
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

DCHARTS, A FORMALISM FOR MODELING AND
SIMULATION BASED DESIGN OF REACTIVE SOFTWARE

SYSTEMS

Huining Feng
http://msdl.cs.mcgill.ca/people/tfeng/

Supervisor: Professor Hans Vangheluwe

February, 2004

School of Computer Science
McGill University, Montréal, Canada

A Master's Thesis Submitted in Partial Fulfillment of Requirements for
the Master of Science Degree

Copyright © 2004 by Huining Feng
AlI rights reserved

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-612-98631-4
Our file Notre référence
ISBN: 0-612-98631-4

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstrait

DCIiarts, un formalisme pour modeler et la simulation des systèmes de logiciels réactifs complexes, est
proposé et étudié. Le formalisme de DCIiarts est basé sur des statecliarts d'UML et DEYS, mais fournit une
meilleur modularité et expressivité. La sémantique de DCharts est rigoureusement définie d'une manière
opérationnelle et d'une manière denotationaI. La syntaxe abstraite, textuelle, et visuelle pour DCharts sont
présentées.

SVM, un simulateur de DCIiarts mis en application dans Py tIion , est présenté. Il accepte des descriptions
modèles textuelles et les simule. Des types multiples de simulations, aussi bien que l'exécution en temps
réel, sont discutés en détail avec des exemples. La vérification du modèle est soutenue au moyen de simu
lations répétées dans SYM et la règle-vérification de la trace de simulation avec des expressions régulières
prolongées.

SCC est un outil qui syntIiétise le code exécutable des modèles de DCIiarts. Il optimise statiquement les
modèles pour réaliser l'exécution liaute performance. Des langues cible multiples sont soutenues.

Des applications du formalisme de DCIiarts sont étudiées, à l'aide les des outils mentionnés ci-dessus. Elles
démontrent comment DCIiarts sont prêt pour l'usage pratique.

Abstract

DCharts, a formalism for modeling and simulation of complex reactive software systems, is proposed and
studied. The DCharts formalism is based on UML statecharts and DEVS, but provides better modularity and
expressiveness. DCharts semantics is rigorously defined in both an operational way and in a denotational
way. Abstract, tex tuai, and visual syntax for DCharts are presented.

SVM, a DCharts simulator implemented in Python, is presented. It accepts tex tuai model descriptions and
simulates them. Multiple types of simulations, as weB as real-time execution, are discussed in detail with
examples. Model verification is supported by means of repeated simulations in SVM and rule-checking of
the simulation traces with extended regular expressions.

SCC is a tool to synthesize executable code from DCharts models. It statically optimizes the models to
achieve high run-time performance. Multiple target languages are supported.

Applications of the DCharts formalism are studied, by means of the the above-mentioned tools. They demon
strate how DCharts are ready for practical use.

1 INTRODUCTION

1.1 Modeling and Simulation .

1.1.1 Models and Meta-models.

1.1.2

1.1.3

The Process of Modeling and Simulation Based Design.

Modeling and Meta-modeling in AToM3 .

1.2 The Statecharts Formalism

1.2.1 Finite State Automata

1.2.2 Statecharts Extensions to FSA

1.3 The DEVS Formalism

1.3.1

1.3.2

AtomicDEVS

Coupled DEVS

1.4 Research Focus

1.4.1 FormaI Specification

1.4.2 Model Transformation

1.4.3 Simulation

1.4.4 Model Checking and Verification

1.4.5 Code Synthesis

1.5 Related Work

2 ABSTRACT SYNTAX AND SEMANTICS OF DCHARTS

2.1 The DCharts Meta-model

2.2 Overview of Abstract Syntax and Semantics

2.2.1 Overview..

2.2.2 State Set S

2.2.3 Transitions T

2.2.4 Variables . .

2.2.5 Transition Priorities .

2.2.6 Importation.....

2.2.7 Ports and Connections

2.2.8 Actions and Guards .

2.3 Aigorithms

2.3.1 Firing a Transition ..

2.3.2 Altemate Aigorithm for Firing a Transition

2.3.3 Importation.................

Il

Contents

1

2

2
2

5

8

8

8

10

10

11

12

12

13

13

15

15

16

18

18

18

18

21

22

23

23

25

25

26

27

27

28

29

2.4 Closure under Importation .

2.5 Asynchronous Communication and Synchronous Communication

3 Timing

3.1 The Real-time Concept

3.2 Virtual-time Simulation .

3.3 Special Event: after ..

4 GRAPHICAL SYNTAX AND TEXTUAL SYNTAX

4.1 Graphical Syntax

4.1.1 State Hierarchy

4.1.2 Naming Convention ..

4.1.3 Orthogonal Components

4.1.4 Default States and Final States

4.1.5 Transitions

4.1.6 History

4.1.7 Enter/Exit Actions

4.1.8 Importation.

4.1.9 Ports

4.1.10 Connections

4.2 Textual Syntax ...

4.2.1 Descriptors

4.2.2 State Hierarchy

4.2.3 State Properties .

4.2.4 Orthogonal Components

4.2.5 Transitions . . .

4.2.6 Priority Numbers .

4.2.7 History......

4.2.8 Enter/Exit Actions

4.2.9 Importation.

4.2.10 Ports

4.2.11 Connections

4.3 Extended Syntax ..

4.3.1 Macros . . .

4.3.2 Once Timed Transition

4.3.3 Global Options

4.3.4 Initializer, Finalizer, and Interactor .

4.3.5 Snapshot

4.3.6 Model Description

4.3.7 Comments

5 MAPPINGS

5.1 Mapping from Non-recursive DCharts to Statecharts with Variables

iii

30

30

32

32

33

33

35

35

35

35

35

37

39

40

41

41

41

44

45

45

45

46

46

48

49

49

51

51

52

52

54

54

58

59

60

61

62

62

64
............. 64

5.2 Mapping from Non-recursive DCharts to DEVS

5.3 Mapping from Statecharts to DCharts

5.4 Mapping from DEVS to DCharts

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

5.5.1 Statements

5.5.2 Compound Statements .

5.5.3 Conditional Statements .

5.5.4 Loops..........

5.5.5 Break and Continue. . .

5.5.6 Tricks of Actions Specific to SVM .

5.6 Conclusion

6 SVM - A DCHARTS SIMULATOR

6.1 An Introduction to SVM

6.2 The Design of SVM.

6.3 Default Interfaces

6.3.1 Default Graphical Interface .

6.3.2 Default Textual Interface . .

6.4 Modeling and Simulating DCharts in AToM3

6.5 Distrihuted Simulation

6.5.1 The SVMDNS daemon .

6.5.2 Example

6.6 Debugging.......

7 MODEL VERIFICATION

7.1 Simulation Trace . . .

7.2 Extended Regular Expressions

7.3 Rule Checker

7.4 Limitation and Future Work

8 SCC - A DCHARTS COMPILER

8.1 Java Code Design

8.1.1 Class Hierarchy. . . .

8.1.2 Numbering......

8.1.3 Members of Model Classes.

8.1.4 Default Textual Interface.

8.2 Transformation Strategies.

8.2.1 State Hierarchy .

8.2.2 State Properties .

8.2.3 History

8.2.4 Event Handling .

8.2.5 Importation...

8.3 Space Efficiency and Speed Efficiency

iv

67

68

68

68

69

69

72

74

75

77

80

82

82

82

85

85

87

87

88
88

89

92

93

93

94

95

96

97

97

97

98

98

100

102

102

102

103

103

104

104

8.4 Example.....

8.5 Applet Interface .

8.6 Limitations .

9 APPLICATIONS

9.1 Simple Data Types

9.1.1 Boolean ..

9.1.2 Integer Counter .

9.1.3 Integer

9.2 The Clock Component for Virtual-Time Simulation

9.3 An MP3 Player

9.4 Simulation of Software Process .

9.5 Simulation of TCP

10 CONCLUSION

11 ACKNOWLEDGMENT

v

105

106

107

109

109

109

110

III
112

115

116

117

126

128

List of Figures

1.1 The Finite State Automata syntax in an Entity-Relationship diagram 3

1.2 Modeling and simulation based design process. .. 4

1.3 AToM3 meta-modeling environment with the Entity-Relationship diagrams meta-modelloaded 5

1.4 AToM3 meta-modeling environment with the PetriNet meta-modelloaded .

1.5 AToM3 meta-modeling environment with the statecharts meta-modelloaded

1.6 A simple FSA example .

1.7 The statecharts meta-model in an Entity-Relationship diagram

1.8 Atomic DEVS state trajectory

1.9 Generalization of DCharts

1.10 Specification of DCharts .

1.11 Matrix of simulation and execution .

2.1 The DCharts meta-model in an Entity-Relationship diagram

2.2 The AToM3 development environment for DCharts

2.3 An example of transition priorities

4.1 An example of the graphical representation of astate hierarchy

4.2 Altemate graphical representation of astate hierarchy in AToM3

4.3 An example of the graphical representation of orthogonal components

6

7

9

9

11

12

12

14

19

19

24

36

36

37

4.4 Altemate graphical representation of orthogonal components in AToM3 38

4.5 An ex ample of the graphical representation of default states and final states 38

4.6 An example of the graphical representation of default states and final states with orthogonal
components . 39

4.7 An example of the graphical representation of transitions . . 40

4.8 Graphical representation of transitions in AToM3 40

4.9 An example of the graphical representation of history states . 41

4.10 Graphical representation of history states in AToM3

4.11 An example of the graphical representation of enter actions and exit actions

4.12 An example of the graphical representation of importation

4.13 An example of the graphical representation of ports

4.14 An ex ample of the graphical representation of connections

4.15 Altemate graphical representation of connections in AToM3 .

4.16 An example of the graphical representation of macros

5.1 An invalid DCharts model that contains compound statements in the output

5.2 A DCharts model that contains simple statements in the output

vi

42

42

43

43

44

45

54

70

70

5.3 An example of the transformation from a compound statement in the output into simple
statements . 71

5.4 An example of the transformation from a conditional statement into guards 73

5.5 An example of the transformation from a for-Ioop into multiple transitions. 76

5.6 An example of the transformation from a break statement into DCharts transitions 77

5.7 An example of the transformation from a continue statement into DCharts transitions 78

5.8 The three parts of a system . 79

6.1 SVM class design 83

6.2 SVM default graphical interface 86

6.3 SVM default textual interface. . 86

6.4 AToM3 modeling environment with SVM plugin 87

6.5 Multiple layers for distributed simulation in SVM 88

6.6 Sender of the Echo example . . 89

6.7 Echo of the Echo example ... 90

6.8 Name pattern of the Echo server 90

6.9 Port name of the Echo server . . 90

8.1 Java class hierarchy of state machines

8.2 An example of the default textual interface of the Java code synthesized by SCC .

8.3 The graphical representation of a sample model for SCC

8.4 Applet interface for the Java code synthesized from a DCharts model .

9.1 The MP3 player

9.2 Traces of the software process model simulation.

9.3 The TCP system

9.4 Overview of the TCP simulator

9.5 The submodel of the client application

9.6 The submodel of the TCP driver (for both client side and server side) .

9.7 The Acti veClose state of the TCP driver .

9.8 The PassiveClose state of the TCP driver

9.9 The Established state of the TCP driver .

9.10 The submodel of the communication channel

9.11 The submodel of the server application. . . .

9.12 The virtual-time version of the communication channel

9.13 The plot of the simulation result of the TCP model ..

VB

98

101

105
107

115

118

119

119

120

121

122

122

123

123

124

124

125

List of Tables

1.1 Atomic DEVS < S,ta,Oint,X,Oext,Y,À >
1.2 Coupled DEVS < Xself,Yself,D, {Mi}, Fi}, {Zi,j} ,select >

4.1 An example of the tex tuai representation of a simple state hierarchy

4.2 State properties in the textual syntax

4.3 An example of the tex tuai representation of state properties

4.4 An example of the tex tuai representation of orthogonal components

4.5 An example of the textual representation of transitions

4.6 An example of the textual representation of a timed transition.

4.7 An example of the textual representation of priority numbers

4.8 An example of the textual representation of histories

4.9 An example of the textual representation of an enter action and an exit action

4.10 An example of the tex tuai representation of an importation

4.11 An example of the tex tuai representation of ports

4.12 An example of the textual representation of connections.

4.l3 An example of the textual representation of macros . . .

4.14 An ex ample of the textual representation of a macro redeftnition

4.15 An example of the textual representation of a once timed transition

4.16 Default values for initializer, finalizer and interactor

4.17 An example of the tex tuai representation of a snapshotlrestore description

4.18 An example of the textual representation of comments

5.1 An example of the tex tuai representation of a function deftnition in a DCharts model

10

11

46

46

47

47

48

49

49

50

51

52

53

55

56

58

59

60

62

63

80

7.1 An ex ample of an extended regular expression .. 95

8.1 Trade-offs between SVM and SCC 104

9.1 Rounds and tasks in a software development process 116

viii

INTRODUCTION

As software systems and hardware systems are becoming more and more complex nowadays, a systematic
approach for the development of physical as well as software systems is needed.

As we look back at the history of software development, there have been three revolutions which greatly
improved productivity and quality. The first revolution was the Fortran language. Two important concepts
were introduced in Fortran: structured programming and variable names. With those concepts, programmers
no longer mixed data and code in a program. They started to think in a more modular way instead of directly
writing assembly code or machine code, which is hard to understand or debug for human beings. As a result,
both productivity and quality of the systems were improved.

The second revolution started in the 60's with Algol and reached its peak somewhere in the 80's when
the dominating languages were Pascal and C. Those languages eliminated all column-based formatting.
They provided well-designed high-Ievel control structures such as "while" loops and "for" loops. This
programming was much more structured, and the use of the "goto" statement was widely criticized for
breaking the structure (or the modularity) of the programs.

The third revolution was object-oriented programming (OOP). The OOP concept originated in the Simula
language emerging in 1967. C++ matured this idea and made it practical. Programmers started to think in
a more modular way and to reuse existing code to a greater extent by means of encapsulation and poly
morphism. Encapsulation emphasizes the distinction between behavior and interface. Data is divided and
maintained in different classes according to their semantics. These ideas help guarantee the integrity of a
logical piece of software, and make it more stable. Polymorphism allows better reusability. The behavior of
a whole class or part of it can be reused by means of inheritance. Overriding allows to modify part of the
existing behavior of a class and fit it to a new application. These ideas greatly improve productivity.

However, as new demands arise, people have seen the limitations of OOP, or software programming in
general:

• code has to be written by hand and is thus error-prone;

• it is impossible to prove the correctness of a system because of too much detailed information in the
program;

• coding is too labor-consuming and once a high-Ievel error is discovered, it is not easy to go back to
the design phase of the development process.

Neither structured programming nor object-oriented programming solves the above problems, due to the fact
that such problems have their roots in the high-Ievel design instead of in the implementation. Effort has been
spent on discovering systematic methods for system design. This effort leads to the research in modeling
and simulation based design.

This chapter presents a general introduction to modeling and simulation. In particular, existing formalisms
for this purpose, such as statecharts and DEVS (Discrete EVent Systems specification), are discussed. They
are the starting point of this thesis work.

1.1 Modeling and Simulation 2

1.1 Modeling and Simulation

Modeling and simulation are enablers for principled (software) system design.

From the modeling point of view, implementation details are not interesting and are thus neglected by de
signers who reason at a high level of abstraction. By neglecting this information, a system can be modeled
in formalisms such as statecharts and DEVS. Such formalisms are much more abstract and formai than a
piece of code written in a specifie programming language. Certain properties, such as reachable states or
deadlocks, can be proved or disproved with the assistance of model-checking tools. In this way, most of the
problems are solved in the design phase, and manual implementation is kept minimal. Ali these result in
higher stability, better maintainability and less potential errors in the systems.

Sorne of the modeling formalisms provide a rigorous way to specify interfaces (e.g., class diagrams), inter
action protocols (e.g., activity diagrams and sequence diagrams) and behavior (e.g., statecharts and DEVS).
The combined use of them protects the internai structure of components (modular parts of a system), while
still revealing enough information to the outside world to ensure reusability. For example, in the UML (Uni
fied Modeling Language) 2.0, the interface of a component is defined by a class diagram. The associations
between classes reflect the relations between them. Sequence diagrams are used to illustrate the interaction
between different components (of the same type or of different types). They influence each other at run-time
by means of messages. Finally, the full internaI behavior of these components is specified with statecharts,
which give an executable semantics to them. With this semantics, simulation as weIl as code synthesis of the
system becomes possible.

Specifying the complete behavior with a formalism is analogous with implementation. However, this ap
proach differs from the traditional implementation phase in that by specifying a system in a formaI way,
the designers are able to fully predict its run-time behavior and prove its correctness. The models can be
simulated in appropriate environments. Code can be automatically synthesized with code generators. Those
tools save human labor and greatly increase productivity.

1.1.1 Models and Meta-models

To specify a system as a model in a formalism, the two important parts of the formalism must be well
understood by aIl the designers and whoever wants to reuse parts of the system: the syntax and the semantics.
The syntax enforces certain rules on every model designed in the formalism, while the semantics defines the
concrete meaning of every model that conforms to the syntax. If the formalism is executable, its semantics
provides the basis for simulation and execution; if the formalism is non-executable, its semantics helps
ensure a unique interpretation of a model among multiple designers and users.

The formalism, if it is considered as a model itself, can be explicitly modeled with another formalism. In
this case, the formalism to be modeled is called a meta-model. There are many benefits to meta-modeling.
One of those is that the syntax of the modeled formalism can be very concisely and explicitly defined. For
example, the syntax of FSA (Finite State Automata) can be easily modeled by an ER (Entity-Relationship)
diagram as shown in Figure 1.1. This syntactic definition is much more rigorous than a definition in a natural
language. A parser can be built from it, which automatically checks whether a model is an FSA.

Another benefit is that a user can easily design his/her own formalism that best fits a specifie application
area. With a too1 capable of generating a modeling environment from a meta-model, such as AToM3 (A Tooi
for Multi-formalism and Meta-Modeling) developed in the MSDL (Modeling, Simulation and Design Lab)
of McGill University [1] [2], the designer gets a domain-specific modeling environment. The environment
is then used to solve problems specifie to the application domain. Model designers can thus make full use of
their knowledge in that domain. [3]

1.1.2 The Process of Modeling and Simulation Based Design

Modeling and simulation based system development requires a series of steps of transformation. In each step
a model is transformed into another one. The new model is usually in another formalism at a lower level
of abstraction. This takes the original design along the way from a very abstract model (derived from user

1.1 Modeling and Simulation

Name type=String init. val
islnitial type=Boolean in
isFinal type=Boolean init

Figure 1.1: The Finite State Automata syntax in an Entity-Relationship diagram

3

1.1 Modeling and Simulation

Meta-Model

Model

....... - " ..
Simulation • • 1 • Generation #

Simulation
Model

.... .. ,- --
Code • 1 1 • Generation # ' --. ..-

.... Execution

..... Model

o
.........

.......... , ..
,
, Checking .. , _-_ -..'

.... --- ... ",,"" , ,
, Simulation 1 , .. ,

.... -.... __

.. .. ----- ," ..
,
, Execution 1

..
........... _ -""#

...

manual
transformation

(automatic)
transformation

Proof of
Correctness

Conformance
Verification

Performance
Metrics

~I Input/Output

Figure 1.2: Modeling and simulation based design process

requirements) to the simulation model and eventually, application code.

4

Figure 1.2 illustrates the system development process and the different transformations involved in it. Usu
ally, a user (the designer of a system) starts from an existing formalism, and defines his/her own model based
on the syntax and semantics of that formalism. However, in case no existing formalism is suitable to specify
the system, the user may define a meta-model with a meta-modeling tool, such as AToM3, and further design
the model with the formalism defined by that meta-mode!.

After the "model design" phase, which requires manual work of the designer, automatic transformations
can be done to obtain different models for various purposes. Toois can be used to check the correctness
of the mode!. Those tools actually generate checking models, which give the designer such information
as reachable states, deadlocks and reactiveness to every possible event in every state. The designer has to
modify the model if potential errors are found in the checking. This is much easier th an the debugging in the
traditional development process, where code is written and debugged manually.

Toois that generate simulation models enable simulation of the mode!. Simulating a model requires detailed
information about the model execution. If this information is not given in the original model, it must be
added at the time when the simulation models are generated. Executable formalisms, such as statecharts
and DEVS, allow to fully specify this information in the models. Interpreters of such formalisms are thus

1.1 Modeling and Simulation 5

Figure 1.3: AToM3 meta-modeling environment with the Entity-Relationship diagrams meta-modelloaded

able to simulate the original designs. Simulation can be used to increase confidence in the correctness of the
mode!. Commonly, simulation is used to calculate performance metrics. These can be used to tune model
parameters to satisfy system performance requirements.

Another kind of tools take the original models as input and generate executable code. The code is optimized
and efficient, but usually platform-dependent. Its execution does not require the support from an underlying
environment, as simulation does. The purpose of this code generation is to maximize performance and to
release the well-developed system to the end-users, who are not interested in the model design.

1.1.3 Modeling and Meta-modeling in AToM3

AToM3 [1] [2] is a tool for modeling, meta-modeling and simulation. It is developed by Prof. Hans Vang
heluwe at the MSDL (Modeling, Simulation and Design Lab) of McGill University in Canada in close
collaboration with Prof. Juan de Lara at the Autonomous University of Madrid. It allows building and dy
namically loading meta-models in its graphical environment. When a meta-model is loaded, the graphical
environment is modified according to the allowed entities of the formalism. The user can design models
according to the syntax of the formalism. Transformations between models of different formalisms are han
dled with graph grammars, a powerful formalism to specify transformations in a graphical form. With the
support of a simulation engine that implements the semantics of the loaded formalism, AToM3 can also be
used as a simulation environment.

Figure 1.3 shows the main window of AToM3 with the Entity-Relationship diagrams meta-modelloaded in
it. The left panel of AToM3 shows only the buttons of allowed entities. In this case, "entity" and "relation"
are two different kinds of entities in an Entity-Relationship diagram.

1.1 Modeling and Simulation 6

Figure 1.4: AToM3 meta-modeling environment with the PetriNet meta-modelloaded

1.1 Modeling and Simulation 7

Explll1d model

..•.........•.....•.....•.........•.............•....................•......... :.
'1:. orthoO

..

~~
...........................

Figure 1.5: AToM3 meta-modeling environment with the statecharts meta-modelloaded

1.2 The Statecharts Formalism 8

Figure 1.4 and Figure 1.5 show the AToM3 environment with the PetriNet meta-model and the statecharts
meta-modelloaded in it, respectively. The buttons shown on the left panel vary with the loaded meta-models.

Simulation in AToM3 is discussed later.

1.2 The Statecharts Formalism

Statecharts, introduced by David Harel [4], are a visual and executable formalism for modeling complex
reactive systems. It has roots in the Finite State Automata (FSA) formalism and adds new concepts to it.
Those new concepts make the formalism suitable for specifying discrete event systems.

1.2.1 Finite State Automata

The syntax of the FSA formalism is defined by means of meta-model in Figure 1.1. An FSA consists of
states and transitions between states. Astate has three properties:

• Name, a string that denotes the unique ID of astate.

• islnitial, a boolean that decides whether astate is the initial state. There must be exactly one initial
state in each FSA model.

• isFinal, a boolean that decides whether astate is a final state. There must be at least one final state
in each FSA mode\.

A transition, when triggered, changes the model from one state (source state) to another (destination state).
(The destination state may be the same as the source state.) In the ER meta-model, a transition is represented
as a relation between states.

Input symbol is a property of transitions, which is not visible from the graphical representation of the meta
mode\. It defines a single symbol that triggers the transition. When that symbol is received and the model is
in the source state of a transition (the starting of the arc), the transition is triggered, and the model changes
to the new state (the ending of the arc with an arrow).

The input symbols are taken one by one from an input sequence. Ifthere is no enabled transition (a transition
is enabled if and only if the model is in its source state and the current input is its input symbol) for one of
the symbols, an error is raised, and the FSA halts. This error means the FSA does not accept such an input
sequence, or more formally, the language (the set of accepted input sequences) defined by the FSA does not
include such a sentence (one single input sequence ended with an end mark).

The FSA formalism also requires that when an accepted input sequence ends, the FSA must be in one of the
final states. Otherwise, the input sequence is not accepted.

A simple FSA example is shown in Figure 1.6. Its initial state is state 1 (a state with a black dot pointing to
it). Its final state is state 5 (a state with a double-line border). This FSA accepts the language:

{aJ, ae(dc)* g, b(cd)* cg}

As a result, af, aedcg, aedcdcg, bcg, bcdcg are aIl accepted sentences, while a, aedg and bcd are unaccepted.

1.2.2 Statecharts Extensions to FSA

David Harel has added extensions to FSA to make it a practical and expressive formalism [4]. With those
extensions, it becomes possible to specify the complete reactive behavior of a system in a mode\.

The meta-model of statecharts is drawn in the ER diagram in Figure 1.7. Elements in the diagram are
described below:

• The name Blob is used to distinguish hierarchical states in statecharts from states in FSA. Since hi
erarchy and orthogonal components are introduced in statecharts, the states may have inner structures
and are known as blobs. A blob has a Name attribute.

1.2 The Statecharts Formalism 9

d

Figure 1.6: A simple FSA example

Name type=String init.val

r-----I
Actions type=String init.

Figure 1.7: The statecharts meta-mode! in an Entity-Relationship diagram

1.3 The DEVS Formalism

S
ta : S -; Rt,+~
Ôint: S -; S
X
Ôext : Q x X -; S

y

À:S-;YU{0}

a set of admissible states
time advance function
internaI transition function
a set of admissible external inputs
external transition function
where Q = {(s,e)ls E S,O::; e::; ta(s)}
a set of possible outputs
output function

Table 1.1: Atomic DEVS < S,ta,Ôint,X,Ôext,Y,À >

10

• A Hyperedge connects two states and denotes a transition between them. A transition has an event
property, and may or may not have properties guard and output. Those properties and their meanings
are discussed later.

• A blob may consist of one or more orthogonal components. Each of them maintains a local CUITent
state. The Cartesian product of the CUITent states of ail the orthogonal components belonging to the
same parent is equal to the CUITent state of the parent state. An orthogonal component may have blobs
inside it.

• Like FSA, every statecharts model has an initial state. Within every blob or orthogonal component
there is also a default state.

The statecharts semantics has many variants. One popular semantics is David Hare1's STATEMATE se
mantics [5]. Another one is the statecharts semantics described in the UML (Unified Modeling Language)
[6]. These variants are not compatible with each other. There will be more discussion about the statecharts
variants in the latter part of this thesis work.

1.3 The DEVS Formalism

DEVS (Discrete EVent Systems specification) was created by Bernard Zeigler [7] [8]. It is a modular for
malism for deterministic and causal systems. It allows for component-based design of complex systems. A
DEVS model may contain two kinds of DEVS components: Atomic DEVS and Coupled DEVS. An Atomic
DEVS does not contain any component in it. It only has a mathematical specification of its behavior. A
Coupled DEVS is a modular composition of one or more Atomic DEVS'.

According to the c10sure under coupling property of DEVS, a Coupled DEVS can be substituted by an
Atomic DEVS with equivalent behavior. A Coupled DEVS can be used to compose more complex DEVS
components.

A Coupled DEVS specifies connections between the components in it. Two connected components send
messages via well-defined ports.

1.3.1 Atomic DEVS

An Atomic DEVS is a functional atom in a model, which cannot be further divided into sub-components.
Its behavior is described by implementation-independent mathematical functions and symbols.

Atomic DEVS is a tuple < S,ta, Ôint, X, Ôext,Y,À > as shown in Table 1.1. AlI the states of the DEVS are
in the admissible state set S. An execution of the model is to sequentially change its states, until ended
explicitly. The change in its states is defined by two functions: internaI transition function Ôint and extemal
transition function Ôext .

Ôint : S -; S defines the autonomous internaI behavior. The time when these changes take place is defined
by function ta : S -; Rt,+~. It takes a state as a parameter and returns a non-negative real value denoting
the time interval between state changes. The time for a DEVS is not discrete, because the simulation is not

1.3 The DEVS Formalism

state
I~

S2

SI

SO

"1 1 '1
1 1 1
1 1
1 ,~ 1
1 1

2.5 5 6.25 10

Figure 1.8: Atomic DEVS state trajectory

Xself
Yself
D
{Mili E D}
Ii,i ED
{Zi,j}
select: 2D ---.. D

a set of admissible external inputs
a set of possible outputs
a set of unique component references
a set of components
a set of influencees of component i
a set of output-to-input translation functions
the select function

Table 1.2: Coupled DEVS < Xse/j, Yse/j, D, {Mi}, {Ii}, {Zi,j },select >

11

.. -time

based on time-slicing. An internaI transition can be scheduled at any point in the future on the real time-line
(Figure 1.8).

An external event may occur at any time. OexI : Q x X ---.. S is the external transition function. It defines which
new state the DEVS should be changed to, when a certain external event is received. The new state depends
on the old state and how long the DEVS has been in the old state (elapsed time). The old state s and the
elapsed time e are usuaIly represented as a tuple (s,e), where sES and O:S e:S ta(s).

Only internaI transitions are aIlowed to produce output. Y is the set of aIl possible output values. The output
produced by a transition from the old state s to any other state can be calculated with the À function. Value
~ means no output is produced.

AlI the input values are defined in X and aIl the output values are defined in Y. They can be viewed as
an interface exposed to the outside world. The outside world communicates with the Atomic DEVS only
through input events and output events.

1.3.2 Coupled DEVS

As the coupling of one or more Atomic DEVS', a Coupled DEVS is a tuple

< XSelf, Yself,D, {Mi}' {Ii}, {Zi,}},select >

as described in Table 1.2.

Mi (where i E D) is an Atomic DEVS as one of the Coupled DEVS' components. Its output is connected
to the input of its influencees Ii (a set). Every output signal of component i is translated by the Zi,j function
before it reaches an input of component j.

It is possible that internaI transitions in different components occur at exactly the same time. The virtual
time is not advanced untii ail these events at the same time are handled. The order in which the events
are handled is important, because the change of state caused by a transition may affect the behavior of

1.4 Research Focus 12

Figure 1.9: Generalization of DCharts

abstract syntax texturai syntax graphical syntax

Figure 1.10: Specification of DCharts

subsequent transitions, though they are triggered at the same virtual time. The select function decides which
transition must be triggered first when a conflict occurs.

DEVS is closed under coupling by construction. A Coupled DEVS can be rewritten as an equivalent Atomic
DEVS, and thus be reused as a component in a larger DEVS. The outside world need not know whether a
DEVS component is atomic or coupled, because both kinds expose the same interface.

1.4 Research Focus

The research and its results discussed in this thesis builds on the existing formalisms and tools. In particular,
it is closely related to both statecharts and DEVS. It combines the syntax and semantics of statecharts and
DEVS in a modular way (Figure 1.9), and provides a friendly user-interface and good expressiveness to
model designers.

DCharts are a new executable formalism, which allows model design, model transformation, model simula
tion, model checking and verification, and code generation.

1.4.1 Formai Specification

The syntax and semantics of DCharts are formally specified in this thesis (Figure 1.10).

Three types of syntaxes are described:

• The abstract syntax is a symbolic language. It gives a symbol to every entity in DCharts. Relations are
regarded as functions. This syntax is formaI and it allows logical reasoning or inference on DCharts
models. It also makes it possible to mathematically transform or simplify DCharts models.

1.4 Research Focus 13

• The tex tuai syntax defines the textual form of the formalism. This form simplifies computer processing
of a DCharts model. The textual syntax is implemented in this thesis work with a parser and interpreter.

• The graphical syntax gives a graphical representation for the formalism. It provides a way to design
DCharts models in a modeling environment that supports GUI (Graphical User Interface), such as
AToM3. In many cases graphical model design is more user-friendly and understandable. Part of the
graphical syntax is implemented in a DCharts meta-model in AToM3, so that designers can manipulate
DCharts models in this environment.

The semantics of DCharts is formally defined in two different ways:

• Operational semantics defines the meaning of DCharts models with a functional description or pseudo
code. From this description, an interpreter (SVM, Statechart Virtual Machine) and a code synthesizer
(SCC, StateChart Compiler) for DCharts are constructed.

• Denotational semantics maps DCharts to other existing formalisms such as statecharts and DEVS.
The DCharts semantics is made clear provided that the formalisms that we map onto have well-defined
semantics. Denotational semantics provides a way to transform DCharts models into models in other
formalisms.

1.4.2 Model Transformation

There are two kinds of mode! transformation. Intra-formalism transformations transform a model into an
other model in the same formalism. The result of this transformation is usually optimized for modularity
or efficiency. Inter-formalism transformations transform a model into a new model in another formalism.
The new model can thus be reused in the systems designed in the other formalism. The possibility of such
transformations gives a meaningful comparison of expressiveness between the two formalisms. Another
benefit of inter-formalism transformations is that, by transforming a model into a more extensively studied
formalism, the model checking tools of that formalism can be used to prove certain properties of the model.

The model transformations discussed in this thesis are inter-formalism transformations. Intra-formalism
transformations are not discussed.

Spencer Borland in his Master's thesis [9] has shown an approach with which statecharts models can be
transformed to DEVS. This helps prove that DCharts can be transformed to DEVS, because DCharts are
a modular combination of statecharts and DEVS. More transformations between statecharts, DEVS and
DCharts are discussed in the later part of this thesis.

1.4.3 Simulation

DCharts are executable. Every DCharts model has a rigorous semantics and can be simulated in a simulation
environment such as SVM (Statechart Virtual Machine), which is discussed later in detail.

As an overview of model simulation, Figure 1.11 illustrates the different simulation and execution strategies
as a three-dimensional matrix. The meaning of the axes is described here:

• The x axis indicates whether the simulation (or execution) is sequential or paralle1. Sequential simula
tion is step by step simulation that guarantees no overlap oftwo or more operations (such as change of
states and execution of action code) at the same time. Parallel simulation, however, strives to perform
operations in a parallel way typically to maximize performance. Due to the sequential nature of most
of the models, it is very hard to tell which operation can overlap with another. The overhead of finding
out potential overlapable operations and synchronizing different parallelized parts is usually so high
that the simulation slows down rather than speeds up.

• The y axis indicates whether the simulation (or execution) is local or distributed. Local simulation
is done on a stand-alone process. There are three kinds of local simulation: single-threaded, multi
threaded, and multi-process. In distributed simulation, multiple processes are involved in a single sim-

1.4 Research Focus 14

y

distributed

local
virtual-time simulatio~

sequential parallel x

Figure 1.11: Matrix of simulation and execution

ulation. Components participating in the simulation are deployed among those processes in a modular
way. They communicate with each other by means of messages via a network.

• The z axis indicates whether it is a virtual-time simulation or real-time execution. Real-time execution
is synchronized with the real time (or wall-clock time). It may need to satisfy several time constraints
in order to guarantee the real-time behavior of the model. The satisfaction of those time constraints
usually requires support from the underlying operating system. Virtual-time simulation uses a timer
that is usually not synchronized with the wall clock. If the timer is proportional to the real time, the
simulation is called scaled real-time simulation; if the timer is a counter that keeps track of the time
and it is advanced as fast as possible (i.e., as soon as ail the components are waiting for their scheduled
events), the simulation is called as-fast-as-possible simulation.

It is important and interesting to know aIl the combinations of these schemes, though only sorne of the
combinations are reasonable, and only sorne of the reasonable combinations are relevant to this thesis work.

• Sequential local real-time execution. This type of execution is natively implemented in SVM, the
interpreter for DCharts. AlI the operations are sequentially executed on a multi-threaded process.
Different threads are synchronized to guarantee that only one operation is performed at a time.

• Sequentiallocal virtual-time simulation. The two types ofvirtual time (scaled and as-soon-as-possible)
are not directly supported by the SVM simulation kernel. However, scaled real-time simulation can
be easily simulated with real-time simulation. This can be accomplished by redefining the macro that
retrieves or schedules time (with the after event), as discussed later. The later part of this thesis also
shows that as-soon-as-possible simulation can be simulated with a dock component (section 9.2). As
a result, there is no need to internally implement this kind of simulation.

• Sequential distributed real-time execution. For distributed execution, it is natural to allow parallei
behavior between components on different computers. Sequential behavior can be simulated with par
allel execution by means of global semaphores or a global clock component. However, this makes the
execution less efficient than sequential real-time execution on a single computer (because of latency
in the network and the overhead of synchronization). Because it is rarely useful, sequential distributed
real-time execution is not directly supported by the SVM.

• Sequential distributed virtual-time simulation. For the same reason of inefficiency, sequential dis
tributed virtual-time simulation is not supported. The users should use sequential local virtual-time
simulation instead.

1.4 Research Focus 15

• ParaUel local real-time execution. SVM provides support for multi-process simulation on a single
machine. Those processes are highly parallel. They influence each other in the form of messages via
ports. The execution is real-time so that each of the processes directly accesses the time given by the
computer hardware.

• Parallellocal virtual-time simulation. Virtual time is not directly supported by SVM. However, with
a special clock component running as a separate process and providing time service to all the other
processes, the two types of virtual-time simulation are made possible. As a result, there is no need to
implement this kind of simulation internally in the SVM.

• ParaUel distributed real-time execution. This kind of execution directly corresponds to distributed
software systems and is thus interesting. SVM builds parallel distributed real-time execution on top
ofPVM (Parallel Virtual Machine) [10]. Ports are defined on the boundary of components. Individual
components have parallel behavior. They communicate with messages sent via connections between
ports over a network.

• ParaUel distributed virtual-time simulation. This kind of simulation is simulated with parallel dis
tributed real-time execution with an additional clock component. The clock component reveals its
ID to ail the other components and provides global timing service to them. This dock component is
discussed later in general.

From this discussion, it is easily seen that SVM is a powerful simulation tool that supports most of the
simulation schemes, though sorne are simulated by the others with extra components. The concept of a
dock component is important because it reduces the requirements on the simulation engine. The simulator
is thus minimal and optimizable.

1.4.4 Model Checking and Verification

Model checking refers to proving properties of the models without simulation or execution. For example,
by enumerating ail possible event sequences accepted by a state machine, the dead states (the states that
the model never goes to) are discovered and deleted. Another example is by building a reachability graph
of a PetriNet model, it can be easily proved whether or not the model allows deadlock (a state of which the
model, once enters it, can never go out).

Model checking of DCharts is not easy, mostly because models in DCharts contain too much information
about the execution detail. Usually, a model has to be abstracted and the irrelevant information in it must be
removed before checking can be performed. This could be done by means of transforming the model into
model(s) of other formalisms, such as DEVS and PetriNets. Because of its difficulty, model checking is not
discussed in this thesis.

Another approach to find out properties of models and demonstrate their correctness is model verification. It
is done by simulating or executing the models multiple times. A tool that analyzes the gathered output trace
tells whether the models are running correctly or not. It may also analyze the performance of the models and
discover possible bottle-necks in them.

1.4.5 Code Synthesis

The purpose of code synthesis is to maximize run-time performance. It is always much slower to simulate a
model in an interpreted way than to execute the compiled code directly.

A lot of optimization can be done on the models at the time of code synthesis. This issue will be dis
cussed thoroughly in this thesis. In particular, SCC (StateChart Compiler), a code synthesizer for DCharts,
is implemented. It is able to generate Java, C++, Python and C# source code from textual DCharts model
descriptions.

1.5 Related Work 16

1.5 Related Work

This thesis work is done in the MSDL (Modeling, Simulation and Design Lab) of McGill University, headed
by Prof. Hans Vangheluwe. It is closely related to other on-going projects in the MSDL:

• AToM3 [1] [2] is a graphical modeling and meta-modeling environrnent. It is able to meta-model the
syntax of many formalisms, as well as generate dedicated visual environments for the model design in
those formalisms. The semantics of sorne of those formalisms, such as PetriNets, is usually modeled
with graph grammars. In this way, AToM3 can also be used as a simulation or execution environment,
with graph grarnmars that transform the model from one state to another.

A DCharts meta-model is built in AToM3 , which defines a subset of the DCharts syntax. This meta
model is discussed in later chapters. The semantics of DCharts is implemented in SVM, which can be
loaded in AToM3 as a simulation engine. It makes it possible to simulate DCharts models and at the
same time highlight the CUITent states and enabled transitions in the AToM3 visual environment.

• PythonDEVS [11] [12] is a virtual-time DEVS simulator implemented by Hans Vangheluwe and
Jean-Sébastien Bolduc. It provides a practical basis for DCharts simulation, as DCharts is a modular
combination of statecharts and DEVS.

PythonDEVS is a set of DEVS templates and a DEVS simulator class. Those templates must be
extended by the model designers by means of inheritance. SVM takes one step further by accepting
a textual language of DCharts model descriptions. The users can easily write model descriptions
conforming to a rigorously defined syntax. They may also use the AToM3 environment to graphically
model DCharts, and then generate model descriptions by pressing a button.

• Real-time PythonDEVS is the real-time version of PythonDEVS. It is modified by Spencer Borland
from non-real-time PythonDEVS.

• Spencer Borland in his Master's thesis [9] describes a way to transform statecharts into DEVS and
hence proves that DEVS has at least the same expressive power as statecharts [13]. (Actually, DEVS
is even more expressive than statecharts.) This provides another means to simulate DCharts other than
simulating them directly in SVM: transform DCharts (which take a similar form as statecharts) into
DEVS, and use Real-time PythonDEVS to simulate them.

• Alison Stewart has compared the functionality between Real-time PythonDEVS and SVM, and has
built an MP3 player on both of them. In her report, she concludes that though neither of the two is
perfect, SVM is much more user-friendly. The report is available on-line [14].

Information about the above projects can be obtained from the MSDL website:

http://msdl.cs.mcgill.ca/

This thesis work is also related to several research projects outside of McGill University.

• David Hare! has created the statecharts formalism [4] [5], which has been the basis of DCharts. Many
of the DCharts constructs, as they are defined in latter chapters, can be found in statecharts. The
semantics of those common constructs is the same in both formalisms.

DCharts have extended statecharts to make them more rigorous and expressive. The syntax of DCharts
is a superset of the statecharts syntax. The semantics of DCharts is a superset of the semantics of David
Harel's statecharts. Hence, SVM is also a simulator for statecharts.

• Bernard P. Zeigler has created DEVS [7] [8], a modular and expressive formalism. The idea of blocks
and connections between them via ports is reused in DCharts. As a result, DCharts are much more
modular than statecharts, which are not modular in their nature. Many other concepts in DEVS are
useful for the creation of DCharts. In particular, the select function is invented in DEVS to solve
transition confiicts. This idea is absorbed by DCharts, though they support a different mechanism
based on transition priorities to solve those confiicts.

1.5 Related Work 17

• Ptolemy II [15] [16] [17] is a heterogeneous modeling and simulation environment implemented by
Prof. Edward A. Lee and his students at EECS, University of California at Berkeley. Its viewpoint of
directors and actors in component-based models and its Java code generation have important impact
on the design of DCharts and such tools as SVM and SCC.

Unlike SVM, a dedicated simulator for DCharts, Ptolemy II is a modeling and simulation environment
for multiple formalisms. Different formalisms may be used to model components (or actors) in a
single mode!. Directors manage the interaction between those components. Discrete-time components
and continuous-time components are allowed to coexist and communicate in a single system in this
framework.

• The Parallel and Distributed Simulation (PADS) lab of Georgia Institute of Technology, headed by
Prof. Richard Fujimoto, has implemented PDNS (Parallel and Distributed Network Simulator). It is
an advanced distributed simulation environment.

The research at the PADS lab is more oriented to distributed simulation than system design. Envi
ronments for high-performance distributed simulation are being built, which support the testing and
analysis of complex and large systems, such as aircrafts and global troop deployment.

Similar functionality will be supported by the future version of SVM. It will support the distributed
timewarp simulation with DCharts.

• The research on model checking is active and advanced in the Model Checking group of Carnegie
Mellon University, headed by Prof. Edmund Clarke. In particular, their research on explicit state model
checking [18] [19] is interesting and usefu!'

As SVM currently has very limited support for model checking, studying the research results of the
Model Checking group will be helpful to the future of a model checker for DCharts. The checker will
be able to formally prove properties of DCharts models without simulating or executing them in SVM.

• Prof. Joanne M. Atlee, Prof. Nancy A. Day and their WatForm (Waterloo Formai Methods) research
group at University of Waterloo are seeking a way to enhance the power of statecharts and to make
them more expressive and practitioner-friendly. [20] [21] [22] Their work is closely related to the
creation of DCharts.

ln [23], they discussed a parametrized template capable of expressing the semantics of all the state
charts variants. It is meaningful to describe their framework in DCharts. This enables SVM to simulate
models of any statecharts variant.

• Prof. Ivan Porres at Software Construction Laboratory of Abo Akademi University in Finland has
developed SMW (System Modeling Workbench), "a collection of tools to edit, store, analyze and
verify models." [24] [25] Those tools are reusable and comparable with AToM3.

SMW with appropriate extension can be used as a visual environment to design DCharts models. With
a plugin that invokes SVM, DCharts simulation in SMW is also possible.

ABSTRACT SYNTAX AND SEMANTICS OF
DCHARTS

The definition of DCharts 1.0, the current version of DCharts, contains two parts: the syntax answers the
question "what is the structure of a DCharts model?" while the sem an tics answers "what is the meaning of
a DCharts model?" The foIlowing criteria influence the syntax and the semantics:

• The syntax must be rich enough to aIlow the specification of a complete semantics. I.e., if a semantic
element cannot be specified according to the syntax, there is no way to design a model that uses it,
and hence the element becomes useless.

• Every syntacticaUy correct model must have a unique meaning according to the semantics.

• The definition of syntax must facilitate both computer processing and human understanding.

• The semantics should be as platformlimplementation-independent as possible. This aIlows the formal
ism to be implemented by different tools and to be used in different systems.

The foUowing sections describe the basic syntax and semantics of DCharts 1.0.

2.1 The DCharts Meta-model

Figure 2.1 shows the meta-model of DCharts in the AToM3 meta-modeling environment. It is modified from
Spencer Borland's statecharts meta-model (Figure 1.7). It defines the abstract as weIl as graphical syntax.
Iconic representations of entities in the DCharts formalism are not shown. Sorne of the DCharts constructs,
such as importation and transition priorities, are not explicitly modeled for simplicity. (They are marked as
UML-style comments in the graphical representation of DCharts models.)

Figure 2.2 shows the AToM3 environment with the DCharts meta-modelloaded in it. The buttons on the left
panel give access to aU the entities to be used in a DCharts model. The buttons on the top aUow the user to
connect entities and edit their properties.

2.2 Overview of Abstract Syntax and Semantics

This section defines the abstract syntax of DCharts 1.0. Part of this definition is subject to change in later
versions. This possibility of change is discussed wherever appropriate.

2.2.1 Overview

A model M in DCharts 1.0 is defined by a tuple

< S, T,C, V,t}.,P,L >

where:

• S= {SI,S2, ... ,Sm} is a setoffinite and enumerable states. Si (i E [l, ... ,m]) is a tuple

< SN, DS, CS, HS, TP, EN, EX >

2.2 Overview of Abstract Syntax and Semantics

name type=String ini!.val
is _ default type=Boolean i
visible type=Boolean init
auto_adjust tYP'3=8iool,eanl h

containsJinks_visible ty
Composite _ default_ height
Composite_defaul,-width
contains30lor type=Strin
ortho onalit links visib

is_default type=Boolean i
'-I--~ name type=String init.val

star type=Boolean init. va

name type=String init.val
>-------~ visible type=Boolean init

auto_adjust type=Boolean

name type=String init.val
isjn type=Boolean init.v
is_out type=Boolean ini!.

i
name-pattern type=String

Figure 2.1: The DCharts meta-model in an Entity-Relationship diagram

.".', ·,·::tiit~~r '

, .'.' •• $JmqI~",:~~VM

t(j'~~4'p~$;

wSCCJa,va

Expand model

Figure 2.2: The AToM3 development environment for DCharts

~
reques!

~
message

19

2.2 Overview of Abstract Syntax and Semantics 20

where:

• SN is a string that represents a globally unique identifier (GUID) of the state. Every state in a
given model has a unique GUID. GUIDs of states in different models may be the same.

• DS is a boolean value that specifies whether state Si is a default state of its parent state. Among
the children of a parent state there must be exactly one default state, unless all those children are
orthogonal components (discussed later).

• CS is a boolean value that specifies whether state Si is an orthogonal component. If astate is an
orthogonal component, ail its siblings (other children of the same parent) must also be orthogonal
components, and ail those states are default states in their nature (DS = true).

• HS is an enumerated value that specifies whether state Si has a history in it, and, if it has a
history, whether the history is deep history. Its possible values are defined with an enumerated
type (explained later):

HS = {None, Normal, Deep }

• TP is an enumerated value that specifies the transition priority within the scope of state Si. The
scope of astate includes the state itself, ail its children states, and ail the transitions from that
state and its children states. Possible values of T P are defined below (explained later):

TP = {Keep,ITF,OTF,RTO}

• EN is a Iist of sequentially executed enter actions. These actions are executed when the state
is entered (whether from other states or from this state itself). In DCharts 1.0, there is no strict
definition of actions. This part is subject to change in later versions, where a more rigorous
definition of action code will be given. However, actions must conform to several mIes. Those
mies are discussed in section 2.2.8.

• EX is a list of sequentially executed exit actions. These actions are executed when the state is
exited (whether the destination is another state or this state itself). This part is subject to change
in later versions, where a more rigorous definition of action code will be given. Sorne mIes of
actions are further discussed in section 2.2.8 .

• T = {tth, ... ,tn} is a set of transitions. fi (i E [1, ... ,n]) is a tuple

< SRC, DES,E,y, G,À,HST,Prio >

where:

• SRC E S is the source state.

• DES E Sis the destination state.

• E is a string that represents the event name. This event triggers the transition. The event name
should not contain a "." (which is used in inter-model communication via ports), un1ess the
transition handles an incoming message. In that case, the event name is the input port name
followed by a dot, and then followed by the message name.

• y = {y t, Y2, ... , yd is a set of variables that represent the formai parameters. Each parameter is
a variable. In DCharts 1.0, there is no strict definition of variables. Section 2.2.4 offers a loose
definition of variables.

• G is a boolean expression that specifies the guard. In DCharts 1.0, there is no strict definition of
guards. One of the few requirements is that they can be evaluated to a boolean result at the time
when the event of the transition is received. Guards are further discussed in section 2.2.8.

• À is a Iist of sequentially executed actions. In DCharts 1.0, there is no strict definition of actions.
This part is subject to change in later versions, where a more rigorous definition on action code
will be given. Several mIes of actions are discussed in section 2.2.8.

2.2 Overview of Abstract Syntax and Semantics 21

• H Sr is a boolean variable that specifies whether the transition goes to the history of the des
tination state (if it has a normal history or deep history) or the default substate of it (if it has
substates).

• Prio is an integer number (may be positive or negative) that specifies the priority of the transi
tion. In case a conftict occurs that cannot be solved by transition ordering (discussed later), the
transition with the smallest Prio number has the highest priority.

• C: S -t 2s is a function that defines the parent-children relationship of all the states. It maps any state
to the set of its children states. All the states in a model and their parent-children relations form a tree
(with states as nodes and relations as edges).

• V = {VI, V2, ... , vs} is the set of variables. In DCharts 1.0, there is no strict definition of variables. The
only requirement is that every variable has a GUID and provides a certain amount of storage. This
part is implementation-dependent. It is subject to change in later versions, where a more rigorous
definition of variables and the operations on them will be given.

• !J.: S -t M is the mapping of importations. If !J. is defined for a state Si, the result of the function
gives the definition of a model which is imported into Si. Importing a model into astate means, in
theory, induding all its states and transitions in that state. The states defined in the imported model
become substates of the importation state. The transitions between the states of the imported model
are preserved. An implementation of DCharts must provide a means to modify the GUIDs in the
submodels, so that they never conftict with the GUIDs of the importing model. (Note that the imported
model itselfmay import models, and a model may import multiple models.) It is allowed for a model to
import itself. Such a recursive specification allows for the dynamic creation of arbitrary-sized models
(discussed later).

• P = {P!'P2, ... ,pd is the set of ports. In DCharts 1.0, a port Pi (i E [1, ... ,t]) is a tuple < PN,PT >
(later versions of DCharts may add more information to a port to further specify it), where:

• PN is the GUID of the port. This GUID has a different name space from the GUIDs of states.
As a result, even if the PN of a port is equal to the SN of a state, no conftict occurs. There is no
restriction on a port name, except that it must not contain a H." or a space.

• PT is the type of the port. In DCharts 1.0, the following types are defined (Iater versions of
DCharts may add more information):

PT = {InOut,In,Out}

• L = {/1,l2, ... ,Iu} a set of mappings from ports in one model to the ports of other models. Ii, with
i E [1, ... ,u], is a tuple < PNI, < M,PN2 », where:

• PNI is the GUID of a port in this model (the model that contains the definition of this h).
• M is another model, which the currently specified model connects to.

• PN2 is the GUID of a port in model M.

Note that if PI of model MI is connected to P2 of model M2 with a single connection, either MI or
M2 specifies this connection, but not both. The model in with the connection is specified looks up the
other model when the simulation or execution of it starts.

If in a simulation or execution, more than one model (or component) MI ,M2, ... ,Mv has exactly the
same definition (MI = M2 = ... = Mv), a link 1 =< PNI, < Mi,PN2 » (i E [1,2, ... , v]) in L implies
that PNI is connected to PN2 of all those models with the same definition.

2.2.2 State Set S

State set S = {SI ,S2, ... , sm} defines all the states in a model, regardless of their parent-children relationship.

2.2 Overview of Abstract Syntax and Semantics 22

The choice of SN, the GUID of astate, is a decision of the model designer. According to the definition of
sets, there should not be two identical elements in a single set. Two states in the same state set differ from
each other at least in their GUIDs.

DS defines whether the state is a default state of its parent. If the state is at the top level (i.e., it has no parent)
DS defines whether it is a default state of the mode!. If CS is true for astate, it is an orthogonal component
of its parent, and as a result, aIl its siblings are orthogonal components. Due to the nature of orthogonal
components (also known as "and states"), aIl orthogonal components must be active simultaneously, and are
in sorne sense default states. Renee, CS = true al ways implies DS = true.

When started, the model is always in its top-level default state(s), and the default substate(s) of the top-level
default state(s). At any given time during a simulation or execution, the model is in its current leaf state (a
leaf state is defined as astate at the lowest level, which does not contain any substate), or current state for
short. A model is in state s if and only if its current state is s or a substate of s. Hence, a model in state s' is
also in Sil provided that:

Here, C(s) is the children set of state s. < Sil, sk, sk-I, ... , SI, s' > is caIled the path fram superstate Sil to
substate s'. Such a relation between s' and Sil is formaIly written as s'E Substate(s").

Each orthogonal component has a default state defined in it. At any time in a simulation or execution, aIl
orthogonal components in an active state have a current state. AIl the transition from those current states (or
superstates of the current states) with their guards evaluated to true are enabled and can be triggered by an
event. However, at any time there is at most one triggered transition, and the execution of a transition must
be fini shed without any interleaving operation. UsuaIly, a transition is implemented as a critical section.
In this interpretation, orthogonal components are not concurrent threads. The Cartesian product of aIl the
orthogonal components gives a unique current state of a mode!. This model can be transformed to an ordinary
FSA, which has no orthogonal components.

H S specifies the history of astate. History is regarded as a property of a state. If astate has a normal history
or deep history, a transition with that state as destination can be either to its default substate or to its history.
The transition specifies this choice by means of its HST property. As a special case, if a transition with
HST = true goes to astate without history, HST is automaticaIly ignored or changed to false.

The difference between normal history and deep history, as they were first introduced in statecharts [4], is
that normal history only records the last visited child of astate, while deep history records ail the last visited
substates of astate so that when the model go es back to this history, those substates are restored.

T P defines the priority of transitions within the scope of a state. The T P definition of a substate al ways
overrides the TP definition of its superstates. Transition priorities are discussed in section 2.2.5.

EN and EX actions are implementation-dependent. However, they are restricted to sequences of single
actions. Hence, loops and if-else conditions are not aIlowed. These structures must be explicitly modeled.

2.2.3 Transitions T

T is a set that contains aIl the transitions in a mode!. A transition, when enabled, changes the model from
the source state to the destination state. A transition is enabled if and only if the foIlowing conditions are ail
satisfied:

1. The model is in the source state SRC.

2. Event E is received and is at the head of the global event List (a logicallist that contains ail the events
to be processed by a model in the sequence of their arrivaI).

3. AH the formai parameters defined in y have their values of the correct types (if the specifie implemen
tation supports types).

4. Guard Gis valid and evaluated to true.

2.2 Overview of Abstract Syntax and Semantics 23

Provided that the guard (though it is implementation-dependent) is only a boolean expression without any
side effect (i.e., potential change to the model state), and the execution of a transition is in a critical section
so that no other actions affect the decision, the order of the above conditions is not important. For example,
if a specific implementation uses exactly the same order to decide enabled transitions, it may ignore the
evaluation of guards if any one of the first three conditions is not satisfied. (This method is known as short
circuit.)

There may be more than one transition (in the same component) enabled by a single event. In that case, the
transition with the highest priority isfired, which means its À is executed, and the state changes to DES.

y is a set of variables that act as formai parameters received with the event E. If a transition requires pa
rameters, the event must provide at least the same number of parameters with the same types (if types are
supported). It may even provide more parameters (after those required), which are simply omitted.

À is a list of sequentially executed output actions. Control structures such as loops and if-else conditions
are not allowed. Those structures must be explicitly modeled (see section 5.5). À may contain actions that
further broadcast events. If such actions are inc1uded, the newly broadcast events are appended to the end of
the global event list.

H ST is used in combination with H S of astate. However, H ST is ignored if the H S property of the destination
state DES is None.

Prio is an arbitrary integer that represents transition priority. The sm aller this number is, the higher priority
the transition has. However, this number is used only for conflicts that cannot be resolved by the scheme of
transition ordering (see section 2.2.5).

2.2.4 Variables

Variables are involved in several parts of a model specification. Though they are implementation-dependent,
the minimum requirement for a variable is described here:

• A variable has a GUID. This GUID uniquely identifies a variable within a mode!. Variable GUIDs,
state names (SN) and port names (PN) have different name spaces and hence GUIDs need not be
unique among them.

• A variable stores a certain amount of data. Those data may or may not have types, depending on the
specific implementation.

• A variable can only be modified by the À of a transition, or EN or EX of astate. Other parts of the
model cannot modify variables.

• The data stored in the variables can be retrieved in G and À of transitions, and EN and EX of states.
In particular, G of transitions may use variables to determine their truel false value. Other parts of the
model cannot retrieve the data in variables.

Provided these rules are satisfied, an implementation of DCharts 1.0 may choose any scheme to implement
variables.

2.2.5 Transition Priorities

Transition Priorities are an extension of concepts found in STATEMATE statecharts, UML statecharts and
DEVS (the select function). They are used to solve run-time conflicts between multiple transitions enabled
by the same event at a given time. This case would make the model non-deterministic. [26]

Two possible kinds of transition conflicts are described in [5].

1. At least two transitions are enabled by the same event, the source state of one of the transitions is a
substate (or superstate) of the source state of the other transition(s).

2. At least two transitions are enabled by the same event, they have the same source state.

2.2 Overview of Abstract Syntax and Semantics 24

SI e ITF

tl
e

S2
OTF lj t2

e

S3 t3

Figure 2.3: An example of transition priorities

(Note that if those transitions have source states in different orthogonal components, no confiict occurs and
ail those transitions are triggered by the same event. In that case, the order of the firing of those transitions
is random or implementation-dependent.)

Solutions to the first kind of conflicts are found in both the STATEMATE semantics [5] and the UML [27].
Unfortunately, the solutions from the two sources are opposite: in UML, if the source state of a transition is
a substate of the source state of the others, it gets higher priority; however, in the STATEMATE semantics,
it gets lower priority.

In DCharts, it is possible to customize the priority of transitions by setting the T P attribute of states (l st
round decision) and the Prio attribute of transitions (2nd-round decision). The semantics of the different
values of T Pis formalized below (function Priority(t) is the total priority number of transition t; tl and t2
are transitions; SRCI is the SRC of tl; SRC2 is the SRC of t2):

• T PSRCI == fT F 1\ SRC2 E Substate(SRCI) :::} Priority(tJ) > Priority(t2)

If SRCI is set to be inner-transition-first (ITF), and SRC2 is a substate of SRCI, then the total priority
of tl is lower than that of t2, or the total priority number of tl is larger than that of t2.

• T PSRCI == OT F 1\ SRC2 E Substate(SRCI) :::} Priority(tJ) < Priority(t2)

If SRCI is set to be outer-transition-first (OTF), and SRC2 is a substate of SRCI, then the total priority
of tl is higher than that of t2, or the total priority number of tl is smaller than that of t2.

• If TPSRCI == Keep, SRCI preserves the TP setting of its parent. This means, if its parent is inner
transition-first, SRCI is inner-transition-first, too. And vice versa.

• If T PSRCI == RTO, SRCI reverses the T P setting of its parent. This means, if its parent is ITF, SRCI
is OTF. And vice versa. In the case where S2 E C(sJ) 1\ T PSI == RTO 1\ T PS2 == KEEP, S2 preserves
the transition order of SI rather th an the reverse-transition-order (RTO) property itself. Similarly, if
TPsl == RTO 1\ TPS2 == RTO, S2 reverts the actual transition order of SI rather than the reverse
transition-order (RTO) property itself.

Suppose there are three transitions tl, t2 and t3 as illustrated in Figure 2.3. When event e occurs, they are
ail enabled, so there is a confiict of the first kind. To understand the priority of these transitions, one must
first consider the outermost state and step inward from there. Because 51 is specified to be IT F, the priority
of tl must be lower than both t2 and t3. Since 52 is OTF, t2 has a higher priority than t3. So the ordering
by priority is t2, t3, tl. Detailed explanation of the graphical representation of DCharts models is in section

2.2 Overview of Abstract Syntax and Semantics 25

4.1.

The above scheme cannot solve the second type of conflicts. In case of such a conflict, the transition with the
smallest Prio number is fired. It is the designer's responsibility to ensure that this situation does not occur,
or even if it occurs, there is a unique decision among the conflicting transitions according to their Prio
numbers. If the choice is not unique (more than one transition has the smallest Prio number), the transition
that is fired is random or implementation-dependent.

2.2.6 Importation

Importation allows reusing a model in another by placing aIl its states and transitions in a state of the
importing model. That state of the importing model is caIled importation state. An importation state is not
aIlowed to have substates prior to importation (and is thus a leaf state). After importation is done, that state
becomes a non-importation state.

After importation, sorne of the importing model's elements must be changed to reflect the new model with
more states and transitions. For example, the GUIDs of the states in the imported model are modified so that
the new GUIDs still uniquely identify those states after importation. An implementation of DCharts could
choose a prefix and add it to the head of aIl the original OUIDs in the imported model. The C (children)
function must be changed, since aIl the states of the imported model become substates of the importation
state (and the top-Ievel states become its children). The transitions in the imported model are added to the
T set of the importing model, with the OUIDs of their SRC and DES properties accordingly changed. Other
OUIDs in the imported model must be modified in a similar way.

Importation is a dynamic operation. It is do ne at mn-time when the imported model is needed. This allows
recursive importation, where a model explicitly or implicitly imports itself. A theoretically infinite state
hierarchy can be created in this way.

The imported model is forbidden to transition to the states of the importing model. This breaks the modu
larity of the imported model. To interact with the importing model, the imported model should send (i.e.,
broadcast) events that trigger transitions in the importing model. After the imported model is merged with
the importing model, there is no distinction between transitions in the importing model and the imported
model any more. An event may be handled by any transition in the combined transition set.

The concept of leaf states becomes relative when importation is considered. Leaf state s may import another
model. Since the importation is done dynamically, it is possible that s is a leaf state before a transition is
fired, while it becomes non-leaf after that because of an importation. It is assumed that notation Leaf(s,t)
or simply Leaf(s) returns whether or not sis leaf at a certain point in time (t).

At any time in a simulation or execution, an importation state is always a leaf state. (Be reminded that after
a submodel is imported into it, it is no longer called importation state.)

2.2.7 Ports and Connections

Ports and connections provide a means for a model to communicate with other concurrently and indepen
dently running models. This is different from importation, where a model is imported into an importation
state of another model, and the combined model runs sequentiaIly as a whole.

Connections are the communication channels between those concurrent models. After they are established,
messages can be sent and received via those channels. Except when two connected models communicate,
they are independent, and they have no other me ans to affect the behavior of each other.

A message is a tuple < MN, y> where MN is the message name. The names of different messages may
be the same. ActuaIly, there is no way to guarantee uniqueness, since every model runs independently and
concurrently. There is no restriction on MN, except that it should not contain a dot "." y = {YI, Y2, ... , Yk} is a
set of parameters. Each parameter is a variable.

To establish a connection, a server model with at least one port must be started first. The L link set of
the server may be empty, since it usually does not connect to other models at start-up time. A client must
also have at least one port. When it starts running, the simulationlexecution environment connects it to the

2.2 Overview of Abstract Syntax and Semantics 26

server(s) according ta the L set defined in it. That is, for each link li =< PN\, < M, PN2 > > defined in
L, connect port PN\ of the client model with port PN2 of the server model(s) M. All the connections are
established at start-up time. If any of the connections cannat be established, the client model cannat be
simulated or executed. !ts simulator or executor should immediately terminate, without even placing the
client model in its default state(s).

If any of the following situations occurs, the establishment of connection li =< PNl, < M, PN2 > > is con
sidered a failure:

• The model with li in its L set has no port called PN\.

• Madel M cannat be found in a certain scope that the simulator or the executor is interested in.

• Madel M has no port called PN2.

• Bath PN\ and PN2 are in-ports.

• Bath PN\ and PN2 are out-ports.

• Model M does not respond to the connection request within a certain timeout (an implementation
dependent parameter).

Once connections between two models are established, they are never disconnected.

A port of a client may connect ta multiple ports of one or more servers. Reversely, a port of a server may be
connected by multiple ports of one or more clients.

Messages can be sent in any part of a model where action code can be written, such as the output À of a
transition, and EN and EX of astate. To send a message, a model simply broadcasts an event whose name
starts with the port name and a following dot "." On the one hand, since neither the port name nor the
message name can have a dot in it, the only dot in this representation separates the two parts. On the other
hand, no transition handles an event sent internally with a name that contains a dot, the simulator or executor
knows that it is an out-going message instead of a normal event.

Before the message is sent via a connection, the port name and the dot are removed. Wh en the simulator or
executor of the receiver receives this message, it first adds the name of its input port to the message name
(again separated with a dot), and then broadcasts the event internally. The parameters of the message are
regarded as the parameters of the event.

2.2.8 Actions and Guards

There is no strict definition of actions in the semantics of DCharts 1.0. As a loose definition, an action is a
statement in an action language, which modifies the variables of the model, outputs events, or interacts with
other parts of the system that are not modeled with DCharts. An implementation of DCharts may support
an action language that is specific to it. For ex ample, because SVM is implemented in Python and Python is
an interpreted language, Python is chosen as the action language for SVM. Other DCharts implementations
may use different action languages.

An action language must satisfy the following rules:

• An action must not modify the state hierarchy of the mode!. Nor can it reflect upon the CUITent state
of the mode!.

• Actions are executed sequentially. They must not contain any control flow structure, such as branches
and loops.

• An implementation of DCharts usually provides primitive actions ta model designers. With those
primitive actions, the models are able to interact with the simulation or execution environ ment, or
broadcast events. Examples of models' interaction with the simulation or execution environment in
clude but are not limited to snapshot requests. (The complete state of the model is taken by a snapshot,
which may be used later to roll back the mode!.) Snapshot is discussed later.

2.3 Aigorithms 27

• A primitive action must be provided to access the elapsed time since the simulation or execution was
started. The increment of this time must be synchronized with the wall-clock. I.e., the time obtained
by this primitive action is increased by 1 after 1 second is elapsed in reality. (The accuracy depends
on the operating system.)

The case of constraint language is similar. A constraint language is used to express guards of transitions.
A guard is a side-effect-free statement that can be evaluated to either true or false at the time when the
simulator or executor decides whether a transition is enabled. (In particular, for a timed transition with a
guard, the guard is evaluated after the scheduled amount of time instead of at the time when the transition is
scheduled.)

A constraint language must satisfy the following rules:

• A guard written in the constraint language must be side-effect-free. The language must not allow any
change on the states or variables. Nor should it allow guards to control other parts of the system, which
are not modeled.

• A guard is aUowed to access the CUITent state of the model. This makes it possible for an orthogonal
component to dynamicaUy decide whether a transition should be fired based on the CUITent states of
other orthogonal components.

• A guard should never affect the simulation or execution process (for example, by causing the model
to sleep for a certain amount of time or by snapshotting or rolling back the model).

• Guards must be deterministic. Provided that all the states or variables (including those in the parts that
are not modeled) that a guard depends on are not changed, the guard must always yield the same t rue
or false result.

The above are the minimal requirements for DCharts actions and guards. Later versions of DCharts may
explicitly define an action language and a constraint language, or specify more requirements for them.

2.3 Aigorithms

This section discusses sorne important algorithms for the implementation of DCharts. They define part of
the operational semantics.

2.3.1 Firing a Transition

Every time an event is received, the transition that becomes enabled with the highest total priority is fired.
To fire a transition T, the foUowing algorithm is used:

1. Output actions in À of T are executed.

2. Here are sorne definitions:

Common superstates are the set of common superstates of two or more states (SI,S2, ... ,Sn). They are
defined as:

Common(SI, S2, ... , sn) = {slsl E Substate(s) I\s2 E Substate(s) 1\ ... 1\ Sn E Substate(s)}

The Closest Common Superstate CCS (David Harel has caUed it LCA, which is short for Lowest
Common Ancestor) of SI, S2, ... , Sn is defined as:

In this step, CCS(SRC,DES) is decided. The model exits SRC and aU the states in the path from
CCS(SRC,DES) (not including CCS(SRC, DES) itself). The exit actions of astate at a lower level are

2.3 Aigorithms 28

executed before the exit actions of astate at a higher level. If CCS(SRC, DES) cannot be found (i.e.,
SRC and DES have no common superstate, or Common(SRC,DES) = \il), all the current states are
exited, and all their exit actions are executed in the correct order. (If we imagine there is a top state T
that encloses all the states in a mode!, the CCS in this case is T.)

Exit actions of orthogonal components belonging to the same parent are executed in an implementation
dependent order. This is because orthogonal components are logically simultaneous, and the designers
should never make the behavior of their models dependent on the execution sequence of the actions
among different orthogonal components.

3. Ali the states in the path from CCS(SRC, DES) (not inclusive) to DES are entered. The enter actions
of astate at a higher level are executed before the enter actions of astate at a lower level. The enter
actions (if any) of DES are executed last.

Enter actions of orthogonal components belonging to the same parent are executed in an implementation
dependent order.

If SRC = DES, in which case the transition is a self-loop, the enter/exit actions of the state are executed,
because CCS(SRC, DES) is equal to the parent state of SRC (or DES).

2.3.2 Alternate Aigorithm for Firing a Transition

The algorithm in the previous section for firing a transition conforms to David Hare!'s statecharts, whose se
mantics is described in [5]. Alternatively, an implementation of DCharts may also support another algorithm
for firing a transition. This alternate algorithm is not compatible with David Harel's statecharts. However, it
sometimes better expresses the behavior of a system to be modeled.

In this algorithm, CCSalt (SRC, DES) is defined in a different way:

{

SRC,

CCSalt(SRC,DES) = ~:g,'
CCS(SRC,DES),

The steps of the firing of a transition is described below:

DES E Substate(SRC)
SRC E Substate(DES)
SRC=DES
otherwise

1. CCSalt (SRC, DES) is decided. The model exits SRC and all the states in the path from CCSalt (SRC, DES).
The exit actions of astate at a lower level are executed before the exit actions of astate at a higher
level. If CCSalt(SRC,DES) cannot be found, all the current states are exited, and all their exit actions
are executed in the correct order.

2. Output actions in À of T are executed.

3. AH the states in the path from CCSalt (SRC, DES) to DES are entered. The enter actions of astate at a
higher level are executed before the enter actions of astate at a lower level. The enter actions (if any)
of DES are executed last.

Compared to the algorithm described in the last section, this algorithm reverses the first operation and
the second operation. As a result, when the À of a transition is executed, the model is not in SRC but
CCSalt(SRC,DES). This better refiects the fact that À is executed whiLe transition T is fired, not before or
after that.

Suppose DES is a history state, the history Leaf substates History(DES) = {hl,h2, ... ,hn } are defined as
the set of DES' substates recorded in its history, where Leaf(ht), Leaf(h2), ... , Leaf(hn) are all true. The
default leafsubstates Default(DES) = {dl ,d2, ... ,dn } are defined as the set of DES' default substates, where
Leaf(ht), Leaf(h2), ... , Leaf(hn) are all true. It is possible that History(DES) and Default(DES) contain
more than one elements, considering that the DES may have orthogonal components as its substates.

2.3 Aigorithms 29

In the special case where SRC = DES, or though SRC i: DES, SRC is in the path from DES to any state in
History(DES) or Defauit(DES), the enter/exit actions of DES (and its superstates) are not executed. This
is because a self-Ioop to DES is not considered as a state change. This is the reason for using CCSalt instead
ofCCS.

An implementation of DCharts must implement the first algorithm described in the previous section. The
algorithm discussed here is highly optional.

2.3.3 Importation

When model M' is imported into state s of model M, a part of its definition is merged with M, while the rest
is ignored. The algorithm below describes this merging:

1. As an stimulus of this importation, a transition t must be fired, or the submodel is placed in a default
state of the model so that it is required at the very beginning of a simulation or execution. t has the
following properties:

• Its DES is an importation state (a state s that has a value at Ll(s)), or an importation state s
appears in the path from CCS(SRC,DES) (or CCSalt (SRC, DES) depending on the algorithm
used) to DES, or one of the default substates of DES is an importation state s.

• Ll(s) == M'. M' has not been imported into s yet. (If M' has already been imported into s because
of the firing of a previous transition, it is never removed, and sis no longer an importation state.)

If such a transition is detected, the simulationlexecution environment must first prepare the substates
of s by importation (since it is at that time a leaf state) before actually firing the transition.

If an importation state is a default state of a model, the simulationlexecution environment must import
the appropriate submodel at the beginning. If the imported model requires more submodels, they are
also imported at that time. It is the designer's responsibility to make sure that this repeated importation
process ends in finite and acceptable time.

2. To import model M' into importation state s of M, the following merging operations are performed:

3. The GUIDs of the states in M' are modified to make them globally unique within the states name
space. This may be implemented by adding a prefix. The SRC and DES of each transition are
modified accordingly. The parent-children relationship function C is modified accordingly.

4. The state hierarchy of M' is merged with M. AlI the states in M' become substates of s. The C
function of M' is combined with the C function of M.

5. T of M' is merged with T of M. If it is enforced that the SRC of any transition in M cannot be
a state in submodel M', the two transition sets do not have overlapping elements. (However, the
DES of sorne transitions may be states in M'.) Note that the DES of a transition in M' cannot
refer to a state in M, since the simulation or execution environment modifies it to be a unique
GUID at the time of importation.

6. V of M' is merged with V of M. If a variable in M' has the same name as a variable in M, it is
considered the same variable. If they have different types in a type system, a run-time exception
is raised.

7. t:J. is merged after the GUIDs of states are changed.

And the following properties of M' are ignored:

• The FS properties of aIl its states are set to faise. This is because the behavior of M' should not
affect the original behavior of M. If those final states are kept after importation, they wou Id stop
the simulation or execution of M unexpectedly.

• P and L of M' are ignored, since the submodel M' cannot open a port or establish a connection
dynamicaIly.

2.4 Closure under Importation 30

1. s becomes a non-importation state, bec au se M' has already been imported into it. s is no longer a leaf
state, either. When the importation is finished, there is no knowledge of model M' any more.

2. Repeat steps 2.3.3 to 2.3.3 until no importation state sis found in the path from CCS(SRC,DES) to
DES or DES itself.

After this merging of one or more submodels, transition t can be fired according to any of the algorithms
described in previous sections.

2.4 Closure under Importation

Importation is a kind of tight coupling between models.

Strictly speaking, DCharts are not c10sed under importation. I.e., it may not be possible to find such a model
M' so that it has exactly the same behavior as the original model M but it has no importation state. A counter
example can be easily found. Suppose 3s ES· LlM(S) = M, which means model M imports itself in state s.
This creates an infinite structure. It is impossible to find a non-recursive model M' with the same behavior.

If recursive importation is not considered, clos ure under importation can be proved with the algorithm de
scribed in section 4.2.9.

Theorem 1 Non-recursive DCharts models are closed under importation. I.e., models with importation
states can be replaced by models without importation states, which have exactly the same behavior.

Proof The expanded mode! M' of non-recursive DCharts mode! M is found by the following algorithm:

function expand(M)
M'=M
for s in S of M'

if LlM' is defined at s then
M' s =expand(LlM' (s))
import M's into M' according to the algorithm in section 4.2.9

return M'

Since Mis non-recursive, this algorithm always terminates in a finite number of steps. The model M' returned
does not contain any importation state.

Obviously, M' is still a DCharts mode!. According to the semantics of dynamic importation (section 4.2.9),
it has exactly the same behavior as M. D

2.5 Asynchronous Communication and Synchronous Communication

Asynchronous communication and synchronous communication are the two different types of inter-model
communication. They define the semantics of sending and receiving messages via ports, after necessary
connections are established.

Asynchronous sending means sending without waiting for response. DCharts require that an action be pro
vided to send messages asynchronously to a specified port. A message, as discussed in section 2.2.7, is a
tuple < MN, Y > where MN is its name, and y is a set of parameters. The message is buffered and the action
returns immediate! y.

In many cases, the sender is not interested in when or whether a message is received by the receiver. However,
mechanisms (possibly in the constraint language) should be provided to check this result. There are two
possible mechanisms:

1. Checking function. It is a boo1ean function that returns whether a message has been received. A model
may use this function in the actions or guards to check the status of a message sent previously.

2. Callback. A certain event is sent by the simulation/execution environment of the sender when the
confirmation from the message receiver is received by the sender. The event name is specified by

2.5 Asynchronous Communication and Synchronous Communication 31

the sender model at the time when it sends out the message. The parameters of a callback event is
implementation-dependent.

Synchronous sending means sending a message and waiting until the receiver confirms the receipt of the
message with an acknowledgment. Sorne communication protocols allow to test whether a message is cor
rectly received, or to wait until it is received. A DCharts implementation on such a protocol may not require
acknowledgments.

Since a model is simulated or executed sequentially, synchronous sending blocks the whole model until
the simulationlexecution environment knows the message is received. During the blocking period, ail the
incoming events are queued by the simulationlexecution environment. Sorne scheduled transitions may be
delayed because of this blocking. As a result, if a model uses synchronous sending, it is the designer's
responsibility to make sure that the time constraints of scheduled transitions (if any) are satisfied. (Event
scheduling and timing of DCharts models are discussed in chapter 3.)

The following algorithms use the facilities of asynchronous sending to simulate synchronous sending:

1. If a checking function is provided, the model asynchronously sends a message, and goes to an isolated
state. A transition is repeatedly scheduled after a certain period (timeout). When this transition is
triggered, it checks the status of the message in its guard. If the checking function returns true, the
model goes back to the previous state; otherwise, the same transition is scheduled after the same
timeout period.

2. If callback is supported, the model asynchronously sends a message, and go es to an isolated state. The
callback event triggers a transition from that state back to the previous state.

In both cases, the isolated state must accept ail other events and sequentially record them in a variable. At
the time when the model goes back to the original state, those recorded events are re-broadcast in the same
order. This explicitly models part of the global event list of the simulator/executor.

Timing

As part of the DCharts semantics, the timing of DCharts models is defined in this chapter.

The DCharts formalism requires that its implementation (whether it is a simulator or an executor) strives to
provide the real-time timing scheme for every mode!.

3.1 The Real-time Concept

The term real-time is defined by FOLDOC [28] as following:

1. Describes an application which requires a pro gram to respond to stimuli within sorne small upper
limit of response time (typically milli- or microseconds). Process control at a chemical plant is the
classic example. Such applications often require special operating systems (because everything el se
must take a back seat to response time) and speed-tuned hardware.

2. In jargon, refers to doing something while people are watching or waiting. "1 asked her how to find
the calling procedure's program counter on the stack and she came up with an algorithm in real time."

(Used to describe a system that must guarantee a response to an external event within a given time. [28])

Definition 1 puts the requirement of time more on the underlying operating system than the specifie DCharts
implementation. This is because the sm ail upper limit of response time ean only be guaranteed if the op
erating system supports it. For many common-purpose systems that model designers would most probably
use, this guarantee is hard to achieve. For example, Linux only provides a very limited support for real-time
computation; Windows and many other multi-tasking operating systems perform even more unsatisfactory
within the real-time domain. To allow DCharts to be implemented on most systems and platforms, the real
time requirement cannot be formalized as strict as that in definition 1.

Definition 2 makes the real-time concept more general: the DCharts implementations provide real-time
support for models within the extent of their capability. The model users watch the simulationlexecution of
the models and wait for them to respond.

The real-time concept is defined by Webopedia [29] in a similar way:

1. Occurring immediately. The term is used to describe a number of different computer features. For
example, real-time operating systems are systems that respond to input immediately. They are used
for such tasks as navigation, in which the computer must react to a steady fiow of new information
without interruption. Most general-purpose operating systems are not real-time because they can take
a few seconds, or even minutes, to react.

2. Real time can also refer to events simulated by a computer at the same speed that they would oecur
in real life. In graphics animation, for ex ample, a real-time program would display objects moving
across the screen at the same speed that they would actually move.

Definition 2 is useful for the understanding of the real-time required by DCharts. Similarly, the requirement
of "the same speed" is not strict. DCharts implementations should provide this support as much as possible,
given the restrictions of the operating systems that they are built for.

3.2 Virtual-time Simulation 33

MSN Encarta [30] also defines the real-time concept, which is stricter than the real-time concept in DCharts:

1. Computing immediacy of data processing: the time in which certain computer systems process and
update data as soon as it is received from sorne external source, e.g. an air-traffic control or antilock
brake system. The time available to receive the data, process it, and respond to the external process is
dictated by the time constraints imposed by the process.

2. Actual time of occurrence: the actual time during which something happens.

In most cases, model designers may assume that 1 second elapsed in the model simulation or execution
is approximately equal to 1 second in reality. Designers with time-critical requirements should turn to the
documentation of specifie DCharts implementations or operating systems to know wh ether they suit the
need.

3.2 Virtual-time Simulation

Though real time is desirable for many practical applications, virtual time is still necessary in other cases.

There are two kinds of virtual time simulation:

• In scaled real-time simulation, the time is proportional to the real time. The scale factor is a fioating
point number, and may be 1.0 in sorne cases.

Scaled real-time simulation can be easily simulated by a real-time simulation. This is done by mul
tiplying aIl the time variables in a model with the scale factor. Macro redefinition discussed in later
chapters allows for flexible change of the scale factor.

• In as-fast-as-possible simulation, a variable is used to keep track of time. It is increased to the smallest
scheduled time (see section 3.3) wh en the model becomes idLe (the global event list becomes empty).
This time variable has no relation with the time in reality. It is consistent only in one single simulation.
Within one simulation there is exactly one such variable, and the model retrieves current time from
this variable, and schedules events with it.

As-fast-as-possible simulation can be simulated by a real-time simulation. For a stand-alone model
(a model that does not communicate with other models via ports), a dock component is designed
and discussed later with examples (section 9.2). By importing the clock component as a top-level
orthogonal component in the model, as-fast-as-possible simulation is enabled. The clock component
maintains the time variable. To retrieve time, the model sends an event, which triggers a transition in
the dock. That transition outputs another event with the value of the time variable as a parameter. The
latter event tells other parts of the model the current time.

To schedule an event, the model sends an event with the scheduled time as a parameter. The event
triggers another transition in the clock component, which adds the scheduled time to its scheduLe List
(a variable). The dock compone nt also keeps track of the activity of the model.lt broadcasts the time
advance event with the smallest scheduled time in the schedule list as a parameter, when the model
becomes idle.

To simulate as-fast-as-possible simulation for distributed models (models that communicate via ports),
the idea of a dock component is similar. However, the dock component must tolerate network delay,
if sorne or al! of the connections are established via a network. Because of this delay, a model may

receive a message from another model, which is sent at a time in the past (in terms of the local virtual
time of the receiver). In that case, the receiver must be rolled back to the message time. This timewarp
issue is discussed in [31]. It is not in the scope ofthis thesis.

3.3 Special Event: after

In DCharts, after is regarded as a special event. It is comparable to the tm (timeout) in David Harel's
STATEMATE statecharts. Though it appears in the event part E of a transition, it is not really an event

3.3 Special Event: after 34

but a schedule request. It also has a special syntax after(t) where t is the schedule time (in seconds) as a
parameter. For example, if t is 10, the transition with such an E will be triggered after 10 seconds in real-time
(if the model stays in its SRC state).

The meaning of "after 10 seconds" must be clarified. SRC is the source state of transition t. When the
model changes to SRC or any substate of SRC from the outside, transitions from SRC with after(t) events
are collected. Their scheduled times tare evaluated. The t is usually a constant fioat number. However, a
specifie implementation may aUow to use expressions to specify t. Those expressions are evaluated at run
time. Each of such transitions will be triggered after the resulting number of seconds, counting from the
moment when the t of aU those transitions are evaluated. Of course, there might be slight difference in the
timing of those transitions. The accuracy is implementation-dependent.

When the modelleaves state SRC, the scheduled transitions from SRC or its substates that have not been trig
gered yet, are canceled. In particular, if Harel 's algorithm for firing a transition (section 2.3.1) is used, sched
uled transitions from SRC are re-scheduled when a self-loop on SRC is triggered (because CCS(SRC,SRC)

is the parent of SRC); if the alternate algorithm (section 2.3.2) is used, they are not re-scheduled or canceled
(because CCSalt (SRC, SRC) is SRC itself).

GRAPHICAL SYNTAX AND TEXTUAL SYNTAX

The abstract syntax of DCharts is not concerned with concrete implementation. The graphical syntax and
textual syntax discussed in this chapter make DCharts us able by human beings and various tools. Models
can be easily and formally specified. They can also be simulated or executed in DCharts implementations
that support these syntaxes.

4.1 Graphical Syntax

DCharts allows multiple syntaxes. A designer chooses hislher favorite syntax or combination of syntaxes.
This section describes the graphical syntax of DCharts. Note that only part of this syntax is implemented in
AToM3. Initializer, finalizer, macros, transition priorities and submodel importation cannot be specified in
AToM3 at this time, and thus require the designers to manually write them with the textual syntax. However,
they do have a graphical representation, which will be implemented in AToM3 in the future.

4.1.1 State Hierarchy

States in DCharts are shown as circles or round-corner boxes. If astate is drawn as a circle, it is a leaf state,
which means it cannot contain any substate. When astate is drawn as a round-corner box, it is a composite
state. A composite state must have at least one substate in it. Those substates can be composite states or leaf
states. The set of composite states and leaf states, and the parent-children relations among them defined in
a DCharts model, are called the state hierarchy of the mode!. As an example, Figure 4.1 shows the state
hierarchy of an imaginary model: the model has states A, B, ... , K; B is a composite state with children C, 0

and E; composite state 0 has a child F; and so on. The name of a leaf state is shown inside the circle. The
name of a composite state is shown in a rectangle above or inside the round-corner box.

Specific modeling tools may depict the state hierarchy in slightly different ways. In this particular DCharts
meta-model in AToM3, composite states are drawn as blue rectangles. The names are in black, shown beside
the states.

4.1.2 Naming Convention

Different states may have the same name, provided that the states with the same name are not top-Ievel states
or children of the same composite state. For ex ample, changing the name of state C in the previous example
to F does not cause a conflict. However, changing its name to 0 makes it conflict with another state D, since
both of them are children of composite state B.

The path name or full path of astate is a unique string that identifies a state in a model (the oum required
in the mathematical syntax). It contains the state names from the top-level superstate down to the state that
is identified. The name of each state within this path is a name component. Different name components are
separated with a dot. For example, the following path names uniquely identify ail the states in Figure 4.1: A,

B, B. C, B. D, B. E, B.D. F, B. E. G, B. E. H, B. E. l, B. E. 1. J and B. E. 1. K.

4.1.3 Orthogonal Components

Orthogonal components are a special kind of composite states.

Orthogonal components belonging to the same (orthogonal or non-orthogonal) composite state are separated

4.1 Graphical Syntax 36

0
1 0 1

0 @) ®
1 1

0) (0

Figure 4.1: An example of the graphical representation of astate hierarchy

o
A

B

o
c

E

o
J

Figure 4.2: Alternate graphical representation of astate hierarchy in AToM3

4.1 Graphical Syntax 37

o
Figure 4.3: An example of the graphie al representation of orthogonal components

by dashed lines across the round-corner box of the composite state. The CUITent state of that composite state
is the Cartesian product of the current states of all those orthogonal components. Substates may be defined
inside each of the orthogonal components. If no substate is defined in it, the orthogonal component is a leaf
state.

If a composite state has an orthogonal compone nt as one of its children states, aIl its other children states
must also be orthogonal components.

It is possible that an orthogonal component has orthogonal components as its children. Suppose M. A and M. B
are orthogonal components of M, and M. B . C and M. B . 0 are orthogonal components of M. B. According to the
definition of orthogonal components, the CUITent state of M is equal to the Cartesian product of the CUITent
states of M. A and M. B, i.e., S(M) = S(M.A) x S(M.B) (S(M) is the function to compute the CUITent state(s)
of M). Similarly, S(M.B) = S(M.B.C) x S(M.B.D). As a result, S(M) = S(M.A) x S(M.B.C) x S(M.B.D).

The names of the orthogonal components are shown in rectangles inside them. According to the naming
convention, orthogonal components of the same composite state should have different names.

Figure 4.3 shows an example of orthogonal components. Composite state A has three orthogonal components
defined in it: A. B, A. C and A. D, each of which has its inner structure.

Altemately, AToM3 shows the same example in a slightly different way (Figure 4.4).

4.1.4 Default States and Final States

Default states define the states where a model starts running, or which substates are the actual destination
of a transition. Final states define where a simulation or execution of the model terminates. In the graphical
representation of a model, a default state is drawn as a circ1e with a black dot pointing to it. A final state
is astate with a double-line border. An example of default states and final states is given by Figure 4.5. In
this example, states A, B . D, B • D • F, B . E . Gand B . E . l . J are default states. States B . D and B. E . l . K are final
states.

In this example, B. 0 is a non-Ieaf state. Assigning the final property to a non-Ieaf state is equivalent to
making all its substates final. When a transition is fired with a non-Ieaf final state as its destination, the
model will be changed to the leaf substate(s) of the destination state. Those leaf substate(s) (may be more
than one because of orthogonal components in the destination state) are all final. The simulation or execution
stops after the enter actions of those states are executed. If the destination state or any of its substates is an

4.1 Graphical Syntax 38

A

B 0

~ ~~' ~ ~
E F 1

C J

1

9 C?I
. "

~ 0 ,x,<;~,

G H

Figure 4.4: Altemate graphie al representation of orthogonal components in AToM3

1 1

Figure 4.5: An example of the graphieal representation of default states and final states

4.1 Graphical Syntax 39

o o
Figure 4.6: An example of the graphical representation of default states and final states with orthogonal
components

importation state, the submodel must be imported and all its states become final states. Enter actions in the
submodel are also executed. If a finalizer is defined for a model (discussed in section 4.3.4), the finalizer
is executed as the last step before the simulation or execution halts. Note that all the above operations are
triggered by a single transition. It is illegal to transition out of a final state, whether its final property is
assigned by the designer or inherited from its superstates.

It is important that there must be default states among all the children of a composite state or an orthogonal
component. Orthogonal components are default in their nature, so a composite state that contains orthog
onal components need not explicitly specify default substates. For the example in Figure 4.6, all the three
orthogonal components of state A are default. Besides this, states A. B . E, A. C . H, A . D . J and A. D . J. K are also
default states. State A is a final state, and hence all its substates, including the three orthogonal components
in it, are final states. Besides these, state A. D . J. L is a final state explicitly specified by the designer.

AToM3 uses a different color to represent default states. The CUITent version of AToM3 does not support the
specification of final states.

4.1.5 Transitions

Transitions of a model are triggered by events, and they react to them. They may or may not change the state
of the mode!. They are graphically shown as arcs or arrow lines.

A transition has several properties:

• The event name is placed on the arc of the transition. The event name of the alter special event is
shown as after(t), where t is a float number or an expression that can be evaluated to a float number

at mn-time.

• The guard is placed after the event name between a pair of square brackets (" [" and "l ").

• One or more output actions are placed sequentially after the event and the guard, with a leading slash
"j". They are separated by comma ", " or semicolon "; ".

The guard and output of a transition are optional and may be omitted from the graphical representation of the
model for better conciseness. It is not allowed to create a transition without an event name. For a transition

4.1 Graphical Syntax

1 ___ e [i==1] / [DUMP("tl fired")
,-~------~------~--~~

9 / [DUMP("t2 fired")],
[EVENT("e")]

Figure 4.7: An example of the graphical representation of transitions

o

Figure 4.8: Graphical representation of transitions in AToM3

40

whose triggering does not depend on any event, i.e., the transition is triggered whenever the source state is
entered (and with its guard evaluated to true, if any), the mode! designer must explicitly specify after(O) as
the event name. Because DCharts is a real-time formalism, after(O) does not mean to trigger the transition
at no time but rather as saon as possible (after ail the currently queued events have been handled).

Figure 4.7 shows a model with three transitions. (Note that the arc from a black dot to astate is not a
transition but part of the notation of a default state.) The transition from B to A reacts to event e if and only if
condition i==l is satistied. As a side effect of the triggering of this transition, action [DUMP ("t 1 f ired")]1
is executed.

Figure 4.8 shows the graphical representation of the same model in AToM3.

4.1.6 History

Though history is astate property, it is graphically shown as a leaf state in a composite state (according to
David Harel's syntax). An H or H* is placed in a circle inside the composite state, depending on whether the
history is a normal history or a deep history. A transition with a history as its destination is a transition with

IOUMP is a predefined macro for the specification of actions. See section 4.3.1 for a detailed description of macros.

4.1 Graphical Syntax 41

el

c

e4

Figure 4.9: An example of the graphical representation of history states

H ST = true to the owner of the history in the mathematical syntax.

This graphical representation assumes that only composite states can have histories. Leaf states, since noth
ing can be placed inside them, cannot have histories. As such, this restriction has a positive effect on the
well-formedness of a mode!. Leaf states have no substates and thus they need not have any history. (As an
exception, importation states may have histories, and those histories apply to the models that they import. In
those cases, importation states are drawn as composite states rather than leaf states.)

An example of history states is shown in Figure 4.9. In this example, state A has a deep history, and state
A. Chas a normal history. If the transition reacting to event el is represented in the abstract syntax, its DES
is A, and its HST is equal to true. Similarly, for the transition reacting to e2, DES is A. C and HST is true.

Obviously, a composite state cannot have both a normal history and a deep history. In such a case, its deep
history always overrides the normal history, and the latter is ignored. This is also because in the abstract
syntax, history is a property of astate with value None, Normal or Deep. It is impossible to assign different
values to this single property.

Figure 4.10 shows the graphical representation of history states in AToM3.

4.1.7 Enter/Exit Actions

Enter actions and exit actions are shown as UML notes in a state. An example is given in Figure 4.11.

In AToM3, enter/exit actions are not graphically visible. They are hidden properties of states.

4.1.8 Importation

Importation is graphically shown as UML comments. The name of the file that contains the imported model
is given in the comment.2 As an example, Figure 4.12 includes state B, where submodel submode1.des

(des, short for "model description", is the postfix used by SVM) is imported.

The current version of the DCharts meta-model in AToM3 does not support the specification of importation.

4.1.9 Ports

An example of ports is shown in Figure 4.13. There are three ports: p, q and r. A port is graphically repre
sented as a box with one or two openings. Its name is placed beside the icon. There are different graphie al

2It is assumed that each model is defined in a separate file, whether the graphical syntax or the textual syntax is used.

4.1 Graphical Syntax

A

e4

Figure 4.10: Graphical representation of history states in AToM3

Enter:
[DUMP("A entered")]
[EVENT("e")]

Exit:
[DUMP("A exited")]

Figure 4.11: An example of the graphical representation of enter actions and exit actions

42

4.1 Graphical Syntax

Import:
submodel.des

Figure 4.12: An example of the graphieal representation of importation

p.e / [DUMP("p.e received")]

q.f / [EVENT("r.f', i)]

Ot]p ~q [)Jr

Figure 4.13: An example of the graphie al representation of ports

43

4.1 Graphical Syntax 44

p.e / [DUMP("p.e received")]

q.f / [EVENT("r.f', i)]

Figure 4.14: An example of the graphical representation of connections

representations for different types of ports. In this ex ample, p is an inout-port, q is an in-port, and r is an
out-port. (The direction of a port icon does not matter. Different types of ports have different icons.)

Once a port is defined, transitions in the model can refer to it by name. For example, the transition from A ta
B reacts to event p . e, where p is the name of a port, and e is the name of a message coming from that port.
The other transition from B to A reacts to event q. f. In its actions, event r. f is output with parameter i. As
described in the abstract syntax, an event generated by the model with a dot is considered as an out-going
message. As a result, message f will be sent asynchronously via port r with parameter i.

4.1.10 Connections

The definition of connections is not required for servers, the models that passively wait for incoming service
requests, and provide those services to the clients.

In the clients, connections must be specified in addition to the ports. The clients must also locate the servers.
A specifie implementation of DCharts may provide a number of ways to locate those servers. The following
mechanisms are most common:

• Locate servers by their names. The clients specify name patterns of the servers that they want to
connect to. Ali the servers with names matching those name patterns are selected by the simula
tionlexecution environments. They attempt to establish the required connections between the servers
and the clients. The name patterns are strings of UNIX regular expressions.

• Locate servers by their types. The clients specify types of the servers. The type of a model is an
unordered list of the types of ail its ports. For example, the type of a model with 2 in-ports, 1 out-port
and 3 inout-ports is {in, in, out, inout, inout, inout}. This scheme selects ail the servers that match a
given type.

• Locate servers by their behavioral keywords. A server may define several keywords that define its
behavior or the services that it provides. If so, the clients can use the keywords to match the servers.

• Any combination of the above schemes.

The graphical representation of three connections is given in Figure 4.14. The scheme to locate the server
is a property of the connections and is not shown graphically. Connections are the links between the ports

4.2 Textual Syntax 45

ServerO

Figure 4.15: Altemate graphical representation of connections in AToM3

and the server. A connection must also specify the port of the server to which the client is connected. This
specification is not shown graphically, either.

In the figure, port p, because it is an inout-port (supporting input, output, or both), can be connected to ports
of any type of the server; q can only be connected to out-ports or inout-ports of the server; r can only be
connected to in-ports or inout-ports of the server.

The graphical representation of connections is a \ittle different in AToM3 (Figure 4.15).

4.2 Textual Syntax

The textual syntax of DCharts makes it possible to manually write a model in a text file. Such a file can be
easily processed by a simulator or executor. The syntax discussed in this section is specifie to SVM. Other
implementations of DCharts may use other tex tuai syntaxes or other file formats.

For the simulation in SVM, each model is written in a separate file. A model may import others by assigning
identifiers to their file names and using those identifiers as properties for its importation states.

4.2.1 Descriptors

A model description consists of several parts, each of which starts with a descriptor, such as STATECHART
and TRANSITION. A model may specify the same descriptor many times.

In the text file of a model description, a descriptor is a single \ine with an ending colon":". Ali the following
lines pertain to that descriptor until a new descriptor appears. Empty lines are \ines that contain only spaces,
tabs and/or comments (see below). Empty lines are automatically ignored.

Descriptor STATECHART is necessary for every model, which defines the state hierarchy. As least one default
state must be defined for the hierarchy. Other descriptors are option al.

4.2.2 State Hierarchy

The state hierarchy of a model is written using indentation so it is easily understood by designers. Descriptor
STATECHART starts the definition of the state hierarchy. If there are multiple STATECHART descriptors in a
single model, the definitions under ail of them are Iiterally combined.

4.2 Textual Syntax

A
B

C

o

E
F

G

H

l

J

K

Table 4.1: An example of the textual representation of a simple state hierarchy

Symbol
[OS]

[FS]

[CS]

[HS]

[HS*]

[ITF]

[OTF]
[RTO]

Meaning
default state
final state
concurrent state
history state
deep history state
inner transition first
outer transition first
reverse transition order

Note
The state is a default state of its parent or of the mode!.
The state is a final state.
The state is an orthogonal component.
The state has a normal (l-level) history.
The state has a deep history.

Table 4.2: State properties in the textual syntax

46

Under the STATECHART descriptor, the names of the states are written on separate !ines. The indentation of
those names represents the parent-children relationship. A name with more leading spaces becomes a child
state of the state defined in the previous line. For ex ample, the graphical model in Figure 4.1 is written as
the textual representation in Table 4.1.

The amount of indentation spaces for the first child of a composite state is not important, as long as ail its
children have exactly the same indentation. From this example, B. C is the first child of B with 4 more leading
spaces. For B .0 and B . E to be children of B, they should have exactly the same indentation.

The use of TAB is not recommended, since different text editors display a TAB character with different num
bers of spaces. In SVM, a TAB is always equivalent to 4 spaces.

The naming convention is the same as the graphical syntax. Different states may have the same name,
provided that their path names are different (i.e., they have globally unique fully qualified names).

4.2.3 State Properties

State properties are written after the names of the states. Astate may have 0 or more properties. Each
property is enclosed by a pair of square brackets. There can be 0 or more spaces between the state name and
the first property, and between two adjacent properties.

The state properties are explained in Table 4.2.

As an example, the model in Figure 4.5 is textually written in Table 4.3.

4.2.4 Orthogonal Components

Orthogonal components are states with [CS] properties. As required by their semantics, [CS] al ways cornes
with [DS]. If any of a composite state's children has a [CS] property, aIl other children of the same parent
should also have [CS].

4.2 Textual Syntax

STATECHART:

A [DS)

B

C

D [DS) [FS)

F [DS)

E
G [DS)

H

l

J [DS)

K [FS)

Table 4.3: An example of the textual representation of state properties

STATECHART:

A [DS)

B [CS) [DS)

E [DS)

F
C [CS) [DS)

G

H [DS)

D [CS) [DS)

l

J [DS)

K [DS)

L

Table 4.4: An example of the tex tuai representation of orthogonal components

47

4.2 Textual Syntax

STATECHART:

A [DS]

B

C [DS]

D

TRANSITION:

S: B
N: A

E: e
C: i==l

0: [DUMP ("U fired")]

TRANSITION:

S: A.C

N: A.D
E: f

TRANSITION:

S: A.D

N: B
E: g

0: [DUMP("t2 fired")]

[EVENT (Il e ")]

Table 4.5: An ex ample of the textual representation of transitions

Table 4.4 shows the textual description of the same model as Figure 4.3.

4.2.5 Transitions

48

Each transitions is written under the TRANSITION descriptor. A transition may have the following 5 proper
ties. Sorne of them are optional.

• The S (source state) property is the SRC of a transition in the abstract syntax.

• The N (new state) property is the DES of a transition in the abstract syntax.

• The E (event) or T (time) property is the E of a transition in the abstract syntax.

• The C (condition) property (optional) is the G of a transition in the abstract syntax.

• The 0 (output) property (optional) is the y of a transition in the abstract syntax.

The S property, the N property, and either the E property or the T property are obligatory for each transition.
The value of the E property is the name of the event that triggers the transition. The value of the T property,
which may be a Python expression to be evaluated at run-time, is the time t (in seconds) to be scheduled in
advance. It is equivalent to the after(t) event in the abstract syntax. A transition cannot have both E and T

properties.

The properties of a transition are specified in separate !ines after the TRANSITION descriptor. Their order is
not important. For transitions that have multiple output actions, each action is written on a single line, and ail
those actions are left-a!igned with 0 or more leading spaces. Similarly, more than one guard can be written
in consecutive !ines with left-alignment. Those guards have "ancf' relations. Altematively, they can also be
written in a single !ine with the and operator in the constraint language (Python) between them.

4.2 Textual Syntax

TRANSITION:

S: A

N: B

T: 0.5 + i
C: x==l

y==2

Table 4.6: An example of the textual representation of a timed transition

STATECHART:

A [DS]

TRANSITION: [1]

S: A

N: A

E: e
0: [DUMP("tl")]

TRANSITION: [0]

S: A

N: A

E: e
0: [DUMP("t2")]

Table 4.7: An example of the textual representation of priority numbers

As an example, the model in Figure 4.7 is textually written as the textual representation in Table 4.5.

49

Timed transitions are a special kind of transitions that have the T property instead of E. An example of timed
transition is shown in Table 4.6. This transition is triggered 0.5 + i seconds after state A is entered. The
transition is enabled after the scheduled time only if x == 1 and y == 2.

4.2.6 Priority Numbers

An integer number Prio is assigned to each transition. Whenever there is a conflict that cannot be solved
with the ITF and OTF scheme, the priority numbers are used. The priority number is placed between square
brackets after the TRANSITION descriptor. By default, each transition has a priority number of O.

For example, two transitions are defined in Table 4.7. The model is initialized in state A. When event e
occurs, both transitions are enabled and hence there is a conflict that cannot be solved with the ITF and OTF
convention (because they have the same source state SRC). In this case, their priority numbers are used to
solve the conflict. Since the second transition has a smaller priority number, it has higher priority and is thus
fired.

4.2.7 History

Astate with history is simply written as astate name followed by an [HS] or [HS *] property. Above this,
there must be a means for a transition to choose whether the destination is astate itself or the history of
the state. This is accompli shed by an additional [HS] attribute after the TRANSI TI ON descriptor. A transition
with [HS] after its TRANSITION descriptor goes to the (normal or deep) history of its destination state DES;
a transition without this attribute goes to DES or the default substates of DES.

As an example, the model in Figure 4.9 is textually written in Table 4.8. The transitions reacting to events
el and e2 have an [HS] attribute, so they go to the histories of their DES states. Since states A. C . D and

4.2 Textual Syntax

STATECHART:
A [DS] [HS*]

B [DS]
C [HS]

TRANSITION:
S: A
N: A
E: el

TRANSITION:
S: A.B
N: A.C
E: e2

TRANSITION:
S: A.C.D
N: A.C.E
E: e3

TRANSITION:
S: A.C.E
N: A.C.D
E: e4

D [DS]
E

[HS]

[HS]

Table 4.8: An example of the textual representation of histories

50

4.2 Textual Syntax

STATECHART:
A [OS]

ENTER:
N: A

B [OS]
C

0: [OUMP("A entered")]
[EVENT (Il e Il)]

EXIT:
S: A

0: [OUMP (liA exited")]

TRANSITION:
S: A.B

N: A.C
E: e

Table 4.9: An example of the textual representation of an enter action and an exit action

51

A. C. Edo not have history, adding [HS] attribute to the transitions reacting to e3 and e4 does not change the
behavior of those transitions.

4.2.8 Enter/Exit Actions

Enter actions of a state are written under the ENTER descriptor. Exit actions are written under the EXIT
descriptor. There are two obligatory properties and one optional property for enter actions and exit actions:

• The N (source state) property or the S (new state) property specifies the state of those actions. For enter
actions, since they are executed when astate is entered, the N property is used to identify the state.
Conversely, for exit actions, since they are executed when astate is exited, the S property is used.

• The 0 (output) property specifies the actions to be executed. If there are multiple actions, they are
written on consecutive lines and left aligned.

• The C (condition) property specifies the guard to be satisfied. It is similar to the C property of a
transition. The guard is evaluated when the state is entered/exited.

There may be multiple parts of enter/exit actions defined for a single state. This is done with multiple
ENTER or EXIT descriptors with the same N or S property. The guards of those parts are mutually
independent. Each guard only controls the execution of the actions under one descriptor.

The model with an enter action and an exit action in Figure 4.11 is translated into the textual representation
in Table 4.9.

4.2.9 Importation

Definition of importation in a model is separated into two parts. Under the IMPORTATION descriptor, one or
more models can be defined as submodels. Unique IDs are assigned to those models. Those IDs can then be
used as properties of states in the definition of the state hierarchy. Astate with a submodel ID as a property
becomes an importation state. It is not allowed to define substates for it.

There can be one or more submodel definitions under an IMPORTATION descriptor, and there can be multiple
IMPORTATION descriptors in a single mode!. Each submodel definition is written as "Mode II 0 = FileName"

4.2 Textual Syntax

IMPORTATION:
subO = submodel.des

STATECHART:
A [DS]

B [subO]

TRANSITION:
S: A

N: B
E: e

Table 4.10: An example of the tex tuaI representation of an importation

52

on a single line, where ModelID is the user-defined ID of the submodel, and FileName is the name of the
file that contains the model to be imported.

For example, the model in Figure 4.12 is written as Table 4.10. subO is the ID of the submodel defined in file
submodel. des. Designers can choose any ID consisting of characters and numbers, except the pre-defined
state properties. The submodel is imported into state B.

4.2.10 Ports

A PORT descriptor is used to specify a port of a model. Properties of the port are written on separate lines
after the descriptor.

• The name property specifies the GUID of a port. Every port of a model must have a unique ID.

• The type property specifies the type of a port. Possible values are in, out and inout.

• The buffer property is reserved for later versions. Its may be used to specify a queue or stack that
stores the incoming messages.

Properties name and type are obligatory and must be specified exactly once for each port. buffer is optional
(not implemented currently).

As an example, the model in Figure 4.l3 is written as Table 4.11.

4.2.11 Connections

Before connections can be established, servers that passively wait for incoming connection requests must
be located. The name patterns or types of those servers are specified under the COMPONENT descriptor. Like
the PORT descriptor, each COMPONENT descriptor is followed by the properties of a component or a group of
components that matches a certain criteria:

• The id property defines a GUID for the component (or group of component). Each group of compo
nents that matches a name pattern must be assigned a unique GUID.

• The name property, unlike the name of a port, specifies a name pattern for the group of components.
The format of the name pattern follows the conventions of UNIX regular expressions. AlI the com
ponents with a name matching that pattern are selected as members of the group. Hence, a message
sending to a group of components will be broadcast to aIl its members.

For example, names "modell", "model" and "mode1l23" match name pattern "model [0-9] *".
• The type property specifies the type of a group of components.1t is a string that lists the in-ports, out

ports and inout-ports. An in-port is listed as in; an out-port is listed as out; and an inout-port is listed
as inout. Multiple ports are separated by one or more spaces. An integer number can be added before

4.2 Textual Syntax

STATECHART:
A [DS]
B

PORT:
name
type

PORT:
name
type

PORT:

p
inout

q

in

name = r
type out

TRANSITION:
S: A

N: B
E: p.e
0: [DUMP (" p . e received")]

TRANSITION:
S: B
N: A
E: q.f
o : [EVENT (Il r . fil, i)]

Table 4.11: An example of the textual representation of ports

53

4.3 Extended Syntax

Macros:
E(n)=ev[n]
EXIT=ex

Figure 4.16: An example of the graphical representation of macros

54

a type ta specify multiple ports of the same type. For example, "type = in in out inout inout"
matches components with 2 in-ports, 1 out-port, and 2 inout-ports. "type = 2 in out 1 inout 1
inout" has exactly the same effect.

The name property or the type property or bath must be specified for each group.

Connections are established between ports and the ports of the servers under the CONNECTIONS descriptor.
One or more links can be defined. The left-hand side of a link is connected with the right-hand side with
double hyphens ("--"). Suppose the ID of a component group is C and the model wants ta connect ta port p
of the group with its port q, the link should be written as either "q -- C. p" or "C. P -- q".

As an example, suppose a server is given ID "ServerO" and it has inout-port p, in-port q and out-port r, the
model in Figure 4.14 is written as Table 4.12.

4.3 Extended Syntax

SVM takes advantage of the textual model description format and extends the DCharts textual syntax. The
syntactic extensions discussed in this section do not have special graphical representations. In the graphical
form of DCharts models, they are usually shown as UML comments where appropriate.

4.3.1 Macros

Macros are used ta literally substitute texts in model descriptions. They are written under the MACRO descrip
tor.

An Example

In the graphical form, macros are defined as a UML comment at the top level, as shown in Figure 4.16. The
textual description of the same model is in Table 4.13. In this example, macros E (n) =ev [n] and EXIT=ex
are defined. Ta use those macros in the model description, put the name of a macro in a pair of square
brackets. and replace ail the necessary parameters with values. In the figure. macro EXIT is used as an event
name ([EX IT]). It is eq uivalent to e x in this case.

Macros can be used wherever text is written. For example, they can be used in event names, in guards, in
actions, in importations, and so on. In the tex tu al form of a model, they can even be used in the specification
of state hierarchy, ports, connections and so on. In particular, the values of macros can also be used as
descriptors, with the exception of the MACRO descriptor.

On the right-hand side of a macro definition, other macros that are defined before it can be used without
ambiguity. However, it may be a fatal error ta use this macro itself or the macros defined after it.

4.3 Extended Syntax

STATECHART:
A [DS]
B

PORT:
name
type

PORT:
name
type

PORT:
name =

type

COMPONENT:

p
inout

q
in

r
out

id ServerO
name model[O-9]*
type in out inout

CONNECTIONS:
p ServerO.p
q ServerO.r
r ServerO.q

TRANSITION:
S: A

N: B
E: p.e
0: [DUMP ("p.e received")]

TRANSITION:
S: B
N: A

E: q.f
0: [EVENT ("r . f", i)]

Table 4.12: An example of the textual representation of connections

55

4.3 Extended Syntax

Parameters

STATECHART:

A [DS]

B

C [DS]

D [FS]

MACRO:

E (n)

EXIT

TRANSITION:

S: A
N: B.C

ev[n]
ex

E: [E (1)]

TRANSITION:

S: B.C
N: B.D
E: [EXIT]

Table 4.l3: An example of the textual representation of macros

56

A macro may carry 1 or more parameters. In the left-hand side of a macro definition, the formaI parameters
are specified in a way similar to the parameters of a Python function. Default values can be given to ail
or sorne of the parameters. If only part of the parameters are given default values, the parameters that do
not have default values must be specified before the parameters that have default values. For example, the
following specifications of the left-hand sides of macro definitions are valid:

• my~acro(p1, p2, p3)

• my~acro(p1, p2, p3=lhello")

• my~acro(p1, p2, p3=[another~acro(1)]) (Supposemacroanother~acro(n) is defined be
fore my~acro.)

On the right-hand side, parameters are referred to with their name between square brackets. For example,
parameters pl, p2 and p3 are referred to with [pl], [p2] and [p3], respectively.

To use a macro, ail the parameters must have their values. Values must be explicitly assigned to the param
eters that do not have default values. 0 or more ending parameters that have default values can be omitted.
For example, to use macro my~acro (pl, p2, p3=lhello"), the following statements are valid:

• [my~acro(l, 2, "hello")]

• [my~acro(l, 2) 1

• [my~acro(p2=2, p1=1)]

• [my~acro(p3=lhello", l, 2)]

In ail these use cases, the actual values of pl, p2 and p3 are 1, 2 and "hello ", respectively.

Macros can be used as parameters of other macros.

Brackets for parameters cannot be omitted even if in the definition of a macro, ail the parameters have default
values, or there is no parameter specified between the brackets. For example, to use my~acro (p="hello")

4.3 Extended Syntax 57

= ... or my...macro () = "', the user must include the brackets C [my...macro ()]). However, to use macro
my...macro = ... , simp!y write [my ...macro].

Pre-defined Macros

SVM pre-defines a number of macros. Pre-defined macros can be used in every mode! without being exp!ic
itly defined.

• EVENT(ev, p=[]) = eventhandler.event([ev], [pl).

This macro is used to raise an event. The event name is given by parameter ev. Parameter p can be
used as a parameter or a list of parameters for the event. By default it is an empty Python list.

eventhandler is an internai object of the SVM simulation environment. For each simulation, there
is exactly one instance of eventhandler. Its event method appends an event to the end of its global
event list.

• EXTEVENT (ev, p, rec=None) = eventhandler .externaCevent ([ev), [p), [rec])

This macro is used to send an external event (or in another word, send a message to a remote compo
nent). ev is the event name, p is the parameter, and rec is a set of specific components that receive the
message.

The event name contains the name of a port and the message, separated by a dot. For example, to send
a massage m via port p, the value of ev is equal to "p. m". If the user wants to restrict the receivers
to the components named modelO and modell, the value of rec should be equal to ["modelO",
"modell"].

When rec is not given or rec is equal to None, ail the components in the group identified by the port
name will receive the (possibly duplicated) message. In that case, macro EXTEVENT is the same as
EVENT, except that EXTEVENT sends the message immediately in an asynchronous way, while EVENT
queues the message in the global event list, and sends it asynchronously later when the simula
tor/executor is free.

• DUMP(msg) = dump_message([msg])

This macro dumps a message to the output device. If SVM is run in the text mode, the message is
printed on the console. If SVM is fun with the default graphical interface, the message is displayed in
the output box of the main window.

• INSTATE(state, check_substate=O) = eventhandler.is_in_state([state],
[check_substate])

This macro checks whether the model is currently in a specific state. The state parameter is the name
of the state. checLsubstate is default to 0, which means the simulator does not check the substate
of the given state. Hence, if the given state is not a leaf state and checLsubstate is equal to 0, the
result is always O. If the model is in the given state or its substates, and checLsubstate is equal to
1, the result is 1. eventhandler. is_in_state is a method of the simulator that handles this inquiry.

This macro should only be used in the guards of transitions, as the DCharts formalism requires that
the actions of a model cannot reftect upon the current state of the model itself.

• PARAMS = eventhandler.get_event_params()

This macro can only be used in the guards or output of transitions. It returns the parameter of the
event that triggers a transition. If the parameter is a list, [PARAMS] [i] can be used to access individual
elements in the list, where i is an integer between 0 and len([PARAMS]) - 1 (inclusively).

• SENDER = eventhandler.get_event_sender()

This macro can only be used in the guards or output of transitions, and the transitions must be triggered
by messages from remote components. It returns the sender Ca model name) of the message.

• SYNCALL(event, params, listento) = eventhandler.synchronous_call([event],
[params], [listento])

4.3 Extended Syntax

IMPORTATION:
subO = submodel.des

STATECHART:
A [DSl
B [subOl [DUMP(msg)=print "subO says: "+[msgll

TRANSITION:
S: A

N: B
E: e

Table 4.14: An ex ample of the textual representation of a macro redefinition

58

This macro provides the synchronous cal! facility for the action language. A model uses this macro to
send a message to a remote component, and waits for a reply via a port. event is the event name, as is
discussed for macro EXTEVENT. params is a parameter or a list of parameters. listento is the name
of the event to be waited for. It also fol!ows the convention of event names discussed in EXTEVENT.
For example, if a mode! sends message ml via port pl without parameter, and waits for a reply m2
from port p2, the cal! is written as [S YNCALL ("p l . ml ", [l, "p2. m2 ") 1 . The return of this cal! is
the parameter(s) received with the reply.

This cal! does not return until the reply is received. If it is not the last action in the output, the actions
after this are executed only after the cal! is finished .

• Macros SNAPSHOTREQ and SNAPSHOTRET are used for snapshot purpose. They are discussed in section
4.3.5.

Importation Parameters (Macro Redefinition)

Macros in a submodel are interpreted before the submodel is imported. They have no effect on the importing
model. The importing model is al!owed to modify the behavior of the submodel by redefining its macros. Al!
the macros that are defined in the submodel and al! the pre-defined macros can be redefined by the importing
model. They act as parameters to the submodel.

This mechanism enhances the expressiveness of DCharts 1.0. It is the only means by which the behavior of
submodels is modified. This is necessary for model reuse. Moreover, model reuse with macro redefinition
protects the wel!-defined behavior of submodels. Only the macros defined in them (or pre-defined macros)
are al!owed to be modified. The importing model cannot change other parts of the submodels. [26]

To redefine macros as parameters for a submodel, the importing model imports the submodel into one of its
states as described in section 4.2.9. The macro redefinitions are specified as properties of the importation
state in the state hierarchy. Redefining a macro is similar to macro definition under the MACRO descriptor,
except that it is placed between square brackets fol!owing the name of the state.

For example, the model in Table 4.14 imports submodel submodelO.des and assigns ID subO to it. It is
imported into state B. The importing model redefines macro DUMP of the submodel. DUMP is originally a
pre-defined macro to display a message. It is redefined to print the message to the console with prefix "subO
says: ". Multiple macro redefinitions can be written on the same line.

4.3.2 Once Timed Transition

By default, SVM timed transitions are repeated timed transitions. This means a timed transition is fired
repeatedly if SRC = DES. The simulator considers a self-Ioop as a state change, and hence it reschedules
the timed transition from the same source state. Repeated timed transitions are equivalent to transitions with
after event in DCharts 1.0 or the after transitions in David Harel 's semantics.

4.3 Extended Syntax 59

TRANSITION:
S: A
N: A
T: 1 [OTT]
0: i = i + 1

TRANSITION:
S: B

N: B

T: 1
C: i < 10
0: i i + 1

Table 4.15: An example of the textual representation of a once timed transition

On the contrary, once timed transitions are not rescheduled for self-loops. They are fired only once even if
SRC = DES. (Of course, if SRC =1= DES, the transition is always fired once.) The semantics of once timed
transition is different from the special event after described in DCharts 1.0. They must be explicitly specified
with the [OTT] property.

Consider the two transitions in Table 4.15. The first transition is a once timed transition (with the [OTT]
property). When state A is entered from the outside, it is scheduled after 1 second. When it is fired, it
increases i by 1. It is not rescheduled. Suppose the original value of i is O. When the model is stable, the
value of i becomes 1. The second transition is a repeated timed transition. It is rescheduled each time after it
is fired. As a result, without the guard, i would be increasing forever if no other transition brings the model
to astate other than B. However, with the guard i < 10, when the model is stable, the value of i is 10.

4.3.3 Global Options

Global options of a model are specified under the OPTIONS descriptor. Currently, three global options are
supported:

• The ModelName global option specifies the name of the mode!. By default, the model name is the file
name that contains the model description with the. des postfix removed. Designers are allowed to
explicitly define model names with this option. Other models use the model name as an ID to locate
the model and establish connections to it.

• Harel global option specifies whether the simulator should strictly obey David Harel's statecharts
semantics and DCharts 1.0, or use alternate algorithms in the simulation (refer to section 2.3.2). By
default Harel is equal to 1, which means SVM strictly follows David Harel's statecharts algorithm,
and hence it can also be used as a statecharts simulator. When Harel = 1, the following different
points are made:

1. The alternate algorithm is used to fire ail the transitions, which is different from David Harel's
algorithm.

2. Self-loops are not considered as state changes. For example, a transition with SRC = DES does
not cause the exit actions or the enter actions of the state to be executed. This is because the
algorithm uses CCSalt(SRC, DES) rather th an CCS(SRC, DES) to compute the closest common
state.

3. Because self-loops are not state changes, timed transitions are by default once time transitions,
unless the model design explicitly assigns the [RTT] (Repeated Timed Transition) pro pert y to
them.

4.3 Extended Syntax 60

INITIALIZER:

FINALIZER:

INTERACTOR:
setup_gui_debugger(eventhandler, debugger)

Table 4.16: Default values for initializer, finalizer and interactor

• InnerTransitionFirst global option specifies whether the model follows the inner-transition-first
convention or the outer-transition-first convention. This option affects ail the top-Ievel states so that
their default behavior conforms to this setting. For example, having InnerTransitionFirst = 1,
ail the top-level states get the [ITF] property by default, and their substates inherit this behavior
by default. However, this default behavior can al ways be modified with an explicit [ITF], [OTF] or
[RTO] property for astate. InnerTrans it ionF irst = 1 is just a short-hand notation for specifying
[ITF] for every top-Ievel state.

The default value of InnerTransitionFirst is set to 0, which means ail the top-leve1 states are
outer-transition-first (according to the STATEMATE semantics [5] of David Hare1).

The above options are global in the sc ope of the whole mode!. They cannot be imported with submodels.
When a submodel is imported, its global options are ignored.

4.3.4 Initializer, Finalizer, and Interactor

Initializer, finalizer and interactor are SVM extensions to DCharts 1.0. In most models, they are highly
simulation-oriented.

lnitia/izer is the Python code ta be executed before a model starts running. It is executed even before the
model is p1aced in its default states (sa that it may be illegal ta test the CUITent state within the initializer).
This code usually initializes the environment where the model is simulated or executed. For example, this
code can be used to initialize ail the variables that the model uses.

An initializer is written under the INITIALIZER descriptor. Arbitrary Python code can be written, including
function definitions, if-else or switch-case condition al structures and loops.

Finalizer is used to finalize the mode!. It is executed after the model changes to a final state. If the final
state has enter actions, those enter actions are executed before the finalizer. A finalizer is written under the
FINALIZER descriptor. Similar to initializer, arbitrary Python code can be written.

lnteractor is used to define a model-specific interface. As discussed in later chapters, SVM provides a default
textual interface, a default curses interface (for Unix or Linux systems) and a default graphical interface.
However, in many cases designers may want to redesign the interface for specifie models. They can write
Python code under the INTERACTOR descriptor for this purpose. The difference between the interactor and the
initializer is that the initializer is executed before the model starts running, while the interactor is executed
white the model is running. In the SVM implementation, an extra thread is allocated for the interactor, so
that it is allowed to use an infinite loop in the interactor to handle user events received from the interface,
and pass those events to the running mode!.

The default definition of these parts is shown in Table 4.16. The default actions of initializer and finalizer
are empty. The default action of interactor, if the default graphical interface is used, is to setup the interface,
which includes creating ail the widgets, building a tree view of the state hierarchy, and handling GUI events
afterward.

4.3 Extended Syntax 61

4.3.5 Snapshot

Snapshot is a powerful utility for model debugging and testing. SVM is able to snapshot a model during
its simulation (but not execution). The state of the model that need to be stored (specified by the model
designer), including its variables, is snapshot as a text file or a string. The snapshot contains enough infor
mation for a restore operation, which puts the model into its previous state so that simulation can restart at
exactly that point. The snapshot is usually saved in a . s np file in the same directory as the model 's. The file
name of the snapshot file is the same as the text file of the model, with its postfix changed.

A snapshot request is a special event to SVM. This request may be sent from the model that is being sim
ulated, or by the user from the user interface (for ex ample, the default graphical interface of SVM pro
vides a "snapshot" button). Function eventhandler. snap_to_file (filename) accepts a string parameter
filename as the snapshot file name (usually ending with . snp), and schedules a snapshot right after the
CUITent event is handled. SVM assigns the highest priority to this request. The snapshot is taken before other
scheduled events are handled, if any.

A model may also request a snapshot in the memory, and roll back to it at a later time. Pre-defined macro
[SNAPSHOTREQ (time) 1 requests a snapshot (with the highest priority) and labels it with time (an arbitrary
but increasing integer that uniquely identifies a snapshot). Macro [SNAPSHOTRET (Ume) 1 is used to retrieve
a snapshot taken previously, and roll the model back to it. In this way, the model is able to interact with the
simulator at run-time.

The designers may customize snapshotting in their models. Descriptors BEFORESNAP SHOT, AFTERSNAP SHOT,

SNAPSHOT and RESTORE are dedicated for snapshot purpose.

• The SNAPSHOT descriptor specifies the variables (or objects) that need to be recorded in a snapshot.
Each variable is written on a single !ine under the descriptor.

• The BEFORESNAPSHOT descriptor specifies a piece of arbitrary Python code to be executed immedi
ately before a snapshot is taken. It usually is used to synchronize different parts of a model, because
a snapshot can be requested at any time during a simulation, even when the model is in an unsta
ble state. For example, if the model uses a native !ibrary that requires extra threads, the code under
BEFORESNAPSHOT may synchronize those threads to ensure that aIl the variables are stable and mean
ingfu!' Similar to initia!izer and finalizer, the code here may contain function definitions, loops and
other action-language-specifie control structures.

• The AFTERSNAPSHOT descriptor is similar to the BEFORESNAPSHOT descriptor, except that the code
specified under it is executed immediately after a snapshot is taken.

• the RESTORE descriptor is used to specify a piece of code that is executed after a snapshot is restored.
For example, in Table 4.17, the code under the RESTORE descriptor starts playing (initially the CD is
stopped) at time cd. t ime, whose value is restored by SVM, if the CD was playing at the time when
the snapshot was taken.

In the example in Table 4.17, suppose cd is the instance of a CD-Rom controller that plays CD music. Its
Ume attribute is constantly updated when the CD is playing, which indicates the CUITent time in a track.
To enable snapshotting during the playing, the designer may include such a description segment in his/her
mode!. Its SNAPSHOT descriptor tells SVM that cd.time and cd.playingJ)efore_snapshot (variables as
attributes of the cd instance) need to be recorded in a snapshot. The code under BEFORESNAPSHOT pauses the
playing so that the time attribute is not changed during the snapshot operation. When the snapshot operation
is finished, the code under AFTERSNAP SHOT resumes the playing, if it is paused previously by the code under
BEFORESNAP SHOT.

This model enables the user to play CD music, snapshot at any time during the playing and save the recorded
state in a . snp file. Later wh en the user runs the . snp file with SVM, the variables specified under the
SNAPSHOT descriptor are restored, and the code un der the RESTORE descriptor is executed, which starts
playing at exactly the recorded time.

4.3 Extended Syntax

SNAPSHOT:
cd.time
cd.playing_before_snapshot

BEFORESNAPSHOT:
if cd.is_playing():

cd.pause()
cd.playing_before_snapshot 1

AFTERSNAPSHOT:
if cd.playing_before_snapshot:

cd. resume ()
cd.playing_before_snapshot 0

RESTORE:
if cd.playing_before_snapshot:

cd.play()

Table 4.17: An example of the tex tuai representation of a snapshotlrestore description

4.3.6 Model Description

62

The DESCRIPTION descriptor is used to give a short description to a model. The description is the content
between the DESCRIPTION descriptor and the next descriptor. Empty lines are automatically removed.

If the default textual interface or the default curses interface of SVM is used, the description (if specified in
the model) is printed to the console. If the default graphical interface is used, the description is displayed
in the output box of the main window. In the simulationlexecution environment, the description is a string
stored in eventhandler. descript ion. It may be used by the actions of the model.

4.3.7 Comments

Contents after a sharp ''#'' mark on the same line are considered as comments. Comments are ignored by
SVM. An example of comments is given in Table 4.18.

4.3 Extended Syntax

#-------------------------------#
This is an example of RESTORE #
#-------------------------------#
SNAPSHOT: # variables to be snapshot

cd. time
cd.playing_before_snapshot

BEFORESNAPSHOT: # before snapshot
if cd. iS_playing () :

cd.pause()
cd.playing_before_snapshot 1

AFTERSNAPSHOT: # after snapshot
if cd.playing_before_snapshot:

cd. resume ()
cd.playing_before_snapshot 0

RESTORE: # after restore
if cd.playing_before_snapshot:

cd.play ()

Table 4.18: An example of the textual representation of comments

63

MAPPINGS

Mappings between different formalisms are discussed in this chapter.

Mapping from DCharts to another formalism proves that DCharts have at most as much power as that formal
ism. This mapping provides a me ans to express the behavior of any DCharts model in the other formalism.
The denotational semantics of DCharts is defined in this way. (The semantics discussed in previous chapters
is operational semantics.) Few formalisms allow recursion in the model structure. It is impossible to map
the complete DCharts formalism to them. Recursive importation is not considered in the mappings from
DCharts to other formalisms discussed in this chapter.

Mapping from another formalism to DCharts proves that DCharts have at least as much power as the for
malism. It provides a means to express the behavior of any model in the other formalism with DCharts.

5.1 Mapping trom Non-recursive DCharts to Statecharts with Variables

David Rarel's statecharts [4] do not formalize variables. The state hierarchy of models only allows finite and
enumerable number of states. Obviously, it is impossible to map DCharts to original statecharts, since the
variable sets V of DCharts models may contain variables that have infinite and continuous state space.

Now suppose the use of variables is allowed in statecharts. This variant of statecharts is called statecharts
with variables.1t becomes interesting to show that non-recursive DCharts can be mapped to this statecharts
variant. Statecharts with variables are simpler than DCharts. If this mapping can be proved, it is implied that
the only DCharts extensions that enhance the expressiveness of statecharts are recursion and variables.

To show that non-recursive DCharts can be mapped to statecharts with variables, the following semantic
extensions must be explicitly transformed into statecharts structures:

• Importation.

• Transition priorities.

• Transition parameters.

• Ports and connections.

Since the variable set V is supported by statecharts with variables, it is not discussed in this mapping. Other
semantic elements of DCharts, such as state hierarchy, history, transitions, can be directly mapped to the
corresponding entities of statecharts. They are not discussed, either.

Lemma 1 Importation of non-recursive DCharts models can be flattened to be the state hierarchy of origi

nal statecharts.

Prao! The algorithm discussed in section 2.3.3 shows a way in which importation in non-recursive DCharts
can always be fiattened. The result of this fiattening does not contain any importation state. 0

Lemma 2 There exists an ordering over al! the transitions in every DCharts mode!. According to this or
dering, when an event causes a con/lict at run-time, the first enabled transition in the List al ways has the
highest priority.

5.1 Mapping trom Non-recursive DCharts to Statecharts with Variables 65

Proo! This lemma can be proved by an algorithm which manages to find out this ordering.

In this algorithm, the transitions in a model are sequentially appended to an initially empty list 1. When III is
equal to the number of transitions in the model, the algorithm terminates, and the ordering of the transitions
in 1 satisfies the requirements in this lemma.

Before the algorithm starts, the model must be ftattened with the algorithm discussed in section 2.3.3.

The algorithm is summarized below:

function merge(ls, l)
/* merge two sets of transitions with insertion sort
ls: the transitions to be merged with 1. The SRC of these transitions has no parent-children relation with
the SRC of transitions in 1. Conflicts between transitions in the two lists can only be solved with their Pria
number.
1: another set of transitions
return: the union of ls and l. The transitions are sorted by priority.
*/

for tin ls
added = false
for t'in 1

if Et = Et' /\ Priol <= Priol, then
insert tinta 1 right before t'
added = true
break

if! added then
append t to the end of 1

return 1

function order(states, ITF)
/* sort the transitions
states: a set olstates belonging ta the same parent
ITF: whether the parent of the states in states is set ta be inner-transition-first or not
return: the list 1 of transitions whose SRC is in states or Substate(s) where s E states. The transitions are
sorted by priority.
*/

1 = [J
for s in states

Its = (transitions with SRC = s1
sort Its in the increasing order of the Prio numbers of the transitions
ifs is ITF then

nextJTF = true
elif s is OT F then

nextJTF = false
elif sis RTO then

nextJTF = not ITF
else

nextJTF = ITF
ifITF then

Is = Ils + order(C(s), nextJTF)
else

Is = order(C(s), nextJTF) + lts
merge(ls, 1)

return l

5.1 Mapping from Non-recursive DCharts to Statecharts with Variables 66

Note that it is assumed there are not two or more transitions with exactly the same total priority. If such
transitions exist, conflicts among them cannot be solved with the ITF and OTF scheme and their Prio number
is the same. The ordering of such transitions with the above algorithm is implementation-dependent and not
unique.

Suppose ail the top-level states are in set Tops, and parameter fnnerTransitionFirst contains the global op
tion of the model that decides wh ether its top-level states are inner-transition-first by default. The invocation
order(Tops,/nnerTransitionFirst) always terminates since there are finite number of states in the mode!.
The result is the transitions sorted by their total priority. If astate is set to be fT F, transitions from this state
are always placed after transitions from the substates of this state in the transition list. The opposite is true
for states with the OT F property.

The merge function merges two lists of transitions. It assumes that both lists are sorted according to the
ITF and OTF convention, and tries to further sort the merged list in the order of Prio numbers. Because the
source states of transitions in the two lists do not have the parent-children relation, the merging does not
affect the ITF and OTF sorting. It only guarantees that a transition with smaller Prio number appears before
the transitions with larger Prio numbers triggered by the same event.

According to the semantics of transition priority, the ITF and OTF settings of transitions are considered
before their Prio numbers. This algorithm is correct because it sorts Prio on the basis that the ordering of
ITF and OTF is already created and is preserved over the merging of two lists. 0

Comments 1 Although this algorithm ensures that the transition with higher total priority always appear
before the others with lower total priorities in the sorted list, it does not remove ail the potential conflicts.
It is still possible that two transitions have exactly the same total priority. Those two transitions (t 1 and (2)
always have the following properties:

• SRCtl = SRCt2 or SRCtl and SRCt2 belong to two sibling orthogonal components. In that case, the
ITF and OTF settings cannot solve the conflict, and it is possible that the model is in SRCtl and SRCt2
at the same time.

• Et! = Et2· When this event is raised and Gtl = true 1\ Gt2 = true at run-time, both transitions are
enabled.

• PriOtl = Priot2. In this case, the Prio number cannot solve the conflict.

It is the designer's responsibility to ensure that there are no such transitions in a mode!. The simulator cannot
statically analyze the model and find out these transitions, since their guards usually cannot be evaluated
statically. If these transitions are found at fUn-time, only one of them is fired. The choice is random or
implementation-dependent.

Comments 2 In the implementation of SVM, this algorithm that sorts transitions in the order of their pri
orities is employed. It effectively decreases the run-time computation for choosing a transition in case of a
conftict. Because the first enabled transition in the list always has the highest priority among ail the enabled
transitions, the simulator simply picks the first one and triggers it. The sorting is done only once for every
model or submodel in a simulation.

Lemma 3 Transition priorities can be simulated with additional guards.

Proof Lemma 2 suggests a way in which ail the transitions can be sorted in a list 1. Suppose 1 is statically
obtained. An additional guard for each transition checks whether the transition is the first enabled transition
in the list. This guard ensures that the choice of a transition in a conftict is unique and deterministic. The
chosen transition always has the highest priority. Other transitions that are enabled are not fired since they
order after the fired one. For simplicity, conflicts that cannot be solved with transition priorities are not
considered. 0

5.2 Mapping from Non-recursive DCharts to DEVS 67

Lemma 4 Transition parameters can be simulated with variables.

Proo! Transition parameters are themselves variables. If each transition is given a GUID, and the GUID of
the transition is added to the names of its formai parameters, those parameter names share the same name
space as the variable set V of the model. All the transition parameters can thus be included in the variable
set. To send an event with parameters, the action simply modifies the global variables converted from the
parameters of the transition that handles the event, and sends the event without parameters.

Lists can be used as variables. So if more than one event in the global event list is going to trigger the same
transition, parameters can be queued in a global parameter list. D

Lemma 5 Ports and connections can be simulated in a stand-alone statecharts mode!.

Proo! Ports and connections in DCharts allow to connect multiple models and mn them in a single sim
ulation. Statecharts do not provide this mechanism. However, the behavior of a combination of multiple
DCharts models connected with ports can be simulated with a single stand-al one statecharts model.

Ports restrict the receivers of a message. Connections are established between ports of a model and ports
of remote components whose names match a pattern. To simulate this in a statecharts model, the messages
are transformed into events. The parameters are transformed into global variables (see Lemma 4). The name
patterns and the port names of remote components are additional parameters sent with the event. Each
transition triggered by this event checks the name pattern in its guard. Only those transitions with names
(inherited from their SRC states) matching the pattern are triggered.

To simulate the broadcast of messages, an event is duplicated. Each transition triggered by the event regen
erates the event in its output actions. The event is repeatedly handled until it is ignored because no transition
is able to handle it. To avoid handling a event more than once by the same transition, the transition must
remember whether it has handled the most recent event. This implies adding states or variables to the model.
D

Theorem 2 Non-recursive DCharts models can be mapped to statecharts with variables that have the same
behavior.

Proo! This is easily proved on the basis of Lemma 1 to Lemma 5. D

Theorem 2 proves that non-recursive DCharts are at most as powerful as statecharts with variables. Exten
sions such as transition priorities, importation and ports do not enhance the expressiveness of the formalism.
However, they make it easier to design modular models.

5.2 Mapping from Non-recursive OCharts to OEVS

Intuitively, since non-recursive DCharts can be mapped to statecharts with variables, and statecharts with
variables are at most as powerful as DEVS, one should be able to map DCharts to DEVS. Spencer Borland
has already shown the mapping from statecharts to DEVS in his Master's thesis [9]. A general method that
transforms statecharts models to DEVS models has been found.

Mapping variables to DEVS is trivial, since DEVS supports variables in its nature. The state space of a
statecharts with variables is transformed into S x Vj X V2 X ..• X Vn , where S is the state set of the statecharts,
and Vj, V2, ... ,Vn E V are the variables that appear in the model. The total state space is the Cartesian product
of the state space of the enumerable states and the state space of all those variables. This total state space,
which is usually infinite and continuous, becomes the state space of a DEVS model. The values of the
variables are changed by the DEVS' external transitions and internai transitions as a modification on the
CUITent state.

From the discussion above, since original statecharts have been mapped to DEVS, and variables can be easily
transformed into DEVS states, statecharts with variables can be mapped to DEVS models. As a result, non
recursive DCharts can also be mapped to DEVS models. This proves that non-recursive DCharts are at most
as powerful as DEVS.

5.3 Mapping from Statecharts to DCharts 68

5.3 Mapping from Statecharts to DCharts

Transforming statecharts models to DCharts is trivial, since ail the semantic elements of statecharts can be
found in DCharts. The state hierarchy is directly mapped to the DCharts state hierarchy. DCharts transitions
includes ail the elements of statecharts transitions. The state properties in DCharts form a superset of the
state properties in statecharts. As a result, it is easy to transform any statecharts model into DCharts.

This proves that DCharts are at least as powerful as statecharts.

5.4 Mapping from DEVS to DCharts

DEVS models can also be transformed into DCharts. Because of the closure under coupling of DEVS, any
Coupled DEVS can be replaced by an Atomic DEVS that has the same behavior. It is not necessary to
consider coupled DEVS in proving the mapping from DEVS to DCharts.

The DEVS formalism discussed here is real-time DEVS, which use the real time instead of virtual time as
global time. The time unit is default to second.

Theorem 3 DEVS models can be transformed into DCharts that have exactly the same behavior.

Proof Different parts of an Atomic DEVS are mapped ta DCharts constructs as following:

• The state set S is mapped ta a single variable v of a DCharts model, who se state hierarchy has only
one default state s. The state space of v is a supers et of S. This variable can always be found. It can
be of a primitive type such as integer or string, a li st which con tains multiple elements, or any other
types supported by the action language. This variable is used to keep track of the model state.

• The time advance function ta and internai transition function Oint are transformed into transitions with
after events. Each of such DCharts transitions is a self-Ioop on the state s. It uses after(t) as its event,
where t is the ta of a DEVS state. The guard of the transition checks the CUITent state of the variable
v, and tests if the model is in the old state of the DE VS mode!. In the output of this transition, v is
modified according to the Oint of the DEVS mode!.

• The external transition function Oext is transformed into transitions with the same event names. This
transformation is similar to the transformation between Oint and DCharts transitions.

The elapsed time of an external transition can be computed with the primitive action that allows access
to the time since the simulation or execution starts. Suppose the time when the last state is entered is
tlast. It is obtained with the time action in the enter actions of the state. The time when the external
event is received is denoted by te vent. This time can be obtained in the guard (since the time action is
side-effect-free) or the output of the transition. Then the elapsed time is equal to tevent - tlast, which
can be known in the guard and the output.

• The X (input set) and Y (output set) of the DEVS model is ignored, since DCharts do not require ta
explicitly declare them.

• The output function À is transformed into action code in the output of transitions. It produces the same
output as the DEVS model, according to the current state of the mode!.

The events sent in the output of a DEVS transition are different from the events broadcast in a state
charts, because the first kind of events are explicitly sent to an output port. Fortunately, this kind of
events are equivalent to the out-going messages in DCharts, which are textually represented as a port
name and an event name separated by a dot.

D

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

Though there is no rigorous definition of an action language in DCharts, it is a rule that each piece of action
code in the output, enter/exit actions and ail other parts of a model that allow actions, is composed of a series

5.5 Mapping tram Programming Language Control Flow Constructs ta DCharts 69

of statements. Those action statements are primitive commands that are not modeled explicitly. (The only
exceptions are the extensions added by SVM, such as initializer, interactor and finalizer. Those constructs
do not belong to the DCharts formalism.)

The problem whether DCharts are capable of modeling more complex programming structures is interesting.
On the one hand, designers who are familiar with programming languages tend to think in a programming
way. If a formalism allows the specification similar to a programming language, it is much friendly to those
designers. On the other hand, this capability demonstrates the expressiveness of the formalism. It is possible
to explicitly model any control structure with such a formalism. As a result, theoretically ail the control
structures in a system can be formally checked by modeling them in the formalism. When the model is
checked thoroughly, part of it can be converted into native code or hardware to achieve better run-time
performance.

This section di sc us ses several programming constructs of programming languages in general (e.g., the C
language [32]), and their mappings to DCharts submodels. Most of the submodels introduced here can be
directly imported into larger models to simplify the task of designers.

5.5.1 Statements

Statements in the C language are categorized into simple statements and compound statements. A simple
statement ends with a semicolon "i" and cannot be further divided. Here is an example of two simple
statements.

i = Oi Il a simple statement
if (i == 0) i = i + li Il a simple statement

A simple statement that only contains a semicolon is called a nul! statement:

Il null statement

A compound statement is a sequence of statements enclosed by a pair of curly braces. The statements in the
curly braces can be simple statements or compound statements.

if (i == 0) { Il a compound statement
int a = 0;

a = li
i += ai

A compound statement that only con tains a pair of curly braces is called empty compound statement.

Il empty compound statement

Statements are the union of simple statements and compound statements.

5.5.2 Compound Statements

Because of the restriction of actions in DCharts models, compound statements cannot be directly written in
the action Iist of the output of a transition. Suppose comp_stml, comp_stm2, ... are compound statements,
and simp_stml, simp_stm2, ... are simple statements. The model in Figure 5.1 is invalid since the output
of a transition is a Iist of compound statements instead of simple statements. On the contrary, the model in
Figure 5.2 is valid.

5.5 Mapping trom Programming Language Control Flow Constructs to DCharts 70

e / camp_stml, camp_stm2, ...

Figure 5.1: An invalid DCharts model that contains compound statements in the output

Figure 5.2: A DCharts model that contains simple statements in the output

It is important to transform a model with compound statements in its output into a valid form, since the
statements discussed later are mostly compound statements. This transformation can always be found with
the following method. (Since the composition of compound statements is still a compound statement, this
method only consider transitions that have a single compound statement in their output.)

1. A GUID is assigned to each compound statement. It is assumed that there is no event with the same
name as the GUm in the mode!. If there is an event whose name confticts with a GUm, simply add
an implementation-dependent prefix to aU the GUIDs.

2. Create a top-level orthogonal component.

3. Suppose the compound statement contains the following substatements: Stml, stm2, ... , stmn. There
are such substates in the orthogonal component: sa (default state), SJ, s2, ... , Sn.

4. Transition from sa to SI reacts to the GUID ofthe compound statement (as an event name) and executes
stml in the output. It generates a unique event el with the parameters that it receives. The transition
from SI to S2 reacts to event el and executes stm2. It generates a unique event e2 with the same
parameters. Transition from S2 to S3 reacts to event e2 and executes stm3. It generates a unique event
e3 with the same parameters Transition from Sn-I to Sn reacts to event en-I and executes stmn. It
generates a unique event en with the same parameters. Transition from Sn to sa reacts to event en and
generates "return GUID" as an event.

5. For each transition t from SRC to DES with this compound statement as its À, a new state S is added.

6. The original transition is replaced by two new transitions. The transition from SRC to s is the same as
t, except that its DES is S, and its À is an action that generates the GUID of the compound statement
as an event. The parameters of this new transition become the parameters of the generated event. That
event triggers the transition from sa to SI in the orthogonal component.

7. A transition is created from s to DES reacting to the "return GU ID" event.

8. Repeat the above steps wherever a compound statement is found in the output, until aU the output
actions become simple statements or lists of simple statements (separated by a comma).

As an example, Figure 5.3 shows the transformation from a model with a compound statement in its output
into a valid DCharts mode!. It assumes camp_stm to be a compound statement consisting of stml, stm2 and
stm3, which may be simple statements or compound statements. The mode! in the upper part is converted
into the model in the lower part. If s tml, s tm2 or stm3 is not a simple statement or a list of simple statements,
this transformation is repeated.

As a result of this transformation, the output of each transition becomes a simple statement or a list of simple
statements. (Note that this transformation may be done with graph grammars [33].)

Sequential execution of substatements in the compound statement is guaranteed by this transformation.

5.5 Mapping from Programming Language Control Flow Constructs ta DCharts

e [i==lll
[EVENT(lcomp_stmO" ,

[PARAMS])]

comp_stmO / stml,
[EVENT(lel", [PARAMS])]

el/ stm2,
[EVENT("e2", [PARAMS])]

e2 / stm3,
[EVENT("e3", [PARAMS])] e3/

[EVENT("return comp_stmO")

71

Figure 5.3: An example of the transformation from a compound statement in the output into simple state
ments

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 72

However, synchronization is lost. Actions in other orthogonal components may be executed during the exe
cution of those substatements, and the execution result of those interleaving actions becomes unpredictable.
This semantics is different from executing a compound statement in a critical session provided by the sim
ulator or executor. To solve this problem, it is suggested that the simulator or executor provide actions that
allow designers to control the critical sessions. If such actions are available, the orthogonal compone nt gen
erated by this transformation is explicitly placed in a critical session. Ali the statements in it are executed
continuously without interleaving with other actions. This topic is out of the scope of this thesis.

5.5.3 Conditional Statements

If-else statements and switch statements are two kinds of conditional statements.

if (i == 0) { Il an if-else statement

else if (i 1)

el se if (i 2) {

else {

switch (i) { Il a switch statement
case 0:

break;
case 1 :

break;
case 2:

break;
default : ...

Switch statements are actually nested if-else statements. Each case within a switch statement corresponds to
a condition in the if-else statement. If-else statements are more powerful than switch statements, since the
conditions of if-el se statements are C expressions, while the cases in switch statements must be constants.

If-else statements can be easily modeled in DCharts. The guards in the transitions test the different cases,
and the outputs perform the actions that correspond to those cases.

Figure 5.4 depicts an example of the transformation from an if-else conditional statement into guards of
multiple transitions. Suppose cond_stm is such an if-else statement:

if (x == 0)

stml;
else if (x 1)

stm2;
else if (y 0)

stm3;
else if (y 1)

stm4;
else

stm5;

5.5 Mapplng from Programming Language Control Flow Constructs to DCharts 73

e [i==l] / cond_stm

e [i==l && x==O] / stml

e [i==l && (x!=O && x!=l && y!=O && y!=l)] / stm5

Figure 5.4: An ex ample of the transformation from a conditional statement into guards

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 74

In the upper part, the model has a transition from state A to B reacting to event e. The transition is enabled
only if the guard i == 1 is satisfied. It executes cond_stm as an output. This is not a valid DCharts model,
since it violates the restriction of the action code. It is transformed into the valid DCharts model in the lower
part. A transition is created for each condition in the if-else statement. The test cases of the conditions are
added to the guards. For example, the first test case is x==O. It is added to the guard of the first transition.
The second test case is x==l on the basis that the first test case is not satisfied. As a result (x! =0) && x==l

is added to the guard of the second transition. The third test case is y==O is on the basis that neither the first
test case nor the second test case is satisfied. As a result (x! = 0 & & x! = 1) & & y== 0 is added to the guard
of the third transition. And so on.

If any statement in stml to stm5 is not a simple statement or a list of simple statements, further transform
the model with the algorithm in section 5.5.2. If the model has other conditional statements, or s tml to s tm5
contain conditional statements, transform those conditional statements with the same method.

5.5.4 Loops

There are several kinds of loops in the C language:

• For-Ioop.

for (init; cond; step)
stm;

Here, init is a statement (or a list of statements) to be executed before the for-Ioop. cond is a boolean
expression that must be satisfied before each iteration. The for-Ioop stops when cond is evaluated to
false. step is a statement (or a li st of statements) to be executed after each iteration. stm is a statement
to be executed in each iteration. It may be a compound statement enclosed by a pair of curly braces.

For-Ioops can be transformed into statements with an if-else condition. The above for-Ioop structure
is transformed into:

init;
loop_label:
if (cond) {

}

stm;
step;
goto loop_label;

• While-Ioop.

while (cond)
stm;

It can be transformed into a for-Ioop:

for (; cond;
stm;

• Do-while-Ioop.

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

do
stm;

while (cond)

It can be transformed into a for-loop with one extra execution of the statement stm:

stm;
for (; cond;

stm;

75

Since other types of loops can be simulated with for-loops, it is enough to show that for-loops can be mod
eled with DCharts. As shown above, for-loop can be transformed into:

init;
loop_label:
if (cond) {

}

stm;
step;
goto loop_label;

Suppose v is a temporary boolean variable. This code is equivalent to the following piece of code (de
note it with comp_stm). It brings the "goto" statement out of the conditional construct.

init;
loop_label:
v = cond; Il evaluate cond and store the result in v
if (v) {

}

stm;
step;

if (v)

goto loop_label;

A model with a transition from state A to B that has the above action code in the output (the upper part of
Figure 5.5) is transformed into the model in the lower part of Figure S.s. If compound statements are still
found in the output of the generated transitions, further transform the model into valid DCharts models with
the method in previous sections.

This proves that ail kinds of loops can be modeled with DCharts.

This transformation does not take into account synchronization among actions in different orthogonal com
ponents either.

5.5.5 Break and Continue

The break statement and the continue statement in a loop can be transformed into extra transitions.

Suppose statement comp_stm is such a compound statement:

init;
loop_label:

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

e [i==ll! init,
[EVENT("el", [PARAMS])]

e [i==ll! comp_stm

~

el! v=cond, e2 [!vl!
[EVENT("e2", [PARAMS])] [EVENT("e3", [PARAMS])]

e2 [vl! stm, step,
[EVENT("e3", [PARAMS])]

e3 [vl! [EVENT("el", [PARAMSDl

Figure 5.5: An example of the transformation from a for-Ioop into multiple transitions

if (cond) {
stml;

}

if (finished)
break;

stm2;
step;
goto loop_label;

76

The break statement stops the for-loop by changing the execution point out of the compound statement.
It is equivalent to:

init;
loop_labell :
v = cond; Il evaluate cond and store the result in v
if (v) {

}

stml;
if (finished)

goto loop_labe12;
stm2;
step;

if (v)

goto loop_labell;
loop_labe12:

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

e [i==1) / init,
[EVENTrel", [PARAMS)))

e [i==l] / comp_stm

~

e2 [v] / stml,
[EVENT("e3", [PARAMS)))

el / v=cond,
[EVENT("e2", [PARAMS)))

e3 [finished)

e2 [Iv] /
[EVENT("e4", [PARAMS)))

e4 [v] / [EVENT("el", [PARAMS)))

Figure 5.6: An example of the transformation from a break statement into DCharts transitions

77

The transformation ofthe model is illustrated in Figure 5.6. The break statement in the for-loop is eliminated
in this example.

The continue statement in a loop can be eliminated in a similar way. If the break statement in the above
comp_stm is replaced by the continue statement, it is equivalent to:

init;
loop_label:
v = cond; Il evaluate cond and store the result in v
if (v) {

}

stml;
if (finished)

goto loop_label;
stm2;
step;

if (v)

goto loop_label;

The transformation of this code with the continue statement is shown in Figure 5.7.

5.5.6 Tricks of Actions Specifie to SVM

This section discusses the tricks of action code in SVM. Although it is forbidden to write arbitrary code in
the output of transitions or enter/actions, the tricks discussed below still allow designers to write native code
in a specifie language. These tricks are specifie to SVM. They are not in the DCharts 1.0 definition, and
hence they are not portable.

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

e [i==1] / init,
[EVENT("e1", [PARAMS])]

e [i==1] / comp_stm

~

e3 [finished] /
[EVENT("e1", [PARAMS])]

e3 [!finished] / stm2, step,
[EVENT("e4", [PARAMS])]

e4 [v] / [EVENT("e1", [PARAMS])]

Figure 5.7: An example of the transformation from a continue statement into DCharts transitions

Python Native Libraries

78

SVM is completely implemented in the Python language [34] [35] [36]. It is possible to import libraries in
the action code of a model. Those libraries can be Python standard modules [37] or user-defined libraries.
For example, the following piece of code defines several functions in a library (saved in file lib. py):

def funcl () :

def func2 (a, b, c):

import sys
def func3(x, y=O):

To import this library into an SVM model, include action import lib in its initializer, and make sure
that lib.py is in the same path as the model or can be found in the PYTHONPATH environment variable.
Hence, the functions defined in the library can be directly used in the action code.

The designers, if they implement part of the system with user-defined libraries, must decide what is to
be implemented with the native libraries and what is to be modeled with the DCharts formalism. This
usually raises a dilemma: implementation in the library is straightforward (for programmers) and efficient,
while modeling explicitly with DCharts is formai and the benefits of modeling (model checking, analysis,
transformation, simulation and code generation) are gained. As a general suggestion, a system is usually
divided into three parts: user interface, control logic and hardware driver (Figure 5.8). The user interface
is usually hard-coded in a library, since it contains the detail of the rendering of various widgets and their
interaction with the users. The hardware driver is usually hard-coded in a library, too. This is because it deals
with the detail of hardware control, threading, synchronization, interrupt, status polling, and so on. Only the
control logic is explicitly modeled with DCharts. It is usually the most vulnerable part of a system. Tools

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

"'"
;

"'
.....
hardware

hardware driver
(hard-coded)

user interface
(hard-coded)

.... ., controllogic
(DCharts model)

Statechart Virtual Machine

Figure 5.8: The three parts of a system

79

user

should be used as much as possible to thoroughly test and simulate the controllogic before it is considered
stable.

Though the separation of the three parts is far from deterministic or unique, there are sorne rules to be
followed:

• The user interface should never interact with the hardware driver directly. It only sends user events to
the DCharts model, and the DCharts model consumes those events. (In SVM, to send an event to the
DCharts model, the user interface library must calI function eventhandler. event (ev, p), where
ev is the event name and p is a parameter of any Python type.)

• The hardware driver should never interact with the user interface directly. It only generates hardware
specific events with the same eventhandler. event function. Those events are also consumed by the
DCharts model.

• The API (Application Programming Interface) ofthe hardware driver should be generalized for vari
ous applications. The designer should not intentionally tune it in order to simplify a specifie DCharts
model.

• The designer is allowed to use yet another library to define functions that are considered primitive in
the system. For example, sorting, management of data structures and well-know algorithms should be
hard-coded in a library rather than being modeled explicitly. The latter approach oruy unnecessarily
complicates the model and obscures the essence of the problem to be studied.

Function Definition in SVM Models

As another trick, it is also possible to directly define functions in SVM models, though this method is highly
discouraged because of its lack of modularity and portability. The initializer of a model is among the parts
that allow arbitrary Python code. A model designer may decide to implement sorne of the functions in the
initializer of a model. Because Python is an interpreted language, SVM is able to dynamicaUy interpret the
definition of those functions, and make them available for the actions executed later.

For example, the textual representation of the model in Table 5.1 defines a function prinLa_to~, which
prints integers from a to b to the console on a single line. (a and b are integer parameters of the function.)
The model caUs this function with a=l and b=10 every 1 second with a timed transition. As a result, the user
of the model gets the foUowing output in the console:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

5.6 Conclusion

STATECHART:

A [OS]

INITIALIZER:
def print_a_to_b(a, b):

while a<=b:
print a,
a = a + 1

print

TRANSITION:

S: A

N: A

T: 1
0: print_a_to_b(l, 10)

Table 5.1: An example of the textual representation of a function definition in a DCharts model

1 2 3 4 5 6 7 8 9 10

80

A whole Python library can be written under the INITIALIZER descriptor. However, the more Python code
is written here, the harder it is to port the model to another simulator or executor, and the harder it becomes
to fully understand the meaning of the mode!. As the size of the model grows, it becomes less manageable.
The chances of undetectable errors increase dramatically.

5.6 Conclusion

The expressive power of DCharts is formally shown in this chapter. It is proved that non-recursive DCharts
are at most as powerful as statecharts with variables (section 5.1), and non-recursive (the theorem in sec
tion 5.3 does not use recursive importation) DCharts are at least as powerful as statecharts with variables.
From these results, it can be inferred that non-recursive DCharts are equivalent to statecharts with variables
in terms of expressiveness. Similarly, sections 5.2 and section 5.4 prove that non-recursive DCharts are
equivalent to DEVS in terms of expressiveness.

Obviously, DCharts are more powerful than statecharts with variables and DEVS. Recursive importation
and the parametrized importation introduced by SVM cannot be modeled with non-recursive DCharts. 1

Because of the equivalence of expressiveness, recursive importation and parametrized importation cannot
be modeled with statecharts with variables or DEVS, either. The following inequation shows the comparison
of expressiveness of the above-mentioned formalisms:

DCharts > non-recursive DCharts = statecharts with variables = DEVS

The expressiveness of DCharts is further shown by using them to model the constructs in the C programming
language. This proves that DCharts are able to model a complete system in place of modem programming
languages such as C. The explicitly modeled parts of a system can be formally checked, analyzed, optimized
and simulated with DCharts modeling and simulation tools. Code can be generated from the well-developed
parts for efficiency. This development process strongly emphasizes the use of automated tools and saves
human labor.

'The SVM simulator itself can be modeled with non-recursive DCharts. In this sense, the execution of recursive DCharts can be
modeled with non-recursive DCharts. This issue is highly implementation-oriented. It is not considered here.

5.6 Conclusion 81

The examples in section 5.5 illustrate several design patterns [38]. Those patterns point out a way in which
C constructs can be transformed into DCharts submodels. Designers may model those patterns in separate
submodels, and import them into their systems. Tools can also be implemented for this transformation.

For a relatively large system, there may be a lot of those design patterns. Optimization tools and code
generation tools may reverse them. They locate every appearance of known patterns, and transform it into
equivalent but much simplified C code. This code generation produces much more efficient code than the
classes generated in a normal way, which manage ail the states and transitions in those patterns.

SVM - A DCHARTS SIMULATOR

A valid DCharts model contains aIl the necessary information for a simulation. SVM (Statechart Virtual
Machine) is the simulation environment that runs textual DCharts models.

6.1 An Introduction to SVM

SVM is originally a statecharts simulator implemented in Python (http://www . python. org), but now it
supports the complete DCharts semantics and the textual syntax, including the syntactic extensions.

SVM is a project developed in the MSDL (Modeling, Simulation and Design Lab) of SOCS (School of
Computer Science) of McGill University. The lab is headed by Prof. Hans Vangheluwe.

SVM has multiple sub-projects. One of its sub-projects, SCC (StateChart Compiler), aims at a tool that syn
thesizes source code from DCharts models. Multiple target-languages are supported. This code synthesizer
is discussed in chapter 8.

SVM and its sub-projects are provided for public use under the terms of GNU GPL (General Public License)
version 2. There is absolutely no warrant y for these tools. The text of the !icense can be obtained from:

http://www.gnu.org/licenses/gpl.html

The SVM homepage is at:

http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

AlI the necessary information for obtaining and installing SVM and SCC can be found at the homepage. In
particular, a tutorial on SVM and SCC, which contains the installation instructions and several interesting
examples, is available [39].

6.2 The Design of SVM

The class design of SVM is shown in Figure 6.1. (This c1ass diagram only shows the important attributes and
methods.) Class EventHandler is the main c1ass that loads the model from a text file, builds internai data
structures for the model, and simulates the model on demand. It can be used with different user interfaces: the
TextualInterface class defines the default textual interface that accepts input and produces output on the
console; the GraphicalInterface class defines the default graphical interface; and the Curseslnterface
c1ass defines the default curses interface (for UNIX only) to be used in the text mode with colors. Designers
may define model-specific interfaces. Examples of model-specific interfaces are discussed in later chapters.

Class SVMFrontEnd provides a front end of the simulation environment for the end users. It accepts command
line parameters and initializes an instance of EventHandle r with the model description. It also interacts with
the model user through one of the user interfaces.

Class Generator uses EventHandler to parse DCharts models. It generates source code in different target
languages from the internaI structures created by EventHandler. Class SCCFrontEnd provides a command
!ine front end for the code generator.

6.2 The Design of SVM 83

1
SVMFrontEnd

1 1 SCCFrontEndl
+eventhandler: EventHandler

I

r?
I 1

I I I

1 Textuallnterface 1 1 Curseslnterface 1 1 Graphicallnterfacel 1 ModelSpecificlnterface 1

1 I I I

--- r-

I I I
I I

EventHandler
I Generator

+state: String[)
I 1

ISVMPVM
1 I +Ioad statechartO +generateO

+event(eventString,internal:bool=true,lock:Object=null) +generate_code(): String
+synchronouLevent(eventString,internal:bool=true,lock:Object=null)
+startO
+shutdownO

1 I +snap_to_stringO: String I I
snapShotl loebugger: +snap_to_file(filename:String)

+restore_from_string(s:String)
+restore_from_file(filename:String)

1 Serialize
1 I +geLenabled_events(): String[) 1 1

Serializel +is_oUs_substate(statel:String,state2:String): bool
+iLin_state(state:String,checlcsubstate:bool=false): bool
+is_ifs(state:String): bool

Figure 6.1: SVM class design

6.2 The Design of SVM 84

As EventHandler is the core of the parser and the simulator, it is necessary to introduce sorne of its methods
and attributes here:

• event(event, params, internaI, lock)

Appends an event to the global event list. The event will be handled after ail the events before it
in the list are consumed. Parameter Event is the event name. params is a parameter or a Python
list of parameters for the event. internaI is a boolean that denotes whether the event is generated
by the model itself or is received as a message from a port. lock is a semaphore. If it is non-nul!,
the simulator will release this lock once this event is handled. The following piece of code uses a
semaphore to schedule an event and waits until it is handled:

import thread Il import the Python threading library
lock = thread.allocate_lock() Il allocate a lock
lock.acquire() Il acquire the lock for the first time
eventhandler.event("e", [l, l, lock) Il raise Event
lock.acquire() Il acquire the lock again; block until the Event is handled
deI lock Il destroy the lock

• synchronous_event(event, params, internaI, lock)

Raises an event and waits until the event is handled (as the code segment above). Its parameters have
exactly the same meaning as the Event method.

• start ()
Starts the simulation. It executes the initializer of the model and places the model in its initial default
state.

• shutdown ()

Ends the simulation. If the model is not in a final state (the finalizer has not been executed yet), the
finalizer is executed; otherwise (the finalizer has been executed), the SVM simulator simply exits.

• snap_to_string() :String

Takes a snapshot of the current state of the mode!. The snapshot is returned as a string.

• snap_to_file(filename)

Takes a snapshot and save the snapshot in the file named by the filename parameter. The file is a
plain text file. The user may manually edit it. (Note: it is the modifier's responsibility to make sure
that the file is still meaningfu!.)

• restore_from_string(s)

Restores a previously taken snapshot (saved in a string) and resumes the simulation. Information about
the current simulation is completely lost.

• restore_from_file(filename)

Restores a previously taken snapshot stored in the file named by the filename parameter.

• get_enabled_events()

Retums a list of the names of enabled events. The result depends on the current state of the simulation.

• iS_OLis_substate (statel, state2) :bool

Returns true if statel is equal to state2 or statel is a substate of state2.

• is_in_state (state, checLsubstate) :bool

Returns whether the model is currently in state. If checLsubstate is fa Ise, the simulator only
checks leaf states. Hence, the result is true if and only if the model is in state and state is a leaf

6.3 Default Interfaces 85

state. If checLsubstate is true, the function returns true if and only if the model is in state,
whether it is a leaf state or not.

• is_ifs(state) :bool

Returns whether state is inner-transition-first.

• Attribute state

A list of strings enumerating al! the leaf states that the model is currently in.

To simulate DCharts models, EventHandler requires the support of other classes. These classes are not
necessary for code generation in SCC:

• Class SVMPVM is an interface to PYM (Paral!el Virtual Machine) for distributed simulation in SVM.

• Class Debugger provides the functions for model debugging. It allows the testers to define callback
functions that are invoked when certain criteria are satisfied during a simulation. Those callback func
tions are similar to the breakpoints of modern IDEs (lntegrated Development Environments).

• Class Serialize provides serialization facilities for SVM. With this class, the global eventhandler
object can be serialized as a string that contains ail the information needed to reconstruct the object.

• Class SnapShot makes use of the functions provided by class Serialize and provides snapshotting
facilities for SVM.

The EventHandler class is a parser and a simu!ator. It can be reused in other applications. For example, the
SCC code synthesizer uses this class to parse textual mode! descriptions; an application that needs a DCharts
simulator (such as AToM3 with the DCharts plugin) may use it to simulate models.

The command-line to invoke SVM is discussed in [39]. It includes a complete description on how to start
the simulation of a model, how to choose among the default interfaces, and how to redefine macros for the
mode!.

6.3 Default Interfaces

This section discusses the default graphical interface and the default textual interface. The default curses
interface is similar to the default textual interface.

6.3.1 Default Graphical Interface

Figure 6.2 shows the default graphica! interface. The window on the right is the main window. The enabled
events are disp!ayed in the "Enabled Events" list. This list is refreshed whenever the state of the mode!
changes. The "Output" box displays output from the model or the commands entered by the user. The model
sends output to this box with the DUMP macro. Mode! description (if defined) is a!so displayed in this box at
the time a model is loaded or imported. The "Command" box accepts commands from the user. Three kinds
of commands are accepted:

• Events. To raise an event, the user may enter the event name in the "Command" box and press ENTER,
or double-click the event name in the "Enabled Events" list.

• "debug". The user may enter a special event "debug" to change to the debug mode.

• "exit", This special event terminates the simulator and closes the SVM windows. It has the same
effect as pressing the "Exit" button in the main window.

Any other command not recognized by SVM is simply ignored.

By pressing the "Snapshot" button, the user takes a snapshot of the current state of the mode!. The snapshot
is saved to a . snp file with the same name (excluding the postfix) as the file name of the mode! description.

6.3 Default Interfaces

+ D
- F

- c
- E

- A
+ B

- C
+ D

- E

- F
- G

86

Figure 6.2: SVM default graphical interface

Figure 6.3: SVM default textual interface

6.4 Modeling and Simulating DCharts in AToM 3 87

smootiil

/" ,#", ,j L,,-:; ::-~""~''''''''

(J 'b
'~B

after(1)

Figure 6.4: AToM3 modeling environment with SVM plugin

6.3.2 Default Textual Interface

As opposed to the graphical interface, tex tuai interface is suitable for most systems, even if they do not have
any graphical device or they are too slow to support Tkinter (the graphical widget library for Python). The
default textual interface is shown in Figure 6.3. The state of the model is printed before the prompt. Similar
to the graphical interface, the user is allowed to enter event names and the "debug" and "exit" special
events. The DUMP macro prints messages to the console.

6.4 Modeling and Simulating DCharts in AToM3

SVM is a stand-alone simulator that do es not depend on any other modeling and simulation too1. However, it
can be seamlessly integrated with AToM3. A plugin for AToM3 generates DCharts model descriptions from
its graphical representation in AToM3 . The user may th en save the descriptions in text files to be simulated
by SVM. Altematively, the generated model descriptions can also be stored in memory and be simulated
by SVM immediately without being saved. In the latter case, SVM highlights the CUITent states and enabled
transitions in AToM3 during the simulation (Figure 6.4).

The SVM plugin adds a DCharts meta-model to AToM3 . It is developed on the basis of Spencer Borland's
statecharts meta-model for AToM3 [9]. Three buttons are available to simulate the model in the CUITent
canvas immediately, generate . des model description to a text file, and generate Java source code from the
CUITent model with SCC (discussed later). The designer is thus able to design the model in the AToM3 visual

6.5 Distributed Simulation 88

Machine 2

Figure 6.5: Multiple layers for distributed simulation in SVM

environment, and access to these functions sim ply by clicking on the corresponding buttons.

6.5 Distributed Simulation

SVM supports distributed simulation with PYM (Paralle! Virtual Machine) [10]. A distributed model is
divided into several components conceptually running on multiple machines. PYM hides the configuration
of those machines. Each PYM process is regarded as a conceptual machine that has its unique ID and is
able to communicate with other PYM processes. Multiple PYM processes may run on the same machine.
Multiple machines may be involved in a distributed simulation enabled by PYM, after they are added ta the
PVMdaemon.

6.5.1 The SVMDNS daemon

SVMDNS (SVM Dynamic Naming Service) is another daemon built on top of the PYM library. It provides
a higher level of interface to SVM processes. For example, in Figure 6.5 there are 4 SVM processes, each
of which has a DCharts component running on it. Those DCharts components communicate with each other
via ports. The SVM processes register themselves ta a single SVMDNS daemon. The SVMDNS daemon
invokes functions in the PYM library to create 4 PYM processes. Each of them corresponds to an SVM
process. The location of those PYM processes depends on the configuration of the PYM daemon. In this

case, PYM processes l, 2 and 3 are located on machine l, while PYM process 4 is located on machine 2.
The PYM library hides details of this configuration, but provides a uniform API to SVMDNS.

SVMDNS provides the following functionality ta each SVM process:

• Registration. Each SVM process that interacts with remote components must register itself to SVMDNS.
By default, the SVM simulator attempts to register itself to SVMDNS if and only if a model with at
least one port is running in it.

6.5 Distributed Simulation 89

message Echo

Figure 6.6: Sender ofthe Echo example

• Life-time. Each SVM process registered to SVMDNS must periodically sends a keep-alive message
to the SVM daemon. If the daemon do es not receive such a message from an SVM process within
a certain period of time (known as life-time), information about the SVM process is removed from
SVMDNS' registry. The life-time can be customized in PVMUtil.py. By default it is 30 seconds.
Each SVM simulator, after it registers itself, sends the keep-alive message to the SVMDNS every half
life-time period.

• Component lookup. SVM processes send the name patterns or types of required components to the
SVMDNS. SVMDNS then locates the registered components with those name patterns and types. It
establishes the connections between components.

• SVMDNS also maintains the connections between components. SVM processes are ignorant of this
information. They simply use ports to identify groups of connected components in SVMDNS. SVMDNS
acts as a router in this inter-component communication.

Detailed information about the setup of the SVM daemon and the PYM daemon can be found in [39].

6.5.2 Example

A simple Echo example is studied in the section. There are two components in the system: Sender and Echo.
The Sender randomly generates a message and sends it to the message port of the Echo. The Echo sends
back this message to the Sender after 1 second. When the Sender receives the message, it sends another
random message to the Echo. This loop continues forever.

These components are designed in AToM3 as shown in Figure 6.6 and Figure 6.7. In Figure 6.7, an in
put/output port named message is defined for the Echo component. The Sender component in Figure 6.6
also has a port called message. The port of the Sender is connected to the port of the Echo. The name pat
tern of the server is Echo (Figure 6.8). This matches the Echo component only. The link between the Sender
port and the server has a property that specifies the server port message (Figure 6.9). The enter actions of
the Send state of the Sender component is hidden. Those actions import necessary Python libraries and
initialize a list of random messages.

When the Sender component is loaded into AToM3, the user may press the "to SVM Des." button to generate
a . des file. Here is the Sender. des generated by the SVM plugin:

DCharts description generated by SVM-AToM3-plugin, written by Thomas Feng
Source: /home/thomas/Backup/Atom3_2.2/DCharts/models/SimpleEcho/Sender.py
Date: January 15, 2004

6.5 Distributed Simulation 90

message

Figure 6.7: Echo of the Echo example

id IEChO
nrune "pattern r:1 E":'"c-h-O""',,,...,....,....,....,....,....,....,---.,...~

OK cancel

Figure 6.8: Name pattern of the Echo server

server J)Qrtlmessag~

OK

Figure 6.9: Port name of the Echo server

6.5 Distributed Simulation

Time: 21:29:44

COMPONENT:

id = Echo

name = Echo

PORT:

name = message

type = inout

CONNECTIONS:

message -- Echo.message

STATECHART:
Send [OS]

Wait

ENTER:

N: Send

0: from random import randint

91

Messages=["Hello, everyone l ", "Have a ni ce day!", "How are you today?", "1 feel very weIl \

today! ", "The same to you! "]

MessageNo=len(Messages)

TRANSITION:

S: Send

N: Wait

T: 0 [RTT]

C: 1
0: msg=Messages [randint (0, MessageNo-l)]

[EVENT("message.send", msg)]

[DUMP ("Sent: " + msg)]

TRANSITION:

S: Wait

N: Send

E: message. echo

C: 1
0: [DUMP ("Received: " + [PARAMS])]

Here is Echo. des:

DCharts description generated by SVM-AToM3-plugin, written by Thomas Feng

Source: /home/thomas/Backup/Atom3_2.2/DCharts/models/SimpleEcho/Echo.py
Date: January 15, 2004

Time: 21:31:4

PORT:

name = message

type = inout

CONNECTIONS:

STATECHART:
Receive [OS]

6.6 Debugging

Echo

TRANSITION:

S: Receive

N: Echo
E: message. send

C: 1
0: msg=[PARAMS]

TRANSITION:
S: Echo

N: Receive
T: 1 [RTT]

C: 1
0: [EVENT("message.echo", msg)]

This example can also be found in [39].

6.6 Debugging

92

The SVM simulator supports low-level debugging. Its debug mode is entered whenever the user inputs the
"debug" special event. If the simulation makes use of a model-specific interface, the debug mode may be
entered in a different way. For ex ample, the CDPlayer example in the SVM distribution provides a "Debug"
button that switches to the debug mode.

When the debug mode is entered, the simulation is suspended. The user is aIlowed to execute arbitrary
Python code. If the default curses interface or the default graphical interface is used, the Python code entered
by the user is highlighted according to a combined syntax of Python and SVM model description.

The Python code executed in the debug mode may inspect the status ofthe simulation and the model running
in it, as weIl as modify their variables. eventhandler is an important object that contains most information
concerning the simulation. Its following attributes are useful for debugging:

• eventhandler. state contains the current leaf states (a Python list of strings). Modifying this list
changes the state of the mode!.

• eventhandler. trans contains the definition of aIl the transitions. It is a Python dictionary.

• eventhandler. stateH is another Python dictionary that contains the definition of the state hierarchy.

• eventhandler. enter and eventhandler. exit are the two Python dictionaries that contain the en
ter actions and the exit actions, respectively.

• eventhandler. ports is a Python dictionary that contains aIl the ports and their properties.

• eventhandler. connections is a Python dictionary that contains aIl the required connections be
tween this model and other components.

MODEL VERIFICATION

Model checking, model verification and debugging are the three methods to improve the correctness of a
model or to find out potential errors in it.

Model checking checks the correctness of a model by means of formaI property proving. This checking does
not depend on individual experiments. The properties, such as reachable states and acceptable event lists,
are always true for the model. Madel verification checks the correctness of a model by means of multiple
simulations. The common properties of those simulations are summarized and are regarded as properties of
the model. For example, the states that are not entered in all those simulations are considered unreachable
states of the model. However, this conclusion may not be correct because of the non-exhaustive sampling
of all possible behaviors. In fact, to achieve 100% certainty for a single property, an infinite number of
simulations are usually required. Those simulations exhaust all possible traces of the model simulation. This
is, of course, impossible. As a result, model verification is less formaI than model checking. Debugging is the
least formaI in this comparison, since it is responsible for only one simulation or one group of simulations.
When an error occurs in a simulation, the debugger usually looks inside the faulty part of the model to
locate the error. When a design error is discovered, the debugger tries ta fix it without affecting the other
parts. However, this is usually impossible, and the result of this modification becomes unpredictable.

This chapter mainly discusses model verification, as it is the most well-studied approach. Our paper on
consistency checking [40] contains a general discussion and an example of model verification with SVM.
Formai model checking of DCharts is interesting and useful for many applications. It will be studied in the
future. Debugging of DCharts models in the SVM simulator has been discussed in the previous chapter.

7.1 Simulation Trace

A simulation trace records the evolution of the state (and possibly, the messages being sent) over time. In
SVM it is obtained as text output of a simulation. This output is sent by the model with the DUMP macro.
Different models may have different output formats. However, if the models conform to a single standard
and provide enough information in the output, the output trace is useful to check the correctness of those
models.

An example ofchatrooms and clients is introduced in [40]. Chat rooms and clients are the two different types
of DCharts components. The communication between them conforms to the following simplified protocol:

• There are 5 clients and 2 chat rooms in the system. Initially, the clients are not connected. They try to
connect to a random chat room every 1 ta 3 seconds (uniformly distributed). The requested chat room
instantaneously receives the request (zero network delay and reliable communication are assumed).

• A chat room accepts at most 3 clients. It accepts a connection request if and only if its capacity is not
exceeded.

• The requesting client receives an acceptance or rejection notice from the requested server immediately.

• A client must be accepted by a chat room before it may send chat messages.

• When connected, a client sends random messages to the chat room that it is connected to every 1 to 5
seconds (uniformly distributed). The chat room immediately receives the messages. It takes 1 second
to process a message and broadcast it ta ail the clients connected ta it, except the sender.

7.2 Extended Regular Expressions 94

• The clients instantaneously receive the broadcast.

The following is a part of the output trace generated by a simulation of the whole system with 2 chat rooms
and 5 clients:

CLOCK: (lO.5s,O)
Client 0
Says "Hello!" to ChatRoom 1

CLOCK: (1l.5s,O)
ChatRoom 1
Broadcasts "Hello!" to aIl clients except Client 0

CLOCK: (l1.5s,2)
Client 1
Receives "Hello!" from Client 0

For more insight into this example, the readers are referred to the paper published at the UML 2003 confer
ence [40]. This example is cited here only to demonstrate model verification. This output trace consists of a
number of output segments, each of which is composed of three lines: the time when the output is produced,
the component that produces the output and a brief message from the component.

The time is written in an enhanced format. A lime luple consists of a fIoat number that denotes the number
of seconds elapsed since the simulation was started, and an integer that denotes the sequence of the multiple
events received at that time. For example, time (10. 5s, 0) means 10.5 seconds have elapsed since the
simulation is started and the event is the first (0 + 1) to occur at that time. Time (11. 5s, 2) means 11.5
seconds after the simulation is started and that the event is the third (2 + 1) to occur at that time.

This extended time format allows the specification of multiple events that occur at exactly the same time,
while their order is still important. For example, according to the protocol, as soon as the server broadcasts
a message, the clients receive it. The two events occur at exactly the same time, but in the output trace,
the message sent from the chat room must appear before the message received by the clients (a causality
constraint).

7.2 Extended Regular Expressions

Checking the consistency between the protocol and the output trace is a kind of mode! verification. An
automatic approach is taken to check this consistency for each simulation. If a large number of checks are
successful, confidence in model correctness increases.

Before automatic checking can be done, the protocol must be translated into a formai description to be
processed by computer programs. Here, a rule-based approach is employed. A rule file to be processed
contains several rules that the output trace must conform to. The rules are written with extended regular
expressions, an extended form of UNIX regular expressions. Each mie consists of 4 parts: pre-condition,
post-condition, guard (optional) and counter-rule property (optional). Pre-condition is a regular expression
used to match a part of the output trace. lt, combined with the guard (a boolean expression), defines when
and where the mie is applicable. If it is applicable and the counter-rule property is faIse, the post-condition
(another regular expression) must be found in the output; on the contrary, if counter-rule is true, the post
condition must not be found.

For example, the mie in Table 7.1 expresses the requirement that the sender of a message does NOT receive
the broadcast after 1 second. (However, it do es not address whether it can receive the message after 0.9999
second or 1.0001 seconds.)

In the pre-condition, five groups are defined between parentheses. They are numbered 1 to 5 in the order

7.3 Rule Checker

pre-condition

post
condition
guard
counter-rule

CLOCK: \((\dt\.{O,l}\d*)s, (\dt\.{O,l}\d*)\)\n\Client (\dt)\nSa
ys "(.*?)" to ChatRoom (\dt)\n
CLOCK: \ ([(\1 +1) J S, (\dt\. {O, 1} \d*) \) \nelient [(\3) J \n Receives
"[(\4)J" fram Client [(\3)J\n

[(\1+1) J<50
true

Table 7.1: An example of an extended regular expression

95

of their appearance. Group 1 matches the fioating-point time. Group 2 matches the sequence number. They
constitute a time tuple. Group 3 matches the integer ID of the sender. Group 4 matches the message, which
is an arbitrary string. Group 5 matches the ID of the chat room that the sender is connected to.

In the post-condition, [(...) J contains an expression, where values of groups can be cited with their index
numbers behind "\". Thus, [(\ 1 t 1) 1 is the value of the first group plus 1. [(\ 3) 1 is equal to group 3. More
about regular expressions can be found in [41].

Suppose the execution stops at simulated time 50. The checking should not exceed time 50. Without addi
tional conditions, if a message is sent to a chat room at time 49.5, the checker would expect a corresponding
broadcast at time 50.5. To cope with this, a guard [(\ 1+ 1) 1 <50 is added. This tells the checker that the rule
is applicable only when the value of group 1 (fioating-point time) plus 1 is less than 50.

Since a client should not receive its own message, the counter-rule property is set to true.

7.3 Rule Checker

A rule checker is implemented to read in a text file with rules defined in it, and check the correctness of the
output trace saved in another text file.

The algorithm of the rule checker is summarized below (suppose that the rule file is read into rules and the
output trace is read into outtrace):

function check(rul es, outt race)
for each rule r in the rules

pre = the pre-condition
post = the post-condition
cond = the condition
counter = the counter-rule property
pos = 0
while true

match = search(pre, outtrace, pos)
if match is empty then

break
else

pos = the last position of the match in outtrace
if cond is not empty

replace(cond, match)
if cond is not satisfied th en

continue
replace(post, match)
if (counter and search(post, ouf! race, 0) is not empty) or

(not counter and searclz(post, outtrace, 0) is empty) then
output an error and exit

return successful

7.4 Limitation and Future Work

function search(re, text, pos)
search regular expression re in text startùlg frum position pos
if the pattern is found then

return the matching with the vaille of ail the groups in the pattern
else

return empty

function replace(text, match)
i = 0
white i < number of groups in mat ch

replace ail the citations of group i in text with the actual value of group i
i=i+l

7.4 Limitation and Future Work

96

Model verification with extended regular expressions is very useful. In theory, most properties conceming
the behavior of a model can be expressed with rules and be written in text files as the input to the rule
checker. However, it is not an easy task to write such a rule file with extended regular expressions. The rules
in the file may contain errors themselves. As a consequence, the resuIt of this Iargely manual verification
process is unreliable.

This approach can be greatly improved by developing a method to automatically generate rules from other
formalisms such as UML sequence diagrams. (However, there is a large gap between the protocol specified
in naturallanguage and formai specifications.) The future work in this area will mostly focus on making this
approach practical by developing more tools and reducing human intervention.

Model checking, since it is much more formaI than model verification, overcomes sorne of the vulnerabilities
of model verification. For ex ample, if a property is formally proved to exist in a model, it always holds no
matter how many simulations are made. However, for model verification to reach this certainty, an infinite
number of simulations are usually required.

Model checking of DCharts is not easy. This is mainly because DCharts support variables and arbitrary
actions that modify those variables. The resuit of this modification is hardly predictable statically. A promis
ing approach of model checking is to transform DCharts into other formaIisms such as PetriNets [42], and
formally check the properties of the new models. Graph grammars [43] [44] [45] [33] are use fui for model
transformation, because of their well-developed theory. In view of this, the future work in the area of model
checking will mainly focus on possible transformations from DCharts models to other formalisms by means
of graph grammars.

SCC - A DCHARTS COMPILER

SCC (StateChart Compiler) is a command-line tool to synthesize executable code from DCharts models. It
optimizes the models and produces efficient code. The code is independent of the SVM simulator.

SCC is able to synthesize code in Java, C++, C# and Python. Those target languages can be ch os en on the
command-line when the user invokes SCC.

SCC is distributed with SVM. It is started with the sec script (or scc. bat for DOS). A command-line
parameter specifies the. des file name of a model description. The code is written to a file with the same
name as the model description (with its extension changed according to the target language).

This chapter mainly discusses code synthesis in Java. Several classes are defined in a single Java source file,
so when it is compiled with JDK (Java Development Kit), multiple. class files are produced. The class with
the same name as the Java source file and the model description is the main public class. A main function is
defined in this class, which provides the default textual interface.

More information about SCC can be found at its homepage:

http://msdl.cs.mcgill.ca/people/tfeng/?research=scc

Usage and several examples on SCC can be found in the SVM and sec Tutorial [39].

8.1 Java Code Design

SCC invokes the functions in the Python module JavaGenerator. py to generate source code from DCharts.
The code is included as a template in the module. SVM-style macros are defined in the template. For different
models, the template is the same, but the macros are given different values. The code synthesizer simply
substitutes those macros in the template with their values, and writes the result to a text file.

The Java code design refers to the design of the template for Java code generation.

8.1.1 Class Hierarchy

In the class hierarchy of the generateJ Java source code (Figure 8.1), class StateMachine is the common
superclass of all the DCharts models. It de fines the common interface for the models, so that one model
may invoke methods in another without explicitly specifying its concrete type. For each DCharts model (or
submodel to be imported), a Java class with the same name is synthesized. The class with the same na me as
the. des file specified on the command-line is the lIlain class.

sec searches for the submodels to be imported into the main mode!. Those submodels are converted into
corresponding Java classes, written in the same Java source file. In addition, it also generates code for the
subsubmodels (if any) imported into those submodels. This search repeats until no new model is found under
the IMPORTATION descriptor of all those model descriptions. If a model is imported by more than one mode!,
or a model is imported by itself directly or indirectly, it is converted into only one class, which can then be
reused in different importing models.

For example, in Figure 8.1, class MainModel is generated from a DCharts model in MainModel. des. It
imports other models, and those imported models also import more models in their own right. Classes

8.1 Java Code Design 98

*
1 StateMachine ~

1 MainModel1 ISubmodel_11 IsubmodeL21 l SubmodeLnJ

Figure 8.1: Java class hierarchy of state machines

SubmodeLl to SubmodeLn are generated from those imported models. AU the above classes inherit class
StateMachine.

8.1.2 Numbering

A unique integer number is assigned to each state of a DCharts model. InternaUy, the state number is used
instead of the name or full path of the state. This has two effects:

• The execution bec ornes more efficient because string comparisons between state names is reduced to
integer comparisons.

• The state hierarchy is partly ftattened because those integer IDs do not contain any hierarchical infor
mation as can be found in the full paths of the states.

A linked list of current leaf states is maintained in each model. It may contain more than one state ID for a
model with orthogonal components.

Two states of different models may have the same ID, whether there is an importation relation between those
models or not. The Java function to get the current state first checks the leaf states that the main model is
currently in. If any of those leaf states is originally (before importation) an importation state, it then further
checks the current Jeaf states of the submodel imported in that state. This is because, unlike SVM, SCC does
not merge the imported model with the importing model but it records the imported model as an attribute of
the importation state. This lookup process repeats until the bottom of the state hierarchy is reached.

Similarly, ail the events are numbered. Those event IDs are the internai representation of the events that
trigger transitions. The synthesized code uses a switch-case structure to test acceptable events. Events han
dled by different models may have the same ID, ev en if they have different event names in their model
descriptions.

8.1.3 Members of Model Classes

The following constants are defined in each model class. They contain information about the model structure.

• private static final int StateNum. The number of states in the model, not including the states
in its submodels.

• private static final String [J EventNames. The names of the events to be handled by the
model, not including the events handled by its submodels. The indexes of those event names represent
their IDs. Those IDs start from O.

8.1 Java Code Design 99

• private static final String [l StateNames. The full paths of the states in the model, not in
cluding the states in its submodels. The indexes of those full paths represent the IDs of the states.
Those IDs start from O.

• private static final int [l ParentTable. The table ofparent-children relations in the mode!.
Parent Table [i] contains the ID of the parent of state i. This is the inverse of the C function in the
abstract syntax.

• pri vate static final boolean [l [l Hierarchy. The children function of the model (the same
as the C function in the abstract syntax). Hierarchy [i] is an array over ail the states. Hierarchy [i] [j]

is true if and only if state j is a child of state i.

• pri vate static final int [] HistoryStateTable. The definition ofhistory states in the mode!.
Each e!ement in this array has the following meaning:

{

0, if state i has no history
HistoryStateTable[i] = 1, if state i has a normal history

2, if state i has a deep history

• private static final String [l LeafStateTable. The definition of leaf states in the model,
including importation states if any. If state i is a leaf state, LeafStateTable [i] is equal to the full
path of state i; otherwise, LeafStateTable [i] is equal to null.

The following are the Java data structures ta store the state of the mode! at run-time:

• private State state. The CUITent leaf state list of the mode!. Class State is a linked list of state
IDs.

• private StateMachine [l Submodels. The submodels of the mode!. Submodels [i 1 is not null if
and only if state i is an importation state and the submodel in it has been loaded. Once the submodel
is loaded, it is never deleted even if the modelleaves the importation state. The history recorded in the
submodel object is the history of the importation state.

• private History [] history. The history of each state in the mode!. history [il is not null if
and only if a history is recorded for state i. Class History is an internai structure that records a single
history. Its value is changed as the model enters the state again and leaves it from another substate.

As all of the attributes of a model class are private members, the users can only access them by means of
public methods. The following list includes sorne of the important methods:

• public modelname () . Constructor of the model class. (modelname is the name of the mode!.) The
required data structures are initialized. However, the model is not initialized. Its current state is illega!.

• public void initModel (). Initializes the mode!. This means to place the model in its default
state(s). The initializer of the model is executed.

• public boolean isInState(String s) and public boolean islnState(int s). These two
functions check whether the model is in a certain state. The state can be specified with its full path or
with its integer ID. The second method is more efficient since it does not require string comparison.
The method with a string parameter is kept only for interaction with the model users, who do not know
the internai state IDs.

• public boolean handleEvent (String se). The hand1er of any event. The event is given as a
string, and this function automalically converts the string into its integer ID for internai use. It tests
the event ID with a switch-case control structure. It checks the source states of the transitions and their
guards. If any enabled transition is fOLll1d, the state variables are changed according to the original
design of the DCharts mode!. This method also executes the output and the enter/exit actions (if any)
as the transition is fired. If the model changes ta a final state, it also executes the finalizer before
returning.

8.1 Java Code Design 100

• public void changeState (int 51, int 52, boolean checLhistory). Changes the modelfrom
state sI to s2. This method implements the state change triggered by a transition from state sI ta s2.1f
checkJüstory is true, the history of s2 or any state in the path from state Common(sl,s2) ta state
s2 is considered (such a transition has a [HS 1 property in the original DCharts model); otherwise,
history is ignored even if it is recorded.

public void changeState (int sI, int s2) is equivalent ta public void changeState (int
sI, int s2, false).

• protected int eventSt r2 Int (Str ing event). Converts a string event name inta its integer ID.

• protected StringList getCurrentStateList () . Retrieves the current leaf state(s) of the mode!.
The result is stored in a linked list of strings. Its elements are instances of class StringList. This
method looks up all the CUITent leaf states in the main model, as well as the CUITent leaf states in all the
submodels. It is used internaUy in the Java class. Ta retrieve the CUITent states in a more understandable
format, the designers should use function public String getCurrentState () .

• public String getCurrentState (). This method invokes method protected StringList get
CurrentStateList () , and retllrns the CUITent leaf state(s) as a string enclosed by a pair of square
brackets. Multiple states are separated by comma", ".

• public int getParentSta te (int state). Returns the parent state of the specified state.

• public boolean isHistorySt ate (int state). Tests if the specified state has a history.

• public boolean isLeafState (String state). Tests if the specified state is a leaf state.

• public Hierarchy getHierarchy (int 5tarLlevel, String state_prefix). Returns the state
hierarchy structure of the mode\. The hierarchy structure is a linked li st. The Next attribute of each
element (if it is non-null) gives access ta the next element. Each element in this linked list has the
following attributes:

• public String StateName. The name of a state in the mode!.

• public String PathName. The full path of the state.

• public int StateNum. The integer ID of the state.

• public int Level. An integer that denotes the level which the state is at. The larger this num
ber is, the deeper the state is in the state hierarchy.

Parameter starLlevel is an integer to be added to the Level attributes of all the elements in the
returned list. This is useful for importation states. Suppose an importation state is at level 5. It caUs
the getHierarchy method of the imported model with starLlevel=5. The generated hierarchy
starts from level 6.

Parameter state_prefix is the prefix to be added to the head of the PathName attributes of ail the
elements in the returned list. For example, importation state "A. B" caUs the getHierarchy method of
the imported model with 5tate_pref iX=" A. B". The full paths in the generated hierarchy start with
"A.B.",

8.1.4 Default Textual Interface

The main function of a model class pruvicles a clefault tex tuai interface. The user inputs events to the model
from this interface, and every time the CUITent states of the model are changed, the new states are displayed
as a list between square brackets before the ">" prompt.

Figure 8.2 shows this default textual interface. It is started by executing the class of the main model in
the JVM (Java Virtual Machine). For each model or submodel, this textual interface is defined in a main
function. By default, JVM starts the main function of the main mode!. The main functions of submodel
classes, if necessary, can be invoked by lIser-defined classes.

The user may reuse the Java code of a model with a customized interface instead of the default textual

8.1 Java Code Design 101

Figure 8.2: An example of the ddault textual interface of the Java code synthesized by sec

8.2 Transformation Strategies 102

interface. This is discussed in section 8.5.

8.2 Transformation Strateg ies

The strategies used to transform different parts of a DCharts model into source code are discussed in this
section.

8.2.1 State Hierarchy

As was discussed previously, each state in a model is given an integer ID. Those IDs are unique within
a single model but may be duplicated across different models. This is a flattening of the state hierarchy,
which causes a loss of information, such as the parent-children relations and information about orthogonal
components. Auxiliary functions and arrays are generated to preserve information like this.

Constant attributes ParentTable and Hierarchy of the model class record the parent-children relations.
Parent Table [i 1 contains the state ID (2:: 0) ofthe parent of state i. If state i is at the top level, Parent Table [i 1
is equal to -1. Hierarchy [i 1 [j 1 is a boolean specifying whether state j is a child of state i. With these
data structures, the following simple Java function tests if astate is the parent of another state (suppose that
astate with ID less th an 0 is parent of any state):

private boolean isParent(int sp, int sc) {
return sc>=O && (sp<O Il HierarchyfspJ[scj);

}
Each model class has astate hierarchy defined in it. The hierarchy of a submodel is not visible from the
model that imports it. However, the importation states are statically decided in the importing model. A
model caUs the member functions of its submodels to access to their states.

8.2.2 State Properties

Most of the state properties are statically coded in multiple parts of the Java classes. For example, the
property of default states are implemented in these functions:

• The initModel function changes the state of the model to its default leaf states. Those default leaf
states are computed statically. For example, if states number 4 and 6 are the default leaf states, the
following statements are statically coded in function ini tModel: addlnState (4); addlnState (6) .
Method pri vate boolean addInState (int s) simply adds astate to the CUITent state list of the
mode!. If the model is already in state s, the function returns false. Since the CUITent state list of
the model is empty wh en it is being initialized, this function always returns true when invoked by
initModel.

• The default states are statically coded in function changeState, which changes the model from one
state to another. If the new state is not a leaf state or it is orthogonal to other states in the path from the
Common(SRC,DES) to the DES of the transition, default leaf states are generated according to the
model structure. SCC invokes the SVM simulator to decide those default leaf states as if the model
were being simulated. The default leaf states which need to be added for each transition do not vary
in different simulations or executions.

State properties concerning transition priorities ([ITF l, OIF and RTO) are statically interpreted. The transi
tions are sorted according to the algorithm in section 2.2.5. Those transitions are coded in the Java classes in
the same order with a switch-case structure. The first enabled transition at run-time is always the one with
the highest total priority. This sorting of a submodel's transitions does not vary, because the importing model
is not allowed to modify its global option InnerTransitionFirst (which is default to 0).

Orthogonal components are also statically coded in the classes. For a transition going out of an orthogonal
component, code is generated to eliminate ail other orthogonal components of the same parent. For a tran
sition going into an orthogonal component, the default leaf states of other orthogonal components of the

8.2 Transformation Strategies 103

same parent are added to the current state list. SCC hard-codes this information in the Java code to improve
performance.

8.2.3 History

History is the most complex part in the Java code, because it largely depends on the state of the model exe
cution, and cannot be decided statically. The history attribute of a model class keeps track of its histories.
Its value changes at run-time. The computation of this part is among the most expensive in the execution of
a hierarchical model with history.

Method private void recordHistory (int top_state) records the history of state top_state (sup
pose it has a history or deep history defined in it) in the history attribute.

history is an array over the state IDs. history [i 1 for state i is an instance of class History, which has
the foUowing attributes:

• public int [J States. The history of ail the states when state i is exited. States [j J contains the
ID of the child state of state j, which the model is currently in. If the children of state j are orthogonal
components, States [j J is meaningless.

• public long [J Times. The time when the history is recorded for each state. When astate with
history is entered after its history is recorded, the record with the latest time-stamp is considered most
recent and will be restored as the CUITent state(s).

• public StateMachine Submodel. The submodel imported in state i, or null if state i is not an
importation state. When the modelleaves an importation state, the imported model remains, because
its history recorded in its own history attribute may be use fui in the future.

CaUs to the recordHistory method is statically coded in the changeState method. When a modelleaves
state i with a history in it, recordHistory (i) is called before the state changes.

When the model enters astate with a history recorded in the history attribute, the model dynamically
decides the destination states with the history record, and changes the model to them. For normal history,
this computation is complex.

Note that history recording is necessary even for non-history states. This is because the compiled model may
be imported into such an importation state that it is a history state itself, or sorne of its superstates are deep
history states. In those cases, history manipulation is required for every state.

8.2.4 Event Handling

Method handleEvent handles events by comparing their IDs with accepted event IDs. It uses a switch-case
structure to test those events, and invokcs the changeState method to change the current state.

Method changeState usuaUy makes the following three caUs:

1. recordHistory (com) records the necessary history in the path from com = Common(SRC,DES)
to the bottom of the state hierarchy. Common(SRC,DES) is computed statically and stored in a 2-
dimensional array. If Common(SRC, DES) does not exist (because SRC and DES are or belong to two
different top-level states), recordHistory (-1) is called.

2. removeOutStates (com) causes the model to leave state com = Common(SRC, DES) by removing
that state and aU its substates from the current state list. If Common(SRC, DES) does not exist, the
code generator simply writes statement state=nulli to clean up the current state list.

3. generateStates (com, DES) generates new states in the path from com = Common(SRC, DES) to
DES, and adds them to the current state list.

8.3 Space Efficiency and Speed Efficiency

Tooi
SVM
SCC

8.2.5 Importation

Achieve
functionality and extensibility
speed

Sacrifice
space and speed
space, modu~arity and functionality

Table 8.1: Trade-otIs between SVM and SCC

104

Importation is transformed into instantiation in the synthesized code. A c1ass is generated for each mode!.
When a submodel is imported, the importing model instantiates an object of the submodel c1ass, and asso
ciates the new object with the ID of the importation state.

According to the DCharts semantics, an imported model is conceptually a part of the importing mode!. Once
imported, it remains until the simulation or execution finishes. All the states and transitions of the imported
model are copied to the inside of the importation state. This semantics is implemented as instantiation as
follows:

• Once an object of a submodel c\ass is instantiated and associated with a state ID, it is not deleted until
the execution of the top-level model finishes (or, usually until the program exits).

• When the modelleaves an importation state, the object associated with it is kept as its history.

• If history is recorded for an importation state, it is restored when the model goes to that state because
of the firing of a transition with the [HS 1 property. If the state has a history but the transition does
not have the [HS 1 property, the submodel is re-initialized to its default states. In the latter case, for
simplicity, the importing model instantiates a new object of the submodel class, and replaces the old
one with it. The old submodel object is recycled by the Java garbage collector.

• For each model, the configuration of submodels, including their number and the states that import
them, is fixed and can be decided statically. The array Submodels of a model c1ass keeps track of all
those submodels.

8.3 Space Efficiency and Speed Efficiency

Several aspects and concerns affect the design of SVM and SCC (Table 8.1). There are different emphases
ofthese tools:

• SVM sacrifices space and speed la achieve functionality and extensibility. Here, space refers to the
memory space required for a simulation. Because SVM is a simulator, speed and space usage is
not the ma st important. However, it must provide a suitable experimental platform for a complete
DCharts syntax and semantics. It must also be extensible so that new features can be easily added to
the simulator, as DCharts are improved over time.

• SCC sacrifices space, modula rit y and functionality for speed. The purpose of code synthesis is to
produce highly efficient code that can be used in practical applications. Hence, speed becomes the
most important factor. SCC guarantees high performance for most of the implemented features, but
sacrifices the features that are not practical, or warns the users about the implemented but inefficient
ones. Modularity is not important either. When a model is transformed into Java code, it does not tend
to change any more. The code for different DCharts features is usually mixed in an uninterpretable
way to achieve better performance. For ex ample, the model is fiattened and its hierarchy information is
encoded in its transitions. The code ta tire transitions and to change the state ofthe model is optimized
with static state properties such as default states, history and orthogonal components.

The design of SCC reflects the above concerns. The numbering of states and events reduces string compar
ison to integer comparison. Tables are slatically generated, which records the parent-children relations and
leaf states.

8.4 Example

Import:
sam pie

Figure 8.3: The graphical representation of a sample model for SCC

105

However, history still requires complex computation at run-time. This is because the behavior of models
with history is statically unpredictable. For this reason, the use of history (whether it is common history or
deep history) is discouraged, if the designer intends to synthesize really efficient code for his/her mode!.

8.4 Example

A sample model is provided in the test/applet/ subdirectory of SVM. It demonstrates the use of SCC
and the applet interface discussed in section.

The graphical design of the model is in Figure 8.3. This model uses the following features of DCharts:

• default states;

• orthogonal components;

• recursive importation;

• deep history; and

• inner-first transition priorities.

sample. des, the textual model description is included below:

IMPORTATION:

sample = sample.des

OPTIONS:

InnerTransitionFirst = 1

STATECHART:

Sl [OS] [HS*]

S2
S3 [OS] [CS]

S4 [OS] [CS]

8.5 Applet Interface

S5 [OS)
S6 [OS)

S7

S8 [OS)

S9

TRANSITION:
S: SI.S6

N: SI. S2

E: to S2

TRANSITION:
S: S1.S2

N: S7
E: to S7

TRANSITION:

S: S7.S8

N: SI

E: to SI hs

TRANSITION:
S: S7.S8

N: SI

E: to SI

[CS) [sample)

[HS)

When the code (sample. java) is synthesized by SCC, the following classes are defined:

• StateMachine. The common superclass of all DCharts models.

106

• sample. The main class in the source file. Because sample. des only imports itself, no other model
class is generated.

• State. Data structure of the elements in the CUITent state list.

• History. Data structure to record the history of a single state.

• EventList. Linked list for returning the enabled event list.

• StringList. Linked list over strings.

• Hierarchy. Linked list for returning the DCharts hierarchy.

Among the above classes, sample is the public class that can be accessed by user classes or from the Java
command-line. The user may execute "java sample" to run the mode!.

8.5 Applet Interface

The user may provide a customized interface for the mode!. This is done by manually writing a Java appli
cation, which instantiates the model class and provides input/output channels to it.

A general applet interface is written to be used with any DCharts model. It is embedded in webpages and

executed in a JVM, as shown in Figure 8.4. This interface has a similar look as the SVM simulator. The
state hierarchy is shown as a tree in the left panel. Ali the enabled events are listed in the "Events" list. The
"Output" box displays the output from the mode!. The "Command" box accepts commands from the user.
Accepted commands are limited to enabled events. Debugging is not supported. Exiting the pro gram is not
applicable for an applet.

This applet is written in Java source file svmapplet. java in the test/applet/ subdirectory of the SVM
directory. It supports a model parameter. !ts value is the name of the model class to be loaded. The applet

8.6 Limitations 107

sec Demonstration -- a Preview to Version 0.1
Evenu;

to S2 [51. S6] >
+ S2

- S3
- S4
- S5

- S6

S7
- S8

- S9

... _ __ _ .. ___ ..:c:.:o:.::m:.:,:m=iln:.:;d=--______ .. _-:I

Figure 8.4: Applet interface for the Java code synthesized from a DCharts model

automaticaIly looks for the model class and instantiates an instance of it. If an error occurs, an error message
is displayed.

8.6 Limitations

The foIlowing DCharts features are not supported. They will be studied in future research:

• Currently, actions and guards are not supported for target-languages Java and C#. If Python is chosen
as the target-language, actions and guards are optionally included in the synthesized code (if parameter
--ext is given on the SCC command-line). The behavior ofthis Python code with actions and guards
is the same as the simulation in SVM. If C++ is chosen instead, the actions and guards may also be
incJuded (with the same --ext parameter). The code must then be linked to a Python run-time library.
In an execution, the binary code automatically loads the Python library, and executes the actions and
evaluates the guards. With this, the behavior of the model is also preserved.

There are many other choices for the implementation of actions and guards. One possibility is to
use languages that are independent of specifie target-languages, such as action semantics [46] [47]
and Modelica [48] [49]. Action semantics is not yet standardized. There is no mature library for it
until now. Modelica is a powerfullanguage capable of specifying non-causal equation sets. Actions
"a=b+c, d=a/2" can thus be written as "a=2*d, a-b-c=O". The Modelica compiler symbolically
and automaticaIly determines the unknown variables and sorts the equations in an order in which
aIl the equations can be solved sequentially. For example, suppose a and d are unknown before the
actions are executed. Modelica changes the order of the equations and symbolicaIly transforms them.
As a result, a is solved with "a=b+c" first, and then d is solved with "d=a/2". Though, there is no
non-commercial Modelica sol ver until now, its has a bright future as both an action language and a
constraint language.

• Transition parameters are supported only for Python and C++. The --ext parameter must be explicitly

given on the command-line to invoke sec.
• Timed transitions are supported only for Python and C++. The --ext parameter must be explicitly

given on the command-line to invoke Sec. Scheduling events in an execution requires extra threads.
This limits the portability and predictability of the mode!.

• Macros are statically substituted with their values by SCc. The generated code does not contain
macros any more. This also implies that macro redefinition is no longer allowed in the synthesized
code. When a model imports a submodel, it instantiates the submodel cJass, which cannot be modified

8.6 Limitations 108

at run-time. Because of this, the behavior of a model is fixed when code is generated .

• Distributed simulation is not supported. Ports and connections defined in a model description are
simply ignored by scc. This feature is left as future work. It is important and meaningful for SCC
to automatically generate distribllted systems, where different components (objects in the target lan
guage) commllnicate via a network. If they conform to the same communication protocols as PYPVM
and SVMDNS, those components may coexist in a system with sorne DCharts components simulated
by SVM. This makes the system extremely flexible .

• As discussed a previous section, the implementation of history is not efficient.

APPLICATIONS

There have been a nurnber of practical applications for SVM and SCc. Sorne of thern are introduced in this
chapter.

9.1 Simple Data Types

Data types such as boolean and integer are explicitly rnodeled with DCharts. Though variables of those types
are internally supported, rnodeling thern explicitly allows syrnbolic checking and analysis.

9.1.1 Boolean

The boolean data type is one of the sirnplest DCharts rnodels. Its textual description is saved in file Boo lean . des
in the DataTypes/ subdirectory of SVM.

MACRO:
INIT = true

STATECHART:
initiate [DS]
true
faise

TRANSITION:
S: initiate
T:O
N: [INIT]

TRANSITION:
S:true
E:chg
N:faise

TRANSITION:
S:faise
E:chg
N:true

TRANSITION:
S:true
E:get
N:true
0: [EVENT('true')]

TRANSITION:
S:faise
E:get

9.1 Simple Data Types 110

N:false
0: [EVENT (' false')]

ENTER:
N:true
0: [DUMP('Current value is true.')]

ENTER:
N: false

0: [DUMP('Current value is false.')]

This model simulates a boolean data cell, whose value is either true or false. Macro INIT can be redefined
in the command-line to give an initial value. By default, it is true.

The chg event inverts the value in the cell. The get event reveals its value to the user by dumping it out.

9.1.2 Integer Counter

An integer counter is a cell that stores an integer in it. The only operations on its value are "increase" by 1
and "decrease" by 1.

The model saved in Counter. des in the DataTypes/ subdirectory of SVM models such an integer counter.

MACRO:
INIT = 0
CURRENT = [INIT]

OPTIONS:
InnerTransitionFirst = 1

IMPORTATION:
myself = Counter.des

STATECHART:
STABLE [DS]
SMALLER [myself] [INIT = [INIT]] [CURRENT = [EVAL([CURRENT]-l)]]
LARGER [myself] [INIT = [INIT]] [CURRENT = [EVAL([CURRENT]+l)]]

TRANSITION:
S:LARGER
C: [CURRENT] >= [INIT]
E:dec
N:STABLE

TRANSITION:
S:STABLE
C: [CURRENT] <= [INIT]
E:dec
N:SMALLER

TRANSITION:
S:SMALLER
C: [CURRENT] <= [INIT]
E:inc
N:STABLE

TRANSITION:
S:STABLE

9.1 Simple Data Types

C: [CURRENT] >= [INIT]
E:inc
N:LARGER

TRANSITION:
S:STABLE
E:get
N:STABLE
0: [EVENT (' CURRENT' l]

ENTER:
N:STABLE
0: [DUMP (' Current value is [CURRENT].' l]

The INIT macro can be redefined to give a different initial integer value to the cell.

111

In this model, recursive importation is extensively used. When the model receives the ine event after it is
initialized, a submodel with the same structure is imported into the LARGER state (because its value becomes
[INIT]+ 1, which is larger than [INIT)). The value in the submodel is redefined as [CURRENT 1 + 1 in the
submodel. Since transitions in this model are inner-first, if the get event is received at this time, a transition
in the submodel instead of the importing model is triggered. The model retums the new value. When dec is
received at this time, the model goes out of the submodel. The [CURRENT 1 value of the model at the higher
level is 1 less than the [CURRENT 1 value of its submodel in the LARGER state. A get event received at this
time is handled by the importing model itself.

If the value of the cel! becomes less than [INIT 1 because of dee events, submodels are imported into its
SMALLER state.

The cell has a theoretical!y infini te capacity, which only depends on the available memory of the system.

9.1.3 Integer

The integer model [26] is similar to the counter. However, it al!ows the user to directly set its value to an
arbitrary number. It also has an upper bound and a lower bound. At any time during a simulation, any number
between the lower bound (inclusively) and the upper bound (exclusively) are accepted as an event. The value
of the cell is set accordingly.

The integer model is saved in Integer. des in the DataTypes/ subdirectory of SVM.

MACRO:
MIN = 0
MAX = 9
INIT = [MIN]
FIRST = 1

IMPORTATION:
myself = Integer.des

OPTIONS:
InnerTransitionFirst = 1

STATECHART:
STABLE [DS]
TEMP
LEFT [myself] [MIN = [EVAL([MIN]+ll]] [INIT= [INIT]] [FIRST= [FIRST]] [MAX = [MAX]]
RIGHT [myself] [MIN = [EVAL([MIN]+ll]] [INIT = [INIT]] [FIRST = 0] [MAX = [MAX]]

TRANSITION:

9.2 The Clock Component for Virtual-Time Simulation

S:STABLE

T:O
C: [MIN] <= [MAX]

N:LEFT

TRANSITION:

S:STABLE

T:O
C: [MIN] > [MAX] and [FIRST]==l

N:TEMP

0: [EVENT (' [INIT]')]

JI When the bottom is reached and it is initiating,
JI sent an event of the [INIT] character

TRANSITION:

S:LEFT

E: [MIN]

N:RIGHT

0: [DUMP('Current value is [MIN].')]

TRANSITION:

S:RIGHT

E: [MIN]

N:RIGHT

0: [DUMP (' Current value is [MIN].')]

TRANSITION:

S:RIGHT

E:get
N:RIGHT

0: [EVENT (' [MIN]')]

112

By default, the lower bound ([MIN]) of the ceIl is 0, and the upper bound ([MAX]) is 10. The idea is to struc
ture ail the possibilities in a bi-tree. Valid states in a model execution include LEFT . LEFT . RIGHT ... STABLE

and RIGHT. LEFT. LEFT. RIGHT . LE FT . RIGHI. .. STABLE. (There are 11 levels in total, with the last one
named STABLE.) The rightmost RIGHT represents the CUITent value. Suppose the name components in " ... "
are ail LEFT, then the first state represents integer 2, and the second represents 5.

When initiated, the model nests deep enough so that the transitions at the first level are duplicated (with only
the event names changed) 10 times. When the innermost STABLE state is reached, events of aIl those states
are accepted. For the get event to return the current value from the deepest RIGHT state, the transitions in
this mode! must be inner-first ordered.

Having nesteddeep enough ([MIN] > [MAX]) and the model is being initialized ([FIRST] =1), the state changes
to TEMP - a dummy state, and at the same time event [INIT] is broadcast. The cell immediately changes to
the initial value. Whenever the first RIGHT state is entered, the model is no longer being initialized and is
able to accept events from the user (possibly input from the SVM graphical interface). The [FIRST] is then
settoO.

When an event between ° (the [MIN] value) and 9 (the [MAX] value minus 1) is received, the state in the
appropriate level changes to RIGHT. If it is already in RIGHT, a self-loop is triggered. The self-loop eliminates
the RIGHT states at ail the lower levels, so it becomes the deepest RIGHT state.

9.2 The Clock Component for Virtual-Time Simulation

SVM only supports real-time execution. However, virtual-time simulation is required sometimes. The dock
component makes it possible to simulate DCharts models in an as-fast-as-possible way.

9.2 The Clock Component for Virtual-Time Simulation

The textual description of the clock component is included below:

Clock component for tight coupling

MACRO:

CHECKINTERVAL = 0

STARTTIME = 0

INITIALIZER:

sched= []

global_time=[STARTTIME]

def sched_cmp(a, b):
return cmp(a[l], b[l])

STATECHART:

NORMAL [OS]

TRANSITION:
schedule event
param 1: scheduler ID

param 2: schedule time
S: NORMAL

N: NORMAL

E: schedule
0: sched.append([PARAMS])

TRANSITION:

idle checker
notifies the earliest scheduled event

S: NORMAL
N: NORMAL
T: [CHECKINTERVAL] [RTT]

C: len(eventhandler.event_list) ==1 and len(sched»O

0: sched.sort(sched_cmp)

s=sched[O]
deI sched [0]
globaLtime=s [1]
[EVENT ("notify", s)]

param 1: scheduler ID

param 2: schedule time

TRANSITION:

time retrieval
S: NORMAL
N: NORMAL
E: gettime

0: [EVENT ("timereturn", [globaLtime])

param 1: current global time

113

The clock component uses variables to explicitly model the scheduler of an as-fast-as-possible simulation.
(This clock component is not functional in distributed simulation. Timewarp [31] technology is needed for
as-fast-as-possible distributed simulation.) To use this component, the designer designs a real-time model
as usual, but imports the clock as a top-level orthogonal component. Sorne transitions in the model need to
be modified to interact with the scheduler. After this, the real-time model is converted into a virtual-time
mode!. In a virtual-time model, there must be exactly one clock component.

9.2 The Clock Component for Virtual-Time Simulation 114

In a real-time simulation, a model schedules transitions simply with the alter special event. The transi
tions with this event are triggered after the specified number of seconds. In as-fast-as-possible simulation,
scheduling becomes different. The simulator do es not really wait. When no event is scheduled at the current
time, the virtual time counter is immediately increased to be the next scheduled time, and the transitions
scheduled at that time are fired without delay.

When the clock component is used, the model schedules transitions with the schedule event. This event is
broadcast by other parts of the model, and it is handled by the clock component. Two parameters must be
sent with this event:

1. The first parameter is an arbitrary ID. This ID can be any Python variable. When the virtual time
becomes equal to the scheduled time, the clock broadcasts a notifier with this ID as a parameter.
Transitions in the model that react to the notifier test this ID in their guards to determine whether or
not the event is scheduled by themselves.

2. The second parameter is a ftoat number of the difference between the scheduled time and the current
time. It must be positive or O. If its value is 0, the notifier will be received before the dock component
advances the time counter.

For example, if an orthogonal component in the model has ID "01" (arbitrarily determined by the designer),
and it schedules a transition after 5.3 seconds, it may send the schedule event with action" [EVENT (" schedule" ,
["01", 5.3])]", which is then handled and recorded by the dock component.

The clock component increases the virtual time automatically when no more events are scheduled at the
current time. At that time, ail the orthogonal components are considered idle because they are waiting for
notifiers from the dock. This condition is expressed with the following guard:

len(eventhanàler.event_list)==l and len(sched»O

Here, eventhandler . evenLlist is the internallist of scheduled events in SVM. If its length is equal to l,
no event other than the one that the clock component itself schedules is in the event list. This means ail other
orthogonal components are idle. This guard also checks whether there is any event scheduled in sched (the
list of schedule requests maintained by the c\ock component).

When ail the other orthogonal componcnts are idle, the clock component increases the time counter to the
smallest scheduled time. It then broadcasts notifiers. A notifier is a notify event with the same parameters
as the schedule event that schedules it. If multiple events are scheduled at exactly the same time, the
dock component broadcasts multiple notifiers with different parameters. The transitions in other orthogonal
components reacting to the notify event use guards to test whether they are the ones to be notified. To
continue with the last example, "[PARAMS] [0] =" 01 Il'' is the guard of the transition that reacts to the not if y
event.

In real-time simulation, the current time can be retrieved by calling the time function in the time Python
library. This function returns the current time according to the hardware clock. However, as-fast-as-possible
simulation uses a different concept of time. The current time is maintained in a time counter. To retrieve the
current time from the clock component, il get t ime event should be sent without parameter. When the clock
component receives this event, it immcdiately replies with a timereturn event. The current time (a f10at
number) is the only parameter with the event. The receiver retrieves the current time with" [PARAMS] [0 l".

The following are several rules for the current time broadcast by the clock component:

• It is impossible to request and retrieve the current time in the output of a transition. At least 2 transi
tions are required for this purpose: one sends the get t ime event, and the other reacts to the immediate
timereturn event. (As a trick, the model may directly access the globaLtime variable in the clock
component, since ail the variables in a model, induding those of the dock component, share the same
name space. However, this method is not modular.)

9.3 An MP3 Player 115

Figure 9.1: The MP3 player

• Usually, there is no need to retricve the current time in a scheduled transition, because the current
time is always equal to the time \\hen it is scheduled, received as the second parameter of the notify
event.

• Using the dock component and the after special event (with t larger than 0) in combination produces
unpredictable result and is strongly discouraged.

• Multiple dock components in the same model confiict with each other. For as-fast-as-possible simu
lation, there must be exactly one c\ock component.

9.3 An MP3 Player

An MP3 player is developed according (0 the division of the 3 parts of a system in Figure 5.8. It is included
in the MP3P layer / subdirectory of SYM.

The model consists of the following files:

• MP3Player.des. The main DCharts model of the controllogic between the user interface and the
hardware driver.

• MP3PlayerGUI .py. The model-specific user interface.1t is a Python library, where classes and func
tions concerning the graphical interface are defined. The user interface is instantiated under the
INTERACTOR descriptor in the main mode!. Transitions in the main model control the interface by
means of the functions defined in the library.

• MP3Library. py. The hardware driver library. In this example, the hardware is the PyGame (http:
/ /www. pygame. org 1) MP3 library that provides playback functions. The hardware driver accommo
dates this conceptual hardware to the main mode!. Because the hardware is not event-based, the driver
starts an extra thread to periodically test the status of the hardware, and generate events to be handled
by the main mode!. The main model also con troIs the hardware by means of the functions provided
by the driver.

• Files Fwd.gif, KsCD.gif, MP3GUI .gif, PlayPause.gif, Rew.gif and Stop.gif are the images to
be displayed on the buttons in the graphical interface.

The FILE macro in the main model specifies the name of the MP3 file to be played. By default, it is empty.1t
must be redefined by the user on the command-line. The following statement under the INITIALIZER tests
the validity of its value. The simuiatiull halts if no file na me is given:

ij"{FlLE}"=="":
prin! 'usage: svm MP3Player.des "FlLE={.mp3)'''
exit(1)

Figure 9.1 shows the graphical interface uf the MP3 player. It is initialized by the following statements under
the INTERACTOR descriptor:

fram MP3PlayerGUI import MP3PlayerGUI # import the GUI class MP3PlayerGUI
root = Tk()

9.4 Simulation of Software Process

Round Task Hours
developing code 12
developing tests 8
running tests 1
analyzing problems 3
developing code 6

2
developing tests 4
running tests 1
analyzing problems 2
developing code 3

3 running tests
- passed-

Table 9.1: Rounds and tasks in a software development process

root.title("MP3 player")
gui = MP3PlayerGUI(root, eventhandler) # Înstantiate the GUI with the global eventhandler
eventhandler.start() # start the simulation of the model
root.mainloop() # loop infinitely to receive GUI events, until the window is closed

116

Because SCC supports actions and guards for the Python and C++ target languages, the user may synthesize
code for this MP3 player in those languages. This produces a stand-alone application, which does not de
pend on the Python environment. The FILE macro must be explicitly redefined on the SCC command-line,
since it is not possible to redefine it in the synthesized code. The user may use the following command to
generate MP3P layer. py, which encodes the complete behavior of the MP3 player (assuming that MP3 file
music. mp3 exists):

sec -lpython --ext MP3Player.des "FILE=music.mp3"

The command to synthesize code in C++ is similar:

sec -lcpp --ext MP3Player.des "FILE=music.mp3"

Note that the user need not compile Python source, as Python is an interpreted language. MP 3P layer. py can
be directly executed with Python and il plays music.mp3. However, the C++ source needs to be compiled
and linked with the Python shared library. The need and the command for this compilation is printed to the
console when SCC synthesizes the code.

CDPlayer is another meaningful model inc\uded in the SVM distribution. Il is in the CDPlayer/ subdirec
tory. Il models a CD player similar to the MP3 player. Il is more complex because debugging and snapshot
ting are supported.

9.4 Simulation of Software Process

Sadaf Mustafiz has built a software process model [50] for SVM. The development process is modeled as
several tasks, each of which is "an entity (a real object that exists and has an extended lifetime)" (Sadaf
Mustafiz).

To model those tasks with DCharts, each of them corresponds to an active state. For example, a software
development pro cess consists of threc rounds, as shown in Table 9.1. In the first round, the following tasks
are scheduled sequentially: developing code, developing tests, running tests and analyzing problems. The
distribution ofhours among them is: developing code takes 12 hours, developing tests takes 8 hours, running
tests takes 1 hour, and analyzing problcms takes 3 hours.

Because problems are discovered in round l during the running tests task, another round must be added to
fix those problems. Before round l finishes, the task of analyzing problems is undertaken to analyze the
problems that are to be fixed and the cost to fix them in the next round.

9.5 Simulation of Tep 117

Round 2 is based on the results of round 1. It strives ta fix the problems discovered in round l, as weil as to
improve the functionality of the system. The development becomes faster: developing code takes 6 hours,
developing tests takes 4 hours, running tests takes 1 hour, and analyzing problems takes 2 hours. Because
there are still problems found in the running tests task, round 3 is required, which only ai ms at fixing those
remaining problems.

In round 3, the problems are fixed, and ail the tests are passed. The development process successfully fin
ishes.

SadafMustafiz has modeled this process with DCharts. The model is simulated with SVM. The output trace
is written in text files. The plots of the output trace is shawn in Figure 9.2.

More information about the above software process model can be found at the Modeling and Simulation
Based Design course homepage:

http://moncs.cs.mcgill.ca/people/hv/teaching/COMP762B2003/

9.5 Simulation of Tep

Shah Asaduzzaman and Zaki Hasnain Patel have built a TCP model for SVM. This model simulates com
munication via the TCP network protocol.

The communication process of the system is shown in Figure 9.3. There are 6 parts in the system:

• The client application generates data with a data generator. The data enter a buffer (FIFO queue). They
are sent by the application control 1er one by one. The client application also listens ta the data coming
from the TCP driver.

• The TCP driver on the client side accepts data packets from the application controller. It sends mes
sages via a network. It has no buffer. The messages must be sent immediately. It also listens ta the
incoming data channel.

• The data channel transfers data packets from the client side ta the server side.

• The TCP driver on the server sicle accepts data from the data channel from the client side to the server
side. It sends control information to the outgoing data channel.

• The server application computes with the received data packets. It generates control packets. Because
the control packets are generated one at a time, buffer is not necessary for the server. The generated
control packets are sent ta the TCP driver on the server side.

• The data channel transfers control packets from the server side to the client side. Those packets are
received by the client TCP drivel·.

Each part of the system is modeled with a DCharts orthogonal component. The whole system is a combina
tion of those orthogonal components by means of importation (Figure 9.4).

The 6 parts of the system is modeled \Vith submodels imported into the total system:

• The client application is modeJcd ill submodel ClientApp (Figure 9.5).

• The TCP driver is modeled in submodel TCPDri ver. It is for bath the client side and the server
side, bec au se the API of the l'CP protocol on both sides is exactly the same. The Acti veClose,
PassiveClose and Establish"d states of the submodel are abstracted. Figures 9.7, 9.8 and 9.9
show the internai structure of thase states, respectively.

• The data channels are modeled in submodel Channel (Figure 9.10). Both channels in the system are
implemented with the same subillodel.

• The server application is modelcd in submodel ServerApp (Figure 9.11).

The channel in Figure 9.10 uses the afrer special event to simulate delay in the network and the time interval
between two subsequent inquiries to the buffer. As a result, this model is a real-time model. To convert it

9.5 Simulation of Tep 118

Module Tests

" '\ ,,'" "Q) r{0 "," r0 ~'" ~Q) ~~ '0" ~ '\'"

Tim e

Figure 9.2: Traces of the software process model simulation

9.5 Simulation of Tep

g

Client
Application

lo 0 1111
Data Buffer

Data packet

TCP
+-__ 1 Driver

o (cli
Datjnel (S-ta-C)

Control packet

Figure 9.3: The TCP system

TCPSimulator

(
...

l Normal 1

Client
TCF' ~ CI-Iannel

Dri\/er- ~
Application : (Serv'er-to-Client)

(Client) ;

p_.- ... -_ ••.•.. __ .. --_ _- ---_ ... -. __ ._-_ _-_ __ _--

Channel Tep

((~lient-to-5e0/er) Driver

® (Server) ,

\ ,

."'~~ i 1~;r3topi

F'aused
}_/JP ",,,' l Stopped

Figure 9.4: Overview of the TCP simulator

119

Server
Application

Serier
Application

9.5 Simulation of Tep

Generating

genBuffer.apperHI'le\'\'OaLl:'
cOllnt++

aften:1AT
[gllard(c •. unt>=ld."-.<;oI

Stopped

Closing

aftJilI(Chkl ntrv'al)
[~luard(Data in Bu

.)(Dat.a)

Notifyi
':mdClose

Figure 9,5: The slIbmodel of the client application

120

Notifyi
.: md~:;nd(O ata:.

9.5 Simulation of Tep

TCPDriver

Receive{8YN+ACK)1
~-., Syn Sent 1--------;S=:-e-n.",d(,....,AC"""'K)..",..--~-----,

aJler\ a ·r~ j
~,jotifi(Close))

t'Joti1,! (Connected)

Receive(FIN)1
Send(ACK)

CrndClosa CrndL sted

Cm Close' crnd§,e"h'j'
8erd{S'"(t'.j)

AdivEfClose 8end(FIN)

Listen

L Recei ·e(SYlJ)1
8end(E: YN+ACK)

Receive(SYN)1
8end(SYN+ACK) Receive(ACK)1

SynRcvdr-----~~~----~
14---=-----,---,,=-=::-:---(

Receive(R8T)1

Figure 9.6: The submodel of the Tep driver (for both client side and server side)

121

9.5 Simulation of Tep

1 TCPDriver.ActiveClose 1

\
FinWait1 1 Receive(FINV Closing] Send(ACK) ·l

~Ve(FIN+ACK)1
Si\ncJ(A.CI<)

\
Recei le(ACK)' Receiv (AC Ky

FinWait2 lReCeiV8rFINV(TimedWait jft r(waittimg) Closed 1 J Sencl(ACK) l

Figure 9.7: The ActiveClose state of the TCP driver

TC P Driver .PassiveClose

CrndClost!
Selld(m~)

Figure 9.8: The Passi veClose state of the TCP driver

122

9.5 Simulation of Tep 123

TCPDriver.Established

CmdSend(Data)!

Busy

Figure 9.9: The Established state of the Tep driver

Transmitter

(~I(Chl"ntr ... al)
[guard(Data in Buff

'{Data) Busy
Feeder

Send(Data)
GhannelBliffer.a pp en d(O Jtal

Figure 9.10: Thè submodel of the communication channel

9.5 Simulation of Tep

Idle
aft'9r(Startup Ti me) /
CmdListen Started

after(TimetoFail) /
CmdClose

Notify(FinReceived)/
CmdCloseListen

Figure 9.11: The submodel of the server application

Feeder

Sen \1:, "*~ ""iJ---

Ct1 annelBuffe r.appe n,j (Data)
Sct18dule CC rlanne I.R;~ceive)

ScrledulerNotify(Channel.Receive)f
Receive(Target, Data)

Figure 9.12: The virtual-time version of the communication channel

124

9.5 Simulation of Tep 125

Figure 9.l3: The plot of the simulation result of the TCP model

into a virtual-time model, Shah Asaduzzaman and Zaki Hasnain Patel have provided another version of
the channel submodel Channe12 (Figure 9.12). The cJock component is imported as a top-level orthogonal
component in the system. The new data channel schedules events by sending the Schedule event to the
dock component. When the virtual time becomes equal to the scheduled time, the cJock component sends
back a SchedulerNotify event. (The schedule event and the notify event discussed in section 9.2 are
renamed to Schedule and SchedulerNotify, respectively.)

The results of the simulation are gathered and plotted in Figure 9.13. For more information about the TCP
model, the readers are referred to Shah Asaduzzaman's on-line report for the Modeling and Simulation
course at McGill University:

http://www.cs.rncgill.ca/-asad/archive/project-522/

CONCLUSION

DCharts are a new formalism that combines the benefits of statecharts and DEVS for the design of complex
physical systems and software systems. It has the following advantages:

• A visual syntax is designed for the DCharts formalism. There is graphical representation for every
entity or feature of DCharts.

• DCharts are powerfu!. They support statecharts-like hierarchical model design with variables. Vari
ables help keep infinite and innumerable states. Recursive DCharts models are much more expressive
than statecharts and DEVS in that they are able to specify infinite states and transitions.

• DCharts are modular. Importation is also known as tight coupling. Submodels are copied to the inside
of astate ofthe importing mode!. The behavior of the submodels may not be modified by the importing
model, except that macros can be redefined as parameters.

Connections between multiple models via ports are also known as loose coupling. In that case, a model
may affect other models only by means of messages sent via the established connections.

• DCharts are independent of simulation strategies. Though its definition only addresses real-time sim
ulation, it is shown that virtual-time simulation can be easily accomplished by means of a clock
component.

• DCharts are highly practica!. SVM is a simulator for DCharts, which supports a complete semantics
of DCharts 1.0. Many of the algorithms implemented in SVM can be reused by other simulators or
applications. SVM itself is reusable (for example, by AToM3 and SCC).

SCC is a code synthesizer for DCharts capable of generating source code in multiple target languages.
The synthesized code is efficient and suitable for practical purposes.

• Besides these, non-recursive DCharts can be transformed into statecharts with variables or DEVS
models. Statecharts and DEVS models can also be transformed into DCharts. This pro pert y is useful
for mode! simulation and mode! checking.

Three types of syntaxes are discussed: abstract syntax, graphical/visual syntax and textual syntax. The math
ematical syntax provides a means by which DCharts models can be formally specified. The graphical syntax
represents DCharts models visually, which is much more easily understood by human beings. The textual
syntax is accepted and processed by computer programs, while at the same time designers can still easily
write DCharts models with the textual syntax. A few extensions to the basic syntax are proposed by the
textual syntax. Those extensions allow designers to specify their models with more ftexibility. They are
supported by SVM and SCc.

The future work on DCharts includes:

• Do more research on model checking and verification of DCharts. There are two possible approaches:

• Build tools that directly check DCharts models, or verify them by means of simulations .

• Transform DCharts modcls into models in other well-studied formalisms, and check/verify the
new models with the tools available for those formalisms.

CONCLUSION 127

• The performance of sorne DCharts features (such as history) in the code generated by SCC must
be improved. Above this, an important hurdle to cross is the need for a target-Ianguage-independent
action language.

• Extend the concept of ports and connections to tight coupling, so that an importing model may only
send events to its submodels via ports and connections established between them. This mechanism
further protects the internai behavior of submodels. It makes DCharts more modular.

• Implement the support of more target languages in SCc. Users will be able to integrate the code gen
erated by SCC with the code gcnerated by other code generators for other formalisms. This integration
allows the users to model a system with different formalisms and tools, and finally combine different
parts to get a complete system.

ACKNOWLEDGMENT

1 have given beginning to the research on modeling and simulation with DCharts. The completion of this
formalism requires and will require the collaboration and support from many researchers friends. At the very
end ofthis thesis work, 1 would like to especially and sincerely thank these people:

• Professor Hans Vangheluwe of the MSDL (Modeling, Simulation and Design Lab) of McGill Uni
versity, who has earnestly supervised my research from the very beginning, and who is still ardently
supporting me with his learning, research equipments and morality;

• My parents and Ms. Wanmei Huang, my girlfriend, who have been supporting me by understanding
the importance of my work and not asking for more time from me;

• Mr. Spencer Borland, whose research results, incJuding the theory of transformation from statecharts
to DEVS and the statecharts plugin for AToM3 (which has been enhanced by me to become a DCharts
plugin for AToM3), have been the basis for my research;

• Professor Jorg Kienzle in the SEL (Software Engineering Lab) of Mc Gill University, who always
jokes with me and teaches me with his unique humorous tone;

• Ms. Sadaf Mustafiz, who has built the software process model for SVM, one of the most cited appli
cations of my research result;

• Mr. Shah Asaduzzaman and ML Zaki Hasnain Patel, who have built the TCP model for SVM, another
one of the most cited applications of my research result; and

• any one else who has unselfishly supported my research.

ALGORITHMS
Fire a Transition, 27
Fire a Transition (Alternate), 28
Flatten Importation, 29
Model Compound Statements with Simple State-

ments,70
Order Transitions by Priorities, 65
Rule Checker, 95

Simulate Synchronous Sending with Asynchronous
Sending,31

DESCRIPTORS
BEFORESNAPSHOT,61
OPTIONS

InnerTransitionFirst,60
AFTERSNAPSHOT,61
COMPONENT,52

id, 52
name,52
type, 52

CONNECTIONS, 54

DESCRIPTION, 62
ENTER, 51

c,51
N,51
0,51

EXIT, 51
S,51

C,51
0,51

FINALIZER,60
IMPORTATION, 51
INITIALIZER,60
INTERACTOR,60
MACRO, 54
OPTIONS, 59

ModelName,59
Harel,59

PORT, 52
buffer,52
name,52
type, 52

RESTORE,61
SNAPSHOT,61
STATECHART,45

[CS], 46
[Ds],46

[FS],46
[HS*], 46
[HS],46
[ITF], 46
[OTF], 46
[RTO],46

Importation Parameters, 58
TRANSITION, 48

C,48
E,48
N,48
0,48
s,48
T,48
[HS], 49
Priority Numbers, 49

MATHEMATICAL SYMBOLS
Importation /).

Overview,21

Ports P
Type PT, 21

MATHEMATICAL SYMBOLS

Children Function C, 21
Connections L, 25

Local Port PN\, 26
Overview,21
Server Model M, 26

Server Port PNz, 26
Importation /)., 25
Ports P, 21

NamePN,21
State Set S, 21

Default State DS, 22
Enter Actions EN, 22
Exit Actions EX, 22
GUIDSN,22
History HS, 22
Orthogonal Component CS, 22
Overview, 18
Transition Priority T P, 22

Transition T, 22
Destination State DES, 23
EventE, 22
Guard G, 22
Output Actions À, 23
Overview, 20

Index

INDEX

Parameters y, 23
Priority Pria, 23
Source State SRC, 22
Transition to History HST , 23

Variables V, 23
Overview,21

130

Bibliography

[1] Juan de Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and meta-modelling. In
European Joint Conference on Theory And Practice of Software (ETAPS), Fundamental Approaches
to Software Engineering (FASE), pages 174-188, April 2002. Grenoble, France.

[2] Juan de Lara and Hans Vangheluwe. Using atom3 as a meta-case too1. In 4th International Conference
on Enterprise Information Systems (ICEIS), pages 642-649, 2002. Ciudad Real, Spain.

[3] Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-paradigm modeling. ACM
Transactions on M odeling and Computer Simulation, 12(4): 1-7, 2002. Special Issue Guest Editorial.

[4] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Program
ming, 8(3):231-274, June 1987.

[5] David Harel and Amnon Naamad. The STATEMATE semantics of statecharts. ACM Transactions on
Software Engineering and MetllOdology, 5(4):293-333, 1996.

[6] Jim Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

[7] Bernard P. Zeigler. Multifacetted modelling and discrete event simulation. Academic Press Profes
sional, Inc., 1984.

[8] Bernard P. Zeigler. Theory of Modelling and Simulation. Krieger Publishing Co., Inc., 1984.

[9] Spencer Borland. Transforming statechart models to DEVS. Master's thesis, School of Computer
Science, McGill University, Montréal, Canada, August 2003.

[10] A. Geist, A. Beguelin, Jack Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM ParaUe! Virtual
Machine, A User's Guide and Tutorial for Networked Paralle! Computing. MIT Press, Cambridge,
Mass., 1994.

[11] Jean-Sébastien Bolduc and Hans Vangheluwe. The modelling and simulation package PythonDEVS
for classical hierarchical DEVS. Technical report, MSDL, Mc Gill University, June 2001. technical
report MSDL-TR-2001-01.

[12] Ernesto Posse and Bolduc Jean-Sébastien. Generation of DEVS simulators by graph-transformation.
In Summer Computer Simulation Conference (Student Workshop), pages S 139-S 146. Society for Com
puter Simulation International (SCS), July 2003. Montréal, Canada.

[13] Spencer Borland and Hans Vangheluwe. Transforming statecharts to DEVS. In Summer Computer
Simulation Conference (Student Workshop), pages SI54-S159. Society for Computer Simulation In
ternational (SCS), July 2003. Montréal, Canada.

[14] Alison Stewart. Modelling and simulation based design of GUI behaviour. Technical report, MSDL,
McGill University, December 2003. http://msdl.cs .mcgill. ca/people/ astewaS/report. dtml.

[15] C. Hylands, E. A. Lee, and et al. Heterogeneous concurrent modeling and design in java (volume 1:
Introduction to ptolemy ii). Technical report, University ofCalifornia, Berkeley, CA USA 94720, July
2003. Technical Memorandum UCBIERL M03127.

[16] C. Hylands, E. A. Lee, and et al. Heterogeneous concurrent modeling and design in java (volume
2: Ptolemy ii software architecture). Technical report, University of California, Berkeley, CA USA
94720, July 2003. Technical Memorandum UCBIERL M03/27.

BIBLIOGRAPHY 132

[17] C. Hylands, E. A. Lee, and et al. Heterogeneous concurrent modeling and design in java (volume 3:
Ptolemy ii domains). Technical report, University ofCalifornia, Berkeley, CA USA 94720, July 2003.
Technical Memorandum UCBIERL M03/27.

[18] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal
logic. In Logic of Programs: Workshop, Yorktown Heights, volume 131. Springer-Verlag, May 1981.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems,
8(2):244-263, 1986.

[20] Joanne M. Atlee and John Gannon. State-based model chee king of event-driven systems requirements.
IEEE Transactions on Software Engineerillg, 19(1):24-40, January 1993.

[21] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Understanding and comparing model-based specifi
cation notations. In IEEE IntelïlCltional Requirements Engineering Conference (RE 2003), September
2003.

[22] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Composable semantics for model-based notations.
In Proceedings of the IOth ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2002),2002.

[23] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Template semantics for model-based notations.
IEEE Transactions on Software Engineerillg, pages 866-882, October 2002.

[24] Ivan Porres. Model refactorings as rule-based update transformations. In Proceedings of the
< <UML> > 2003 Conference. LNCS 2863, Springer, October 2003. San Francisco, California, USA.

[25] Ivan Porres. A toolkit for model manipulation. Journal on Software and System Modeling, 2, 2003.

[26] Thomas Huining Feng. An extcndcd semantics for a Statechart Virtual Machine. In A. Bruzzone and
Mhamed Itmi, editors, SUJl1l1ler Computer Simulation Conference. Student Workshop, pages S147-
S166. The Society for Computer Modelling and Simulation, July 2003. Montréal, Canada.

[27] Daniel Varro. A formai semantics of UML Statecharts by model transition systems. In Andrea Corra
dini, Hartmut Ehrig, Hans-Jorg Kreowski, and Grzegorz Rozenberg, editors, Proc. ICGT 2002: 1 st In
ternational Conference Oll Grapft Trallsfurmation, volume 2505 of LNCS, pages 378-392, Barcelona,
Spain, October 2002. Springer-Verlag.

[28] Foldoc (free on-line dictionary of computing), November 1997. http://wombat.doc.ic.ac . ukl
foldoc/.

[29] Webopedia,2004. http://www.pcwebopedia.com/.

[30] Msn encarta (online encyclopedia, dictionary, atlas, and homework), 2004. http: 1 (encarta .msn.
com/.

[31] Richard M. Fujimoto. Parallel {/nd Distriullted Simulation Systems. Wiley-Interscience, 2000.

[32] Stanley B. Lippman and Josée Lajoie. C++ Primer. EPUBCN.COM, 1998.

[33] Juan de Lara, Hans Vangheluwc, and Manuel Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in atom3 . Suftlvare and Systems Modeling (SoSyM), 2003.

[34] David M. Beazley. Python Esselltial Reference (2nd Edition). New Riders Publishing, 200l.

[35] Mark Lutz. Programming Pytholl. nh. O'Reilly & Associates, Inc., 1996.

BIBLIOGRAPHY 133

[36] Mark Lutz and David Ascher. Learning Python. nh. O'Reilly & Associates, Inc., 1999.

[37] Fredirk Lundh. The Standard Python Library. PythonWare, 2000.

[38] Erich Gamma, Richard Helm, and John Vlissides. Design Patterns - Elements of Reusable Object
Oriented Software. Addison-Wesley, 1995.

[39] Thomas Huining Feng. SVM and SCC tutorial, March 2004. http://msdl.cs .mcgill. ca/peoplel
tfeng/svmsccdoc/.

[40] Thomas Huining Feng and Hans Vangheluwe. Case study: Consistency problems in a UML model of a
chat room. In Sixth International Conference on the Unified Modelling Language (UML 2003), Work
shop on Consistency Problems in UML-based Software Development Il, October 2003. San Francisco,
USA. http://msdl.cs.mcgill.ca/people/tfeng/docs/con03.pdf.

[41] Python 2.2.3 documentation, May 2003. http://www .python.org/doc/2.2. 3/.

[42] Juan de Lara and Hans Vangheluwe. Computer aided multi-paradigm modeUing to process petri-nets
and statecharts. In International Conference on Graph Transformations (ICGT), volume 2505, pages
239-253. Springer-Verlag, October 2002. Barcelona, Spain.

[43] Juan de Lara Jaramillo, Hans Vanghe1uwe, and Manuel Alfonseca Moreno. Using meta-modelling
and graph grammars to create modelling environments. In Paolo Bottoni and Mark Minas, editors,
Electronic Notes in Theoretical Computer Science, volume 72, February 2003.

[44] Juan de Lara and Hans Vangheluwe. Using meta-modelling and graph grammars to process gpss
models. In Hermann Meuth, editor, 16tlz European Simulation Multi-conference (ESM), pages 100-
107, June 2002. Darmstadt, Germany.

[45] Ernesto Posse, Juan de Lara, and Hans Vangheluw. Processing causal block diagrams with graph
grammars in atom3. In European Joint Conference on Theory and Practice of Software (ETAPS),
Workshop on Applied Graph Transformation (AGT), pages 23-34, April 2002. Grenoble, France.

[46] Peter D. Mosses. Theory and practice of action semantics". In MFCS '96, Proc. 21st Int. Symp. on
Mathematical Foundations of Computer Science (Cracow, Poland, Sept. 1996), volume 1113, pages
37-61. Springer-Verlag, 1996.

[47] Peter D. Mosses. Action semantics and asf+sdf. In Electronic Notes in Theoretical Computer Science,
volume 65. Elsevier, 2002.

[48] Peter Fritzson and Vadim Engelson. Modelica - A unified object-oriented language for system mod
eling and simulation. Lecture Notes in Computer Science, 1445, 1998.

[49] Hilding Elmqvist et. al. Modelica - A unified object-oriented language for physical systems modeling:
Tutorial and rationale. Technical report, The Modelica Design Group, December 1999. http://www .
modelica. org 1.

[50] Watts S. Humphrey and Marc I. Kellner. Software process modeling: principles of entity process
models. In Proceedings of the Il th illternational conference on Software engineering, pages 331-342.
ACM Press, 1989.

