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ABSTRACT 

The generalized local-spin-density functional (G-LSD) theory is proposed 

which avoids (a) the physical restriction used in the generalized exchangc local­

spin-density functional (GX-LSD) theory; (b) the homogeneous electron-dcnsity 

approximation in the Hartree-Fock-Slater (HFS) theory and in the Gaspar-Kohn­

Sham (GKS) theorYi and (c) the time-consuming step to search the optimal ex­

change parameter for each atom or ion in the Xa and Sa theories. Theorctically, 

the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and Sa thcories. 

Numerically, the statistical total energies for atoms are better in the G-LSD theory 

than in the GKS theory. 

Ionization potentials and electron affinities of atoms, the stability of singly 

and doubly charged negative ions, and the electronegativities, and hardnesses of the 

fractional charged atoms with Z < 37 are calculated by the SIC-GX-LSD theory 

with the GWB Fermi-hole parameters and electron-correlation correction. 

The self-interaction correction (SIC) is introduced into the multiplc-Scat­

tering Xa (MS-Xa) method and used to calculate sorne molecules and molecular 

anions. The results show that the ionization potentials from the ncgative of the onc­

electron eigenvalues are as good as those obtained in the transition state calculation 

and in very good agreement with experiment. 



RESUMÉ 

Une théorie alternative de fonctionelle de densité a été proposée. Cette 

théorie évite (a) la restriction physique utilisée dans la théorie de la fonctionelle 

de densité locale de spin d'échange généralisée (GX-LSD)j (b) l'approximation de 

la densité d'électrons homogène dans les traitements de Hartree-Fock-Slater (HFS) 

et de Gaspar-Kohn-Sham (GKS)j et (c) la recherche du paramètre optimal dans 

la méthode Xa ou 3a, qui consomme beaucoup de temps-machine. La méthode 

G-LSD est plus rigoureuse que GX-LSD, HFS, GKS et la théorie 3a et les résultats 

numériques de l'énergie totale statistique des atomes avec G-LSD sont meilleurs 

que dans le cas de GKS. 

Les potentiels d'ionisation (PI) et les affinités électroniques (AE), la stabilité 

des ions négatifs de charges -1 et -2 a été étudiée et les électonégativités et duretés 

des atomes de charge fractionnaire (Z < 37) ont été calculés avec la SIC-GX-LSD 

en tenant compte de la corrélation électronique avec les paramètres de GWB. 

La correction d'auto-intéraction (SIC) a été introduite en premier dans la 

méthode Xa de diffusion multiple (MS-Xa) et a été utilisée pour calculer quelques 

molécules et anions ma' ~culaires. I..€s résultats montrent que les PI obtenus comme 

l'inverse additif des valeurs propres de l'énergie d' un électron sont aussi bons que 

ceux qu'on obtient avec le calcul de l'état de transition. 
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\. CHAPTER 1 

THE GENERALIZED LOCAL-SPIN-DENSITY 
FUNCTIONAL THEORY 

1-1. Introduction 

For an N-electron closed-shell atom, the normalized wave function is a Slater 

determinant 1,2 

1/11 (Xl) "pl (X2) "pl (XN) 
1 

W(X) = N! det 
1/12 (Xl) 1/12 (X2) 1/12 (XN) 

(1 - 1) 

1/IN(XI) 1/IN (X2) 1/IN(XN) 

in which {1/I1 (x) )} is a set of spin-orbitaIs and Xj stands for spatial and spin coor­

dinates, rj and u], and the Hamiltonian is 

A ~ ( 2 2Z) '"" 2 H = ~ - 'VI - - + ~ -, 
rI ' rI} 

1 I>} 

(1 - 2) 

in Rydberg atomic Wlits. The expectation value of the Hamiltonian gives a total 

energy 

E = L < ilfli > +~ L < ijlglij > -~ L < ijlglji > (1 - 3) 
I,} I,} 

where the first term is the sum of the kinetic energy and the Coulomb interaction 

betwecn the electrons and nucleus; the second and third terms are the Coulomb and 

exchange energies for the atom. In equation (1 3), the one-electron and two-electron 

integrals are 

and 

< ijlglkt > = J t/J:(Xd1/l;(X2)YI21/1k(Xt}t/Jt(X2)dxl dx2 

1 

(1 -4) 

(1 - 5) 



I-

I 

respectively, with 

and 

A 2 2Z 
ft = - VI-­

rI 

A 2 
gI2 =­

rI2 

(1 - 6) 

(1 - 7) 

By means of the variational principle, the one-electron Schrodinger equation 

is written3 

(1 - 8) 

in which Ua (rI) is the spatial part of the spin-orbital -rPa (x d, namely, 

(1 - 9) 

the Coulomb potential is 

Vc(rt} = 2: J u;(r2)g12 u}(r2)dr2 
} 

(1 - 10) 

and the Hartree-Fock exchange potential 

Vx. (rd = Vf.F(rd 
E) 6(x., x}) J u; (rI)u; (r2 )gI2 U) (rt)u. (r2 )dr2 

= 
u;(rI)u.(r! ) 

(1 - 11) 

The off-diagonal Lagrange multipliers in the right-hand side of equatioll (1-8) werc 

neglected. In fact, the wave functions satisfying equation (1-8) without the off­

diagonal Lagrange multipliers can be obtained from the wavc functlOlls {,p, (x})} 

by an unitary transformation. The wave function u. (rI) is solvcd from equation 

(1-8) with equations (1-10) and (1-11) in the Hartree-Fock (HF) theory by the 

self-consistent-field (SCF) procedure. 

2 



The HF theory is the foundation of theoretical atomic, molecular, and solid 

state physics. Unfortunately, its most interesting feature, the HF exchange en­

ergy, is rather unwieldy comput at ionally, especially for molecular and solid state 

calculations4 • Consequently, a long history of simple approximations to the HF ex­

change energy has developed, beginning with the early work of Dirac5 and Slater6 , 

and progressing to current efforts in the local-density functional (LDF) theory. 

ln 1951, Slater6 derived an approximation to simplify the HF ex change po­

tential expression, the Hartree-Fock-Slater (HFS) theory. The Slater statistical 

exchange approximation is 

(1 - 12) 

where p(rl) is the total eledron density of a system. Equation (1-12) is based on the 

homogeneous electron gas. Slater' s statistical exchange potential in the one-electron 

Schrodinger equation is only depcndent on the local electron density. 

Gaspar7 , Kohn and Sham8 (GKS) developed an approximation to the HF 

exchange potential expression. The exchange potential in the GKS theory differs 

from that due to Slater, equation (1-12), by a factor of 2/3, that is, 

GKS 3 
[ ]

1/3 

Vx (rI) = -4 871' p(rt) (1 - 13) 

which is exact for systems of slowly varying high electron density. 

The HFS theory describes the homogeneous free-electron system with slowly 

varying low electron density, and the GKS theory is exact for an inhomogeneous 

interacting electron system with slowly varying high electron-density. For interme­

diate conditions, Slater9 proposed that the exchange potential in equation (1-12) 

could he scaled by an adjustable factor, a, 

(1 - 14) 

3 



creating the Xa theory. The scaling factor a varies between 1 and 2/3 and is 

determined by matching the approximate exchange energy to the HF exchangc 

energylO,l1 , or by requiring the total energy and kinetic energy to satisfy the vi ri al 

theorem12 • 

In 196~, Slater13 introduced the spin-polarization concept in the XIl' theory. 

Obviously, in the HF exchange energy expression, there is no exchange cffect of 

the electrons with different spins. Therefore, the spin-polarized Xa (SP-Xa) theory 

should be more accurate than the Xa theory. 

Herman et al.14
,15 derived an Xaf3 theory based on the Slater statistical 

exchange approximation to introduce the inhomogeneity of a real system. hl the 

Xaf3 theory, the exchange potential is 

(1 - 15) 

where VfFS(rt) is given in equation (1-12); C(p) is 

C P - 1 [~('VIP(rd)2 _ 2 \lfp(rd ] 
( ) - [p(rdF/3 3 perd perd (1 - 16) 

and f3 is an additional scaling factor determined by the minimum-energy principle 

or the virial theorem. Boring16 calculated sorne atoms and found the value of f3 to 

be very small (less than 0.01) slightly changing for different atorns. 

The self-interaction terms in the Coulomb-interaction cllcrgy intcgral and 

the exchange energy integral of equation (1-3) in the HF the ory cancel cxactly, but 

not in the LDF theory, which employs the local-density approximation. In 1977, 

Gopinathan17 proposed the 3a theory to correct the self-interaction problem in the 

Xa theory with a correct asymptotic form for the potential, as r approaches infinity. 

The scaling exchange parameteI, a, in the 3a theory was determined by mat ching 

the statistical total energy in thp 3a theory to the HF total energy18 or by the virial 

4 
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theorem or theoreticallyl9. The::a theory remarkably improves the one-electron 

eigenvalues for atoms20 compared to the Xo theory, and compares weil with HF. 

Unfortunately, the 2a. theory was based on the classical approximation, 

(1 - 17) 

proposed by Kutzelnigg, et al. 21 and valid at large interelectronic distances. In 

equa.tion (1-17), p,(r and p,(r) are the charge densities of the ith electron and the 

electl'ons with spin Sj N, is the total number of spin s electrons. 

To avoid the homogeneous free-electron-gas approximation of the Slater 

model6 , at least in part, the time-consunling step of searching for the optimal ex­

change parameters for each atom in the Xa theory9, and the classical approximation 

in the 3a theory17, Manoli and Whiteher..d22 ,23 introduced the boundary con.:itions 

of the Fermi-correlation bctor from the liF limit into the LDF theory and pre­

sented the generalized exchange local-spin-density hnctional (GX-LSD) theory, in 

which the exchange potential in the one-electron Schrodinger equation is orbital­

dcpendent and the exchange parameters are fixed once either the Fermi-hole shape 

is chosen or the free-electron limit is used. Unfortunately, the GX-LSD theory was 

based 0n physical restrictions related to the Fermi-correlation factor. 

An alternative LDF theory, the generalized local-spin-density functional (G­

LSD) theory was proposed by the author and Whitehead24 and is introduced in this 

chapter. The G-LSD theory is based on the boundary conditions and the sum rule 

of the Fermi-correlation factor obtained from the limit of HF theory and possesses 

the same features as the GX-LSD tb.eory, that is, an orbital dependent potential and 

identical exchange parameters for all atoms k"1 the periodic table once the Fermi-hole 

shape has been chosen but without any physical restriction on the Fermi-correlation 

factor. 

ln section 1-2, the boundary conditions and the SUffi rule of the Fermi-hole 

5 
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correlation factor will he introduced from both the traditional density-matrix2S the­

ory and the HF limit. Section 1-3 introduces and emphasizes the significance of the 

G-LSD theory, which avoids the homogeneous free-dectron-gas approximation of 

the conventional LDF theory, the time-consuming step in searching the optimal ex­

change parameters for ea.ch atom in the Xa theory, the classical approximation in 

the 2a theory, and the physical restrictions in the GX-LSD theory. Comparison of 

the G-LSD theory with the GX-LSD theory22, the Xa theory9, the 2a theory17, and 

the exchange-only LSD (XO-LSD) theory7,8 (i.e., the GKS theory), will he gi' en in 

section 1-4. The self-interaction problem and the self-interaction correction (SIC) 

will be introduced and discussed in section 1-5. The one-electron Schrodinger equa­

tion is obtained by the var;ational principle and given in section 1-6 for the G-LSD 

theory. Finally, the Coulomb-correlation, the correlation of electrons with differ­

ent spins, and the relativistic correction, whicp is very important for calculating 

molecules with heavy atoms, will introduced in sections 1-7 and 1-8 . 

6 



and 

1-2. The Fermi Hale 

The definition of one- and two-electron density matrices25 ,26 

p(rt) = N J /t/J(XI, X2, ... ,XN )/2dr2dra ... drNdO'ld0'2 ... dO'N (1 -18) 

p( r l,r2) = N(N -1) J /t/J(Xl,X2, ... ,xN)/2dra ... drNdO'ld0'2 ... dO'N (1 -19) 

allows p(rl) to be interpreted as the probability of finding an electron at point rI, 

and p( rI , r2) as the probability of finding any of the N electrons at the point rI 

and simultaneously another electron at the point r2. In equations (1-18) and (1-

19), 'I/J(Xl, X2, ... , XN) is the wave function of the system with spatial coordinates 

rI , r2 , ... , r N and spin coordinates 0'1,0'2, ... , 0' N; N is the total number of electrons. 

When the electrons in the system are divided into two groups, one contains the 

eledrons with spin s (i) and another with spin s' (!), the one- and two-electron 

density matrices can be written in a spin-polarized form 

(1 - 20) 

and 

It is obvious that ps(rJ) is the probability of finding an electron with spin 

s at rI, pss(rl, r2) the probability of finding an electron with spin s at rI and 

simultaneously another with spin s at r2, etc. 

lS 

When electronic motion is correlated, the pair-electron distribution Pu (rI! r2 )1 

pu(rl,r2) = p" (rt}ps (r2) + P8(rJ)p,,(r2)!ss(rI,r2) 

7 
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1 
and 

and 

where 

It can he shown that27 

J p,,(rddrl = N", 

J PIJI (rI )drI = N"I 

J Pul (rI, r2 )drI dr2 = J plJllJ(rl' r2 )drI dr2 

=N"N"I 

N=N" +N" 

(1 - 23) 

(1 - 24) 

(1 - 25) 

(1 - 26) 

(1 - 27) 

(1 - 28) 

(1 - 29) 

and N, and N" are the numbers of electrons with spin s and s', respectively. 

The total interelectronic interaction energy, by means of the pair-clectron 

distribution PI.... rI , r2), can be expressed as 

8 
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(1 - 30) 

in Rydberg atomic units. 

The first term in the right-hand side of equation (1-30) is the total Coulomb-

interaction energy induding the self-interaction of the electronsj the second and 

third terms are the exchange energy, which is the main topic of this chapterj and the 

last two terms are the electron Coulomb-correlation energy. Before evaluating the 

Fermi- and Coulomb-correlation energies, the Fermi-correlation factors, fu (rI, r2) 

and /If/If/ (rI, r2), and the Coulomb-correlation factors, flJlJ' (rI, r2) and flf/lf(rl' r2) 

have to be determined. Traditionally, the Fermi-correlation factors satisfy the fol-

lowing conditions: 

(i) by the Pauli exclusion principle lilld equation (1-22), the probability of 

finding two electrons at the same position at the same time is zero, 

(1 - 31) 

when Ir} - r21 equals zero; 

(ii) the electrons move independently at large interelectronic distances and 

equation (1-22) appears to become 

(1 - 32) 

9 

, 
1 



when Iri - r21 approaches infinity. However, this expression is wrong because it 

does not preserve normalization27 • Kutzelnigg et al. 21 have shown that the correct 

form of the independent pair-electron distribution function is 

(1 - 33) 

Therefore, 

(1 - 34) 

as Irl - r21 approaches infinitYi 

and (iii) the conditional probability of finding an electron with spin s at r2, 

when one is known to be at rI with spin s, is, from equation (1-22) 

(1 - 35) 

p,(r2)!U(rI,r2), therefore, represents the modification of the charge distribution 

p,(r2) caused by the presence of an electron with spin s at rI. Howcver, the prob­

ability of finding an electron with spin s at r2 without the presence of any clectron 

with spin s at rI is p" (r2)' Consequently, the difference of the probabili ty generated 

by the presence of an electron with spin s at rI is 

J p,(r2)!",,(rl,r2)dr2 = p,trd J p.,,(rl,r2)dr2 - J p,,(r2)dr2 

= -1 (1 - 36) 

Equations (1-24) and (1-27) were used ta give the last equality in equation (1-

36). This is the sum rule of the Fermi-correlation factor; the total aIllount of the 

exchange charge removed by the prescnce of an electron with spin s at rI is -1, a 

Fermi hole. 

The Xa theory and the LSD theory with the exchange-only (the XO-LSD 

theory) can he gcncrated from the Fermi-correlation factor22 ,23, which was writtcn 

10 



directly to satisfy the boundary conditions, equations (1-31) and (1-34), and the 

swn rule, equation (1-36). 

Alternative boundary conditions can he obtained by modifying the exchange 

energy expression in the HF theory22, where the exchange energy is3 

EfF = -~ jLu:(rdu;(r2 )u)(rdu,(r2 ) 

l,) 

2 
~(XI'X)), ,dr1dr2 

rI - r2 
(1 - 37) 

u,Cr) and u}(r) are the one-electron spatial wave functions for the states i and j, and 

X, and Xl are the corresponding spin wave functionsj the sum is over all electrons 

in the system. ~ is the Kronecker delta function, which means the Fermi-correlation 

only occurs for eledrons with the same spin. Introducing a Fermi-correlation factor 

into the HF exchange energy expression (1-37) gives 

(1 - 38) 

Therefore the Fermi-correlation factor ff! F in the HF theory may be written as 

(1 - 39) 

and similarly for fI!:' (rI, r2). Equation (1-39) shows that the HF Fermi-correlation 

factor is the sum of electIon-pair Fermi-correlation interactions, each electron-pair 

was of a Fermi-correlation factor. 

As rI appl'oaches r2, equation (1-39) becomes 

(1 - 40) 

in which the SUlU is over the electrons with spin s. And as IrI - r2\ approaches 

infinity, the overlapping of the wave functions, u;(rJ) with u)(rJ) and u;(r2) with 

11 



u.(r2), goes to zero, except for the terms with i=j. Hence, the HF Fermi-correlation 

factor reduces to 

(1 - 41) 

Comparing the boundary conditions of the Fermi-correlation factor, equa­

tions (1-40) and (1-41), in the HF theory with those in equations (1-31) and (1-34) in 

the density-matrix theory25 , shows that equations (1-31) and (1-40) are exactly the 

same, but that equation (1-34) differs from equation (1-41). However, the boundnry 

condition of equation (~-34) is obtained nom equation (1-33), in which the second 

term is somewhat arbitrarily introduccd in order to satisfy the normalization of 

equation (1-25). Equation (1-41) is from the HF limit of the Fermi-correlat.ion 

without any approximation. Furthermore, if the factor ~, in the second terrn of 

equation (1-33) is replaced by the right-hand slde of equation (1-41), that is 

(1 - 42) 

it is easily seen27 that integrating both sides of equation (1-42) over dr} and dr2 

leads to an identical equality, N; - Na = N; - Na. Equation (1-42) thercfore 

satisfies the normalization condition. Consequently, equation (1-41) is considcred to 

be a boundary condition of Fermi-correlation factor as Ir} - r21 approaches infinity. 

Comparing equation (1-38) with the Fermi-correlation energy terrn in cquation (1-

30) shows that both t.he Fermi-correlat.ion factors play the saIlle role in the exchange 

energy expreSSlOn. 

1-3. The Generalized Local-Spin-Density 

Functional Theory 

The GX-LSD theory22.23 assumed that the Fermi-correlation factor in cqua-

12 
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tion (1-22) was a sum over the one-electron Fermi-correlation factors 

• 
p..,(rl,r2) = p,(rdp,,(r2) + p,(rl)p.(r2) Lf;,(rl,r2) (1 - 43) 

where the summation is over the electrons with spin s. The boundary conditions of 

the Fermi-hole correlation factor, from equations (1-40) and (1-41), become 

'" Ç1 ( ) El p,(rl) 
~ J.. rI, rI = - () 

, P. rI 
(1 - 44) 

and 

(1 - 45) 

and the sum rule equation (1-36) was rewritten as 

(1 - 46) 

Then, the GX-LSD theory put each component on both sides of equations (1-44)­

(1-46) equal 

(1 - 47) 

when rt approaches r2, 

(1 - 48) 

when Irl - r21 approaches .infinity, and 

(1 - 49) 

This may not hc truc. Equations (1-47)-(1-49) cannot he ohtained from equations 

(1-44)-(1-46). li equations (1-47)-(1-49) are satisfied by p and l, then, 50 are equa­

tions (1-44)-(1-46). This is a physical restriction and consequently the GX-LSD 

13 



theory is based on more precise boundary conditions and sum rules for the Fermi­

correlation factor th an the Fermi-correlation factor f;, (r} ," 2) itself imposes. 

The Fermi-correlation factor, fIl (r} , r2), of the electrons wi th spin s in equa­

tion (1-22) gives the average correlation effect of the electron densities, p,(r}) 8Jld 

p, (r2), at positions rI and r2, which are the sum of the electron densiti<:'s of all 

states at rI and r2, respectively. The contribution from each state is differellt., since 

the electron density is not homogeneous. Manoli and Whitehead22 •23 noted this 

and expanded equation (1-22) into equation (1-43). The summation L. f;~(rl ,r2) 

still describes the average effect of the correlation. 

ID this work the imhomogeneity of the electron density distribution will be 

reflected, in part, by requiring equation (1-22) to be 

, 
pS8(rl, r2) = P8(rt)PS (r2) + ps(rt) L PI (r2 )f;s(rl, r2) (1 - 50) 

where the sum 1S over the electrons with spin s. Comparing equation (1-50) with 

equation (1-22), it can be seen that the interelectronic interaction energy caused by 

the electrons with spin s is 

H the second term of equation (1-51) is compared to the first term of equation 

(1-38), the HF expression, it can be seen that L. PI (r2 )1;, (rI, r2) in equation (1-51) 

plays the same role as p$ (r2 )f" (rI, r2 ) in equation (1-38). Thcrcfore, the boundary 

conditions of the Fermi-correlation factor in equation (1-51) may be expressed as 

(1 - 52) 

14 
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1 

when Irl - r21 approaches zero, and 

(1 - 53) 

when Irl - r21 approaches infinitYi the SUffi rule becomes 

jLP,(r2 )!:,(rl ,r2 )dr2 =-1 

• 
(1 - 54) 

Following the procedure to derive the LDF theory and writing the Fermi­

correlation factor to reflect the HF boundary conditions given by equations (1-52) 

and (1-53) gives 

E,p.(rl)p,(r2) 
p,(rI) 

(1 - 55) 

where the Fermi-hole function h( rl . r2) approaches 1 as Irl - r21 approaches zero 

and approaches zero as Irl - r21 approaches infinity. Substitution of the Fermi­

correlation factor (1 55) into the sum mIe (1-54) gives 

The equations developed so far are exact. 

Now: however, the local-density approximation is used to simplify equation 

(1-56). The convention al local-density approximation is 

(1 - 57) 

which me ans the total density in the Fenni-hole is very slowly varying. If the charge 

density of electron i at point rI also changes slowly, then, 

(1 - 58) 

15 



r 
; , Equations (l-.jj) aud l:-~'S) are a J.tt·ct ('on<;cql' 1ce of the l()('al-d(,l~:--lty approx· 

imation. The Fermi-hole function k; Rbsumed sphericcJ.ly sYll1Illctric .Uld localized 

within a radius rF. The sum rule equation (1-f'6) gives the radius of the Felmi-hole 

rF = p!/3 (r,){ 411" A, :~:>, (r,) [p, (r,) + lJ, p, (rd 1 } -J 1
3 

1 

(1 - 59) 

where 

A2 = 1 h(u)u2du;u = r2/rF 
u} 

(1 - 60) 

is an integral of a Fermi-hol( funchon, and 

(1 - 61) 

From equation (1-51), the exchange energy of • .le electrons with spin scan 

be written as 

i J L Pl (rdUf. (rddrl = ~ J p,,(rt) I: PI (r2) 
1 1 

(1 - 62) 

uf. (rI) is the single-particle exchange energy density in the present work. Substi-

tuting equation (1-55) into (1-62) gives 

h( ) EIP,(rl)PI(r2)} 2 d . rl r2 - ---- r2 
, P3(rJ) Ir} - r21 

(1 - (3) 

H the local-density approximation, equations (1-57) and (1-58), is uscd again, and 

the Fenni-hole function is assumed spherically :,ymmetric, equation (1-03) becoIllcs 

LPI(rl)U:-:(rd = 87rr}AI {LP,(rt}[p,(rd - p,,(rt)J 
1 1 

- 2~ L p](rl )h(r})} 
1 J 

(1 - (4) 
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whc're iF is the rddius of he Fermi-hole, ru.d Al is a phrameter dcpending on the 

shape of the Fermi-hole and defined as 

and 

Al = 1 h( u)uduj U = r2/r F 
JUF 

When equation (1-59) is used, equation (1-64) gives 

Letting 

equation (1-67) gives 

(1 - 65) 

(1 - 66) 

(1 - 6ï) 

(1 - 68) 

(1 - 69) 

This is an orbital-dependent, single-particîe exehange energy density in the gener­

alized (G) local-spin-density funetional (G-LSD) theorYi it is distinguished the gen­

eralized exehange (GX) local-spin-density funetional (GX-LSD) theory, sinee there 

are no physieal restrictions used to derive equations (1-69) in the G-LSD theory, 

whereas the physical restrictions are imposed in the GX-LSD theory by asswning 

equations (1-47)-(1-49) to be correct, 

17 



Al 
A2 
BI 
B2 
c;iim 

TABLE 1-1 

The exchange parameters in equation 0-69) obtained 
using the Homogeneous (H), GWB, Wigner, and the 

Free-Electron Limit (FEL) Fermi holes 

H9 GWB27 W igner26 ,28 PEL22 

0.500000 0.166667 0.142256 0.119647 
0.333333 0.083333 0.069849 0.057785 
0.0 2.0 2.514776 3.178952 
0.0 3.0 3.772147 4.768428 
0.866173 0.727539 0.698526 0.666667 

In equation (1-69), c=( 4~ )1/3 and ohm = ~e;2 )1/3 Al À~2/3 , which is oIlly 

dependent on the Fermi-hole shape. fi the Fermi-hole function h( u) is known, it 

can be easily used to calculate the parameters for all atoms. 

Slater9 assumed the charge density to be uniform, i.e., homogencous (H), 

hence 

(1 - 70) 

Gopinathan, Whitehead, and Bogdanovic27 (GWB) assumed the Fermi-hole 

a linear function of r, that is, 

(1-71) 

Gazquez and Keller26 modified Wigner' s approximation28 (W) to the pair-

correlation function of free electrons with spin s, in a seemingly more realistic form 

(1 - 72) 

determining b by requiring the free-electron-gas limit, when the numbcr of the 

electrons goes to mfinity. 
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1 

~\lall()li and \\llitehead2:! noted that a" goes ta 2/3, , ... hen the number of 

electronf' in the system goes to iufinity, and obtained the p<trameters, Al, Al, BI, 

and B2 iI.dependent of the Fermi-hale shape to give the free-electron-limit (FEL) 

Fermi-hale parameters. 

equations (1-60), (1-61), (1-65), (1-66), and (1-68) and calculated by using the 

Fermi-hole functions (1-70)-(1-72) and ~Ianoli and Whitehead's FEL Fermi-hole22 • 

1-4. The GX-LSD, 3a, XO-LSD, and Xa Theories 

The G-LSD is the master theory of a whole series of theories. Thus, the 

bmgle-particle exrhange energy density expressions in the GX-LSD, 3a, XO-LSD, 

and Xo theories can be easi1:- obtained from the G-LSD single-particle exchange 

energy density formula by llsiLg additional approximations. 

The GX-LSD theory is based on the physically restricted boundary condi­

tions, cquations (1-47)-(1-49), instead of the general boundnry conditions of the 

Fermi-correlation factor, equations (1-44)-(1-46), used in the G-LSD theory. The 

boundary conditions of the Fermi-correlation factor used in bath the G-LSD and 

GX-LSD theories are generated from the RF limit of the ex change energy expres­

SIon. Renee, the GX-LSD theory is a restricted G-LSD theory. 

Mathematically, the G-LSD theory generates the GX-LSD the ory with an 

additional approximation: if the Pl (rd in the term [ ...... ] of the last factor of equa­

tion (1-69) is approximated by PI(rl ), equation (1-69) bccornes 

This is the single-particle ex change energy density in the GX-LSD theory. It can 

be seen that the only difference from the G-LSD the ory is in the last factor . 
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The Sa theory is based on the classical approximation, equatioll (1-17), in 

deriving the single-particle exchange energy density expression, which can be gCll­

erated from equation (1-73). Letting BI :=: -1, B2 = 0, and a /lln = as, cquation 

(1-73) reduees to 

U;'"(r!) = -9ca, [p,(rd - po(r!)] [p,(rd]-2/' (1 - 74) 

where a3 is an adjustable parameter. This is the expression of a single-particlc 

exehange energy density in the Ba theoryl7. 

The boundary conditions of the Fermi-correlation factor used in the G-LSD 

and Xa theories are however different. The Xa theory can be dcrived from the 

G-LSD theory by assuming the free-electron gas homogeneous and using the ho­

mogeneous Fermi-hole parameters listed in the column 2 of Table 1-1, BI = 0 and 

B2 = O. The single-particl~ exehange energy density, equation (1-69), rcduccs to 

(1 - 75) 

The exehange parameter, a hm , is treated as an adjustable parameter, varying be­

tween 2/3 and 1 in the Xa theory9. 

The single-particle exehange eI.ergy density expression in the XO-LSD thcury 

can be produced from equation (1-73) for a system with very high and slowly varying 

electron density. Expanding the last factor on the right-hancl side of equation (1-73) 

as a Taylor series, equation (1-73) reduces to 

U~x (rd = _9c"hm [p.(ril]!/3 [1+ B;~~;i)] 
[
1 + -î B2PI(rt} + (-î)(-î -1) Bi:; (rd + ... ] 

1! Pa(rl) 2! Pa(rl) 
(1 - 76) 

Using the faet that PI «rd) goes to zero, when Pa(r}) approachcs infinity, and ne-
p, ri 

glecting the higher order terms, equation (1-76) becomes 

lim [ ( 2 PI (rd] } /3 ( Usl(rt) = -9ca 1 + BI - "3B2) P3(rt) PB rt} (1 - 77) 

20 



Using the FEL parameters in the column 5 of Table 1-1, equation (1-77) reduces to 

(1 - 78) 

the single-particle exchange energy density expression in the XO-LSD theory8. 

Consequently, the GX-LSD, 3a, XO-LSD, and Xo: are derived from the G­

LSD theory using further approximations. 

1-5. The Self-Interaction 

Correction in the G-LSD Theory 

The self-interaction energy in the exchange energy expression, equation (1-

37), is cancelled exactly by the identical term in the Coulomb-interaction energy 

expression; there is no self-interaction problem in HF theory. However in the LDF 

theory the self-interaction energy term in the Coulomb-energy integral cannot be 

cancelled by that in the exchange-energy integral, because of the local-density ap­

proximation. The self-interaction problem in the LDF theory can be avoided29 -
32 

by introducing self-interaction correction terms into the Coulomb-energy integral 

and exchange-energy integral, sep arately. 

The non-zero boundary condition of the Fermi-correlation factor in the G­

LSD theory, equation (1-41), as Irl - r21 goes to infinity, occurs because of self­

interaction. The last LL'm on the right-hand side of equation (1-55) is clearly the 

self-interaction. Consequently, the self-interaction Fermi-correlation factor may be 

\\Titten as 

(1 - 79) 

in contrast to equation (1-55). The self-exchange energy is, then, 
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for electrons with spin s. Substituting equation (1-79) into (1-80), the singlc-partic1c 

self-exchange energy density is 

(1 - 81) 

where the integral is carried out over the self-interaction Fermi-hale. Applyillg 

the local-density approximation, the local and single-particlc self-exchangc cnergy 

density, equation (1-81), reduces to 

(1 - 82) 

where TSI is the self-exchange Fermi-hole radius generated by the clcctron den-

sity Pi(rl)' Excluding the contributions from all other orbitaIs cxccpt for PI(r!), 

equation (1-59) reduces to 

(1 - 83) 

equation (1-82) for USI becomes 

USI(r ) - 9co:SI pl/3 (r ) 
81 1 - I} (I - 84) 

where c equals (,~) '/' and oP = '; (,~ ) '/' Finally, the self-exchangc cnergy 

is 

ESI = ~caSI J L p:/3 (r} )drl 
1 

(1 - 85) 

The summation in equation (1-85) is over all electrons in the system, including both 

spin-up and spin-down electrons. 
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1-6. The One-Electron Schrodinger Equation 

ID the self-interaction corrected G-LSD (SIC-G-LSD) theory, the statistical 

total energy may be written as 

E = L < u,(rdlfI Iu,(rd > +~ L < u,(rt}u;(r2)lIu,(rduJ (r2) > 
, ',J(I;t!;) 

5 ~ 

+ ~ L < u,(rdIU;:(rdlu,(rd > +~ L < u,(rJ)IU~,(rdltt,(rI) > . , 
1 ~~ SI + '2 L.J < u,(rl )!U", (rI )lul(rI) > 

1 

(1 - 86) 

where the one-electron operator 11 is 

• 2 2Z 
fI = - \71--

Tl 
(1 - 87) 

and the two-electron operator 

(1 - 88) 

ID equation (1-86), the first term is the sum of the kinetic and nucleu3-electron 

attraction energies. The second term i8 the electron-electron Coulomb interaction 

energy excluding the self-Coulomb interaction. The third and forth terms corre-

spond to the exchange energies of the electrons with spin up and spin down, respec­

tivdy. The last two terms are the self-exchange energy corrections. The electron 

C<Julomb-correlation, the correlation of the electrons with clifferent spins (it will be 

discussed later), is ignored in equation (1-86). The one-particle exchange energy 

densit.ies, U;:(rt) and U;:I(rI), and the one-particle self-exchange energy densities, 

u~1 (rI) and U~~ (rI) are given in equations (1-69) and (1-84), respectively. 
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Kohn and Sham8 obtained the one-electron Schrodinger equation by m.inimiz-

ing the total energy, equation (1-86), with respect to a variation in the onc-e!ect,roll 

wave functions, ul(rl), and preserving normalization 

t < ul(rt)lul(rl) > = J ps(rI)drl = Ns 
1 

(1 - 89) 

so that, 

(1 - 90) 

where fk is the one-electron eigenvalue of orbital k resulting from the Lagrange 

multiplier required by the normalization condition of the one-elect.roll wavc function; 

the electron-electron Coulomb-interaction potential, VCk (rI), for the kth orbital, 

excluding the self-interaction, is 

(1 - 91) 

and the one-electron exchange potential, V~ (rI), and the self-exchange potential, 

vi[ (rI)' are 

(1 - 92) 

in the LDF theory. 

Substituting for UG from equations (1-69) and US! from equation (1-84) iuto 

equation (1-92) gives 

vi:( .. t) = _~CQhm{ 2[P8(rd + BIPk(rd ] p;/3(rt) 

2/3 

[LPJ(rl)(PS(rd + B2PJ(rd)]-
J 

+ ~ [~PI(rJ)(p8(rJ) + BI PI (rd) ]p;-1/3(rd 
1 
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[ I>,(r, ) (p,(r.) + B,p,(r,») ]-'1' 
} 

- ~ [p.!I(r1) + B2 Pk (rI )] [ L p,(rl) (ps(r1) + BI Pa (rI)) ] p~/3(rl) 
1 

[LP,(r.)(p,(r,H B,p,(r,)) ri'} (1- 93) 
} 

and 

(1 - 94) 

which are used in equation (1-90). 

1-7. Electronic Correlation Correction 

ln the G-LSD, GX-LSD, and HF theories, the correlation of the electrons 

with different spins, the Coulomb-correlation of the last two terms in equation (1-

30), is ignored. This is because, fustly, the Coulomb-correlation is much smaller 

than the Coulomb-repulsion interaction between electron-electron and the Fermi-

correlation; secondly, the Coulomb-correlation effect is difficult to describe accu-

rately, although it is important in atomic and molecular calculations. 

The Coulomb-hole concept is a fundamental idea developed by Wigner28 

for the electron-corrl lation correction. The hole volume is directly related to the 

electron density. 

A lot of work has been done to define the Coulomb-correlation expression 

based on the boundary conditions and sum mIe of the Coulomb-correlation fac­

tors, ffJ81 (rI, r2) and !Sls(rI, r2). For example, Keller and Ga.zquez33 assumed the 

Coulomb-correlation charge density to be 

p~oul (r2) = -PSI (rI )exp [ -::2] ros [3;~2] (1 - 95) 
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where the constants c and ra were determined by the sum mIe éUld boulldary condi­

tions of the Coulomb-correlation factor. Assuming the radius of the Coulomb-hol(' 

equal to the radius of the Fermi-hole in the modified Wigner's Fermi-hole lllode126
, 

the Coulomb-correlation energy can be wri t ten 

Ecorr = ~ t < ul(rdIU;oul(rdlul(rt) > 
1 

s' 

+ ~ L < ul(r! )IU~oul(rt)lul(rd > 

where the single-particle Coulomb-correlation energy density is 

Coul 3. 723 2 3 [ 7] -2/3 

Us (r!) = -0.1538 1 + N
s 

Ps' (rt)p; / (rI) 

Normally, the correlation energy correction can be written34
,35 as 

(1 - 96) 

(1 - 07) 

(1 - 98) 

The function €c[ps(r), Ps' (r)] is the single-particle correlation cnergy density of till' 

homogeneous electfO'1. gas with partial densities ps(r) and Ps' (r) for the spin-up and 

spin-down electrons. Before evaluating the Coulomb-correlatioll energy, equatioll 

(1-98), the single-particle correlation energy dcnsity must be dctcrmiucd. 

Alternative parametrized electron correlation expressions have frequcnt.ly 

emerged in the literature. Ceperley36 calculated the energy of a uniform electron 

gas over a wide range of densities. He used 1~ Jute Carlo teclmiqucb to sam pic a cor­

related wave function for electroIlS in a finite volume, subject to periodic boundary 

conditions, and extrapolated the encrgy per elcctron to illfinitc volumc. Lctting 

[
4 ]-1/3 

rs = ; p(r) (1 - 99) 

and 

( = (Ps - PSi )/(Ps + PSi) (1 - 100) 
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l 
with 

p(r) = pa(r) + Pal(r) (1 - 101) 

Ceperley's parametrization of the correlation energy for Ta ~ 1 is 

(1 - 102) 

where i=U (unpolarized, (=0) or P (polarized, (=1). For atomic calculations, the 

fc at high densities (ra < 1) and arbitrary polarization Os ( SI is also needed. The 

leading term of the high-density expansion is 

(1 - 103) 

The parametrized constants la, ,Bi, f32, Ai, Bi, C" and Da for i= U and P were 

given in Perdew and Zunger's paper30 • Equations (1-102) and (1-103) were used 

according to whether r 8 > 1 or ra < 1. 

For intermediate spin polarizations 0 < ( < 1, Barth and Hedin37 first 

proposed a standard interpolation formula, in which the correlation energy has the 

same polarization dependence as the ex change energy: 

(1 - 104) 

where 

(1 + ()4/3 + (1 - ()4/3 - 2 
f(() = 24/3 _ 2 (1 - 105) 

and the superscripts P and F denoted the para- and ferro-magnetic states according 

to whether ( =0 or 1. 

Stoll, Pavlidou, and Preuss38 (SPP) proposed that the single-particle cor­

relation energv density f~ for the para- and ferro-magnetic states can be written 

as 

f~(r8) = -Ci [(1 + x~)ln( 1 + :a) + ~Xi - X~ - ~l ,(i = P,F) (1 -106) 
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with 

Xp = r,,/11.4, XF = r,,/15.9,Cp = 0.0666, CF = 0.0406 (1 - 107) 

Stoll et al.38 suggested that the correlation energies of clcctrons with the 

same spin should be removed from the correlation energy expression, equation (1-

98), to give the pure Coulomb correlation energy expression 

Ec = j[p,,(r) + ps,(r)]€c[ps(r),ps,(r)]dr - j[ps(r)]€c[ps(r),O]dr 

- j[p",(r)]€c[o,ps,(r)]dr (1 -108) 

Recently, Vosko, Wilk, and Nusir39 (VWN) emphasized refining the correla-

tion part of the energy functional and pointed out inaccuracics in cxistillg formulas 

for the correlation energy based on interpolating between para- and fcrro-maglletic 

state results. To improve the correlation terms in the LDF theory, Vosku, Wilk, 

and Nusir used Ceperley and Alder's40 accurately determined clectroll liquid CUl'-

relation energies which had been extended to cover both para- und ferro-IlléLgnctic 

regimes. These results were combined with a new interpolation procedure to irn­

prove the accuracy of the spin dependence of the correlation-cllcrgy dCllsity €c(7' s , 0 

in the range of metallic densities. In the VWN representatioll, the singlc-particle 

correlation energy density for the para- or ferro-magnetic states is 

(1 - 109) 

where A, Xo, b, and c are parameters determined separately for i=P and F, and 

(1 - 110) 

with 

F(X) = tan-
1 

(2X ~ b) (1 - 111) 
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TABLE 1-2 

Fit parameters determined by Vosko, Wilk and 
Nusair for interpolation of E~,F (r6) and 

and etc (r 6) over the range of r6 ::; 6 

A b c Xo 

-0.033774 1.13107 13.0045 -0.0047584 
+0.0621841 3.72744 12.9352 -0.10498 
+0.0310907 7.06042 18.0578 -0.32500 

Here X = r!/2. These parameters are listed in Table 1-2. 

ln the LDF theory, the potential is relatecl to the energy by equation (1-92). 

The correlation potential is 

(1 - 112) 

for the spin-up (+) or spin-clown (-) orbital. Hence, the correlation potential for an 

electron of given spin is 

(1 - 113) 

Expressing the 1's differentiation in terms of the X parametrization of equation (1-

109) [ X = r!/2 ], the cc'Telation potentials for spin-up and -clown electrons are, 

1/2 [ 8 P 8 F 
jl;(r) = fc(rs, 0 - 1'

s
6 [1 - (4 j(O] ;~ + (4 j«() ;~ 

( 
4 f«() 8Cic] ( )Cic(r 6 ) + 1 - ( ) fl/(O) 8x ± 4 1 =F ( jl/(O) 

[(3 f( O/3c(rs) + [16~~c3(~ );)4] [(1 + ()1/3 - (1 - ()1/3]] (1 - 114) 

where O:c(rs), the spin stiffness, is also represented in the form of equation (1-109) 

with the fit parameters given in Table 1-2. Letting g(X) represent the functions 
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f~(X), f~(X), and ac(X), then the change in g(X) with X is, 

dg = A{2X-l _ [1 _ bXo 1 (2X +J1_ 2bXo 
dX X(Xo) X(X) (X - Xo)X(Xo) 

- 4b[ 1- (b~::)) xo] [Q2 + (2X + b)2t1 } (1 -115) 

Equations (1-114) and (1-115) give the correlation potentials with 

(1 - 116) 

1-8. Relativistic Correction 

The relativistic effect is important for high-Z atoms, but the "full" rclativistic 

calculation for atoms and molecules is complicated, because the "large" and" small" 

components should be calculated simutaneously by solving the Dirac equatio1l41 • 

Cowan and Griffin42 described an approximate solution to the Dirac-Hartrec-Fock 

(DHF) equations for atoms. Wood and Boring43
, and Selvaraj and Gopinatha1l44 

used this approach in the Dirac-Hartrec-Fock-Slater (DHFS) and 3a theories. 

The equations for the Dirac 1/ central-field" problem4s - 47 ar ~ 

(1-117) 

and 

(1 - 118) 

where Vnk(r) is the "central-field" potential, €nk is the eigenvalue (minus the rest 

energy of the electron), and /'i, is the relativistic quantum number, 

{ 
-( 1 + 1), 

/'i, = 1 , 
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when j=l+~ 
when j=l-~. 

(1 - 119) 



Cl' is the fuJc-::;tructure con!:>tallt 13/036' Pnk(r) and t:}nk(r) are the large and small 

components, rcspectivcly. 

The second-arder differential equation used by Cowan and Griffin42 is ob-

tained by substituting Qnk(r) from equation (1-111) into equation (1-118) to give 

\\ .th 

and 

l(l+ 1) 
g = -Enk + 2 + Vnk(r) 

r 

(1 - 120) 

(1 - 121) 

Î = -I<[Enk - Vnk(r)]
2 

_KBdVnk(r) [~_ ~]_KB[k+ 1] ~nk(r) 
dr dr r r dr 

= Hm(r) + HD(r) + Hso(r) (1 - 122) 

where 

(1 - 123) 

The operator Î is the SUffi of the mass-velocity Hm, Darwin HD(r), and spin-orbital 

coupling Hso(r) terms. For the present the spin-orbital term in the potential is 

neglected. 

When r approaches zero, the asymptotic form of the potential is 

2Z 
Vnk(r) =-­

r 
(1 - 124) 

The Darwin correction is positive for all orbitals with 1 = 0, and zero for all others 

(i.e., 1#0). The equation used by Cowan and Griffin42 is 

{ _ cF + lk(lk + 1) + Vk(r) _ 0
2 

[Ek _ vk(r)]
2 

dr2 r2 4 

-6',0: [1+ : l'k - Vk(r)Jf dV~r) [dPidr 
- ;j}l\(r) 

= EkI'k(r) (1 - 125) 
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In the SIC-GX-LSD and SIC-G-LSD theories, the potelltial is 

(1 - 126) 

and the Coulomb potential, Vc", (r), excluding the self-Coulomb potcntial, the gcn­

eralized exchange potential, V;,.x/G (r), including the self-ex change potential, and 

the self-exchange potential, vi: (r), for the orbital i were givcn by cquations (1-93) 

and (1-94) in the SIC-G-LSD theory. In the SIC-GX-LSD them'y, thc gCllcralizcd 

exchange potential V~x (r) is 

9c [" V~x (r) = -"20hm L[P.,(r) + B2pJ(r)]-2/3 pJ(r) 
J 

2 " - 3 L(Ps(r) + BIPJ(r)][ps(r) + B2 P; (r)]-S/3 pj(r) 
; 

+ [p,,(r) + 2BIPk(r)][ps(r) + B2Pk(r)t2/3 

- ~B2[PS(r) + BI Pk (r)][p.'l(r) + B2Pk (r)t5
/

3 Pk (r)] (1 - 12'7) 

and the self-exchange potential, y1: (r), is 

(1 - 128) 
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t CHAPTER TI 

EIGENVALUE AND TOTAL ENERGY 

11-1. Eigenvalues and Total Energies for 

Atoms in the SIC-G-LSD and SIC-GX-LSD Theories 

Equation (1-90) for the one-electron eigenvalue and wave function using equa­

tions (1-91) for the Coulomb-potentia!, (1-93) for the exchange-potential: and (1-94) 

for the self-ex change potential in the SIC-G-LSD theory was solved for each orbital 

by standard self-consistent-fie!d (SCF) procedures48 j outward numerical integration 

of each equation was started by means of a small-i «eries solution, and inward nu­

merical integration by the analytical exponent wave function. The (i+1)th iteration 

potential was calculated by mixing electron densities from the ith iteration and the 

(i_l)th iteration. The SCF procedure was complete, when the difference in the wave 

function between the i th iteration and the (i-l )th iteration was less than 10-7 at all 

mesh points. The statistical total energy, E, in equation (1-86), was obtained from 

the converged wave function. 

Following convention al LDF calcu!ations, the one-electron densities, pj(rI), 

were spherically averaged and, then, used to evaluate the potentials and statistical 

total energy for the system. This 1/ central field" approximation is most severe 

for the 2p state, which makes a sizable contribution to the total self-interaction 

correction. However, Perdew and Zunger30 showed that the self-Coulomb energy 

for a hydrogenic 2p state (with m, = 0) was on1y 4 percent larger than it would be 

for the spherically averaged orbital density in the SIC-LSD theory. 

Calculations were performed on atoms helium to krypton by means of Ci) 

the SIC-G-LSD theory with the FEL, Wigner, GWR Fermi-hole parameters (hence­

forth, the SIC-G-LSD-FEL, SIC-G-LSD-W, and SIC-G-LSD-GWB, respectivelY)j 
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(ii) the SIC-G-LSD theory \Vith the homogeneous Fermi-hole parameters (SIC-G­

LSD-H), which is equivalent to the Xa theory \Vith a Q=O.866173; (iii) the origillal 

SIC-GX-LSD theory with FEL Fermi-hole parameters22 (SIC-GX-LSD-FEL); nlld 

(iv) the self-interaction corrected exchange-only LSD (SIC-XO-LSD) theory'19, be­

cause the correlation of electrons with different spins is ignored in bath the SIC­

XO-LSD and SIC-G-LSD theories. Calculations (i) and (ii) were performed to test 

the new SIC-G-LSD theory, and calculations (iii) and (iv) \Vere for comparison. 

11-1.1 Exchange Energy 

Table 11-1 shows the statistical total ex change energies including the sclf­

exchange for the four low-Z closed-shell atoms in the SIC-G-LSD thCOl'Y éUHI COlll­

pares with those in the SIC-XO-LSD theory49, and with the total exchallge energi<'s 

in the HF theory50. It is clear that the FEL Fermi-hole parameters in the SIC-G­

LSD theory gives the best total ex change energy among all Fenui-holc paramet<'rs, 

although it is slightly bigger than the HF exchange energy, bccause there is no ns­

sumption about the Fermi-hole shape in obtailling the FEL FCflm-holc paramet<'Is. 

The difference in percentage between the total exchange cHcrgies in the SIC-G­

LSD-FEL theory and in the HF theory decreases as the atollllC Ilumher increéUWS. 

The SIC-G-LSD theory with the GWB, Wigner, and homogencous Fermi-holc pa­

rameters, in which the exchange parameters are based on an a.,,~umed Fermi-hole 

shape overestimates the exchange effect. This implies that thc GvVD, WIgner, and 

homogeneous models overestimate the Fermi-correlation for Ical SystCIl1h. Dut the 

SIC-XO-LSD theory, which is equivalent to the SIC-G-LSD-H th('ory with QIITTI 

equal to 2/3, instead of 0.866173, underestimates the exchangc effect. It i~ obvious 

that the Gaspar7 , and Kohn and Sham8 model underestimatcs the Fermi-correlatioll 
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for a system with low electron density. 

Theoretically, the XO-LSD theory is exact for a system with very high and 

slowly varying electron density and, therefore; underestimates the Fermi-correlation 

for real systems \Vith finit Y electron density, sinee the exchange parameter a, as 

proven in the X a theory, increases with the number of total electrons in the sys­

tem decreases. However, the G-LSD theory with the homogeneous Fermi-hole pa-

rameters overestimates the Fermi-correlation, because the exehange parameter, a, 

decreases as the total electrons increases in the Xa theory. 

TABLE 11-1 

The negative of the total exchange energies (Ry) 
for sorne closed-shell atoms calculated using the SIC-G-LSD 

theory with the FEL, GWB, Wigner, and Homogeneous 
Fermi-hole parameters, compared with those from the 

SIC-XO-LSD and HF theories 

Z Atom FEL GWB W H XO-LSDa HF b 

2 He 2.30 2.30 2.30 2.30 1.77 2.05 
10 Ne 25.38 26.29 25.84 28.92 22.08 24.22 
18 Ar 62.21 65.02 63.64 72.85 55.74 60.37 
36 Kr 190.26 201.74 196.15 231.49 177.27 188.31 

a. The XO-LSD exchange energy in the SIC-XO-LSD theory, Ref. 4; 
b. The HF exchange energy in HF theory, Ref. 50. 

35 



11-1.2 Self-Exchange Energy 

The self-exchange energies of the four closed-shell atoms listed in Table 11-2 in 

the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogellcouH FCl'mi-hole 

parameters are compared with those from the SIC-XO-LSD and HF theories. The 

self-exchange energies for the saml" atom in the SIC-G-LSD thcOl'y using diffcrellt 

Fermi-hole parameters are almost the same. This is reasollable, bccause the fornm­

las of the self-exchange energy expressions are exactly the same and indepcudellt of 

the Fermi-hole parameters in the SIC-G-LSD thcory with the FEL, GWn, 't'VigIl!'r, 

and homogeneous exchange parameters. It is clear that the SIC-G-LSD tlH'ory owr­

estimates the self-ex change energies for these atoms and the SIC-XO-LSD thcory 

underestimates them, in comparison with the RF self-exchallgc cnergies50 • 

In the present theory, the radius of the self-ex change Fermi-hole for the or­

bital i, equation (1-83), is only dependent on its own electron den~ity. lt i~ clcar that 

the t.nvironment of the self-exchange Fermi-hole disturbs it. A~ in equatlOll (1-59), 

the radius of the ex change Fermi-hole, TF, decreases as the Humber of totlù {k('­

trons in the system increases. This implies the Fermi-hole is squcczed by illcreasillg 

the electrons in the system. Renee, the self-exchange Fermi-hole ladJU~ (ù~o 8110111<1 

decreases as the electrons increases. FUrthermore, the tot1Ù :-.r~lf-ex('haIlg{' <'Ilt'rgy, 

equation (1-85), is exactly equai to the total C'xchange cnerg)' for tll(' h('liuIll i!->o­

electronic systems. Consequently, the present self-exchangc t'olI(>ctioIl, ('(pHttioll!-> 

(1-84) and (1-85) overestimate the self-exchange for the sy:,telll!:> other thall hydro­

gen and helium isoelectronic systems. Rowe\'er, in the SIC-XO-LSD theory, the 

self-exchange may be determined in order to cancel the scif-lllt<>raetioll for the 11('­

lium isoelectronic systems. The exchange effect has bèCn already lUl<leI<·~tiIllatcd by 

the XO-LSD the ory for the low-electron density ~ysteIlls. HeIlC(" tll(> ~elf-('xchaIlge 

correction in the SIC-XO-LSD theory is also tmdcl'estimated. 
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The exchange energy is exactly cqual to the self-exchange energy for the 

helium isoelectronic system in both the HF and the self-interaction corrected LDF 

theories, as shown in Tables II-1 and II-2. 

Z 

2 
10 
18 
36 

TABLE 11-2 

Self-exchange energies (Ry) for sorne closed-shell atoms 
calculated using the SIC-G-U~D theory with the FEL, GWB, 

Wigner, and Homogeneous Fermi-hole parameters, compared with 
those from the SIC-XO-LSD and HF theories 

Atom FEL GWB W H XO-LSD a HF b 

He 2.30 2.30 2.30 2.30 1.77 2.05 
Ne 21.98 22.04 22.01 22.23 17.02 19.79 
Ar 50.65 50.75 50.70 51.04 39.13 45.42 
Kr 136.37 136.60 136.49 137.16 105.24 121.55 

a. The XO-LSD self-ex change energy in the SIC-XO-LSD theory, Ref. 4; 
b. The HF self-exchange energy in the HF theory, Ref. 50. 
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11-1.3 Pure Exchange Energy 

Obviously, the effective contribution of the exchange energy to the tot.al 

energy is the pure exchange energy, excluding the self-exchange cnergy in IUly ~lf­

interaction corrected LDF theory. Hence, it is interesting to compare the pme 

exchange energy in the SIC-G-LSD theory with that in the SIC-XO-LSD !Uul the 

HF theories. In Table II-3, the pure-exchange energies for thcse atollls in the SIC­

G-LSD theory with the FEL, GWB, and Wigner Fermi-hole paralllet.ers m'l' l('ss 

negative than the corresponding pure HF exchange energy. The total ('xchall~t' 

energies and the self-exchange energies for these atoms WeIl' oyercstillmted by tll(' 

SIC-G-LSD-FEL, -GWB, and -W theories. Because of the opposite cOlltnhlltiollS of 

the total exchange energy and the self-exchange to the stati~tical t.otal mergy, the 

total ex change energy without the self-ex change correction decll'a:,iIlg the statu:itical 

total energy and the total self-ex change energy increasing it, the O\'clc:,tinmtioll of 

the energies is partly cancelled. Further, the bcst predict iOIl of t he pur!' ('xchanp;e 

energies among all the Fermi-hole parameters iu thC' SIC-G-LSD th('ory is gÎV('Il 

by the GWB Fermi-hole parameters in which the overestimatioll wa~ well Imlanced 

by the overestimation of the self-exchange energy. To give ,m acclIlate predictioll 

of the statistical total energy in the SIC-G-LSD-FEL theory in which tlH'lC is 110 

assumption of a Fermi-hole shape, the description of the :,elf-exchallgc C'l1crgy has 

to be improved. The total exchange and self .'xchallge ellel~j(':-, m(' both llud('[{':'-

timated in the SIC-XO-LSD theOl'Y. But the C'aIlcellatioll of the UlHII'! (·.,tilllation 

due to the total exchange and the self-exchange i~ worse in the SIC-XO-LSD tlH'ory 

than in the SIC-G-LSD-GWB theory. Consequeutly, the SIC-G-LSD-GWn thpory 

gives the best total energies for atoms. 
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Z 

2 
10 
18 
36 

TABLE 11-3 

The negative of the pure exchange energies (Ry) for sorne 
closed-shell atoms calculated using the SIC-G-LSD theory vith 

the FEL, GWB, Wigner, and Homogeneous Fermi-hole parameters, 
compared with those from the SIC-XO-LSD and HF theories 

Atom FEL GWB W H XO-LSD a HF b 

He 0.00 0.00 0.00 0.00 0.00 0.00 
Ne 3.40 4.24 3.82 6.70 5.06 4.43 
Ar 11.56 14.26 12.93 21.81 16.61 14.96 
J(r 53.89 65.15 59.66 94.32 72.30 66.76 

a. The XO-LSD exchange energy in the SIC-XO-LSD theory, Ref. 
b. The HF exchange energy in the HF theory, ref. 50. 

11-1.4 Total Energy 

4' , 

The negative of the total energies for the ground states of the atoms helium to 

krypton in the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogeneous 

Fermi-hole parameters is summarized in Table II-4, and compared with the HF 

total energies51
. As e} !Jected, the SIC-G-LSD theory with the GWB Fermi-hole 

parametcrs gives the best total energies for these atoms in the present the ory with 

the FEL, G\VB, \Vigner, and homogeneous Fermi-hole parameters. The differences 

betwccn the total energies in the SIC-G-LSD-GVvB theory and in the HF theory 

are very small. For example, this difference is about 1 Ry for krypton whose total 

ellergy is about 5504. 11 Ry. 

Fig. 2-1 plots the differences of the total energies of the atoms helium to 

krypton in the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogeneous 

Fermi-hole parameters compared to the HF theory, against the atomic number. 

The effect of the different Fermi-hole parameters is shawn in Fig. 2-1. The SIC­

G-LSD-FEL theory underestimates the total energies for these atoms, because of 
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Z 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 

TABLE 11-4 

The negative of the total t!nergies for the ground state 
of atoms Helium to Krypton in the SIC-G-LSD theOl'Y with the 

FEL, GWB, Wigner, and Homogeneous Fermi-hole parameters, compared 
with the HF total energies (Ry) 

Atom FEL GWB W Il 111"11 

He 5.7234 5.7234 5.7234 5.7234 5.7234 
Li 14.8576 14.8623 14.8599 14.8805 14.8655 

Be 29.1209 29.1368 29.1288 29.1970 29.1460 
B 48.9557 49.0]68 48.9859 49.2292 49.0581 

C 75.1684 75.3185 75.2435 75.7914 75.3772 
N 108.4442 108.7306 108.5886 109.5749 108.8018 
0 149.0975 149.5020 149.3012 150.7100 149.6187 
F 198.1035 198.6797 198.3941 200.37-13 198.8186 

Ne 256.1397 256.9426 256.5457 259.2·163 257.0941 

Na 322.5438 323.5099 323.0326 326.2697 :J23.7178 
Mg 397.8445 398.9804 398.4195 402.2139 399.2292 
Ai 482.1055 483.4321 482.7771 487.2063 48:J.753:J 
Si 575.7674 577.3153 576.5514 581.7002 577.7086 
P 679.1633 680.9617 680.0750 686.0222 G81.4:J73 

S 792.4124 794.4526 793,4'1G8 800.1t\2·1 7!')5.00!)7 
Cl 916.0141 918.3294 917.1886 924.80:J 1 Ul tu)ü;n 
Ar 1050.2881 1052.9103 1051.6193 1060.1%8 JOf)3.6:H8 
]( 1194.6424 1197.5301 1196.1091 1205.5274 11 !)~.:J2!Jl 

Ca 1349.5044 1352.6626 1351.10!)1 136I.:l827 1:Jf)3 . .1 1 (il 

Sc 1515.1127 1518.6101 1516.8909 1528.2208 1519.4710 
Ti 1692.0550 1695.9256 1694.0246 1706.497ï W!.HUH 15 
V 1880.6255 1884.9005 1882.8029 1896.501 ï 1885.7(iH4 

Cr 2081.2253 2086.0119 2083.6G64 2098.8B7!) 2086.7104 
Mn 2293.7767 2298.9525 2296,4 182 231281!J ï 229!).7:n4 

Fe 2518.5277 2524.1553 2521.4013 25:W.1G2·1 2!J2'I.HHG4 
Co 2755.9982 2762.1096 2759. 120!J 2778.:3:~H:3 27G2.R2H4 
Ni 3006.4665 3013.0931 3009.8"1,19 3030.5!) 18 301:L 7410 
Cu 3270.2884 3277.53,56 32739977 3296.5,1 H:J :J27ï.92.16 
Zn 3547.4991 3555.2510 3551AG87 3575.51 !)8 3055.(j!)[l'1 

Ga 3837.7057 3845.9G79 3841.!)381 3867.51;)2 3t\'WJ1208 
Ge 4141.2764 4150.0685 4145.7,')20 4112.9'114 4150.71t\2 
As 4458.3837 4467.7248 4463.1723 4491.9G:i·l '1,IG~A7G4 

Se 4789.0232 4798.9001 4794.0~7H 4824A8G() H!)!).nlG 

Br 5133.5323 5143.9697 5138.8857 5170.957!') 51,t1)~H1G 

Kr 5492.0866 5503.1068 5497.7'104 5531.54'1H 5.104.1092 

a. Reference 51. 
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the underestimation of the pure exehange energiesj but the SIC-G-LSD-H theory 

overestimates the total energles of atoms due to the overestimation of the pure 

exchange energies. 

Theoretieally, the SIC-G-LSD theory with the FEL Fermi-hole parameters 

should be better than that with the GWB, Wigner, and homogeneous Fermi-hole 

parameters in giving the statistical total energies of atoms, because the FEL Fermi-

hole parameters were based on the asymptotic trend of the exehange parameters, 

when the number of the electrons in the system goes to infinity. Aiso the FEL Fermi-

hole has the correct high eleetron-density limit, and does Hot assume a specifie, 

approximate shape of the Fermi-hole. Table II-l also showed that the FEL Fermi­

hole parameters in the SIC-G-LSD theory gave the best prediction of the total 

exehange energies for the closed-shell atoms among all the Fermi-hole parameters. 

Consequently, the deviation of the SIC-G-LSD-FEL the ory from the HF theory 

is mainly attributed to the self-exchange correction, which overestimated the self-

ex change interaction. 

The SIC-G-LSD theory 'A '+h the GWB Fermi-hole parameters, as expeeted, 

gives very good statistical total energies for atoms in the agreement with the HF 

results and should therefore be very use fui in moleeular caleulations where the total 

energy of a moleeule is of interest. 
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FIGURE 2-1 

The differences between the total energies of the atoms helium 
to krypton in the SIC-G-LSD theory with the FEL, 

GWB, Wigner, and homogeneous Fermi-hole 
parameters and in the HF theory 
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ll-I.5 One-Electron Eigenvalue 

Tables 11-5 and II-6 give the negative of the one-electron eigenvalues for neon 

and argon, respectively, in the SIC-G-LSD theory with the FEL, GWB, Wigner, and 

homogeneous Fermi-hole parameters and compares with those in the HF the ory. AIl 

the one-electron eigenvalues in the SIC-G-LSD theory are less negative than the HF 

one-electron eigenvalues, except for the 3p orbital in the SIC-G-LSD-H theory. AH 

the ls- and 2p-orbital eigenvalues are slightly less negative th an in the HF theory. 

The negative 0; the one-electron eigenvalue for krypton lS presented in Table 

11-7 and compared with the HF eigenvalues. AU the one-electron eigenvalues in 

the SIC-G-LSD theory with the FEL, GWB, Wigner, and homogeneous Fermi-hole 

parameters are slightly less negative than those in the HF theory. The one-electron 

eigenvalues in the SIC-G-LSD-H theory are the most negative arnong all the Fermi­

hole pararneters, except for the ls-orbital. In addition, the one-eledron eigenvalues 

in the SIC-G-LSD-GWB theory are more negative than those in the SIC-G-LSD­

FEL and SIC-G-LSD-W theories and less negative than those in the SIC-G-LSD-H 

theory except for the 18 orbital. 

The ionization potential of an atom is exactly equal to the negative of the one­

electron eigenvalue of the corresponding orbital in the HF theory, when the frozen 

orbital approximation is used (Koopmans' theorem). Section II-1.4 has shown that 

the SIC-G-LSD-GWB theory gives the statistical total energies for atoms in the 

excellent agreement with the HF total energies. It seems that the one-electron 

eigenvalucs of atoms in the SIC-G-LSD-GWB theory should also be very close to 

HF, sinee the self-interaction correction has already been invoked in the SIC-G-LSD 

theory. But the agreement of the one-electron eigenva111es in the SIC-G-LSD theory 

with those in the HF theory is not as good as expected. The reason might be as 

foUows. 
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The ionization potential of the kt" orbital of an atom, Ik, can be exprcssed 

as 

(2 - 1) 

where EfIC-G-LSD is the one-electron eigenvalue of the kth orbital in the SIC-G­

LSD theory; E~ is the total ex change energy, which is given by the second and third 

terms in equation (1-86); ES1 is the self-exchange energy in equation (1-85); and 

Nk is the occupation number of the kth orbital. With these subst.itutions, equation 

(2-1) becomes 

Ik ~ _€~lC-G-LSD-H + 0.8661 n( ~ )1{3 
81r 

! { [ ]-2/3 [ ]-2/3 } 
p~(r) Pk(r) - p(r) dr (2 - 2) 

in the SIC-G-LSD theory vvith the homogeneous Fermi-hole parameters, tmder the 

frozen orbital approximation. The second tenn in the right-hand side of equation 

(2-2) is always positive, except for the helium isoelectronic series including helium, 

that is 

(2 - 3) 

Consequently, the negative of the one-electron eigenvalue is less than the 

corresponding 10nization potential under the frozen orbital approximation. 
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TABLE 11-5 

The negative of the one-electron eigenvalues (Ry) for 
Neon in the SIC-G-LSD theory with the FEL, GWB, Wigner, and 

Homogeneous Fermi-hole parameters 

Orbital FEL 

ls 65.5424 
2s 3.1170 
2p 1.4858 

GWB 

65.4190 
3.1785 
1.5512 

W 

65.4792 
3.1476 
1.5189 

a. Reference 51. 

TABLE 11-6 

H 

65.1097 
3.3744 
1.7323 

The negative of the one-electr,m eigenvalues (Ry) 

65.5449 
3.8609 
1.7009 

for Argon in the SIC-G-LSD theory with the FEL, GWB, Wigner, and 
Homogeneous Fermi-hole parameters 

Orbital FEL GWB W H HFa 

ls 236.7366 236.5968 236.6634 236.3323 237.2208 
2s 22.7611 22.9157 22.8384 23.3956 24.6444 
2p 18.3898 18.5558 18.4 735 19.0303 19.1430 
3s 2.0736 2.1158 2.0946 2.2473 2.5547 
ap 1.0118 1.0578 1.0352 1.1837 1.1820 

a. Reference 51. 

11-1.6 Orthogonal Wave Functions 

Since the exchange and the self-interaction potentials in the SIC-G-LSD the­

ory are orbital-dependent, the wave functions will he non-orthogonal to those with 

the same angular quantum numher 1 and different principal quantum number n, at 

self-consistency. The orthogonalization can be carried out during the SCF proce­

dure. Table II-8 shows the negative of the one-electron eigenvalues for krypton in 
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TABLE 11-7 

The negative of the one-electron eigenvalues (Ry) 
for Krypton in the SIC-G-LSD theory with the FEL, aWn, Wigner, anù 

Homogeneous Fermi-hole parameters 

Orbital FEL GWB W H llFa 

18 1038.5165 1038.2977 1038.3972 1038.0930 1040.3306 
28 135.1716 135.5321 135.3505 136.6746 139.8064 
2p 123.6149 124.0036 123.8096 125.1497 126.0198 
3s 19.4203 19.6063 19.5155 20.0886 21.6990 

3p 14.9873 15.1754 15.0841 15.6438 16.6630 
3d 7.1007 7.2686 7.1874 7.6768 7.6505 
4s 1.9030 1.9443 1.9236 2.0676 2.3058 
4p 0.8957 0.9362 0.9163 1.0468 1.0482 

a. Reference 51. 

the SIC-G-LSD theory with the FEL parameters. Column 2 was obtained with-

out wave function orthogonalization, and column 3 with wave function orthogo­

nalization. The percentage differences of the one-electron eigenvalues between the 

orthogonal and nonorthogonal calculations are less than 0.03 percent (2p-orbital) 

for krypton. The effect of orthogonalizing the wave function is so small that the 

one-elcctron eigenvalues in Ta hIes II-5, II-6, and II-7 were obtaincd without orthog­

onalization of the wave function. The same conclusion \Vas reachcd in Refs. 22 and 

30. 

11-1. 7 Comparison of the Total Energy in the SIC-G-LSD Theory 

with those in the SIC-GX-LSD and SIC.XO-LSD Theories 

Table II-9 compares the total energies of the atoms helium to argon in the 

SIC-G-LSD-FEL theory with those in the original SIC-GX-LSD thCOl'y with the 

FEL Fermi-hole parameters and the convention al SIC-XO-LSD theory. The results 
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TABLE 11-8 

Comparison of the one-electron eigenvalues (Ry) 
of Krypton calculated using the orthogonal 

and non-orthogonal wave functions in the SIC-G-LSD 
~heory with the FEL Fermi-hole paramcters 

Orbital Nonorthogonal Orthogonal 

1s 1038.5165 1038.6725 
2s 135.1716 135.2054 
2p 124.6149 124.6585 
3s 19.4203 19.4210 
3p 14.9873 14.9883 
3d 7.1007 7.0997 
4s 1.9030 1.9030 
4p 0.8957 0.8957 

show that there is no significant difference of the total energies between the SIC-

G-LSD and SIC-GX-LSD theories, although the SIC-GX-LSD the ory was based 

on a physical restriction to the Fermi correlation <.:orrection, equations (1-47) to 

(1-49). The SIC-G-LSD total energies for these atoms are slightly better than the 

SIC-GX-LSD results. The agreem~nt of the total energies in the SIC-G-LSD and 

SIC-GX-LSD theories with the same Fermi-hole parameters are the same up to the 

fifth digit. The total energies of atoms are slightly underestimated by both the 

SIC-G-LSD and SIC-G X-SIC theories with the FEL parameters, because of the 

underestimation of the pure-ex change energy (section II-1.3). The SIC-XO-LSD 

thèory slightly overestimated the total cnergies for these atoms in comparison with 

the HF results. This is reasonable, because the SIC-XO-LSD the ory overestirnated 

the pure ex change energies listed in Table 11-3 for atoms. 

Cornparing the total energies listed in the column 4 of Table II-4 and the 

column 5 in Table 11-9 with those in the HF theory listed in column 6 of Table 

11-9 shows that tl-.e SIC-G-LSD theory with the GWB Fermi-hole parameters gives 
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much better results than the SIC-XO-LSD theory, because the SIC-G-LSD thcory 

with the GWB parameters correctly estimates the pure exchunge ('Jl('rgies for tlll'se 

atoms. 

ComparisQn of the statistical total energies for the atOlllS ill the SIC-G-LSD 

and SIC-GX-LSD theories shows that the physical restrictioll lllade in derivillg 

the GX-LSD theory, equations (1-47) to (1-49) is theoretically élnd lllatllt'Illatically 

significant, but does not result in large numerical error. Tll<'!C'fore, th, GX-LSD 

thenry is still useful for atomic calculations. 

In conclusion, the G-LSD theory was derivcd based on the gCIl<'ral boundary 

conditions of the Fermi-correlation factor which are from the HartIPe-Fock lilllit, 

compared to the GX-LSD theory which was ba;:,ed on physically I('~tl ict(·d bOllud­

ary conditions. Consequently, the G-LSD theOl')" is an cxt('ll~i()ll of tlH' GX-LSD 

theory and more general in describing the inhoIllogeneOw. C'kctlOIl-dcll~ity sy~t<'lll 

theoretically. 

The exchange parameters in the G-LSD thcory are fLxed O11<'e tlH' FCl'mi­

hale shape is chosen or by using the free-electlOu-limit plOpo~'ed by ~lalloli iUlel 

Whitehead22 . This avoided the time-cousuming ~tcp in &cé\rchiup; tltt' optilllai ('x­

change parameters in the XC\' theory for each atoIll or iOii. 

Numerically, the SIC-G-LSD theory giws the &tati~ticéÙ total t'llelgJeb fOl 

atoms in excellent agreement with the HF the,,!'y, ami If> mllch better thau the SIC­

XO-LSD theory, when the GWB exchange parameters are elllployt'd FUI t hermore, 

the one-electron eigenvalues in the SIC-G-LSD thcory with the G\\'n felmi-hok 

parameters are reasonable good compared with those in the HF theory. 
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Z 

2 
3 
4 
5 

6 
ï 
8 
9 

10 

11 
12 
13 
14 

15 
16 
17 
18 

TABLE II-9 

Corn parison of the negati ve of the total energies (Ry) for the 
ground state of atoms (Z=1-18) in the SIC.G-LSD-FEL theory with 

those in the SIC-GX-LSD-FEL, SIC-XO-LSD, and HF theories 

Atorn G-LSD GX-LSD a XO-LSnb Hye 

He 5.7234 5.7234 5.7234 5.7234 
Lt 14.8576 14.8565 14.8678 14.8655 
Be 29.1209 29.1173 29.1554 2901460 
B 48.9557 48.9498 49.0971 49.0581 

C 75.1684 75.1608 75.4894 75.3772 
N 108.4442 108.4352 1O~.0125 108.8018 
0 149.0975 149.0854 149.9250 149.6187 
F 198.1035 198.0893 199.2707 198.8186 

Ne 256.1397 256.1242 257.7178 257.0941 

1"a 322.5438 322.5265 324.4349 323.7178 
.... lg 397.8445 397.8260 400.0554 399.2292 

Al 482.1055 482.0864 '184.6824 483.7533 
51 575.7674 575.7495 578.7554 5n.7086 

p 679.1633 679.1471 682.5983 681.4373 
5 792.4124 792.3985 796.2969 795.0097 

Cl 916.0141 916.0037 920.3935 918.9637 
.4r 1050.2881 1050.2'.H6 1055.1990 1053.6348 

a. The statistical total energy in the SIC-GX-LSD theory, Ref. 22; 
b. The statistical total energy in the SIC-XO-LSD theory, Ref. 30; 
c. The HF total energy, Ref. 51. 

II-2. Eigenvalues and Total Energies for Negative Ions 

The investigation of negative ions is very interesting topie, beeause it not only 

l('ads to understanding the microscopie electronic structure and to understanding 

the stability of the matter52 • but it rusa te:,ts the theory itself. The accurate de-

scriptioll for the clcctron structure of ncgative ions is much more diffieult than that 

of neutral atollls éUld positive ions, bccause it is very sensitive to the exehange and 

self-interaction potentials and the electron-correlation. 
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Theoretically, the G-LSD theory is more rigorous than the GX-LSD tll<'ory in 

deriving their single-particle exchange energy-dcnsity expressions, But. lllllllcrical1y, 

as shown in the above section, the statistical total encrgich of atolllH Ul the G­

LSD theory and the GX-LSD tbeory are very close (up tu the first five digits). 

AlI the following caIculations were done by the GX-LSD tll<'ol'y éUld precedeù tJl(' 

development of the G-LSD theory. 

The SCF calculation for the negative ions B-, C-, 0-. F-, Na-, Al- , Si-, 

S-, and Cl- and the corresponding neutral atoms \Vere pcrfoflllcd using the SIC­

GX-LSD theory, equation (1-90) cornbining equatiol1s (1-91), (1-127), éUld (1-128), 

with the FEL, Wigner, GWB, and homogeneous Fermi-hole paramc>telh (ht'llccfol'th 

called the GX-FEL, GX-W, GX-GWB, and GX-H, rcspectivcly). The [('sults m'(' 

as follows. 

11-2.1 One-Electron Eigenvalues 

Table II-lO gtves the one-electron eigcllvalues and averaged OIH'-clectroll 

eigenvalues of each orbital; the averaged one-elcctroll eigenvalue \Vas dcfillCd as 

(2 - 4) 

They are cornpared to the 3a eigenvalues of Sen53 and the HF eigcllvalucs of 

Clementi and Roet ti 51 • 

The GX-FEL, GX-\-V, GX-GvVB, and GX-H eigenvahu'h of the 1., d(,('tr()l1~ 

for all the negative ions are in very good agI ct'ment wi th th()~(' of HF, AIIllmt al! 

the eigenvalues of the 28 orbi t a.l arc slightly hi f.)lCr thall tho:-,(' of HF él.'i éU'(' nif' 

eigenvalues of the 2p electron wllich arc not iIl the outerllloht cl('ctlOll Th(, GX­

H eigenvalues of the 2p electron m'l' very clo:"e to the HF eigenvalue~ Tlwy m'e 
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better than those calculated with the 3a theory53. For the outermost electrons, the 

GX-FEL, GX-W, and GX-GWB eigenvalues are greater than those of HF, while 

the GX-H eigenvalues are doser to those of HF except for Na-. AH of the GX 

eigenvalues are doser to those of HF than the ::::a eigenvaJ ues. 

According to Koopmans' approximation54 , the one-electron eigenvalues fi 

the HF theory are equal to the binding energies of the electrons, tmder the frozen 

orbital approximation Table II-10 shows that the SIC-GX-LSD theory is the best 

in dcscribing the electron binding energies of ncgative ions. 

ln both the SIC-GX-LSD and 3a theories, the self-interaction of the electron 

has been removedj therefore, the one-electron cigenvalue in both theories should 

approximately equal the corresponding one-electron energy (i.e. the orbital energy) 

in the HF theory. However, this is not true for the negative ions. The accuracy of the 

self-interaction correction is measured by comparing the one-electron eigenvalues. 

From Table II-lO, the one-electron eigenvalues for the ls éUld np electrons are in 

much better agreement with those of the HF than those in the 2a theory. For the 

2.5 and 3s electrons, the 3a theor'Y is a little bctter than the SIC-GX-LSD theory. 

Table II-lO shows that the self-interaction correction in both the SIC-GX-LSD and 

3a theories is not perfect for the negative ions. Neverthele:":,,, the self-interaction 

correction in the SIC-GX-LSD theory is more accurate than that in the 3a theory. 
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Ion 

B 

C-

O-

F-

Na-

AI-

TABLE 11-10 

The negative of the one-electroll eigenvaluc& (Hy) of the 
ground states of several negatin' ion calculated using 

the SIC-GX-LSD theory with the FEL, Wigner, GWB, and 11 Ferllli-holl' 
parameters, compared to the results from the SI and IIF the'ori(·s. 

(ni), FEL W GWU Il =(1 lIl,'b 
-a 

ls l 14.9855 14.9406 14.8982 14.6805 
ls 14.9675 14.9197 14.8741 14.63ï2 
ls av 14.9765 14.9302 14.88G 1 1,1.6614 14.8,\9,. 

2s l 0.5536 0.5416 0.5321 0.5250 
2s 0.4575 0.4289 0.4021 0.2777 
2sav 0.5055 0.4853 0,46ïl 0.4014 OA84ï 
2p i 0.0186 0.0228 0.0276 0.0700 0.0526 

ls l 22.04U3 21.9910 21 ~q·tï 21.7125 
ls 21.9856 21.9292 21.8757 21.5947 
lsav 22.0129 21.9601 21.9102 21.6536 21.9122 

2s l 0.7392 0.7425 0.7475 0.8096 
2s 0.5304 0.5032 0.4781 0.3605 
2sav 0.6348 0.6228 0.612."\ 0.5850 0.7454 
2p i 0.0792 0.0906 0.102':; 0.1815 0.1538 

ls l 40.5383 40.4 786 40.'1209 40.1102 
ls 40.4919 40.4271 40.36·16 ,1O.02,s7 
ls av 40.5151 40.4528 40.3!:l2S 40.067D :m.·llï '1O.3D<i:J 

2s l 1.3457 1.3595 1.3731 1 4610 
2s 1.2304 1.2302 1.2309 1.2592 
2sav 1.2881 1.2948 1.3020 1.3605 1 07·1 1.6260 

2p l 0.2651 0.2813 O.29ïO 0.3862 
2p 0.0795 0.0875 0.09G 1 0.1573 
2pav 0.1908 0.2038 0.2lü7 0.2946 0.·17!) o 25~5 

~Hj 
51.7489 51.6768 51.6080 .')1.2·12!J ."'10.529 01 .(j;I!)O 

1.6171 1.6306 1.64,1':; 1.7417 2.00B 2. H~!) 
0.2504 0.2675 0.28,16 0.3860 0.62H 0.:HiI7 

~: li 80.5681 80.3084 80,4511 ~O.I')O(; HO (j(j28 
4.3615 4.4027 ·1 ,1129 ·L67ïï !i.2gB!) 

2p i 2..1311 2.4697 2.50 7 7 2 720:3 27418 
3s 0.0273 0.0277 0.02~0 0.029."'1 O.024!) 

ls l 116.4973 116.4254 116.33G~ 116.0076 
ls 116.4945 116.4223 116.30:3:3 116.0014 
lsav 116.4959 116.4238 116.3':;.')0 116.00·1;1 116.6161 
2s l' 8.2902 8.3316 8.3721 8.6207 
2s .l. 8.2858 8.3267 8.36G9 8 (j) 2:! 
2sav 8.2880 8.3291 8.3607 ~ 61(i.') 9.4 :32:3 

2p l 5.7088 5.7474 5.78.')~ 6.01n 
2p 5.7035 5.7414 5.7701 6.0068 
2pav 5.7062 5.7444 5.782·1 6.0120 G.050:3 

3s l 0,4878 0.4801 0.'17:3."'1 0.4611 
3s 0.4374 0.4209 0.'1052 0.3281 
3s av 0.4626 0.4505 0,430,1 () 3946 0,417(j 

3p i 0.0163 0.0191 0.0222 00479 O.O:W7 
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Ion 

Si-

S-

... 
... 

CI-

l 

TABLE 11-10 (Continued) 

The negative of the one-electron eigenvalues (Ry) of the 
ground states of several negati ve ion calculated using 

the SIC-GX-LSD theory with the FEL, Wigner, GWB, hnd H Fermi-hole 
parameters, compared to the results from the 3a and HF theories 

(ni )8 FEL W GWB H =a HF b 
-a 

ls l 136.9239 136.8526 136.7849 136.4491 
ls 136.9138 136.8414 136.7728 136.4302 
Is av 136.9188 136.8470 136.7789 136.4396 137.1058 
2s i 10.5079 10.5561 10.6041 10.8968 
2s .j. 10.4926 10.5395 10.5862 10.8724 
2sav 10.5002 10.5478 10.5951 10.8846 11. 7933 

2p l 7.5867 7.6326 7.6785 7.9565 
2p 7.5684 7.6126 7.6569 7.9260 
2pav 7.5776 7.6226 7.6677 7.9416 7.9957 

3s l 0.6223 0.6233 0.6255 0.6602 
3s 0.5069 0.4906 0.4756 0.4050 
3sav 0.5646 0.5570 0.5505 0.5326 0.6030 
3p T 0.0619 00697 o.ons 0.1297 0.1230 

Is l 183.0350 182.9661 182.9006 182.5783 
Is 183.0265 182.9568 182.8907 182.5637 
Isav 183.0308 lR2.9615 182.8956 182.5710 183.3519 

2s l 15.7820 : ,,:\446 15.9062 16.2721 
2s 15.7703 1.:1 8320 15.8927 16.2547 
2sav 15. i762 15.8383 15.8995 16.2634 17.3503 

2p l 12.1556 122168 12.2774 12.6335 
2p 12.1414 12.2014 12.2610 12.6123 
2pav 12.1485 12.2091 12.2692 12.6229 12.7099 

3s l 0.9662 0.9746 0.9833 1.0451 
3$ 0.9088 0.9099 0.9118 0.9395 
3sat. 0.9375 0.9423 0.9476 0.9923 1.1586 

3p l 0.1671 01794 0.1916 0.2615 
3p 0.1004 0.1069 0.1138 0.1608 
3pav 0.1404 01504 0.1604 0.2213 0.2148 

~HJ 
208.6252 208.5544 208.4875 208.1638 207.647 209.0103 

18.7515 18.8182 18.8842 19.2790 20.203 20.4578 
14.7599 1-1.8258 14.8912 15.2790 16.165 15.3907 

1.1256 1.1347 1.1442 1.2123 1.386 1.4659 
(j.2008 0.2139 0.2267 0.3031 0.468 0.2998 

a. Reference 53; 
b. Reference 51. 
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1 
11-2.2 Difference of Total Energies 

Table II-ll gives the negatîve of the statistical total euergies of the gT()Uud 

state for sever al atoms and negative ions and the HF energies51
. The tot al mergit's 

of the atoms and the corresponding negative ions m'c calculated ~q)aIatdy by USlllg 

equation (1-86) in the SIC-GX-LSD theory. The bindillg clwrgics of tllt' outt-nllost 

electron for these negative ions in the corref>pouding grouud ~tate:-; cakI11atl'\1 by 

using the differenee of the statistieal total enelgies betwecn the atollls lUIt! the 

corresponding negative ions, and thof>e obtainccl using experilllcutai mdho<b !!;ivC'Il 

by Refs. 55 and 56 are listed in Table II-Il. 

It can be sPen that the GX-G\VB Md GX-H results are clos el' to the expC'f­

imental values than those of the GX-FEL and GX- \V. But the GX-G\vn blllcliug; 

energies are smaller, and the GX-H binding cll<'fgics 1arger. t11a11 tll<' coll('~ponding; 

experiment; they are better than the HF éUld Xn lc~ults It i~ (hffi.cult to ('stiIllllte 

the binding energies of the negative iOllS by u..,ing the HF (Ul(! ~\.o thcoli('~, siuce 

they are unreliable: for example, the binding ('ll<'lgy for B- i.., llegatiw 1ll the' HF 

and Xa: theories, and therefore B- is wlstablc; out expuilllL'Iltally B- i~ ~table. 

The differenccs between the theoretical éUld expcrilllelltai val tles iIl Table 

II-l1 occur for two reasons. First, the binding C'llC'rgy is exple:-,:-,cd W:i a ~lllall differ­

enee between two large quantities, Olle is the total L'llergy for the Ilcutr al atolIl, amI 

anothel is for the corresponding ncgati\'c iou, alld thelcfoH' :-,ubjcct to llI1I1wrical 

errors; secondly, the correlation effccts betweell clectrom of dlffC'I<'Ilt ~pill cllIectioIlS 

are neglected. Raghavachari57 has u!:>ed Moller-Plesf,crt pertUI !mtioll theory tu cal­

culate the binding energies for the first row Ilcgati\'c l()U~ [Uld (hse\l~",('d tll<' dectrou 

correlation effects on the negative iuus. The clectwIl wrIelatioll COrIcctiOll ha1:> to 

be considered in calculating negativc ions of atOlll'i. 
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1 

Z 

B-
B 
h.SCF 

C-
C 
h.SCF 

0-
0 
h.SCF 

F-
F 
h.SCF 

~ Na-
Na 
h.SCF 

Al-
Al 
h.SCF 

Si-
Si 
h.SCF 

S-
S 
!::.SCF 

Cl-
Cl 
h.SCF 

r 

TABLE 11-11 

The negative of the statistical total energies of the ground 
states for several atoms and negative ions, calculated using 

the SIC-GX-LSD theory with the FEL, Wigner, GWB, and H, 
Fermi-hole, and the energy differences 6SCF, compared to the 

results obtained using the HF and Xo, and experiment (Ry). 

FEL Wigner GWB H HFa Xo b Expt. c 

48.9294 48.9759 49.0222 49.3103 49.0384 
48.9506 48.9841 49.0180 49.2292 43.0581 

-0.0212 -0.0082 0.0042 0.0811 -0.0197 -0.054 0.0204 

75.1910 75.2944 75.3854 75.9832 75.4176 
75.1615 7.5.2417 75.3209 1).7914 75.3772 
0.0295 0.0527 0.0745 0.1918 0.0404 -0.013 0.0932 

149.0626 149.2973 149.5257 150.8395 149.5790 
149.0859 149.2999 149.5083 150.7101 149.6187 
-0.0233 -0.0026 0.0174 0.1294 -0.0397 0.098 0.1075 

198.1983 198.5355 198.8624 200.7074 198.9187 
198.0899 198.3934 198.6884 200.3743 198.8186 

0.108-4 0.1421 0.1740 0.3331 0.1001 0.168 0.2498 

322.5245 323.0327 323 .. 5237 326.2713 323.7093 
322.5269 323.0341 323.5246 326.2ü97 323.7178 
-0.0025 -0.0014 -0.0009 00016 -0.0085 0.012 0.0401 

482.0873 482.7921 483.4724 487.2719 483.7556 
482.0869 482.7835 483.4561 487.2063 483.7534 

0.0004 0.0086 0.C163 0.0656 0.0022 -0.028 0.0325 

575.8010 576.6279 577.4252 581.8577 577.7789 
575.7500 576.5619 577.3450 581.7002 577.7086 

0.0510 0.0660 0.0802 0.1575 0.0703 0.022 0.1018 

792.4631 793.5459 7945879 800.3543 795.0764 
792.3992 793.4676 794.4957 800.1825 795.0097 

0.0639 0.0783 0.0922 0.1718 0.0667 0.147 0.1527 

916.1712 917.4046 918.5906 925.1231 919.1534 
916.0045 917.2156 918.3801 924.8032 918.9637 

0.1667 0.1890 0.2105 0.3199 0.1897 0.221 0.2657 

a. Reference 51; 
b. Reference 55; 
c. References 56 and 58. 
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CHAP'l'ER III 

IONIZATION POTENTIAL AND ELECTRON AFFINITY 

111-1. Introduction 

The local-density functional (LDF) thcOl'y is often used ta calculatc atollls, 

molecules, and the solid state, and has been successful iIl dcseribing tll<' lllolcc­

ular bonding59 ,60, magnetism61 - 63 , cohesion61 - 6'1 , surface dectronic propertics of 

metals65 ,66 and semiconductors67 -b9. However. the calculation of (l,CCllratc dectwu 

affinities and the stability of negativc ions ha::. pIOved di ffic ult 57: lllust stahle lleg­

ative ions, such as H- ,70 0-,71 F-, and CI- 53 are unstable iu the Xa and other 

LDF theories, The correlation effect of the electrons with differellt spins is often 

neglected in these theories and consequently, the results arc Ilot in good agleement 

with experiment. Schw:u'z71 compared the Xa éUld HF exchange potcut!,ùs for somc 

stable negative ions, and showed that the stability of the n('gatiw lon~ is related 

to the one-electron energies in the two theoric::.. Sen53 calculated the OlH,-{'lectlOn 

eigenvalues for the negative ions 0- , F- , and CI- wi th the :=:a theory, mlel ~Ilgg('st<'el 

that the instability of the stable negative ions arises from tou clllde a trcatlllcnt of 

the self-interaction potentia!. 

The existence of stable negative ions is well known58 ,n. ~lost ueutral utOlllS 

in the periodic table bind an extra clectron to fonn stable ncgative iOIl~. TIH'oretical 

investigation of the structures is difficult became the contribution of the electron 

correlation correction to the elcctron affinity of an atom lllight b,. lm ger thun the 

kinetic, Coulomb, and exchange cnergies57 ,73,71. Therefore the HF tlH'ory, which is 

an accurate and simple procedure but does not illclude electIOu ('on('latlOll, IL'mally 

gives wrong electron affinities for atoms 74. 
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Since the papers which dealt with the self-interaction correction29 - 31 ,75 and 

electron correlation correction38 ,39,75 in the LDF theory, the SIC-LDF theory with 

electron correlation correction has successfully preclided electronic structures of 

negative ions30 ,49. The calculated electron affinities for most atoms are in excellent 

agreement wi th experiment. 

The ionization potentials and electron affinities for atoms have attracted 

experimental measurements and theoretical calculations using the HF and LDF 

theories, especially using the accurate multiconfiguration self-consistent field (MC­

SCF) and configuration interaction (CI) methods. Most of the se methods have 

been quite successful in Jescribing ionization potentials for atoms, but the HF, Xa, 

spin-polarized Xa (SP-Xa), Hyper-Hartree-Fock (HHF), and the SIC-GX-LSD the-

ories cannot describe the negative ions exactly, because the Coulomb correlation is 

neglected. 

Obviously, the ionization potential and electron affinity are the very impor­

tant concepts in understanding the ITÙcroscopic structure of matter. Theoretical 

calculations of ionization potentials and electron affinities can be used to test the 

theory itself. Therefore, the SIC-GX-LSD theory will be applied to evaluate the 

ionization potentials and electron affinities for the ordinary atoms. 

By the definition, the ionization potential is 

(i) approximately the negative of the one-electron eigenvalue in the self­

interaction corrected LDF (SIC-LDF) theory under the frozen orbital approxima-

tion, that is 

(3 -1) 

(ii) the difference between the total energies, which include the statistical 

total energy from equation (1-86) and the electron-correlation energy from equation 
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(1-98), of the original system and the ionized system, Wlder the frozen orbital 

approximation is, 

lk - Eunre/(N - 0) EUllrel(N - 1) - tot k - - tot k - (3 - 2) 

(iii) the negative of one-electron eigenvalue generated by removillg a Imlf­

electron from the corresponding orbital to infinity in the self-interaction ullcorrected 

LDF theory (Slater transition state theory) is, 

(3 - 3) 

and finally, (iv) the ionization potential equals the diffcrcuce between two 

statistica,l total energies, one for the non-ionized system and allothcr for the ionized 

system obtained by two separated self-consistent-field calculatiolls 

(3 - 4) 

The electron affinity is identical to the ionization potential for the correspondillg 

negative ion of an atom. Each mdhod has its own advantagcs (Uld <bsadvalltages. 

For example, although (i), (ii), and (iii) are computationally C<tRICr than (iv), the 

relaxati0n effect in the ionization process is totally neglected iu (i) cUld (ii) éUHI partly 

ignored in (iii). Method (iv) is computationally expensive (Uld cau have Inullcrical 

errors, since the ionization potential and electrull affinity éU'C ::o.lllall <Üff(,H'llC('~ of two 

large numbers, although the relaxation of the ionizatioll proce~~ is fully coIl~idcred. 

The self interaction uncorrected GX-LSD (GX-LSD) theory and fl(~lf interac­

tion corrected GX-LSD (SIC-GX-LSD) theory will be applicd for atollls, éUld tcsted 

for the efficiency for atoms. 
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11I-2. Ionization Potential and Electron Affinity 
under the Frozen-Orbital Approximation 

In the LDF theory, the statistical total energy of an atom is a function of the 

occupation nurnber, N,. A Taylor-series expansion of the energy around the neutral 

stom value is 

E(N1,N2 , ... ,N" ... ,Nr ) - E(N1,N2 , ... ,Nio , .. ·,Nr ) 

ôE 
= (N, - N,o) ôN, IN,=N,o 

(N, - N'D? ô2 E 
+ 2' ÔN,2 IN, =N,o + ... (3 - 5) 

The first terrn in the right-hand side of equation (3-5) is the electronegativity76 

and the second term, the hardness77 of the atorn. Because the electronegativity 

and hardness are related to the chemical potential and the hardness and softness 

of acid.:; and bases, they have received rnuch attention55 ,78-Bo. Equation (3-5) gives 

tl-2 ionization potential of the atom for N, - N,o = -1 and the electron affinity for 

N, - N IO = 1 under the frozen orbital approximation. 

In the GX-LSD theory, the statistical total energy for an atom is given in 

equation (1-86). The total energy of the system is a function of the occupation nurn­

ber N, j therefore, the first through fourth derivatives with respect to the occupation 

number are81 

[:: 1 =< uJ(r)illuJ(r) > + L:N, < u,(r)uJ(r')llu,(r)u](r') > 
J ~#~ , 

- ~oo"m < UJ (r)l[fJ (r) + BI PJ (r)]g;2/3 (r) + L N,p,(r)g;2/3(r) 
i 

2", -5/3 - 3 L..,; N, PI(r )(1 + B2 b,] )fl(r)g, (r)lu] (r) > 
, 

(3 - 6) 
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- ~[(1 + B2)fi(r) + (BI + B2 + BI B2)p) (r)]g;5/3(r) 

+ ~B2(2 + B2)pj(r)f) (r)g;8/3 (r) - ~ LN,p,(r)g;5/3(r) 

+ ~ E Ni p, (r)/, (r)g;8/3(r)lu; (r) > (3 - 7) 
i 

[&E] _ aN3 = _9cahm < u~(r)l- 2(1 + Bd(! + B2 )9} 5/3(r) 
J Ni~Nj 

+ ~{3(1 + B2)2 f}(r) + [3B2(1 + Bt)(l + B 2 ) + 2B1 

+ 3B1B2 + B2] p)(r)} 9;8/3(r) 

- ~~B2(1 + B2)(2 + B2)p) (r)f) (r)gjll/\r) 

5" [ 1 -8/3 + 9 ~ N,Pa(r) 3 + (BI + 2B2 )8,) J gj (1') 
, 

40 " ( )( -11/3 3 - 27 L..JN,p, r 1 +B2 8,)/.(r)g. (r)lu)(r) > 
i 

(3 - 8) 

and 

[ 
(J4 E ] . 20 _ / 
aN4 = -9cahm < u'(r)I3'(1 + Bd(l + B2)2 g) 8 3(r) 

) N.~NJ 

- ~(1 + B2){ 2(1 + B2)2 /)(r) + [2B2(1 + Bd(l + B2) 

+ BI + 2B1B2 + B2 ]p}(r) }g;11/3(r) 

440 2 -14/3 + 81B2(2 + B2 )(1 + B2 ) p}(r)f}(r)9} (r) 

80 ""' {[ ] } -11/3 - 27 ~ N,p,(r) 2 + 2B2 + (1 + B2)(B1 + B2) 81} 9, (r) 
, 

440 ""' 2 -14/3 4 + 81 L- N,p,(r)(l + B28,) fi(r)g, (r)lu) (r) > 
i 

(3 - 9) 

ln equations (3-6)-(3-9) 

(3 - 10) 

60 



, 
" 

and 

g.(r) = p,,(r) + B2p,(r) (3 - 11) 

Using the definitions of the electronegativity and hardness76 ,77 gives 

x=_[aE] =-fj aNj N,=FNJ 
(3 -12) 

and 

1 [&E] 
17 ="2 aN; N,~NJ 

(3 -13) 

and if 

1 [&JE] 
Il ="6 aN; N,~NJ 

(3 - 14) 

éUld 

À_~[&1E] 
- 24 aN: N, ~NJ 

(3 - 15) 

th en the ionization potential and electron affinity can be written as 

(3 - 16) 

and 

(3 - 17) 

Usually, the third and fourth derivatives are neglected in equations (3-16) 

and (3-1 ï), and the ionization potential and electron affinity becomé5,82 

I~X+7] (3 -18) 

and 

A~X-7] (3 -19) 
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This is because the third and fourth derivatives are very small in the Xn lUlel SP­

Xa theories, and equations (3-18) and (3-19) me essentially WITt'Ct. This might 

be not true in the GX-LSD theOl'y with the FEL Fermi-hok paralllctt'lh, thl' GX­

LSD-FEL the ory, particularly for the calculatlOll of the d('ctwn aHilllty Tablt· 

III-l gives the absolute values of the second, thirel, éUld f0111th dCII\'atlYt'h of tilt' 

exchange energy in the GX-LSD-FEL theOl'Y éUld the SP-Xo tllt'OlY, ",ith lt'hllt'ct 

to the occupation number. The third Md foUl th derivati"c:, i.n the ex- LSD-FEL 

the ory effect the ionization potential Md electlOn affinity lllOlC thall ill tlw SP·Xo 

theory. In the GX-LSD-FEL theory the fifth, !'>ixth, etc. tcrlllh rapidly dt'nl'a!'>!' to 

zero both absolutely and when dividecl by X!. 

vVhen the electron-correlation energy correction is cOllsidcrcd, equations (3-

16) and (3-17) beconle 

l = X + 'fi - Il + ). + Etorr - Eborr (3 - 20) 

and 

EA = X - 'fi - Il - ). + E~orr - ECorr (3 - 21) 

where E6orr' E&orr' and ECorr an:, the Coulomb-correlation cllergy corrections of 

the positive ion, neutral atom, and llcgative iOll, respectiycly. g,ivell hy cquations 

(1-96) of Keller and Gazquez' s33 Couloll1b-collelatioll formula. 

The elements were classificd iuto two categorie!'>: (i) clemeuts which illvolVl'd 

one-orbital in goin.!!; from the positive ion to the negatiyc iOll, <lud (ii) d(,l1lCl1t~ 

which involved two orbitaIs in going from th(' positive ion to the llcgativc iOIl. The 

electronegativities, hardnesses, second ionizatioll potentiah, éUld ekctron ét.ffinit)('~ 

for the first category elements of Z ::; 36 WeIl' calculatcd lL.,illg the GX-LSD-FEL 

theory. The first ionization potclltials for SOllle atùms (Z=2 - 20, 31, 32, 3-1, 35) 

were calculated using the same theory. The rcsults are listed in Tabll':' 1II-2 tl) III-G. 
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Atorn 

B 
!\e 
Ar 
Ge 

TABLE 111-1 

The absolute values of the second, third, and fourth derivatives of 
the exchange energy with respect to the occupation number (Ry) 

in the SP-Xa and GX-LSD-FBL theories 

SP-Xa GX-LSD 
N" 2nd 3rd 4th 2nd 3rd 4th 

3 0.0876 0.0269 0.021G 0.1693 0.0924 0.1210 
5 0.1348 0.0210 0.0083 0.3117 0.0951 0.0328 
9 0.0745 0.0116 0.0047 0.1699 0.0513 0.0183 

17 0.0506 0.0108 0.0062 0.1073 0.0431 0.0376 

111-2.1 lonization Potential 

hl Table III-2, column 3 gives the results usmg the approximation equa-

tion (3-18). Column 4 lists the results includillg the third and fourth derivatives, 

equation (3-16), colunm 5 presents the results involving the Coulomb-correlation 

correction, equatioll (3-20). Other theoretical:J5 and experimental83 values are also 

gIven. 

Comparing columlls 3 and G with the experimental resu1ts in column 7 (six 

comparisons), shows that the first ionization potentials using (3-18) in the GX-LSD­

FEL theOl'Y éU'e bet ter chan those in the Xa theory. 

Colunllls 3 and 4 compared with experiment show that the effects of the third 

and fourth derivatives of the total energy with respt,ct to the occupation nurnber 

are too large to be neglected in the GX-LSD theory. 

11<Hhcmatieally, equation (3-16) is more accurate than equution (3-18) under 

the froll'n-orbital approximation. But the results in column 4 of Table 1II-2 are not 

owrall better, some rue better and sorne worse than those from (3-16). Cornpar-

63 



ing column 5 with experiment shows that all the results indlldiug the COlllol1lb­

correlation correction and the frozen-orbital applOxilllatioll m(' bi~~('l thall ('XjH'r 

iment. The real total energies for the neutral atom, positivl', alld llt'~ati\"(, iOIl Hl(' 

shown as soHd tines in Fig. 3-1; éUHl the pO~ltive éUHl uegativ(' i()ll~ ('alculat('d hy 

using ~he wave functiolls of the neu tral atolll UlH!er the frUlt'Il-m!J1 t al approxllllat lOl1 

are shown as dotted lines in Fig. 3-1. The relaxation cffcct j~ llt'.l!,l('ctt'd (,O!It'~I)(llId­

ing to Koopmans' theorem in the HF theOlY Hom the \1111<1tlO11 Pll11l'ipk, the 

minimum value of the total energy for the llla11y-hody hy~lt'lll (,(lll(,~pOlld~ to tht' 

self-consistent solut ion of the Schrodinger equa t ion Relaxa t iOll Im\'('1 ~ tIlt' tot al ('11-

ergy of the system; therefore, gomg from the P()~ltl\'e IOll tll lH'utral atolll d('('l('a"'('~ 

the total energy of the positive iun, éUld goin)!, flOlll th(' IlC'lltlal atolll to tll<' llt'.l!,a­

tive ion decreases the total t'nergy of the negatiw iOll. TIH'It'fOl<', th(' lt'éd ~tatl..,tl<'al 

total energy for the positive and llegative ion~, t hè solrd lill<' ur F\~ 3-1. Hl (' low('l 

than those without relaxation. The calculated i011ization pukllti(d~ élll' thu~ lugl)(,I 

than experiment. Thf'rcfOle, the r('~ulh whlch mducle the COlllolllb-(o!l(,latioll cor­

rection and the frozen or bit al approximation Hle higher than l'XpCrillH'ut In or d('r 

to obtained more accurate re~ults, the relaxation alld collelatlOll lll\l~t both \)(' 

included in calculating the ionization potential. 

Comparing coluIlms 3-5 with experimcnt shows that th(' thinl éUld foUI th 

derivative correction to thc ionization potenti' 1 are almost the béllllC ab the Coulomb­

correlation correction in absolutc values. However, the correction of the thinl 

and fourth derivatives decrea5t's the iOllizatioll potential, wl!cle(L!:> the COUlOIllb­

co_relation increascs it, consequcntly (3-18) IS a u.,cful apPlOximatiol1 for calculatiug 

the ionization potentials. 

Table III-3 shows the second ionizatlOn potentials for the b(~cOIld catcgory 

elements with Z < 36 from the GX-LSD-FEL theory with e<[nation (3-18) and 
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experiment. Equation (3-18) is very good approximation for calculating the second 

ionization potentials for the low-Z atoms in the GX-LSD-FEL theory. 

Z 

2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

31 
32 
34 
35 

TABLE 111-2 

The first ionization potentials (Ry) for sorne atoll1s in the 
GX-LSD-FEL theory under the frozen-orbital approximation, 

compared with other calculations and experiment 

This Work Xo: 
Atom la lb le Id IExpt 

He 2.0716 1.9897 2.0160 1.8067 
Lt 0.4450 0.4272 0.4368 n ~q1)2 

Be 0.6890 0.6635 0.6882 0.6850 
B 0.6131 0.5927 0.6141 0.6313 0.6098 

C 0.8679 0.8515 0.8743 0.8725 0.8279 
N 1.1317 1.1199 1.1442 1.0687 
0 1.0677 1.0329 1.1029 1.3723 1.0007 
F 1.4032 1.3777 1,4483 1.6325 1.2804 

Ne 1. 7430 1. 7258 1.7985 1.5846 

Na 0.4280 0.4122 0.4344 0.3777 
Mg 0.5773 0.5577 0 .. 5869 0.5619 

Al 0.4126 03997 0.'1301 0.4398 
St 0.5822 0.5722 0.6040 0.5990 
P 0.7551 0.7483 0.8099 0.8085 

S 0.7496 0.7293 0.7909 0.7613 
Cl 0.9539 0.9396 1.0003 1.0716 0.9563 
Ar 1.1618 1.1525 1.2139 1.1580 
I{ 0.3517 0.3394 0.3639 0.3189 

Ca 0,4519 0.4373 0.4729 0.4492 

Ga 0.4219 0.4101 0,4447 0.4410 
Ge 0.5695 0.5607 0.5974 0.5792 
Se 0.7011 06842 0.7465 0.7166 
Br 0.8636 0.8520 0.9136 0.9460 0.8703 

a. ~q. ~3-18~: 
b. Eq. 3-16, 
c. Eq. (3-20); 
d. Eq. (3-18) in the Xo: theory (Rer. 55); 
e. Reference 83. 
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FIGURE 3-1 

The ground-state energy levels for the neutral 
atom, and positive and negative ions with 

(solid lines) and without (dotted 
lines) relaxation 

---------------
pos i t i ve io n 

IP 

neu tra 1 atom 
EA 

negat ive io n 
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Z 

5 
6 
8 
9 

13 
14 
16 
17 

31 
32 
34 
35 

TABLE lll-3 

The second ionization potentials (Ry) for the 
second cat~gory elements with 

Z < 36 in the GX-LSD-FEL theory, 
compareJ with experiment 

Atom la I~xpt 

B 1.8473 1.8485 
C 1.8079 1.7971 
0 2.6294 2.5833 
F 2.6355 2.5711 

Al 1.4010 1.3835 
Si 1.1685 1.2010 
S 1.6818 1.7200 
CI 1.7242 1.7494 

Ga 1.5228 1.5075 
Ge 1.1414 1.1709 
Se 1.5361 1.5803 
Br 1.5516 1.5877 

a. Eq. (3-18); 
b. Reference 83. 

111-2.2 Electron Affinity 

Table III-4 gives the electron affinities for the second category elements with 

Z < 313 calculatcd using equatioll (3-19), column 3, (3-17), and column 4, which 

invo!v(' the third and fourth derivatives, (3-19) plus the Coulomb-correlation cor-

rectior., coluIlln 5, and (3-17) plus the corrclation-energy correction, column 6, 

together with other thcoretical value,,74,76 and experimcntal rcsults56 ,58. 

The Coulomb-correlation correction is very important in calculating the elec-

tron aHinity for rul atoIll, although its ab~olute "alue is very ~lllall For sorne atoms, 

say Al ru1d Ga, the contnbution is blgger thau that of the kinetic cnergy, Coulomb 

interaction, aJld exchangc energies. Almost aIl the theoretical values of the electron 
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TABLE III-4 

The electron affinities (Ry) for the second category deIIIl'lIts with 
Z < 36 in the GX-LSD-FEL theory, compared with 

other calculations and cxperiment 

This Work Other \\'0 l' k 
Z Atom EAa EAb EAc EA d EAe EAf 

5 B -0.0308 -0.0412 -0.0114 -0.0233 -0.OS23 -0.0212 
6 C 0.0015 -0.0091 0.0233 0.0111 -0.0272 o 02~).'i 
8 0 -0.0454 -0.0632 0.0154 -0.0024 0.1 i 76 -0 (ŒJ:J 
9 F 0.0407 0.0214 0.1049 0.()S83 0.20G5 0.1 O~ 1 

13 Al 0.0103 00039 0.0357 0.0293 --O.O~):W 0000·1 
14 Sl 0.0551 00487 0.0829 0.0761 0.0007 00.'11 (J 
16 S 0.0744 0.0642 0.1288 (J.lIS,1 0.1338 IUHi:\!) 
17 Cl 0.1574 0.1482 0.2129 0.:W37 0.21:12 0.1 h(j7 

31 Ga 0.0050 -00009 0.0:370 o 0:111 -O.OliGD 
32 Ge 0.0551 0.0494 0.0897 o O~·10 -0.007·' 
34 Se 0.0838 0.0753 o 140·' o 1:119 0.121:\ 
35 Br 0.1616 0.1541 0.2195 02120 O.l92G 

a. Eq. (3-19): 
b. Eq. (3-17, 
c. Eq. (3-19) plus th", correlation energy contribution; 
d. Eq. (3-17) plus the correlation cnergy fontribution; 
e. Reference 76, calculated frolll eq. A = 2X - 1 in the Xo thl'orYi 
f. Reference 74; 
g. References 56 and 58. 

EAt.rl't 

(Ul20·' 
ll.O!J:J2 
n.Hl7r) 
02WH 

o onr) 
o 1 () 1 H 
O.lr.·û 
() 2 li.'", 7 

(J.02n 
O.OS97 
O.14H.') 
0.2-17:\ 

affini ties are smaller th an experimcllt. This is because the l'l'laxatioll dIect ha:, 

been neglected. As shown in Fig. 3-1, the relaxation lowels the tot.al <'llt'rgy of the 

negative ions and increases the Ùlfference betwecn the total Cllcrgi('~ of the llentral 

atom and the negativc ion. 

68 



l 

Z 

5 
6 
8 
9 

13 
14 
16 
17 

31 
32 
34 
35 

TABLE 111-5 

The electronegati vi ties (Ry) for the second category 
elements with Z < 36 calculated by using GX-LSD-FEL 

theary, compared with ather theor~tical values 

Atom This warka HIIFb Xa c SP-Xa d 

B 0.2912 0.2168 0.2506 0.2999 
C 0.4347 0.3021 0.3778 0.4734 
0 0.5112 0.5079 0.6571 0.7064 
F 0.7219 0.6314 0.8093 0.8181 

Al 0.2114 0.1977 
Si 0.3186 0.3234 
S 0.4120 0.5057 

Cl 0.5556 0.5380 0.5968 0.6005 

Ga 0.2135 0.1867 
Ge 0.3123 0.3014 
Se 0.3925 0.4572 
B1' 0.5126 0.5020 0.5329 0.5358 

a. Eq. (3-12); 
b. Reference 55; 
c. Reference 55; 
d. Reference 84. 

III-2.3 Electronegatlvity and Hardness 

Table III-5 gives the electronegativities for the second category elements 

with Z < JU calculatcd by equation (3-12) in the GX-LSD-FEL them·y. The elec-

tron('gativitic'l from the GX-LSD-FEL theOl'y are Iarger than those frOIn HHF, and 

the elcctroIlf>gativities for the atoms in which the vaience-electron is spin-up are 

Iargcr than tho~e ill the Xa theory. The electronegativities for atoms in which the 

val<'llcc-clcctlOn is spin-down ffi'e smaller than those in bath the Xa and SP-Xa 

theories. 

Orsky ffild Whitehead 78 de\'cloped dcfinitions of ha "dnesses for acids A and 

bascs B by using the original dcfinition of 17 which is equai to t g~~. The hardness 
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can be writ ten 

(3 - 22) 

and 

(3 - 23) 

where ryA and 1]B are the Î1ardnesses for acids A and bases B. IBO and IA + are the 

first and second lonization potentials and AAo and Afj- are the first and second 

electron affinities for atorn A. Orqky and Whitehead détJl11ed that .4B - , the occond 

electron affinity of A, is very small and l'aIl be neglected 111 equatioIl (3-23). Then, 

ryB reduces to 

(3 - 24) 

The hardnesses for the second ..-:ategory elements \\rith Z < 36 calculated 

with equations (3-13), (3-22), and (3-24) in the GX-LSD-FEL theory are g,iven in 

Table III-6. The values given in the last t",o colunms are obtained Wlth equatioIlS 

(3-22) and (3-24), using the experimental first and second ionization potentials and 

electron affinities, other theoretical values obtained \\'Îth equation (3-13) in the HHF 

and Xa theories are also listed. The hardnesses for these atoms in the GX-LSD-

FEL theory are smaller than those in both the HHF and Xa theories. Colllparing 

the results in columns 4 and 5 with those in the last two columns, shows that the 

hardnpsses for aeid A and base B in the GX-LSD-FEL theory are very dose to 

experiment. 
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Z 

5 
6 
8 
9 

13 
14 
16 
17 

31 
32 
34 
35 

TABLE 111-6 

The hardnesses (Ry) for the second category elements 
with Z < 36 ca\culated by using GX-LSD-FEL Theory 

cumpared with other ca\culated values 

This Worka Other Work b Expt.c 

Atom 17 17A 17B 17
HHF 

17
XOt 

17A 

B 0.3219 0.4647 0.1533 0.4027 0.3807 OA570 
C 0.4332 0.4462 0.2170 0.5123 0.4947 0.4246 
0 0.5566 0.653!) 0.2669 0.7240 0.7152 0.6190 
F 0.6813 0.6327 0.3508 0.8291 0.8232 0.5803 

Al 0.2012 03413 0.1032 0.3378 
5z 0.26:16 0.2714 0.1461 0.2748 
5 0.3376 0.3883 0.1874 0.3918 

Cl 0.3!)S3 0.3ïïS 0.2385 0.4741 0.4748 0.3709 

Ga 0.20S4 0.3715 0.1055 0.3713 
Ge 0.2572 0.2629 0.1423 0.2703 
5e 0.3086 0.3489 0.1752 0.3580 
Br 0.3510 0.3330 0.2159 0.4142 0.4131 0.3351 

a. 17 is equal to the second derivative of the total energy. 
TJA = t(IA+ - AAO), and 17B = tIBo; IBo, IA+, and IAo 
were taken from Table 111-2 (column 3 ), lII-3 (column 3), 
and III-4 (column 5) respectively; 

b. Reference 5,J. ryH J-l F and TJX a are equal to the second 

1JB 

0.1525 
0.2070 
0.2502 
0.3201 

0.1100 
0.1498 
0.1903 
0.2391 

0.1103 
0.1448 
0.1792 
0.2176 

derivative of the total energy in the HHF and Xa theories, 
respectively. 

c. The values are ca\culated with eqs. (3-22) and (3-24), using 
the expelÎmental fir!:>t and second ionization potentials 
and electron affinities. 

111-3. lonization Potential and Electron 
Afflnity Calculated frOln the Relaxed Total Energies 

As shawn in Table II-11, the SIC-GX-LSD theory combining the GWB 

Fermi-hole paramcters gives the bpst prediction to the statistical totle energies for 

the atollls among aIl the Fermi-hole shapes in camparison with HF. Therefore, the 

SIC-GX-LSD theOl'y with the G\VB parameters is expected to give good ionization 
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potentials and electron affinitit:s for atoms, when they are calcu!ated by the difft'r­

ences of the relaxed statistical total energies. Consequent!y, thc ~,elf-illtcl'action COI'­

rected GX-LSD theory with the GWn27 Fel'mi-hole param<'t('IS (ht'llceforth calhl 

the SIC-GX-LSD-GWB theory) hus bcen uscd to calcu!atc the :-.tati.,twa! total t'W'l'­

gies of the neutral atoms and positive ions of dl'lllcnts heliulll to stlOlltitllll, mul tilt' 

stable negative ions of elements hydrogen to potassium and coppel' tu rubidium s<'p­

arately. The wave functions are used to calculatc the correspolHhng self-in!,('ractio!l 

corrected SPP38 (SPP-SIC) and the self-interactIOn correct('<1 VWN·l9 (VWN-SIC) 

correlation energy corrections, equation (1-108), for LllCSC <ttOlllS and positIve aJld 

negative ions. The effect of the correlation potentinl OIl the Olu'-d('ctlOll ci/!,l'Ilvalll<" 

ionization potential, and electron affinity is \'Cly bIlla1l85 , ~) that it i:-. llep;Jt.ctecl in 

the present calculation. The ionization potelltials and elcctlOll affilli ties for t.!tes(' 

atoms are obtained by equation (3-4). 

Table 1II-7 gives the ionizatlOn potentials of the atolll:-' helilllll to tit<Uliulll, 

chromium to iron, and copper to strontium. III Table III-T, COIUlllll 3 g;iv('s t.ll(' 

results including the relaxation without correlation corl'ectiou, COhlIllllS 4 ~Uld ;) show 

the values involved in the SPP-SIC and \t,VN-SIC correlatioll-('ll('lgy cOlwctiou; 

other theoreticaI51 ,84,8fi,87 values and experimcnt83 are libted ill COlUlll11S G, /, 8, 

and 9, respectively. 

From Table Ill-7, it may be seen that éJthough the rcIaxatlOIl is illvolvecl in 

the calculation, the ion1zation potentials in the SIC-GX-LSD-G\Vn tht'OlY (COIUIlIll 

3) are still far away fIOm experiment, unless the corrclatioll-l'lll'lgy cOlrectioll Le; 

included. The differences betwccll thC5C rcsults <me! the ('XjH'l il!lC'utal vahH'~ are 

almost equal to those in the HF theOly in which tht' rcIaxatioll l'fred i:-. ,,1:-'0 iucluded. 

Comparing the rcsults in columns 3, 6, 7, and a ~how:-. that the iOIlizatlOIl jlotl'utials 

did not improve l11uch, even thuugh the relaxatio1l cffcct ill the pwn':-,-, of iouizatlOn 
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Z 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

1ï 

18 

19 

20 

21 

22 

TABLE 1II-7 

Ionization potentials (Ry) for atollS in the SIC-GX-LSD-GWB 
theory with correlation correction (The value in parentheses 

are equal to 100 . (ltheor _ /upt)/ rrpt) 

No With With 
Atom Co rre 1. SPP-SIC VWN-SIC SP-Xaa HFh HF or CI 

He 1.722 1.823 1.839 1.994 1.724 
(-4.7) (0_9) (1.8) (10.3) ( -4.6) 

Li 0.390 0.392 0.393 0.416 0.393 
( -1.5) (-1.0) (-0.8) (5.1 ) ( -0.8) 

Be 0.SQ2 0.649 0.661 0.670 0.591 
( -13.6) ( -5.3) (-3.5) ( -2.2) (-13.7) 

B 0.564 0.591 0.598 0.615 0.584 
( -7.5) (-3.1 ) (-2.0) (0.8) ( -4.3) 

C 0.801 0.820 0.827 0.868 0.794 
( -3.3) (-1.0) (-0.1) (4.8) (-4.1) ,.,. 1.045 1.059 1.066 1.117 1.022 
( -2.2) (-0.9) ( -0.3) (4.5) ( -4.4) 

0 0.867 0.964 0.971 1.285 0.875 
( -13.4) ( -3.7) ( -3.0) (28.4 ) (-12.6) 

F 1.190 1.265 1.271 1.435 1.154 
( -7.0) (-1.2) (-0.7) (12.1 ) ( -9.8) 

""e 1.510 1.571 1.579 1.638 1.463 
(-4.7) ( -0.9) ( -0.4) (3.3) (-7.7) 

Na 0.382 0.387 0.389 0.385 0.368 
(1.1 ) (2.4 ) (2.9) (1.9) ( -2.6) 

Mg 0.506 0.555 0.566 0.554 û.48b 
( -10.0) ( -1.2) (0.7) (-1.4) (-13.7) 

_-li 0.386 0.407 0.412 0.406 0.404 
(-12.3) ( -7.5) (-6.4 ) (-7.7) ( --8.2) 

SI 0.554 0.b70 0.5i5 0.583 0.559 
( -7.5) (-4.8) (-4.0) (-2.7) (-6.7) 

P 0.793 0.805 0.810 0.757 0.742 
(-UJ) ( -0.4) (0.2) ( -6.3) ( -8.2) 

S 0.G61 0.739 0.748 0.878 0.662 
(-13.1) '(-2.9) (-1.7) (15.4 ) (-13.0) 

Cl 0.874 0.935 0.942 0.993 0.867 
( -8.6) (-2.2) (-1.5 ) (3.9) ( -9.3) 

Ar 1.085 1.136 1.143 1.141 1.088 
( -6.3) (-1.9) (-1.3 ) (-1.5 ) ( -6.0) 

h- 0.317 0.324 0.326 0.317 0.294 
( -0.6) (1.6 ) (2.2) ( -0.6) ( -7.8) 

Ca 0.401 0.443 0.452 0.432 0.375 
( -10.7) ( -1.3) (0.7) ( -3.8) (-16.5) 

Sc 0.420 0.470 0.480 OAi6 0.390 
( -12.9) (-2.5) (-DA) (-1 ?) (-19.1) 

TI 0.·134 0.489 0.500 0.501 0.404 
(-13.5) ( -2.G) (-0.4 ) (1.0) (-19.5) 
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Expt. c 

1.807 

0.396 

0.685 

0.610 

0.828 

1.069 

1.001 

1.280 

1.585 

0.378 

0.562 

0.440 

0.59~ 

0.808 

0.761 

0.956 

1.158 

0.319 

0.449 

0.482 

0.502 
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TABLE 111-7 (Continued) 

Ionization potentials (in Ry) for atoms in the SIC-GX-LSD-GWB 
theory with correlation correction (The value in parentheses 

are equal to 100 . (lth~or _ /ezpt)/ rrpt) 

Cr 0.517 0.516 0.516 0.533 0.434 
(4.0) (3.8) (3.8) (7.2) (-12.7) 

Mn 0.467 0.532 0.545 0.579 0.434 
(-14.5) ( -2.6) ( -0.2) (6.0) ( -20.5) 

Fe 0.512 0.569 0.579 0.603 OAG3 
( -11.9) ( -2.1) ( -0.3) (3.8) (-20.3) 

Cu 0.561 0.578 0.583 0.576 0.470 0.541 d 
(-1.2) (1.8) (2.6) (1.4 ) (-17.3) ( -4.8) 

0.562 
( -1.0) 

Zn 0.640 0.688 0.696 0.677 0.559 0.673d 

(-7.2) ( -0.3) (0.9) (-1.9) (-19.0) ( -2.5) 
0.693 

(0.5) 

Ga 0.395 0.416 0.421 0.399 ).404 
( -10.4) ( -5.7) ( -4.5) ( -9.5) (-8.4) 

Ge 0.543 0.559 0.564 0.553 0.544 
(-6.2) (-3.5) ( -2.6) (-4.5) ( -6.0) 

As 0.689 0.701 0.706 0.699 0.698 
( -4.4) (-2.8) (-2.1) ( -3.1) ( -3.2) 

Se 0.627 0.701 0.710 0.'/95 0.610 
( -12.6) (-2.2) ( -1.0) (10.9) (-14.9) 

Br 0.802 0.859 0.867 0.883 0.794 
(-7.8) ( -1.3) ( -0.3) (1.5 ) ( -8.7) 

Kr 0.971 1.018 1.026 1.003 0.978 
(-5.6) ( -1.1) ( -0.3) ( -2.5) ( -5.0) 

Rb 0.301 0.309 0.311 
(-2.0) (0.7) (1.3 ) 

Sr 0.372 0.410 0.420 
( -11.0) (-1.9) (0.5) 

(7.5) (2.3) (1.6) (5.4) (10.3) 

a. Reference 84; 
b. Reference 51; 
c. Reference 83; 

0.497 

0.546 

0.581 

0.568 

0.690 

0.441 

0.579 

0.7:.!1 

0.717 

0.870 

1.029 

0.307 

0.418 

d. Ref. 86, with the ab initlO SCF-CI procedure. 
e. Ref. 87, using the HF theory with correlation and relat ivistic correction. 

f. [E~ II;rheor - I,Expt II I,ExPt XI00]1 N. 

is considered. This rneans that the relaxation effect is not a major one. 
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The results in columns 4 and 5 show that once the correlation-cncrgy cor­

rection is introduced into the calculation of ionization potentials, the rcsults arc 

improved and are in excellent agreement with experiment. ColuIllns 4, 5, und 9 

show that the results with the VWN-SIC correlation-energy correction arc closer to 

experiment than those with the SPP-SIC correction. The differcnces bctWCl'1l the 

results in the SIC-GX-LSD-GWB theory with the VWN-SIC éUld experimcnt è\l'C 

less than 5 percent for all atoms except for Al. The average difference is equaI to 

1.6 percent in the S!C-GX-LSD-GWB theory with the VWN-SIC correlation-energy 

correction less than 2.3 percent with SPP-SIC, 5.4 percent in the SP-Xa the ory, 

7.5 percent in the SIC-GX-LSD-GWB theory without correlation correction, and 

10 percent in the HF theory. 

In Table 1II-7, column 8 gives several other results for Cu and Zn given by 

Sunil and Jordan86 using an ab-initio SCF -CI procedure and by Jankowski and 

Polasik87 using the HF theory with correlation and relativistic corrections. The 

differences between the theoretical results for these three theorics wi th expcrimcnt 

are almost the same. But it is worth pointing out that the SIC-GX-LSD theory is 

the simplest and cheapest theory and has been applied to a wide mnge of atorns 

successfully. 

From column 5, it may be seen that for the transition-met al atorns, the 

ionization potentials are a little bigger than experirnent for the atcrns which iuvolved 

two orbitaIs in going from the neutral atom to the positive ion, i.e., Cr, and a little 

smaller for the atoms which involved one orbital in going from the neutral atom 

to the positive ion, i.e., Sc, Ti, Mn, and Fe. The ionization potentials arc a littlc 

bigger than experiment for those atoms in which the outermost clectrom; are oS 

electrons, except for Li and Be, and are a little smaller than experiment for othcrs. 

The differences between the present results with expcriment, as shown in Fig. 3-2, 
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l 

FIGURE ~2 

The deviations of the ionization potentials for the low-Z atoms 
in the SIC-GX-LSD-GWB theory and in experiment 

decrease as the occupation number of 
p. orbital increases 

l l l l l 

III l T III ITI 'fJ ln III Irl 

difference decreases 
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decrease as the occupation number of the p, orbital increases. This is because the 

funer the orbital, the more accurate the spherical approximation in the SIC-GX­

LSD theory. 

Z 

23 
23 

23 

27 

27 

27 

28 
28 

28 

TABLE llI-8 

Ionization potential (Ry) for Vanadium, Cobalt and Nickel 
calculated using the SIè-GX-LSD-GWB theory with correlation 

correction (The value in parentheses are equal to 
100 . (Itheor _ ]frpt)/ rrpt) 

Electron Config. No With With Other 
Atom Ion Correl. SPP-SIC VWN-SIC SP-Xoa 

V 3d3 .,s2 3d2 4s2 0.867 0.894 0.901 
V 3d3 4s2 3d4 0.369 0.411 0.418 0.512 

( -25.5) (-17.1) (-15.6) (3.3) 
V 3d3 482 3d3 481 0.446 O.5G5 0.517 

( -14.1) (-2.7) ( -004) 

Co 3d7 482 3e? 482 0.910 0.983 0.989 
(-4.1) (-3.6) (4.2) 

Co 3d7 482 3d8 0.531 0.530 0.537 0.558 
(-8.1) ( -8.2) (-7.1) ( -3.4) 

Co 3d7
482 3d7 4s1 0.550 0.603 0.612 

( -9.7) (-1.0) (0.5) 

Ni 3d8 482 3d7 481 1.041 1.107 1.114 
Ni 3d8 482 3d9 0.468 0.475 0.481 0.565 

(-16.6) ( -15.4) ( -14.3) (0.8) 
Ni 3d84s2 3d8 4s1 0.583 0.633 0.642 

( -8.6) (-0.8) (0.7) 

a. Fteference ~j 
b. Fteference 83. 

Expt.b 

0.495 

0.519 

0.949 

0.578 

0.609 

0.561 

0.638 

Table III-S shows the ionization potentials for the transition-met al atoms 

vanadium, cobalt, and nickel from the neutral atoms te three different final states. 

In the process of ionization, if one 48 electron is removed to infinity and another 

one is relaxed to a 4d electron, the ionization potentials in the SIC-GX-LSD-GWB 
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i 
theory with or without correlation-energy correction for these atoms are smaller 

th an experiment, and if one 48 electrcn is removed and another one still stays 

in a 48 orbital, the ionization potentials are bigger than experiment except for V. 

However, the averaged value of these two situations almost equals experiment. This 

shows that the two final states interact strongly, and thus the Slater transition-state 

theory gives good results. 

The electron affinities for sever al atoms calculated using the SIC-GX-L'\D­

GWB theory with and without correlation-energy correction are listed in Table III-9. 

Column 6 gives the results obtained by means of the GX-LSD-FEL theory with the 

correlation-energy correction under the frozen orbital approximation (from column 

6 of Table 1II-4). Columns 7 and 8 list other theoretical values evaluated using the 

HF theory with Moller-Plesset perturbation theory through complete fourth order 

using several large basis sets57 , CI86 ,88,9o, lUld MCSCF89 , the fixed-node quantum 

Monte Carlo method91 • The experimental results56 ,58 are listed in the last column. 

Comparing the results in column 3 (including the relaxation without the 

correlation energy correction) with experiment shows that although the relaxation 

effect is perfectly calculated, the electron affinities for these atoms are not much 

improved. But once the correlation-energy correction is included, the results are in 

very good agreement with experiment. 

From columns 4 and 5, one cau see that the results with the VWN-SIC 

correction-energy correction are better than these with the SPP-SIC correction. 

The average difference in the SIC-GX-LSD-GWB theory for these atoms i8 8.9 per­

cent with the VWN-SIC, 16.9 percent with the SPP-SIC, and 57.2 percent without 

corrclation·energy correction. Comparing the results from the SIC-GX-LSD-GWB 

theory with the VWN-SIC correlation-energy correction and other theoretical val-
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Z Atom 

1 H 

3 Li 

5 B 

6 C 

8 0 

9 F 

11 Na 

13 Al 

14 Si 

16 S 

17 Cl 

19 K 

29 Cu 

31 Ga 

32 Ge 

TABLE 1II-9 

Electron affinities (Ry) for atoms in the SIC-GX-LSD-GWB 
theory with correlation correction (The value in 

parentheses are equal ta 100 . (ltheor _ r xpt )/ r xpt ) 

No With Wi+h 
Carrel. SPP-SIC VWN-SIC Unrel. Q EA EA 

-0.0240 0.0389 0.0521 
(-141.6) (-32.6) ( -9.7) 
-0.0055 0.0296 0.0397 
( -112.1) (-35.1) (-12.9) 

0.0042 0.0128 0.0160 -0.0233 0.0162c 0.0110d 
(-79.4) (-37.3) (-21.6) (-214.2) (-20.7) (-46.1) 

0.0745 0.0833 0.0876 0.0111 0.0897c 0.0~n6d 
( -20.1) (-10.6) ( -6.0) ( -88.1) ( -3.8) ( -12.5) 

0.0794e 0.0838! 
(-14.8) (-10.1) 

0.0180 0.0753 0.0815 -0.0024 O.lOOOc 0.0831d 
( -83.3) (-30.0) (-24.2) (-102.2) ( -7.0) ( -22.7) 

0.0801 
( -25.5) 

0.1742 0.2231 0.2301 0.0883 0.2462c 0.2293d 

( -30.3) (-10.7) 1,-7.9) ( -64.7) (-1.4) (-8.2) 
0.2337 0.2535 
(-6.4 ) (-1.5 ) 

-0.0009 0.0319 0.0413 
(-102.2) (-20.4) (3.0) 

0.0163 0.0211 0.0230 0.0293 
( -49.8) (-35.1) ( -29.2) ( -9.9) 

0.0802 0.0864 0.0890 0.0761 
(-21.2) (-15.1) (-12.6) ( -25.3) 

0.0925 0.1419 0.1487 0.1184 
( -39.4) (-7.1) ( -2.6) (-22.5) 

0.2107 0.2521 0.2591 0.2037 
(-20.7) (-5.1) ( -2.5) (-23.3) 

0.0019 0.0300 0.0384 
(-94.8) (-18.5) (4.3) 

0.0453 0.0807 0.0883 0.0856 h 0.0713' 
( -49.8) (-10.6) ( -2.2) (-5.0) (-21.0) 

0.0148 0.0192 0.0208 0.0311 
( -33.3) (-13.5) ( -6.3) (40.1) 

0.0796 0.0854 0.0877 0.0840 
( -11.3) ( -4.8) ( -2.2) (-6.4) 
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Expt.b 

0.0577 

0.0456 

0.0204 

0.0932 

0.1075 

0.2498 

0.0401 

0.0325 

0.1018 

0.1527 

0.2657 

0.0368 

0.0903 

0.0222 

0.0897 
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TABLE III-9 (Continued) 

Electron affinities (in Ry) for atoms in the SIC-GX-LSD-GWB 
theory with correlation correction (The V'd.lue in 

parentheses are equal to 100 . (ltheor _ Jexpt)1 r xpt ) 

No With With 
Atom Correl. SPP-SIC VWN-SIC Unrel. B EA EA 

Se 0.0989 0.1460 0.1531 0.1319 
(-33.4) ( -1.7) (3.1 ) (-11.2) 

Br 0.2042 0.2437 0.2506 0.2120 
(-17.3) (-1.3) (1.5) (-14.2) 

Rh 0.0035 0.0302 0.0384 
( -90.2) (-15.4) (7.6) 

(57.2) (16.9) (8.9) 

a. The values were calculated by using the GX-LSD-FEL 
with KG 's (Reference 33) correlation-energy correction 
under the frozen orbital approximation (Table III-4)j 

b. Experiment values (References 56 and 58); 
c. Reference 57; 
d. Reference 88; 
e. Reference 89; 
f. Reference 90; 
g. Reference 91; 
h. Reference 87; 
i. Reference 86. 
j. ave = ~~ [J:heor _ J,ExPt Il J,Expt X1ool/ N. 

Expt. b 

0.1485 

0.2470 

0.0357 

ues in columns 7 and 8 with experiment shows that, although the SIC-GX-LSD 

theory is simple relati"e to the other ab-initio methods listed, the electron affinities 

in this theory for these atoms are equal to those in any more complicated methods. 

Consequently, it can he seen that the SIC-GX-LSD-GWB theory with the 

V\VN-SIC correlation-energy correction is a powerful method for calculating ion­

ization potentials and electron affinities for atoms. The results from this theory 

are so close to experiment that it can be used to predict the ionization potential of 

any atom which is unknown experimentally. The agreement of the present results 
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with experiment increases with atomic number for these atoms. Therefore it might 

he possible to get good results for the high-Z atoms by using the SIC-GX-LSD­

GWB theory with the correlation-energy correction, if the relativistic effect were 

considered in the calculation of ionization potential and electron affinity. 

111-4. lonization Potential and Electron Afflnity from the Relaxed 

Quasi-Relativistic SIC-GX-LSD Calculation 

Equation (1-125) combining equations (1-126), (l-12ï), and (1-128) is solved 

by means of the standard self-consistent procedures48 ; out ward numerical integra­

tion of each equation is started in the usual manner by means of a small-r series 

solution described in the Ref. 45. The relativistic-correction tenus in equation 

(1-125) are treated as a part of the potential; that is, the radial function PI;(r) 

and olle-electron eigenvalue fI. in the (i_1)th iteration are used to calculate the 

relativistic tenus of the potential of equation (1-125) for the ith iteration, so the 

relativistic-correction terms in equatiof' (1-125) are completely neglected in the first 

iteration45 . 

First of all, to test the reliability of the present relativistic correction92
, Ta-

ble III-IO lists the relativistic energy contributions to the ns, np, and (n - l)d 

electron removal energies, ~Erel(QR) in the quasi-relativistic SIC-GX-LSD (QR­

SIC-GX-LSD) theory45 and compares these wit!-. the ~Erel obtained by the (2J + 1) 

weighted Dirac-Fock (OF) resUlts, 6Erel (DF), and the ~Erel from the relativistic 

perturbed HF theory, ~Erel (pert), for the alkaline metals35 ,93 and the elements in 

group IIIB9~. Table lII-lO shows that the QR-SIC-GX-LSD theory slightly over-

estimates the rclativistic contribution to the ru electron rcmoval encrgies, except 

for Fr (6p6 7s 1 ) and slightly underestimates the relativistic contribution to the np 

and (n-l)d electrons except Sc (4s 24pl). The agreement betwcen the rclativistic 
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TABLE III~lO 

Comparison of the QR-SIC-GX- LSD relativistic energy contributions 
to the ns, np, and (n - l)d electron removal energies 

with the DF and perturbation calculation in DFT (Ry) 

Elements Configuration b.Erel (QR)a 6Ertl(DF)b,d b.Ert/(DF)C b.Erel(pert)e 

na 

K (3 p6 4s l) 0.0013 0.0010 0.0011 
Rb (4p6 5s l

) 0.0053 0.0040 0.0041 
Cs (5p6 6s l) 0.0107 0.0094 0.0078 
Fr (6p6 ïsl ) 0.0357 0.018 

np 

Sc (4s 24pl) -0.0011 -0.0010 -0.0012 
Y (5s25pl ) -0.0030 -0.0034 -0.0032 
La (6s26pl) -0.0058 -0.0058 -0.0054 
Ac (7 s2 7pI ) -0.0121 -0.0152 -0.0116 

(n - l)d 

Sc (3d14s2 ) -0.0134 -0.0140 -0.0136 
Y (4d15s2 ) -0.0295 -0.0316 -0.0310 
La (5d16s 2 ) -0.0547 -0.0590 -0.0572 
Ac (6d17s2 ) -0.1166 -0.1324 -0.1222 

a. This work; 
b. Reference 35; 
c. Reference 93; 
d. Reference 94; 
e. Reference 94. 

contributions in the QR-SIC-GX-LSD and DF theories is comparable with that in 

the HF theory including relativistic shi ft correction and the DF theory. 

The relativistic contribution to the removal energy for the Îs orbital of Fr, 

0.0357 Ry, is overestimated in this theory, compared to the DF value of 0.0180 

Ry. To check whether this contribution came strictly from the quasi-relativistic 

effect, the Fr calculations [i.e., Fr (6p67s 1) and Fr+ (6p6)] were repeated without 

82 



Z 

37 

38 

39 

40 

41 

42 

43 

44 

45 

47 

48 

49 

50 

51 

52 

53 

54 

TABLE III-Il 

Ionization potentials (Ry) for the high-Z atom& in the 
SIC-GX-LSD-GWB theory, compared to other work an~ 

experiment (The value in parentheses are equal to 
100 - (ltheor _ rrpt)1 rrpt) 

With Relax. With With No Relax. Other 
Atom No Correl. SPP·SIC VWN-SIC Correl. Work Expt. 4 

Rb 0.300 0.308 0.311 0.313 0.2756 0.307 
(2.2) (-0.4) ( -1.3) ( -2.0) (lOAJ 

0.284 
(7.5 ) 

0.283d 

(7.8) 
Sr 0.371 0.410 0.419 0.392 0.418 

(11.3) (2.0) (-0.1) (6.3) 
Y 0.452 0.484 0.491 0,437 0.478 

(5.4 ) ( -1.3) ( -2.8) (8.5) 

Zr 0.408 0.464 0.476 0.464 0.511 
(20.1 ) (9.2) (6.8) (9.2) 

Nb 0.495 0.494 0.494 0.512 00498 
(0.5) (0.7) (0.7) ( -2.9) 

Mo 0.515 0.514 0.514 0.532 0.522 
(1.3) (1.5 ) (1.5 ) ( -1.9) 

Tc 0.432 0.500 0.514 0.517 0.535 
(19.3) (6.6) (3.9) (3.4) 

Ru 0.520 0.530 0.534 0.532 0.541 
(3.9) (2.1 ) (1.3) (1. 7) 

Rh 0.521 0.535 0.539 0.532 0.548 
(5.0) (2.4) (1. 7) (3.0) 

Ag 0.521 0.541 0.546 0.530 0.434 b 0.557 
(6.4) (2.8) (1.9) (4.8) (22.1J 

0.459 
(17.6) 

0.456d 

(18.1) 
Cd 0.589 0.633 0.641 0.607 0.661 

(10.9 ) (4.2) (3.0) (8.1 ) 
In 0.380 0.400 0.406 0.393 0.425 

(10.6) (5.9) (4.5) (7.6) 
Sn 0.506 0.521 0.526 0.526 0.540 

(6.2) (3.5) (2.5) (2.5) 
Sb 0.627 0.640 0.645 0.656 0.635 

(1.3) ( -0.8) (-1.6) (-3.3) 
Te 0.574 0.641 0.651 0.613 0.662 

(13.3) (3.2) (1. 7) (7.4 ) 
1 0.717 0.770 0.776 0.760 0.768 

(6.7) ( -0.2) ( -1.0) (1.1 ) 
Xe 0.853 0.896 0.904 0.904 0.891 

(4.3) ( -0.5) (-1.4) ( -1.4) 
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55 

56 

72 

73 

74 

75 

76 

~ 77 

"- 78 

79 

80 

avee 

TABLE III-ll (Contil1ued) 

lonization potentials (in Ry) for the high-Z atomll in the 
SIC-GX-LSD-GWB theory and comparing with other work and 

experiments (The value in parentheses are equal to 
100 . (ltheor _ lexpt)/ lu.pt) 

Cs 0.272 0.278 0.281 0.284 0.246b 0.286 
(4.9) (2.8) (1.8) (0.7) (14.0) 

0.255 
(lC.8) 

0.254 d 

(11.2) 
Ba 0.330 0.366 0.375 0.351 0.383 

(13.8) (4.4) (2.1 ) (8.3) 

Hf 0.566 0.592 0.600 0.4'71 0.515 
( -10.0) (-15.1) (-16.6) (8.5) 

Ta 0.420 0.484 0.498 0,490 0.579 
(27.5) (16.4) (14.0) (15.4) 

W 0.42ô 0.494 0.510 0.519 0.586 
(27.4 ) (15.8) (13.0) (11.5 ) 

Re 0.432 0.502 0.516 0.535 0.578 
(25.3) (13.2) (10.8) (7.5) 

Os 0.475 0.533 0.545 0541 0.640 
(25.7) (16.7) (14.8) (15.4 ) 

Ir 0.508 0.563 0.574 0.560 0.661 
(23.2) (14.9) (13.2) (15.3) 

Pt 0.527 0.543 0.551 0.538 0.661 
(20.3) (17.9) (16.7) (18.7) 

Au 0.523 0.547 0.551 0.535 O,436b 0.678 
(22.8) (19.3) (18.7) (21.1 ) (35.7J 

0.464 
(31.6) 

0.460d 

(32.2) 
Hg 0.586 0.629 0.637 0.604 0.767 

(23.6) (17.9) (16.9) (21.2) 

(12.6) (7.2) (6.3) (7.8) 

a. Reference 83; 
h. These values were obtained by using the HF theory, Rer. 35; 
c. Obtained by using the HF theory with the SPP-SIC under the 
fro?'cn-orbital approximation, Ref. 35; 
d. 'l'l-:I> values were calculated by using the HF theory with the 
SPP-SIC and relaxation correction, Ref. 35; 

e. ave = [L:~ II~rPt - f[heor 1/ I~rPt x 100 J / N 
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any VWN correlation energy functional; the Îs removal cuergy in tlmt ca:-;C' was 

0.0358 Ry. Thus the deviation of the removal ('IlC'rgy for tht' Î8 orbital in tll<' QR-

SIC-GX-LSD and DF theories is not caused by the correlation t'nergy fUllctiollal. 

The overestimation may be caused by the wlderlying 41 orbital, which stlOngly 

affects the 7s removal energy in the QR-SIC-GX-LSD theOl'Y for Fr; fUlther study 

of the interaction between the 1 and s orbitaIs is Ileeded. 

Expression (1-86), the statistical total cIlcrgy, has beell tl,'·wd to caknlate the 

positive ions and neutral atoms of elements rubidium to barium ;'Uld hafnium to 111('1'-

cury, the negative ions of sorne high-Z elements, by means of th!' wave fmu·tions in 

the QR-SIC-GX-LSD-GWB and SIC-GX-LSD-GWB thermes. The wave fimctions 

in both the QR-SIC-GX-LSD-G\VB and SIC-GX-LSD-GWB th('ori('~ éU(' éÙSO tlsed 

to calculate the SPP and V\VN correlations with the ~lf-illtcra('ti()n ('oll(,ction:J4 

(SPP-SIC and V\VN-SIC, respectivcly) for the corrCbpOI1 Jing llt'utral atollls, posi-

tive and negative ions. Fi nally , the ionizatlOn potentials and d<'ctlOn aftillities for 

the se atoms are obtained in terms of the energy clifference bet\\'ecll the positive ion 

and neutral atom for the ionization potential, ,Uld bctween tllL ll<,utnJ atom éUld 

negative ion for the electron affil1ity, equatioll (3-4). The iOllil.1ltlOll pott'utiab for 

these atoms in both the QR-STC-GX-LSD-G\\'B and SIC-GX-LSD-G \YI3 thmrit's 

are also calculated under the frozen-approximation equatioll (3-2). AIl !'t"mlts élIe 

given in Tables III-lI to III-14. 

Table III-lI contains the ionization potentials for bOlIH.' high-Z atoms in 

the SIC-GX-LSD-GWB theory without and with the correlation-cncrgy conection 

(COIUffil1S 3, 4, and 5, lespectively). Column G givcs the l'C~ult~ withont rdaxatioll 

or correlation-energy correction. Columr.s 7 ~Uld 8 list otller wŒk glVCU by SavlIl 

et al.35 using the HF theory and experimental ·values83 . The table ~hows tha.t (i) 

the results are greatly improved by the correlat ion-energy COI l(,('t iOB; (ii) the IlOIl-
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rclativistic results are in very good agreement with experiment for the atoms of 

the atomic number from 37 to 56. The differences for these atoms are less than 

5 per.:ent, except for Zr. But the SIC-GX-LSD-GWB theory cannot accurately 

describe the atoms for which the atomic numbers are bigger than 72 (the differ­

ences exceed 1l) percent); (iii) the SIC-GX-LSD-GWB 1'esults r.:e much better than 

the HF results in describing ionization potentials for the hlgh-Z atoms whether the 

correlation-energy correction is included or not. 

Table 111-12 gives the ionization potentials for sorne high-Z atoms obtained by 

using the QR-SIC-GX-LSD-GWB theory without and with the correlation-energy 

correction (columns 3-6), other theoretiral values given by Savin et al.35 using the 

Dirac-Fock (DF) theory95. From columns 4 and 5, it may be seen that the results 

in the QR-SIC-GX-LSD-GWB with the SPP-SIC and VWN-SIC correlation-energy 

correction are in excellent agreement with experiment, particularly for atoms of 

atomic number from 72 to 80: the percent age differences in the SIC-GX-LSD­

GWB theory are greater than 10 percent, but they are less than 3.5 percent in 

the QR-SIC-GX-LSD-GWB theory. Generally speaking, the results without relax-

ation and correlation-energy corrections are better than those with relaxation and 

without correlation-energy correction. The results with correlation and relaxation 

corrections, as expected, are much better than those with relaxation but without 

correlation-energy correction or with correlation but without relaxation correction. 

This is became in the proccss of ionizatioD. the effect of relaxation adjusts the 

ion structure in the lowest-energy state, the relaxation decreases the ionization 

potential of an atom, but the correlation effect increases the ionization potential. 

However, the decrease in the relaxation and increase in the correlation are not equal. 

Comparing the present work in columns 3-6 and other work in column 7 with ex­

periment in column 8 shows that the QR-SIC-GX-LSD-G\VB theory is much better 

than the DF method in calculating ionization potentials for the high-Z atoms. It 
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37 

38 

39 

40 

41 

42 

43 

44 

45 

41 

48 

49 

50 

51 

52 

53 

54 
M"" 

TABLE 111-12 

Ionization potentials (Ry) for the high-Z atoms in the 
QR-SIC-GX-LSD-GWB theory, oompared with other work and 

experiment (The value in parentheses are equal to 
100 . (Itheor _ rZpl)1 /ezpl) 

With Relax. With With No Relax. Other 
Atom No Correl. SPP-SIC VWN-SIC Cor rel. Work Expt.a 

Rb 0.306 0.313 0.315 0.318 0.279b 0.307 
(0.3) (-2.0) (-2.6) ( -3.6) (9.1~ 

0.289 
(5.9) 

0.288d 

Sr 0.377 0.416 0.425 
(6.2) 

0.398 0.418 
(9.9) (0.6) (-1.6) (4.9) 

Y 0.423 0.455 0.462 0.448 0.478 
(11.5) (4.8) (3.3) (6.2) 

Zr 0.418 0.477 0.489 0.477 0.511 
(18.2) (6.6) (4.3) (6.6) 

Nb 0.519 0.518 0.518 0.539 0.498 
( -4.3) (-4.1) (-4.1) ( -8.3) 

Mo 0.543 0.542 0.542 0.562 0.522 
( -4.0) (-3.9) (-3.9) (-7.7) 

Tc 0.446 0.518 0.532 0.538 0.535 
(16.7) (3.2) (0.6) (-0.5) 

Ru 0.553 0.5&3 0.567 0.567 0.541 
( -2.2) (--4.0) (-4.7) (-4.7) 

Rh 0.555 0.570 0.575 0.568 0.548 
( -1.2) (-4.0) (-4.9) ( -3.6) 

Ag 0.559 0.580 0.585 0.570 0,466b 0.557 
( -0.4) (-4.2) ( -5.1) ( -2.4) (16.3J 

0,495 
(11.1) 

0,491 d 

(11.8) 
Cd 0.626 0.671 0.678 0.646 0.661 

(5.3) ( -1.5) (-2.6) (2.2) 
In 0.378 0.399 00403 0.390 0.425 

(11.1) (6.2) (5.2) (8.3) 
Sn 0.504 0.520 0.524 0.525 0.540 

(6.6) (3.7) (2.9) (2.7) 
Sb 0.627 0.640 0.644 0.655 0.635 

(1.3) (-0.8) (-1,4) ( -3.1) 
Te 0.573 0.641 0.651 0.612 0.662 

(13.5) (3.2) (1.7) (7.6) 
1 0.716 0.770 0.776 0.761 0.768 

(6.8) (-0.2) ( -1.0) (1.0) 
Xe 0.853 0.896 0.905 0.905 0.891 

(4.3) (-0.5) (-1.5 ) (-1.5) 

87 



TABLE 111-12 (Continued) 

1 Ionization potentials (in Ry) for the high-Z atoms in the 
QR-SIC-GX-LSD-GWB theory and comparing with other work and 

experiments (The value in parentheses are equal to 
100 . (lcheor _ Jupe)/ lupt) 

55 Cs 0.282 0.290 0.293 0.294 0.256b 0.286 
(1.4) (-1.4) (-2.4) (-2.8) (10.5) 

0.266 
(7.0) 

0.265d 

(7.3) 
56 Ba 0.343 0.379 0.388 0.362 0.383 

(10.4) (1.0) ( -1.3) (5.5) 

72 Hf 0.475 0.502 0.508 0.525 0.515 
(7.7) (2.4) (1.3) (-2.0) 

73 Ta 0.477 0.545 0.561 0.556 0.579 
(1'7.6) (5.9) (3.1 ) (4.0) 

74 W 0.484 0.561 0.576 0.600 0.586 
(17.5 ) (4.3) (1.8) (-2.3) 

75 Re 0.488 0.574 0.590 0.623 0.578 
(15.6) (0.8) ( --2.0) (-7.7) 

76 Os 0.551 0.617 0.629 0.634 0.640 
(13.8) (3.5) (1.6) (0.9) 

'fi( 77 Ir 0.602 0.660 0.668 0.666 0.661 

"-
(9.0) (0.2) ( -1.0) (-0.7) 

78 Pt 0.656 0.680 0.684 0.676 0.661 
(0.8) ( -2.8) ( -3.4) (-2.2) 

79 Au 0.664 0.691 0.691 0.678 0.565" 0.678 
(2.0) (-2.0) (-2.0) (0.0) (16.7) 

0.604 
(10.9) 

0.597d 

(11.9) 
80 Hg 0.719 0.762 0.770 0.741 0.767 

(6.2) (0.6) (-0.4) (3.3) 

avce (7.8) (2.8) (2.6) (3.8) 

a. Reference 83; 
b. These values were obtained by using the DF theory, Ref. 35; 
c. Obtained by using the DF theory with the SPP-SIC under 
the frozen-orbital approximation approximation, Ref. 35; 
d. The values were calculated by using the DF theory with the 
SPP-SIC and relaxation correction, Ref. 35; 
e. ave == [ E~ IllEzpe - i[heor 1/ I.Expe X 100 1 / N 
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is worth pointing out again that the QR-SIC-GX-LSD-GWB thcory is Illuch casier 

and cheaper to use than the DF theory. 

The electron affinities for sorne high-Z atorns obtained usmg the QR-SIC-

GX-LSD-GWB theory without and with the SPP-SIC and VWN-SIC i:U'C giV<'Il 

in Table 111-13. Corresponding to the elements in Table III-l2, some atollls lire 

missing in Table III-13, because for the:;e atoms sorne of the negativc ions éU'C Hot 

stable experirnentally58 and sorne are not convergent for the experiment.al clcctl'on 

configurations (e.g., excited-electron configuration of negative ions) in the QR-SIC­

GX-LSD-GWB theory. From Table III-l3, it can be seen that the rcsults without 

correlation-energy correction are very far from experirnent56 ,58 , i.e., the theorctiml 

values are much smaller th an experiment, except for Zr. Once the corrclation-energy 

correction is added, the electron affinities for those atoms are improvcd. Espccially 

for the atorns Sb and W, the contribution of the correlation-encrgy correction to 

the electron affinity is much bigger than that of the kinetic cIlngy, Coulomb ;md 

exchange interactiop. energies of the electrons. Comparing colull1ns 4 ,Uld 5 with 

experiment, column 6, it is clear that the results with the SPP·SIC <Uld VWN­

SIC are in very good agreement with experiment: the results with the VWN-SIC 

are a slightly better than those with the SPP-SIC for those atollls, OIl the average 

difference are 6.6 percent for the former, 6.9 percent for the latter, Blld 47.8 percent 

for those without correlation correction. 

Table III-l4 gives the ionization potentials of the grouncl <Uld first cxcited­

electron configurations of the atom palladium ~Uld electron affinity in the QR-SIC-

GX-LSD-GWB theory. The results show that bath the SPP-SIC alld VWN-SIC 

overestimate the correlation-e:lergy correction of the elcctron configuration 4d10 for 

the neutral atom palladium. The multiconfiguration interaction has ta he applied 

in order ta describe the correlation correction accurately. 
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Z 

37 

40 

44 

45 

47 

49 

50 

51 

52 

53 

55 

72 

74 

76 

78 

79 

aveb 

TABLE 111-13 

Electron affinities (Ry) for the high-Z atoms in the 
QR-SIC-GX-LSD-GWB theory, compared with experiment 

(The value in parentheses are equal to 
100 . (Itheor _ jUPt)/ lez:pt) 

No With With 
Atom Correl. SPP-SIC VWN-SIC 

Rh 0.0039 0.0308 0.0391 
(89.1) (13.8) (-9.4) 

Zr 0.0469 0.0337 0.0342 
( -49.8) ( -7.6) ( -9.2) 

Ru 0.0313 0.0674 0.0752 
(59.6) (12.8) (2.7) 

Rh 0.0440 0.0801 0.0879 
(47.4) (4.2) (-5.1 ) 

Ag 0.0645 0.0996 0.1064 

ln 
(32.7) (-4.0) ( -11.1) 
0.0205 0.0254 0.0273 
(12.7) (-8.0) ( -16.4) 

Sn 0.0840 0.0898 0.0908 
(6.4) ( -0.2) (-1.2) 

Sb 0.0107 0.0645 0.0752 
(86.4) (18.4) (4.8) 

Te 0.1035 0.1475 0.1543 
(28.5) ( -1.8) (-6.6) 

1 0.1934 0.2314 0.2383 
(14.0) ( -2.9) ( -5.9) 

Cs 0.0049 0.0303 0.0371 
(85.9) (12.8) (-6.9) 

Hf -0.0117 -0.0039 0.0020 

W 0.0098 0.0566 0.0684 
(83.7) (5.6) ( -13.9) 

Os 0.0273 0.0820 0.0859 
(66.8) (0.3) ( -4.4) 

Pt 0.1133 0.1484 0.1563 
(27.6) (5.1) (0.1) 

Au 0.1250 0.1602 0.1719 
(26.3) (5.6) (-1.3) 

(47.8) (6.9) (6.6) 

a. References 56 and 5R; 
b. ave = [ ~~ Il~Z:Pt - lTheor 1/ I~xPt x 100 ] / N 
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Expta 

0.0357 

0.0313 

0.0773 

0.0836 

0.0958 

0.0235 

0.0897 

0.0790 

0.1448 

0.2249 

0.0347 

~O 

0.0600 

0.0823 

0.1564 

0.1697 
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The SIC-GX-LSD-GWB theory with the VWN-SIC correlation-energy cor­

rection can describe the ionization potential accurately for the atoms for which the 

atomic number Z is less than 56, but the relativistic effect has to he considered for 

the atoms of atomic number Z > 72. The ionization potentials and electron affini-

ties for the hlgh-Z atoms in the QR-SIC-GX-LSD-GWB theory are in reasonably 

good agreement with experiment, 50 that this theory can he used to predict the 

ionization potentials of any lùgh-Z atoms which are unknown experimentally. 

Z 

46 

46 

46 

46 

46 

TABLE 111-14 

Ionization potentials and electron affinities (Ry) for 
palladium in different electron configurations in the QR- and 

SIC-GX-LSD-GWB theories with correlation correction (The value in 
parentheses are equal to 100 . (ltheor _ r xpt )/ Iexp!) 

Electron Config. No With With 
Atom Ion Correl. SPP-SIC VWN-SIC Expt.a 

IR 

Pd 4dIO 4d9 0.6182 0.6631 0.6709 0.6122 
( -1.0) ( -8.3) ( -9.6) 

Pd 4d9 5s 1 4d9 0.5566 0.5762 0.5811 0.5533 
(-0.6) (-4.1) ( -5.0) 

INR 

Pd 4d1O 4d9 0.6289 0.6738 0.6816 0.6122 
(-2.7) ( -10.1) ( -11.3) 

Pd 4d9 5s1 4d9 0.5205 0 . ..,381 0.5430 0.5533 
(5.9) (2.7) (1.9) 

EAR 

Pd 4d1O 4d9 582 -0.0068 0.0029 0.0078 0.0310 
(122.1) (90.5) (74.8) 

a. References 56, 58 and 83 . 
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TABLE III- US 

Ionization potentials (Ry) for the multiply charged ions of carbon, 
compared with other calculations and 

experiment 

Degree GX-LSD GX-LSD HF HF Xae Exptf 

of Without With Hel. e Unrel.d 

Ionization Corre.a VWN b 

0 0.801 0.827 0.793 0.867 0.809 0.828 
1 1.772 1.814 1.767 1.808 1.817 1.792 
2 3.316 3.411 3.365 3.388 3.617 3.518 
3 4.689 4.699 4.730 4.733 4.630 4.739 

aveg (2.8) (1.3) (2.5) (2.4) (2.2) 

a. The difference of the statistical total energies for the ith and 
(i+l)th ions in the two separate calculation 6.SC Fj 
b. D.SCF plus the VWN correlation-energy correctionj 
c. D.SCF in the HF theory, reference 102; 
d. Orbital energy in HF theory, reference 102j 
e. Transition-state calculation in the Xa method with theoretically 
determined parameter a, reference 97; 
f. Reference 103; 

g. ave :.:. [ E~ II;heor - Itcpt Il I,Expt X100l/ N. 

III-5. Ionization Potentials of Multiply-Charged Ions 

Investigation of ionization potentials for multiply-charged ions has attracted 

attention96 ,97, because of the interest in these ionization potentials for interpreting 

stellar spectra. Other properties of multiply charged ions, e.g. photoionization 

cross-section, have also attracted sorne attention98 ,99 experirnentally. Theoretical 

calculation for thern might be interesting. 

Few publications dealing with the ionization potentials of ions using the LDF 

theory occur in the literature, even for the multiply-charged ions, although the LDF 

theory has been widely used in the calculations of atorns and rnolecules and solid 

state. The reason might be that the values of the exchange parameters, e.g., Q 
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TABLE 111-16 

Ionization potentials (Ry) for the multiply charged ions of aluminium, 
oompared with other calculations and 

experiment 

Degree GX-LSD GX-LSD HF HF X e . a 
of Without With Rel. c Unrel.d 

Ionization Corre.a VWN b 

0 0.386 0.412 0.404 0.419 0.378 
1 1.316 1.386 1.288 1.308 1.364 
2 2.093 2.108 2.060 2.065 2.043 
3 8.734 8.822 8.715 8.967 9.019 
4 11.195 11.304 11.191 11.539 11. 704 

5 13.707 13.854 13.858 14.479 14.607 
6 17.892 17.932 17.776 17.860 17.716 
7 20.891 20.942 20.921 21.020 21.018 
8 24.102 24.171 24.252 24.328 24..188 
9 29.007 29.144 28.915 28.885 29.250 

aveg (2.4) (1.0) (2.1) (2.1 ) (:LO) 

a. The difference of the statistical total energies for the ith and 
(i+l)th ions in the two separate calculation 6SCF; 
b. ~SCF plus the VWN oorrelation-energy correction; 
c. D.SCF in the HF theory, rer. 102; 
d. Orbital energy in the HF theory, rer. 102; 
e. Transition-state calculation in the Xa method with 
theoretically determined parameter a, ref. 97; 
f. Reference 103; 
g. ave = [ r:~ IITheor - I~xPt Il l,ExPt XlOo]1 N. 

Expt f 

0.440 
1.~J84 
2.090 
8.817 

11.302 

I:L996 
17.782 
20.958 
24.263 
29.291 

in the Xa theory and a in the 3a theory, have been missing in the literature for 

ions. Also it is time-consuming to search for the optimal exchange parameters for 

all multiply charged ions of all atoms in the periodic table. 

In 1987, Gaspar and Nagy97 published the ionizatioll potentials for same 

multiply-charged ions evaluated by means of the Xo thcory in which the value 

of a was determined by the electron charge dCllsity self-coIlsistcntlYi thcir lcsults 

are comparable with those from the HF theory and agrec with experimcllt. The 
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TABLE 111-17 

Ionization potentials (Ry) for the multiply charged ions of chlorine 
compared with other calculations and 

ex periment 

Degree GX-LSD GX-LSD HF HF Expte 

of Without With Rel. C Unrel.d 

Ionization Corre. a VWNb 

0 0.874 0.942 0.867 1.013 0.956 
1 1.633 1.728 1.645 1.878 1.749 
2 2.842 2.868 2.875 2.917 2.933 
3 3.830 3.865 3.854 3.885 3.932 

4 4.870 4.918 4.904 4.922 4.983 
5 7.009 7.100 6.958 6.972 7.108 
6 8.383 8.406 8.332 8.334 8.399 
7 25.503 25.606 25.517 25.741 25.601 

8 29.315 29.440 29.336 29.801 29.452 
9 33.218 33.382 33.338 34.207 33.466 
10 38.957 39.003 39.011 39.120 
11 43.430 43.487 43.480 43.560 
12 47.980 48.057 48.132 48.181 

avef (2.6) (0.8) (2.5) (2.3) 

a. The difference of the statistical total energies for the jth 
and (i+l)th ions in the two separate calculation 6.scFi 
b. 6.scF plus the VWN correlation-energy correction; 
c. 6.sCF in the HF theory, ref. 102i 
d. Orbital energy in the HF theory, ref. 102; 
e. Reference 103; 
f. ave = [ l:~ II,Theor - I,ExPt Il I,ExPt XlooJI N. 

advantage of Gaspar and Nagy's Xa theory is that the exchange parameter a cau 

be optimized in each iteration according to the electron density during the self­

consistents-field process, unlike that in the traditional Xa theory in which the a 

was determined by fitting the total Xa energy to the HF total energy, or by fitting 

the total energy to satisfy the virial theorem. 

The SIC-GX-LSD theory is somewhat analogous to Gaspar and Nagy's Xa 
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TABLE 111-18 

Ionization potentials (Ry) for the multiply charged ions of argon, 
compared with other calculations and 

ex periment 

Degree GX-LSD GX-LSD HF HF 
of Without With Rel. c Unrel.d 

Ionization Corre. a VWN b 

0 1.085 1.192 1.086 1.181 
1 1.938 2.064 1.940 2.0!l3 
2 2.861 3.013 2.879 3.135 
3 4.269 4.359 4.311 ,1.352 
4 5.406 5.504 5.433 5.463 

5 6.589 6.699 6.624 6.643 
6 9.010 9.159 8.956 8.969 
7 10.526 10.606 10.470 10.473 
8 30.955 31.151 30.977 31.201 

avef (-2.6) (0.6) (-2.4) (0.6) 

a. The difference of the statistical total energies for the il" 
and (i+1)th ions in the two separate calculation ~SCF; 
b. ~SCF plus the VWN correlation-energy correction; 
c. b.SCF in the HF theory, rer. 102; 
d. Orbital energy in the HF theory, rer. 102; 
e. Reference 103; 
f. ave = [ ~~ II;heor - I,ExPt Il I,ExPt X100ll N. 

Expte 

1.158 
2.031 
2.995 
4.396 
5.514 

6.689 
9.138 

10.544 
31.050 

theory97 in determining the optimal ex change parameters for atoms alld iOlls. How-

ever obtaining the exchange parameters is much easier and simpler in the SIC-GX-

LSD theory than in Géispar and Nagy's Xa theory. The exdlélllge panuuetcrs in 

the SIC-GX-LSD theory are fuced once the Fermi-hole shape is choscn. Therefore 

one set of parameters appHes to all atoms and ions. 

This section tests the reliability of the SIC-GX-LSD thcOI'y in predicting 

ionization potentials of multiply-charged ions which have becn experimcntally Inca-

sured. The SIC-GX-LSD theory is much easier to use than the HF thcory, bccausc 

the local exchange potential is used, and even casier ta use than the Xo: theory, 

95 



ft 

TABLE 111-19 

Ionization potentials (Ry) for the multiply charged ions of calcium, 
compared with other calculations and 

experiment 

Degree GX-LSD GX-LSD HF HF Xae Expt/ 
of Without With Rel.e Unrel.d 

Ionization Corre. a VWN b 

0 0.401 0.452 0.376 0.389 0.417 0.45 
1 0.867 0.881 0.833 0.830 0.825 0.87 
2 3.645 3.714 3.668 3.748 3.726 3.74 
3 4.820 4.905 4.833 4.998 4.997 4.93 
4 6.043 6.155 6.068 6.372 6.341 6.20 
5 7.830 7.864 7.883 7.923 7.761 8.00 

6 9.254 9.296 9.284 9.312 9.246 9.39 
7 10.714 10.770 10.751 10.767 10.7~9 10.82 
8 13.685 13.786 13.630 13.641 13.860 13.84 
9 15.477 15.504 15.422 15.435 15.432 15.53 
10 43.624 43.734 43.403 43.658 43.961 43.46 

11 47.574 47.708 48.218 48.729 49.150 48.24 
12 53.428 53.602 53.214 54.241 54.535 53.36 
13 59.658 59.707 60.197 60.268 60.105 60.02 
14 66.407 66.468 65.656 65.707 65.842 65.79 
15 71.491 71.573 71.295 71.366 71.714 71.59 
16 77.980 78.139 78.984 78.937 79.547 79.75 

ave9 (1.8) (0.8) (2.0) (1.9) (1.6) 

a. The difference of the statistical total energies for the ith 

and (i+ 1 )th ions in the two separate calculation 6sc F; 
b. 6SCF plus the VWN correlation-energy correction; 
c. 6sc F in the HF theory, ref. 102; 
d. Orbital energy in the HF theory, ref. 102; 
e. Transition-state calculation in the Xa method with theoretically 
determined parameter ~, ref. 93; 
f. Reference 103; 
g. ave = [ L~ Ilrheor - I,Expt 1/ I,ExPt XlOO]j N. 

because there is a unique set of parameters for all atorns once the Fermi-hole shape 

is selected. 

Therefore, the SIC-GX-LSD theory is used to calculate the ionization poten-
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TABLE 1II-20 

Ionization potentials (Ry) for the multiply charged ions of iron, comparcù 
with other calculations and 

experiment 

Degree GX-LSD GX-LSD HF HF X e Expt f .0 

of Without With Rel. c Unre\.d 
Ionization Corre.a VWN b 

0 0.512 0.579 0.514 0.588 0.58/ 
1 1.205 1.217 1.134 1.19 
2 2.221 2.321 2.084 2.631 2,488 2.25 
3 4.071 4.112 3.979 4.145 3.888 4.03 
4 5.632 5.681 5,483 5.689 5..169 5.51 
5 7.336 7.393 7.24!J 7.423 7.211 7.28 

6 8.896 8.961 9.156 9.261 9.100 9.1!) 
7 11.393 11.468 11.052 11.172 11.127 11.10Y 

8 17.036 17.123 17.104 17.198 17.221 17.20 
9 19.070 19.174 19.104 19.330 lU.389 19.26 
10 21.125 21.257 21.IG5 21.608 21.622 21.:H 

11 23.982 24.026 22.069 24.107 23.912 24.33 
12 26.232 26.285 28.278 26.312 25.257 2G.53 
13 28.499 28.567 28.546 28.591 28.644 28.1:!1 
14 33.123 33.239 33.040 33.074 33.431 3:J.59 
15 35.733 35.765 35.649 35.646 :J5.G82 :J5.94 

16 92.629 92.751 92.711 92.901 93,492 93.05 
17 99.437 99.583 99.508 100.173 100.801 9n.81 
18 106.263 106.452 106.48,1 107.321 108.295 107.00 
19 115.960 116.014 116.080 116.200 115.961 116.30 
20 123.569 123.636 123.513 123.550 123.775 124.10 

21 130.914 131.003 131.127 131.194 131.700 132.20 
22 141.417 141.590 141.403 141.440 142.926 143.30 

aveh (1.6) (1.2) (1.6 ) (2.2) ( 1.6) 

a. The difference of the statistical total energic~ for the ith and 

(i+1)th ions in the two separate calculation 6SCF; 
b. D.SCF plus the VWN correlation-energy correction; 
c. D.SCF in the HF theory. ref. 102; 
d. Orbital energy in the HF theory, fef. 102; 
e. Transition-state calculation in the Xo: methoù \Vith theoretically 
determined parameter a, ref. 97; 
f. Reference 103; 
g. Reference 104; 
h. ave = [ E~ II;heor - I~z;Pt Il I~z;Pt Xl0011 N. 
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TABLE 111-21 

IonÎzation potentials (Ry) for the multiply charged ions of bromine, 
compared with other calculations and 

experiment 

Degree GX-LSD GX-LSD HF Xa d Expte 

of Without With Unrel. C 

Ionization Corre. a VWN b 

0 0.802 0.867 0.911 0.859 0.87 
1 1.480 1.570 1.676 1.608 1.60 
2 2.522 2.549 2.580 2.4~3 2.65 
3 3.379 3.414 3.410 3.322 3.48 

4 4.276 4.323 4.292 4.261 4.39 
5 6.318 6.397 6.196 6.370 6.51 
6 7.521 7.557 7.350 7.457 7.57 
7 14.237 14.327 14.040 14.255 14.41 

avef (3.8) (1.5) (3.3) (2.8) 

a. The difff'rence of the statistical total energies for the ith 

and (i+l)th ions in the two sepa:-ate calculation 6SCF; 
b. 6.scF plus the VWN correlation-energy correction; 
c. 6.sc F in the HF theory, ref. 102; 
d. Orbital energy in the HF theory, ref. 102; 
e. Reference 103; 
f. ave = [ l:~ II[heor - I,ExPt Il l,ExPt X100]j N. 

tials of multiply-charged ions for C, Al, Ca, Fe, and Br to compare the results with 

those from the Xa calculations97 and Cl and Ar which ore interesting to chemists 

and astrophysicists. 'The effect of the correlation correction proposed by Vosko et 

al.39 on the ionization potential is considered. 

The SIC-GX-LSD theory with the GWB Fermi-hole parameters was applied 

to calculate the wave functions of the neutral atoms together with the corresponding 

multiply-charged ion wave functions. These numerical wave functions were then 

used to calculate the corresponding statistical total energies, equation (1-86), and 

the V\VN correlation energy corrections, equation (1-108), for the atoms and ions. 
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The VWN has not been treated self-consistently, becaused it is not very important 

in calculating ionization potentials100
, altho'lgh it is essential in predicting electron 

affinities for tr.e alkaline-earth elements, rare gasses, and actinides92 ,94,lOl, which 

will he discussed later in detail. The ionization potentials were obtained from the 

differences of the statistical total energies which included the VWN correlation­

energy corrections for the k th and (k+l)th ions, equation (3-4). Results in Table 

1II-15 to III-21 are compared to the HF results102 and experiment83 ,103.104. 

Relaxation lowers the total energy and decreases as the number of electron 

increases. The HF results in columns 4 and 5 of Tables 1I1-15 to 111-20 show the ion­

ization potentials of the multiply-charged ions without relaxation to be mostly larger 

than experiment. In addition, correlation lowers the total er.ergy but increases as 

the number of electrons increases and therefore, the correlation correction increases 

the ionization potential; all the values in column 3 are bigger than those in columr 

2. 

The electron correlation-energy correction plays an important role in the first 

ionization potentials and electron affinities mentioned earlier, because the contri­

bution of the correlation correction to the electron affinity is comparable to that 

of the kinetic, ({mlomb and exchange interaction energies. Cornparing the results 

of the SIC-GX-LSD-GWB theory with the VWN correlation correction in column 

3 of Tables III-15 to III-21 with those excluding the VWN correlation correction 

in column 2 shows that the correlation-energy correction <Ùso plays a raIe in the 

ionization potentials of the multiply-charged ions. 

In Tables III-15, III-16, and III-19 to 111-21, the calculation of the multiply­

charged ions obtained by using a Slater transition-state calculation in the XQ 

theory97 with theoretically determined parameter Q are also presented. The data 

show that the results in the SIC-GX-LSD-GWB theory and in the transition-state 
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of Xa theory with theoretically determined parameter a are comparable with the 

results from the HF theory. But the ionization potentials of the multiply-charged 

ion3 in SIC-GX-LSD-GWB theory with the VWN correlation energy correction are 

much better th an all others. Their agreement with experiment is excellent. 

The deviation of each calculated ionization potential, Tables llI-15 to 111-

21, from the experimental values is expressed as a percentage. These percent ages 

are averaged for all multiply-charged ions of the same element to give the aver­

age percent age deviations for the theories discussed in this work, the relaxed and 

unrelaxed HF, and the recent Xa transition state r:;r;'llts. The results using SIC-GX­

LSD-GWB theory with the VWN correlation correction are the best. The average 

percent age deviation for all these elements in this theory are less than 1.5 percent. 

Furthermore the percent age deviation for each value is about one. 

One mayexpect to calculate the ionization potentials of the multiply charged 

ions by me ans of the traditional Xa theory with the corresponding optimal 0: values 

of the neutral atoms. In order to compare the SIC-GX-LSD results with those in the 

traditional Xo: theory, the relaxed Xa calculations for the ionization potentials of 

these multiply-charged ions were carried out using Schwarz' s Q values lO for neutral 

atoms and corresponding Q values of the atoms which are of the same number of 

electrons as the multiply-charged ions. The results (not listed here) are mu ch worse 

than those in the HF and SIC-GX-LSD theories which agree with experiment. The 

average percent age deviations are around 3.5105 • 

From the results listed in Tables III-15 to III-21 and the comparison ab ove , 

it can he seen that the ionization potentials of multiply-charged ions calculated by 

means of the difference between two statistical total energies in the SIC-GX-LSD 

theory with the GWB Fermi-hole exchange parameters are comparable with that in 

the HF theory. The SIC-GX-LSD theory is much easier and cheaper to use than the 
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HF theory. The correlation energy correction of the electrons with diffcl'Cut spin 

is important, 50 that the SIC-GX-LSD-GWB theory with the VVVN correlation 

correction gives excellent ionization potentials for the multiply-chargcd ions in the 

agreement with experiment. It can he expected that the quasi-relativistic SIC­

GX-LSD theory with the GWB Fermi-hole parameters and the VWN correlation 

energy correction should give very good ionization potentials of the multiply-charged 

ions for the high-Z clements, even for the actinides, with acceptable comput.at,iollal 

time, because there is no need to search for the optimal ex change paramctcrs Cl' for 

each atom or ion. Based on the excellent agreement hetween the calculated and 

experimental values, the SIC-GX-LSD theory with the GWB exchange paramcters 

and the VWN correlation energy correction can be used to predict the ionization 

poten~ials of multiply-charged ions which are unknown experirnentally. 
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CHAPTER IV 

STABILITY OF SINGLE- AND 
DOUBLE-CHARGED NEGATIVE IONS 

IV-!. Introduction 

Hotop and Lineberger58 ,72 summarized the binrung energies in atonùc neg­

ative ions and showed that most single-charged negative ions of atorns are stable, 

except for the rare gases, alkaline-earth elements, and some transition metals. The 

alkali-metal elements get a second electron in the outermost s orbital to form a sta­

ble negative ion, with a positive binding energy, whereas the alkaline-earth elements 

have the clectron in another p or d orbital and therefore have negative values for 

the electron affinities, 50 that the negative ions of these elements do not exist. 

Fischer et al.106 reported a positive electron affini ty for the alkaline-earth 

clement Ca by the multiconfiguration HF (MCHF) method, v..'Îth relativistic cor­

rection. The prediction was confirrned in an elegant experiment by Pegg et al. 107 

Vosko et al. 94 found the negative ions for other alkaline-earth elements Sr-, Ba - , 

and Ra- are also stable by a HF calculation with relativistic shift and e1ectron cor­

relation correction, when the electron configurations were ns2 np (n = 4, 5, 6, and 

7) and not (n-1)d ns2 • Fischer108 studied the electron affinities of alkaline-earth 

clements by the MCHF theory, and also predicted positive electron affinities for 

the alkaline-earth elements Ca, Sr, and Ba in electron configuration ns2 np and not 

(n-1 )dns2 • The Fischer et al. I06 and Vosko et al. 94 prediction was confirmed by 

Guo and '\\-'hiteheadl01 and Fuentealba et al. 109 in the correlation corrected LDF 

theory. 
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1. 

The probability that stable negative ions exist for rare gases bas been in­

vestigated theoretically and cxperimentally. Kuyatt et al. 11 0 calculated electron 

affinities W\thin ± 0.03e V for the rare gases from resonances observed in the elas­

tic scattering of electrons. Zollweglll estimated negative electron affinities for the 

rare gases by horizontal analysis. In contrast the excited state of rare-gas negative 

ions are predicted to he stable experimentally and theoretically with respect to the 

excited state of the corresponding neutral atoms1l1 - 1l5 . The electron affinity, for 

example, is 0.51 eV from He (ls 2s 3S ) to He- (ls 2S22 S). 

There are few reliable results of the electron affinities for the elements with 

Z 2: 87 which are missing in Hotop and Lineberger' s papers58 •72 • Bratsch and 

Lagowski116 obtained electron affinities for the actinides by considering the en-

ergy variations associated with changes in the 5f orbital population, whilc Sen 

and Politzer117 calculated electron affinities by using the SIC-LSD theory l18 with 

the relativistic and conelation corrections. Bratsch and Lagowskj116 predicted the 

ground-state electron affinities of the actinides with the range +1.0 to -0.3 cV, with 

an estimated uncertainty of ± 0.3 eV for the elements whose electron affinities were 

+0.3 to -O.3eV and ± 1 eV for Fm and Md (the electron affinities are 1.0 cV for 

Fm and -0.1 eV for Md). Sen and Politzer117 predicted the electron affinities for 

the actinides more accurately than Bratsch and Lagowski, but obtained converged 

values for only half the actinides. It is essential to attempt to get more reliable 

electron affinities for these elements by calculation. 

The first aim92 ,lOl of this chapter is to test the reliability of the GX-LSD the-

ory, with the self-interaction correctioIl, the electron correlation correction, and the 

relativistic correction, to predict the stability of the negative ions for the alkaline­

earth elements and the electron affinities for them, because accurate calculations106 

and experimental results107 exist. H the LOF theory works for the negative ions 
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of the alkaline-earth elements, it will he extended to prediet the stability of the 

negative ions for the rare gases and actinides and the eleetron affinities for them, 

sinee the LDF theory is mueh more efficient than the HF, MCHF, CI, et al. 

Attention has also heen paid to investigating the doubly charged negative 

ions experimentally1l9-127 and sorne evidence for the existence of doubly charged 

negative ions, sueh as, 0 2-, Te2- , Bi2-, F2-, CIZ-, Br2-, and r- was found l22 • 

Theoretically, the stability of doubly charged negative ions of atoms has been of 

interest for a long time. Baughan128 calculated the first, second, and third eleetron 

affinities for atoms using lattice-energy data of ionie erystals, and the spectroscopie 

data of the corresponding rnoleeules, and estimated the values of the second e1ec­

tron affinities for elements 0, S, and Se and the third electron affinity for N by 

the extrapolation, starting from the first, second and third ionization potentials of 

the corresponding atom. Gaspar and Csavinszky129 presented the solution of 0 2-; 

Wat&on 130 published 0 2- results which are the analytie forms of the wave fune­

tions, one-electron eigenvalues, two electron integrals, and total energy for the dou­

bly charged negative ion, 0 2-, in the Hartree-Foek (HF) theory using an artificial 

positively charged sphere surrounding the doubly CL'1arged negative ion. Clementi 

and McLean131 reported the results for NZ- and 0 2 - and concluded that they were 

tUlstable bccause the second electron affinities were -0.454 Ry for N and -0.444 Ry 

for 0 in the electron-correlation corrected HF theory. Ahlrichs132 pointed out that 

HF calculations which yield fI. > 0 for an occupied orbital do not minimize the HF 

energy. He calculated sorne multiply cllarged negative ions, 0 2-, N3-, ct-, 52- , 

O~-, and C~- in the HF theary byan apprapriate admixture of a continuum func­

tian ta the corresponding orbital, but could not find any evidence of stable multiply 

charged negative ions, although he arrived at much lower total energies than Robh 

and Csizmadia133 . Recently, Kalcher134 studied the stability of the doubly charged 

negative ions of the second-period elements, Si, P, S, and Cl in a configuration-
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interaction (CI) calculation using systematically different substitutions from any 

configuration of the reference wave functions. He reported that the doubly charged 

negative ioll'3 of Si, P, S, and Cl were Wlstable with negative dectron affinities 

between -0.0494 Ry and -0.0612 Ry. 

There is no report in the literature about the investigation of the stability of 

doubly charged negative ions of atoms in the gas phase in the LDF theory, although 

the LDF theory has been widely used to study molecular bonding, magnetism, cohe­

sion, the surface electronic properties of metals, and semiconductors74 and to predict 

the st ability of singly cllarged negative ions. The reason is obvious if one focuses 

on the details of the numerical self-consistent-field (SCF) procedure in the LDF 

theory48. Following the numerical approach of Herman and Skillman48 , the wave 

function is obtained by outward numerical integration starting from r=O and inward 

numerical integration starting from r=oo. The wave functions at the first several 

mesh points in both directions are calculated by solving the one-electron Schrodingcr 

equation analytically with the asymptotic forms of the potential V/lm(r) for each 

orbital, when r approaches zero and infinity. The radial function is of the form 

(4 - 1) 

when r approaches infinity; where CO is a normalization constant and qn/(r) is 

(4 - 2) 

where Eni is the one-electron eigenvalue. In the self-interaction corrected (SIC) 

LDF theory, e.g., the SIC-LSD theory30, the asymptotic potential, VOO(r), when r 

approaches infinity, is 

VOO(r) = _ 2(Z - N + 1) 
r 

(4 - 3) 

with the atomic number Z and the number of total e1ectrons N in Rydberg atomic 

units. VOO(r) is positive for a doubly charged negative ion, because of N=Z+2. 

With this feature, the orbital energy is positive1 32
• 
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In the SIC-LSD theory, the one-electron eigenvalue Eni is approximately equal 

to the orbital energy30,49. Thls implies that qnl(r) in equation (4-2) is negative 

when r approaches infinity. The wave function (4-1) is continuous. Consequently, 

no bound wave function can he obtained in the SIC-LSD theory for a doubly charged 

negative ion. 

The second wm of this chapter is to investigate the stability of the doubly 

charged negative ions of atoms in crystals and the stability of the doubly charged 

negative ions of the second and third period elements which involve one orbital in 

going from the neutral atom to its doubly charged negative ion in the gas phase 

by the SIC-GX-LSD theory with the GWB Fermi-hole parameters and the VWN 

electron correlation energy functional and by means of a special convergence tech­

nique. As mel1tioned ab ove , no bound solution can he found by directly solving the 

Schrodinger equation in the SIC-LSD theory. Consequently, a positively charged 

artificial sphere, whlch was proposed by Watson130 (henceforth called the Watson 

sphere) and usually used in the molecular anion calculations135-137, i5 invoked ta 

surround the doubly charged negative ion and ensure the one-electron Schrodinger 

equation has a bound solution. Obviously, the statistical total energy and the 

electron-density distribution of a doubly charged negative ion are dependent on 

the size of the Watson sphere and the charge on the Watson sphere. However, if 

the charge on the Watson sphere is fixed, and the radius of the Watson sphere is 

gradually increased, the calculated statistical total energy and the electron-density 

distribution of the doubly charged negative ion should then gradually approach 

the rcal statistical total energy and the electron-density distribution of the system. 

On the other hand, the VWN correlation corrected SIC-GX-LSD theory with the 

G\VB Fermi-hole parameters has been previously established to he excellent for 

predicting the ionization potentials and electron affinities of atoms92
,lOl compared 

to experiment. 
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IV-2. Alkaline-Earth Elements and Actinides 

The one-electron Schrodinger equation (1-90) in the SIC-GX-LSD theory 

and equation (1-125) in the QR-SIC-GX-LSD theory bath with the GWB Fermi­

hole parameters have been used and attempt made to get converged values for 

the negative ions of the alkaline-earth and actinide elements. It failed to converge 

for all the negative ions of the alkaline-earth elements including both the electron 

configurations ns2np and (n-1)d ns2 and for most negative ions of the actinide 

elements; the SCF procedure was not convergent. 

The elements are classified in two categories again: (i) elements which in­

volve one orbital in going from the neutral atom to the negative ion and (ii) clements 

involving two orbitaIs going !rom the neutral atom to the negative ion. In Hotop 

and Lineberger' s paper58 , all the negative ions involving one orbital are stable, 

whereas almost all the negativc ions involving two orbitaIs are unstable except for 

the transition-metal elements Sc, Y, and Pd. Previous calculations of the electron 

affinities of atoms (in Chapter III)45,73 also showed that equations (1-90) and (1-125) 

worked very well in predicting the electron affinities for the first -:ategory clemenb 

and failed for the second category. In the Roothaan-Hartree-Fock theory, Clementi 

and Roetti51 reported the calculation of negative ions for the elements Z < 54 except 

for the alkaline-earth elements and rare gases (which they either did not calculate or 

found non-convergency). Re cen tly, Vosko et al. 94 reported the rcsults for the nega­

tive ions of the alkaline-earth elements by the HF theory with the density-functional 

correlation correction potential. The electron-correlation correction encrgy and po­

tential which were given in equations (1-98) and (1-114), rcspcctively, proposed by 

Vosko, Wilk, and Nusair39 (V\VN), have becn included in thcir calculation. 

Equations (1-90) and (1-125) cornbined with equation (1-114), the VWN cor­

relation correction potentiaP38 , have been tested on the alkaline-earth and actinide 
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clements. The calculations showed that the SIC-GX-LSD-GWB theory with the 

VWN correlation correction potential works very well for all the negative ions of 

the alkaline-earth elements whose clectron configurations are n.s 2 np, but not for con­

figurations (n-l)d 113 2 , and very well for most of the negative ions of the actinides. 

Probably, because of auto-ionization effect, the neutral atoms of the alkaline-earth 

clements may not stably bind an extra electron in their (n-l)d orbitals. 

Therefore, equations (1-90) and (1-125) with the GWB parameters and the 

V\VN correlation correction potential have been used to calculate the wave functions 

and eigenvalues of the neutral atoms and the negative ions for the alkaline-earth 

and actinide elements. The calculated wave functions were then used ta calculate 

the statistical total energies, equation (1-86), and the VWN correlation energy 

corrections, equation (1-98), for the corresponding atoms and negative ions using 

the SIC-GX-LSD theory. To compare the VWN correlation correction with that 

proposed by Stoll, Pavlidou, and Preuss38 (SPP), the wave functions in equations 

(1-90) and (1-125) with the GWB parameters and the VWN correlation correction 

were used ta evaluate the SPP correlation energy corrections. Finally, the electron 

affinities of the alkaline-earth and the actinide elements were obtained by means of 

the difference of the statistical total energies between the neutral atoms and the 

corresponding negative ions, equation (3-4). These results are listed in Tables IV-1 

ta IV-3. 
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Z 

12 Mg 
20 Ca 
38 Sr 
56 Ba 
88 Ra 

Elec. 
Atom 

38 2 

48 2 

58 2 

682 

782 

TABLE IV-l 

Electron affinÎtÎes (Ry) for Mg, Cat Sr, Ba, and Ra 
calculated by the SIC-GX-LSD-GWB theory with the VWN 

correlation, compared with other non-relativistic 
calculations and experiment 

Conti. GX-LSD GX-LSD GX-LSD HFa MCHFb Expt C 

Ion No Corr. Spp VWN VWN 

3s 23pl -0.0059 0.0079 0.0056 
4s 24pl -0.0112 0.0150 0.0105 0.0102 0.140 0.0032 ± 0.0005 
5825pl -0.0113 0.0163 0.0117 0.0142 0.256 
6826pl -0.0117 0.0209 0.0156 0.0194 0.554 
7s27pl -0.0112 0.0220 0.0168 0.0206 

a. Reference 94; 
b. Reference 108; 
c. Reference 107. 

IV -2.1 Alkaline-Earth Elements 

Tables IV -1 to IV -2 summanze the electron affinities for the alkaline-earth 

elements in the SIC-GX-LSD and QR-SIC-GX-LSD theories with the GWB Fermi­

hole para.'neters and with and without the SPP and VWN correlation-energy correc­

tion compared with other theoretical calculations94 ,lo8 and experiment107
. Tables 

IV-l and IV-2 show that Ci) the contributions of the lcinetic, Coulomb, and ex-

change energies to the electron affinities are I1egative, and almost equal except in 

Mg; (ii) the electron affinities become positive once the correlation-energy corree-

tion is addedj the electroll correlation makes the negative ions stable; fUld (iii) the 

relativistic contribution to the electron affinities is negative, which is opposite to 

the relativistic contribution to t.he ionization potential of atoms wruch is usually 

positive. These features parallel HF theory94. 

Comparing the present results with the HF (Ref. 94) and MCHF (Ref. 108) 

109 



1 

.1 

<1 

ca.lculations shows that the QR-SIC-GX-LSD theory with the VWN correlation 

correction results in excellent agreement with HF, whereas the QR-SIC-GX-LSD 

theory with the SPP correlation-energy correction overestimates the electron affini-

ties. The MCHF theory obviously overestimates the electron affinities compared to 

HF, the present work, and experiment. 

Z 

12 Mg 
20 Ca 
38 Sr 
56 Ba 
88 Ra 

TABLE IV-2 

Electron affinities (Ry) for Mg, Ca, "r, Ba, and Ra 
ca\culated by the QR.SIC-GX·LSD theory with the VWN 

correlation, compared with other calculations 
and experiment 

EJec. Conf!. GX·LSD GX·LSD GX·LSD RFa MCRFb 

Atom Ion No Corr. SPP VWN VWN 

382 3s23pl -0.0058 0.0078 0.0056 
482 4s24pl -0.0110 0.0146 0.0102 0.0096 0.124 
582 5s2 SpI -0.0106 0.0146 0.0104 0.0118 0.212 
682 6s26pl -0.0105 0.0175 0.0129 0.0146 0.296 
782 7s 27pl -0.0090 0.0121 0.0085 0.0092 

a. Reference 94; 
b. Reference 108; 
c. Reference 107. 

Expt C 

0.0032 ± 0.0005 

It is interesting that the predicted values for the electron affinity of Mg 

in bath the SIC-GX-LSD and QR-SIC-GX-LSD theories with the SPP and VWN 

correlation-energy correction are positive. Subtracting the overestirnated value for 

Mg, in contrast with Ca, the electron affinity for Mg is probably around zero. 
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IV -2.2 Actinides 

The electron affinities of the actinides \Vith and without the SPP éllld VWN 

correlation energy correction in the QR-SIC-GX-LSD theory \Vith the GWB Fermi­

hole parameters are listed in Table IV-3 and compared with the results calculatcd 

by the SIC-LSD theory117 and the values estimated by using the cllcrgy variation 

extrapolation116 • The present results in the SIC-GX-LSD thcOl'Y with the SPP and 

VWN correlation-energy correction are larger than those in the SIC-LSD thcory 

and also larger than the extrapolated values, except for Cm, Md, and Lr. Howevcr, 

the results in the SIC-GX-LSD theory with the VWN correlation energy corrcction 

are within the estimated tIDcertainty of the extrapolated rcsults, cxccpt for Th and 

Lr. 

As mentioned before, the electron affinities are usually positive for clements 

involving a single orbital, according to the previous calculatiom;45,73 fUld Hotop 

and Lineberger's paper58 for the elements Z < 87. Therefore the negative ions are 

usually stable for the first category elements. The few L::~eptions in the a.ctinide 

elements are shown in Table IV-3, that is, Pu, Bk, Cf, and Es, the first-category 

elements have negative electron affinities. 

Am belongs the second category element using two orbitaIs, but its llcgative 

ion is stable according to the present calculation. Other clectron configurations 

of the negative ion, like 5j1 6d1 7 s2 and 5f8 7 s2, have been tried, but no cOllverged 

results have been obtained. The extra electron of Am- goes to the 7p orbital illstead 

of 5f and 6d. From Table IV-3, one may see that Th- and Md- are the lllost stable 

negative ions according to the present calculation, in agreement with Brabch and 

Lagowski's estimation1l6 . 

Although the electron correlation correction potential is very small compared 

to the Coulomb, ex change , and SIC potentials, it is very important in the present 
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Z 

89 Ac 
90 Th 
91 Pa 
92 U 
93 Np 

94 Pu 
94 
95 Am 
95 
95 

96 Cm 
97 Bk 
97 
98 Cf 
98 

99 Es 
99 
100 Fm 
101 Md 
102 No 
102 
103 Lr 

TABLE IV-3 

Electron affinities (Ry) for actinides calculated using 
the QR-SIC-GX-LSD-GWB theory with the VWN and SPP correlation 

corrections, compared with othe:- ca\culations and experiment 

Electron Config. GX-LSD GX-LSD GX-LSD LSD a Extra.b 

Atom Ion No Cor. SPP VWN 

6d 1 7s 2 6d2 7s 2 -0.0156 0.0437 0.0322 0.0206 0.022 
6d2 7s 2 6d37s 2 0.0361 0.1005 0.0863 0.0706 0.037 

5f26d 1 7s 2 5f2 6d2 7s2 -0.0071 0.0530 0.0406 0.0243 0.022 
5f3 6d1 7s2 5f36d2 7s 2 -0.0086 0.0516 0.0390 0.0213 0.022 
5f4 6d1 7s2 5f4 6d2 7s2 -0.0123 0.0477 0.0351 0.0176 0.022 

5/6 7s 2 5f77s2 -0.0986 -0.0203 -0.0370 
5f6 6é7s2 

* * * * -0.022 
5f7s2 5f7 7s2 7pl -0.0068 0.0104 0.0076 

5f76d 1 7s 2 

* * * * -0.022 
5fll.7s2 

* * 
5}'7 6d1 7s2 5f7 6d2 7s2 -0.0255 0.0330 0.0208 0.0022 0.022 

5/9 7s2 .1)j107s 2 -0.2215 -0.1096 -0.1265 
5f9 6d1 7s2 

* * * * -0.022 
5/10 78 2 5f11782 -0.1687 -0.0571 -0.0745 

5flO6d1 7s 2 
* * * * -0.022 

5/11 7s 2 5/12 782 -0.1146 -0.0042 -0.0219 
5/11 6d I 78 2 

* * * * -0.022 
5/12 78 2 5f13 78 2 -0.0651 0.0439 0.0260 * -0.007 
5/13 782 5f14 782 -0.0175 0.0900 0.0719 * 0.074 
5l4 7s2 5f14 7s2 7pl -0.1803 -0.1692 -0.1709 

5f14 6d1 7s2 

* * * 'le -0.022 
5f14 6d I 7s2 5f I4 6d2 7s2 -0.0503 -0.0156 -0.0230 * 0.022 

* No convergence obtainedj 
a. Reference .1.17; 
b. Reference 116. 

calculations. This correlation correction determines whether the negative ions for 

the alkaline-carth and most of the actinide elements converge. 

The QR-SIC-GX-LSD theory with correlation correction potential can be 

used to prcdict the electron affiui ties of the rlkaline-earth and actinide clements. 
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The electron affinities are as good as the HF theory with density-functional corre­

lation correction potential, and are much easier and cheaper to use. The present 

results of the alkaline-earth elements strongly support the prediction of the stable 

negative ions Ca-, Sr-, Ba-, and Ra- made by Fischer et al. 106 and Vosko et al.94 , 

if their electron configurations are ns2 np. 

IV -3. Rare Gases and Actinides 

The calculation of the negative ions for the actinide elements has not been 

completed because of the non-convergence problem for sorne of them. They will 

be discussed in this section. Fùrthermore, the probability of the stable negative 

ions for the rare-gas elements will he discussed in the SIC-GX-LSD theory with the 

VWN correlation correction potential and a special conveq;ence technique92 . 

IV -3.1 Adiabatic Convergence Technique 

Starting with the converged potential of the neutral atom from a Herman and 

Skillman48 calculation and the electron configuration for the corresponding negative 

ion, neither gave converged values for any of the rare gases, nor for the actinides. 

The converged potential deviates too IDuch froID the real negative ion potential to 

be stable to bind an extra electron. However, starting with the converged potential 

and the electron configuration of the neutral atom, 10 percent of an electron was 

added in each following iteration until a total of one electron was included in the 

extra orbital; for the rare gases, convergence was then achieved from this nego,tive­

ion state. In the SCF processes of actinide negative ions, adding 10 percent of an 

electron in the extra orbital in the following iteration turned out to be too big for the 
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SCF pro cess to stabilize. In order ta increase the occupation number smoothly, the 

function 0.051x1.05- i , in which i is the iteration number, was used to add the new 

fractional electron in the first 81 iterations. This slow, adiabatic change trom the 

neutral atom allows the system to remain in its ground state. The mixture factor 

was chosen to be 0.25 for the negative ions of the rare gases, SC) that 75 percent of 

electron density frOID the (i_1)th iteration and 25 percent of electron density from 

the ith iteration were combined together and used to calculate the new potential 

for the (i+1)th iteration. The mixture factor for the actinide elements was reduced 

to 0.05 for the negative ions. The SCF was then performed tultil the differences of 

the wave functions between the ith and the (i+1)th iterations were less than 10-8 

at all the calculated mesh points. 

Z 

2 
10 
18 
36 
54 
86 

TABLE IV-4 

The negative of the one-electron eigenvalues CRy) of the 
extra e1edrons for the negative ions of rare gases 

Atom nI SIC-GX-LSD QR-SIC-GX-LSD 

He 2s 00738 0.00738 
Ne 3s 00805 0.00806 
Ar 4s 00862 0.00865 
Kr 5.!l 00904 0.00919 
Xe 6.!l 00916 0.00957 
Rn 78 00932 0.01090 
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1'{-3.2 Ftare (;ases 

The existence of stable negative ions of atoms in nature is mainly caused 

by the quantum effect; because of the negative contribution of the exchange cor­

relation effect of the electron to the energy functional, the neutral system (neutral 

atom) can bind an extra eIectron and form a stable system. The contribution 

of the nuclear attraction to forming the stable system is very small becallse each 

eIectron partially screens the nucleus from all other electrons. FUrthermore, the 

exchange-correlation potential is approximately proportional to the electron num~ 

ber, 50 that the exchange-correlation effect increases with the nuœber of electrons. 

The Coulomb repulsion between electrons, of comse, ;!1creases with the number of 

total electrons. The exchange-correlation effect competes with the Coulomb repul­

sion; if the exchange correlation is bigger than the Coulomb repulsion, the negative 

ion is stable. 

Z 

2 He 
10 Ne 
18 Ar 
36 J(r 

54 Xe 
86 Rn 

TABLE IV-5 

Electron affini ties (Ry) for the rare gases calculated 
by the SIC-GX-LSD and QR-SIC-GX-LSD theories with the 

GWB Fermi-hole parameters and the VWN correction 

Elec. Confi. GX-LSD GX-LSD QR-GX-LSD QR-GX-LSD 
Atom Ion No Corr. VWN No Corr. VWN 

1052 Is2281 -0.0029 0.0054 -0.0029 0.0054 
2p6 2p6 381 -0.0035 0.0061 -0.0035 0.0061 
3p6 3p6481 -0.0040 0.0071 -0.0040 0.0071 
4p6 4p6581 -0.0043 0.0079 -0.0043 0.0081 
5p6 5p6 681 -0.0043 0.0082 -0.0043 0.0091 
6p6 6p67.,1 -0.0045 0.0085 -0.0038 0.0126 
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Table IV-4 lists the negative of the one-electron eigenvalue of the extra or­

bital for the negative ions of rare gases in the SIC-GX-LSD theory, both nonrela­

tivistic and quasi-relativistic (QR). The GWB exchange parameters and the VWN 

energy-correlation functional were employed in both cases. Table IV -5 gives the 

corresponding electron affinities. These tables show (i) that all the negative ions of 

the rare gases are stable, the electron affinHies being several milli-rydbergs. The 

stability of these negative ions is caused by the correlation between the extra elec­

tron and all the other electrons. The Coulomb repulsion is much bigger than the 
''. 

exchange-only effect; (ii) the relativistic effect of the electrons increases the binding 

energy and t.he electron affinity, This is the reverse of the relativistic contribution 

to the negative ions of the alkaline-earth elements101 in which the relativistic effect 

decreases the binding energies; (iii) the binding energies and electron affinities in­

crease with atomic number, because of the increase in the Coulomb repulsion as the 

number of electrons increase. 

Z 

94 
95 
97 
98 
99 

TABLE IV-6 

The negative of the one-electron eigenvalues (Ry) of the 
extra electrons for the negative ions of sorne actinides 

Atorn IÙ SIC-GX-LSD QR-SIC-GX-LSD 

Pu 6d 0.0710 0.00288 
Am 6d 0.0682 0.00291 
Bk 6d 0,0473 0.00297 
Cf 6d 0.0369 0.00299 
Es 6d 0.0267 0.00299 
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IV-3.3 Actinides 

Tables IV-6 and rv-/ summarize the results of some actinide clements for 

which no converged results had previously been obtained (in Section IV _2)101,117. 

Thcrefore the present results are compared with the estimated values obtained by 

energyextrapolation analysis1l6 • Table N-6 shows the one-electron eigenvalues of 

the negative ions for some actinide clements. The numbers decrease in absolute 

value with the occupation number of the 51 orbital in the SIC-GX-LSD theory, 

exduding the relativistic effect. Whcn the relativistic effect is il1cluded the extra­

electron eigenvalues are almost constant for these negative ions. The electron affini­

ties for these actinide atoms are summarized in Table IV-7 and compared with the 

estimated values. \Vith the relativistic tenn the extra electron is bound in the neu­

tral system and forms a stable negative ion. The present prediction of the stability 

for the negath'e ions of these actinide clements is opposite to that by the ellcrgy­

extrapolation analysis1l6 in which the est-imated uncertainty is ± 0.022Ry in the 

results. Pre\"iouslylOl, the electron affinities have been calculated for the clectron 

configuration 5f/l.'/82 (~=/, 10, 11, and 12 for Pu-, Bk-, Cf-, and Es-, rcspec­

tively) and yielded negative electron affinities. Consequently the extra elcctron in 

these negative ions favour the 6d orbital and not the 5f orbital. 

The present results for the rare gases and some actinides show that their 

negative ions are still stable, even when the relativistic correction ta the electron 

removal energy is o\'erestimated for the rare gase~ and lmderestimated for the ac­

tinides as in the QR-SIC-GX-LSD theory (sec Table III-IO, becau~e the spin-orbital 

coupling term is neglected in the QR-SIC-GX-LSD theor-y), exc(>p~ for the negative 

ions of Bk, Cf, and Es with electron configurations 5fN 752
. Further investigation 

of the stability for the negative ions of the rare gases and actinides i5 œrtainly 
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needed experimentally. 

Z 

94 Pu 
9S Am 
97 Bk 
98 Cf 
99 Es 

TABLE IV-7 

Electron affinities (Ry) for sorne actinides calculated 
by the SIC-GX-LSD and QR-SIC-GX-LSD theories with the GWB 

Fermi-hale parameters and the VWN correlation correction • 

Elec. Confi. GX-LSD GX-LSD QR-GX-LSD QR-GX-LSD 
Atom Ion No Corr. VWN No Corr. VWN 

S167s2 Sf6 6d17s 2 0.0068 0.0596 0.0180 0.0272 
Sf7s2 Sf7 6d1 7s 2 0.0036 0.0564 0.019S 0.0278 
5f9 7s2 Sf9 6d1 7s 2 -0.0165 0.0386 0.0094 0.0154 

5f107s2 Slo6d1 7s2 -0.0253 0.0303 0.0088 0.0140 
5f1l782 5f1l6d17s2 -0.0340 0.0217 0.0061 0.0108 

* The extrapolated values are -0.022 Ry for all these elements. 
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IV -4. Double-Charged Negative Ions in Crystals 

Baughan128 calculated the first, second, and third electron affillities of atoms 

using the lattice-energy data of sorne ionic crystals, and the spectroHcopic data of 

the corresponding rnolecules; he also estimated t.he values of the second C'lPctron 

affinities for elernents 0, S, and Se and the third electron affinity for N by cx­

trapolation, starting frOID the first, second, and third ionization potentials of the 

corresponding atom. 

The HF calculations of double-charged llegative ions in crystal have been 

performed by Gaspar and Csavinszky129 who presented the solutioll of 0 2-, muJ. 

Watson130 who published the analytic form of wave functiolls, the ollc-dcctron 

eigenvalues, the two-electron integrals, and the total energy for the double-dwrged 

negative ion, 0 2
-. The SCF caIculation for a double-charged ncgative ion is 111\1('11 

more difficult than that for a neutral atom, positive ion, or evell sillglc-dmrg('d 

negative ion, sinee the asymptotic form of the potential function bCCOIIH'S positive 

when the atomic radial variable r approaches infinity. 

The study on the stability of doubly charged negative ions of atoIlls might 

be interesting; firstly, because there is no report dealing \Vith the doubly clmuged 

negative ions from the LDF theorYi secondly, the LDF thcory is suec('s~ful in c!e­

scribing the atornic and rnolecular structures. Hence, the SIC-GX-LSD thcOl'y with 

the GWB Fermi-hole pararneters and the V\VN cOlrelatioll functiollal is u~ed to 

calculate the doubly charged negative ions in crystals139 • 
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IV-4.1 Convergence Technique 

In the SIC-LDF theory, the asymptotic form cf the potential is 

V(r) = _ 2(Z - N + 1) 
r 

(4 - 4) 

as r approaches infinitYi Z and N are the atomic number and the number of electrons 

in an atom. For the double-charged negative ion, N=Z+2, and equation (4-4) 

becomes 

2 
Ver) = -

r 
(4 - 5) 

This is a repulsive interaction. Physically, the second extra electron might not 

be bound stably by a single-charged negative ion in its free state because of the 

repulsive potential surrounding the isolated negative ion. Numerically, there is a 

continuous solution of the Schrodinger equation with the asymptotic potential of 

equation (4-5), instead of a bound wave function. 

Stable double-charged negative ions exist in crystals, because of the sur­

rounding cnvironment. To simulate sueh an environment for the double-charged 

negative ions in crystals and to ensure a bound solution to the Sehrodinger equa­

tion, Watson proposed a sphere of charge +1 or +2 with a defined radius surround­

ing the free single- or double-charged negative ion. The charged sphere forces the 

asymptotic form of the potential to be negative and the Schrodinger equation ta 

give a bound solution. 

The extra potential generated by the Watson sphere with charge +1 or 

+2 (the environment of the double-charged negative ion in crystal) is combined 

within the SIC-GX-LSD theory. The one-electron Schrodinger equation (1-90) is 

solved sclf-consistently with the pure Coulomb potential (1-91), the exchange poten­

tial (1-127), the self-exchange correction (1-128), and the VWN correlation energy 
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functional (1-114). The statistical total energy and the VWN correlation energy 

correction are caiculated by equations (1-86) and (1-98) with the convergeù wpve 

functions. 

IV-4.2 Estimation of Electron Afflnity 

The calculation of the double-charged negative ion of oxygcn, o:.!- , was 

carried out using the SIC-GX-LSD theory with the GWB H'rmi-hole parametprs 

and the VWN correlation energy functional, and a '''atson sphprc of c.harge +1 

and +2. The calculated SIC-GX-LSD statistical total energy (incluùillg the l'Ilcrgy 

contribution of the Watson sphere but excluding the VVVN correlatioll eI!crgy cor­

rection) for 0 2- was -156.2137Ry for the +1 'Vatson spherc éUld -163.5574 Ry for 

the +2 Watson sphere, compared to Watson's HF calcuiatiou130 in which the total 

ionic energy (including Watson sphere energy) was -156.1194 Ry for thp +1 Watsoll 

sphere and -163.4968 Ry for the +2 Watson sphele. The Séline radius (lA .4 or 2.66 

a. u.) of Watson sphere130 was used in both calculations. The excellent agreement 

of the total energies for the double-charged negative ion from the SIC-GX-LSD 

theory and from the HF theory parallels that for the neutral atoIlli>, poi>itivc Îow;, 

and the single-charged negative ions74 • Thercfore the SIC-GX-LSD theOlY predicts 

double-charged negative ions as reliably as the HF them'y. 

The statistical total energy of a negative ion from the 'Vat1>on 1>phere aidcd 

SIC-GX-LSD theory is dependent on the charge on Watsoll 1>phcrc. Thei'e arc 

several choices of the charges on the Watson sphere, +2, +1, ur 0 for the i>Îugle­

and double-charged negative ions. The calculation shows that thcre i~ 110 diffkulty 

in getting convergent results for the single- and double-chargcd llt'gatlVC' ions with 

the Watson sphere of charge +1 and +2, but, as mentioncù in bCctioll IV-4.1, it 
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might he imposbible ta obtain a convergent value for a double-charged negative ion 

using the Watson bphere of charge 0, which is equivalent to a calculation without 

any Watson sphere. 

Degree 
of Ion 

-1 
-2 

EA 

TABLE N-8 

The total energies (Ry) including the statistical total energy and the VWN 
correlation energy contribution for the single- and double-charged 

negative ions of 0 without and with the Watsoll spnere energy 
contribution in the Watson sphere aided SIC-GX-LSD 

theory with the VWN correlation correction 

Without a Withb 

+2 +1 0 +2 +1 0 

-150.0894 -150.1131 -150.1310 -163.5258 -156.8166 -150.1310 
-149.4502 -149.5549 - --- -164.2259 -156.8741 ----

-0.6392 -0.5582 +0.7001 +0.0575 

a. Without the energy contribution of the Watson spherej 
b. \Vith the energy contribution from the Watson sphere. 

Table IV -8 summarizes the VWN correlation energy corrected statistical to­

tal energies without and with the energy contribution from the Watson sphere for 

the single- and double-charged negative ions of oxygen, 0- and 0 2-, in the SIC­

GX-LSD theC'r)' w'Ïth the \Vatson sphere of charge +2, +1, and 0 and radius 2.66 

a. u. The last line gives the corresponding energy differences of the single- and 

double-charged negative ions, that is, 

(4 - 6) 

the second elertron affinity of 0, where Et: t and E;o~ are the total energy with the 

C'llergy contribution from the V\VN correlation correction excluding the Watson 
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sphere energy (corresponding ta columns 2, 3, and 4 in Table IV-8) or the total 

energy including the Watson sphere energy (columns 5, 6, and 7), lUlpcctively 

Compared ta the experimental second electron affinity, -O.60Ry for 0, it is dear tha.t 

the difference of the statistical total enel'gies (excluding thc \Yatson 8ph('l'c clwrgy) 

with bath +1 and +2 charges for the single- and double-charged llcgative ions 

(columns 2 and 3) can be used to fit the experimental value of the second elcctron 

affinity for 0 by slightly adjusting the radius of the Watson sphelc. However, tht' 

difference of the statistical total energy including the Watson 8p11cle ellelgy( colullms 

5 and 6) cannot be fitted to experiment. The best prediction of the second dcctron 

affinity for 0 is with the Watson sphere of charge +2. 

The difference of the statistical total energies betwccn the :-;ingle-charged 

negative Ion 0- with the Watson sphere of charge +1 and the double-charged 

negative Ion 0 2 - with the Watson sphere of charge +2, is -O.G629Ry, close to 

experiment. It can be used ta fit the experimental value by adjustillg the' ladins 

of Watson sphere. However, this method was not used ta predict any other :;ccOlHl 

electron affinity because (i) the best fit of the second electron allini ty is abtaiIH'd 

from the difference of the statistical total energies, with the Wat~on spheres of 

charge +2 and radius 2.66a.u. (which is interestingly close to the latticc-di~tance); 

(ii) physically, the second electron affinity should be the total ('nergy diff'erencc 

between the single- and double-chnrged negative 'ons in the 5élmc C'llvirolllllcnt, it is 

possible to obtain a positive second electron affini ty for an atolll by llsillg ét different 

environment for the single- and double-charged negative ions. 

The statistical total energy of the negative ion in the Watson sphelc aided 

SIC-GX-LSD theory depends on the Watson :-;phere radius. Thcl'cfore the diff('rcnc{' 

between the statistical total energies for the 5ingle- and double-charged ion)" cqua­

tion (4-6), depends on the choice of Watson sphere radius. Watson 5uggcstC'd m>Ïl1g 
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the ionic radius of the double-charged negative ion for the artificial charged sphere. 

This suggestion was tested in the present work for 0, S, and Se using the Watson 

sphere of charge +2. The second electron affinity in the SIC-GX-LSD theory with 

the VWN correlation energy correction is -0.6655 Ry for 0, -0.3858 Ry for S, and 

-0.3462 Ry for Se, compared to the averaged experimental values which are -0.595 

Ry for 0, -0.45 Ry for S, and -0.39 Ry for Se. Obviously, the agreement between 

the calculated and experimental values is not consistent for these three elements; 

the second eledron affinity IS underestimated for ° and overestimated for S and Se 

using the ionie radii of the double-eharged negative ions for the Watson spheres. 

To find the Watson sphere radius which is best for calculating the second 

electron affinity of an atom, the second electron affinities, the difference of the 

total energies (including the VWN correlation energy correction but excluding the 

Watson sphere energy) between the single- and double-eharged negative ions, with 

a Watson sphere of charge +2 are plotted in Fig. 4-1 against the radii of Watson 

sphere for 0, S, and Se in the SIC-GX-LSD the ory with VWN correlation energy 

functional and GWB Fermi-hole parameters. Fig. 4-2 has a Watson sphere of charge 

+1. The experimental values of the second electron affinities for 0 128,140, S, and 

Se128 ,141 are ruso marked on the corrcsponding curves of these figures. From Figs. 

4-1 and 4-2, it is obvious that the calculated second electron affinities of 0, S, and 

Se ru'e much less negative with a \Vatson sphere of charge +1 than with a sphere 

of cllarge +2 for the same Watson sphere radius. Physically, the Watson sphere of 

cllarge +2 is more reasonable, because the net cllarge provided by the remainder of 

a crystal v.muld be +2 for an equilibr!um situation. The Watson sphere has to be 

very small to give an acceptable second electron affinity with a +1 charge sphere so 

that it is far from the lattice-distance found in the crystal. 

Fig. 4-1 illustrates the calculated second electron affinity for 0 equal to 
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FIGURE 4-1 

The difference of the statistical total energies between the 
single- and double-charged negative ions, 

with a Watson sphere of charge 
+2 vs the radius of the 

Watson sphere 
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experiment at a Watson sphere radius of approximately 3.0 a.u.; approximately 2.8 

a.u. for S and 2.6 a.u. for Se or 4.37 a.u., sinee two different experimental values 

of the second electron affinity for Se are given128,141. The "best" Watson sphere 

radius, suitable for the three double-charged negative ions to giVE- correct second 

electron affinities, compared to experimcnt, is approximately 3.0 a.u. 

Table IV-9 lists the negative of the second electron affinities for atoms he­

lium to krypton calculated using equation (4-6), in which the total energies are 

the statistical total energies (including the VWN correlation energ~ correction and 

cxcluding the encrgy generated by the Watson sphere) with the Watson sphere 

of charge +2 and radius 3.0 a.u. using the SIC-GX-LSD theory with the VWN 

correlation energy fullctional and the GWB Fermi-hole parameters. These results 

are compared with other estimates128 ,141, for which extrapolation was used, and 

with experiment I25 ,140,141. Columns 3 and 4 give the electron configurations of the 

single- and double-charged negative ions, chosen according to the ground-state elec-

tron configurations of the atoms, in which the total number of electrons is the same 

as in the negative ion. Column 5 and 6 give the present results without and with 

the VWN correlation energy correction. 

Table IV-9 shows that. all t.he double-charged negative ions are unstable (the 

negative values of the second electron affinities) which supports the physical faet 

that they exist only in c'"Ystals (section IV ~4.1). The statistical total energy of the 

single-charged negative ion is lower than that of the double-charged negative ion 

for all these clements. 

It may be seen that the second electron affinities for the same group elements 

become less negative as the atomic number Z increases, except for the first row 

clements, H and He, where the average Watson sphere radius of 3.0 a.u. is too far 

from the ideal for these atoms. The second electron affinities, EA(2), of the same 
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FIGURE 4-2 

The difference of the statistical total energies between the 
single- and double-charged negative ions, 

with a Watson sphere of charge 
+ 1 vs the radi us of the 

Watson sphere 
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row clements in which the outermost orbitals are 2p also become less negative as 

the occupation number of their spin quantum number ma increases, that is 

EA(2)L, < EA(2)Be < EA(2)B 

and 

EA(2)c < EA(2)N < EA(2)o 

etc., as is true for the elements in which the outermost orbitals are 3p and 4p. 

The calculated results parallel experiment. These trends are reasonablej as the 

total number of electrons increases, the exchange-correlation which is approximately 

proportional to the number of electrons, also increases. The existence of the stable 

negative ions of atoms in nature is mainly caused by the quantum effect, which is 

the negative contribution of the exchange-correlation effect of the electrons to the 

energy functional, therefore the results should paraUel the exchange-correlation. 

Table IV-lO summarizes the second electron affinities for the elements ru­

bidium to lawrencium in the QR-SIC-GX-LSD theory with the GWB Fermi-hole 

parameters and the VWN rorrelation energy correction, and a Watson sphere of 

radius 3.0 a.u. with a cha of +2. The trend is similar to that in Table IV-9. 

In conclusion, it has j)l:en shown that the Watson sphere is an effective tech­

nique for calculating the double-charged negative ions in the SIC-GX-LSD theory. 

The second electron affinities of atoms are acceptable when a correct radius of Wat­

son sphere is chosen, the method has been illustrated and the trends established 

using a fairly accurate average Watson sphere radius of 3.0 a,u. Specifie choice of 

radius would yield slightly more accurate numerical results but not alter the trends. 
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"\0" a. 

Atom 

H 
He 
Li 

Be 
B 
C 
N 
0 

F 
Ne 
Na 
Mg 
Al 
Si 
P 
S 

Cl 
Ar 
J( 

Ca 
Sc 
Ti 
V 

Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 
Ga 
Ge 
As 
Se 

Br 
Kr 

TABLE IV-9 

The negative of the second electron affinities (Ry) of the atoms 
Helium to Krypton in the SIC-G X- LSD theory \Vith the VWN 

correlation energy functional, compared \Vith 
other calculations and experiment 

Electron Config. GX-LSD GX-LSD Other Expt. 
l"t 2nd No Corr. With VWN Cale. 

182 182 281 0.4373 0.4303 
182 281 ls2 282 0.5092 0.4583 

282 2s2 2p1 0.5977 0.5712 
2s2 2p1 2s2 2p2 0.5754 0.5564 
282 2p2 2s2 2p3 0.5573 0.5428 
282 2p3 2s22p4 0.7431 0.6635 
2s22p4 2s22p5 0.6993 0.6383 0.61 a 

2s22p fJ 2s22p6 0.6534 0.6041 0.61 a 0.60b 

0.59c 
2p6 2p6381 0.5754 0.5649 

2p6 3s1 2p6 382 0.5561 0.5048 
382 3s23p1 0.5721 0.5478 

3823p1 3s23p2 0.5376 0.5196 
3s23p2 3s23p3 0.4992 0.4846 
3s23p3 3s23p4 0.6077 0.5312 
3s23p4 3s23p5 0.5414 0.4828 
3s23p5 3s23p6 0.4769 0.4282 0.40b 0.45b 

0.45a 

3p6 3p648 1 0.5190 0.5054 
3p6481 3p6482 0.5048 0.4589 

482 3d14s2 u.5049 0.4814 
3d14s2 3d24s2 0.4741 0.4558 
3d2482 3d3 4s2 0.6282 0.6034 
3d3 4s2 3d5 48 1 0.6908 0.7546 
3d5 4s1 3d5 4s2 0.5781 0.4844 
3d5 482 3d64s2 0.8363 0.7657 
3d6 4s2 3d7 482 0.7978 0.7343 
3d7 482 3d8 482 0.7635 0.7053 
3d8482 3d 10 481 1.0075 0.9570 

3d10 4s1 3d 10 482 0.5352 0.4877 
4s2 4s24p1 0.6316 0.6058 

4s24p1 4s2 4p2 0.5665 0.5478 
4s24p2 4s24p3 0.5106 0.4957 
4824p3 4s24p4 0.5986 0.5235 
4s24p4 4s2 4p5 0.5246 0.4669 
4s24p5 4s24p6 0.4.~4,) 0.4066 0,46b 

0.32a 

4p6 4p6 58 1 0.5004 0.4861 
4p65s1 4p6582 0.4839 0.4397 

Reference 141; b. Reference 128; c. Reference 140. 
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IV -5. Double-Charged Negative Ions in gas phase 

Equation (1-90) for the one-electron cigenvalue and wave function using equa­

tion (1-91) for the Coulomb-interaction potential, (1-127) for the exchange poten­

tial, (1-128) for the self-exchange ,tX)tential, and (1-114) for the electron-correlation 

potential in the electron-correlation corrected SIC-GX-LSD theory with the GWB 

Fermi-hole parameters27 was solved for each orbital by standard SCF procedure48 • 

The statistical total energy, E, in equation (1-86), and the electron-correlativn en­

ergy, Ec, in equation (1-98), for a douhly charged negative ion were obtained froID 

the eonverged wave function142 . 

The SeF procedure in the electron-correlation corrected SIC-GX-LSD theory 

was achieved easily for the doubly c.~arged negative ions of the first category de­

ments in the second and third periods with a small size of \Vatson sphere (rH' S < 10 

D.{)), whereas it is increasely d'lf1cult when the rauius of the \Vatson ~phere increases. 

The electronic structures of these doubly charged negative ions are very sensitive 

to the potential \\ith a large Watson sphere. No con'\'crged rt'&ults were obtained 

by starting with the converged potentiaJ of the neutral atom from a Herman and 

Skillman c.alculation48 and the electron configuration for the corresponding douhly 

charged negative ions, ""hen the radii of the Watson spheres are bigger than 10 ao. 

Renee, an adiabatic convergence technique92 was used: starting with the eonverged 

potential and e1cctron configuration of the neutral atom, 1 percent of an electron 

was added in each folloNing iteration until li. total of two electrons was inc1uded in 

the e.xtra orbitaIs. This slow, adiabatic change from the neutral atom allows the 

system to remain in its ground state. The mixture factor was chosen to be 0.01 to 

0.001 when the radii of the Watson spr?res increase from 10 Qo to 62 ao, the largest 

radius of the Watson sphere in the present work, for B2- and A12- , 10 ao to 74 ao 

for C2-, 10 Qo to 60 a{) for Si2-, la ao to 70 11o for N2- and p2-, and 10 ao to 36 
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TABLE IV-IO 

The electron affinl~ies (Ry) for the high- Z elements in the 
QR-SIC-GX-LSD theory with the aid of Watson sphere of radius 

3 a.u. and the VWN correlation energy Functional 

Electron Configuration SIC-GX-LSD SIC-GX-LSD 
Atom 1',t 2nd No Corr. With VWN 

Rh 582 4d1582 -0.6646 -0.6323 
Sr 4d158 2 4d2582 -0.6141 -0.5869 
Y 4d2582 4d4581 -0.6499 -0.7024 

Zr 4d4581 4d5 581 -0.5591 -0.5528 
Nb 4d5 58 1 4d5 582 -0.5521 -0.4533 
Tc 4d7581 4d8581 -0.6889 -0.6241 
Ru 4d8581 4d1O -0.8464 -0.7720 

Rh 4d1O 4d10 581 -0.5045 -0.4749 
Pd 4d10 581 4d10 582 -0.5086 -0.4620 
Ag 4d10 582 4d10 582 5pl -0.6165 -0.5895 

Cd 5825pl 5825p2 -0.5499 -0.5299 
In 5825p2 5s25p3 -0.4919 -0.'1758 

Sn 582 5p3 5s25p4 -0.5646 -0.4922 
Sb 5825p4 5825p5 -0.4928 -0.4360 
Te 5825p5 5825p6 -0.4258 -0.3781 

1 5p6 5p668 1 -0.4667 -0.4522 
Xe 5p66s 1 5p6 682 -0.4522 -0.4098 
Cs 68 2 5d168 2 -0.6024 -0.568G 

Ba 5d16s2 4f2682 -0.9907 -0.9606 

La 4f26s2 4f3682 -0.8143 -0.7868 
Ce 4f3 682 4f4 682 -0.8759 -0.80157 

Pr 4f468 2 4f5 68 2 -0.9035 -0.8725 

Nd 4f5 682 4f6682 -0.9180 -0.8870 

Pm 4f6682 4f7682 -0.9272 -0.8!)64 

Sm 4f7682 4f75d1682 -0.6485 -0.6212 

Eu 4f7 5d168 2 4f85d1682 -1.0244 -0.951.1) 

Gd 4f85d16s2 4f 10 68 2 -1.3033 -1.2253 

Tb 4f10 682 4f11682 -1.0922 -1.043!} 

Dy 4f11682 4f 12 682 -1.1178 -1.0679 

Ho 4f12 68 2 4f 13 682 -1.1234 -1.07t11 

Er 4f13 6s2 4f 14 682 -1.1183 -1.07H 

Tm 4f14 682 4f14 5d1682 -0.6993 -0.6G8:! 

Yb 4f14 5d1682 5d2 G82 -0.6451 -0.GW2 

Lu 5d268 2 5d3 68 2 -0.6040 -0.5812 
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TABLE IV-IO (Continued) 

The electron affinities (Ry) for the high-Z elements in the 
QR-SIC-GX-LSD theory with the aid of Watson sphere of radius 

3 a.u. and the VWN correlation energy Functional 

Electron Configuration SIC-GX-LSD SIC-GX-LSD 
Atom l8t 2nd No Corr. With VWN 

Hf 5d36s2 5d4 6s2 -0.5672 -0.5469 
Ta 5d46s2 5d5 6s 2 -0.5308 -0.5127 
W 5d56s2 5d6 6s2 -0.7020 -0.6265 
Re 5d6 6s2 5d76s2 -0.6438 -0.5778 
Os 5d76s2 5d9 6s 1 -0.7737 -0.7127 
Ir 5d9 6s 1 5d106s 1 -0.5955 -0.5432 
Pt 5d106s1 5d106s2 -0.4398 -0.3929 

Au 6s2 6s26pl -0.6225 -0.5950 
Hg 6s 26pl 6s26p2 -0.5538 -0.5335 
TI 68 26p2 6826p3 -0.4934 -0.4772 
Pb 6s26p3 6s26p4 -0.5581 -0.4862 
El 6s26p4 6s2 6p5 -0.4868 -0.4310 
Po 6826p5 6826p6 -0.4201 -0.3729 

At 6s 26p6 6p6 7s 1 -0.4667 -0.4503 
Rn 781 782 -0.4495 -0.4074 
Fr 782 6é782 -0.6017 -0.5694 
Ra 6d1782 6d27f2 -0.5538 -0.5264 
Ac 6d27f2 5f26d1 782 -1.0068 -0.9656 
Th 5f2 6d1782 5f3 6d1 782 -0.7620 -0.7321 

Pa 5f3 6d1782 5f3782 -0.9487 -0.9145 
U 5f3 782 5f6 782 -0.7900 -0.7629 

Np 5f6 78 2 5f778 2 -0.7871 -0.7602 
Pu 5f7782 5f7 6é 782 -0.6308 -0.6078 

Am 5f7 6d17s2 5fB6d17s2 -0.8777 -0.8039 

Cm i:J"B 6d 178 2 5f1078 2 -1.0907 -0.9907 
Bk 5f10782 5f117s2 -0.9200 -0.8636 
Cf 5f11782 5f12 78 2 -0.8963 -0.8422 
E8 5f12 782 5f13 78 2 -0.8716 -0.8199 

Fm 5f13 782 5f14 78 2 -0.8466 -0.7972 
Md 5f14 782 5f14 6d178 2 -0.7023 -0.6714 
No 6d1782 6d27s2 -0.6456 -0.6200 
Lr 6d2 78 2 6d3 78 2 -0.6034 -0.5808 
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ao for 0 2- and S2-. This mt.ans 99.9 percent of electron density from the (i-l )'h 

iteration and 0.1 percent of electron density from the ith iteratioll \\'ere combined 

together and used to produce the new potential for the (i+1)th it,crat.ion, whell the 

mixture factor is 0.001. The SCF procedure was completed when the diffel'('nce in 

the wave functions of electrons between the i'il éUld the (i+1)th iteratiolls were less 

than 10-8 at all mesh points. Obviously, the speed of convergellce is very slow lUld 

decreases, when the radius of the Watson sphel e increases. In lùl thi~ work, tht' 

net charge on the Watson sphere is +1 e. When the radius of the Watsou sphere 

is bigger than the largest radius of the vVatson sphere of the conespondillg doubly 

charged negative ion, no converged results wele obtained. The largest radius of the 

Watson sphere which can be used to produce the convelged dectrollic ~huctUle of 

the corresponding doubly charged negative iOIl ùiffers for diffl'll'ut doubly charged 

negative ions and depends on the electronic structure and clertroll configuration. 

For example, the largest radius is 62 ao for both B2
- and Afl

-, which me of the 

same valence electron configurations with a half occupied p orbital, 1i;. 

The additional potential produccd by the introduction of a Watsoll ~phcre 

in the doubly charged negative ions is 

when r < rws; 
when r ~ l'WS. 

(4 - 7) 

The total potential induding the Coulomb interactions betwcell the nucleus mlel 

electron, electron and electron, and positive charge on the \Vabou I->phcl(, éUHl dec­

tron, the exchange and correlation potentiab is certainly a (,()lltiJl1lOtl~ fUIlctioIl of 

radial r. But its derivative is not a continuons function, becatl~(' of the lL~(, of the 

Watson sphere potential. The left-hand d{'rivativ(' of the \Vat:"Oll ~plH'l(: }lot(,lltial, 

Vws(r), is zero and its right-hand derivative is + at l' = l'wc, FIg. 4-3 plots 
, n, 5 

the product of the potential and the radial r for the outel111o~t Olbital, 2p L of the 

doubly charged negative ion of carbon, C2
-, again&t the Illodified wdial x (the rc-
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-
lationship of the modified radial x and the ordinary radial ris r = ~e: )2/3 Z-1/3 X 

with the atomic Ilwnber Z) and demonstrates the discontinuolls h€haviour of the 

first derivative of the total potential at r = rw s. It is very interesting that there is 

a total potential barrier with positive total potential inside the Watson sphere. The 

total potential of the outermost orbital gradually increases passing the rV(r) = 0 

value with a zero total potential and th en becomes positive arriving its peak. As the 

radial r continuously increases, the total potential gradually decreases and passes 

the rV(r) = 0 value again and becornes negative outside the Watson sphere. This 

implies that the clectron-electron interaction potential, which is the only positIve 

contribution to the potential in the total potential expression, is larger than the 

n<>gative potential, which incluèps the contribution from the nucleus-electron and 

Vùüson ;,phere charge-electron interaction and the exchange-con dation effect. 

Fig. 4-4 plots the dependence of the electron density distribution for the 

clectron in the outermost orbital, '2p 1, of the doubly charg 'd ncgatHe ion of carbon, 

C2-, on the radius of the \\'atson sphere. 1t is clear thr-lt the elcctron Je r:.si t y is 

graclually shifted tüward a large radius, when the radius of the \ratson sphere is 

incr('a~illg. In order to kcep the norrnalization restriction of the wa\'1' function, the 

peak of the CUI vc is n'cl uced and the electron densi ty gradually t .eads, as the 

Watson sphere size incre'lses. The electron density distribution of a core orbital, 

such as the 18 orbital in C2-, is not affected by cllanging the radills of the Watson 

~phcrt·. 

Compariug Figs. 4-3 and 4--1 shows that the electron density of the outermost 

01 bitaI is lllainl)' distributed outsicle of the \Yatson sphere, wh~n the rachus of the 

\\'atsllIl ~plH?re is less than ïO ao H('I!ce, the bürrier of the total potential is Ilot 

cau'-o('d L~' tht' chnxg,e dCllSit~· of the clectlon in the outermost orbital, Lut created 

Ly the constAIlt pot cu t ial gCllerated by the charge on the Watson sphere in~ide t'le 
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Watson sphere. 

Obviously, the statistical total energy and the one-electron eigenvalue of a 

doubly charged negative ion in the electron-correlation corrected SIC-GX-LSD the­

ory with the GWB Fermi-hole parameters are dependent on the Watson sphere 

size, when it is not large enough. Table IV-ll shows the dependence of the to­

tal energy including the statistical total energy and the VWN correlation energy 

contribution but excluding the energy contribution from the Watson sphere, the 

one-electron eigcnvalue, and the expectation value of the Watson sphere potential 

for the elcctron in the outermost orbital of the doubly charged negative ion of car­

bon, C2-, on the radius of the Watson spherc. When the radius of the Watson 

sphere increascs, the electron density spreads toward the large radial. Therefore, 

the electron-electron repulsive energy decreases and the nucleus-electron attractive 

energy dccreases. Because the contribution of the former to the statistical total 

energy is positive and the contribution of the latter is negative, they partly cancel. 

The total cnergy excluding the Watson sphcre energy (Table IV-11) depends slightly 

on the radius of the 'Watson sphere and increases in size as the radius of the Watson 

sphere increases. FUrthermore, the dependence of tlle total energy on the radius 

of the Watson sphcre decreascs as the radius of the Watson sphere increases. For 

cxamplc for C 2 - the differencc of the total energies calculated by using the Watson 

sphercs \Vith l'WS = 14ao and rws = 18ao is 0.0017 Ry, whereas the difference of 

t.he total cnergi,~s calculated by u5ing the \Vatson spheres \Vith rws = 54ao and 

nv 5 = 58ao is 0.0010 Ry. Howevcr the one-electlOn eigenvalue for the outermost 

orbital of the douhly charged ncgative ion is strongly depcndent on the radius of 

the \Yatson sphcre and decreascs in magnitude as the radius of the Watson sphere 

increases. The dppendf>nce of the expectation value of the Watson sphere potential 

for the dectron in the outermost orbital of C2- is shown in column 4 of Table 

N -11. Tllf' value dccreases as the radius of the Watson sphere increases, because 
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FIGURE 4-4 

The dependence of the electron density distribution 
for the electron in the outermost orbital, 

2p l, of the doubly charged negative 
ion of carbon, C2

- , on the radius 
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the potential contribution of the Watson sphere lS gradually reduced by increasing 

the radius of the Watson sphere. The real one-electron eigenvalue can be obtained 

by subtracting the expectation value of the Watson sphere potential, column 4 in 

Table IV-Il, from the calculated one-electron eigenvalue of the corresponding or· 

bitaI, in column 3 in Table IV-Il. Renee the real one-electron eigenvalue excluding 

the contribution from the Watson sphere is positive and gradually decreases when 

the radius of the Watson sphere incl'eases. 

TABLE IV-11 

The dependence of the total energy and the one-electl'on 
eigenvalue and the expectation value of the Watson 

sphere potential for the outermost orbital of the 
doubly charged negative ion of carbon, C2 - (Ry) 

rws Etot (2p! < 2p t Ivws 12p t> 

10 -76.1276 -0.004366 -0.04175 
14 -76.1292 -0.004320 -0.04009 
18 -76.1309 -0.004265 -0.03838 
22 -76.1327 -0.004197 -0.03654 
26 -76.1346 -0.004119 -0.03462 
30 -76.1364 -0.004033 -0.03274 
34 -76.1381 -0.003943 -0.03094 
38 -76.1398 -0.003853 -0.02927 

42 -76.1413 -0.003763 -0.02772 
46 -76.1426 -0.003675 -0.02629 
50 -76.1439 -0.003590 -0.02500 
54 - 76.1450 -0.003508 -0.02380 
58 -76.1460 -0.003429 -0.02271 
62 -76.1470 -0.003353 -0.02170 
66 -76.1479 -0.003280 -0.02079 
70 -76.1487 -0.003211 -0.01994 

Since the total energy excluding the energy eontribution of the Watson sphere 

for a doubly cllarged negative ion increases in magnitude as the radius of the Watson 
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sphere increases, the difference of the total energies for the doubly clutl'ged ncgntive 

ion and the singly charged negative ion, in which no vVatson sphere was \lsl'd, 8hould 

decrease in magnitude. Table IV-12 lists the dependencc of the secoud dectroll 

affinities for the B and Al on the radius of the Watson sphere in the elcctroll­

correlation corrected SlC-GX-LSD the ory with the GWB Fermi-hale pm'ameters. 

The difference in the electron affinities become smaller and smaller, when the radius 

of the Watson sphere becomes bigger and bigger. For instance, the differenee of the 

electron affinity for B is -0.2437 Ry, when the vVatson sphere size is illcreased froIll 

2 ao to 4 ao, -0.0020 Ry when the size is increased from 30 au to 32 (lo, fUld -0.0006 

Ry when the size is increased from 60 ao to 62 ao. The electron affini ty in the 

electron-correlation corrected SlC-GX-LSD theol'y is nat significantly clmllged by 

increasing the Watson sphere radius when the \Vatson sphere radius is large enough 

and approaches a constant value. Unfortunately, no converged values \V{'l<' obtainC'd 

for B, when the radius of the Watson sphere was bigger than G2 (Ju. This mises 

the question of what is the asymptotic value of the electron afRlli ty for il whcn the 

Watson sphere radius goes to infinity? Is it possible to fit the calculatcd value aJl(1 

then estimate its asymptotic electl'On affinity using any function? Thr bC'havioUl' of 

the calculated electron affini ty for B is inversely proportional to the tadi \lS of the 

Watson sphere. 

The simpliest function worthwhile testing is 

a 
A=Ao-- (4 - 8) 

rws 

where Ao and a are constants to be detenllil1ed. If the equatioll cau fit the <,lcctron 

affinities calculated in the electron-correlation cOl'l'ected SIC-GX-LSD thcOlY with 

a large size of \Vatson sphere, the asymptotic yalue should correspond to the l'pal 

electl'On affinity, when rws approaches infinity, that is Au. 

This approach was tested for B first. It was found that whcn Au = -0.1147 
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Ry and a = 1 Ry/ao, the electron affinities calculated by using the Watson spheres 

whose radii are bigger than 30 ao were perfectly fitted by equation (4-8). The 

calculated and fitted results are listed in the columns 2 and 3 of Table IV-12, 

respectively, and plotted in Fig. 4-5. The dependence of calculated electron a.ffinities 

for Al on the radius of the Watson sphere is of the same behaviour as those for B. 

The calculated electron affinities by using different radii of the Watson spheres also 

ca.n he fit ted by equation (4-8) with Ao = -0.1344 Ry and a = 1 Ry / ao . The 

calculated and fitted electron affinities are summarized in the columns 4 and 5 of 

Table N-12, respectively, and plotted in Fig. 4-6. 

The same behaviour can he applied to other doubly charged negative ions of 

the first category elements in the second and third periods. Figs. 4-7 to 4-12 plot 

the electron affinities calculated in the electron correlation corrected SIC-GX-LSD 

theory with the GWB Fermi-hole parameters and the fitted electron affinities by 

using equation (4-8) with Ao = -0.0047 Ry and a = 0.9 Ry / ao for C, Ao = -0.0083 Ry 

and a = 0.7 Ry/ao for Si, Ao = -0.0237 Ry and a = 1.425 Ry/ao for N, Ao = -0.0458 

Ry and a = 1.395 Ry / ao for P, Ao = -0.3606 Ry and a = 0.6353 Ry / ao for 0, and Ao 

= -0.2012 Ry and a = 0.56 Ry /ao for S. The electron affinities are presented in Table 

IV-13 and cornpared with the HF calculation given by Clementi and McLean131 and 

the configuration interaction calculations with the single and double substitutions 

obtained by Kalcher134 . The calculated results are very different. But the present 

results are the only ones which are part of a large body of established results and 

should be correct. Unfortunately, there are no experimental values to be available 

for compariwn. But, at least, all these calculations show that the doubly charged 

negative ions of the first category elements in the second and third periods are 

unstable in gas phase. 

It might be impossible to achieve the SCF calculation for the doubly charged 
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TABLE IV-12 

The dependence of the second electron affinities (Ry) of B and 
Al on the Watson sphere radius (a.o), and fitting by a function 

of A = Ao - _4_ with Ao=-0.l147 Ry and a.=1 Ry sel rws -v 

for B and -0.1344 Ry and a=1 Ry aQ"1 for Al 

B Al 
rws GX-LSD Fitting GX-LSD Fitting 

2 -0.5835 -0.6147 -0.5839 -0.6344 
4 -0.3398 -0.3647 -0.3577 -0.3844 
6 -0_2613 -0.2814 -0.2771 -0.30l1 
8 -0.2248 -0.2397 -0.2397 -0.2594 

10 -0.2040 -0.2147 -0.2193 -0.2344 
12 -0.1903 -0.1980 -0.2063 -0.2177 
14 -0.1805 -0.1861 -0.1971 -0.2058 
16 -0.1730 -0.1772 -0.1902 -0.1969 
18 -0.1671 -0.1703 -0.1846 -0.1900 
20 -0.1623 -0.1647 -0.1802 -0.1844 
22 -0.1583 -0.1602 -0.1765 -0.1799 

24 -0.1547 -0.1564 -0.1733 -0.1761 
26 -0.1501 -0.1532 -0.1706 -0.1729 
28 -0.1489 -0.1504 -0.1676 -0.170l 
30 -0.1474 -0.1480 -0.1666 -0.1677 
32 -0.1454 -0.1459 -0.1647 -0.1656 
34 -0.1437 -0.1441 -0.1630 -0.1 r 18 
36 -0.1421 -0.1425 -0.1615 -0.1622 
38 -0.1407 -0.1410 -0.1600 -0.1607 
40 -0.1394 -0.1397 -0.1587 -0.1594 
42 -0.1384 -0.1385 -0.1577 -0.1582 
44 -0.1373 -0.1374 -0.1566 -0.1571 

46 -0.1364 -0.1364 -0.1557 -0.1561 
48 -0.1354 -0.1355 -0.1546 -0.1552 
50 -0.1347 -0.1347 -0.1543 -0.1544 
52 -0.1339 -0.1339 -0.1535 -0.1536 
54 -0.1332 -0.1332 -0.1528 -0.1529 
56 -0.1325 -0.1326 -0.1521 -0.1523 
58 -0.1319 -0.1319 -0.1516 -0.1516 
60 -0.1314 -0.1314 -0.1510 -0.1511 
62 -0.1308 -0.1308 -0.1505 -0.1505 

negative ions of atoms directly applying the LDF theory, but with the r:1 of a 

Watson sphere, the SCF procedure can be carried out properly, whcn the radius 
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of the Watson sphere is not very big. The total energy for the doubly charged 

negative ion in the electron correlation correded SIC-GX-LSD theory with the 

GWB Fermi-hole parameters is of the same behaviour as equation (4-8). The second 

electron affinities of atoms calculated by the differences of the total energies C8Il he 

approximated by the asymptotic values of equation (4-8) as the radius of the Watson 

sphere goes to infini ty. 

TABLE IV-13 

The second electron affinities (Ry) of B, C, N, 0, Al, Si, P 
and S obtained by fitting the calculated values in the electron 

correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole 
parameters, compared with other theoretical calculations 

Atom SIC-GX-LSDa CI(SD)C 

B 
C 
N 
o 
Al 
Si 
P 
S 

-0.1147 
-0.0047 
-0.0237 -0.4540 
-0.3606 -0.4440 
-0.1344 
-0.0083 
-0.0458 
-0.2012 

a. The present workj 
b. Reference 131; 
c. Reference 134. 

-0.0542 
-0.0612 
-0.0612 
-0.0499 

Qualitatively, the signs of the second electron affinities in the electron cor­

relation corrccted SIC-GX-LSD theory with the GWB parameters are the same as 

obtained by the HF and CI(SD) calculations. The doubly charged negative ions in 

their ground states are tillstable in gas phase for the first category elements in the 

second and third periods. 
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FIGURE 4-5 

The dependence of calculated second electron affinities 
for B on the radius of the Watson sphere 
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FIGURE 4-6 

The dependence of calculated second electron affinities 
for Al on the radius of the Watson sphere 
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FIGURE 4-1 

The àependence of calculated second eJectron affinities 
for C on the radius of the Watson sphere 
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The dependence of calculated second electron affinities 
for Si on the radius of the Watson sphere 
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FIGURE 4-9 

The dependence of calculated second elect ron am ni tics 
for N on the radi us of the Watson sphere 
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FIGURE 4-10 

The dependence of calculated second '!!ectron affinities 
for P on the radius of the Watson sphere 
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FIGURE 4-11 

The dependence of calculated second electron affinities 
for 0 on the radius of the Watson sphere 
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FIGURE 4-12 

The dependence of calculated second electron affinities 
for S on the radius of the Watson sphere 
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CHAPTER V 

FRACTIONAL CHARGED ATOMS AND IONS 

V-l. Introduction 

The electronegativity of an atom is an important concept in lUldelstand­

ing many molecular properties141 ,143, such as the screened llueleéU' chmge S('('11 hy 

the outer electrons, the radius of electron doucIs, the work fUllctiou of llletals, 

the bond energy of molecules, the dipole moment of molccules, the fmcc Wll-

stants of molecules, etc. It has been related with the dipole polarizability in 

atoms144 ,145 and the electronic distribution in llloiccule!:>1 16. Tht'rdOI(', mach at-

tention has been focused on predicting the electronegativitic::, of atolll~ eUHl atolllic 

groups55,76,78,144-154. Electronegativity is the power of éUl atolll ill a llloll'cule to 

attract electrons to itself143. 

Many definitions of the electronegativity occur141 . A widcly used definition 

of atomic electronegativity was given by Mulliken155 

(1 +A) 
x= 2 

(5 - 1) 

The electronegativity, X, is equai to the average ,~dlue of thc ionization potelltial, 1, 

and electron affinity, A, of the atom in the ground ::,tate. 

The electronegativity concept in the dcnsity-fuIlctional thCOlY of Pmr <'t 

al.147 1S 

x = - [aE] 
aN z 

(5 - 2) 
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where E is the statistical total energy treated as a continuous function156 of electron 

number, N, and the nuclear charge, Z. Parr and Pearson 77 defined the absolute 

hardncss 'TJ of an atom to be 

(5 - 3) 

li the derivation in equation (5-3) is replaced by its finite difference, the absolute 

hardness 'TJ can be expressed by 

CI - A) .,.,= 
2 

(5 -4) 

The electronegativity and hardnl '3S of an atom provide the relationship to 

quantify the amount of charge transferred in the formation of a molecule because the 

electronegativity must be constant everywhere in e<-!uilibrium. \\Then two atoms A 

and B are brought together, electrons will flow from the atom with lower electroneg­

ativity to that with higher electronegativity until the electronegativities become 

<--'qual. The charge transferred during the formation is 

(5 - 5) 

Recently, the definition of hardness of an atom was generalized by Orsky and 

Whi tehead 78 to 

(5 - 6a) 

and 

'TJB = 
(IBO - AB-) 

4 
(5 - 6b) 

whel'e 'TJA and 1JB are the hardnesses for the acid A and base Bj IBO and IA+ are 

the first and second ionization potentials, and AAO and AB- the first and second 
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electron affinities for th~ atom. This theory was developed and used in ntom and 

atomic group calculations81 ,152. 

Calculation5 of electronegativity and hardness need étCCmate \-1\lu<'8 of iOlliza­

tion potentials and electron affinities. The experimental ionizatioll poklltials éUid 

electron affinities are rnissing for many atoms. Semi-empirical inter-extrapolation 1113 

compensates for the lack of experimental values, but was based ou ('xistiug exp<'ri­

mental values of atoms and molecules. 

Fortunately, the self-interaction and electron-correlatioll corrcded LDF thc­

ory has proved powerful in predicting the ionization potelltials éUiel dectlOll affini­

ties of atoms30,45,49,73,81,92.101,105. The ~lf-interaction and clectroll-('onclatioll cor-

rected LDF theory does not depend on any experimelltal values. 

Lackner and Zweig153 ,157 generalized the concept of eledlOll<'gativity éUiel 

hardness to fractionally charged atolllS. They obt ained the ionizatlOll pot,eutialH 

and electron affinities of quark atoms for all d(,lllents with Z < 03 III tlH' p<'liodic 

ta.ble by isoelectronic interpolation of the expcrimental iOllization potcutiab éUld 

electron affinities n f the ordinary atoms. They leported the clectlOll('gati\'itie~ él.1lel 

hardnesses of quark atoms with fractional nuclear charge Z=~ ± i ,Ul<! Z=N ± ~. 

Sen et al. 158 published the electronegativitics ,Uld the eldroIll'g,ativity (l!fI'('lt·w·(':-' 

for the quark atoms of l1r\logens, having nuclear charge Z=:\ ± i by \l~lllg t'CjwttlOll:-' 

(5-1) and (5-2) in the SI LSD theory. The SJC-LSD result:-, élIt' in agI('('uH'llt witl! 

the Lackner and Zweigl53 empirical results. But Sen et al l.::;t; ouI)' dcalt wIth the 

halogens, because of convergence problems in calculating tl1<' w'gative 1011:-' of the 

quark atoms of other clCllwllts with fractional lluclear charge' Z=~- i· 

ID this chapterl59 , the iOllizatioll potcutials éUHl dt'ct lOll a.ff:illitie:-, for cal­

culating the electronegativitics and hardIle~se~, the fust éUHl ~'cOl[(l iouizatioll po­

tentials and electron affinities of the quark atollls wlth fractiollal lllldcétr char~('s 
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c Z=N ± ~ and Z=N ± ï for the elements with Z < 37 will be calculated by the SIC­

GX-LSD theory with the GWB Fermi-hale parameters and the Vosko, Wilk, and 

Nusair39 ,138 (VWN) correlation energy functional. A special convergence technique 

pcrforrns the self-consistent-field (SCF) calculation for the electron affinities, ta 

avoid severe convergence problems in ca1culating the negative ions of quark atoms. 

By means of the method introduced in section III-l, equation (3-4), the first 

ionization potential, l, and electron affinity, A, are given by 

1 = Ett - E?ot (5 -7a) 

and 

A = E~ot - Elot (5 -7b) 

where Et" E~o" and E~t are sum of the statistical total energy in the SIC-LDF 

theory, E, and correlation energy contribution, Ec, for the positive ion, neutral 

atom, and negative ion, respectively, that is 

E l - El El tot - + c (5 -8) 

whcre 1 stands for +, 0, or -, The statistical total energy in the correlation corrected 

SIC-GX-LSD theory is calculated by equation (1-86), and the correlation energy 

correction, Ec, is obtaincd by equation (1-98) in the VWN correlation procedure. 

The electron-correlation correded SIC-GX-LSD theory with the GWB27 ex-

challg<> pax ametn s is used in this calculatioll, because previously45,73, 74,81,101,105, 

it gave very good statistical total ellergies for the neutral atoms EO, positive and 

ll<'gati\'l' ious El (whcre 1 stands for + or -) of the ordinary atoms in agreement 

with Hartrpc-Fock (HF)102, The fu'st and second ionization potentials and the first 

dectron nffillities for the quark atoms (hydrogen to krypton) with fractional nu­

deéll' charge Z=N ± ~ and Z=N ± î and the second electron affinities for the quark 
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atoms with Z=N ± l and Z=N + ~ are evaluated from the difference in total cncrgies 

which are the sums of the statistical total energies and the corrcspondillg V\\TN 

correlation-energy corrections of the quark atom and first Older quark ion (cqua­

tions (5-7a) and (5-7b» or the first and second order quark ions. The results are 

shown in Tables V-1 to V-4, V-7 and V-8 and compared to the isoclectwnic interpo­

lated values given by Lackner and Zweig153 . The ionization potclltials iUlcl clectron 

affinities are employed to calculate the electronegativities éUl<l the Imrclnesses by 

equation (5-4) and the equations (5-6a) and (5-6b). The rcsults are summarized in 

Tables V-1 to V-4. 

V-2. Ionization Potential 

The first and second ionization potentials are listed in columns 3 and 4 

of Table V-1 to V-4 for the quark atoms with fractional nuclear charge Z=N±k 

and Z=N ± ~, respectively, for the elements hydrogen to krypton in the dectroll­

correlation corrected SIC-GX-LSD theory with the GWB Fermi-hole> parallleters. 

The electron-configurations for the quark atoms and the fu'st éUld second order 

positive ions were taken from Moore's table83
, the electron-configuration of aIl quark 

atom or positive ion is the same as that of the neutral atom or positive ion of the 

corresponding element in Moore's table. 

To compare the present values with the empirical interpolated first ioui2ation 

potentials of Lackner and Zweig153 based on the experimcntal ionizatiou potclltials 

of isoelectronic consequences of the ordinary lleutral atorns and positive iOIls, Figs. 

5-1 to 5-4 plot the first ionization potentiab of the quark atollls \Vith fwctional 

nuclear charge Z=N±~ and Z=N±t against the nuclear charge. The agreement 

of the first ionization potentials for the quarks with fractioual ulldear Z=N ±!ï 
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and Z=N + î between the present calculated values and the Lackner and Zweig 

results is excellent, except for the transition-met aIs clements. The deviation for the 

transition-met al elements might be caused by the different electron-configurations 

considered in the present work and in the interpolation. Furthermore, the present 

results are slightly bigger th an Lackner and Zweig' s results. From Fig. 5-4, it can 

be seen that this agreement for the quark atoms with Z=N - i is worse than that of 

the quark atoms with Z=N±t and Z=N+~. Because the net charge for these quark 

atoms with Z=N-i is -ie, and consequently, the outermost electrons are less bound 

than in the quark atoms with Z=N ± t and Z=N + ~. In the numerical calculation, 

the quark atoms with Z=N-î are strongly dependent on the electron-correlation, 

like that of the ordinary negative ions92 ,94,106,109. Hence, the correlation-energy 

contribution to the ionization potentials is very important for the quark atoms with 

Z=N-i· 

From Figs. 5-1 to 5-4 and Tables V-l to V-4, it can be seen that the first and 

second ionization potentials of the quark atoms have the same trend as the ordinary 

atomsj the ionization potential increases as the occupation number of the subshell 

increases. The rare gas elements are of the rughest mst ionization potentials in 

the same row, and the alkaline-metal elements possess the lowest first ionization 

potentials. 
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FIGURE 5-1 

The first ionization potentials of the quark atoms with fractional 
nuclear charge Z=N + ~ in the electron-correlation 

corrected SIC-GX-LSD-GWB theory, compared with 
Lackner and Zweig' s interpolation 
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V-3. Electron Affinity 

Equation (1-90) for the one-electron eigenvalue and wave function using equa-

lioIl (1-!J1) fi)r the Coulomb-interaction potential, (1-127) for the exc11ange poten­

liaI, (1-128) for the ~,df-cxchange potential, and (1-114) for the electron-correlation 

potf'utial in tltr' dœtron-corrciatioll corrected SIC-GX-LSD theory was solved for 

each orbital by ~talldard SCF procedure48 self-consistently. The SCF process was 

achi('vccl (>1il->ily for the OIdillary quark atoms and their negative ions with fractional 

nucl<'ltr chargr' Z=N + i and Z=N + ~, because of the attractive asymptotic forms of 

potential 

Ver) = _2(1 + %) 
r 

(5 - 9) 

wh en r approaches infinity, for the quark atoms \Vith a = 1 for Z = N + k and a = 

2 for Z = N + ~. The results arc listed in Tables V-1 and V-3. 

The electron affinities of the quark atoms with fractional nuclear charge 

Z=N + t li~tcd in WlUIllll .) of Table \"-1 me actually equivalent to the first ionization 

potcutials of the quark atom~ '.\it". Z=N-~ (in Table V-4), and the electron affinities 

of the quark atollls \Vith Z=X + ~ ill column 5 of Table V-3 me equivalent to the 

first iOllizatioIl pctelltials of the quark atoms \Vith Z=N-i (colt!T11n 3 of Table V-2), 

but belong,ing to clitfcrellt quark atoms. For example, the electron affinity of 0.47 

Ry for the quark atolll H with Z=I" + t=l t is l'quaI ta the fu'st ionization pot.ential 

of Hl' wit 11 Z=K- ~ =1 h becausc they have the :,ame numher of electrons, the same 

llucleHr charge, iUld the sttlnc elcct 1""0 configuration; arld the electron affinity of 1.07 

fiy for H wi t h Z=N + ~ =1 ~ in Tabl(~ V-3 lS cqual to the fust ionization potentia! of 

H{, with Z=l\-~=11 ill Table V-2. 

The SCF cnIculation \Vas achicveJ for the negative ions of the quark atoms 

rclatt'd to the elc1llcuts ill group VII A, having nactional nuclear charge Z=N-~, 
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H 
He 
Li 
Be 
B 

C 
N 
0 

F 
Ne 

Na 
Mg 
Al 
Si 
P 

S 

Cl 
Ar 
K 
Ca 

Sc 
Ti 

V 
Cr 
Mn 

Fe 
Co 
Ni 
Cu 
Zn 

TABLE V-l 

The first and second ionization potcntial~, ('lectron affinitit's, 
electronegativities, and hardne!>ses (Ry) ca\culated by the 

electron-correlation corrected SIC-GX-LSD-GWB theorv for 
sorne quark elements whose net charge is +e/3 (Z=N+'l/:q 

Z la lb Al \<1 c f 
1 2 I}A I} /J 

Il 
3 1.83 0047 1.15 OA(j 

2 1 
3 2.93 5.51 0.08 1.51 1.36 0.73 

3 1 
3 0.68 7.38 0.21 OA.') 1.79 0.17 

ill 
• 3 1.02 1.79 0.14 0.58 0.41 0.26 
51 

3 0.98 2.34 0.26 0.G2 0.52 0.24 

6 1 
3 1.27 2.34 DAO 0.83 0.49 0.:32 

71 
3 1.57 2.80 0.27 0.92 0.G3 O.:H) 

8 1 
3 1.48 3.26 0.46 0.97 0.70 o.:n 

9 1 
3 1.85 3.23 067 1.26 0.64 0..16 

10 1 
3 L.21 3.76 0.09 1.15 0.92 0 .. 55 

11 1 
3 

0.63 4.29 0.20 0042 1.02 0.16 

12 1 
3 0.84 1.46 0.10 0,47 0.34 0.21 

13 1 
3 0.67 1.76 0.20 0.44 0.39 0.17 

14 1 
3 0.87 1.52 0.31 0.59 0.30 o.n 

15 1 
3 

1.07 1.81 0.28 0.68 0.38 0.27 

16 1 
3 

1.09 2.10 0042 0.75 0.42 0.27 

17 1 
3 1.32 2.16 0.57 0.94 0.40 0.33 

18 1 
3 1.55 2.48 0.09 0.82 0.60 0.39 

19 1 
3 0.52 2.80 0.17 0.35 0.66 0.13 

20 1 
3 0.67 1.14 0.15 0.41 0.25 0.17 

21 1 
3 0.70 1.22 0.11 0.4] 0.28 0.17 

22 1 
3 0.73 1.29 0.34 0.53 0.24 0.18 

23 1 
3 0.51 1.60 0.42 OAG 0.30 0.13 

24 1 
3 0.75 1. 73 0.21 0.48 0.38 0.19 

25 1 
3 0.79 1.48 0.03 0.41 0.36 0.20 

26 1 
3 0.84 1.52 0.34 0.59 0.30 0.21 

27 1 
3 

0.65 1.80 0.44 0.04 0.34 0.16 

28 1 
3 0.59 1.94 0.53 0.5(3 0.:15 0.15 

29 1 
3 0.86 2.07 0.29 057 0.'1,1 0.2] 

30 1 0.99 1.69 0.10 0.54 o ,1(} 0.2:; 
3 
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TABLE V-l (Continued) 

The first and second ionization potentials, electron affinities, 
electroneg~tivities, and hardnesses (Ry) calculated by the 

electron-correlation corrccted SIC-GX-LSD-GWB theory for 
sorne qua.k elcmenb who::,e !let charge is +e/3 (Z=N + 1/3) 

z Iï I~ Al \d 7JA 1)~ 

Ga 31 1 
3 

0.68 1.87 0.20 0.44 0.42 0.17 

Ge 32 1 
3 

0.84 1.47 0.30 0.57 0.29 0.21 

As 33 i 
3 

1.01 1.69 0.28 0.65 0.35 0.25 

Se 34 i 
3 

1.02 1.91 DAO 0.71 0.38 0.25 

Br 3'" 1 .) 3" 1.20 1.94 0.53 0.86 0.35 0.30 

Kr 3G l 
J 

1.~J8 2.18 0.09 0.73 0.52 0.34 

a. Tite fir::,t IOllilatioll patential; 
b. The ~econd iOlllzation potential; 
c. The first eledran afIllllty; 

d. Electronegativlty, \ = (/~A) , 
e. I1ardne;,s of aC1() A, 114 = (lA±~AAO); 

f. If 1 fi 13 Uno-An-) an ness 0 Jase ,1]8 = 4 ; 

g. Abholut<, hardncss, 7J = (J -A) 
-2-

1]g 

0.24 

0.27 

0.36 

0.31 

0.34 

0.65 

although the asymptotic forms of the potentials are repulsive, the value of a 111 

equatioll (5-9) is -1. The calculatiolls in the electron-correlation corrected SIC-GX-

LSD theory ~Uld in the electron-c'olrclation correctcd quasi-lelativistic SIC-GX-LSD 

(QR-SIC-GX-LSD) tlH'ory show that the negati\'e ions of these quark atoIlls with 

Z=N-t arc stable cxccpt for F-, when the V\VN conelation enclgy contribution 

i5 illVOked The de ct 1 "') affinity i8 -O.0451Ry for P, O.0711Ry for Cl, O.0815Ry 

for Dl, O.0945Ry for l" ,1 O.0975Ry for At with Z=N- t in the electron-correlation 

COl'l'cctcd SIC-GX-LSD theOl'Y, éUld it i8 -O.0455Ry for F, O.0702Ry for Cl, O.0789Ry 

for Dr, O.0901Ry for l, <Uld O.0895Ry fur At in the clectron-coll'elation corrected 

QR-SIC-GX-LSD thcory. The Idatlvistic effect is to decrease the binding energy 
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Re 

Li 

Be 
B 
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0 
F 
Ne 

Na 

Mg 

Al 
Si 

P 
S 

Cl 

Ar 
K 
Ca 
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Ti 

V 
Cr 

Mn 
Fe 

Co 

Ni 

Cu 

Zn 
Ga 

TABLE V-2 

The first and second ÎonizatlOn potentials, electron affinitip~, 
electronegativities, and hardnesses (Ry) calculated by thl' 

eiectron-correlation corrected SI C-G X- LS D-G W B tltl'ory for 
sorne quark elernents whose net chrtrgl' i~ -e/3 (Z=l\. t"j:n 

Z la lb Af \.1 1(\ f 
1 2 'I lJ 

2 0.48 -0.09 0.19 0.12 a-
1~ 

3 1.07 2.83 -0.01 0 .. 53 0.71 0.27 
2~ 

3 0.22 4.19 -0.03 0.10 1.0G O.OG 

3~ 
3 0.42 1.00 -0.01 0.21 0.25 0.11 

4~ 
3 0.36 1.40 -0.08 0.14 o.~n O.O!) 

5~ 
3 0.54 1.38 -0.07 0.23 o.aG 0.13 

6~ 
3 0.73 1.73 -0.02 0.35 0.'1,1 O.IH 

7~ 
3 0.61 2.08 -0.13 0.2·1 0.55 0.15 

8~ 
3 0.86 2.01 -0.05 0·11 051 o.n 

9~ 
3 1.12 2.43 -0.02 0.55 O.Gl o 2H 

1O~ 
3 0.24 2.85 -0.03 0.10 0.72 0.0(; 

11~ 
3 

0.38 0.88 -0.02 0.1 t' 0.22 o 10 

12~ 
3 0.26 1.12 -0.05 0.10 0.2!) O.OG 

13~ 
3 0.39 0.92 -0.02 0.19 0.24 0.10 

14~ 
3 

0.53 1.15 -0.04 0.25 0.30 0.1 :! 

15~ 
3 

0.52 1.39 -0.01 0.25 0.35 0.13 

16~ 
3 0.69 1.42 0.07 0.38 0.34 0.17 

17~ 
3 0.86 1.68 -0.02 0.42 0,42 0.22 

18~ 
3 

0.21 1.94 -0.02 0.09 0.49 0.05 

19~ 
3 0.32 0.71 -0.05 0.14 0.19 0.08 

20~ 
3 0.34 0.93 -0.04 0.15 0.2·1 0.09 

21~ 
3 

0.35 1.57 -0.09 0.13 0,41 o.oa 
22~ 

3 
0.36 1.83 -0.03 0.16 0.47 0.09 

23~ 
3 

0.37 2.12 -0.03 0.17 0.54 o.oa 
24~ 

3 
0.38 2.30 -0.29 0.04 0.65 0.10 

25~ 
3 0.41 1.18 -0.16 0.12 0.33 0.10 

26~ 
3 

0.47 1.92 -0.10 0.19 0.51 0.12 

27~ 
3 

0.42 2.25 -0.04 0.19 0.57 0.10 
2 

28 a- 0.41 2.57 -0.03 0.19 0.65 0.10 

29~ 
3 

0.50 2.69 -0.04 0.23 0.G8 O.] :! 

30~ 
3 

0.26 1.26 -0.05 0.11 0.33 0.07 
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0.57 
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0.20 

O.lG 

0.21 
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0.2G 

O.:!l 

O."" 
0.12 

0.18 

O.l!) 

0.22 

0.20 

0.20 
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0.29 

0.29 

0.2:! 

0.22 

0.27 
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TABLE V-2 (Continued) 

The first and second ionization potentials, electron affinities, 
eJectronegativities, and hardnesses (Ry) calculated by the 

electron-correlation corrected SIC-GX-LSD-GWB theory for 
sorne quark elements whose net charge is -e/3 (Z=N-l/3) 

Z la 
1 I~ Ai \d 1JÂ 1J~ 

Ge 31 ~ 
3 0.39 0.92 -0.02 0.18 0.24 0.10 

As 2 
323" 0.51 1.11 -0.04 0.24 0.29 0.13 

Se 3:~ ~ 0.50 1.29 0.00 0.25 0.32 0.13 

Br 3·1 ~ 
3 

0.65 1.30 0.08 O.3G 0.31 0.16 

Kr 35~ 
3 0.79 1.50 -0.04 0.38 0.39 0.20 

a. The fir,,!, ionlzrltlOn potcntial; 
b. The second ionitation potential: 
c. The fir,>t eledron affinity; 

d. El . (HA) . ertronegatl Vit y, X = -2-; 

Il cl f'cl (lA+-AAO) C. ar lie;,;, 0 an A, 11..1 = 4 ; 

(/80- A B-) f. HMdllc~;, of ba"e B, lIB = 4 ; 

g. 
(I-A) 

Ab"olutc hardl1ess, 11 = -2-' 

71
g 

0.21 

0.28 

0.25 

0.28 

0.41 

of the extra elcctron for the quark atoms related to the elements in group VII A. 

The convergence in the SCF procedure for the negative ions of these quark atoms 

might be attributed ta the negati\'c contribution of the exchange-correlation energy 

functianal. 

Unfort111Httcly, the SCF plOcedure faileù in calculating the negative ions of 

the quark atoms with Z=N-~ for the lemaining elements, and no convergence was 

obtailled. Plesumably the exchange-correiatioll potential approaches zero faster for 

the:-,e eleIllputs, than for the halogeIl~, whcn r approaches infinity. 

To ('OJl\'Crge tht" ollc-electroll Schrôdinger cquation for the negative ions of 

the quark atoms \\ith Z=N- ~, tU! artificial positively charged sphere, introduced by 

'Vatson 130 in calculating rul o.\'ygcn double-charged negative ion, was used. Pre-
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TABLE V-3 

The first and second ionization potentiab, dectron afIinitH'l>, 
electronegativitics, and hardnesscs (Il,\') calculated 

by the electron-correlation COI refled 
SIC-GX-LSD-GWB theory for ;,OIlll' quark 

elements whase net Lhargl.' 15 +2e/:~ (Z=N+2/3) 

Z la 
1 

lb 
2 Al \,1 

r 1 \e lJ~ 

1~ 
3 2.83 1.07 -0.01 1.95 

2~ 
3 4.19 7.18 0.22 -0.03 2.21 1. 7,' 

3~ 
3 1.00 9.30 0,42 -0.01 0.71 2.:'2 

4~ 
3 1.40 2.28 0.36 -0.08 0.88 O..l~ 

5~ 
3 1.38 2.89 0.54 -0.07 0.96 O.5H 

6~ 
3 1.73 2.91 0.73 -0.02 1.23 0.55 

7~ 
3 2.08 3.43 0.61 -0.13 1.34 0.70 

8~ 
3 2.01 3.94 0.86 -0.05 1.44 0.77 

9~ 
3 2.43 3.93 1.12 -0.02 1.77 0.70 

1O~ 
3 

2.85 4.52 0.24 -0.03 1.54 1.07 

11~ 
3 0.88 5.10 0.38 -0.02 0.63 1.18 

12~ 
3 1.12 1.79 0.26 -0.05 0.69 o :J8 

13 ~ 
3 0.92 2.12 0.39 -0.02 0.66 0,,/3 

14 ~ 
3 1.15 1.86 0.53 -0.0,' 0.8·1 0.:J3 

15~ 
3 1.39 2.18 0.52 -0.01 0.95 0.41 

16~ 
3 1.42 2.50 0.69 0.07 1.05 0.'15 

17 ~ 
3 

1.68 2.57 0.86 -0.02 1.27 OAa 
18~ 

3 1.94 2.92 0.21 -0.02 1.07 0.68 

19~ 
3 0.71 3.27 0.32 -0.05 0.51 07,1 

20~ 
3 

0.93 l.~R 0.34 -0.04 0.64 0.26 

21~ 1.07 1.47 0.35 -O.v!) 0.71 0.28 

22~ 
3 1.21 1.55 0.36 -0.03 0.78 o;w 

23 Ë. 
3 0.99 2.01 0.37 -0.03 0.68 0,41 

24~ 
3 0.97 2.1.j 0,38 -0,29 0.68 0.'14 

25~ 
3 

1.18 1.76 0.41 -0.16 0.79 O.:H 

26~ 
3 1.28 1.81 0.47 -0.10 0.88 0.33 

27Ë. 
3 1.10 2.25 0.42 -0.0,1 0.76 OAU 

28~ 1.20 2.40 0.4] -0.03 0.81 0.50 
3 

29~ 1.11 2.55 0.50 -0.0,1 0.81 O..'d 
3 

30~ 1.26 2.00 0.26 -0.0::' 0.7G o 4:l 
3 
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Ga 

Ge 

As 

Se 

Br 

Kr 

TABLE V-3 (Continued) 

The first and second ionization potentials, electron affinities, 
electronegati vi ties, and hardnesses (Ry) calculated 

by the electron-correlation corrected 
SIC-GX-LSD-GWB theory for some quark 

elements whose net charge is +2e/3 (Z=N+2/3) 

Z la 
1 

lb 
2 

AC 
1 Ag Xe 

31 ~ 
3 

o.n 2.20 0.39 -0.02 0.65 

32~ 
3 1.11 1.77 0.51 -0.04 0.81 

33~ 
3 1.29 2.01 0.50 0.00 0.90 

34~ 
3 

1.30 2.25 0.65 0.J8 0.98 
35~ 

3 
1.50 2.29 0.79 -0.04 1.15 

3G~ 
3 

1.70 2.54 0.20 --0.02 0.95 

a. The first ionization potential; 
b. The second ionization potential; 
c. The first electron affinity; 
d. The second electron affinity; 

VI . (I+A) e. L eltronegatlvlty, À = -2-; 

f. Hardnes& of and A, 1)A = (l,I+ ~AAO); 

Il d f L 1 (1Bo-A D-) g. ar Bess 0 uase J, 111) = 4 ; 
(I-A) 

h. Absolute hardness, 1) = -2-' 

17~ 

0.45 

0.31 

0.38 

0.40 

0.38 

0.59 

17~ 17
h 

0.24 0.27 

0.29 0.30 

0.32 0.39 

0.31 0.33 

0.39 0.36 

0.43 0.75 

viously (section N_4)139,142, the total energy including the statistical total energy 

wHI the VWN correlation ellcrgy ln the electron-correlation correct cd SIC-GX-LSD 

thCOl'y Wél.':' a fUIlctioll of both the charge on alld the radius of the Watson sphere, 

v.lh('ll a \\'atsoll sphere with radius bctwccll 1 éUld 5 a. u. \Vele used. Fùrtunately, 

both tlw st8tisticul total cncrg,y and the V\VN correlation encrgy are not changed 

by the Waü,ol1 spl1l'le, when the sphere radius is large enough. T~ble V-5 shows the 

total encrgics (equatioll (G-8)), illclud111g the statistical total cnergy and the VWN 

correlation ellerg,)' corrcction, of the quark atolll and its neg,ative ion for fluorine 

"ith nactioualllurlt'éll' charge Z=N - i in the electron-correlation corrected SIC-GX-
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TABLE V-4 

The first and second ionization potcn t ials, clcrtroIll'g,1I1 vi t il':', 
and hardnesses (Ry) calcu\ated by the clectron-COlldatioll 

corrected SIC-GX-LSD-GWB theory for sorne quark dl'Illl'lItli 
whose net charge is -2e/3 (Z=N-2/3) 

Z la 
1 I~ \c Tl

d 
A 'Ill 

,,, 
1 0.12 O.OG 0.03 O.OG 3" 

Il 
3 0.47 1.83 0.23 0.46 0.1<1 O.2:J 

2 1 
3 0.08 2.93 0.0,1 0.73 o.oa O.lH 

31 
3 0.21 0.68 0.11 0.17 0.07 0.11 

4 1 0.14 1.02 0.07 0.26 O.OG 0.07 3 . 
51 

3 0.26 0.98 0.13 0.24 O.OG 0.1 :3 

6!. 
3 0.40 1.27 0.20 0.32 0.1:3 O.:W 

71 
3 0.27 1.57 0.13 0.3D 0.07 o 1:3 

8 1 
3 0.46 1,48 0.23 0.37 0.1:3 0.2:3 

91 
3 0.67 1.805 0.33 0.46 0.1 ti 0.:3:3 

10 1 
3 0.09 2.21 0.05 0.55 (J.02 0.05 

11 1 
3 0.20 0.G3 0.10 0.16 0.07 0.10 

12 1 
3 

0.10 0.84 0.05 0.21 0.02 0.05 

13 1 
3 

0.20 0.67 0.10 0.17 0.06 o 10 

14 1 
3 0.31 0.87 0.16 0.22 0.07 O.lG 

15 1 
3 0.28 1.07 0.14 0.27 0.06 0.1,1 

16 1 
3 0.42 1.09 0.21 0.27 0.10 0.21 

17 1 
3 0.57 1.32 0.28 0.33 0.15 0.28 

18 1 
3 0.09 1.55 0.04 0.39 0.03 0.0,1 

19 1 
3 0.17 0.52 0.09 0.13 (J.OG O.Og 

20 !. 
3 

0.15 0.67 0.08 0.17 0.13 0.08 

21!. 
3 0.11 0.70 0.06 0.17 0.13 O.OG 

22 1 
3 0.34 0.73 0.17 0.18 0.17 0.17 

23 1 
3 0.42 0.51 0.21 0.13 0.12 0.21 

24 1 
3 

0.21 0.75 0.10 0.19 0.13 0.10 

25 1 
3 

0.03 0.79 0.01 0.20 0.13 0.01 

26 1 
3 0.34 0.84 0.17 0.21 0.21 0.17 

27 !. 
3 0.44 0.65 0.22 0.16 0.21 0.22 

28!. 0.53 0.59 0.2G 0.15 0.07 0.2G 
3 

29! 0.29 0.86 0.15 0.21 (J. on lUS 
3 

30 !. 0.10 0.99 0.05 0.25 0.04 0.05 
3 
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Se 

Br 

Kr 

TABLE V-4 (Continued) 

The first and second ionization potentlals, electronegativities, 
and hardnesses (Ry) calculated by the electron-correlation 

corrected SIC-GX-LSD-GWB theory for s')me quark elements 
who!>e net charge is -2e/3 (Z::::N-2/3) 

Z la 
1 

lb 
2 

XC 1]1 1]3 1]1 

31 1 
3 

0.20 0.68 0.10 0.17 0.07 0.10 

32 1 
3 

0.30 0.84 0.15 0.21 0.08 0.15 
l 

333" 0.28 1.01 0.14 0.25 0.07 0.14 

34 1 
3 0.40 1.02 0.20 0.25 0.11 0.20 

35~ 0.53 1.20 0.26 0.30 0.15 0.26 

a. The first ionization potential; 
b. The second ionization potentidl, 

El . . (HA) 
c .. ectronegatI\'lty, \ = -2-; 

d. Hardness of aCld 
(fAt -AAO) 

'14 = - 4 j 

e. Hardness of base, ,dculateu by the Lagrange extrapolation formula 

1J(Z=N-~) = 2 [17(/: .-~) - II(Z=N+~) J + 1J(Z=N+~), and 1](Z=N+~), 
rl(Z=N-l), and 1J(Z",-.\+~) were taken from Tabl~s V-l to V-3j 

(I-A) 
f. Absolute harunes::" 17 = -2-' 

LSD the ory versus the radius of the Watson sphere with charge +4/3 a.u. Table 

V-5 shows that the total erergies d: the fluorine quark atom with different radii of 

the Watson sphere are the saIlle a'3 without a \Vatson sphere, when the radii are 

lmger thall 5 a.1l Ib I1l:gative ion has the smne trend as the qumk atom, but it 

conVf'rg('s rathel ~lowly, and when the sphere radii are bigg,er than 7 lt. u., the total 

('nergy is the saIlle as without ally \Vatson bph, Te. 

Fluorin(' ;Uld ehlorine are special cases, for which the negative ions of their 

quark atoms cau be solved by the SCF procedure perfectly. To show that the 

convergence tn'ud of the total CllClgy \Vith the radius of Vlatson sphere increases 

i8 lÙSO truc for other quark atoms and their ncgative ions, Table V-6 presents the 
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FIGURE 6-2 

The first ionization potentials of the quark atoms with fractional 
nuclear charge Z=N - ~ in the electron-correlation 

corrected SIC-GX-LSD-GWB theory, compared with 
Lackner and Zweig' s interpolation 
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results for carbon. The total energy of carbon negative ion converges slowly , but 

when the Watson sphere radius is bigger than 18 a.u., the total energy converges 

ta -66.497ïRy, and the clectron affinity converges ta -O.0699Ry. The total energy 

of the carbon quark atom converges as fast as the quark atom of fluorine. The 

cliffcrcnt convergence spceds of the total energies between the negative ions of the 

quark atoIlls for fluorine and carbon is because the electrons in fluorine are paired. 

The prebcllt work testcd all the quark atoms and thcir negative ions for 

clements from hydrogen to krypton with Z=N-~. The total energy convergence 

speeds are the same for al1 quark atoms but differ for their negative ions. The 

radius of the \Vatson sphere to get the converged total energy is around 7 a.u. for 

t.he clements in group VII A, 50 a.u. for those in group VIII A, 40 a.u. for group 

II A, and 20 a.u. for al1 others. The SCF procedure works very well with the aid 

of large Watson sphcrc. Actually, if one is only interested in the fust two digits 

behind the decimal point, thc convergence ia much faster than that listcd ab ove. 

Thcrefore, the Watson sphere radii arc fixcd to be 20 él{) in calculating the fust 

clectron affinitics of the transition-met al quark clements with Z=N-~. 

Colman 5 of Table V-2 summarizes thc converged electron affinities of the 

quark atoms with fractinnal lluclear charge Z=N - t. Th€' electron configurations of 

the fust order negative ions were chosen ta be the same as the corresponding single­

charge negative ions of the ordinary atoms lcported by Rotop and Lineberger58 • 

To compare the present results ,vith the empirical interpolated values153 , Fig. 5-5 

plots the fust elcctroll affillities for the quark atoms with Z=N-~. It may be seen 

that therc éU'C Hot only laI?;l' diffcrcnccs bctWE'Cll the present calculated values and 

LRckllcr ~Uld Zweig' s results 15j
, but aIso a difFerent trend, I11 the present calculated 

rcsults, the first dcctron affiuity, -0.01 Ry, for Be with Z=4- ~ is bigger than -0.03 

ny, the dcdlOIl affinity for Li with Z=3-~, which is of the SaIne trend as Re ta R. 
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However the electron affinity for Be with Z=4-! in Lackner and Zweig's interpola­

tion is -0.36 Ry which is rnuch smaller than the electron affinity, -0.05 Ry, for Li with 

Z=3-~. The sarne deviations occur for N, Ne, Mg, and etc. with Z=N-~. The reason 

of the deviation is probably the following. Lackner and Zweig's results were iso­

electronic interpolation based on existing experirnental electron affinities. They also 

interpolated the electron affinities of sorne ordinary atoms, for which the experimen­

tal electron affini tics were not available, as input data to get the electron affinities 

of the quark atorns. This /1 double" interpolation causes uncertainty in the electron 

affinities of quark atoms. FUrtherrnore, sorne of the existing clectron affinities were 

not accurate, e.g., for the alkaline-earth elements, rare gasses92 ,94,lOl,106,107. The 

prc:,cnt calculation is based on the local-density functional model which bas weIl 

defined approximations and shows no lack of predictability for other properties. 

Therefore the theoretical predictions are correct. 

rw 

3. 
4. 
5. 
6. 
7. 
No 

TABLE V-5 

The effect of the Watso sphere radius on the statistical 
total energies of F(Z=N-1/3) and F-(Z=N-1/3) (Ry) 

Etot[F] EtodF-] EA 

-182.7040 -182.6444 -0.0596 
-182.7054 -182.6565 -0.0489 
~182.7055 -182.6594 -0.0461 
-182.7056 -182.6602 -0.0454 
-182.7056 -182.6604 -0.0452 
-182.7056 -182.6605 -0.0451 

The first electron affillities of the quark atoms with Z=N - î are equivalent 

to the second electron affini ties of the quark atorns wi th Z== N - ~ . The second or-

liO 



FIGURE 6-4 

The first ionization potentials of the quark atoms with fractional 

nuclear charge Z=N - ~ in the electron-correlation 

corrected SIC-GX-LSD-GWB theory, compa1'E.d with 

Lackner and Zweig' s interpolation 
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der negative ions of the selected quark atoms \Vith Z=N± ~ \Vere cl'lcula.ted using 

the electron-correlat.ion corrected SIC-GX-LSD theory with the GWB Fermi-hole 

parameters and Watson spheres. The results are summarizcd in Tables V-7 and 

v-s. 

rw 

3. 
6. 
9. 

12. 
15. 
18. 
21. 
24. 

TABLE V-6 

The effect of the Wat<'on sphere radius on the statistica! 
total energies of C(Z=N-l/3) and C- (Z=N-l/3) 

Etot [F] Etot [F-] EA 

-66.5563 -66.4307 -0.1256 
-66.5676 -66.4911 -0.0765 
-66.5676 -66.4964 -0.0712 
-66.5676 -66.4973 -0.0703 
-66.5676 -66.4976 -0.0700 
-66.5676 -66.4977 -0.0699 
-66.5676 -66.4977 -0.0699 
--66.5676 -66.4977 -0.0699 

Obviously, the second elf'ctron affinities calculated by the difference of the 

total energies between the first order negative ion and the second arder negative 

ion are st~ongly dependent on the radius of the Watson sphere, whcn no Watson 

sphere was used for the first order negative ions with Z=N + i or a very large 

Watson sphere WaS employed for those with Z=N- i, and the radius of the Watson 

sphere for the second order negative ions i8 gradually increased. As mcntioned 

before, the total energy of the frrst arder negative ion should be not uJfected by the 

Watson sphere for quark atoms ,vith Z=N-~. Hence, the dependeI!ce of the second 

electron affinities on the Watson sphf're is caused by the second order ncgative ion. 

Table V-7 lists the dependence of the second electron affinities of sclected quark 
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atoms with Z=N + ~ on the radii of the Watson spheres used in the SCF calculation 

for calculating the second order negative ions. Gradually increasing the radius of 

the 'Watson sphere, the total energies of the second order negative ions gradually 

decrease (more negative). Therefore, the difference of the total energies between the 

first and second order negative ions gradually increases (less negative). Obviously, 

when the Watson sphere radius goes to infinity, the total energy of the second order 

negative ion approaches the total energy of the real system. The results in Table 

V-7 show the trend. The second electron affinities of the selected quark atoms with 

Z=N + ~ gradually approach very small values or zero as the radius of the Watson 

sphere with the net charge +1 increases. The second electron affinities of the selected 

quark atoms with Z=N- ~ listed in Table V-8 show the same trend as Table V-7j 

the second electron affinities approach very small values or zero as the radius of the 

Watson sphere w~th the net charge +2 ~e increases. The speed of approach to t~le 

real values is dift'erent in Tables V-7 and V-8, because of the difference of the net 

charges in the second order negative ions with Z=N+~ and Z=N-~, the net charge 

is -1 ~e for the former and -2~e for the latter, and the difference of the net positive 

charge on the Watsop spheres. 

The second electron affinities of the quark atoms with fractional nuclear 

charge Z=N-~ are much more slowly approaching to their real values, because the 

net charge of the second order negative ions for them is -2îe. 

The second electron affinities of the quark atoms with Z=N + ~ are listed in 

column 6 of Table V-3. Actually, they are equivalent to the first electron affinities 

of the quark atoms with Z=N-~ shown in column 5 of Table V-2, e.g., the second 

electron affinity of H with Z=N+~=1ï, which is -0.01 Ry, equal to the first electron 

affinity of He with Z=N- ~=1 i in Table V-2, and 80 on. 
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FIGURE 6-5 

The first electron affinitIes for the quark atoms with Z=N. ~ 

in the electron·correlation corrected SIC·GX·LSD·GWB 

theory, compared with Lackner and 

Zweig' s interpolation 
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Z 

II Il 
3 

He 21 
3 

Li 31 
3 

C 61 
3 

F 91 
3 

Ne 10 1 
3 

Na 11 1 
3 

Si 14 !. 
3 

CI 17 1 
3 

Ar 18 1 
3 

TABLE V-7 

Electron affinities (Ry) with different Watson sphere 
radius (ao) of sorne quark elernents whm;e 

net charge is +e/3 (Z=N+l/3) 

rw = 15 rw = 20 rw = 25 rw = 35 rw = 45 rw = 55 

-0.041 -0.033 -0.028 -0.021 -0.017 -0.015 
-0.067 -0.058 -0.053 -0.030 -0.023 -0.019 
-0.068 -0.051 -0.042 -0.030 -0.024 -0.019 

-0.065 -0.051 -0.041 -0.030 -0.024 -0.019 

-0.067 -0.051 -0.042 -0.030 -0.023 -0.019 

-0.072 -0.063 -0.044 -0.030 -0.023 -0.019 

-0.069 -0.052 -0.042 -0.030 -0.024 -0.019 

-0.067 -0.051 -0.042 -0.030 -0.024 -0.019 

-0.068 -0.052 -0.042 -0.030 -0.023 -0.ù19 

-0.068 -0.059 -0.055 -0.030 -0.023 -0.019 

V -4. Electronegativity and Hardness 

rw = 65 

-0.016 

-0.016 

-0.016 

-0.016 

-0.016 

-0.016 

-0.016 

-0.016 

-0.016 

The electronegativities of the quark atoms with fractional nuclear charge 

Z=N ± ~ and Z=N ± î were calculated by averaging the ionization potential and elec­

tron affinity of the corresponding quark atom, equation (5-4), and are reported in 

column 6 of Tables V-1 and V-2, column 7 of Table V-3, and column 5 of 1.able V-4. 

The trend of the electronegativities is similar to Lackner and Zweig' s calculation153 , 

except for the quark atoms with Z=N-î. Lackner and Zweig reported the negative 

electronegativities for the quark atoms with Z=N- î in group lA - NA and N and 0 

and the positive electronegativities for others. The electronegativity distributions 

are random. However the electronegativities in the present calculation follow the 

same trend as those for the quark atoms with Z=N±~ and Z=N+î. The devia­

tion between the present electronegativities and the Lackner and Zweig' s results is 
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caused by the difference of the electron affinities of these quark atoms. Lackner 

and Zweig gave negative electron affinities which in absolute \"alue arc laI'ger than 

the ionization potentials of the corresponding quark atolllS. Howcv{'r, the second 

electron affinities approach sorne very small negative values or zero in tll<' dcctroll-

correlation corrected SIC-GX-LSD theory which is excellcntly prcdictabk. 

Z 

H 2 
3 

He 1~ 
3 

Be 3~ 
3 

N 6~ 
3 

F 8~ 
3 

Ne 9~ 
3 

Na 1O~ 
3 

TABLE V-8 

Electron affinities (Ry) with different Watson 
sphere radius (ao) of sorne quark elements 

whose net charge is -e/3 (Z=N-1/3) 

rw = 10 15 20 30 40 50 

-0.220 -0.111 -0.059 -0.007 

-0.258 -0.159 -0.135 -0.085 -0.057 -0.0"2 

-0.317 -0.201 -0.144 -0.087 -O.OGO -0.044 

-0.308 -0.188 -0.130 -0.073 -0.0·16 -0.030 

-0.242 -0.162 -0.122 -0.081 -0.061 -0.049 

-0.293 -0.183 -0.129 -0.076 -0.051 -0.036 

-0.251 -0.166 -0.115 -0.064 -0.038 -0.023 

GO 70 80 

-0.032 -0.026 -0.021 

-0.03·1 -0.027 -0.022 

-0.020 -0.01:~ -0.008 

-0.040 -0.034 -0.030 

-O.O:W -0.019 

-0.012 -0.006 

From the values of the electronegativities listed in Tables V-l to V-4, it can 

be seen that: Ci) the electronegativity increases as the occupation number of the 

subshell increases, except for the quark atoms in the group VIII A with Z=N+&; 

Cii) the electronegativity increases with nuclear charge illcrea~cs; fol' cxltmplc, tlw 

electronegativity of F is 0.23 Ry with Z=N-i, 0.41 Ry with Z=N-~, 1.2G TIy with 

Z=N+~, and 1.77 Ry with Z=N+~. It is quite reasonable that the lluclear attractive 

force increases with the nuclear charge and that the ability to get. ml C'xtw-dedron 

increases, when the electron-configuration is fixed. 
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---------------------

The hardnesses of acids and bases in terms of definitions (5-6a) and (5-6b) 

and the absolute hardnesses by den.nition (5-4) were calculated by using the first 

é'..nd second ionization potcntials and electron affinities in Tables V-l to V-4 for the 

quark atoms with Z=N±~ and Z=N±~. The results are summarized in Tables V-l 

to V-4. The hardnesses of bases, 'fJB, listed in column 7 of Table V-4 were calculated 

by the Lagrange extmpolation formula 

'fJ( Z = N - ~) = 2[ 'fJ( Z = N -~) - 'fJ( Z = N + ~) 1 
+'fJ(Z=N+~) (5 - 10) 

were taken from Tables V-l to V-3; because no second electron affinities were ob-

tained for them in the SCF procedure by the electron-correlation corrected SIC-GX­

LSD theory. Furthermore, the second affinities used in equation (5-6b) in calculating 

the hardncsses of bases for the quark atoms with Z=N ± ~ \Vere treated as zero, be­

cause the second clectron affinitics (in Tables V-7 and V-8) go to very smaU values 

or zero, when the Watson sphere radius approaches infinity. 

The absolute hardnesses of the quark atoms with Z=N±t and Z=N±~ are 

of the similar trend as predicted by Lackner and Zweig153: the absolute lmrdnesses 

increase, when the number of elcctrons in the sub~hell (nlms) increases. For exam-

pIe, N is harder than 0 and F, P is harder than S and Cl for the quark atoms with 

Z=N + t éU1d Z=N + î, displaying the similar behaviour as the ordinary atoms151 ; 

and N is harder than 0 and softer than F, and P is harder than S and softer than 

Cl for the quark atoms with Z=N-~ and Z=N-î, which possesses the same feature 

as the hardnesscs ('fJ+) of the ordinary atoms in Goycoolea et al.Is work151 . 

The trend of the absolute hardnesses differs from that obtained by equation 

(5-3) for the ordillary atoms. As mentioned by Vinayagam and Sen149 , 0 is harder 
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than N, F is harder than 0, S is harder than P, and Cl is harder than S for the 

ordinary atoms by definition (5-3). The differmt trend is causcd by th<, lt'p!aCt'IlH'llt 

of the derivative in equation (5-3) oy the finit(, <hffer('Ilce in l'qllatlOll (G-·1). 

The hardnesses of bases calculated by ('<pwtioa (5-6b) fOl the qUaIk atollls 

with Z=N ± ~ and Z= N + î and extrapolated by <'<lw:ttion (5-10) for the quark atOills 

with Z=N-~ have the same behaviour as calculated by eqllatioll (5-3) for tht' 

atorns149 
, except for 0 with Z=N ± ~ and Z=1\ + ï. The Imrdlll'bs(,b of 0 wit h 

Z=N±t and Z=N+î are smaller than those for N \\1th Z=K±~ éUld Z=N+~, lY'­

spectively. This implies that equation (5-60) !eads to the p1'O})er clllpiricai tn'Ilds 

in the hardness pararneters. 

The hardnesses of acids obtained using equation (5-Ga) leads to the saille 

dependence of the electron-configuration as the hardnesses of bases. The harduesses 

of bases increase, as the number of the clcctrons in a subshell lllcreases, except rOI' 

the elements in group VII A, the halogens. 

The values of the hardnesses, TIA and rw of acids éUld Imseb lUld the valucs 

of the ahsolute hardnesses, 1], increase as the Iluclear charge iUCleabeb for <JI tlH'He 

quark atoms, when the electron-configuration is fixed. The ctfcct of lllCl(,ll.,,>ing the 

nuclear charge is to enlarge the Coulomb attractive force betwe(,1l the nucleus fUld 

the electrons, the rernoval (;TlCrgy of the clcctron in the outnIllost Oll)itd is, thell, 

increased and the abil:ty of binding an extn,-elcctron iller ('a~t's. Dut tbe former 

increases much faster than the latter. 

The present calculations show that the iOllization potelltiab for quark atoms 

and electron affinities for the well-bound quark atorns obtaiIlcd by the empirical 

isoelectronic interpolation technique is in excelleut agreement \Vith thObe from the 

electron-correlation SIC-GX-LSD theOl'Y with the GWI3 Felllli-hol(~ parameter:i, 

when the accurate experimental results arc clllploycd in tll<' inter poiatioll. The 
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convergence tf!chnique tL"ing a very large Watson sl-~ere surrounding the neg,ative 

ion in the SCF calculation for the first order ncgative ions of the quark atoms with 

fractional nuclear charge Z=N -t and the second order negative ions of the quark 

atoms with Z=N ± t and Z=N + ~ is efficient. 

The electronegativities and hardnesses of the quark atoms \vith fractional 

nuclear charge Z=N ± t and Z=N ± ~ possesses a similar trend to that of ordinary 

atoms. The dependence of the electron-configuration for the electronegativities and 

hardnesscs of the quark atoms i~ the same as for the ordinary atoms. 
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CHAPTER VI 

THE SEJ ... F-INTERACTION CORRECTED 
MULTIPLE-SCATTERING Xa METHOD 

VI-l. Introduction 

Molecular calculations are interesting to chemists. However, most methods 

are computationally tedious The cheapest s the multiple-scattering Xa (MS-Xo) 

method160 ,161, except for the semi-empirical meth( ris. The ~IS-Xa method is ex-

œllent in predlcting the photoelectroll :-pectra of 1 nleculcs. clu<;tt'r~ of rdatively 

heavy atorns of mterest in solid state physics éll1d dlenmtry. imd utllt'r molecu1ar 

properties162-1ï2. The mtroduction of the o\eIlapplIlg ~pll!'re appIOxlIllatlOu 173 

showed that good ionizatiou potentials could oe obtained froIll the negative of the 

one-electron cigenvalue c.alculated by the Slater transition-~tat{' theory l74,17.5. Case 

and Karplus 176 introduC'ed a charge-parti tioning algon thm whiC' h di~t rI butes the 

"muffin-tin" wave function contribution from the interatoIllIc rt'gion amoug the 

atomic spheres. The MS-Xo method gin's reasonably goot! cxpcctatiol1 va1uc~ for 

the one-electron operators from the Xo wave function and has bccn uscd to calcu1ate 

molecular properties. such as dipole moments. quadrupole moments, diamagnetic 

susceptibilities, and nuclear quadrupole couplin..., constants171 ,177,178. 

The "muffin-tin" approximation makes the molccu1ar one-clectron cigenval-

lles and electroll-density distributions diffcr from cxperIuH'ut The dcvw.tion C'an 

be redueed by using overlapping sphcres. Then, the oIlc-elcoctron ci5t>llvalucs and 

electron-density distribution are sensitive to the perC'cntagl' of on~rlapp!Ilg sphere. 

The most reliable results are produced by means of the atUIllIc sphcrc racl.ii in the 

N .. 168 l' b f t b t 08 0 SS17117ï 179-181 orman entenon sea mg y a ac or e ween . -. " . 
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Recently, sorne other theoretical methods have been developed, such as the 

LCAO-Xa methodl81-183 , the discrete variational Xa (DY-Xa) method184-186, and 

the complctely Ilumerical local-density approximation (LDA) method 187. They are 

more theorctically rigorous than the MS-Xa mcthod and their results are better 

than MS-Xa. TIlPy are abo much casier to use than the ab-initio Hartree-Fock 

method. But they are expensive for large molecules containing heavy atoms and 

complicatcd to wicld in practise. The numerical results depend on the choice of the 

basis set in the LCAO-Xa method, the selection of the mesh points and the basis 

set (whcn the basis set is employed, mstead of using the numerical integration) in 

the DV-Xa method, and the restricted application, e.g., only applying to diatomic 

rnolecules in the completely numcrical LDA method. A powerful method in chem­

istry must be applicable to all molecules large and small containing light or heavy 

atoms and predict all propertics with the same accuracy. 

Becau1->e of the btatisti('~ 1 Hpproximate ex change energy functiollal in the Xa 

method, tUllike the HF methu. ,He sclf-exchange term does not cancel completely 

the self-Coulomb terrn. Hence the onc-electron eigenvalue in the Xa method does 

not have the sarne theoretical or numer,cal value as in the HF method. The Xa 

one-electron eigenvalue corresponds to the electronegativity of the atom or molecule, 

equation (3-12), as defined by Parr et al. 77 , whcreas the HF one-electron eigenvalue 

equals the ncgative of the ionization potential for the corresponding orbital when 

the frozcn ol'bital approximation is used (Koopmans' theorem)54. 

Slater174 ,175 introduced the transition state theory, in which the ionization 

potential cau he calculated from the negative of the one-electron eigenvalue obta,ined 

by removing a half-electron from the corresponding orbital to infinity in the self­

consistent-field (SCF) procedure. Obviously, because the transition state is one 

between the initIal and final states in the ionization process, the relaxation effect 

is partly included. However, the wave function given in the transition state SCF 
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procedure does not give correct expectation \'alues for ot.her one-e!cctroll opcrators 

in calculating other molecular properties, such as dipolc mOlll<'Ilth, diamagnctiL 

susceptibilities, etc. To obtain both the ionizatioll potential ,Uld other oIl('-<,b .. hon 

operator expectation values, the SCF procedUlc bas to lJt' canit'd 01lt twiee for 

the same system, one for the transition state, and 8llOthel for the gIO\llld ~tate or 

excited state. This is an inetficient and expensi\'e procedure, l'hpecially Whl'Il the 

MS-Xa method is applied to large systems containing heél\'Y atolllh 

The self-interaction problern can be aVOlcled by the direct n'lllovai of the 

exact self-Coulomb term and the approxima tc ~!f-exchange tel 1Il fr om tll!' t'Ilergy 

functionaF9-32. Application of this self-mtclélction correctioIl (SIC) in the LDF 

theory, the SIC-LDF theory, to atornlC caIculations gave sigmficélIlt improvemf'Ilt 

over the l.ll1corrected LSD results29 - 32 ,45,49,81. Thcorctically, fOl atollllC hy~tellls, 

the SIC-LSD theory leads to a potential with thC' correct a:'ylllptotÎC l)('ha\'iolll l/r 

for the neu tral atom. 

The SIC has been successfully applied ta small molecules lUl<1 solids. The 

SIC-LSD theory has been used to caIculate the electronic ~tluctUles of watoIllic 

rnolecules and solids188.189 and gives excellent one-electroIl eigcIlvalues éUl<! total 

energies for sorne sm aIl molecules in the agreement \\1th thOhe ill the lllulticoIlfig­

uration self-consistent-field (MCSCF) calculatioll. But the full 1111IIHTlCal SIC-LSD 

theory might be impossible to apply to large atHI heavy ll101l'cuh'h, bccéluse of the 

computational time. 

In this chapter190 , ta give the phOl oelectrol1ic sl.Jectra éUld the correct wave 

function at the same time for a molccule by a ~iIlglc SCF calclliatiou, the SIC i~ 

introduced into the MS-Xa th ('Ory. Section VI-2 wlll give a hri({ desniptioll about 

the MS-Xa method; and, then, the SIC in the ~IS-Xo: will he illtlOclu('('d 1Il Section 

VI-3. Since the SIC energy functional dependh Oll the individual or bitaI d(,lIsities, 
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the SIC total energy is not invariant under the orbital transformation189 • To give 

the minimized total energy, Edmiston and Ruedenberg's method191 , developed hy 

Pederson et al. 189
,192, is used. The detail of the minimization of the SIC energy will 

be discussed in Section VI-4. 

VI-2. Multiple-Scattering Xa Method 

Details of the MS-Xa method can he found in the literature193,194. Only li 

brief description is given to introduce the SIC into the MS-Xa method. 

The MS-Xa rnethod is based on the division of molecular space into non­

ovcrlapping atomic, interatomic, and extramolccular regions, with a spherically 

averaged potential for the atomic and extramolecular regions and a volume-averaged 

potential for the interatomic region, including the conventional XCI: approximation ta 

the exchange-correlation. The spherically averagcd potentioJ in "muffin-tin" spheres 

is centrcd on (,élch atornic site, with a constant potential elsewhere. The volume­

averaged potential in the interatomic region significantly simplifies the molecular 

calculation. 

Consider a system \Vith N atomic spheres of radii ha ~0:=1,2, ... ,r;). The 

one-electron SchrodiIll!;er equations ùl the atomic, interatomic, and extramolecular 

regions are different, because of the different potentials, 

Va(ro), when ra = Ir - Rai ~ ba (atomic region); 

lI(r) = VO(ro), when ro = Ir - Rai> bo (outer sphere); (6 -1) 

V, otherwise (interatomic regiol1). 

where Ra is the distance of an atomic site from the origion of the system, anù Do 

and bo are the radii of the atom 0: and outer sphere. In the atomic sphere 0', the 
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one-electron Schrodinger equation is 

(6 - 2) 

in Rydberg atomic units, where the index 1 stan&; for the wave function in the 

atomic region and VQ(rQ) is the total potential including the Coulomb interac­

tion potentials between the nucleus and electron, electron cUld clectron, cUld the 

exchange-correlation potentia!. The wave function, 'ljJ[ (ra), may he expressed in 

terms of the single-centre partial wave expansion, 

l/;;(rQ ) = L CIQLR~(rQ)YdOQ),(O ~ ra ~ bc.) (6 - 3) 
l. 

where L = (l,m) is the partial wave index, YL(OQ) are real sphericai harmonics and 

the expansion coefficients GIL are to be determined. 

fi the extramolecular region, the one-electron Schrodinger equation is of the 

same form as equation (6-2), 

The wave function is ruso expanded into 

l/;{II(ro) = LC,OLR?llro)YdOo),(bo ~ ro < 00) 
L 

In the interatomic region, equation (6-2) reduces to 

[_\72 + K~ll/;[I(r) = 0 

where 

2 -
KI = V - El 

(6 - 4) 

(6 - 5) 

(6 - 6) 

(6 - 7) 

The one-electron Schrodinger equations (6-2) and (6-4) in the atomic and ex-

tramolecular regions are easily solved numerically in each region in the partial wave 
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rcpresentation. The solution of equation (6-6) can be written in the multicenter 

partial-wave representation 

t/;{I (r) = L L a~nl(ka raJYL(OQ) + L a~Lj,(kiro)YL(no) (6 - 8) 
Q L L 

when 

fa> V (6 - 9) 

or 

1/J:1(r) = LLa~Lkp)(karQ)YL(nQ)+ La~Lil(karo)YL(nO) (6 -10) 
Q L L 

when 

(6 - 11) 

The expansion coefficients GaL' G~L' a~I,' and a~ L in eq uations (6-3), (6.!»), 

and (6-8) or (6-10) are determined in terms of the continuous wave functions and 

their derivatives on all the s:Jhere boundaries. 

Fùrthermore, the Coulomb and exchange potentials in the SCF calculation 

are constructed from the electron densities in the differen' regions. The total po-

tentials which include the Coulomb and exchange potentials in the spin-restricted 

MS-Xa method are 

(6 - 12) 
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in the atomic sphere a, 

+2 47rr2 -po(r)dr-60 -po(ro) 100 1 [ 3 ] 1/3 

ro r 81T' (6 - 13) 

in the extramolecular region, and 

[ 
3 ] 1/3 {OO 1 

- 60 81T'Pmt + 2 1bo 47rr2 ~po(r)dr (6 - 14) 

in the interatomic regionj POt (r Ot) and Po (ro) are the spherically averaged clectron 

densities in the atomic sphere a and t'le outer spherej Pmt is the constant clectroll 

density in the interatomic regionj ROt !3 is the distance betw(,cll the CC'lltrc:, of the 

atomic "pheres a and /3j QOt and ZOt are the electron charge and the atornic number 

in the atomic sphere a; V is the volume of the iuteratomic region, 

v = ~ 7r [bg - L b! ] 
Ot 

(6 - 15) 

Qlnt is the total electron charge in the interatomic region, and the constant Q in 

the ex:change potential term of equation (6-12) is the exchange paramder of thc 

atomic sphere a, and ct the parameter for both the' extramolccular éUld illt{'ratomic 

reglOns. 

The one-electron Schrodinger equations (6-2) and (6-4) éU'C solved by the 

SCF procedurt, until the differences of the potenti:tls betwcen the (l+l)th ,Uld the 

ith iterations are less than a defined value. The onc-eiectroll eigC'Ilvaluc:, and the 

wave function are considered to be self-consistent in the MS-Xa lllcthod. 

186 

a 



= 

VI-3. Self-Interaction Correction in the Multiple-Scattering Xa Method 

When the SIC carried out by removing the exact self-Coulomb from the 

Coulomb repulsive functional and the approximate self-exchange from the local 

electron density functional, is applied to the MS-Xa method, the one-electron 

SchrodingeI equation (6-2) becomes 

[_'12 +VQ(ro ) + y:SIC-Q(fO)] 7f{(ro) = 2;€IJ1/If(ro ) 

} 

for the atomic sphere a, while equation (6-4) becomes 

[ - '\12 + VO(ro) + V.SIC-O(fO)]1/I;II(ro) = L €aj1/JfII(ro) 
} 

for the extramolecular region, and equation (6-6) becomes 

[ - \72 + ~~2]1/1; 1 (r) = L fa} 1/J; 1 (r) 
J 

(6 -16) 

(6 -17) 

(6 - 18) 

for the interatomic region. In equations (6-16) and (6-17), v:SlC - Q and Vis/ c - o 

are the total self-interaction potentials including the exact self-Coulomb and the 

approximate self-exchange potentials for orbital i. K~ in equation (6-18) changes 

from equation (6-7) to 

(6 - 19) 

where ~SIC is the total self-interaction potential in the interatomic region. 

The self-interaction potential for the atomic sphere a is, in contrast to equa-

tion (6-12), 

(6 - 20) 
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The first term is the exact self~Coulomb potential produ('('d by the dectroll in 

orbital i and the second term is the approximate self~exchallge potentin!. In tht' 

self-Coulomb potential, the { ... } of equation (6~20), the first two tenus m'l' UH' 

self-Coulomb potentials generated by the electron density in the atomic splH're 0, 

and by the electron densities in a11 other atomic spheres treat(ld as point charges 

except for the atomic sphere 0', and in the outer sphere l'egion; the thinl tenn is 

the potential contribution from the interatomic lcgion. p~ ~Uld p? me the e!('dron 

densities of electron i in the atornic and extramolecular regions, respcctivdy. (Jl/i 

is the total fractional charge of electron i in the interatomic region. 

't'he self~interaction potential for the extramolecular rcgion is modificd fro111 

j :x:> 1 } [ 3 ] 1/3 + 4rrr2 -p?(r)dr + 6& -p?(ro) 
~ r BIT 

(0 - 21) 

Here the first and second terms are the self-Coulomb and sclf-cxchange interaction 

corrections to the potential in the extramolecular region. In the self-Coulomb 1'0-

tential, the first term is from the atomic and intcratomic lcgiolls, éUld the ~'(,oIld 

and third terms are the self {"oulomb potentials fro111 the outer ~pll('l'(, ibdf. 

ln the interatomk Jn, the self-interaction potential is modlfied from equa-

- 2 J..~ 4Kr' ;p? (r)dr + Co [8~ P:'" r' (0 - 22) 

This is a volume-averaged potentia!. The first tenu is the volumc-averaged poteutial 

obtained by assuming that the atomic and interatomic regiolls were covcred hy the 
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constant electron density p:nt. But, in fact, this is not true for the atomÎc spheres, 

so the second term is the averaged potential generated hy all the atomÎc spheres 

in the atomic region with the reai electron densities suhtracted from the potential 

produced by the constant electmn density p:nt. The third term is the Coulomb 

interaction potential produced hy the electron charge on the outer sphere, and 

the last term is the self~exchange potential which only relates to the local electron 

density. 

VI-4. Minimization of the Total Self-IntE'iraction-Correction Energy 

In the SIC~MS~XQ' method, the f'nergy functional depends on individual 

orbital electron densities, unlike the MS-Xa method where the energy functional 

depends on the total electron density. The total SIC energy is not invariant under 

orbital transformation. The orbital transformation leaves the statistical total energy 

in the MS~Xa method invariant, because the orbital transformation is unitary, but 

it alters the SIC energy. 

Let {4>} he a set of orbitaIs corresponding to the mÎnimized value of the 

total SIC energy and { 'IjJ } a set of orbitaIs in the symmetcic representation. Usually, 

{ 'IjJ} is not idcntical to {1J}, and consequently the transformation 

(6 - 23) 

is used to mÎnimize the total SIC energy when the orbital densities from { <p} has 

he found. 

Following the Edmiston and Ruedenberg191 locali2.ation procedure, which 

minimized the self~Coulomb energy and was extended to mÎnimize the total SIC 

energy in the SIC~LSD theory by Pederson et al. 189 ,192. 
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Consider an infinitesimal orthogonal transformation T which takes a set of 

orbital { f/J} to a new set {f/J'}' that is 

f/J~ = f/J, + 6f/J, = L <P. Ta} (6 - 24) 
} 

with 

(6 - 25) 

Let 

(6 - 26) 

gtves 

t,} + t}' + L tan t} n = 0 (6 - 27) 
n 

where tij is an infinitesirnal value. Keeping the first order tenus, equatioll (6-27) 

reduces to 

(6 - 28) 

The minirnization of the total self-interaction correction energy requires 

(
8Esle ) _ 0 
âtllv t.) =0 -

(6 - 29) 

for all J.t, li, i, j with J.t > li, j>i. Writing the SIC cnergy expression in tenns of the 

primed orbitals and carrying out the differential of equation (6-29) leads to 

(0 - 30) 

for all J.t and li. Equation (6-30) has to be satisfied for all orbitals by successively 

rninimizing e~ch pair of orbitaIs. An iteration technique is Ubed to find éUl appro­

priate new orbital set {<p}. Consider a given pair of orbitaIs (<Pp., <Pv), and that the 

new pair of orbitaIs can be writtcn as 

-szn,) (f/J~) 
cos, f/J~ 

(6 - 31) 
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Constraint condition equation (6-30) determines the, value in equation (6 .. 31). 

The self-exchange potentiai in equation (6-30) may make it impossible to solve 

analytically for the, value in equation (6-31) by using equation (6-30). Therefore, 

an iteration technique is empIoyed to find the, value satisfying equation (6-30). 

In detail, starting with the orbital set {'IjJ}, equations (6-30) and (6-31) may be 

rewri t ten as 

< ).(1+1) IV SIC _ V SIC 1,).(1+1) > - 0 
'fil 1'1 III 'fil - (6 - 32) 

and 

(6 - 33) 

during the (i+ 1 )th iteration. In equation (6-32), the total SIC potentiais for orbitaIs 

J-l and li were calculated from the orbitaIs <p~l) and <p~I) ,respectively. Substituting 

equation (6-33) into (6-32) gives 

2 < ).(1) 16. V SIC 1,).(1) > 
tan2,(I+l) = 'fI' l'III 'Pli (6) 

< ).(1) 1 b. V SIC 1).(1) > _ < ).(1) 1 b. VSIC 1).(1) > - 34 
'fil l'VI 'fI' 'fil l'VI 'fV 

Where b. v~~~c is the difference of the SIC potentials between orbitaIs J.l and li in 

the ith iteration, i.e. 

(6 - 35) 

The process continues, lll1til the new , from equation (6-34) is less than 

10-5 , when equation (6-30) is considered to have been satisfied for orbitaIs <PI' and 

<Pv. But, when f/ill ann. 1>11 are paired and satisfy equation (6-30), they probably 

do Ilot satisfy equation (6-30), when paired with any other orbitaIs f/iT/ separately. 

Therefore this procedure has to be applied to all pairs. A check is made that the 

total SIC mergy does not clmnge, compared to the last cycle. The cycle is repeated 

until the total SIC energy is changcd less than 10-8 a. U. 
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In the MS-Xa method, because of the division of molccular space, the cal. 

culation of the matrix elements of .6. V/J~/C is rather complicatcd, l'.g., 

+ < 4>~ll(ro)1 L::, v,:/c-o(ro)I<p~l/(ro) > 

+ < 4>~I (r)1 .6. ~~~IC ItP~l (r) > (0 - 30) 

where the iteration index i has been dropped. hl cquation (6-36), thc fu'st krIll is the 

contribution from all the atomic sphercs, the second tcrm from the ext.rallloh'culéU' 

region, and the third term from the interatomic region. 

It is impossible to calculate exactly the thild term in equatioll (6-30) !)('caUHf' 

of the irregular shape of the interatomic regioll, although the wavl' fUllctiollS mld 

constant potentials for all the orbitaIs are known befo:.e calculatiug the matrix 

elements. 

To overcome the irregular shape in the illteratomic regiou, the charge pm t.i-

tioning algorithm proposed by Case and Karplus176 in the céùculatioll of the exp('c-

tation value of one-electron operators was uscd. The electlOIl charge il1 the inter-

atomic region is partitioned into individual atomic spheres éU1Ù the wave fUllctiollH 

of the individuai atomic spheres expandcd inta the illteratomic regioll includiug the 

extra electron charge contributed from the inter atomic rcgioll. 

After applying the charge partitionin~ éùgorithm, equatioll (0-36) hecoIU('s 

(6 - 37) 

Obviously, the second term on the right hand side of equatioll (G-37) is the !-.ame as 

the second term in equation (6-36). tP~(rQ) ami ~~(ra) in equatioll (6-37) lUe the 

expanded wave functions of orbitaIs J-l and v for the atomic !-.pIH'l(! n. TIl<' COlli>taIlt 
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potentials of orbitaIs J.l and v are used in the integrand of equation (6-37) for the 

integral of the expanded wave function, that is 

(6 - 38) 

where ba,new is the new radius of the atomic sphere Cl' including the electron charge 

contributed from the' interatomic region. 

Explicitly, the matrix element of 6 Vp~IC is 

< 1Jp /6 V/jC /r/>v > 

= LMpIMv } { L [LeIL LC:L'8(l,[1)8(m,m' ) 
l,} 0' L L' 

(6 - 39) 

where 8(1, l') and 8(m. m') are Kroenecker delta functions. From equation (6-39), it 

is ohvious that the angular part of the integration is already calculated analytically, 

because the pot<,ntials in the MS-XQ' method are only dependent on the radial vari-

ables in the atomic and extramolecular regions and are a constant in the interatomic 

rcglon. 
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CHAPTER VII 

APPLICATION OF THE SIC-MS-Xa METHOD 
TO MOLECULES AND MOLECULAR ANIONS 

VII-!. Introduction 

It is clear that the off-diagonal Lagrange multipliers arc not equal to Zt'ro 

in equations (6-16), (6-17), and (6-18), because the SIC potentials are orbital-

dependent. It is much more difficult to solve the one-electron Schrodinger cquatioll 

with non-zero off-diagonal Lagrange multipliers29 ,3o, because the wav(' functions in 

the interatomic region (equation (6-18)) might be no longer Bessel fUIlctioIlS. 

Pederson et al. 189 used a projection technique ta cast the individual Humil-

tonian into one unified Hamiltonian. The onc-electron Schrodinger equéLtioll with 

only-diagonal Lagrange multipliers was solved easily for the occupicd urhitals. ln 

their later paper189 , they showed that the off-diagonal Lagrauge multipliex h were 

small. Other authors olso showed that the differencc of the one electlOu eigcnval-

ues calculated using the non-orthogonal wave functions and the orthogonal wavc 

functions in the orbital-dcpendent LDF theory is sIIla1l22 ,24,29,3U in the atomic ("al-

culation. When the off-diagonal Lagrange mulbpliers in equatiullh (G-1G), (6-17), 

and (6-18) in the SIC-MS-Xa m~thocl are ignorcd, the one-clcctron Schrodingcr 

equations in the atomic, interatomic, and extramolecular regions recluce tu 

[- ,i + VO(ro)+ V.SIC-O(ro)] 1/'; II (ro) = fll1jJ;ll(ro) 
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and 

(7 - 3) 

with 

(7 - 4) 

Cook and Case's MS-Xa program195 was modified to solve the equations 

(7-1), (7-2), and (7-3) with the orbital-dependent SIC potentials to obtain the wave 

functions in the seF procedure. The coefficients in equations (6-3), (6-5), and (6-8) 

or (6-10) are determined as those in the MS-Xa method, that is, by mat ching the 

wave functions and the derivatives of the wave functions at all sphere boundaries. 

The wave functions in the SIC-MS-Xa method are, then, used to calculate 

the matrix elements in equaticn (6-34) for each pair of orbitaIs and search the 

transformation coefficients Mill in equation (6-23), to give the minimum of the total 

SIC energy. Obviously, because the spherically averaged potentials in the atomic 

and extramolecular regions and the volume-averaged potential in the iflteratomic 

region were employetl in the MS-Xa method, equation (6-30) is already satisfied 

for the pairs of orbitaIs which span two different symmetry representations. This 

implies that there is no mixture between any two different symmetry representations 

during the rninimizat1f)n of the total SIC energy in the SIC-MS-Xa method. 

Once the transformation coefficients are found, the second SCF procedure 

is applied to yield self-consistent wave functions and one-electron eigenvalues using 

the SIC potentials which are generated by means of wave functions {<p}. When 

the differences of the total potentials between the (i + 1) th and the ith iterations for 

all orbitals are less than 10-5
, the calculation is self-consistent. 

195 



VII-2. Molecules in the SIC-MS-Xa Method 

To test the reliabilit.y of the self-interaction conectcd llluitiple-scattering XC\" 

method, it will first be applied to three small lllolecules, ethylcIll', formuldt'hyde, 

and ozone, two planaI' oonjugated organic molecules, benzcllc l:Uld pyra:t.it t (" (Uld two 

tetrahedral molecules, carbon tetrafiuoride and carbon tetrachloridc. TIl(' ionizatioll 

potentials and statistical energies are calculated. The restl ~ cs of the SIC-~IS-XC\" 

calculation will be oompared with those from the MS-XQ (me! transition :,;tate MS­

Xa methods, and other theoretical calculations, hke HF, CNDO /2 mld etc. 

The experimental equilibrium geometries for ethylene (C Z H.1 ), forllmldehydt> 

(H2 CO), ozone (03 ), carbon tetrafiuoridE" (CF4 ), and carbon tctrachloride (CCLd 

were from Rer. 196 and for molecules benzenc (C6 H6 ) cUld pyrazine (C.i H.i N2 ) 

from Rer. 178. The exchange parame ter values ,l a's \Vere fWIll Rd. 10, eX("('}lt 

for hydrogen, where the polarizcd \-ctlue197 is I)1cferred for the individual ,ttomie 

spheres. For the extramolecular and interatomic regions, the éJn'ragcd Vallll'~ of n' s 

were obtained by weighting the Q for each atom by its numbcr of valence clectrcms. 

The radii of the atomic sph~res and the outer sphere (U'C fWIll the Norman 

criterion198 scaling by a factor of 0.8 for the molecules C:zHt, H:zCO, 0,1, CF4 , 

and CC14 ; the overlapping percentap;es of the atomic sphcres for tlH'se lllolecul('s 

are between 10 and 35. The radii of the atomic éUld outer t>plH'lC~ for CG Hb éUHI 

C4 H4 N2 are from Ref. 178, that is, bu = 0.95 élQ, be = bN = l.GO ao for bath C6 He 

and C4 H4 N2 (ao is the Bohr radius), and bo = 5.63 élQ for CbHU <wd bo = 5.58 ao 

for C4 H4 N2 , in order to compare the present lc~ults with the previous iOl1izatioll 

potentials for benzene r1nd pyrazine in the transition statc MS-Xo: calculatiolls. 

Partial waves up to 1 = 3 for the outer sphcre, 1 = 1 for ~h(· cal bon éUld 

ni trogen atoms and l = 0 for the hydrogen atoIll were used in the Cü H(, éUld C4 H4 N:l 

calculation, and 1 = 4 for the outer sphere, 1 = 2 for the carbon, OXyg('ll, Huoride, 
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and chloride atoms, 1 = 1 for hydrogeIl in the other molecular calculations. The 

ground states and the transition states were carried out self-consistently using the 

updated version of the MS-Xa program modified by Cook and Case195 • 

Tables VII-l to VII-7 show the negative of one-electron eigenvalues for ethy­

lene, formaldehyde, ozone, carbon tetrafluoride, carbon tetrachloride, benzene, and 

pyrazine in the MS-Xa, the transition sta.te MS-Xa, the SIC-MS-Xa, and the to-

tal SIC energy Il1Ïnimized SIC-MS-Xa methods (henceforth, called the MS·Xa, 

TS-MS-Xa, SIC-MS-Xa, and M-SIC-MS-Xa, respectively). The geometries of the 

molecules, parameters, radii of outer and atomic spheres are the same for the same 

molecule in all methods. The present one-electron eigenvalues are compared to those 

from the ab-inltio HF, the LCAO-Xa, the Green function (GF), and other theo-

retical calculations, and with the experimental ionization potentials. Table VII-8 

summarizes the statistical total energies from various methods. 

VII-2.1 One-Electron Eigenvalue 

In the Xa method, the one-electron eigenvalue is equal to the derivative of 

the statistical total energy with respect to the occupation number199 , that is, 

€k = (~) 
8Nk z 

(7 - 5) 

The ionization potential in the Xa method tmder the frozen orbital approximation 

is equal to 

h = E(Nk -1) - E(NIr) 

'" -'d ~ dkllkk > -( s: r3
" J l,(r) [p(rf"3 dr (7 - 6) 

where < kkllkk > is the self-Coulomb interaction energy and the last term of 

equatioll (7-6) is the second derivative of the statistical ex change total energy with 
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respect to the occupation number of orbital kj the statistical total cnergy is cOllsid­

ered correct in the Xa method. However, the ionization potential in the HF I1lcthod 

is equal to the nega.tive of one-electron eigenvalue of the correspondillg orbital, i.e. 

1 HF 
Ir = -€k (7 - 7) 

under the frozen orbital approximation (Koopmans' theorem)54,199. When the SIC 

is introduced into the Xa method, equation (7-6) becomes 

( 
3 ) 1/3 { [ ]-2/3 [ ] -2/3 } 

Ik = -€k + 811" a J p%(r) pdr) - p(r) dr (7 - 8) 

The introduction of the SIC greatly reduces the deviation of €k from the ionizatilm 

potential. The l"esults listed in Tables VII-l to VII-7 support this analysis. 

TABLE VII-l 

The negative of the one-electron eigenvalucs of ethylene (C2 H4 ) in the 
MS-Xa, TS-MS-Xa, SIC-MS-Xa, and M-SIC-MS-Xa 

methods, compared with other calculation and 
experimental ionization potentials (eV) 

Orbital Xa TS-Xa SIC-Xa M-SIC-Xa TS-Xa a Expt b 

1bIu 6.34 9.89 9.90 10.06 12.12 10.51 
1bIg 9.48 13.28 12.15 12.23 11.72 12.38 
2ag 10.62 14.53 14.61 14.46 14.72 14.47 
1b3u 12.04 15.80 15.28 15.39 15.48 15.G8 
1b2u 14.83 18.65 18.12 18.24 18.12 18.87 
1ag 19.08 22.96 23.10 24.10 23.9.5 ~ 23 

a. Reference 173; 
b. Reference 200. 

C 2 H 4 : Table VII-l w:ld Fig. 7-1 show the negative of the one-elcctron eigcnvalucs 

for ethylene in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and M-SIC-MS-Xa mcthods 
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FIGURE 7-1 

The one-electron eigenvalues (eV) for the valence orbitaIs of 

ethylene (C2H4 ), compared with the experimental 

ionization potentials 
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(columns II to V) compared to other theoretical calculations ~uld exp riment. R08ch 

et al. 173 studied ethylene using the transition state MS-Xü calculatioll to t('st t!lC 

overlapping sphere technique. The exchallge parametcrs and the radii of the ntolllic 

and outer spheres in thAir work differs from thosc used in the pn'S('llt work. Th(' 

experimental ionization potentials are from Ref. 200. The llcgativc of olle-ell'ctnm 

eigenvalues in the MS-XQ method, as expected, are much smallcr than tlw eXIWl'­

imental ionization potentials. But ",he negative of one-electron eigl'uvalul's in the 

SIC-MS-XQ method are excellent in the agreement with expeliml'llt, l'WU bctt('r 

than those from the transition state calculation in which, a,> in the pres('nt WOl k, tht' 

results are taken from the negative of one-electron eigenvaluct> obtaiucd by ll'lhOV­

ing half-electron from the highest occupied orbital, lb l u' The present tIallsitioll 

state calculation is much better than the early workl73 , becausc of the choice of the 

atomic and outer sphere radii and the overlapping percent age !wtw('<'ll tIlt' atomic 

spheres; the vO:Llme and electron charge in the interatomic lcgioll Hl'(' dqwwl('IÜ, ou 

the percent age of the overlapping between the atomic splH'l'cl-!, therefOlc the OIlC­

electron eigenvalues and statistical total energies are sensitive to the pot('utial in 

the interatomic region in the MS-XQ method. The one-electroll eigcllvalucs ill the 

M-SIC-MS-Xa method are higher than those in both the TS-MS-XQ éUld SIC-MS­

XQ methods in absolute value, because minimizing the total SIC cuerg,y lowers the 

statistical total energy and makes the molecule more stable. The' poteutial of the 

atomic spheres in the M-SIC-MS-Xa is lower than in the SIC-MS-Xn methoù, aud 

consequently the binding energies of the electrons are higher than in SIC- :YlS-Xa, 

and therefore the ethylene ionization potentials from the negati\'c of th(' oll<'-dectron 

eigenvalues in the M-SIC-MS-Xa are slightly bet ter than tho:>c ill the SIC-:"1S-Xo 

method for orbitals lbl u , lb1g , 2ag , lb3u , and lb2u • But, for orhital lag , thc value 

is too high compared to experiment. 
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Orbital 

2b2 
lb} 
3a} 
1b2 
2a} 
la} 

TABLE VII-2 

The negative of the one-electron eigenvalues of formaldehyde 
(H2CO) in the MS-Xo:, TS-MS-Xo:, SIC-MS-Xo:, and 

M-SIC-MS-Xo: methods, compared with other 
calculation and experimental ionization potentials (eV) 

Xa TS-Xo: SIC-Xa M-SIC-Xo: TS-Xo:a LCAO-Xaa HFb 

6.97 11.43 10.81 13.17 12.03 11.26 12.03 
9.88 14.41 15.09 13.85 15.55 15.41 14.60 

12.64 17.27 17.08 16.52 17.93 16.31 17.77 
12.21 16.61 15.88 16.58 17.55 17.72 18.82 
15.85 20.34 19.60 20.10 23.59 
27.40 32.28 33.51 31.22 38.28 

a. Reference 181; 
b. Reference 201; 
c. Reference 202; 
d. Reference 204. 

GFc Exptd 

10.84 10.88 
14.29 14.38 
16.36 16.00 
17.13 16.78 

21.8 

H 2 CO: Formaldehyde has been widely investigated by the tangent sphere and 

overlapping sphere MS_Xa I81 , the LCAO-Xa181 , the HF2ol , the Green-function 

(GF)202, and the ordinary third-order Rayleigh-Schrodinger pert.urbation203 meth­

ods and experimently204. The present results are listed in Table VII-2 and compared 

to thesc œlculations and experiments. The one-electron eigenvalues of the highest 

four occupied orb:tals are plo ,ted in Fig. 7-2. The results strongly support the 

orderillg alrcady obt,ained by ~he HF method20I . The ordering of orbitaIs 3al and 

Ib2 was revelsed in the MS-Xa, TS-MS-Xa, SIC-MS-Xa methods, although quan­

titatively, the olle-elcctron eigenvalues in the TS-MS-Xa and SIC-MS-Xa methods 

are llluch better than those in the HF method, even better than the transition state 

LCAO-Xa calculation. The SIC-MS-Xa method is comparable to the TS-MS-Xa 

Illcthod. Furthermore, the ionization potentials from the negative of one-electron 

cigcllvalues in both SIC-MS-Xa method and TS-MS-Xa method in which half-

electron was removed from the highest orbital 2b2 to infinity are much better than 
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FIGURE 7-2 

The one-electron eigenvalues (eV) for the valence orbitais 

of formaldehyde (H2 ra), compared with the 

experimental lonization potentials 
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= 

those in the early transition state MS-Xa calculation181 , the present number of 

partial waves and the radii of the atomic and outer spheres differ from those used 

previous workl81 , in which the partial waves up ta 1 = 2 for the outer sphere, 1 = 
o for the hydrogen atom and 1 = 1 for the c'trbon were employed. However, the 

partial waves up to 1 = 4 for the outer sphere, 1 = 1 for the hydrogen atom and 1 = 2 

for the carbon were used in the present work and include the polarization function. 

It is interesting that the ordering of orbitaIs 3al and Ib2 is correct in the M-SIC­

MS-Xa method and the M-SIC-MS-Xa results are better than the TS-MS-Xa and 

SIC-MS-Xa, except for orbital 2b2 • 

Orbital 

4 al 
3 b2 
1 a2 
2 b2 
1 bl 
3 al 
2 al 
1 b2 
1 al 

TABLE VII-3 

The negative of the one-electron eigenvalues of ozone (03) 
in the MS-Xa, TS-MS-Xa, SIC-MS-Xa, 

and M-SIC-MS-Xa methods, compared with other calculation 
and experimental ionization potentials (eV) 

Xa TS-Xa SIC-Xa M-SIC-Xa TS-Xaa LCAO-Xaa HFb 

9.50 14.14 13.62 13.42 13.20 11.92 15.83 
9.22 13.84 1:':.29 12.44 13.17 12.20 16.31 
9.87 14.49 13.91 13.05 13J32 12.60 14.02 

16.03 20.75 20.30 20.87 20.74 18.22 21.93 
14.70 19.38 19.81 18.30 19.44 18.88 22.15 
15.17 19.87 20.04 18.83 19.94 18.36 23.26 
21.09 25.79 25.14 24.90 25.30 22.98 
27.41 32.19 31.52 30.94 32,42 31.86 
33.68 38.51 38.68 37.31 39.38 39.00 

a. Reference 181; 
b. Reference 205; 
c. Reference 206; 
d. Reference 207. 

PTe Exptd 

12.94 12.75 
13.27 13.03 
14.07 13.57 
19.44 19.99 

24.7 

Os: Ozone is a widely investigated molecule by means of the MS_Xa181 
, the LCAO-
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FIGURE 7-3 

The one-electron eigenvalues (eV) for the valence orbitais 
of ozone (03 ), compared with the 
experimental ionization potentials 
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Xal8l , the HF205 , and the Rayleigh-Schrodinger perturbation (PT)206 methods and 

experimently207. The present TS-MS-Xo. calculation, which was carried out by re­

moving half-c1ectron from thE: highest orbital 4al to infinity, the SIC-MS-Xa, and 

M-SIC-MS-Xa calculations for ozone are presented in Table VII-3. The one-electron 

eigenvalues of the highest four occupied orbitaIs are compared, in Fig. 7-3, with 

those from the LCAO-Xa, the HF, the PT methods and from experiments. The 

prcflcnt TS-MS-Xa: calculation is slightly worse than the early calculation181 , in 

whieh the rcsults \Vere obtained orbital by orbital, that is, the ionization potential 

for caeh orbital was obtained by removing a half electron from the corresponding or­

bital, whieh is the preferred methodl8l , although occasionally it is possible to obtain 

identical results by removing a half electron from the highest symmetry occupied 

orbital. The ionization potentials taken from the negative of one-electron eigenval­

ues in the SIC-MS-Xa method are better than the present TS-MS-Xa caIculation 

and comparable with the carly work 18l
. The results in the M-SIC-MS-Xa methods 

are no better thall those in the SIC-MS-Xa method. Unfortunately, the ordering of 

orbitaIs 4al and 3b2 , and 2bz , lb}, and 3a} are reversed by the TS-MS-Xa method, 

and in the SIC-MS-Xa method. The reversed ordering also happened in the HF 

method fOl orbitalfl 4al , 3bz, and 102 and in the transition state LCAO-Xa meth0d 

for lb l and 3al' Renee the reversed order in the SIC-MS-Xa method is not eaused 

by thc 'muffin-tin' approximation. 

CaHa: DCIlzcne has been studied by the transition state MS_Xa173 ,178, and the 

HF208 mcthods, and experimentally209-Zl1. The assignment of the experimental 

ionizatioll potcntials follows the many body calculationZ12 . The present results are 

shown in Tablc VII-4 and Fig. 7-4 and eompared with the others. The ionization 

potcntia!::; takcn from the negative of one-eiectron eigenvalues in the SIC-MS-Xa 

lllcthod arc better than the TS-MS-Xa calculation in which half-electron is removed 
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Orbital 

lel g 
2e2g 
1a2u 
2elu 
1b2u 
lblu 
2alg 
1e2g 
1elu 
1alg 

TABLE VII-4 

The negative of the one-elcctron eigcnvalues of benzcnc l C6 lI6 ) 
in the MS-Xa:, TS-MS-Xa:, SIC-MS-Xa:, and 

M-SIC-MS-Xa: methods, compared with other 
calculation and expcrimental ionization potentiais (eV) 

Xa: TS-Xa: SIC-Xa: M-SIC-Xa: TS-Xa a TS-Xa b I1Fc 

7.51 10.35 10.03 10.2.5 10.08 10.45 lü.1f> 
10.17 13.03 12.18 12.21 11.48 13.21 H.2G 
10.25 13.08 12.77 12.98 12.85 13.16 1·1JiG 
11.97 14.82 14.00 14.07 13.5G 14.97 16.n 
13.82 16.82 16.53 16.82 13.53 17.18 1H.OI 
12.59 15.40 14.24 14.39 16.09 15.52 17.80 
14.31 17.13 16.37 IG.50 16.07 17.25 20.08 
17.10 20.03 19.64 20.27 18.90 20.27 
20.67 23.62 23.19 23.66 22.82 23.87 
23.34 26.30 25.88 26,22 26 12 2G.5G 

a. Reference 173; 
b. Reference 178; 
c. Reference 208; 
d. References 178,204. 

Expt.d 

n.3 
Il A~ 
12.2!) 
la.!),t 
}.l.HO 
15..16 
HUHi 

Hl. 0 
22.7 
25.9 

from orbitallblu , except for the lblu , and are much better than thc HF method. 

The ionization potentials in the M-SIC-MS-XC\' method ffi'e higll<'r thau thm:ic ill 

the SIC-MS-Xa: method, but no better than thosc in thc SIC-tvIS-Xn Ill('thod. The 

early transition state MS-Xa: calculations for bcnzene givcn by Ro::-,ch ct al. l n IU'L' 

mostly better than the present caIculations, l)('cau~c thcy tlid the SCF procedure 

orbital by orbital. The present ionization potcatlals in the TS-t\'lS-Xn met 110<1 arc 

slightly bettcr than Case et al.lï8 work, in which the spiu-polarizcd idS-X(\' method 

was used. Obviously, when the transition state coIlcept is ill\'olv('d, dl\' dectlOn-

configuration is no longer full ocrupicd. The exchauge <,ffecb for the ~pill-up l:llld 

spin-clown electrons are different. Henee the Spill-polarized MS-Xa method is bettcr 

in carrying out the transition state caIculation. 
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FIGURE 7-4 

The one-electron eigenvalues (eV) fClr the valence orbitaIs 
of benzene (CslL;), compared with the 

experimental ionization potentials 

-5.-________________________________________ ~ 

-10 

-15 

-20 w 

-25 

-30 

HF EXPT 35 Xa TS-Xa SIC-Xa M-Xa TS-Ka TS-Xa 
- ~------------------------------------------------------~ 

207 



Orbital 

4ag 
1b1g 
3b1u 
1b2g 
2b3g 
1b3u 
3b2u 
2b1u 
3ag 
2b2u 
2ag 
lb3g 
1b2u 
1b1u 
lag 

TABLE VII-5 

The negative of the one-electron eigenvdlues of pyrazine (C., Il.1 N2 ) 
in the MS-Xa, TS-MS-Xo:, SIC-MS-Xa, and 

M-SIC-MS-Xa methods, compared wit.h atller 
calculation and experimental ionization potcntials (cV) 

Xa TS-Xo: SIC-Xa l\1-SIC-Xo: TS-Xn ll Expt.t' 

8.04 11.17 10.95 9.96 11.28 9..1 
7.86 10.85 10.24 8.90 10.94 10.2 
9.52 12.68 12.52 11.27 12.90 11.4 
9.15 12.24 12.00 10.49 12.:i3 11.7 

11.22 14.23 13.23 12.26 14.34 1:1.3 
11.36 14.39 14.19 12.75 14.:i9 14.0 
12.44 15.42 14.35 12.89 15.59 15.0 
13.21 16.16 15.01 13.67 16,ti6 16.2 
14.31 17.31 16.71 15.70 17.66 17.0 
15.66 18.89 18.73 18.68 19.16 17.1 
18.62 21.77 21.46 20.86 21.97 20.6 
18.65 21.83 21.56 20.47 22.00 21.0 
21.58 24.71 24.27 23.42 24.93 24.0 
24.45 27.70 27.46 26.10 27.80 
26.28 29.49 29.23 29.52 29.63 

a. Reference 178; 
b. Reference 213. 

C4 H4 N2 : The photoelectron spectrum of this molecule has been analyzed by 

Almlof et al. 213 A theoretirnl study has been done by Case et ,Ù. 178 in the spiu­

restricted MS-Xa calculation. In order to test the efficiency of the ple~cllt SIC-MS-

Xa methocl, the calculation \Vas duplicated using the same exchang(: par allleter:,;, 

a's, and the radii of the atomic and outer sphercs in the ~pill-I>olaJ iz('d TS-~IS-Xn 

method, the SIC-MS-Xa and M-SIC-MS-Xa mcthods. Frolll Table VII-ti lUld Fig. 

7-5, it can be seen that the spin-polarized transitioll state ralculation (cOlUIllIl 3) are 

only slightly better than the spin-restricted trall~itioll statc cakulatioll J 78 (COlUlIlll 

6). The ionization potentials taken from the negative of oIlc-ch·ctIOIl cigcllvélluc!s in 

the SIC-MS-Xa method are slightly bcttcr than thc results of hoth ~pin-l(·~trided 

and spin-polarized transition state calculations and arc in very good agreeIll<'ut 
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FIGURE 7-5 

The one-electron eigenvalues (eV) for the valence orbitaIs 
of ilyrazine (C. a. N2), compared with the 

experimental ionization potentials 
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with the experimental results. The M-SIC-MS-Xa ionization potentitù~ are no bet­

ter than the SIC-MS-Xa results. 

Orbital 

1 tl 
3 t2 
1 e 
2 t2 
2 al 
1 t2 
1 al 

TABLE VII-6 

The negative of the one-electron eigenvalues of tetrafluoride 
(CF 4) in the MS-Xu, TS-MS-Xu, SIC-MS-Xa, and 

M-SIC-MS-Xa methods, cOll1pared with other 
calculations and experimental iOlllzation potentials (cV) 

Xa TS-Xa SIC-Xa M-SIC-Xa HFu CNDOj2U 

12.27 16.45 15.66 15.60 19.40 22.2,1 
13.14 17.29 16.67 16.63 19.65 20.20 
13.81 17 <)4 17.31 17.29 21.34 2:3.30 
17.16 21.Ju 21.14 21.23 24.89 28.18 
19.99 24.22 23.83 24.30 28.15 29.4R 
32.54 36.75 35.88 35.8,1 46.65 '18.22 
34.89 39.11 38.51 38.80 50.50 M.G:i 

a. Reference 214; 
b. Reference 215. 

Exptb 

lG.:W 
17.40 
18.50 
22.12 
25.12 

CF 4: Carbon tetrafluoride has Td symmetry and is ide al for the MS-Xa calculation. 

This mole cule was calculated by ab-imtio HF method214 éUld CNDO/2 elllpiricai 

method214 and n-easured expenmently215. The prescnt tran:-:ition state ndculatioll 

listed in Table VII-6 was performed by removing half-cledlüll frolll the lùglw:-.t or­

bital lil. Fig. 7-6 plots the one-electron eigcllvalucs in the MS-Xn 11]· ·thod éUHl 

compares with those from the HF, the CNDO /2 IIlethod~ ami experimcnb. The 

ionization potentials in the transition state calculatiol1 éU (' in cxcelknt agrCClll('rlt 

with experiment and slightly better thau tho::.e in the SIC-MS-XC\' method in which 

the results are slightly sm aller thall tho~e in the transition ::.tate plOcedure. Further-

more, the present results in both TS-MS-Xa and SIC-MS-Xa Illcthods arc nmeh 
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FIGURE 1-6 

The one-electron eigenvalues (eV) for the valence orbitaIs 
of tetrafluoride (CF4 ), compared with the 

experimental ionization potentials 
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better than the values in the HF and CNDO /2 methods. The oIlc-electroIl eig<'Il­

values in the SIC-MS-Xa method are slightly changed by the millimizatioll of the 

total SIC energy with respect to the orbital transformation. 

TABLE VII-7 

The negative of the one-electron eigenvalueJ of tetrachloride 
(CCI4) in the MS-Xa, TS-MS-Xa, SIC-MS-Xo:, 

and M-SIC-MS-Xa methods, compared with other calculation 
and experimental ionization potentials (f' V) 

Orbital Xa TS-Xo: SIC-Xa M-SIC-Xo: CNDO /2 u Exptb 

1 tl 9.03 11.97 11.46 9.97 13.G8 11.60 
3 t2 9.74 12.66 12.34 10.86 15.21 12.40 

12.GO 
12.75 

1 e 10.34 13.25 12.85 11.36 16.60 13.40 
2 t2 13.23 16.22 16.27 15.14 21.49 16.GO 
2 al 17.07 20.08 19.99 20.32 
1 t2 22.31 25.32 24.87 23.41 
1 al 25.10 28.12 28.02 27.41 

a. Reference 216; 
b. Reference 217. 

CC14 : Carbon tetrachloride has Td symmetry. Table VII-7 and Fig. 7-7 shows 

the present results and compares to the empirical CNDO /2 calculation216 and the 

experimental ionization potentials217 . The ionization potentiab in the SIC-MS-XO' 

method are better than those in the TS-MS-XO:' calculution, in which the rcsults w('re 

obtl:11ned by removing half-electron from the highcst occupicd orbital lit, exccpt for 

orbital le. Both the TS-MS-XC\: and SIC-MS-XC\: methods arc much bctter than the 

CNDO /2 method in predicting the ionization potcntials. Furthcrmol'c, M-SIC-MS­

Xa method is no better than the SIC-MS-Xa Il1cthod. 
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FIGURE 1-7 

The one-electron eigenvalues (eV) for the valence orbitais 
of tetrachloride (CCI.), compared with the 

experimental ionization potentials 
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The ionization potential is not exactly equal ta the negutivc of onc-l'Iectroll 

eigenvalue in the HF method, because the relaxation in the iOllizatioIl pl'OC<'HS il' 

important, it is much more important in a molccule than in lm atom, for which 

ionization potentials taken from the pegative of one-clectron cigenvalue is in \'('ry 

good agreement with experiment. The ionization potentinl is éÙSO Ilot <'quaI tu 

the negative of one-electron eigenvalue in the Xa mcthod l'\"(,11 U:o.illg the fl'Ozm 

orbital approximation. It is clear from equation (ï-8) that the iOllizatioll }lot.L'lltials 

should be bigger than the negative of one-electron eigenvalue, bccause the vahw 

of the integral in equation (7-8) is a1ways positive, except fOl Il system with oIlly 

two paired electrons. The relaxation effect is to decrease the ionization j>otelltial, 

but the second term in equation (7-8) is to increase the ionizatioll pot<'lltial. They 

partly cancel. This is why the ionization potentials obtained from the Il('gative of 

one-electron eigenvalues in the SIC-MS-Xa: method to be much better thau the HF 

method by using the Koopmans' theorem. 
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TABLE VII-8 

The statistical total energies for several molecules (eV) 
in the MS-Xa, SIC-MS-Xa, and minimized 

SIC-MS-Xa methods 

Molecule MS-Xa SIC-MS-Xa M-SIC-MS-Xa 

C2 H4 -156.7532 -153.0174 -153.1182 
H2 CO -228.2903 -228.3149 -228.4970 
03 -448.8199 -443.5352 -443.8501 
C6 H6 -459.4779 -445.2743 -445.4223 
C4 H4 N2 -524.2504 -509.8879 -510.5779 
CF4 -871.3409 -854.6787 -854.8670 
CCl 4 -3750.786 -3703.434 -3703.806 

VII-2.2 Statistical Total Energy 

The statistical total energies are unreliable in the MS-Xa method. It is sen-

sitive to the amount of overlap between atomic spheres, because of the 'muffin-tin' 

approximation. To compare the SIC energy contribution, Table VII-8 summarizes 

the statistical total energies for the several molecules in the MS-Xa, the SIC-MS-Xa, 

and the M-SIC-1'lS-Xa methods. In Table VII-S, the total SIC energy contribu-

tions to the statistical total energies are negativc for H2 CO and positive for all other 

molecules, unlike atomic calculations in which the total SIC energy contributions 

to the statistical total energies arc always positive30 • 

Comparing the statistical total energies in the M-SIC-MS-Xa in column 4 

with those in column 3 in the SIC-MS-Xa method shows that the minimization 

proccss lowers the statistical total cnergies for all molecules, but the differences 

between the unminimized and the minimized SIC-MS-Xa statistical total energies 

are very smal1. As mentioned before, there is no mixture of the orbitais which 

span two symmetric irreducible representations, because the spherically averaged 
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and volume-averaged potentials for the atomic, extramolecular, and interntoll1ic 

regions in the MS-Xa method were used. The minimization is not ncces,mry in the 

SIC-MS-Xa calculation. 

ln conclusion cf this section, it can be seen that the SIC-IvIS-Xo: met.hod 

presents a significant improvement over the conventional MS-Xa for the following 

l'easons: 

(i) Theoretically, the SIC-MS-Xa method includes the SIC, which correds 

the unphysical self-interaction from the Coulomb-integral (Uld the cxclmllge-lIltegral. 

The self-interaction corrected theory should be accurate and clos el' to the n'al ~yHtelll 

than the uncorrected theory. 

(ii) Numerically, the SIC-MS-Xa method gives very good ionizatioll pot en­

tials in agreement with experiment and comparable with the trausitlOll ::,tatc eaku­

lat ion in the MS-Xa method whicb arbitrarily removes the self-iuteraction by the 

!e trick. From the examples mentioned above, it is clear that if the ord('riug of 

orbitaIs is reversed in the TS-MS-XQ calculation, it ,ùso is lcvcr::,ed III tl1<' SIC-MS­

Xa method, so that the reversion of the ordering of orbitaIs is Ilot cau~cd by SIC. 

A single SCF procedure can give both the ionization poteutials ,Ulc! wavc fnactiolls 

which can be used to calculate other propertics for the systeIl1. Comj>ntatiollal 

time is slightly increased by introducing the SIC, but llluch le::,::, thall twi('(' tlw 

computational time for two SCF procedures, one for the the iOlli:wtioll potl'utiab in 

the transition state calculation, and the other for the wave funetion in the grouIld 

state or excited state calculation required by conventional MS-Xa calculatiolli::>. The 

present method is therefore attractive, especially for a very large mol('cule::, u::,nally 

chosen for calculation by the MS-Xa method. The wavc fuIldious fWIll the SIC­

MS-Xa method will be better than those from the MS-Xa methoù for calculatillg 

other properties of the molecule. 
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The minimization of the total SIC energy is time-consuming, because one 

has to search the transformation coefficients by calculating the mat ri x elements in 

equation (6-34) and wmecessary, at least, by using Edmiston and Ruedenberg' s 

method. 

The SIC-MS-Xa method can be used for the very large molecule and cluster 

calculations with acceptable accuracy and reasonable computation time. 

VII-3. Stability of the Molecular Anions etoi, HCO-, and 0; 

Molecular anions are experimentally218-222 and theoretically135,137,223-229 

interesting, because of the importance of their electronic structure and molecular 

electron affinity in physics and chemistry. Theoretical calculation of molecular 

allions tests the rc1iability of the theory. 

The calculation of molecular anioll electronic structure and molecular elec­

tron affinity is very difficult 223 ,224, because both are strongly dependent on the 

nature of the basis set employed in the ab-initio Hartree-Fock method. The choice 

of the basis set becomes the prime focus of the work. The major energy contribution 

to the electroll affiuity is electwll correlation, and in molecules with very small elec­

tron affillities, the choice of clectron configuration in the configuration-interaction 

Har·trcc-Fock (CI) calculation is difficult. 

Most calculations on Illolecular anions135 ,137,223-229 were ab-initio Hartree­

Fock or CI calculations. A fcw were performed using the loc~ù-density functional 

(LDF) method, like, the LCAO-Xa: method181-183, the discrete variational Xa 

(DV-Xa) method184-186, or the multiple-scattering Xa: (MS-Xa:) method16o ,161, 

despite their uscfulness in describing the electron structure of large molecules and 

217 



containing heavy atoms. The lack of c.aJculations for the molecular rulÏons using 

the LDF method might he due to the non-convergence problem in solving the one­

dectron Schrodinger equation numericaJly. The cause of the non-com'ergency 15 

obvious if the details of the MS-XCI:' methodl60-161 are considered. 

As mentioned before, the MS-Xo: method is based on the division of molec-

ular space into non-overlapping atomic, interatomic, and extramolecular regions, 

with spherically averaged potentials for the atomic and extnllnolecular regions and 

a volume-averaged potential for the interatomÎc region, ru1d the conYentional Xü 

approximation to the exchange-correlation. The one-electron Schrodinger equation 

in the atomic and extramolecular regions are solved numerically In the XQ method, 

the ionization potential, h, f( - orbital k can be expressed as8 :.! 

1 
Ik ~ -fk + - < kkllkk > 

2 
(7 - 9) 

under the frozen-orbital approximation, in which fk is the one-elertron eigenvalue 

for the orbital k and < kkllkk > is the self-Coulomb energy of the clectron k, which 

is usually about le V. Normally, the ionization potential of the highe5t occupied 

orbital for most stable molecular anions is a very srnall positive value l2i
,141 and 

less than its self-Coulomb energy. Hence the one-electron eigellvuluc of the highest 

occupied orbital for most molectùar anions might he positive in the Xa method. 

Following the numericaJ approach of Herman and Skillman48
, the W:ive fune­

tion is obtained by outward munerical integration startillg From r=O and inward 

numerical integration starting from r=x. The wave functionê> ut the Hr!)t several 

mesh points in both directions are calculated by solving the one-dectron Schrodiuger 

equation analytically with the asymptotic forms of the potential viam (r) for the cor­

responding orbital, wh en r approaches zero and infinity. The radial wa"e function 

is of the form 

(7 - 10) 
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when r approaches infinity, where co is the normalization collstant and qnl(r) is 

written as 

(7 - 11) 

and Eni is the one-electron eigenvalue. In the Xa method, the asymptotic potential, 

VCX) (r), when r approaches infini ty, is 

VOO(r) = _ 2(Z - N) 
r 

(7 - 12) 

ia the Rydberg atomic units. In equation (7-12), Z is the total nuclear charge and 

N the total electron number in the system. It is clear that VCX) (r) = 0 for a neutral 

system. Equation (7-10) becomes 

(7 - 13) 

when r approaches infinity. Consequently, Pnl (r) is not a bound wave function 

when Eni> 0 for the highest occupied orbital of molecular anions in the MS-Xa 

method. 

To solve the one-electron Schrodinger equation self-consistently, Norman135 

applicd a Watson sphere \Vith charge +1 and radius equal to the outer sphere 

to simulate the stabilizing influence of a crystal Iatticc in the CIOi calculation. 

Obviously, the size of the 'Watson sphere is arbitrary, and the energy, potential, 

and, in turn, the one-electron eigenvalues of the system depend on the radius of the 

'Watson sphere and the charge on the Watson sphere. Hence it may not be ~''3ed to 

predict the electron struct ure of molecular anions. 

As mentiolled in section III-l, the same problem occurs in calculating the 

atomic structure of llcgative ions of atoms71 . The stable negative ions, such as 

H-, 0-, F-, éUld Cl- 53 ,70,71 were predicted unstable by the Xa method and other 

LDF methods. Sen53 discussed the non-convergence problem in the Xa calculation 
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for the atomic negative ions and pointed out that the non-COll\'crgcllCL' problem is 

because the self-interaction is not canceled in the Coulomb illtegral by that in tl,C 

exchange integral in the Xa method. 

Previously (section VII_2)190, it has been shown that the :,df-interaction COl'-

rection in the MS-Xa method, the self-interaction correctt:'d !."IS-Xo (SIC-i\IS-Xa) 

method, significantly improves the molecular lcstdts over the collvcutioual MS-Xn 

results, especially for the one-electron eigenvalucs, which me élS .l!,()od as tho:,{' fWIll 

the Slater transition-state caIculation and in the agreemcnt with the eX!)('rilllt'll-

tal ionization potentials. The SIC-MS-Xa rnethod has the correct asymptotic be­

haviour of the potential, 

2 
V(r) = --[Z - N + 1] 

r 
(7 - 14) 

when r approaches infinity in the extramolecular region in the SIC-MS-XQ Illcthocl. 

Renee the wave function is expected to be better than that in the MS-Xn Illcthod. 

In this work, the SIC-MS-Xa method lS employed to calc11late tlw lllol<>c-

ular anions CI0i", HCO-, and 0;. The effect of the electroll collelatioll l'uergy 

functional by using the Vosko, Wilk, and Nusni1 39 ,138 (I/\VN) (,Oll'<'latiou CIlt'rgy 

functional ~n the one-electron eigenvalues and the chmge di:,tributioll éllllOllg thc 

individual :-egion are discussed. The negative of the one-clectlOll cigcllvalues is 

compared with other theoretical cnIculations and expcrimcnt. 

Details relevant ta the present caIculations ôtè given bclow. 

Experimental equilibrium geometries ;u'c taken from fief. 230 for CI0i" , 

Ref. 220 for HCO-, and Ref. 223 for 0;. Schwarz's vdlllC&10 for the exclmnge 

parame ter , a, were employcd for fluOlinc, OXygCll, and carboll atoIll~, éUld the Q 

value of 0.77725 from Ref. 107 was u'icd for hydrogcn atolll. ct valu<'s for the 

interatornic and extramolecular rcgiolls were lllade equal and takcll H." the valeuc('-

electron weighted average of all atomic cr val lies. 
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Molecule 

ClO4 

IICOb 

°3 

TABLE VII-9 

Geometries of molecules, radii of the atomic and outer spheres, and 
overlapping percentages between spheres (a. u.) 

Sphere x y z ra Overlap 

Out 0.0 0.0 0.0 4.074 14.8(C/ - 0) 
CI 0.0 0.0 0.0 1.611 
0 -1.5821 1.5821 1.5821 1.534 

1.5821 -1.5821 1.5821 1.534 
1.5821 1.5821 -1.5821 1.534 

-1.5821 -1.5821 -1.5821 1.534 

Out 1.1772 0.0 0.0 3.770 47.1(0 -O~ 
C 1.1772 0.0 0.0 1.680 29.5(C - H 
0 -1.0905 0.2939 0.0 1.683 
H 1.6605 -2.3508 0.0 1.428 

Out 0.0 0.0 0.0 3.564 32.1(Oc - Ot) 
Oc 0.0 0.0 0.8436 1.525 
Ot 0.0 -2.0570 -0.4218 1.665 
Ot 0.0 2.0570 -0.4218 1.665 

a. Reference 230; 
b. Reference 220; 
c. Reference 223. 

The initial molecular potential was generated from the superposition of SCF-

XQ' charge densities for the fluorine, oxygen, and carbon atoms. Partial waves up to 

1=4 for the outer sphere, 1=2 for fluorine) oxygen, and carbon, and 1=1 for hydrogen. 

The 3pherc radii \Vere determined by the Norman criterion198
. Overlapping 

sphere radii were chosen nonempirically by using a scaling factor of 0.80 for CIO; 

Md 0.88 for HCO- and 03" over the atomic number sphere radii, since CIO; 

possesses tetrahedral symmetry (Td), which is much more suitable to the MS-Xa 

calculation than planaI' molecular symmetry, such as HCO- Md 03; the percent age 

of the <ttomic region in the lllolecular space is much higher in tetrahedral symmetry 

than a plan ru' system in the tangent sphere MS-Xa: calculation. The coordinates 
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for the atoms and the center of the outer sphere, the radii of the atomic find outer 

spheres, and the overlapping percentages of the atomic sphcres arc li8tcd in Tablc 

VII-9. 

The initial calculations are based on the original version of Cook tuld Cé~S("8 

MS-Xa program195 in order to perform the SCF calculations for the groulld statc 

and Slater transition state for CIOi, HCO-, and 0;. The moJified MS-XO:' pro­

gram including the self-interaction correction is clllployed to carry out thc g,To\1ud 

state calculation for the rnolecular anions CIOi, HCO-, cUle! 03" iucludiug éUld 

excluding the VWN39 correlation energy functional138
. 

Since the Coulomb and exchémge potentials in the SIC-MS-Xo: lllt'thod (U'c 

orbital dependent, the wave function is not invariant tUlder orbital tram.folluutioIlS. 

Previously (section VII_2)190, it has been shown that the clepclldence of wave fUllC­

tions on orbital transformations is not very important for the spherically averagcd 

potcntials for the atomic and extrarnolecular regions and thc volulllc-averagt'd po­

tential for the interatomic and the overlapping sphercs in the SIC -lvlS-Xn lllpthod. 

Hence orbital transformation is ignored in the present calculation. 

The SCF calculations for the ground state of CIO;' in the MS-Xo: éUlel SIC­

MS-Xa methods and the transition-state in the MS-Xa methoù perforIucel very 

weIl, because it is a well-bound ::;ystem with thc ionization potcntml of û.2('V for its 

highest occupied orbital. Unfortunatcly, the SCF wa~ oIlly po.,..,lble for the g,Tound 

state in the SIC-MS-Xo: method and the trausition-statc in t h(' ~'lS-X(\ lllcthod 

for HCO- and °3, and failed for the ground states in the :"-1S-Xo: lllcthod, giving 

positive eigenvalues for the highcst occupicd orbitaIs. The Ilcgatlve of the OIlC­

electron eigenvalues for all valence occupied orbitais of CIO'l' HCO- , ,UlÙ 03" éU'(' 

listed in Tables VII-ID, VII-12, and VII-13, re:,pcctively, éUlel (,oIIlpareel with otlIer 

calculations and experiment. The electron chalge distribution éUnong the atomÎ<:, 
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interatomic, and extramolecular reglOns and the charge partition to the partial 

waves are summarized in Table VII-ll for the ground state of CI04 in the MS-Xa 

a!ld SIC-MS-Xa methods and the transition state in the MS-Xa method. 

Orbital 

1 il 
3 i2 
1 e 
2 12 
2 al 
1 t2 
1 al 

a. Rer. 

TABLE VII-lD 

The negative of the one-electron eigenvalues (eV) in the 
MS-Xa, TS-MS-Xo:, SIC-MS-Xa, and 

SIC-MS-Xa-VWN methods for the negative ion of 
Cl04, compared with the electron affinity in 

the Watson sphere applied TS-MS-Xa calculation and experiment 

Xa TS-Xa SIC-Xo: SIC-Xa-VWN WS-TS-Xo:a HFb ExptC 

3.71 7.07 6.23 7.61 11.65 7.66 6.2 
5.56 8.87 8.40 9.76 13.88 9.65 8.8 
5.90 9.23 8.75 10.10 13.88 10.01 8.8 

10.34 13.68 13.47 14.86 18.75 15.47 13.4 
13.95 17.30 16.73 18.13 21.97 19.38 16.4 
21.79 25.21 24.65 26.06 30.89 33.07 27.0 
27.95 31.37 31.63 33.04 37.31 40.59 34.4 

135, transition state calculation in the MS-Xo: method with a Watson sphere; 
b. Rer. 231, from ab-ini1w HF calculation with the basis set (Cl/10,6,J) (0/7,3); 
c. Ref. 218, from the X-ray photoelectron spectra of IiCI04. 

CI04': To vertify the asymptotic form of the potential numerically in the ex­

tramolecular rcgion, Fig. 7-8 shows the potentiai behaviour in the extramolecular 

region for the highest occupied orbital, 1t1, of CIOi in the MS-Xa and SIC-MS-Xa 

mcthods. The behaviour of the potentials for a11 other occupied valence orbitaIs is 

approximutely the same as for 1t1. The potential multiplied by r approaches +2 in 

the ~'1S-Xo: Illcthod é:U1d zero in the SIC-MS-Xa method when r approaches infinity. 

The ionizatioll potentials of CIO,! have been measured by Prins231 from the X-ray 

photoclectron spectra of LiCI04 j and studied theoretically with the ab-initio HF 

method231 éUld the lvIS-Xa: method135 using a Watson sphere of charge +1 around 
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FIGURE 1-8 

Potential behaviour in the extramolecular region for the highest 
occupied orbital, 1tl! of CIO. in the MS-XQ 

and SIC-MS-XQ methods vs the radial r 
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the atomic and interatomic regions. The present SCF calculations was carried out 

without any Watson sphere. The negative of th~ one-electron eigenvalues are listed 

in Table VII-IO and compared in Fig. 7-9. Table VII-lO gives the negative of 

the one-electron eigenvalues in the MS-Xa method, column 2, the ground statej 

column 3, the transition state when half electron is removed from the highest oc­

cupied orbital, Hl, to infinity; column 4, the SIC-MS-Xa !l1ethod; and, column 

5, the V\VN correlation energy functional included SIC-MS-Xa method (hence­

forth, called the MS-Xa, TS-MS-Xa, SIC-MS-Xa, and SIC-MS-Xa-VWN, respec­

tively). Thc present results are compared to other theoretical calculations135 ,231 

and cxperiment218 • The ionization potentials listed in column 6 were obtained pre­

viously by Norman 135 using the MS-Xa method with Watson sphere stabilization. 

The negative of the one-electron eigenvalues in the MS-Xa methorl, as ex­

pected, are much sm aller than the experimental ionization potentials, and those in 

the TS-MS-Xa method are significantly improved using the Slater transition-state 

concept and are in reasonable agreement with experiment. The negative of the 

one-electron eigenvalues in the SIC-MS-Xa method gives the ionization potentials 

in excellent. agreement with experiment except for the two lowest occupied valence 

orbitaIs. The SIC remarkably increases the size of one-electron eigenvalues. The 

SIC-MS-Xa method gives the best ionization potentials of the anion CIO; among 

all these methods. The electron-correlation correction increases the binding ener­

gics of the orbitaIs and makes the one-electron eigenvalucs doser to those in the 

ab-iIlitio HF method. 

The charge distribution in the molecular space and the percentage composi­

tion for the individual orbitaIs of the molecular anion CIO; in the MS-Xa, TS-MS­

XQ, SIC-MS-Xa, and SIC-MS-Xo.-VWN methods are in Table VII-Il. Comparing 

the charge distribution of the atomic, interatomic, and extramolecular regions in 
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, 
FIGURE 1-9 

The one·electron eigenval ues (eV) for the valence orbitaIs 
of the negative ion CIO .. , compared with ex periment 
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the MS-Xa and TS-MS-Xa methods, it can be seen that the effect of removing 

half electron from the highest occupied valence orbital, 1h, is to slightly move the 

clcctron charge iuto the atomic region and reduce the electron charge ln the inter­

atomic and extramolecular regions. The partition of the electron charge between 

the partial wavcs in the atomic and extramolecular regions did not alter. However, 

the SIC pushes the electron charge of the atomic and interatomic regions into the 

extramoleculur region, compared to th" MS-Xa method. This is reasonable, be­

cause the asymptotic form of the potential, when r approaches infinity, is repulsive 

in the MS-Xa method, but neutral in the SIC-MS-Xa method for the molecular 

anion. The electron-correlation moves the electron charge from the interatomic 

and extramolecular regions to the atomic region. The contribution of electron­

correlation energy functional to the potential is usually negative and approximately 

proportional to the electron density. Obviously, the electron densities in the in­

teratomic and cxtramolecular regions are much smaller than the electron densities 

in the atomic region. Hence, the effect of the correlation-energy functional to the 

potentials in the atomic region is much bigger th an that in the interatomic and 

extramolecular regions. Consequently, the VWN correlation attracts the electron 

charge from the interatomic and extralY'.olecular regions to the atomic region. 

HCO-: The anion HCO- was studied Ly Wasada and Hirao224 using the CI 

method theoretically and experimcntally observed in the negative ion mass spectra 

of small alcohols by Murray et al. 220 and Chandrasekhar et al. 221 • The ioniza­

tion potential of 0.470 eV for the highest occupied valence orbital of HCO- in 

the CI calculation, in which the valence basis set is doubk-zcta plus one polariza­

tion functioll éUal three diffuse fUllctions (DZP+3), is very close to the very recent 

(1986) experiUH'IltaJ value22 0 , O.313±O.005 eV, which differs from the early (1981) 

cxperimclltal mcasurcd ionization potential221 , 0.174±O.174 eV. In this work, the 
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State 

1 tl 
1 e 
1 al 
2 al 
1 t2 
2 t2 
3 t2 

1 tl 
1 e 
1 al 
2 al 
1 t2 
2 t2 
3 t2 

1 tl 
1 e 
1 al 
2 al 
1 t2 
2 t2 
3 t2 

1 tl 
1 e 
1 al 
2 al 
1 t2 
2 t2 
3 t2 

TABLE VII-Il 

Charge analysis for the ground state of 
CI04" in the MS-Xo:(MS), 

TS-MS-Xo:(TS), 
SIC-MS-Xo:(SIC), and 

SIC-MS-Xo:-VWN(VWN) methods 

(Cl) s p d (0) 8 P d Q(3) 

MS 

0 0 0 0 77.1 0 100 0 5.6 
3.7 0 0 100 65.4 0 99 1 5.2 

44.1 100 0 0 41.9 78 19 3 0.5 
17.4 100 0 0 65.4 68 30 2 8.7 
15.6 0 87 13 71.4 94 5 1 2.2 
23.4 0 99 1 56.8 22 76 2 7.3 

5.4 0 3 97 66.5 0 99 1 7.6 

TS 

0 0 0 0 78.2 0 100 0 4.7 
3.7 0 0 100 66.6 0 99 1 4.4 

44.2 100 0 0 42.0 78 19 3 0.5 
17.5 100 0 0 66.1 69 30 1 8.0 
15.7 0 87 12 71.6 94 5 1 2.0 
23.5 0 99 1 57.4 22 76 2 6.6 
5.5 0 2 98 68.1 0 99 1 6.3 

SIC 

0 0 0 0 75.5 0 100 0 6.0 
4.4 0 0 100 63.2 0 99 1 5.4 

43.0 100 0 0 42.3 78 19 3 0.5 
16.7 100 0 0 65.3 69 30 1 9.0 
16.5 0 88 12 69.4 93 6 1 2.2 
22.8 0 99 1 56.1 23 75 2 7.1 

6.0 0 3 97 64.6 0 99 1 7.7 

VWN 

0 0 0 0 76.0 0 100 0 5.7 
4.4 0 0 100 63.7 0 99 1 5.1 

43.0 100 0 0 42.4 78 19 3 0.5 
16.6 100 0 0 65.5 69 30 1 8.7 
16.6 0 88 12 70.0 93 6 1 2.2 
22.9 0 99 1 56.3 23 75 2 6.9 
6.2 0 3 97 65.1 0 99 1 7.3 
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s P d f 9 Q(2) 

0 0 0 82 18 17.3 
0 0 94 0 6 25.7 

73 0 0 23 4 13.5 
52 0 0 39 9 8.5 
0 51 33 8 ., 10.9 1 

0 19 58 17 li 12.6 
0 78 2 0 20 20.5 

0 0 0 81 lU 17.1 
0 0 93 0 7 2,1).3 

73 0 0 22 cl 13A 
51 0 0 '10 9 8.'1 

0 51 3:3 8 7 10.7 
0 19 57 17 7 12.5 
0 75 2 0 23 20.1 

0 0 0 82 18 18.5 
0 0 94 0 G 27.1 

75 0 0 22 " 14.2 
54 0 0 :37 9 9.2 

0 51 32 7 7 11.8 
0 17 60 17 G 11.0 
0 78 2 0 20 21.6 

0 0 0 82 18 18.3 
0 0 93 0 7 26.9 

74 0 0 22 4 14.1 
53 0 0 38 9 9.1 

0 51 32 7 7 11.7 
0 17 GO 17 G I:U~ 
0 77 2 0 21 21.4 



SCF c81culations for HCO- were performed in the TS-MS-Xa method by removing 

half-electron from the hlghest occupied valence orbital Sa' to infinity and in the 

SIC-MS-Xa method. But the SCF process failed for the ground state of HCO- in 

the MS-XQ method, in which the one-electron eigenvalue of the highest occupied 

valence orbital for HCO- is positive. The negative of the calculated one-electron 

eigenvalues for HCO- in the TS-MS-XQ, SIC-MS-XQ, and SIC-MS-Xa-VWN meth­

ods is presented in Table VII-12 and compared in Fig. 7-10. 

The negative of the highest occupied valence orbital one-electron eigenvalues, 

0.32eV, is in excellent agreement with the recent experimental ionization potential, 

O.3l3eV; and the agreement is much better than in the TS-MS-Xa, SIC-MS-XQ­

V\VN methods, and much better than the DZP+3 CI calculation. Except for the 

highest and lowest occupied valence orbitaIs, the SIC-MS-Xa one-electron eigenval­

ucs are intermediate between the TS-MS-XQ and SIC-MS-Xa-VWN results. Unfor­

tunately, the experimental ionization potentials for other occupied valence orbitaIs 

are not availablc for comparison, and the present results are predictive. 

0;: The ionization potential of 03 is a quantity of considerable significance in 

atmospheric phenomena. It has been investigated experimentally by Beaty2'l3 using 

photodetachment measurements and Chupka et 81. 219 from the reaction 1- + 0 3 

--. 03 + 1; it has been calculated theoretically by Heaton et al. 223 using the CI 

method with large Gaussian basis sets and symmetry adapted complex functions, 

272 spin-space configurations for 0; , and 30 spin-space configurations for 0 3 • The 

calculated '~dluc of the ionization potenti81 for the highest occupied valence orbital 

of 03 in the CI method is 2.2740geV and vely close to the experimental value, 

2.l-2.2eV. The ('nIculations were done in the pre'sent work by using the TS-MS-XQ, 

SIC-MS-XQ, éUld SIC-11S-Xa-VWN methods. The negative of the one-electron 

eigeuyalues is listed in Table VII-13 and plotted in Fig. 7-11. The calculation in 
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TABLE VII-12 

The negativt. ,"'If the one-elcctron eigenvalllcs (eV) 
in the TS-MS-Xa, SIC-MS-Xa, 
and SIC-MS-Xa-VWN method 

for the ncgative ion HCO-· 

Orbital TS-Xo: SIC-Xa SIC-Xa:-VWN 

5 a' 1.06 0.32 1.31 
4 a' 6.59 6.89 7.77 
1 ail 7.15 8.13 9.07 
3 a' 8.69 8.71 9.57 
2 a' 12.48 13.34 14.30 
1 a' 28.46 27.26 28.23 

* The Calculated ionization potential for the highcst occllpicd 
orbital, 5', is 0.470eV in the CI method (Rer. 224) and 
experimental result is O.313eV (Rer. 220). 

the MS-Xa method for 03" failed to give a self-consistent value. 

The present results show that the negatiyc of the olle-electron eigC'nvalucs 

for the highest occupied valence orbital of 03" III the TS-MS-Xo: IUlÙ SIC-MS-

Xa methods, 2.14 eV and 2.06eV respectively, éU'e in excellent agreement with the 

experimental ionization potential (2.1-2.2c V) and Illuch bet ter thall that in the SIC­

MS-Xa-VWN method, and comparable with the CI calculatioll. For other oecupi(·d 

valence orbitaIs, the negative of the one-electron cigenvalucs in the TS-MS-Xn éUld 

SIC-MS-Xa method are very close to each other and smallel' thau tho:,e in the 

SIC-MS-Xa-VWN method. 

The ionization potentials of the occupied orbitaIs in the ah-initia HF lllcthod 

using the Koopmans' theorem are usually much higher than expcrilllcllt, bceausc 

of the relaxation which occurs during ionization. The ionizatioll change:, the ('qui-

librium geometries and the electron distribution, élllÙ rcducc!> the total ('uergies of 
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FIGURE 7-10 

The one·electron eigenvalues (eV) for the valence orbitaIs 
of the negative ion HCO-
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TABLE VII-13 

The negative of the one-elcctron cigcnvalucs (eV) of t.he 
negative ion 03in the TS-MS.Xu, 

SIC-MS-Xo:, and SIC-MS-Xa methods * 

Orbital TS-Xo: SIC-Xn SIC-Xo- V\t\'N 

2 bl 2.14 2.06 3.26 
3 b2 4.11 3.86 5.11 
4 al 4.29 4.11 5.36 
1 a2 4.69 4.45 5.69 
1 bl 9.48 10.11 11.37 
3 al 10.14 10.73 11.99 
2 b2 11.32 11.18 12.44 
2 al 15.68 15.46 16.72 
1 b2 22.98 22.54 23.83 
1 al 29.38 29.65 30.95 

* The Calculated ionization potential for the highest ace upicJ 
orbital, 2 bl , is 2.27 in the CI method (Hef. 223) and 
experimental result is 2.1-2.2eV (Ref. 223). 

moleeular anions. Renee, the ionization potentiais in the reIaxed thcorcticalllll'thod 

are smaller than those in the unrelaxed calculations. As di!ocu!'l!'led previotlsly 19U , 

the negative of the one-electron eigcIlvalues in the SIC-NLS-Xn mcthod is Ilot l'quaI 

to the ionization potential, even tU1der the fr07"'11 orbital appl')ximatiou, ('<[uation 

(7-8). The effect of the relaxation on the ionizatlOl1 potcntial, which 100v(,1 s the mag-

nitude, is partly canceled by the value of the integ,ral in the cquatioll (7-8), whieh is 

always non-negative. Furthermorc, the clectlOll-conclatioll cllergy fUllctiollal Ilor-

mally increases the onc-electron eigclwalue in magnitude, bctatl!'l(' of the lll'gative 

contribution of the correlation energy functional to the potclltial. TIH'refOle, the 

second term in the right hand side of cquatioll li -8) is also partIy balauced hy the 

correlation correction. This is the lcaSOIl why the ionizatioll potclltiab ohtailletl 

from the negative of one-electron cigcnvalues in the SIC-MS-Xn lllethod lUe Illuch 

better than those from the SIC-MS-Xa:-V\VN lllethod antl from the aIJ-lIlitio HF 
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The one-electron eigenvalues (eV) for the valence orbitaIs 
of the negative ion 0; 
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method, when the Koopmans' theorem is used. 

The ionization potentials of molecular éUlions from the llcgativc of tllt' OIl('­

electron eigenvalues in the SIC-MS-Xa method ngrce \Vith CXpt'llllH'ut and (U'C l)('t.­

ter than those in the ab-initio HF calculation ;Uld companl bIc to the CI lcsUlts, 

when the correct sphere sizes are chosen in the SIC-MS-Xa llwtllUd. The SIC­

MS-Xa method gives convergent wave function for the stable' lIlolccular éUlions. 

The wave functions in the SIC-MS-Xa method arc cxpectecl to he l)('t t('I th<Ul in 

the convention al MS-Xa method and can Le useù to '.:alculatiug otll('r OUt'-<']('CllOll 

properties for the stable molecular aniom" FurtlH'nnore, a ~illgll' SCF plO c('dl\l'(' 

in the SIC-MS-Xa method proI1""(l"i both a lCêlsonablc gond iOllizatlOll POlt'utinl 

and the correct wave function f, be molecular éUlioll; the h all~ltioll-state theory 

cannot be used to predict the onc-electron propcl'ties in the MS-X(t lllctllOd. Thi:-. is 

a remarkable improvement over the MS-Xa mcthod, especially for the applicatioll 

of the MS-Xa method to large and hcavy molccules. 

The method being part of a completely tested theory has grcat validity for 

predicting su ch ions. 
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CHAPTER VIII 

CONCLUSIONS, CLAIMS TO ORIGINAL RESEARCH, 

AND SUGGESTIONS TO FUTURE WORK 

VIII-!. Conclusion 

The present work is summarized below. 

VIII-!.1 The G-LSD and GX-LSD Theories 

The G-LSD theory24 glves a master equation for the single-electron exchange 

energy density, and other theories, such as, the GX-LSD theory22, the :::a theory17, 

the Xa theOly9, the GKS theory7,8, and the HFS theory6 can he obtained by using 

additional dPPlOximations, by cl100sing a certain Fermi-hole shape or using the high 

electron-density approximation. Therefore, the GX-LSD theory i5 a restriction of 

the G-LSD theOl'Y. FÎ.lrthermore, there is no approximation used to deri\'c the G-

LSD theory cxcept the Iocal-densi ty approximation; the boundary conditions and 

sum rule of the Fermi-correlation factor are generated from the HF limit in the HF 

theory. Hence, theoretically the G-LSD theory is more rigorous than the GX-LSD 

theory, the :::a theory, thp Xa theory, the GKS theory, and the HFS theory. 

The exchange potential in the G-LSD theory is orbital dependent and more 

correct t han the Xo, GKS, and HFS cxchange potentials which depend on the total 

dectlOll dC'Ilsity. In fact, the clectrons in diffcrent orbitaIs are certairly surrounded 

by (liffclt'llt enyironment created by the other electrons in a system. The HF theory 

ha..<; this fl'utUlc3 . 

An mlOther intclcsting feature in the G-LSD theory is that the Fermi-hole 
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pararneters are fixed for all atoms and ions, whell the Fermi-hole shape has 0('('11 

chosen (e.g. the GWB27 or the Wigner26 or the Homogclleous!l H'l'mi-llOle slml'(') 

or the Fermi-hole parameters can oe determincd by the ilsymptotic fmm of the 

exchange potential as t,he electron density approachcs illfilllty, i,e" the FEL H'lI'li­

hole parameters22 , Consequently, the G-LSD the ory c:an avoid the tiIllc-COllSUlllillp, 

step in searching the optimal exchange parameter a for each atolll or ion, 

VIII-1.2 The Self-Interaction Correction 

The self-interaction correction is very important, it is ('ssential in calculat.iug 

the electronic structures of negative ions of atoIlls by the LDF tll<'oly in the SCF 

procedure. The non-convergency in the self-consIstent calculatioll fOl 1l1o~t l'Xpl'!­

imentally stable negative ions of atorns \Vas caused by the ill<'oIllplete camcllatiou 

of the self-interaction in the Coulomb and exchangc intcgl al:, :\.., (h~cuss('d iu S('C­

tion VII-3, the self-interaction wlcOlTected LOF thcory dOèS Ilot p;ive lUl)' hound 

solutions for molecular anions, 

When the SIC is carried out by removing the exact self-Coulomb from the 

Coulomb-interaction term and the approximatc ('xchange ft (JIll tlH' }ocal-exchauge 

term29 ,30, the SIC-LDF theory gives lUnch bettel olle-dcctIOIl eigenvaluC';, lUld sta­

tistical total energies for atoms than the self-intl'wctioll WlcolI<'ctl'd LDF tlwory, in 

comparison .vith HF results and expelimcut. The SIC-LDF thcOlY ha~ tbe ('orrect 

asymptotic form of the potential \\ith 1/r for the lrC'lltwl atolll~, ~llUlcrically, Oll('(! 

the SIC is invoked, the self-consistent procedul e works IJlOperly for IllO!>t experi­

mentally stable negative ions of atollls l5 ,ï3,74, 

The self-interaction correction I!> very illt(,Icstillg III the lllokclliar calcula­

tions. As shown ir. section VII-2, the ionizatioll potelltiab g,1V('l! III terrIl'> of tbe 

negative of the one-e~nctr~L! eigcnvalues are il! excellellt agrcCUlt'llt witl! expcrillwut 
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and as good as those given by the Slater transition state calculation in the MS-Xa 

method, when the SIC was introduced. One can certainly expect that the SIC-MS­

Xa mcthod should give more accurate wave functions for molecules III calculating 

oUler olle-plectron properties, bccause the potential is doser to the real system than 

that in the self-interaction uncorrected MS-Xa method. Fùrthermore, the SIC-MS­

Xa Il1cthod can give both the ionization potentials and the correct wave functions 

with a single SCF calculation, whereas to get both a reasonably good ioni7.ation 

potcntial and the correct wave function for a molecule, the SCF procedure has to 

be œrried out twice in the self-interaction urcorrected MS-XQ' method, one for the 

transition state in which a haif electron is œmoved from a occupied valence orbital 

(usually the highest occupied valence orbital), and another for the ground state or 

the excited state. This is inefficient and expensive for large molecules containing 

hcavy atoms. 

The SIC-MS-Xa method works very weIl in the SCF calculation for the 

experimentally ::.table molecular anions. The electron affinities obtained from the 

ncgative of the one-elcctron eigemalue of the highest occupied valence orbital are in 

lcasollable gooJ agreement \Vith expcriment. The wave function can be produced by 

the SIC-LDF theor'y, whereas it is impossible to solve the one-electron Schrodinger 

cquation and obtain the wave function for most molecular anions \Vith very small 

positive elcctroll affinities ln the self-interaction uncorrected LDF the ory, because 

of the llon-collvcrgency problcm. 

The present work has shown that a remarkable improvement of the one­

elcctroll eigcllvalues ,md the wave functions can be obtained for moiecules and 

lllolecular anions by illtroducing the SIC. It is certainly expected that the SIC is 

Yery important in impro\'ing the agreement of calculated results and experiment 

for other one-electlOIl properties and total energy more efficient than other more 
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rigorous theories, such as, the LCAO-Xa method, the DV-Xa mcthod, éUld the full 

numerical LDA method which have rarely becn applied to s11eh systems. 

VIII-1.3 The Electron-Correlation Correction 

Electron-correlation is a very important concept in C'valuatillg tll<' ('l('ctroll 

structures of negative ions of atoms. It is essential in obtainillg a collvergcd ~olution 

for the one-electron Schrodinger equation for the alkaline-em th ('1('1llellt~, lllost nc­

tinide elements, and rare gasses, although the electron-correlatioll fUllctioIlal to the 

total potential is very sma1l92 ,lOl. The electron-correlation CllClgy l'Olrt,ctioll tu elcc­

tron affinities is larger than the kinetic, Coulomb, ~Uld cxchange cIH'l'gy coutlilmtioll 

for most atoms. Renee, the existence of stable llC'gative iOBs fOl mOht atoms llup.,ht 

be attributed to electron correlation, and not ta the CouloIllb attractive' }>ot('utial 

between the nucleus and electrons, because each clectron pal'tially MT('('llh the nu­

cleus from all ather electrons. The accurate expression of the clectl'ul1 correlatioll is 

required to give trustworthy electron affinities for atoms. Compariug the n'bults ob­

tained by using the V\VN correlation expresslOll39 1:U1d the SPP ('xpl'('~~)i()IlJ8 ~how:; 

that thé VVVN correlation expression is more accurate thall the SPP cOllclatiou. 

This agrr,es with Perdew and Zunger' s conclusioll. 

The electron correlation energy correction plays a IOle in mkulatlllg th(' 

ionization potentials for atoms and ll1ultiply charged ions of atolll~. The ll'wlts 

obtained from the LDF theory are comparable with those in the RF tltcOlY. To gct 

accurate ionization potentials of atoms, electron-correlation is neC('Shary. 
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VIII-1.4 Relaxation 

The relaxation effect in the ionization pro cess is another important conceptS1 • 

Normally, the relaxation effect reduces the total energy of a system and therefore, re­

duces the ionization potential and increases the electron affinity for a atom as shown 

in Fig. 3-1. The ionization potential and electron affinity for an atom are different 

in the relaxed method and non-relaxed method. \Vhereas the electron-correlation 

inCl'eases the ionization potential and electron affinity. Therefore, the ionization 

potential obtained from both the electron-correlation and relaxation uncorrected 

LDF theory are in very good agreement with experiment. This means that in order 

to get a correct ionization potential, one can either use both the electron-correlation 

corrected and relaxation corrected LDF theory or use the electron-correlation ig­

nored and relaxation ignored LDF theory. Certainly, both the electron-correlation 

éUld relaxation corrected LDF theory is more accurate theoretically and numerically 

than both the electron-correlation and relaxation ignored LDF tLeory. 

This work showed that the relaxation is more important than the electron­

correlation in the ionization potential calculation, whereas, the electron-correlation 

is more important than the relaxation in the electron affinity calculation for an 

atom. The relaxation is very important in the calculation of molecular ionization 

potentials. The ionization potentials given by Koopmans' theorem in the LCAO-HF 

method are much larger t:lan experiment. Whereas, the ionization potentials given 

by the negative of the one-electron eigenvalues in the SIC-MS-Xa method are in 

very good agreement with experiment, because the higher tenns of the derivatives 

of the exchange ,:Uld sclf-exchange energies wi th respect to the occupation number 

in equation (7-8) are partly cancelled by the relaxation correction190
. 
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VIII-1.5 The SIC-G-LSD and SIC-GX-LSD theories 

The SIC-G-LSD theory gives the statistical total energies for atoIlls in e.,=cel­

lent agreement with HF, and much better than the XO-LSD theory, when the G\VB 

Fermi-hole parameters are used. The one-electron eigenvalues in the SIC-G-LSD 

theory with the GWB Fermi-hole parameters are in reasonable good comparing 

with the HF orbital energies. 

Comparing the results of atoms in the SIC-G-LSD thcory and in the SIC­

GX-LSD theory shows that the total energies of atoms in the SIC -G-LSD theory are 

only slightly better than those in the SIC-GX-LSD theory, ",heu tbe FEL Fermi-hole 

parameters are used. This implies the physical restrirtion of the Fel mi-currelatIOll 

factor used in the GX-LSD theory is not severe numerically. Consequently, the 

SIC-GX-LSD theory is still valid and useful. 

The electron-correlation correctcd SIC-G-LSD theory y.,;th the GWB Fcrl1li­

hole parameters can be used to estimate the eledron affinitics for ,Uly atoms ami 

predict the ionization potentials of atoms and multiply mm ~f>d po~itive ions with 

acceptable computational time, when the experimental iOllizatioll potclltials and the 

electron affinities are unknown. Fùrthermore, the atomic wave function in the SIC­

G-LSD theory with the GWB Fermi-hole parameters ~'5 expectC'd to give good other 

atomic properties, such as, the oscillation strength, pho'Loiollization cross section, 

etc. 

VIII-1.6 Convergence Technique 

The convergence techniques in the SCF calculatioll for Ilcgative ions of atoIlls 

introduced in the present work, that is, the adiabatic collvcrgenrc tcchuique éUld the 

Watson sphere aided technique, worked 50 S1.1ccessfully that it can be t>mployed in 
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the HF calculation for the loose bound negative ions of atoms ta study the stability 

of the singly charged negative ions of rare gasses and actinides and the second 

charged negative ions of the rest elements in the periodic table. 

VIII-2. Claims to Original Research 

1. Section 1-2. 

The boundary conditions and sum mIe of the Fermi-correlation factor were 

generated systematically by the HF limit. 

2. Section 1-3. 

The pair-elcctron distribution function, pss(rl, r2), was written into equation 

(1-50) to reflect the difference of the correlation factors for different orbitaIs. 

This is a very important step in obtaining the G-LSD theory. 

The derivation and analysis of the G-LSD theory. 

3. Section 1-4. 

The GX-LSD theory, the 3a theory, and the XO-LSD theory, and the Xa 

theory were obtained from the G-LSD theory. 

4. Section 1-5. 

The derivation of the self-interaction correction in the density functional 

theory and Clè introduction of the SIC-G-LSD theory. 

5. Section 1-6. 

The orbital-dependent exchange potential in the SIC-G-LSD theory. 

6. Section II-1.2 

The analysis of the self-interaction correction in the SIC-G-LSD theory, the 

SIC-XO-LSD theory, and the HFS theory. 
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7. Section II-1.5 

The analysis and comparison of the one-clectron eigcl1valucs of atollls in the 

SIC-G-LSD theory and in the HF theory. 

8. Sect ion II -1. 7 

Numerical proof of the validity of the SIC-GX-LSD them'y, 

9. Section II-2 

Successful calculations of the single-charged negative ious for bOIlle atoms in 

the SIC-GX-LSD theory. 

10. Section 1II-2 

The first through fourth derivations with lespect to the occupatioll IlIUll!)('r 

were given in the GX-LSD theorYi and llurncrically, the 10l1lzatioIl potmtials 

of atoms can be generated approximately by the fir~t t\\'o d('n\"atlOlI~ of t Ill' 

statistical total energies with respect to the occupatioIl lltlllllwr in th!' GX­

LSD theory, because of the partly cancellation of the lug,lwr Older t('IIllS in 

equation (3-16) \Vith the Coulomb correlation correction. 

11. Section III-2.2 

The Coulomb-correlation correction is very important in calculatillg the elt~C­

tron affinities of atoms. 

12. Section III-2.3 

The hardnesses of the acids and bases in the GX-LSD theory hy the dC'filli­

tions in equations (3-22) and (3-24) agrcc vcry weIl with tho~e céùculated by 

the experimental ionization potentials <Ule! clC'ctroIl affiui ties. 

13. Section III-3 

The experimental ionization potentials of the low-Z atollls were dllplicated 

very weIl by the differences of the total cuergies in the clectroll-condatiou 
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energy conected SIC-GX-LSD theory with the G\VB Fenni-hole parameters. 

The compari50n of the ionization potentials shows that the VW~ expression 

for the electron correlation is bet ter than the SPP parametrization. 

The electron affinities of the low-Z atoms in the electron correlation corrected 

SIC-GX-LSD theory with the G\VB Fermi-hole parameters are reasonable 

good in comparison with experiment. The contribution of the electron corre­

latiou to the electron affinities is larger than that from the kinetic, Coulomb, 

and exchange energies for sorne atoms. 

14. Section III-4. 

The relativistic correction to the removal energy of the outermost s orbital 

of the alkaline-earth elements and the outermost p orbital of the elements 

in gIOUp nIB can be estimated by the QR-SIC-GX-LSD theory, in which 

the spin-orbital coupling tenn was neglected, with the G\VB Fermi-hole pa­

rameters. The ionization potentials for the rugh-Z atoms evaluated by the 

cledron-conelatioll corrected SIC-GX-LSD theory ",ith the G\YB Fermi­

holc paraIll<'tCI~ aglcc weil \\ith experiment and the agreement is better than 

those m the DF thcOI'Y \\;th the SPP correlation and relaxation correctIOn. 

The electron affinities for the high-Z atoms in the electron-correlation cor­

rected QR-SIC-GX-LSD theory are in reasonable good agreement with ex­

perment. 

15. Section III-5. 

The ionization potentials of the multiply charged ions for atoms are in ex­

celll'nt aglc{,ll1ent in the electron-correlation corrccted SIC-GX-LSD theory 

with cxperimcnt. The electron-correlation correction plays a role in the ion­

ization potentials of the multiply {harged ions. 

14. Section 1\"-1. 
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The analysis on the non-convergence of the doubly-clmrg,ed llt'gati\'t' ions ill 

the LOF theory. 

15. Section IV-2. 

Successful calculation of the negativc ions for the éùkaliut'-('art li ('lt'lIlt'ut s in 

the LDF theory; and the calculations of tht' electwll aflillit1t'~ fOl tlll'lll Hl 

the electron correlation conected SIC-GX-LSD and QR-SIC-GX-LSD th('o­

ries with the G'\VB Fermi-hok parametcI ~ ~upport th<' pH'the( WB of ('Xl~\t'lln' 

of stable negative ions for the alkali!l(>-carth ('lt'lllellt~, ('x("('pt fOl ;"Ig -, Suc­

cessful SCF results in the QR-SIC-GX-LSD thCOlY fm tllt' adillldl'h \\'('l(' 

obtained and predicted the ~tability of the lll'gative i()ll~ fOl ad Illi dt,!'i , 

16. Section IV-3.1 

Adiabatic convergence technique was g;i\'Cll in the LDF theol'Y, 

17. Section IV-3.2 

Successfully cOll\'erged for the negative iOlls of ran' ga~~t'S in the dectlOu­

correlation corrected SIC-GX-LSD th(01)' with the G\\'B Ft'l'lui-hole pm'am­

eters were given and predicted the exihteuct' of stahle !l('gati\'(' i()ll~ for th(' 

rare gasses \vith several milli-rydbergs electrou affiniti('~. 

18. Section IV-4.1 

\Vatson sphere simulation for the doub1:' dlargcd llegati\'t' ious of atollls in 

crystals was proposed. 

19. Section IV -4.2 

The second electron affinities of atollls in crystals Wl'Ie C:-,tiIlluted iu the 

electron-correlation corrected STC-GX-LSD thCOl'Y with the GWn Fermi­

hole parameters. The electron affinities éU'l' reported to be T Lcgativc for the'Ill 

in the firs t time. 
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20. Section IV-5. 

Asymptotic approximation for the second electron affinities of atoms in gas 

phase was given, when the V'/atson sphere radius approaches infiruty. 

The approximate second electron affinities for the first category elements 

in the second and third periods were estimated in the electron-correlation 

corrected SIC-GX-LSD the ory with the G\VB Fermi-hole parameters. 

21. Section V-2. 

The ionization pntentials of the fractional charged atoms were given in the 

LDF thcory in the first time. The comparison of the present results with t!1e 

Lackner and Zweig interpolation shows that the agreement of the calculated 

and interpolated ionization potentials is excellent for the fractional charged 

atoms \'.ith Z = :\ ± ~ tUld Z = :\ + ~ j and corrects the inaccurate interpolated 

results for thot-c with Z = :\-~, becausr of the loose bound electron in the 

outermost orbital. 

22. Section V-3. 

Succcssful (:alculation for the electron affinities for the fractional charged 

negatlve ions with Z = N - ~ and Z = N - ~. 

23. Section V-4. 

The hanlnesses for the fractional charged atoms are of the same trend as the 

ordinary at oms. 

24. Section VI-3. 

The self-interaction corrected MS-Xa theory was given. 

25. Section ,'1-4. 

The procedure of the rrunimization of the total self-interaction correction 

energy in the SIC-:'lS-Xo: theory was outlined. 
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26. Section VII-2. 

The SIC was tested for some small and middle size IlloleC\1k~ in t Ill' fin.,t til111' 

by means of the MS-Xo mcthod, The eHkicncy of the SIC in the lllolc('ulal' 

calculation was 05tablished: a smglt.' SCF calculation for thl' groulld ~tèlte of il 

molecule gives both the ionizatioll potcutials éUld tht' "'1I\'l' fUllet iou, Illstelld 

of two SCF calculations in the collvcntiollal ~IS-X() l1lt't}lOd to 11,(·t bot 11 th(· 

ionization potentiais and the Wa\'C functioll Thc llliuillll/'atlOll of tlll' SIC 

energy is not important JIl the :"lS-Xo lllet 11Od, l)('cau~(' of the ('lllploylllt'nt 

of the spherically-averaged éilld the voltullc-avcraged putcut iab. 

27, Section VII-2.1 

The rcason why the ionization potentiab givcll by the ll('gatiw' of tll1' OW'­

electron eigenvalues in the SIC-l\lS-Xo method m'c much hetter thall th()~(· 

in the ab-initio HF method is discusscd, 

28. Section VII-3. 

r:::'he reasons why the llon-conwlgcllce III SCF calculatioll of the MS-Xo 

method for the experimelltally stable lllokcular éUll()ll~ with :-'lllall po~itive 

electron affinitics are discutlsecl The lllolccular éUlioll~. CIO\, HCO-., (Uul 

0 3 are successfully cOll\'Crgcd in the SIC-';"'IS-Xn Ilwt!lod The eh'ctroll 

affinities given by the SIC-~,.rS-X(\ method me in excellent agrC('Illt'llt witl! 

experiment. 

VIII-3. Suggestions to the FUt ure Work 

The basic suggestions to the fut Ule work me thcoretlcal llUplOVeIlH'llt ou tlU' 

::nc and electron-correlation conection in the G-LSD theol)' mid tlw applicatioIl 

of the SIC~G-LSD theory and the SIC-:"lS-Xo llll'thod to lllol(,(,\lle~, du!->ters, olld 
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solid state. 

VIII-3.1 Theoretical Modification 

Theoretically, the SIC-G-LSD theory with the FEL Fermi-hole parameters 

should give more reliable œsults than the SIC-G-LSD theOl'Y with other Fermi-hole 

paraIIletcr~, becau!->c the FEL Fel mi-hole paréUllctcrs were clcrived from the free 

clectron-dcnsity limlt, whell the clf'ctlOll dCIlsity approaches illfilllty, and do not 

rely on any a.<,sumption~ of the FelIlll-hole shape, But, nurnerically, the SIC-G-LSD 

theory with the G\VD Fermi-hole parameters gIvcs the best statistical total energies 

of atoUls aJllOug all the Fermi-hole parameter~ in comparisoll with the HF total 

elwrgy. The i'>tati~tical total energy of an atolll is LUlclerestimated in magnitude by 

the SIC-G-LSD themy with the FEL FnIlli-hole paramctels. As discussed before, 

thi~ dcviatioll i:" llléllllly célused by the o\'elcstimatioll of the ~lf-('xchallge correction 

in the SIC-G-LSD th('ory \\'It11 the FEL FelIlll-l!ole parameter':> ln thc SIC-G-LSD 

t}H'ory, tIl(' l'adJUf, of !->df-exchal1ge Fcnni-hole for the orbital i, equation (1-83), is 

ouly dt'jH'lldt'ut ou ItS OWll dectlOll demity. It i~ deal' that thc cll\'ironment of 

tll<' ~('lf. t'XclUUlgt' FClllli-holf' dl!->turbs it. A~ in equa tion (1-39), the radlU~ of the 

t'xchangc Ft>l'Ini-hole, l' l', d('crea::,('~ Rb the number of total c!f'ct lOn:" in the system 

incrca:"cs. Tills iIllpliC':" the Fermi-hale l!:> squef'zed by increa:"illg the clectrolls in the 

!:>ystem. Tht>rC'fOlc, the dl:'ect of changmg the cn\'ilOnment :"hould be considered in 

correcting the sdf-('xchange interaction in the SIC-G-LSD theOl'Y. 

The correlation of elcctlOns wi th diffel Cllt spins were treated, so far, by 

paramctrization38 ,39 ba:,('d 011 :"0111(, accurate calculations or by a%llming tht> Coulomb. 

1101e factor obcying SOIlle certaill fllnctions33 ,2J2. It would bc \'cry interesting to cal­

cula t (' the Coulolllb- con clat IOn \\1thout any a,>sulllptions illlel parillnctrizations. It 

appeRlS pos!:>ible to delive the Coulomb-correlation cxpl'es~ion in the same manner 
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as in deriving the single-electron exchange enelgy expression in tht' preHl'ut work. 

VIII-3.2 Application of the SIC-G-LSD TheOl'Y to Molecules 

The SIC-G-LSD theOl'Y \Vith the G\VB Fermi-holt, pm c\ll Il' tl'r::. gJ\'CS such 

good statistical total energies for atoms, compmeù to HF, tlmt it i~ l't'ltaiuly ex­

pected the SIC-G-LSD the ory "hould giVf' vcry 11,00<1 ~tatl~ticéll total «'Ill'lp;i<'~ for 

molecules, if the SIC-G-LSD thcOI'Y with thc G\\13 Ft'IIlll-holt' cUilllldt'll-> 1:-. COlll­

bined with the LCAO methoci181-183 or the di~CI<'t('-\'aliatiolla1(DY) !ll1't!t()([lIiI-IHI 

using good enough Gaussian basis :"ets éUlÙ fit f\ludiolls, TIl<' I->téltbtlcal total «'11-

ergy, in turn, can be used to calculate the dü,~ociatlon t'nel/!,Y, l'II<'I)1;Y ~\lrfat'(', dl', 

The reasonable good wavc fUIlCtlOll caIl be <'Ill ployec! to cvalllél tt, otlw! OlW-I'I('ct rOll 

properties of the molccule, ::.uch as, thc di pok mOll H'llt 1-> , <llladlllJ>O}(, IllOll1<'1l t S, 

diarnaglletic :,u:,ceptl bi1i tics, llUc!('é\l quadrupole coupllllg C()ll~t allt~, aud d ('. TIl(' 

potentials in thc SIC-G-LSD thCOlY i~ orbital ([l'pcIldent cUld dl(' ~t:,tl~tlcal total 

energy includlIlg the SIC total CIl('lgy I~ Ilot ill\'atiant undCl t h(' llloke'uim Ol;,ital 

transformat ion, Consequently, a test of t hr df"ct of the 01 hi t <II t lélll~forIllat ion OH 

the statistical total cncrgy is llec('s~ary, \\'lw11 the SIC -G-LSD tllCOI)' l~ applit'd ill 

molecular calculations, 

VIII-3.3 Application of the SIC-MS-Xo Method 

to Large Molecules and Clusters 

Because of the clivi:,ion of a lllolccular ~pa('(' éllld the U"'(' of th(' "llluHill-tiIl" 

approximation, the ~IS-Xo: i~ much cal->ief to n.,(' amI tu widd fOI lalgp IIlol<'(',dar 

calculations. But electron ~tructUl(,!:l and :,tatl~tical total ellclg]('~ of IIlo1('e',d('!'l i1l'l' 

sensitive to a perccntage of the con~tallt l('gion in the moleculal ~pa<'(' III dl<' :\'IS-Xo 
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method. Fortunately, it has been shownl71 ,177,179-181 that the most reliable results, 

the electron 1:>tructures, the ionization potentials, and the wave functions, can be 

obtaincd by tLsing the ~orman cri terion of the atomic spheres and scaling by a factor 

between 0.8 - 0.88 The present work 1:>hows that the ionization potentials and the 

correct wave functions can be obtained by a single SCF calculation for a molecule. It 

saves a lot of cOIllputational time by mtroducing the S~ -::' iuto the MS-Xa method. 

Henee, the MS-Xa method can be applied to large molecules containing heavy 

atollls, clmters, éUld l>Olid state with n'l'y leasonable and acceptable computation 

time IUld cxcrllent nUIl1cl'ical rcsults. 

Ttall1:>ition-metal complexes are very interesting to the chemists. To date, 

a considerable effort has been made to explole and understand the chemistry of 

tralltlition-mrtal hyclridcs complexf's :-'lost of thcsc investigations have focused on 

their htruct1llC and Ieactlvi ty213- 2J8 , ouly a fe\\' thcoretical :,t udies ou the elcctron 

structmc haYe bf'cn lUlder takell ludecd, thele i:" stIll a lack of ngolOus quantum 

mechanieal dCtlCliptlOU of the lllf'tai-hydrogen mtelaction ci:lselltial to the interpre­

tation of the ob:"C'l'\'('d chcl1ustry Pubhcatiom1bO have appeélled in the literature 

dcalt \ .. ith the traIlc,ltion-Illf'tal wlllplexci:l by the :\IS-Xo lllcthocl, but it is expected 

that the SIC-l\lS-Xo mcthod gi\'('s lllOle reliable lc:,ults than the l'-.lS-Xo method. 

The ~rs-Xn ll1ethod is not cOI1\'Crgent for lllOSt experimcutal stable molecular 

anions, one has to UhC a \Vatwn sphere in the l\lS-Xo mcthod to stablize the 

calculation135 . The clectroll structures of anions are certainly disturbed by the 

\Vatson sphele. However, it is possible for IllO::,t experimental stable molecular 

i.Ulions to gel tlw cOll\'crged clectron st! uctUl'es in the MS-Xa method by introducing 

the SIC mto it. The pl "sent wOlk sho\\'ed that the rea::.onablc good electron affinities 

of lllolecules cau bc obtaillecl by the SIC-!\lS-Xo n:cthocl. 

Small llletai clusters are currelltly the subject of both experimenta1239 ,24o 
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and theoretica1241-247 investigations. In theoretical studies of dl<'llll:"Ùl'ptlOll ~lllali 

clusters are often used to model the metal ::,ubstrate244 • TIll' study of the ~mall 

clusters (of order of 8 - 13 atoms) by the ~IS-XQ method heL':; ell1t'l'ged in the 

literature248 ,249. The important differellcc between the ~lS-XQ lllt'thod and LCAO­

HF method or the extended Hückel caIculations has appearcd in the small coppel' 

cluster electron structure cakulations. 

One of the interesting properties in ca1culating clusters is the local-dellsity-

of-states (LDOS), which is defined by245 

where Pk (11) is the ~fulliken gross orbital population of an orbital Il in the du~teI 

state 1..'; €k is the orbital energy of the cluster state k; and (j lb a Lort'ntlian \vidth 

parameter. It is clear that the meaning of the one-elcctron eigellvalue:" in the LC :\0-

HF method and in the ~IS-XQ method are dtfferent. Hence, it is lmder:"tandable 

that the LDOS's are different in the LCAO-HF and ~IS-XQ lllethods 

The SIC remarkably reduce8 the d.ifference of the onc-elC'ctwn l'lgt>I1value:-, 

in the LCAO-HF method and in the ~IS-XQ rnethnd. Therefore, the SIC-:"IS-Xn 

method i8 e.xpected to give rehable LDOS for the cluster calculatlOn, coIllpanng 

with the LeAO-HF method. 
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