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Abstract

Central Diabetes Insipidus is a disorder that is characterized by decreased secretion of a

certain hormone is the human body called the the antidiuretic hormone (ADH). Patients

affected with central diabetes insipidus will have an abnormally high plasma osmolality

level manifested by a reduced ability to concentrate urine, excessive thirst and excessive

urine production [1].

Currently, Central Diabetes Insipidus is treated by administering synthetic ADH as a

nasal spray. In this thesis, a closed-loop automated treatment system has been investigated.

For that end, advanced control techniques were studied, from a Smith Predictor to H∞

Optimal Control and Robust Control. The effectiveness of the controllers to reject a step

disturbance in the plasma osmolality was examined. This Thesis shows the potential use

of control theory in the context of Central Diabetes Insipidus.
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Abrégé

Le Diabète Insipide Central est un désordre qui est caractérisé par la sécrétion diminuée

d’une certaine hormone dans le corps humain appelé l’hormone antidiurétique (ADH). Les

patients affectés par cette anomalie auront un taux anormalement élevé d’osmolalité du

plasma, manifesté par une diminution de la concentration de l’urine et par un excés de soif

et de production d’urine.

Actuellement, on traite le Diabète Insipide Central en administrant de l’ADH synthétique

avec un vaporisateur nasal. Dans cette thèse, un système de traitement automatisé a

été etudié. À cette fin, des techniques de contrôle avancées ont été étudiées, à savoir le

Prédicteur de Smith, la commande Optimale H∞ et la commende Robuste. L’efficacité des

contrôleurs pour minimiser l’effet des perturbations en échelon dans l’osmolalité du plasma

a été examinée. Entre-autre, cette Thèse montre l’utilisation potentielle de la théorie de

contrôle dans le contexte du Diabète Insipide Central.
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Chapter 1

Introduction

1.1 Control Theory

Over the years, control theory became indisputably a central part of any field of engineering

and science. Automatic control of systems is driving technology forward, making any

machine, process or plant in the broadest of terms function as desired. One of the first

significant contribution in automatic control was the one of James Watt who tried to control

the speed of a steam engine in the eighteenth century. Soon after, proper mathematical

control theory started to be formulated. With scholars like Nyquist (1932) who developed a

procedure for determining the stability of closed-loop system, to Bode (1940) who initiated

frequency-response analysis of systems; it did not take long for control theory to become the

basis for any industrial advancement. From air-conditioning systems that revolutionized

living standards by accurately maintaining temperatures of desired environments within

certain bounds [6], to automotive control of engines and drivelines [7] that became an

everyday reality in transportation systems, automation is now omnipresent within our

society.

2010/02/25
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1.2 Biomedical Applications of Control Theory

Recently, application of such theory in biomedical systems started to emerge. The human

body is the ultimate controller, in the sense that it is trying to prevent wide oscillations in

the body’s internal conditions by keeping any disturbance in the body within narrow limits.

Homeostasis is a key word that signify the maintenance of this constant internal consistency.

With the growing advancements in control theory and algorithms, their application in

biological systems was a natural step forward with a twofold motivation. The control and

systems theory could be applied from a biomedical aspect to understand how the body

can attain homeostasis and from a human aspect by trying to develop methods that help

achieve specific homeostasis conditions in patients incapable of doing so.

Biomedical control devices started to emerge rapidly, especially after multiple advance-

ments in nano-technology and computational speeds. Examples worth mentioning of au-

tomation application in medicine are artificial heart valves [8], insulin pumps [9], and

pacemakers with more than 300,000 implanted per year in the United Stated alone [10].

1.3 Problem Statement and Aim

Central diabetes insipidus (CDI) is a rare hypothalamus-pituitary disorder that is char-

acterized by decreased secretion of the antidiuretic hormone (ADH) in the human body.

Patients affected with CDI will have an abnormally high plasma osmolality level manifested

by a reduced ability to concentrate urine, excessive thirst and excessive urine production

[1].

Currently, CDI is treated in an open-loop fashion by administering a synthetic ADH

as a nasal spray. In this Thesis, we will be investigating the possibility of a closed-loop

regulation of the plasma osmolality level in patients affected with CDI. In this type of
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control, patient’s manual intervention is eliminated, an automated regulatory system will

allow them to live a high quality life similar to that of a healthy subject.



4

Chapter 2

Background and Problem

Formulation

Cells are the building blocks of our body, combining to form anything from tissues to

organs. All cells swim is a liquid called tissue fluid [11]. This fluid supported by the blood,

supplies cells with nutrients and form the necessary environment that each cell needs to

perform its specific function. Although in the body there are trillions of specific cells, each

looking for its own optimum condition, the body acts as a whole regulating the conditions

for healthy growth and efficient functioning of the cells.

The Environmental factors affecting cellular activity are:

• Plasma Osmolality(OMSP)

• Temperature

• Hydrogen-ion concentration

Any disruption of the homeostatic level of any of those items will be destructive to the

cells.

2010/02/25
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2.1 Plasma Osmolality

Plasma Osmolality (OSMP) is a key environmental factor affecting cellular activity, it is

estimated in [2] by:

OSMP = 2(Plasma
[
Na+

]
) +

[Glucose]

18
+

[BUN ]

2.8
, (2.1)

where plasma osmolality (OSMP) as well as the plasma concentration of Sodium (Plasma[Na+])

are expressed in mOsm/l1. The [Glucose] and [BUN ] (Blood Urea Nitrogen) concentra-

tions are expressed in mg/dl (the division by 18 for the glucose and 2.8 for the BUN allows

conversion from mg/dl to mOsm/l).

OSMP is strictly maintained at constant level within the body and any variation of its

concentration in either directions of about 3 mOsm/l will result in the stimulation of the

body’s osmolality regulating mechanisms. The alterations of the OSMP are detected by

osmoreceptors in the vicinity of the supraoptic and paraventricular areas of the hypothala-

mus (Figure 2.1). These receptors regulate the release of the antidiuretic hormone (ADH)

also known as vasopressin [3].

1osmole (with symbol Osm) is a unit of osmotic pressure equivalent to the amount of solute that dis-
sociates in solution to form one mole (Avogadro’s number) of particles (molecules and ions). ( Definition
taken directly from [12])
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Fig. 2.1 The anatomy of the hypothalamus and pituitary gland depicting
the route for ADH secretion. Photo taken from [2] with permission.



2 Background and Problem Formulation 7

Cellular dehydration occurs when extracellular fluid osmolality is increased relative to

that of the intracellular fluids. The relationship between the OSMP and the plasma ADH

concentration is such that at normal OSMP level (about 287 mOsm/l) there is ADH present

in the plasma; lowering the OSMP reduces the plasma ADH concentration and raising the

OSMP increases the plasma ADH concentration [1].

When extra-cellular fluid (ECF) osmolality increases, the osmoreceptors shrink and re-

lease ADH [13]. ADH markedly increases water re-absorption in renal collecting tubules,

which will reduce OSMP to normal again (Figure 2.2). Conversely, a decrease in ECF osmo-

lality, will inhibit the release of ADH in the blood stream, decreasing water re-absorption in

renal collecting tubules and consequently regulating OSMP to homeostatic levels. Figure

2.3 shows a diagram describing this osmo-regulatory mechanism.

Fig. 2.2 The action of ADH in the collecting tubule, increasing water per-
meability. Figure taken with permission from [3].
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Fig. 2.3 The Regulation of plasma osmolality by ADH (The Figure is based
on the one present in [3]).
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2.2 Central Diabetes Insipidus

Central diabetes insipidus (CDI) is a syndrome that affects the body’s ability to conserve

water and is characterized by the decreased secretion of the antidiuretic hormone. Patients

affected with CDI will have reduced ability to concentrate urine and consequently maintain

healthy Plasma Osmolality levels [1].

2.2.1 Causes and Symptoms

Central diabetes insipidus results from the inhibited production of the antidiuretic hormone.

This could be due to a variety of reasons. The disorder may be caused by damage of the

hypothalamus; a tumor; interruption of blood supply, due to some sort of a blockage in the

arteries leading to the brain; a brain injury; a trauma; or even genetic. How complete CDI

is, depends on the extent of the damage [14].

The usual symptoms of CDI are intense thirst (with a special craving for ice-cold water)

and excessive urine production. A person affected with CDI will drink large amounts of

fluids, anywhere from 3 to 30 liters per day to compensate for the fluid lost in urine. The

inability to compensate the fluid losses can result in low blood pressure and shock [15].

2.2.2 Current Treatment

Currently, OSMP in patients with CDI is regulated in an open-loop fashion by admin-

istering a synthetic ADH. In this type of treatment, any momentary disturbance of the

normal osmolality levels will not be corrected until the next scheduled administration of

the prescribed medication, causing frequent and significant OSMP variations.

Vasopressin or desmopressin (DDAVP) (1-desamino-8-arginine vasopressin) is a syn-

thetic analog of the human antidiuretic hormone (ADH) which was produced in 1966 by
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removing an amino group from the cysteine molecule in position 1 and replacing a residue

of L-arginine with D-arginine in position 8 [16]. DDAVP is an effective drug against CDI

and is usually administered as a nasal spray. Desmopressin is considered a safe drug, un-

fortunately unproper administered amounts can lead to fluid retention, swelling, and other

problems, rare but serious effect of desmopressin overdose is water intoxication [17].

2.3 Problem Formulation

In this thesis, we will be investigating the possibility of a closed-loop regulation of the

plasma osmolality level in patients affected with central diabetes insipidus. This regulatory

system will have to contain three major components (Figure 2.4): A plasma osmolality

sensor, a mechanical pump capable of delivering the synthetic ADH and a control algorithm

to regulate the pump’s action.

Sodium (Na+) and BUN (Blood Urea Nitrogen) implantable sensors have been readily

available in the market for over 10 years with a measurement delay of few milliseconds. With

implantable glucose sensors currently being developed to automatically measure interstitial

glucose every few minutes [18], an OSMP sensor can be put together with a total sensing

delay of that of the glucose’s. Furthermore, significant work has been done to develop

piezoresistive embedded osmolality sensors that could measure accurately plasma osmolality

[19]. The reliability of such devices continues to increase.

If the osmolality sensor is implanted directly into the blood stream, the delay between any

disturbance in the osmolality and the measurements would be in the order of few minutes.

Unfortunately, biomedical sensors for safety reasons cannot be implanted directly in the

blood stream and any measurement of the blood stream’s biological analytes has to be

done indirectly in the interstitial fluid (ISF). Therefore, any disturbance in the plasma
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composition will be kept undetectable in the ISF for about 25 min; When adding to that

the delay of the OSMP sensor, any measurement of the OSMP from the ISF will then have

a delay of about 30 min. Therefore, any control strategy would have to be tested in the

presence of that inherent delay.

Implantable pumps for drug delivery systems has been in service for over 25 years.

Insulin pumps are a good example of such systems [20, 21]. Work is now being done on

high-performance silicon implantable micropumps, with accurate pumping characteristics

and intrinsic insensitivity to external condition [22].

2.4 Methodology and Contribution

To the best of our knowledge, no prior work has been done on any form of closed-loop reg-

ulation of OSMP in patients with CDI. In this thesis, we start by giving some background

information about central diabetes insipidus, causes and current treatment methodologies;

we will then continue by doing some literature review; then proceed in deriving an LTI

model for the renal/body fluid system, specifically the system describing the Osmoregu-

latory renal function; finally, we will study different control strategies starting with PID

control, H∞ optimal control then Robust Control and conclude by discussing their perfor-

mance. The primitive Osmoregulatory feedback control system will look like the one shown

in Figure 2.4.
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Fig. 2.4 The osmo-regulatory feedback closed-loop system with a compen-
sator, a system model, and a sensing delay of 30 min.



13

Chapter 3

Literature Review

Many mathematical models of the renal/body fluid system has been previously developed.

Guyton et al. [23] was a pioneer in deriving a detailed model of the Renal function from a

system analysis point of view. Uttamsingh et al. [24] presented an overall representation of

the renal/body fluid system with an emphasis on the undergoing control mechanisms. On

the other hand, many models of the renal/body fluid system have been developed to high-

light specific features of the control system, like Merletti and Weed [25] who investigated a

relatively complete non-linear model of fluid volume and osmolality control systems in the

human body. Others, like G. Ciofani et al. [26], derived a simpler linear model to describe

plasma osmolality control in the kidney.

The model of the renal system used in this thesis is based on the one derived by Noraki

Ikeda et al. [5] who built a biological system model capable of reproducing clinical findings

and measurements.

2010/02/25
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3.1 PID with a Smith Predictor

Despite the considerable development of advanced control theory and the availability of in-

dustrial controllers (PLC’s) capable on implementing the algorithms; Proportional-Integral-

Derivative (PID) controllers are still extensively used in the industry since their first ap-

pearance in the 1940’s. This is due to the fact that PID controllers are known to have

satisfactory performance in a wide range on processes and robustness over a wide range of

operating conditions on top of being easily implementable.

However, systems with long time-delays (or dead-time) can only be stabilized by decreasing

the controller’s gain, resulting in a sluggish response [27]. Consequently, a Smith Predictor

was the industry’s answer to those type of plants due to its effective dead-time compensa-

tion capabilities [28]. Although the Smith-Predictor is nominally stable, it’s performance

is highly dependent on the accuracy of the plant’s model, any model uncertainty or per-

turbation in the plant’s dynamics can easily destabilize the feedback system [29].

3.2 H∞ Optimal Control

H∞ optimal control theory addresses the issue of worst-case controller design for linear

systems subject to disturbances. H∞ optimal control seeks to bound the energy gain

of the system [30]. However, optimal control algorithms are designed to perform under

nominal conditions and they are not always tolerant to uncertainties in the system or the

environment.
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3.3 Robust Control

Any operational control system has to have three properties, stability, controllability and

observability. One definition of stability is referred to as BIBO stability, i.e. for each

bounded input to the system there is a bounded output. Controllability is the ability to

control (transfer) any given state in the system to the origin. Observability is the ability to

observe all states of the system. Maintaining all three properties is crucial for the success

of any control system. Unfortunately, uncertainties in the system makes it difficult to

attain these properties due to the limited information the system’s engineer has in hand.

”Robust control refers to the control of unknown plants with unknown dynamics subject to

unknown disturbances” [30]. This type of control tries to bound the frequency response of

the uncertainties and build a compensator that is stable and capable on performing under

any operating conditions within the set bound.

Robust control theory is based on extensive work done by Zames (1965), more specifically

regarding the small gain and circle theorem. The early robust control work was emphasized

on formulating sufficient condition for stability of uncertain systems with a single norm

bound (unstructured uncertainty). It then became clear that stability conditions for this

type of uncertainties was too conservative and restrictive for numerous applications. These

methods where based on singular values of matrices. Freudenberg et al. [31] proposed that

something more was needed. Soon after, Safonov [32] introduced the concept of a structured

uncertainty, and it was not until Doyle [33] that the problem of robust performance with

structured uncertainty was explicitly formulated and solved.
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Chapter 4

Mathematical Model

4.1 Non-Linear Model

Noraki Ikeda et al. [5] built a complete renal system model capable of reproducing clinical

findings and measurements. This complete model is shown in Figure 4.3. Based on this

model, we were able to derive a model of the Osmoregulatory system that describes the non-

linear relation between blood ADH concentration and plasma osmolality, Figures 4.1,4.4.

Fig. 4.1 Block diagram describing the non-linear relation between blood
ADH concentration and plasma osmolality. OWU is the urine output, VEC is
the extracellular fluid volume and OSMP is the plasma osmolality.

2010/02/25
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In this model, ADH is expressed as the ratio to the normal (or nominal) homeostasis

level. This choice of a normalized variable was not arbitrary, since as seen from Figure 4.2

the nominal ADH level even for a specific nominal OSMP concentration of 287 mOsm/l

can vary 500% from 1 to 5 pg/ml depending on the individual. Thus, in case of existence

of such device that would control OSMP in patients with CDI, a prior study regarding the

nominal value of ADH of each CDI patient has to be determined.

Fig. 4.2 The relationship of plasma ADH (AVP) to plasma osmolality
OSMP in normal subjects. Figure was taken from [4] with permission.
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Fig. 4.3 A block diagram of the human renal system consisting of seven
blocks, to the left side of each block there is the inputs, the outputs of the
blocks are on the right, and on the top and bottom are the constant param-
eters and independent inputs and outputs. This figure is taken from [5] with
permission.
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Fig. 4.4 The simulink model of the relation between blood ADH concentra-
tion and plasma osmolality.
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4.2 LTI-Model

We then proceeded in linearizing the model. Unfortunately, because of the complexity of

the system, linearizing from input/output equations turned out to be a very complex task.

Consequently, Small Signal (SS) Model Identification technique was used. The obtained

small signal linear model is stable and fairly accurate around an equilibrium point, which

is usually taken to be the operating point of the non-linear system. Since, the LTI model

will be in a closed loop feedback configuration that will maintain the system around that

equilibrium point; The SS linear model is a valid one for our objectives.

The strategy now is to determine the equilibrium point of the non-linear system and

to linearize around it. The equilibrium point is defined as the state that the system would

remain in under nominal conditions, subject to no external perturbations. The operating

point of the studied non-linear system is an input of ADH= 1 that will maintain a nominal

constant plasma osmolality level of 287 mOsm/l.

Consequently, as seen in Figure 4.5, the system was stimulated with a Gaussian noise

of mean zero around the operating point. I/O data were recorded and processed for system

identification purposes.

Fig. 4.5 Simulink model of the setup used for system identification.
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The ARMAX estimator in Matlab’s system identification toolbox was then used. The

following definition of the ARMAX model is extracted directly from Matlab’s Help:

y(t) + a1y(t− 1) + ...+ anay(t− na) =

b1u(t− 1) + ...+ bnbu(t− nb) + e(t) + c1e(t− 1) + ...+ cnce(t− nc)

where,

• y(t) is the output at time t.

• a1...an, b1...bn and c1...cn are the parameters to be estimated.

• na is the number of poles of the system.

• nb − 1 is the number of zeros of the system.

• nc is the number of previous error terms on which the current output depends.

• nk is the number of input samples that occur before the inputs affecting the current

out.

• y(t− 1)...y(t− na) are the previous outputs on which the current output depends.

• u(t − nk)...y(t − nk − nb + 1) are the previous inputs on which the current output

depends.

• e(t), e(t− 1), ...e(t− nc) are the white-noise disturbance values on which the current

output depends.
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Using the ARMAX estimator and with respective coefficients (na, nb, nc, nk) = (3, 3, 3, 1);

we were able to approximate with a fit of 97.4% the 11nth order non-linear system with a

3rd order LTI system1 with transfer function:

G(s) =
−0.2283s2 − 0.01486s− 0.001346

s3 + 0.06588s2 + 0.006106s+ 3.591× 10−7
.

Consider the following state-space representation of the model:

ẋ = Ax +Bu

y = Cx +Du

where u is the ADH concentration expressed as the ratio to the normal level, y the OSMP

expressed in mOsm/l and x is the vector state of the system.

The

 A B

C D

 matrices were then derived, completing the continuous-time state-space

representation of the model:

A =



x1 x2 x3

x1 7.478 2.511 −2.522

x2 −9.956 −0.02196 10.04

x3 2.478 −2.489 −7.522


, B =



u1

x1 −0.2283

x2 0.4535

x3 −0.2253


1The obtained system was in the digital domain, consequently Matlab’s d2c command was then used

to convert it to continious time.
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C =

 x1 x2 x3

y1 1 0 0

 , D =

 u1

y1 0





4 Mathematical Model 24

Figure 4.6 shows the non-linear model output when compared with the derived LTI

model’s output subject to white noise of mean one2. We chose white noise as input due to

its flat spectrum thus stimulating the models over all frequencies.

Having an almost matching output under white noise input as seen in Figure 4.6 confirms

the validity of the 3rd order LTI model.

Fig. 4.6 Graphs describing the non-linear model output compared with the
obtained LTI model’s output subject to white noise of mean one and their
relative error.

2The stimulus (white noise) used here is different form the one used for the fitting algorithm
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Figure 4.7 is a comparison of the behavior of the non-linear model and the LTI model

obtained by system identification subject to different step changes in the ADH.
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Fig. 4.7 Graphs describing the behavior of the non-linear model and the
LTI model subject to different step changes in the ADH input.

The derived LTI model will approximate the non-linear model around its operating

point. The linear model will have an operating point of zero that will correspond to an

ADH input of 1 and a nominal output of zero that will correspond to a OSMP concentration

of 287 mOsm/l.

Now, with the LTI model complete, we were then able to proceed in deriving controllers

for the closed-loop Osmoregulatory system.
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Chapter 5

Smith-predictor

5.1 Nyquist Stability Criterion

Like the Body Plot, the Nyquist Diagram is an alternative representation of the frequency

response of a system. The Nyquist diagram for a transfer function G(s) can be constructed

from |G(jw)| and ∠G(jw) for different values of w. The Nyquist diagram and the Nyquist

Stability Criterion can be used to asses the stability and robustness of a closed-loop sys-

tem. Unlike the Bode Plot representation, the open-loop transfer function GOL need not

be stable for a Nyquist representation. Figure 5.1 is an illustrative example showing the

Nyquist Plot of a open-loop transfer function GOL(s) = 1
2s+1

.

The Nyquist Stability Criterion is stated in [27] as follows :

Theorem 1. Consider an open-loop transfer function GOL(s) that is proper and has no

unstable pole-zero cancellations. Let N be the number of times that the Nyquist plot for

GOL(s) encircles the (−1, 0) point in the clockwise direction. Also let P denote the number

of poles of GOL(s) that lie to the right of the imaginary axis. Then, Z = N + P where Z

2010/02/25
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is the number of roots (or zeros) of the characteristic equation that lie to the right of the

imaginary axis. The closed-loop system is stable if and only if Z = 0.

Fig. 5.1 The Nyquist diagram for GOL(s) = 1
2s+1 with Re(G(jw)) on the

x-axis and Im(G(jw)) on the y-axis.

5.2 Smith-Predictor - The Theory

PID is an acronym for Proportional, Integral and Derivative, describing a type of controllers

that take corrective action on the present, future, and past values of the error between the

actual output of the system and the desired set-point.

The PID controller was first placed on the market in 1939 by Albert Callender and Allan

Stevenson of Imperial Chemical Limited of Northwich and has remained the most widely

used controller in process control until today. PID control theory, is a well known one in

the control area, famous for its simplicity as well as the excellent control performance and

robustness.
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Whoever worked with a PID controller knows that a large deadtime in the system makes

it harder to achieve simultaneous stability and performance. To see why it is the case, let

us examine the following example.

Consider a closed-loop system comprising of a Proportional controller K with transfer

function K(s) = K, a plant with transfer function 1
τs+1

and let the sensor with unity

transfer function add a deadtime of e−φs. The open-loop transfer function of the system

thus becomes:

GOL(s) =
Ke−φs

τs+ 1

Let us choose arbitrarily τ = 2 and φ = 3. The open-loop system has a stable pole at

s = −0.5, thus to achieve closed-loop stability, the Nyquist diagram of GOL(s) should not

encircle the point (-1,0). The immediate effect of having a deadtime in GOL is having the

same deadtime appearing in the denominator of the transfer function of the closed-loop

system. Then, As apparent from Figure 5.2 there will be a critical controller gain Kc that

cannot be exceeded. Any value of K > Kc will render the closed-loop system unstable.

Thus, to maintain stability when deadtime is added to the system, the controller’s gain

has to be reduced. The reduction in the gain of the controller has an undesirable effect of

deteriorating the system’s performance.

Consequently, a Smith-Predictor was the industry’s answer to those types of plants due

to its effective deadtime compensation capabilities. Consider the feedback system in Figure

5.3, let K designate the controller, P the studied plant and Td the deadtime rising from

the sensors with corresponding transfer functions K(s), P (s) and Td(s). Thus the transfer



5 Smith-predictor 29

−2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

 

 
Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

K<Kc
K=Kc
K>Kc

Fig. 5.2 The Nyquist diagram of the open-loop transfer function GOL(s) =
Ke−φs
τs+1 for different values of K. Kc designates the critical controller gain that

render the closed-loop system unstable.
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function of the closed-loop system is:

Tcl(s) =
Y (s)

S(s)
=

K(s)P (s)Td(s)

1 +K(s)P (s)Td(s)

As explained above, the deadtime Td(s) is now present in the denominator of Tcl(s).

The aim of the Smith-Predictor is then try to eliminate this unwanted appearance.

K P+_s Td y

Fig. 5.3 A closed-loop system comprising of a controller, a plant and a
deadtime with respective transfer functions K(s), P (s) and Td(s).

To improve the design, let Pm represents the model of the systems dynamics, Tdm,

represents the model of the time delay, and e represents the error between the output of

the model and the output of the plant. Thus, as shown in Figure 5.4 the model can be

then split into the delayed system and the delay-free one.

K P+_s Td Y+_
G

_+

e

Pm Tdm

Gm Ym

Fig. 5.4 The smith-predictor as an improved configuration for dead-time
compensation purposes.

G is an unavailable fictitious variable, thus Gm is used for the feedback. In this setup,

the controller would act on the modeled delay-free system Pm and regain the lost stability
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margin. This layout can stabilize the nominal system but does not take into account model

inaccuracies and external disturbances. To correct for these errors, signal ”e” is then used

in a cascade configuration closing a second feedback loop around the system. The controller

K can be a PID, a PD (Proportional, Derivative) or PI (Proportional, Integral) controller.

Depending on the desired control objectives, K can be tuned to be an aggressive or a

smooth controller for either disturbance rejection or set-point tracking purposes.

In the ideal case where P (s) = Pm(s) and Td(s) = Tdm(s) the closed-loop transfer

function becomes:

Y (s)

S(s)
=
K(s)P (s)Td(s)

1 +K(s)P (s)

As one can see the dead time is no longer present in the denominator and no loss in the

stability margin of the system has occurred. A more conventional configuration of the

Smith-Predictor Controller Ksmith is shown in Figure 5.5, which is equivalent to the one

shown in Figure 5.4.

K P+_s Td Y+_

PmTdm

_+

KSmith

Fig. 5.5 The conventional smith-predictor configuration.
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5.3 Smith-predictor - Design and Simulations

Approximating the deadtime added by the OSMP sensor as 30 minutes, and utilizing the

non-linear system of the body’s osmo-regulation derived above, a closed-loop system to

control the OSMP in patients with CDI was conceived. Figure 5.6 shows the Matlab’s

simulink model.

Fig. 5.6 Simulink model of the closed-loop osmo-regulatory system utilizing
a PD controller.

A PD controller established desired closed-loop performance results. Where, in this

case performance was defined as the time that it takes the system to return to its nominal

condition (OSMP level of 287 mOsm/l) after an output step disturbance of 20 mOsm/l.

Setting the controller’s derivative action gain kd to 0.7 and varying the controller’s propor-

tional action gain kp from 0.05 to 0.1 and 0.3 we obtained the responses shown in Figure

5.7.

To be noted that an output step disturbance was chosen over any other kind of dis-

turbances due to the fact that it models a persistent and sudden change in the plasma

osmolality level of an individual, putting significant pressure on the controller. The causes

of such a disturbance could be due to finite energy input disturbances such as an intermit-

tent water loading of an individual [34], water deprivation [35], intermittent hypertonic or

hypotonic solution injection [36], etc...
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Fig. 5.7 The response of the omso-regulatory closed-loop system to an out-
put step disturbance of 20 mOsm/l. The Controller used is a PD controller
with fixed derivative gain of 0.7 and a varying proportional gain kp. The
output of the controller is also shown for each case.
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At a value of Kc = kp = 0.3 the systems response is oscillatory. Consequently, with kd

being at 0.7 and to maintain stability, the proportional action gain has to be kept below

the critical gain Kc at all times.

Therefore, to achieve a higher performance, a PD (Proportional, Derivative) controller

in a smith predictor configuration was then employed to compensate for the deadtime added

by the sensors (Figure 5.8).

Fig. 5.8 Simulink model of the closed-loop osmoregulatory system utilizing
a PD controller in a smith-predictor configuration.

Using the same derivative gain kd = 0.7 as before and varying the proportional gain of

the PD controller from 0.05 to 0.1 and 0.3 we obtained the responses shown in Figure 5.9.

Clearly the system has now a higher stability margin, at kp = 0.3 the system still performs

well.
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Fig. 5.9 The response of the omso-regulatory closed-loop system to an out-
put step disturbance of 20 mOsm/l. The Controller used is a PD controller in
a smith-predictor configuration, with fixed derivative gain of 0.7 and a varying
proportional gain kp. The output of the controller is also shown for each case.
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One disadvantage of the Smith-Predictor approach is that it is model-based; that is,

a fairly accurate model of the studied system is required [27]. If model inaccuracies or

uncertainties are present in the system (due to the fact that each individual renal system is

somehow unique), the predictive model will be inaccurate and the controller performance

will deteriorate, sometimes to the point of having closed-loop instability.

Another issue that arises with the PID/Smith predictor controller that would be prob-

lematic in a biomedical system, is the uncontrollable bound of the controller’s output. In

this type of control no automatic adjustment of the controller’s output is possible. There-

fore to limit the ADH concentration in the blood stream, a saturation block has to be

installed on the controller’s output, keeping ADH concentration within a certain healthy

range. Unfortunately, this option greatly degrades the control system’ s performance. In

the following chapter, we will see how this issue can be easily resolved with H∞ Optimal

Control.
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Chapter 6

H∞ Optimal Control

6.1 H∞ - The Theory

Before we start our discussion on H-infinity (H∞) optimal control theory let us briefly

introduce some basic concepts regarding the p-norm; Specifically the 2-norm of a signal

and the ∞-norm of a system.

Uniformly speaking, the∞-norm -sometimes referred to as theH∞ norm- is the measure

of how big the frequency response of a system is. Let P (s) ∈ Rm×n be a real rational transfer

function matrix. If P (s) is stable and proper then

‖P (s)‖∞ = max
w∈R

σ(P (jw))

where, σ denotes the maximum singular value.

In time domain the same norm can be interpreted as the maximum rms energy gain of

2010/02/25
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the system over all bounded inputs.

‖P (s)‖∞ = sup
u(t) 6=0

‖y‖2

‖u‖2

where y(s) = P (s)u(s), and y(s) and u(s) are the Laplace Transforms of y(t) and u(t)

respectively. sup denotes the supremum (or the least upper bound) and ‖.‖2 denotes the

2-norm defined in time domain as:

‖x(t)‖2 =

√∫ ∞
−∞
|x(t)|2 dt

In this work, the H∞-norm was chosen as an optimization criterion over that of the H2-

norm due to the fact that it introduces a more severe constraint. H2 optimal control focuses

on the optimization of the average behavior of the system to white noise; In contrast, H∞

optimal control deals with minimizing the maximum input to output gain of the system.

Thus, H∞ optimal control theory addresses the issue of designing a stabilizing controller

that minimizes the peak value of some desired closed-loop frequency response functions

within a control system. To clarify this, consider by way of example the SISO feedback

system of Figure 6.1, where P and K designate the plant’s and controller’s transfer function

respectively. The signal do represents a disturbance acting on the system and y is the control

system output. It follows that y = Sodo, where

So =
1

I + PK
.

So is called the sensitivity of the feedback system. As the name implies, So characterizes

how sensitive the control system’s output is to an output disturbance. The objective of

H∞ control would then ideally try to achieve S = 0.
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K P+_s y
e

+

do

u

Fig. 6.1 A SISO feedback system where P and K designate the plant’s and
controller’s transfer function. s and y designate the input and output of the
system respectively. respectively

This problem was originally considered by George Zames who posed it as a mathematical

optimization problem to find a stabilizing controller K that minimizes the maximum value

of the sensitivity function. This maximum value is defined as

‖So‖∞ = sup
w∈R
|So(jw)| .

The supremum is used since the maximum of certain functions may not be attainable by

a finite frequency. The reason behind this problem setup is that if the peak value (‖So‖∞)

of the sensitivity function is below a certain small γ ∈ R, then

|So| < γ, ∀w.

The disturbances are therefore uniformly attenuated over all frequencies.
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Now suppose that the disturbance do has a finite energy defined as:

E = ‖do‖2
2 =

∫ +∞

−∞
|do|2 dt

then,

‖So‖∞ = sup
‖do‖2<∞

‖y‖2

‖do‖2

The minimization of ‖So‖∞ is denoted by worst-case optimization [37], because it tries

to minimize the effect of the worst disturbance (a harmonic disturbance at wp), where wp

denotes the frequency where |So| = ‖So‖∞.

Unfortunately, the frequency response of any physical plant and controller will roll off

at high frequencies. Then,

P (jw)K(jw)
w→∞→ 0 and So

w→∞→ 1.

For performance purposes, low frequencies are in general the frequencies of interest and

how small So is at those frequencies is not reflected in ‖So‖∞. Therefore, just minimizing

‖So‖∞ is not very useful. Consequently, a frequency dependent weighting function W is

introduced and the weighted sensitivity is then minimized:

‖WSo‖∞ = sup
w∈R
|W (jw)So(jw)|

The weighting functions are a useful addition to the theory as they are used to reflect

different minimization objectives at different frequencies.

Different weighting functions could also be added at different locations to achieve differ-
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ent control objectives. Consider Figure 6.2, Wd is used to describe the frequency content of

the expected output disturbance, We defines the performance objectives by putting more

weight on the frequencies of interest, Wu is used to shape and limit the control signal u.

Fig. 6.2 A SISO feedback system showing different weighting functions
added at different locations to achieve different control objectives.

Here, the H∞ performance is achieved if under worst possible disturbance:

‖WeSoWd‖∞ = sup
‖do‖2<∞

‖ẽ‖2

‖do‖2

= sup
‖do‖2≤1

‖ẽ‖2

‖WuKSoWd‖∞ = sup
‖do‖2<∞

‖ũ‖2

‖do‖2

= sup
‖do‖2≤1

‖ũ‖2

In order to utilize H∞ control theory, the system has to be represented according to the

standard configuration shown in Figure 6.3.

where,

P (s) =


A B1 B2

C1 0 D12

C2 D21 0


With the assumptions that:
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P

K

w

u

z

e

Fig. 6.3 Standard system configuration for an H-infinity problem.

• (A,B1) is controllable and (C1, A) is observable.

• (A,B2) is stabilizable and (C2, A) is detectable.

• D12 [C1, D12] = [0 I]

•

 B1

D21

D∗21 =

 0

I


Plant P has two inputs, the exogenous input w, that includes the reference signal and

disturbances, and the control signal u (i.e. the manipulated variable). P has also two

outputs, the error signals e and the measured variables z.

Through mathematical manipulations, it is possible to express z as:

z = F`(P,K)w
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Where the F`, known as the lower linear fractional transformation is defined as:

F`(P,K) = P11 + P12 K (I − P22 K)−1 P21

The objective of H∞ control is to find a controller K such that F`(P,K) is minimized

according to the H∞ norm, where:

||F`(P,K)||∞ = sup
ω
σ̄(F`(P,K)(jω)) = γ (6.1)

Referring to Figure 6.4 below:

P

We

Wu

G-

K

do

u

ẽ

ũ

e

Fig. 6.4 The augmented plant P, showing the internal configuration and
weighting functions.

Then,

• ẽ = eWe = (Tdoẽ)do

• ũ = uWu = (Tdoũ)do
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Let, z =

 ẽ

ũ

 and w = do. by trying to achieve a γ < 1 we can guarantee that:

||Tdoz||∞ < 1

and,

||Tdoẽ||∞ < 1

||Tdoũ||∞ < 1

And consequently,

|Tdoe(jw)| < |W−1
e (jw)|, ∀ω

|Tdou(jw)| < |W−1
u (jw)|, ∀ω

6.2 H∞ - Design and Simulations

By choosing the weighting functions carefully we could limit the amount of ADH in the

system while achieving desired performance criteria.

The weighting functions were chosen as follows:

We = 500
1

10−1.5
s+ 1

1
10−4.6

+ 1

Wu = 10
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The ADH level in the body and consequently the control input of the plant cannot go

unbounded and has to be maintained below a certain limit. This constraint does not change

as a function of frequency, hence the input weight is set to Wu = 10, ∀w. Performance

weight selection is based on engineering judgment and the need to satisfy |So| < 1
|We|∀w.

We (Figure 6.5) was designed to have a high gain a low frequencies, and a disturbance

rejection of at least 500:1 at DC then rolls off around w = 10−4 rad/s, thus maintaining a

good performance at frequencies of interest. Note that the time delay was not included in

the model of the system, and was added later for simulation and system testing purposes.
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Fig. 6.5 The performance objectives defined by the weighting function We.
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Using the Hinfsyn command located in Matlab’s Robust Control toolbox and with the

above described system configuration, a γ of 0.8087 was achieved with the following H∞

optimal controller K:

K(s) =
−0.1838s3 − 0.01211s2 − 0.001122s− 6.599× 10−8

s4 + 2.695s3 + 0.1774s2 + 0.01596s+ 4.007× 10−7
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Figure 6.7 shows the response of the closed-loop system after an output step disturbance

of 20 mOsm/l. As expected the variation in the controller’s output ∆u is limited with

respect to the controller’s response.
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Fig. 6.7 The response of the Omsoregulatory closed-loop system to an out-
put step disturbance of 20 mOsm/l. The controller used is the H∞ optimal
controller K. Lastly, the output of the controller is shown.
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Chapter 7

Robust Control

For the abundance of theory and ease of study of Linear Time Invariant (LTI) systems in the

Systems and Control academic and non-academic community; any control systems engineer

trying to describe a physical system would thrive to acquire an LTI model for it. Unfor-

tunately, LTI models usually describe the actual system’s dynamics only approximately.

Model uncertainties can have several different sources. In general, physical processes are

non-linear, if the LTI model is obtained via linearization, then the model is only accurate

around the operating point. In other cases, some systems can have parameters that are

uncertain, they can vary within a specific range depending on external factors and no one

model can accurately describe the behavior of the system in each one of those instances.

Whether it is modeling errors, neglected non-linearities or parametric uncertainties, they

can all be accounted for using many different strategies. In the following, we will be de-

signing a control system that is robust, i.e. a control system that will be stable and achieve

a certain degree of performance in the presence of unavoidable uncertainties in the system.

Consequently, we will not be dealing with a single LTI system model G(s) but with a

perturbed one Gp(s) comprising of a family of LTI models.

2010/02/25
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7.1 Uncertainty Modeling and Robust Control Theory

7.1.1 Unstructured Uncertainty and The Small Gain Theorem

In many instances, modeling uncertainties corresponding to different parts of the system

can be lumped or combined into one single perturbation block ∆. Depending on the system,

the uncertainty block dynamics can be described in many different ways. Suppose that the

perturbed plant Gp(s) and the nominal plant G(s) are related as follows:

Gp(jw) = G(jw) + ∆a, ‖∆a‖ < δa,∀w

where, δa is the maximum singular value (bound) of ∆a at all frequencies. This form of

representation is called additive uncertainty representation since the uncertainty is added

to the nominal model. Then the robust control theory assumes that the unknown ”true”

model belongs to the set of plants Gp(s). Figure 7.1 is a system representation of the

additive uncertainty.

Fig. 7.1 The additive uncertainty system configuration.

Other ways to represent uncertainties are also available, such as the:

• Output multiplicative uncertainty Gp(jw) = (Ip + ∆m(jw))G(jw) with ‖∆m‖ <

δm, ∀w
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Fig. 7.2 The output multiplicative uncertainty system configuration.

• Input multiplicative uncertainty Gp(jw) = G(jw)(Im+∆m(jw)) with ‖∆m‖ < δm, ∀w

Fig. 7.3 The input multiplicative uncertainty system configuration.

Whatever the chosen uncertainty representation, the feedback control system can have

an LFT representation as shown in Figure 7.4.

Given a model of this form, it is then easy to rearrange the system into the form shown

in Figure 7.5 where M = F`(P,K), then:

e = Fu(M,∆)u = (M22 + M21∆(I−M11∆)−1M12)u
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Fig. 7.4 The standard LFT configuration.

Fig. 7.5 The standard M-∆ configuration.
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The small gain theorem (Zames, Sandberg) states that under the assumption that:

• M(s) ∈ R{H∞}

• ∆(s) ∈ R{H∞}

The M−∆ feedback interconnection shown in Figure 7.5 is stable for every perturbation

∆(s) such that ‖∆‖∞ < 1 if and only if ‖M‖∞ ≤ 1.

Clearly ‖∆‖∞ < 1 is at first glance a condition that would appear too restrictive to the

theory, but in fact could be accounted for by rewriting the perturbation block as

∆(s) = ∆̃(s)W (s)

where ∆̃(s) is the unit norm perturbation set; σ(∆(jw)) ≤ σ(W (jw)) and then incorpo-

rating W (jw) inside the M block.

7.1.2 Structured Uncertainty and The Structured Singular Value

As previously discussed, the uncertainty in the model can come from different sources. One

way to account for those uncertainties is to try to bound all the possible perturbation in

the nominal plant with a single full complex block. This unstructured uncertainty repre-

sentation may generate a much larger set of perturbed plant that will render this approach

too conservative. Another approach is to model each source of uncertainty separately. In

this case the perturbation block ∆ will have a diagonal or block diagonal structure. Let,

∆s = diag(∆1(jw),∆2(jw), ...,∆n(jw)), σ(∆i) < δ.

where δ defines an upper bound on the size of the maximum singular value of any uncer-

tainty block ∆i. To further elaborate on the concept, consider the question: What is the
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maximum value of δ for which the closed-loop system will remain stable? As in the unstruc-

tured uncertainty case, we can still apply the small gain theorem to the above problem, but

the result will be conservative, since the structure of the matrix ∆ will not be taken into

account. The SGT will not take into account that most of the entries of ∆ are in fact zero.

Thus, the SGT will consider a larger set of uncertainty than is in fact possible, and the

resulting robustness measure will be too conservative. In order to get a non-conservative

solution, Doyle [4, 5], introduced the structured singular value µ∆s :

µ∆s(M) = [min‖∆s‖ : det(I−M∆s) = 0]−1

The derivation of the robust stability theorem for structured perturbation (small - µ theo-

rem) is quite complex, so let us skip directly to the results.

The Small-µ Theorem is stated as follows :

Theorem 2. Assume controller K(s) is stabilizing for the nominal plant P(s). Then given

β > 0, the closed-loop system in Figure 7.4 is well-posed and internally stable for all

‖∆s‖∞ < β if and only if:

sup
w∈R

µ∆s{F`[P(jw),K(jw)]} ≤ 1

β

Then, if the structured perturbation is normalized, i.e.
∥∥∥∆̃s

∥∥∥
∞
< 1, the condition

becomes:

sup
w∈R

µ∆s{F`[P(jw),K(jw)]} ≤ 1



7 Robust Control 55

7.2 Robust Performance

One way of defining a performance specification is to require that the maximum singular

value of the frequency response matrix from u to e lies below some weighting function

Wp(jw). To achieve robust performance these specification have to hold for any uncertainty

∆i ∈ ∆s Let, Ω a new structured uncertainty:

Ω = diag(∆1(jw),∆2(jw), ...,∆n(jw),∆p(jw)), σ(∆i) < δ.

where, ∆p was added to account for the new performance objectives specifications. Then

Robust performance is achieved if and only if

sup
w∈R

µΩ{F`[P(jw),K(jw)]} ≤ 1

where Ω is normalized, i.e. ‖Ω‖∞ < 1

7.3 Robust Control - Design and Simulation

At low frequencies, below 2 rad/s, we would like Gp(s) to vary up to 25% from its nominal

state. Around 1 rad/s the percentage variation starts to increase and reaches 250% at

approximately 100 rad/s. These specifications can be taken into account with an output

multiplicative uncertainty model where the percentage of model uncertainty is represented

by:

∆m(s) = ∆̃m(s)Wm(s)

where the weight Wm is shown in Figure 7.6.



7 Robust Control 56

0.5

1

1.5

2

2.5

3

M
ag

ni
tu

de
 (

ab
s)

10
−1

10
0

10
1

10
2

10
3

0

30

60

90

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

Fig. 7.6 The bode plot of the percentage of the multiplicative model uncer-
tainty.

To add robustness to the control system, parametric uncertainty can also be added to

Gp(s). The nominal LTI Osmo-regulatory system as defined previously is:

G(s) =
−0.2283s2 − 0.01486s− 0.001346

s3 + 0.06588s2 + 0.006106s+ 3.591× 10−7

G(s)’s DC gain is defined as

G(s)DC = |G(s)|s=0 =
0.001346

3.591× 10−7

The G(s)DC defines the sensitivity of the system as well. This sensitivity, as not to be

confused with the sensitivity S(jw) of the closed-loop system, characterizes the ability of

the antidiuretic hormone (ADH) to affect the plasma osmolality (OSMP). As an example, if

a nominal ADH value of 1 is needed to achieve a nominal OSMP value of 287 mOsm/l at a
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certain sensitivity sn; If that sensitivity is increased to s > sn, we would need a lower ADH

value to achieve the same nominal value of the plasma osmolality. The sensitivity is a pa-

rameter that varies between individuals. By defining a family of LTI models Gp(s)parametric

such that:

0.9 G(s)DC < Gp(s)parametricDC < 1.1 G(s)DC

and build a robust controller to Gp(s)parametric , we would then have obtained a compensator

that is robust to 10% change in the sensitivity of OMSP to ADH.

Let G(s) be written in the following general format:

G(s) =
a2s

2 + a1s+ a0

b3s3 + b2s2 + b1s+ b0

Then

G(s)DC =
a0

b0

Consequently, by varying a0 by ±10% we can achieve a variation of 10% in the system’s

sensitivity. Using Matlab’s ”ureal” and ”sample” tools in the Robust Control Toolbox, five

samples of the parametric uncertainty are chosen randomly and a rectangular pulse at time

t = 400min is applied to the open-loop Osmoregulatory system whose block diagram is

previoulsy shown in Figure 4.1 (the block is repeated in Figure 7.7 for conveniance). Figure

7.8 shows the open-loop response of the perturbed system Gp(s)parametric .
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Fig. 7.7 The Simulink’s nonlinear osmoregulatory system.
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Fig. 7.8 Plots of the open-loop response of the perturbed system
Gp(s)parametric (above) subject to a rectangular pulse at time t = 400min (be-
low).
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We then built a perturbed system Gp(s) comprising of the above described parametric

uncertainty and output multiplicative uncertainty. Then, using dksyn tool in the Robust

Control Toolbox we synthesized a robust controller K for the uncertain open-loop plant

model Gp(s) via the D-K algorithm(please refer to K.Zhou and J.Doyle’s work on robust

control [38]) for µ-synthesis. This compensator will achieve robust stability and robust

performance of the control system if and only if the value of µ < 1.

We were then able to achieve a µ peak value of 0.98 with the following µ-synthesis

controller K:

K(s) =
−0.07659s24 − 5.59s23 − 150s22 − 1986s21 − 1.467× 104s20 − 6.499× 104s19

s25 + 73.85s24 + 2022s23 + 2.765× 104s22 + 2.144× 105s21 + 1.018× 106s20
...

...
−1.823× 105s18 − 3.376× 105s17 − 4.248× 105s16 − 3.68× 105s15 − 2.198× 105s14

3.132× 106s19 + 6.521× 106s18 + 9.466× 106s17 + 9.745× 106s16 + 7.159× 106s15
...

...
−8.976× 104s13 − 2.47× 104s12 − 4542s11 − 564.7s10 − 48.36s9 − 2.83s8

3.74× 106s14 + 1.375× 106s13 + 3.503× 105s12 + 6.12× 104s11 + 7371s10 + 618.6s9
...

...
−0.1072s7 − 0.002189s6 − 1.526× 10−5s5 − 4.389× 10−8s4 − 5.446× 10−11s3

+35.74s8 + 1.344s7 + 0.02743s6 + 0.0001919s5 + 5.453× 10−7s4
...

...
−2.484× 10−14s2 − 1.665× 10−18s− 2.623× 10−23

6.574× 10−10s3 + 2.74× 10−13s2 + 1.161× 10−17s

The actual µ value is hard to calculate, fortunately J.Doyle had shown that its value lies

within an upper and a lower limit. Figure 7.9 shows the µ value limits over the frequency

range.

Figure 7.10 shows the response of the closed-loop system when ten different perturba-

tion states are picked randomly using Matlab’s usample from Gp(s) and an output step

disturbance of 10 mOsm/l is applied at time=10 min. The robust performance can be seen

by the peak ADH that was of 0.8437, constant in all the ten trials.
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Fig. 7.10 The Osmoregualtory perturbed system’s response to a step output
disturbance of 10 mOsm/l at time=10 min. 10 different perturbation system’s
states were picked randomly.
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Chapter 8

Conclusion

8.1 Controller’s Effectiveness

The human body is an extremely complex biological organism comprising of hundreds of

thousands of individual sub-systems, each somehow unique to every one of us. Therefore

it was logical to consider a family of osmoregulatory renal systems rather than a nominal

one and try to find a controller capable of regulating disturbances in plasma osmolality in

those perturbed systems. To study the controllers’ performances, we then chose ten differ-

ent osmoregulatory systems randomly from the family of perturbed ones Gp(s) previously

defined and we observed the response of the closed-loop system when those compensators

were utilized in rejecting an output step disturbance of 10 mOsm/l. Figure 8.1 shows the

responses.

2010/02/25
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Fig. 8.1 Plots comparing the responses of the osmoregulatory closed-loop
system when the four types of controllers are used: PD, PD in a Smith Predic-
tor Configuration, H∞ Controller and Robust Controller subject to an output
step disturbance of 10 mOsm/l. 10 random perturbed model instances are
used. These plots represent deviation plots, i.e. 0 mOsm/l is equivalent to
287 mOsm/l.
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Table 8.2 shows the settling time1 of the control system and peak ADH from the con-

trollers’ output. When the PD controller (either alone or in a Smith Predictor configu-

ration) is used, a saturation block of 0.8 on the controller’s output was used to limit the

amount of ADH in the blood stream. In the cases of the H∞ Controller and the Robust

Controller the ADH was inherently limited to 0.71 and 0.84.

As clearly shown in Table 8.2, in perturbed models 3,4 and 10 the PD controller was

never able to achieve |y(t)− yfinal(t)| < 0.02. The same observation could be seen in model

4 with the PD controller in a smith predictor configuration and the H∞ optimal controller.

Inherently, the Robust controller achieved this criteria in all the 10 perturbed models.

We then removed the saturation blocks and observed the responses (Table 8.3), all

controllers except the H∞ Controller achieved |y(t)− yfinal(t)| < 0.02.

8.2 Conclusion and Future Work

The objective of this thesis was not to compare the performances of different types of

controllers in the purpose of choosing the ultimate best. Depending on the objectives, one

might choose one compensator over the other. The PD controller (either alone or in a

Smith Predictor configuration), is a simple to design one with appealing characteristics:

good performance, ease of tuning and retuning, ease of implementation, vast knowledge in

the control community on the subject. As seen in Figure 8.3 the PD controllers performed

very well, but the fact that one could not have inherent control over their output may be

discouraging to some system designers especially when an upper ADH plasma concentration

1The Settling Time in this context is defined as the time it takes the error between the actual output
y(t) and the desired one yfinal(t) (|y(t)− yfinal(t)|) to become smaller than a fraction FT of its peak value.
FT was chosen here following Matlab’s default standard of 0.02 (or 2%).
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8 0 7061 0 8437

Settling Time
Perturbed Models PD SmithPredictor H∞ µ‐synthesis

1 NaN 115.233 194.2198 180.3422
2 146.1494 164.2703 163.8005 132.2604
3 112.197 150.0661 141.3348 184.1205
4 NaN NaN NaN 247.8677
5 NaN 122.3918 187.3287 178.5626
6 106.8337 143.4267 132.2298 180.8396
7 111.2074 148.5965 138.4482 179.5176
8 157.6512 173.0151 171.1591 133.4928
9 NaN 113.5237 191.1769 176.7794
10 NaN 137.6243 184.3341 179.383

Average Settling Time 63.40387 126.81475 150.40319 177.31658

Peak ADH
Perturbed Models PD SmithPredictor H∞ µ‐synthesis

1 0.8 0.8 0.7061 0.8437
2 0.8 0.8 0.7061 0.8437
3 0.8 0.8 0.7061 0.8437
4 0.8 0.8 0.7061 0.8437
5 0.8 0.8 0.7061 0.8437
6 0.8 0.8 0.7061 0.8437
7 0.8 0.8 0.7061 0.8437
8 0 80.8 0 80.8 0 7061. 0 8437.
9 0.8 0.8 0.7061 0.8437
10 0.8 0.8 0.7061 0.8437

Average Settling Time 0.8 0.8 0.7061 0.8437

Fig. 8.2 Comparison of the Settling Time and Peak ADH of the osmoreg-
ulatory closed-loop system when the four types of controllers are used: PID,
PID in a Smith Predictor Configuration, H∞ Controller and Robust Controller
subject to an output step disturbance of 10 mOsm/l. 10 random perturbed
model instances are used. When the PID controller either in a Smith Predic-
tor configuration or not is used, a saturation block of 0.8 was added on their
output.
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limit is required. TheH∞ Optimal Controller deals with this issue by inherently limiting the

controllers output. Unfortunately, the H∞ Optimal Controller is highly model based and

is not robust to changes in the system’s characteristics. The Robust Controller takes the

best of both worlds by combining robustness and performance in one controller; However

a Robust Controller is harder to design and needs more computing power to run.

Following the investigation done in this thesis, more pertinent projects could follow. In

depth work can be done on modeling actual OSMP disturbances in the human body and

setting control system objectives in collaboration with a medical group, not only to restore

homeostasis but to determine the way in which it has to happen. More research should

also be done on building and integrating OSMP sensors in a biological control system

environment. Studies on computational speeds and power sources should also be done, if

such a device that regulate OSMP in patients with CDI were to be implemented.
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7 0 7061 0 8437

Settling Time
Perturbed Models PD SmithPredictor H∞ µ‐synthesis

1 112.5421 126.4326 148.4675 158.2122
2 120.2572 123.7447 143.0627 178.5612
3 94.479 138.2062 166.1196 240.4168
4 220.6355 216.5324 NaN 180.3113
5 188.9716 109.4426 192.3137 181.6098
6 188.3606 90.3227 191.545 180.1226
7 166.2636 147.3413 162.4677 180.0611
8 168.9597 114.7181 133.2355 192.2029
9 97.6041 141.7411 170.4815 168.9087
10 122.6514 117.7324 135.7566 171.5746

Average Settling Time 148.0725 132.62141 144.345 183.19812

Peak ADH
Perturbed Models PD SmithPredictor H∞ µ‐synthesis

1 3.7 1.7 0.7061 0.8437
2 3.7 1.7 0.7061 0.8437
3 3.7 1.7 0.7061 0.8437
4 3.7 1.7 0.7061 0.8437
5 3.7 1.7 0.7061 0.8437
6 3.7 1.7 0.7061 0.8437
7 3 73.7 1 71.7 0 7061. 0 8437.
8 3.7 1.7 0.7061 0.8437
9 3.7 1.7 0.7061 0.8437
10 3.7 1.7 0.7061 0.8437

Average Settling Time 3.7 1.7 0.7061 0.8437

Fig. 8.3 comparing the Settling Time and Peak ADH of the osmoregulatory
closed-loop system when the four types of controllers are used: PID, PID in a
Smith Predictor Configuration, H∞ Controller and Robust Controller subject
to an output step disturbance of 10 mOsm/l. 10 random perturbed model
instances are used. No saturation blocks were added in this case.
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