)




TABLE III-7 (Continued)

Ionization potentials (in Ry) for atoms in the SIC-GX-LSD-GWB
theory with correlation correction (The value in parentheses

are equal to 100 - (J*heor — Jezpt)/[ezpt)
24 Cr 0.517 0.516 0.516 0.533 0.434 0.497
(4.0) (3.8) (3.8) (1.2)  (=12.7)
25 Mn 0.467 0.532 0.545 0.579 0.434 0.546
(-14.5) (-2.6) (=0.2) (6.0) (—20.5)
26 Fe 0.512 0.569 0.579 0.603 0. 463 0.581
(-11.9) (-2.1) (—0.3) (3.8) (—20.3)
29 Cu 0.561 0.578 0.583 0.576 0.470 0.541%  0.568
(-1.2) (1.8) (2.6) (14) (=17.3) —4.8
0.562
(—1.0)
30 Zn 0.640 0.688 0.696 0.677 0.559 0.673%  0.690
(-7.2) (-0.3) (0.9) (—1.9) (-—19.0) (-2.5
0.693
(0.5)
31 Ga 0.395 0.416 0.421 0.399 ).404 0.441
(-10.4) (=5.7) (—4.5) (—=9.5) (—8.4)
32 Ge 0.543 0.559 0.564 0.553 0.544 0.579
(-6.2) (=3.3) (—26) (—4.5) (=6.0)
33 As 0689 0701  0.706  0.699 0.698 0.721
(-4.4) (—2.8) (-21) (-3.1) (—3.2)
34 Se 0.627 0.701 0.710 0.795 0.610 0.717
(-12.6) (-2.2) (-1.0) (10.9) (—14.9)
35 Br 0.802 0.859 0.867 0.883 0.794 0.870
(-7.8) (-13) (-03) (1.5) (—8.7)
36 Kr 0.971 1.018 1.026 1.003 0.978 1.029
(-5.6) (—1.1) (=03) (—2.5) (—5.0)
37 Rb 0.301 0.309 0.311 0.307
(—2.0) (0.7) (1.3)
38 Sr 0.372 0.410 0.420 0418
(-11.0) (-1.9) (0.5)
avef (7.5) (2.3) (1.6) (5.4) (10.3)

is considered. This means that the relaxation effect is not a major one.

a. Reference 84;
b. Reference 51;
c. Reference 83;

d. Ref. 86, w1th the ab tnitio SCF-CI procedure.
e. R£f 87, using the HF theory with correlation and relativistic correction.

£ N |1,T heor _ pEepty) 1EZPt X100]/N.
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The results in columns 4 and 5 show that once the correlation-encrgy cor-
rection is introduced intc the calculation of ionization potentials, the results are
improved and are in excellent agreement with experiment. Colummns 4, 5, and 9
show that the results with the VWN-SIC correlation-energy correction are closer to
experiment than those with the SPP-SIC correction. The differences between the
results in the SIC-GX-LSD-GWB theory with the VWN-SIC and experiment are
less than 5 percent for all atoms except for Al. The average difference is equal to
1.6 percent in the SIC-GX-LSD-GWB theory with the VWN-SIC correlation-cnergy
correction less than 2.3 percent with SPP-SIC, 5.4 percent in the SP-X« theory,
7.5 percent in the SIC-GX-LSD-GWB theory without correlation correction, and

10 percent in the HF theory.

In Table III-7, column 8 gives several other results for Cu and Zn given by
Sunil and Jordan®® using an ab-initio SCF-CI procedure and by Jankowski and
Polasik®” using the HF theory with correlation and relativistic corrections, The
differences between the theoretical results for these three theories with experiment
are almost the same. But it is worth pointing out that the SIC-GX-LSD theory is
the simplest and cheapest theory and has been applied to a wide range of atoms

successfully.

From column 5, it may be seen that for the transition-metal atoms, the
ionization potentials are a little bigger than experiment for the atcms which involved
two orbitals in going from the neutral atom to the positive ion, ie., Cr, and a little
smaller for the atoms which involved one orbital in going from the neutral atom
to the positive ion, i.e., Sc, Ti, Mn, and Fe. The ionization potentials are a little
bigger than experiment for those atoms in which the outermost clectrons are s
electrons, except for Li and Be, and are a little smaller than experiment for others.

The differences between the present results with experiment, as shown in Fig. 3-2,
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FIGURE 8-2

P

The deviations of the jonization potentials for the low-Z atoms
in the SIC-GX-LSD-GWB theory and in experiment
decrease as the occupation number of
p. orbital increases
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decrease as the occupation number of the p, orbital increases. This is because the
fuller the orbital, the more accurate the spherical approximation in the SIC-GX-
LSD theory.

TABLE 1I1-8

Ionization potential (Ry) for Vanadium, Cobalt and Nickel
calculated using the SIC-GX-LSD-GWB theory with correlation
correction (The value in parentheses are equal to

100 - (Ithcor - Iexpt)/Iezpt)
Electron Config. No With With Other
y/ Atom Ion Correl.  SPP-SIC VWN-SIC SP-Xa® Expt.b
23 V 3d3.s?  3d%4s? 0.867 0.894 0.901
23 V 3d34s® 344 0.369 0.411 0.418 0.512  0.495
(-25.5) (—17.1) (—15.6) (3.3)
23 V 3d%4s?  3d%4s! 0.446 0.5G5 0.517 0.519
(—14.1) (=2.7)  (-0.4)
27  Co 3d"4s®  3d%4s® 0.910 0.983 0.989 0.949
(-4.1) (—3.6) (4.2)
27  Co 3d"4s? 348 0.531 0.530 0.537 0.558 0.578
(-8.1)  (~8.2) (=7.1) (=3.4)
27  Co 3d74s® 3d74s! 0.550 0.603 0.612 0.609
(-9.7) (-1.0) (0.5)
28  Ni 3d%4s®  3d"4s 1.041 1.107 1.114
28  Ni 3d%4s? 3d® 0.468 0.475 0.481 0.565 0.561
(-16.6) (—15.4) (—14.3) (0.8)
28  Ni 3d%4s® 34844 0.583 0.633 0.642 0.638
(—8.6) (—0.8) (0.7)
a. Reference 84;
b. Reference 83.

Table III-8 shows the ionization potentials for the transition-metal atoms
vanadium, cobalt, and nickel from the neutral atoms to three different final states.
In the process of ionization, if one 4s electron is removed to infinity and another

one is relaxed to a 4d electron, the ionization potentials in the SIC-GX-LSD-GWB
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theory with or without correlation-energy correction for these atoms are smaller

than experiment, and if one 4s electrcn is removed and another one still stays
in a 4s orbital, the ionization potentials are bigger than experiment except for V.
However, the averaged value of these two situations almost equals experiment. This
shows that the two final states interact strongly, and thus the Slater transition-state

theory gives good results.

The electron affinities for several atoms calculated using the SIC-GX-I.SD-
GWB theory with and without correlation-energy correction are listed in Table III-9.
Column 6 gives the results obtained by means of the GX-LSD-FEL theory with the
correlation-energy correction under the frozen orbital approximation (from column
6 of Table III-4). Columns 7 and 8 list other theoretical values evaluated using the
HF theory with Moller-Plesset perturbation theory through complete fourth order
using several large basis sets®?, CI3%:88:90 and MCSCF®°, the fixed-node quantum

Monte Carlo method®!. The experimental results36:5® are listed in the last column.

Comparing the results in column 3 (including the relaxation without the
correlation energy correction) with experiment shows that although the relaxation
effect is perfectly calculated, the electron affinities for these atoms are not much
improved. But once the correlation-energy correction is included, the results are in

very good agreement with experiment.

From columns 4 and 5, one can see that the results with the VWN-SIC
correction-energy correction are better than these with the SPP-SIC correction.
The average difference in the SIC-GX-LSD-GWB theory for these atoms is 8.9 per-
cent with the VWN-SIC, 16.9 percent with the SPP-SIC, and 57.2 percent without
correlation-energy correction. Comparing the results from the SIC-GX-LSD-GWB

theory with the VWN-SIC correlation-energy correction and other theoretical val-
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TABLE III-9

Electron affinities (Ry) for atoms in the SIC-GX-LSD-GWB
theory with correlation correction (The value in

parentheses are equal to 100 - (J!heor _ jezpty/jezpt)y

No With With
7  Atom Correl. SPP.SIC VWN-SIC Unrel.® EA EA  Expt.!
1 H -0.0240  0.0389  0.0521 0.0577
(~141.6) (—32.6) (=9.7)
3 Li —0.0055  0.0296  0.0397 0.0456
(~112.1) (—35.1) (—12.9)
5 B 0.0042 0.0128  0.0160 —0.0233 0.0162° 0.0110¢ 0.0204
(=794) (—37.3) (—216) (—214.2) (-20.7) (—46.1)
6 C 00745 0.0833  0.0876 0.0111  0.0897¢ 0.0816% 0.0932
(=20.1) (—106) (—60) (—88.1) (-3.8) (—12.5)
0.0794¢  0.0838/
(~14.8) (-10.1)
8 O 0.0180  0.0753  0.0815 —0.0024 0.1000° 0.0831% 0.1075
(—83.3) (—30.0) (—242) (-1022) (-7.0) (-22.7
0.0801
(—25.5)
9 F 01742 02231  0.2301 0.0883  0.2462° 0.22939 0.2498
(=303) (—10.7) (—79) (—~647) (1.4 (~8.2
0.2337¢  0.2535
(-6.4) (~1.5)
11 Na -0.0009  0.0319  0.0413 0.0401
(~102.2) (—20.4) (3.0)
13 Al 00163 0.0211 0.0230 0.0293 0.0325
(—49.8) (—35.1) (—29.2) (—9.9)
14 Si  0.0802  0.0864  0.0890 0.0761 0.1018
(=21.2) (—15.1) (—126) (—25.3)
16 S 00925  0.1419  0.1487 0.1184 0.1527
(—394) (=7.1)  (-26) (~22.5)
17 Ccl 02107  0.2521 0.2591 0.2037 0.2657
(-207) (=51) (-25) (—23.3)
19 K 00019 0.0300  0.0384 0.0368
(-94.8) (—18.5) (4.3)
20 Cu 0.0453  0.0807  0.0883 0.0856"  0.0713' 0.0903
(—49.8) (—10.6) (—2.2) (-5.0) (-21.0)
31 Ga 00148  0.0192  0.0208 0.0311 0.0222
(-333) (—13.5) (—6.3) (40.1)
32 Ge 0.0796  0.0854  0.0877 0.0840 0.0897
(-11.3) (—4.8) (-22) (—6.4)
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TABLE I11-9 (Continued)

Electron affinities (in Ry? for atoms in the SIC-GX-LSD-GWB
theory with correlation correction (The value in

parentheses are equal to 100 - (J*h¢oT — [e=Pt)/[ezPt)

No With  With
Z  Atom Correl. SPP-SIC VWN-SIC Unrel.® EA EA Expt.b
A4 Se 0.0989 0.1460 0.1531 0.1319 0.1485
(=33.4) (=L7) (3.1) (-112)
35 Br 02042 02437 02506  0.2120 0.2470
(-17.3) (-1.3) (1.5) (-14.2)
37 Rb 00035  0.0302 0.0384 0.0357
(-90.2) (~15.4)  (7.6)
ave’ (57.2) (16.9) (8.9)

a. The values were calculated by using the GX-LSD-FEL
with KG’s (Reference 33) correlation-energy correction
under the frozen orbital approximation (Table III-4);

b. Experiment values (References 56 and 58);
. Reference 57;
. Reference 88;
. Reference 89;
Reference 90;
. Reference 91;
. Reference 87;
Reference N86.
ave = Y1 (theor _ [Bept| ) [EEPt xri00)/ N,

TR ™™ A0

ues in columns 7 and 8 with experiment shows that, although the SIC-GX-LSD
theory is simple relative to the other ab-initio methods listed, the electron affinities

in this theory for these atoms are equal to those in any more complicated methods.

Consequently, it can be seen that the SIC-GX-LSD-GWB theory with the
VWN.SIC correlation-energy correction is a powerful method for calculating ion-
ization potentials and electron affinities for atoms. The results from this theory
are so close to experiment that it can be used to predict the ionization potential of

any atom which is unknown experimentally. The agreement of the present results
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with experiment increases with atomic number for these atoms. Therefore it might

be possible to get good results for the high-Z atoms by using the SIC-GX-LSD-
GWB theory with the correlation-energy correction, if the relativistic effect were

considered in the calculation of ionization potential and electron affinity.

III-4. Ionization Potential and Electron Affinity from the Relaxed
Quasi-Relativistic SIC-GX-LSD Calculation

Equation (1-125) combining equations (1-126), (1-127), and (1-128) is solved
by means of the standard self-consistent procedures*®; outward numerical integra-
tion of each equation is started in the usual manner by means of a small-r series
solution described in the Ref. 45. The relativistic-correction terms in equation
(1-125) are treated as a part of the potential; that is, the radial function Pi(r)
and one-electron eigenvalue ¢ in the (i-1)** iteration are used to calculate the
relativistic terms of the potential of equation (1-125) for the i'* iteration, so the
relativistic-correction terms in equatior /1-125) are completely neglected in the first

iteration?.

First of all, to test the reliability of the present relativistic correction®?, Ta-
ble III-10 lists the relativistic energy contributions to the ns, np, and (n — 1)d
electron removal energies, AE,.;(QR) in the quasi-relativistic SIC-GX-LSD (QR-
SIC-GX-LSD) theory*® and compares these witt. the AE,; obtained by the (2J+1)
weighted Dirac-Fock (DF) resuits, AE.;(DF), and the AE,; from the relativistic
perturbed HF theory, AE,¢i(pert), for the alkaline metals®>% and the elements in
group I1IB%'. Table III-10 shows that the QR-SIC-GX-LSD theory slightly over-
estimates the relativistic contribution to the ns electron removal energies, except
for Fr (6p®7s!) and slightly underestimates the relativistic contribution to the np

and (n-1)d electrons except Sc (4s%4p!). The agrecment between the relativistic
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TABLE III-10

Comparison of the QR-SIC-GX-LSD relativistic energy contributions
to the ns, np, and (n — 1)d electron removal energies
with the DF and perturbation calculation in DFT (Ry)

Elements Configuration AE j(QR)® AE,(DF)* AE,(DF)¢ AE,ei{pert)®

ns
K (3p%4s?) 0.0013 0.0010 0.0011
Rb (4p85s?) 0.0053 0.0040 0.0041
Cs (57°6s") 0.0107 0.0094 0.0078
Fr (6p°7s) 0.0357 0.018

np
Sc (4s%4p?) —0.0011 -0.0010 —0.0012
Y (55%5p? —0.0030 —0.0034 —0.0032
La (6s%6p! ) —0.0058 —0.0058 —~0.0054
Ac (7s21pt) —0.0121 -0.0152 -0.0116

(n-1)d

Sc (3d’4s?) ~0.0134 —0.0140 —0.0136
Y (4d' 5s?) —0.0295 —~0.0316 —0.0310
La (5d'6s2) —0.0547 -0.0590 —0.0572
Ac (6d'7s?) —0.1166 -0.1324 -0.1222

a. This work;

b. Reference 35;
c. Reference 93;
d. Reference 94;
e. Reference 94.

contributions in the QR-SIC-GX-LSD and DF theories is comparable with that in

the HF theory including relativistic shift correction and the DF theory.

The relativistic contribution to the removal energy for the 7s orbital of FY,
0.0357 Ry, is overestimated in this theory, compared to the DF value of 0.0180
Ry. To check whether this contribution came strictly from the quasi-relativistic

effect, the Fr calculations [i.e., Fr (6p®7s') and Fr* (6p°)] were repeated without
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TABLE III-11

Ionization potentials (Ry) for the high-Z atoms in the
SIC-GX-LSD-GWB theory, compared to other work an4
experiment (The value in parentheses are equal to

100 - (Ithcor — Jezpt )/Iczpt)

With Relax. With With No Relax. Other
Z Atom No Correl. SPP-SIC VWN.SIC Correl. Work Expt.?

37 Rb  0.300 0.308 0.311 0.313  0.275° 0.307
(22) (=04) (~13) (=2.0) (10.4)
0.284
(7.5)
0.2834
(7.8)
38 Sr 0371 0.410 0.419 0.392 0.418
(11.3) (2.0)  (=0.) (6.3)
39 Y 0452 0.484 0.491 0.437 0.478
(54) (~1.3) (=2.8) (8.5)
40 Zr 0408 0.464 0.476 0.464 0.511
(20.1) (9.2) (5.8) (9.2)
41 Nb 0495 0.494 0.494 0.512 0.498
(0.5) (0.7) 0.7)  (=29)
42 Mo 0515 0.514 0.514 0.532 0.522
(1.3) (1.5) (1.5)  (—19)
43 Tc 0432 0.500 0.514 0.517 0.535
(19.3) (6.6) (3.9) (3.4)
44 Ru 0520 0.530 0.534 0.532 0.541
(3.9) (2.1) (1.3) (1.7)
45 Rh 0521 0.535 0.539 0.532 0.548
(5.0) (2.4) (1.7) (3.0)
47 Ag 0521 0.541 0.546 0.530  0.434® 0.557
(6.4) (2.8) (1.9) (48) (221
0.459
(17.6)
0.4564
(18.1)
48 Cd 0589 0.633 0.641 0.607 0.661 |
(10.9) (4.2) (3.0) (8.1)
49 In 0380 0.400 0.406 0.393 0.425
(10.6) (5.9) (4.5) (7.6) |
50 Sn 0506 0.521 0.526 0.526 0.540
(6.2) (3.5) (2.5) (2.5)
51 Sb 0627 0.640 0.645 0.656 0.635
(13)  (=0.8)  (=16) (—3.3)
52 Te 0574 0.641 0.651 0.613 0.662
(13.3) (3.2) (1.7) (7.4)
53 I 0717 0.770 0.776 0.760 0.768
6.7)  (=0.2)  (-1.0) (1.1)
54 Xe 0853 0.896 0.904 0.904 0.891

4.3)  (=05) (-1.4) (—14)
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TABLE III-11 (Continued)

lonization potentials (in Ry) for the high-Z atoms in the
SIC-GX-LSD-GWB theory and comparing with other work and

experiments (The value in parentheses are equal to

100 - (Ithcor _ Iezpt)/lezpt)

56

72
73
74
75
76

77

79

80

ave

Cs 0.272 0.278 0.281  0.284
(4.9) (2.8) (1.8) (0.7)

Ba 0.330 0.366 0.375  0.351
(13.8) (4.4) (2.1) (8.3)

Hf 0.566 0.592 0.600  0.471
(~10.0)  (-15.1)  (—16.6) (8.5)

Ta 0.420 0.484 0.498  0.490
(27.5) (16.4) (14.0)  (15.4)

W 0.426 0.494 0510  0.519

(27.4) (15.8) (13.0)  (11.5)

Re 0.432 0.502 0.516  0.535

(25.3) (13.2) (10.8) (7.5)

Os 0475 0.533 0.545 0541
(25.7) (16.7) (14.8)  (15.4)

Ir 0.508 0.563 0.574  0.560

(23.2) (14.9) (13.2)  (15.3)

Pt 0.527 0.543 0.551  0.538

(20.3) (17.9) (16.7)  (18.7)

Au 0523 0.547 0.551  0.535
(22.8) (19.3) (18.7)  (21.1)

Hg 0.586 0.629 0.637  0.604
(23.6) (17.9) (16.9)  (21.2)

(12.6) (7.2) 6.3)  (7.8)

0.246°
(14.02
0.255

(1C.8)

0.254¢
(11.2)

0.436°
(35.72
0.464

(31.6)

0.460%
(32.2)

0.286

0.383

0.515
0.579
0.586
0.578
0.640

0.661
0.661

0678

0.767

a. Reference 83;

b. These values were obtained by using the HF theory, Ref. 35;
¢. Obtained by using the HF theory with the SPP-SIC under the

frozen-orbital approximation, Ref. 35;

d. The values were calculated by using the HF theory with the

SPP-SIC and relaxation correction, Ref. 35;
e. ave = [V [IE#Pt _ [Theor|) 1F2Pt y 100 |/ N
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any VWN correlation energy functional; the 7s removal energy in that case was
0.0358 Ry. Thus the deviation of the removal energy for the 7s orbital in the QR-
SIC-GX-LSD and DF theories is not caused by the correlation energy functional.
The overestimation may be caused by the underlying 4f orbital, which stiongly
affects the 7s removal energy in the QR-SIC-GX-LSD theory for Fr; further study

of the interaction between the f and s orbitals is needed.

Expression (1-86), the statistical total energy, has been used to caleulate the
positive ions and neutral atoms of elements rubidium to barium and hafnium to mer-
cury, the negative ions of some high-Z elements, by means of the wave functions in
the QR-SIC-GX-LSD-GWB and SIC-GX-LSD-GWB theories. The wave functions
in both the QR-SIC-GX-LSD-GWB and SIC-GX-LSD-GWB theories are also used
to calculate the SPP and VWN correlations with the self-interaction correction®?
(SPP-SIC and VWN-SIC, respectively) for the correspor 'ing neutral atoms, posi-
tive and negative ions. Finally, the ionization potentials and clection affinities for
these atoms are obtained in terms of the energy difference between the positive ion
and neutral atom for the lonization potential, and between the neutral atom and
negative ion for the electron affinity, equation (3-4). The ionization potentials for
these atoms in both the QR-SIC-GX-LSD-GWB and SIC-GX-LSD-GWD theories
are also calculated under the frozen-approximation equation (3-2). All results are

given in Tables III-11 to III-14.

Table III-11 contains the lonization potentials for some high-Z atems in
the SIC-GX-LSD-GWB theory without and with the correlation-energy correction
(columns 3, 4, and 5, 1cspectively). Column 6 gives the results without relaxation
or correlation-energy correction. Columns 7 and 8 list other wortk given by Savin
et al.3 using the HF theory and experimental values®3. The table shows that (i)

the results are greatly improved by the correlation-energy correction; (ii) the non-
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relativistic results are in very good agreement with experiment for the atoms of
the atomic number from 37 to 56. The differences for these atoms are less than
5 percent, except for Zr. But the SIC-GX-LSD-GWB theory cannot accurately
describe the atoms for which the atomic numbers are bigger than 72 (the differ-
ences exceed 10 percent); (iii) the SIC-GX-LSD-GWB results a-e much better than
the HF results in describing ionization potentials for the high-Z atoms whether the

correlation-energy correction is included or not.

Table II1-12 gives the ionization potentials for some high-Z atoms obtained by
using the QR-SIC-GX-LSD-GWB theory without and with the correlation-energy
correction (columns 3-6), other theoretical values given by Savin et al.3® using the
Dirac-Fock (DF) theory®®. From columns 4 and 5, it may be seen that the results
in the QR-SIC-GX-LSD-GWB with the SPP-SIC and VWN-SIC correlation-energy
correction are in excellent agreement with experiment, particularly for atoms of
atomic number from 72 to 80: the percentage differences in the SIC-GX-LSD-
GWB theory are greater than 10 percent, but they are less than 3.5 percent in
the QR-SIC-GX-LSD-GWB theory. Generally speaking, the results without relax-
ation and correlation-energy corrections are better than those with relaxation and
without correlation-energy correction. The results with correlation and relaxation
corrections, as expected, are much better than those with relaxation but without
correlation-energy correction or with correlation but without relaxation correction.
This is because in the process of ionization. the effect of relaxation adjusts the
ion structure in the lowest-energy state, the relaxation decreases the ionization
potential of an atom, but the correlation effect increases the ionization potential.
However, the decrease in the relaxation and increase in the correlation are not equal.
Comparing the present work in columns 3-6 and other work in column 7 with ex-
periment in column 8 shows that the QR-SIC-GX-LSD-GWB theory is much better

than the DF method in calculating ionization potentials for the high-Z atoms. It
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TABLE III-12

Ionization potentials (Ry) for the high-Z atoms in the
QR-SIC-GX-LSD-GWB theory, compared with other work and

experiment (The value in parentheses are equal to

100 - (Itheor _ Iezpt)/lcxpt)
With Relax. With With No Relax. Other
Z Atom No Correl. SPP-SIC VWN.SIC Correl. Work  Expt.®
37 b 0.306 0.313 0.315 0.318 0.279 0.307
(0.3) (-2.0) (—2.6) (-3.6) (9.12
0.289
(5.9)
0.2884
(6.2)
38 Sr 0.377 0416 0.425 0.398 0.418
(9.9) (0.6) (—1.6) (4.9)
39 Y 0.423 0.455 0.462 0.448 0.478
(11.5) (4.8) (3.3) (6.2)
40 2Zr 0.418 0.477 0.489 0.477 0.511
(18.2) (6.6) (4.3) (6.6)
41 Nb 0.519 0.518 0.518 0.539 0.498
(—4.3) (—4.1) (—4.1) (—8.3)
42 Mo 0.543 0.542 0.542 0.562 0.522
(—4.0) (~3.9) -3.9) (=7.7)
43 Tc 0.446 0.518 0.532 0.538 0.535
(16.7) (3.2) (0.6)  (~0.5)
44 Ru 0.553 0.563 0.567 0.567 0.541
(—2.2) (—4.0) (—4.7) (~4.7)
45 Rh 0.555 0.570 0.575 0.568 0.548
(-1.2) (-4.0) (—4.9) (-3.6)
47 Ag 0.559 0.580 0.585 0.570  0.466" 0.557
(—0.4) (-4.2) (—5.1) (—2.4) (16.32
0.495
(11.1)
0.491¢
(11.8)
48 Cd 0.626 0.671 0.678 0.646 0.661
(5.3) (-1.5) (—2.6) (2.2)
43 In 0.378 0.399 0.403 0.390 0.425
(11.1) (6.2) (5.2) (8.3
50 Sn 0.504 0.520 0.524 0.525 0.540
(6.6) (3.7 (2.9) (2.7
51 Sb 0.627 0.640 0.644 0.655 0.635
(1.3) (-0.8) —1.4) (-3.1)
52 Te 0.573 0.641 0.651 0.612 0.662
(13.5) (3.2) (1.7) (7.6)
53 I 0.716 0.770 0.776 0.761 0.768
(6.8) (-0.2) (—1.0) (1.0
54 Xe 0.853 0.896 0.905 0.905 0.891
(4.3) (—0.5) (—1.5) {(—1.5)
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Ionization potentials (in Ry) for the high-Z atoms in the

TABLE III-12 (Continued)

QR-SIC-GX-LSD-GWB theory and comparing with other work and

experiments (The value in parentheses are equal to

100 - (Ilheor — Jezpt )/Iezpt)

56

72
73
74
75
76

7
78

79

80

ave®

Ba

Hf
Ta
w
Re
Os

Ir
Pt

Au

0.282
(1.4)

0.343
(10.4)

0.475

(1.7)
0.477
(17.6)
0.484
(17.5)
0.488
(15.6)
0.551
(13.8)

0.602
(9.0)
0.656
(0.8)
0.664
(2.0)

0.719
(6.2)

(7.6)

0.290
(—1.4)

0.379
(1.0)

0.502
(2.4)
0.545
(5.9)
0.561
(4.3)
0.574
(0.8)
0.617
(3.5)

0.660
(0.2)
0.680
(—2.8)
0.691
(—2.0)

0.762
(0.6)

(2.8)

0.293
(~2.4)

0.770
(~0.4)

(2.6)

0294 0.256°

(-28)  (10.5)
0.266
(7.0)
0.2654
(1.3)

0.362

(5.5)

0.525

(—2.0)

0.556

(4.0)

0.600

~2.3)

0.623

(7.7

0.634

(0.9)

0.666

-0.7

0.676

(—2.2)

0.678  0.565°

(0.0) (16.7
0.604
(10.9)
0.5974
(11.9)

0.741

(3.3)

(3.8)

0.286

0.383

0.515
0.579
0.586
0.578
0.640

0.661
0.661

0.678

0.767

a. Reference 83;

b. These values were obtained by using the DF theory, Ref. 35;
c¢. Obtained by using the DF theory with the SPP-SIC under
the frozen-orbital approximation approximation, Ref. 35;

d. The values were calculated by using the DF theory with the

SPP-SIC and relaxation correction, Ref. 35;
e ave = | E'N II'EIN - I?"”'l/I.EIP'X 100]/N




is worth pointing out again that the QR-SIC-GX-LSD-GWB thcory is much easier

and cheaper to use than the DF theory.

The electron affinities for some high-Z atoms obtained using the QR-SIC-
GX-LSD-GWB theory without and with the SPP-SIC and VWN-SIC are given
in Table III-13. Corresponding to the elements in Table II1-12, some atoms are
missing in Table II1-13, because for these atoms some of the negative ions are not
stable experimentally®® and some are not convergent for the experimental electron
configurations (e.g., excited-electron configuration of negative ions) in the QR-SIC-
GX-LSD-GWB theory. From Table III-13, it can be seen that the results without
correlation-energy correction are very far from experiment®6:38 ie., the theoretical
values are much smaller than experiment, except for Zr. Once the correlation-energy
correction is added, the electron affinities for those atoms are improved. Especially
for the atoms Sb and W, the contribution of the correlation-energy correction to
the electron affinity is much bigger than that of the kinetic enecrgy, Coulomb and
exchange interaction energies of the electrons. Comparing columns 4 and 5 with
experiment, column 6, it is clear that the results with the SPP-SIC and VWN-
SIC are in very good agreement with experiment: the results with the VWN-SIC
are a slightly better than those with the SPP-SIC for those atoms, on the average
difference are 6.6 percent for the former, 6.9 percent for the latter, and 47.8 percent

for those without correlation correction.

Table III-14 gives the ionization potentials of the ground and first excited-
electron configurations of the atom palladium and electron affinity in the QR-SIC-
GX-LSD-GWB theory. The results show that both the SPP-SIC and VWN-SIC
overestimate the correlation-energy correction of the electron configuration 4d"° for
the neutral atom palladium. The multiconfiguration interaction has to be applied

in order to describe the correlation correction accurately.
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TABLE I1I1-13

Electron affinities Ryg for the high-Z atoms in the
L QR-SIC-GX-LSD-GWB theory, compared with experiment
(The value in parentheses are equal to

100 - (Itheor _ Iezpt )/Iez:pt)

No With With

Z Atom Correl. SPP-SIC  VWN.SIC  Expt®

37 Rb 0.0039 0.0308 0.0391 0.0357
(89.1) (13.8) (—9.4)

40 Zr 0.0469 0.0337 0.0342 0.0313
(—49.8) (=7.6) (—9.2)

44 Ru 0.0313 0.0674 0.0752 0.0773
(59.6) (12.8) 2.7

45 Rh 0.0440 0.0801 0.0879 0.0836
(47.4) (4.2) (=5.1)

47 Ag 0.0645 0.0996 0.1064 0.0958
(32.7) (—4.0) (=11.1)

49 In 0.0205 0.0254 0.0273 0.0235
(12.7) (—8.0) (—16.4)

50 Sn 0.0840 0.0898 0.0908 0.0897
(6.4) (-0.2) (—1.2)

51 Sb 0.0107 0.0645 0.0752 0.0790
(86.4) (18.4) (4.8)

52 Te 0.1035 0.1475 0.1543 0.1448
(28.5) (—1.8) (—6.6)

53 I 0.1934 0.2314 0.2383 0.2249
(14.0) (~2.9) (—5.9)

55 Cs 0.0049 0.0303 0.0371 0.0347
(85.9) (12.8) (—6.9)

72 Hf —0.0117 —0.0039 0.0020 ~0

74 W 0.0098 0.0566 0.0684 0.0600
(83.7) (5.6) (—13.9)

76 0Os 0.0273 0.0820 0.0859 0.0823
(66.8) (0.3) (—4.4)

78 Py 0.1133 0.1484 0.1563 0.1564
(27.6) (5.1) (0.1)

79 Au 0.1250 0.1602 0.1719 0.1697
(26.3) (5.6) (—1.3)

ave (47.8) (6.9) (6.6)

a. References 56 and 58;
b. ave = [ SN |1E=Pt _ [Theor|; [EzPty 100 |/ N




The SIC-GX-LSD-GWB theory with the VWN-SIC correlation-energy cor-

rection can describe the ionization potential accurately for the atoms for which the
atomic number Z is less than 56, but the relativistic effect has to be considered for
the atoms of atomic number Z > 72. The ionization potentials and electron affini-
ties for the high-Z atoms in the QR-SIC-GX-LSD-GWB theory are in reasonably
good agreement with experiment, so that this theory can be used to predict the

ionization potentials of any high-Z atoms which are unknown experimentally.

TABLE 111-14

Ionization potentials and electron affinities (Ry) for
palladium in different electron configurations in the QR- and
SIC-GX-LSD-GWB theories with correlation correction (The value in

parentheses are equal to 100 - (Itheor — [ezpt)/rezpty

Electron Config. No With With
Z Atom Ton Correl.  SPP-SIC VWN.SIC Expt.®
Ir
46 Pd 4d'° 4d° 0.6182 0.6631 0.6709 0.6122
(-1.0)  (~83)  (—9.6)
46  Pd 4d%5s! 4d°® 0.5566 0.5762 0.5811 0.5533
(-0.6)  (~4.1)  (=5.0)
Ingr
46 Pd 4d'° 4d? 0.6289 0.6738 0.6816 0.6122
(-2.7)  (-10.1) (~11.3)
46  Pd 4d°5st 4d° 0.5205 0.0381 0.5430 0.5533
(5.9) (2.7) (1.9)
EAp
46 Pd Ad'YY  4d%5s2  —0.0068 0.0029 0.0078 0.0310

(122.1)  (90.5)  (74.8)

a. References 56, 58 and 83.

91



=

FERE

. By

TABLE III-15

Ionization potentials (Ry) for the multiply charged ions of carbon,
compared with other calculations and

experiment
Degree GX-LSD GX-LSD HF HF Xat  Exptf
of Without With  Rel.®  Unrel.?

Tonization Corre.® VWN?

0 0.801 0.827 0.793 0.867 0.809 0.828
1 1.772 1.814 1.767 1.808 1.817 1.792
2 3.316 3.411 3.365 3.388 3.617 3.518
3 4.689 4.699 4.730 4.733 4.630 4.739

ave’ 2.8) (1.3)  (25)  (24) (22)

a. The difference of the statistical total energies for the it* and
(i+1)”‘ ions in the two separate calculation Ascr;

b. AscF plus the VWN correlation-energy correction;

¢. AscrF in the HF theory, reference 102;

d. Orbital energy in HF theory, reference 102;
e. Transition-state calculation in the Xa method with theoretically

determined parameter a, reference 97;
f. Reference 103;

g ave = [ E'N [[Theor _ I,Ezptl/I,ExthIOO]/N.

II1I-5. Ionization Potentials of Multiply-Charged Ions

Investigation of ionization potentials for multiply-charged ions has attracted
attention®®®7, because of the interest in these ionization potentials for interpreting
stellar spectra. Other properties of multiply charged ions, e.g. photoionization
cross-section, have also attracted some attention®%%® experimentally. Theoretical
calculation for them might be interesting,

Few publications dealing with the ionization potentials of ions using the LDF
theory occur in the literature, even for the multiply-charged ions, although the LDF
theory has been widely used in the calculations of atoms and molecules and solid

state. The reason might be that the values of the exchange parameters, e.g.,, o
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TABLE I1I-16

< Ionization potentials (R}Q for the multiply charged ions of aluminium,
compared with other calculations and
experiment
Degree GX-LSD GX-LSD  HF HF Xa® Exptf
of Without  With Rel.°  Unrel.?
Ionization Corre.® VWN?
0 0.386 0.412 0.404 0.419 0.378 0.440
1 1.316 1.386 1.288 1.308 1.364 1.384
2 2.093 2.108 2.060 2.065 2.043 2.090
3 8.734 8.822 8.715 8.967 9.019 8.817
4 11.195 11.304 11.191 11.539 11.704 11.302
5 13.707 13.854 13.858 14.479 14.607 13.996
6 17.892 17.932 17776 17.860 17.716 17.782
7 20.891 20.942 20.921 21.020 21.018 20,958
8 24.102 24.171 24.252 24.328 24.488 24.263
9 29.007 29.144 28.915 28.885 29.250 29.201
ave? (2.4) (1.0) (2.1) (2.1) (3.0)

a. The difference of the statistical total energies for the it* and

(i+1)™ ions in the two separate calculation Ascr;

b. Ascr plus the VWN correlation-energy correction;
c. Ascr in the HF theory, ref. 102;
d. Orbital energy in the HF theory, ref. 102;
e. Transition-state calculation in the Xa method with
theoretically determined parameter a, ref. 97;

f. Reference 103;

g ave = | Z‘N [IFheor — I,EzptI/I,EIPtXIOO]/N.

in the Xa theory and a in the Za theory, have been missing in the literature for
ions. Also it is time-consuming to search for the optimal exchange parameters for

all multiply charged ions of all atoms in the periodic table.

In 1987, Géaspar and Nagy®’ published the ionization potentials for some
multiply-charged ions evaluated by means of the Xa theory in which the value

of @ was determined by the electron charge density self-consistently; their results
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TABLE III-17

Ionization potentials (Ry) for the multiply charged ions of chlorine
compared with other calculations and

experiment
Degree GX-LSD GX-LSD HF HF Expt®
of Without With Rel.c Unrel.?
Jonization Corre.® VWN?
0 0.874 0.942 0.867 1.013 0.956
1 1.633 1.728 1.645 1.878 1.749
2 2.842 2.868 2.875 2917 2.933
3 3.830 3.865 3.854 3.885 3.932
4 4.870 4,918 4,904 4,922 4,983
5 7.009 7.100 6.958 6.972 7.108
6 8.383 8.406 8.332 8.334 8.399
7 25.503 25.606 25.517 25.741 25.601
8 29.315 29.440 29.336 29.801 29.452
9 33.218 33.382 33.338 34.207 33.466
10 38.957 39.003 39.011 39.120
11 43.430 43.487 43.480 43.560
12 47.980 48.057 48.132 48.181
ave/ (2.6) (0.8) (2.5) (2.3)

a. The difference of the statistical total energies for the i*?
and (i+1)th ions in the two separate calculation Agcp;
b. Ascr plus the VWN correlation-energy correction;

c. Ascr in the HF theory, ref. 102;

d. Orbital energy in the HF theory, ref. 102;

e. Reference 103;

f. ave = [ SN |1 Theor _ [Ezpt| 1Bt x100)/N.

advantage of Gaspar and Nagy’s Xa theory is that the exchange parameter a can
be optimized in each iteration according to the electron density during the self-
consistents-field process, unlike that in the traditional Xa theory in which the a
was determined by fitting the total Xa energy to the HF total energy, or by fitting

the total energy to satisfy the virial theorem.

The SIC-GX-LSD theory is somewhat analogous to Gaspar and Nagy’s Xa
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Ionization potentials (Ry) for the multiply charged ions of argon,
compared with other calculations and

TABLE III-18

experiment
Degree GX-LSD GX-LSD HF HFr Expt®
of Without With Rel. Unrel.4
Ionization Corre.® VWN?
0 1.085 1.192 1.086 1.181 1.158
1 1.938 2.064 1.940 2.093 2.031
2 2.861 3.013 2.879 3.135 2.995
3 4.269 4.359 4311 4.352 4.396
4 5.406 5.504 5.433 95.463 5.514
5 6.589 6.699 6.624 6.643 6.689
6 9.010 9.159 8.956 8.969 9.138
7 10.526 10.606 10.470 10.473 10.544
8 30.955 31.151 30.977 31.201 31.050
ave/ (~2.6) (0.6) (—2.4) (0.6)

a. The difference of the statistical total energies for the i
and (i+1)th ions in the two separate calculation AgcF;

b. AscF plus the VWN correlation-energy correction;
¢. Ascr in the HF theory, ref. 102;

d. Orbital energy in the HF theory, ref. 102;

e. Reference 103;

f. ave = [ SN |[Theor _ [Ezpt) B2ty 1001/ N.

theory®” in determining the optimal exchange parameters for atoms and ions. How-
ever obtaining the exchange parameters is much easier and simpler in the SIC-GX-
LSD theory than in Géspar and Nagy’s Xa theory. The exchange paramcters in
the SIC-GX-LSD theory are fixed once the Fermi-hole shape is chosen. Therefore

one set of parameters applies to all atoms and ions.

This section tests the reliability of the SIC-GX-LSD theory in predicting
ionization potentials of multiply-charged ions which have been experimentally mea-
sured. The SIC-GX-LSD theory is much easier to use than the HF theory, because

the local exchange potential is used, and even easier to use than the Xa theory,
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TABLE III-19

Ionization potentials (Ry) for the multiply charged ions of calcium,
compared with other calculations and

experiment
Degree GX-LSD GX-LSD  HF HF Xa®  Expt/
of Without  With Rel.°  Unrel.?

Ionization Corre.? VWN?

0 0.401 0.452 0376 0.389 0.417 0.45
1 0.867 0.881 0.833 0.830 0.825 0.87
2 3.645 3.714 3.668 3.748 3.726 3.714
3 4.820 4,905 4833 4,998 4,997 4.93
4 6.043 6.155 6.068 6.372 6.341 6.20
5 7.830 7.864 7.883 7.923 7.761 8.00
6 9.254 9.296 9.284 9.312 9.246 9.39
7 10.714 10.770 10.751 10.767 10.79 10.82
8 13.685 13.786 13.630 13.641 13.860 13.84
9 15.477 15.504 15.422 15.435 15.432 15.53
10 43.624 43.734 43.403 43.658 43.961 43.46
11 47.574 47.708 48.218 48.729 49.150 48.24
12 53.428 53.602 53.214 54.241 54.535 53.36
13 59.658 59.707 60.197 60.268 60.105 60.02
14 66.407 66.468 65.656 65.707 65.842 65.79
15 71.491 71.573 71.295 71.366 71.714 71.59
16 77.980 78.139 78.984 78.937 79.547 79.75
ave’ (1.8) (0.8) (2.0) (1.9) (L6

a. The difference of the statistical total energies for the i**

and (i+l)”' ions in the two separate calculation Agcr;

b. Ascr plus the VWN correlation-energy correction;

c. Agscr in the HF theory, ref. 102;

d. Orbital energy in the HF theory, ref, 102;

e. Transition-state calculation in the Xa method with theoretically

determined parameter a, ref. 93;
f. Reference 103;

g ave = [ Y [[Theor _ 1E=pt) 1E=pt x100)/N,

because there is a unique set of parameters for all atoms once the Fermi-hole shape
is selected.
Therefore, the SIC-GX-LSD theory is used to calculate the ionization poten-
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TABLE III-20

Ionization potentials (Ry) for the multiply charged ions of iron, compared
with other calculations and

experiment
Degree GX-LSD GX-LSD HF HF Xa® Exptf
of Without With Rel.¢ Unrel.?

Ionization Corre.® VWN?

0 0.512 0.579 0.514 0.588 0.58/
1 1.205 1.217 1.134 1.19
2 2.221 2.321 2.084 2.631 2,488 2.25
3 4.071 4.112 3.979 4.145 3.888 4.03
4 5.632 5.681 5.483 5.689 5.469 5.51
5 7.336 7.393 7.249 7.423 7.211 7.28
6 8.896 8.961 9.156 9.261 9.100 9.19
7 11.393 11.468 11.052 11172 11.127 11.109
8 17.036 17.123 17.104 17.198  17.221 17.20
9 19.070 19.174 19.104 19.330  19.389 19.26
10 21.125 21.257  21.165 21.608  21.622 21.31
11 23.982 24.026  22.069 24.107  23.912 24.33
12 26.232 26.285 28.278 26.312  25.257 26.53
13 28.499 98.567  28.546 28.591  28.644 928 .81
14 33.123 33.239  33.040 33.074  33.431 33.59
15 35.733 35.765  35.649 35.646  35.682 35.94
16 92.629 92.751 92.711 92.901  93.492 93.05
17 99.437 99.583  99.508 100.173  100.801 99.81
18 106.263  106.452  106.484 107.521  108.295 107.00
19 115.960  116.014  116.080 116.200  115.961 116.30
20 123.569  123.636  123.513 123.550  123.775 124.10
21 130.914  131.003  131.127 131.194  131.700 132.20
22 141.417  141.590  141.403 141.440  142.926 143.30
ave” (1.6) (1.2) (1.6) (2.2) (1.6)

a. The difference of the statistical total energies for the it" and

(i+1)th ions in the two separate calculation Agscr;

b. AscrF plus the VWN correlation-energy correction;

c¢. AscrF in the HF theory, ref. 102;

d. Orbital energy in the HF theory, ref. 102;

e. Transition-state calculation in the Xa method with theoretically
determined parameter a, ref. 97;

f. Reference 103;

g Reference 104;

h. ave = [ SN |[Theor _ [B=pt|/ [E=Pt X 100}/ N.
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TABLE III-21

Ionization potentials (Ry) for the multiply charged ions of bromine,
compared with other calculations and

experiment

Degree GX-LSD  GX-LSD HF Xa? Expt®
of Without With Unrel.¢
Ionization Corre.* VWN?

0 0.802 0.867 0.911 0.859 0.87
1 1.480 1.570 1.676 1.608 1.60
2 2.522 2.549 2.580 2.433 2.65
3 3.379 3.414 3.410 3.322 3.48
4 4.276 4,323 4.292 4,261 4.39
5 6.318 6.397 6.196 6.370 6.51
6 7.521 7.557 7.350 7.457 7.57
7 14.237 14.327 14.040 14.255 1441
avel (3.8) (1.5) (3.3) (2.8)

a. The difference of the statistical total energies for the i*?
and (i+1)®® ions in the two separate calculation Ascr;
b. Ascr plus the VWN correlation-energy correction;

c¢. Ngcr in the HF theory, ref. 102;

d. Orbital energy in the HF theory, ref. 102;

e. Reference 103;

. ave = [ SN [fTheor __ fEzpt Bt xy00]/ N,

tials of multiply-charged ions for C, Al, Ca, Fe, and Br to compare the results with
those from the Xa calculations®” and Cl and Ar which are interesting to chemists
and astrophysicists. The effect of the correlation correction proposed by Vosko et

al.% on the ionization potential is considered.

The SIC-GX-LSD theory with the GWB Fermi-hole parameters was applied
to calculate the wave functions of the neutral atoms together with the corresponding
multiply-charged ion wave functions. These numerical wave functions were then
used to calculate the corresponding statistical total energies, equation (1-86), and

the VWN correlation energy corrections, equation (1-108), for the atoms and ions.
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The VWN has not been treated self-consistently, becaused it is not very important

in calculating ionization potentials!®?, although it is essential in predicting electron
affinities for the alkaline-earth elements, rare gasses, and actinides®?94.101 which
will be discussed later in detail. The ionization potentials were obtained from the
differences of the statistical total energies which included the VWN correlation-
energy corrections for the k'* and (k+1)*" ions, equation (3-4). Results in Table

I11-15 to I1I-21 are compared to the HF results!°? and experiment33:103.104

Relaxation lowers the total energy and decreases as the number of electron
increases. The HF results in columns 4 and 5 of Tables I1I-15 to III-20 show the ion-
ization potentials of the multiply-charged ions without relaxation to be mostly larger
than experiment. In addition, correlation lowers the total energy but increases as
the number of electrons increases and therefore, the correiation correction increases

the ionization potential; all the values in column 3 are bigger than those in columr

2.

The electron correlation-energy correction plays an important role in the first
ionization potentials and electron affinities mentioned earlier, because the contri-
bution of the correlation correction to the electron affinity is comparable to that
of the kinetic, Coulomb and exchange interaction energies. Comparing the results
of the SIC-GX-LSD-GWB theory with the VWN correlation correction in column
3 of Tables III-15 to III-21 with those excluding the VWN correlation correction
in column 2 shows that the correlation-energy correction also plays a role in the

ionization potentials of the multiply-charged ions.

In Tables I11-15, I11-16, and III-19 to III-21, the calculation of the multiply-
charged ions obtained by using a Slater transition-state calculation in the Xa
theory®” with theoretically determined parameter a are also presented. The data

show that the results in the SIC-GX-LSD-GWB theory and in the transition-state
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of Xa theory with theoretically determined parameter a are comparable with the

results from the HF theory. But the ionization potentials of the multiply-charged
ions in SIC-GX-LSD-GWB theory with the VWN correlation energy correction are

much better than all others. Their agreement with experiment is excellent.

The deviation of each calculated ionization potential, Tables iII-15 to III-
21, from the experimental values is expressed as a percentage. These percentages
are averaged for all multiply-charged ions of the same element to give the aver-
age percentage deviations for the theories discussed in this work, the relaxed and
unrelaxed HF, and the recent Xa transition state iomlts. The results using SIC-GX-
LSD-GWB theory with the VWN correlation correction are the best. The average
percentage deviation for all these elements in this theory are less than 1.5 percent.

Furthermore the percentage deviation for each value is about one.

One may expect to calculate the jonization potentials of the multiply charged
ions by means of the traditional Xa theory with the corresponding optimal « values
of the neutral atoms. In order to compare the SIC-GX-LSD results with those in the
traditional Xa theory, the relaxed Xa calculations for the ionization potentials of
these multiply-charged ions were carried out using Schwarz’s o values!® for neutral
atoms and corresponding a values of the atoms which are of the same number of
electrons as the multiply-charged ions. The results (not listed here) are much worse
than those in the HF and SIC-GX-LSD theories which agree with experiment. The

average percentage deviations are around 3.51%%,

From the results listed in Tables II1I-15 to III-21 and the comparison above,
it can be seen that the ionization potentials of multiply-charged ions calculated by
means of the difference between two statistical total energies in the SIC-GX-LSD
theory with the GWB Fermi-hole exchange parameters are comparable with that in

the HF theory. The SIC-GX-LSD theory is much easier and cheaper to use than the
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HF theory. The correlation energy correction of the electrons with different spin
is important, so that the SIC-GX-LSD-GWB theory with the VWN correlation
correction gives excellent ionization potentials for the multiply-charged ions in the
agreement with experiment. It can be expected that the quasi-relativistic SIC-
GX-LSD theory with the GWB Fermi-hole parameters and the VWN correlation
energy correction should give very good ionization potentials of the multiply-charged
ions for the high-Z elements, even for the actinides, with acceptable computational
time, because there is no need to search for the optimal exchange parameters a for
each atom or ion. Based on the excellent agreement between the calculated and
experimental values, the SIC-GX-LSD theory with the GWB exchange parameters
and the VWN correlation energy correction can be used to predict the ionization

poten.ials of multiply-charged ions which are unknown experimentally.
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CHAPTER IV

STABILITY OF SINGLE- AND
DOUBLE-CHARGED NEGATIVE IONS

IV-1. Introduction

Hotop and Lineberger5®7? summarized the binding energies in atomic neg-
ative ions and showed that most single-charged negative ions of atoms are stable,
except for the rare gases, alkaline-earth elements, and some transition metals. The
alkali-metal elements get a second electron in the outermost s orbital to form a sta-
ble negative ion, with a positive binding energy, whereas the alkaline-earth elements
have the electron in another p or d orbital and therefore have negative values for

the electron affinities, so that the negative ions of these elements do not exist.

Fischer et al.!% reported a positive electron affinity for the alkaline-earth
element Ca by the multiconfiguration HF (MCHF) method, with relativistic cor-
rection. The prediction was confirmed in an elegant experiment by Pegg et al.!®?
Vosko et al.% found the negative ions for other alkaline-earth elements Sr~, Ba~,
and Ra~ are also stable by a HF calculation with relativistic shift and electron cor-
relation correction, when the electron configurations were ns®np (n = 4, 5, 6, and
7) and not (n-1)d ns?. Fischer!®® studied the electron affinities of alkaline-earth
elements by the MCHF theory, and also predicted positive electron affinities for
the alkaline-earth elements Ca, Sr, and Ba in electron configuration ns?np and not
(n-1)dns?. The Fischer et al.’% and Vosko et al.?* prediction was confirmed by

Guo and Whitehead!®! and Fuentealba et al.}%9 in the correlation corrected LDF
theory.
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The probability that stable negative ions exist for rare gases has been in-

vestigated theoretically and experimentally. Kuyatt et al.!!® calculated electron
affinities within £+ 0.03eV for the rare gases from resonances observed in the elas-
tic scattering of electrons. Zollweg!!! estimated negative electron affinities for the
rare gases by horizontal analysis. In contrast the excited state of rare-gas negative
ions are predicted to be stable experimentally and theoretically with respect to the
excited state of the corresponding neutral atoms!!-'1%. The electron affinity, for

example, is 0.51 eV from He (1s 23S ) to He™ (1s 25?2S).

There are few reliable results of the electron affinities for the elements with
Z > 87 which are missing in Hotop and Lineberger's papers®®72, Bratsch and

116 obtained electron affinities for the actinides by considering the en-

Lagowski
ergy variations associated with changes in the 5f orbital population, while Sen
and Politzer'!” calculated electron affinities by using the SIC-LSD theory!!® with
the relativistic and correlation corrections. Bratsch and Lagowski!!® predicted the
ground-state electron affinities of the actinides with the range +1.0 to -0.3 ¢V, with
an estimated uncertainty of & 0.3 eV for the elements whose electron affinities were
+0.3 to -0.3e¢V and £ 1 eV for Fm and Md (the electron affinities are 1.0 ¢V for
Fm and -0.1 eV for Md). Sen and Politzer'!” predicted the electron affinities for
the actinides more accurately than Bratsch and Lagowski, but obtained converged

values for only half the actinides. It is essential to attempt to get more reliable

electron affinities for these elements by calculation.

The first aim®%1°? of this chapter is to test the reliability of the GX-LSD the-
ory, with the self-interaction correctici, the electron correlation correction, and the
relativistic correction, to predict the stability of the negative ions for the alkaline-
06

earth elements and the electron affinities for them, because accurate calculations!

and experimental results!®? exist. If the LDF theory works for the negative ions
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of the alkaline-earth elements, it will be extended to predict the stability of the

negative ions for the rare gases and actinides and the electron affinities for them,

since the LDF theory is much more efficient than the HF, MCHF, CI, et al.

Attention has also been paid to investigating the doubly charged negative
ions experimentally!?®=127 and some evidence for the existence of doubly charged
negative ions, such as, 0?—, Te?~, Bi’~, F?~, CI?~, Br?~, and I*~ was found!??.
Theoretically, the stability of doubly charged negative ions of atoms has been of
interest for a long time. Baughan!?® calculated the first, second, and third electron
affinities for atoms using lattice-energy data of ionic crystals, and the spectroscopic
data of the corresponding molecules, and estimated the values of the second elec-
tron affinities for elements O, S, and Se and the third electron affinity for N by
the extrapolation, starting from the first, second and third ionization potentials of
the corresponding atom. Gaspar and Csavinszky!?® presented the solution of 0?~;
Watson!®? published 0%~ results which are the analytic forms of the wave func-
tions, one-electron eigenvalues, two electron integrals, and total energy for the dou-
bly charged negative ion, O, in the Hartree-Fock (HF) theory using an artificial
positively charged sphere surrounding the doubly charged negative ion. Clementi
and McLean!®! reported the results for N°~ and O?~ and concluded that they were
unstable because the second electron affinities were -0.454 Ry for N and -0.444 Ry

132 nointed out that

for O in the electron-correlation corrected HF theory. Ahlrichs
HF calculations which yield ¢ > 0 for an occupied orbital do not minimize the HF
energy. He calculated some multiply charged negative ions, 02—, N3=, C4- §?—,
03-, and C2~ in the HF theory by an appropriate admixture of a continuum func-
tion to the corresponding orbital, but could not find any evidence of stable multiply
charged negative ions, although he arrived at much lower total energies than Robb

and Csizmadia!®3. Recently, Kalcher!®* studied the stability of the doubly charged

- negative ions of the second-period elements, Si, P, S, and Cl in a configuration-
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interaction (CI) calculation using systematically different substitutions from any
configuration of the reference wave functions. He reported that the doubly charged
negative ions of Si, P, S, and Cl were unstable with negative electron affinities

between -0.0494 Ry and -0.0612 Ry.

There is no report in the literature about the investigation of the stability of
doubly charged negative ions of atoms in the gas phase in the LDF theory, although
the LDF theory has been widely used to study molecular bonding, magnetism, cohe-
sion, the surface electronic properties of metals, and semiconductors’ and to predict
the stability of singly charged negative ions. The reason is obvious if one focuses
on the details of the numerical self-consistent-field (SCF) procedurc in the LDF
theory*®. Following the numerical approach of Herman and Skillman*®, the wave
function is obtained by outward numerical integration starting from r=0 and inward
numerical integration starting from r=o0c. The wave functions at the first several
mesh points in both directions are calculated by solving the one-electron Schrodinger
equation analytically with the asymptotic forms of the potential V#™(r) for each

orbital, when r approaches zero and infinity. The radial function is of the form

]l/?r

Pnl(r) - Coe—[qnl(r) (4 — 1)

when r approaches infinity; where co is 2 normalization constant and gqni(r) is
gni(r) =V=(r) — en 4-2)
where €, is the one-electron eigenvalue. In the self-interaction corrected (SIC)

LDF theory, e.g., the SIC-LSD theory®®, the asymptotic potential, V*(r), when r

approaches infinity, is
2Z-N+1)

r

Vo(r) = — (4 -3)

with the atomic number Z and the number of total electrons N in Rydberg atomic
units. V°°(r) is positive for a doubly charged negative ion, because of N=2+2.

With this feature, the orbital energy is positive!3?.
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In the SIC-LSD theory, the one-electron eigenvalue €,; is approximately equal
to the orbital energy®®4%. This implies that g,;(r) in equation (4-2) is negative
when r approaches infinity. The wave function (4-1) is continuous. Consequently,
no bound wave function can be obtained in the SIC-LSD theory for a doubly charged
negative ion.

The second aim of this chapter is to investigate the stability of the doubly
charged negative ions of atoms in crystals and the stability of the doubly charged
negative ions of the second and third period elements which involve one orbital in
going from the neutral atom to its doubly charged negative ion in the gas phase
by the SIC-GX-LSD theory with the GWB Fermi-hole parameters and the VWN
electron correlation energy functional and by means of a special convergence tech-
nique. As mentioned above, no bound solution can be found by directly solving the
Schrodinger equation in the SIC-LSD theory. Consequently, a positively charged
artificial sphere, which was proposed by Watson!3® (henceforth called the Watson
sphere) and usually used in the molecular anion calculations’®3 137 is invoked to
surround the doubly charged negative ion and ensure the one-electron Schrédinger
equation has a bound solution. Obviously, the statistical total energy and the
electron-density distribution of a doubly charged negative ion are dependent on
the size of the Watson sphere and the charge on the Watson sphere. However, if
the charge on the Watson sphere is fixed, and the radius of the Watson sphere is
gradually increased, the calculated statistical total energy and the electron-density
distribution of the doubly charged negative ion should then gradually approach
the real statistical total energy and the electron-density distribution of the system.
On the other hand, the VWN correlation corrected SIC-GX-LSD theory with the
GWB Fermi-hole parameters has been previously established to be excellent for

92,101

predicting the ionization potentials and electron affinities of atoms compared

to experiment.
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IV-2. Alkaline-Earth Elements and Actinides

The one-electron Schrodinger equation (1-90) in the SIC-GX-LSD theory
and equation (1-125) in the QR-SIC-GX-LSD theory both with the GWB Fermi-
hole parameters have been used and attempt made to get converged values for
the negative ions of the alkaline-earth and actinide elements. It failed to converge
for all the negative ions of the alkaline-earth elements including both the electron
configurations ns’np and (n-1)d ns? and for most negative ions of the actinide

elements; the SCF procedure was not convergent.

The elements are classified in two categories again: (i) elements which in-
volve one orbital in going from the neutral atom to the negative ion and (ii) elements
involving two orbitals going from the neutral atom to the negative ion. In Hotop
and Lineberger's paper®®, all the negative ions involving one orbital are stable,
whereas almost all the negative ions involving two orbitals are unstable except for
the transition-metal elements Sc, Y, and Pd. Previous calculations of the electron
affinities of atoms (in Chapter II1)*%"3 also showed that equations (1-90) and (1-125)
worked very well in predicting the electron affinities for the first category elements
and failed for the second category. In the Roothaan-Hartree-Fock theory, Clementi
and Roetti®! reported the calculation of negative ions for the elements Z < 54 except
for the alkaline-earth elements and rare gases (which they either did not calculate or
found non-convergency). Recently, Vosko et al. ** reported the results for the nega-
tive ions of the alkaline-earth eleinents by the HF theory with the density-functional
correlation correction potential. The electron-correlation correction energy and po-
tential which were given in equations (1-98) and (1-114), respectively, proposed by
Vosko, Wilk, and Nusair®® (VWN), have been included in their calculation.

Equations (1-90) and (1-125) combined with equation (1-114), the VWN cor-

relation correction potential!®®, have been tested on the alkaline-earth and actinide

107



54

elements. The calculations showed that the SIC-GX-LSD-GWB theory with the
VWN correlation correction potential works very well for all the negative ions of
the alkaline-earth elements whose electron configurations are ns?np, but not for con-
figurations (n-1)d ns?, and very well for most of the negative ions of the actinides.
Probably, because of auto-ionization effect, the neutral atoms of the alkaline-earth

elements may not stably bind an extra electron in their (n-1)d orbitals.

Therefore, equations (1-90) and (1-125) with the GWB parameters and the
VWN correlation correction potential have been used to calculate the wave functions
and eigenvalues of the neutral atoms and the negative ions for the alkaline-earth
and actinide elements. The calculated wave functions were then used to calculate
the statistical total energies, equation (1-86), and the VWN correlation energy
corrections, equation (1-98), for the corresponding atoms and negative ions using
the SIC-GX-LSD theory. To compare the VWN correlation correction with that
proposed by Stoll, Pavlidou, and Preuss®® (SPP), the wave functions in equations
(1-90) and (1-125) with the GWB parameters and the VWN correlation correction
were used to evaluate the SPP correlation energy corrections. Finally, the electron
aflinities of the alkaline-earth and the actinide elements were obtained by means of
the difference of the statistical total energies between the neutral atoms and the

corresponding negative ions, equation (3-4). These results are listed in Tables IV-1

to IV-3.
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TABLE IV-1

Electron aﬂ’initieséfiy{ for Mg, Ca, Sr, Ba, and Ra
calculated by the SIC-GX-LSD-GWB theory with the VWN
correlation, compared with other non-relativistic
calculations and experiment

Elec. Confi. GX-LSD GX-LSDGX-LSD HF® MCHF? Expt¢
Z Atom on No Corr. SPP VWN VWN

12 Mg 3s? 3s23p! —0.0059 0.0079 0.0056

20 Ca 4s? 4s%4p! -—0.0112 00150 0.0105 0.0102 0.140 0.0032 + 0.0005
38 Sr  5s% 5s25p!  —0.0113 0.0163 0.0117 0.0142 0.256

56 Ba 6s% 6s26p! —0.0117 0.0209 0.0156 0.0194 0.554

88 Ra 7s% 7s27p' —0.0112 00220 0.0168 0.0206

a. Reference 94;
b. Reference 108;
¢. Reference 107.

IV-2.1 Alkaline-Earth Elements

Tables IV-1 to IV-2 summarize the electron affinities for the alkaline-earth
elements in the SIC-GX-LSD and QR-SIC-GX-LSD theories with the GWB Ferni-
hole parameters and with and without the SPP and VWN correlation-energy correc-

94,108 and experiment’®’. Tables

tion compared with other theoretical calculations
IV-1 and IV-2 show that (i) the contributions of the kinetic, Coulomb, and ex-
change energies to the electron affinities are negative, and almost equal except in
Mg; (ii) the electron affinities become positive once the correlation-energy correc-
tion is added; the electro: correlation makes the negative ions stable; and (iii) the
relativistic contribution to the electron affinities is negative, which is opposite to

the relativistic contribution to the ionization potential of atoms which is usually

positive. These features parallel HF theory®4.
Comparing the present results with the HF (Ref. 94) and MCHF (Ref. 108)
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calculations shows that the QR-SIC-GX-LSD theory with the VWN correlation
1 correction results in excellent agreement with HF, whereas the QR-SIC-GX-LSD
theory with the SPP correlation-energy correction overestimates the electron affini-
ties. The MCHF theory obviously overestimates the electron affinities compared to

HF, the present work, and experiment.

TABLE IV-2

Electron affinities (Ry) for Mg, Ca, Sr, Ba, and Ra
calculated by the QR-SIC-GX-LSD theory with the VWN
correlation, compared with other calculations
and experiment

Elec. Confi., GX-LSD GX-LSD GX-LSD HF®* MCHF® Expt€
VA Atom Jon No Corr.  SPP VWN VWN

12 Mg 3s* 3s23p' —0.0058 0.0078 0.0056

20 Ca 4s® 4s%4p! —0.0110 0.0146 0.0102 0.0096  0.124 0.0032 £ 0.0005
. 38 Sr  5s% 5s%5p!  —0.0106 0.0146 0.0104 0.0118  0.212
“ 56 Ba 6s® 6s%6p! —0.0105 0.0175 0.0129 0.0146  0.296

88 Ra 7s® 7s?7p! —0.0090 0.0121 0.0085 0.0092

a. Reference 94;
b. Reference 108;
¢. Reference 107.

It is interesting that the predicted values for the electron affinity of Mg
in both the SIC-GX-LSD and QR-SIC-GX-LSD theories with the SPP and VWN
correlation-energy correction are positive. Subtracting the overestimated value for

Mg, in contrast with Ca, the electron affinity for Mg is probably around zero.

2~y

110




IV-2.2 Actinides

The electron affinities of the actinides with and without the SPP and VWN
correlation energy correction in the QR-SIC-GX-LSD theory with the GWB Fermi-
hole parameters are listed in Table IV-3 and compared with the results calculated
by the SIC-LSD theory!!” and the values estimated by using the cnergy variation
extrapolation!!®. The present results in the SIC-GX-LSD theory with the SPP and
VWN correlation-energy correction are larger than those in the SIC-LSD thcory
and also larger than the extrapolated values, except for Cin, Md, and Lr. However,
the results in the SIC-GX-LSD theory with the VWN correlation energy correction
are within the estimated uncertainty of the extrapolated results, except for Th and

Lr.

As mentioned before, the electron affinities are usually positive for clements

45,73 and Hotop

involving a single orbital, according to the previous calculations
and Lineberger's paper®® for the elements Z < 87. Therefore the negative ions are
usually stable for the first category elements. The few ciceptions in the actinide

elements are shown in Table IV-3, that is, Pu, Bk, Cf, and Es, the first-category

elements have negative electron affinities.

Am belongs the second category element using two orbitals, but its negative
ion is stable according to the present calculation. Other electron configurations
of the negative ion, like 5f76d'7s® and 5f87s%, have been tried, but no converged
results have been obtained. The extra electron of Am™ goes to the Tp orbital instead
of 5f and 6d. From Table IV-3, one may see that Th™ and Md™ are the most stable
negative ions according to the present calculation, in agreement with Bratsch and

Lagowski’s estimation!16.

Although the electron correlation correction potential is very small compared

to the Coulomb, exchange, and SIC potentials, it is very important in the present
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corrections, compared with other calculations and experiment

TABLE 1IV-3

Electron affinities (Ry) for actinides calculated using
the QR-SIC-GX-LSD-GWB theory with the VWN and SPP correlation

Electron  Config. = GX-LSD GX-LSD GX-LSD LSD® Extrat
Z Atom Ion No Cor. SPP VWN
89 Ac 6d} 757 6d27s2 —0.0156  0.0437  0.0322 0.0206  0.022
90 Th 6d%7s2 6d37s2 0.0361 0.1005  0.0863 0.0706  0.037
91 Pa  5f%6d'7s? 5f%6d%7s2 —0.0071  0.0530  0.0406 0.0243  0.022
92U 5f36d'7s®2 5f36d?7s> —0.0086  0.0516  0.0390 0.0213  0.022
93 Np  5fi6d'7s* 5f%6d%7s° —0.0123 0.0477  0.0351 0.0176  0.022
94 Pu 56752 5f77s2 —0.0986 —0.0203 —0.0370
94 5f%6d! 752 * * * *x  —0.022
95 Am 5f77s% 5f77s%7p) —0.0068  0.0104  0.0076
95 5f76d! 75 * * * *  —0.022
95 58752 * *
96 Cm  5;76d'7s> 5f76d°7s> —0.0255  0.0330  0.0208 0.0022  0.022
97 Bk 59742 57107s2  —0.2215 —0.1096 —0.1265
97 5F96d! 752 * * * * —0.022
98 Cf 510742 5f117s2  —0.1687 —0.0571 —0.0745
98 510641752 * * * * —0.022
99 Es 511742 5f127s2  —0.1146 —0.0042 —0.0219
99 5f116d! 752 * * * * —0.022
100 Fm 512752 513752 —0.0651 0.0439  0.0260 * —0.007
101 Md 513742 5f147s2 —0.0175 0.0900  0.0719 * 0074
102 No 5f147s2 5f147s%7p!  —0.1803 —0.1692 —0.1709
102 5F146d! 752 * * * « —0.022
103 Lr 5f16d' 7s% 5f146d%27s2 —0.0503 —0.0156 —0.0230 *  0.022

* No convergence obtained;

a. Reference 117;
b. Reference 116,

calculations. This correlation correction determines whether the negative ions for

the alkaline-carth and most of the actinide elements converge.

The QR-SIC-GX-LSD theory with correlation correction potential can be

used to predict the electron affinities of the rlkaline-earth and actinide elements.
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The electron affinities are as good as the HF theory with density-functional corre-
lation correction potential, and are much easier and cheaper to use. The present
results of the alkaline-earth elements strongly support the prediction of the stable
negative ions Ca™, Sr~, Ba~, and Ra~ made by Fizcher et al.1% and Vosko et al.,

if their electron configurations are ns?np.

IV-3. Rare Gases and Actinides

The calculation of the negative ions for the actinide elements has not been
completed because of the non-convergence problem for some of them. They will
be discussed in this section. Furthermore, the probability of the stable negative
ions for the rare-gas elements will be discussed in the SIC-GX-LSD theory with the

VWN correlation correction potential and a special convergence technique®?.

IV-3.1 Adiabatic Convergence Technique

Starting with the converged potential of the neutral atom from a Herman and
Skillrman*® calculation and the electron configuration for the corresponding negative
ion, neither gave converged values for any of the rare gases, nor for the actinides.
The converged potential deviates too much from the real negative ion potential to
be stable to bind an extra electron. However, starting with the converged potential
and the electron configuration of the neutral atom, 10 percent of an electron wus
added in each following iteration until a total of one electron was included in the
extra orbital; for the rare gases, convergence was then achieved from this negative-
ion state. In the SCF processes of actinide negative ions, adding 10 percent of an

electron in the extra orbital in the following iteration turned out to be too big for the
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SCF process to stabilize. In order to increase the occupation number smoothly, the
4 i function 0.051x1.05~%, in which i is the iteration number, was used to add the new
fractional electron in the first 81 iterations. This slow, adiabatic change from the

neutral atom allows the system to remain in its ground state. The mixture factor

was chosen to be 0.25 for the negative ions of the rare gases, so that 75 percent of
electron density from the (i-1)** iteration and 25 percent of electron density from
the i** iteration were combined together and used to calculate the new potential
for the (i+1)** iteration. The mixture factor for the actinide elements was reduced
to 0.05 for the negative ions. The SCF was then performed until the differences of
the wave functions between the i** and the (i+1)** iterations were less than 10-8

at all the calculated mesh points,

TABLE IV-4

e The negative of the one-electron eigenvalues (Ry) of the
extra electrons for the negative ions of rare gases

Z Atom nl SIC-GX-LSD QR-SIC-GX-LSD
2 He 23 00738 0.00738

10 Ne 3s 00805 0.00806

18 Ar 4s 00862 0.00865

36 Kr 5s 00904 0.00919

54 Xe 6s 00916 0.00957

86 Rn 78 00932 0.01090
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IV-3.2 Rare Gases

The existence of stable negative ions of atoms in nature is mainly caused
by the quantum effect; because of the negative contribution of the exchange cor-
relation effect of the electron to the energy functional, the neutral system (neutral
atom) can bind an extra electron and form a stable system. The contribution
of the nuclear attraction to forming the stable system is very small because each
electron partially screens the nucleus from all other electrons. Furthermore, the
exchange-correlation potential is approximately proportional to the electron num-
ber, so that the exchange-correlation effect increases with the number of electrons.
The Coulomb repulsion between electrons, of course, increases with the number of
total electrons. The exchange-correlation effect competes with the Coulomb repul-
sion; if the exchange correlation is bigger than the Coulomb repulsion, the negative

ion is stable.

TABLE IV-5

Electron affinities (Ry) for the rare gases calculated
by the SIC-GX-LSD and QR-SIC-GX-LSD theories with the
GWB Fermi-hole parameters and the VWN correction

Elec. Confi. GX-LSD GX-LSD QR-GX-LSD QR-GX-LSD

Z Atom Ion No Corr. VWN No Corr. VWN
2 He 1s* 1s%22s8  —0.0029  0.0054 —0.0029 0.0054
10 Ne 2p® 2083s'  —0.0035 0.0061 —~0.0035 0.0061
18 Ar 3p® 3pf4s!  —0.0040  0.0071 —0.0040 0.0071
36 Kr 4p® 4p®5¢1  —0.0043  0.0079 —0.0043 0.0081
54 Xe 5p® 5p®6s'  —0.0043  0.0082 ~0.0043 0.0091
86 Rn 6p® 6p®7s)  —0.0045  0.0085 ~0.0038 0.0126
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Table IV-4 lists the negative of the one-electron eigenvalue of the extra or-
bital for the negative ions of rare gases in the SIC-GX-LSD theory, both nonrela-
tivistic and quasi-relativistic (QR). The GWB exchange parameters and the VWN
energy-correlation functional were employed in both cases. Table IV-5 gives the
corresponding electron affinities. These tables show (i) that all the negative ions of
the rare gases are stable, the electron affinities being several milli-rydbergs. The
stability of these negative ions is caused by the correlation between the extra elec-
tron and all the other electrons. The Coulomb repulsion is much bigger than the
exchange-only effect; (ii) the relativistic effect of the electrons increases the bindi;g
energy and the electron affinity. This is the reverse of the relativistic contribution
to the negative ions of the alkaline-earth elements!®! in which the relativistic effect
decreases the binding energies; (iii) the binding energies and electron affinities in-
crease with atomic number, because of the increase in the Coulomb repulsion as the

number of electrons increase.

TABLE IV-6

The negative of the one-electron eigenvalues (Ry) of the
extra electrons for the negative ions of some actinides

Z Atom nl SIC-GX-LSD QR-SIC-GX-LSD
94 Pu 6d 0.0710 0.00288
95 Am 6d 0.0682 0.00291
97 Bk 6d 0.0473 0.00297
98 cf 6d 0.0369 0.00299
99 Es 6d 0.0267 0.00299
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IV-3.3 Actinides

Tables IV-6 and IV-T summarize the results of some actinide elements for
which no converged results had previously been obtained (in Section IV-2)101.117
Therefore the present results are compared with the estimated values obtained by
energy extrapolation analysis!'®. Table IV-6 shows the one-electron eigenvalues of
the negative ions for some actinide elements. The numbers decrease in absolute
value with the occupation number of the 5f orbital in the SIC-GX-LSD theory,
excluding the relativistic effect. When the relativistic effect is iucluded the extra-
electron eigenvalues are almost constant for these negative ions. The electron affini-
ties for these actinide atoms are summarized in Table IV-7 and compared with the
estimated values. With the relativistic term the extra electron is bound in the neu-
tral system and forms a stable negative ion. The present prediction of the stability
for the negative ions of these actinide elements is opposite to that by the cnergy-
extrapolation analysis’!® in which the estimated uncertainty is £ 0.022Ry in the
results. Previouslyl?!, the electron affinities have been calculated for the electron
configuration 57~ 7s? (N=7, 10, 11, and 12 for Pu~, Bk~, Cf~, and Es~, respec-
tively) and yielded negative electron affinities. Consequently the extra electron in

these negative ions favour the 6d orbital and not the 5f orbital.

The present results for the rare gases and some actinides show that their
negative ions are still stable, even when the relativistic correction to the electron
removal energy is overestimated for the rare gases and underestimated for the ac-
tinides as in the QR-SIC-GX-LSD theory (see Table I1I-10, because the spin-orbital
coupling term is neglected in the QR-SIC-GX-LSD theory), except for the negative
jons of Bk, Cf, and Es with electron configurations 5f N 7s%. Further investigation

of the stability for the negative ions of the rare gases and actinides is certainly
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needed experimentally.

TABLE IV-7

Electron aflinities (Ry) for some actinides calculated
by the SIC-GX-LSD and QR-SIC-GX-LSD theories with the GWB
Fermi-hole parameters and the VWN correlation correction *

Elec. Confi. GX-LSD GX-LSD QR-GX-LSD QR-GX-LSD
Y/ Atom Ion No Corr. VWN  No Corr. VWN
94 Pu 5/%7s%2 5f%6d!7s% 0.0068  0.0596  0.0180 0.0272
95 Am 5f77s°  5f76d7s° 0.0036  0.0564  0.0195 0.0278
97 Bk 57°7s® 5f%d'7s>  —0.0165  0.0386  0.0094 0.0154
98 Cf 5f1%7s> 5f1%d'7s>  —0.0253  0.0303  0.0088 0.0140
99 Es 5fV7s%2 5f16d'7s2  —0.0340  0.0217  0.0061 0.0108

* The extrapolated values are -0.022 Ry for all these elements.
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IV-4. Double-Charged Negative Ions in Crystals

Baughan!?® calculated the first, second, and third electron affinities of atoms
using the lattice-energy data of some ionic crystals, and the spectroscopic data of
the corresponding molecules; he also estimated the values of the second clectron
affinities for elements O, S, and Se and the third electron affinity for N by ex-
trapolation, starting from the first, second, and third ionization potentials of the
corresponding atom.

The HF calculations of double-charged negative ions in crystal have been

129 who presented the solution of 0%~, and

performed by Gaspar and Csavinszky
Watson!®® who published the analytic form of wave functions, the one-electron
eigenvalues, the two-electron integrals, and the total energy for the double-charged
negative ion, O?~. The SCF calculation for a double-charged negative ion is much
more difficult than that for a neutral atom, positive ion, or even single-charged

negative ion, since the asymptotic form of the potential function becomes positive

when the atomic radial variable r approaches infinity.

The study on the stability of doubly charged negative ions of atorus might
be interesting; firstly, because there is no report dealing with the doubly changed
negative ions from the LDF theory; secondly, the LDF theory is successful in de-
scribing the atomic and molecular structures. Hence, the SIC-GX-LSD theory with
the GWB Fermi-hole parameters and the VWN correlation functional is used to

calculate the doubly charged negative ions in crystals!3?.
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IV-4.1 Convergence Technique

In the SIC-LDF theory, the asymptotic form of the potential is

2(Z-N+1)

r

V(r) = - (4 -4

as r approaches infinity; Z and N are the atomic number and the number of electrons
in an atom. For the double-charged negative ion, N=7Z+2, and equation (4-4)

becomes

V(r) =

3N

(4-95)

This is a repulsive interaction. Physically, the second extra electron might not
be bound stably by a single-charged negative ion in its free state because of the
repulsive potential surrounding the isolated negative ion. Numerically, there is a
continuous solution of the Schrodinger equation with the asymptotic potential of

equation (4-5), instead of a bound wave function.

Stable double-charged negative ions exist in crystals, because of the sur-
rounding environment. To simulate such an environment for the double-charged
negative ions in crystals and to ensure a bound solution to the Schrodinger equa-
tion, Watson proposed a sphere of charge +1 or +2 with a defined radius surround-
ing the free single- or double-charged negative ion. The charged sphere forces the
asymptotic form of the potential to be negative and the Schrédinger equation to

give a bound solution.

The extra potential generated by the Watson sphere with charge +1 or
+2 (the environment of the double-charged negative ion in crystal) is combined
within the SIC-GX-LSD theory. The one-electron Schrédinger equation (1-90) is
solved self-consistently with the pure Coulomb potential (1-91), the exchange poten-

tial (1-127), the self-exchange correction (1-128), and the VWN correlation energy
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functional (1-114). The statistical total energy and the VWN correlation energy

correction are caiculated by equations (1-86) and (1-98) with the converged weve

functions.

IV-4.2 Estimation of Electron Affinity

The calculation of the double-charged negative ion of oxygen, 0%~ , was
carried out using the SIC-GX-LSD theory with the GWB Fermi-hole parameters
and the VWN correlation energy functional, and a Watson sphere of charge +1
and +2. The calculated SIC-GX-LSD statistical total energy (including the energy
contribution of the Watson sphere but excluding the VWN correlation energy cor-
rection) for O*~ was -156.2137Ry for the +1 Watson sphere and -163.5574 Ry for
the +2 Watson sphere, compared to Watson’s HF calculation!®® in which the total
ionic energy (including Watson sphere energy) was -156.1194 Ry for the 41 Watson
sphere and -163.4968 Ry for the +2 Watson spheie. The same radius (1.4 4 or 2.66

 was used in both calculations. The excellent agreement

au.) of Watson sphere!3
of the total energies for the double-charged negative ion from the SIC-GX-LSD
theory and from the HF theory parallels that for the neutral atoms, positive ions,

and the single-charged negative ions”*. Therefore the SIC-GX-LSD theoty predicts

double-charged negative ions as reliably as the HF theory.

The statistical total energy of a negative ion from the Watson sphere aided
SIC-GX-LSD theory is dependent on the charge on Watson sphere. There are
several choices of the charges on the Watson sphere, +2, +1, or 0 for the single-
and double-charged negative ions. The calculation shows that there is no difficulty
in getting convergent results for the single- and double-charged negative jons with

the Watson sphere of charge +1 and +2, but, as mentioned in section 1V-4.1, it
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might be impossible to obtain a convergent value for a double-charged negative ion
using the Watson sphere of charge 0, which is equivalent to a calculation without

any Watson sphere.

TABLE IV-8

The total energies (Ry) including the statistical total energy and the VWN
correlation energy contribution for the single- and double-charged
negative ions of O without and with the Watsou spnere energy
contribution in the Watson sphere aided SIC-GX-LSD
theory with the VWN correlation correction

Degree  Without® With®

of lon +2 +1 0 +2 +1 0

-1 -150.0894 —150.1131 —150.1310 —163.5258 -—-156.8166 —150.1310
-2 —149.4502 —149.5549 - - —— —164.2259 -156.8741 —_———
EA —0.6392 —0.5582 +0.7001 +0.0575

a. Without the energy contribution of the Watson sphere;
b. With the energy contribution from the Watson sphere.

Table IV-8 summarizes the VWN correlation energy corrected statistical to-
tal energies without and with the energy contribution from the Watson sphere for
the single- and double-charged negative ions of oxygen, O~ and O%~, in the SIC-
GX-LSD thecry with the Watson sphere of charge +2, +1, and 0 and radius 2.66
a.u. The last line gives the corresponding energy differences of the single- and

double-charged negative ions, that is,
EA = Eg, - E{5 (4~6)

the second clectron affinity of O, where E;;, and EZ; are the total energy with the

energy contribution from the VWN correlation correction excluding the Watson
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sphere energy (corresponding to columns 2, 3, and 4 in Table IV-8) or the total
energy including the Watson sphere energy (columns 5, 6, and 7), respectively
Compared to the experimental second electron affinity, -0.60Ry for O, it is clear that
the difference of the statistical total energies (excluding the Watson sphere energy)
with both +1 and +2 charges for the single- and double-charged negative ions
(columns 2 and 3) can be used to fit the experimental value of the second clectron
affinity for O by slightly adjusting the radius of the Watson sphere. However, the
difference of the statistical total energy including the Watson sphete energy(columns
5 and 6) cannot be fitted to experiment. The best prediction of the second electron

affinity for O is with the Watson sphere of charge +2.

The difference of the statistical total energies betwcen the single-charged
negative ion O~ with the Watson sphere of charge +1 and the double-charged
negative ion O?~ with the Watson sphere of charge +2, is -0.6629Ry, close to
experiment. It can be used to fit the experimental value by adjusting the radius
of Watson sphere. However, this method was not used to predict any other second
electron affinity because (i) the best fit of the second electron affinity is obtained
from the difference of the statistical total encrgies, with the Watson spheres of
charge +2 and radius 2.66a.u. (which is interestingly close to the lattice-distance);
(i1) physically, the second electron affinity should be the total energy difference
between the single- and double-charged negative ‘ons in the same environment, it is
possible to obtain a positive second electron affinity for an atom by using a different

environment for the single- and double-charged negative ions.

The statistical total energy of the negative ion in the Watson sphere aided
SIC-GX-LSD theory depends on the Watson sphere radius. Thercfore the difference
between the statistical total energies for the single- and double-charged ions, equa-

tion (4-6), depends on the choice of Watson sphere radius. Watson suggested using
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the ionic radius of the double-charged negative ion for the artificial charged sphere.
This suggestion was tested in the present work for O, S, and Se using the Watson
sphere of charge +2. The second electron affinity in the SIC-GX-LSD theory with
the VWN correlation energy correction is -0.6655 Ry for O, -0.3858 Ry for S, and
-0.3462 Ry for Se, compared to the averaged experimental values which are -0.595
Ry for O, -0.45 Ry for S, and -0.39 Ry for Se. Obviously, the agreement between
the calculated and experimental values is not consistent for these three elements;
the second electron affinity is underestimated for O and overestimated for S and Se

using the ionic radii of the double-charged negative ions for the Watson spheres.

To find the Watson sphere radius which is best for calculating the second
electron affinity of an atom, the second electron affinities, the difference of the
total energies (including the VWN correlation energy correction but excluding the
Watson sphere energy) between the single- and double-charged negative ions, with
a Watson sphere of charge +2 are plotted in Fig. 4-1 against the radii of Watson
sphere for O, S, and Se in the SIC-GX-LSD theory with VWN correlation energy
functional and GWB Fermi-hole parameters. Fig. 4-2 has a Watson sphere of charge
+1. The experimental values of the second electron affinities for 028140 S and
Sel28.141 gre also marked on the corresponding curves of these figures. From Figs.
41 and 4-2, it is obvious that the calculated second electron affinities of O, S, and
Se are much less negative with a Watson sphere of charge +1 than with a sphere
of charge +2 for the same Watson sphere radius. Physically, the Watson sphere of
charge +2 is more reasonable, because the net charge provided by the remainder of
a crystal would be +2 for an equilibrium situation. The Watson sphere has to be
very small to give an acceptable second electron affinity with a +1 charge sphere so

that it is far from the lattice-distance found in the crystal.

Fig. 4-1 illustrates the calculated second electron affinity for O equal to
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FIGURE 4-1

The difference of the statistical total energies between the
single- and double-charged negative ions,
with a Watson sphere of charge
+2 vs the radius of the
Watson sphere
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experiment at a Watson sphere radius of approximately 3.0 a.u.; approximately 2.8

4 au. for S and 2.6 a.u. for Se or 4.37 a.u., since two different experimental values
of the second electron affinity for Se are given!?®14!, The "best” Watson sphere
radius, suitable for the three double-charged negative ions to give correct second

electron affinities, compared to experiment, is approximately 3.0 a.u.

Table IV-9 lists the negative of the second electron affinities for atoms he-
lium to krypton calculated using equation (4-6), in which the total energies are
the statistical total energies (including the VWN correlation energ; correction and
excluding the energy generated by the Watson sphere) with the Watson sphere
of charge 42 and radius 3.0 a.u. using the SIC-GX-LSD theory with the VWN
correlation eneryy functional and the GWB Fermi-hole parameters. These results
are compared with other estimates!?®141, for which extrapolation was used, and
with experiment!?%140.141 ' Columns 3 and 4 give the electron configurations of the
single- and double-charged negative ions, chosen according to the ground-state elec-
tron configurations of the atoms, in which the total number of electrons is the same
as in the negative ion. Column 5 and 6 give the present results without and with

the VWN correlation energy correction.

Table IV-9 shows that all the double-charged negative ions are unstable (the
negative values of the second electron affinities) which supports the physical fact
that they exist only in crystals (section IV-4.1). The statistical total energy of the

single-charged negative ion is lower than that of the double-charged negative ion

for all these elements.

It may be seen that the second electron affinities for the same group elements
become less negative as the atomic number Z increases, except for the first row
elements, H and He, where the average Watson sphere radius of 3.0 a.u. is too far

v from the ideal for these atoms. The second electron affinities, EA(2), of the same

126




FIGURE 4-2

The difference of the statistical total energies between the
single- and double-charged negative ions,
with a Watson sphere of charge
+1 vs the radius of the
Watson sphere
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row elements in which the outermost orbitals are 2p also become less negative as

. the occupation number of their spin quantum number m, increases, that is

EA(2)L, < EA(2)p. < EA(2)

and
EA(2)c < EA(2)N < EA(2)0

etc.,, as is true for the elements in which the outermost orbitals are 3p and 4p.
The calculated results parallel experiment. These trends are reasonable; as the
total number of electrons increases, the exchange-correlation which is approximately
proportional to the number of electrons, also increases. The existence of the stable
negative ions of atoms in nature is mainly caused by the quantum effect, which is
the negative contribution of the exchange-correlation effect of the electrons to the

energy functional, therefore the results should parallel the exchange-correlation.

Table IV-10 summarizes the second electron affinities for the elements ru-

bidium to lawrencium in the QR-SIC-GX-LSD theory with the GWB Fermi-hole

parameters and the VWN correlation energy correction, and a Watson sphere of

radius 3.0 a.u. with acha  of 4+2. The trend is similar to that in Table IV-9.

In conclusion, it has bcen shown that the Watson sphere is an effective tech-
nique for calculating the double-charged negative ions in the SIC-GX-LSD theory.
The second electron affinities of atoms are acceptable when a correct radius of Wat-
son sphere is chosen, the method has been illustrated and the trends established
using a fairly accurate average Watson sphere radius of 3.0 a.u. Specific choice of

radius would yield slightly more accurate numerical results but not alter the trends.
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TABLE IV-9

The negative of the seconc electron affinities (Ry) of the atoms
Helium to Krypton in the SIC-GX-LSD theory with the VWN
correlation energy functicnal, compared with

other calculations and experiment

129

Electron Config. GX-LSD GX-LSD Other Expt.
7 Atom 1°¢ ond No Corr. With VWN  Calc.
1 H 1s2 1s22s! 0.4373  0.4303
2 He 15224} 152252 05092  0.4583
3 L 242 252 2p! 0.5977  0.5712
4 Be  2s%2p! 25220 05754  0.5564
5 B 2s%2p? 2s%22p% 05573 0.5428
6 C 222 2s22p* 07431 06635
7 N 222t 2s22p°  0.6993  0.6383 0.61¢
8 O 28228 2s22p%  0.6534  0.6041 0.61¢ 0.60::
0.59
9 F 2p® 2p5 351 0.5754  0.5649
10 Ne  2p%3s! 2p%3s2 05561  0.5048
11 Na 342 3s23p! 05721  0.5478
12 Mg 3s23p! 3s23p? 0.5376  0.5196
13 Al 3s%3p? 3s23p  0.4992  0.4846
” 14 Si 34238 3s23pt 06077  0.5312
; 15 P 3s23p! 3s23p°  0.5414 04828
16 S 3s23° 3s23p5 04769  0.4282 0.40° 0.45:
0.45
17 Cl 3p® 3pS 451 0.5190  0.5054
18 Ar  3pS4sl 3p4s2 05048  0.4589
19 K 442 3d! 452 0.5049  0.4814
20 Ca  3dl4s? 3d%4s 04741  0.4558
21 Sec  3d%44? 3d%4s  0.6282  0.6034
22 Ti  3d34s? 3d° 45} 0.6908  0.7546
2 V  3d%4s! 3d54s2 05781  0.4844
24 Cr  3d®4s? 3d54s  0.8363  0.7657
25 Mn  3d4s? 3d 432 0.7978  0.7343
26 Fe  3d"4s’ 3d%4s* 07635  0.7053
27 Co  3d®4s®  3d'%4s! 1.0075  0.9570
28 Ni 3d1%4s! 3d10442 0.5352  0.4877
29 Cu 44° 4s%4p!  0.6316  0.6058
30 Zn  4s%4p! 4s%4p®  0.5665  0.5478
31 Ga 452 4p® 4s24p3 0.5106  0.4957
32 Ge  4s%4p° 4s%4p* 05986  0.5235
33 As  4s24pt 4s%4p°  0.5246  0.4669
34 Se  4s%4p° 4s%4p® 04549  0.4066 0.46°
0.32¢
35 Br 4p8 4p% 54! 0.5004  0.4861
36 Kr  4p®5s 4p85s2  0.4839  0.4397
L)
g a. Reference 141; b. Reference 128; c. Reference 140.




IV.5. Double-Charged Negative Ions in gas phase

Equation (1-90) for the one-electron eigenvalue and wave function using equa-
tion (1-91) for the Coulomb-interaction potential, (1-127) for the exchange poten-
tial, (1-128) for the self-exchange potential, and (1-114) for the electron-correlation
potential in the electron-correlation corrected SIC-GX-LSD theory with the GWB
Fermi-hole parameters®’ was solved for each orbital by standard SCF procedure®®.
The statistical total energy, E, in equation (1-86), and the electron-correlation en-
ergy, Ec, in equation (1-98), for a doubly charged negative ion were obtained from

the converged wave function#?,

The SCF procedure in the electron-correlation corrected SIC-GX-LSD theory
was achieved ecasily for the doubly charged negative ions of the first category cle-
ments in the second and third periods with a small size of Watson sphere (riws < 10
ap ), whereas it is increasely d'¥cult when the rauius of the Watson sphere increases.
The electronic structures of these doubly charged negative ions are very sensitive
to the potential with a large Watson sphere. No converged results were obtained
by starting with the converged potential of the neutral atom from a Herman and
Skillman calculation*® and the electron configuration for the corresponding doubly
charged negative ions, when the radii of the Watson spheres are bigger than 10 q.
Hence, an adiabatic convergence technique®? was used: starting with the converged
potential and electron configuration of the neutral atom, 1 percent of an electron
was added in each following iteration until a total of two electrons was included in
the extra orbitals. This slow, adiabatic change from the neutral atom allows the
system to remain in its ground state. The mixture factor was chosen to be 0.01 to
0.001 when the radii of the Watson spheres increase from 10 g to 62 ag, the largest
radius of the Watson sphere in the present work, for B~ and Al*~, 10 ay to T4 qp

for C*~, 10 qp to 60 ag for Si?~, 10 gy to 70 ay for N>~ and P*~, and 10 ao to 36
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TABLE IV-10

The electron affiniiies (Ry) for the high-Z elements in the
QR-SIC-GX-LSD theory with the aid of Watson sphere of radius

3 a.u. and the VWN correlation energy Functional

Electron Configuration SIC-GX-LSD  SIC-GX-LSD
7 Atom 1% ond No Corr. With VWN
37 Rb 552 4d! 552 —0.6646 —0.6323
38 Sr 4d! 552 4d? 552 —0.6141 —0.5869
39 Y 4d%552 4d* 55! —0.6499 —0.7024
40 Zr 4d%5s! 4d5 55! —0.5591 ~0.5528
41 Nb 4d35s! 4d5 55* —0.5521 —0.4533
43 Tec 4d7 551 4d8 5 —0.6889 —0.6241
4 Ru 44855’ 4410 —0.8464 —0.7720
45 Rh 10 4d'054! —0.5045 —0.4749
46 Pd 4d195s} 4410542 —0.5086 —~0.4620
47  Ag 4410552 4d'%5525p! —0.6165 —0.5895
48 Cd 582 5p! 552 5p? —0.5499 ~0.5299
49 In 532 5p2 532 5p° —0.4919 —0.4758
50 Sn 552 5p° 552 5p1 —0.5646 —0.4922
51 Sb 532 5p* 532 5p° —0.4928 —0.4365
52 Te 582 5p° 532 5p° —0.4258 —0.3781
53 I 5p® 5p8 65! —0.4667 —0.4522
54 Xe 5p56s! 5p° 652 —0.4522 —0.4098
55 Cs 632 5d! 632 —0.6024 —0.5686
56 Ba 5d" 652 4f%6s? —0.9907 —0.9606
57 La 4f2632 41364 —0.8143 —0.7868
58 Ce 4f36s2 4f16s? ~0.8759 —0.8457
59 Pr 41652 4f56s? —0.9035 —0.8725
60 Nd 4f56s2 45865 —0.9180 —0.8870
61 Pm 418652 41765 —0.9272 —0.8964
62 Sm 4f76s2 4f75d! 6s? —0.6485 —0.6212
63 FEu 4f75d'6s? 4f85d1 652 —1.0244 —0.9515
64 Gd  4f%5d'6s? 410642 —1.3033 —1.2253
65 Tb 410632 4f11 642 —~1.0922 —1.0439
66 Dy 4f116s? 4f1%6s? ~1.1178 —1.0679
67 Ho 4f12652 4f136s? —~1.1234 —1.0744
68 Er 4f13652 4f146s2 —~1.1183 —~1.0714
69 Tm 4f1464? 4114541 6 —0.6993 —0.6683
70 Yb 4f'45d'6s? 5d% 6s? —0.6451 —0.6192
71 Lu 5d26s2 5d°6s* —0.6040 —0.5812
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TABLE IV-10 (Continued)

1 The electron affinities (Ry) for the high-Z elements in the
QR-SIC-GX-LSD theory with the aid of Watson sphere of radius
3 a.u. and the VWN correlation energy Functional

Electron Configuration SIC-GX-LSD  SIC-GX-LSD

Z  Atom 1%¢ ond No Corr. With VWN
72 Hf 5d°6s> 5d*6s” —0.5672 ~0.5469
3 Ta 5d* 65 5d%6s2  —0.5308 ~0.5127
74 w 5d° 6> 548652 —-0.7020 ~0.6265
75 Re 5d° 652 5d" 652 —0.6438 ~0.5778
76 Os 5d" 632 54° 651 ~0.7737 -0.7127
77 Ir 5d°6s? 5d196s? —0.5955 ~0.5432
78 Pt 5d1%6s! 5d106s2 —~0.4398 —0.3929
79 Au 632 632 6p? —0.6225 —0.5950
80 Hyg 6s26p? 632 6p? —0.5538 ~0.5335
81 Tl 6s26p? 6s26p° —0.4934 ~0.4772
82 Pb 6s%6p3 652 6p* —0.5581 ~0.4862
83 B 6s26p* 632 6p° —0.4868 ~0.4310
84 Po 6s26p° 6s26p5 —0.4201 ~0.3729
85 At 6s26p® 6p87s! —0.4667 ~0.4503
8  Rn 75l 752 —0.4495 ~0.4074
87 Fr 7s* 6d! 752 —0.6017 ~0.5694
88  Ra 6d’ 7s* 6d*7f? ~0.5538 ~0.5264
89  Ac 6427f2 5£26d' 7¢ —1.0068 ~0.9656
90  Th 5f%6d'7s? 5£36d1 75 —0.7620 -0.7321
91 Pa  5f36d'7s% 553742 —0.9487 ~0.9145
92 U 5f3742 558752 —0.7900 ~0.7629
93 Np 5/67s2 5775 —0.7871 —0.7602
94 Pu 5f77s2 5f76d! 75 —0.6308 —~0.6078
95 Am 5f'6d!7s> 5f86d! 75 —0.8777 —0.8039
9% Cm £ 86d!71s2 5£10742 ~1.0907 ~0.9907
97 Bk 5710742 5f11 752 —0.9200 ~0.8636
98 Cf 5f11752 5f1274% —0.8963 ~0.8422
99 Es 512752 513752 —0.8716 ~0.8199
100 Fm 5F13742 5f14752 —0.8466 ~0.7972
101 Md 514742 5f1464d! 75 —~0.7023 ~0.6714
102 No 6d! 752 6d% 732 —0.6456 —0.6200
103 Lr 6d? 752 6d375* —0.6034 ~0.5808
.
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ag for O?~ and S?~. This means 99.9 percent of electron density from the (i-1)t*
iteration and 0.1 percent of electron density from the i** iteration were combined
together and used to produce the new potential for the (i+1)'* iteration, when the
mixture factor is 0.001. The SCF procedure was completed when the difference in
the wave functions of electrons between the i'* and the (i+1)** iterations were less
than 10~% at all mesh points. Obviously, the speed of convergence is very slow and
decreases, when the radius of the Watson spheie increases. In all this work, the
net charge on the Watson sphere is +1 e. When the radius of the Watson sphere
is bigger than the largest radius of the Watson sphere of the cortesponding doubly
charged negative ion, no converged results were obtained. The largest radius of the
Watson sphere which can be used to produce the converged electronic stiucture of
the corresponding doubly charged negative ion differs for different doubly charged
negative ions and depends on the electronic structure and electron configuration.
For example, the largest radius is 62 ao for both B%~ and Al*~, which aie of the

same valence electron configurations with a half occupied p orbital, py.

The additional potential produced by the introduction of a Watson sphere

in the doubly charged negative ions is

2

- when r < rws;

VWS('I‘) = ;W.S ’ ws (4 - 7)
-4 when r > rwys.

The total potential including the Coulomb interactions between the nucleus and
electron, electron and electron, and positive charge on the Watson sphere and elec-
tron, the exchange and correlation potentials is certainly a continuous function of
radial r. But its derivative is not a continuous function, because of the wse of the
Watson sphere potential. The left-hand derivative of the Watsou sphete potential,
Vws(r), is zero and its right-hand derivative is 735—5 at 7 = rys  Fig. 43 plots

the product of the potential and the radial r for the outermost orbital, 2p |, of the

doubly charged negative ion of carbon, C*~, against the modificd radial x (the re-
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lationship of the modified radial x and the ordinary radial ris r = %(%)2/32"]/‘%
with the atomic number Z) and demonstrates the discontinuons behaviour of the
first derivative of the total potential at r = rwg. It is very interesting that there is
a total potential barrier with positive total potential inside the Watson sphere. The
total potential of the outermost orbital gradually increases passing the rV(r) = 0
value with a zero total potential and then becomes positive arriving its peak. As the
radial r continuously increases, the total potential gradually decreases and passes
the PV (r) = 0 value again and becomes negative outside the Watson sphere. This
implies that the electron-electron interaction potential, which is the only positive
contribution to the potential in the total potential expression, is larger than the
negative potential, which includes the contribution from the nucleus-electron and

Watson sphere charge-electron interaction and the exchange-cor: 2lation effect.

Fig. 4-4 plots the dependence of the electron density distribution for the
electron in the outermost orbital, 2p |, of the doubly charg -d negative ion of carbon,
C?~, on the radius of the Watson sphere. It is clear that the electron density is
gradually shifted toward a large radius, when the radius of the Watson sphere is
increasing. In order to keep the normalization restriction of the wave function, the
peak of the cuive is reduced and the electron density gradually : .eads, as the
Watson sphere size increases. The electron density distribution of a core orbital,
such as the 1s orbital in C?7, is not affected by changing the radius of the Watson

sphere.

Comparing Figs. 4-3 and 4-4 shows that the electron density of the outermest
ortbital is mainly distributed outside of the Watson sphere, when the radius of the
Watson spliere is less than 70 @y Hence, the barrier of the total potential is not
cau~ed by the chaige density of the clection in the outermost orbital, but created

Ly the constant potential generated by the charge on the Watson sphere inside the
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FIGURE 4-8

The potential of the outermost orbital, 2p |,
of the doubly charged negative
jon of carbon, C?~, vs the
modified radial x
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Watson sphere.

Obviously, the statistical total energy and the one-electron eigenvalue of a
doubly charged negative ion in the electron-correlation corrected SIC-GX-LSD the-
ory with the GWB Fermi-hole parameters are dependent on the Watson sphere
size, when it is not large enough. Table IV-11 shows the dependence of the to-
tal energy including the statistical total energy and the VWN correlation energy
contribution but excluding the energy contribution from the Watson sphere, the
one-electron eigenvalue, and the expectation value of the Watson sphere potential
for the electron in the outermost orbital of the doubly charged negative ion of car-
bon, C?~, on the radius of the Watson spherec. When the radius of the Watson
sphere increases, the electron density spreads toward the large radial. Therefore,
the electron-electron repulsive energy decreases and the nucleus-electron attractive
energy decreases. Because the contribution of the former to the statistical total
energy is positive and the contribution of the latter is negative, they partly cancel.
The total energy excluding the Watson sphere energy (Table IV-11) depends slightly
on the radius of the Watson sphere and increases in size as the radius of the Watson
sphere increases. Furthermore, the dependence of the total energy on the radius
of the Watson sphere decreases as the radius of the Watson sphere increases. For
example for C?~ the difference of the total energies calculated by using the Watson
spheres with ryyvs = 14ao and riws = 18ap is 0.0017 Ry, whereas the difference of
the total energics calculated by using the Watson spheres with rws = 5449 and
rvs = 58agp is 0.0010 Ry. However the one-election eigenvalue for the outermost
orbital of the doubly charged negative ion is strongly dependent on the radius of
the Watson sphere and decreases in magnitude as the radius of the Watson sphere
increases. The dependence of the expectation value of the Watson sphere potential
for the eclectron in the outermost orbital of C?- is shown in column 4 of Table

IV-11. The value decreases as the radius of the Watson sphere increases, because
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FIGURE 4-4

The dependence of the electron density distribution
for the electron in the outermost orbital,
2p |, of the doubly charged negative
ion of carbon, C?~, on the radius
of the Watson sphere
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the potential contribution of the Watson sphere is gradually reduced by increasing
the radius of the Watson sphere. The real one-electron eigenvalue can be obtained
by subtracting the expectation value of the Watson sphere potential, column 4 in
Table IV-11, from the calculated one-electron eigenvalue of the corresponding or-
bital, in column 3 in Table IV-11. Hence the real one-electron eigenvalue excluding
the coniribution from the Watson sphere is positive and gradually decreases when

the radius of the Watson sphere increases.

TABLE 1IV-11

The dependence of the total energy and the one-electron
eigenvalue and the expectation value of the Watson
sphere potential for the outermost orbital of the

doubly charged negative ion of carbon, C*~ (Ry)

WS Etot €2p] <2 | |Vwsl2p |>
10 —76.1276 —0.004366 ~0.04175
14 —76.1292 —0.004320 —0.04009
18 ~76.1309 —0.004265 ~0.03838
22 -~76.1327 —0.004197 -0.03654
26 —76.1346 —0.004119 —0.03462
30 ~76.1364 —0.004033 -0.03274
34 ~76.1381 —0.003943 —0.03094
38 ~76.1398 —0.003853 —0.02927
42 —76.1413 —0.003763 ~0.02772
46 —76.1426 —0.003675 ~0.02629
50 —76.1439 —0.003590 ~0.02500
%) - 76.1450 —0.003508 -0.02380
58 ~76.1460 —0.003429 -0.02271
62 -76.1470 —0.003353 -0.02170
66 —~76.1479 —0.003280 —0.02079
70 ~76.1487 —0.003211 —0.01994

Since the total energy excluding the energy contribution of the Watson sphere
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sphere increases, the difference of the total energies for the doubly charged negative
ion and the singly charged negative ion, in which no Watson sphere was used, should
decrease in magnitude. Table IV-12 lists the dependence of the sccond clectron
affinities for the B and Al on the radius of the Watson sphere in the electron-
correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole parameters.
The difference in the electron affinities become smaller and smaller, when the radius
of the Watson sphere becomes bigger and bigger. For instance, the difference of the
electron affinity for B is -0.2437 Ry, when the Watson sphere size is increased from
2 ap to 4 ap, -0.0020 Ry when the size is increased from 30 gy to 32 ay, and -0.0006
Ry when the size is increased from 60 ay to 62 ay. The electron affinity in the
electron-correlation corrected SIC-GX-LSD theory is not significantly changed by
increasing the Watson sphere radius when the Watson sphere radius is large enough
and approaches a constant value. Unfortunately, no converged values were obtained
for B, when the radius of the Watson sphere was bigger than 62 . This raises
the question of what is the asymptotic value of the electron affinity for B when the
Watson sphere radius goes to infinity? Is it possible to fit the calculated value and
then estimate its asymptotic electron affinity using any function? The behaviour of
the calculated electron affinity for B is inversely proportional to the 1adius of the

Watson sphere.

The simpliest function worthwhile testing is

a

A=Ay —

(4-8)
TWws

where Ay and a are constants to be determined. If the equation can fit the electron
affinities calculated in the electron-correlation corrected SIC-GX-LSD theory with
a large size of Watson sphere, the asymptotic value should correspond to the real
electron affinity, when rws approaches infinity, that is Ay.

This approach was tested for B first. It was found that when Ay = -0.1147
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Ry and a = 1 Ry/ao, the electron affinities calculated by using the Watson spheres
whose radii are bigger than 30 ag were perfectly fitted by equation (4-8). The
calculated and fitted results are listed in the columns 2 and 3 of Table IV-12,
respectively, and plotted in Fig. 4-5. The dependence of calculated electron affinities
for Al on the radius of the Watson sphere is of the same behaviour as those for B.
The calculated electron affinities by using different radii of the Watson spheres also
can be fitted by equation (4-8) with Ay = -0.1344 Ry and a = 1 Ry/agp. The
calculated and fitted electron affinities are summarized in the columns 4 and 5 of

Table IV-12, respectively, and plotted in Fig. 4-6.

The same behaviour can be applied to other doubly charged negative ions of
the first category elements in the second and third periods. Figs. 4-7 to 4-12 plot
the electron affinities calculated in the electron correlation corrected SIC-GX-LSD
theory with the GWB Fermi-hole parameters and the fitted electron affinities by
using equation (4-8) with Ay = -0.0047 Ry and a = 0.9 Ry/ag for C, Aq =-0.0083 Ry
and a = 0.7 Ry/ao for Si, Ag = -0.0237 Ry and a = 1.425 Ry/a, for N, Ay = -0.0458
Ry and a = 1.395 Ry/ag for P, Ay = -0.3606 Ry and a = 0.6353 Ry /ay for O, and A,
= -0.2012 Ry and a = 0.56 Ry/a¢ for S. The electron affinities are presented in Table
IV-13 and compared with the HF calculation given by Clementi and McLean!3! and
the configuration mteraction calculations with the single and double substitutions
obtained by Kalcher!3*. The calculated results are very different. But the present
results are the only ones which are part of a large body of established results and
should be correct. Unfortunately, there are no experimental values to be available
for comparison. But, at least, all these calculations show that the doubly charged

negative ions of the first category elements in the second and third periods are
unstable in gas phase.
It might be impossible to achieve the SCF calculation for the doubly charged
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TABLE IV-12

The dependence of the second electron affinities (Ry) of B and
Al on the Watson sphere radius (ag), and fitting by a function

of A= Ag - =%~ with Ag=-0.1147 Ry and a=1 Ry ag’

rws

for B and -0.1344 Ry and a=1 Ry ag ' for Al

B Al
ws GX-LSD Fitting GX-LSD Fitting
2 ~0.5835 —0.6147 ~0.5839 —0.6344
4 —0.3398 —0.3647 —0.3577 ~0.3844
6 ~0.2613 —0.2814 —0.2771 ~0.3011
8 —0.2248 —0.2397 -0.2397 —0.2594
10 ~0.2040 —0.2147 —0.2193 —0.2344
12 ~0.1903 —0.1980 ~0.2063 ~0.2177
14 —0.1805 —0.1861 —-0.1971 —0.2058
16 -0.1730 —0.1772 —0.1902 —0.1969
18 -~0.1671 —0.1703 —0.1846 —0.1900
20 ~0.1623 —0.1647 —0.1802 —0.1844
22 —0.1583 —0.1602 —0.1765 ~0.1799
24 —-0.1547 -0.1564 —-0.1733 —0.1761
26 —0.1501 —0.1532 ~0.1706 —0.1729
28 -0.1489 —0.1504 —-0.1676 -~0.1701
30 -0.1474 —0.1480 —0.1666 —0.16717
32 —0.1454 —0.1459 —0.1647 —0.1656
34 —0.1437 —0.1441 —0.1630 —0.1°18
36 -0.1421 —0.1425 —0.1615 —0.1622
38 —-0.1407 —0.1410 —0.1600 —0.1607
40 -0.1394 —0.1397 —0.1587 —0.1594
42 —-0.1384 —0.1385 -0.1577 -0.1582
4 ~0.1373 —0.1374 —0.1566 —0.1571
46 -0.1364 —0.1364 —0.1557 —0.1561
48 —~0.1354 —0.1355 —0.1546 —0.1552
50 ~0.1347 —0.1347 —0.1543 —0.1544
52 —0.1339 —0.1339 ~0.1535 ~0.1536
54 ~0.1332 ~0.1332 —0.1528 —0.1529
56 -0.1325 —0.1326 -0.1521 —0.1523
58 —0.1319 —0.1319 —0.1516 —0.1516
60 -0.1314 —0.1314 —-0.1510 —0.1511
62 -0.1308 —-0.1308 —0.1505 —0.1505

negative ions of atoms directly applying the LDF theory, but with the :*d of a

Watson sphere, the SCF procedure can be carried out properly, when the radius
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of the Watson sphere is not very big. The total energy for the doubly charged
negative jon in the electron correlation corrected SIC-GX-LSD theory with the
GWB Fermi-hole parameters is of the same behaviour as equation (4-8). The second
electron affinities of atoms calculated by the differences of the total energies can be
approximated by the asymptotic values of equation (4-8) as the radius of the Watson

sphere goes to infinity.

TABLE IV-13

The second electron affinities gRy) of B, C, N, O, AL, Si, P
and S obtained by fitting the calculated values in the electron
correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole
parameters, compared with other theoretical calculations

Atom SIC-GX-LSD* Hr CI(SD)¢
B -0.1147

C —0.0047

N —0.0237 —0.4540

O —0.3606 —~0.4440

Al —0.1344 —0.0542
Si —0.0083 —0.0612
P —0.0458 —-0.0612
S —0.2012 —0.0499

a. The present work;
b. Reference 131;
¢. Reference 134.

Qualitatively, the signs of the second electron affinities in the electron cor-
relation corrected SIC-GX-LSD theory with the GWB parameters are the same as
obtained by the HF and CI(SD) calculations. The doubly charged negative ions in
their ground states are unstable in gas phase for the first category elements in the

second and third periods.
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FIGURE 4-5

The dependence of calculated second electron affinities
for B on the radius of the Watson sphere
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FIGURE 4.6

The dependence of calculated second electron affinities
for Al on the radius of the Watson sphere
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FIGURE 4.7

The dependence of calculated second electron affinities
for C on the radius of the Watson sphere
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FIGURE 4-8

The dependence of calculated second electron affinities
for Si on the radius of the Watson sphere
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FIGURE 4-9

The dependence of calculated second electron affinities
for N on the radius of the Watson sphere
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FIGURE 410

The dependence of calculated second =lectron affinities
for P on the radius of the Watson sphere
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FIGURE 4-11
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The dependence of calculated second electron affinities
for S on the radius of the Watson sphere
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CHAPTER V

FRACTIONAL CHARGED ATOMS AND IONS

V-1. Introduction

The electronegativity of an atom is an important concept in understand-

141,143

ing many molecular properties , such as the screened nuclear chaige scen by

the outer electrons, the radius of electron clouds, the work function of metals,
the bond energy of molecules, the dipole moment of molecules, the foice con-

stants of molecules, etc. It has been related with the dipole polarizability in

144,145 116

atoms and the electronic distribution in molecules’ . Therefore, much at-

tention has been focused on predicting the electronegativities of atoms and atomic

55,76,78,144—154

groups . Electronegativity is the power of an atom in a molecule to

attract electrons to itself!43,
Many definitions of the electronegativity occur!®!. A widely used definition
of atomic electronegativity was given by Mulliken!®®

(I+4)
X="—F

-~

(5-1)

The electronegativity, x, is equal to the average value of the ionization potential, 1,

and electron affinity, A, of the atom in the ground state.

The electronegativity concept in the density-functional theory of Parr et

a1.147 is

OF .
X*[ENL (5-2)
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where E is the statistical total energy treated as a continuous function'°® of electron
number, N, and the nuclear charge, Z. Parr and Pearson’” defined the absolute

hardness n of an atom to be

I[BZE]
n=-lz== 5-3)
20N, (

If the derivation in equation (5-3) is replaced by its finite difference, the absolute

hardness n can be expressed by

n=.(i_.;_’_4l (5 - 4)

4

The electronegativity and hardness of an atom provide the relationship to
quantify the amount of charge transferred in the formation of a molecule because the
electronegativity must be constant everywhere in eyuilibrium. When two atoms A
and B are brought together, electrons will flow from the atom with lower electroneg-
ativity to that with higher electronegativity until the electronegativities become
equal. The charge transferred during the formation is

XA —XB
Ag= 22 5-5
2(na +n8) (5-5)
Recently, the definition of hardness of an atom was generalized by Orsky and

Whitehead™ to

o = At —Aao) ;AA") (5 - 6a)

and

n3=(—191%1—312 (5 - 6b)

where n4 and np are the hardnesses for the acid A and base B; Ipy and [44 are

the first and second ionization potentials, and A,4p and Ap_ the first and second
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electron affinities for the atom. This theory was developed and used in atom and

atomic group calculations®!:152,

Calculations of electronegativity and hardness need accurate values of ioniza-
tion potentials and electron affinities. The experimental ionization potentials and
electron affinities are missing for many atoms. Semi-empirical inter-extrapolation!®?

compensates for the lack of experimental values, but was based on existing experi-

mental values of atoms and molecules.

Fortunately, the self-interaction and electron-correlation corrected LDF the-
ory has proved powerful in predicting the ionization potentials and election affini-

30,45,49,73,81,92,101,105 The self-

ties of atoms interaction and clectron-corielation cor-

rected LDF theory does not depend on any experimental values.

153,157 generalized the concept of electionegativity and

Lackner and Zweig
hardness to fractionally charged atoms. They obtained the ionization potentials
and electron affinities of quark atoms for all elements with Z < 93 m the periodic
table by isoelectronic interpolation of the experimental ionization potentials and
electron affinities ~* the ordinary atoms. They 1eported the clectionegativities and
hardnesses of quark atoms with fractional nuclear charge Z=Nt1 and Z=N+t%,
Sen et al.’®® published the electronegativities and the eletronegativity differences
for the quark atoms of halogens, having nuclear charge Z=N+ 1 by using cquations
(5-1) and (5-2) in the S LSD theory. The SIC-LSD results are in agreement with
the Lackner and Zweig!®® empirical results. But Sen et al '*® ouly dealt with the

halogens, because of convergence problems in calculating the negative ons of the

quark atoms of other elements with fractional nuclear chaige Z=N-1.

In this chapter!®®, the ionization potentials and clection affinities for cal-
culating the electronegativities and hardnesses, the fist and second ionization po-

tentials and electron affinities of the quark atoms with fractional nuclear charges
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Z:N:i:]g and Z=N :i:g— for the elements with Z < 37 will be calculated by the SIC-
GX-LSD theory with the GWB Fermi-hole parameters and the Vosko, Wilk, and
Nusair®%138 (VWN) correlation energy functional. A special convergence technique
performs the self-consistent-field (SCF) calculation for the electron affinities, to

avoid severe convergence problems in calculating the negative ions of quark atoms.

By means of the method introduced in section III-1, equation (3-4), the first

ionization potential, I, and electron affinity, A, are given by

I=Et-t>t'—Etoot (5 ~T7a)
and
A= E?ot - Et—c-)t (5 - 76)

where E}f,, E? ,, and E;,, are sum of the statistical total energy in the SIC-LDF
theory, E, and correlation energy contribution, E., for the positive ion, neutral

atom, and negative ion, respectively, that is
Etlot :E1+Et{ (5_8)

where I stands for +, 0, or -. The statistical total energy in the correlation corrected
SIC-GX-LSD theory is calculated by equation (1-86), and the correlation energy
correction, E;, is obtained by equation (1-98) in the VWN correlation procedure.
The electron-correlation corrected SIC-GX-LSD theory with the GWB?7 ex-
change patameters is used in this calculation, because previously*%73:74,:81,101,105
it gave very good statistical total energies for the neutral atoms E°, positive and
negative ions E! (where I stands for 4+ or -) of the ordinary atoms in agreement
with Hartree-Fock (HF)1%2, The first and second ionization potentials and the first
electron affinities for the quark atoms (hydrogen to krypton) with fractional nu-

clear charge Z=N+3 and Z=Nx% and the second electron affinities for the quark
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atoms with Z=N+3} and Z=N+1 are evaluated from the difference in total cnergies
which are the sums of the statistical total energies and the corresponding VWN
correlation-energy corrections of the quark atom and first order quark ion (equa-
tions (5-7a) and (5-7b)) or the first and second order quark ions. The results are
shown in Tables V-1 to V-4, V-7 and V-8 and compared to the isoclectronic interpo-
lated values given by Lackner and Zweig!®®. The ionization potentials and electron
affinities are employed to calculate the electronegativities and the hardnesses by
equation (5-4) and the equations (5-6a) and (5-6b). The results are summarized in
Tables V-1 to V-4.

V-2. Ionization Potential

The first and second ionization potentials are listed in columns 3 and 4
of Table V-1 to V-4 for the quark atoms with fractional nuclear charge Z=N+1

and Z=N+12

%, respectively, for the elements hydrogen to krypton in the clectron-

correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole parameters.
The electron-configurations for the quark atoms and the first and second order
positive ions were taken from Moore’s table®?| the electron-configuration of an quark
atom or positive ion is the same as that of the neutral atom or positive ion of the

corresponding element in Moore’s table.

To compare the present values with the empirical interpolated first jonization
potentials of Lackner and Zweig!'®® based on the experimental ionization potentials
of isoelectronic consequences of the ordinary neutral atoms and positive ions, Figs.
5-1 to 54 plot the first ionization potentials of the quark atoms with fiactional
nuclear charge Z=N:t% and Z=N:i:§'— against the nuclear chaige. The agieement

of the first ionization potentials for the quarks with fractional muclear Z=Nzi
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and Z=N+§ between the present calculated values and the Lackner and Zweig
results is excellent, except for the transition-metals elements. The deviation for the
transition-metal elements might be caused by the different electron-configurations
considered in the present work and in the interpolation. Furthermore, the present
results are slightly bigger than Lackner and Zweig's results. From Fig. 5-4, it can
be seen that this agreement for the quark atoms with Z=N-§ is worse than that of
the quark atoms with Z=N+} and Z=N+2. Because the net charge for these quark
atoms with Z=N-§ Is -%e, and consequently, the outermost electrons are less bound
than in the quark atoms with Z=N :{:13 and Z=N +§-. In the numerical calculation,
the quark atoms with Z=N-% are strongly dependent on the electron-correlation,
like that of the ordinary negative ions%%:94:196.109 = Hence, the correlation-energy
contribution to the ionization potentials is very important for the quark atoms with
Z=N-%.

From Figs. 5-1 to 5-4 and Tables V-1 to V-4, it can be seen that the first and
second ionization potentials of the quark atoms have the same trend as the ordinary
atoms; the ionization potential increases as the occupation number of the subshell
increases. The rare gas elements are of the highest first ionization potentials in

the same row, and the alkaline-metal elements possess the lowest first ionization

potentials.
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FIGURE 5-1

The first ionization potentials of the quark atoms with fractional
nuclear charge Z=N + } in the electron-correlation
corrected SIC-GX-LSD-GWB theory, compared with

Lackner and Zweig's interpolation
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V-3. Electron Affinity

Equation (1-90) for the one-electron eigenvalue and wave function using equa-
tion (1-91) for the Coulomb-interaction potential, (1-127) for the exchange poten-
tial, (1-128) for the self-exchange potential, and (1-114) for the electron-correlation
potential in the electron-correlation corrected SIC-GX-LSD theory was solved for
each orbital by standard SCF procedure® self-consistently. The SCF process was
achiceved easily for the ordinary quark atoms and their negative ions with fractional

nuclear charge Z:N-}—.l; and Z=N+%, because of the attractive asymptotic forms of

potential

(5-9)

when r approaches infinity, for the quark atoms with a = 1for Z =N 4 % and a =

2forZ =N + g— The results are listed in Tables V-1 and V-3.

The electron affinities of the quark atoms with fractional nuclear charge
Z=N+'§ listed in column & of Table V-1 ae actually equivalent to the first ionization
potentials of the quark atons wit". Z:N-% {(in Table V-4), and the electron affinities
of the quark atoms with Z=N +§— in column 5 of Table V-3 are equivalent to the
first fonization pctentials of the quark atoms with Z:N-% (column 3 of Table V-2),
but belonging to different quark atoms. For example, the electron affinity of 0.47
Ry for the quatk atom H with Z=N+1=11 is equal to the first jonization potential
of He with Z:N-?j:l%, because they have the same number of electrons, the same
nuclear charge, and the same electran configuration; and the electron affinity of 1.07
Ry for H with Z=N+£=1% in Table V-3 1s equal to the fist ionization potential of

He with Z:Nu%:—-l% m Table V-2.

The SCF calculation was achieved for the negative ions of the quark atoms

related to the elements in group VII A, having fiactional nuclear charge Z:N-}g,
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TABLE V-1

The first and second ionization potentials, electron affinitics,
electronegativities, and hardnesses (Ry) calculated by the
electron-correlation corrected SIC-GX-LSD-GWRB theory for
some quark elements whose net charge is +e/3 (Z=N+1/3)

Z 1t 14 A W 0% l),f} n?
1% 1.83 047 115 0.16 0.8
2F 293 551 008 151 1.36 0.73 1.43
3L 068 738 021 045 1.79 0.17 0.23
43 1.02 1.79 0.14 0.58 0.41 0.26 0.44
55 098 234 026 062 052  0.24 0.36
6 1.27 234 040 083 049 032 044
73 1.57 280 027 092 063 0.39 0.65
81 148 326 046 097 070 037 0.4
91 1.85 323 067 126 0.4 046 0.59
101 221 376 0.09 1.15 0.92 0.55 106
113 0.63 4.29 0.20 0.42 1.02 0.16 0.22
121 0.84 146 0.10 047  0.34 0.21 0.37
135 067 176 020 044 039 017 023
145 087 152 031 059 030 022 028
151 1.07 181 028 068 038  0.27 0.40
163 .09 210 042 075 042 027 033
174 132 216 057 094 040 033 038
181 155 248 009 082 060 039 073
191 052 280 017 035 066 013 0.7
203 0.67 114 015 04l 0.25 0.17 0.26
21% 0.70 122 011  04] 0.28 0.17 0.29
225 073 129 034 053 024 018 020
2L 051 1.60 042 046 030 013 004
24 o075 173 021 048 038 019 027
255% 0.79 1.48 0.03 041 0.36 0.20 0.38
265 0.84 .52 034 059 030 021 0.25
27% 0.65 1.80 0.44 0.54 0.34 0.16 0.1
28% 0.59 1.94 053 056 035 015 0.03
201 08 207 029 057 041 0.2 0.28
30 099 169 010 054 040 025 0.1
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TABLE V-1 (Continued)

The first and second ionization potentials, electron affinities,
electroneguativities, and hardnesses (Ry) calculated by the
electron-correlation corrected SIC-GX-LSD-GWRB theory for
some quark elements whose net charge is +e/3 (Z=N+1/3)

Z 1 1 Af A 4 g n?
Ga 3% 0.68 1.87 0.20 0.44 0.42 0.17 0.24
Ge 321 0.84 1.47 0.30 0.57 0.29 0.21 0.27
As 331 1.01 1.69 0.28 0.65 0.35 0.25 0.36
Se 341 1.02 1.91 0.40 0.71 0.38 0.25 0.31
Br 35t 1.20 1.94 0.53 0.86 0.35 0.30 0.34
Kr 361 1.38 218 0.09 0.73 0.52 0.34 0.65

a. The first tonization potential;
b. The second iomzation potential;
c. The first electron affinity;
d. Electronegativity, \ = (—I—%ﬁl

e. Hardness of acid A, n4 = Uay—Aao),

1

4 b
f. Hardness of base B, np = (—[ﬁg—lfi—’l;
g. Absolute hardness, n = (-I—;—}-‘-)—

although the asymptotic forms of the potentials are repulsive, the value of a in
equation (5-9) is -1. The calculations in the electron-correlation corrected SIC-GX-
LSD theory and in the electron-correlation corrected quasi-ielativistic SIC-GX-LSD
(QR-SIC-GX-LSD) theory show that the negative ions of these quark atoms with
Z:N-]z arce stable except for F~, when the VWN corielation eneigy contribution
is invoked The electron affinity is -0.0451Ry for ¥, 0.0711Ry for Cl, 0.0815Ry
for Bi, 0.0945Ry for I, . .1 0.0975Ry for At with Z=N-l§ in the electron-correlation
corrected SIC-GX-LSD theory, and it is -0.0455Ry for F, 0.0702Ry for Cl, 0.0789Ry
for Br, 0.0901Ry for I, and 0.0895Ry for At in the electron-correlation corrected

QR-SIC-GX-LSD theory. The relativistic effect is to decrease the binding energy
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TABLE V-2

The first and second ionization potentials, electron affinities,
electronegativities, and hardnesses (Ry) calculated by the
electron-correlation corrected SIC-GX-LSD-GWB theory for
some quark elements whose net charge i -¢/3 (Z=N-1/3)

Z I§ 13 Af W4 Y r/,f, nY
H 2 048 -0.09  0.19 012 029
He 12 107 28 -0l 053 071 027 054
Li 22 022 419  —0.03 0.0 1.06 006 013
Be 32 042 100 -0.01 021 025 01l 02
B 42 036 140  —0.08 014 037 009 022
C 52 654 138 =007 023 036 013 030
N 62 073 173 —0.02 035 044 018 (.38
0 72 061 208 013 024 055 015 037
F 82 086 201  —0.05 041 051 022 045
Ne 92 112 243  -0.02 055 061 028  0.57
Na 102 o024 28  —0.03 010 072 006 0.3
Mg 112 0.38 0.88 ~0.02 0.18 0.22 010 0.20
Al 122 026 112 —005 010 029 006  0.15
Si 132 039 092  -002 019 024 010 021
P 14% 053 115 =004 025 030 013 029
S 152 o052 139 -0.01 025 035 013 026
cl 162 069 142 007 038 034 017 031
Ar 172 o086 168  —0.02 042 042 022 044
K 182 021 1.94 —-0.0z 0.9 049 005  0.12
Ca 192 032 071 —005 014 019 008 0.8
3c 20¢ 034 093  —004 015 024 009 0.9
Ti 212 035 157 —0.09 043 041 009 022
\% 222 036 183 —0.03 016 047 009 020
Cr 232 037 212 —003 017 054 009 020
Mn 242 038 230  —029 004 065 010 034
Fe 252 041 118  —016 012 033 010 029
Co 6% 047 192 -0.10 049 051 012 029
Ni 272 042 225  —004 019 057 010 023
Cu 282 041 257 =003 019 065 010 022
Zn 202 050 269  —0.04 023 068 013 027
Ga 302 026 126 —005 011 033 007 016
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TABLE V-2 (Continued)

The first and second ionization potentials, electron affinities,
electronegativities, and hardnesses (Ry) calculated by the
electron-correlation corrected SIC-GX-LSD-GWB theory for

some quark elements whose net charge is -e/3 (Z=N-1/3)

Z 1§ 15 A§ \ % B "W
Ge 312 039 092  —002 018 024 010 0.2l
As ;22 051 111 004 024 029 013 028
Se 32 050 129 0.00 025 032 013 025
Br 312 065 130 0.08 036 031 016 028
Kr 352 079 150 -0.04 038 039 020 04l

a. The first jonization potential;
b. The second ionization potential:
c. The first electron affinity;

d. Electronegativity, x = U'i-z_}—)v
e. Hardness of acid A, 14 = ”_A:t_:i‘AO_)_;
f. Hardness of base B, ng = S_I_B_E&‘il_ﬂ_-.)_;
g. Absolute hardness, n = (_I__Q.i).

of the extra electron for the quark atoms related to the elements in group VII A.
The convergence in the SCF procedure for the negative ions of these quark atoms
might be attributed to the negative contribution of the exchange-correlation energy

functional.

Unfortunately, the SCF procedure failed in calculating the negative ions of
the quark atoms with Z=N-1 for the 1emaining elements, and no convergence was
obtained. Presumably the exchange-correlation potential approaches zero faster for

these elements, than for the halogens, when r approaches infinity.

To converge the ounec-election Schrodinger equation for the negative ions of
the quark atoms with Z=N- 15, an artificial positively charged sphere, introduced by

Watson'3? in calculating an osygen double-charged negative ion, was used. Pre-
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TABLE V-3

by the electron-correlation cotrected

SIC-GX-LSD-GWB theory for some quark
elements whose net charge 1s +2¢/3 (Z=N+2/3)

The first and second ionization potentials, clectron aflinities,
electronegativities, and hardnesses (Ry) calculated

1§ Ig Af A“I 1 ¢ 74 /)?} 0
12 2.83 .07 —0.01 195 0./1  0.8%
22 4.19 718 0.22  —0.03 221  L7TL  LOG 199
32 1.00  9.30 0.42 =001 071 272 025 0.29
42 140 2.28 0.36  —0.08 0.88 048 037 052
5% 138 2.89 0.54  —0.07 096 059 036 0.42
62 173 291 073  —0.02 123 055 041  0.50
7% 208  3.43 0.61 =013 134 070 055 073
82 201  3.94 0.86  —0.05 144 077 051 057
92 243 3.93 112 =002 177 070  0.61 065
10 2.85 4.5 0.24 =003 154  1.07 072 130
112 0.88  5.10 0.38  —0.02 063 LI18 022 025
12¢ 112 179 026  —0.05 0.69 038 029 043
132 092 212 0.39  —002 0.66 043 021 027
142 115 1.86 0.53 =004 081 033 030 03]
152 1.39 218 0.52 —0.01 095 041 035 043
162 142 2.50 0.69 0.07 105 045 034 036
172 1.68  2.57 0.86  —0.02 127 043 042  04]
182 194 2.92 021  —0.02 1.07 068 049 0.7
192 071 327 032 —0.05 051 074 019  0.20
20% 0.93  1.38 0.34  —0.04 064 026 024  0.30
212 1.07 147 0.35 —0.9 071 028 029 0.36
222 1.21 185 0.36  ~0.03 078 030 031 042
232 0.99  2.m 0.37  —0.03 0.68 041 025 0.3
2% 0.97 213 038 —029 0.68 044 032 030
252 118 1.76 041 =016 079 034 033 038
262 1.28 181 047 =010 088 033 035 0.40
27% 110 225 042  —004 076 046 029 034
28% 1.20 240 041  —0.03 081 050 031 040
292 111 255 0.50  —0.04 081 051 029 031
302 126 2.00 0.26 —0.05 076 043 033 050
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TABLE V-3 (Continued)

, The first and second ionization potentials, electron affinities,
) electronegativities, and hardnesses (Ry) calculated
by the electron-correlation corrected
SIC-GX-LSD-GWB theory for some quark
elements whose net charge is +2e/3 (Z=N+2/3)

2 If L A A X° A
Ga 31 % 0.92 2.20 0.39 -—0.02 0.65 0.45 0.24 0.27
Ge 32%— 1.11 1.77 0.51 —0.04 081 0.31 0.29 030
As JJ% 1.29 2.01 0.50 0.00 0.90 0.38 0.32 0.39
Se 34 g— 1.30 2.25 0.65 0.J8 0.98 0.40 0.31 0.33
Br 35 % 1.50 2.29 0.79 —~0.04 1.15 0.38 033 0.36
Kr 36 % 1.70 2.54 020 —-0.02 095 059 043 075

a. The first ionization potential;

b. The second ionization potential;

c. The first electron affinity;

d. The second electron affinity;

e. Electronegativity, x = Q_;—A—}-;

f. Hardness of acid A, 4 = £L‘—i;;ﬁ-"—‘ﬁ;

g. Hardness of base B, np = Q—B-O-;—AQ‘—);

h. Absolute hardness, n = (-I—%ﬂ

viously (section [V-4)!39:142 the total energy including the statistical total energy
and the VWN correlation energy in the electron-correlation corrected SIC-GX-LSD
theory was a function of both the charge on and the radius of the Watson sphere,
when a Watson sphere with radius between 1 and 5 a.u. were used. Fortunately,
both the statistical total energy and the VWN correlation energy are not changed
by the Watson sphere, when the sphere radius is large enough. Toble V-5 shows the
total encrgies (equation (5-8)), including the statistical total cnergy and the VWN
correlation eneigy correction, of the quark atom and its negative ion for fluorine

with fiactional nuclear charge Z.—_N-;— in the electron-correlation corrected SIC-GX-
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TABLE V-4

The first and second ionization potentials, electronegativities,

and hardnesses (Ry) calculated by the electron-corielation

corrected SIC-GX-LSD-GWB theory for some quark elements

whose net charge is -2¢/3 (Z=N-2/3)

z I 3 \¢ s My i
H 3 012 0.06 0.03 006
He 11 047 183 023 0.46 0.4 0.23
Li 21 008 293 004 0.73 0.08 004
Be 3; 021 0.68 0.11 0.17 0.07 0.11
B 4% 0.14 1.02 0.07 0.26 0.06 0.07
C 51 026 098 013 024 006 013
N 6% 0.40 1.27 0.20 0.32 0.13 0.20
0 77 027 157 013 0.39 0.07 013
F 85 0.46 1.48 0.23 0.37 0.13 0.23
Ne 9L 067 185 033 0.46 0.18 0.33
Na 10 009 221 0.05 0.55 0.02 0.05
Mg 1L 020 063 0.10 0.16 0.07 010
Al 123 0.10 0.84 0.05 0.21 0.02 0.05
Si 131 020 067 010 0.17 0.06 010
P 143 031 0.87 016 0.22 0.07 0.16
S 15 028 107 o4 0.27 0.06 0.1
Cl 165 0.42 L09 o2l 0.27 0.10 0.21
Ar 173 057 132 028 0.33 0.15 0.28
K 183 0.09 155 004 0.39 0.03 0.04
Ca 198 017 052 009 0.13 0.06  0.09
Sc 203 0.15 067 008 0.17 0.13 0.08
Ti 214 011 070 006 0.17 0.13  0.06
\Y% 21 034 073 017 0.18 017 017
Cr 233 042 051 021 0.13 012 021
Mn 2uL 021 075 010 0.19 0.13  0.10
Fe 25, 003 079 001 0.20 0.13 001
Co 26L 034 084 017 0.21 0.21 0.17
Ni 273 0.44  0.65 0.22 0.16 0.21 0.22
Cu 281 0.53  0.59 0.26 0.15 0.07 0.26
Zn 298 020 086 015 0.21 0.09 0.15
Ga 3L o010 099 005 0.25 0.04 0.5

165

o




TABLE V-4 (Continued)

The first and second ionization potentials, electronegativities,
and hardnesses (Ry) calculated by the electron-correlation
corrected SIC-GX-LSD-GWRB theory for some quark elements
whose net charge is -2e/3 (Z=N-2/3)

z I I X % g 4
Ge 311 020 068 010 017 0.07 0.10
As 325 030 084 015 021 008 015
Se 33 028 101 0.14 025 0.7 0.14
Br 344 0.40 1.02 0.20 025 011 0.20
Kr 351 0.53 1.20 0.26 0.30 0.15 0.26

a. The first ionization potential;
b. The second ionization potential,

c. Electronegativity, \ = Qi;f_*l;
d. Hardness of acid 4 = (—[-’lf—}ﬁﬁ-g—);
e. Hardness of base .  alculated by the Lagrange extrapolation formula

n(Z:N-%) =2{n(7z . %) - r)(Z=N+l§) ]+ n(Z=N+%), and n(Z=N+1§),
7)(Z=N--13-), and n(Z:_‘\—i-%) were taken from Tables V-1 to V-3;

f. Absolute hardness, 9 = (_1_—2_.4_)

LSD theory versus the radius of the Watson sphere with charge +4/3 a.u. Table
V-5 shows that the total erergies of the fluorine quark atom with different radii of
the Watson sphere are the same as without a Watson sphere, when the radii are
laiger than 5 a.u  Its negative ion has the same trend as the quark atom, but it
converges rather slowly, and when the sphere radii are bigger than 7 a.u., the total

energy is the same as without any Watson sphere.

Fluorine and chlorine are special cases, for which the negative ions of their
quark atoms can be solved by the SCF procedure perfectly. To show that the
convergence trend of the total encigy with the radius of Watson sphere increases

is also true for other quark atoms and their negative ions, Table V-6 presents the
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FIGURE §5-2

The first ionization potentials of the quark atoms with fractional

nuclear charge Z=N - 1 in the electron-correlation
corrected SIC-GX-LSD-GWB theory, compared with
Lackner and Zweig's interpolation

:L ¥ @ O  SIC-GX-LSD-CWB
; ﬁ I\ O LACKNER & ZWEIO
N 4
B g |
""H s? i ,ﬁ E
lf‘. : | \ ;! 4
e ¥
AN
|

T O,

B a
& | I/’ g ! \E“E{'ﬂ““ 95,[
B O ' -©-a ,é
- "/Q‘F‘! LY a2%s "/
~ 1/ ® ',é b ”/'; ?e b
- g ﬁa |/ 3
- b '
i . | 1 1 ) | 1 | ; |
6 12 18 24 30 36

167




results for carbon. The total energy of carbon negative ion converges slowly , but

when the Watson sphere radius is bigger than 18 a.u., the total energy converges
to -66.4977Ry, and the electron affinity converges to -0.0699Ry. The total energy
of the carbon quark atom converges as fast as the quark atom of fluorine. The
different convergcnce speeds of the total energies between the negative ions of the

quark atoms for fluorine and carbon is because the electrons in fluorine are paired.

The present work tested all the quark atoms and their negative ions for
elements from hydrogen to krypton with Z=N-1§. The total energy convergence
speeds are the samme for all quark atoms but differ for their negative ions. The
radius of the Watson sphere to get the converged total energy is around 7 a.u. for
the clements in group VII A, 50 a.u. for those in group VIII A, 40 a.u. for group
II A, and 20 a.u. for all others. The SCF procedure works very well with the aid
of large Watson sphere. Actually, if one is only interested in the first two digits
behind the decimal point, the convergence is much faster than that listed above.
Therefore, the Watson sphere radii are fixed to be 20 ay in calculating the first

clectron affinitics of the transition-metal quark elements with Z::N-%.

Column 5 of Table V-2 summarizes the converged electron affinities of the
quark atoms with fractional nuclear charge Z:N-%. The electron configurations of
the first order negative ions were chosen to be the same as the corresponding single-
charge negative ions of the ordinary atoms ieported by Hotop and Lineberger®®.
To compare the present results with the empirical interpolated values'®®, Fig, 5-5
plots the first electron affinities for the quark atoms with Z=N-%. It may be seen
that there are not only laige differences between the present calculated values and
Lackner and Zweig's results?®? | but also a different trend. In the present calculated
results, the first electron affinity, -0.01 Ry, for Be with Z=4-% is bigger than -0.03

Ry, the clection affinity for Li with Z:B--lg, which is of the same trend as He to H.
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FIGURE 5-3

The first ionization potentials of the quark atoms with fractional
nuclear charge Z=N +  in the electron-correlation
corrected SIC-GX-LSD-GWB theory, compared with

Lackner and Zweig's interpolation
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However the clectron affinity for Be with Z=4-1 in Lackner and Zweig's interpola-

tion is -0.36 Ry which is much smaller than the electron affinity, -0.05 Ry, for Li with
Z2=3- ’5 The same deviations occur for N, Ne, Mg, and etc. with Z=N—%. The reason
of the deviation is probably the following. Lackner and Zweig’s results were iso-
electronic interpolation based on existing experimental electron affinities. They also
interpolated the electron affinities of some ordinary atoms, for which the experimen-
tal electron affinities were not available, as input data to get the electron affinities
of the quark atoms. This "double” interpolation causes uncertainty in the electron
affinities of quark atoms. Furthermore, some of the existing electron affinities were
not accurate, e.g., for the alkaline-earth elements, rare gasses®?94:101,106,107 " The
present calculation is based on the local-density functional model which has well

defined approxiinations and shows no lack of predictability for other properties.

Therefore the theoretical predictions arc correct.

TABLE V-5

The effect of the Watso sphere radius on the statistical
total energies of F(Z=N-1/3) and F~(Z=N-1/3) (Ry)

W E¢ot[F] E¢ot[F 7] EA

3. —182.7040 —182.6444 —0.0596
4. —182.7054 —182.6565 -0.0489
5. —182.7055 —182.6594 —0.0461
6. —182.7056 —182.6602 -0.0454
7. —182.7056 —182.6604 —0.0452
No —182.7056 —182.6605 —0.0451

The first electron affinities of the quark atoms with Z=N—% are equivalent

to the sccond electron affinities of the quark atoms with Z:N«%. The second or-
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FIGURE 5-4

in the electron-correlation

F
3

corrected SIC-GX-LSD-GWB theory, compared with

The first ionization potentials of the quark atoms with fractional
nuclear charge Z
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der negative ions of the selected quark atoms with Z=Nz£} were caleulated using

the electron-correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole

parameters and Watson spheres. The results are summarized in Tables V-7 and

V-8.

TABLE V-6

The effect of the Wat-on sphere radius on the statistical
total energies of C(Z=N-1/3) and C™ (Z=N-1/3)

TW Etof [F] Etog [F_] EA

3. —66.5563 —66.4307 —0.1256

6. —66.5676 —66.4911 —0.0765

9. —66.5676 —66.4964 —0.0712
12. —66.5676 —66.4973 —0.0703
15. —66.5676 —66.4976 —0.0700
18. —66.5676 ~66.4977 —0.0699
21. —66.5676 —66.4977 —0.0699
24. --66.5676 —66.4977 —0.0699

Obviously, the second electron affinities calculated by the difference of the
total energies between the first order negative ion and the second order ncgative
ion are strongly dependent on the radius of the Watson sphere, when no Watson
sphere was used for the first order negative ions with Z=N-+1 or a very large
Watson sphere was employed for those with Z:N-lg, and the radius of the Watson
sphere for the second order negative ions is gradually increased. As mentioned
before, the total energy of the first order negative ion should be not wffected by the
Watson sphere for quark atoms with Z=N-l§. Hence, the dependence of the second
electron affinities on the Watson sphere is caused by the second order negative ion.

Table V-7 lists the dependence of the second electron affinities of sclected quark
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atoms with Z=N+§ on the radii of the Watson spheres used in the SCF calculation
for calculating the second order negative ions. Gradually increasing the radius of
the Watson sphere, the total energies of the second order negative ions gradually
decrease (more negative). Therefore, the difference of the total energies between the
first and second order negative ions gradually increases (less negative). Obviously,
when the Watson sphere radius goes to infinity, the total energy of the second order
negative ion approaches the total energy of the real system. The results in Table
V-7 show the trend. The second electron affinities of the selected quark atoms with
Z=N+1 gradually approach very small values or zero as the radius of the Watson
sphere with the net charge +1 increases. The second electron affinities of the selected
quark atoms with Z=N-} listed in Table V-8 show the same trend as Table V-7;
the second electron affinities approach very small values or zero as the radius of the
Watson sphere with the net charge +2 1§e increases. The speed of approach to tae
real values is different in Tables V-7 and V-8, because of the difference of the net
charges in the second order negative ions with Z=N+§ and Z:N-%, the net charge
is -1 %e for the former and -Z%e for the latter, and the diference of the net positive

charge on the Watsor spheres.

The second electron affinities of the quark atoms with fractional nuclear
charge Z=N-2% are much more slowly approaching to their real values, because the

net charge of the second order negative ions for them is -2%e.

The second electron aflinities of the quark atoms with Z=N+"3l are listed in
column 6 of Table V-3. Actually, they are equivalent to the first electron affinities
of the quark atoms with Z=N-1§ shown in column 5 of Table V-2, e.g., the second
electron affinity of H with Z=N+%=1 %, which is -0.01 Ry, equal to the first electron
affinity of He with Z=N-1=1% in Table V-2, and so0 on.
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FIGURE 5-5

=N.}

The first electron affinities for the quark atoms with Z

in the electron-correlation corrected SIC-GX-LSD-GWB

theory, compared with Lackner and
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TABLE V-7

Electron affinities (Ry) with different Watson sphere
radius (ag) of some quark elements whose
net charge is +e/3 (Z=N+1/3)

Y/ Ty =15 Ty =20 1 =25 1y =35 1y =45 1y =55 1y =65

H 1% —0.041 —-0.033 -0.028 -0.021 -0.017 —0.015

He 2% -0.067 -0.068 -0.053 —0.030 —0.0623 -0.019 -0.016
Li 3;— -0.068 —-0.061 —0.042 —0.030 -0.024 -0.019 —0.016
C 613 -0.065 —0.051 -0.041 —0.030 —-0.024 —0.019 —0.016
F 9]5 -0.067 -0.051 -0.042 —-0.030 -0.023 -0.019 -0.016
Ne 1015 -0.072 -0.063 -0.044 —0.030 —-0.023 —0.019 —0.016
Na 1115 -0.069 -0.052 -0.042 —-0.030 —0.024 —0.019 -0.016
Si 1415 -0.067 —-0.051 -0.042 —-0.030 -0.024 —0.019 —0.016
Cl 1715 —-0.068 —-0.052 -0.042 -0.030 -—0.023 —-0.519 —0.016
Ar 18% —0.068 ~0.059 -0.055 -0.030 -0.023 -0.019 -0.016

V-4. Electronegativity and Hardness

The electronegativities of the quark atoms with fractional nuclear charge
Z=N=} and Z=N=2 were calculated by averaging the ionization potential and elec-
tron affinity of the corresponding quark atom, equation (5-4), and are reported in
column 6 of Tables V-1 and V-2, column 7 of Table V-3, and column 5 of Table V-4,
The trend of the electronegativities is similar to Lackner and Zweig's calculation!®3,
except for the quark atoms with Z:N-%. Lackner and Zweig reported the negative
electronegativities for the quark atoms with Z:N-% in group IA - IVA and N and O
and the positive electronegativities for others. The electronegativity distributions
are random. However the electronegativities in the present calculation follow the

same trend as those for the quark atoms with Z=N:i:%— and Z=N+?3—. The devia-

tion between the present electronegativities and the Lackner and Zweig's results is
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caused by the difference of the electron affinities of these quark atoms. Lackner
and Zweig gave negative electron affinities which in absolute value are larger than
the ionization potentials of the corresponding quark atoms. However, the second
electron affinities approach some very small negative values or zero in the electron-

correlation corrected SIC-GX-LSD theory which is excellently predictable.

TABLE V-8

Electron affinities {Ry) with different Watson
sphere radius (ao§ of some quark elements
whose net charge is -¢/3 (Z=N-1/3)

Z rp=10 15 20 30 40 50 60 70 80
H 2 -0220 —0.111 —0.059 —0.007
He 1% —0.258 —0.159 —0.135 —0.085 —0.057 —0.02 —0.032 —0.026 —0.021
Be 3% -0.317 —0.201 —0.144 —0.087 —0.060 —0.044 —0.031 —0.027 —0.022
N 6% —0.308 —0.188 —0.130 —0.073 —0.046 —0.030 —0.020 —0.013 —~0.008
F 8% —0.242 —0.162 —0.122 —0.081 —0.061 —0.049 —0.040 —0.034 —0.030
Ne 9% —0.293 —0.183 —0.129 —0.076 —0.051 —0.036 —0.026 —0.019
Na 102 —0.251 —0.166 —0.115 —0.064 —0.038 —0.023 —0.012 —0.006

From the values of the electronegativities listed in Tables V-1 to V-4, it can
be seen that: (i) the electronegativity increases as the occupation number of the
subshell increases, except for the quark atoms in the group VIII A with Z=N +;—;
(ii) the electronegativity increases with nuclear charge increases; for example, the
electronegativity of F is 0.23 Ry with Z=N-1, 0.41 Ry with Z=N-1, 1.26 Ry with
Z=N+%, and 1.77 Ry with Z=N+%. It is quite reasonable that the nuclear attractive
force increases with the nuclear charge and that the ability to get an extra-clectron

increases, when the electron-configuration is fixed.
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The hardnesses of acids and bases in terms of definitions (5-6a) and (5-6b)
and the absolute hardnesses by definition (5-4) were calculated by using the first
and secoud ionization potentials and electron affinities in Tables V-1 to V-4 for the
quark atoms with Z=N:i:~13- and Z:N:t%. The results are summarized in Tables V-1
to V-4. The hardnesses of bases, g, listed in column 7 of Table V-4 were calculated

by the Lagrange extrapolation formula

(e-3)w(ee-2) (e )]

+n<Z=N+§) (5 —10)

for the quark atoms with Z=N-%, where n(Z=N+1§), n(Z:N-%), and n(Z:N-{-%)
were taken from Tables V-1 to V-3; because no second electron affinities were ob-
tained for them in the SCF procedure by the electron-correlation corrected SIC-GX-
LSD theory. Furthermore, the second affinities used in equation (5-6b) in calculating
the hardnesses of bases for the quark atoms with Z=N :i:% were treated as zero, be-
cause the second clectron affinities (in Tables V-7 and V-8) go to very small values

or zero, when the Watson sphere radius approaches infinity.

The absolute hardnesses of the quark atoms with Z:N:i:lg and Z=N:i:% are
of the similar trend as predicted by Lackner and Zweig!®3: the absolute hardnesses
increase, when the number of electrons in the subshell (nim,) increases. For exam-

ple, N is harder than O and F, P is harder than S and Cl for the quark atoms with

151.
)

Z=N+é— and Z=N +§, displaying the similar behaviour as the ordinary atoms
and N is harder than O and softer than F, and P is harder than S and softer than
Cl for the quark atoms with Z=N-} and Z=N—2§, which possesses the same feature

as the hardnesses (nt) of the ordinary atoms in Goycoolea et al.'s work!®!.

The trend of the absolute hardnesses differs from that obtained by equation

(5-3) for the ordinary atoms. As mentioned by Vinayagam and Sen'?®, O is harder
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than N, F is harder than O, S is harder than P, and Cl is harder than S for the
ordinary atoms by definition (5-3). The different trend is caused by the replacement

of the derivative in equation (5-3) by the finite difference in equation (5-4).

The hardnesses of bases calculated by equation (5-6b) for the quatk atoms
with Z=N:i:1§ and Z:N-}—% and extrapolated by equation (5-10) for the quark atoms
with Z=N—§ have the same behaviour as calculated by equation (5-3) for the
atoms!*%, except for O with Z=N:+:% and Z:N—{—%. The hardnesses of O with
Z=Nt% and Z=N+% are smaller than those for N with Z=N4; and Z=N+Z% re-
spectively. This implies that equation (5-6b) leads to the proper empirical trends

in the hardness parameters.

The hardnesses of acids obtained using equation (5-6a) leads to the same
dependence of the electron-configuration as the hardnesses of bases. The hardnesses
of bases increase, as the number of the clectrons in a subshell mecreases, except for

the elements in group VII A, the halogens.

The values of the hardnesses, 74 and 5y of acids and bases and the values
of the absolute hardnesses, 7, increase as the nuclear charge incieases for all these
quark atoms, when the electron-configuration is fixed. The effect of mcieasing the
nuclear charge is to enlarge the Coulomb attractive force between the nucleus and
the electrons, the removal cnergy of the electron in the outermost orbitel is, then,
increased and the ability of binding an extra-clectron increases. But the former

increases much faster than the latter.

The present calculations show that the ionization potentials for quatk atoms
and electron affinities for the well-bound quaik atoms obtained by the empirical
isoelectronic interpolation technique is in excellent agreement with those from the
electron-correlation SIC-GX-LSD theory with the GWB Fermi-hole parameters,

when the accurate experimental results are cumployed in the interpolation.  The
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convergence technique using a very large Watson sphere surrounding the negative
ion in the SCF calculation for the first order negative ions of the quark atoms with
fractional nuclear charge Z=N-1 and the second order negative ions of the quark
atoms with Z=N#+£ and Z=N+1 is efficient.

The electronegativities and hardnesses of the quark atoms with fractional
nuclear charge Z=N+1} and Z=N i% possesses a similar trend to that of ordinary

atoms. The dependence of the electron-configuration for the electronegativities and

hardnesses of the quark atoms is the same as for the ordinary atoms.
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CHAPTER VI

THE SELF-INTERACTION CORRECTED
MULTIPLE-SCATTERING Xa METHOD

VI-1. Introduction

Molecular calculations are interesting to chemists. However, most methods
are computationally tedious The cheapest s the multiple-scattering Xa (MS-Xa)
method!%%161 except for the semi-empirical methcds. The MS-Xa method is ex-
cellent in predicting the photoelectron spectra of 1 olecules. clusters of relatively
heavy atoms of interest in solid state physics and chemustry, and other molecular

162~172

properties The ntroduction of the ovetlapping sphere approximation!™®

showed that good ionization potentials could be obtained from the negative of the

174,175 Ca.se

one-electron eigenvalue calculated by the Slater transition-state theory
and Karplus!?® introduced a charge-partitioning algorithm which distributes the
"muffin-tin" wave function contribution from the interatomic region among the
atomic spheres. The MS-Xa method gives reasonably good expectation values for
the one-electron operators from the Xa wave function and has been used to calculate
molecular properties, such as dipole moments, quadrupole moments, diamagnetic

susceptibilities, and nuclear quadrupole couplin_, constants! 71177178,

The "muffin-tin’ approximation makes the molecular one-electron eigenval-
ues and electron-density distributions differ from experiment The deviation can
be reduced by using overlapping spheres. Then, the one-clectron eigenvalues and
electron-density distribution are sensitive to the percentage of overlapping sphere.
The most reliable 1esults are produced by means of the atomic sphere radii in the

Norman criterion!®® scaling by a factor between 0.8 - 0.88171,177.179~181
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Recently, some other theoretical methods have been developed, such as the
LCAO-Xa method!'®! =183 the discrete variational Xa (DV-Xa) method!®4~186  and
the completely numerical local-density approximation (LDA) method®”. They are
more theoretically rigorous than the MS-Xa method and their results are better
than MS-Xa. They are also much easier to use than the ab-initio Hartree-Fock
method. But they are expensive for large molecules containing heavy atoms and
complicated to wield in practise. The numerical results depend on the choice of the
basis set in the LCAG-Xa method, the selection of the mesh points and the basis
set (when the basis set is employed, mnstead of using the numerical integration) in
the DV-Xa method, and the restricted application, e.g., only applying to diatomic
molecules in the completely numerical LDA method. A powerful method in chem-
istry must be applicable to all molecules large and small containing light or heavy

atoms and predict all properties with the same accuracy.

Because of the statistical approximate exchange energy functional in the Xa
method, unlike the HF metho.  (ue self-exchange term does not cancel completely
the self-Coulomb term. Hence the one-electron eigenvalue in the Xa method does
not have the same theoretical or numer.cal value as in the HF method. The Xa
one-electron eigenvalue corresponds to the electronegativity of the atom or molecule,
equation (3-12), as defined by Parr et al.””, whereas the HF one-electron eigenvalue
equals the negative of the ionization potential for the corresponding orbital when

the frozen orbital approximation is used (Koopmans’ theorem)®?.

Slater!™17% introduced the transition state theory, in which the ionization
potential can be calculated from the negative of the one-electron eigenvalue obtained
by removing a half-electron from the corresponding orbital to infinity in the self-
consistent-field (SCF) procedure. Obviously, because the transition state is one
between the initial and final states in the ionization process, the relaxation effect

is partly included. However, the wave function given in the transition state SCF
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procedure does not give correct expectation values for other one-clectron operators
in calculating other molecular properties, such as dipole moments, diamagunetic
susceptibilities, etc. To obtain both the ionization potential and other one-election
operator expectation values, the SCF proceduie has to be cartied out twice for
the same system, one for the transition state, and another for the giound state or
excited state. This is an inefficient and expensive procedure, especially when the

MS-Xa method is applied to large systems containing heavy atoms

The self-interaction problem can be avoided by the direct removal of the
exact self-Coulomb term and the approximate slf-exchange terin from the energy

129—-32

functiona Application of this self-interaction correction (SIC) in the LDF

theory, the SIC-LDF theory, to atomic calculations gave significant improvement

29-32,45,49,81  Theoretically, for atomic systems,

over the uncorrected LSD results
the SIC-LSD theory leads to a potential with the correct asymptotic behaviour 1/r

for the neutral atom.

The SIC has been successfully applied to small molecules and solids. The
SIC-LSD theory has been used to calculate the electronic structures of diatomic

188,189

molecules and solids and gives excellent one-electron cigenvalues and total

energies for some small molecules in the agreement with those in the multiconfig-
uration sel{-consistent-field (MCSCF') calculation. But the full numerical SIC-LSD
theory might be impossible to apply to large aud heavy molecules, because of the

computational time.

In this chapter!®®, to give the phoioelectronic spectra and the correct wave
function at the same time for a molecule by a single SCF calculation, the SIC is
introduced into the MS-Xa theory. Section VI-2 will give a brief description about
the MS-Xa method; and, then, the SIC in the MS-Xa will be introduced m Section

VI-3. Since the SIC energy functional depends on the individual orbital deusities,
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the SIC total energy is not invariant under the orbital transformation!®®, To give
the minimized total energy, Edmiston and Ruedenberg's method!®!, developed by

Pederson et al.!8%:1%2 js used. The detail of the minimization of the SIC energy will

be discussed in Section VI-4.

VI-2. Multiple-Scattering Xa Method

Details of the MS-Xa method can be found in the literature!93:1%4, Only &
brief description is given to introduce the SIC into the MS-Xa method.

The MS-Xa method is based on the division of molecular space into non-
overlapping atomic, interatomic, and extramolecular regions, with a spherically
averaged potential for the atomic and extramolecular regions and a volume-averaged
potential for the interatomic region, including the conventional Xa approximation to
the exchange-correlation. The spherically averaged potential in “muffin-tin” spheres
is centred on cach atomic site, with a constant potential elsewhere. The volume-
averaged potential in the interatomic region significantly simplities the molecular
calculation.

Consider a system with N atomic spheres of radii b, ‘a=1,2,..,N). The
one-electron Schrodinger equations w1 the atomic, interatomic, and extramolecular

regions are different, because of the different potentials,
V*(ra), when ry = |r— Ry| < b, (atomic region);
V(r)= ¢ V%ro), when ro =|r— R,| > b (outer sphere); (6 1)
v, otherwise (interatomic region).
where R, is the distance of an atomic site from the origion of the system, and o4
and b are the radii of the atom a and outer sphere. In the atomic sphere a, the
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one-electron Schrédinger equation is

[-V* + Vo(ra)l¥ (ra) = ed! (ra) (6-2)

in Rydberg atomic units, where the index I stands for the wave function in the
atomic region and V(r,) is the total potential including the Coulomb interac-
tion potentials between the nucleus and electron, electron and clectron, and the
exchange-correlation potential. The wave function, ¥I(ry), may be expressed in

terms of the single-centre partial wave expansion,
¥ (re) = 3 CLR(ra)V2 (), (0 < ra < bs) (6-3)
L

where L = (I,m) is the partial wave index, Y;,(€24) are real sphericai harmonics and

the expansion coefficients C% are to be determined.

n the extramolecular region, the one-electron Schrodinger cquation is of the

same form as equation (6-2),
(=72 + VO(ro)w (vo) = e (xy) (6-4)
The wave function is also expanded into
B (ro) =) ClLRY(ro)Y1(R), (bo < 1o < 00) (6-5)
L
In the interatomic region, equation (6-2) reduces to
[-v* + &1 (r) = 0 (6~06)
where
K2 =V-g¢ (6 —17)

The one-electron Schrédinger equations (6-2) and (6-4) in the atomic and ex-

tramolecular regions are easily solved numerically in each region in the partial wave
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representation. The solution of equation (6-6) can be written in the multicenter

partial-wave representation

W) =) afm(bra)Yi(Ra) + Y alpii(kiro)YL(0) (6 —8)
a L L

when
&>V (6 —9)
or
W)= ek (kra)Vi()+ Y alyir(kro)YL(2) (6 — 10)
a L L
when

<V (6 — 11)

The expansion coefficients C%, C%, a% , and a; in equations (6-3), (6-5),
and (6-8) or (6-10) are determined in terms of the continuous wave functions and
their derivatives on all the sphere boundaries.

Furthermore, the Coulomb and exchange potentials in the SCF calculation
are constructed from the electron densities in the differen’ regions. The total po-
tentials which include the Coulomb and exchange potentials in the spin-restricted

MS-Xa method are

‘,a(ra) = - r

22 Ta
<+ 2 / amr? po (r)dr
a Ta Jo
b 1 3 e
+ Z/r., 4rr? ~pa (r)dr — 6a [g;pa(ra)}

+2[ Z _I_'(Qﬂ - Zﬂ)+/b:o 41rr2%;00(7‘)d7']

bge T8
R: 2 b
+ 47 Py [bg_bg S A Z ] (6 — 12)
3 3 yiaw fles
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in the atomic sphere a,

0

2 ro
V(o) = ;{ D Qs - Z5) + Qe + /b 4rr? po (r)(lr}
8

© L1 3 173
+ 2/; 4rr ;po(r)dr - 6a [-S?po(ro)] (6 —13)

0

in the extramolecular region, and

_ dr |1 1 1
V= 47|'Pint{b(2) _ :'3'"”7 [gbg - Z(gbﬁRi + gbg)}}

[a 4
4 4 1 2 b3
+ T -2 - rtton| [ -8 - fr -2 Y J
* Bs#a) 8
3 1/3 o )
~ 6a [é}'ptnt] -+ 2A 47!'7‘2 ;PO (r)dr (6 - 14)

in the interatomic region; po (rq) and py(rq) are the spherically averaged clectron
densities in the atomic sphere a and the outer sphere; p,n¢ is the constant electror:
density in the interatomic region; R,g is the distance between the centres of the
atomic spheres a and 3; Q, and Z, are the electron charge and the atomic number

in the atomic sphere a; V is the volume of the interatomic region,
Vzgn[bg_be;J (6 - 15)
o
Qint is the total electron charge in the interatomic region, and the constant a in
the exchange potential term of equation (6-12) is the exchange parameter of the
atomic sphere a, and & the parameter for both the extramolecular and interatomic
regions.
The one-electron Schrédinger equations (6-2) and (6-4) are solved by the
SCF procedure, until the differences of the potentials between the (1+1)th and the

ith iterations are less than a defined value. The one-electron eigenvalues and the

wave function are considered to be self-consistent in the MS-Xa method.
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VI-3. Self-Interaction Correction in the Multiple-Scattering Xa Method

When the SIC carried out by removing the exact self-Coulomb from the
Coulomb repulsive functional and the approximate self-exchange from the local

electron density functional, is applied to the MS-Xa method, the one-electron

Schrodinger equation (6-2) becomes
[— V2 +V%ra) + V,Slc_a(ra )] ¥ (ra) = E €y ¢Jl(ra) (6 —16)
J
for the atomic sphere a, while equation (6-4) becomes

[— v? +Vi(ro) + ¥, (r )] $r0) =) eivf () (6-17)

]
for the extramolecular region, and equation (6-6) becomes

[— v+ ~:2] ¥(r) = e, 01 (6 —18)

for the interatomic region. In equations (6-16) and (6-17), V;5¢~ and y,SIc-0
are the total self-interaction potentials including the exact self-Coulomb and the
approximate self-exchange potentials for orbital i. &} in equation (6-18) changes
from equation (6-7) to
K2 =V 4 PS5IC (6 —19)
where V;57C is the total self-interaction potential in the interatomic region.
The self-interaction potential for the atomic sphere « is, in contrast to equa-

tion (6-12),

Ta ba
‘/'S]C—a(ra) — _2{ ;]_'_/ 47rr2p1°'(r)dr + / 47T7‘2 %P?(T)dr
0 T

o 2]
1 1
| 2 amat [t ]
s o8 b T
1 2 o

eomp - t- i -2 5 2]
5 3 gl Tt

roa| () " (6 - 20)
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The first term is the exact self-Coulomb potential produced by the electron in
orbital i and the second term is the approximate self-exchange potential. In the
self-Coulomb potential, the { } of equation (6-20), the first two terms are the
self-Coulomb potentials generated by the electron density in the atomic sphere a,
and by the electron densities in all other atomic spheres treated as point charges
except for the atomic sphere a, and in the outer sphere region; the third terin is
the potential contribution from the interatomic 1egion. p® and p® ae the electron

densities of electron i in the atomic and extramolecular regions, 1espectively. Qg

is the total fractional charge of electron i in the interatomic region.

The self-interaction potential for the extramolecular region is modified from

equation (6-13) to

To

. 1 1
VS1C0(rg) = —2{;;(; Qs + Q:"t) + ;;/ 4rcr? p (r)dr

bo

© .1 3 173
+/ 47rr2-p(,’(r)dr} + 6a [—p?(ro )] (6 —21)
N r 8
Here the first and second terms are the self-Coulomb and self-exchange interaction
corrections to the potential in the extramolecular region. In the self-Coulomb po-
tential, the first term is from the atomic and interatomic regions, and the second

and third terms are the sel” Coulomb potentials from the outer sphere itself.

In the interatomic n, the self-interaction potential is modified from equa-

tion (6-14) to

SIC _ int ) 12 4 1 3 n2 _1_5
V; —4mp! {b v Z( SWARE + £

47" [ t [ 2 p 1o 2 b??
Q:a"‘"bg :n}bo_ba—_Ra—_Z———
v 3 i 3 3 ) Rap
r 3 ]/3
- 2/b 4rr? ~p, 0 (r)dr + Ca B p:"'] (6 —22)
0 L

This is a volume-averaged potential. The first term is the volume-averaged potential

obtained by assuming that the atomic and interatomic regions were covered by the
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constant electron density p!™. But, in fact, this is not true for the atomic spheres,
so the second term is the averaged potential generated by all the atomic spheres
in the atomic region with the real electron densities subtracted from the potential
produced by the constant electron density pi"*. The third term is the Coulomb

interaction potential produced by the electron charge on the outer sphere, and

the last term is the self-exchange potential which only relates to the local electron

density.

VI-4. Minimization of the Total Self-Interaction-Correction Energy

In the SIC-MS-Xa method, the energy functional depends on individual
orbital electron densities, unlike the MS-Xa method where the energy functional
depends on the total electron density. The total SIC energy is not invariant under
orbital transformation. The orbital transformation leaves the statistical total energy

in the MS-Xa method invariant, because the orbital transformation is unitary, but
it alters the SIC energy.

Let {gb} be a set of orbitals corresponding to the minimized value of the
total SIC energy and < 1 § aset of orbitals in the symmetric representation. Usually,
{ d)} is not identical to { d)}, and consequently the transformation

$u =) My, (6 — 23)

is used to minimize the total SIC energy when the crbital densities from { ¢} has
be found.

Following the Edmiston and Ruedenberg!®! localization procedure, which
minimized the self-Coulomb energy and was extended to minimize the total SIC

energy in the SIC-LSD theory by Pederson et al.}89:192,
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Consider an infinitesimal orthogonal transformation T which takes a set of

orbital {¢} to a new set {qS’}, that is

$=¢ +86 = 4T, (6 — 24)
with J
Y TnTyn =6, (6 — 25)
Let "
T, =b; + 1y (6 — 26)
gives
ty e+ Y tintyn =0 (6 — 27)

where ;; is an infinitesimal value. Keeping the first order terms, equation (6-27)

reduces to

The minimization of the total self-interaction correction energy requires

31‘7310)
gzsic =0 (6 — 29)
( atl“’ ty =0

for all p, v, i, j with 4 > v, j>i. Writing the SIC energy expression in terms of the

primed orbitals and carrying out the differential of equation (6-29) leads to
< GulVITC ~VSIC18, > =0 (6 — 30)

for all 4 and v. Equation (6-30) has to be satisfied for all orbitals by successively
minimizing each pair of orbitals. An iteration technique is used to find an appro-
priate new orbital set {¢} Consider a given pair of orbitals (¢,,¢,), and that the

new pair of orbitals can be written as

¢ _ [ cosy —siny ¢ B
(¢:) - (Sin7 cosy ) (¢;‘:> (6 31)
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Constraint condition equation (6-30) determines the « value in equation (6-31).
The self-exchange potential in equation (6-30) may make it impossible to solve
analytically for the ~ value in equation (6-31) by using equation (6-30). Therefore,
an iteration technique is employed to find the v value satisfying equation (6-30).
In detail, starting with the orbital set {¢}, equations (6-30) and (6-31) may be

rewritten as

B VIOl > = (6 - 32)
and
¢§‘t+1) cosy (D _ginmyUt1) ¢fj) 6
(¢£’+1) - (sin'y("H) COS’Y(H-]) ¢£l) ) ( - 33)

during the (i+1)th iteration. In equation (6-32), the total SIC potentials for orbitals
p and v were calculated from the orbitals qbff) and dJE,'), respectively. Substituting
equation (6-33) into (6-32) gives

2 < ¢L’)| A VSICI¢£') >

uvi

<O IAVICIHY > ~ <P AVICY >

pre

(1) _

tan2y (6 — 34)

Where AVSIC s the difference of the SIC potentials between orbitals x and v in

nv

the ith iteration, i.e.

AV = VIO - Ve -39

The process continues, until the new v from equation (6-34) is less than
10~%, when equation (6-30) is considered to have been satisfied for orbitals ¢, and
¢,. But, when ¢, and ¢, are paired and satisfy equation (6-30), they probably
do not satisfy equation (6-30), when paired with any other orbitals ¢, separately.
Therefore this procedure has to be applied to all pairs. A check is made that the
total SIC energy does not change, compared to the last cycle. The cycle is repeated

until the total SIC energy is changed less than 1078 a.u.
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In the MS-Xa method, because of the division of molecular space, the cal-

culation of the matrix elements of AV”‘S;I © is rather complicated, eg.,

<l AV > = < glra)l AVSIC (10 )0l (k) >
+ < @ (ro)] AVIIC=0 ()| (ry) >

+< I AVICI8I () > (6 — 36)

where the iteration index i has been dropped. In equation (6-36), the first term is the
contribution from all the atomic spheres, the second term from the extramolecular

region, and the third term from the interatomic region.

It is impossible to calculate exactly the thiid term in equation (6-36) because
of the irregular shape of the interatomic region, although the wave functions and
constant potentials for all the orbitals are known befoie calculating the matrix

elements.

To overcome the irregular shape in the interatomic region, the charge parti-

tioning algorithm proposed by Case and Karplus!’® in the calculation of the expec-

tation value of one-electron operators was used. The election charge iu the inter-
atomic region is partitioned into individual atomic spheres and the wave functions
of the individual atomic spheres expanded into the interatomic region including the

extra electron charge contributed from the interatomic region.
After applying the charge partitioning algorithm, equation (6-36) becomes

<Gl AVl > =" < @l(ra) AVSIC(ra)|6Y (ra) >

+ < ¢ (ro)l A VIIE0 ()T (xy) > {6 - 37)

Obviously, the second term on the right hand side of equation (6-37) is the same as
the second term in equation (6-36). ¢L1(ro,) and ¢}/ (rq) in cquation (6-37) we the

expanded wave functions of orbitals u and v for the atomic sphete o, The constant
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potentials of orbitals y and v are used in the integrand of equation (6-37) for the

integral of the expanded wave function, that is

< ¢:;I(ra)l JAY Vyilc_a(ra)lﬁé (ra) >

ba
- / / B(xa) B VSIC=a (1 )L (10 2 drada
0 (9]
ba,ncw
+ / / PP (re) A Vf,fc ¢ (ro)ridrady (6 — 38)
bo [1]

where by new is the new radius of the atomic sphere o including the electron charge

contributed from the interatomic region.

Explicitly, the matrix element of AVPS,,I Cis

< $ulAVSICl8, >

= ZMu,My]{E [Z Z 2 61,1 )6(m,m')

)

ba
| Ritra) BV 0 RS (rar 2,
0
ba,ncw
+ AVS[C / R I(rﬂ )R_]l' (ra )7'(2! dra}
+ ZC,L Z 0, 8(1,18(m,m')

R?z(’”O) AVTC=(rg)RY (ro)r? d"O} (6 — 39)
bo

where §(/,1') and §(m.m') are Kroenecker delta functions. From equation (6-39), it
is obvious that the angular part of the integration is already calculated analytically,

because the potentials in the MS-Xa method are only dependent on the radial vari-

ables in the atomic and extramolecular regions and are a constant in the interatomic

region.
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CHAPTER VII

APPLICATION OF THE SiC-MS-Xa METHOD
TO MOLECULES AND MOLECULAR ANIONS

VII-1. Introduction

It is clear that the off-diagonal Lagrange multipliers are not equal to zero

in equations (6-16), (6-17), and (6-18), because the SIC potentials are orbital-
dependent. It is much more difficult to solve the one-clectron Schrodinger equation
with non-zero off-diagonal Lagrange multipliers?®??, because the wave functions in

the interatomic region {equation (6-18)) might be no longer Bessel functions.

Pederson et al.!®® used a projection technique to cast the individual Hamil-
tonian into one unified Hamiltonian. The one-electron Schrodinger equation with
only-diagonal Lagrange multipliers was solved easily for the occupied orbitals. In
their later paper'®®, they showed that the off-diagonal Lagrange multipliers were
small. Other authors also showed that the difference of the one election cigenval-
ues calculated using the non-orthogonal wave functions and the orthogonal wave
functions in the orbital-dcpendent LDF theory is sinall?224:293V in the atomic cal-
culation. When the off-diagonal Lagrange multipliers in equations (6-16), (6-17),
and (6-18) in the SIC-MS-Xa method are ignored, the one-electron Schrédinger

equations in the atomic, interatomic, and extramolecular regions reduce to

[— O+ VO(ra) + ‘v:s”"%ra)] §(a) = et (ra) (7-1)

[ v+ Vo) + VT ol e = et (-2

194




and
v+ n:”] $i1r) =0 (7-3)
with
W2 = V4 7SI g, (7—4)

Cook and Case’'s MS-Xa program!®® was modified to solve the equations
(7-1), (7-2), and (7-3) with the orbital-dependent SIC potentials to obtain the wave
functions in the SCF procedure. The coefficients in equations (6-3), (6-5), and (6-8)
or (6-10) are determined as those in the MS-Xa method, that is, by matching the

wave functions and the derivatives of the wave functions at all sphere boundaries.

The wave functions in the SIC-MS-Xa method are, then, used to calculate
the matrix elements in equaticn (6-34) for each pair of orbitals and search the
transformation coefficients M,, in equation (6-23), to give the minimum of the total
SIC energy. Obviously, because the spherically averaged potentials in the atomic
and extramolecular regions and the volume-averaged potential in the interatomic
region were employed in the MS-Xa method, equation (6-30) is already satisfied
for the pairs of orbitals which span two different symmetry representations. This
implies that there is no mixture between any two different symmetry representations

during the minimization of the total SIC energy in the SIC-MS-Xa method.

Once the transformation coefficients are found, the second SCF procedure
is applied to yield self-consistent wave functions and one-electron eigenvalues using
the SIC potentials which are generated by means of wave functions { ¢} When
the differences of the total potentials between the (i+1)* and the i** iterations for

all orbitals are less than 107%, the calculation is self-consistent.
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VII-2. Molecules in the SIC-MS-Xa Method

To test the reliability of the self-interaction coriected multiple-scattering Xa
method, it will first be applied to three small molecules, ethylene, formaldehyde,
and ozone, two planar conjugated organic molecules, benzene and pyrazive, and two
tetrahedral molecules, carbon tetrafluoride and carbon tetrachloride. The ionization
potentials and statistical energies are calculated. The resu'ts of the SIC-MS-Xa
calculation will be compared with those from the MS-Xa and transition state MS-

Xa methods, and other theoretical calculations, ke HF, CNDQ/2 and etc.

The experimental equilibrium geometries for ethylene (C,Hy ), formaldehyde
(H2CO), ozone (O3), carbon tetrafluoride (CF4), and carbon tetrachloride (CCly)
were from Ref. 196 and for molecules benzene (Ce¢Hg) and pyrazine (CyH4N,)
from Ref. 178. The exchange parameter values of a’s were fiom Ref. 10, except
for hydrogen, where the polarized value!® is pieferred for the individual atomic
spheres. For the extramolecular and interatomic regions, the averaged values of o's

were obtained by weighting the a for each atom by its number of valence clectrons.

The radii of the atomic spheres and the outer sphere are fiom the Norman
criterion!®® scaling by a factor of 0.8 for the molecules C;H,, H,CO, O;, CFy,
and CCly; the overlapping percentases of the atomic spheres for these molecules
are between 10 and 35. The radii of the atomic and outer spheres for CyHq and
C4H4 N, are from Ref. 178, that is, by = 0.95 ag, be = by = 1.60 ay for both C¢Hg
and C4H N, (ag is the Bohr radius), and by = 5.63 ag for CoHe and by = 5.58 ag
for C4H4N;, in order to compare the present 1esults with the previous ionization

potentials for benzene and pyrazine in the transition state MS-Xa calculations.

Partial waves up to 1 = 3 for the outer sphere, 1 = 1 for the caibon and
nitrogen atoms and 1 = 0 for the hydrogen atom were used in the C¢H, and C4Hy N,

calculation, and | = 4 for the outer sphere, | = 2 for the carbon, oxygen, fluoride,
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and chloride atoms, 1 = 1 for hydrogen in the other molecular calculations. The
ground states and the transition states were carried out self-consistently using the
updated version of the MS-Xa program modified by Cook and Case!%.

Tables VII-1 to VII-7 show the negative of one-electron eigenvalues for ethy-
lene, formaldehyde, ozone, carbon tetrafluoride, carbon tetrachloride, benzene, and
pyrazine in the MS-Xa, the transition state MS-Xa, the SIC-MS-Xa, and the to-
tal SIC energy minimized SIC-MS-Xa methods (henceforth, called the MS-Xa,
TS-MS-Xa, SIC-MS-Xa, and M-SIC-MS-Xa, respectively). The geometries of the
molecules, parameters, radii of outer and atomic spheres are the same for the same
molecule in all methods. The present one-electron eigenvalues are compared to those
from the ab-initio HF, the LCAO-Xa, the Green function (GF), and other theo-
retical calculations, and with the experimental ionization potentials. Table VII-8

summarizes the statistical total energies from various methods.

VII-2.1 One-Electron Eigenvalue

In the Xa method, the one-electron eigenvalue is equal to the derivative of

the statistical total energy with respect to the occupation number!®®, that is,

The ionization potential in the Xa method under the frozen orbital approximation

is equal to
It = E(Nx —1) - E(N)
1 3 1/3 \ |> —-2/3
x —er + 3 < kk||kk > —(8;) a/pk(r) Lp(r)J dr (7-6)
where < kk||kk > is the self-Coulomb interaction energy and the last term of

equation (7-6) is the second derivative of the statistical exchange total energy with
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respect to the occupation number of orbital k; the statistical total energy is consid-
ered correct in the Xa method. However, the ionization potential in the HF method

is equal to the negative of one-electron eigenvalue of the corresponding orbital, i.e.
I = —'F (7~7)

under the frozen orbital approximation (Koopmans’ theorem)®419°, When the SIC

is introduced into the Xa method, equation (7-6) becomes

L= e + (8%) " / p;~:<r>{ [pk<r>} R [pm] _Q/S}dr (7-9)

The introduction of the SIC greatly reduces the deviation of €; from ‘he ionization

potential. The results listed in Tables VII-1 to VII-7 support this analysis.

TABLE VII-1

The negative of the one-electron eigenvalues of ethylene (Co Hy) in the
MS-Xa, TS-MS-Xa, SIC-MS-Xa, and M-SIC-MS-Xa
methods, compared with other calculation and
experimental ionization potentials (eV)

Orbital Xea TS-Xa  SIC-Xa M-SIC-Xa TS-Xa® Expt®
1514 6.34 9.89 9.90 10.06 12.12 10.51
lblg 9.48 13.28 12.15 12.23 11.72 12.38
2a, 10.62 14.53 14.61 14.46 14.72 14.47
1b3y 12.04 15.80 15.28 15.39 15.48 15.68
1bgy 14.83 18.65 18.12 18.24 18.12 18.87
lag 19.08 22.96 23.10 24.10 23.95 ~ 23

a. Reference 173;
b. Reference 200.

CzH,: Table VII-1 and Fig. 7-1 show the negative of the one-electron cigenvalues
for ethylene in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and M-SIC-MS-Xa methods
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FIGURE 7-1

The one-electron eigenvalues (eV) for the valence orbitals of
ethylene (C2Hy ), compared with the experimental
ionization potentials
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(columns II to V) compared to other theoretical calculations and exp riment. Rosch
. et al.1”® studied ethylene using the transition state MS-Xa calculation to test the
overlapping sphere technique. The exchange parameters and the radii of the atomice
and outer spheres in their work differs from those used in the present work., The
experimental ionization potentials are from Ref. 200. The negative of one-electron
eigenvalues in the MS-Xa method, as expected, are much smaller than the exper-
imental ionization potentials. But ‘he negative of one-electron eigenvalues in the
SIC-MS-Xa method are excellent in the agreement with expeiiment, even better
than those from the transition state calculation i which, as in the present work, the
results are taken from the negative of one-electron eigenvalues obtained by 1cmov-
ing half-electron from the highest occupied orbital, 1bj,. The present transition
state calculation is much better than the early work!"3, because of the choice of the
atomic and outer sphere radii and the overlapping percentage between the atomice
spheres; the vo.ame and electron charge in the interatomic region are dependent on
the percentage of the overlapping between the atomic spheres, therefore the one-
electron eigenvalues and statistical total energies are sensitive to the potential in
the interatomic region in the MS-Xa method. The one-electron eigenvalues in the
M-SIC-MS-Xa method are higher than those in both the TS-MS-Xa and SIC-MS-
Xa methods in absolute value, because minimizing the total SIC energy lowers the
statistical total energy and makes the molecule more stable. The potential of the
atomic spheres in the M-SIC-MS-Xa is lower than in the SIC-MS-Xa method, and
consequently the binding energies of the electrons are higher than in SIC-MS-Xa,
and therefore the ethylene ionization potentials from the negative of the one-clectron
eigenvalues in the M-SIC-MS-Xa are slightly better than those in the SIC-MS-Xe
method for orbitals 1b1,, 1big, 2a4, 1bzu, and 1bg,. But, for arbital la,, the value

is too high compared to experiment.
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TABLE VII-2

The negative of the one-electron eigenvalues of formaldehyde
(H2CO) in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and
M-SIC-MS-Xo methods, compared with other
calculation and experimental ionization potentials (eV)

Orbital Xa TS-Xa SIC-Xa M-SIC-Xa TS-Xa® LCAO-Xa® HF® GF°¢ Expt?

2b, 697 11.43 10.81 13.17 12.03 11.26 12.03 10.84 10.88
1by 9.88 14.41 15.09 13.85 15.55 15.41 14.60 14.29 14.38
3a; 12.64 17.27 17.08 16.52 17.93 16.31 1777 16.36 16.00
1bs 12.21 16.61 15.88 16.58 17.55 17.72 18.82 17.13 16.78
2a) 15.85 2034 19.60 20.10 23.59 21.8
la; 2740 3228 33.51 31.22 38.28

a. Reference 181;
b. Reference 201;
c. Reference 202;
d. Reference 204.

H>CO: Formaldehyde has been widely investigated by the tangent sphere and
overlapping sphere MS-Xa181, the LCAO-Xa!®!, the HF?%!, the Green-function
(GF)*?, and the ordinary third-order Rayleigh-Schrédinger perturbation?® meth-
ods and experimently?®®. The present results are listed in Table VII-2 and compared
to these calculations and experiments. The one-electron eigenvalues of the highest
four occupied orbitals are plo.ted in Fig. 7-2. The results strongly support the
ordering alrcady obtained by the HF method??!. The ordering of orbitals 3a; and
1b; was reversed in the MS-Xa, TS-MS-Xa, SIC-MS-Xa methods, although quan-
titatively, the one-electron eigenvalues in the TS-MS-Xa and SIC-MS-Xa methods
are much better than those in the HF method, even better than the transition state
LCAO-Xa calculation. The SIC-MS-Xa method is comnparable to the TS-MS-Xa
method. Furthermore, the ionization potentials from the negative of one-electron
cigenvalues in both SIC-MS-Xa method and TS-MS-Xa method in which half-

electron was removed from the highest orbital 2b; to infinity are much better than
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FIGURE 7-2

The one-electron eigenvalues (eV) for the valence orbitals
of formaldehyde (H, CO), compared with the

experimental ionization potentials
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those in the early transition state MS-Xa calculation!8!, the present number of
partial waves and the radii of the atomic and outer spheres differ from those used
previous work!®!, in which the partial waves up to 1 = 2 for the outer sphere, | =
0 for the hydrogen atom and 1 = 1 for the cubon were employed. However, the
partial waves up to 1 = 4 for the outer sphere, 1 = 1 for the hydrogen atom and 1 = 2
for the carbon were used in the present work and include the polarization function.
It is interesting that the ordering of orbitals 3a; and 1b; is correct in the M-SIC-
MS-Xa method and the M-SIC-MS-Xa results are better than the TS-MS-Xa and
SIC-MS-Xa, except for orbital 2b,.

TABLE VII-3

The negative of the one-electron eigenvalues of ozone (O3)
in the MS-Xa, TS-MS-Xa, SIC-MS-Xa,
and M-SIC-MS-Xea methods, compared with other calculation
and experimental ionization potentials (eV)

Orbital Xa TS-Xe SIC-Xa M-SIC-Xa TS-Xo® LCAO-Xa® HF® PT® Expt?

4 a; 9.50 14.14 13.62 13.42 13.20 11.92 15.83 12.94 12.75
3 by 9.22 13.84 1l.29 12.44 13.17 12.20 16.31 13.27 13.03
1 ap 9.87 14.49 13.91 13.05 13.62 12.60 14.02 14.07 13.57

2 by 16.03 20.75  20.30 20.87 20.74 18.22 21.93 19.44 19.99
1 by 14.70 19.38 19.81 18.30 19.44 18.88 22.15

3 aj 15.17 19.87  20.04 18.83 19.94 18.36 23.26

2 a; 21.09 25.79  25.14 24.90 25.30 22.98 24.7
1 by 27.41 32.19  31.52 30.94 32.42 31.86

1ag 33.68 38.51  38.68 37.31 39.38 39.00

a. Reference 181;
b. Reference 205;
c. Reference 206;
d. Reference 207.

Og: Ozone is a widely investigated molecule by means of the MS-Xa!®!, the LCAO-
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FIGURE 7-3

The one-electron eigenvalues (eV) for the valence orbitals

of ozone (O3), compared with the

experimental ionization potentials
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Xa'8!, the HF2%5 and the Rayleigh-Schrédinger perturbation (PT)2%® methods and
experimently?°”. The present TS-MS-Xa calculation, which was carried out by re-
moving half-clectron from the highest orbital 4a; to infinity, the SIC-MS-Xa, and
M-SIC-MS-Xa calculations for ozone are presented in Table VII-3. The one-electron
cigenvalues of the highest four occupied orbitals are compared, in Fig. 7-3, with
those from the LCAO-Xa, the HF, the PT methods and from experiments. The
present TS-MS-Xa calculation is slightly worse than the early calculation'®!, in
which the results were obtained orbital by orbital, that is, the ionization potential
for cach orbital was obtained by removing a half electron from the corresponding or-
bital, which is the preferred method!8!, although occasionally it is possible to obtain
identical results by removing a half electron from the highest symmetry occupied
orbital. The ionization potentials taken from the negative of one-electron eigenval-
ues in the SIC-MS-Xa method are better than the present TS-MS-Xa calculation
and comparable with the early work!®!. The results in the M-SIC-MS-Xa methods
are no better than those in the SIC-MS-Xa method. Unfortunately, the ordering of
orbitals 4a; and 3b,, and 2by, 1b;, and 3a; are reversed by the TS-MS-Xa« method,
and in the SIC-MS-Xa method. The reversed ordering also happened in the HF
method for orbitals 4a;, 3bg, and las and in the transition state LCAO-Xa methnd

for 1b; and 3a;. Hence the reversed order in the SIC-MS-Xa method is not caused

by the ‘'muffin-tin’ approximation.

CgHg: Benzene has been studied by the transition state MS-Xa??3178, and the
HF?%® methods, and experimentally??~2!1, The assignment of the experimental
ionization potentials follows the many body calculation?!?. The present results are
shown in Table VII-4 and Fig. 7-4 and compared with the others. The ionization
potentials taken from the negative of one-electron eigenvalues in the SIC-MS-Xo

method are better than the TS-MS-Xa calculation in which half-electron is removed
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TABLE VII-4

The negative of the one-electron eigenvalues of benzene (Cg lg)
in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and
M-SIC-MS-Xa methods, compared with other

calculation and experimental ionization potentiais (¢V)

Orbital Xa TS-Xa SIC-Xa M-SIC-Xa TS-Xa® TS-Xa® HF  Exptd

leiy 7.51 1035 10.03 10.25 10.08 10.45 10.15 9.3
2e94 10.17 13.03 12.18 12.21 11.48 13.21 14.26 11.48
lagy 10.25 13.08  12.77 12.98 12.85 13.16 14.56  12.29
2eju 11.97 14.82  14.00 14.07 13.56 14.97 16.92 13.94
1bgy 13.82 16.82  16.53 16.82 13.53 17.18 18.01 14.80
1byy 12.59 15.40 14.24 14.39 16.09 15.52 17.80 15.46
2a)4 14.31 17.13  16.37 16.50 16.07 17.25 20.08 16.86

legy 17.10 20.03 19.64 20.27 18.90 20.27 19.0
leyy 20.67 23.62 23.19 23.66 22.82 23.87 22.7
la,lg 23.34 26.30 25.88 26.22 26 12 26.56 25.9

a. Reference 173;

b. Reference 178;

¢. Reference 208;

d. References 178,204.

from orbital 18, except for the 1by,, and are much better than the HF method.
The ionization potentials in the M-SIC-MS-Xa method are higher than those in
the SIC-MS-Xa method, but no better than those in the SIC-MS-Xa mecthod. The
early transition state MS-Xa calculations for benzene given by Rosch et al. 1™ are
mostly better than the present calculations, because they did the SCF procedure
orbital by orbital. The present ionization potentials in the TS-MS-Xa wethod are
slightly better than Case et al.!™® work, in which the spin-polatized MS-X« method
was used. Obviously, when the transition state concept is involved, the election-
configuration is no longer full occupied. The exchange cffects for the spin-up and
spin-down electrons are different. Hence the spin-polarized MS-Xa method is better

in carrying out the transition state calculation.
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FIGURE 7-4

The one-electron eigenvalues (eV) for the valence orbitals
of benzene (Cs Hg ), compared with the
experimental ionization potentials
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TABLE VII-5

The negative of the one-electron eigenvalues of pyrazine (CqHyNo)
in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and
M-SIC-MS-Xa methods, compared with other

calculation and experimental ionization potentials (eV)

Orbital Xa TS-Xa SIC-Xa  M-SIC-Xa TS-Xa® Expt?
4a, 8.04 11.17 10.95 9.96 11.28 9.4
1by, 7.86 10.85 10.24 8.90 10.94 10.2
3biy 9.52 12.68 12.52 11.27 12.90 114
1bgg 9.15 12.24 12.00 10.49 12.33 117
2bs, 11.22 14.23 13.23 12.26 14.34 13.3
1bgy 11.36 14.39 14.19 12.75 14.39 14.0
3boy 12.44 15.42 14.35 12.89 15.59 15.0
2bi1y 13.21 16.16 15.01 13.67 16.56 16.2
3ag 14.31 17.31 16.71 15.70 17.66 17.0
2bay 15.66 18.89 18.73 18.68 19.16 17.1
ag 18.62 21.77 21.46 20.86 21.97 20.6
1bsg 18.65 21.83 21.56 20.47 22.00 21.0
1bay 21.58 24.71 24.27 23.42 24.93 24.0
1bjy 24.45 27.70 27.46 26.10 27.80
lag 26.28 29.49 29.23 29.52 29.63

a. Reference 178;
b. Reference 213.

C4H;N,: The photoelectron spectrum of this molecule has been analyzed by

Almlof et al.?® A theoretical study has been done by Case et al.!™® in the spin-
restricted MS-Xa calculation. In order to test the efficiency of the present SIC-MS-
Xoa method, the calculation was duplicated using the same exchange parameters,
a’s, and the radii of the atomic and outer spheres in the spin-polarized TS-MS-Xa
method, the SIC-MS-Xa and M-SIC-MS-Xa methods. From Table VII-5 and Fig.
7-5, it can be seen that the spin-polarized transition state calculation (column 3) are
178

only slightly better than the spin-restricted transition state calculation’™® (column

6). The ionization potentials taken from the negative of one-clectron cigenvalues in
the SIC-MS-Xa method are slightly better than the results of both spin-estricted

and spin-polarized transition state calculations and arc in very good agrecment
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FIGURE 7-5

The one-electron eigenvalues (eV) for the valence orbitals
of pyrazine (C4 HyN;), compared with the
experimental ionization potentials
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with the experimental results. The M-SIC-MS-Xa ionization potentials are no bet-
ter than the SIC-MS-Xa results.

TABLE VII-6

The negative of the one-electron eigenvalues of tetrafluoride
(CF4) in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and
M-SIC-MS-Xa methods, compared with other
calculations and experimental ionization potentials (eV)

Orbital Xa TS-Xa SIC-Xa M-SIC-Xa HF® CNDO/2° Expt?

1t 12.27 16.45 15.66 15.66 19.40 22.24 16.20
3 t2 13.14 17.29 16.67 16.63 19.65 20.20 17.40
le 13.81 17 94 17.31 17.29 21.34 23.30 18.50
21 17.16 21.4v 21.14 21.23 24.89 23.18 22.12
2 19.99 24.22 23.83 24.30 28.15 2048 25.12
1t 32.54 36.75 35.88 35.84 46.65 48.22

1a 34.89 39.11 38.51 38.80 50.50 54.63

a. Reference 214;
b. Reference 215.

CF4: Carbon tetrafluoride has Td symmetry and is ideal for the MS-Xa calculation.
This molecule was calculated by ab-initio HF method?!* and CNDO/2 cmpirical

215 The present transition state caleulation

method?* and n-casured experimently
listed in Table VII-6 was performed by removing half-election from the highest or-
bital 1¢;. Fig. 7-6 plots the one-electron eigenvalues in the MS-Xa m-thod and
compares with those from the HF, the CNDO/2 methods and experiments. The

ionization potentials in the transition state calculation are in excellent agreement

with experiment and slightly better than those i the SIC-MS-X« method in which

the results are slightly smaller than those in the transition state procedure. Further-

more, the present results in both TS-MS-Xa and SIC-MS-Xa methods are much
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FIGURE 7-6

The one-electron eigenvalues (eV) for the valence orbitals
of tetrafluoride (CF4), compared with the

exper

imental ionization potentials
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better than the values in the HF and CNDO/2 methods. The onc-electron eigen-
values in the SIC-MS-Xa method are slightly changed by the minimization of the

total SIC energy with respect to the orbital transformation.

TABLE VII.7

The negative of the one-electron eigenvalues of tetrachloride
(CCly) in the MS-Xa, TS-MS-Xa, SIC-MS-Xa,
and M-SIC-MS-Xa methods, compared with other calculation
and experimental ionization potentials (eV)

Orbital Xa T$-Xa  SIC-Xa M-SIC-Xa CNDO/2 Expt®

1t 9.03 11.97 11.46 9.97 13.68 11.60
3t 9.74 12.66 12.34 10.86 15.21 12.40
12.60
12.75

le 10.34 13.25 12.85 11.36 16.60 13.40
2tz 13.23 16.22 16.27 15.14 21.49 16.60
2a; 17.07 20.08 19.99 20.32
1t 22.31 25.32 24.87 23.41
1a 25.10 28.12 28.02 27.41

a. Reference 216;
b. Reference 217.

CCly: Carbon tetrachloride has Td symmetry. Table VII-7 and Fig. 7-7 shows
the present results and compares to the empirical CNDO/2 calculation?!® and the
experimental ionization potentials?’”. The ionization potentials in the SIC-MS-Xa
method are better than those in the TS-MS-Xa calculation, in which the results were
obtzined by removing half-electron from the highest occupied orbital 1, except for
orbital le. Both the TS-MS-Xa and SIC-MS-Xa methods are much better than the
CNDO/2 method in predicting the jonization potentials. Furthermore, M-SIC-MS-

Xa method is no better than the SIC-MS-Xa method.
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The ionization potential is not exactly equal to the negative of one-electron

eigenvalue in the HF method, because the relaxation in the ionization process is
important, it is much more important in a molecule than in an atom, for which
ionization potentials taken from the regative of one-electron cigenvalue is in very
good agreement with experiment. The ionization potential is also not cqual to
the negative of one-electron eigenvalue in the Xa method even using the frozen
orbital approximation. It is clear from equation (7-8) that the ionization potentials
should be bigger than the negative of one-electron eigenvalue, because the value
of the integral in equation (7-8) is always positive, except for a system with only
two paired electrons. The relaxation effect is to decrease the ionization potential,
but the second term in equation (7-8) is to increase the ionization potential. They
partly cancel. This is why the ionization potentials obtained from the negative of
one-electron eigenvalues in the SIC-MS-Xa method to be much better than the HF

method by using the Koopmans’ theorem.
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TABLE VII-8

The statistical total energies for several molecules (eV)

SIC-MS-Xa methods

in the MS-Xa, SIC-MS-Xa, and minimized

Molecule MS-Xa SIC-MS-Xa M-SIC-MS-Xa
CHy —156.7532 -153.0174 —153.1182
H, CO —~228.2903 —228.3149 —228.4970
O3 —448.8199 —443.5352 —443.8501
CeHg —459.4779 —445.2743 —445.4223
CsHy Ny —524.2504 —509.8879 —510.5779
CFy4 —871.3409 —854.6787 —854.8670
CCly -3750.786 —3703.434 —3703.806

VII-2.2 Statistical Total Energy

The statistical total energies are unreliable in the MS-Xa method. It is sen-
sitive to the amount of overlap between atomic spheres, because of the ‘muffin-tin’
approximation. To compare the SIC energy contribution, Table VII-8 summarizes
the statistical total energies for the several molecules in the MS-Xa, the SIC-MS-Xa,
and the M-SIC-MS-Xa methods. In Table VII-8, the total SIC energy contribu-
tions to the statistical total energies are negative for HoCO and positive for all other
molecules, unlike atomic calculations in which the total SIC energy contributions

to the statistical total energies arc always positive3°.

Comparing the statistical total energies in the M-SIC-MS-X« in column 4
with those in column 3 in the SIC-MS-Xa method shows that the minimization
process lowers the statistical total energies for all molecules, but the differences
between the unminimized and the minimized SIC-MS-Xa statistical total energies
are very small. As mentioned before, there is no mixture of the orbitals which

span two symmetric irreducible representations, because the spherically averaged
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and volume-averaged potentials for the atomic, extramolecular, and interatomic
regions in the MS-Xa method were used. The minimization is not necessary in the

SIC-MS-Xa calculation.

In conclusion of this section, it can be seen that the SIC-MS-Xa method
presents a significant improvement over the conventional MS-Xa for the following

reasons:

(1) Theoretically, the SIC-MS-Xa method includes the SIC, which corrects
the unphysical self-interaction from the Coulomb-integral and the exchange-integral.
The self-interaction corrected theory should be accurate and closer to the real system

than the uncorrected theory.

(i1) Numerically, the SIC-MS-Xa method gives very good ionization poten-
tials in agreement with experiment and comparable with the traunsition state calcu-
lation in the MS-Xa method which arbitrarily removes the self-interaction by the
%e trick. From the examples mentioned above, it is clear that if the ordering of
orbitals is reversed in the TS-MS-Xa calculation, it also is 1eversed m the SIC-MS-
Xa method, so that the reversion of the ordering of orbitals is not caused by SIC.
A single SCF procedure can give both the ionization potentials and wave fuuctions
which can be used to calculate other properties for the system. Computational
time is slightly increased by introducing the SIC, but mwuch less than twice the
computational time for two SCF procedures, one for the the ionization potentials in
the transition state calculation, and the other for the wave function in the ground
state or excited state calculation required by conventional MS-Xa calculations, The
present method is therefore attractive, especially for a very large molecules usually
chosen for calculation by the MS-Xa method. The wave functions from the SIC-
MS-Xa method will be better than those from the MS-Xa method for calculating

other properties of the molecule.




The minimization of the total SIC energy is time-consuming, because one
has to search the transformation coefficients by calculating the matrix elements in
equation (6-34) and unnecessary, at least, by using Edmiston and Ruedenberg's

method.

The SIC-MS-Xa method can be used for the very large molecule and cluster

calculations with acceptable accuracy and reasonable computation time.

VII-3. Stability of the Molecular Anions ClO,, HCO~, and Oy

Molecular anions are experimentally?'3-222 and theoretically!3%137,223-229
interesting, because of the importance of their electronic structure and molecular
electron affinity in physics and chemistry. Theoretical calculation of molecular

anions tests the rcliability of the theory.

The calculation of molecular anion electronic structure and molecular elec-
tron affinity is very difficult??®224  because both are strongly dependent on the
nature of the basis set employed in the ab-initio Hartree-Fock method. The choice
of the basis sct becomes the prime focus of the work. The major energy contribution
to the electron affinity is election correlation, and in molecules with very small elec-
tron affinities, the choice of electron configuration in the configuration-interaction

Hartree-Fock (CI) calculation is difficult.

Most calculations on molecular anions!®3:137:223-229 were ab-initio Hartree-
Fock or CI calculations. A few were performed using the local-density functional
(LDF) method, like, the LCAO-Xa method!81—183 the discrete variational Xo
(DV-Xa) method'® =186 ' or the multiple-scattering Xar (MS-Xa) method16%:161,

despite their usefulness in describing the electron structure of large molecules and
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containing heavy atoms. The lack of calculations for the molecular anions using
the LDF method might be due to the non-convergence problem in solving the one-
electron Schrédinger equation numerically. The cause of the non-convergency is

obvious if the details of the MS-Xa method!69—16! are considered.

As mentioned before, the MS-Xa method is based on the division of molec-
ular space into non-overlapping atomic, interatomic, and extramolecular regions,
with spherically averaged potentials for the atomic and extramolecular regions and
a volume-averaged potential for the interatomic region, and the conventional Xa
approximation to the exchange-correlation. The one-electron Schrodinger equation
in the atomic and extramolecular regions are solved numerically In the Xa method,

the ionization potential, Iy, fc - orbital k can be expressed as®
1
Iy % —ex + 5 < kk|[kk > (7-9)

under the frozen-orbital approximation, in which ¢ is the one-electron eigenvalue
for the orbital k and < kk||kk > is the self-Coulomb energy of the electron k, which
is usually about leV. Normally, the ionization potential of the highest occupied

127,141 and

orbital for most stable molecular anions is a very small positive value
less than its self-Coulomb energy. Hence the one-electron eigenvalue of the highest

occupied orbital for most molecular anions might be positive in the Xa method.

Following the numerical approach of Herman and Skillman®®, the wave func-
tion is obtained by outward numerical integration starting from r=0 and nward
numerical integration starting from r=5c. The wave functions at the first several
mesh points in both directions are calculated by solving the onc-clectron Schrodinger
equation analytically with the asymptotic forms of the potential Vhm(r) for the cor-
responding orbital, when r approaches zero and infinity. The radial wave function

is of the form
Ppi(r) = coe"[""‘(')]m' (7 -10)
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when r approaches infinity, where cg is the normalization coustant and gqni(r) is

written as
gni(r) =Vo(r) — €m (7 - 11)

and ey is the one-electron eigenvalue. In the Xa method, the asymptotic potential,
V®°(r), when r approaches infinity, is

2(Z - N)

r

Veo(r) = — (7 - 12)

in the Rydberg atomic units. In equation (7-12), Z is the total nuclear charge and
N the total electron number in the system. It is clear that V'*° (r) = 0 for a neutral

system. Equation (7-10) becomes
Pu(r) = e lmeml"?r (7—13)

when r approaches infinity. Consequently, P, (r) is not a bound wave function

when €,; > 0 for the highest occupied orbital of molecular anions in the MS-Xa

method.

To solve the one-electron Schrédinger equation self-consistently, Norman!3®

applied a Watson sphere with charge +1 and radius equal to the outer sphere
to simulate the stabilizing influence of a crystal lattice in the ClOj calculation.
Obviously, the size of the Watson sphere is arbitrary, and the energy, potential,
and, in turn, the one-electron eigenvalues of the system depend on the radius of the
Watson sphere and the charge on the Watson sphere. Hence it may not be :sed to

predict the electron structure of molecular anions.

As mentioned in section III-1, the same problem occurs in calculating the
atomic structure of negative ions of atoms’!. The stable negative ions, such as
H—, 07, F~, and C1=% 7071 were predicted unstable by the Xa method and other

LDF methods. Sen®® discussed the non-convergence problem in the Xa calculation

219




for the atomic negative ions and pointed out that the non-convergence problem is
because the self-interaction is not canceled in the Coulomb integral by that in the

exchange integral in the Xa method.

Previously (section VII-2)!%0 it has been shown that the self-interaction cor-
rection in the MS-Xa method, the self-interaction corrected MS-Xa (SIC-MS-Xa)
method, significantly improves the molecular 1esults over the conventional MS-Xa
results, especially for the one-electron eigenvalues, which are as good as those from
the Slater transition-state calculation and in the agreement with the experimen-
tal ionization potentials. The SIC-MS-Xa method has the correct asymptotic be-

haviour of the potential,
2
V(r) =212 = N +1] (7 — 14)

when r approaches infinity in the extramolecular region in the SIC-MS-Xa method.

Hence the wave function is expected to be better than that in the MS-Xa method.

In this work, the SIC-MS-XNa method 1s employed to calculate the molec-
ular anions ClOg, HCO™, and O3 . The effect of the electron correlation energy
functional by using the Vosko, Wilk, and Nusai3%138 (VIVN) correlation cnergy
functional on the one-electron eigenvalues and the charge distribution among the
individual region are discussed. The negative of the one-election cigenvalues is

compared with other theoretical calculations and experiment.

Details relevant to the present calculations ate given below.

Experimental equilibrium geometries arc taken from Ref. 230 for ClOy,
Ref. 220 for HCO~, and Ref. 223 for 07 . Schwarz’s values'’ for the exchange
parameter, «, were employed for fluotine, oxygen, and carbon atoms, and the a
value of 0.77725 from Ref. 197 was used for hydrogen atom. a values for the
interatomic and extramolecular 1egions were made equal and taken as the valence-

electron weighted average of all atomic a values.
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TABLE VII-9

Geometries of molecules, radii of the atomic and outer spheres, and
overlapping percentages between spheres (a..u.s)

Molecule Sphere X y z T Qverlap
Clo¢ Out 0.0 0.0 0.0 4074 14.8(Cl — O)
Cl 0.0 0.0 0.0 1.611

0 —1.5821 1.5821 1.5821 1.534
16821 -1.5821 1.5821 1.5634

1.5821 1.5821 -—1.5821 1.534
—1.5821 ~1.5821 -1.5821 1.534

HCO? Out 11772 0.0 00 3770  47.1C -0
C 11772 0.0 0.0 1.680  29.5(C — H
O —1.0905  0.2939 0.0 1.683
H 16605 —2.3508 0.0 1.428

05§ Out 0.0 0.0 00 3.564 32.1(Oc— Ot)
Oc 0.0 0.0  0.8436 1.525
Ot 0.0 -2.0570 —0.4218 1.665
Ot 0.0 20570 —0.4218 1.665

a. Reference 230;
b. Reference 220;
c. Reference 223.

The initial molecular potential was generated from the superposition of SCF-
Xa charge densities for the fluorine, oxygen, and carbon atoms. Partial waves up to

=4 for the outer sphere, 1=2 for fluorine, oxygen, and carbon, and 1=1 for hydrogen.

The sphere radii were determined by the Norman criterion!®®. Overlapping
sphere radii were chosen nonempirically by using a scaling factor of 0.80 for C1O
and 0.88 for HCO™ and O over the atomic number sphere radii, since ClOg
possesses tetrahedral symmetry (Td), which is much more suitable to the MS-Xa
calculation than planar molecular symmetry, such as HCO™ and O7; the percentage
of the atomic region in the molecular space is much higher in tetrahedral symmetry

than a planar system in the tangent sphere MS-Xa calculation. The coordinates
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for the atoms and the center of the outer sphere, the radii of the atomic and outer

spheres, and the overlapping percentages of the atomic spheres are listed in Table

VII-9.

The initial calculations are based on the original version of Cook and Case’s
MS-Xa program!®® in order to perform the SCF calculations for the ground state
and Slater transition state for ClO;, HCO~, and O . The modified MS-X« pro-
gram including the self-interaction correction is ciployed to carry out the ground

state calculation for the molecular anions ClO;, HCO™, and O3 including and

excluding the VWN?® correlation energy functionall®®,

Since the Coulomb and exchange potentials in the SIC-MS-Xa method are
orbital dependent, the wave function is not invariant under orbital transformations.
Previously (section VII-2)*9% it has been shown that the dependence of wave func-
tions on orbital transformations is not very important for the spherically averaged

potentials for the atomic and extramolecular regions and the volune-averaged po-

tential for the interatomic and the oveilapping spheres in the SIC-MS-Xa method.

Hence orbital transformation is ignored in the present calculation.

The SCF calculations for the ground state of ClO; in the MS-Xa and SIC-
MS-Xa methods and the transition-state in the MS-Xa method performed very
well, because it is a well-bound system with the lonization potential of 6.2¢V for its
highest occupied orbital. Unfortunately, the SCF was only possible for the ground
state in the SIC-MS-Xa method and the transition-state in the MS-Xa method
for HCO™ and Oy, and failed for the ground states in the MS-Xa method, giving
positive eigenvalues for the highest occupied orbitals. The negative of the one-
electron eigenvalues for all valence occupied orbitals of ClO;, HCO™, and Oy are
listed in Tables VII-10, VII-12, and VII-13, respectively, and compared with other

calculations and experiment. The electron charge distribution among the atomic,
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interatomic, and extramolecular regions and the charge partition to the partial
waves are sun:narized in Table VII-11 for the ground state of ClOJ in the MS-Xa

and SIC-MS-Xa methods and the transition state in the MS-Xa method.

TABLE VII-10

The negative of the one-electron eigenvalues (eV) in the
MS-Xa, TS-MS-Xa, SIC-MS-Xa, and
SIC-MS-Xa-VWN methods for the negative ion of
ClO4, compared with the electron affinity in
the Watson sphere applied TS-MS-Xa calculation and experiment

Orbital Xa  TS-Xa SIC-Xa SIC-Xa-VWN WS-TS-Xa® HF®  Expt®

1t 3.71 7.07 6.23 7.61 11.65 7.66 6.2
3t 5.56 8.87 8.40 9.76 13.88 9.65 8.8
le 5.90 9.23 8.75 10.10 13.88 10.01 8.8
21y 10.34 13.68 13.47 14.86 18.75 15.47 13.4
2 q 13.95 1730  16.73 18.13 21.97 19.38 16.4
11t 21,79 2521  24.65 26.06 30.89 33.07 27.0
1a 2795 3137  31.63 33.04 37.31 40.59 34.4

a. Ref. 135, transition state calculation in the MS-Xa method with a Watson sphere;
b. Ref. 231, from ab-initio HF calculation with the basis set (C1/10,6,1) (0/7,3);
c. Ref. 218, from the X-ray photoelectron spectra of LiClOy4.

ClO;: To vertify the asymptotic form of the potential numerically in the ex-
tramolecular region, Fig. 7-8 shows the potential behaviour in the extramolecular
region for the highest occupied orbital, 1t;, of ClIO] in the MS-Xa and SIC-MS-Xa
methods. The behaviour of the potentials for all other occupied valence orbitals is
approximately the same as for 1t;. The potential multiplied by r approaches -+2 in
the MS-Xa method and zero in the SIC-MS-Xa method when r approaches infinity.
The ionization potentials of CIO; have been measured by Prins?*! from the X-ray
photoclectron spectra of LiClO4; and studied theoretically with the ab-initio HF

method??! and the MS-Xa method!® using a Watson sphere of charge +1 around
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FIGURE 7-8

Potential behaviour in the extramolecular region for the highest
occupied orbital, 1t;, of ClO{ in the MS-Xa
and SIC-MS-Xa methods vs the radial r

MS-X,

SIC-MS-X,
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the atomic and interatomic regions. The present SCF calculations was carried out
without any Watson sphere. The negative of the one-electron eigenvalues are listed
in Table VII-10 and compared in Fig. 7-9. Table VII-10 gives the negative of
the one-electron eigenvalues in the MS-Xa method, column 2, the ground state;
column 3, the transition state when half electron is removed from the highest oc-
cupied orbital, 1t;, to infinity; column 4, the SIC-MS-Xa method; and, column
5, the VWN correlation energy functional included SIC-MS-Xa method (hence-
forth, called the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and SIC-MS-Xa-VWN, respec-
tively). The present results are compared to other theoretical calculations!35:231

and experiment?!®. The ionization potentials listed in column 6 were obtained pre-

viously by Norman3?® using the MS-Xa method with Watson sphere stabilization.

The negative of the one-electron eigenvalues in the MS-X« method, as ex-
pected, are much smaller than the experimental ionization potentials, and those in
the TS-MS-Xa method are significantly improved using the Slater transition-state
concept and are in reasonable agreement with experiment. The negative of the
one-electron eigenvalues in the SIC-MS-Xa method gives the ionization potentials
in excellent agreement with experiment except for the two lowest occupied valence
orbitals. The SIC remarkably increases the size of one-electron eigenvalues. The
SIC-MS-Xa method gives the best ionization potentials of the anion ClOj among
all these methods. The electron-correlation correction increases the binding ener-

gies of the orbitals and makes the one-electron eigenvalucs closer to those in the

ab-initio HF method.

The charge distribution in the molecular space and the percentage composi-
tion for the individual orbitals of the molecular anion ClO; in the MS-X«, TS-MS-
Xa, SIC-MS-Xa, and SIC-MS-Xa-VWN methods are in Table VII-11. Comparing

the charge distribution of the atomic, interatomic, and extramolecular regions in
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FIGURE 7-9

The one-electron eigenvalues (eV) for the valence orbitals
of the negative ion ClO;, compared with experiment
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the MS-Xa and TS-MS-Xa methods, it can be seen that the effect of removing
half electron from the highest occupied valence orbital, 1t;, is to slightly move the
electron charge into the atomic region and reduce the electron charge in the inter-
atomic and extramolecular regions. The partition of the electron charge between
the partial waves in the atomic and extramolecular regions did not alter. However,
the SIC pushes the electron charge of the atomic and interatomic regions into the
extramolecular region, compared to the MS-Xa method. This is reasonable, be-
cause the asymptotic form of the potential, when r approaches infinity, is repulsive
in the MS-Xa method, but neutral in the SIC-MS-Xa method for the molecular
anion. The electron-correlation moves the electron charge from the interatomic
and extramolecular regions to the atomic region. The contribution of electron-
correlation energy functional to the potential is usually negative and approximately
proportional to the electron density. Obviously, the electron densities in the in-
teratomic and extramolecular regions are much smaller than the electron densities
in the atomic region. Hence, the effect of the correlation-energy functional to the
potentials in the atomic region is much bigger than that in the interatomic and
extramolecular regions. Consequently, the VWN correlation attracts the electron

charge from the interatomic and extramolecular regions to the atomic region.

HCO-: The anion HCO~ was studied by Wasada and Hirao??* using the CI
method theoretically and experimentally observed in the negative ion mass spectra
of small alcohols by Murray et al.?2? and Chandrasekhar et al.??!. The ioniza-
tion potential of 0.470 eV for the highest occupied valence orbital of HCO™ in
the CI calculation, in which the valence basis set is double-zeta plus one polariza-
tion function and three diffuse functions (DZP+3), is very close to the very recent
(1986) experimental value?2, 0.31340.005 eV, which differs from the early (1981)

experimental measured ionization potential??!, 0.1744:0.174 €V. In this work, the
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TABLE VII-11

Charge analysis for the ground state of
ClOg in the MS-Xa(MS),
TS-MS-Xa(TS),
SIC-MS-Xa(SIC), and
SIC-MS-Xa-VWN(VWN) methods

State (Cl) s p d (0) s p dQB) s p d f g Q2

MS
1t 0 0 0 0 7.1 0 100 0 56 0 0 0 8 18 17.3
le 3.7 0 0 100 654 0 99 1 52 0 0 94 0 6 257
lay 44.1 100 O 0 419 78 19 3 05 73 0 0 23 4 13.5
2a 174 100 0 0 654 68 30 2 87 52 0 0 39 9 85
1t 15.6 0 8 13 1.4 94 5 1 22 0 5 33 8 7 109
2t 234 0 99 1 56.8 22 76 2 73 0 19 58 17 6 12.6
3 to 5.4 0o 3 o7 6.5 0 99 1 76 0 78 2 0 2 2.5
TS
1t 0 0 O 0 82 0 100 0 47 0 0 0 81 19 171
le 3.7 0 0 100 66 0 99 1 44 0 0 93 0 7 9253
1a 442 100 O 0 420 78 19 3 05 73 0 0 22 4 134
2 a 175 100 0 0 66.1 69 30 1 80 51 0 0 40 9 84
1t; 15.7 0 87 12 71.6 94 5 1 20 0 51 33 8 7 107
2t 23.5 0 99 1 574 22 76 2 66 0 19 57 17 7 125
3t 5.5 0 2 98 8.1 0 99 1 63 0 75 2 0 23 20.1
SIC
1t 0 0 0 0 %5 0 100 0 60 0 0 0 8 18 185
le 4.4 0 0 100 63.2 0 99 1 54 0 0 94 0 ¢ 27.1
1la; 43.0 100 O 0 423 78 19 3 05 75 0 0 22 4 14.2
23 16.7 100 O 0 6.3 69 30 1 90 54 0 0 37 9 9.2
1tz 16.5 0 8 12 69.4 93 6 1 22 0 54 32 7 7 11.8
2t 22.8 0 99 1 6.1 23 75 2 71 0 17 60 17T 6 14.0
3t 6.0 0 3 97 646 0 99 1 7.7 0 78 2 0 20 21.6
VWN
1t 0 0 o 0 6.0 0 100 0 57 0 0 0 8 18 183
le 4.4 0 0 100 6.7 0 99 1 51 0 0 93 0 7 2.9
1 a; 43.0 100 O 0 424 78 19 3 05 74 0 0 22 4 14.1
23 16,6 100 O 0 655 69 30 1 87 53 0 0 38 9 9.1
1t 16.6 0 8 12 70.0 93 6 1 22 0 5 32 7 7 1.7
2t 22.9 0 99 1 5.3 23 75 2 69 0 1T 60 17 6 13.8
3 to 6.2 0 3 97 651 0 99 1 73 0 7 2 0 21 214
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SCF calculations for HCO™ were performed in the TS-MS-Xa method by removing
half-electron from the highest occupied valence orbital 5a’ to infinity and in the
SIC-MS-Xa method. But the SCF process failed for the ground state of HCO~ in
the MS-Xa method, in which the one-electron eigenvalue of the highest occupied
valence orbital for HCO™ is positive. The negative of the calculated one-electron
eigenvalues for HCO™ in the TS-MS-Xa, SIC-MS-Xa, and SIC-MS-Xa-VWN meth-

ods is presented in Table VII-12 and compared in Fig. 7-10.

The negative of the highest occupied valence orbital one-electron eigenvalues,
0.32eV, is in excellent agreement with the recent experimental ionization potential,
0.313eV; and the agreement is much better than in the TS-MS-X«, SIC-MS-Xa-
VWN methods, and much better than the DZP+3 CI calculation. Except for the
highest and lowest occupied valence orbitals, the SIC-MS-Xa one-electron eigenval-
ues are intermediate between the TS-MS-Xa and SIC-MS-Xa-VWN results. Unfor-
tunately, the experimental ionization potentials for other occupied valence orbitals

are not available for comparison, and the present results are predictive.

Og: The ionization potential of O is a quantity of considerable significance in
atmospheric phenomena. It has been investigated experimentally by Beaty?*? using
photodetachment measurements and Chupka et al.?!® from the reaction I~ + Oj
— O; + I; it has been calculated theoretically by Heaton et al.??3 using the CI
method with large Gaussian basis sets and symmetry adapted complex functions,
272 spin-space configurations for O , and 30 spiu-space configurations for O3. The
calculated value of the ionization potential for the highest occupied valence orbital
of O in the CI method is 2.27409eV and very close to the experimental value,
2.1-2.2¢V. The calculations were done in the present work by using the TS-MS-Xa,

SIC-MS-Xa, and SIC-MS-Xa-VWN methods. The negative of the one-electron

eigenvalues is listed in Table VII-13 and plotted in Fig. 7-11. The calculation in
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TABLE VII-12

The negative of the one-electron eigenvalues (eV)
in the TS-MS-Xea, SIC-MS-Xa,
and SIC-MS-Xa-VWN method
for the negative ion HCO™*

Orbital TS-Xa SIC-Xa SIC-Xa-VWN
5a 1.06 0.32 1.31
4a 6.59 6.89 7.77
1a" 7.15 8.13 9.07
3a 8.69 8.71 9.57
2a 12.48 13.34 14.30
14 28.46 27.26 28.23

* The Calculated ionization potential for the highest occupied
orbital, 5, is 0.470eV in the CI method (Ref. 224) and
experimental result is 0.313eV (Ref. 220).

the MS-Xa method for Oj failed to give a self-consistent value.

The present results show that the negative of the one-electron cigenvalues
for the highest occupied valence orbital of O imn the TS-MS-Xa and SIC-MS-
Xa methods, 2.14 eV and 2.06eV respectively, are in excellent agieement with the
experimental ionization potential (2.1-2.2eV) and much better than that in the SIC-
MS-Xa-VWN method, and comparable with the CI calculation. For other occupied
valence orbitals, the negative of the one-electron cigenvalues in the TS-MS-Xa and
SIC-MS-Xa method are very close to each other and smaller than those in the

SIC-MS-Xa-VWN method.

The ionization potentials of the occupied orbitals in the ab-initio HF method
using the Koopmans' theorem are usually much higher than experiment, because
of the relaxation which occurs during ionization. The ionization changes the equi-

librium geometries and the electron distribution, and reduces the total energies of
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FIGURE 7-10

The one-electron eigenvalues (eV) for the valence orbitals

of the negative ion HCO~
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TABLE VII-13

The negative of the one-electron eigenvalues (eV) of the
negative ion Oy in the TS-MS-Xa,
SIC-MS-Xa, and SIC-MS-Xa methods *

Orbital TS-Xa SIC-Xa SIC-Xa-VWN
2 by 2.14 2.06 3.26
3 b; 4.11 3.86 5.11
4 a; 4.29 4.11 5.36
1 ag 4.69 4.45 5.69
1bg 9.48 10.11 11.37
3 a3 10.14 10.73 11.99
2 by 11.32 11.18 12,44
2 15.68 15.46 16.72
1 by 22.98 22.54 23.83
1la; 29.38 29.65 30.95

* The Calculated ionization potential for the highest occupied
orbital, 2 by, is 2.27 in the CI method (Ref. 223) and
experimental result is 2.1-2.2eV (Ref. 223).

molecular anions. Hence, the ionization potentials in the relaxed theoretical method
are smaller than those in the unrelaxed calculations. As discussed previously!'??,
the negative of the one-electron eigenvalues in the SIC-MS-Xa method is not equal
to the ionization potential, even under the frozen orbital approximation, equation
(7-8). The effect of the relaxation on the jonization potential, which lowers the mag-
nitude, is partly canceled by the value of the integral in the equation (7-8), which is
always non-negative. Furthermore, the clection-corielation cnergy functional nor-
mally increases the one-electron eigenvalue in magnitude, because of the negative
contribution of the correlation encrgy functional to the potential. Therefore, the
second term in the right hand side of equation (7-8) is also partly balanced by the
correlation correction. This is the reason why the ionization potentials obtained

from the negative of one-electron cigenvalues in the SIC-MS-Xa method are much

better than those from the SIC-MS-Xa-VWN method and from the ab-mnitio HE
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method, when the Koopmans' theorem is used.

The ionization potentials of molecular anions from the negative of the one-
electron eigenvalues in the SIC-MS-Xa method agree with expenment and are bet-
ter than those in the ab-initio HF calculation and comparable to the CI 1esults,
when the correct sphere sizes are chosen in the SIC-MS-Xa method. The SIC-
MS-Xa method gives convergent wave function for the stable molecular anions.
The wave functions in the SIC-MS-Xa method are expected to be better than in
the conventional MS-Xa method and can be used to calculating other one-clection
properties for the stable molecular anions. Furthermore, a single SCF procedure
in the SIC-MS-Xa method prod-ces both a 1casonable good ionization potential
and the correct wave function f  he molecular anion; the transition-state theory
cannot be used to predict the one-electron properties in the MS-Xa method. This is
a remarkable improvement over the MS-Xa micthod, especially for the application

of the MS-Xa method to large and heavy molecules.

The method being part of a completely tested theory has great validity for

predicting such ions.




CHAPTER VIII

CONCLUSIONS, CLAIMS TO ORIGINAL RESEARCH,
AND SUGGESTIONS TO FUTURE WORK

VIII-1. Conclusion

The present work is surumarized below.

VIII-1.1 The G-LSD and GX-LSD Theories

The G-LSD theory?* gives a master equation for the single-electron exchange
energy density, and other theories, such as, the GX-LSD theory??, the Za theory'”?,
the Xa theo1y?, the GKS theory”®, and the HFS theory® can be obtained by using
additional approximations, by choosing a certain Fermi-hole shape or using the high
electron-density approximation. Therefore, the GX-LSD theory is a restriction of
the G-LSD theory. Furthermore, there is no approximation used to derive the G-
LSD theory except the local-density approximation; the boundary conditions and
sum rule of the Fermi-correlation factor are generated from the HF limit in the HF
theory. Hence, theoretically the G-LSD theory is more rigorous than the GX-LSD

theory, the Za theory, the Xa theory, the GKS theory, and the HFS theory.

The exchange potential in the G-LSD theory is orbital dependent and more
correct than the Ma, GKS, and HFS exchange potentials which depend on the total
clection density. In fact, the electrons in different orbitals are certairly surrounded
by different environment created by the other electrons in a system. The HF theory

has this featuie?.

An another interesting feature in the G-LSD theory is that the Fermi-hole
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parameters are fixed for all atoms and ions, when the Fermi-hole shape has been
chosen (e.g. the GWB?" or the Wigner?® or the Homogencous® Fermi-nole shape)
or the Fermi-hole parameters can be determined by the asymptotic form of the
exchange potential as the electron density approaches infimty, i.e., the FEL Fermi-
hole parameters??. Consequently, the G-LSD thcory can avoid the time-consuming,

step in searching the optimal exchange parameter a for each atom or ion.

VIII-1.2 The Self-Interaction Correction

The self-interaction correction is very important, it is essential in calculating
the electronic structures of negative ions of atoms by the LDF theory in the SCF
procedure. The non-convergency in the self-consistent calculation for most exper-
imentally stable negative ions of atoms was caused by the mcomplete cancellation
of the self-interaction in the Coulomb and exchange integrals As discussed in sec-
tion VII-3, the self-interaction uncorrected LDF theory does not give any bound

solutions for molecular anions.

When the SIC is carried out by removing the exact self-Coulomb from the
Coulomb-interaction term and the approximate exchange from the local-exchange
term?9:39  the SIC-LDF theory gives much better one-clection cigenvalues and sta-
tistical total energies for atoms than the self-interaction uncorrected LDF theory, in
comparison with HF results and experiment. The SIC-LDF theory has the correct
asymptotic form of the potential with 1/r for the neutial atoms. Numerically, once
the SIC is invoked, the self-consistent procedure works propetly for most experi-

mentally stable negative ions of atoms?®73:74,

The self-interaction correction 15 very interesting in the molecular caleula-
tions. As shown in section VII-2, the ionization potentials gven in terms of the

negative of the one-el~ctren eigenvalues are in excellent agrecient with experiment
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and as good as those given by the Slater transition state calculation in the MS-Xa
method, when the SIC was introduced. One can certainly expect that the SIC-MS-
Xa method should give more accurate wave functions for molecules mn calculating
other one-electron properties, because the potential is closer to the real system than
that in the self-interaction uncorrected MS-Xa method. Furthermore, the SIC-MS-
Xa method can give both the ionization potentials and the correct wave functions
with a single SCF calculation, whereas to get both a reasonably good ionization
potential and the correct wave function for a molecule, the SCF procedure has to
be carried out twice in the self-interaction urcorrected MS-Xa method, one for the
transition state in which a half electron is removed from a occupied valence orbital
(usually the highest occupied valence orbital), and another for the ground state or
the excited state. This is inefficient and expensive for large molecules containing

heavy atoms.

The SIC-MS-Xa method works very well in the SCF calculation for the
experimentally stable molecular anions. The electron affinities obtained from the
negative of the one-electron eigenvalue of the highest occupied valence orbital are in
reasonable good agreement with experiment. The wave function can be produced by
the SIC-LDF theory, whereas it is impossible to solve the one-clectron Schrédinger
equation and obtain the wave function for most molecular anions with very small
positive electron affinities in the self-interaction uncorrected LDF' theory, because

of the non-convergency problem.

The present work has shown that a remarkable improvement of the one-
electron eigenvalues and the wave functions can be obtained for molecules and
molecular anions by introducing the SIC. It is certainly expected that the SIC is
very important in improving the agreement of calculated results and experiment

for other one-election properties and total energy more efficient than other more
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rigorous theories, such as, the LCAO-Xa method, the DV-Xa method, and the full

numerical LDA method which have rarely been applied to such systems.

VI1I1-1.3 The Electron-Correlation Correction

Electron-correlation is a very important concept in evaluating the electron
structures of negative ions of atoms. It is essential in obtaining a converged solution
for the one-electron Schrédinger equation for the alkaline-carth elements, most ac-
tinide elements, and rare gasses, although the elcctron-correlation functional to the
total potential is very small®>1%!, The electron-correlation eneigy coirection to elec-
tron affinities is larger than the kinetic, Coulecmb, and exchange energy contiibution
for most atoms. Hence, the existence of stable negative ions for most atoms nught
be attributed to electron correlation, and not to the Coulomb attiactive potential
between the nucleus and electrons, because each electron partially screens the nu-
cleus from all other electrons. The accurate expression of the electron correlation is
required to give trustworthy electron affinities for atoms. Comparing the results ob-
tained by using the VWN correlation expression®® and the SPP expression?® shows
that the VWN correlation expression is more accurate than the SPP correlation.

This agrees with Perdew and Zunger’s conclusion.

The electron correlation energy correction plays a 1ole in calculating the
jonization potentials for atoms and multiply charged ions of atoms. The results
obtained from the LDF theory are comparable with those in the HF theory. To get

accurate ionization potentials of atoms, electron-correlation is necessary.
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VIII-1.4 Relaxation

The relaxation effect in the ionization process is another important concept®!.
Normally, the relaxation effect reduces the total energy of a system and therefore, re-
duces the ionization potential and increases the electron affinity for a atom as shown
in Fig. 3-1. The ionization potential and electron affinity for an atom are different
in the relaxed method and non-relaxed method. Whereas the electron-correlation
increases the ionization potential and electron affinity. Therefore, the ionization
potential obtained from both the electron-correlation and relaxation uncorrected
LDF theory are in very good agreement with experiment. This means that in order
to get a correct ionization potential, one can either use both the electron-correlation
corrected and relaxation corrected LDF theory or use the electron-correlation ig-
nored and relaxation ignored LDF theory. Certainly, both the electron-correlation
and relaxation corrected LDF theory is more accurate theoretically and numerically

than both the electron-correlation and relaxation ignored LDF tl.eory.

This work showed that the relaxation is more important than the electron-
correlation in the ionization potential calculation, whereas, the electron-correlation
is more important than the relaxation in the electron affinity calculation for an
atom. The relaxation is very important in the calculation of molecular ionization
potentials. The ionization potentials given by Koopmans' theorem in the LCAO-HF
method are much larger tlan experiment. Whereas, the ionization potentials given
by the negative of the one-electron eigenvalues in the SIC-MS-Xa method are in
very good agreement with experiment, because the higher terms of the derivatives
of the exchange and self-exchange energies with respect to the occupation number

in equation (7-8) are partly cancelled by the relaxation correction!®?.
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VII1I-1.5 The SIC-G-LSD and SIC-GX-LSD theories

The SIC-G-LSD theory gives the statistical total energies for atoms in excel-
lent agreement with HF, and much better than the XO-LSD theory, when the GWB
Fermi-hole parameters are used. The one-electron eigenvalues in the SIC-G-LSD
theory with the GWB Fermi-hole parameters are in reasonable good comparing

with the HF orbital energies.

Comparing the results of atoms in the SIC-G-LSD theory and in the SIC-

GX-LSD theory shows that the total energies of atoms in the SIC-G-LSD theory are

only slightly better than those in the SIC-GX-LSD theory, when the FEL Fermi-hole

. parameters are used. This implies the physical restriction of the Fermi-correlation

factor used in the GX-LSD theory is not severe numerically. Consequently, the

SIC-GX-LSD theory is still valid and useful.

The electron-correlation corrected SIC-G-LSD theory with the GWB Ferini-
hole parameters can be used to estimate the electron affinitics for any atoms and
predict the ionization potentials of atoms and multiply charged positive ions with
acceptable computational time, when the experimental ionization potentials and the
electron affinities are unknown. Furthermore, the atomic wave function in the SIC-
G-LSD theory with the GWB Fermi-hole parameters s expected to give good other
atomic properties, such as, the oscillation strength, phoioionization cross section,

etc.

VIII-1.6 Convergence Technique

The convergence techniques in the SCF calculation for negative ions of atoms

introduced in the present work, that is, the adiabatic convergence technique and the

Watson sphere aided technique, worked so successfully that it can be employed in
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the HF calculation for the loose bound negative ions of atoms to study the stability
of the singly charged negative ions of rare gasses and actinides and the second

charged negative ions of the rest elements in the periodic table.

VIII-2. Claims to Original Research

1. Section [-2.

The boundary conditions and sum rule of the Fermi-correlation factor were

generated systematically by the HF limit.

o

Section I-3.

The pair-electron distribution function, pss(ri,r2), was written into equation
(1-50) to reflect the difference of the correlation factors for different orbitals.

This is a very important step in obtaining the G-LSD theory.
The derivation and analysis of the G-LSD theory.
3. Section I-4.

The GX-LSD theory, the Za theory, and the XO-LSD theory, and the Xa

theory were obtained from the G-LSD theory.

4. Section I-5.

The derivation of the self-interaction correction in the density functional

theory and the introduction of the SIC-G-LSD theory.
5. Section I-6.
The orbital-dependent exchange potential in the SIC-G-LSD theory.

6. Section II-1.2

The analysis of the self-interaction correction in the SIC-G-LSD theory, the

SIC-XO-LSD theory, and the HFS theory.
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10.

11.

12,

13.

Section II-1.5

The analysis and comparison of the one-clectron eigenvalues of atoms in the

SIC-G-LSD theory and in the HF theory.

Section II-1.7

Numerical proof of the validity of the SIC-GX-LSD theory.
Section II-2

Successful calculations of the single-charged negative ions for some atoms in

the SIC-GX-LSD theory.
Section III-2

The first through fourth derivations with 1espect to the occupation munber
were given in the GX-LSD theory; and numerically, the 1onization potentials
of atoms can be generated approximately by the first two derivations of the
statistical total energies with respect to the occupation number in the GX-
LSD theory, because of the partly cancellation of the Ingher order teims in

equation (3-16) with the Coulomb correlation correction.
Section I11-2.2

The Coulomb-correlation correction is very important in calculating the elec-

tron affinities of atoms.
Section III-2.3

The hardnesses of the acids and bases in the GX-LSD theory by the defini-
tions in equations (3-22) and (3-24) agree very well with those calculated by
the experimental ionization potentials and eclectron affinitics.

Section III-3

The experimental ionization potentials of the low-Z atoms were duplicated

very well by the differences of the total encigies in the clectron-correlation
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14.

energy cortected SIC-GX-LSD theory with the GWB Fermi-hole parameters.
The comparison of the ionization potentials shows that the VWN expression

for the electron correlation is better than the SPP parametrization.

The electron affinities of the low-Z atoms in the electron correlation corrected
SIC-GX-LSD theory with the GWB Fermi-hole parameters are reasonable
good in comparison with experiment. The contribution of the electron corre-

lation to the electron affinities is larger than that from the kinetic, Coulomb,

and exchange energies for some atoms.
Section III-4.

The relativistic correction to the removal energy of the outermost s orbital
of the alkaline-earth elements and the outermost p orbital of the elements
in grioup IIIB can be estimated by the QR-SIC-GX-LSD theory, in which
the spin-orbital coupling term was neglected, with the GWB Fermi-hole pa-
rameters. The ionization potentials for the high-Z atoms evaluated by the
clectron-cortelation corrected SIC-GX-LSD theory with the GWDB Fermi-
hole parameters agiee well with experiment and the agreement is better than

those n the DF theory with the SPP correlation and relaxation correction.

The electron affinities for the high-Z atoms in the electron-correlation cor-

rected QR-SIC-GX-LSD theory are in reasonable good agreement with ex-

perment.

. Section III-5.

The ionization potentials of the multiply charged ions for atoms are in ex-
cellent agreement in the electron-correlation corrected SIC-GX-LSD theory
with experiment. The electron-correlation correction plays a role in the ion-

ization potentials of the multiply charged ions.

14. Section IV-1.




15.

16.

17.

18.

19.

The analysis on the non-convergence of the doubly-charged negative ions in

the LDF theory.
Section IV-2.

Successful calculation of the negative ions for the alkaline-carth elements in
the LDF theory; and the calculations of the election aflinities for them m
the electron correlation coriected SIC-GX-LSD and QR-SIC-GX-LSD theo-
ries with the GWB Fermi-hole parameters support the prediction of existence

of stable negative ions for the alkaline-carth elements, except for Mg™. Suc-
cessful SCF results in the QR-SIC-GX-LSD theoty for the actinides were

obtained and predicted the stability of the negative ions for actmides.
Section IV-3.1

Adiabatic convergence technique was given in the LDF thcory.
Section IV-3.2

Successfully converged for the negative ions of rare gasses in the clection-
correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole param-
eters were given aud predicted the existence of stable negative ions for the

rare gasses with several milli-rydbergs clectron affinities.

Section IV-4.1

Watson sphere simulation for the doubl:s charged negative ions of atoms in
crystals was proposed.

Section IV-4.2

The second electron affinities of atoms in crystals were estimated in the
electron-correlation corrected SIC-GX-LSD theory with the GWID Fermi-
hole parameters. The electron affinities are reported to be negative for them

in the first time.
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o
S

Section IV-&.
Asymptotic approximation for the second electron affinities of atoms in gas

phase was given, when the Watson sphere radius approaches infinity.

The approximate second electron affinities for the first category elements
in the second and third periods were estimated in the electron-correlation

corrected SIC-GX-LSD theory with the GWB Fermi-hole parameters.

. Section V-2.

The ionization potentials of the fractional charged atoms were given in the
LDF theory in the first time. The comparison of the present results with the
Lackner and Zweig interpolation shows that the agreement of the calculated
and interpolated lonization potentials is excellent for the fractional charged
atoms with Z =N+ 1 and Z = N+%; and corrects the inaccurate interpolated
results for those with Z = N-%, because of the loose bound electron in the

outermost orbital.

. Section V-3.

Successful ralculation for the electron affinities for the fractional charged

negative ions with Z =N- 1 and Z =N - 2,

. Section V-4.

The hardnesses for the fractional charged atoms are of the same trend as the

ordinary atoms.

. Section VI-3.

The self-interaction corrected MS-Xa theory was given.

. Section VI-4.

The procedure of the minimization of the total self-interaction correction

energy in the SIC-AMS-Xa theory was outlined.
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26.

27,

28.

Section VII-2.

The SIC was tested for some small and middle size molecules in the first time
by means of the MS-Xa method. The efficiency of the SIC in the molecular
calculation was established: a single SCF calculation for the ground state of a
molecule gives both the ionization potentials and the wave function, mstead
of two SCF calculations in the conventional MS-Xa method to get both the
jonization potentials and the wave function The miuinnzation of the SIC
energy is not important m the MS-Xa method, because of the employment

of the spherically-averaged and the volume-averaged potentials.
Section VII-2.1

The reason why the ionization potentials given by the negative of the one-
electron eigenvalues in the SIC-MS-Xa method are much better than those

in the ab-initio HF method is discussed.
Section VII-3.

The reasons why the non-conveigence m SCF calculation of the MS-Xa
method for the experimentally stable molecular anions with small positive
electron affinities are discussed The molecular anions. ClOT, HCO™, and
O; are successfully converged in the SIC-MS-Xa method  The dectron
affinities given by the SIC-MS-Xa method we in excellent agreement with

experiment.

VIII-3. Suggestions to the Future Work

The basic suggestions to the future work ate theoretical nnprovernent on the

5IC and electron-correlation cortection in the G-LSD theory and the application

of the SIC-G-LSD theory and the SIC-MS-Xa method to molecules, clusters, and
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solid state.

VIII-3.1 Theoretical Modification

Theoretically, the SIC-G-LSD theory with the FEL Fermi-hole parameters
should give more reliable results than the SIC-G-LSD theory with other Fermi-hole
parameters, because the FEL Fermi-hole parameters were derived from the free
clectron-density limit, when the election density approaches infimty, and do not
rely on any assumptions of the Fernu-hole shape. But, numerically, the SIC-G-LSD
theory with the GWB Fermi-hole parameters gives the best statistical total energies
of atoms among all the Fermi-hole parameters in comparison with the HF total
energy. The statistical total energy of an atomn is underestimated in magnitude by
the SIC-G-LSD theory with the FEL Fermi-hole parameters. As discussed before,
this deviation is mamly caused by the overestimation of the self-exchange correction
in the SIC-G-LSD theory with the FEL Fermi-hole paranmeters In the SIC-G-LSD
theory, the radis of self-exchange Fermi-hole for the orbital i, cquation (1-83), is
only dependent on 1ts own election density. It 1s clear that the environment of
the self-exchange Fermi-hole disturbs it. As in equation (1-59). the radius of the
exchange Fermi-hole, rp, decreases as the number of total clectrons in the system
increases. This implies the Fermi-hole 1s squeezed by increasing the clectrous in the
system. Therefore, the effect of changing the enviionment should be considered in

correcting the self-exchange interaction in the SIC-G-LSD theory.

The correlation of elections with different spins were treated, so far, by
parametrization®®*? based on some accurate calculations or by assuming the Coulomblj
hole factor obeying some certain functions®® 232, It would be very interesting to cal-
culate the Coulomb-cortelation without any assumptions and parametrizations. It

appears possible to derive the Coulomb-correlation expression in the same manner
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as in deriving the single-electron exchange eneigy expression in the present work.

VIII-3.2 Application of the SIC-G-LSD Theory to Molecules

The SIC-G-LSD theory with the GWB Fermi-hole parameters gives such
good statistical total energies for atoms, compaied to HF, that it i certainly ex-
pected the SIC-G-LSD theory should give very good statistical total eneigies for
molecules, if the SIC-G-LSD theory with the GWB Fernu-hole atameters s com-
bined with the LCAO method!8!~18% or the disciete-variational{ DV) method!#t =18
using good enough Gaussian basis sets and fit functions. The statistical total en-
ergy, in turn, can be used to calculate the dissociation eneigy, eneigy surface, ete,
The reasonable good wave function can be employed to evaluate other one-clectron
properties of the molecule, such as, the dipole moments, quadiupole moments,
diamagnetic susceptibilities, nuclear quadiupole coupling constants, and cte. The
potentials in the SIC-G-LSD theory is orbital dependent and the stiastical total
energy including the SIC total encrgy 1s not invariant under the moiccula oroital
transformation. Consequently, a test of the effect of the orbital transformation on
the statistical total energy is necessary, when the SIC-G-LSD theory 1s applied in

molecular calculations.

VIII-3.3 Application of the SIC-MS-Xa Method

to Large Molecules and Clusters

Because of the division of a molecular space and the use of the “muflin-tin®
approximation, the MS-Xea is much easier to use and to wield for lage molecular
calculations. But electron structures and statistical total cncrgies of molecules are

sensitive to a percentage of the constant egion in the molecular space m the MS-Xa
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method. Fortunately, it has been shown!71:171:179—181 that the most reliable results,
the electron structures, the lonization potentials, and the wave functions, can be
obtained by using the Norman criterion of the atomic spheres and scaling by a factor
between 0.8 - 0.88 The present work shows that the ionization potentials and the
correct wave funictions can be obtained by a single SCF calculation for a molecule. It
saves a lot of computational time by mtroducing the 5.7 into the MS-X« method.
Hence, the MS-Xo method can be applied to large molecules containing heavy

atoms, clusters, and solid state with very 1easonable and acceptable computation

time and excellent numerical results.

Transition-metal complexes are very interesting to the chemists. To date,
a considerable effort has been made to exploie and understand the chemistry of
transition-metal hydrides complexes Most of these investigations have focused on
their structue and teactivity?*=238 only a few theoretical studies on the electron
structure have been undertaken Indeed, there is still a lack of rigorous guantum
mechanical description of the metal-hydrogen mteraction essential to the interpre-
tation of the observed chemstiy  Publications'®® have appeared in the literature
dealt with the tran<ition-metal comnplexes by the MS-Xa method, but it is expected

that the SIC-MS-Xa method gives more reliable 1esults than the MS-Xa method.

The MS-Xa method is not convergent for most experimental stable molecular
anions, one has to use a Watson sphere in the MS-Xa method to stablize the
calculation!®®. The clectron structures of anions are certainly disturbed by the
Watson sphete. However, it is possible for most experimental stable molecular
anions to get the converged electron stiuctures in the MS-Xa method by introducing
the SIC mto it. The piosent wotk showed that the reasonable good electron affinities
of molecules can be obtained by the SIC-MS-Xa n:cthod.

Small metal clusters are currently the subject of both experimenta]?3%:240
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and theoretical®*! =47 investigations. In theoretical studies of chemusorption small
clusters are often used to model the metal substrate’**. The study of the small
clusters (of order of 8 - 13 atoms) by the MS-Xa method has emerged in the
literature?*®:#4% The important difference between the MS-Xa method and LCAO-
HF method or the extended Hiickel calculations has appeared in the small copper

cluster electron structure calculations.

One of the interesting properties in calculating clusters is the local-density-

of-states (LDOS), which is defined by?4?

o/m

”“(E)=%:Pk(”>(g_ek)2+az 8 - 1)

where Py (u) is the Mulliken gross orbital population of an orbital s in the cluster
state k; ex is the orbital energy of the cluster state k; and o 15 a Lorentzian width
parameter. It is clear that the meaning of the one-clectron eigenvalues in the LCAO-
HF method and in the MS-Xa inethod are different. Hence, it is understandable

that the LDOS's are different in the LCAOQ-HF and MS-Xa methods

The SIC remarkably reduces the difference of the one-electron eigenvalues
in the LCAO-HF method and in the MS-Xa method. Therefore, the SIC-MS-Xa
method is expected to give rehable LDOS for the cluster calculation, comparing

with the LCAO-HF method.
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