
Essays on nonparametric and
high-dimensional econometrics

Masaya Takano

Doctor of Philosophy

Department of Economics
McGill University

Montréal, Québec, Canada

November, 2022

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy

©Masaya Takano, 2022



ABSTRACT

This thesis consists of four essays which address key problems in nonparametric and high-
dimensional econometrics. The first essay proposes a bound approach to nonparametric
regression. We employ a possibly misspecified model to approximate the true model, and
then bound the approximation error using concentration inequalities in order to build con-
fidence sets for a conditional expectation of unknown form. In the second essay, we study
hypothesis testing of linear and nonlinear restrictions on a finite-dimensional parameter,
using generalized C(α)-type statistics based on estimating functions (or moment equa-
tions), when the estimating functions or the nuisance parameter estimates converge at non-
standard rates (which may be slower than the square root of the sample size n). We establish
conditions under which the C-alpha-type statistics follow the usual chi-square distribution.
The third essay proposes a representation of a stochastic process of probability distribu-
tions in a L2 space which incorporates mass points and a varying support. These features
are important to study the dynamics of earnings, income and wealth distributions. In the
fourth essay, we propose a semiparametric approach for testing independence between two
infinite-order cointegrated vector autoregressive series based on the residuals of long au-
toregressions.
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Résumé

Cette thèse comprend quatre essais sur des problèmes d’économétrie non-paramétrique
et en grande dimension. Le premier essai propose une approche fondée sur des bornes
pour la régression non-paramétrique E[Y |X ]. Afin d’approximer le vrai modèle, nous util-
isons un modèle qui peut comporter une erreur de spécification, et nous montrons comment
l’erreur d’approximation peut être bornée par des inégalités de concentration, de façon à
construire des régions de confiance pour une espérance conditionnelle de forme incon-
nue. Dans le deuxième essai, nous étudions des tests de type C(α) pour des restrictions
linéaires et non-linéaires sur un paramètre de dimension finie, en utilisant des fonctions
d’estimation (ou des conditions de moments) générales, lorsque les fonctions d’estimation
ou l’estimateur des paramètres du modèle convergent à un rythme non-standard (qui peut
être plus lent que la racine carrée de la taille d’échnatillon n). Nous établissons des condi-
tions sous lesquelles les statistiques de type C-alpha continuent à suivre asymptotiquement
la loi chi-carré habituelle. Le troisième essai propose une représentation d’un processus
stochastique de distributions de probabilités dans l’espace L2[0,1], lequel comporte des
masses des probabilités ou un support variable dans le temps. Ces caratéristiques sont
importantes pour l’étude de la dynamique des distributions de salaires, de revenus et de
richesse. Dans le quatrième essai, nous proposons une approche semi-paramétrique pour
tester l’indépendance entre deux séries cointégrées de type VAR basée sur les résidus de
autorégressions longues.
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Chapter 1

Introduction

Statistical inference relies on a set of assumptions imposed on the underlying data gener-
ating process and its validity is in question when any of the assumptions is not satisfied.
In this thesis, we study econometric and statistical problems in which such an issue posed
for existing methods has significant practical relevance, but has not been yet properly ad-
dressed in the literature. The true mechanism which generates observed data is not known
to the practitioner and is likely to be highly complex especially in non-experimental re-
search. Then, any postulated model should be seen as an approximation of the true model
and the approximation error needs to be incorporated in inference either by bounding the
error (Chapter 2) or by increasing the complexity of the approximate model as the sam-
ple size increases so that the error is asymptotically negligible (Chapter 5). For functional
data, model misspecification may be tackled by considering a transformation which in-
corporates key features without imposing arbitrary smoothness conditions on a function
of interest (Chapter 4). Even when the model structure imposed is assumed to be true,
valid inference based on the standard

√
n-asymptotics may not be feasible due to some

feature of the data generating process. Hypothesis testing can be still conducted in this
case by utilizing a transformed estimating function, the asymptotic distribution of which
is insensitive to estimation error (Chapter 3). The thesis contributes to nonparametric and
high-dimensional econometrics by proposing statistical methods which allow for flexible
model structures that existing methods may not accommodate.

In Chapter 2, we propose a bound approach to nonparametric regression. The object
of interest, the conditional expectation E[Y |X ] is in general unknown and difficult to iden-

1



Chapter 1

tify. In the spirit of the parsimony principle, we employ a simple parametric model to
approximate the true model and then bound the approximation error using concentration
inequalities to build confidence sets for E[Y |X ]. Our approach is valid under less stringent
regularity assumptions than conventional nonparametric methods, such as kernel regression
and the sieve method. In particular, our framework allows for incomplete identification of
the regression function and inference takes the form of sets in a partial identification frame-
work. We show that approximation bounds can be built using only moments of observables
and discuss how shape restrictions (e.g. smoothness) can be exploited to improve such
bounds. We study optimality and uniformity of the proposed bounds by using the concepts
of sharpness and honesty criteria. Inference only requires estimation of a simple parametric
model and moments of observables along with results from the theory of extremum esti-
mation. Thus, it is easy to implement and enjoys favorable finite-sample properties. Our
Monte Carlo simulation studies compare our method with alternative methods (local poly-
nomial regression, the sieve method, random forest, LASSO, and neural network) in terms
of the average widths and coverage probabilities of associated confidence sets and the mean
squared error of point estimates. Results show that the proposed method delivers valid con-
fidence sets in cases where the other methods fail or cannot provide confidence sets at all.
As an empirical application, we apply our method to inference for auto miles-per-gallon
based on car attributes, the dataset of which is available from the UCI machine learning
repository. Our method yields confidence sets with the shortest width while maintaining
the size and generates best out-of-sample predictions based on point estimates. These find-
ings support our theoretical results on finite-sample properties. In another application, we
demonstrate how our bound approach provides economically significant information re-
garding the shape of regression curves, using household consumption data.

In Chapter 3, we study hypothesis testing of linear and nonlinear restrictions on a finite-
dimensional parameter, using general estimating functions (or moment equations), when
nuisance parameters are estimated at a rate which may be slower than n1/2 under the null
hypothesis. We focus on generalized C(α) tests, which allow one to use a wide class of nui-
sance parameter estimators, under weak assumptions on the asymptotic distribution of the
estimators. However, root-n consistency remains notably restrictive, because it precludes
estimators which converge at a slow rate, e.g. many estimators based on nonparametric
regression. In this paper, we first establish conditions under which generalized C(α)-type

2



Chapter 1

statistics follow the usual chi-square distribution under nonstandard convergence rates: we
allow for a convergence rate slower than the usual n1/2 rate for the restricted estimator
of the parameter of interest, as well as nonstandard convergence rates for the estimating
functions (or moment equations) and their derivatives. In particular, when the estimating
function converges to its limit at rate n1/2, we only require that the convergence rate of the
restricted estimator be faster than n1/4. Second, we consider the case where the primary es-
timating functions include (possibly unrestricted) nuisance parameters which are replaced
by estimators based on an auxiliary estimating function which may converge at a different
rate from the primary estimating functions. In these cases, we propose extended general-
ized C(α)-type statistics [EC(α)], and derive their asymptotic null distribution. For such
statistics, the estimation error on the nuisance parameters is asymptotically negligible, and
the asymptotic chi-square distribution holds regardless of the choice of the nuisance pa-
rameter estimate, as long as the convergence rate is faster than n1/4. The generalized C(α)

statistics suggested nest existing C(α)-type statistics as special cases, and thus broadens the
applicability of these statistics to problems involving nonstandard rates. Four applications
are discussed: (1) testing the derivatives of a conditional expectation; (2) average treat-
ment effects in regression discontinuity designs; (3) semiparametric stochastic discounting
factors; (4) testing the homogeneity of regression functions when the two samples go to
infinity at different rates.

In Chapter 4, we focus on dynamics of earnings, income and wealth distributions with-
out removing such features as mass points and varying support that are important character-
istics of these distributions. The contribution of this paper is three-fold. Firstly, we evaluate
the importance of mass points and accounting for the support via several stylized examples.
We demonstrate that trimming the data could result in misinterpreting the stochastic prop-
erties of the process of distributions. Our second contribution is a new transformation into
the L2[0,1] space that accounts for mass points and the varying support of the distribution.
We link our representation to that of the demeaned density process in Chang et al (2016)
(for the case of an absolutely continuous distribution) and demonstrate that the dimension
of that non-stationary subspace for the stochastic process is preserved by our transform in
the absolutely continuous case. Third, we provide a direct comparison with the empirical
results of that paper by using the same data set (extended in time). Our test results simi-
larly give the dimension of the unit root subspace to be 2, although we get much stronger

3



Chapter 1

statistical evidence for persistence and demonstrate that the dynamics of the support or top
quantiles is the main driver for persistence.

In Chapter 5, we propose a semiparametric approach for testing independence between
two infinite-order cointegrated vector autoregressive series [IVAR (∞)]. The procedures
considered can be viewed as extensions of classical methods proposed by Haugh (1976,
JASA) and Hong (1996, Biometrika) for testing independence between stationary univari-
ate time series. The tests are based on the residuals of long autoregressions, hence allowing
for computational simplicity, weak assumptions on the form of the underlying process, and
a direct interpretation of the results in terms of innovations (or shocks). The test statis-
tics are standardized versions of the sum of weighted squares of residual cross-correlation
matrices. The weights depend on a kernel function and a truncation parameter. Multivari-
ate portmanteau statistics can be viewed as a special case of our procedure based on the
truncated uniform kernel. The asymptotic distributions of the test statistics under the null
hypothesis are derived, and consistency is established against fixed alternatives of serial
cross-correlation of unknown form. A simulation study is presented which indicates that
the proposed tests have good size and power properties in finite samples.
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Chapter 2

Approximation bounds for conditional
expectations and nonparametric
regressions:
theory and inference

2.1. Introduction

The objective of empirical econometrics is to provide a better understanding of key aspects
of the complex economic system in the form of statistical modeling and inference. The ma-
jority of research questions in this endeavor involves relationships between macro/micro
economic variables, in particular, in causal contexts. Regression modeling has been the
central tool as an apparatus to investigate such relationships through conditional expecta-
tions. Regression analysis models the conditional expectation E [Y |X ] of some outcome
variable Y given exogenous variables X . The conditional expectation has intuitive interpre-
tation as the mean outcome of Y conditional on X and enjoys an optimality property as the
best predictor of Y given X in terms of the mean squared error. While other characteristics
of the conditional distribution of Y given X can be exploited, e.g. through conditional quan-
tiles (Koenker and Hallock (2001)), the regression framework has been the most celebrated
statistical tool in applied econometrics due to its attractive features.
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The conditional expectation function m(·) = E [Y |X = ·] (CEF, hereafter) is in general
unknown and difficult to identify. Whether parametric or nonparametric, identification can
be achieved only under restrictive assumptions on the underlying data generating process.
Parametric identification is valid only on the premise that the true model belongs to a class
of models indexed by some finite-dimensional parameter, specified by the practitioner. In
practice, it is hard to provide a compelling argument to justify such parametric specifica-
tion. When this presumption fails, any attempt to identify the model parameter does not
result in identification of the true model and the model parameter identified under regular-
ity conditions, e.g. rank conditions in the case of linear models, can be only interpreted as
the pseudo true value of a misspecified model, which may fail to represent the key aspects
of the true model. It might appear that nonparametric identification, where the functional
form of the the true model is treated as an infinite-dimensional parameter does not pose such
concerns regarding model misspecification. However, this type of identification approach
suffers from analogous issues. Identification of a nonparametrically specified object re-
quires that there exists an injective mapping from the space of the distributions of observed
variables to the space of the parameter of interest. This requirement is typically achieved
by imposing restrictions on the support and domain of the mapping. Thus, violation of such
restrictions puts identifiability into question. Matzkin (2007) presents identification con-
ditions for a class of additive models, which includes regression models as a special case.
In particular, she assumes the function g of interest to be continuous while the dependent
variable X is also assumed to be continuous, when X is continuously distributed, continuity
of the function g is a necessary condition. Thus, it is not possible to uniquely determine
the value of the function from the data distribution when some type of discontinuity may
not be ruled out at a point in question. This problem cannot be avoided unless all points
of discontinuity are known a priori, which is often difficult to justify in practice. These
observations pose limitations of existing methods that rely on point identification.

Even when taking the identification problem out of the equation, inference for nonpara-
metrically specified functions is a challenging problem as inference requires more stringent
regularity conditions than what does identification. It also suffers from slower convergence
rates and is also prone to the curse of dimensionality.

This paper proposes a simple bound approach which circumvents these issues of the
existing methods. Instead of attempting to estimate the conditional expectation m(X) pre-
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cisely, we employ an approximate model h(·) which we acknowledge captures only certain
features of m(·) and can be arbitrarily different from it and then bound the approximation
error |m(X)−h(X)| using concentration inequalities given a prespecified confidence level.
We show that such approximation bounds can be constructed from easily accessible char-
acteristics of the distribution of observables, such as moments. Then, the bounds combined
with the approximate model h(·) are used to construct a confidence set for m(X). We show
that our bounds are sharp and thus cannot be improved without imposing additional restric-
tions on the data generating process. They are also uniform in the sense that they are valid
for any regression function consistent with the marginal distribution Y and that of X . Such
property is known as honesty (reference).

While our approach accommodates the use of any approximating models, we suggest
the use of simple parametric models. While parsimonious models are subject to more strin-
gent specification, they often have superior predictive powers than highly complex models
in practice due to smaller estimation errors. Since specification errors are incorporated in
our bounds, using simple models as approximation does not raise any issues and instead
leads to favorable finite-sample performances in terms of both coverage probability of as-
sociated confidence set and predictive power of point estimates.

Our approach is easy to implement and inference enjoys favorable finite-sample prop-
erties. We study inference for misspecified paramaetric models in the framework of ex-
tremum estimation and observe that the estimators are typically n1/2-consistent and asymp-
totically normal. We show that the proposed approximation bounds can be consistently
estimated by their sample analogue under general conditions. An estimated approximate
model and bounds are used to construct an estimator of a confidence set for m(X), which
achieves a desired level asymptotically.

We consider two empirical applications: inference for car models’ miles-per-gallon
(auto MPG) and the Engle curve for alcohol share.The dataset used in the exercise is fre-
quently used in the machine learning literature and is available from the UCI machine
learning repository (Dua and Graff (2017)). We compare the average width and coverage
probability of confidence sets associated with our method awith two kernel estimators and
random forest. Our method yields confidence sets with the shortest width with correct
empirical size. We choose an approximate model using the stepwise regression and this
ad-hoc choice outperforms the alternative methods. These findings echo our Monte Carlo
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experiments. The second empirical application uses household expenditure data (Fam-
ily Expenditure Survey (FES) from 2000-2001 collected by Office for National Statistics
(2002)). We show how our method can be applied to investigate the shape of the Engle
curve for alcohol share without imposing arbitrary shape restrictions. Our bound based ap-
proach appears to provide meaningful information regarding the shape of the curve without
imposing a stringent structure on it.

We proceed as follows. We review the literature in Section 2.2. Section 2.3 presents
impossbility results on identification and testability of noparametric regression. Section
2.4 introduces our framework in an appropriate Hilbert space. In Section 2.5, we propose
approximation bounds based on observed error and study their optimality and uniformity.
Section 2.6 considers conditional bounds and their links to inference for m(x) for a fixed
point x. Section 2.7 discusses how smoothness of the function m(·) can be utilized to
form an alternative approximation bound. Section 2.8 provides our inference framework
for confidence sets for m(X). We conclude with Monte Carlo simulation and empirical
applications in Section 2.9 and 2.10, respectively. Section 2.11. concludes.

2.2. Related literature

Our work builds upon the literature on various topics in nonparametric and semiparametric
inference in econometrics and statistics. In this section, we review earlier relevant works
and point out the connections to our method to highlight our contribution.

2.2.1. Nonparametric estimation of the conditional expectation

Kernel regression and the method of sieve are widely-known branches of nonparametric
regression estimation frameworks and have been extensively studied in the literature of
statistics and econometrics. Estimators based on kernel regression include the Nadaraya-
Watson and Gasser-Műller estimators (Nadaraya (1964), Watson (1964), Gasser and Müller
(1979)) and local polynomial estimators (Cleveland and Devlin (1988)). Kernel regression
approximates a regression function locally by the weighted average of neighboring points
and controls the degree of smoothing by the bandwidth parameter, which is assumed to
shrink to zero at some rate as the sample size increases. The method of sieve (Grenander
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(1981)) employs a sequence of approximating spaces (or sieve spaces) which is asymptot-
ically dense in the space of regression functions and the sieve estimators are obtained by
minimizing of appropriate objective functions associated with approximating spaces. For
example, series estimators and are partitioning-based least squares nonparametric regres-
sion estimators (Cattaneo, Farrell and Feng (2020)) are sieve estimators. Asymptotic prop-
erties of kernel regression and the method of sieve are well-understood (Newey (1997), Pa-
gan and Ullah (1999), Chen (2007), Li and Racine (2007), Horowitz (2009) among others)
and they can be implemented, despite being computationally-intensive, relatively easily us-
ing common statistical packages. Any estimation method which attempts point-estimation
of a parameter of interest is not robust to identification failure since the estimator converges
to a single point while there are multiple values of the parameter that are consistent with
the data generating process.

Furthermore, in the inference problem of nonparametric regression, additional reg-
ularity conditions are imposed to ensure that an estimator approximates the infinite-
dimensional parameter arbitrarily well asymptotically. Kernel estimation of nonparametric
regression typically imposes differentiability of the regression function up to some order
and the existence of the density functions of the covariates. In the method of sieve, it is typ-
ically assumed that the regression function belongs to some Hőlder class of functions when
commonly used linear sieves, such as power series, splines or wavelets, form approximat-
ing spaces. Due to the slow rates of convergence these estimators achieve, finite-sample
performance is often unreliable and the situation worsens as the dimension of the covari-
ates increases, the phenomenon known as the curse of dimensionality. Confidence sets
based on normal approximation may fail to attain a desired level due to the presence of bias
and remedies based on undersmoothing, bootstrap, and bias correction have been proposed
in the literature (Hall (1992), Hall and Horowitz (2013), Calonico, Cattaneo and Farrell
(2018), Cattaneo et al. (2020)). However, they also face practical challenges since they ei-
ther require an unconventional choice of the tuning parameter with little guidance or require
estimation of higher order derivatives, thus finite-sample performance in multi-dimensional
covariates can be questionable.

Some machine learning algorithms, such as regularized least squares, tree based mod-
els, and neural network, can be applied for learning problems on nonparametric regression.
The purpose of these methods is predictive modeling, which minimizes the prediction error
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under a given sample size and thus they do not necessarily select the true model asymptoti-
cally. Furthermore, their asymptotic theory is still under-developed except for a few meth-
ods (Wager and Athey (2018), Farrell, Liang and Misra (2021)). Our approach requires
substantially weaker assumptions than these methods and is valid for almost any class of
regression functions. Our confidence sets can be estimated at a parametric rate and possess
favorable finite-sample properties. As our simulation results and empirical applications
indicate, confidence sets based on nonparametric methods or machine learning algorithms
are often undersized even in a fairly large sample size in cases where the regression func-
tion is not smooth or irrelevant variables are included in the covariates. Our confidence
sets deliver the correct coverage probability in these cases even under a relatively small
sample size. Thus, our bound approach offers features that are of practical importance and
provides practitioners with a robust and reliable inference method for regression models.

2.2.2. Set identification and inference based on bounds and confidence
sets

The partial identification approach employs the notion of set identification and conducts in-
ference for the parameter of interest without assuming identification in the standard sense
(point identification); Manski (1990), Manski (2003), Imbens and Manski (2004), Cher-
nozhukov, Hong and Tamer (2007a), Romano and Shaikh (2010), Santos (2012).

Our framework is in line with the spirit of the partial identification framework in that we
avoid restrictive assumptions needed to achieve point identification and instead deliver valid
inference using bounds and confidence sets. Our confidence set for E [Y |X ] is valid under
identification failure of the conditional expectation function. We postulate and estimate
a statistical model only for the purpose of approximating a true regression function and
forming a confidence set for E[Y |X ]. This is in contrast with conventional nonparametric
approaches which attempt to estimate each point of a regression function.

2.2.3. Use of misspecified parametric models for inference

Our work contributes to the literature on model misspecification by proposing a valid in-
ference framework for an unknown true model by complementing general misspecified
models with approximation bounds. In the series of his work in 1980’s (White (1980a),
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White (1980b), White (1982)), Halbert White and his coauthors built modern foundation
of inference for misspecified models. White (1982) provides a robust view of maximum
likelihood estimation to misspecification and shows that the maximizer of the quasi like-
lihood still exists as a minimizer to the Kullbuck-Leibler distance to the true density. The
heteroskedasticity-robust covariance estimator (White (1980a)) consistently estimates the
asymptotic covariance matrix of the slope parameter regardless of whether the true regres-
sion function is indeed linear with respect to the covariates1. Buja, Berk, Brown, George,
Pitkin, Traskin, Zhao and Zhang (2015) revisit and elaborate further his work. They note
that the coefficients of a misspecified linear model depend on the regressor distribution
and make an argument against conditioning on regressors when the linear model is only
an approximation. In spite of the extensive literature, there are few papers which take into
account the specification error of an arbitrary misspecified model and deliver a valid in-
ference for the underlying true model. As a notable exception, Glad (1998) proposes to
employ a simple parametric model to approximate the regression function to reduce the
bias and then nonparametrically estimate the correction factor, a function which corrects
model misspecification. Her approach known as parametrically guided nonparametric re-
gression shares certain similarities with our method in the use of misspecified models to
approximate a regression function. However, her method involves nonparametric estima-
tion of an infinite-dimensional parameter and hence inherits features of the nonparametric
approach which we discussed in Section 2.2.1 including a slow convergence rate. We only
bound the approximation error instead of estimating it and such a bound is typically con-
structed from the moments of the data distribution and thus benefits from the favorable
finite sample properties of parametric estimation.

2.2.4. Principle of parsimony in statistical modeling

We suggest the use of simple parametric models to approximate the regression function
in our bound approach. The principle of parsimony, also known as Occam’s razor, is a
general philosophical rule which favors simpler explanations, coined by an English logi-
cian William of Ockham in the 14th century. Its justification has been provided theoreti-
cally and empirically in various disciplines, including statistics and econometrics (Rissanen

1When linearity of the regression function does not hold, the misspecified linear model can be still inter-
preted as a linear projection model.
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(1978), Rissanen (1982), Rissanen (1987), Rissanen (1987), Ploberger and Phillips (2001),
Ploberger and Phillips (2003)). In empirical economics, parsimonious modeling, espe-
cially reliance on a linear structure, has been common. In nonlinear dynamic stochastic
general equilibrium (DSGE) models, it is common to obtain the (approximate) solution by
considering the Taylor expansion of policy functions (Kydland and Prescott (1982), King,
Plosser and Rebelo (1988), Schmitt-Grohé and Uribe (2004)). In survival analysis, the two
dominating empirical models, the Cox proportional hazards model (Cox (1972)) and the
accelerated failure time model (Wei (1992)) both impose a parametric form to capture the
dependence between the dependent variable and covariates. Inference for random choice
models, notably demand in differentiated-product markets (Berry (1994), Berry, Levinsohn
and Pakes (1995)) typically assumes that the random utility depends on covariates linearly.
Such specification is often ad-hoc and should be seen as only an approximation of the true
data generating process. The prevalence of parsimonious modeling can be seen from the
popularity of the Akaike information criterion (AIC, Akaike (1974)) While AIC achieves
optimality in the MSE sense, it is known that it is not necessarily consistent, that is, it does
not choose the correctly specified model (Vrieze (2012)). While the inference framework
for misspecified models has been established in the literature we review in the previous sec-
tion, little attention has been paid to the question of how misspecified models can be used
for inference for the true model. This paper is the first work to provide justification to the
use of misspecified empirical models by explicitly taking into account model specification
bias and deliver asymptotically valid inference for nonparametric regression. In order to
implement our method, practitionerrs would be required in addition to using the standard
estimation procedures (1) to compute heteroskedasticity-consistent standard errors of esti-
mators of the approximate model parameters and (2) to estimate the approximation bounds
as we discuss in detail in Section 2.8.

2.3. Some negative results on identification and testability
of nonparametric regression

This section presents some impossibility results concerning identification and testability
of nonparametric regression. We revisit Matzkin (2007)’s results on the nonparametric
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identification of the regression function m (or m(·) evaluated at a given point x0: m(x0)) and
observe that continuity of the function m plays an essential role in her results. We show that
when m is arbitrarily specified, m(x0) is not identified for every x0 in the support of X . In
such a case, any point estimator of m(x0) is inconsistent. Furthermore, if the confidence set
of m(x0) based on such a point estimate only incorporates estimation uncertainty, its size is
zero regardless of the nominal level. We further observe that even when m(x0) is identified,
if there is no restriction on the underlying data generating process, meaningful inference
on m(x0) may not be feasible in the sense that any testing procedure for the hypothesis of
the form: H0(µ0) : m(x0) = µ0 for a fixed value µ0 ∈ R has trivial power. A more formal
account of the nonparametric identification is provided in Appendix: 2.A. For a pair of
random variables (Y,X) such that E |Y | < ∞, we consider the nonparametric regression
setup:

Y = m(X)+ ε, E[ε | X ] = 0. (2.3.1)

Consider the class of functions M defined as

M = {m∗ : X → Y : m∗(X) is integrable.} (2.3.2)

We assume that X is continuously distributed and make the following assumption.

Assumption 2.3.1 DENSITY fX OF X. For the marginal distribution FX of X, the density

fX exists, and is continuous. Furthermore, fX(x)> 0 for any x ∈X .

The same assumption is made in Matzkin (2007) for identification of m(·). We shall cover
the case where X is discrete in Lemma 2.3.2. The following assumption states that there is
essentially no restriction made on the functional form of the function m.

Assumption 2.3.2 FUNCTION CLASS OF m. The regression function m is in M : m∈M .

This assumption differs from Matzkin (2007), who only considers the class of continuous
functions. When such a general class of functions is allowed, m(·) is not identified at any
point of the support.
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Proposition 2.3.1 Assumption 2.3.1-2.3.2 hold. Then, for any x0 ∈X , m(x0) is not iden-

tified.

As a corollary, we show that when x0 is a point of probability mass, m(x0) is identified.

Corollary 2.3.2 Suppose Assumption 2.3.2 holds and Pr(X = x0) > 0. Then, m(x0) is

identified.

The following result is a generalization of Bahadur and Savage (1956) on testability of the
mean of a random variable.

Proposition 2.3.3 Suppose {(yi,xi)}n
i=1 is i.i.d. and E |y1|< ∞. For a given point x0 ∈X

and µ0 ∈ Y , consider the null hypothesis:

H0(µ0;x0) : m(x0) = µ0. (2.3.3)

Let

H (µ0;x0)= {Distribution functions Fn ∈Fn such that m(x0) is identified and H0(x0,µ0)holds}
(2.3.4)

where Fn is the family of all probability distributions of {(yi,xi)}n
i=1. Then, H0 (µ0;x0) is

not testable, i.e. if a test has level α (α ∈ (0,1)) for H0 (µ0;x0), that is

PFn (Rejecting H0 (µ0;x0))≤ α for all Fn ∈H (µ0;x0) , (2.3.5)

then for any µ1 6= µ0, for all Fn ∈H (µ1;x0),

PFn (Rejecting H0 (µ0;x0))≤ α. (2.3.6)

Further, if there is at least one value µ1 6= µ0 such that for at least one Fn ∈H (µ1;x0),

PFn (Rejecting H0 (µ0;x0))≥ α (2.3.7)

then for all µ1 6= µ0,

PFn (Rejecting H0 (µ0;x0)) = α for all Fn ∈H (µ1;x0) . (2.3.8)
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Proposition 2.3.3 states that when m(x0) is identified, the power of any test on the value of
m(x0) does not exceed its nominal level. Along with Proposition 2.3.1, it entails that under
only minimal assumptions imposed on the data generating process, inference on m(x0), in
particular based on a point estimate, is challenging. On the other hand, a bound approach
for m(X) considered here is valid under such circumstances. In particular, we allow for
m(·) to be weakly identified.

2.4. Framework

2.4.1. Brief description of the framework

We consider the standard nonparametric regression setup:

Y = m(X)+ ε (2.4.9)

where m(x) is the conditional expectation of Y given X = x and the error ε ≡ Y −m(X) is
additive and satisfies the mean-independence of X :

E [ε|X ] = 0. (2.4.10)

Note that other characteristics of the distribution of ε given X remain unspecified in this
general setup. In particular, ε2 is not mean-independent of X in general, i.e. Var(ε| X) can
depend on X . The conditional moment restriction (2.4.10) implies that

Var(Y −m(X))≤ Var(Y −h(X)) (2.4.11)

for any square-integrable transformation h(X) of X and the equality holds if and only if
m(X) 6= h(X) with probability zero. Then, it is tempting to evaluate a given approximate
model h for m in terms of the mean squared deviation; h is deemed to be better approxima-
tion for m when

E |m(X)−h(X)|2 (2.4.12)

is smaller. When one chooses the best approximate model based on this criterion among a
family H of candidate models,the best model h∗ ∈H can be interpreted as a projection
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onto H in an appropriate Hilbert space and its existence and uniqueness is guaranteed, by
the Hilbert projection theorem, provided H is a nonempty convex closed set. Furthermore,
h∗ ∈H minimizes (2.4.12) if and only if it minimizes E |Y −h(X)|2, the moment only
involving observables, in particular, it is then free of the unknown object of interest, m(X).
In the next part of this section, we formulate the framework in the Hilbert space L 2 and
formalize the discussion here.

2.4.2. Detailed framework

We first define an appropriate Hilbert space.

Definition 2.4.1 L2 SPACE. Consider a probability space (Ω ,F ,P), where Ω is a sam-

ple space, F is a sigma-algebra of subsets of Ω , and P is a probability measure on the

measurable space (Ω ,F ). L2 = L2 (Ω ,F ,P) is a real Hilbert space of univariate random

variables with mean zero equipped with inner product 〈·, ·〉 : L2×L2→ R defined as

〈Z,W 〉= E [ZW ] (2.4.13)

for Z, W ∈ L2 where expectation is taken with respect to P. The induced norm ‖·‖ : L2→ R

on this space is defined by

‖Z‖=
√
〈Z,Z〉=

√
Var(Z) (2.4.14)

for Z ∈ L2. Any element Z in L2 is a measurable mapping from (Ω ,F)→ (Z ,B (Z ))

where Z ⊂ R is the support of Z and B (Z ) is the Borel sigma-algebra for Z and Z is

square-integrable, i.e.

EZ2 ≡
∫

(Z (ω))2 dP(ω)< ∞. (2.4.15)

We say that two elements of L2, Z and W, are orthogonal, denoted by Z ⊥W, if

〈Z,W 〉= 0. (2.4.16)

Similarly, Z is said to be orthogonal to a set W , denoted by Z ⊥W , if Z is orthogonal to
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any element of W :

〈Z,W 〉= 0, ∀W ∈W (2.4.17)

Definition 2.4.2 PROJECTION. ForC ⊂ L2, the projection PC;L2→C of Y onto C is an

element q in C such that

‖Y −q‖ ≤ ‖Y − c‖ ,∀c ∈C. (2.4.18)

Note that the definition of projection in Definition 2.4.2 is more general than projection
onto a subspace, often called linear projection. While linear projection possesses intuitive
characterization through the orthogonality condition discussed in Lemma 2.4.3, it fails to
subsume many interesting econometric models in which the index parameter is not linear
in regressors. As stated in Lemma 2.4.1, closedness and convexity of a set is necessary
and sufficient for the existence and uniqueness of projection for any element in L2, which
implies that projection must be linear. However, we are often interested in projection of a
specific element of L2, e.g. a conditioned random variable Y and in such a case, orthog-
onality condition stated in Lemma 2.4.2 guarantees the existence and uniqueness without
imposing convexity on the set.

Lemma 2.4.1 CHEBYSEV SET AS A NONEMPTY CLOSED SET. A set C ⊂ L2 is

nonempty, closed, and convex if and only if C is a Chebyshev set, i.e. for any Y ∈ L2,

PCY exists and is unique. Furthermore,

〈Y −q,q〉 ≥ 〈Y −q,c〉, ∀c ∈C (2.4.19)

if and only if

q = PCY . (2.4.20)

Lemma 2.4.1 implies that in order to guarantee the existence and uniqueness of the pro-
jection of ”every” square integrable random variable, projection has to be linear. The next
lemma allows one to consider a more general class of projection by providing conditions
under which projection of a specific random variable exists and is unique.
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Lemma 2.4.2 EXISTENCE AND UNIQUENESS OF PROJECTION THROUGH ORTHOGO-
NALITY. For a set C ⊂ L2, suppose for Y ∈ L2 , there exists some q ∈C such that

〈Y −q,c〉= 0 ∀c ∈C. (2.4.21)

Then, PCY exists and is unique.

The following lemma states that projection of any element in L2 onto a subspace is also
characterized by the same orthogonal conditions as in Lemma 2.4.2.

Lemma 2.4.3 ORTHOGONAL PROJECTION ONTO A SUBSPACE. Let C be a subspace in

L2. Then, for each Y ∈ L2, PCY exists as a unique element in C. Further,

〈Y −q,c〉= 0, ∀c ∈C (2.4.22)

if and only if

q = PCY . (2.4.23)

In the L2-space, the conditional expectation E [Y |X ] can be identified as the projection onto
the subspace M (X) of L2 consisting of all square-integrable functions of X , i.e.

E [Y |X ] = arg inf
q∈M (X)

‖Y −q‖. (2.4.24)

By Lemma 2.4.3, such an element is unique almost everywhere. Further, if we let ε ≡
Y −E [Y |X ], ε is orthogonal to M (X):

ε ⊥M (X) (2.4.25)

or equivalently
E [ε |X ] = 0. (2.4.26)

Note that the conditional variance of ε

σ
2
ε (X)≡ E

[
ε

2|X
]

(2.4.27)

could depend on X . Representation of m(X) as the projection of Y onto M (X) in (2.4.24)
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indicates a complication in identifying and estimating the functional form of m since the
cardinality of M (X) is

∣∣Y X
∣∣, where X and Y are the supports of X and Y , respectively:

the minimization problem in the RHS in general involves optimization over a uncount-
ably infinite-dimensional parameter q. On the other hand, the projection onto a smaller
subset of M (X) is often more tractable, especially when the set is indexed by some finite-
dimensional parameter. e.g. C (X ;Θ) = {h(X ;θ) ∈ L2,θ ∈Θ} where h is known up to the
finite-dimensional parameter θ ∈Θ . The set C (X)⊂M (X) can be interpreted as a collec-
tion of approximate models for m(X) and the projection PCm(X) of m(X) onto C (X) is
the best approximate model of m(X) in the MSE (mean squared error) sense amongC (X).
The next lemma shows that in order to find PCm(X), we only need to find the projection
PCY of Y onto the same space C, a problem involving only observables.

Lemma 2.4.4 IDENTITY OF PROJECTIONS OF Y AND THE REGRESSION FUNCTION

m(X). For the set C := C (X) ⊂M (X), define the projection operator PC : L2 → C

onto the set C as in 2.4.2. Assume PCY is unique. Then, the following identify holds:

PCY = PCm(X) . (2.4.28)

If C (X) is further assumed to be indexed by some parameter space Θ of finite dimension,
then C = C (X ;Θ) can be interpreted as a collection of parametric models. While our
general framework does not restrict approximation models to be parametric and any square-
integrable function of X may be be employed, this class of models is of particular interest
due to its tractability in estimation and inference. Inference for a parametric model is based
on asymptotic properties of a finite-dimensional parameter θ 0, the unique element of Θ

such that it is associated with the projection PCm(X) for which a
√

n estimator of θ 0 is
available under general assumptions as we discuss in Section 2.8. Note that uniqueness of
the projection PCm(X) does not imply identification of θ 0. Assumption 2.4.1 states that
there is no redundancy in Θ in the sense that two distinct elements of Θ correspond to two
distinct approximate models.

Assumption 2.4.1 IDENTIFICATION. Consider a set C (X ;Θ) ⊂M (X) which is gen-

erated by a square integrable function h(X ;θ) indexed by a finite-dimensional parameter
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θ ∈Θ ⊂ Rk:

C (X ;Θ) = {h(X ;θ) ;θ ∈Θ} . (2.4.29)

For any θ 1,θ 2 ∈Θ ,

θ 1 = θ 2 (2.4.30)

if and only if

h(X (ω) ;θ 1) = h(X (ω) ;θ 2) , a.e.onΩ . (2.4.31)

Under Assumption 2.4.1, the problem of finding a possibly infinite-dimensional vector
{PCm(x)}x∈X reduces to a finite-dimensional problem with a parameter θ ∈ Θ and its
solution θ 0 is unique.

Lemma 2.4.5 Suppose the set C :=C (X ;Θ) ⊂M (X) satisfies Assumption 2.4.1, and a

projection of Y onto C exists and is unique. Then, there exists a unique element θ 0 ∈Θ

(the projection parameter) such that

‖Y −h(X ;θ 0)‖< ‖Y −h(X ;θ)‖, ∀θ 6= θ 0 (2.4.32)

and

‖m(X)−h(X ;θ 0)‖< ‖m(X)−h(X ;θ)‖, ∀θ 6= θ 0. (2.4.33)

Lemma 2.4.5 implies that h(X ;θ 0), the best predictor of Y in the class of functions
C (X ;Θ) in terms of the norm ‖ · ‖, is also the best approximate model of the conditional
expectation m(X) inby the same criteria.

Example 2.4.1 C (X ;Θ) is a subspace spanned by a set of basis functions

pk (x) = (p1k (x) , · · · , pkk (x))
′

(2.4.34)

and its element is indexed by θ defined on a nonempty convex subspace Θ of Rm. Every
element of C (X ;Θ) can be written as

pk (x)′θ (2.4.35)

for some θ ∈Θ . Convexity and closedness of C (X ;Θ) are automatic. Note that basis
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functions are not necessarily continuous in x, for example when splines are employed.θ 0 is
identified if and only if

E
[

pk (X)′ pk (X)
]

(2.4.36)

is full-ranked so that

θ 0 =
(

E
[

pk (X)
′
pk (X)

])−1
E
[

pk (X)
′
Y
]

. (2.4.37)

Example 2.4.2 Set C :=C (X ;Θ) as

{
exp
(
X ′θ

)
: θ ∈Θ

}
(2.4.38)

where Θ is a compact convex subset of Rm. Then, if there exists some θ 0 ∈Θ such that

〈m(X)− exp
(
X ′θ 0

)
,exp

(
X ′θ

)
〉= 0, (2.4.39)

then projection PC (X) is unique and it is associated with a unique element θ 0 ∈Θ so that

PC (X) = exp
(
X ′θ 0

)
. (2.4.40)

Contrary to linear models, where identification of the projection parameter θ 0 can be
translated into the rank condition, the uniqueness and existence of θ 0 is often difficult to
check. Such potential issue may favor the use of linear models as approximate models.

2.5. Bounds for conditional expectation and nonlinear re-
gression

2.5.1. Upper bounds for the unobserved approximation error

This section establishes approximation bounds for nonlinear regression, a device which
plays a pivotal role in our approach by stochastically controlling the approximation error
in the conditional expectation. Under general conditions, as illustrated in Section 2.4.2,
for Y ∈ L2 and C := C (X) ⊂M (X), there exists a unique element PCm(X) ∈ C, the
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projection of Y onto C, such that

Var(Y −m(X))≤ Var(Y −PCm(X))< Var(Y −h(X)) , ∀h ∈C\{PCm(X)} . (2.5.1)

Further, by Lemma 2.4.4
PCY = PCm(X) (2.5.2)

so that

Var(m(X)−PCm(X))< Var(m(X)−h(X)) , ∀h ∈C\{PCm(X)} . (2.5.3)

This entails that PCY is the best approximate of the conditional expectation m(X) in terms
of the MSE in the given family of square-integrable functions of X . There still, however,
remains the question of how far PCY is from m(X), or equivalently how large the approx-
imation error PCY −m(X) is. We approach this question by bounding the approximation
error in a stochastic sense. To elaborate this notion, suppose for a constant α ∈ (0,1), some
positive constant cα such that

Pr(|m(X)−PCm(X)|> cα)≤ α (2.5.4)

is available. Then,
[PCm(X)− cα ,PCm(X)+ cα ] (2.5.5)

is a confidence set for m(X) with level 1−α . This section is concerned with construction
of such constants cα ’s. We show that they can be constructed only with easily accessible
characteristics of the distribution of (Y,X), such as the moments. Then, since the set C is
specified by the practitioner, the pair (PCm(X) ,cα) does not involve any nuisance parame-
ter, in particular, m(·). In practice, (PC,cα) has to be estimated. We defer the discussion of
the impact on inference until until Section 2.8.

In Section 2.5.2, we pose a general problem of finding bounds from which an unob-
served random variable deviates with at most a pre-specified probability. Our particular
interest of bounding the approximation error |m(X)−PCY | is seen as a special case of
such a problem where |m(X)−PCm(X)| is treated as an unknown object. We propose in
Section 2.5.3 a construction of nontrivial bounds based only on the knowledge of some
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moments of observable variables (Y,X). We note that our approach relies on concentration
inequalities; one only requires knowledge or estimatbility of a certain moment; this in turn
implies that any resulting bound is guaranteed to yield a valid confidence set, but it can
be much wider than the best bound obtained when the distribution of |m(X)−PCm(X)| is
fully known. We circumvent this difficulty pertinent to this type of inequalities by com-
bining multiple (possibly an uncountable set of) bounds to yield a single refined bound.
Section 2.5.5 serves as display of one-sided bounds as opposed to two-sided ones.

2.5.2. Generic concentration bounds for an unobserved random vari-
able

Chebyshev’s inequality states that for any random variable Z with finite second moment
and a positive constant c > 0,

Pr(|Z−E [Z]| ≥ c)≤ Var(Z)
c2 . (2.5.6)

This moment-based inequality has an appealing feature that the probability of deviation
from a central measure E [Z] larger in magnitude than any constant c > 0 can be bounded
without completely specifying the distribution of Z. The moments of Z could be consis-
tently estimated by the sample analogues under general conditions, such as ergodicity and
existence of appropriate moments. Bounds based on higher order moments and the mo-
ment generating function (exponential bounds by Chernoff (1952)) have been considered
as variations of Chebyshev’s inequality and each of them has its own merits (see for exam-
ple Boucheron, Lugosi and Massart (2013) for discussion).
The main takeaway here is that even if Z is not observed or difficult to estimate, an
analogous type of bound can be obtained as long as we are able to bound the second
momentVar(Z) in (2.5.6). To motivate the succeeding discussion, let us consider the fol-
lowing simple but insightful problem and its solutions observed by Meyer (1974). He
pointed out that for a pair of univariate standardized random variables (X ,Y ) with correla-
tion ρ ,

Pr(|m(X)−E[Y ]−ρ(X−E[X ])| ≥ c)≤ 1−ρ2

c2 =
Var(Y −ρX)

c2 ,∀c > 0. (2.5.7)
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This inequality states that regardless of the functional form of m, the probability that the
deviation from linearity |m(X)−ρX | exceeds a threshold c can be bounded from above
using variation of observables: Var(Y −ρX). It can be derived by applying Chebyshev
inequality and then observing that

Var(m(X)−ρX)≤ Var(Y −ρX) . (2.5.8)

Our results are more general than Meyer (1974)’s in at least three ways: (i) our result is
concerned with an approximation error with respect to the conditional expectation of a
general class of projection models with multiple regressors, not just a simple linear model,
(ii) our bounds could exploit not only the second moment, but other characteristics of the
underlying distribution, such as higher order moments and they are combined to yield more
refined bounds. (iii) we also provide single-sided bounds (Cantelli-type bounds) along with
two-sided bounds. To this end, we first need the following lemma.

Lemma 2.5.1 GENERIC MOMENT BASED BOUNDS AND IMPLIED CONFIDENCE SET.

Suppose f is a nondecreasing nonnegative function on R+, Z is a univariate real-valued

(possibly latent) random variable, d ≥ 0 and f (d) > 0. If there exists some positive con-

stant f̄ such that

E f (|Z|)≤ f̄ (2.5.9)

then

Pr(|Z| ≥ d)≤ f̄
f (d)

. (2.5.10)

Furthermore, for every α ∈ (0,1),

Pr (Z ∈ [−dα ,dα ])≥ 1−α (2.5.11)

where dα is defined on the extended real line as

dα ≡ dα

(
f̄
)
= inf

{
d ∈ R++ : f (d)≥ f̄

α

}
. (2.5.12)

As stated earlier, even if Z is unobserved or difficult to estimate, if we can find an upper
bound f̄ for E f (|Z|), we can construct a conservative confidence set for Z with any level.
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In practice, the upper bound f̄ has to be known or estimable. In general, if we denote the
distribution of observables by FW , possible construction of f̄ would be to define

f̄ = φ f (FW ) (2.5.13)

where φ (FW ) maps from any probability distribution to a positive real line. Note that
Meyer (1974)’s bound can be obtained as a special case by setting for W = (Y,X) with
E[X ] = E[Y ] = 0 and Var(X) = Var(Y ) = 1,

Z = m(X)−ρX , (2.5.14)

f (x) = x2, (2.5.15)

f̄ = Var(Y −ρX) . (2.5.16)

2.5.3. Unconditional bounds for nonlinear regression

Now, we move on to our particular problem where

Z = m(X)−PCm(X) (2.5.17)

where PCY is defined in Definition 2.4.2 with C :=C (X). Due to the identity:

PCm(X) = PCY , (2.5.18)

we assume in this section that PCm(x) for each x ∈X is observed and defer inference on
this object to a later section. The following proposition is pivotal in finding the upper f̄ in
Lemma 2.5.1

Proposition 2.5.2 BOUNDS FOR THE MOMENTS OF A CONVEX TRANSFORMATION OF

THE APPROXIMATION ERROR. Suppose f : [0,∞) → [0,∞) is a convex nonnegative

function with E f (m(X)−PC (X))< ∞. Then,

E f (m(X)−PCm(X))≤ E f (Y −PCm(X)) (2.5.19)

The following two corollary is immediate from Proposition 2.5.2
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Corollary 2.5.3 CENTRAL MOMENT AND EXPONENTIAL INEQUALITIES.

1. Suppose E |m(X)−PCm(X)|γ < ∞ for some γ ≥ 1. Then,

E |m(X)−PCm(X)|β ≤ E |Y −PCm(X)|β (2.5.20)

for any β ∈ [1,γ].

2. For a given t ∈ R, suppose E [exp(t (m(X)−PCm(X)))]< ∞. Then,

E [exp(t (m(X)−PCm(X)))]≤ E [exp(t (Y −PCm(X)))] . (2.5.21)

The following results follows from the properties of the conditional expectation.

Corollary 2.5.4 DECOMPOSITION OF VARIANCES. Let PCm(X) be an unbiased projec-

tion, that is

E [m(X)] = E [PCm(X)] . (2.5.22)

Then, the following decomposition of (Var(Y ) ,Var(m(X)) ,Var(Y −PCm(X))) holds:

Var(Y ) = Var(ε)+Var(m(X)) (2.5.23)

Var(m(X)) = Var(PCm(X))+Var(m(X)−PCm(X)) (2.5.24)

Var(Y −PCm(X)) = Var(ε)+Var(m(X)−PCm(X)) . (2.5.25)

For example, if C is a subspace and includes a nonzero constant as a base function, then
PCm(X) is unbiased. Corollary 2.5.4 is well-known, but 1. of Corollay 2.5.3 is more gen-
eral and states that the moments of the approximation error of any order greater than 1 are
bounded by the moments of the observed difference Y −PC of the same order. According
to 2., such inequality also holds for an exponential bound.

Lemma 2.5.1 combined with Proposition 2.5.2 implies a simple method of constructing
a confidence set for m(X).

Proposition 2.5.5 UNCONDITIONAL BOUND FOR NONLINEAR REGRESSION. (i) Sup-

pose f : [0,∞)→ (0,∞) is convex and nondecreasing with E f
(∣∣m(X)−PC(X)Y

∣∣) < ∞.
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Then, for any c > 0 such that f (c)> 0,

Pr(|m(X)−PCm(X)| ≥ c)≤ E f (|Y −PCm(X)|)
f (c)

. (2.5.26)

Furthermore, for any α ∈ (0,1)

m(X) ∈
[
PC(X)Y − cα ,PC(X)Y + cα

]
(2.5.27)

where cα is defined on the extended real line as

cα = inf
{

c ∈ R++ : f (c) =
E f (|Y −PCm(X)|)

α

}
(2.5.28)

with probability at least 1−α .

Note that if f is strictly increasing and unbounded, then

cα = f−1

(
E f (|Y −PCm(X)|)

α

)
. (2.5.29)

In particular, if for β ≥ 1, E |m(X)−PCm(X)|β < ∞ then

Pr(|m(X)−PCm(X)| ≥ c)≤ E |Y −PCm(X)|β

cβ
(2.5.30)

so that to achieve a desired coverage probability 1−α (α ∈ (0,1)), we set

cα =
E |Y −PCm(X)|β

α

1/β

. (2.5.31)

Similarly, since the finite sum of convex functions is also convex, it is also possible to
construct a bound based on a polynomial equation of the absolute moments by considering

f (|x|) =
k

∑
i=1

ci |x|i ,ci ≥ 0 ∀i, (2.5.32)

Observe further that this bound and the induced confidence set are valid for any convex,
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nondecreasing, and nonnegative function f . However, the choice of the function f mat-
ters for the volume of the confidence set. For example, as pointed by Dufour and Hallin
(1992), the usual Cherbyshev’s inequality based on the second moment can be significantly
improved by employing higher order moments. Then, it is sensible to choose the best f ,
i.e. the one that implies the tightest bound. The next theorem formalizes the intuition.

Proposition 2.5.6 UNIFIED UNCONDITIONAL BOUND FOR NONLINEAR REGRESSION.

Let H +
∧ be the class of all convex, nondecreasing, and nonnegative functions from R+ to

R+. For any subclass K of H +
∧ and any constant c > 0,

Pr(|m(X)−PCm(X)| ≥ c)≤ inf
f∈K

E f (|Y −PCm(X)|)
f (c)

(2.5.33)

Hence, for any α ∈ (0,1),

m(X) ∈
[
PCm(X)− c(K )

α ,PCm(X)+ c(K )
α

]
(2.5.34)

where

c(K )
α = inf

f∈K
cα, f (2.5.35)

with cα, f is defined on the extended real line as

cα, f = inf
{

c ∈ R++ : f (c) =
E f (|Y −PCm(X)|)

α

}
. (2.5.36)

For example, setting K as

Kd ≡
{

fβ : R+→ R+| fβ (x) = (x−d)β ,β ≥ 1
}

(2.5.37)

for a given constant d ∈ R yields the shifted moment bound with shift parameter d. The
”moment bound” is obtained as a special case where d = 0 and

c(K0)
α = inf

β≥1

E
∣∣Y −PC(X)Y

∣∣β
α

1/β

(2.5.38)

We note that Philips and Nelson (1995) showed that the moment-based bound is tighter
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than the exponential bound and thus is preferable in practice.

2.5.4. Optimality properties of the approximation bounds: sharpness
and honesty

In this section, we examine optimality and uniformity properties of the approximation
bounds and associated confidence sets for m(X) proposed in Section 2.5.3 under the crite-
rion of tightness and sharpness. A bound cα for given level α ∈ (0,1) is said to be sharp if
it cannot be improved, i.e. cα is a constant such that

sup
F∈F

Pr(|m(X)−PCm(X)| ≥ cα) = α. (2.5.39)

where F is a family of probability distributions of (Y,X). As a consequence, the confidence
set

[PCm(X)− cα ,PCm(X)+ cα ] (2.5.40)

with the tight bound cα has size 1−α . In Proposition 2.5.7, we show that the central
moments based bound in (2.5.38). satisfies the tightness condition (2.5.39) under

F = {FY,X : E |Y |< ∞} . (2.5.41)

Proposition 2.5.7 TIGHTNESS OF THE CENTRAL MOMENTS BASED BOUNDS. Let

c(K0)
α ) be the central moment based bound in (2.5.38). Then, c(K0)

α is tight, i.e.

sup
F∈F

PrF

(
|m(X)−PCm(X)| ≥ c(K0)

α

)
= α . (2.5.42)

This result states that it is not possible to improve the bound c(K0)
α without imposing restric-

tions on the data generating process. In this sense, c(K0)
α is the best approximation bound

for the approximate model PCm(X) for m(X) under the family of distributions F . An-
other desirable property of a bound is uniformity; the bound is uniform over some family
of regression functions. We employ the notion of honesty, first posed by Li (1989), which
requires that the coverage probability holds uniformly over some class M of regression
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functions m. To this end, consider the space F (FX ,FY ) of FY,X given FX and FY :

F (FX ,FY )= {FY,X : E |Y |< ∞,FX and FY are distributions of X and Y , respectively}⊂F

(2.5.43)
and then define a family M (FX ,FY ) of regression functions consistent with the marginal
distributions (FX ,FY ):

M (FX ,FY )= {m(· ; FY,X) : m(· ; FY,X) is the regression function of Y given X under FY,X ∈F (FX ,FY )} .
(2.5.44)

Note that M (FX ,FY ) is considerably large since the marginal distributions FY , FX put
no restriction on the dependence structure of Y and X . The following result states that
any approximation bound based on the observed difference Y −PCm(X) is uniform over
M (FX ,FY ) and thus honest.

Proposition 2.5.8 HONESTY OF THE APPROXIMATION BOUNDS BASED ON THE OB-
SERVED DIFFERENCE. Consider the approximation bound cα, f constructed as in Propo-

sition 2.5.5 given a function f which satisfies the requirements in the proposition. Then,

sup
m∈M (FX,FY )

Pr
(
|m(X)−PCm(X)| ≥ cα, f

)
≤ α . (2.5.45)

Armstrong and Kolesár (2020) propose a honest confidence interval for a scalar parame-
ter of interest, such as a regression function evaluated at a given point. Their results are
restricted to some class of smooth regression functions (e.g. a class of Hölder functions)
while ours are applicable without any smoothness conditions to a general class of regres-
sion functions.

2.5.5. *Unconditional bounds: Single Tailed

One may be interested in obtaining only an upper or lower bound for m(X). There is a
single-tailed version of Chebyshev’s inequality available known as Cantelli’s inequality
(Rao (1973)), whose generalization is considered in the following lemma.

Lemma 2.5.9 GENERALIZED CANTELLI’S INEQUALITY. Let Z be a real-valued ran-
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dom variable. Given c ∈ R, suppose HND(≥c) is some family of functions such that

HND(≥c) = {h : R→ R+ |h is nondecreasing for ∀x≥ c and h(c)> 0} . (2.5.46)

Then,

Pr(Z ≥ c)≤ inf
h∈HND(≥c)

Eh(Z)
h(c)

. (2.5.47)

Similarly, suppose HNI(≤c) is some family of functions such that

HNI(≤c) = {h : R→ R+ |h is nonincreasing for ∀x≤ c and h(c)> 0} . (2.5.48)

Then,

Pr(Z ≥ c)≥ 1− sup
h∈HND(≥c)

Eh(Z)
h(c)

. (2.5.49)

The original Cantelli’s inequality can be obtained by letting EZ = 0 and setting HND(≥c)

for c > 0 as {
hλ : R→ R+|hλ (z) = (z+λ )2 , λ ≥ 0

}
(2.5.50)

and HNI(≤c) for c < 0 as{
hλ : R→ R+|hλ (z) = (−z−λ )2 , λ ≥ 0

}
. (2.5.51)

Similarly, the Chernoff bounds are obtained by setting HND(≥c) as

{ht : R→ R+|ht (z) = exp(tλ ) ,λ > 0} (2.5.52)

and HNI(≤c) as
{ht : R→ R+|ht (z) = exp(−tλ ) ,λ > 0} . (2.5.53)

Theorem 2.5.10 UNCONDITIONAL BOUND FOR NONLINEAR REGRESSION: SINGLED

TAILED. Given c ∈ R, suppose HND(≥c),∨ is some family of functions such that

HND(≥c),∨= {h : R→ R+ |h is convex and is nondecreasing for any x≥ c with h(c)> 0} .

(2.5.54)
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For any subclass K of HND(≥c),∨ ,

Pr(m(X)−PCm(X)≥ c)≤ inf
h∈K

Eh(|Y −PCm(X)|)
h(c)

(2.5.55)

Hence, for any α ∈ (0,1), a confidence interval for m(X) is given by[
−∞,PCm(X)+ c(K )

α

]
(2.5.56)

where

c(K )
α = inf

h∈K
cα,h (2.5.57)

with cα, f is defined on the extended real line as

cα,h = inf
{

c ∈ R++ : h(c) =
Eh(|Y −PCm(X)|)

α

}
. (2.5.58)

Theorem 2.5.10 implies a usual Cantelli-type inequality:

Pr(m(X)−PCm(X)≥ c)≤ Var(Y −PCm(X))

Var(Y −PCm(X))+ c2 . (2.5.59)

2.6. Conditional bounds for nonlinear regression

In Section 2.5, the approach is unconditional in the sense that our object of interest E [Y |X ]

is investigated under no restriction on a random variable X . It is also of particular interest
to make inference conditionally on X being in an event A or to compare the mean effects
of X on Y conditional on X belonging in two different events A and B due to the following
observation: identification of and inference on m(x0) at a fixed point x0 ∈X are feasible
only under fairly strong restrictions on the functional form of m(X) and the distribution
of (Y,X). On the other hand,suppose A is a set including x0 as its element. If A is suffi-
ciently small so that g(x) does not vary so much on A, conditioning on the set A delivers
useful information on m(x0), x0 ∈ A. Hence, set-conditioning bridges the gap between the
unconditional and fully-conditional (at a point) approaches. Then, it is natural to introduce
truncated random variables whose domains are restricted to a set of interest. It turns out that
the framework proposed in Section 2.5 can be extended to achieve counterparts of bounds
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proposed in Proposition 2.5.6 by deliberately redefining the sample space.

Definition 2.6.1 TRUNCATED RANDOM VARIABLES. For a Borel measurable set A ⊂
X , define a pair of random variables (YA, XA), truncated random variables of (Y, X) with

the domain of X restricted to A. Hence, the distribution of (YA, XA) is the conditional

distribution of (Y, X) given X ∈ A: i.e. Pr((YA,XA)≤ (y,x)) = Pr((Y,X)≤ (y,x) |X ∈ A).

Lemma 2.6.1 Suppose A ∈B (X ) and (YA, XA) is defined as in Definition 2.6.1. Define

the conditional expectation of YA given XA = x (x ∈ A) as

mA (x)≡ E [YA |XA = x] . (2.6.1)

Then,

Pr(ω ∈ X−1 (A) |mA (XA (ω)) 6= m(XA (ω))) = 0 (2.6.2)

Intuitively, Lemma 2.6.1 states that the functional form of the conditional expecta-
tion remains invariant to restriction of the domain of X . This means that we can write
mA (XA) = m(XA) for a random variable XA and mA (x) = m(x) for any x ∈ A. Hence, the
local properties of m(X) on the set A can be studied though (YA,XA) due to this functional
invariance of the conditional expectation with respect to a set-conditioning. Further, define
(YB,XB) and mB similarly and suppose that mA and mB do not change ”too much” within
their domains. Then, mA (XA)−mB (XB) should be a good predictor of mA (xa)−mB (xb)

where xa,xb are some fixed (instead of random) elements of A and B, respectively. The
implication here is that our conditional approach makes it possible to attain good approxi-
mation of E [Y |X = xa]−E [Y |X = xb] for any given xa, xb ∈X by considering two sets A,
B, each containing xa, xb. The projection operator PL in the unconditional setting (Defini-
tion 2.4.2) was characterized by its orthogonality to the residual in the covariance sense. We
introduce the notion of a local projection operator, which satisfies the same orthogonality
conditions but locally on A.

Definition 2.6.2 LOCAL PROJECTION OPERATOR. Given a set A⊂X , PLA (X) is said

to be a local projection of YA onto a subspace LA generated by the transformation of XA if

PLA satisfies

Cov(W,PCm(XA)) = 0 ,∀W ∈LA (2.6.3)
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We say PC(XA)YA is unbiased if

E [PCm(X)] = E [m(X) |X ∈ A] (2.6.4)

Now, it is clear that the results in Section 2.5 remain valid when (Y,X), PC(X) are replaced
by (YA,XY ) and PC(XA). To avoid repetition, we only show our conditional bounds for
nonlinear regression; those are direct applications of Proposition 2.5.6.

Proposition 2.6.2 CONDITIONAL BOUND FOR NONLINEAR REGRESSION. Let H +
∧ be

the class of all convex, nondecreasing, and nonnegative functions from R+ to R+. For any

subclass K of H +
∧ and any constant c > 0,

Pr(|m(X)−PCm(X)| ≥ c |X ∈ A)≤ inf
f∈K

E f (|YA−PCm(XA)|)
f (c)

(2.6.5)

Hence, for any α ∈ (0,1), conditional on [X ∈ A], a confidence interval for m(X) is given

by [
−∞,PCm(XA)+ c(K )

α,A

]
(2.6.6)

where

c(K )
α,A = inf

f∈K
cα, f (2.6.7)

with cα, f defined on the extended real line as

cα, f = inf
{

c ∈ R++ : f (c)≥ E f (|YA−PCm(XA)|)
α

}
. (2.6.8)

The following result provides an alternative conditional bound by exploiting the maxi-
mum and minimum values of the approximate model PCm(·) in the set A.

Theorem 2.6.3 Conditional on [X ∈ A], a confidence interval of m(X) with level 1−α is

given by [
inf
x∈A

PCm(x)− cα,A, sup
x∈A

PCm(x)+ cα,A

]
(2.6.9)

where

cα,A =

√
Var(Y −PCm(XA) |X ∈ A)

α
(2.6.10)

34



Chapter 2 Alternative bounds under continuity

Theorem 2.6.3 states that even if point-wise approximation errors m(x)−PC(XA)YA for
each point x ∈ A are not known, the maximum and minimum values of PA (x) combined
with the variation Var(Y −PCm(XA) |X ∈ A) are useful in predicting m(X) conditional on
a random variable X being in A. In practice, the confidence intervals proposed in Theorem
2.6.2 and 2.6.3 are infeasible and the local projection PCm(XA) and the constant cα,A have
to be estimated. We will discuss these matters in Section 2.8.

2.7. Alternative bounds under continuity

2.7.1. Implications of continuity of the regression function

In this section, we discuss how shape restrictions on the regression function m(·) can be
utilized in our framework. While approximation bounds proposed in Section 2.5 and 2.6
do not impose any restrictions on m(·), we show that additional information which restricts
the class of functions that m(·) belongs to can be readily incorporated in our framework and
often leads to sharper bounds than those based on the observed variation Y −PC (X). Shape
restrictions can be also imposed on approximation error (m−PC)(·), for example, when
discontinuity in m(·) is taken into account in the approximate model PC(·) chosen by the
practitioner so that the approximation error possesses a certain continuity property even if
m(·) doesn’t. To motivate further discussions, consider the Chebyshev-type approximation
bound:

Pr(|m(X)−PCm(X)| ≥ c)≤ Var(m(X)−PCm(X))

f (c)
≤ Var(Y −PCm(X))

f (c)
(2.7.11)

Then, Proposition 2.5.7 implies that without any restrictions on m(·), the second inequality
in (2.7.11) is sharp, i.e. there exists some data generating process such that

Var(m(X)−PCm(X)) = Var(Y −PCm(X)) . (2.7.12)

On the other hand, if ε is large relative to m(X)−PL (X) in the true data generating process,
then the variance of the observed difference Var(Y −PCm(X)) can be much larger than the
variance of the approximation error Var(m(X)−PCm(X)) so that the resulting confidence
set can be too wide for practical purposes. Economics theory often does not fully pin
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down m(·) but implies informative restrictions on the shape of m(·), for example continuity,
monotonicity, and concavity. In particular, we will see that under appropriate smoothness
conditions on m(·), a sharper bound than the second inequality in (2.7.11) is available. In
the next section, we study an approximation bound implied by continuity of the regression
function m(·).

2.7.2. Chebyshev’s-type bound under continuity of m

In Corollary 2.5.4, we observed the decomposition:

Var(m(X)−PCm(X)) = Var(Y −PCm(X))−Var(ε) (2.7.13)

if PC (X) is unbiased for Y , i.e. E [PCm(X)] = E [Y ]. Suppose the variance Var(ε) of
expectation error is known or can be consistently estimated. Since Var(Y −PCm(X))

only involves the moments of (Y,X) and does not depend on the unknown infinite-
dimensional parameter m, it is identifiable and may be easily estimated. Then, the variance
Var(m(X)−PCm(X)) of approximation error can be identified from the obvious relation:

Var(m(X)−PCm(X)) = Var(Y −PCm(X))−Var(ε) . (2.7.14)

In such a case, one can simply apply Chebyshev inequality:

Pr(|m(X)−PCm(X)|> c)≤ Var(Y −PCm(X))−Var(ε)
c2 (2.7.15)

and obtain an approximation bound for level α ∈ (0,1):

c̃(2)α =

√
Var(Y −PCm(X))−Var(ε)

α
. (2.7.16)

This bound improves the Chebyshev’s-type bound based on the observed difference Y −
PCm(X):

c(2)α =

√
Var(Y −PCm(X))

α
(2.7.17)
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as c̃(2)α < c(2)α unless Y = PCm(X) almost everywhere. Note that when Var(ε) is identified,
c(2)α is not tight anymore in the sense of Proposition 2.5.7 and improvement is possible. We
show below that by restricting the class of regression functions to be a continuous function
class, this additional information regarding the moment of the expectation error ε can be
obtained. We also require the following regularity conditions.

Assumption 2.7.1 CONDITIONAL DENSITY OF ε . The conditional density fY |X=x of

Y given X = x with respect to the Lebesgue measure exists and fY |X=x is continuous with

respect to x uniformly on X . Furthermore, the density fX of X exists.

Assumption 2.7.2 BOUNDED CONDITIONAL VARIANCE OF ε . There exists some posi-

tive constant C̄ < ∞ such that Var(ε|X = x)< C̄ for any x ∈X .

Given these assumptions, we have the following decoupling representation of Var(ε).

Lemma 2.7.1 DECOUPLING REPRESENTATION OF THE ERROR VARIANCE. Suppose

Assumptions 2.7.1 and 2.7.2 hold and the true model m(x) belongs to a family MC of

continuous regression functions defined as

MC = {m̃ : X → Y | m̃ is continuous and E[Y − m̃(x) |X = x] = 0, ∀x ∈X } .

(2.7.18)
Then,

Var(ε) =
1
2

∫
X

∫
Y

∫
Y
(y1− y2)

2 dFY |X=x0 (y1)dFY |X=x0 (y2)dFX (x0)

=
1
2

lim
δ→0

∫
X

∫
Y

∫
Y
(y1− y2)

2 dFY |X=x0+δ (y1)dFY |X=x0 (y2)dFX (x0)(2.7.19)

In Section 2.8, we consider the estimation of the bound c̃(2)α in (2.7.16) under continuity.
When X is continuous, any observation of X takes a distinct value with probability one. The
second representation of Var(ε) implies useful approximation of the first representation and
leads to a difference-based estimation method for Var(ε).
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2.8. Inference

This section discusses inference for confidence sets for nonparametric regression m(X)

considered in Section 2.5. The overview of the inference framework is provided in Section
2.8.1. Section 2.8.2 considers inference for a parametric approximate model for m(·) in
the extremum estimation framework. In Section 2.8.3, estimators of approximation bounds
proposed in Section 2.5 and 2.7.2 are provided and conditions for consistency are given.
Section 2.8.4 provides a feasible confidence set for m(X) given results in Section 2.8.2 and
2.8.3.

2.8.1. Overview: estimation of the proposed confidence sets

We provide here an overview of succeeding results. Recall that the proposed (two-sided)
confidence set for nonparametric regression E [Y |X ] with level 1−α (α ∈ (0,1)) is of the
form:

CS1−α (X ;PC,cα) := [PC (X)− cα ,PC (X)+ cα ] . (2.8.20)

where PC(·) is any approximate model of m and cα is a positive constant which depends on
the distribution of (Y,X) such that

Pr(m(X) ∈CS1−α (X ;PC,cα))≥ 1−α . (2.8.21)

We assume that the model PC belongs to some function class C indexed by a finite-
dimensional parameter θ ∈Θ ⊂ Rq where Θ is a subset of Rq:

C := C (Θ) = {h(·;θ) : θ ∈Θ} (2.8.22)

and there is some unique θ 0 ∈Θ such that PC = h(·;θ 0) and

θ 0 = argmin
θ∈Θ

E
[
(m(X)−h(X ; θ))2] . (2.8.23)

In this framework, the inference problem involving the approximate model PC reduces to
inference on a finite-dimensional parameter θ 0. Since PC(·) is not assumed to be correctly
specified, θ 0 can be interpreted as a ”pseudo true value” of θ which minimizes the mean
square error with respect to m(X) (or equivalently minimizes the Kullback–Leibler diver-
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gence when a Gaussian density with fixed variance is employed as a pseudo density (White
(1982)). We consider inference for θ 0 in the extremum estimation framework (Amemiya
(1985), Newey and McFadden (1994), van der Vaart (1998)).

Under some regularity conditions that for a fixed value x ∈X , we have

√
n
(
h
(
x; θ̂ n

)
−h(x;θ 0)

) d→N
(
0,σ2

h (x)
)

(2.8.24)

for some function σh (x) : X → R++. Then, conditional on X ,

√
n
(
h
(
X ; θ̂ n

)
−h(X ;θ 0)

) d→N
(
0,σ2

h (X)
)

(2.8.25)

as long as the dependence between θ̂ n and X is negligible asymptotically. Thus, a confi-
dence set for the approximate model h(X ;θ 0) with asymptotic size 1−α1 (α1 ∈ (0,1)) is
given by

CSh,n :=
[
h
(
X ; θ̂ n

)
−dα1,n (X) ,h

(
X ; θ̂ n

)
+dα1,n (X)

]
(2.8.26)

where
dα1,n (x) :=

σ̂h (x)√
n

q1−α1/2 (2.8.27)

and σ̂h (x) is a consistent estimator of σh(x),and q1−α1/2 is the 100(1−α1/2) percentile
of the standard normal distribution. Then, we show that for any of the bounds considered
in Section 2.5. and Section 2.7.2, there exists a estimator ĉα2 of cα2 for α2 ∈ (0,1):

ĉα2

p→ cα2 , (2.8.28)

Then, if (α1,α2) are chosen so that α = 1− (1−α1)(1−α2), a confidence set for m(X)

with asymptotic level 1−α is given by

CS1−α,n(X ;α1,α2) :=
[
h
(
X ; θ̂ n

)
− D̂(X ;α1,α2) ,h

(
X ; θ̂ n

)
+ D̂(X ;α1,α2)

]
. (2.8.29)

where
D̂(x;α1,α2) = dα1,n (X)+ ĉα2 . (2.8.30)

Note that inference for conditional confidence sets proposed in Section 2.6 is analogous
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to the unconditional case considered here. Hence, results derived for the unconditional
case are readily applicable once the estimation procedure is adapted for a truncated random
vector (XA,YA) defined as in Definition 2.6.1 for a set of interest, A ⊂X . Then, given
a sample set {Yi, Xi}n

i=1, we generate a purposive sample
{(

YA,, j,XA, j
)}nA

j=1 by selecting
elements of {Yi, Xi}n

i=1 if and only if Xi ∈ A to estimate an local approximate model and
bounds.

2.8.2. Inference on approximate models

The previous section considers inference for the approximate model PC(·) = h(·;θ 0) where
θ 0 is identified as an unique element of Θ such that

θ 0 = argmin
θ∈Θ

E
[
(m(X)−h(X ; θ))2] . (2.8.31)

More generally, it can be assumed that θ 0 is a unique maximizer of some objective function
of θ as follows:

Assumption 2.8.1 PARAMETER IDENTIFIED AS A UNIQUE MAXIMIZER OF AN OBJEC-
TIVE FUNCTION. For a family of parametric models CΘ := {h(·;θ) : θ ∈Θ}, define an

objective function Q : Θ → R. Then, there exists a unique element θ 0 ∈Θ such that

θ 0 = argmax
θ∈Θ

Q(θ) (2.8.32)

A natural choice in our case is

Q(θ) =−E
[
(Y −h(X ;θ))2] . (2.8.33)

Clearly, the parameter θ 0 is identified if

E
[
(Y −h(X ;θ 0)

2]< inf
Θ\{θ 0}

E
[
(Y −h(X ;θ))2] . (2.8.34)

We emphasize that identification of θ 0 is in general a separate issue from identification
of m(·) and, in particular, the latter is not necessary for the former. Given some sample
objective function Qn (typically sample analogue of Q ), we consider an estimator θ̂ n of θ 0
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as the minimizer of Qn

θ̂ n = argmin
θ∈Θ

Qn (θ) . (2.8.35)

Consistency and asymptotic normality results for θ̂ n are widely available in the literature
(Amemiya (1985), Newey and McFadden (1994), van der Vaart (1998)); we reproduce the
results by Hayashi (2011) in the appendix for completeness.

Then, under the assumptions in Lemma 2.B.1, we have

√
n
(
θ̂ n−θ 0

) d→N (0,Λ) (2.8.36)

where Λ is defined in 2.B.22.
The next lemma provides an asymptotically valid confidence set for h(x; θ̂ n) where x is

a fixed point of x ∈X .

Lemma 2.8.1 For a given x ∈X , suppose h(x;θ) is continuously differentiable with re-

spect to θ in an open neighborhood of θ 0 and the derivative ∂θ h(x;θ 0) is nonzero. Further,

suppose that there is a consistent estimator Λ̂n of Λ . Then, for α ∈ (0,1), the random set

CSh,n :=
[
h(x; θ̂ n)−dα,n (x) ,h(x; θ̂ n)+dα,n (x)

]
(2.8.37)

where

dα,n (x) =
σ̂h (x)√

n
q1−α1/2 (2.8.38)

and

σ̂
2
h,x = (∇θ h(x; θ̂ n))

′
Λ̂n(∇θ h(x; θ̂ n)) (2.8.39)

is a confidence interval for h(x;θ 0) with asymptotic size 1−α .

However, in order to estimate a confidence set for m(X) where X is random, we need
to establish a confidence set for h(X ; θ̂ n). We accommodate the case where θ̂ n and X are
not independent, e.g. when the same data are used to θ̂ n and to evaluate h(·; θ̂ n) as long as
the influence of X on θ̂ n is asymptotically negligible. Such a condition is stated in terms of
the notion of asymptotic independence.

Definition 2.8.1 ASYMPTOTIC INDEPENDENCE. Suppose {Xn} and {Yn} are conver-

gent sequences of random elements defined on measurable spaces (X ,GX ) and (Y ,GY ),
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respectively. Then, {Xn} and {Yn} are asymptotically independent if

|Pr({Xn ∈ A}∩{Yn ∈ B})−Pr({Xn ∈ A})Pr({Yn ∈ B})| → 0, ∀A ∈ GX ,B ∈ GY

(2.8.40)
as n→ ∞. Let X be a random element in (X ,GX ). Then, X and {Yn} are asymptotically

independent if it holds for {Xn}where Xn =X, ∀n and {Yn} are asymptotically independent.

Suppose θ̂ n is estimated from an i.i.d. data {(yi,xi)}n
i=1 and (ys,xs) is picked randomly

from this set of observations. Let θ̂ n,s be an estimator based on {(yi,xi)}n
i=1\(ys,xs).Then,

(ys,xs) and
√

n(θ̂ n− θ 0) are asymptotically independent if the asymptotic distribution of
√

n(θ̂ n− θ 0) is identical to that of
√

n(θ̂ n,s− θ 0). This holds for a wide range of finite-
dimensional parameter estimators that treat all the observations equally and such a con-
dition can be examined via influence functions (Jann (2019)). The following proposition
attains the desired result under asymptotic independence of X and {

√
n(θ n−θ 0)}.

Proposition 2.8.2 CONFIDENCE SET FOR h(X). Suppose X and {
√

n(θ n− θ 0)} are

asymptotically independent. Further, suppose that h(x;θ) is continuously differentiable

with respect to θ in some open neighborhood of θ 0 and the derivative ∂θ h(x;θ 0) is nonzero

for any x ∈X . Finally, let Λ̂n be a consistent estimator of Λ . Then, for α ∈ (0,1),

CSh,n :=
[
h(X ; θ̂ n)−dα,n (X) ,h(X ; θ̂ n)+dα,n (X)

]
(2.8.41)

where dα,n (x) is defined as (2.8.38) is a confidence interval for h(X ;θ 0) with asymptotic

size 1−α .

Given the results presented here, inference for approximation bounds is studied in the next
section.

2.8.3. Estimation of approximation bounds

We consider estimation of the bounds based on the observed difference Y − h(x;θ 0) con-
sidered in Section 2.5 as well as the Chebyshev bound obtained under continuity (Section
2.7.2).
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2.8.3.1. Approximation bounds based on observed difference

Let h0(·) be an approximate model of m(·) and suppose there exists a consistent estimator
θ̂ n

p→ θ 0 where θ 0 is such that h0(·) = h(;θ 0). For any nondecreasing, convex function
f : R+→ R++, define the constant cα, f

cα, f = inf
{

c ∈ R++ : f (c) =
E f (|Y −h0(X)|)

α

}
. (2.8.42)

Then, according to Proposition 2.5.5,

[h0(X)− cα, f ,h0(X)+ cα, f ] (2.8.43)

is a confidence set for m(X) with level 1−α (α ∈ (0,1)). Furthermore, consider combined
bounds

{
cα, f

}
f∈F implied by a class F of nondecreasing and convex functions from R+

to R++ by considering
c(F )

α = inf
f∈F

cα, f . (2.8.44)

First, we are going to construct an estimator ĉα, f of cα, f in (2.8.42) for an individual
function f and show its consistency. Then, we show that an estimator of the unified bound
(2.8.44) defined as

ĉ(F )
α = inf

f∈F
ĉα, f (2.8.45)

is consistent under the assumptions presented below. Given the results in the previous
section, we posit the existence of a consistent estimator θ̂ n of θ 0.

Assumption 2.8.2 CONSISTENCY OF THE APPROXIMATE MODEL PARAMETER ESTI-
MATOR. The estimator θ̂ n of θ 0 is consistent:

θ̂ n
p→ θ 0. (2.8.46)

We assume that an available set of observations: {wi} := {yi,xi}n
i=1 is stationary and

β -mixing, the definition of which is given below:

Definition 2.8.2 β -MIXING PROCESS. For a stationary sequence {wt}t∈N+
of random

elements defined on a probability space (Ω ,A ,P), let M b
a be the σ -algebra generated by
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wa, . . . ,wb (a,b ∈ Z (a ≤ b)). The sequence {wt}t∈Z is said to be β -mixing (or absolutely

regular) with coefficients {β (s)}∞
s=1 where

β (s) = E sup
m≥1

{
P(B|M m

1 )−P(B) : B ∈M ∞
m+s
}

(2.8.47)

if β (s)→ 0 as s→ ∞.

Assumption 2.8.3 β -MIXING SEQUENCE. The sequence {wt}n
t=1 = {(xt , yt)}n

t=1 of ob-

servations is stationary and β -mixing.

We start with inference for the bound cα, f in (2.8.42) for a given f and then extend the
results to the unified bound ĉ(F )

α in (2.8.52) . In addition, we propose a consistent estimator
of the Chebyshev bound under continuity.

Single bound. Given {wi}n
i=1, we define an estimator ĉα, f of cα, f as

ĉα, f = inf

{
c ∈ R++ : f (c) =

En f
(∣∣Y −h(X ; θ̂ n)

∣∣)
α

}
. (2.8.48)

where En[·] is the expectation operator given the empirical distribution of {wi}n
i=1.

We impose the following regularity assumptions to achieve consistency of ĉα, f .

Assumption 2.8.4 EXISTENCE OF THE CONTINUOUS INVERSE. For c∗ ∈ R defined as

f (c∗) =
E f (|Y −h0(X)|)

α
, (2.8.49)

the function f : R+→ R++ is strictly increasing in some open neighborhood of c∗.

If Assumption 2.8.4 is satisfied, the inverse f−1 of f at the point of interest is well-defined
and is continuous in its neighborhood.

Assumption 2.8.5 ENVELOPE FUNCTIONS. There exists an open neighborhood

N (E)(θ 0) such that

E sup
θ∈N (E)(θ 0)

f (|Y −h(X ;θ)|)< ∞. (2.8.50)
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Assumption 2.8.6 REGULARITY: CONTINUITY OF THE APPROXIMATE MODEL WITH

RESPECT TO THE PARAMETER. h(X ;θ) is continuous with respect to θ in some open

neighborhood N (h)(θ 0) with probability one.

Assumption 2.8.7 REGULARITY: CONTINUITY OF THE EXPECTATION. The function

k(θ) = E f (|Y −h(X ;θ)|) (2.8.51)

is continuous in some open neighborhood N (Eh)(θ 0).

If (Y,X) is continuous, Assumptions 2.8.5 and 2.8.6 imply this assumption for
N (Eh)(θ 0) = N (E)(θ 0)∩N (h)(θ 0) by application of the dominated convergence theo-
rem. Under these assumptions, we establish consistency of ĉα, f .

Lemma 2.8.3 Suppose Assumption 2.8.2-2.8.6 hold. Then, the estimator ĉα, f defined as

(2.8.48) converges to cα, f of (2.8.42) in probability.

In the next section, inference for the unified bound is considered.

Unified bound. We provide below regularity conditions under which we achieve consis-
tency of an estimator of the unified bound defined as ĉ(F )

α

ĉ(F )
α = inf

f∈F
ĉα, f (2.8.52)

where F is a class of nondecreasing and convex functions from R+ to R++ and ĉα, f , f ∈F

is given in (2.8.48).

Assumption 2.8.8 EXISTENCE OF CONTINUOUS INVERSE. For c∗f ∈ R defined as

f (c∗f ) =
E f (|Y −h0(X)|)

α
, f ∈F , (2.8.53)

there exists some ε > 0 such that for f is strictly increasing in an ε-open neighborhood

Nε(c f ∗). Furthermore, the inverse f−1 of f defined on the restricted domain Nε(c∗f ) satis-

fies the following uniform continuity condition: for any γ > 0, there exists some δ > 0 such
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that for

sup
f∈F

∣∣ f−1(y1)− f−1(y2)
∣∣< γ (2.8.54)

whenever |y1− y2|< δ .

Assumption 2.8.9 UNIFORM ENVELOPE FUNCTION. There exists an open neighbor-

hood N (E,F )(θ 0) of θ 0 such that

E sup
θ∈N (E,F )(θ 0)

sup
f∈F

f (|Y −h(X ;θ)|)< ∞. (2.8.55)

Assumption 2.8.10 REGULARITY: UNIFORM CONTINUITY OF THE APPROXIMATE

MODEL. Define K =
{

k f (θ)
}

f∈F where

k f (θ) = E f (|Y −h(X ;θ)|) . (2.8.56)

Then, there exists an open neighborhood N (K )(θ 0) of θ 0 such that
{

k f (θ)
}

f∈F is uni-

formly continuous, i.e. for any γ > 0, there exists some δ > 0 such that

sup
f∈F

∣∣k f (θ 1)− k f (θ 2)
∣∣≤ γ (2.8.57)

whenever

|θ 1−θ 2|< δ . (2.8.58)

Note Assumption 2.8.10 holds, for example, if the probability measure of (Y,X) is abso-
lutely continuous and F is a class of uniformly continuous functions. Finally, the following
assumption controls the entropy of the function class.

Assumption 2.8.11 ENTROPY CONDITION FOR THE FUNCTION CLASS. Let

g f (w;θ) = f (|y−h(x;θ)|) (2.8.59)

and define a function class Gε indexed by (θ , f ) for given ε > 0,

Gε = ∪ f∈F
{

g f (·;θ)|θ : ‖θ −θ 0‖ ≤ ε
}

. (2.8.60)

46



Chapter 2 Inference

Then, there exists some ε > 0 such that Gε is a Glivenko-Cantelli class with respect to the

probability measure P∗ = Π ∞
i=1Pi where Pi is the marginal distribution of wi.

Assumption 2.8.11 only requires Gε be a Glivenko-Cantelli class with respect to the prod-
uct measure of the marginal distributions of wi’s, i = 1, . . ., not with respect to the joint
distribution of the β -mixing sequence {wi}∞

i=1. Intuitively, it states the dependent sequence
{wi}∞

i=1 may be treated as if it were an i.i.d. to examine whether the condition of Assump-
tion 2.8.11 is satisfied. Checking such condition for a dependent sequence is in general
significantly more challenging since much of the theory of empirical processes are con-
cerned with i.i.d sequences. Given this set of assumptions, we establish consistency of an
estimator of the unified bound.

Lemma 2.8.4 Suppose Assumption 2.8.2, 2.8.3, 2.8.6, 2.8.8-2.8.11 hold. Then, the estima-

tor ĉ(F )
α in (2.8.52) converges to c(F )

α in (2.8.44) in probability.

Consider
Fβ =

{
fγ(x) = xβ | 1≤ β ≤ β̄

}
(2.8.61)

Observe that any fβ ∈Fβ is invertible and the inverse function is given by

f−1
β

(y) = y1/β . (2.8.62)

Furthermore, for any δ > 0 pick any y1,y2 ∈ R= such that |y1− y2| < δ
1/γ̄ . Then, for any

β ∈ [1, β̄ ], ∣∣∣ f−1
β

(y1)− f−1
β

(y2)
∣∣∣< δ . (2.8.63)

Thus, Assumption 2.8.8 is satisfied. Assumption 2.8.9 is simplified to the following condi-
tion; there exists an open neighborhood N (E,F )(θ 0) of θ 0 such that

E sup
θ∈N (E,F )(θ 0)

|Y −h(X ;θ)|γ̄ < ∞. (2.8.64)

Assumption 2.8.10 holds if
E |Y −h(X ;θ)|β̄ (2.8.65)

is continuous in some open neighborhood of θ 0. Finally, Assumption 2.8.11 holds since Fγ

is indexed by a finite-dimensional parameter in a compact space and thus Gε is indexed by
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a pair of finite-dimensional parameters (β ,γ) in a compact set [1, β̄ ]×{θ : ‖θ −θ 0‖ ≤ ε}
(Vaart and Wellner (2000)). This shows that under the conditions described above, the
unified central moment based bound given in (2.5.38) can be consistently estimated.

2.8.3.2. Bounds under continuity

This section is concerned with inference for the approximation bound under continuity
considered in Section 2.7.2 where

c̃(2)α =

√
Var(Y −h(X ;θ 0))−Var(ε)

α
. (2.8.66)

In the literature of nonparametric regression, inference for Var(ε) without estimating the
regression function m(·) has been an active topic of research since Rice (1984), who revives
a difference based estimator of Var(ε) by Von Neumann (1941). He assumes that X is
univariate, Following Rice (1984), we assume here X is univariate for brevity, however
multivariate extensions have been proposed in the literature (Cai, Levine and Wang (2009))
and may be employed in our framework. Let {(yi, xi)}n

i=1 be a set of observations, consider
reordering {x[ j]}n

j=1 of {xi}n
i=1 so that x[1] ≤ x[2] ≤ ·· · ≤ x[n]. and define {y[ j]}n

j=1 based on
the same indices, i.e. for each i ∈ {1, . . . ,n}, there exists some unique [ j′] ∈ {1, . . . ,n} such
that (xi,yi) = (x[ j′],y[ j′]). Then, the Rice estimator is defined as

σ̂
2
ε =

1
2(n−1)

n

∑
j=2

(
y[ j]− y[ j−1]

)2
. (2.8.67)

Rice (1984) proves consistency of σ̂
2
ε in a fixed design, in which {xi} is fixed. Lemma

2.8.5 extends to a random sampling design as in Assumption 2.8.12 under the following
additional assumptions.

Assumption 2.8.12 I.I.D. OBSERVATIONS. The sequence {(yi, xi)}n
i=1 is independent

and identically distributed with E |xi|2 < ∞ and E |yi|2 < ∞.

Assumption 2.8.13 HÖLDER CONTINUITY. There exist some constants C and γ such
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that C > 0, γ > 0 and

|m(x̄1)−m(x̄2)| ≤C |x̄1− x̄2|γ , ∀x̄1, x̄2 ∈X . (2.8.68)

Assumption 2.8.14 CONTINUOUS SUPPORT OF X. The support X of X is an interval

in R and for given γ such that it satisfies Assumption 2.8.13 for some C > 0 ,

max
2≤i≤n

∣∣x[i]− x[i−1]
∣∣2γ

= op
(
n−1) . (2.8.69)

Lemma 2.8.5 Under Assumption 2.8.12-2.8.14, the estimator σ̂
2
ε in (2.8.67) is a consistent

estimator of σ2
ε .

Given σ̂
2
ε , we may consider an estimator of c̃(2)α in (2.8.66) defined as

ĉ(2)α =

√
max(σ̂2

h,n− γnσ̂
2
ε ,0}

α
(2.8.70)

where

σ̂
2
h,n =

1
n

n

∑
i=1

(yi−h(xi; θ̂ n))
2 (2.8.71)

and {γn} is a nondecreasing sequence of random values in [0,1] such that γn → 1. Note
that σ̂

2
h,n− σ̂

2
ε may be negative in practice especially under a small sample size and thus the

scaling term γn may be chosen so that σ̂
2
h,n < γnσ̂

2
ε will happen with negligible probability.

The assumption that γn→ 1 is required for consistency of ĉ(2)α , however it is not essential
for the approximate bound to sustain the level 1−α since√

σ2
h,n− γnσ̂

2
ε

α
≥

√
σ2

h,n− σ̂
2
ε

α
, ∀γn ∈ [0,1]. (2.8.72)

2.8.4. Feasible confidence set for nonlinear regression

Given the succeeding discussion, we are going to establish the asymptotic validity of the
feasible confidence set for m(X) defined in (2.8.29) . To this end, we impose the following
assumption.
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Assumption 2.8.15 NO MASS ON THE BOUNDARY. For given α ∈ (0,1), consider an

approximation bound cα of level 1−α . Then,

Pr(|m(X)−h(X ;θ 0)|= cα) = 0. (2.8.73)

Under Assumption 2.8.15, it can be shown (in the proof of Proposition 2.8.6) that any
consistent estimator ĉα of cα is an approximation bound of asymptotic level 1−α . Com-
bining with Proposition 2.8.2, we show that the feasible confidence set CS1−α,n(X ;α1,α2)

in (2.8.29) has asymptotic level 1−α .

Proposition 2.8.6 FEASIBLE CONFIDENCE SET FOR THE CONDITIONAL EXPECTATION.

For any α ∈ (0,1), choose a pair (α1,α2) ∈ (0,α)2 such that α1 +α2 = α . Suppose As-

sumption 2.8.15 holds for the approximation bound cα2 of level 1−α2 and further maintain

assumptions in Proposition 2.8.2. Let ĉα2 be a consistent estimator of cα2 . Define a random

set

CS1−α,n(X ;α1,α2) =
[
h(X ; θ̂ n)− D̂(X ;α1,α2) ,h(X ; θ̂ n)+ D̂(X ;α1,α2)

]
(2.8.74)

where

D̂(x;α1,α2) = dα1,n (x)+ ĉα2 (2.8.75)

with dα1,n (x) is defined in (2.8.27). Then, CS1−α,n(X ;α1,α2) is a confidence interval for

m(X) with asymptotic level 1−α .

Assumption 2.8.15 is generally justified in practice, in particular, when X is continuous.
However, one may find data generating processes such that this assumption is violated. For
example, suppose cα is tight and the distribution of X has mass points at x’s such that

m(x) = h(x;θ 0)+ cα or m(x) = h(x;θ 0)− cα . (2.8.76)

In order to accommodate cases where the underlying generating process may violate As-
sumption 2.8.15, we consider an alternative assumption imposing strong monotonicity of
cα with respect to α that imposes a different requirement on (α1,α2): α1+α2 < α instead
of α1 +α2 = α .
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Assumption 2.8.16 STRONG MONOTONICITY OF THE BOUND. The bound cα as a

function of α is strictly decreasing in α .

The following corollary shows that the conclusion of Proposition 2.8.6 holds under As-
sumption 2.8.16 in place of Assumption 2.8.15.

Corollary 2.8.7 FEASIBLE CONFIDENCE SET WITH MASSES. Choose (α1,α2)∈ (0,α)2

so that α1 +α2 < α and replace Assumption 2.8.15 by Assumption 2.8.16 in Proposition

2.8.6. Then, the feasible confidence set in (2.8.74) has asymptotic level 1−α .

We investigate finite-sample properties of the estimated confidence set through Monte
Carlo experiments in Section 2.9.

2.9. Monte Carlo simulation

2.9.1. Simulation design

This section provides Monte Carlo evidence on the finite sample properties of the bound
approach in comparison with alternative nonparametric methods: kernel regression, sieve
method, random forest, LASSO (least absolute shrinkage and selection operator), and neu-
ral network. Comparisons will be made in terms of the size and average width of confidence
sets for m(X) and the mean squared error of point estimates associated with each method
with respect to m(X).

We consider various data generating processes based on 4 different specifications of
the regression function and the distributions of the conditioning variable X (and W ) as
described in Table 2.1. For all cases, it is assumed that the expectation error ε =Y−E[Y |X ]

is independent of X and is normally distributed. The ratio of the unconditional variance
Var(ε) of ε relative to the total variance Var(Y ) ranges from {.01, .1, .2} in order to examine
the effect of different signal-to-noise ratios. We also alter the sample size n of the training
set: n ∈ {50,200,500}.

For each data generating process, we simulate M (M = 500) independent training sets,
the l-th set of which is denoted by

{(
X (l)

i ,Y (l)
i

)}n

i=1
. Given each training set, confidence

sets, if available, and point predictions of m(X) are estimated for each method. To con-
duct out-of-sample evaluation of the estimated confidence set for m(X), we simulate a test
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set
{(

X (test)
j ,m

(
X (test)

j

))}N

j=1
, where N = 10,000, independently from the training sets.

Then, we compute the empirical coverage and average widths of the confidence sets and
the mean squared error of the point estimates. A more detail account of the simulation
procedure is given as follows:

Simulation procedure

1. For each l, draw a set of i.i.d. observations
{(

X (l)
i

)}N

i=1
according to a data gen-

erating process in Table 2.1. Then, draw a set of i.i.d. observations
{(

ε
(l)
i

)}N

i=1
,

independently of
{(

X (l)
i

)}N

i=1
, from a normal distribution with mean 0 and variance

Var(ε) = cεVar(Y ) where cε ∈ {.01, .1, .2}.

2. Compute the dependent variable Y (l)
i as

Y (l)
i = m

(
X (l)

i

)
+ ε

(l)
i , i = 1, · · · ,N. (2.9.1)

3. For each method, using
{(

X (l)
i ,Y (l)

i

)}N

i=1
, estimate a confidence set for m(X) with

asymptotic level 95% and construct point estimates for {m(x)}x∈X , each of which
is denoted by Ĉl (X) and {m̂l (x)}x∈X .

4. Given the test set
{(

X (test)
j ,m

(
X (test)

j

))}N

j=1
, compute the empirical coverage level

and average width of Ĉl (X):

ECPm =
1
N

N

∑
j=1

1
{

m
(

X (test)
j

)
∈ Ĉm

(
X (test)

j

)}
and

WT Hm =
1
N

N

∑
j=1

λ

(
Cl

(
X (test)

j

))
where λ (·) is the Lebesgue measure on R. The empirical relative MSE is given by

RMSEm =

1
N

∑
N
j=1

(
m
(

X (test)
j

)
− m̂l

(
X (test)

j

))2

Var(m(X))
.
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We report the average of each of {ECPl,WT Hl,MSEl}M
l=1:

ECP =
1
M

M

∑
l=1

ECPl,WT H =
1
M

M

∑
l=1

WT Hl,RMSE =
1
M

M

∑
l=1

RMSEl .

2.9.2. Data generating processes

We generate observations according to data generating processes provided in Table
2.1. Note that for each model, we consider four specifications of the noise ratio:
Var(ε)/Var(Y ) ∈ {.01, .05, .1, .2}. Each model embodies certain limitations that (some
of) standard standard nonparametric and machine learning methods face.

In (1), the regression function is specified as a step function. The sieve method
(LASSO) can incorporate such a feature of the function m(x) into the sieve space only
if the points of discontinuity (in this case, x = 1, . . . ,10) are known, which is often not the
case in practice. Kernel methods require m(x) to be continuous. Thus, in this setup, we can
examine the effect of this violation of the key assumptions on Nadaraya-Watson and local
linear methods.

We investigate through Model (2) the impact of the curse of dimensionality due to the
presence of the irrelevant regressors.

The regression function m(x) in Model (3) is specified a continuous but non-
differentiable periodic function. We assume that m(x) is only known to be periodic and
continuous. However, its functional form and its period are considered unknown. It is
challenging for methods, such as regression forest and kernel methods, to incorporate such
prior information efficiently while it allows for series based methods (the bound approach,
the sieve method, and LASSO) to employ a suitable class of base functions, such as a
trigonometric series.

On the other hand, the function m(x) in Model (4) is a function that is Hölder continuous
everywhere but differentiable nowhere, known as a Weierstrass function. We examine each
method under such a moderate degree of smoothness.
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2.9.3. Implementation of each method

2.9.3.1. Approximation bound approach

For all DGPs, we consider a class of approximate model of the form:

PC(x ; θ) = p(x)′θ 0 (2.9.2)

where p(x) is a k-dimensional vector specified below for each model and θ 0 is a k-
dimensional parameter such that

θ 0 = arg inf
θ∈Rk

E
[
(Y − p(X)′θ)2] (2.9.3)

We consider (i) linear (DT(Linear)) and (ii) finite-series specifications (DT(Sieve)) defined
as follows. In DT(Linear), p(x) is specified as power series of order up to 1 for Model (1)-
(2) and a trigonometric series of order up to 1 for Model (3)-(4), i.e.

p(x) =


(1,x) (Model (1)),

(1,x1,x2, . . . ,x8)
′ (Model (2)),

(1,cos(x),sin(x)) (Model (3)-(4)).

(2.9.4)

In DT(Sieve), we consider a finite set of candidate models S = {h1, . . . ,hL} for each model
and then pick a model h∗ ∈ S which minimizes TIC (Takeuchi information criterion). TIC
is a generalization of AIC and is known to be robust to model misspecification (Takeuchi
(1976)). In Model (1), an element of S is of the form (2.9.2) where p(x) is a subvector of
(1,x,x2, . . . ,x6)′, i.e. the base functions of a power series of order up to 6 but assuming p(x)

always includes a constant term. Then, the cardinality |S| of S here is 64(= 26). Similarly
in Model (3)-(4), S consists of a model of the form (2.9.2) where p(x) is a subvector of
(1,cos(x),sin(x), . . . ,cos(6x),sin(6x))′ , i.e. the base functions of a trigonometric series
of order up to 6. In Model (2), the base functions p(x) of a candidate model in S is a
subvector of the base functions of a power series of order up to 2, including the cross
terms, e.g. x1x2. Then, the set S includes 242 possible models. Since evaluating TIC for all
models is computationally prohibitive, we instead employ the forward stepwise approach
with bidirectional elimination.
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In Model (1)-(2), for both DT(Sieve) and DT(Sieve), we consider an approximation
bound based on the central-based moment bounds up to 8, given a given approximate model
PC:

c(1),(2)α = inf
1≤β≤8

(
E |Y −PCY |β

α

)1/β

. (2.9.5)

where α = .95. For Model (3)-(4), we also incorporate the Chebyshev bound under conti-
nuity:

c(con)
α =

√
Var(Y −PCm(X))

α
(2.9.6)

and combine such bound with (2.9.5) by defining the approximation bound as

c(3),(4)α =

c(con))
α if 0 < c(con

α

c(1),(2)α otherwise.
(2.9.7)

Estimation of the approximate model PC and the approximation bound are conducted in the
framework of Section 2.8.

2.9.3.2. Alternative methods

For the sieve method, as in DT(Sieve), we pick the best model among a set of possi-
ble models S defined as in the case of DT(Sieve) but AIC (Akaike information criteion
(Akaike (1974))) is employed for Model (1) and (3)-(4). The resulting confidence sets only
account for estimation error but not approximation error, which is assumed to be negligible
asymptotically, and thus we call this implementation ”Naive Sieve”.

As kernel regression methods, we consider Nadaraya-Watson (NW) and local linear es-
timators. For each method, we choose the bandwidth hCV by least-squares cross-validation.
It is known that under such choice of bandwidth, the estimate of m(X) is biased and thus
the confidence set fails to have correct size (Hall (1992)). Thus, we also present results
under undersmoothing, in which the bandwidth hUS is set to be hCV/2. Thus, we consider
construction of confidence sets based on NW estimators with the cross-validation band-
width hCV (referred to as ”NW”), with the bandwidth hUS (”NW(US)”), and local linear
estimators with hCV (”Local Linear”) and with hUS (”Local Linear (US)”).
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Consistency and asymptotic normality of a random forest estimator is known only when
subsampling is used to generate trees (Wager (2014), Wager and Athey (2018)). We set the
subsample size≈ n/3. Then, following Wager, Hastie and Efron (2014), we construct con-
fidence sets based on random forest (RF) estimates by computing the infinitesimal jack-
knife standard error. For LASSO and neural network (referred to as ”NN”), there is yet no
asymptotically valid method proposed for construction of confidence sets for m(X) based
on LASSO and neural network and thus only point estimates are provided.

2.9.4. Simulation results

Simulation results are provided in Table 2.2-2.13 for all models (1)-(4) with three different
levels of the noise ratio: Var(ε)/Var(Y ).

In Model (1), we see that confidence sets based on both AB(Linear) andAB(Sieve)
have correct coverage probabilities even though both specifications are clearly misspeci-
fied. Given the relatively small MSE, the impact of the specification error is fairly small
and a simpler model (AB(Linear)) appears to provide better approximation especially in
a small sample size: N = 50. As Var(ε)/Var(Y ) increases, the average width of the con-
fidence set gets larger for both methods. However, as discussed in Section 2.5.4, this is
an unavoidable feature of a confidence set for E[Y |X ] with valid size when the regression
function is weakly identified (and possibly nonsmooth). While the regression function m(·)
in Model (1) exhibits a somewhat limited pattern of discontinuity characterized by a finite
number of equispaced jumps, such a structure is in practice not known to the practitioner.
The bound-based confidence set remains can be constructed without prior knowledge on
m(·) and remains valid even when the number of jumps are uncountably many and the
points of discontinuities are unknown. In the same model, a confidence set based on any of
the alternative methods is undersized even for a relatively large sample size. In particular,
for Naive Sieve, the coverage probability is close to zero. For this method, the estimated
model is misspecified even asymptotically, however the associated confidence set only in-
corporates estimation error and thus shrinks to a point as the sample size increases, ignoring
misspecification error. Analogous observation can be made in Model (2)-(4).

The four kernel methods and RF appear to be affected by the lack of smoothness of m(·)
and produce undersized confidence sets. Note that the average width of the confidence set
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associated with a kernel method is astronomically large for some cases for n = 50,200. To
see why this is the case, note that the estimated standard error of the kernel estimator is
reciprocal to an estimated density f̂ (x). When f̂ (x) is evaluated at the tails of the distribu-
tion of X , it may be close to zero, especially in a small or moderate sample, which results
in an extremely large value of the standard error and thus the width of the confidence set.
However, such tail behavior does not contribute to the size of the estimated confidence set.

Model (2) shows all methods, except for AB(Linear) are severely impacted by the curse
of dimensionality, especially when Var(ε)/Var(Y ) is large and yield undersized confidence
sets. For DT(Sieve), a chosen model is subject to overfitting with a high probability and
thus the approximation error is underestimated. On the other hand, employing a misspeci-
fied linear model and then bounding the approximation error (DT(Linear)) does not suffer
from such issue of over-fitting. We also note that AB(Linear) often provide the smallest
MSE. These points confirm the advantage of the parsimony principle, in particular in a
small to moderate sample size (relative to the number of variables).

In Model (3)-(4), the issue of undersized confidence sets is present for any of the alter-
native models while AB(Linear) and AB(Sieve) maintain to produce a valid confidence
set even in a small sample size. For these models, the approximation bound for both
AB(Linear) and AB(Sieve) take continuity of m(·) into account through the Chebyshev
bound under continuity. As a consequence, the width of the confidence sets is only min-
imally affected by the increase in the noise ratio Var(ε)/Var(Y ). These results show that
continuity of m(·) can improve the confidence set significantly without affecting its size.

In summary, the proposed bound methods (AB(Linear), AB(Sieve)) successfully de-
liver a valid confidence set under the various data generating processes considered. In
addition, the MSE of point estimates is often comparable to the lowest one among the
alternative methods.
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Table 2.1: Data generating processes in the Monte Carlo experiments

Model Functional form of m(x) Distribution of X

(1) bxc Xi
i.i.d.∼ Uniform(0,10)

(the largest integer smaller thanx)

(2) 10+2x1 + x2 + .3x2
1 + .2x1x2 (X1i,X2i)

i.i.d.∼ N

(
1
1 ,

[
1 .5
.5 1

])
X3:8,i ∼N (0, I6) independent of (X1i,X2i)

(3) m(x) = |x| for −π

4
< x <

π

4
Xi

i.i.d.∼ Uniform(−6,6)

m(x+2π) = m(x)

(4) m(x) = ∑
∞
i=0

1
2i sin

(
2ix
)

Xi
i.i.d.∼ Uniform(0,5)
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Table 2.2: Model (1) Step function: σ2
ε/Var(Y ) = .01

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.000 0.999 0.004 0.757 0.713 0.940 0.900 0.855 NA NA
N= 200 1.000 1.000 0.003 0.841 0.783 0.776 0.733 0.891 NA NA
N= 500 1.000 1.000 0.002 0.874 0.838 0.864 0.830 0.902 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.917 1.866 0.004 30.827 2.5E+18 1.202 1.764 0.928 NA NA
N= 200 1.971 1.950 0.002 1.7E+11 1.3E+60 0.534 8.5E+02 0.616 NA NA
N= 500 1.986 1.971 0.002 0.406 0.516 0.395 0.495 0.556 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.0109 0.0119 0.0124 0.0143 0.0153 0.0114 9.6209 0.0135 0.0112 0.0114
N= 200 0.0102 0.0102 0.0101 0.0052 0.0064 0.0067 0.0130 0.0050 0.0103 0.0102
N= 500 0.0101 0.0098 0.0097 0.0029 0.0038 0.0029 0.0045 0.0032 0.0102 0.0100

Table 2.3: Model (1) Step function: σ2
ε/Var(Y ) = .1

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.000 0.998 0.008 0.817 0.815 0.924 0.897 0.865 NA NA
N= 200 1.000 1.000 0.005 0.714 0.815 0.704 0.701 0.891 NA NA
N= 500 1.000 1.000 0.004 0.783 0.861 0.588 0.619 0.905 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 4.859 4.706 0.009 1.338 2.175 1.383 1.401 1.905 NA NA
N= 200 5.057 5.004 0.005 0.810 1.198 0.732 0.776 1.741 NA NA
N= 500 5.126 5.104 0.003 0.701 0.945 0.555 0.661 1.711 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.0139 0.0261 0.0297 0.0280 0.0355 0.0194 0.0448 0.0351 0.0176 0.0187
N= 200 0.0110 0.0126 0.0129 0.0148 0.0172 0.0124 0.0142 0.0257 0.0117 0.0119
N= 500 0.0105 0.0109 0.0109 0.0092 0.0113 0.0103 0.0116 0.0232 0.0107 0.0107
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Table 2.4: Model (1) Step function: σ2
ε/Var(Y ) = .2

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.000 0.999 0.009 0.829 0.817 0.898 0.873 0.876 NA NA
N= 200 1.000 1.000 0.007 0.760 0.853 0.724 0.722 0.907 NA NA
N= 500 1.000 1.000 0.005 0.704 0.830 0.527 0.558 0.911 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 7.122 6.814 0.013 2.042 2.1E+07 1.604 1.687 2.718 NA NA
N= 200 7.477 7.417 0.007 0.985 1.285 0.807 0.862 2.606 NA NA
N= 500 7.516 7.492 0.005 0.764 1.031 0.538 0.604 2.574 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.0218 0.0439 0.0458 0.0504 0.0693 0.0358 0.0541 0.0663 0.0294 0.0321
N= 200 0.0130 0.0155 0.0166 0.0192 0.0232 0.0149 0.0175 0.0530 0.0143 0.0146
N= 500 0.0111 0.0122 0.0127 0.0133 0.0154 0.0121 0.0131 0.0506 0.0117 0.0118

Table 2.5: Model (2) Many regressors: σ2
ε/Var(Y ) = .01

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.974 0.086 0.000 0.626 0.620 0.841 0.829 0.493 NA NA
N= 200 0.990 0.218 0.000 0.608 0.648 0.819 0.841 0.547 NA NA
N= 500 0.993 0.255 0.000 0.581 0.625 0.792 0.837 0.591 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 3.961 1.237 0.003 1.9E+146 Inf 4.178 5.1E+11 3.890 NA NA
N= 200 5.058 2.906 0.002 1.3E+52 7.5E+144 0.768 8.2E+05 2.441 NA NA
N= 500 5.344 3.086 0.001 1.5E+19 9.8E+93 0.461 1.3E+05 1.799 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.0138 0.8847 0.8847 0.0607 0.1600 0.0158 5.9E+27 0.3254 0.8854 0.1246
N= 200 0.0104 0.7459 0.7459 0.0127 0.0185 0.2301 2.1E+27 0.1441 0.7486 0.0072
N= 500 0.0097 0.6071 0.6071 0.0058 0.0090 0.0010 0.1603 0.0803 0.6096 0.0014
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Table 2.6: Model (2) Many regressors: σ2
ε/Var(Y ) = .1

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.998 0.246 0.001 0.670 0.671 0.449 0.499 0.520 NA NA
N= 200 1.000 0.645 0.000 0.587 0.676 0.411 0.482 0.609 NA NA
N= 500 1.000 0.723 0.000 0.550 0.656 0.386 0.443 0.664 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 9.601 3.786 0.011 1.7E+148 Inf 2.5E+02 1.8E+20 4.262 NA NA
N= 200 10.802 9.756 0.006 5.2E+19 1.8E+96 0.829 9.8E+06 2.945 NA NA
N= 500 11.082 10.314 0.004 7.8E+07 1.7E+48 0.454 1.022 2.315 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.0369 1.0039 1.0039 0.1629 0.2917 0.1170 1.4E+04 0.3434 0.8996 0.4855
N= 200 0.0156 0.7487 0.7487 0.0328 0.0729 0.0190 9.6E+02 0.1485 0.7574 0.1270
N= 500 0.0116 0.6086 0.6086 0.0142 0.0371 0.0067 0.0238 0.0834 0.6170 0.0267

Table 2.7: Model (2) Many regressors: σ2
ε/Var(Y ) = .2

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.999 0.337 0.001 0.658 0.679 0.342 0.405 0.578 NA NA
N= 200 1.000 0.824 0.001 0.578 0.680 0.315 0.372 0.664 NA NA
N= 500 1.000 0.891 0.000 0.536 0.655 0.301 0.362 0.722 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 13.894 5.631 0.017 3.4E+145 1.0E+148 2.4E+03 7.8E+29 4.911 NA NA
N= 200 15.405 14.239 0.009 5.1E+14 2.3E+76 0.842 5.9E+03 3.488 NA NA
N= 500 15.786 15.181 0.006 7.8E+04 1.6E+35 0.508 3.664 2.856 NA NA

MSE
Ours(Linear) Ours(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.0671 1.1653 1.1653 0.2553 0.3839 51.2306 2.5E+28 0.3352 0.9069 0.9106
N= 200 0.0224 0.7454 0.7454 0.0517 0.1330 0.0370 0.4507 0.1452 0.7597 0.0945
N= 500 0.0144 0.6080 0.6080 0.0226 0.0728 0.0142 0.0514 0.0841 0.6207 0.1003
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Table 2.8: Model (3) Periodic: σ2
ε/Var(Y ) = .01

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.963 0.985 0.004 0.285 0.259 0.424 0.286 0.742 NA NA
N= 200 0.999 0.999 0.002 0.847 0.690 0.926 0.792 0.902 NA NA
N= 500 1.000 1.000 0.001 0.911 0.800 0.959 0.872 0.919 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.856 0.164 0.0004 5.6E+14 1.5E+97 1.291 6.3E+03 0.395 NA NA
N= 200 0.893 0.177 0.0002 9.523 1.5E+19 0.304 3.5E+07 0.158 NA NA
N= 500 0.889 0.178 0.0001 0.074 2.060 0.076 0.092 0.075 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 1.041 0.018 0.019 0.850 0.857 4.271 1.7E+02 0.629 0.018 0.936
N= 200 1.006 0.015 0.015 0.029 0.034 0.016 0.247 0.048 0.015 0.223
N= 500 0.998 0.015 0.015 0.006 0.008 0.003 0.010 0.007 0.015 0.177

Table 2.9: Model (3) Periodic: σ2
ε/Var(Y ) = .1

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.973 0.996 0.008 0.319 0.294 0.423 0.374 0.741 NA NA
N= 200 1.000 1.000 0.005 0.861 0.758 0.901 0.794 0.878 NA NA
N= 500 1.000 1.000 0.003 0.909 0.867 0.929 0.883 0.905 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.919 0.364 0.0008 5.6E+148 2.9E+149 33.542 1.2E+19 0.418 NA NA
N= 200 1.001 0.402 0.0004 0.192 5.7E+03 0.189 0.308 0.205 NA NA
N= 500 0.995 0.408 0.0003 0.121 0.138 0.120 0.133 0.148 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 1.040 0.032 0.037 0.867 0.882 1.002 8.145 0.663 0.029 1.019
N= 200 1.004 0.018 0.019 0.058 0.077 0.045 1.210 0.071 0.017 0.245
N= 500 0.997 0.016 0.016 0.021 0.031 0.018 0.032 0.028 0.016 0.153
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Table 2.10: Model (3) Periodic: σ2
ε/Var(Y ) = .2

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.956 0.994 0.008 0.310 0.295 0.386 0.353 0.747 NA NA
N= 200 1.000 1.000 0.006 0.875 0.809 0.894 0.822 0.888 NA NA
N= 500 1.000 1.000 0.004 0.906 0.888 0.915 0.897 0.911 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.960 0.533 0.001 1.6E+04 1.4E+32 0.245 1.1E+04 0.447 NA NA
N= 200 1.112 0.584 0.0006 0.226 1.363 0.224 0.285 0.255 NA NA
N= 500 1.111 0.588 0.0004 0.151 0.179 0.148 0.174 0.211 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 1.039 0.048 0.057 0.909 0.927 0.922 1.694 0.677 0.040 1.099
N= 200 1.004 0.022 0.024 0.085 0.115 0.074 1.014 0.095 0.021 0.270
N= 500 0.998 0.018 0.018 0.035 0.052 0.031 0.054 0.055 0.017 0.177

Table 2.11: Model (4) Weierstrass function: σ2
ε/Var(Y ) = .01

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.996 0.937 0.004 0.671 0.546 0.763 0.662 0.820 NA NA
N= 200 0.998 1.000 0.002 0.816 0.702 0.854 0.745 0.855 NA NA
N= 500 1.000 1.000 0.001 0.853 0.810 0.870 0.827 0.878 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.505 0.421 0.001 1.5E+149 Inf 1.5E+04 1.1E+25 0.282 NA NA
N= 200 1.487 0.451 0.0008 3.644 6.7E+15 0.119 5.4E+04 0.118 NA NA
N= 500 1.478 0.452 0.0005 0.071 0.083 0.070 0.078 0.083 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.96725 0.11399 0.11487 0.05453 0.06047 0.18238 0.30703 0.07752 0.08298 0.34459
N= 200 0.94167 0.07024 0.06968 0.00924 0.01118 0.00767 0.02718 0.01069 0.07408 0.04841
N= 500 0.93892 0.06762 0.06762 0.00349 0.00450 0.00277 0.00494 0.00379 0.07235 0.03953
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Table 2.12: Model (4) Weierstrass function: σ2
ε/Var(Y ) = .1

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.998 0.941 0.004 0.719 0.620 0.771 0.682 0.813 NA NA
N= 200 1.000 1.000 0.003 0.841 0.793 0.849 0.806 0.868 NA NA
N= 500 1.000 1.000 0.003 0.866 0.860 0.868 0.856 0.896 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.586 0.531 0.002 1.6E+15 6.7E+75 0.520 3.4E+10 0.317 NA NA
N= 200 1.572 0.619 0.0009 0.159 26.761 0.154 0.193 0.185 NA NA
N= 500 1.569 0.613 0.0006 0.111 0.140 0.109 0.134 0.158 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.96805 0.09917 0.10596 0.07723 0.08645 0.13016 1.83311 0.08607 0.09245 64.14131
N= 200 0.94161 0.07211 0.07136 0.01846 0.02481 0.01640 0.03263 0.01957 0.07513 0.05378
N= 500 0.93576 0.06749 0.06749 0.00844 0.01248 0.00773 0.01309 0.01241 0.07249 0.03235

Table 2.13: Model (4) Weierstrass function: σ2
ε/Var(Y ) = .2

Coverage Probability of Confidence Sets with Asymptotic Level 95%

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 0.997 0.970 0.005 0.752 0.663 0.773 0.697 0.821 NA NA
N= 200 1.000 1.000 0.004 0.855 0.843 0.858 0.845 0.889 NA NA
N= 500 1.000 1.000 0.002 0.879 0.911 0.880 0.918 0.916 NA NA

Average Width of Confidence Sets

AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN
N= 50 1.675 0.656 0.002 0.550 6.0E+09 0.322 55.124 0.364 NA NA
N= 200 1.663 0.773 0.001 0.193 0.314 0.188 0.225 0.250 NA NA
N= 500 1.646 0.827 0.0008 0.137 0.176 0.132 0.169 0.238 NA NA

MSE
AB(Linear) AB(Sieve) Naive Sieve NW NW(US) Local Linear Local Linear(US) RF LASSO NN

N= 50 0.97519 0.09743 0.10677 0.09675 0.11137 0.13021 0.61484 0.10431 0.09591 1.07405
N= 200 0.94289 0.07486 0.07399 0.02603 0.03486 0.02398 0.12853 0.03021 0.07680 0.10154
N= 500 0.93892 0.07065 0.07002 0.01289 0.01578 0.01149 0.01454 0.02309 0.07403 0.03928
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2.10. Empirical illustrations

We consider empirical applications of the bound approach. The prediction problem of the
MPG given car attributes is studied in Section 2.10.1. Section 2.10.2 applies the bound
approach for inference for the shape of an Engle curve.

2.10.1. Prediction of Auto miles-per-gallon

In this section, we consider a regression exercise using Auto MPG Data Set from from UCI
Machine Learning Repository (Dua and Graff (2017)) in which the purpose is to construct
a confidence set for the miles-per-gallon (MPG) fuel consumption of a car model given 7
attributes, 3 of which are multi-valued discrete. This problem is also considered in Wa-
ger et al. (2014), who propose a confidence set based on random forest estimates with the
infinitesimal Jackknife variance. The dataset contains 392 observations and we split the
dataset into a training and test sets of equal sizes 196. Since the outcome can differ consid-
erably according to how the dataset is divided, we generated 100 pairs of training and test
sets by performing random splits 100 times.

As in Section 2.9.3.1, we select an approximate model from the set Sof candidate mod-
els where p(x) of an element of S is specified as follows: let xc = (x1,x2,x3) be the three-
dimensional continuous covariate and define the polynomial series xc,2 of xc of order up to
2 without cross terms:

xc,2 = (1,x1,x2,x3,x2
1,x

2
2,x

2
3) (2.10.8)

Then, p(x) of an element of S is a subvector of the vector xc,2 augmented by dummy
variables based on the three discrete variables. Then, given a chosen model, we construct
an approximation bound in 2.9.5 .

Our method is compared with the Nadaraya-Watson (NW) and local linear estimators
with the bandwidth determined by either the least squares cross validation (CV) or by un-
dersmoothing (UC), and random forests . For random forests, we consider two terminal
sizes where the maximum terminal size is 5 with bootstrap resampling (bts) and the max-
imum terminal size is 1 with subsampling (ss). The case (i) is the default choice in the
randomForest function in the R package randomForest while (ii) is suggested in the lit-
erature, such as Wager (2014) in the context of construction of a confidence set based on
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random forest estimates. For each method, we compute (1) coverage probability of Y , (2)
average width of 95% confidence set and (3) MSE (mean squared error). Note that in (1),
m(X) is not observed, we instead construct a confidence set for the dependent variable, the
MPG fuel consumption as a proxy variable. In (2), for each pair of training/test samples,
we estimate each model using the training set and then construct a confidence set with
nominal size .95 for the dependent variable in the test sample given the estimated model
and the corresponding attributes. The MSE is computed with respect to Y , however recall
that the minimizer of the MSE with respect to Y also minimizes the MSE with respect
to m(X) and thus comparisons of the MSE across different methods provide properties of
point estimates as predictor of m(X).

Table 2.14 report the averages of statistic (1)-(3) for each method. We see that confi-
dence sets based on kernel estimators are undersized regardless of the choice of the band-
width parameter. The approximation bound and random forest-based confidence sets have
valid coverage probabilities. However, among the three methods, the approximation bound
approach leads to a confidence set with the shortest width. This shows that the bound ap-
proach yields the most informative confidence set among the methods in consideration. In
addition, point estimates based on our method yields the smallest MSE. This suggests that
while our point estimates are only predictors from an approximate and likely misspeci-
fied model and thus the approximation errors are present even asymptotically, such models
could also provide better point predictors of the underlying model m(X) than the alternative
methods in practice.
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2.10.2. Shape of Engle curve

The Engle curve describes a collective relationship between household income level and
expenditure on a certain good. Understanding the shape of the Engle curve is a key element
of welfare and commodity tax policy evaluation. Estimation of the curve has been exten-
sively studied in the literature (Banks, Blundell and Lewbel (1997), Blundell, Duncan and
Pendakur (1998), Lewbel and Pendakur (2008), Blundell, Browning and Crawford (2003),
Blundell, Browning and Crawford (2008)) and nonlinearity and non-monotonicity of the
curve has been reported. In this section, we consider application of the bound method to
this problem, in particular an inference problem for the demand response for alcohol using
Family Expenditure Survey (FES) from 2000-2001 collected by Office for National Statis-
tics (2002). Alcohol consumption often exhibits a non-monotonic relationship with income
level and is also of interest due to its implications to consumers’ health (Banks et al. (1997),
Andrienko, Nemtsov et al. (2005), Yakovlev (2018)).

As a set of approximate models, we consider polynomial models of order to up to 6.
We assume continuity of the underlying regression function and thus the Chebyshev bound
in (2.7.16) applies. Figure 2.1 presents fitting of each model along with 95% confidence
sets for 20 out-of-sample data points. We see that as the model complexity increases, the
width of confidence sets gets smaller up to the quadratic model. Employing an additional
term higher than 4th-order does not alter the shape of the fitting much as well as the value
of the associated approximation bound. This can be seen from Table 2.15, which reports
regression results for each model. Note that the covariates are orthogonalized by the Gram-
Schmidt process in order to isolate the contribution of additional terms. It is worth noting
that the quintic (6-th order) term is not significant and the value of the approximation bound
almost does not change from the quartic model to the quintic model. Including further
higher terms does not improve the approximation bound. It indicates that a polynomial
models of any order is likely misspecified. Even in the presence of the effect of specification
error by the approximation bound incorporates, confidence sets based on the quintic models
provide meaningful information on the shape of the curve.

In Figure 2.2, model fitting by kernel regression and random forest is reported. Random
forest estimates exhibit extreme non-smoothness and large variation and the wide range
of the confidence sets reflect poor prediction of the estimates. On the other hand, kernel
regression estimates show a relatively similar curve to that from fitting by the quartic model.
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The out-of-sample MSE of the quartic model (90.0%) is smaller than the smallest one from
the four kernel-based models (93.6%) while the average width of confidence sets based
on any of the four kernel-based models is shorter than the one from the quartic model
(approximately 80% shorter). Thus, whether these kernel regression-based confidence sets
have the right coverage probabilities is in question. Note that as we observe in the Monte
Carlo simulation in Section 2.9, confidence sets based on kernel regression estimates are
often undersized.

Thus, a simple polynomial approximate model provides superior fitting to the alter-
native nonparametric methods and the use of the approximation bound allows to make
inference for the shape of the curve in a robust manner.
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Figure 2.1: Polynomial fitting and 95% confidence sets
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Figure 2.2: Fitting by nonparametric methods with 95% confidence sets
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Chapter 2 Conclusion

2.11. Conclusion

This paper establishes approximation bounds for regression models of arbitrary form and
proposes inference based on confidence sets. Our framework is valid for any generating
processes including those where identification of the regression function fails. The simula-
tion studies support validity of our approach with fairly small sample sizes and are in favor
of our approach over alternative methods in the literature, such as Kernel regression, the
method of sieve and random forest.

In future work, it is of interest to further develop the conditional approach discussed in
Section 2.6. As mentioned there, inference based on set conditioning can be conducted as
in the unconditional case primarily considered in this paper by restricting the support X

of the conditioning variable X as long as the samples are large enough that observations
in such restricted support set are available. When m(x) behaves in a smooth manner in a
certain sense on a set A ⊂X , the bound approach can be employed to derive meaningful
information on m(xA) evaluated at any point in xA ∈ A even when m(·) is weakly identified.
Additionally, by conditioning on two disjoint sets A,B, such approach can be extended to
study the difference m(xA)−m(xB) for xA ∈ A and xB ∈ B.

2.A. Nonparametric identification of functions

We review the concept of nonparametric identification of functions, following Matzkin
(2007) and Lewbel (2019), among others. We primarily adapt the notation in Matzkin
(2007).

Denote the set of all functions and distributions that satisfy the restrictions imposed by
a model, by S. We denote any element of S by ξ and the true value of ξ by ξ 0. For any
element ξ ∈ S, we denote by FY,X (·, ·;ξ ) the distribution of the observable variables (Y,X)

generated by ξ . When ξ = ξ 0, FY,X .

We call η =Ψ (ξ ) a feature of ξ for any function Ψ : S→ Λ . We denote by η0 =

Ψ (ξ 0) the true value of a feature of ξ 0. Given ψ ∈Ψ (S), we define ΓY,X (ψ,S) to be the
set of all probability distributions of (Y,X) that are consistent with ψ and S. Formally,

ΓY,X (ψ,S) = {FY,X (·, ·;ξ ) |ξ ∈ S,Ψ (ξ ) = ψ} . (2.A.9)
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Chapter 2 Consistency and asymptotic normality of an extremum estimator

The following notion plays a key role in identification of the feature ψ∗.

Definition 2.A.1 OBSERVATIONAL EQUIVALENCE. ψ,ψ
′ ∈ Λ are observationally

equivalent in the model S if [
ΓY,X (ψ,S)∩ΓY,X(ψ

′
,S)
]
6= /0. (2.A.10)

It states that for ψ,ψ ′ ∈ Λ , if there exists elements ξ ,ξ ′ ∈ S such that Ψ(ξ ) =

ψ, Ψ(ξ ′) = ψ ′ and the observable distributions FY,X generated by ξ and ξ
′ are equiva-

lent:
FY,X(·, ·;ξ ) = FY,X(·, ·;ξ

′), (2.A.11)

then ψ and ψ ′ are observationally equivalent.

Then, the feature ψ0 is identified if there does not exist ψ ∈ Λ such that it is observa-
tionally equivalent to ψ0 as defined below.

Definition 2.A.2 IDENTIFICATION. ψ0 ∈Λ is identified in model S if for any ψ ∈Λ such

that ψ 6= ψ0

[ΓY,X (ψ,S)∩ΓY,X (ψ0,S)] = /0. (2.A.12)

In the nonparametric regression setup, S corresponds to a collection of pairs (m,Fε,X)

where m is an integrable function on X and Fε,X is the joint distribution of the expectation
error ε := Y −E[Y |X ] and the conditioning variable X .

2.B. Consistency and asymptotic normality of an ex-
tremum estimator

Results on Consistency and asymptotic normality of an extremum estimator are reviewed.

Assumption 2.B.1 . {wi}n
i=1 = {yi,xi}n

i=1 is ergodic stationary.

Assumption 2.B.2 . The objective function Q(θ) is of the form

Q(θ) = E[g(wi;θ)] (2.B.13)
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and the sample objective function Qn(θ) is given by

Qn(θ) =
1
n

n

∑
i=1

g(wi;θ) (2.B.14)

where g is a real-valued function of (wi,θ) and the following conditions hold:

1. θ 0 is in the interior of a convex parameter space Θ .

2. m(wi;θ) is measurable in wi for any θ ∈Θ .

3. E[|m(wi;θ)|]< ∞ for any θ ∈Θ .

Assumption 2.B.3 . The objective function Q(θ) is of the form

Q(θ) = E[g(wi;θ)] (2.B.15)

and the sample objective function Qn(θ) is given by

Qn(θ) =
1
n

n

∑
i=1

g(wi;θ) (2.B.16)

where g is a real-valued function of (wi,θ) and the following conditions hold:

1. θ 0 is in the interior of a convex parameter space Θ .

2. m(wi;θ) is measurable in wi for any θ ∈Θ .

3. E[|m(wi;θ)|]< ∞ for any θ ∈Θ .

4. m(wi;θ) is twice continuous differentiable in θ for any wi.

5. For some q×q positive-definite matrix Σ ,

1√
n

n

∑
t=1

s(wi ;θ 0)
d→N (0,Σ) . (2.B.17)

where s(wi;θ) is defined as

s(wi;θ) =
∂m(wi;θ)

∂θ
(2.B.18)
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6. For some neighborhood N of θ 0,

E[ sup
θ∈N

‖H(wi;θ)‖]< ∞ (2.B.19)

where H(wi;θ) is defined as

H(wi;θ) =
∂ s(wi;θ)

∂θ
′ . (2.B.20)

Under the assumptions above, we have the following result.

Lemma 2.B.1 HAYASHI (2011), PROPOSITION 7.8. Suppose Assumption 2.8.1, 2.B.1-

2.B.3 hold. Then,
√

n
(
θ̂ n−θ 0

) d→N (0,Λ) (2.B.21)

where

Λ = (E[H(wi;θ)0])
−1

Σ (E[H(wi;θ)0])
−1 (2.B.22)
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2.C. Proofs

PROOF OF PROPOSITION 2.3.1 Using the notation in Appendix, 2.A, define S as

S = {(m∗,F∗ε,X) |m∗ ∈M F∗ε,X is a distribution of (ε,X)

such that the density f ∗X of Xexist s and is continuous,

fX(x)> 0 for any x ∈X , and E[ε |X = x;F∗ε,X ] = 0, ∀x ∈X } (2.C.1)

where E[ε |X = x;F∗
ε,X ] is the expectation of ε given X = x calculated using F∗

ε,X . Pick any
x0 ∈X and let ξ = (m,F

′
ε,X ) ∈ S. For an arbitrary c 6= 0, define a function m̃ as

m∗ (x0) =

m(x0)+ c if x = x̄

m(x0) if x 6= x̄.
(2.C.2)

and let ξ̃ = (m∗,F
′
ε,X ) ∈ S. Then, we have

FY |X=x(y ; ξ ) = FY |X=x(y ; ξ̃ ) (2.C.3)

except at x = x0. Since Pr(X = x0) = 0, we have

FY,X(·, ·;ξ ) = FY,X(·, ·; ξ̃ ). (2.C.4)

Thus, ξ and ξ̃ are observationally equivalent.

PROOF OF LEMMA 2.3.2

In this case, we have

S=
{
(m∗,F∗ε,X) |F∗ε,X is a distribution of (ε,X) such that Pr(X = x0)> 0 and E[ε |X = x ; F∗ε,X ] = 0

}
.

(2.C.5)
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Let (m,F
′
ε,X), (m̃,F∗

ε,X) ∈ S such that m̃(x̄) 6= m(x̄) . Then,

E
[
Y |X = x0;m,F

′
ε,X

]
= m̃(x̄)+E

[
ε |X = x̄;m,F

′
ε,X

]
= m̃(x̄) (2.C.6)

E
[
Y |X = x0; m̃,F∗ε,X

]
= m0 (x̄)+E

[
ε |X = x̄; m̃,F∗ε,X

]
= m(x̄) (2.C.7)

so that F ′
ε|X=x̄ 6= F∗

ε|X=x̄. Then, since Pr(X = x̄)> 0, F̃ε,X 6= F∗
ε,X and thus

FY,X(·, ·;m,F
′
ε,X) 6= FY,X(·, ·; m̃,F∗ε,X). (2.C.8)

Thus, m(x0) is identified.

PROOF OF PROPOSITION 2.3.3

Consider first the case where for any n, xi 6= x0 for any i = 1, . . . ,n. Then, since there is
no restriction on Fn, the set of observations {(yi,xi)}n

i=1 does not convey any information
on m(x0) and thus an optimal test is to draw U ∼ Unif(0,1) and then reject H0(µ0;x0) if
and only if U ≤ α . Suppose now the case where there exists some i = 1, . . . ,n such that

xi = x0. Then, construct a purposive sample
{

y∗j
}l

j=1
from {(yi,xi)}n

i=1 by only keeping yi

such that xi = x0. Note l = ∑
n
i=1{xi = x0}. Then,

{
y∗j
}l

j=1
is a set of i.i.d. observations

from the conditional distribution of Y given X = x0. Then, Theorem 1 of Bahadur and
Savage (1956) applies and the conclusion

PROOF OF LEMMA 2.4.1 In a finite-dimensional inner-product space, any Chebyshev
set is closed and convex. The other direction follows from the projection theorem. See
Proposition 12.7 p.306 in Deutsch (2012).

PROOF OF LEMMA 2.4.2 For any c ∈C

‖Y − c‖2 = ‖Y −q‖2 +‖q− c‖2 (2.C.9)

so that
‖Y −q‖2 ≤ ‖Y − c‖2 ,∀c ∈C (2.C.10)
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and the equality holds if and only if q = c, P−a.e.

PROOF OF LEMMA 2.4.3 They are elementary results in functional analysis. See, for
example, Lemma 6.54 in Charalambos and Border (2006).

PROOF OF LEMMA 2.4.4 By assumption, there exists a unique element PCY of C (X)

such that
‖Y −PCY‖< ‖Y −h(X)‖, ∀h(X) ∈C (X)\{PCY} . (2.C.11)

Equivalently,

‖m(X)−PCY‖+2〈m(X)−PCY,ε〉< ‖m(X)−h(X)‖+2〈m(X)−h(X) ,ε〉. (2.C.12)

But, m(X)−PCY,m(X)−h(X) ∈M (X) and ε ⊥M (X) so that

〈m(X)−PCY,ε〉= 〈m(X)−h(X) ,ε〉= 0. (2.C.13)

Hence,

‖m(X)−PCY‖< ‖m(X)−h(X)‖, ∀h(X) ∈C (X)\{PCY} . (2.C.14)

This in turn implies
PCY = PCm(X) . (2.C.15)

PROOF OF LEMMA 2.4.5 By assumption, PCY is unique and there exists a unique ele-
ment θ 0 ∈Θ such that

PCY = h(X ;θ 0) . (2.C.16)

Then, by Lemma 2.4.4, PCm(X) = h(X ;θ 0) so that the assertions hold.

PROOF OF LEMMA 2.5.1 By Markov’s inequality for a nondecreasing nonnegative func-
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tion,

Pr(|Z| ≥ d)≤ E f (|Z|)
f (d)

(2.C.17)

and the results follow by observing

E f (|Z|)≤ f̄ . (2.C.18)

PROOF OF LEMMA 2.5.2 By conditional Jensen’s inequality

E [ f (Y −h(X))|X ]≥ f (E [Y −h(X)|X ]) = f (m(X)−h(X)) (2.C.19)

and thus by the law of iterated expectation,

E [E [ f (Y −h(X))|X ]]≥ E [ f (m(X)−h(X))] (2.C.20)

or
E [ f (Y −h(X))]≥ E [ f (m(X)−h(X))] . (2.C.21)

PROOF OF COROLLARY 2.5.3 Observe |x|α (α ≥ 1) and exp(tx)(t ∈ R) are convex in x

and apply Lemma 2.5.2.

PROOF OF COROLLARY 2.5.4 Noting Cov(PL (X) ,m(X)−PL (X)) = 0 and
E [PL (X)] = E [m(X)],

Var(m(X)) = E
[
(m(X)−E [m(X)])2

]
(2.C.22)

= E
[
{(m(X)−PL (X))+(PL (X)−E [m(X)])}2

]
(2.C.23)

= E
[
(m(X)−PL (X))2

]
+E

[
(PL (X)−E [PL (X)])2

]
(2.C.24)

+2E [(m(X)−PL (X))(PL (X)−E [PL (X)])] (2.C.25)

= Var(m(X)−PL (X))+Var(PL (X)) (2.C.26)
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Y −PL (X) = [Y −m(X)]+ [m(X)−PL (X)] (2.C.27)

and

Var(Y −PL (X)) = Var(Y −m(X))+Var(m(X)−PL (X)) (2.C.28)

+Cov(Y −m(X) ,m(X)−PL (X)) (2.C.29)

= Var(Y −m(X))+Var(m(X)−PL (X)) . (2.C.30)

PROOF OF PROPOSITION 2.5.5 By Markov’s inequality for a nondecreasing nonnegative
function,

Pr(|m(X)−PL (X)| ≥ c)≤ E f (|m(X)−PL (X)|)
f (c)

. (2.C.31)

Since f is convex and nondecreasing and h(x)≡ |x| is convex, the composition f (h(x)) is
also convex. Hence, by the law of total expectation and conditional Jensen’s inequality

E f (|Y −PL (X)|) = E [E [ f (|Y −PL (X)|) |X ]] (2.C.32)

≥ E [ f (|E [Y −PL (X) |X ]|)] (2.C.33)

= E [ f (|m(X)−PL (X)|)] . (2.C.34)

Combined with (2.C.31),

Pr(|m(X)−PL (X)| ≥ c)≤ E f (|Y −PL (X)|)
f (c)

. (2.C.35)

If cα = ∞, the second assertion is trivially true. Now, assume cα < ∞. Then, by definition
of cα

E f (|Y −PL (X)|)
f (cα)

≤ α . (2.C.36)
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PROOF OF PROPOSITION 2.5.6 Note cα, f1 ≤ cα, f2 ( f1, f2 ∈K ) implies

[
PCm(X)− cα, f1 ,PCm(X)+ cα, f1

]
⊂
[
PCm(X)− cα, f2,PCm(X)+ cα, f2

]
, (2.C.37)

so that[
PCm(X)− c(K )

α ,PCm(X)+ c(K )
α

]
=∩ f∈K

[
PCm(X)− cα, f ,PCm(X)+ cα, f

]
. (2.C.38)

Observe by Proposition 2.5.5

inf
f∈K

Pr
(
m(X) ∈

[
PCm(X)− cα, f ,PCm(X)+ cα, f

])
≥ 1−α (2.C.39)

and by the monotone continuity property,

inf
f∈K

Pr
(
m(X) ∈

[
PCm(X)− cα, f ,PCm(X)+ cα, f

])
=Pr

(
m(X) ∈ ∩ f∈K

[
PCm(X)− cα, f ,PCm(X)+ cα, f

])
.

(2.C.40)

PROOF OF PROPOSITION 2.5.7 Fix the distribution F∗X of X . Consider any integrable
function m(·) on X such that

E |m(X)|< ∞. (2.C.41)

Let Y = m(X). The joint distribution FY,X(F∗X ,m) given FX and m(·) is equal to Fm(X),X so
that

Y −PCm(X)) = m(X)−PCm(X) (2.C.42)

with probability one. Now, for any β ≥ 1, there exists a random variable V such that

Pr
(∣∣Vβ

∣∣≥ c(β )α

)
= α. (2.C.43)

where

c(β )α =
E|V |β

α

1/β

. (2.C.44)
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For example, for β = 2, V2 defined as

V2 =



−c(2)α with probability
1

2
(

c(2)α

)2 ,

0 with probability 1− 1(
c(2)α

)2 ,

c(2)α with probability
1

2
(

c(2)α

)2 .

(2.C.45)

satisfies 2.C.43. Then, given the distribution F∗X of X such that m(X)−PCm(X)
d∼ Vβ for

given β ,

PrFY,X (F∗X ,m)(|Y −PCm(X))| ≥ c(K0)
α ) = Pr(|Y −PCm(X))| ≥ c(β )α ) (2.C.46)

= Pr(|m(X)−PCm(X))| ≥ c(β )α ) (2.C.47)

= Pr(
∣∣Vβ

∣∣≥ c(β )α ) = α . (2.C.48)

Since

sup
f∈F

Pr(|Y −PCm(X))| ≥ c(K0)
α )≥ PrFY,X (F∗X ,m)(|Y −PCm(X))| ≥ c(K0)

α ), (2.C.49)

the assertion follows.

PROOF OF PROPOSITION 2.5.8 Define

c∗α, f (m) = inf
{

c ∈ R++ : f (c) =
E f (|m(X)−PCm(X)|)

α

}
, m ∈M (X ;FY ,FX) .

(2.C.50)
Then, by Proposition 2.5.2,

c∗α, f (m)≤ cα, f ∀m ∈M (X ;FY ,FX) . (2.C.51)
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so that

sup
m∈M (FY ,FX )

PrF
(
|m(X)−PCm(X)| ≥ cα, f

)
≤ sup

m∈M (FY ,FX )

PrF
(
|m(X)−PCm(X)| ≥ c∗α, f (m)

)
≤ α . (2.C.52)

PROOF OF LEMMA 2.5.9 For any h ∈HND(≥c),

Eh(Z) = E [h(Z)1{Z ≥ c}]+E [h(Z)1{Z < c}] (2.C.53)

≥ E [h(Z)1{Z ≥ c}] (2.C.54)

≥ inf
z≥c

h(z)E [1{Z ≥ c}] = h(c)Pr(Z ≥ c) (2.C.55)

and hence
Pr(Z ≥ c)≤ Eh(Z)

h(c)
∀h ∈HND(≥c). (2.C.56)

For any h ∈HNI(≤c),

Eh(Z) = E [h(Z)1{Z ≥ c}]+E [h(Z)1{Z < c}] (2.C.57)

≥ E [h(Z)1{Z < c}] (2.C.58)

≥ inf
z<c

h(z)E [1{Z < c}]≥ h(c)Pr(Z < c) (2.C.59)

and by taking the complement,

Pr(Z ≥ c)≥ 1− Eh(Z)
h(c)

∀h ∈HNI(≤c). (2.C.60)

PROOF OF THEOREM 2.5.10 By Lemma 2.5.9,

Pr(Z ≥ c)≤ inf
h∈HND(≥c),∨

Eh(m(X)−PL (X))

h(c)
(2.C.61)
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and for any h ∈HND(≥c),∨,

Eh(m(X)−PL (X))≤ Eh(Y −PL (X)) (2.C.62)

by Proposition 2.5.2.

PROOF OF LEMMA 2.6.1 For any function h,

E
[
(Y −E [Y |X ])2

]
≤ E

[
(Y −h(X))2

]
(2.C.63)

and equality holds if and only if E [Y |X ] = h(X) with probability one. Similarly, for any
function hA,

E
[
(YA−E [YA|XA])

2
]
≤ E

[
(YA−hA (XA))

2
]

(2.C.64)

or equivalently,

E
[
(Y −mA (X))2 |X ∈ A

]
≤ E

[
(Y −hA (X))2 | X ∈ A

]
(2.C.65)

Note that

E
[
(Y −E [Y |X ])2

]
= Pr(X ∈ A)E

[
(Y −E [Y |X ])2 |X ∈ A

]
(2.C.66)

+Pr(X 6∈ A)E
[
(Y −E [Y |X ])2 |X 6∈ A

]
(2.C.67)

= Pr(X ∈ A)E
[
(Y −m(XA))

2 |X ∈ A
]

(2.C.68)

+Pr(X 6∈ A)E
[
(Y −E [Y |X ])2 |X 6∈ A

]
(2.C.69)

Suppose by contradiction that Pr(ω ∈ X−1 (A) |mA (XA (ω)) 6= m(XA (ω))) > 0. Then, it
must be either

E
[
(Y −mA (X))2 |X ∈ A

]
> E

[
(Y −m(X))2 |X ∈ A

]
(2.C.70)

or
E
[
(Y −mA (X))2 |X ∈ A

]
< E

[
(Y −m(X))2 |X ∈ A

]
. (2.C.71)

85



Chapter 2 Proofs

Suppose E
[
(Y −mA (X))2 |X ∈ A

]
> E

[
(Y −m(X))2 |X ∈ A

]
. Define

(x) =

m(x) ,x 6∈ A

mA (x) ,x ∈ A
. (2.C.72)

Then,
E
[
(Y −E [Y |X ])2

]
> E

[
(Y −h(X))2

]
(2.C.73)

a contradiction to (2.C.63). If E
[
(Y −mA (X))2 |X ∈ A

]
< E

[
(Y −m(X))2 |X ∈ A

]
, a con-

tradiction to (2.C.65).

PROOF OF THEOREM 2.6.3 First, note that

Pr(|m(X)−PA (X)| ≥ c|X ∈ A)≤ Var(Y −PA (X) |X ∈ A)
c2 (2.C.74)

For a fixed α ∈ [0,1], define cα =

√
Var(Y −PA (X) |X ∈ A)

α
so that

Pr(|m(X)−PA (X)| ≥ cα |X ∈ A)≤ α (2.C.75)

This means that there exists a set W ⊂Ω such that P(ω ∈W |X (ω) ∈ A)≥ 1−α and for
∀ω ∈W ,

|m(X (ω))−PA (X (ω))| ≤ cα (2.C.76)

or
PA (X (ω))− cα ≤ m(X (ω))≤ PA (X (ω))+ cα . (2.C.77)

Now, since supx∈A PA (x)≥ PA (X (ω)) and PA (X (ω))≤ infx∈A PA (x) for any ω ,

inf
x∈A

PA (x)− cα ≤ m(X (ω))≤ sup
x∈A

PA (x)+ cα . (2.C.78)
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It follows that

Pr
({

ω : m(X (ω)) ∈
[

inf
x∈A

PA (x)− cα ,sup
x∈A

PA (x)+ cα

]}
|X (ω) ∈ A

)
≥ 1−α .

(2.C.79)

PROOF OF LEMMA 2.7.1 Pick any m̃ ∈MC. Then, the conditional density of ε given
X = x and m̃ is well-defined as

fε|X=x(ε|X = x; m̃) = fY |X=x(y− m̃(x)) (2.C.80)

and is continuous with respect to x. Thus,

1
2

∫ ∫ ∫
(y1− y2)

2 dFY |X=x0 (y1)dFY |X=x0 (y2)dFX (x0) (2.C.81)

=
1
2

∫ ∫ ∫
(ε2

1 + ε
2
2)dFε|X=x0 (ε1)dFε|X=x0 (ε2)dFX (x0) (2.C.82)

=
∫ ∫

ε
2
1dFε|X=x0 (ε1)dFX (x0) (2.C.83)

=
∫

ε
2
1dFε (ε1) = Var(ε) (2.C.84)

Furthermore,

1
2

∫ ∫ ∫
(y1− y2)

2 dFY |X=x0+δ (y1)dFY |X=x0 (y2)dFX (x0) (2.C.85)

=
1
2

∫ ∫ ∫
(ε2

1 + ε
2
2)dFε|X=x0 (ε1)dFε|X=x0 (ε2)dFX (x0) (2.C.86)

+
1
2

{
(m̃(x0 +δ ))2− (m̃(x0))

2
}

dFX (x0) (2.C.87)

+ m̃(x0)
∫

ε1dFε|X=x0 (ε1) (2.C.88)

+ m̃(x0 +δ )
∫

ε2dFε|X=x0+δ (ε2) (2.C.89)

= Var(ε) (2.C.90)

+
1
2

∫ {
(m̃(x0 +δ ))2− (m̃(x0))

2
}

dFX (x0) (2.C.91)
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Then, since m̃ is continuous, for each x0,

lim
δ→0

(m̃(x0 +δ ) fX(x0))
2 = m̃(x0) fX(x0) (2.C.92)

and thus
1
2

lim
δ→0

∫ {
(m̃(x0 +δ ))2− (m̃(x0))

2
}

dFX (x0) = 0. (2.C.93)

PROOF OF PROPOSITION 2.8.2

√
n(h(x; θ̂ n)−h(x;θ 0))

d→N (0,σ2
h,x) (2.C.94)

where σ2
h,x = (∇θ h(x;θ 0))

′
Λ (∇θ h(x;θ 0)). Furthermore, given consistency of Λ̂n,

σ̂
2
h,x = (∇θ h(x; θ̂ n))

′
Λ̂n(∇θ h(x; θ̂ n)) (2.C.95)

is a consistent estimator of σ2
h,x. Thus,

lim
n→∞

Pr
(
h(x;θ 0) ∈CSh,n

)
= 1−α (2.C.96)

as desired.

PROOF OF PROPOSITION 2.8.2 Given asymptotic independence of X and
√

n(θ̂ n−θ 0)

conditional on X , we still have that the conditional distribution of
√

n
(
θ̂ n−θ 0

)
given X

is identical to its unconditional distribution. Then, the assertion follows from the proof of
Lemma 2.8.1.

Lemma 2.C.1 NOBEL AND DEMBO (1993). Let F be a permissible family of functions

having an envelope function. If F satisfies a uniform law of numbers with respect to an

i.i.d. process having distribution P0 = Π ∞
−∞P then

sup
f∈F

1
n

n

∑
i=1

f (Xi)−E f (X0)→ 0 (2.C.97)
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with probability P-probability one for every stationary and β -mixing stochastic process

{Xi}∞

i=−∞
having distribution P with marginal P.

PROOF OF LEMMA 2.8.3 First, we are going to show that

E f (
∣∣Y −h(X ; θ̂ n)

∣∣ p→ E f (|Y −h0(X)|) . (2.C.98)

Pick any ε > 0 such that ‖θ −θ 0‖ < ε implies θ ∈N (E)(θ 0)∩N (h)(θ 0)∩N (Eh)(θ 0).
Define function classes

Fε = {g(w;θ) |θ : ‖θ −θ 0‖< ε } (2.C.99)

and
Kε = {k (w;θ) |θ : ‖θ −θ 0‖< ε } . (2.C.100)

where
g(w;θ) = f (|y−h(x;θ)|) ,k(w;θ) = |y−h(x;θ)| . (2.C.101)

Observe that

E sup
θ∈N (E)(θ 0)

f (|Y −h(X ;θ)|)≥ E f ( sup
θ∈N (E)(θ 0)

|Y −h(X ;θ)|) (2.C.102)

≥ f (E[ sup
θ∈N (E)(θ 0)

|Y −h(X ;θ)|]) (2.C.103)

by Jensen’s inequality and thus

E sup
θ∈N (E)(θ 0)

|Y −h(X ;θ)|< ∞ (2.C.104)

by Assumption 2.8.5. It follows that Kε is a Vapnik-Chervonenkis-subgraph class and thus
a Glivenko-Cantelli class with respect to the probability measure P∗ = Π ∞

i=1Pi where Pi is
the marginal distribution of wi and hence, by Lemma 2.C.1,with respect to the probability
measure of the β -mixing sequence {wi}∞

i=1. Since f is continuous, it follows from the
preservation theorem that Fε is also a Glivenko-Cantelli class with respect to the same
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measure. By Assumption 2.8.2, for any δ ∈ (0,1), there exists some n∗ ∈ N such that

θ̂ n ∈N (E)(θ 0)∩N (h)(θ 0)∩N (Eh)(θ 0) (2.C.105)

so that
g(w; θ̂ n) ∈Fε ,k(w; θ̂ n) ∈Kε ,∀n≥ n∗. (2.C.106)

with probability 1−δ . Thus,

En f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f
(∣∣Y −h(X ; θ̂ n)

∣∣) p→ 0. (2.C.107)

Given Assumption 2.8.2 and 2.8.7, it follows from the continuous mapping theorem that

E f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f (|Y −h(X ;θ 0)|)
p→ 0. (2.C.108)

Thus, (2.C.98) holds by the triangle inequality. Then, by Assumption 2.8.4, f is invertible
at c = ĉα, f such that

f (ĉα, f ) =
En f

(∣∣Y −h(X ; θ̂ n)
∣∣)

α
(2.C.109)

so that

ĉα, f = f−1 En f
(∣∣Y −h(X ; θ̂ n)

∣∣)
α

(2.C.110)

for any n≥ n∗∗ for some n∗∗ ∈ N with probability approaching to one. Finally, the contin-
uous mapping theorem implies

ĉα, f = f−1 En f
(∣∣Y −h(X ; θ̂ n)

∣∣)
α

p→ f−1 E f (|Y −h0(X)|)
α

= cα, f . (2.C.111)

PROOF OF LEMMA 2.8.4 We are first going to show

sup
f∈F

∣∣ f (∣∣Y −h(X ; θ̂ n)
∣∣)−E f (|Y −h0(X)|)

∣∣ p→ 0. (2.C.112)
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To this end, observe by the triangle inequality that

sup
f∈F

∣∣En f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f (|Y −h0(X)|)
∣∣ ≤ sup

f∈F

∣∣En f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f
(∣∣Y −h(X ; θ̂ n)

∣∣)∣∣
+ sup

f∈F

∣∣E f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f (|Y −h0(X)|)
∣∣ .(2.C.113)

By Assumption 2.8.2, g f (w; θ̂ n) ∈ Gε with probability approaching to one and thus by
Assumption 2.8.11 and Lemma 2.C.1

sup
f∈F

∣∣En f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f
(∣∣Y −h(X ; θ̂ n)

∣∣)∣∣ ≤ sup
g∈G
|Eng(W )−Eg(W )| p→ 0.(2.C.114)

Furthermore, Assumption 2.8.8 and 2.8.9 combined with the continuous mapping theorem
imply

sup
f∈F

∣∣E f
(∣∣Y −h(X ; θ̂ n)

∣∣)−E f (|Y −h0(X)|)
∣∣ p→ 0. (2.C.115)

Finally, by Assumption 2.8.8, for any ε > 0,

sup
f∈F

∣∣∣∣∣ f−1 En f
(∣∣Y −h(X ; θ̂ n)

∣∣)
α

− f−1 E f (|Y −h(X ;θ 0)|)
α

∣∣∣∣∣≤ ε (2.C.116)

and thus
sup
f∈F

∣∣ĉα, f − cα, f
∣∣ p→ 0. (2.C.117)

PROOF OF LEMMA 2.8.5 Observe the decomposition of σ̂
2
ε :

σ̂
2
ε =

1
2(n−1)

n

∑
j=2

(
y[ j]− y[ j−1]

)2

=
1

2(n−1)

n

∑
j=2

(
ε [ j]− ε [ j−1]

)2

+
1

2(n−1)

n

∑
j=2

(
m
(
x[ j]
)
−m

(
x[ j−1]

))2
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+
1

2(n−1)

n

∑
j=2

(
ε [ j]− ε [ j−1]

)(
m
(
x[ j]
)
−m

(
x[ j−1]

))
. (2.C.118)

By Assumption 2.8.12,

1
2(n−1)

n

∑
j=2

(
ε [ j]− ε [ j−1]

)2
=

1
(n−1)

n

∑
j=2

ε
2
j +op (1)

p→ σ
2
ε . (2.C.119)

Furthermore, Assumption 2.8.13-2.8.14 imply

1
2(n−1)

n

∑
j=2

(
m
(
x[ j]
)
−m

(
x[ j−1]

))2 ≤ 1
2(n−1)

C2
n

∑
j=2

∣∣x[ j]− x[ j−1]
∣∣2γ

≤ 1
2(n−1)

C2 max
2≤ j≤n

∣∣x[ j]− x[ j−1]
∣∣2γ

= op (1)
p→ 0, (2.C.120)

Finally, we have

1
2(n−1)

n

∑
j=2

(
ε [ j]− ε [ j−1]

)(
m
(
X[ j]
)
−m

(
X[ j−1]

))
=

1
n−1

n

∑
j=2

ε jm
(
x j
)

+
1

2(n−1)

n

∑
i=2

{
ε [ j]m

(
x[ j−1]

)
− ε [i−1]m

(
x[i]
)}

= op (1)+op (1)
p→ 0. (2.C.121)

We conclude
σ̂

2
ε = σ

2
ε +op(1). (2.C.122)

PROOF OF PROPOSITION 2.8.6 Define events

An = {|m(X)−h(X ;θ 0)|> ĉα2} (2.C.123)

Bn = {
∣∣h(X ; θ̂ n)−h(X ;θ 0)

∣∣> d̂ (x;α1)} (2.C.124)
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Then, under Assumption 2.8.15,

limsup
n→∞

Pr(An)≤ α2. (2.C.125)

By Proposition 2.8.2, we have

limsup
n→∞

Pr(Bn) = α1. (2.C.126)

Finally,

limsup
n→∞

Pr(m(X) ∈CS1−α,n(X ;α1,α2))≤ limsup
n→∞

Pr(An)+ limsup
n→∞

Pr(Bn)

≤ α1 +α2 = α . (2.C.127)

PROOF OF COROLLARY 2.8.7 Define the events (An,Bn) as in the proof of Proposition
2.8.6. Then, limsupn→∞ Pr(Bn) = α1. Choose any sufficiently small constant ε > 0 and let
α∗2 = α2− ε . Then, since cα is strictly decreasing in α ,

[h(X ;θ 0)− cα∗2
,h(X ;θ 0)+ cα∗2

]⊂ [h(X ;θ 0)− ĉα2,h(X ;θ 0)+ ĉα2] (2.C.128)

with probability approaching to one. Thus,

limsup
n→∞

Pr(Bn)≤ α
∗
2. (2.C.129)

Then,

limsup
n→∞

Pr(m(X) ∈CS1−α,n(X ;α1,α2)) ≤ limsup
n→∞

Pr(An)+ limsup
n→∞

Pr(Bn)(2.C.130)

≤ α1 +α
∗
2 = α1 +α2− ε . (2.C.131)

Since ε is arbitrary, the assertion follows.
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Chapter 3

Generalized C(α) tests with
nonstandard convergence rates

3.1. Introduction

In this paper, we develop generalized C(α)-type tests for linear and nonlinear hypotheses,
in order to allow for nonstandard (possibly slow) convergence rates on the parameter es-
timates used, in the context of models specified through estimating functions or moment
equations [e.g., using the generalized method of moments (GMM)].

In parametric models, likelihood ratio (LR) tests [Neyman and Pearson (1928)], Wald
tests [Wald (1943)] and score tests [introduced by Rao (1948)], along with various exten-
sions, constitute the basis of statistical hypothesis testing. In likelihood models, LR tests
require one to estimate the models under both the null hypothesis and without restrictions,
Wald tests only require unrestricted estimators, while score tests only require restricted
estimators. Under standard regularity conditions, the three tests have local asymptotic ef-
ficiency. These general testing procedures can be extended to more general setups where
moments (or estimating functions) play the role as a score-type function [see, for example,
Newey and West (1987a), Gourieroux and Monfort (1995), Dufour, Trognon and Tuvaan-
dorj (2017)].

Optimization of a likelihood function under constraints can be computationally expen-
sive. The C(α) test procedure proposed by Neyman (1954, 1959) extends Rao’s score
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test by allowing to replace the maximum likelihood estimator by any root-n consistent re-
stricted estimator. As in the original score test, the C(α) test enjoys optimality properties
and has been extended to more general setups. This provides great flexibility in the choice
of estimator used, because the asymptotic distribution of the restricted estimator need not
be known (or Gaussian).

The literature on C(α) tests and related procedures is now extensive; see Le Cam
(1956), Bhat and Nagnur (1965), Bühler and Puri (1966), Bartoo and Puri (1967), Moran
(1970, 1973), Chibisov (1973), Chant (1974), Ray (1974), Singh and Zhurbenko (1975),
Foutz (1976), Vorob’ev and Zhurbenko (1979), Bernshtein (1976, 1978, 1980a, 1980b,
1981), Le Cam and Traxler (1978), Neyman (1979), Tarone (1979, 1985), Tarone and
Gart (1980), Wang (1981, 1982), Basawa (1985), Ronchetti (1987), Smith (1987a, 1987b),
Berger and Wallenstein (1989), Hall and Mathiason (1990), Paul and Barnwal (1990),
Wooldridge (1990), Dagenais and Dufour (1991), Davidson and MacKinnon (1991, 1993),
Kocherlakota and Kocherlakota (1991), Dufour and Dagenais (1992), Bera and Yoon
(1993), Jaggia and Trivedi (1994), Rao (1996), Bera and Bilias (2001), Pal (2003), Dufour
and Valéry (2009), Chaudhuri and Zivot (2011), Bontemps and Meddahi (2012), Dufour
et al. (2016, 2017), Bontemps (2019).

The fundamental idea of the C(α) test is to orthogonalize the scores associated with
the parameters of interest (which are restricted by the null hypothesis) with respect to the
scores of the nuisance parameters (at least, under the null hypothesis). This reduces the
sensitivity of the test statistic to the distribution of the nuisance parameter estimate, and
indeed evacuates it from the asymptotic distribution of the test statistic (under appropriate
regularity conditions). The C(α) test can be further generalized to relax orthogonality
conditions. Indeed, the assumption of differentiability of the log-likelihood function with
respect to model parameters (the usual score function based on likelihood function) can
also be also be abandoned; see Dufour et al. (2016). Existing work typically assumes the
existence of a n1/2-consistent restricted estimator, so that these results are not applicable in
cases where the restricted estimator used has a slower convergence rate.

In this paper, we first extend the generalized C(α) test proposed in Dufour et al. (2016)
for testing general parameter restrictions using a vector of estimating functions. We allow
for the restricted estimator to converge at a rate slower than n1/2. When the estimating
function converges at the standard rate n1/2, our conditions entail that the convergence
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rate of the estimator should be faster than n1/4. In some cases, it could even be slower.

Naturally, since the results presented extend those of Dufour et al. (2016), they do not
require orthogonality of the moment equation with respect to the score of the log-likelihood
function, nor even the existence of the latter. On the other hand, the specific form of the
restriction (and their derivatives) plays a central role in creating the required asymptotic
invariance.

There are many examples where slow convergence can happen. For example, the max-
imum score estimator of Manski (1975) in the context of discrete choice model is known
to converge at the cube rate n1/3, and an improved estimator of Horowitz (1992) utilizing
kernel smoothing enjoys a faster rate of convergence, but still does not attain the parametric
rate n1/2. The problem involving cubic root asymptotics was first pointed out by Chernoff
(1964) and has been studied by Kim and Pollard (1990) and Seo and Otsu (2018), among
others. Caner (2006) shows that the convergence rate of an M-estimator with weakly de-
pendent data depends on the decay rate of the mixing coefficients and smoothness of the
objective function and may be slower than n1/2. Additionally, n1/2-consistent estimation
in the presence of an infinite-dimensional parameter is not necessarily feasible [see Firpo,
Fortin and Lemieux (2009)] and this appliemore generally for estimators based on non-
parametric regressions.

Second, we also let the estimating functions converge to a non-degenerate limit at a
more general rate than n1/2. We only require that the restricted estimator converge faster
than the estimating function to show that the asymptotic distribution of the proposed test
statistic is not affected by estimation error involving the restricted estimator and is dis-
tributed according to the usual chi-square distribution. This allows one to use an estimating
function and a restricted estimator based on different samples – whose size can be quite
different – which can lead to different rates of convergence. This feature is easily accom-
modated by the asymptotic invariance of C(α) statistic with respect to the distribution of
the estimator used.

Third, we allow for the presence of additional nuisance parameters for which an es-
timator with a possibly different rate of convergence is available, along (possibly) with
additional auxiliary estimating functions. The primary and auxiliary estimating functions
can have different rates of convergence to a limiting distribution, in order to accommo-
date cases where one of them involves kernel-smoothing or the two estimators are based
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on very different sample sizes. For this extended setup, we propose extended generalized

C(α) statistics [EC(α)], and we give conditions under which the distribution is asymptot-
ically chi-square under the null hypothesis. In particular, these include on the convergence
rates of the estimators of the main parameter vector (on which restrictions are imposed)
and the additional nuisance parameters.

Fourth, applications to local estimating equation models [Carroll, Ruppert and Welsh
(1998), Xu (2020), Lewbel (2007), Gagliardini, Gourieroux and Renault (2011)] and prob-
lems involving data sets with asymptotically unbalanced sample sizes are discussed. Local
estimating equations arise naturally when the parameter of interest is the value of a func-
tional evaluated at a particular point of the covariate. Both the estimating functions and
the restricted estimator typically converge at a rate slower than n1/2, due to kernel smooth-
ing. Furthermore, the sensitivity of the estimating functions with respect to each element
of the parameter vector can depend on the sample size and thus may be properly measured
and taken into account only when the parameter vectors are scaled by a diagonal matrix of
scaling factors in the estimating equations, as we allow in our framework. We apply the
test procedure to hypothesis testing on: (i) derivatives of a nonparametric regression func-
tion; (ii) average treatment effects in regression discontinuity designs; (iii) semiparametric
stochastic discounting factors in the local estimating function framework. The problem of
asymptotically unbalanced sample sizes is commonly observed in practice when the data
consists of observations from multiple populations/sources [?, Jonker and Van der Vaart
(2014)]. When the problem is concerned with the increase in the sample sizes of two
populations at different orders, the estimating functions can be split into the primary and
auxiliary ones which have different rate of convergence, to apply the extended generalized
C(α) test. We consider hypothesis testing on homogeneity of regression models among
different groups/populations under unbalanced sample sizes in this framework.

The paper is organized as follows. In Section 3.2, we describe the setup and present the
general idea of the test procedures. In Section 3.3, we generalize further the generalized
C(α) test of Dufour et al. (2016), and we relax the assumption on the convergence rate
of the restricted estimator. Section 3.4 extends these results to testing problems involving
nuisance parameters estimated from an auxiliary estimating function. In Section 3.5, we
present applications of the test procedures in the local estimating function framework. In
Section 3.6, the extended generalized C(α) test is applied to a hypothesis testing on ho-
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mogeneity of regression models of two populations under unbalanced sample sizes. We
conclude in Section 3.7. The proofs are provided in Appendix.

3.2. Generalized C(α) statistic under general convergence
rates

Consider an m×1 vector of estimating (or moment) functions Dn(θ ; Zn) which depend on
a finite-dimensional parameter θ ∈Θ ⊂ Rp and a vector Zn of size n with nonrandom limit
D̄∞(θ ; θ 0) which depends on the “true value” θ 0:

Dn(θ ; Zn)
p−→

n→∞
D̄∞(θ ; θ 0) . (3.2.1)

The parameter θ is often estimated by minimizing a criterion function of the form

Mn (θ ,Wn) = Dn (θ ; Zn)
′Wn Dn (θ ; Zn) (3.2.2)

where Wn is a symmetric positive definite matrix. This setup comprises as special cases
the method of estimating functions [Durbin (1960), Godambe (1960, 1991), Small and
McLeish (1994), Basawa, Godambe and Taylor (1997), Heyde (1997)], the generalized
method of moments [Hansen (1982), Hall (2004)], maximum likelihood, pseudo-maximum
likelihood, M-estimation and instrumental-variable methods.

We are interested in testing hypotheses of the form

H0 : ψ(θ) = 0 (3.2.3)

where ψ(θ) is a p1×1 continuously differentiable function (p1 ≤ p). We suppose that we
have a restricted estimator θ̃

0
n which converges to θ 0 at rate nrθ under H0:

nrθ (θ̃
0
n−θ 0) = Op(1) with rθ > 0 . (3.2.4)

Further,
nrDDn(θ 0; Zn)

L−→
n→∞

N[0, I(θ 0)] with rD ≥ 0 (3.2.5)
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where I(θ 0) is an m×m nonsingular matrix. The value rD = 0 means that Dn(θ 0; Zn) is
exactly normal or converges to normality without rescaling. Dn(θ 0; Zn) and θ̃

0
n may come

from different samples.

For the case where rθ = rD = 1/2, Dufour et al. (2016) propose a generalized C(α)

statistic based on a restricted estimator θ̃
0
n and show (under weak regularity conditions) that

its asymptotic distribution is χ2(p1) under H0, irrespective of the asymptotic distribution
of
√

n(θ̃ 0
n− θ 0) [indeed, even if such a distribution does not exist]. This statistic nests

earlier C(α) tests. Further, the score (or the estimating function) need not be orthogonal to
the log-likelihood score of the nuisance parameters [in contrast with Neyman (1959)]. The
generalized C(α) statistic relies on the following transformation Dn(θ ; Zn):

sn(θ ; Zn) = Q̃nDn(θ̃
0
n; Zn) (3.2.6)

where Q̃n is a p1× p matrix that converges in probability to a nonrandom limit Q(θ 0) such
that rank[Q(θ 0)] = p1 and satisfies

√
n [sn(θ̃ n; Zn)−Q(θ 0)Dn(θ 0; Zn)]

p−→
n→∞

0 . (3.2.7)

The transformation matrix Q̃n depends on the local sensitivity of Dn(θ ; Zn) to the value of
θ in a neighborhood of θ 0 – though Dn(θ ; Zn) may not be differentiable – and the Jacobian
of the restriction function ψ(θ). Both features interact and play a role in determining
a transformation that can eliminate the distribution of

√
n(θ̃ 0

n− θ 0) from the asymptotic
distribution of the test statistic. Precise expressions for Q̃n and Q(θ) are given in Dufour
et al. (2016, Proposition 3.1). In this case, it follows from (3.2.5) and Slutsky’s theorem
that

√
nsn(θ̃ n; Zn)

L−→
n→∞

N[0,Q(θ 0)I(θ 0)Q(θ 0)
′] . (3.2.8)

The generalized C(α) statistic is given by

PC(θ̃
0
n; ψ,Wn) = nsn(θ̃

0
n; Zn)

′
Σ̃
−1
n s(θ̃ 0

n; Zn) (3.2.9)

where Σ̃n is a consistent estimator of Σ(θ 0) := Q(θ 0)I(θ 0)Q(θ 0)
′ and Σ(θ 0) is invertible.

Under the null hypothesis, PC(θ̃
0
n; ψ,Wn) converges to a χ2(p1) distribution.
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In this paper, we show that where Dn(θ 0; Zn) converges in distribution at the rate rD =

1/2, we require rθ > 1/4 instead of rθ = 1/2 if Dn(θ ; Zn) and the restriction function ψ

admit representation akin to second-order approximation around θ = θ 0 and Q̃n converges
to Q0 not too slowly as detailed in Section 3.3. This observation can be extended to more
general rates rD by replacing the scaling constant n in (3.2.9) by n2rD . This yields the
statistic:

PC(θ̃
0
n; ψ, rDWn) = n2rDsn(θ̃

0
n; Zn)

′
Σ̃
−1
n s(θ̃ 0

n; Zn) . (3.2.10)

We show that if
rθ > rD/2 (3.2.11)

then PC(θ̃
0
n; ψ, rDWn) is still asymptotically distributed as χ2(p1).

In Section 3.4, we allow for the score function Dn(θ ,η ; Zn) to depend on an additional
parameter η ∈ E ⊂ Rq which is not tested and thus is treated as a nuisance parameter. The
parameter η is assumed to be identified and also possibly estimated from a q×1 auxiliary
score Gn(η ; Xn) which depends on η , but not θ and the data Xn may or may not overlap
with Zn:

nrDDn(θ 0,η0; Zn)
L−→

n→∞
N[0, I(θ 0,η0)] , (3.2.12)

nrGGn(η0; Xn)
L−→

n→∞
N[0,Λ(η0)] , (3.2.13)

where I(θ 0,η0) and Λ(η0) are singular matrices of size p1 and q1, respectively. First, treat
η0 as if is known and consider, as in the case without η , transformation sn(θ ,η0; Zn) of
Dn(θ ,η0; Zn):

sn(θ ,η0; Zn) = Q̃nDn(θ̃
0
n,η0; Zn) (3.2.14)

where Q̃n is a p1× p matrix which converges in probability to a nonrandom limit Q(θ 0,η0)

such that rank[Q(θ 0,η0)] = p1 and satisfies

nrD[sn(θ ,η0; Zn)−Q(θ 0,η0)Dn(θ 0,η0; Zn)]
p−→

n→∞
0 . (3.2.15)

Let η̂n be an estimator of η0 such that, for some constant rη > 0,

nrη (η̂n−η0) = Op(1) (3.2.16)
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at least under H0. Given sn(θ ,η ; Zn), we define the score

s∗n(θ ,η ; Zn,Xn) = sn(θ ,η ; Zn)− T̃nGn(η ; Xn) (3.2.17)

where T̃n is a p1× q matrix defined in Section 3.4. In this case, we show that the rate
condition

min(rθ ,rG)> max(rD,rG) (3.2.18)

ensures that so that the effect of estimation error of (θ̃ 0
n, η̂n) on the score:

s∗n(θ̃
0
n, η̂n; Zn,Xn)− s∗n(θ 0,η0; Zn,Xn) = op

(
n−min(rD,rG)

)
. (3.2.19)

Depending on which one of (i) rD < rG, (ii) rD > rG, or (iii) rG = rG holds, the score
s∗n(θ̃

0
n, η̂n; Zn,Xn) converges at a different rate to a Gaussian limit with a different covari-

ance matrix:
s∗n(θ̃

0
n, η̂n; Zn,Xn) = s(θ̃ 0

n,η0; Zn)− T̃nGn(η̂n; Xn) (3.2.20)

For example, in case (i), the first term sn(θ̃
0
n, η̂n; Zn) dominates T̃nGn(η̂n; Xn) in (3.2.20)

asymptotically and s∗n(θ̃
0
n, η̂n; Zn,Xn) converges to a (non-degenerate) Gaussian limit at rate

rG. We show that the extended generalized C(α) statistic EC(θ̃
0
n, η̂n;Λ̃−1

n ψ) given below
is asymptotically chi-squared:

EC(θ̃
0
n, η̂n;Λ̃−1

n ψ) = n2min(rD,rG) s∗n(θ̃
0
n, η̂n; Zn,Xn)

′
Λ̃
−
n s∗n(θ̃

0
n, η̂n; Zn,Xn) (3.2.21)

where A− denotes the Moore-Penrose inverse of a square matrix A and Λ̃n is a consistent
estimator of the asymptotic covariance Λ0 of nmin(rD,rG) s∗n(θ 0,η0; Zn,Xn), the analytical
expression is given in Section 3.4. Note that the asymptotic covariance of s∗n(θ̃

0
n, η̂n; Zn,Xn)

may be singular in case (ii).

Notation – ‖ · ‖ denotes Euclidean norm for vectors and a matrix norm for matrices.
p−→

n→∞

convergence in probability, L−→
n→∞

convergence in distribution, Xn = op (Rn) means Xn =YnRn

and Yn
p−→

n→∞
0 and Xn = Op (Rn) means Xnis asymptotically bounded if Rn = 1and Xn = RnYn

where Yn = Op (1) more generally. When the term neighborhood is used, it is assumed that
it is open and non-empty.
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3.3. Asymptotic distribution of generalized C(α) statistics

Dufour et al. (2016) consider the problem of testing a general (possibly nonlinear) restric-
tion on a finite-dimensional parameter θ ∈Θ ⊆ Rp of the form:

H0 : ψ(θ) = 0 (3.3.22)

where ψ : Θ 7→ Rp1 : when the parameter θ is specified by an m× 1 estimating equation
Dn (θ) , (p1 ≤ p≤ m) and any restricted estimator θ̃

0
n of θ which converges in probability

to the “true value” θ 0 under H0. Assuming along with other regularity conditions that

√
nDn (θ 0)

L−→
n→∞

N [0, I0] (3.3.23)

where Io is a m×m nonsingular matrix and under H0,

θ̃
0
n−θ 0 = Op(n−1/2), (3.3.24)

they show that their proposed generalized C(α) statistic is asymptotically distributed as
χ2(p1).

When the score Dn (θ) is employed to construct the restricted estimator θ̃
0
n, e.g. by

minimizing (3.2.2) over Θ under constraint (3.3.22), the convergence rate of θ̃
0
n is closely

related to that of Dn(θ 0) and thus (3.3.23) may not hold when θ̃
0
n is consistent but not does

converge at the parametric rate.

In this section, we extend the generalized C(α) test by Dufour et al. (2016) to allow
for the restricted estimator θ̃

0
n and the score Dn(θ 0) to converge at nonstandard rates. It

is shown that when (3.3.23), their generalized C(α) statistic is still asymptotically χ2(p1)

even when (3.3.24) is replaced by a weaker condition that θ̃
0
n converges to θ 0 at rate faster

than n1/4 under the null. (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey
and Robins (2018), Bontemps (2019)). Such relaxation is achieved by exploiting further
expansions of the score Dn (θ 0) and the restriction function ψ(θ) around θ = θ 0. This
result can be generalized to the case when the score Dn(θ 0) converges at a general rate nrD

where rD > 0: we require that θ̃
0
n converges at a rate faster than rD/2. Note that many of
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the regularity conditions imposed are adapted from Dufour et al. (2016).
Let rD,rθ ,rM be positive constants

Assumption 3.3.1 EXISTENCE OF SCORE-TYPE FUNCTIONS.

Dn(θ ; ω) = [D1n(θ ; ω), . . . , Dmn(θ ; ω)]′ , ω ∈Z , n = 1, 2, . . . (3.3.25)

is a sequence of m×1 random vectors, defined on a common probability space (Z , AZ ,

P), which are functions of a p× 1 parameter vector θ , where θ ∈Θ ⊆ Rp (p ≤ m) and

Θ is a non-empty open subset of Rp . All the random variables considered here as well in

the following assumptions are functions of ω, so the symbol ω may be dropped to simplify

notations [e.g., Dn(θ) := Dn(θ ; ω)] . There is a unique vector θ 0 ∈ Θ called the “true

parameter value”.

The score Dn(θ) evaluated at θ = θ 0 and the restricted estimator θ̃
0
n converge to a

Gaussian limit at the rate rD and rθ , respectively.

Assumption 3.3.2 SCORE ASYMPTOTIC NORMALITY.

nrDDn (θ 0)
L−→

n→∞
N [0, I (θ 0)] (3.3.26)

where I (θ 0) is a nonsingular m×m matrix.

We note that normality of the limiting distribution of nrDDn (θ 0) is imposed to construct
an asymptotically chi-squared test statistic and does not contribute to asymptotic negligi-
bility of estimation error of θ̃ n in the test procedure.

Assumption 3.3.3 CONVERGENCE RATE OF THE RESTRICTED ESTIMATOR. θ̃
0
n, n≥ 1

is a random sequence on Θ such that

‖θ̃ 0
n−θ 0‖= Op

(
n−rθ

)
(3.3.27)

under H0 in (3.3.22).

Assumption 3.3.3 only states that the scaled estimation error

rθ (θ̃
0
n−θ 0) (3.3.28)
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is stochastically bounded and neither require the asymptotic distribution of θ̃
0
n to be known

nor even exist. The following two assumptions play a key role in allowing for rθ < rD. As-
sumption 3.4 in Dufour et al. (2016) is strengthened by imposing the existence of second-
order expansion of Dn (θ) around θ = θ 0. Assumption 3.3.4 generalizes Assumption 3.4 in
Dufour et al. (2016) by allowing for the linear expansion term to be scaled by some orders
of n.

Assumption 3.3.4 SCORE EXPANSION. For some non-empty open neighborhood VD of

θ 0 and some p×1 dimensional nonnegative vector β =
(

β 1, . . .β p

)′
, we have:

Dn (θ ; ω) = Dn (θ 0; ω)+ Jθ (θ 0)n−β (θ −θ 0)+Bn(θ ,θ 0;ω) (3.3.29)

for ω ∈ DJ where DJ is an event with probability one, Jθ (θ 0) is an m× p (nonrandom)

function of θ , n−β is a p× p diagonal matrix with the i-th entry n−β i , i = 1, . . . p, and the

remainder vector

Bn(θ ,θ 0;ω) = op(‖θ −θ 0‖) . (3.3.30)

In a standard case, β is a zero matrix so that n−β is an identity matrix. However, there
are problems where taking β = 0 leads to rank deficiency of Jθ (θ 0). Such a problem is
studied in Section 3.5. The scaling matrix n−β essentially captures the rate at which the
sensitivity of Dn(θ) with respect to θ −θ 0 decays around θ = θ 0.

Assumption 3.3.5 SCORE SECOND-ORDER EXPANSION. Assumption 3.3.4 holds with

Bn(θ ,θ 0;ω) = Op(‖θ −θ 0‖2) . (3.3.31)

Assumption 3.3.5 strengthens Assumption 3.4 in Dufour et al. (2016), who only as-
sume Bn(θ ,θ 0;ω) to be op(‖θ − θ 0‖). It is satisfied when Dn (θ) is twice differentiable
with probability one, however, it also covers a certain class of nonsmooth functions (see
Bontemps (2019)).

Assumption 3.3.6 RESTRICTION FUNCTION: CONTINUOUS DIFFERENTIABILITY. The

function

ψ(θ) = [ψ1 (θ) , . . . , ψ p1
(θ)]′ (3.3.32)
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is a p1×1 twice differentiable vector function of θ with first derivative

P(θ) = [P1 (θ)
′ , . . . , Pp1 (θ)

′]′ (3.3.33)

where

Pl (θ) =
∂ψ l (θ)

∂θ
′ , l = 1, . . . , p1 . (3.3.34)

Assumption 3.3.7 RESTRICTION FUNCTION: TWICE DIFFERENTIABILITY. Under As-

sumption 3.3.6, there exists an open neighborhood NP(θ 0) such that for any θ
∗ ∈NP(θ 0)

the derivative Hl (θ
∗) of Pl (θ

∗) exists and is bounded for any l = 1, . . . , pl , i.e.

sup
1≤l≤p1

sup
θ
∗∈NP(θ)

‖Hl (θ
∗)‖<CP,θ (3.3.35)

for some positive constant CP,θ .

While Assumption 3.3.7 imposes additional smoothness on ψ to Assumption 3.3.6 orig-
inally made in Dufour et al. (2016), empirically relevant equality constraints, such as linear
or more generally polynomial restrictions, satisfy Assumption 3.3.6.

Assumption 3.3.8 LIPSCHITZ CONDITION ON J (θ). There exists a nonempty open

neighborhood VJ,1(θ 0) such that for any θ ∈ VJ,1(θ 0),

‖Jθ (θ)− Jθ (θ 0)‖ ≤CJ,θ 0‖θ −θ 0‖ for some constant CJ,θ 0 > 0 . (3.3.36)

Assumption 3.3.9 CONVERGENCE RATE OF THE ESTIMATOR J̃n(θ) OF Jθ (θ).

{J̃θ ,n (θ) : n≥ 1} is a sequence of m× p random matrices such that there exists a nonempty

open neighborhood VJ,2(θ 0) such that under H0

sup
θ∈VJ,2

‖J̃θ ,n (θ)− Jθ (θ)‖= OP(n−rM) where rM > 0 . (3.3.37)

Assumption 3.3.10 CONVERGENCE RATE OF THE WEIGHT MATRIX. Wn, n ≥ 1, is a

random sequence of m×m symmetric nonsingular (random) matrices such that

‖Wn−W0‖= OP(n−rM) (3.3.38)
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where W0 is a nonsingular non-random matrix.

Assumption 3.3.11 imposes restrictions on the constants (rD, rθ , rM).

Assumption 3.3.11 RESTRICTIONS ON THE CONVERGENCE RATES. rθ > rD/2 and

rθ + rM > rD.

Assumption 3.3.12 CONVERGENCE RATE OF THE ESTIMATOR OF J (θ). Ĩn, n ≥ 1 is a

sequence of p× p random matrices such that

‖Ĩn− I(θ 0)‖= op(1) . (3.3.39)

Assumption 3.3.13 NON-DEGENERACY OF THE INFORMATION MATRIX.

rank [I (θ 0)] = m . (3.3.40)

Assumption 3.3.14 NON-DEGENERACY OF THE JACOBIAN MATRIX. Assumption 3.3.4
is satisfied with some nonnegative value of β such that

rank [Jθ (θ 0)] = p . (3.3.41)

Assumption 3.3.15 MATRIX RANK: (J̃θ ,n(θ̃
0
n), Ĩn). For any n≥ 1, the matrices J̃θ ,n(θ̃

0
n)

and Ĩn have full rank with probability one.

Assumption 3.3.16 NON-DEGENERACY OF RESTRICTION JACOBIAN.

rank [P(θ)] = p1 (3.3.42)

for any θ such that ψ (θ) = 0.

Assumption 3.3.17 RESTRICTED ESTIMATOR. ψ(θ 0) = 0 and ψ(θ̌ n) = Op(n−2rθ )

where θ̌ n is defined as

θ̌ n = θ 0 +n−β (θ̃
0
n−θ 0) (3.3.43)

for such value of β that satisfies Assumption 3.3.14.
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In the standard case where β is a zero vector, Assumption 3.3.17 allows for the re-
stricted estimator θ̃

0
n to satisfy the restriction ψ(θ) = 0 only asymptotically at the rate

n−2rθ . If ψ(θ̃
0
n) = 0, then this assumption holds trivially since θ̃

0
n = θ̌ n. If β is not a zero

vector, θ̌ n is as an (infeasible) estimator of θ 0 which strictly improves θ̃
0
n in terms of bias,

i.e. ‖θ̌ n−θ 0‖ < ‖θ̃ n−θ 0‖ everywhere while it may not satisfy the restriction ψ(θ) = 0
exactly. Assumption 3.3.17 requires that the distance ψ(θ̌ n)−ψ(θ 0) is of order n−2rθ .
This condition can be checked, for example, when the order of bias of θ̃

0
n is known. In

addition, for a restriction fixing a subvector of θ , ψ(θ̃
0
n) = 0 implies ψ(θ̌ n) = 0. Let

Q̃n := Q̃[Wn] = P̃n[J̃ ′θ ,nWnJ̃θ ,n]
−1J̃ ′θ ,nWn (3.3.44)

where J̃θ ,n := J̃θ ,n(θ̃
0
n), P̃n := P(θ̃ 0

n). Define the p1×1 estimating function

sn(θ) = Q̃nDn(θ) (3.3.45)

and the generalized C(α) statistic PC
(
θ̃

0
n; ψ

)
PC(θ̃

0
n; ψ) = n2rD sn(θ̃

0
n)
′ [Q̃n Ĩn Q̃ ′n

]−1 sn(θ̃
0
n) . (3.3.46)

Under the assumptions above, we establish the asymptotic distributions of sn(θ̃
0
n) and the

test statistic PC(θ̃
0
n; ψ).

Proposition 3.3.1 ASYMPTOTIC DISTRIBUTION OF GENERALIZED C(α) STATISTIC.

If Assumption 3.3.1 to 3.3.17 are satisfied, under H0,

nrD sn(θ̃
0
n)

L−→
n→∞

N
[
0, Q(θ 0)I(θ 0)Q(θ 0)

′] (3.3.47)

where sn(θ) is defined in (3.3.45), and

Q(θ 0) = P(θ 0)
[
Jθ (θ 0)

′W0Jθ (θ 0)
]−1Jθ (θ 0)

′W0 . (3.3.48)

Furthermore, the generalized C(α) statistic PC(θ̃
0
n; ψ) in (3.3.46) is asymptotically dis-

tributed as χ2(p1). When rθ ≥ rD, these above assertions hold without Assumptions 3.3.5
and 3.3.7.
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Proposition 3.3.1 generalizes Proposition 3.1 of Dufour et al. (2016), which establishes
the asymptotic distribution of PC(θ̃

0
n; ψ) under rD = rθ = 1/2. When rD = 1/2, our result

holds if rθ > 1/4, i.e. θ̃
0
n converges at a rate faster than n1/4 as long as Q̃n in (3.3.44)

converges to Q(θ 0) at an appropriately fast rate, which equates to the condition

rθ + rM > rD (3.3.49)

in Assumption 3.3.11. In the worse case where rθ is arbitrarily close to 1/4 , 3.3.49 requires
rM be also larger than 1/4. On the other hand, when rθ = 1/2, (3.3.49) always holds when
rM > 0 so that the convergence rate of Q̃n can be arbitrarily slow.

Note that given the asymptotic normality of sn(θ̃
0
n) in (3.3.47), an alternative C(α)-

type statistic can be constructed by considering linear transformation of sn(θ̃
0
n): by some

p∗× p1 matrix RS where p∗ ∈ {1, . . . , p1}:

s(Rs)
n (θ̃

0
n) = Rssn(θ̃

0
n) (3.3.50)

Such transformation puts on different weights on the p1 restrictions specified by each ele-
ment of ψ . A test statistic based on the estimating function s(Rs)

n (θ̃
0
n) may have improve-

ment in power while it may could lose power in certain directions of the restrictions.

In Section 3.4, we allow for the presence of an nuisance parameter in the testing prob-
lem and establish a valid C(α) test.

3.4. Extended C(α) statistics with multiple convergence
rates

In this section, we extend the framework in Section 3.3 to testing problems in the presence
of nuisance parameters. Specifically, we are interested in testing the hypothesis of the form:

H0 : ψ(θ) = 0 (3.4.51)

in the presence of η where (θ ,η)∈Θ×E ⊆Rp×Rq is a pair of the parameter of interest θ

and the nuisance parameter η defined by the primary estimating function Dn(θ ,η) which
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depends on both θ and η and the auxiliary one Gn(η) which only depends on η . Let
rD,rG,rθ ,rη be positive constants.

Assumption 3.4.1 EXISTENCE OF SCORE-TYPE FUNCTIONS.

Dn(θ ,η ; ω) = [D1n(θ ,η ; ω), . . . , Dmn(θ ,η ; ω)]′ , ω ∈Z , n = 1, 2, . . . (3.4.52)

is a sequence of m×1 random vectors, defined on a common probability space (Z , AZ ,

P), which are functions of a pair of parameter vectors (θ ,η) ∈Θ ×E ⊂ Rp×Rq where Θ

is a subset of Rp and ε is a subset of Rq.

Gn(η ; ω) = [G1n(η ; ω), . . . , Gqn(η ; ω)]′ , ω ∈Z , n = 1, 2, . . . (3.4.53)

is a sequence of q×1 random vectors, defined on (Z , AZ , P), which is functions of η ∈ E

only. There is a unique vector (θ 0,η0) ∈Θ ×E called the “true parameter value”.

As in Section 3.3, we assume the second-order expansion of the scores Dn(θ ,η) around
(θ 0,η0) and Gn(η) around η0

Assumption 3.4.2 SCORE SECOND-ORDER EXPANSION. For some non-empty open

neighborhood UD of (θ 0,η0) and a pair (β θ ,β η) of nonnegative vectors of dimensions p

and q respectively,

Dn (θ ,η ; ω)=Dn (θ 0,η0; ω)+J (θ 0,η0)

[
n−β θ 0p×q

0q×p n−β η

][
θ −θ 0

η−η0

]
+BD,n (θ ,θ 0,η ,η0,ω)

(3.4.54)
for ω ∈ΩD where ΩD is an event with probability one where

J(θ ,η) = [Jθ (θ ,η) , Jη (θ ,η)] (3.4.55)

is an m× (p+q) (nonrandom) function of (θ ,η), n−β is a p× p diagonal matrix with the

i-th entry n−β θ ,i , i = 1, . . . p, n−β η is a q×q diagonal matrix with the j-th entry n−β η , j , j =

1, . . .q, and the remainder vector BD,n(θ ,θ 0,η ,η0,ω) is Op(max(‖θ−θ 0‖2,‖η−η0‖2)) .
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Assumption 3.4.3 SCORE SECOND-ORDER EXPANSION. For some non-empty open

neighborhood VG of η0 and a q-dimensional nonnegative vector β η ,

Gn (η ; ω) = Gn (η0; ω)+g(η0)n−β η (η−η0)+BG,n (η ,η0,ω) (3.4.56)

for ω ∈ ΩG where ΩG is an event with probability one, g(η0) is an q× q (nonrandom)

function of η , n−β η is a q× q diagonal matrix with the j-th entry n−β η , j , j = 1, . . .q, and

the remainder vector satisfies

BG,n(η ,η0,ω) = Op(‖η−η0‖2) . (3.4.57)

We are particularly interested in the case where

rank[J(θ ,η)] = p+q (3.4.58)

does not hold and Dn (θ 0,η0) and Gn(η0) converge to non-degenerate distributions at dif-
ferent rates.

When (3.4.58) holds, one may simply apply the testing framework in Section 3.3 based
solely on Dn(θ ,η) by considering a (p+q)-dimensional vector θ

∗ defined as

θ
∗ = (θ ′,η ′)′ (3.4.59)

and reformulating (3.4.51) as

H0 : ψ
∗(θ ∗) = 0 (3.4.60)

where
ψ
∗(θ ∗) = {ψ(θ) : θ is the first p : elements of θ

∗} (3.4.61)

(3.4.58), however, requires that p+q≥ m and thus rules out important cases where (θ ,η)

is not identified solely from Dn (θ ,η) and the auxiliary equation Gn (η) is required. Al-
ternatively, suppose Dn (θ 0,η0) and Gn(η0) converge jointly to a Gaussian limit but at
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different rates, nrD and nrG where rG > rD. Then, the asymptotic covariance of

nrD

[
Dn (θ 0,η0)

Gn(η0)

]
(3.4.62)

is singular even if the asymptotic covariance of nrGGn(η0) is nonsingular since

nrDGn(η0)
p−→

n→∞
0 . (3.4.63)

Thus, the testing problem in the presence of the nuisance parameter η requires separate
treatment from Section 3.3.

Assumption 3.4.1 specifies the number of equations in Gn(η) to be equal to the dimen-
sion q of the parameter η . This assumption is only made for ease of exposition and the
proposed test procedure can be easily extended to the over-identified case. Such extension
is discussed briefly in the latter part of this section.

We now proceed to the rest of assumptions. As mentioned earlier, we allow for the main
and auxiliary estimating functions Dn(θ ,η) and Gn(η) evaluated at (θ 0,η0) to converge
at different rates.

Assumption 3.4.4 RATES OF THE ESTIMATING FUNCTIONS. nrDDn(θ 0,η0) and

nrGGn(η0) are stochastically bounded and non-degenerate.

The following assumptions posit the existence of the restricted estimators θ̃
0
n and η̂n

which are both consistent under H0 but may converge at different rates.

Assumption 3.4.5 CONVERGENCE RATE OF THE RESTRICTED PARAMETER. θ̃
0
n, n≥ 1

is a random sequence on Θ such that

‖θ̃ 0
n−θ 0‖= Op

(
n−rθ

)
(3.4.64)

under H0.

Assumption 3.4.6 CONVERGENCE RATE OF THE NUISANCE PARAMETER. η̂n, n ≥ 1
is a random sequence on E such that

‖η̂n−η0‖= Op
(
n−rη

)
(3.4.65)
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under H0.

The following assumptions are counterparts of Assumption 3.3.6-3.3.17 in the presence
of the additional parameter η .

Assumption 3.4.7 LIPSCHITZ CONDITION ON J (θ ,η). There exists a nonempty open

neighborhood UJ,1(θ 0,η0) such that, for some constant CJ,θ 0 > 0,

‖J (θ ,η)− J (θ 0,η)‖ ≤CJ,θ 0‖θ −θ 0‖ , for any (θ ,η) ∈UJ,1(θ 0,η0), (3.4.66)

and there exists a nonempty open neighborhood UJ(η0) such that, for some constant

CJ,η0 > 0,

‖J (θ 0,η)− J (θ 0,η0)‖ ≤CJ,η0‖η−η0‖ , for any η ∈UJ(η0) (3.4.67)

Assumption 3.4.8 CONVERGENCE RATE OF THE ESTIMATOR OF J (θ ,η). J̃n (θ ,η) =[
J̃θ ,n (θ ,η) , J̃η ,n (θ ,η)

]
, n ≥ 1 is a sequence of m× (p+ q) random matrices such that

there exists a nonempty open neighborhood UJ,2(θ 0,η0) such that, under H0,

sup
(θ ,η)∈UJ,2

‖J̃θ ,n (θ ,η)− Jθ (θ ,η)‖= OP(n−rM) (3.4.68)

and

sup
(θ ,η)∈UJ,2

‖J̃η ,n (θ ,η)− Jη (θ ,η)‖= OP(n−rM) (3.4.69)

Given Assumption 3.4.5- 3.4.7, 3.4.8, we consider the estimator

[J̃θ ,n, J̃η ,n] := [J̃n(θ̃
0
n, η̂n), J̃η ,n(θ̃

0
n, η̂n)] (3.4.70)

of (Jθ (θ 0,η0),Jη(θ 0,η0)). Similarly, the following regularity conditions are imposed on
g(η) and its estimator g̃(η).

Assumption 3.4.9 LIPSCHITZ CONDITION ON g(θ). There exists a nonempty open

neighborhood Ug,1(η0) such that for any η ∈Ug,1(η0),

‖g(η)−g(η0)‖ ≤Cg,η0‖η−η0‖ , (3.4.71)
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for some constant Cg,η0 > 0.

Assumption 3.4.10 CONVERGENCE RATE OF THE ESTIMATOR OF g(η). g̃n (η) , n≥ 1
is a sequence of q× q random matrices such that there exists a nonempty open neighbor-

hood Ug,2(η0) such that, under H0,

sup
η∈Ug,2(η0)

‖g̃n (η)−g(η)‖= OP
(
n−rM

)
(3.4.72)

where rM > 0.

Under Assumption 3.4.6, 3.4.9, 3.4.10, we define the estimator

g̃n := g̃n(η̂n) (3.4.73)

of g(η0).
We assume that the matrices Jθ (θ 0,η0) , Jη (θ 0,η0), and g(η0) have full-rank.

Assumption 3.4.11 NON-DEGENERACY OF THE JACOBIAN MATRICES. Assumption

3.4.2 and 3.4.3 are satisfied with some (β θ ,β η) ∈ Rp×q
+ such that

rank [Jθ (θ 0,η0)] = p, (3.4.74)

rank [Jη (θ 0,η0)] = min(q,m), (3.4.75)

and

rank [g(η0)] = q. (3.4.76)

Note that Assumption 3.4.11 requires that m≥ p.

Assumption 3.4.12 MATRIX RANK: (J̃θ ,n(θ̃
0
n, η̂n), J̃η ,n(θ̃

0
n, η̂n), g̃n(η̂n)). The matrices

J̃θ ,n(θ̃
0
n, η̂n), J̃η ,n(θ̃

0
n, η̂n), and g̃n have full-rank with probability approaching to one.

The next assumption is to avoid repetition of regularity conditions that appeared in Section
3.3.

Assumption 3.4.13 SET OF REGULARITY CONDITIONS. Assumptions 3.3.10, 3.3.6 and

3.3.16 hold.
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Finally, restrictions on the constants (rD,rG,rθ ,rη ,rM) are imposed.

Assumption 3.4.14 RESTRICTIONS ON THE CONVERGENCE RATES.

min(rθ ,rη)> min(rD,rG)/2 (3.4.77)

and

min(rθ ,rη)+ rM > min(rD,rG)/2

Let
Q̃n := Q̃[Wn] = P̃n [J̃ ′θ ,nWn J̃θ ,n]

−1J̃ ′θ ,nWn (3.4.78)

where
P̃n = P(θ̃ 0

n), J̃θ ,n = J̃θ ,n(θ̃
0
n, η̂n) (3.4.79)

and
J̃η ,n = J̃η ,n(θ̃

0
n, η̂n), g̃n = g̃n(η̂n) . (3.4.80)

We consider the following score function:

s∗n(θ ,η) = Q̃n {Dn(θ ,η)− J̃η ,ng̃−1
n Gn(η)} . (3.4.81)

which is the basis for our C(α)-type statistic.

Note that (3.4.81) can be written as a linear transformation of the estimating function[
Dn(θ ,η)

Gn(η)

]
:

s∗n(θ ,η) = T̃n

[
Dn(θ ,η)

Gn(η)

]
, T̃n := Q̃n{Im×m,−J̃η ,ng̃−1

n } . (3.4.82)

The following lemma characterizes asymptotic properties of s∗n(θ ,η).

Lemma 3.4.1 Suppose Assumptions 3.4.12 - 3.4.14 hold. Under H0 in (3.4.51), the fol-

lowing hold:
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1. If rD = rG ,

nrDs∗n(θ̃
0
n, η̂n) = nrDQ(θ 0,η0)[Dn(θ 0,η0)− Jη(θ 0,η0)g(η0)

−1Gn(η0)]+oP(1)
(3.4.83)

2. If rG > rD,

nrDs∗n(θ̃
0
n, η̂n) = nrDQ(θ 0,η0)Dn(θ 0,η0)+oP(1) . (3.4.84)

3. If rG < rD,

nrGs∗n(θ̃
0
n, η̂n) =−nrGJη(θ 0,η0)g(η0)

−1Gn(η0)+oP(1) . (3.4.85)

This result implies that one of (Dn(θ 0,η0),Gn(η0)) is negligible when rD 6= rG and
the convergence rate of s∗n(θ̃

0
n, η̂n) is the smaller one of (rD,rG). Asymptotic normality of

nmax(rθ ,rη ) s∗n(θ̃
0
n, η̂n) can be achieved by the following assumption.

Assumption 3.4.15 JOINT ASYMPTOTIC NORMALITY OF (Dn(θ 0,η0),Gn(η0)).[
nrDDn (θ 0,η0)

nrGGn(η0)

]
L−→

n→∞
N [0, Φ(θ 0,η0)] (3.4.86)

where Φ(θ ,η) is a (m + q) × (m + q) nonsingular matrix with submatrix blocks

I(θ ,η),Σ(η),Ξ(θ ,η) of size m×m,m×q, and q×q, respectively, such that

Φ(θ ,η) =

[
I(θ ,η), Ξ(θ ,η)

Ξ(θ ,η)′ Σ(η)

]
. (3.4.87)

Furthermore, (Ĩn, Ξ̃n, Σ̃n) is a trio of full-rank m×m, m× q, and q× q random matrices

such that

Ĩn
p−→

n→∞
I(θ 0,η0) : Ξ̃n

p→ Ξ(θ 0,η0), Σ̃n
p→ Σ(η0) (3.4.88)

under H0.

Establishing the joint asymptotic distribution of (Dn(θ 0,η0),Gn(η0)) can be challeng-
ing in practice. However, when Dn(θ 0,η0) and Gn(η0) are independent, asymptotic nor-
mality of each of Dn(θ 0,η0) and Gn(η0) implies Assumption 3.4.15 with Ξ(θ 0,η0) = 0.
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Independence of Dn(θ 0,η0) and Gn(η0) holds when Dn(θ 0,η0) and Gn(η0) are con-
structed from independent data sets. When the observations are i.i.d., this suggest the use
of the sample split method [Angrist and Krueger (1995), Staiger and Stock (1994), Dufour
and Jasiak (2001)].

Proposition 3.4.2 Maintain the assumptions in Lemma 3.4.1. In addition, suppose As-

sumption 3.4.15 holds. Then, under H0 in (3.4.51), we have:

n2max(rθ ,rη )s∗n(θ̃
0
n, η̂n)

L−→
n→∞

N [0, Σ
∗(θ 0,η0)] (3.4.89)

where

Λ(θ 0,η0) =


T (θ 0,η0)Φ(θ 0,η0)T (θ 0,η0)

′ if rD = rG

Q(θ 0,η0)I(θ 0,η0)Q(θ 0,η0)
′ if rD < rG

Π(θ 0,η0)Σ(η0)Π(θ 0,η0)
′ if rD > rG,

(3.4.90)

Q(θ 0,η0) = P(θ 0)
[
Jθ (θ 0,η0)

′W0Jθ (θ 0,η0)
]−1Jθ (θ 0,η0)

′W0, (3.4.91)

T (θ 0,η0) = Q(θ 0,η0)[Im×m,−Jη(θ 0,η0)g(η0)
−1], (3.4.92)

Π(θ 0,η0) = Q(θ 0,η0)Jη(θ 0,η0)g(η0)
−1 . (3.4.93)

Further,

rank[Λ(θ 0,η0)] = p1 if rD ≤ rG

= rank[Π(θ 0,η0)]≤min(p1,q) if rD > rG .
(3.4.94)

Note that when rG > rD Assumption 3.4.15 can be replaced by the following weaker
condition as we only require asymptotic normality of Dn(θ 0,η0) but not of Gn(η0) since
the term involving the latter is asymptotically negligible.

Assumption 3.4.16 ASYMPTOTIC NORMALITY OF Dn(θ 0,η0) AND THE CONVER-
GENCE RATE OF Gn(η0).

nrDDn (θ 0,η0)
L−→

n→∞
N [0, I(θ 0,η0)] (3.4.95)
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where I(θ 0,η0) is a m×m nonsingular matrix and

nrGGn(η0) = Op(n−rG) . (3.4.96)

Similarly, when rG < rD, we only require asymptotic normality of Gn(θ 0,η0).

Assumption 3.4.17 .

nrGGn (η0)
L−→

n→∞
N [0, Σ(η0)] (3.4.97)

where Σ(θ 0,η0) is a q×q nonsingular matrix and

nrDDn(θ 0,η0) = Op(n−rD) . (3.4.98)

Corollary 3.4.3 In Proposition 3.4.4, Assumption 3.4.15 can be replaced by Assumption

3.4.16 when rD < rG and Assumption 3.4.17 when rD > rG.

Assumption 3.4.18 ESTIMATOR OF Φ(θ 0,η0). The sequence of (m + q)× (m + q)

nonsingular matrixes Φ̃n with submatrix blocks Ĩn, Σ̃n, Ξ̃n of size m×m,m×q, and q×q,

respectively

Φ̃n =

[
Ĩn, Ξ̃n

Ξ̃ ′n Σ̃n

]
. (3.4.99)

converges in probability to Φ(θ 0,η0) under H0.

Under Assumption 3.4.18, we denote byΦ̃n the consistent estimator of Φ(θ 0,η0) under
H0 defined as

Φ̃n =

[
Ĩn, Ξ̃n

Ξ̃ ′n Σ̃n

]
. (3.4.100)

Let

T̃n = Q̃n[Im×m,−J̃η ,ng̃−1
n ] (3.4.101)

Π̃n =−Q̃nJ̃η ,ng̃−1
n . (3.4.102)

We consider the following extended generalized test statistic:

EC(θ̃
0
n, η̂n;Λ̂n ψ) = n2min(rθ ,rη ) s∗n(θ̃

0
n, η̂n)

′(Λ̂n)
−s∗n(θ̃

0
n, η̂n) (3.4.103)
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where A− is the Moore–Penrose generalized inverse (Moore (1920), Penrose (1955)) of A

and Λ̂n ∈
{

Λ̃n,Λ̃
∗
n
}

is a consistent estimator of Σ∗(θ 0,η0):

Λ̃n =


T̃nΦ̃nT̃ ′n if rD = rG

Q̃nĨnQ̃′n if rD < rG

Π̃nΣ̃nΠ̃ ′n if rD > rG,

(3.4.104)

and

Λ̃
∗
n =


T̃nΦ̃nT̃ ′n if rD = rG

T̃nΦ̃D,nT̃ ′n if rD < rG

T̃nΦ̃G,nT̃ ′n if rD > rG,

(3.4.105)

where

Φ̃D,n =

[
Ĩn, (nrD−rG)Ξ̃n

n(rD−rG)Ξ̃ ′n n2(rD−rG)Σ̃n

]
, Φ̃G,n =

[
n2(rG−rD)Ĩn, n(rG−rD)Ξ̃n

n(rG−rD)Ξ̃ ′n Σ̃n

]
. (3.4.106)

Assumption 3.4.19 MATRIX RANK: Π̃n.

rank[Π̃n] = rank[Π(θ 0,η0)] . (3.4.107)

with probability approaching to one.

Then, we have the following result.

Proposition 3.4.4 ASYMPTOTIC DISTRIBUTION OF THE MODIFIED GENERALIZED

TEST STATISTIC. Suppose the assumptions in Proposition 3.4.4 and Assumption 3.4.18
and 3.4.18 hold.

1. Suppose either rD ≤ rG, or rD > rG and q≥ m. Let Λ̂n ∈ {Λ̃n, Λ̃
∗
n }. Then,

EC(θ̃
0
n, η̂n;Λ̂n ψ)

L−→
n→∞

X 2(p1) (3.4.108)
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2. Suppose rD > rG and q < m. Assumption 3.4.19 holds. Then,

EC(θ̃
0
n, η̂n;Λ̃n ψ)

L−→
n→∞

X 2(p∗) (3.4.109)

where

p1 +q−m≤ p∗ := rank[Π(θ 0,η0)]≤min(p1,q) . (3.4.110)

Proposition 3.4.4 establishes the asymptotic distribution of the statistic
EC(θ̃

0
n, η̂n;Λ̂n ψ). In 2., where rD > rG and q < m, the asymptotic covariance of

nmin(rθ ,rη )s∗n(θ̃
0
n, η̂n) may be singular and the asymptotic distribution depends on the

rank of Π(θ 0,η0). (Λ̃ ∗n )
− fails to converge to (Λ(θ 0,η0))

− since Λ̃ ∗n has full rank
with probability approaching to one. Appropriate regularization of Λ̃ ∗n could make its
generalized inverse operation continuous, however, such extension is beyond the scope of
this paper.

3.5. Local estimating equations and moment conditions

In this section, we consider the application of the generalized C(α) test procedure to prob-
lems in the local estimating equation and moment equation setup. We describe the problem
and discuss the advantages of the generalized C(α) test over the Wald-type test considered
in Calonico, Cattaneo and Titiunik (2014) and the empirical likelihood-based Lagrange
multiplier test by Xu (2020). The rest of the subsections consider applications. Section
3.5.2 studies testing on the derivatives of a nonparametric regression function. In Section
3.5.3, we apply the test for the problem of construction of a confidence set for the average
treatment effect in the regression discontinuity design considered in Calonico et al. (2014).
Section 3.5.4 considers a specification test of the semiparametric stochastic discount factor
model.

3.5.1. Hypothesis testing under local estimating equation and moment
conditions

The finite-dimensional parameter of interest θ is often defined by local moment conditions
of the form
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E[m(θ 0; Z) |X = x0] = 0 (3.5.111)

where m is a finite-dimensional vector of moment equations for the true value θ 0 of θ lo-
cally at a fixed value x0 of the conditioning variable but not necessarily uniformly. Such
instance arises, for example, when θ is the value of a functional evaluated at x0. More gen-
erally, local estimating equations are characterized by equations defined locally at a point.
The framework of local estimating equations is first introduced by Carroll et al. (1998)
and then extend to allow for non-smooth criterion functions and the presence of nuisance
parameters by Xu (2020). Lewbel (2007) considers inference based on local moment con-
ditions in the generalized method of moments framework. Gagliardini et al. (2011) propose
the extended method of moments, which accommodates both global and local moment re-
strictions. When X has no mass at x0, inference on θ based on local estimating equations is
typically carried out by approximating (3.5.111) by kernel smoothing. For example, given
a set of observations {zi}n

i=1 := {(yi,xi)}n
i=1, (3.5.111) implies an estimating equation

Dn(θ) =
1

nhn

n

∑
i=1

h(θ 0; zi)K
(

xi− x0

hn

)
(3.5.112)

where K is a kernel function and hn→ 0 as n→ ∞. The convergence rate of the estimat-
ing equation (3.5.112) depends on the bandwidth parameter hn and is slower than n1/2. It
is known that the convergence rate of an estimator of θ 0 based on the estimating equa-
tion (3.5.112) is slower than n1/2 and each element of such estimator may converge to a
non-degenerate distribution at a different rate as demonstrated in the applications in Sec-
tion 3.5.2-3.5.4 (See also Fan and Gijbels (1996)). Furthermore, the coefficient J(θ 0) of
the linear expansion of Dn(θ) around θ = θ 0, in (3.3.29) may not have full rank without
appropriately being scaled by the diagonal matrix n−β as shown in succeeding examples.
For hypothesis testing in the local estimating function framework, Calonico et al. (2014)
consider a Wald-type test and the empirical likelihood Lagrange multiplier test is proposed
by Xu (2020). Calonico et al. (2014) considers construction of a confidence set in the
regression discontinuity framework.

The generalized C(α) test has the following advantages over these methods: (1) More
general test restrictions are allowed. The Wald-type test only allows for restrictions on pa-
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rameters that are estimated at the same rate. The Lagrange multiplier test only considers
a class of null hypotheses where the parameter of interest takes some fixed hypothetical
value. (2) Elements of an restricted estimator can be based on different bandwidths. The
alternative method requires the same bandwidth be used for estimation of the parameter
vector. In addition, the test statistic may employ a bandwidth of smaller order than those
for the restricted estimator and such a choice improves the convergence rate of the test
statistic. (3) Only an restricted estimator needs to be estimated while they require an unre-
stricted estimator. An restricted estimator is often easier to estimate as in the applications
below. Furthermore, the asymptotic distribution of the estimator does not need to exist or
be known. To illustrate these points, for θ ∈ (θ 1,θ 2) ∈ R2, consider a problem of testing
the hypothesis:

H0 : θ 1 = θ 2. (3.5.113)

Then, a Wald-type statistic takes the form:

Wn =
θ̃ 1,n− θ̃ 2,n√

V ∗n
(3.5.114)

where (θ̃ 1,n, θ̃ 2,n) are unrestricted estimators of (θ 1,θ 2) and V ∗n is a consistent estimator
of the ”asymptotic variance” of θ̃ 1,n− θ̃ 2,n. Such a test in this context is considered in
Calonico et al. (2014) while their statistic includes an additional term for bias correction.
Whether such a term is included or not is not essential for the succeeding discussions.
Assuming that both (θ̃ 1,n, θ̃ 2,n) are asymptotically normal, it is necessary that the two esti-
mators converge at the same rate for the test to have either a correct size or any power. To
see this, suppose for some ri > 0

Var(nri(θ̃ i,n−θ i)) = σ i > 0, i = 1,2 (3.5.115)

and (θ̃ 1,n, θ̃ 2,n) are asymptotically independent and let V ∗n =
σ2

1
n2r1

+
σ2

2
n2r2

. Then, if r1 < r2

Wn =
nr1 θ̃ 1,n−n(r1−r2)nr2 θ̃ 2,n√

σ2
1 +σ2

2n2(r1−r2)
(3.5.116)
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=
nr1(θ̃ 1,n−θ 1)+nr1θ 1

σ1
+oP(1) (3.5.117)

so that it diverges unless θ 1 = 0. It is easy to see that under any choice of V ∗n , Wn ei-
ther converges to zero or diverges regardless of whether H0 in (3.5.113) holds. The same
conclusion holds when (θ̃ 1,n, θ̃ 2,n) are not independent.

The fact that we need r1 = r2 has several implications. First, for estimation of (θ 1,θ 2),
the same bandwidth must be used. This can lead to significant estimation bias than the
case where different bandwidths are used for estimators of θ 1 and θ 2. In the regression
discontinuity design setup in Section 3.5.3, the parameters of interest correspond to the
values of two different functions at some fixed point. For each parameter, the optimal
choice of the bandwidth (which minimizes the mean squared error of the estimator) depends
on some higher order derivative of the underlying function. Thus, the optimal values of the
bandwidth can be quite different. In addition, each needs to be estimated from a different
set of data points based on partitions of the sample according to the value of some covariate
variable. The sizes of the two sub-samples can be disproportionate in practice, which
makes the use of the same bandwidth even less desirable. In addition, parameter estimators
may not converge at the same rate even when the same bandwidth is used. In particular,
derivatives of different orders cannot be estimated at the same rate as we observe in Section
3.5.2. Thus, test restrictions considered in Section 3.5.2 and 3.5.4 may not be considered
for the Wald-type test. In order to apply the Lagrange multiplier test, the hypothetical value
of θ 1 = θ 2 needs to be fixed, i.e. it only allows for simple hypotheses. Since the generalized
C(α) test requires only a restricted estimator, only one of (θ 1,θ 2) needs to be estimated.
Thus, the concern posed for the test based of the form (3.5.113) regarding the choice of the
bandwidth is not present. Second, a different bandwidth may be used for each parameter.
In fact, the test statistic can also employ a bandwidth such that it converges faster than those
used for the restricted estimator. This improves estimation stability and accuracy. Lastly,
since it allows for the convergence rates of the estimators of θ 1 and θ 2 to differ, a larger
class of test restrictions can be accommodated. As we show in 3.3, restrictions defined by
any twice-differentiable function of the parameter can be tested.

In what follows, we consider application of the generalized C(α) test procedure to the
problem of testing the derivatives of the conditional expectation function in Section 3.5.2,
that of constructing a confidence set for the average treatment effect in the regression dis-
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continuity design in Section 3.5.3, and a specification test for the semiparametric stochastic
discount factor model. We assume that K is a symmetric probability density function with
bounded support on R for brevity. Define

µ l =
∫

zlK(z)dz, vl =
∫

zlK2(z)dz, l = 0,1, . . . . (3.5.118)

Note that µ0 = 1 and µ l = ν l = 0, l even. We note that in all applications, we set the
rate of the bandwidths for the restricted estimator to be faster than the MSE optimal rate
in order to obtain asymptotic unbiasedness (undersmoothing). Alternatively, an explicit
bias-correction approach, such as in Calonico et al. (2014), may be employed.

3.5.2. Testing the derivatives of the conditional expectation function

The problem considered here involves joint hypothesis testing on derivatives of different
orders of a function of interest. As shown in Fan and Gijbels (1996), local polynomial
estimators of derivatives of different orders converge to non-degenerate limits at different
rates. The problem of testing multiple restrictions on parameters under multiple conver-
gence rates of the parameter estimator has not been considered in the literature. We show
the generalized C(α) test is applicable to such problem.

For a pair of integrable random variables (Y,X), consider a nonparametric regression
of Y of X :

Y = g(X)+ ε. E[ε |X ] = 0 (3.5.119)

where the conditional expectation function g(x) = E[Y : | X = x] is infinitely continuously
differentiable. Denote by g(m)(x0) the m-th derivative of g(x) evaluated at x = x0. Assume
σ2(x) = Var(ε | X = x) and the density f (x) of X are continuous and bounded away from
zero in the neighborhood of x0. We are interested in testing whether

g(m)(x0) = 0, ∀m≥ m0 (3.5.120)

for for some positive integer m0, i.e. all the derivatives of higher order than m0 are all zero.
In particular, when m0 = 1, the marginal effect of x on m(x) at x = x0 is zero under the
null hypothesis. The case where m0 = 2 corresponds to a testing on local linearity of m at
x = x0. For a positive integer M such that M ≥ m0, a Taylor expansion of g(x) of order M

124



Chapter 3 Local estimating equations and moment conditions

in the neighborhood of x0 gives

g(x)≈
M

∑
s=0

1
s!

θ
(s)
0 (x− x0)

s. (3.5.121)

where

θ 0 =
(
θ
(0)
0 , . . . , θ

(s)
0 , . . . , θ

(M)
0
)′

=
(
g(x0), . . . ,

1
s!

g(s)(x0), . . . ,
1

M!
g(M)(x0)

)
. (3.5.122)

Then, we have the local moment conditions (3.5.111) where

m(θ 0; Z) = Y −
M

∑
s=0

θ
(s)
0 (X− x0)

s (3.5.123)

where Z = (Y,X)′. We consider the hypothesis:

H0(m0) : θ
(m) = 0, ∀m≥ m0. (3.5.124)

Define a function ψ : RM→ RM−m0+1:

ψ(θ) =
[
θ
(m),θ (m+1), . . . ,θ (M)

]′
(3.5.125)

so that the restriction in (3.5.124) is equivalent to ψ(θ) = 0. Given a set of i.i.d. obser-
vations {xi,yi}n

i=1 and the local moment equations in (3.5.123), we consider (M + 1)× 1
estimating equations Dn(θ):

Dn(θ) =



1
nhn

∑
n
i=1(yi−∑

M
s=0 θ

(s)(xi− x0)
s)K
(

xi− x0

hn

)
1

nh2
n

∑
n
i=1(yi−∑

M
s=0 θ

(s)(xi− x0)
s)(xi− x0)K

(
xi− x0

hn

)
...

1
nhM+1

n
∑

n
i=1(yi−∑

M
s=0 θ

(s)(xi− x0)
s)(xi− x0)

MK
(

xi− x0

hn

)


. (3.5.126)

Note that Dn(θ) can be also interpreted as the vector of first order conditions of the objec-
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tive function of the local polynomial regression of order M, up to scaling, which solves

S(M)
n (θ) =

n

∑
i=1

{
yi−

M

∑
j=0

θ
(s)(xi− x0)

s

}2

K
(

xi− x0

hn

)
(3.5.127)

over θ =
(

θ
(0), . . . , θ

(M)
)′
.

Observe that while an unrestricted estimator of θ 0 is obtained by minimizing (3.5.127),
an (unconstrained) estimator with a faster rate of convergence can be attained by consider-
ing local polynomial regression of order m0−1 where

δ̂ n =
(

δ̂
(0)
n , . . . , δ

(m0−1)
n

)′
(3.5.128)

of a m0×1 parameter δ is obtained by minimizing

S0
n(β ) =

n

∑
i=1

(yi−
m0−1

∑
s=0

δ
(s)(xi− x0)

s)2K
(

xi− x0

h∗n

)
(3.5.129)

and then defining a constrained estimator θ̃ n =
(

θ̃
(0)
n , . . . , θ̃

(M)
n

)′
by

θ̃
(s)
n =

δ̂
(s)
n ,s = 0, . . . , m0−1

0 ,s = m0, . . . , M
(3.5.130)

Note that the bandwidth parameter h∗n can be set differently from hn. By Theorem 3.1 of
Fan and Gijbels (1996), if h∗n = o(n−1/(2m0+3)),√

n(h∗n)2s+1(θ̃
(s)
n −θ

(s)
0 ) = op(1), s = 0, . . . , m0−1 (3.5.131)

so that √
n(h∗n)2m0−1(θ̃ n−θ 0) = Op(n−2/(2m0+3)) (3.5.132)

or equivalently
‖θ̃ n−θ 0‖= Op(n−1/(2m0+3)). (3.5.133)

Note that the unrestricted estimator based on (3.5.127) converges at the slower rate
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n−2/(2M0+5). This is one advantage of using an restricted estimator in this context. Fur-
thermore, as we see below, the bandwidth hn for (3.5.126) may converge faster than h∗n as
long as the condition specified as (3.5.152) holds and such choice leads to faster conver-
gence of the test statistic.

By the central limit theorem,√
nhnDn(θ 0)

L−→
n→∞

N [0, I(θ 0)] (3.5.134)

where I(θ 0) is a positive-definite matrix of size M+1 defined as

I(θ 0) = σ
2(x0) f (x0)[vi+ j−2]1≤i, j≤M+1. (3.5.135)

Now, Dn(θ) can be expressed as

Dn(θ) = Dn(θ 0)+ Jθ ,n(θ 0)n−β (θ −θ 0) (3.5.136)

where Jθ ,n(θ) is a symmetric matrix of size M+1 defined as

Jθ ,n(θ) =

[
1

nhi
n

n

∑
i=1

K
(

xi− x0

hn

)
(xi− x0)

i+ j−2

]
1≤i, j≤M+1

. (3.5.137)

and β is a (M+1) dimensional vector satisfying

nβ =


1 0 · · · 0

0 hn
...

... . . . 0
0 · · · 0 hM

n

 . (3.5.138)

Then,
‖Jθ ,n(θ 0)− Jθ (θ 0)‖= op((nh)−1/2) (3.5.139)
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where

Jθ (θ 0) = f (x0)


µ0 µ1 · · · µM

µ1 µ2 · · · µM+1
... . . .

µM · · · µ2M−1 µ2M

 . (3.5.140)

Hence, we can write

Dn(θ) = Dn(θ 0)+ Jθ (θ 0)n−β (θ −θ 0)+op

(
(nhn)

−1/2
)
. (3.5.141)

Consider estimators of (J̃
θ ,n, Ĩθ ,n) of (Jθ (θ 0), I(θ 0)) given by

J̃θ ,n = f̂ (x0)


1 µ1 · · · µM

µ1 µ2 · · · µM+1
... . . .

µM · · · µ2M−1 µ2M

 , (3.5.142)

and
Ĩn = σ̂

2(x0) f̂ (x0)[vi+ j−2]1≤i, j≤M+1. (3.5.143)

where ( f̂ (x0), σ̂
2(x0)) are consistent estimators of ( f (x0),σ

2(x0)). For example, f̂ (x0)

may be a usual kernel density estimator

f̂ (x0) =
1

nhn

n

∑
i=1

K

(
xi− x0

h( f )
n

)
(3.5.144)

Then, by choosing h( f )
n so that h( f )

n = o(n−1/5) , we have

f̂ (x0)− f (x0) = Op(n−2/5). (3.5.145)
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Similarly, define σ̂
2(x0) by

σ̂
2(x0) =

n

∑
i=1

K

(
xi− x0

h(σ)
n

)
e2

i

K

(
xi− x0

h(σ)
n

) (3.5.146)

where ei = yi− θ̃
(0)
n , i = 1, . . . ,n. Then, if h(σ)

n = o(n−1/5), we have

σ̂
2(x0)−σ

2(x0) = Op(n−2/5). (3.5.147)

Thus,
‖J̃θ ,n− Jθ (θ 0)‖= Op(n−2/5), ‖Ĩn− I(θ 0)‖= Op(n−2/5). (3.5.148)

Finally, the derivative P̃n of ψ(θ) evaluated at θ̃ n is given by

P̃n = [0(M−m0+1)×m0;1(M−m0+1)×(M−m0+1)] (3.5.149)

where 0(M−m0+1)×m0is a (M−m0 + 1)×m0 zero matrix and 1(M−m0+1)×(M−m0+1) is an
identity matrix of size (M−m0+1). Then, setting Wn = Ĩ−1

n , the generalized C(α) statistic
given in (3.3.46) can be expressed as

PC(θ̃ n; ψ) = nh
1

f̂ (x0)σ̂
2(x0)

Dn(θ̃ n)
′U −1P̃′n(P̃nU

−1V U −1P̃′n)P̃nU
−1Dn(θ̃ n).

(3.5.150)
where U = [µ i+ j−2]1≤i, j≤M+1 and V = [ν i+ j−2]1≤i, j≤M+1. In particular, if M = m0 = 1,
we have

PC(θ̃ n; ψ) = (nhn)
ν2

f̂ (x0)σ̂
2(x0)

(
1

nh2
n

n

∑
i=1

(yi−
1

∑
s=0

θ̃
(s)
n (xi− x0)

s)(xi− x0)K
(

xi− x0

hn

))2

(3.5.151)
See Appendix: 3.A for derivations. In light of Assumption 3.3.11, we can choose the order
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of hn by finding a smallest constant b satisfying

1
2m0 +3

>
1
2

(
1
2
−b
)
,

1
2m0 +3

+
2
5
>

(
1
2
−b
)

(3.5.152)

and choose hn so that hn = Op(n−b). Then, by Theorem 3.3.1,

PC(θ̃ T ; ψ)
L−→

n→∞
χ

2(M−m0 +1). (3.5.153)

Note that this test procedure only requires estimation of the derivatives of the order up to
m0− 1. On the other hand, other methods, such as the Wald-type test, requires an unre-
stricted estimator so that all M derivatives need to be estimated. Such an estimator suffers
from a slower convergence than our restricted estimator in (3.5.130). In addition, we do
not require that the bandwidth h∗n for the restricted estimator and hn for the test statistic to
be the same. Then, the order of hn can be smaller than that of h∗n as long as (3.5.152) holds
to improve the convergence rate of the test statistic.

3.5.3. Regression discontinuity design

We consider the problem of constructing a confidence set for the average treatment effect in
the regression discontinuity design. Such a problem is considered by Calonico et al. (2014),
who employs a Wald-type test. As discussed below, our test procedure avoids a restrictive
choice of the smoothing bandwidth required by their Wald-type test. It is particularly ad-
vantageous when an unrestricted estimator is estimated from two sets of observations with
significantly different sample sizes. Furthermore, the test statistic converges at a faster rate.

Consider the standard sharp regression discontinuity design setup under a randomized
experiment (Lee (2008), Imbens and Lemieux (2008), Lee and Lemieux (2010)) where Y

is the outcome variable, X is a univariate exogenous variable, and D is a binary variable for
treatment which is equal to one if and only if X ≥ c for some fixed constant c. Adapting
the potential outcomes framework, let Y1 and Y0 be the outcomes under/without treatment
so that

Y = DY1 +(1−D)Y2. (3.5.154)

Given the i.i.d. data {yi,xi,Di}n
i=1, we are interested in testing whether the average treat-
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ment effect of the kind:
E[Y1−Y0 |D = 1] (3.5.155)

take some fixed value d0 ∈ R Note that under continuity of the regression functions
E[Y1 |X = x] and E[Y0 |X = x], the hypothesis is equivalent to

H0(d0) : τ
(+)
0 − τ

(−)
0 = d0. (3.5.156)

where
τ
(+)
0 = E[Y1 |X = c], τ

(−)
0 = E[Y0 |X = c] (3.5.157)

Note that one can obtain a confidence set for (3.5.155) by inverting a family of hypotheses
tests of {H0(d0)}d0∈R. Denote

β
(+)
0 = ∂xE[Y1 |X = x]|x=c . (3.5.158)

Then, we have the local moment conditions (3.5.111) where

m(θ 0; Z) =

[
1{X ≥ c}(Y − τ

(+)
0 −β

(+)
0 (X− c))

1{X < c}(Y − τ
(−)
0 )

]
(3.5.159)

where Z = (Y,X) and θ =
(

τ(+),β (+),τ(−)
)′

.

Given an i.i.d. set {(yi,xi)}n
i=1 , we consider the estimating function D(Y )

n (θ) based on
local linear regression:

Dn(θ) :=

D1,n(θ)

D2,n(θ)

D3,n(θ)

=


1

nhn
∑

n
i=1 1{xi ≥ c}(yi− τ(+)−β

(+)(xi− c))K
(

xi− c
hn

)
1

nh2
n

∑i 1{xi ≥ c}(yi− τ(+)−β
(+)(xi− c))(xi− c)K

(
xi− c

hn

)
1

nhn
∑

n
i=1 1{xi < c}(yi− τ(−))K

(
xi− c

hn

)


(3.5.160)

More generally, D(Y )
n (θ) can be constructed based on a local polynomial regression as in

Section 3.5.2.
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We consider a restricted estimator θ̃ n as follows: first, obtain an unrestricted estimator
(τ̂

(+)
n , β̂

(+)
n ) of (τ(+),β (+)) by minimizing, over (τ(+),β (+)),

S+n (τ
(+),β (+)) =

n

∑
i=1

1{xi ≥ c}(yi− τ
(+)−β

(+)(xi− c))2K
(

xi− c
h∗n

)
(3.5.161)

and then set
θ̃ n :=

(
τ̃
(−)
n , β̃

(−)
n , τ̃

(−)
n

)
=
(

τ̂
(+)
n , β̂

(+)
n , τ̃

(+)
n +d0

)′
. (3.5.162)

Notice that a test procedure based on an unrestricted estimator requires estimation of both
τ(+) and τ(−). Consider an unrestricted estimator (τ̂(−)n , β̂

(−)
n ) of (τ(−),β (−)) which mini-

mizes

S−n (τ
(−),β (−)) =

n

∑
i=1

1{xi < c}(yi− τ
(−)−β

(−)(xi− c))2K
(

xi− c
h∗∗n

)
. (3.5.163)

Then, as discussed in Section 3.5.1, a Wald-type test requires that the bandwidths in 132
and (3.5.163) be equal: h∗n = h∗∗n . However, the data points effectively used to estimate
(τ̂

(−)
n , β̂

(−)
n ) and (τ(−),β (−)) are not equal: ∑

n
i=1 1{xi ≥ c} ≈ pn and ∑

n
i=1 1{xi < c} ≈

(1− p)n where p := P(X ≥ c), respectively. In particular, if p is close to 0 or 1, the
relative sample size is quite disproportionate and thus using the same bandwidth for the
two subsamples leads to significant estimation inefficiency. On the other hand, we only
need to estimate (3.5.161) and thus no such concern is posed. In addition, as in Section
3.5.2, hn for (3.5.160) can be set differently from h∗n, which leads to a faster convergence
of the test statistic. Further, note that in order to apply the Lagrange multiplier test, the
hypothetical value of θ 1 = θ 2 should be fixed under the null hypothesis and thus (3.5.156)
may not be directly tested.

By Theorem 3.1 of Fan and Gijbels (1996), one can choose h∗n so that

‖θ̃ n−θ 0‖= Op(n−2/7) (3.5.164)

Define a function ψ : R3→ R:

ψ(θ) = τ
(+)− τ

(−)−d0 (3.5.165)
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so that the restriction in (3.5.156) is equivalent to ψ(θ) = 0 and

P̃n =
[
1 0 −1

]
(3.5.166)

Given the matrix nβ specified as

nβ =

1 0 0
0 hn 0
0 0 1

 , (3.5.167)

we have

Jθ (θ 0) = f (x0)

p 0 0
0 pµ2 0
0 0 (1− p)

 . (3.5.168)

and

Iθ (θ 0) = f (x0)

p2σ2
+ν0 0 0

0 p2σ2
+ν2 0

0 0 (1− p)2σ2
−ν0

 (3.5.169)

where σ2
+ = limx↓c Var(Y −E[Y |X ] | X = x), σ2

− = limx↑c Var(Y −E[Y |X ] | X = x). We
consider estimators of (p,σ2

+,σ
2
−) given by

p̂ =
1
n

n

∑
i=1
{xi ≥ c} (3.5.170)

σ̂
2
+ =

n

∑
i=1

1{xi ≥ c}K

(
xi− x0

h(σ+)
n

)
e2

i

1{xi ≥ c}K

(
xi− x0

h(σ+)
n

) , σ̂
2
− =

n

∑
i=1

1{xi < c}K

(
xi− x0

h(σ−)n

)
e2

i

1{xi < c}K

(
xi− x0

h(σ−)n

) (3.5.171)

where

ei =

yi− τ̃
(+)
n if xi ≥ c

yi− (τ̃
(+)
n +d0) if xi < c.

(3.5.172)

and define f̂ (x0) as in (3.5.144). Given (p̂, σ̂2
+, σ̂

2
−, f̂ (x0)), consider estimator of

(Jθ (θ 0), Iθ (θ 0)):
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J̃θ ,n = f̂ (x0)

p̂ 0 0
0 p̂µ2 0
0 0 (1− p̂)

 . (3.5.173)

and

Ĩn = f̂ (x0)

p̂2σ̂
2
+ν0 0 0

0 p̂2σ̂
2
+ν2 0

0 0 (1− p̂)2σ̂
2
−ν0

 (3.5.174)

Then, if (h(σ+)
n ,h(σ−)n ,h( f )

n ) are all of order o(n−1/5), we have

‖J̃θ ,n− Jθ (θ 0)‖= Op(n−2/5), ‖Ĩθ ,n− I(θ 0)‖= Op(n−2/5). (3.5.175)

Then, setting Wn = Ĩ−1
n , we obtain the generalized C(α) statistic given by

PC(θ̃ n ; ψ) =
nhn

f̂ (x0)(σ̂
2
++ σ̂

2
−)ν0

[
p̂−1D1,n(θ)− (1− p̂)−1D3,n(θ)

]2

. (3.5.176)

The derivation is given in Appendix 3.A. It hn = Op(n−b) for some b such that b >
1

14
then

Assumption 3.3.11 holds and

PC(θ̃ T ; ψ)
L−→

n→∞
χ

2(2) (3.5.177)

under H0 in (3.5.182).

3.5.4. Semiparametric stochastic discount factor

Cai, Ren and Sun (2015) consider the nonlinear pricing kernel of the form

mt+1 = 1−m(Xt)rp,t+1 (3.5.178)

where m(·) is specified nonparametrically. Then, it satisfies

E[
{

1−m(Xt)rp,t+1
}

ri,t+1 |Ωt ] = 0 (3.5.179)
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where rt,i+1 is the i-th excess return of the risky assets (i = 1, . . . ,N), rp,t+1 is the return on
the market portfolio in excess of the risk-free asset at time t, Ωt represents the information
set at period t and Xt is an L-dimensional conditioning variables from Ωt . See Wang (2003)
for more details,. Then, we have

E
[{

1−
(
m(x0)+(∂m(x0))

′(Xt− x0)ri,t+1
)

rp,t+1
}∣∣Xt = x0

]
= 0, ∀i = 1, . . . ,N

(3.5.180)
where α0 = m(x0),β 0 = ∂m(x0). Note that (3.5.180) must hold for any i = 1, . . . ,N. We
consider a specification test for the model (3.5.178) in the following manner: For any two
assets, which we denote by i= 1,2, suppose θ 0 =(α0,β 0,a0,b0) satisfies the local moment
conditions (3.5.111) where

m(θ 0; Zt) =

[{
1−
(
α0 +β

′
0(Xt− x0)

)
rp,t+1

}
r1,t+1{

1−
(
a0 +b′0(Xt− x0)

)
rp,t+1

}
r2,t+1

]
(3.5.181)

where Zt = (Xt ,rpt+1,r1,t+1,r2,t+1). Then, we consider

H0 : α0 = a0, β 0 = b0. (3.5.182)

Given a strictly stationary and α-mixing process {(Xt ,r1,t+1,r2,t+1,rp,t+1)}T
t=1, we employ

orthogonality conditions considered in Cai et al. (2015) to form the estimating function
Dn(θ) defined as

Dn(θ) =:=


D1,n(θ)

D2,n(θ)

D3,n(θ)

D4,n(θ)





1
T hT

∑
T
t=1
[{

1−
(
α +β

′(Xt− x0)
)

rp,t+1
}

r1,t+1
]

K
(

Xt− x0

hT

)
1

T h2
T

∑
T
t=1
[{

1−
(
α +β

′(Xt− x0)
)

rp,t+1
}

r1,t+1(Xt− x0)
]

K
(

Xt− x0

hT

)
1

T hT
∑

T
t=1
[{

1− (a+b′(Xt− x0))rp,t+1
}

r2,t+1
]

K
(

Xt− x0

hT

)
1

T h2
T

∑
T
t=1
[{

1− (a+b′(Xt− x0))rp,t+1
}

r2,t+1(Xt− x0)
]

K
(

Xt− x0

hT

)


(3.5.183)

where θ = (α,β ,a,b)′ .

In what follows, we assume that L = 1, i.e. Xt is one-dimensional to simplify exposi-
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tion. As in Section 3.5.156, only either (α0,β 0) or (a0,b0) needs to be estimated to build
a restricted estimator. Furthermore, observe that the estimators of α and β converge at
different rates. Thus, the Wald-type test is not applicable to the test restriction (3.5.182),
which involves jointly testing α and β . The Lagrange-multiplier test only allows for simple
hypotheses and hence in order to test (3.5.182), one needs to perform a family of tests with
all hypothetical values of α0(= a0) and β 0(= b0). Such a procedure is significantly more
computationally intensive than the generalized C(α) test procedure.

We obtain a restricted estimator θ̃ n by first constructing an unrestricted estimator(
α̃n, β̃ n

)
of (α0,β 0) which solves

1
T hT

T

∑
t=1

[{
1−
(
α +β

′(Xt− x0)
)

rp,t+1
}

r1,t+1

(
1

Xt− x0

)]
K
(

Xt− x0

h∗T

)
= 0 (3.5.184)

and then define
θ̃ n =

(
α̃T , β̃ T , α̃T , β̃ T

)′
. (3.5.185)

Then, as in Section 3.5.3 , one can choose h∗T so that

‖θ̃ T −θ 0‖= Op(T−2/7) (3.5.186)

Given the matrix Tβ specified as

Tβ =


1 0 0 0
0 hT 0 0
0 0 1 0
0 0 0 hT

 , (3.5.187)

we have

Jθ (θ 0) = f (x0)


λ 1 0 0 0
0 λ 1µ2 0 0
0 0 λ 2 0
0 0 0 λ 2µ2

 , Iθ (θ 0) = f (x0)


σ2

1ν0 0 0 0
0 σ2

1ν2 0 0
0 0 σ2

2ν0 0
0 0 0 σ2

2ν2


(3.5.188)
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where λ k = E
[
rp,t+1ri,t+1 |Xt = x0

]
, , σ2

k = Var
[{

1−m(Xt)rp,t+1
}

rk,t+1
∣∣Xt = x0

]
. (k =

1,2). We consider their estimators:
(3.5.189)

J̃θ ,T = f̂ (x0)


λ̂ 1 0 0 0
0 λ̂ 1µ2 0 0
0 0 λ̂ 2 0
0 0 0 λ̂ 2µ2

 , ĨT = f̂ (x0)


σ̂

2
1ν0 0 0 0
0 σ̂

2
1ν2 0 0

0 0 σ̂
2
2ν0 0

0 0 0 σ̂
2
2ν2


(3.5.190)

where f̂ (x0) is defined in (3.5.144) and (λ̂ k,σ
2
k) are consistent estimators of (λ k,σ

2
k),k =

1,2, obtained by solving

(λ̂ k, ζ̂ k) = arg min
(λ ,ζ )

[
T

∑
t=1

(rp,t+1rk,t+1−λ −ζ (Xt− x0))
2K

(
Xt− x0

h(λ k)
T

)]
(3.5.191)

and

(σ̂2
k , κ̂k) = arg min

(σ2,κ)

 T

∑
t=1

((e(k)t )2−σ
2−κ(Xt− x0))

2K

Xt− x0

h
(σ2

k)
T

 (3.5.192)

where
e(k)t =

{
1− m̂(Xt)rp,t+1

}
rk,t+1. (3.5.193)

Then, if (h(λ 1)
T ,h(λ 2)

T ,h(σ
2
1)

T ,h(σ
2
2)

T ,h( f )
T ) are all of order o(T−1/5), we have

‖J̃θ ,T − Jθ (θ 0)‖= Op(T−2/5), ‖Ĩθ ,T − I(θ 0)‖= Op(T−2/5). (3.5.194)

Finally, define a function ψ : R4→ R2:

ψ(θ) =

[
α−a

β −b

]
(3.5.195)

so that

P̃n =

[
1 0 −1 0
0 1 0 −1

]
. (3.5.196)
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Then, setting Wn = Ĩ−1
n , one can show (See Appendix 3.A) that the generalized C(α) statis-

tic in (3.3.46) can be expressed as

PC(θ̃ T ; ψ) = (T hT )
1

f̂ (x0)

1

(λ̂
−2
1 σ̂

2
1 + λ̂

−2
2 σ̂

2
2)
. (3.5.197)[

1
ν0

(
λ̂
−1
1 D1,T (θ̃ T )− λ̂

−1
2 D3,T (θ̃ T )

)2
+

1
ν2

(
λ̂
−1
1 D2,T (θ̃ T )− λ̂

−1
2 D4,T (θ̃ T )

)2
]
.

(3.5.198)

If hT = O(T−b) where b satisfies

b >
1

14
(3.5.199)

then, Assumption 3.3.11 holds and

PC(θ̃ T ; ψ)
L−→

n→∞
χ

2(2) (3.5.200)

under H0 in (3.5.182).

3.6. Two-sample problems under unbalanced sample sizes

When the study concerns itself with multiple populations or the population of interest is
categorized into clusters, tests for homogeneity of certain features across different groups
are often conducted for various purposes. In panel data models, homogeneity of slope
coefficients justifies pooling of data, which improves estimation efficiency. Existing tests
include Hausman and Taylor (1981), Pesaran, Smith and Im (1996), Wang, Phillips and Su
(2018), and Lian, Qiao and Zhang (2021) in the context of group heterogeneity. Tests on
parameter homogeneity are also relevant in implementation of the analysis of covariance
(ANCOVA) and in the study of aptitude-treatment interactions. In practice, the number
of observations from each group may be vastly different and thus the use of asymptotics
based on the premise that the sample sizes of all groups grow at the same rate may not
be warranted. In this section, we consider the problem of testing homogeneity of slope
coefficients across two different groups under such a setup and apply the extended general-
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ized C(α)-test (EC(α) test) developed in Section 3.4. As we describe, the problem can be
formulated in terms of primary and auxiliary estimating equations, the latter of which de-
pend only on nuisance parameters. While inference and testing problems under estimating
equations which converge at different rates are considered in the literature (Lee (2005), Lee
(2010), Antoine and Renault (2012)), there is no procedure available for a testing problem
where nuisance parameters are only identified from auxiliary estimating equations which
converge at a different rate from the primary ones which involve both the parameter of inter-
est and the nuisance parameters. The EC(α) test can be applied to such problem regardless
of which set of estimating equations converge at a faster rate and without knowledge of
the asymptotic distribution of an unrestricted estimator, which is often difficult to compute
even if it exists. Let (Y,X) be a pair of random variables from the population distribution
FY,X . Suppose from two subpopulations F(1)

Y,X and F(2)
Y,X of FY,X , we observe independent sets

of i.i.d. observations {y(1)i,n ,x
(1)
i,n }n

i=1 and {y(2)j,mn
,x(2)j,mn

}mn
i=1 from F(1)

Y,X and F(2)
Y,X , respectively.

Assume the fourth moments of (y(1)i,n ,x
(1)
i,n ) and (y(2)j,mn

,x(2)j,mn
) exist for all i and j. The number

mn of observations from F(2)
Y,X grow at a rate nα where α > 1 as n increases and satisfies

mn

nα
−→
n→∞

c (3.6.201)

for some positive constant c > 0. Note that when α = 1, the two sample sizes mn and
n grows at the same rate and α > 1 (α < 1) corresponds to the case where the sampling
frequency from F(2)

Y,X is higher (lower) than from F(1)
Y,X . We have a regression model of the

form:

y(1)i,n = (θ 0 + γ0)x
(1)
i,n + ε i,n

y(2)j,mn
= γ0x(2)j,mn

+ui, j (3.6.202)

where ε i.n and u j,mn are expectation errors for i = 1, . . .n, : j = 1, . . .mn. We are interested
in testing whether the conditional expectation functions from F(1)

Y,X and F(2)
Y,X are identical by

considering the null hypothesis:

H0 : θ 0 = 0. (3.6.203)
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Following the framework in Section 3.4, consider the primary and auxiliary estimating
functions

Dn(θ ,η) =
1
n

n

∑
i=1

(y(1)i,n − (θ +η)x(1)i,n )x
(1)
i,n (3.6.204)

and

Gn(η) =
1
m

m

∑
j=1

(y(2)i,n −η0x(2)j,m)x
(2)
j,m (3.6.205)

where η is treated as a nuisance parameter in testing H0 in 3.6.203. We have asymptotic
normality of the estimating functions:[√

nDn(θ 0,η0)√
mnGn(η0)

]
L−→

n→∞
N [0, I(θ 0,η0)] (3.6.206)

where

I(θ 0,η0) =

[
I1(θ 0,η0) 0

0 I2(η0)

]
(3.6.207)

and
I1(θ 0,η0) = E[(x(1)i,n )

2
ε

2
i,n], I2(η0) = E[(x(2)u,mn)

2u2
j,mn

] (3.6.208)

Furthermore, the nuisance parameter η0 is estimated by the least squares estimator

η̂mn
=

(
mn

∑
j=1

(x(2)j,m)
2

)−1( mn

∑
j=1

x(2)j,my(2)j,m

)

such that
√

mn(η̂mn
−η0) = Op(1).

Under H0, we consider estimator Ĩ1,n and Ĩ2,mn of I1(θ 0,η0) and I2(η0)

Ĩ1,n =
1
n

n

∑
i=1

(x(1)i,n )
2(y(1)i,n − (θ 0 + η̂mn

)x(1)i,n )
2 (3.6.209)

and

Ĩ2,n =
1

mn

mn

∑
j=1

(x(2)j,mn
)2(y(2)j,mn

− η̂mn
x(2)j,mn

)2, (3.6.210)
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respectively. Then,

‖Ĩ1,n− I1(θ 0,η0)‖= Op(1/
√

n), : ‖Ĩ2,mn− I2(η0)‖= Op(1/
√

mn). (3.6.211)

Furthermore, let

J̃θ ,n = J̃η ,n =
1
n

n

∑
i=1

(x(1)i,n )
2, : g̃n =

1
mn

mn

∑
j=1

(x(2)j,mn
)2. (3.6.212)

Then,
‖J̃θ ,n− Jθ‖= ‖J̃η ,n− Jθ‖= Op(1/

√
n) (3.6.213)

and
‖g̃n−g0‖= Op(1/

√
mn). (3.6.214)

The extended generalized C(α) test statistic is based on the estimating function s∗n(θ ,η)

defined as
s∗n(θ ,η) = J̃−1

θ ,n {Dn(θ ,η)− 1
c

J̃η ,ng̃−1
n Gn(η)} . (3.6.215)

Q̃n =

(
1
n

n

∑
i=1

(x(1)i,n )
2

)−1

First, we consider the case where α > 1. Then,

√
ns∗n(θ ,η)

L−→
n→∞

N [0, Λ1(θ 0,η0)] (3.6.216)

where
Λ1(θ 0,η0) =

(
E[(x(1)i,n )

2]
)−2

E[(x(1)i,n )
2
ε

2
i,n]. (3.6.217)

If α < 1, we have √
nαs∗n(θ ,η)

L−→
n→∞

N [0, Λ2(η0)] . (3.6.218)

where
Λ2(η0) =

1
c2

(
E[(x(2)j,mn

)2]
)−2

E[(x(2)j,mn
)2u2

j,mn
]

Lastly, if α = 1,
√

ns∗n(θ ,η)
L−→

n→∞
N [0, Λ3(θ 0,η0)] (3.6.219)
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where
Λ3(θ 0,η0) = Λ1(θ 0,η0)+Λ2(η0). (3.6.220)

Estimators of (Λ1(θ 0,η0),Λ2(η0),Λ3(θ 0,η0)) are given, respectively, by

Λ̃1,n =
(
J̃θ ,n
)−2 Ĩ1,n, Λ̃2,n = (g̃n)

−2 Ĩ2,n

and
Λ̃3,n = Λ̃1,n + Λ̃2,n. (3.6.221)

The extended generalized C(α) statistic is then

EC(θ̃
0
n, η̂n;Λ̂n ψ) = n2min(1,α) s∗n(θ̃

0
n, η̂n)

′(Λ̂n)
−s∗n(θ̃

0
n, η̂n) (3.6.222)

where

Λ̂n =


Λ̃1,n , if α > 1

Λ̃2,n ,if α < 1

Λ̃3,n , if α = 1.

(3.6.223)

Then, by applying Proposition 3.4.4, we have

EC(θ̃
0
n, η̂n;Λ̂n ψ)

L−→
n→∞

χ
2(1). (3.6.224)

3.7. Conclusion

In this paper, we have studied generalized C(α) tests on restrictions on a finite-dimensional
parameter when estimating equations and nuisance parameter estimators converge at non-
standard rates and have shown under general conditions that the null asymptotic distribu-
tions of the proposed test statistics are chi-square. In particular, the restricted estimator
may converge at a slower rate than the estimating equations. As discussed in Dufour et al.
(2016), the generalized C(α) statistic nests the existing C(α)-type statistics as special cases
and thus our results broaden applicability of these statistics to problems involving nonstan-
dard rates. The advantages of this C(α)-type procedure are highlighted in the local esti-
mating function setup in Section 3.5. Existing testing methods require that parameters be
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estimated at the same rate. Our testing procedure is not restricted to such cases and thus
accommodates more general test restrictions and flexible choices of smoothing bandwidths.

Then, we have proposed the extended generalized C(α) statistic [EC(α)] to accommo-
date a class of models in which the parameters of interest are defined by primary estimating
functions which also depend on nuisance parameters such that they are only estimated from
auxiliary estimating equations that converge at a different rate from the primary ones. It
is shown that while the asymptotic distribution of the test statistic is still chi-square, its
degree of freedom depends on which of the convergence rate of the primary and auxiliary
equations is slower. When a problem involves two populations that are sampled at dis-
proportionate frequencies, the conventional assumption that each sample size grows at the
same rate may be unrealistic. The EC(α) test procedure is applied for a problem of testing
homogeneity of the regression functions in such setup.

Lastly, it is of interest to extend the framework in this paper to testing problems involv-
ing infinite-dimensional nuisance parameters. Such parameters are typically estimated at a
nonparametric rate and the asymptotic distributions of the estimators are often intractable or
yet to be known, especially, when machine learning algorithms are employed. In addition,
an estimator of the finite-dimensional parameter of interest may not attain n1/2-consistent
(e.g. Firpo et al. (2009)) in such semiparametric framework. The test statistic in this case
can be constructed from an estimating function which satisfies analogous conditions to
Neyman orthogonality with respect to a functional parameter introduced by Chernozhukov
et al. (2018). Such extension is left for future research.

3.A. Derivations of the test statistic PC(θ̃ n ; ψ) in each
problem in Section 3.5

3.5.2: Testing the derivatives
Recall that

J̃θ ,n = f̂ (x0)U , Ĩθ ,n = σ̂
2(x0) f̂ (x0)V , (3.A.225)

P̃n = [0(M−m0+1)×m0 ;1(M−m0+1)×(M−m0+1)], W̃n = Ĩ−1
n . (3.A.226)

where U = [µ i+ j−2]1≤i, j≤M+1 and V = [ν i+ j−2]1≤i, j≤M+1

143



Chapter 3 Derivations of the test statistic PC(θ̃ n ; ψ) in each problem in Section 3.5

Then,

Q̃n Ĩn Q̃ ′n = P̃n

(
J̃ ′θ ,nĨ−1

θ ,nJ̃θ ,n

)−1
P̃′n

=
σ̂

2(x0)

f̂ (x0)
P̃nU

−1V U −1P̃′n (3.A.227)

and thus [
Q̃n Ĩn Q̃ ′n

]−1
=

f̂ (x0)

σ̂
2(x0)

[
P̃nU

−1V U −1P̃′n
]−1

. (3.A.228)

Note

Q̃nDn(θ̃ n) = P̃n
(
J̃ ′θ ,nĨ−1

n J̃θ ,n
)−1

J̃ ′θ ,nĨ−1
n Dn(θ̃ n)

=
1

f̂ (x0)
P̃nU

−1Dn(θ̃ n). (3.A.229)

Then, since Dn(θ 0) = Op((nhn)
−1/2), we have

PC(θ̃ n; ψ) = (nhn)
1

f̂ (x0)σ̂
2(x0)

Dn(θ̃ n)U
−1P̃n

[
P̃nU

−1V U −1P̃′n
]−1

P̃nU
−1Dn(θ̃ n). (3.A.230)

Suppose now that M = m0 = 1. Then,

U =

[
1 0

0 µ2

]
, V =

[
ν0 0

0 ν2

]
, P̃n =

[
0 1

]
(3.A.231)

and

Dn(θ) :=

[
D1,n(θ)

D2,n(θ)

]
=


1

nhn
∑

n
i=1(yi−∑

1
s=0 θ

(s)(xi− x0)
s)K
(

xi− x0

hn

)
1

nh2
n

∑
n
i=1(yi−∑

1
s=0 θ

(s)(xi− x0)
s)(xi− x0)K

(
xi− x0

hn

)
 . (3.A.232)

Observe

P̃nU
−1Dn(θ̃ n) =

µ
−1
2

nh2
n

n

∑
i=1

(yi−
1

∑
s=0

θ̃
(s)
n (xi− x0)

s)(xi− x0)K
(

xi− x0

hn

)
(3.A.233)

and

P̃nU
−1V U −1P̃n =

[
0 µ

−1
2

][
ν0 0

0 ν2

][
0

µ
−1
2

]
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= µ
−2
2 ν2. (3.A.234)

so that by substituting them into 3.A.230 yields

PC(θ̃ n; ψ) = (nhn)
ν2

f̂ (x0)σ̂
2(x0)

(
1

nh2
n

n

∑
i=1

(yi−
1

∑
s=0

θ̃
(s)
n (xi− x0)

s)(xi− x0)K
(

xi− x0

hn

))2

(3.A.235)

3.5.3: Regression discontinuity design

Recall that

J̃θ ,n = f̂ (x0)

p̂ 0 0
0 p̂µ2 0
0 0 (1− p̂)

 , Ĩn = f̂ (x0)

p̂2σ̂
2
+ν0 0 0

0 p̂2σ̂
2
+ν2 0

0 0 (1− p̂)2σ̂
2
−ν0

 (3.A.236)

P̃n =
[
1 0 −1

]
, W̃n = Ĩ−1

n (3.A.237)

and Dn(θ 0) = Op((nhn)
−1/2). Then,

(
J̃ ′θ ,nĨ−1

θ ,nJ̃θ ,n

)−1
= ( f̂ (x0))

−1

(p̂)−1 0 0
0 (p̂µ2)

−1 0
0 0 (1− p̂)−1


p̂2σ̂

2
+ν0 0 0

0 p̂2σ̂
2
+ν2 0

0 0 (1− p̂)2σ̂
2
−ν0


(p̂)−1 0 0

0 (p̂µ2)
−1 0

0 0 (1− p̂)−1

 (3.A.238)

= ( f̂ (x0))
−1

σ̂
2
+ν0 0 0
0 σ̂

2
+µ
−1
2 ν2 0

0 0 σ̂
2
−ν0

 (3.A.239)

Q̃ Ĩn Q̃ ′n = ( f̂ (x0))
−1
[
1 0 −1

]σ̂
2
+ν0 0 0
0 σ̂

2
+µ
−1
2 ν2 0

0 0 σ̂
2
−ν0


 1

0
−1

 (3.A.240)

= ( f̂ (x0))
−1(σ̂2

++ σ̂
2
−)ν0. (3.A.241)
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In addition,

Q̃nDn(θ̃ n) = ( f̂ (x0))
−1
[
1 0 −1

](p̂)−1 0 0
0 (p̂µ2)

−1 0
0 0 (1− p̂)−1


D1,n(θ̃ n)

D2,n(θ̃ n)

D3,n(θ̃ n)


= ( f̂ (x0))

−1 (p̂)−1D1,n(θ̃ n)− (1− p̂)−1D3,n(θ̃ n)
)
.

Thus,

PC(θ̃ n; ψ) = (nh)
2

f̂ (x0)(σ̂
2
++ σ̂

2
−)ν0

(
p̂)−1D1,n(θ̃ n)− (1− p̂)−1D3,n(θ̃ n)

)2
. (3.A.242)

3.5.4: Stochastic discount factor

Recall that

J̃θ ,T = f̂ (x0)


λ̂ 1 0 0 0
0 λ̂ 1µ2 0 0
0 0 λ̂ 2 0
0 0 0 λ̂ 2µ2

 , ĨT = f̂ (x0)


σ̂

2
1ν0 0 0 0
0 σ̂

2
1ν2 0 0

0 0 σ̂
2
2ν0 0

0 0 0 σ̂
2
2ν2

 (3.A.243)

P̃n =

[
1 0 −1 0
0 1 0 −1

]
, W̃n = Ĩ−1

n (3.A.244)

and Dn(θ 0) = Op((nhn)
−1/2). Observe

(
J̃ ′θ ,n Ĩ−1

θ ,nJ̃θ ,n

)−1
= ( f̂ (x0))

−1


(λ̂ 1)

−2 0 0 0
0 (λ̂ 1µ2)

−2 0 0
0 0 (λ̂ 2)

−2 0
0 0 0 (λ̂ 2µ2)

−2




σ̂
2
1ν0 0 0 0
0 σ̂

2
1ν2 0 0

0 0 σ̂
2
2ν0 0

0 0 0 σ̂
2
2ν2



= ( f̂ (x0))
−1


(λ̂ 1)

−2σ̂
2
1ν0 0 0 0

0 (λ̂ 1)
−2σ̂

2
1µ
−2
2 ν2 0 0

0 0 (λ̂ 2)
−2σ̂

2
2ν0 0

0 0 0 (λ̂ 2)
−2σ̂

2
−µ
−2
2 ν2

 (3.A.245)

Q̃ Ĩn Q̃ ′n = ( f̂ (x0))
−1

[
1 0 −1 0
0 1 0 −1

]
(λ̂ 1)

−2σ̂
2
1ν0 0 0 0

0 (λ̂ 1)
−2σ̂

2
1µ
−2
2 ν2 0 0

0 0 (λ̂ 2)
−2σ̂

2
2ν0 0

0 0 0 (λ̂ 2)
−2σ̂

2
−µ
−2
2 ν2
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1 0
0 1
−1 0
0 −1

 (3.A.246)

= ( f̂ (x0))
−1

[
{(λ̂ 1)

−2σ̂
2
1 +(λ̂ 2)

−2σ̂
2
2}ν0 0

0 {(λ̂ 1)
−2σ̂

2
1 +(λ̂ 2)

−2σ̂
2
−}µ−2

2 ν2

]
(3.A.247)

and thus

[
Q̃ Ĩn Q̃ ′n

]−1
= f̂ (x0)

{
(λ̂ 1)

−2
σ̂

2
1 +(λ̂ 2)

−2
σ̂

2
−

}−1
[

ν
−1
0 0
0 µ2

2ν
−1
2

]
. (3.A.248)

On the other hand, we have

Q̃T DT (θ̃ T ) = ( f̂ (x0))
−1

[
1 0 −1 0

0 1 0 −1

]
(λ̂ 1)

−1 0 0 0

0 (λ̂ 1µ2)
−1 0 0

0 0 (λ̂ 2)
−1 0

0 0 0 (λ̂ 2µ2)
−1




D1,T (θ̃ T )

D2,T (θ̃ T )

D3,T (θ̃ T )

D4,T (θ̃ T )



= ( f̂ (x0))
−1

[
(λ̂ 1)

−1 0 −(λ̂ 2)
−1 0

0 (λ̂ 1µ2)
−1 0 (λ̂ 2µ2)

−1

]
D1,T (θ̃ T )

D2,T (θ̃ T )

D3,T (θ̃ T )

D4,T (θ̃ T )


= ( f̂ (x0))

−1

 (λ̂ 1)
−1D1,T (θ̃ T )− (λ̂ 2)

−1D3,T (θ̃ T )

µ
−1
2

{
(λ̂ 1)

−1D2,T (θ̃ T )− (λ̂ 2)
−1D4,T (θ̃ T )

} . (3.A.249)

Then,

PC(θ̃ T ; ψ) = T hT
1

f̂ (x0)

1

(λ̂ 1)−2σ̂
2
1 +(λ̂ 2)−2σ̂

2
−

[
(λ̂ 1)

−1D1,T (θ̃ T )− (λ̂ 2)
−1D3,T (θ̃ T )

µ2

{
(λ̂ 1)

−1D2,T (θ̃ T )− (λ̂ 2)
−1D4,T (θ̃ T )

}]′
[

ν
−1
0 0
0 µ2

2ν
−1
2

][
(λ̂ 1)

−1D1,T (θ̃ T )− (λ̂ 2)
−1D3,T (θ̃ T )

µ2

{
(λ̂ 1)

−1D2,T (θ̃ T )− (λ̂ 2)
−1D4,T (θ̃ T )

}]

= T hT
1

(λ̂ 1)−2σ̂
2
1 +(λ̂ 2)−2σ̂

2
−
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1

ν0

(
λ̂
−1
1 D1,T (θ̃ T )− λ̂

−1
2 D3,T (θ̃ T )

)2

+
1

ν2

(
λ̂
−1
1 D2,T (θ̃ T )− λ̂

−1
2 D4,T (θ̃ T )

)2
]
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3.B. Proofs

PROOF OF PROPOSITION 3.3.1 Assumption 3.3.3 implies that for any positive constant
δ ∈ (0,1), there exists some positive integer n0 := n0(δ ) which depends on δ such that

θ̃
0
n ∈ V := VD∩

(
∩2

i=1VJ,i
)
∩NP(θ 0) (3.B.1)

with probability at least 1−δ . Fix δ and define

Aδ := {ω ∈ΩJ : θ̃ n (ω) ∈ V , , ∀n≥ n0} . (3.B.2)

Throughout the rest of the proof, we assume ω ∈ Aδ and n≥ n0. We have

‖J̃θ ,n(θ̃
0
n)− Jθ (θ̃

0
n)‖ ≤ sup

θ∈VJ,2

‖J̃θ ,n(θ)− Jθ (θ)‖ ≤CJ,0n−rM , (3.B.3)

and
‖Jθ (θ̃

0
n)− Jθ (θ 0)‖ ≤CJ,θ 0‖θ̃

0
n−θ 0‖, (3.B.4)

by the assumption 3.3.8 and 3.3.9, so that

‖J̃θ ,n(θ̃
0
n)− Jθ (θ 0)‖ ≤CJ,0n−rM +CJ,θ 0‖θ̃

0
n−θ 0‖ . (3.B.5)

by the triangle inequality. It follows from Assumption 3.3.3 that

‖J̃θ ,n(θ̃
0
n)− Jθ (θ 0)‖= Op(n−min(rM ,rθ )) . (3.B.6)

In order to show
‖P(θ̃ 0

n)−P(θ 0)‖= Op(n−rθ ), (3.B.7)

observe by Assumption 3.3.6, 3.3.7 that

Pl(θ̃
0
n) = P(θ 0)+Hl(θ

∗
n)(θ̃ n−θ 0), l = 1, . . . , p1 (3.B.8)
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where θ
∗
n is some point between θ̃ n and θ 0 and thus in NP(θ 0) and thus

‖P(θ̃ 0
n)−P(θ 0)‖ ≤ p1 sup

1≤l≤pl

sup
θ∈NP(θ 0)

‖Hl (θ)‖
∥∥θ̃ n−θ 0

∥∥
≤ p1CP,θ 0

∥∥θ̃ n−θ 0
∥∥ , ∀n≥ n∗P . (3.B.9)

Hence,
‖P(θ̃ 0

n)−P(θ 0)‖Op(n−rθ ) (3.B.10)

again by appealing to Assumption 3.3.3. By combining (3.B.6) and (3.B.7) along with
Assumption 3.3.10,

‖Q̃n−Q(θ 0)‖= Op(n−min(rθ ,rM)) . (3.B.11)

By Assumption 3.3.10, 3.3.15, Q̃n and Ĩn have rank p1 and p so that

rank[Q̃n Ĩn Q̃ ′n] = p1 (3.B.12)

and thus Q̃n Ĩn Q̃ ′n is invertible. Then, by Assumption 3.3.12 and 119,

‖(Q̃n Ĩ−1
n Q̃ ′n)

−1− (Q0 I−1
0 Q ′0)

−1‖= op (1) . (3.B.13)

Next, we are going to show Next, we are going to show

nrθ P(θ 0)n−β (θ̃
0
n−θ 0)

p−→
n→∞

0 . (3.B.14)

Recall
n−β (θ̃

0
n−θ 0) = θ̌ n−θ 0

by definition of θ̌ n. By Assumption 3.3.7, we have the following expansion of ψ(θ̌ n):

ψ(θ̌ n) = ψ(θ 0)+P(θ 0)(θ̌ n−θ 0)+H(θ̌ n−θ 0;θ
∗
n),

H(θ̌ n−θ 0;θ
∗
n) = (H1(θ̌ n−θ 0;θ

∗), . . .Hl(θ̌ n−θ 0;θ
∗), . . .Hp1(θ̌ n−θ 0;θ

∗)) (3.B.15)
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is a p1×1 vector with the l-th element (1≤ l ≤ p1):

Hl(θ̌ n−θ 0;θ
∗) = (θ̌ n−θ 0)

′Hl (θ
∗
n)(θ̌ n−θ 0), l = 1, . . . , p1 (3.B.16)

and θ
∗
n ∈Θ is some value between θ̌ n and θ 0. By Assumption 3.3.17, ψ(θ 0) = 0 so that

nrD P(θ 0)(θ̌ n−θ 0) = ψ(θ̌ n)−nrDH(θ̌ n−θ 0;θ
∗)

and Assumption 3.3.7 combined with Assumption 3.3.3 implies that with probability ap-
proaching to one,

‖H(θ̌ n−θ 0;θ
∗)‖ ≤ p1CP,θ∗‖θ̃

0
n−θ 0‖2 (3.B.17)

by similar argument to (3.B.9). Since ψ(θ̌ n) = Op(n−2rθ ) by Assumption 3.3.3, it follows
from Assumption 3.3.17, 3.3.11 that

‖nrDP(θ 0)(θ̌ n−θ 0)‖ ≤ nrDψ(θ̌ n)+ p1CP,θ∗n
rD‖θ̃ 0

n−θ 0‖2 .

= Op(nrD−2rθ ) = oP(1). (3.B.18)

Now, by Assumption 3.3.4, 3.3.5, we have

nrDQ̃nDn(θ̃
0
n) = nrDQ̃nDn (θ 0)

+nrDQ̃nJθ (θ 0)n−β (θ̃
0
n−θ 0)

+nrDQ̃nBn(θ̃
0
n,θ 0) . (3.B.19)

We are going to show

nrD(Q̃nDn(θ̃
0
n)−Q(θ 0)Dn(θ 0))

p−→
n→∞

0 . (3.B.20)

so that by Slutsky’s theorem

nrDQ̃nDn(θ̃
0
n)

L−→
n→∞

N
[
0, Q(θ 0)I(θ 0)Q(θ 0)

′ ] . (3.B.21)

Observe
Q̃nJθ (θ 0) = P(θ 0)+Op(n−min(rM ,rθ )) (3.B.22)
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by (3.B.11) so that

‖nrDQ̃nJθ (θ 0)n−β (θ̃
0
n−θ 0)‖ ≤ ‖nrDP(θ 0)n−β (θ̃

0
n−θ 0)‖+‖Op(nnrD−min(rM ,rθ )−rθ )‖

= op(1) . (3.B.23)

by (3.B.14) and Assumption 3.3.11. Similarly,

‖nrDQ̃nBn(θ̃
0
n,θ 0)‖ ≤ nrD‖Q̃n‖‖Bn(θ̃

0
n,θ 0)‖= Op(nrD−2rθ ) = op(1) . (3.B.24)

We have shown
nrDQ̃nDn(θ̃

0
n) = nrDQ(θ 0)Dn(θ 0)+oP(1) (3.B.25)

and thus combining with (3.B.13), we have

PC(θ̃
0
n; ψ)= n2rθ Dn(θ 0)

′Q(θ 0)
′ [Q(θ 0)I(θ 0)Q(θ 0)

′]−1 Q(θ 0)Dn(θ 0)+op(1) . (3.B.26)

where
rank[Q(θ 0)I(θ 0)Q(θ 0)

′] = p1 . (3.B.27)

To prove the final claim, note that under Assumption 3.3.4,

‖nrDQ̃nBn(θ̃
0
n,θ 0)‖ ≤ nrD‖Q̃n‖‖Bn(θ̃

0
n,θ 0)‖= Op(nrD−rθ ). (3.B.28)

In addition, under Assumption 3.3.6,

ψ(θ̃
0
n) = ψ(θ 0)+P(θ 0)(θ̃

0
n−θ 0)+Bp(θ̃

0
n,θ 0) (3.B.29)

where
Bp(θ̃

0
n,θ 0) = op(‖θ̃ n−θ 0‖))

so that
‖nrDP(θ 0)(θ̃

0
n−θ 0)‖= op(nrD−rθ ).

PROOF OF LEMMA 3.4.1 By Assumption 3.4.5, 3.4.6, for any positive constant
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δ ∈ (0,1), there exists some positive integer n0 := n0(δ ) which depends on δ such that
(θ̃

0
n, η̂n) ∈U :=UD∩ (∩2

i=1UJ,i), θ̃
0
n ∈NP,θ 0, η̂n ∈ V := VG∩ (∩2

i=1Ug,i(η0)) with prob-
ability at least 1−δ . Fix δ and define

Bδ := {ω ∈ΩD∩ΩG : (θ̃ 0
n, η̂n)(ω) ∈U , θ̃

0
n ∈NP,θ 0, η̂n ∈ V , ∀n≥ n0} . (3.B.1)

Throughout this proof, we assume ω ∈ Bδ and n≥ n0.
In the proof of Proposition 3.3.1, we have already shown that

P(θ̃ 0
n)−P(θ 0) = Op(n−rθ ) (3.B.2)

and
nrD P(θ 0)(θ̃

0
n−θ 0)

p−→
n→∞

0 . (3.B.3)

By similar arguments to the proof of the same proposition, we have

‖Q̃n−Q(θ 0,η0)‖= Op

(
n−min(rθ ,rη ,rM)

)
. (3.B.4)

Furthermore,
‖g̃n−g(η0)‖= Op

(
n−min(rη ,rM)

)
(3.B.5)

and thus by Assumption 3.4.12,

‖g̃n
−1−g(η0)

−1‖= Op

(
n−min(rη ,rM)

)
. (3.B.6)

Then, it follows from Assumption 3.4.2 that

Q̃nDn(θ̃
0
n, η̂n) = Q(θ 0,η0)Dn(θ 0,η0)

+P(θ 0)n−β θ (θ̃
0
n−θ 0)

+Q(θ 0,η0)Jη(θ 0,η0)n
−β η (η̂n−η0)

+Op(n−min(rθ ,rη ,rM)−min(rD,rθ ,rη ))

= Q(θ 0,η0)Dn(θ 0,η0)

+Q(θ 0,η0)Jη(θ 0,η0)n
−β η (η̂n−η0)+op(n−rD) . (3.B.7)
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where the first equality follows from (3.B.4) and Assumption 3.4.5, 3.4.6 and the second
equality is due to (3.B.3) and Assumption 3.4.14. Similarly,

Q̃nJ̃η ,ng̃−1
n Gn(η̂n) = Q(θ 0,η0)Jη(θ 0η0)g(η0)

−1Gn(η0)

+Q(θ 0,η0)Jη(θ 0η0)n
−β η (η̂n−η0)

+Op(n−min(rθ ,rη ,rM)−min(rG,rθ ,rη )) (3.B.8)

Then,

nrDQ̃nDn(θ̃
0
n, η̂n)−nrDQ̃nJ̃η ,ng̃−1

n Gn(η̂n) (3.B.9)

=



nrDQ(θ 0,η0)Dn(θ 0,η0) if rD = rG

−nrDQ(θ 0,η0)Jη(θ 0,η0)g(η0)
−1Gn(η0)+op(1)

nrDQ(θ 0,η0)Jη(θ 0,η0)g(η0)
−1Gn(η0)+op(1) if rD < rG

−nrDQ(θ 0,η0)Jη(θ 0,η0)g(η0)
−1Gn(η0) if rD > rG

(3.B.10)

by Assumption 3.4.14.

PROOF OF PROPOSITION 3.4.2 Asymptotic normality follows immediately from Propo-
sition 3.4.1 and Assumption 3.4.15. To see

rank[Σ∗(θ 0,η0)] = p1, rD = rG (3.B.1)

note that Q(θ 0,η0) is a p1 × m matrix with rank p1and
rank[[Im×m,−Jη(θ 0,η0)g(η0)

−1]] ≥ rank[Im×m] = m so that by Sylvester’s rank in-
equality,

rank[T (θ 0,η0)]≥ p1 +m−m = p1 . (3.B.2)

PROOF OF PROPOSITION 3.4.4 Suppose either rD ≤ rG, or rD > rG and q≥ m. Then,

nmin(rθ ,rη )s∗n(θ̃
0
n, η̂n)

L−→
n→∞

N [0, Λ(θ 0,η0)] (3.B.1)
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where
rank[Λ(θ 0,η0)] = p1 . (3.B.2)

Furthermore,
Λ̂n

p−→
n→∞

Λ(θ 0,η0) (3.B.3)

and rank[Λ̂n] = p1, hence

EC(θ̃
0
n, η̂n;Λ̂n ψ) = n2min(rθ ,rη ) s∗n(θ̃

0
n, η̂n)

′
Λ
∗(θ 0,η0)

−1s∗n(θ̃
0
n, η̂n)

L−→
n→∞

X 2(p1) .

(3.B.4)
Suppose rD > rG and q < m. Assumption 119 combined with 154 implies that

(Λ̂n)
− p−→

n→∞
(Λ(θ 0,η0))

− (3.B.5)

by Stewart (1969). Then,

EC(θ̃
0
n, η̂n;Λ̂n ψ) = n2rG sG,n(θ 0,η0)

′(Λ(θ 0,η0))
−sG,n(θ 0,η0)+oP(1) (3.B.6)

where

sG,n(θ 0,η0) = Q(θ 0,η0)Jη(θ 0,η0)g(η0)
−1Gn(η0)

L−→
n→∞

N [0, Λ(θ 0,η0)] (3.B.7)

so that it follows from Theorem 1 of Moore and Spruill (1975),

EC(θ̃
0
n, η̂n;Λ̂n ψ)

L−→
n→∞

X 2(p∗) (3.B.8)

where
p∗ = rank[Λ(θ 0,η0)] = rank[Π(θ 0,η0)] . (3.B.9)
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Dynamics of distributions: earnings,
income and wealth

4.1. Introduction

Economic agents differ in their preferences, initial endowments and skills and such indi-
vidual heterogeneity results in distributions of socioeconomic choices and outcomes which
evolve over time. The distributions of relevant microeconomic statistics, such as labor earn-
ings, investment, and expenditures, can be well-approximated using data collected from
large scale surveys conducted by public and academic institutions, and by corporations.
These surveys are often periodically updated and thus present an avenue to gain insight
from transition dynamics of the distributions of microeconomic variables.

Comparisons of earnings (as well as income and wealth) distributions are made along
several lines of inquiry. One is the question of stochastic dominance (Anderson (1996),
Davidson and Duclos (2000, 2013), Barrett and Donald (2003)). First-order stochastic
dominance implies that one distribution provides larger earnings for the same population
quantile, either as a result of larger aggregate earning or of a more equitable distribution.
Comparison of distributions over time can be made in terms of achieving stochastic domi-
nance. Another important characteristic is inequality in the distribution (usually considered
as deviation from the uniform) since inequality has a significant impact on social cohesion
and stability. The changes in inequality over time impact well-being in a society; recently
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documented rise in inequality is considered to be a contributing factor to social unrest
and political polarization (Alesina and Perotti (1996)). Another important aspect of the
changes in the income distribution is the dynamic of the lower quantiles of the distribu-
tion (e.g. quintiles) that are often related to poverty and how they cross the poverty line.
(Sen (1976), Foster, Greer and Thorbecke (1984), Atkinson (1987), Davidson and Duc-
los (2000), Diouf and Dufour (2005)). Often applied transform into aggregate statistics or
measures captures only some limited aspect of the data distribution. For example, dynam-
ics of the average household income do not provide any information on income dispersion.
Evolution of values of inequality measures, such as the Gini coefficient, provides evidence
on changes in rise in inequality but not on what types of distributional shifts contribute to
the observed trend of inequality. On the other hand, investigating directly the dependence
structure of processes of probability distributions, as random functional elements, provides
a fuller picture.

In the literature, dynamics of the income distribution have been studied extensively.
Thomas Piketty and his coauthors study evolution of income inequality through certain
characteristics of income distributions, such as the top 10% income share (Piketty and Saez
(2003, 2014), Atkinson, Piketty and Saez (2011), Alvaredo, Chancel, Piketty, Saez and
Zucman (2017)). But, they are primarily interested in the upper tails of the income distri-
bution and thus only focus on particular features of the distribution. Some authors use panel
data on individual income and study key features of income dynamics, such as income per-
sistency, through structural parameters of their individual income process model (Kremer
and Chen (2002), Bourguignon, Ferreira and Lustig (2004), Nirei and Souma (2007), Al-
tonji, Smith Jr and Vidangos (2013), Guvenen, Karahan, Ozkan and Song (2021)). The
analysis relies on availability of individual income history and thus is more suitable for
studying relatively short-run dynamics. The limitation of this analysis is the parametric
specification of individual processes which may deviate from the true data generating pro-
cess.

To derive general distributional dynamics, the rich framework and tools of functional
data analysis are applied. In functional time series, stochastic processes are typically treated
as elements in vector spaces of functions, such as Banach spaces, in particular, Hilbert
spaces (Bosq (2000)). The properties of separable Hilbert spaces and operators in Hilbert
spaces are well suited to extend the conceptual base of studies of time series from Euclidean
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spaces to infinite-dimensional spaces (Bosq (2000), Beare, Seo and Seo (2017) Beare and
Seo (2020)). However, random functions of interest may not easily fit into the format of lin-
ear processes on Hilbert spaces, in which case application of powerful functional analysis
tools, such as the Beveridge-Nelson decomposition, functional principal component analy-
sis, and functional regression, is not warranted for classes of functions, such as distribution
or density functions, as those classes are not closed under addition and scalar multiplication
in a L2 space. The existing work on stochastic processes of probability distributions deals
with this challenge involving densities in various ways. Petersen and Müller (2016) con-
sider log hazard and log quantile transformation of densities to map them into appropriate
Hilbert spaces. Egozcue, Díaz-Barrero and Pawlowsky-Glahn (2006) construct a Hilbert
space of bounded probability densities with a compact support from the Aitchison inner
product. For more detailed reviews, see Petersen and Müller (2019).

A different approach was recently applied by Chang, Kim and Park (2016), who consid-
ered a fully nonparametric model for densities of earnings and examined the corresponding
stochastic process of demeaned densities in the Hilbert space with the aim of discovering
whether the process exhibits persistence. If the earnings distribution process were mean
reverting, and characterized by short-term dynamic features only, then extracting these fea-
tures (even possibly approximating via a parametric model) would have been sufficient to
fully characterize earnings dynamics. If, however, the process exhibits persistence which
was assumed to be characterized by a unit root subspace spanned by some eigenfunctions,
this would signal that the evolution of the process is driven by the stochastic persistent
features. Those features are reflected in the dimension of the eigenspace and the eigen-
functions that span this space.

The fundamental limitation of much of the existing work is that only absolutely con-
tinuous distributions are considered. In practice, mass points are commonly observed in
data distributions and have significant economic interpretations. Thus, focusing only on
the continuous part of the distribution by trimming the mass points out may result in sig-
nificant loss of information. In the context of income distribution, Saez (2010), among
others, confirms the existence of mass points in the US tax return data, possibly related to
the Earned Income Tax Credit.Furthermore, to embed the classes of transformed functions
into a separable Hilbert space bounded support of the class of distributions was assumed.

The contribution of this paper is three-fold. Firstly, we extend the existing analysis
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of earnings dynamics to consider the full set of earnings data, including mass points at
zero and at the top-coded values; as well we allow for other possible mass points and
possible singularity in the distribution and take into account the dynamics of the support
of the distribution without assuming that the supports are uniformly bounded. We examine
several stylized examples to illustrate the impact of the support of the distribution and of the
possible mass points. We demonstrate that trimming the data could result in misinterpreting
the stochastic properties of the process of distributions. Our second contribution is a new
transformation into the L2[0,1] space that accounts for mass points and the varying support
of the distribution. We demonstrate the implication that the results will have on the density
function (if it exists) to be able to compare with Chang et al. (2016). Third, we provide
a direct comparison with the empirical results by Chang et al. (2016) by using the same
data set (extended in time). Our test results indicate (similarly to Chang et al. (2016))
that the dimension of the unit root subspace is 2, although with the full data set we get
much stronger statistical support for this conclusion. Where the support of the data set
was constrained by the top-coded values, a constant that was shifted up once in 1998, the
first eigenfunction appeared to be mostly related to this institutional feature. When we
adjusted the range of the distribution to be more flexible (reflecting the dynamics of the top
average 10%), the behavior of the eigenfunctions changed quite dramatically. This leads
us to conclude that the dynamics of the upper quantiles is what drives the persistence of the
whole distribution of earnings.

The new transformation approach we propose embeds the probability distributions into
L2[0,1] as linear elements. To this end, we consider transformation of stochastic probability
measures into scaled measures, which we call TZ transformation. We derive conditions
under which TZ transformation is invertible. Then, various methods of functional data
analysis, such as functional principal component analysis and functional regression, may
be applied to the transformation of the original stochastic sequence to investigate their
dependence structure.

Our approach does not require panel data, i.e. measurements of the same individuals
over time but functional time series data on the income distribution in a given population.
Such data are typically available from tax revenue agencies. Admittedly, this only provides
a framework to investigate the dynamics of the aggregate distributions and does not attempt
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to characterize how measurements of each unit in a population evolve over time1. However,
understanding the dependence structures of the aggregate distributions still may lead to
policy relevant implications on, for example, inequality and poverty measurements.

The rest of the paper is organized as follows: Section 4.2 presents the framework and
main results concerning our transformation approach. In Section 4.3, we discuss construc-
tion of stochastic processes of TZ transformed functions and persistency of such processes
in terms of the Beveridge-Nelson decomposition. Section 4.4 discusses inference for TZ
transformed measures in the time series context and asymptotic properties of the persis-
tency test by Chang et al. (2016) in our setup. Monte Carlo simulations are presented in
Section 4.5. In our empirical application, persistency of earning dynamics in the U.S. is
investigated in Section 4.6. Section 4.7 concludes.

4.2. TZ transformation

4.2.1. Notation

Denote by (Ω ,F ,P) the underlying probability space, where Ω is the sample space, F

is a σ -algebra of subsets of Ω , and P is a probability measure on the measurable space
(Ω ,F ). The scalar product and norm on a L2 space are denoted by 〈·, ·〉 and ‖ · ‖, respec-
tively. R̄ := R∪{−∞,∞}, R+ := {x ∈ R : x≥ 0} ,R++ := {x ∈ : x > 0} correspond to the
extended, nonnegative, and positive real lines, respectively. With some abuse of notation
we shall represent functional elements of L2 as functions f (x) even though they may not
be pointwise defined (are equivalence classes of functions); we do this to better track the
possible variable transformations.

1Note that when one considers a stochastic process of probability distributions, different concepts of de-
pendence arise. Suppose that for each period t, we observe a measurement xi,t of each unit i in the population
[0,1]. Let Ft be the distribution of xi,t at period t. Then, there are (1) dependence between the distributions
at different times t and t ′ ( t 6= t ′), i.e. Ft and Ft ′ , (2) (cross-sectional) dependence between measurements of
the same unit i at different times, i.e. xi,t and xi,t ′ (3) (intertemporal) dependence between measurements of
different units i and i′ ( t 6= t ′) at the same time t, i.e. xi,t and xi′,t . In particular, note that the first type of
dependence may not provide information regarding (2) cross-sectional dependence of each unit.
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4.2.2. Overview

Probability distributions are bounded below by 0 and above by 1 and thus do not live in a
linear but convex space. This feature of distribution functions deters application of func-
tional analysis techniques based on representation of linear elements as weighted sums of
orthogonal functions. Note that density functions, when they exist, also face an analogous
challenge (Petersen and Müller (2016), Beare (2017)).

We propose a representation of probability distributions transformed into elements in
L2[0,1]; this is done via a transformation that we call a TZ transformation. The aim of this
transformation is to account for a number of distributional features. We mainly focus on
the features of distributions of earnings, income and wealth, but similar characteristics can
be displayed by other distributions of interest. One feature that we emphasize is the support
of the distribution. The changing support may be neglected when the distribution is repre-
sented over population shares (as e.g. income) or may be misrepresented through truncation
or censoring. Yet the support and its dynamics provides important information regarding
the dynamics of top incomes, it is important for establishing stochastic dominance and ob-
taining better information on inequality. Theoretically, the support of the distribution and
changes in the support affects the changes in the Wasserstein distance between the distribu-
tions at different time points. In the distributions that we consider the support is typically
bounded (stochastically) from above and its lower bound is typically zero; then only one
parameter characterizes the support. Another feature that we consider is mass points in the
distribution. Typically there is a mass point at zero in the distributions considered, but other
mass points are possible. There is also some discussion about scalability of e.g. income
and wealth distributions that implies a fractal or other singular structure entailing deviation
from absolute continuity. The possible mass points and singularities mean that we can-
not employ transformations that involve differentiation such as demeaned density Chang
et al. (2016) or log quantile density and log hazard transformations Petersen and Müller
(2016). Those approaches are only applicable to absolutely continuous distributions while
ours accommodates a larger class of distribution involving mass points and singularity.

The transformation makes it possible to study properties of a time series of probability
distributions through their representations in L2[0,1]. In particular, we apply functional
principal component analysis to stationary sequences of TZ transformed measures to study
the stochastic functional processes. Nonstationarity of stochastic processes of probability
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densities is investigated by the unit-roots test based on the rank of the unit-root subspace
in Chang et al. (2016). We show that the restrictions that produce absolutely continuous
distributions such as trimming away of mass points or censoring may misrepresent the dy-
namics of the process and, in particular, miss possible non-stationarity. Here, we consider a
TZ-transformed process of distributions through the dynamics of processes in L2[0,1]. The
TZ transformation is invertible under general conditions and thus any operation applied to
the transformed measure can be evaluated in terms of the original probability distribution.

Subsection 4.2.3 introduces a few stylized examples and provides an intuition on TZ
transformation.

4.2.3. Intuition for the transformation

We start with a discussion of how to build up a transformation of a distribution function
into L2[0,1] that will take account of the features that characterize distributions of earnings,
income and wealth, such as support, and possible mass points and singularity. The class
of functions of interest include univariate distribution functions and possibly linear com-
binations of such functions. Since distribution functions are nondecreasing, the functions
of interest are functions of bounded variation. Denote the class of univariate functions of
bounded variation by Θ . For a nondecreasing bounded function on R define its support:

Definition 4.2.1 Let M be a nondecreasing function on R. The support supp(M) of M is

defined as

supp(M) = [LM,UM] (4.2.1)

where

LM = sup{x : M (x)≤ infM} , : UF = inf{x : M (x)≥ supM} . (4.2.2)

Thus, for example, the typical income distribution F at some point in time will have
support on the interval [0,u] where u will be the top income for that time. It could also
be the distribution of top-coded data on incomes, where u would represent the censoring
value.

Since a function of bounded variation can always be represented as a difference of two
non-decreasing functions, its support is the union of the non-intersecting parts of supports
of the non-decreasing functions that define it.
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We shall illustrate the properties and the intuition behind the proposed transformation
by the stylized example of the typical baseline distribution, the uniform.

Example 4.2.1 The distribution F is uniform on [0,u] , denoted by U [0,u] :

F (x) =


x
u if x ∈ [0,u]
0 if x < 0;
1 if x≥ u.

(4.2.3)

The uniform distribution can be considered as a baseline distribution for income, wealth
and earnings distributions. Distributions with differing supports differ, in that a distribution
with u1 stochastically dominates a uniform with u2 < u1. As we introduce the features of
the proposed TZ transform, we discuss how Example 4.2.1 is impacted.

The idea of the TZ transformation is to construct a map that will transform the distribu-
tion function defined on its support into an element of L2 [0,1] . Most of the transformations
to represent distributions (densities) via elements in a separable Hilbert space, such as L2

on a bounded support, assume that the support of the distribution is within given bounds,
an assumption that we relax by transforming the support into [0,1]. For F (x) with support
[0,u], the simple linear transformation:

Λ (x) = x/u≡ y. (4.2.4)

defines the Z transform as
Z(F) = F̃ (y) ∈ L2 [0,1] (4.2.5)

by
F̃ (y) = F (uy) . (4.2.6)

The image under such a transformation will not distinguish between different uniform
distributions, F (x) = U [0,u] as any such distribution will be mapped into U [0,1] . To
restore the distinction which may be entirely due to the different support, we further
define for some γ > 0 (with usually γ depending on F ; γ = γ (F)) the transformation
T̃ : L2 [0,1]→ L2 [0,1] by multiplying with the value of γ :

T̃ (F̃) = W̃ (y) = γF̃ (y) . (4.2.7)
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We shall later consider a γ distinct from u but to simplify the example here, let γ = u

for the function F. For the Example 4.2.1, the transformation provides distinct images.
For this case, there is an immediate interpretation in terms of Wasserstein distance (Vaser-
stein (1969), Givens and Shortt (1984)). For two uniform distributions, F1 = U [0,u1] and
F2 =U [0,u2] with u1 < u2, the Wasserstein distance between the two is u2−u1

2 . The trans-
formation gives W̃i (y) = uiI [0,1] , i = 1,2, and the norm

∥∥W̃2 (y)−W̃1 (y)
∥∥ is proportional

to the Wasserstein distance.

The L2 [0,1] function obtained by transforming a distribution function as above is non-
negative and monotone. To define a more general transformation T , apply a functional shift
with some (typically monotonically nondecreasing) function λ (y) ∈ L2 [0,1] .

Thus, define a transformation

T (F̃) =W ∈ L2 [0,1] (4.2.8)

by
W (y) = W̃ (y)−λ (y) . (4.2.9)

Then, the mapping T ◦Z transforms the distribution F into an element of L2 [0,1] , that could
take negative as well as positive values and need not be monotone, all depending on how
the function λ (y) is specified. Thus, the Z transform serves to represent the distribution on
[0,u] by mapping it to one with support in [0,1] . The T transform scales the distribution by
the value of some functional and possibly applies functional shifts, providing non-positive
and non-monotonic transforms.

4.2.4. Transformations for the process of distribution functions.

Consider a stochastic sequence of distribution functions {Ft (x)}t∈N with (random) support:
supp(Ft) = [0,ut ] ; and a functional γ t =Γ (Ft) . For any sequence of distribution functions,
almost every point (except possibly a countable set) is a point of continuity for all the
functions in the sequence. Then, for a random sequence and a point of continuity xc, the
sequence Ft(xc) is a random variable (between 0 and 1); expectation EFt (xc) always exists;
define EFt (x) as a càdlàg (right-continuous and bounded on the left) function that takes
values EFt (xc) at every xc. For T ≥ 1, denote the average 1

T ΣFt (x) by ÊT [Ft(x)].
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Transformation 0. . The basic transform of the distribution function into a non-negative
non-decreasing function W 0 (y) in L2 [0,1] is given by

W 0(y) = γF(uy) (4.2.10)

Remark 4.2.1 We consider here the Z transform that is governed by the upper bound of
the support of the distribution Ft , however, more generally ut could be a variable that differs
from this upper bound.

Transformation 1. .

W̃ 1
t (y) = Ft (uty)−EFt (uty) ;W 1

t (y) = γ tW̃
1

t (y) . (4.2.11)

This demeans the Z transformed distribution, then applies the T transform.

In finite sample we replace the expectation function by the empirical expectation and
Ŵ 1(y) = γ t

[
Ft (yut)− ÊT (Ft (yut))

]
. For the rest of this section we do not distinguish be-

tween E[·] and ÊT [·] and ignore the possible "hat" in notation. This transformation is related
to the demeaned density transformation applied in Chang et al. (2016).

Expectation of W 1
t (y) may differ from zero.

Transformation 2. .

W 2
t (y) = γ tFt (uty)−Eγ tFt (uty) . (4.2.12)

Here, the Transform 0. is applied, followed by demeaning.

The next lemmas provide some characterizations and relations between the different
transformations.

Lemma 4.2.1 The transformations are related by

W 2
t (y) = W 0

t (y)−EW 0
t (y) ; (4.2.13)

W 1
t (y) = W 2

t (y)+
(
ÊT [γ tFt (uty)]− γ t ÊT [Ft (uty)]

)
. (4.2.14)
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When γ t is a constant, W 1
t (y) =W 2

t (y) .

Next, we note the expectations.

Lemma 4.2.2 Assume that Eγ t exists. Then,

(a) For W 1
t (y) expectation EW 1

t (y) = Eγ tFt (uty))−Eγ tEFt (uty) = Cov(γ t ,Ft (uty)) ;
the expectation is zero if γ t ,Ft (uty) are uncorrelated.

(b) The expectation of W 2
t (y) is zero: EW 2

t (y) = 0.

To establish the boundary values for transforms of absolutely continuous distributions
recall that in the absolutely continuous case Ft (0) = 0; while always F (ut) = 1, when ut is
the upper bound of support of Ft

Lemma 4.2.3 [Boundary values for transforms of absolutely continuous distributions]

Suppose that Ft (x) is absolutely continuous for every t and ut is the upper bound of
support of Ft Then each of the transforms is differentiable in y and satisfies:

(a) For the basic transform (Transform 0.), W 0 (0) = 0; W 0 (1) = γ.

(b) For Transform 1., W 1
t (0) =W 1

t (0) = 0 and W 1
t (1) =W 1

t (1) = 0.

(c) For Transform 2., W 2
t (0) = 0, W 2

t (1) = γ t−Eγ t .

We see that the functionals of F that define the properties of the transform are

α = F (0) , mass at zero; (4.2.15)

γ = G(F) , the scaling functional; (4.2.16)

and u, that is usually defined as the upper bound of the support, however, it could also be
some othe quantile, or point in R, e.g. such that F (u) = 1, or F (u) = β . In many examples
γ = u. Given a sequence

{
W+

t
}

of non-negative non-decreasing cadlag functions on [0,1]
define γ t =W+

t (1) ; α t = γ
−1
t W+

t (0) , then obtain

Ft (uty) =W+
t (1)−1W+

t (y) . (4.2.17)
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Then W+
t (y) coincides with Transform 0. of Ft : W 0

t (y) = W+
t (y) . If ut is known, then

Ft (x) is uniquely defined as

Ft (x) =W+
t (1)−1W+

t
(
u−1

t x
)
. (4.2.18)

This would hold when ut = γ t and is given by W+
t (1) . Thus, under some definitions of the

underlying functionals, there is one-to one correspondence between the process of distri-
butions and the process

{
W+

t (y)
}

in L2 [0,1] that represents Transform 0., the demeaned
process

{
W+

t (y)
}

provides the process of Transform 2. for {Ft} .
This invertibility of the TZ transform implies that we can study the dynamics of the pro-

cess of distributions {Ft (x)} through the dynamics of processes of functions with bounded
variation in L2 [0,1] . If the distributions are in the class of absolutely continuous distribu-
tions, then mass at zero is excluded.

4.2.5. Process of transformed distribution functions and of densities
in L2 [0,1] .

When the distribution functions are absolutely continuous, the transforms in L2 [0,1] are
differentiable functions. Here we are interested in the cases when the derivatives can be
defined as elements in L2 [0,1] as this will provide a direct link to the investigation in Chang
et al. (2016). Denote a dual of a linear topological space of linear continuous functionals
on V , by V ∗. The rigged Hilbert space introduced in Gel’fand and Vilenkin (1964) in
the special case of interest here for differentiable L2 functions [Hunter and Nachtergaele
(2001)]

H1 ([0,1])⊂ L2 [0,1]⊂ H1 ([0,1])∗ (4.2.19)

gives H1 ([0,1]) as the subspace of L2 [0,1] of differentiable functions with square-
integrable derivatives. The dual space H1 ([0,1])∗ extends differentiation to all of L2 [0,1] ,
by providing weak derivatives for elements of L2 [0,1]. As shown in Hunter and Nachter-
gaele (2001) for the differentiable elements of L2 [0,1] represented by differentiable func-
tions in H1 ([0,1]), a week derivative coincides with the ordinary pointwise derivative2 .

2Suppose that G ∈ L2[0,1] and consider any ψ ∈ H1([0,1]), then ψ ′ ∈ L2[0,1] by continuation of
H1([0,1]). The functional 〈G,ψ ′〉 is well-defined. Then, there exists δ ∈ H1([0,1])∗ that is fully defined

166



Chapter 4 TZ transformation

Proposition 4.2.4 Suppose that the function W (y) ∈ H1 ([0,1])⊂ L2 [0,1] is differentiable

with derivative w(y)∈ L2 [0,1] . Suppose that for some projection operator Π : L2→ L2 the

image of the function w(y) is wΠ (y) ∈ L2 [0,1] and the image of W (y) is ΠW (y) . Then as

elements in L2 [0,1] the derivative of the projection, (ΠW (y))′ = Π (w(y)) , the projection

of the derivative.

This result implies that generally for a process of derivatives (e.g. demeaned densities)
in L2 [0,1] that can be viewed as derivatives of functions in H1 ([0,1]) , a decomposition by
projections onto subspaces is the same for the process of the differentiable functions and
their derivatives, e.g. demeaned distribution functions and corresponding demeaned density
functions. Thus, consider, for example the (demeaned) square integrable density function
w(y) (as in Chang et al. (2016)) on a bounded support. Since the support for all such func-
tions considered there is uniformly bounded, it can be assumed without loss of generality
that it is [0,1]; the upper bound of supports is 1 for all Ft (x)) thus w ∈ L2 [0,1] and the
corresponding function to which w integrates is W (y)∈H1 ([0,1])⊂ L2 [0,1]. W (y) then is
the demeaned probability distribution function on the support [0,1]. The implication of the
Proposition 4.2.4 is that if a projection Π on a subspace is established for the demeaned
density process in L2 [0,1], then the corresponding projection of the demeaned distribution
functions in H1 ([0,1]) ⊂ L2 [0,1] provides the same projection for the demeaned density.
Then, the dimension of the projected space for the demeaned absolutely continuous dis-
tribution function and for its demeaned density are the same and the spaces are spanned
by the same functions. Thus our transformations provide a natural generalization of the
approach in Chang et al. (2016).

However, when the distribution is not absolutely continuous, the usual approaches to
examine its dynamics through that of densities can provide misleading results. If the dis-
tribution has mass points at the boundary of support, e.g. at zero or at the top end, to force
absolute continuity on this distribution by trimming down to some low quantile and up
to some quantile or top code point is often applied. In fact, trimming can be applied to
absolutely continuous distributions as well as to ones with singularities and mass points.

by
〈δ ,ψ〉=−

〈
G,ψ ′

〉
for any ψ ∈ H1([0,1]) . This δ is called a weak derivative of G. If G were a differentiable function; G ∈
H1([0,1]), then δ = G′.
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The following example demonstrates that trimming can result in a misrepresentation of the
dynamics of the process of distributions.

Example 4.2.2 The distribution F is a mixture of U [0,γ] and a mass point at κ̄γ with
κ̄ ≥ 1.

F (x) =


(1−α) x

γ
if x ∈ [0,γ]

0 if x < 0;
(1−α) if γ ≤ x < κ̄γ;

1 if κ̄γ ≤ x.

(4.2.20)

Define the stochastic process {Ft(x)} by assuming that α and γ are constant over t, but{
k̄t
}

represents a random process on [1,∞] . By trimming a top α percent and rescaling,
the uniform distribution U [0,γ] is obtained. By ignoring the top part of the distribution one
would claim stationarity when in fact it may not hold.

In this example the distribution is singular (mass point), but the impact of trimming
will be the same for an absolutely continuous distribution that is a mixture of two distinct
distributions, one up to γ, and a different one with support over x ≥ γ . Applying the TZ
transform to the trimmed distribution would also provide a series of constant functions.
Only by taking into account the whole distribution one can evaluate the true dynamics.

4.3. Features of the stochastic process of TZ transformed
distributions in L2[0,1]

Section 4.2 introduced TZ transformations,which yield a representation of a probability
distribution as an element of L2[0,1]. In this section, we study more formally the fea-
tures of stochastic processes of transformed distribution functions. First, we show that TZ
transformation preserves stationarity when it is applied to a stochastic sequence and thus
(non)stationarity of the original sequence of probability measures can be examined through
the corresponding sequence of TZ-transformed measures in L2[0,1]. Then following Chang
et al. (2016), we consider the Beveridge-Nelson decomposition and characterize the per-
sistency of a functional process of distributions in terms of the dimension of the unit-root
subspace for the transformed process.
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4.3.1. Stochastic sequences in L2[0,1] and stationarity of the transform

A L2[0,1]-valued random element is defined to be a measurable mapping from (Ω ,F )

to (L2[0,1],BL2[0,1]) where BL2[0,1] is the Borel σ -algebra of L2[0,1] (recall that Borel
σ−algebra is spanned by all open sets of the separable normed space). As in Bosq (2000)„
define a discrete time stochastic process as a sequence of such measurable mappings in-
dexed by t, where the index set could be finite: {t} = {1, ..,T} , or infinite {t} = N, or Z

with N - the set of natural numbers and Z of all integers.

Let {Ft} be a stochastic sequence of distributions, or more generally, uniformly
bounded functions in the metric space of bounded functions on R and γ t ,ut be some con-
tinuous functionals of Ft , {λ t} be a stochastic sequence of non-decreasing functions in
L2[0,1]. Then, since any continuous mapping is measurable, the mapping Ft (x)→Wt (y)

defined by

Wt (y) = γ tFt(uty)−λ t(y) (4.3.21)

is measurable and {Wt} is a stochastic sequence in L2[0,1].

A stochastic sequence {Ft} is said to be strictly stationary if for any m ∈ N+,h ∈ Z,

(Ft1 ,Ft2, . . . ,Ftm)∼ (Ft1+h,Ft2+h, . . . ,Ftm+h). (4.3.22)

Then, the following lemma provides a sufficient condition for the the transformed process
{Wt} to be stationary.

Lemma 4.3.1 (a) For the sequence {Wt} of transformed distribution functions in (4.3.21)

to be strictly stationary it is sufficient that the sequence {Ft ,λ t} be strictly stationary. (b)

If the sequence {Wt} of transformed distribution functions is given by Transformation 1.
or 2., then {Ft ,λ t} forms a strictly stationary sequence.

Lemma 4.3.1 indicates that stationarity of {Ft} can be examined through {Wt}. Station-
arity of {Ft} implies stationarity of the {λ t} sequence with λ t as it appears in Transforma-
tion 1. and 2.. Thus, for those transforms, strict stationarity of the process of distributions
provides strict stationarity of the transforms.

Weak stationarity of a process is defined via moment functionals and operators.
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The mean functional EX of a L2[0,1]-valued random variable X is an element of
L2[0,1] such that

〈EX , f 〉= E〈X , f 〉 , ∀ f ∈ L2[0,1]. (4.3.23)

Note that if E〈X , f 〉 exists for any f ∈ L2[0,1], EX exists by the Riesz representation theo-
rem and is represented by an element in L2[0,1] (as it coincides with its dual).

A mean stationary process {Wt} is such that φ t = EWt∈L2[0,1] exists and is constant
for any t : ct = const.

Consider the Hilbert space L2
P[0,1] := L2

[0,1](Ω ,F ,P) of L2[0,1]-valued random vari-
ables such that their second moment exists and define the inner product (·, ·) by

(X ,Y ) = E[〈X ,Y 〉], ∀X ,Y ∈ L2
P[0,1]. (4.3.24)

The following result derives a condition such that the TZ transform 1. and 2. {W m
t },

m = 1,2 belongs to L2
P[0,1].

Lemma 4.3.2 Let {W m
t }, m = 1,2 be a TZ transform of probability measures Ft

If Eγ2
t exists then W m

t is a sequence in L2
P[0,1].

The results follows from showing that for Wt the second moment E‖Wt‖2 = E <Wt ,Wt >

exists. Note that E‖Ft‖ ,E‖Ft‖2 exists always. If E[γ2
t ] exists, then E[γ tFt ] exists.

A second-order stationary process {Wt} ⊂ L2
P[0,1] is such that in addition to mean

stationarity E <Wt ,Ws >= ρ(|t− s|}. Note that second-order stationarity of {Ft ,λ t} does
not generally imply second-order stationarity of {Wt} as opposed to what is shown in
Lemma 4.3.1 for strict stationarity.

4.3.2. Nonstationary process of the TZ transform and the Beveridge-
Nelson decomposition

Here, we follow the general methodology that was developed in Chang et al. (2016) for the
functional principal component analysis. In that paper, it was applied to a stochastic process
of demeaned densities while we pursue the application to the TZ transformed distribution
functions, generically denoted here Wt , in L2([0,1]).
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The space L2([0,1]) is decomposed into two subspaces HN and HS:

L2([0,1]) = HN⊕HS. (4.3.25)

The spaces HS and HN correspond to the stationarity and nonstationary subspaces, respec-
tively, defined as follows: for any nonzero v ∈ H, the coordinate process,

〈v,Wt〉

has a unit root for all v ∈ HN , while it is stationary for all v ∈ HS. Assume HN is M-
dimensional where 0 ≤ M < ∞. Denote by ΠN and ΠS the projections on HN and HS,
respectively.

Assumption 4.3.1 The process {Wt} allows for the Beveridge-Nelson decomposition:

Wt =Wt−1 +ut (4.3.26)

where

ut = Φ(L)ε t =
∞

∑
s=0

φ sε t−s. (4.3.27)

satisfying the following: (i) ∑
∞
s=1 s‖φ s‖ < ∞, (ii) ΠNφ(1) is of rank M and ΠSφ(1) = 0,

(iii) {ε t} is an i.i.d. sequence with mean zero and positive-definite variance Σ and satisfies

E‖ε t‖p < ∞ for some p≥ 4.

Then, by Chang et al. (2016), the decomposition holds for the process {Wt} :

Wt = WN
t +WS

t (4.3.28)

where

W N
t := ΠNWt = ΠNΦ(1)

t

∑
i=1

ε t−ΠN ūt , (4.3.29)

W S
t := ΠSWt =−ΠSūt , (4.3.30)
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and
ūt =

∞

∑
i=0

Φ̄iε t−i and Φ̄i =
∞

∑
j=i+1

Φ j. (4.3.31)

This representation provides the basis for functional principal component analysis in
Chang et al. (2016), where the eigenvalues of the sample variance operator

QT =
T

∑
t=1

Wt⊗Wt (4.3.32)

were shown in the stationary subspace to converge to the corresponding population eigen-
values (as in Bosq (2000)), while in the non-stationary subspace the convergence is in
distribution to some functionals of Brownian motion (Theorem 3.3 of Bosq (2000)). The
eigenvectors provide the convergence to the spaces spanned by them. A definitive charac-
teristic of the process is the dimension M of the non-stationary subspace.

As in Chang et al. (2016) we consider the dimension M of the unit-root subspace in a
test of the null hypothesis

H0(M) : dim(HN) = M (4.3.33)

against
H1(M) : dim(HN)≤M−1 (4.3.34)

assuming the knowledge of some upper bound on the dimension given by an integer M̄. The
test statistic is an estimated M-th generalized eigenvalue of the first M coordinate processes
of Wt given by the long run variance, scaled by the sample size. It converges to a nuisance
parameter free distribution under the null hypothesis H0(M).

We next establish validity of the test of the dimension of the unit root subspace based
on the finite-sample estimated TZ transformations.

4.4. Inference

4.4.1. Estimation of TZ transformed measures

Typically, a stochastic functional sequence is not directly observable and needs to be es-
timated. In particular, for a time series {Ft} of probability distributions, the data is rep-
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resented by random real-valued observations drawn from a realization {Ft}T
t=1 where T is

the length of the time series. In the context of income distribution, household survey or
tax return data provide observations {xi,t}nt

i=1 of labor earnings drawn from the population
distribution Ft at a given time t.

More specifically, the data is generated in two stages of random sampling where (1)
{Ft}T

t=1 is drawn from some meta-distribution and then (2) Ft , t = 1, . . . ,T generates a
sample {xi,t}nt

i=1 of size nt . It is assumed that the second stage is independent of the first
stage conditional on {Ft}T

t=1. Thus, we may consider the probability space (Ω ,G ,P) to
be a product space (Ω1×Ω2,G1×G2,P1⊗P2) where {Ft}T

t=1 and {{xi,t}nt
i=1}T

t=1 are de-
fined on (Ω1,G1,P1) and (Ω2,G2,P2), respectively. This setup is known as the two-stage
sampled scheme and has been employed in the literature of learning of distribution (Póc-
zos, Singh, Rinaldo and Wasserman (2013), Oliva, Póczos and Schneider (2013), Szabó,
Sriperumbudur, Póczos and Gretton (2016)) as well as in Petersen and Müller (2016).

We assume that each random Ft has a bounded support [0,ut ], t = 1, . . . ,T and consider
initially the TZ transform of the form

W 0
t (y) = γ tFt (uty) , y ∈ [0,1] (4.4.35)

where γ t ,ut are some functionals, e.g. quantiles of the distribution Ft (x) :

γ t = inf{x : Ft (x)≤ αγ}, ut = inf{x : Ft (x)≤ αu}. (4.4.36)

We have previously discussed the examples where αγ = αu = 1. The estimator Ŵ 0
t is de-

fined as
Ŵ 0

t (y) = γ̂ t F̂t (ûty) , y ∈ [0,1] (4.4.37)

where F̂t is the empirical distribution given the sample {xi,t}nt
i=1 generated from the distri-

bution of Ft , and ût , γ̂ t are the corresponding sample quantiles:

γ̂ t = inf{x : F̂t (x)≤ αγ}, ût = inf{x : F̂t (x)≤ αu}. (4.4.38)

when γ t ,ut are defined as (4.4.36) . Thus, when αγ = αu = 1, we consider the sample
maximum: γ̂ = ût = x(n),t , where x(k) stands for a k-th order statistic.

Since, in contrast to the transformations in Chang et al. (2016) or Petersen and Müller
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(2016), we allow the possibly nonstationary dynamics for the upper quantiles of the distri-
bution, we do not require a uniform bound on the quantiles and uniformly bounded support
for the distribution.

We next address the question of consistency of Ŵ 0
t (y) as an estimator of the trans-

formation W 0
t (y). In Chang et al. (2016), their Assumption 4.1 asserted uniform (over all

t = 1, ...,T ) convergence in L2 norm for the density estimators. Here, we provide condi-
tions on the relative growth of γ t with T and that of T and nt that guarantees such conver-
gence for the TZ transforms. We do not require absolute continuity, but restrict the class
of distributions we consider to enable us to provide a sufficient condition for the uniform
convergence.

Definition 4.4.1 Let 0 < α ≤ 1, 0 <C < ∞. F (α,C,Nd) is a class of univariate probability

distributions such that the following holds:

1. any distribution F ∈F (α,C,Nd) has support [0,uF ] with 0 < uF < ∞;

2. any distribution F ∈ F (α,C,Nd) has a finite number of points of discontinuity not

exceeding some Nd < ∞;

3. for F ∈F (α,C,Nd) at any point of continuity x0 there exists some ε > 0 and C < ∞

such that x0− ε < x < x0 + ε implies

|F(x)−F(x0)| ≤C |x− x0|α . (4.4.39)

Assumption 4.4.1 The stochastic sequence of distribution functions {Ft}T
t=1 is such that

Ft ∈F (α,C,Nd) for any t.

The boundedness of support for each of the distributions could be relaxed at the expense
of a more complex interplay between tail convergence and the transformation to a function
supported on [0,1] ; in light of the envisaged applications to distributions of income and
wealth it seems reasonable to assume an upper bound on the maximal possible value at
each point in time and thus we do not pursue the generalizations here. Any probability
distribution has at most a countable number of points of discontinuity and the condition
2 further limits the set of discontinuity points to be finite. This condition could also be
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relaxed. The restriction of Hölder-type conditions at points of continuity could accommo-
date absolutely continuous distributions with possibly locally unbounded densities as well
as singular distributions such as fractals.

Example 4.4.1 The following are examples of probability distributions to illustrate the
parts 1-3 of the definition of the class F (α,C,Nd).

1. Let {FD,t} be a sequence of discrete distribution with at most Nd mass points. Then,
{FD,t} ⊂F (α,C,Nd) with arbitrary α ∈ [0,1] and C > 0.

2. Consider a sequence {Ut} of uniform distributions where the support of Ut is [0,ut ],

with ut > u lower bounded for some u > 0, t ∈ Z. Then, {Ut} ⊂ F (α,C,Nd) with

Nd = 0,α = 1,C =
1
u

.

3. If {FP,t} were a sequence of Pareto distributions with the scale parameter 1 and
the shape parameter β t , t ∈ Z where β t ≥ β for some β > 0. Then, Nd = 0,α =

min(β ,1),C = 1 but clearly the bounded support assumption does not hold. On the
other hand, suppose a sequence of censored Pareto distributions {F̄P,t} where F̄P,t is
a censored distribution of FP,t to the interval [1,ut ] for some possibly random scalar
ut ≥ 1, i.e.

F̄P,t(x) =

FP,t(x) x < ut ,

1 x≥ ut .
(4.4.40)

Then, {F̄P,t} ⊂F (α,C,Nd) with Nd = 1,α = min(β ,1),C = 1.

We impose restrictions on the growth rate of sup1≤t≤T γ t as well as the convergence rates
for estimated {γ̂ t} and {ût}.

Assumption 4.4.2 Set α to be a positive constant in Assumption 4.4.1, n(T ) =

min1≤t≤T{nt} and

sup
1≤t≤T

γ t = Op(λ T ), sup
1≤t≤T

|γ t− γ̂ t |= Op(ξ T ), sup
1≤t≤T

(ut− ût)
α = Op(κT ) (4.4.41)

with λ T ,ξ T ,κT ,T ∈ N deterministic sequences of nonnegative values where as as T → ∞,

n(T )→ ∞ and
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ξ T = op (1) ;
T√
n(T )

λ T = op (1) ;λ T κT = op (1) (4.4.42)

Assumption 4.4.2 requires that the cross-sectional sample sizes nt , t = 1, . . . ,T grow at
a much faster rate relative to T , in particular, it is necessary that n(T ) grows at a faster rate
than T 2. The smoothness α of distributions also plays a role: the smaller value of α entails
that n(T ) needs to grow at a faster rate as deficient smoothness of distributions at points of
continuity leads to difficulties in estimation.

Additionally, we assume cross-sectional independence of the sets {xi,t}nt
i=1 of samples

for each t = 1, . . . .T .

Assumption 4.4.3 For each t = 1, . . . ,T, {xi,t}nt
i=1 is independent and identically dis-

tributed according to Ft .

Note that any intertemporal dependence between any pair (xi,t ,xi′,t ′), i = 1, . . .nt , i′ =

1, . . . ,nt ′ for t 6= t ′ is permitted and thus panel data is accommodated.

The Theorem below establishes uniform (in L2[0,1]) consistency of Ŵ 0
t under the gen-

eral specification of W 0
t .

Theorem 4.4.1 (Uniform L2 convergence of {Ŵ 0
t }T

t=1 under general specification of γ t)
Consider the TZ transform of the form (4.4.35) where {γ t ,ut} and their estimators {γ̂ t , ût}
satisfy Assumption 4.4.2. Suppose further that Assumption 4.4.1-4.4.3 hold. Then,

sup
1≤t≤T

‖Ŵ 0
t −W 0

t ‖= op(1),
1
T

T

∑
t=1
‖Ŵ 0

t −W 0
t ‖= op(1) (4.4.43)

holds.

Consistency of Ŵ 0
t is crucial as shown in Chang et al. (2016) to establish the validity of

the statistic for the test for the dimension of the nonstationary subspace.

4.4.2. Asymptotic properties of the eigenvalue-based persistency test

We can now address the main questions regarding the dynamic process of the (TZ trans-
formed) distributions, namely, how to establish possible persistence, the dimension of the
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nonstationary subspace, and what are the drivers of this persistence. We apply the method-
ology developed in Chang et al. (2016) for an arbitrary stochastic process of functions in
L2 over some bounded support to the process of estimated TZ transforms 2. (we omit the
superscript 2 from now on):

W̃t = Ŵ 0
t −

1
T

T

∑
t=1

Ŵ 0
t , (4.4.44)

The test of the dimension for the HN subspace starts with assuming a maximal possible
dimension M̄ and then proceeds with hypotheses

H0(M) : dim(HN) = M (4.4.45)

versus
H1(M) : dim(HN)≤M−1 (4.4.46)

for M = M̄,M̄−1, ..,1 in descending order. If the null hypothesis is rejected for some M

in this set, then the corresponding dimension of the space HN is M−1. When M−1 = 0,
there is no persistence in the process.

The test statistic utilizes the spectral decomposition of the sample variance operator

QT =
T

∑
t=1

W̃t⊗W̃t . (4.4.47)

Define (λ i(QT ),vi(QT )), : i = 1, . . .T to be the pairs of eigenvalues and eigenvectors of QT

where λ 1(QT )≥ ·· · ≥ λ T (QT ). As discussed in Chang et al. (2016), the limit distribution
of the test statistic T−2λ m (QT ) is not nuisance parameter free; in that paper an asymp-
totically nuisance parameter free test statistic is proposed; then the critical values can be
obtained via simulation. We next describe their construction for the test statistic applied
here to ŴT . First consider an arbitrary set of vectors {vi, i = 1, ...M} that span HN ; the
specific choice of the vectors does not matter. For the vector

z̃t =
((

v1,Ŵt
)
, . . . ,(vM,Ŵt)

)′ (4.4.48)

and ZT = (z1, ...,zM)′, set QT
M as QT

M = Z′T ZT .

177



Chapter 4 Inference

Then define the long-run variance estimator

Ω̃
M
T = ∑

|i|≤l
ω̄ l(i)Γ̃T (i) (4.4.49)

where ω̄ l is a weight function and Γ̃T (i) = T−1
∑

T
t=1 ∆ z̃t∆ z̃′t−i.

The generalized eigenvalues for Ω̃ M
T are computed from a consistent estimator Q̃T

M of
QT

M reweighted with respect to the consistent estimate Ω̃ M
T of ΩM. Denote the estimated

eigenvalues λ i(Q̃M
T ,Ω̃ M

T ).

The test statistic is defined by

τ
M
T = T−2

λ M(Q̃M
T ,Ω̃ M

T ) (4.4.50)

where λ M(Q̃M
T ,Ω̃ M

T ) is the generalized eigenvalue of Q̃M
T with respect to Ω̃ M

T . The null
distribution of the limiting eigenvealues and eigenvectors is generated by eigenvalues and
eigenvectors of

Q∗M =
∫ 1

0
B∗M (r)B∗M (r)′ dr, (4.4.51)

with B∗M (r) = Ω
−1/2
M BM (r) representing the standardized Brownian motion distribution

(with original covariance ΩM). The consistency result for the test statistic is the same as in
Chang et al. (2016), with the difference that rather than making the high level assumption
on consistency of the functional estimators, we provided here in Theorem 4.4.1 a primitive
sufficient condition to restrict the distribution class and an explicit condition on the dynam-
ics of some of the functionals associated with the distributions that ensured consistency of
our TZ transforms.

Theorem 4.4.2 [Asymptotic distribution and consistency of τM
T ]. If {Wt} := {W 0

t −EW 0
t }

permits the Beveridge-Nelson decomposition in (4.3.28) with H0(M) holding, and the con-

ditions (4.4.43) in Theorem 4.4.1 hold, there is convergence

τ
M
T

d→ λ
∗
M (4.4.52)

178



Chapter 4 Monte Carlo simulation

where λ
∗
M is the smallest eigenvalue of

Q∗M =
∫ 1

0
B∗M (r)B∗M (r)′ dr (4.4.53)

and B∗M(r) is the M-dimensional standard Brownian motion. Furthermore,

τ
M
T

p→ 0 (4.4.54)

under H1(M).

In the following section, we evaluate the finite sample performance of the test in application
to TZ transformed distributions with mass points.

4.5. Monte Carlo simulation

In this section we explore the potential of the test by Chang et al. (2016) applied here to TZ
transformed distributions to uncover persistence and the dimension of the unit root space.
We examine performance of the test through Monte Carlo experiments. The distributions
are generated as mixtures of an absolutely continuous distribution and a mass. Two types of
mass are examined here, one is a fixed mass at a varying point, the other is a mass at zero
of varying weight. Each example has some relevance to earnings distributions. Indeed,
the first is a stylized example of a discontinuity in the distribution that could be due to a
labor supply response to an anticipated income means tested transfer (see the explanation
in Zinde-Walsh (2008): case b of Example 1). The second type is a mass at zero that is
present in distributions of earnings and wealth. As noted before, restricting attention to only
absolutely continuous distributions would ignore the impact of such mass. The purpose of
the simulation experiment is to verify that indeed the method proposed here will provide
evidence on the persistence that may sometimes be entirely due to these types of mass.

In the simulations the processes for empirical distributions of different sizes are con-
sidered and for purpose of comparison, the test is also performed assuming the stochastic
process for the true distributions.
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4.5.1. Data generating processes

The two classes of data generating processes, referred to as DGP-1 and DGP-2 are de-
scribed below. For each class, we consider stationary and nonstationary specifications and
two different choices of a class of distributions for the continuous part of the process (uni-
form and truncated normal distributions). Denote by U [a,b] the uniform distribution with
support [a,b] where a,b ∈ R (a≤ b). Denote by N[a,b](µ,σ

2) the truncation of the normal
distribution with mean µ and variance σ2 (µ ∈R,σ2 ∈R++) to [a,b] obtained by renormal-
izing the density on this interval. Let Hx0(x) : R→ {0,1} be the Heaveside step function
at x = x0 defined as

Hx0(y) =

0 if x < x0

1 if x≥ x0.
(4.5.55)

DGP-1: Mixitures of stationary continuous distributions and time-varying masses

The first type of process DGP-1, represents a generalization of the process considered in
Example 4.2.1.

Let {Gt}∞
t=1 be a stationary process of absolutely continuous distributions Gt on

bounded supports. We assume {Gt}∞
t=1 is either (i) a process of uniform distributions

{U [0,qt ]} where the univariate process {qt} follows

qt = .5+ .5qt−1 + vt , vt
i.i.d.∼ N (0, : (.2)2) (4.5.56)

or (ii) a process of truncated normal distributions {N[0,qt ](µ t ,σ
2
t )} where the multivariate

process {µ t ,σ t ,ut} follows

µ t = µ̄ +ρµ µ t−1 + vµ,t

logσ t = σ̄ +ρσ logσ t−1 + vσ ,t (4.5.57)

qt = q.99(µ t ,σ t)

where

(vµ,t ,vσ ,t)
i.i.d.∼ N

([
0
0

]
,

[
τ2

µ 0
0 τ2

σ

])
. (4.5.58)
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and q.99(µ,σ) is the 99 percentile of the normal distribution with mean µ and variance σ2.
Here, we specify the set of parameters as

(µ̄,ρµ , σ̄ ,ρσ ,τµ ,τσ ) = (.5, .5,0, .5, .2, .1). (4.5.59)

Define a unit root univariate process {ut}∞
t=1 specified as follows:

ut = ū+ut−1 + ε t , ε t
i.i.d.∼ N (0,(.2)2). (4.5.60)

The sequence {Ft} is constructed by defining each element Ft as a mixture of Gt and a mass
at ut with weight α ∈ [0,1]:

Ft = (1−α)Gt +αHut . (4.5.61)

It is clear that {Ft}T
t=1 is nonstationary if and only if α > 0. We are interested in whether a

slight deviation from stationarity (small but positive α) can be detected by the persistency
test. Thus, we consider such nonstationary specification where α is set to .01 as well as
stationary specification α = 0.

DGP-2: Mixitures of continuous distributions and masses at the fixed left boundary
x = 0 with time-varying weights

For the second class of process DGP-2, we consider a sequence of mixtures of continuous
distributions as in DGP-1 and mass points. Here the location of the mass is fixed at 0, the
mixture weight α t at period t is time-variant. The process of Gt is specified as a process
of absolutely continuous distributions which may or may not be stationary, accordingly
referred to as DGP-2-S for stationary and DGP-2-N for non-stationary. Each element Ft of
the process {Ft}∞

t=1 of interest is specified as

Ft = (1−α t)Gt +α tH0. (4.5.62)

where Gt is an absolutely continuous distribution on support [0,ut ]. We assume that α t

depends on ut deterministically:
α t = Φχ2(q)(ut) (4.5.63)
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where Φχ2(q) is the probability distribution of the chi-square distribution with degree of
freedom q. Then, {α}∞

t=1 is a sequence of [0,1]-valued variables.

As in DGP-1, we let {Gt}∞
t=1 be either a sequence of uniform or truncated normal distri-

butions. When {Gt}∞
t=1 is set to be the former: {U [0,ut ]}, {ut}∞

t=1 follows an autoregressive
mode of order 1:

ut = ū+ρuut−1 + ε t ; (4.5.64)

ε t
i.i.d.∼ N (0,(.01)2) (4.5.65)

where the model parameters (ū,ρu,q) take the following values:

(ū,ρu,q) =

(1 , .5,6) (DGP-2-S)

(2 ·10−4,1,6). (DGP-2-N).

When {Gt}∞
t=1 is specified a sequence of truncated normal distributions {N[0,ut ](µ t ,σ

2
t )}

following (4.5.57)-(4.5.58), the model parameters are specified as follows:

(µ̄,ρµ , σ̄ ,ρσ ,τµ ,τσ ,q) =

(.5 , .5, 0, .2, , 2, .01,6) (DGP-2-S)

(10−4,1,−1, .2, .01, .01,6). (DGP-2-N)

4.5.2. Implementation

We consider both the case where the true distribution functions in the process {Ft}T
t=1 are

assumed observable, and the case when the distributions are estimated from the observed
data generated in finite sample. For the latter, we generate a set of i.i.d. observations
{xi,t}n

i=1 of size n ∈ {100,1000} from Ft , for t = 1, . . . ,T . The case where the process is
directly observed is referred to as n = ∞. The length T of the process {Ft}T

t=1 ranges from
100, 250, to 1000. The number of Monte Carlo replication is set to be 500.

To form a sequence {Wt}T
t=1 of TZ transformed measures from {Ft}T

t=1, we apply
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Transformation 2. to each Ft , t = 1, . . . ,T

Wt(y) = γ tFt(γ tut)−
1
T

T

∑
t=1

γ tFt(γ tut) (4.5.66)

where we specify γ t = ut . An estimator Ŵt of Wt given {xi,t}n
i=1 is constructed as in Section

4.4.

We also consider the persistency test based on the (demeaned) density process by Chang
et al. (2016). Note, however, that the density of Ft , t = 1, . . . ,T does not exist except for the
stationary specification of DGP-1. Thus, we construct the process { f}T

t=1 by truncating the
mass point of each Ft , t = 1, . . . ,T and defining ft as the truncated absolutely continuous
distribution. Then, we define the (demeaned) density process { f ∗t }T

t=1 by

f ∗t = ft−
1
T

T

∑
t=1

ft t = 1, . . . ,T. (4.5.67)

For each ft , t = 1, . . . ,T , we construct a kernel density estimator with the Gaussian kernel.
The bandwidth for the kernel estimator is selected by least squares cross validation.

To represent the TZ transformed process {Wt}T
t=1 in L2[0,1], we employ a basis of

1,024 B-spline functions of order 4 on [0,1]. For the density process { f ∗t }T
t=1, we also

employ a basis of 1,024 B-spline functions of order 4 but on [0,C f ] where C f is a constant
such that the support of f ∗t is included in [0,C f ] for any t = 1, . . . ,T . For both processes,
the roughness penalty of smoothing by the basis is chosen by minimizing the generalized
cross validation score. A B-spline basis of order p is a set of functions that are polynomial
of order p−1 between knots and (p−2) times differentiable. See De Boor (1978) for more
details and numerical properties of this basis .

4.5.3. Results

Several tables report the results of applying the test of dimension of the nonstationary sub-
space. The empirical rejection probability for H0(M) (M = 1,2) for DGP-1 is presented
in Table 4.1 (M = 1) and Table 4.2 (M = 2). We see from the upper part of the tables that
correspond to the stationary cases that the test has strong power in rejecting the null hy-
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pothesis when the process is stationary (α = 0) for both the TZ transformed and demeaned
density processes.

The lower subtables of 4.1-4.2 present the case for α = .01, i.e. when there is a slight
deviation from stationarity. The test based on the TZ transformed process does not reject
H0(1) as long as the cross sectional sample size is not too small (n = 1000,∞). For a small
size, e.g. n = 100 in each period, the cross-sectional sample may not include any obser-
vation at the mass point, the probability of this happening is 36.6%. In such cases the
resulting estimated TZ transforms only reflect the stationary part of the process. However,
once the cross-sectional sample size gets to be moderately large (n = 1000), the test be-
haves quite similarly to the case with no estimation uncertainty (n = ∞). On the other hand,
H0(2) is always rejected. This suggest that the TZ transform based test correctly finds the
dimension of the unit-root space to be 1. As expected, the density based test always rejects
H0(1) ( and H0(2)) as only the stationarry part of the process is incorporated.

For the stationarity cases for DGP-2-S in the upper parts of Tables 4.3-4.4, similarly to
the case of DGP-1, the null is strongly rejected. For the nonstationarity case (DGP-2-N),
the TZ transform based test is more likely to not reject H0(1) than the density based test.
The results for H0(2) are more subtle. When the process is estimated (n = 100,1000), both
tests reject H0(2) with probability close to 1. This is due to the fact that the variation of
both processes explained by the second eigenfunction of the unit-root subspace is so small
that it is not distinguishable when the processes are observed with noise. This suggests
that the cross-sectional sample size n must grow much faster than T , as was indicated in
Section 4.4. On the other hand, when there is no uncertainty (n = ∞), the TZ transform
based test appears to offer stronger support of the existence of the second dimension of
the unit-root subspace. To investigate further, it is important to note that the dimension of
the the unit root subspace can be easily interpretable for the TZ transformed process while
it is not always the case for the density process. We show in the appendix that the first
eigenfunction of the TZ transformed process is associated with the nonstationary dynamics
of the support {γ t} and the second eigenfunction captures the interaction between the mass
points {α t} and {γ t}. The density process does not incorporate the dynamics of {α t} and
thus that of the size of the mass at zero. This likely explains the better detection of the
second dimension of the test for TZ transformed distribution. Furthermore, while the first
eigenfunction of the density process has a similar interpretation as for the TZ transformed
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process, it is not clear what the second eigenfunction captures in the absence of {α t}. In
particular, when the TZ transformed process is constructed from the uniform distribution,
it can be shown that the dimension of the the unit root subspace is one (Appendix). For
that case, the dynamics of both density and TZ transformed processes are each uniquely
determined by the univariate process {γ t}. The dimension of the unit root subspace for
the TZ transformed process coincides with that of the underlying process {γ t} that drives
nonstationary and thus is more interpretable.

These results show that the TZ transformed based test performs well in detecting non-
stationarity characterized by the varying support or the dynamics of the mass points. Thus
the test based on the TZ transform offers advantages over density-based approaches or any
method which ignores mass points or requires truncation. The dimension of the unit-root
subspace could be more interpretable for the the TZ transform, when driven by the dynam-
ics of support and mass points.
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4.6. Empirical application: Intertemporal dynamics of
the cross-sectional distributions of earnings

4.6.1. Premise

This section applies the transformation approach to examine persistency an intertemporal
dynamics of the distributions of individual weekly earnings in the U.S. based on the Current
Population Study dataset. As in the Monte Carlo simulations in Section 4.5, we employ a
basis of 1,024 B-spline functions of order 4 on [0,1].

4.6.2. Data description

We consider the population to consist of the labor force, the employed and those in invol-
untary unemployment, as the population in each period. Then, the population distribution
F∗t at period t is defined as a mixture of a mass at x = 0 and the distribution F(EMP)

t of
earnings by the employed with a mixture weight being the unemployment rate UEMPt :

F∗t = UEMPt +(1−UEMPt)F(EMP)
t . (4.6.68)

However, the data is censored by a top-coded value ut for each t and thus the data observa-
tion Ft is given by

Ft = UEMPt +(1−UEMPt)F(EMP,tc)
t . (4.6.69)

where

F(EMP,tc)
t (x) =

F(EMP)
t (x) 0≤ x < ut

1 x≥ ut .
(4.6.70)

The dataset contains cross sectional observations of employment status and weekly earn-
ings at a monthly frequency from January 1994 to July 2022, which corresponds to T = 342
periods. The values of weekly earnings are not present for the unemployed and those
who were employed but chose not to disclose their earnings. The sample size nt at period
t = 1, . . . ,T ranges from 45,447 to 74,425. For each t = 1, . . . ,T , we construct an estimator
ÛEMPt of the unemployment ratioUEMPt by dividing the number of the unemployed by
nt . We apply the assumption that the data are missing at random, and thus we drop obser-
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vations with missing values and compute the empirical distribution F̂(EMP,tc)
t of F(EMP,tc)

t .
The number n∗t of observations used to compute F̂(EMP,tc)

t ranges from 9,693 to 15,826 for
t = 1, . . . ,T .

Then, the estimate F̂t of the data distribution Ft is given by

F̂t = ÛEMPt +
(

1− ÛEMPt

)
F̂(EMP,tc)

t , t = 1, . . . ,T. (4.6.71)

Let ût be an estimator of ut defined as

ût = inf
{

x : F̂(EMP,tc)
t (x) = 1

}
. (4.6.72)

For each t, we consider the TZ transform Wt (Transformation 2):

Wt = γ tFt (uty)−
1
T

T

∑
s=1

γsFs (usy) , y ∈ [0,1] (4.6.73)

where the choice of γ t and its estimator γ̂ t is discussed below in Section 4.6.3. Then, given
{F̂t , ût , γ̂ t}T

t=1, the estimator Ŵt of Wt is given by

Ŵt = γ̂ t F̂t (ûty)−
1
T

T

∑
s=1

γ̂sF̂s (ûsy) , y ∈ [0,1], t = 1, . . . ,342. (4.6.74)

We consider three specifications of γ t and the persistency test in Section 4.4.2 is performed
for each specification.

4.6.3. Choices of γ t under top-coding

Weekly earnings are top-coded at $1,923 until 1997 and at $2,885 from 1998 onwards. We
discuss possible choices of the scale parameter γ t in the presence of such top coding. The
first possible choice γ

(tc)
t of γ t is specified as the upper bound ut of the data distribution Ft ,

i.e.

γ
(tc)
t = ut (4.6.75)
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Then, letting t* be the period which corresponds to December 1997, we have

γ
(tc)
t =

1,923 , t ≤ t∗

2,885 , t > t∗.
(4.6.76)

A natural estimator of γ
(tc)
t is given by the empirical counterpart ût as defined in (4.6.72).

However, the sequence {γ (tc)
t }T

t=1 provides little information on how the support of
the underlying distribution F∗t evolves over time. As an alternative measure of the scale,
we may use information on high quantiles of the data distribution F(EMP,tc)

t . The 100th
percentile is not available in the top coded data set Figure 4.1 shows the trajectories of
percentiles of the empirical distributions. Except for the 100th percentile, any of the shown
higher percentiles of the data distribution are not subject to top-coding and thus they are
also percentiles of unobserved F(EMP)

t . Thus, the dynamics of such percentiles may be
more informative for learning the dynamics of {F∗t }T

t=1 In particular, we employ the 95th
percentile to define

γ
(95)
t = min

{
x : F(EMP,tc)

t (x)≥ .95
}
. (4.6.77)

Then, as long as γ
(95)
t < ut , we have

γ
(95)
t = min

{
x : F(EMP)

t (x)≥ .95
}
. (4.6.78)

In the sample, γ
(95)
t may be estimated from the empirical distribution F̂(EMP,tc)

t .

Lastly, we employ information about the income distributions obtained from an exter-
nal source. Piketty and Saez (2003) provides the table of top percentiles of annual labor
income and average income of high income groups in the U.S. based on tax return data
from 1913 to 1998. More recent data (up to 2018) are available in one of the authors’ web-
site (https://eml.berkeley.edu/saez/). Such data are not subject to censoring and
provide information on the upper tail of the income distribution that is not present in the
household survey used here as the main dataset. We convert the average annual earnings
of the top groups (ranging from top 10% to .5%) from 1994 to 2018 into weekly values by
dividing by 52 weeks. The time series plotted in Figure 4.2 appear to have similar upward
trends as in Figure 4.1. We employ the weekly average earnings of the top 10% as a scale.
Since such value is observed annually: define the scale γ

(PS)
t as follows: if t corresponds to
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l-th month of year m, then γ
(PS)
t corresponds to the converted weekly average value of the

the top 10% earnings in year m for any l = 1, . . . ,12. Since the data is available up to 2018,
we consider the time series up to December, 2018 (the number of periods being 288) when
γ t is specified as γ

(PS)
t .

4.6.4. Results

The persistency test described in Section 4.4.2 is applied to the estimated sequences
of transformed distributions with three different specifications of scale parameter
γ t ∈ {γ

(tc)
t ,γ (95)

t ,γ
(PS)
t }. In Table 4.5, the p-values for H0(M) : HN = M, M = 1, . . . ,4

are reported. For all specifications, the null hypothesis is not rejected and the estimated
dimension of the unit root subspace is 2 at a 10% significance level. While the p-value for
M = 3 under γ t = γ

(PS)
t is not significant at a 5% level, the third eigenfunction associated

with the unit root subspace explains only .5% of the total variation of the process (the first
two eigenfunctions contribute to almost all the rest). Thus, even if the true dimension is
indeed 3, the contribution of the third eigenfunction is negligible.

Chang et al. (2016) also report the unit root subspace for the demeaned density process
to be 2 by using the same dataset (which is here extended in time).

The first two eigenfunctions and principal components associated with the unit root
subspace are presented in Figure 4.4(a). For each specification of γ t , the first two eigen-
functions (ϕ1,ϕ2), obtained from functional principal component analysis described in Ap-
pendix 4.A, span the unit root subspace HN . Then, the principal components {ξ 1,t}T

t=1and
{ξ 2,t}T

t=1 associated with HN are defined as the coordinate processes of {Ŵt} with respect
to ϕ j, j = 1,2:

ξ j =
〈

Ŵt ,ϕ j

〉
, j = 1,2 (4.6.79)

for t = 1, . . . ,T ,

According to Figure 4.4(a), the first eigenfunction dominates over the top 65% (ap-
proximately) of the distribution while the second eigenfunction dominates the bottom 35%
for all specifications of γ t . The large majority of variation of the process is explained by
the first eigenfunction (91.3% for γ

(tc)
t , 97.5% for γ

(95)
t , 93.0% for γ

(PS)
t ) while the rest

is mostly captured by the second eigenfunction. To interpret this in terms of the original
sequence {Ft} , note that for each point y ∈ [0,1] in the support of the TZ transform Wt(y),
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there exists some quantile qt(y) ∈ [0,1] such that qt(y) = Ft(uty). Then, for y = .35, qt(y)

ranges from .567 to .899. This indicates that the variation of the transformed process is
driven by the dynamics of the upper tail of the earning distribution.

The trajectories of the principal components associated with the unit root subspace
in Figure 4.4(b) show the main driver of persistency of the process each specification of
γ t captures. For γ t = γ

(tc)
t , the first principal component sees a large jump at the period

when the top-coded value changes and otherwise is relatively flat. This shows persistency
of the process is largely due to the change in the top-coded value, which is an artifact
of the data rather than a fundamental characteristic of the underlying process. The first
principal component for the density process in Chang et al. (2016) (, referred to as the first
nonstationary coordinate process in their Fig 1) shows a similar trajectory driven by the top-
coded value. While Chang et al. (2016) do not incorporate a mass point at the top-coded
value, an increase in its value affects the structure of the data by expanding the support of
reported earnings. This shifts the upper tail of the distribution to the right, which leads to a
large increase in the principal component associated with the upper half of the distribution.

On the other hand, for γ t = γ
(95)
t , the first component shows a clear upward trend. Thus,

persistency is driven by the upward shift of the top of the distribution captured by γ
(95)
t ,

t = 1, . . . ,T . For γ t = γ
(PS)
t , the corresponding process also shows an overall upward trend.

We note that the second principal component has a slightly downward slope for all cases
and thus the bottom part of the distribution also shows some level of persistency while its
contribution to the variation of the process is limited.

We conclude that by incorporating the changing support through specification of γ t ,
the principal component of the TZ transformed process manifests the driver of persistency
of the underlying income process. Otherwise, one may attribute observed persistency to
institutional factors in the data representation.
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Table 4.5. p-values for the persistency test

γ
(tc)
t γ

(95)
t γ

(PS)
t

M = 1 .343 .988 .607
M = 2 .812 .915 .536
M = 3 .007 .033 .057
M = 4 .000 .005 .006
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Figure 4.1. Time series of percentiles of the top-coded empirical distributions sets
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Figure 4.2. Average weekly income of top percentile groups in the U.S. according to tax
return data
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4.7. Conclusion

We have introduced a transformation approach for stochastic processes of probability dis-
tributions which allows to incorporate important features of dynamics of economics vari-
ables, such as the presence of mass points and varying support. Statistical properties, such
as unit roots, of a process of distributions are investigated via its representation in L2[0,1].
We have also discussed connections between derivatives of transformed measures and de-
meaned densities considered in Chang et al. (2016). This establishes our approachs as a
generalization of that methodology applied to demeaned density functions. In our empir-
ical application, we confirmed persistency of earning dynamics in the U.S., reported in
Chang et al. (2016) and found stronger statistical evidence when varying (expanding) sup-
port of the process is taken into account. We show that the dynamics of the support, on top
percentiles of that distribution is the main persistent feature.

4.A. Functional principal component analysis

Let {Zt} be a square-integrable weakly stationary sequence of TZ-transformed measures
on L2([0,1]).

Define the covariance operator

CZ( f ) = E[〈Zt , f 〉Zt ], f ∈ L2([0,1]) (4.A.80)

which is a bounded linear operator from L2([0,1]) to L2([0,1]). Note one can also express

CZ( f ) =
∫

KZ(·,y) f (y)dy, f ∈ L2([0,1]) (4.A.81)

where
KZ(y1,y2) = E[Zt(y1)Zt(y2)]. (4.A.82)

Since L2([0,1]) is separable, CW is a Hilbert-Schmidt operator3 and thus admits the decom-

3Let {ξ j} j∈N be any orthonormal basis of a Hilbert space H with norm ‖ · ‖H . A linear operator
F : H →H is Hilbert-Schmidt if

∑
i∈N

‖Fξ i‖2
H < ∞.
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position for any an orthonormal basis {ξ j} j∈N of L2([0,1]):

CZ( f ) =
∞

∑
j=1

λ j

〈
f ,ξ j

〉
ξ j (4.A.83)

where {λ j} j∈N is a sequence of positive values such that

∞

∑
j=1

λ j = E‖Zt‖2 < ∞. (4.A.84)

Similarly,

KZ(y1,y2) =
∞

∑
j=1

λ jξ j(y1)ξ j(y2). (4.A.85)

By the Karhunen–Loeve theorem (Bosq (2000) Theorem 1.5, p.25), Wt admits a represen-
tation as a linear combination of {ξ j} j∈N:

Zt =
∞

∑
j=1

β t, jξ j(y). (4.A.86)

where β t, j =
〈

Zt ,ξ j

〉
and

E[β t, j] = 0, ∀ j ∈ N, (4.A.87)

E[β t, jβ t,l] =

λ j , j = l

0 , j 6= l
. (4.A.88)

Functional principal component analysis obtains eigenfunctions ξ j, j ∈ N of CZ , i.e. or-
thonormal basis functions such that their associated eigenvalues are nonzero, in an iterative
manner:

ξ k = argmax
Vk

Var(〈Zt ,ξ 〉) (4.A.89)

200



Chapter 4 Dimension of the unit root subspace in DGP2-N

where

Vk =


{

ξ ∈ L2([0,1]) : ‖ξ‖= 1
}

,k = 1{
ξ ∈ L2([0,1]) : ‖ξ‖= 1,

〈
ξ ,ξ j

〉
= 0, ∀ j = 1, . . . ,k−1

}
,k ≥ 2.

(4.A.90)

For each j ∈ N, the eigenvalue λ j solves∫
KZ(·,z)ξ j(z)dy = λ jξ j. (4.A.91)

4.B. Dimension of the unit root subspace in DGP2-N

Suppose that each element Ft of the sequence {Ft} is a mixture of a mass at x = 0 and and
U [0,ut ] with mixture weight α t :

Ft(x) =


0 if x < 0

α t +(1−α t)
x
ut

if 0≤ x≤ ut

1 if x > ut .

(4.B.92)

where {α t} and {ut} are sequences of random variables on [0,1] and R++, respectively.
Then, W 2

t (the Transform 2) is given by

W 2
t =

2

∑
j=1

β t, jϕ j(y) (4.B.93)

where

ϕ1(y) = y, ϕ2(y) = 1

β t,1 = (γ t−E[γ t ])−β t,2, β t,2 = γ tα t−E[γ tα t ] (4.B.94)

Then, by applying the Gram–Schmidt process, we have

W 2
M0,t =

2

∑
j=1

β̄ t, jϕ̄ j (4.B.95)
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where
ϕ̄1(y) =

√
3y, ϕ̄2(y) = 2(1− 3

2
y) (4.B.96)

and

β̄ t,1 =
1√
3

{
(γ t−E[γ t ])+

1
2
(γ tα t−E[γ tα t ])

}
, (4.B.97)

β̄ t,2 =
1
2
(γ tα t−E[γ tα t ]) . (4.B.98)

Note that ‖ϕ̄1(y)‖ = ‖ϕ̄2(y)‖ = 1 and 〈ϕ̄1(y), ϕ̄2(y)〉 = 0 and thus {W 2
M0,t} is spanned by

with orthonormal base functions {ϕ̄1, ϕ̄2}. Suppose now that {γ t−E[γ t ]} is a unit root
process. Then, the dimension M of the unit root subspace HN depends on the dynamics of
{α t}. Suppose α t = p for some positive constant p ∈ (0,1). Then,

β̄ t,1 =
1√
3

(
1+

5
2

p
)
(γ t−E[γ t ]), β̄ t,2 =

p
2
(γ t−E[γ t ]) (4.B.99)

so that M = 2. Suppose α t is zero for any t. Then,

β̄ t,1 =
1√
3
(γ t−E[γ t ]), β̄ t,2 = 0 (4.B.100)

so that M = 1. Similarly, if γ t > 1, ∀t and α t = 1/γ t , then we again have (4.B.100) and
thus M = 1.

4.C. Proofs

PROOF OF LEMMA 4.2.1 The assertion follows directly from the definition of each
transformation. In particular, when γ t is constant,

ÊT [γ tFt (uty)]− γ t ÊT [Ft (uty)] = 0 (4.C.101)

so that W 1
t (y) =W 2

t (y).

PROOF OF PROPOSITION 4.2.4 For ψ ∈ D1 [0,1] (and thus in L2 [0,1]) the generalized
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derivative, wt , of Wt provides

(wt ,ΠNψ) =−(Wt ,∂ΠNψ) =−(Wt ,ΠN∂ψ) . (4.C.102)

Since such ψ span HN in L2 norm and thus also span D1 [0,1] in the weak topology,
this fully defines (ΠNwt ,ψ) , and thus the generalized function wN

t = ΠNwt is defined on
D1 [0,1] . Analogously, wS

t is defined and the decomposition follows.

PROOF OF LEMMA 4.3.1 (a) If {Ft} is a stationary sequence, then so are the values of the
functionals. Thus γ tFt(uty) is stationary. If additionally the λ t forms a stationary sequence,
then Wt forms a stationary sequence. (b) Under the conditions Wt (y) is a difference of two
non-decreasing functions. When Wt (y) is stationary, each of the non-decreasing functions
that is uniquely determined (up to possibly a constant) has to be stationary, thus W+

t =

γ tFt (uty) is stationary. The sequence Ft(uty) = (W+
t (1))−1W+

t (y) is then stationary. The
sequence {λ t} as given by the Transforms 1. or 2. is thus also stationary.

PROOF OF THEOREM 4.4.1 Represent

Ŵ 0
t −W 0

t = γ̂ t F̂t(ûty)− γ tFt(uty)

= (γ̂ t− γ t) F̂t(ûty)+ γ t
[
F̂t(ûty)−Ft(ûty)

]
+ γ t [Ft(ûty)−Ft(ûty)]

= B1,t +B2,t +B3,t . (4.C.103)

We evaluate uniform over 1≤ t ≤ T convergence in norm for each Bi,T , i = 1,2,3 in turn.

First,
sup

1≤t≤T

∥∥B1,t
∥∥≤ sup

1≤t≤T
|γ̂ t− γ t | (4.C.104)

since sup1≤t≤T ‖F̂t(ûty)‖ ≤ 1.

To bound B2,t , note

sup
1≤t≤T

‖F̂t(ûty)−Ft(ûty)‖ ≤ sup
1≤t≤T

sup
0≤x≤ūt

‖F̂t(x)−Ft(x)‖ (4.C.105)

where ūt is the upper bound on support of Ft (x) and thus for the empirical distribution
F̂ (x) as well. We accommodate the possibility that ut represents a value that may differ
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from the upper bound of the distribution Ft .
By the DKW inequality (Dvoretzky, Kiefer and Wolfowitz (1956), Massart (1990)),

sup
0≤x≤ūt

∣∣F̂t(x)−Ft(x)
∣∣≤ 2√

n
(4.C.106)

with probability approaching to one for t = 1, . . . ,T . Thus, it follows that

sup
1≤t≤T

‖F̂t(γ ty)−Ft(γ ty)‖ ≤ 2T/
√

n. (4.C.107)

Consequently,

sup
1≤t≤T

∥∥B2,t
∥∥≤ 2T√

n
sup

1≤t≤T
γ t . (4.C.108)

To establish the bound on the norm of B3,t define Dx
t :=

{
xd

t, j

}Nd,t

j=1
⊂ [0, ūt ] to be the

set of all points of discontinuity for Ft where xd
t, j denotes the j− th in magnitude point of

discontinuity and Nd,t is the cardinality of Dx
t , t = 1, . . . ,T ; Nd,t ≤Nd. Then the complement

to this set is a union of Nd,t +2 open intervals of points of continuity, ∪Nd,t+1
j=1

(
xd

t, j−1,x
d
t, j

)
,

where we set xd
t,0 = 0 and xt,Nd,t+1 = ūt . (If xd

t,1 = 0, the first interval for j = 1 is empty,
and if xt,Nd,t = ūt , then the last interval is empty). Denote by δ

x
t the minimum length of an

interval: δ
x
t = inf (xd

t, j+1− xd
t, j).

Correspondingly, define D̂y
t =

{
yd

t, j

}Nd,t

j=1
, where yd

t, j is such that either utyd
t, j = xd

t, j or

ûtyd
t, j = xd

t, j and let δ
y
t = ū−1

t δ
x
t . Consider an arbitrary ε t <

1
2δ

y
t .

Represent the interval [0,1] as a finite union of intervals (open and closed):

[0,1] = ∪y j∈D̂y
t

[
y j− ε t ,y j + ε t

]
∪Nd,t+1

j=1

(
yd

t, j−1 + ε t ,yd
t, j− ε t

)
(4.C.109)

Then to bound sup1≤t≤T
∥∥B3,t

∥∥ we write

sup
1≤t≤T

‖γ tFt(ûty)− γ tFt(uty)‖ ≤ sup
1≤t≤T

γ t sup
1≤t≤T

‖Ft(ûty)−Ft(uty)‖ (4.C.110)

and evaluate the L2 norm for ‖Ft(γ̂ ty)−Ft(γ ty)‖.
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Consider

‖Ft(ûty)−Ft(uty)‖2≤Σ
Nd,t+1
j=1

[∫ yd
t, j−εt

yd
t, j−1+εt

(Ft(ûty)−Ft(uty))2dy+
∫ yt j−1+εt

yt j−1−εt

(Ft(ûty)−Ft(uty))2dy

]
.

(4.C.111)

For the first part

Σ
Nd,t+1
j=1

∫ yd
t, j−εt

yd
t, j−1+εt

(Ft(ûty)−Ft(uty))2dy≤
∫ 1

0
(Ft(ûty)−Ft(uty))2dy (4.C.112)

Since there are no discontinuities over the domaine of integration then by (4.4.39)
Ft(ûty)−Ft(uty)≤C(ût−ut)

α so that

Σ
Nd,t+1
j=1

∫ yd
t, j

yd
t, j−1

(Ft(ûty)−Ft(uty))2dy≤ 2NdC2(ût−ut)
2α . (4.C.113)

For the second part consider

Σ
Nd,t+1
j=1

∫ yt j−1+εt

yt j−1−εt

(Ft(ûty)−Ft(uty))2dy≤ 2Ndε
2
t . (4.C.114)

where the integral is negligible as ε t → 0. Set ε2
t < κT . Then

sup
1≤t≤T

∥∥B3,t
∥∥≤ sup

1≤t≤T
γ t (2Nd)

1/2 (C+1)κT . (4.C.115)

Then combining the bounds

sup
1≤t≤T

∥∥Ŵ 0
t −W 0

t
∥∥≤ Op

(
ξ T +

2T√
n(T )

λ T +λ T (2Nd)
1/2(C+1)κT

)
, (4.C.116)

thus under condition that ξ T = op (1) ;
T√
n(T )

λ T = op (1) ;λ T κT = op (1) as T → ∞ con-

sistency for sup1≤t≤T
∥∥Ŵ 0

t −W 0
t
∥∥ follows:

sup
1≤t≤T

∥∥Ŵ 0
t −W 0

t
∥∥= op(1). (4.C.117)
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Since
1
T

T

∑
t=1
‖Ŵ 0

t −W 0
t ‖ ≤ sup

1≤t≤T

∥∥Ŵ 0
t −W 0

t
∥∥ (4.C.118)

consistency for the average of norms follows.

PROOF OF THEOREM 4.4.2 The assertion follows directly from Theorem 4.3 of Chang
et al. (2016) combined with (4.4.43).

206



Chapter 5

Semiparametric innovation-based tests
of orthogonality and causality between
two infinite-order cointegrated series

Forthcoming in Advances in Econometrics: Essays in Honor of Joon Y. Park, 2022

5.1. Introduction

Studying the dynamic relationship between two multivariate series is a fundamental ob-
jective of time series analysis in statistics and econometrics. For example, in economet-
rics, this can help one to understand the associated economic mechanisms. In this con-
text, a basic problem consists in testing independence (or the absence of serial cross-
correlation) between two vector processes. The seminal paper on this problem is due
to Haugh (1976), who proposed a general procedure for testing independence between
two covariance-stationary ARMA time series. His method is based on considering cross-
correlations between residuals obtained after fitting univariate ARMA models on each se-
ries. Since the innovations of an ARMA model follow a white noise by assumption, this
considerably simplifies the underlying distributional theory, and the corresponding tests
are relatively simple to apply. Further, the corresponding statistics have a direct interpre-
tation in terms of process innovations (or reduced-form shocks), a feature of interest in
econometrics since innovations can often be interpreted as “shocks” to economic systems.
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Consequently, the possibility of focusing on “shock cross-correlations” should be useful in
econometric research.

The work of Haugh (1976) has been extended by several authors; see Hong (1996a), El
Himdi and Roy (1997), Pham, Roy and Cédras (2003), Hallin and Saidi (2005), Bouhad-
dioui and Roy (2006, ?), Hallin and Saidi (2007), Saidi (2007), and Bouhaddioui and Du-
four (2008). Most of these studies focus on independence between two multivariate finite-
order vector autoregressive (VAR) or vector autoregressive moving-average (VARMA)
models. El Himdi and Roy (1997) extended the procedure developed by Haugh (1976)
in order to test non-correlation between two time series in the context of multivariate sta-
tionary and invertible VARMA models. This result was used by Hallin and Saidi (2005) to
develop a test which takes into account a possible pattern in the signs of cross-correlations
at different lags. In a nonparametric setup, ? proposed a test for independence between
two autoregressive time series which is based on autoregressive rank scores, while Hong
(1998) proposed a test based on empirical distribution functions.

The stationarity condition is often unrealistic and constitutes a strong limitation. Even
though stationarity may be achieved in many cases by differencing each series (so that
distributional complications are avoided), this type of transformation can distort our ability
to identify or accurately measure parameters and relations of interest. It is typically more
interesting to be able to work with the original series without prefiltering (like differencing).
This is especially important if we wish to study cointegrating relationships.

Engle and Granger (1987) introduced the concept of cointegration, which is used in
many studies across several fields. In the case of a finite-order autoregressive cointegrated
vector, Ahn and Reinsel (1990) developed an efficient estimation method for Gaussian pro-
cesses. Yap and Reinsel (1995) proposed full- and reduced-rank Gaussian estimation pro-
cedures for cointegrated VARMA processes. For a good discussion of the related models,
see Lütkepohl (2001). By exploiting the estimation methods proposed by Yap and Reinsel
(1995), Pham et al. (2003) generalized the main result of El Himdi and Roy (1997) to the
case of two cointegrated (or partially nonstationary) VARMA series. They proposed test
statistics based on residual cross-correlation matricesR(12)

â ( j), | j| ≤M [where M does not
depend on the sample size n] between the two residual series â(1)t and â(2)t resulting from
fitting the true VARMA models to each of the original series X(1)

t and X(2)
t . Under the

hypothesis of non-correlation between the two series, they show that an arbitrary vector of
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residual cross-correlations asymptotically follows a multivariate normal distribution.

In practice, a finite-order VAR model can be a rough approximation to the true data
generating process of a multivariate time series. The “true” model may easily not be re-
ducible to a parsimonious model with a small number of unknown parameters. From this
perspective, a more flexible alternative approach assumes that the data are generated by an
infinite-order autoregressive process. Such models lead one to consider a truncated (poten-
tially long) autoregression as an approximation of the underlying process. In statistics and
econometrics, one typically derives the properties of estimators and test criteria under the
assumption of correct specification, even if model assumptions are clearly not fulfilled. For
example, in VARMA estimation, it is well known that misspecification of the AR or MA
orders can lead to inconsistent estimators. Further, the estimation of VARMA models is
highly nonlinear and raises difficult identification complications (in the sense of multiple
observationally equivalent representations).

The autoregressive model fitting approach has been successfully applied by several
authors: Akaike (1969), Berk (1974) and Parzen (1974) for spectral density estimation,
Parzen (1974), Lütkepohl (1985), Lewis and Reinsel (1985) and Bhansali (1996) for pre-
diction, Park (1990) and Saikkonen (1992) for inference in cointegrated systems; see also
?, Lütkepohl (2005) and Park, Shin and Wang (2010) . In previous work [?], we have gen-
eralized the work of El Himdi and Roy (1997) to the case of two stationary multivariate
infinite-order autoregressive series VAR(∞). This result allows one to develop tests against
serial cross-correlation at a particular lag or at a fixed number of lags j such as | j| ≤ M,
where M does not depend on the sample size n.

In the univariate stationary case, Hong (1996c) introduced an important extension of
Haugh’s procedure by proposing a class of spectral test statistics. His approach is semipara-
metric and valid for two infinite-order autoregressive series AR(∞). It is based on fitting
an autoregressive model of order p to a series of n observations from each infinite-order
autoregressive process. Following Berk (1974), the order p of the fitted autoregression is a
function of the sample size. This approach was also used by Hong (1999), Duchesne and
Roy (2003), Duchesne (2005) and Shao (2009) for the case of two univariate long memory
processes. In Bouhaddioui and Roy (2006), it is extended to VAR(∞) models, hence pro-
tecting against misspecification of the underlying VARMA model. In contrast with Haugh’s
test, which is based on the residual cross-correlations at lag j such that | j| ≤M, the port-
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manteau test Qn is consistent for a large class of serial cross-correlations alternatives of an
arbitrary form between the two series.

In this article, we propose a multivariate version of the weighted portmanteau statistic
Qn, based on the sample cross-correlation matricesR(12)

â ( j), | j| ≤ n−1, between the resid-
uals â(1)t and â(2)t . The latter are obtained by approximating two multivariate IVAR(∞)

series with finite-order autoregressions whose order increases with the sample size at an
appropriate rate. The test statistics continue to have a N (0, 1) asymptotic distribution un-
der the hypothesis of independence of the two series. The tests are consistent against serial
cross-correlation of arbitrary form.

5.2. Framework and preliminary results

Following the notations of Saikkonen (1992), Saikkonen and Lütkepohl (1996) and
Bouhaddioui and Dufour (2008), we consider a d-dimensional process X = {X t : t ∈ Z}
partitioned into two subprocesses X i = {Xit : t ∈ Z}, i = 1, 2, with d1 and d2 components
respectively (d1 +d2 = d). The data generating process has the form:

X1t = C1X2t + ε1t , (5.2.1)

∆X2t = ε2t , (5.2.2)

whereC1 is a fixed d1×d2 matrix, ∆ is the usual difference operator, and ε t = (ε ′1t , ε ′2t)
′ is

a stationary process with zero mean and continuous spectral density matrix positive definite
at frequency zero. X2t is an integrated vector process of order one (with no cointegrating
relationship), while X1t and X2t are cointegrated. By taking first differences in (5.2.1), we
see that

∆Xt =

[
−Id1 C1

 

]
Xt−1 +ν t = JΘ

′Xt−1 +ν t (5.2.3)

where Id is the identity matrix of order d, J ′ = [−Id1

...], Θ′ = [Id1

...−C1], ν t =

(ν ′1t , ν ′2t)
′ is a nonsingular transformation of ε t defined by

ν1t = ε1t +C1ε2t , ν2t = ε2t , (5.2.4)
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Xt :=

[
X1t

X2t

]
, ν t :=

[
ν1t

ν2t

]
. (5.2.5)

The notation A = [A1
...A2] means that the matrix A is partitioned into a matrix A1 con-

sisting of the first d1 columns and a matrixA2 with d2 columns.

We suppose that ν t (hence also ε t) has an infinite-order autoregressive representation

∞

∑
l=0
Gl ν t−l = at (5.2.6)

whereG0 = Id, at is a sequence of independent and identically distributed random vectors
such that E(at) = 0 and E(ata

′
t) =Σa is positive definite, and the roots of the equation

det{Id−
∞

∑
l=1
Glzl}= 0 (5.2.7)

all lie outside the unit circle |z| = 1; det{A} denotes the determinant of the square matrix
A. We also assume that the following summability condition holds:

∞

∑
l=1

lδ̄ ‖Gl‖< ∞ for some δ̄ ≥ 1 (5.2.8)

where ‖ · ‖ is the Euclidean matrix norm defined by ‖A‖2 = tr(A′A). This is a standard
condition for weakly stationary processes, which ensures that the process is well defined.
It also implies that the process ν t and, consequently X t , can be approximated by an autore-
gression of finite order pn = p(n) where n is the sample size and pn can grow with n. More
explicitly, we assume that pn satisfies the following condition.

Assumption 5.2.1 There is a sequence of positive integers pn such that

n−1/3 pn→ 0 and
√

pn

∞

∑
l=pn+1

‖Gl‖→ 0 as n→ ∞ . (5.2.9)

The condition pn = o(n1/3) for the rate of increase of pn ensures that enough sample in-
formation is asymptotically available for estimators to have standard limiting distributions.
The condition

√
pn ∑

∞
j=pn+1 ‖G j‖ → 0 imposes a lower bound on the growth rate of pn,
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which ensures that the approximation error of the true underlying model by a finite-order
autoregression gets small when the sample size increases. A more detailed discussion of
these conditions is available in Burnham and Anderson (2002) and Lütkepohl (2005).

Using the equations (5.2.3) - (5.2.6) and rearranging terms, we obtain the autoregressive
error correction model (ECM) representation

∆Xt = ΨΘ
′Xt−1 +

pn

∑
l=1
Πl∆Xt−l +et(n), t = pn +1, pn +2, . . . , (5.2.10)

et(n) = at−
∞

∑
l=pn+1

Glν t−l, Ψ =−
pn

∑
l=0
GlJ , (5.2.11)

where Ψ is a d × d1 a full-column rank matrix (at least for pn large enough). Details
for this derivation can be found in Saikkonen and Lütkepohl (1994) and Saikkonen and
Luukkonen (1997). Note the coefficient matrices Πl (l = 1, . . . , pn) are functions of Θ
andGl (l = 1, 2, ...), and they depend on pn. Furthermore, the sequenceΠl (l = 1, . . . , pn)

is absolutely summable as pn→ ∞.

The autoregressive ECM in (5.2.10) can be rewritten in a pure vector autoregressive
(VAR) form

Xt =
pn+1

∑
l=1

ΦlXt−l +et(n) (5.2.12)

whereΦ1 = Id+ΨΘ
′+Π1,Φl =Πl−Πl−1, l = 2, . . . , pn andΦpn+1 =−Πpn . Although

theΠl depend on pn, the same is not true for the Φl except for Φpn+1.

Saikkonen and Lütkepohl (1996) derived the asymptotic properties of the multivariate
least square (LS) estimators of the VAR coefficients under a standard assumption. Let

Φ(pn) = [Φ1, . . . ,Φpn ] (5.2.13)

be the matrix of the first pn autoregressive parameter matrices in the representation (5.2.12),
and denote by Φ̂(pn) = [Φ̂1, . . . , Φ̂pn ] the corresponding LS estimator. The following
proposition gives a direct result on the asymptotic properties of the estimator Φ̂(pn). It
can be proved using the techniques very similar to those used by Saikkonen (1992, part (i)
of Theorem 3.2); see also Saikkonen and Lütkepohl (1996, Theorem 2).
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Proposition 5.2.1 ASYMPTOTIC PROPERTIES OF THE AUTOREGRESSIVE PARAMETER

ESTIMATORS. Let {X t} be a process which satisfies (5.2.3) - (5.2.6) with

E|aita jtaktalt |< γ4 < ∞, 1≤ i, j, k, l ≤ d . (5.2.14)

where at := (a1t , . . . , adt)
′. If Assumption 5.2.1 holds, then

‖Φ̂(pn)−Φ(pn)‖= Op(p1/2
n /n1/2) . (5.2.15)

This proposition is formulated for the first pn coefficient matrices, whereas the fitted
model is a VAR(pn+1) where pn goes to infinity with the sample size n. Dropping the last
lag in deriving the consistency of the estimators will not affect the asymptotic distribution
of the test statistic; see Lütkepohl (2005). Details on the estimates of the Φl matrices are
given in Saikkonen and Lütkepohl (1996). This result can be viewed as a generalization of
Theorem 1 in Lewis and Reinsel (1985) to infinite-order stationary vector autoregressive
processes.

Let us now consider two processes X(h) = {X(h)
t : t ∈ Z}, h = 1, 2, with m1 and m2

components respectively, each of which satisfies an IVAR(∞) model of the form (5.2.3) -
(5.2.6) with mh = d(h)

1 +d(h)
2 , h = 1, 2, where d(h)

1 and d(h)
2 replace d1 and d2 forX(h). The

coefficients of the two processes may differ. We wish to decide whether X(1) and X(2)

are independent against an alternative where they are correlated at some lag. Following
Pham et al. (2003), the independence betweenX(1) andX(2) can be tested by testing non-
correlation between the corresponding innovation processes a(1) and a(2). This leads one
to consider the hypothesis:

H0 : ρ
(12)
a ( j) = 0 , for all j ∈ Z , (5.2.16)

where

ρ
(12)
a ( j) = [D (Σ)]

−1/2Γ
(12)
a ( j)[D (Σ)]

−1/2, Γ
(hi)
a ( j) =E

[
a
(h)
t
(
a
(i)
t− j
)′]

, j ∈ Z ,

(5.2.17)

Σh =Γ
(hh)
a (0) , D (Σh) = diag{Σh} , Σ =

[
Σ1 

 Σ2

]
, h, i = 1, 2 . (5.2.18)
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ρ
(12)
a ( j) represents the cross-correlation matrix at lag j between the two innovation pro-

cesses. On setting

bt :=Σ−1/2at =

[
Σ
−1/2
1 

 Σ
−1/2
2

][
a1t

a2t

]
=

[
Σ−1

1 /2a1t

Σ
−1/2
2 a2t

]
=

[
b1t

b2t

]
, (5.2.19)

we see that ρ
(12)
b ( j) = Γ (12)

b ( j) = ρ
(12)
b ( j) , for all j ∈ Z , so that H0 is equivalent to

ρ
(12)
b ( j) = 0 , for all j ∈ Z . (5.2.20)

This equivalence plays a central role for proving the required distributional results stated
below.

5.3. Test statistics and asymptotic null distributions

Based on a realization X (h)
1 , . . . ,X (h)

n of length n, for h = 1, 2, a finite-order autoregressive
model VAR(p(h)n + 1) is fitted to each one of these two series. The order p(h)n depends on
the sample size n. The resulting residuals are given by

â
(h)
t =

X
(h)
t −∑

p(h)n +1
l=1 Φ̂

(h)
l (n)X(h)

t−l if t = p(h)n +2, . . . , n ,

0 if t ≤ p(h)n +1 ,
(5.3.1)

where the matrices Φ̂(h)
l (n) are the OLS estimators of Φ(h)

l (n), and h = 1, 2. We can also
use the conditional maximum likelihood estimator of the error correction form of the model
as discussed by Ahn and Reinsel (1990) and Reinsel (1993), or some other estimator with
the same rate of convergence. We now consider the residual sample (cross-)covariance
matrices

C
(hi)
â ( j) =

n−1
∑

n
t= j+1 â

(h)
t (â

(i)
t− j)

′ if 0≤ j ≤ n−1

n−1
∑

n
t=− j+1 â

(h)
t+ j(â

(i)
t )′ if −n+1≤ j ≤ 0

(5.3.2)

where h, i = 1, 2, and the corresponding cross-correlation matrices

R
(hi)
â ( j) = [D

(
C

(hh)
â (0)

)
]−1/2C

(hi)
â ( j) [D

(
C

(ii)
â (0)

)
]−1/2 (5.3.3)
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where D
(
C(hh)
â (0)

)
= diag{C(hh)

â (0)}. The orthogonality tests we consider are based on
C(12)
â ( j) andR(12)

â ( j). In the sequel, we suppose that X (h) satisfies (5.2.3) for h = 1, 2. We
wish to test the null hypothesis H0 using the cross-correlation matricesR(hi)

â ( j), j ∈ Z.

In the univariate case, Hong (1996c) proposed a portmanteau-type statistic based on
the sum of the weighted squared cross-correlations r(12)

â ( j) at all possible lags between the
residual series:

Qn =
n∑

n−1
j=1−n k2( j/M)r(12)

â ( j)
2
−Sn(k)

{2Dn(k)}1/2 (5.3.4)

where k(·) is an arbitrary kernel function [see Table 5.2 for examples] and M is a smoothing
parameter, while Sn(k) and Dn(k) are normalization coefficients which depend on the kernel
k(·):

Sn(k) =
n−1

∑
j=1−n

(
1− | j|

n

)
k2( j/M), Dn(k) =

n−2

∑
j=2−n

(
1− | j|

n

)(
1− | j|+1

n

)
k4( j/M) . (5.3.5)

They correspond to the asymptotic mean and variance of the weighted sum. In multivariate
time series, the squared cross-correlation r(12)

â ( j)2 in (5.3.4) is replaced by a quadratic form
in the vector r(12)

â ( j) = vec[R(12)
â ( j)]. For H0, the test statistic is based on the following

sum of weighted quadratic forms at all possible lags:

T (â, Σ̂) =
n−1

∑
j=1−n

k2( j/M)Q(12)
â ( j) , (5.3.6)

Q(12)
â ( j) := nr(12)

â ( j)
′[
R

(22)
â (0)

−1
⊗R(11)

â (0)
−1 ]

r
(12)
â ( j) , Σ̂ :=

[
Σ̂1 

 Σ̂1

]
,

(5.3.7)
where R(hh)

â (0) is a consistent estimator of the correlation matrix ρ
(h)
a of the process a(h),

and k(·) is a suitable kernel function. The parameter M is a truncation point when the kernel
has compact support, or a smoothing parameter when the kernel support is unbounded. We
suppose that M is function of n (M = Mn) such that Mn→∞ and Mn/n→ 0 as n→∞. The
most commonly used kernels typically give more weight to lower lags and less weight to
higher ones. An exception is the truncated uniform kernel kT (z) = I[|z| ≤ 1], where I(A)

represents the indicator function of the set A, which gives the same weight to all lags. The
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asymptotic distribution of Qâ( j) is given in Bouhaddioui and Dufour (2008). In the sequel,
we suppose that the kernel function k and the order p(h)n respectively satisfy the following
assumptions.

Assumption 5.3.1 The kernel function k : R→ [−1, 1] is a symmetric function, continu-

ous at zero, with at most a finite number of discontinuity points, such that k(0) = 1 and∫+∞

−∞
k2(z)dz < ∞.

Assumption 5.3.2 The orders p(h)n , h = 1, 2, satisfy the following conditions:

(i) p(h)n = o
(
n1/2/M1/4) , (ii) n

∞

∑
j=p(h)n +1

||Φ(h)
j ||

2 = o
(
n1/2/M1/4) . (5.3.8)

Note that the two conditions (i) and (ii) imply that the order p(h)n satisfies Assumption
5.2.1. The property k(0) = 1 implies that the weights assigned to the lower lags are close to
unity. The square integrability of k(·) implies that k(z)→ 0 as |z| → ∞, so that less weight
is given toR(12)

â ( j) as j increases. Note that all the kernels used in spectral analysis satisfy
Assumption 5.3.1; see Priestley (1981, Section 6.2.3). For hypothesis H0, the test statistic
is a standardized version of T (â, Σ̂):

Qn =
T (â, Σ̂)−m1m2Sn(k)√

2m1m2Dn(k)
, (5.3.9)

where the smoothing parameter Mn→ ∞ and Mn/n→ 0 when n→ ∞.

This test statistic can be viewed as a normalized version of the L2-norm of a
kernel-based estimator of the cross-coherency function between the two innovation series.
Sn(k) and Dn(k) represent the asymptotic mean and variance of T (â, Σ̂) under H0. If k(·)
is the truncated uniform kernel, apart from the standardization factors Sn(k) and Dn(k), Qn

corresponds to the multivariate version of Haugh’s statistic used by Pham et al. (2003) for
the finite-order cointegrated case, and by Bouhaddioui and Dufour (2008) for the infinite-
order case, namely

PM =
M

∑
j=−M

Qâ( j) . (5.3.10)
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In this case, M is a fixed integer that does not depend on the sample size n. The properties
of PM in the stationary VAR(∞) context and cointegrated IVAR(∞) are studied respectively
in ? and Bouhaddioui and Dufour (2008). As it will be seen below, many kernels k yield
tests that are more powerful than PM.

In the case of testing independence, under some conditions on the smoothing parameter
M and if the kernel k verifies Assumption 5.3.1, one sees easily that

M−1Sn(k)→ S(k) , M−1Dn(k)→ D(k), (5.3.11)

where
S(k) =

∫ +∞

−∞

k2(z)dz , D(k) =
∫ +∞

−∞

k4(z)dz . (5.3.12)

An alternative statistic is obtained by replacing Sn(k) and Dn(k) by their asymptotic ap-
proximations MS(k) an MD(k) respectively and is defined by

Q∗n =
T (â, Σ̂)−Mm1m2 S(k)√

2Mm1m2D(k)
. (5.3.13)

Both Qn and Q∗n have the same asymptotic null distribution and power properties.

The statistic Qn can also be expressed in term of the autocovariances C(hh)
â (0) and the

cross-covariances C(12)
â ( j) of the same residual series. Invoking Lemma 4.1 of El Himdi

and Roy (1997), the quadratic form T (â, Σ̂) can be written as follows in terms of the
residual covariances:

T (â, Σ̂) = n
n−1

∑
j=1−n

k2( j/M)c
(12)
â ( j)

′[
C

(22)
â (0)

−1
⊗C(11)

â (0)
−1]
c
(12)
â ( j) (5.3.14)

with c(12)
â ( j) = vec[C(12)

â ( j)]. Let us now consider the “pseudo-statistic”

T (a,Σ) = n
n−1

∑
j=1−n

k2( j/M)c
(12)
a ( j)

′ (
Σ−1

2 ⊗Σ
−1
1
)
c
(12)
a ( j) (5.3.15)

where c(12)
a ( j) is defined as c(12)

â ( j) with the residuals â(1)t and â(2)t replaced by the un-
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observable innovation series a(1)t and a(2)t , t = 1, . . . , n, and

T (â,Σ) = n
n−1

∑
j=1−n

k2( j/M)c
(12)
â ( j)

′
(Σ−1

2 ⊗Σ
−1
1 )c

(12)
â ( j) . (5.3.16)

Thus, with Σ̂h =C(hh)
â (0), h = 1, 2, we can write the statistic Qn as

Qn =
T (â, Σ̂)−m1m2Sn(k)√

2m1m2Dn(k)

=
T (a,Σ)−m1m2Sn(k)√

2m1m2Dn(k)
+

T (â,Σ)−T (a,Σ)√
2m1m2Dn(k)

+
T (â, Σ̂)−T (â,Σ)√

2m1m2Dn(k)
.(5.3.17)

Since the quantity T (a,Σ) depends only on the stationary process a, the result of Lemma
3.1 in Bouhaddioui and Roy (2006) is still valid. We conclude that

T (a,Σ)−m1m2Sn(k)√
2m1m2Dn(k)

L→N (0, 1) . (5.3.18)

The asymptotic distribution of Qn follows from the next two propositions.

Proposition 5.3.1 APPROXIMATION OF THE PSEUDO-STATISTIC. Suppose X (1) =

{X (1)
t : t ∈ Z} and X (2) = {X (2)

t : t ∈ Z} satisfy the IVAR(∞) model (5.2.3) - (5.2.6) along

with Assumption 5.3.1 and the bounded moment condition

E|a(h)it a(h)jt a(h)kt a(h)lt |< γ4 < ∞,1≤ i, j, k, l ≤ mh . (5.3.19)

Let M = Mn, with Mn→∞ and Mn/n→ 0 as n→∞, and suppose that p(h)n , h = 1, 2, satisfy

Assumption 5.3.2. If the processes a(1) and a(2) are independent, then

T (â,Σ)−T (a,Σ) = op(M1/2) . (5.3.20)

Proposition 5.3.2 ASYMPTOTIC EQUIVALENCE OF THE TEST STATISTIC. Under the
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assumptions of Proposition 5.3.1, we have

T (â, Σ̂)−T (â,Σ)√
2m1m2Dn(k)

p→ 0 . (5.3.21)

Our main result is a simple consequence of Propositions 5.3.1 - 5.3.2, as follows.

Theorem 5.3.3 NULL ASYMPTOTIC DISTRIBUTION. Under the assumptions of Propo-

sition 5.3.1, the statistic Qn defined by (5.3.9) has an asymptotic N (0, 1) distribution, i.e.
Qn

L→N (0, 1).

5.4. Consistency of the generalized tests

We now investigate the asymptotic power of the test Qn under fixed alternatives. We con-
sider a fixed alternative H1 of serial cross-correlation between the two innovation processes
a(1) and a(2) with the following assumption.

Assumption 5.4.1 The two innovation processes

a
(1)
t = (a(1)1,t , . . . , a(1)m1,t)

′ and a(2)t = (a(2)1,t , . . . , a(2)m2,t)
′ , t ∈ Z, (5.4.1)

are jointly fourth-order stationary, and their cross-correlation structure is such that

Γ
(12)
a ( j) 6=  for at least one value of j, with

+∞

∑
j=−∞

‖Γ (12)
a ( j)‖2 < ∞ ,

+∞

∑
i=−∞

+∞

∑
j=−∞

+∞

∑
l=−∞

|κuvuv(0, i, j, l)|< ∞, (5.4.2)

where κuvuv(0, i, j, l) is the fourth cumulant of the joint distribution of a(1)u,t , a(2)v,t+i, a(1)u,t+ j,

a(2)v,t+l .

The following theorem gives conditions for the consistency of Qn under a fixed alter-
native.

Theorem 5.4.1 GLOBAL POWER. Let X (1) and X (2) be two multivariate processes which

follow the IVAR(∞) model (5.2.3) - (5.2.6), and suppose that their innovation processes
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a(1) and a(2) satisfy Assumption 5.4.1. If the kernel k(·) satisfies Assumption 5.3.1 and if

p(h)n , h = 1, 2, satisfy

p(h)
2

n = o
( n

M

)
,

∞

∑
j=p(h)n +1

‖Φ(h)
j ‖

2 = o
(
M−1) , (5.4.3)

then, for any sequence of constants C(n,M) such that C(n,M) = o(n/M1/2),

P[Qn >C(n, M)]→ 1 . (5.4.4)

This theorem entails that the test based on Qn is consistent against the general class of
dependence alternatives described by Assumption 5.4.1. The slower M grows, the faster
Qn goes to infinity. To investigate the relative efficiency of Qn, one can use the Bahadur’s
asymptotic slope criterion defined in Bahadur (1960); see also Hong (1996a, 1996c) and
Bouhaddioui and Roy (2006). As in Bouhaddioui and Roy (2006), we can show that the
relative efficiency of the kernel k2(·) with respect to k1(·) when M = nν is given by

AREB(k2, k1) =

{
D(k1)

D(k2)

}1/(2−ν)

. (5.4.5)

We can then proceed like Bouhaddioui (2002) and Hong (1996a, 1996c) to derive the ker-
nel that maximizes the asymptotic slope over appropriate classes of kernel functions. For
example, consider the following class of kernels:

κ(τ) = {k(·) : Assumption 5.3.1 is satisfied, k(2) = τ
2/2, K(λ )≥ 0 for λ ∈ (−∞,+∞)}

(5.4.6)
where

k(2) = lim
z→0

[1− k(z)]/z2 and K(λ ) =
1

2π

∫
∞

−∞

k(z)e−izλ dz . (5.4.7)

This class contains the Daniell, Parzen and quadratic-spectral kernels (among others). Us-
ing Theorem 1 of Ghosh and Huang (1991), we can see that the Daniell kernel [see Table
5.2] maximizes the asymptotic slope of Qn over κ(τ); for a similar argument, see Bouhad-
dioui (2002). As mentioned in Bouhaddioui and Roy (2006), a test with a greater asymp-
totic slope may be expected to have a greater power for a fixed alternative than one with
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a smaller asymptotic slope. However, there is no clear analytical relationship between the
slope of a test and its power function. For a specific alternative, we cannot conclude that a
test with greater asymptotic slope should be automatically preferred to one with a smaller
asymptotic slope without further analysis of the finite-sample properties of the two test
statistics.

5.5. Local power analysis

In this section ,we study the power of the test proposed above against a class of local
alternatives of the form

Ha(Λ
(12)
b ) : Γ (12)

b ( j) =
M1/4

n1/2 Λ
(12)
b ( j) , for all j ∈ Z ,

whereΛ(12)
b = {Λ(12)

b ( j)} j∈Z is a sequence of m1×m2 cross-correlation matrices such that
only finite elements of Λ(12)

b are non-zero elements. Let

λ
(12)
b ( j) = vec[Λ(12)

b ( j)] , (5.5.1)

β (Λ
(12)
b ) =

∞

∑
j=−∞

λ
(12)
b ( j)

′
λ
(12)
b ( j). (5.5.2)

The following theorem establishes the asymptotic distribution of Qn under the local alter-
native Ha(Λ

(12)
b ).

Theorem 5.5.1 LOCAL POWER. Let X (1) and X (2) be two multivariate processes which

follow the IVAR(∞) model (5.2.3) - (5.2.6), and suppose that their innovation processes

a(1) and a(2) satisfy Assumption 5.4.1. If the kernel k(·) satisfies Assumption 5.3.1 and if

p(h)n , h = 1, 2, satisfy

p(h)
2

n = o(n/M) ,
∞

∑
j=p(h)n +1

‖Φ(h)
j ‖

2 = o
(
M−1) , (5.5.3)
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then, under Ha(Λ
(12)
b ),

Qn
L→N [β (Λ

(12)
b )/

√
2m1m2D(k), 1] . (5.5.4)

where β (Λ
(12)
b ) is defined in (5.5.2).

Theorem 5.5.1 shows that the test Qn has non-trivial power against a class of local al-

ternatives converging to H0 at the rate of
M1/4

n1/2 . The power depends on the kernel function

k through D(k). Similarly, we note that increasing slowly the parameter M, the divergence
of the test statistic to infinity is faster and consequently, the test is more powerful.

5.6. Simulation study

In the previous sections, we have studied the asymptotic distribution of the test statistics.
Here we investigate the finite-sample properties of the proposed test statistics, in partic-
ular their exact level and power. To do this, we performed a small Monte Carlo study.
In addition to the test statistics discussed in the preceding sections, we also consider the
nonstationary multivariate version of the Haugh statistic [previously studied by Pham et al.
(2003)]:

P∗M =
M

∑
j=−M

n
n−| j|

Qâ( j) (5.6.1)

where Q(12)
â ( j) is given by (5.3.7). P∗M is a slightly modified version of PM defined by

(5.3.10).

5.6.1. Description of the experiment

In the simulation experiment, we considered bivariate series {X (1)
t } and {X (2)

t } generated
from (joint) 4-dimensional VAR(2), VARMA(1,1) and VARδ (1) models (see Table 5.1). In
the first two models, the two subprocesses X (1) and X (2) are independent bivariate VAR(2)
or VARMA(1,1) and served for the level study and the corresponding submodels are par-
tially nonstationary and invertible. The third one, in which there is instantaneous corre-
lation between the two innovation series, was used for the power study. The correlation
depends on a parameter δ and the values δ = 1.0, 1.5 and 2 were chosen. For each model,
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two series lengths (n = 100, 200) were considered. With the statistics Qn and Q∗n defined
by (5.3.9) and (5.3.13), we used the four kernels described in Table 5.2. For each kernel,
the following three truncation values M were employed: M = [ln(n)], [3n0.2] and [3n0.3] ([a]
denotes the integer part of a). These rates are discussed in Hong (1996a, p. 849). They lead
respectively to M = 5, 8, 12 for the series length n = 100, and to M = 5, 9, 15 for n = 200.
The same truncation values were used for P∗M.
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Table 5.1. Time series models used in the simulation study

Models Equations

VAR(2)

[
X

(1)
t

X
(2)
t

]
=

[
Φ

(1)
1 

 Φ
(2)
1

][
X

(1)
t−1

X
(2)
t−1

]
+

[
Φ

(1)
2 

 Φ
(2)
2

][
X

(1)
t−2

X
(2)
t−2

]
+

[
a
(1)
t

a
(2)
t

]

VARMA(1, 1)

[
X

(1)
t

X
(2)
t

]
=

[
Φ

(1)
1 

 Φ
(2)
1

][
X

(1)
t−1

X
(2)
t−1

]
+

[
Ψ (1) 

 Ψ (2)

][
a
(1)
t−1

a
(2)
t−1

]
+

[
a
(1)
t

a
(2)
t

]

VARδ (1)

[
X

(1)
t

X
(2)
t

]
=

[
Φ

(1)
1 

 Φ
(2)
1

][
X

(1)
t−1

X
(2)
t−1

]
+

[
a
(1)
t

a
(2)
t

]

noise covariance matrices

Σa =

[
Σ

(1)
a 

 Σ
(2)
a

]
Σa,δ =

[
Σ

(1)
a Σ

(12)
a,δ

Σ
(21)
a,δ Σ

(2)
a

]

Parameters values

Φ
(1)
1 =

[
0.4 0.0
−1.0 1.0

]
Φ

(2)
1 =

[
1.0 0.0
−0.8 0.5

]
Φ

(1)
2 =

[
0.6 −0.5
0.3 0.4

]
Φ

(2)
2 =

[
−0.5 −0.8
−0.4 0.2

]

Ψ (1) =

[
−0.2 0.3
−0.6 1.1

]
Ψ (2) =

[
0.8 0.3
0.1 0.6

]
Σ
(1)
a =

[
1.0 0.5
0.5 1.0

]
Σ
(2)
a =

[
1.0 0.75

0.75 1.0

]

Σ
(12)
a,δ =

[
0.1δ 0

0 0.05δ

]

Table 5.2. Kernels used with the test statistics Qn and Q∗n

Truncated Uniform (TR): k(z) =
{

1, |z| ≤ 1,
0, otherwise.

Bartlett (BAR): k(z) =
{

1−|z|, |z| ≤ 1,
0, otherwise .

Daniell (DAN): k(z) = sin(πz)
πz , z ∈ R.

Parzen (PAR): k(z) =


1−6z2 +6|z|3, if |z| ≤ 0.5,
2(1−|z|)3 , if 0.5≤ |z| ≤ 1 ,

0, otherwise.
Bartlett-Priestley (BP): k(z) = 3

(πz)2 {
sin(πz)

πz − cos(πz)}, z ∈ R .

In the level study, 5000 independent realizations were generated from both models
VAR(2) and VARMA(1,1) for each series length n. Computations were made in the fol-
lowing way.
(1) First, pseudo-random variables from the N (0, 1) distribution were obtained with the
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pseudo-random normal generator of the S-plus package and were transformed into inde-
pendent N [,Σa] pseudo-random vectors using the Cholesky decomposition. Second,
the Xt values were obtained by directly solving the model difference equation.

(2) For the VAR(2) model, the least squares estimates of the coefficients of the true models
were obtained using the procedure described in Reinsel (1993). The autoregressive order
was obtained by minimizing the AIC criterion for p≤ P, where P is set to n1/3. We chose
AIC criterion which seems behave better than other criteria such HQ or SC specifically in
LR cointegration tests, see Lütkepohl and Saikkonen (1999). For the VARMA(1,1), each
subseries was approximated by a possible high-order VAR model. From Pham et al. (2003),
the value of the VAR order was obtained by minimizing the Hannan-Quinn criterion using
conditional least square estimation. The residual cross-correlation matrix R

(12)
â ( j)’s as

defined by (5.3.3) is then computed.

(3) For each realization, the test statistics Qn and Q∗n were compared for each of the four
kernels and the three values of M. The same values of M were used for the statistic P∗M.
The values of the statistics Qn and Q∗n were compared with the N (0, 1) critical values and
those of P∗M to the χ2

4(2M+1) critical values.

(4) Finally, for each model, each series length and nominal level, the empirical frequencies
of rejection of the null hypothesis of non-correlation were obtained from the 5000 real-
izations. The results in percentage are reported in Table 5.3. The standard error of the
empirical level is 0.14% for the nominal level 1%, 0.31% for 5% and 0.42% for 10%.

Computations for the power analysis were made in a similar way using the VARδ (1)
model with different values of δ .
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Table 5.3. Empirical level (in percentage) of the Qn, Q∗n and P∗M tests,
with different kernels and truncation values.

Gaussian VAR(2) and VARMA(1,1) models. Number of realizations: 5000

Qn Q∗n P∗M
n M α% DAN PAR BAR BP TR DAN PAR BAR BP TR

1 0.7 0.6 0.8 0.7 0.6 1.2 0.9 0.7 0.7 1.3 0.7
5 5 5.8 3.9 5.7 5.2 4.4 5.9 4.3 5.8 6.1 3.7 4.2

10 9.6 8.0 9.5 10.6 8.3 10.3 8.8 9.4 10.7 9.0 8.8
1 1.3 0.6 0.9 1.2 0.7 1.4 1.2 1.0 1.5 0.6 0.8

100 8 5 5.6 4.1 5.9 5.6 4.0 5.4 4.0 5.2 4.8 4.0 4.3
10 10.7 9.2 10.8 10.7 7.4 10.6 9.6 11.0 10.4 8.2 8.4
1 0.8 0.7 0.8 1.2 0.6 1.3 0.8 1.4 1.5 0.7 0.8

12 5 5.4 4.8 5.3 5.4 4.2 5.6 4.5 4.9 5.7 4.2 4.5
10 10.4 8.7 11.2 10.8 7.8 10.8 10.4 11.2 10.5 8.1 8.4

VAR(2) 1 0.8 1.2 0.8 1.2 0.8 0.7 0.8 1.2 1.3 0.7 0.9
5 5 5.7 5.2 5.8 5.5 4.1 5.5 4.2 5.9 5.7 4.4 4.2

10 9.1 9.2 10.4 10.6 8.3 8.4 10.2 10.6 10.2 8.7 8.9
1 1.2 1.1 0.9 0.8 0.7 1.4 0.9 0.8 1.2 0.7 0.7

200 9 5 6.1 4.3 5.5 5.7 4.4 6.3 4.6 5.5 5.9 4.5 4.1
10 10.9 9.5 10.5 11.0 7.6 11.2 9.3 10.6 10.7 8.6 9.2
1 1.4 0.8 1.2 1.4 1.2 0.9 1.2 1.4 0.8 0.6 0.6

15 5 6.0 4.5 6.2 5.4 4.1 5.8 4.7 5.8 5.6 4.3 4.5
10 10.6 10.3 11.2 10.6 7.9 11.0 10.5 10.8 10.4 8.2 8.9

1 1.3 1.1 0.7 0.8 0.7 1.2 0.7 1.4 1.2 0.6 0.8
5 5 5.7 4.7 6.2 4.5 4.3 5.8 4.4 5.8 4.6 3.9 4.3

10 9.6 8.6 9.3 10.4 8.3 9.6 9.0 9.5 10.8 8.2 8.4
1 1.4 0.7 0.8 1.2 0.7 1.3 0.8 1.2 0.9 0.8 1.3

100 8 5 5.6 4.4 5.9 5.6 3.9 5.4 4.1 5.5 5.5 4.3 5.6
10 10.6 8.5 11.3 10.6 7.3 9.4 9.0 11.0 10.7 8.0 9.4
1 0.9 1.2 0.7 0.8 0.6 1.1 0.9 0.9 1.3 0.7 1.4

12 5 5.4 5.1 6.0 5.6 4.2 5.6 5.4 5.8 5.6 4.1 4.5
10 9.4 8.8 10.4 10.2 7.9 9.1 8.2 9.1 10.6 7.5 8.3

VARMA(1,1) 1 0.8 1.3 0.7 0.9 0.7 1.2 0.8 1.2 1.2 0.7 1.3
5 5 5.6 4.7 5.4 5.9 4.0 6.2 4.8 5.7 6.3 4.6 5.9

10 9.0 9.3 10.6 11.0 8.9 10.5 9.2 10.5 9.6 8.2 8.9
1 1.3 0.7 1.2 1.1 0.8 0.9 0.8 1.3 0.8 0.8 0.9

200 9 5 6.1 5.2 4.2 6.1 4.3 5.7 5.1 5.5 6.3 4.3 5.6
10 9.4 10.5 11.0 10.7 8.4 10.7 9.5 10.8 10.3 8.7 8.9
1 1.4 1.1 0.8 0.9 0.7 1.3 0.9 0.9 0.8 0.7 0.8

15 5 6.2 4.6 5.2 6.0 4.3 5.3 5.1 5.3 6.0 4.6 5.5
10 10.3 10.5 10.8 10.6 7.9 10.7 10.2 11.2 10.7 8.4 9.1

5.6.2. Level

5.6.2.1. Gaussian innovations

Results from the level study are presented in Table 5.3. We make the following observa-
tions. The asymptotic N (0, 1) distribution provides a good approximation of the exact
distributions of Qn and Q∗n at all nominal levels considered, kernels and truncation values.
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Almost all empirical levels are within three standard errors of the corresponding nominal
levels and the majority are within two standard errors. The statistic Q∗n is slightly better
approximated than Qn since most of its empirical levels are within two standard errors of
the nominal level.

These results are similar to those obtained for orthogonality tests between stationary
series; see Bouhaddioui and Roy (2006). At the 1% and 10% nominal levels, both statistics
have a small tendency to under or over-reject. There is no significant difference between
the kernels. The best approximations are obtained with the Bartlett and Bartlett-Priestley
kernels, while the performance of the Parzen kernel is inferior. With the Bartlett kernel, the
empirical size is always within two standard errors of the nominal size. For the truncated
uniform kernel, the size of Qn and Q∗n are very close to the size of P∗M, which is normal
since Qn and Q∗n are linear transformations of PM and P∗M is a finite-sample version of
PM. For the models considered, the values of the truncation parameter M has no significant
effect on the size of the tests. Finally, when the series length n goes from 100 to 200, the
approximation improves very slightly.

5.6.2.2. Non-Gaussian innovations

We now examine simulation results where innovations follow a multivariate contaminated
normal distribution. We consider the distribution

pNm[, Γ ]+ (1− p)Nm[,Λ]

to denote the m-dimensional contaminated normal distribution in which the Nm(0,Γ ) dis-
tribution is contaminated with probability 1− p, by the Nm[0,Λ] distribution. We can
verify that the fourth-order cumulants of this distribution depend on p, Γ and Λ. Thus,
we consider in this part of the simulation two innovations series a(1)t and a(2)t generated
independently according to the following two distributions:

p1Nm1 [, Im1]+ (1− p1)Nm1[,Ω
(1)
a ] , p2Nm2 [, Im2]+ (1− p2)Nm2[,Ω

(2)
a ] ,

Ω
(1)
a =

[
25 5
5 4

]
and Ω(2)

a =

[
25 7.5
7.5 4

]
. (5.6.2)
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Simulations were made for different values of the pair (p1, p2) and for two models of Table
5.1, where Σ

(1)
a and Σ

(2)
a are now the covariance matrices of the two contaminated normal

distributions in (5.6.2). The results in Table 5.4 are obtained by using (p1, p2) = (0.7, 0.9);
the results for the other values of (p1, p2) are similar. From Table 5.4, we see that the non-
normality of the innovations does not significantly affect the behavior of the test statistic
Qn with the associate kernel function and truncation parameter for the two sizes n = 100
and n = 200.
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Table 5.4. Empirical level (in percentage) of the test Qn, Q∗n and P∗M
with different kernels and truncation values.

VAR(2) and VARMA(1,1) models with non-Gaussian innovations. Number of
realizations: 5000

Qn Q∗n P∗M
n M α% DAN PAR BAR BP TR DAN PAR BAR BP TR

1 1.3 0.7 1.2 1.3 0.6 0.8 1.3 0.9 0.8 1.4 1.3
5 5 5.4 4.6 5.8 5.3 4.1 5.5 4.4 5.9 5.8 4.0 4.2

10 9.8 8.4 10.5 10.7 8.2 10.5 9.0 9.1 9.3 8.5 8.9
1 0.7 1.2 0.8 1.3 0.7 1.2 0.8 0.8 1.3 0.7 0.8

100 8 5 6.0 5.4 4.6 5.8 3.8 5.7 4.2 5.6 4.4 4.0 4.2
10 11.0 9.4 10.6 9.5 8.2 10.8 9.4 10.8 10.6 8.4 8.8
1 1.2 0.9 0.7 1.3 0.7 1.4 1.2 0.8 1.3 0.6 0.8

12 5 5.8 5.6 5.2 5.6 4.0 4.6 4.8 5.3 5.4 3.8 4.2
10 11.3 10.9 11.0 10.6 8.4 10.6 9.8 10.8 9.5 8.3 8.8

VAR(2) 1 1.2 0.9 0.8 1.3 0.7 0.8 1.3 1.1 0.8 0.8 1.2
5 5 6.0 5.8 5.4 5.6 3.9 6.1 5.9 5.5 5.3 4.0 4.4

10 10.6 9.0 10.2 10.4 8.4 9.4 10.8 11.0 10.6 8.4 9.2
1 0.7 0.9 0.7 0.8 0.8 1.3 0.7 0.7 1.1 0.8 0.8

200 9 5 5.8 5.6 5.2 4.7 4.2 6.0 4.8 5.8 5.8 4.2 4.6
10 11.2 9.3 9.6 10.6 8.8 11.4 9.7 10.3 10.9 8.6 9.4
1 1.3 1.1 0.8 0.7 0.7 1.1 1.3 0.9 0.8 0.6 0.7

15 5 5.6 5.8 6.0 5.6 4.2 5.6 4.4 6.0 6.2 4.1 4.6
10 11.2 10.6 10.2 10.8 8.6 11.0 10.8 10.3 10.2 8.6 9.0

1 0.8 1.2 1.3 0.7 0.6 1.1 0.8 1.2 1.2 0.6 0.7
5 5 5.9 6.1 5.6 4.4 4.0 5.7 5.9 4.8 4.8 4.0 4.4

10 10.6 9.2 9.6 11.0 8.5 10.9 10.4 9.2 11.0 8.0 9.0
1 1.4 1.2 1.2 0.8 0.7 1.2 1.4 1.3 0.8 0.7 1.4

100 8 5 6.0 4.2 5.6 5.8 3.8 6.2 4.0 6.1 6.3 4.2 6.0
10 11.6 9.6 10.4 10.8 8.0 11.2 9.4 11.2 10.6 8.0 9.6
1 0.8 1.3 0.8 0.9 0.7 1.2 1.1 0.9 1.1 0.8 1.3

12 5 5.8 5.3 5.8 6.0 4.4 6.0 5.2 5.4 5.8 4.0 5.8
10 10.8 9.2 11.4 10.6 8.1 11.2 9.4 9.3 11.0 8.4 8.8

VARMA(1,1) 1 1.1 1.2 0.9 1.3 0.7 1.2 1.3 1.1 0.8 0.8 1.2
5 5 6.1 5.4 4.8 6.1 4.2 5.9 4.7 5.4 6.0 4.4 5.8

10 10.6 10.3 11.3 11.5 8.4 11.3 10.4 11.0 10.8 8.4 9.2
1 1.3 1.2 0.9 1.2 0.8 1.2 1.3 1.1 0.9 0.7 1.3

200 9 5 5.9 5.9 4.6 5.4 4.1 5.7 6.1 5.2 5.8 4.4 5.8
10 11.4 10.8 10.6 10.6 8.8 11.2 10.8 10.4 9.8 8.6 9.3
1 0.9 1.3 0.8 1.2 0.8 1.3 1.2 1.3 1.1 0.7 1.3

15 5 5.4 5.8 6.2 5.6 4.0 5.5 5.6 5.8 5.4 4.2 5.8
10 11.0 10.8 9.8 10.2 8.2 10.6 10.6 10.2 10.4 8.6 9.3

5.6.3. Power

Results on power are presented in Table 5.5. In VARδ (1), the cross-correlation at lag 0
between the two innovation series increases with δ and, as expected, the powers of the
three tests increase with δ . Since the relative behaviors of the various tests are similar for
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the three values of δ considered [δ = 1, 1.5, 2], we only present the results for δ = 2.
Similarly, we only present results for Q∗n, since Qn and Q∗n have exhibit similar behaviors
with respect to kernels and truncation values.

Table 5.5. Power of the tests Qn, Q∗n and P∗M based on asymptotic critical values
with different kernels and different truncation values.

VARδ (1) model with δ = 2.

Q∗n P∗M
n M α% DAN PAR BAR BP TR

1 57.3 53.5 54.6 52.6 35.3 24.6
5 5 63.2 60.1 56.4 58.6 36.8 26.8

10 72.6 70.8 62.5 64.3 38.2 27.5
1 49.6 46.1 51.4 48.0 27.5 22.6

100 8 5 58.4 53.2 55.8 51.6 31.2 23.8
10 63.7 60.8 62.6 61.7 34.6 25.8
1 43.6 38.5 41.8 42.6 23.3 18.9

12 5 50.2 44.7 40.3 43.0 26.4 21.2
10 56.8 50.6 48.8 46.5 28.8 23.7
1 78.4 74.5 74.8 76.2 54.8 50.6

5 5 85.6 82.6 81.6 85.8 56.4 54.1
10 93.4 89.5 87.5 90.2 60.4 56.8
1 69.5 65.2 63.0 66.8 42.4 40.7

200 9 5 75.6 76.6 72.4 78.2 46.2 44.6
10 80.8 78.5 77.6 82.8 50.4 46.4
1 56.8 52.4 54.8 56.1 36.8 32.8

15 5 60.1 57.4 53.2 60.1 40.2 35.0
10 64.8 54.4 54.2 62.6 44.8 40.4

From Table 5.5, we draw the following observations. First, power decreases as M in-
creases. Indeed, the model considered here is characterized by the lag 0 serial correlation.
In such a situation, we expect that the tests assigning more weight to small lags will be
more powerful than those assigning weights to a large number of lags. For the three signif-
icance levels and the three truncation values, the Daniell kernel provides the most powerful
test, while the Parzen, Bartlett and Bartlett-Priestley kernels yield similar powers for Q∗n.
However, the power of Q∗n with the truncated uniform kernel is much smaller and is com-
parable to the power of P∗M. For the chosen model, the new tests Qn or Q∗n with kernels
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other than the truncated uniform are preferable to the nonstationary multivariate version of
Haugh’s test P∗M. Finally, the powers of all tests increase when the sample size varies from
100 to 200.

5.7. Conclusion

In this paper, we have proposed a semiparametric approach to test the non-correlation (or
independence in the Gaussian case) between infinite-order cointegrated series IVAR(∞).
The approach is semiparametric in the sense that if the two series are VARMA, we do not
need to separately estimate the true model for each of the series. Instead, we fit a vector
autoregression to each series, and the test statistics are based on residual cross-correlations
at all possible lags. The weights assigned to the lags are defined by a kernel function and
a smoothing parameter. Under the hypothesis of independence or non-causality of the two
series, the asymptotic normality of the tests statistics are established. The finite-sample
properties of the test were investigated by a Monte Carlo experiment which shows that the
level is reasonably well controlled for both series lengths 100 and 200. Furthermore, with
the model considered, the four kernels DAN, PAR, BAR, BP lead to similar powers and
are more powerful than the truncated uniform kernel which corresponds to the multivariate
version of the portmanteau test proposed by Bouhaddioui and Dufour (2008).

5.A. Proofs

The following notations are adopted. The Euclidean scalar product of xt and xs is defined
by 〈xt , xs〉= x′txs and the Euclidean norm of xt by ‖xt‖=

√
〈xt , xt〉. The scalar ∆ denotes

a generic positive bounded constant which may differ from place to place.

PROOF OF PROPOSITION 5.3.1 First, let

Ξ := [Ξ1
... · · · ...Ξp

...Ξp+1,1] = [Ψ
...Π1

... · · · ...Πp]Dp :=ΠDp (5.A.1)

where Dp is a suitable nonsingular transformation matrix containing the unknown matrix
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C1. The ECM representation (5.2.10) can be written as

∆Xt = Ψ0X2,t−1 +
p

∑
l=1
Ξlε t− j +Ξp+1,1ε1,t−p−1 +et(n). (5.A.2)

The matricesΞ and Ψ0 are defined in Saikkonen (1992, equation (A.2)). Set

Λ := [Ξ
...Ψ0] , Wt :=Wt(p) := [Υ ′t ,X

′
2,t−1] , (5.A.3)

Υ ′t := Υt(p)′ := [ε ′t−1, . . . , ε
′
t−p, ε

′
1,t−p−1] . (5.A.4)

Consider the linear transformation

bt :=Σ−1at , b̂t =Σ
−1/2ât , (5.A.5)

whereΣ is defined in (5.2.18). Since C(12)
b̂

( j) =Σ−1/2
1 C

(12)
â ( j)Σ−1/2

2 . Using the property
vec(ABC) = (C′⊗A)vec(B), we have:

T (â,Σ) = n
n−1

∑
j=1−n

k2( j/M)c
(12)
â ( j)

′(
Σ−1

2 ⊗Σ
−1
1
)
c
(12)
â ( j)

= n
n−1

∑
j=1−n

k2( j/M)c
(12)
b̂

( j)
′
c
(12)
b̂

( j) = T
(12)
b̂

. (5.A.6)

Thus, to prove the result, it is sufficient to show that

T
(12)
b −T

(12)
b̂

= op(M1/2) . (5.A.7)

The result follows by decomposing the latter difference in two parts,

T
(12)
b −T

(12)
b̂

= n
n−1

∑
j=1−n

k2( j/M)(‖c(12)
b̂

( j)−c(12)
b ( j)‖2 +2〈c(12)

b ( j), c(12)
b̂

( j)−c(12)
b ( j)〉)

= [T (1)
n +T (1)

n− ]+T (2)
n (5.A.8)
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where

T (1)
n := n

n−1

∑
j=0

k2( j/M)‖c(12)
b̂

( j)−c(12)
b ( j)‖2 , T (1)

n− := n
−1

∑
j=1−n

k2( j/M)(‖c(12)
b̂

( j)−c(12)
b ( j)‖2 ,

(5.A.9)
T (2)

n := 2〈c(12)
b ( j), c(12)

b̂
( j)−c(12)

b ( j)〉) , (5.A.10)

and showing that each part is op(M1/2). Consider the positive lags j≥ 0, since for negative
lags, the proof is similar by symmetry.

Define δ̂ t = b
(1)
t − b̂

(1)
t and η̂ t =b

(2)
t − b̂

(2)
t . From (5.3.2), we have

T (1)
n = n

n−1

∑
j=0

k2( j/M)‖c(12)
b̂

( j)−c(12)
b ( j)‖2

= n
n−1

∑
j=0

k2( j/M)‖1
n

n

∑
t= j+1

(b
(1)
t b

(2)′
t− j− b̂

(1)
t b̂

(2)′
t− j)‖

2, (5.A.11)

and using the Cauchy-Schwarz inequality, we obtain

T (1)
n = n

n−1

∑
j=0

k2( j/M)‖1
n

n

∑
t= j+1

(b
(1)
t η̂

′
t− j + δ̂ tb

(2)′
t− j− δ̂ t η̂

′
t− j)‖2 ≤ 4n(T1n +T2n +T3n)

(5.A.12)
with T1n = ∑

n−1
j=0 k2( j/M)‖1

n ∑
n
t= j+1b

(1)
t η̂

′
t− j‖2, T2n = ∑

n−1
j=0 k2( j/M)‖1

n ∑
n
t= j+1 δ̂ tb

(2)′
t− j‖2

and T3n = ∑
n−1
j=0 k2( j/M)‖1

n ∑
n
t= j+1 δ̂ t η̂

′
t− j‖2. It suffices to show that the terms Tjn, j =

1, 2, 3, are op(M1/2/n). We can then write:

δ̂ t = (b̂
(1)
t −Σ

−1/2
1 e

(1)
t )+(Σ

−1/2
1 e

(1)
t −b

(1)
t ) =Σ

−1/2
1 {[â(1)t −e

(1)
t ]+ [e

(1)
t −a

(1)
t ]}

= Σ
−1/2
1 {(Λ̂(1)−Λ(1))W

(1)
t +ξ t(p1)} (5.A.13)

where e(1)t := e(1)t (n),Λ(h) andW (h)
t , h = 1, 2 are defined as in (5.A.2) for each process, Λ̂

is the LS estimator of Λ and ξ t(p1) = ∑
∞
l=p1+1ΦlX

(1)
t−l represents the bias of the VAR(p1)

approximation of {X(1)
t }.

The second equality is from Saikkonen and Lütkepohl (1996, page 832). Also, using the
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result of Proposition 5.2.1, we deduce that

‖Λ̂(1)−Λ(1)‖2 = Op(
p1

n
) . (5.A.14)

By equation 3.15 in ?, we have E
(
‖ξ t(p(h)n )‖2

)
= O

(
∑

∞

l=p(h)n +1
‖Φ(h)

l ‖
)2

, h = 1, 2. Based

on the result (3.17) in ? and equation (5.2.15), we obtain:

T1n =
n−1

∑
j=0

k2( j/M)‖1
n

n

∑
t= j+1

b
(1)
t η̂

′
t− j‖2 = Op(

p(2)n M
n2 ){ 1

M

n−1

∑
j=0

k2( j/M)} (5.A.15)

Since p(2)n = o(n/M1/2), we have T1n = op(M1/2/n). By symmetry, we can prove that
T2n = op(

M1/2

n ). For the third term T3n, using the Cauchy-Schwarz inequality, we obtain

T3n =
n−1

∑
j=0

k2( j/M)‖n−1
n

∑
t= j+1

η̂ t δ̂
′
t− j‖2

≤ ‖Λ(1)− Λ̂(1)‖2‖Λ(2)− Λ̂(2)‖2
n−1

∑
j=0

k2( j/M)‖n−1
n

∑
t= j+1

W
(1)
t (p1)W

(2)
t− j(p2)

′
‖2

+ ‖Λ(1)− Λ̂(1)‖2
n−1

∑
j=0

k2( j/M)‖n−1
n

∑
t= j+1

W
(1)
t (p1)ξ t− j(p2)

′‖2

+ ‖Λ(2)− Λ̂‖2
n−1

∑
j=0

k2( j/M)‖n−1
n

∑
t= j+1

ξ t(p1)W
(2)
t− j(p2)

′
‖2

+
n−1

∑
j=0

k2( j/M)‖n−1
n

∑
t= j+1

ξ t(p1)ξ t− j(p2)
′‖2 . (5.A.16)

Using the equations (3.19) - (3.22) in Bouhaddioui and Roy (2006), the assumptions p(h)n =

o(n1/2/M1/4), n∑
∞

l=p(h)n +1
‖Φ(h)

l ‖
2 = o(n1/2/M1/4) and the result (5.2.15), we conclude

that T3n = op(M1/2/n). Therefore, we obtain

T (1)
n = n

n−1

∑
j=0

k2( j/M)‖c(12)
b̂

( j)−c(12)
b ( j)‖2 = op

(
M1/2

)
. (5.A.17)
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Finally, using Cauchy-Schwarz inequality once more, we have

|T (2)
n | ≤ n

n−1

∑
j=1−n

k2( j/M)|〈c(12)
b ( j), c(12)

b̂
( j)−c(12)

b ( j)〉| ≤ n
6

∑
l=4

Tln, (5.A.18)

with

T4n =
n−1

∑
j=0

k2( j/M)‖c(12)
b ( j)‖‖1

n

n

∑
t= j+1

δ̂ t (b
(2)
t− j)

′‖, (5.A.19)

T5n =
n−1

∑
j=0

k2( j/M)‖c(12)
b ( j)‖‖1

n

n

∑
t= j+1

b
(1)
t η̂

′
t− j‖, (5.A.20)

T6n =
n−1

∑
j=0

k2( j/M)‖c(12)
b ( j)‖‖1

n

n

∑
t= j+1

δ̂ t η̂
′
t− j‖ . (5.A.21)

Thus, it is sufficient to show that the terms Tjn, j = 4, 5, 6, are op(M1/2/n). By conditioning
on (b

(2)
s )n

s=−∞ and using Jensen’s inequality, we have

E
[
T4n |(b(2)s )n

s=−∞

]
≤

n−1

∑
j=1−n

k2( j/M)

× [E({(1
n

n

∑
τ=1
‖b(1)τ b

(2)T

τ− j‖)(
1
n

n

∑
t= j+1

‖δ̂ tb
(2)T

t− j ‖)}
2 | (b(2)s )n

s=−∞)]
1/2

≤ M∆

n2 {
1
M

n−1

∑
1−n

k2( j/M)}(1
n

n

∑
τ=1
‖b(2)τ ‖2)1/2(

1
n

n

∑
t=1

E‖δ̂ t‖2)1/2

= Op
(M (p(2)n )1/2

n5/2

)
= op

(M1/2

n3/2

)
. (5.A.22)

The first equality is obtained by using the conditions on p(2)n , Φ(2), and the assumption of
independence of the two innovation series. Then, T4n = op(M1/2/n). By symmetry, we
have also T5n = op(M1/2/n). Finally, from Markov inequality, we have

n−1

∑
j=1

k2( j/M)‖c(12)
b ( j)‖2 = Op(M/n) (5.A.23)

hence, using the Cauchy-Schwarz inequality and the result for T3n, we obtain that T6n =

op(M/n). Thus, T (2)
n = op(M1/2) and the proof of Proposition 5.3.1 is completed.
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PROOF OF PROPOSITION 5.3.2 Since Dn(k) = MD(k){1+ o(1)}, it is sufficient to
show that

T (â, Σ̂)−T (â,Σ) = Op(M/n1/2) . (5.A.24)

Using the fact that C(hh)
â (0)−Σh

n = Op(n−1/2) for h = 1, 2 [see Lütkepohl and Saikkonen
(1997, p.133)], it follows that

[
C

(22)
â (0)

−1
⊗C(11)

â (0)
−1]
−
[
Σ−1

2 ⊗Σ
−1
1
]
=Op(n−1/2) . (5.A.25)

Thus,

T (â, Σ̂)−T (â,Σ) = n
n−1

∑
j=1−n

k2( j/M)c
(12)
â ( j)

′
Op(n−1/2)c

(12)
â ( j)

= Op(n1/2)
n−1

∑
j=1−n

k2( j/M)c
(12)
â ( j)

′
c
(12)
â ( j) . (5.A.26)

To complete the proof, it remains to prove that

B(n) =
n−1

∑
j=1−n

k2( j/M)c
(12)
â ( j)

′
c
(12)
â ( j) = Op(M/n) . (5.A.27)

First, let us decompose B(n) in two parts

B(n) =
n−1

∑
j=1−n

k2( j/M){c(12)
â ( j)

′
c
(12)
â ( j)−c(12)

a ( j)
′
c
(12)
a ( j)}+

n−1

∑
j=1−n

k2( j/M)c
(12)
a ( j)

′
c
(12)
a ( j)

= B1 +B2 . (5.A.28)

By an argument similar to the one used to prove (5.A.7) in Proposition 5.3.1, we have:

B1(n) =
n−1

∑
j=1−n

k2( j/M){c(12)
â ( j)

′
c
(12)
â ( j)−c(12)

a ( j)
′
c
(12)
a ( j)}= op(M1/2/n), (5.A.29)
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and, by Markov inequality, it follows that

B2(n) =
n−1

∑
j=1−n

k2( j/M)c
(12)
a ( j)

′
c
(12)
a ( j) = Op(M/n) . (5.A.30)

Combining the results for B1(n) and B2(n), we obtain that

T (â, Σ̂)−T (â,Σ)) = Op(n1/2)Op(M/n) = Op(M/n1/2), (5.A.31)

and the proof of Proposition 5.3.2 is completed.

PROOF OF THEOREM 5.4.1 First, we note that the statistic Qn is a normalized version
of T (â, Σ̂) which can be viewed as the L2-norm of a kernel-based estimator of the cross-
coherency function between the two innovations processes. Thus, the statistic Qn can be
expressed as

Qn =
n‖s(12)

â ‖2
2−m1m2Sn(k)√

2m1m2Dn(k)
(5.A.32)

where s(12)
â is the estimator of the cross-coherency function between the two innovations

processes given by

‖s(12)
a ‖2

2 =
∞

∑
j=−∞

γ
(12)
a ( j)′ (Σ2⊗Σ1)

−1
γ
(12)
a ( j) (5.A.33)

where γ
(12)
a ( j) := vec[Γ (12)

a ( j)]For details, see Section 4 in Bouhaddioui and Roy (2006).
By definition of Qn, we can write(

M1/2

n

)
Qn =

M1/2‖s(12)
â ‖2

2−
M1/2

n m1m2Sn(k)

{2m1m2D(k)}1/2

=
‖s(12)
â ‖2

2

{2m1m2M−1Dn(k)}1/2 −
n−1Sn(k)

{2M−1Dn(k)}1/2 (m1m2)
1/2 .(5.A.34)

From (5.3.11), the last term of the previous equation goes to zero when M/n → 0 as
n→ ∞. Using the linear transformation bt = Σ

−1/2at , as in Proposition 5.3.1, we have
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‖s(12)
a ‖= ‖s(12)

b ‖. Also, since the processes b(1) and b(2) are stationary and by Lemma A.7
in Bouhaddioui and Roy (2006), we have that

‖s̃(12)
b ‖

2−‖s(12)
b ‖

2 p→ 0 (5.A.35)

where ‖s̃(12)
b ‖ is defined as ‖s(12)

b̂ ‖, the residual series (b̂(1)t , b̂
(2)
t )n

t=1 being replaced by the

innovation series (b(1)t , b
(2)
t )n

t=1. Thus, to prove the consistency result (5.4.4), it is sufficient
to verify that ‖s(12)

b̂
‖2

2−‖s̃
(12)
b ‖

2
2

p→ 0, which follows from the following lemma.

Lemma 5.A.1 Under the assumptions of Theorem 5.4.1, we have

‖s̃(12)
b̂
‖2

2−‖s̃
(12)
b ‖

2
2

p→ 0 (5.A.36)

PROOF OF LEMMA 5.A.1 By definition of s(12)
b̂

and s̃(12)
b , and by similar calculations

to those for the proof in Proposition 5.3.1, we obtain

‖s(12)
b̂
‖2

2−‖s̃
(12)
b ‖

2
2 =

n−1

∑
j=1−n

k2( j/M)(‖c(12)
b̂

( j)‖2−‖c(12)
b ( j)‖2)

=
n−1

∑
j=1−n

k2( j/M)‖c(12)
b̂

( j)−c(12)
b ( j)‖2

+ 2
n−1

∑
j=1−n

k2( j/M)〈c(12)
b ( j), c(12)

b̂
( j)−c(12)

b ( j)〉 . (5.A.37)

It is sufficient to prove that the first term goes to zero in probability, because the second
term can be bounded by a product of the first term and a finite quantity, using the Cauchy-
Schwarz inequality. With the notations of Proposition 5.3.1, we can write

n−1

∑
j=1−n

k2( j/M)‖c(12)
b̂

( j)−c(12)
b ( j)‖2 ≤ 4

3

∑
l=1

Tln, (5.A.38)

where Tln, l = 1, 2, 3, are defined in Proposition 5.3.1. We first prove that T1n → 0 in
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probability. By the Cauchy-Schwarz inequality, we obtain

T1n ≤M{ 1
M

n−1

∑
j=0

k2( j/M)}{1
n

n

∑
t=1
‖b(1)t ‖2}{1

n

n

∑
t=1
‖η̂ t‖2} . (5.A.39)

By definition of η̂ t , it follows that

1
n

n

∑
t= j
‖η̂ t‖2 ≤ 1

n

n

∑
t=1
{‖(Λ(2)− Λ̂(2))W

(2)
t ‖2 +‖ξ t(p(2)n )‖2} . (5.A.40)

Since ‖Γ (11)
a (l)‖ is uniformly bounded by a positive constant ∆ , and the parameters {Φl}

are a linear function of the original parameters {Gl}, then the bias approximation can be
bounded by

E‖ξ t(p(2)n )‖2 ≤ ∆(
∞

∑
l=p2+1

‖Φ(2)
l ‖)

2 = o(n−1) . (5.A.41)

See also the result (A.12) in Saikkonen (1992). Under the assumptions on the process b,
on p(2)n and on the parameters (Φ(2)

l ), we have

T1n = Op
(M (p(2)n )2

n

)
+Op(M

∞

∑
l=p2+1

‖Φ(2)
l ‖

2) = op(1) . (5.A.42)

By symmetry, we can verify that T2n = op(1). For T3n, we can write

T3n =
n−1

∑
j=0

k2( j/M)‖1
n

n

∑
t= j+1

δ̂ t η̂
′
t− j‖2

≤ M{ 1
M

n−1

∑
j=0

k2( j/M)}{1
n

n

∑
t=1
‖δ̂ t‖2}{1

n

n

∑
t=1
‖η̂ t‖2} . (5.A.43)

By symmetry, we can prove that 1
n ∑

n
t=1 ‖δ̂ t‖2 = Op

(
(p(1)n )2/n

)
+Op(1)∑

∞
l=p1+1 ‖Φ

(1)
l ‖

2,
and using the same assumptions as those for T1n, we obtain that T3n = op(1). Finally, we
conclude that

‖s̃(12)
b̂
‖2−‖s̃(12)

b ‖
2 = op(1) . (5.A.44)

This completes the proof of Lemma 5.A.1 and then Theorem 5.4.1.
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PROOF OF THEOREM 5.5.1 By the proof of Theorem 5.4.1,

Qn =
n‖s(12)

b ‖
2
2−m1m2Sn(k)√

2m1m2Dn(k)
+op(1). (5.A.45)

where

n‖s(12)
b ‖

2
2 =

n−1

∑
j=1−n

k2( j/M)c
(12)
b ( j)

′
c
(12)
b ( j)

= n
n−1

∑
j=1−n

k2( j/M)(c
(12)
b ( j)− γ

(12)
b ( j))′(c(12)

b ( j)− γ
(12)
b ( j))

+2n
n−1

∑
j=1−n

k2( j/M)c
(12)
b ( j)

′
γ
(12)
b ( j)

−n
n−1

∑
j=1−n

k2( j/M)γ
(12)
b ( j)

′
γ
(12)
b ( j)

= n
n−1

∑
j=1−n

k2( j/M)(c
(12)
b ( j)− γ

(12)
b ( j))′(c(12)

b ( j)− γ
(12)
b ( j))

+M1/2
n−1

∑
j=1−n

k2( j/M)λ
(12)
b ( j)

′
λ
(12)
b ( j)+op(M1/4).

Since there exists j∗ ∈ Z such that Λ(12)
b ( j) = , ∀ j (| j|> j∗), we have

∞

∑
j=−∞

k2( j/M)λ
(12)
b ( j)

′
λ
(12)
b ( j) =

j∗

∑
j=− j∗

k2( j/M)λ
(12)
b ( j)

′
λ
(12)
b ( j)

→
∞

∑
j=−∞

λ
(12)
b ( j)

′
λ
(12)
b ( j) := β (Λ

(12)
b ).

Thus,

n‖s(12)
b ‖

2
2−m1m2Sn(k)√

2m1m2Dn(k)
L→ Z +

β (Λ
(12)
b )√

2m1m2D(k)

where Z ∼N (0, 1).
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Conclusion

In this thesis, we studied statistical methods which are valid without arbitrary assumptions
on the underlying data generating process. In Chapter 2, we consider a bound approach for
weakly identified nonparametric regression E[Y |X ] based on a parsimonious approximate
model complemented by approximation bounds. The proposed bounds only depends on
the moments of observables and can be easily estimated. Inference takes the form of sets
and favorable finite sample properties of the approach were reported in the Monte Carlo
simulations. In Chapter 3, we propose generalized C(α)-type test procedures under non-
standard rates of convergence. We allow for estimating equations and restricted estimators
of nuisance parameters to converge at slower rates than the parametric rate n1′2 and show
that the asymptotic distributions of the proposed statistics are asymptotically chi-squared.
We consider applications of the framework to testing under local estimating functions and
asymptotically unequal sample sizes. In Chapter 4, we consider a transformation approach
for dynamics of probability distributions. The proposed transformation incorporates such
key features as mass points and varying support that existing density-based methods, such
as Chang et al. (2016), are not equipped to capture. The empirical application to the dynam-
ics of the earning distribution in the U.S. showed that the dynamics of the support or top
quantiles is the main driver for persistence. Chapter 5 examines independence of two inte-
grated vector autoregression series under weak assumptions on the form of the underlying
process. A simulation studies show favorable finite sample performance of the proposed
test in terms of the size and power.
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