
Novel cryo-EM computational methods to process highly heterogenous 
samples 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Swathi Adinarayanan 
 

Anatomy and Cell Biology 
McGill University, Montreal 

August 2020 
 
 
 
 
 
 

A thesis submitted to McGill in partial fulfillment of the requirements of the degree of Master’s 
in Cell Biology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ©Swathi Adinarayanan 2020 



 2 

Table of Contents 
 
The numbers refer to the order of appearance of the thesis sections 

 

1. Title page………………………………………………………………………..P1 

2. Table of Contents………………………………………………………………..P2 

3. List of abbreviations……………………………………………………………..P3 

4. Abstrait en francais……………………………………………………………....P4 

5. English abstract…………………………………………………………………..P6 

6. Acknowledgement……………………………………………………………….P8 

7. Introduction……………………………………………………………………....P9 

8. Objectives………………………………………………………………………..P22 

9. Methods………………………………………………………………………….P27 

10. Results…………………………………………………………………………...P32 

11. Discussion……………………………………………………………………….P52 

12. Concluding remarks……………………………………………………………..P54 

13. Bibliography………………………………………………………………….....P55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

 

List of Abbreviations 
3D: Three Dimensional 

2D: Two-Dimensional 

BIM: Beam Induced Motion 

CCD: Charge-coupled Device 

CL2D: Clustering 2D 

CTF: Contrast Transfer Function 

Cryo-EM: Cryogenic Electron Microscopy 

Cryo-ET: Cryogenic Electron Tomography 

DED: Direct Electron Detectors 

DNA: Deoxyribonucleic Acid 

DRV: Direction RANSAC volume 

EM: Electron Microscopic 

EMDB: Electron Microscopic Data Bank 

EMPIAR: Electron Microscopy Public Image Archive  

FSC: Fourier Shell Correlation 

ML: Maximum likelihood 

NMR: Nuclear Magnetic Resonance 

OV: Original Volume 

PCA: Principal Component Analysis 

PDB: Protein Data Bank 

RANSAC: Random Sample Consensus 

RELION: Regularised Likelihood Optimisation 

RNA: Ribonucleic Acid 

SEM: Scanning Electron Microscopy 

SNR: Signal to Noise Ration 

SPA: Single Particle Analysis 

TEM: Transmission Electron Microscopy 

. 



 4 

Abstrait en Francais 

Généré une structure trois-dimensionnelle par « Single-Particle Cryo-Electron Microscopy » 

(SPA-CryoEM) d’une protéine ou d’un complexe de protéines permet l’élucidation de leur 

fonction. Une des difficultés les plus communes à rencontrer lors de l’analyse SPA-CryoEM est 

l’hétérogénéité des échantillons. Lors de mon projet, j’ai adressé deux problèmes liés à l’analyse 

des échantillons très hétérogènes. Mon premier but était d’obtenir la meilleure reconstruction 

possible de la conformation la plus abondante et mon deuxième but était d’obtenir des 

reconstructions de toutes les conformation présentes dans l’échantillon très hétérogène. Les 

techniques utilisées en ce moment ne sont pas capables de surmonter l’hétérogénéité des 

échantillons pour atteindre mes deux buts. Pour résoudre ce problème, j’ai développée deux 

méthodes : « Directional Pruning » et « Directional RANSAC ».   

Directional Pruning est une méthode qui permet d’enlever des particules qui n’ont pas êtes filtrer 

hors de l’analyse lors des étapes avent. Cette méthode utilise des classes directionnelles (classifier 

les particules dans deux classes par direction) qui groupent les particules qui ont une orientation 

similaire et crée des classes deux-dimensionnelles. Les classes deux-dimensionnelles qui sont le 

moins abondantes sont élevées de chaque groupe directionnel. Les particules qui restent dans les 

classes deux-dimensionnelles sont considérées comme un échantillon homogène. Mon hypothèse 

était que cette méthode d’analyse augmentera la résolution de la structure finale de l’échantillon. 

Pour tester mon hypothèse, j’ai analysée diffèrent ensembles de données hétérogènes avec la 

méthode Directional Pruning. Mes résultats n’ont pas démontré une augmentation notable de la 

résolution de la structure finale.  

Pour mieux comprendre mes résultats, j’ai conçu un nouveau ensemble d’expériences pour tester 

si la méthode de « maximum likelihood » (ML) (qui est la méthode standard en ce moment) est 

capable de générer une structure avec un haute résolution si l’échantillon de départ est très 

hétérogène. Mes résultats démontrent que si le volume initial est généré par un grand nombre de 

micrographes, l’algorithme ML ignore l’hétérogénéité qui reste dans l’échantillon. Donc, il n’est 

pas nécessaire d’inclure des filtres additionnels pour l’analyse.  

Directional RANSAC est une méthode d’analyse qui génère de l’information structurale des 

échantillons hétérogènes. La moyenne des classes deux-dimensionnelles est génère pour chaque 

classe, puis ces moyennes sont sélectionnées de manière aléatoire pour générer plusieurs classes 

trois-dimensionnelles. Ensuite, un analyse « Principal Component Analysis » (PCA) est effectuée 
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pour générer des cartes trois-dimensionnelles pour identifier des patrons structuraux. Les groupes 

structuraux sont ensuite combines avec les autres groupes les plus similaires. Finalement, plusieurs 

cartes trois-dimensionnelles qui représentent plusieurs conformations de l’échantillon sont 

générées. J’ai testé ces approches avec plusieurs échantillons hétérogènes et mes résultats étaient 

satisfaisant compares aux approches qui sont utilisées en ce moment.  

En plus, ces cartes trois-dimensionnelles peuvent servir de référence pour raffiner d’avantage les 

multiples structures finales trois-dimensionnelle d’un échantillon hétérogène.  
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English Abstract 
The three-dimensional (3D) structures of biological complexes obtained from Single-particle 

Cryo-Electron Microscopy (SPA-CryoEM) provide crucial structural insights that help in the 

determination of their functions. One of the most challenging aspects of SPA-CryoEM is sample 

heterogeneity. In my research project, I address two different issues found in the processing of 

highly heterogeneous samples. My first aim is focused on obtaining the best possible 

reconstruction of the predominant conformation while my second pursues to obtain reconstructions 

of all different conformations in the heterogeneous sample. Current approaches fail to address 

these two problems in highly heterogeneous datasets. Hence, I developed two novel computational 

methods to address these two challenges separately: Directional Pruning and Directional 

RANSAC. 

 Directional Pruning is a method that enables us to remove remanent heterogeneities or the artifacts 

in the difficult datasets which are not removed by previous screening steps. This method uses 

directional classes, which groups particles with similar orientation together and performs 2D 

classification on these groups, classifying particles into two classes per direction. The particles 

belonging to the least populated 2D classes are removed from every directional group. The retained 

particles are considered homogenous particles. My hypothesis is that the retained homogenous 

particles will improve the quality of the final reconstruction. To test the hypothesis, different 

datasets of structurally heterogeneous samples were processed with directional pruning. The 

results showed only a slight improvement but did not really improve the quality (resolution) of the 

reconstruction.  

 In order to understand my results further, I developed a new set of experiments. These experiments 

were designed to test the theory of the maximum likelihood (ML) algorithm used in processing of 

the datasets. Our results show that when I provide a good initial volume, ML algorithm 

automatically disregards remanent heterogeneities/artifacts present in the dataset without requiring 

any screening or pruning process. 

 Directional RANSAC is a method that provides structural information of many different 

conformations in heterogeneous datasets. Directional classes are used to generate a number of class 

averages in all angular directions. Then, class averages are randomly selected along with their 

angular information to generate multiple 3D maps. Principal Component Analysis (PCA) is 

performed on generated 3D maps to identify the underlying structural components. These 
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structural components are clustered and averaged on the basis of their similarity. Then, multiple 

3D maps, representing different conformations of the macromolecule in the heterogeneous dataset 

are produced. The proposed approaches were tested with different structural heterogeneous 

datasets and the results are found to be satisfactory in comparison with current approaches. 

Moreover, these 3D maps can be used as reference volume in further 3D classification/3D 

refinement steps to obtain final 3D reconstructions of the macromolecule of interests in many 

different conformations. 
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Introduction  
 Cells are building blocks of any living system [1]. There are different types of cells. These cells 

consist of a variety of structural components which signifies the function of the cells. To 

investigate the unknown features of the cells, structure components are studied in detail. Amino 

acids are the basic unit of the cells. The majority of all cell structures can be simplified to an amino 

acid sequence [2]. The series of different combinations of amino acids give rise to protein. Hence, 

the most identifiable constitute of all structural compartments of cells is the protein. Proteins are 

derived from genomic sequences. Cell’s genetic material DNA or RNA contains information to 

synthesis protein [3].  Proteins help in cell shape and carry out a variety of cell functions. Hence, 

they are studied in detail to understand the different features of the cell. Proteins are classified 

based on their structure and function. These two parameters are highly correlated with each other 

in how the protein structure can determine the function and vice-versa. Studying different types of 

cellular proteins or their structural information will help in better understanding of their cellular 

function [4].  

  

3D Structure Techniques  
There are different techniques with different principles used to determine the 3D structure of 

macromolecular complexes, or cell compartments. The universal methods to acquire 3D structures 

are X-Ray crystallography, Nuclear Magnetic Resonance (NMR), and Transmission Electron 

Microscopy (TEM). Sometimes a single technique is insufficient to provide structural details of 

the biological sample. In such cases, the mentioned techniques are combined [5] to complement 

each other. Earlier, the most commonly employed complement technique is Electron 

Crystallography, where the sample is crystallized like X-Ray crystals, but the samples are imaged 

using electron in TEM [5].  

  

X-Ray crystallography  
 X-Rays crystallography is a widely used technique to solve protein 3D structures at atomic 

resolution.  The proteins need to be crystallized, so they are orderly packed inside the crystal. The 

diffraction patterns of the sample, obtained by X-rays at different orientations, are used to calculate 

spatial distances and identify the components present [6]. Thus, enabling X-Ray crystallography 
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to solve atomic models of the sample protein. The Protein Database Bank (PDB) which is an 

archive containing 3D structure information of biological molecules,has more atomic model 

depositions from X-Ray crystallography than from any other structural methods [7].  

                  Although there are many atomic models solved by X-Ray crystallography, the native 

structure of the protein may not be preserved. This is mainly due to the crystallization of the 

sample. Also, not all protein sample yield crystals. If the sample protein exhibits heterogeneity 

showing different confirmation, it is really tedious and challenging sometimes even impossible to 

obtain crystal for structure analysis [8].  

  

NMR  
There is another structural technique named Nuclear Magnetic Resonance (NMR), which was 

widely famous for solving small cellular protein structures and helping to investigate the different 

conformations of heterogeneous proteins structure as well. NMR is used extensively to identify 

molecular conformations in a solution and solves physical properties like solubility, phase 

changes, and diffusion at the molecular level. NMR uses an external intense magnetic field to 

identify structural elements based on their energy transfer [9].  

                     The major limitation of NMR spectroscopy is the size restriction of the sample which 

is typically limited to 70-90 KDa. 

  

3D Electron Microscopy  
Initially, light microscopy was used to investigate the components of the cells. However, scientists 

were unable to see the structures beyond the provided resolution which was typically around 

0.2𝜇𝑚 in optical microscopy at that early times. The inability to study the cells lead to the 

discovery of the Electron Microscopy (EM) in 1931, which was developed by Ernest Ruska [10]. 

The invention of Electron Microscopy helped to visualize the cell components beyond the light 

microscope resolution.  

                 Electron Microscopy comprises of several different of techniques such as TEM, 

Scanning Electron Microscopy (SEM), etc., which are actively used in the field of Cell Biology. 

TEM is often used to image and analyze of cell proteins along with their structure. TEM provides 

information about the samples internal structure where SEM focuses on morphology and chemical 

composition of the sample. Due to the high vacuum state inside the microscope, the living sample 
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cannot be imaged directly like in light microscopy. The presence of any form of water components 

will degrade the high vacuum conditions of EM, causing contamination of the sample in the form 

of artifacts and noisy images [11].     

                 Hence, there are unique sample preparation methods in EM. Namely resins, chemical 

and temperature treatments and, heavy metal staining are used to remove water content from the 

samples such that they can be imagined by Electron Microscopy [12]. Sometimes the sample 

preparation can disrupt the sample integrity. Using these methods will help visualize the outer 

structure of the sample. However, detailed information of inner components will remain 

unachieved, and the resolution of this structure will be far from atomic resolution [13].  

  
Cryogenic Electron Microscopy (Cryo-EM) 
 These structural techniques outlined before are considered as universal techniques of structural 

biology to solve cellular structure or reconstruct macromolecules in three-dimensions. The 

performance of these techniques improved with the addition of new technology advances. One of 

the technology advances that made a breakthrough in TEM was introduction of Direct Electron 

Detectors (DED) in Cryo-electron microscopy (Cryo-EM). 

                Cryo-EM is a structural technique that uses TEM to study macromolecular assemblies 

in a thin layer of amorphous ice. Cryo-EM differs from classic EM in terms of its capacity to 

preserve the native state of protein or macromolecules [14]. To maintain the native state of the 

samples, the macromolecules in solution are plunged freeze at-198 ºC to obtain a thin layer of 

amorphous ice. As explained before, usually TEM cannot image biological samples due its water 

content, which will evaporate in the high vacuum conditions maintained inside TEM. Cryo-EM 

on freezing the biological sample at -198 ºC transforming water contents into vitreous 

ice [15].  The data collected from the EM may be used to reconstruct 3D structures of the 

macromolecules under study with the help of image processing computational methods. Cryo-EM 

overcomes the significant hurdles faced by X-Ray crystallography and NMR Spectroscopy, which 

requires crystals and smaller proteins for better results, respectively. Unlike X-Ray crystallography 

and NMR Spectroscopy, Cryo-EM doesn't require a highly concentrated sample for the imaging 

process. Cryo-EM widely is sub-divided into two main categories: Single Particle 

Analysis (SPA) and Cryo-Electron Tomography. These two methods are profoundly different 
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from each other in terms of the samples used, imaging techniques, and software used for image 

processing.  

                In Cryo-Electron Tomography (Cryo-ET) (Figure 1.1), large macromolecular machines, 

an entire organelles or even cells scan be reconstructed. This image modality consists of tilting the 

sample at different angles during imaging processing inside the EM [16]. There is a physical 

restriction in the maximum tilting of the sample and usually the sample cannot be tilted more than 

±	60 degrees. The tilt restriction results in the ‘missing wedge problem’ as structural information 

above this ±	60	degrees angle is unavailable. The missing wedge can be identified by an 

elongation or stretching of the reconstructed volume, misshapen or missing structural features. The 

missing wedge can be minimised by dual axis tomography where the sample is rotated to 90 degree 

and tilted. 

                Another major problem faced by Cryo-ET is radiation damage. In Cryo-ET the same 

sample area must be radiated multiple times during the collection of tilt series. The radiation 

damage occurs mainly due to prolonged exposure of sample to electrons while tilting. The 

radiation damage can be minimised by reducing the dose of electrons which in turn results in noisy 

projection images, which are challenging to be aligned. 

                The data collected from the electron microscope is computationally compiled in a way 

that the angular information during tilting is used to finally obtain a 3D reconstruction of the 

sample using typically using a weighted back projection [16]. The final reconstructed tomogram 

in Cryo-ET has a limited resolution of typically 12-40Å. 

                An extension of Cryo-ET, namely sub-tomogram averaging, overcomes the problems 

faced by classical Cryo-ET to achieve high resolutions reconstructions. As with Cryo-ET, sub-

tomogram averaging analysis the complexes in-situ structure determination without any separate 

isolation or purification techniques allowing in-situ analysis. These complexes are found in 

multiple copies within the cell. These complexes are detected, aligned, averaged, and reconstructed 

to 3D structures [16]. The highest recorded resolution of sub-tomogram averaging achieved so far 

is 3.1 Å(EMDB-8986). 
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Figure 1.1: Principle of Cryo-Electron Tomography image processing [17] (A) Tilting of the sample 

during the imaging by electrons inside TEM. (B) Aligning images according to the tilt-series. (C) Back-

projection of tilt-series images to form 3D tomogram. (D) Sub-tomogram averaging. Image is used with 

permission. 

  

 SPA 
Among the Cryo-EM methods, Single Particle Analysis (SPA) is likely the most successful and 

famous because its capacity to provide near atomic reconstructions at the macromolecular native 

state. In this modality, macromolecular complexes to be analyzed are biochemically isolated and 

purified. After the purification process, the sample is flash-frozen by plunging it into the liquid 

ethane to obtain a thin layer of vitreous ice where the macromolecular complexes are embedded.  

In this technique, the vitreous ice layer has multiple copies of the identical sample found at 

different orientations (Figure 1.2) whose microscopic projection images are collected from the EM 

and used for 3D reconstruction.  SPA does not require tilting of the sample for 3D reconstruction. 

Hence, the disadvantages of Cryo-ET are surpassed by SPA. Like sub-tomogram averaging the 

samples are averaged. There are some inconveniences during imaging that affects the 3D 

reconstruction, for example, the use of low electron dose conditions to avoid damage of the 

biological sample results in noisy images. Low contrast images are really difficult to interpret. 
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Despite these inconveniencies SPA is widely useful in solving biological structures at near-atomic 

resolution [18]. At that resolution, it is possible to build an atomic structure or model that plays a 

significant role in drug development or design sectors. In additions, SPA is able to solve 3D 

structures of small and large macromolecules at low sample concentration and at its native state. 

It is possible to obtain 3D structure of small and large macromolecules at low sample concentration 

and provides information about structural conformation as well. The number of structure 

depositions in the Electron Microscopy Data Bank (EMDB) is higher when compared to other 

Cryo-EM methods [19].  

                The conversion of the SPA microscopic data into 3D structures requires a series of 

computational steps. In general, they are referred to as a workflow. The typical SPA workflow 

includes motion correction, contrast transfer function (CTF) estimation, particle selection and 

extractions, 2D classification, initial volume, 3D classification, 3D refinement and finally, 

reconstruction.  

 

Figure 1.2: Principle of Single Particle Analysis Cryo-Electron Microscopy [20]. Image is used with 

permission. 
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Motion correction 
This is the first step in the image processing workflow where the data collected from the electron 

microscope is aligned. The collected data is in the form of movies, not images, unlike traditional 

EM data. The frames comprising the movies are aligned to reduce the blurring in the resultant 

images caused by the beam-induced motion (BIM) [21-23]. The movement of the sample is due 

to the interaction of the sample with the electron beam and causes a blurring effect in the resultant 

images. Before the technology breakthrough experienced by Cryo-EM in 2012, it was not possible 

to compensate for the BIM, thus the obtained images and resultant final 3D reconstruction were 

inevitably blurred and of low resolution. However, with the advent of a new generation of camera, 

the DED that records electron impacts directly as opposed to previously used indirect electron 

detectors like CCDs (Figure 1.3) [23], it now is possible to achieve routinely near-atomic 3D 

reconstructions for appropriate samples. The correction of the BIM in the EM images, has become 

a routine pre-processing step that has allowed the so called resolution revolution in cryo-EM 

[24].After tracing the sample movement caused by the BIM and aligning the movies frames, the 

corrected frames are reduced to an aligned average micrograph that preservers the high resolution 

content.  

  

Figure 1.3: (A) Represents effect of Beam induced movement on CCD image. (B) DED movies which 

enable the motion correction induced by BIM [26]. Image is used with permission. 
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CTF estimation 
CTF estimation step is one of the screening steps in the SPA workflow where the optical 

aberrations, mostly the defocus aberration affecting the micrographs are estimated. Based on this 

information, micrographs are screened.   

CTF is estimated to identify the distortions introduced by the electron microscope to the EM 

images, correct them and screen the micrographs based on the results of the fitted CTF [27-30]. 

The CTF pattern of a good micrograph will have perfect concentric circles moving from the center 

towards the edge. The CTF pattern of a bad micrographs can be identified by asymmetric rings, 

corresponding to images affected by astigmatism aberration and/or faded rings showing the 

presence of sample drift in a particular direction during imaging (Figure 1.4) [28]. Micrographs 

showing a low quality CTF pattern (as shown in Figure 1.4) should be removed from the image 

processing workflow as they contain distorted information that will affect the quality of final 3D 

reconstruction. 

  

Figure 1.4: Screening of Micrograph based on CTF [28]. Image is used with permission. 
 

  

 Particle selection and extraction 

The particle selection step is crucial as it directly contributes to the quality and resolution of the 

final 3D structure. Identifying and selecting each and every particle from the micrograph set is the 

aim of this step (Figure 1.5). Initially, this task was carried out manually to choose a few 

hundred of thousands of particles from the collected micrographs [34]. To facilitate this task, many 

automatic [31-33] and semi-automatic approaches have been proposed [34-35]. However, these 
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approaches are prone to usually select also many incorrect picked particles corresponding to false 

positive.  

After the particle selection step, the selected particles are extracted [32-35]. Then, a particle image 

set is created, where each image only contains one particle projection that is located at the centre 

of the image. Moreover, after the particle extraction step, it is highly recommended to perform a 

particle screening task on the extracted particles to detect and remove false-positive particles from 

the processing [36-37]  

Figure 1.5: Particle Picking interface on a micrograph [35]. Image is used with permission. 

  

 2D classification 

The aim of the 2D classification step is to group particle projection images with similar orientations 

to finally average them to improve the signal to noise ratio of the resultant average image [38]. 

Considering that the particle images provided by cryo-EM are always very noisy and affected by 

very low contrast, these averaged particles with improved the signal to noise ratio (SNR) allow to 

assess the quality of the dataset and preclude the existence of potential problems such as the 

presence of preferential orientations. The averaging of particles is efficient when the similar 

particles are grouped together. The particles are classified and aligned based on their similarity. 

Here particle similarity represents similarity in terms of particle orientation inside the vitreous ice 

layer. In other words, the particles with similar orientation are grouped together, aligned, and 
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averaged (Figure 1.6). Different approaches have been proposed to perform the task of 2D 

classification [38-40]. The maximum likelihood approach is one of the most popular and effective 

methods to achieve the 2D classification. This approach assumes that each particle is in all possible 

orientations simultaneously but contributing with different statistical weights. Based on these 

weights, particles are averaged and assigned to the different classes. To improve the accuracy of 

the 2D classification task, sometimes reference images are considered [38]. In this case, the 

particles can be classified and aligned based on these references, which are provided by the 

user [40]. Along with the computed 2D class average and the orientation information, the 2D 

classification indicates the presence of symmetry or heterogeneity in the sample. Moreover, this 

process is usually employed as an additional particle screening task to remove particle images 

classified into groups providing yielding featureless, low resolution or inconsistent 2D class 

average, which are referred to as junk particles.  

 

Figure 1.6: 2D classification of Beta-Galactosidase dataset. Highlighted 2D class averages are good class 

averages selected for next step in image processing while remaining class average are bad averages 

assumed to have junk particles [41]. Image is used with permission. 

  

Initial Volume 

A first guess of the final 3D structure that is required to further process the data. If the sample of 

interest has a predetermined model like a homology model that has been previously solved, this 

3D reconstruction can be used as first guess or initial volume [42]. This initial volume will be low 

pass filtered to prevent bias during further processing steps. However, if the sample of interest 
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doesn’t have a predetermined model, then this initial model should be obtained from the data 

computationally. Some approaches may provide an initial volume [42-44]. One of the commonly 

used approaches to generate an initial volume a RANSAC [44]. In the RANSAC approach, 

orientations are randomly assigned to a subset of 2D class averages, and multiple random volumes 

are generated. These volumes are also scored by RANSAC comparing their projections with the 

other class averages (Figure 1.7). The best-scored volume is selected as initial volume for further 

processing.  

  
Figure 1.7: Initial volume generation employing the RANSAC approach (a) good and (b) bad (due to 

incomplete density information) initial volumes are generated from 2D averages of Beta-galactosidase 

dataset [45]. Image is used with permission. 
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 3D classification 

The aim of 3D classification approach is to group particle images based on their conformation. 

Usually, the 3D classification approach requires an initial volume to perform the 

classification [29,38-40]. If the dataset is homogenous showing an unique conformation the 3D 

classification will result in one 3D class comprising the majority of the dataset particles. Other 

minoritarian 3D classes can be formed but are assumed to contain only junk particles [42]. In the 

presence of a heterogeneous dataset i.e., a dataset collected from a macromolecular complex 

showing different structural conformations, each 3D class represents one different conformation. 

Along with this, the 3D classification step provides information of the prominent conformation 

identified in the sample inside the vitreous layer. The presence of an inappropriate initial volume 

in heterogeneous datasets sometimes causes bias in the classification, which causes that all 

particles migrate towards one class irrespective of their conformation [42]. Thus, it is essential to 

use accurate initial volume and low pass filtered initial volumes. During the low pass filtering, all 

high-resolution information is filtered out leaving only the low-resolution content. 

  

3D refinement 
In the refinement step, the angular information of particles bellowing to each 3D class is refined 

iteratively. Thus, the resulting 3D class is improved though different iterations to obtain finally a 

high-resolution 3D map. The 3D refinement has mainly two different approaches to refine the 

particles' angular information: maximum likelihood approach [39-40] and projection 

matching [46].   

                     In projection matching, the 3D map is projected at different directions. Each 

experimental projection images are compared with all map projections so the orientation of the 

best-matched map projection is assigned to that particle image. This process is carried out 

iteratively such that angular information of all particles is obtained. The angular information 

provided by projection matching is not accurate due to the high level of noise in the images. 

                     In the maximum likelihood approach, it is assumed that each particle is presented in 

all possible orientations but with different statistical weights. Based on these weights, particles are 

averaged and assigned to the different classes. The maximum likelihood approach has shown to 

be more robust to noise than projection matching.  
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                     The resolution of the 3D refined structure is evaluated by the Fourier shell 

correlation (FSC) [47-49] through the Gold Standard approach. In the Gold standard approach, the 

dataset is divided into two halves which are processed independently, giving rise finally to two 

independent 3D reconstructions. These two independent maps are band-pass filtered at different 

resolution, and at every resolution, the correlation is calculated between them. At low resolutions, 

the two maps are usually very similar due to the presence of low noise, so the correlation is found 

to be close to one. As the resolution increases, the two maps show differences between them, thus 

the correlation starts to drop off 

                   The resolution of the 3D maps is typically evaluated by the 0.143 cut-off value. The 

0.143 cut-off value means that when the correlation coefficient of the two independent values 

equals to 0.143, the resolution at the point is considered as the final resolution. Though 0.143 cut-

off value is commonly used, some studies use 0.5 cut-off value and other criteria to evaluate 

resolution. 

  

Reconstruction  
The 3D reconstruction step is the final step of the SPA workflow, which generates the final 3D 

structure (a density map). All particles with the refined orientation information are re-projected 

back to obtain the final 3D structure [40]. After obtaining the 3D reconstruction, the map is usually 

low pass filtered at the resolution provided by the FSC during the 3D refinement process. This 

final map may be used, depending on its resolution to build an atomic model [50]. The constructed 

model can be deposited in the protein database bank whereas final 3D structure can be deposited 

in Electron Microscopy Data Bank irrespective of its resolution.  
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Objectives 
Resolution could be intuitively understood as the ability to resolve minute details of the sample of 

interest [51]. Hence the smallest improvement in the resolution number sometimes would result in 

unlocking vital structural information of the sample of interest. 

                  In Cryo-EM, there are different sub-categories of the resolution which are commonly 

used to categories the structures, high-resolution, medium-high resolution, medium-low 

resolution, and low resolution. At each of these sub-categories, different features of protein 

structures are unlocked. 

                  The low-resolution range is typically defined at until 8-10 Å resolution, where alpha-

helices look like tubes, beta sheets as tubes. The medium-low resolution range is between 5-7 Å, 

where the handedness of the secondary structures can be differentiated. Medium-high resolution 

ranges fall within 3-4 Å where the atomic backbone is traceable, deep grooves and precise pitches 

of the secondary structures are visible. This resolution is sufficient to build an atomic model.  High 

resolution is also known as a near-atomic resolution which is the highest resolution one could 

achieve through Cryo-EM. High resolution ranges above 3 Å, where amino acid side chains are 

distinguishable [52]. The current highest recorded resolution in the Electron Microscopy Database 

Bank (EMDB) [19] is 1.25 Å (EMDB ID: 11103).  

Figure 2.1: A chart representing maps released in EMDB over the last 18 years obtained from their 

official website 
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The invention of the Direct Electron Detectors (DED) [21] in 2012 enabled the transition of 

resolution from low resolution to the medium and high-resolution range. This transition phase is 

widely called a Resolution Revolution [25]. The number of Cryo-EM maps released in EMDB has 

increased geometrically (Figure 2.1) 

                   It is a tedious effort to obtain high resolution or the medium-high resolution of any 

sample of interest. There are some challenges faced. In some cases, the challenges are due to 

improper sample preparation or purification techniques, but commonly identified challenges in 

Cryo-EM are the presence of preferred orientations and structural heterogeneity in the samples. 

These two significant challenges hinder the samples from achieving their best resolution. 

   Figure 2.1: Representation of preferred orientation [55]. Image is used with permission. 

       

Preferred orientations (Figure 2.2) are found to be present when the sample of interest interacts 

with the air-water interface during plunge freezing. This interaction causes the sample to orient at 

a particular view, making it difficult to obtain complete angle information. As SPA requires 

samples to be present in the random view to reconstruct 3D structures. On processing the samples 

of preferred orientation will results in elongated structure or misshapen structure wherever 
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structural information is missing. The structures are similar to that of missing wedge problem in 

Cryo-ET. There are some specific types of samples, like membrane proteins, prone to be affected 

by preferred orientation. Accordingly, these samples require a particular type of sample 

preparation like pre-treating the grid with specific chemical compounds[53-55] 

Structural heterogeneity refers to the presence of different structural conformations in the sample 

of interest. This is a common phenomenon that occurs even after the purification of the sample. 

Figure 2.2: Cryo-EM dataset consisting different structural conformers[58]. Image is used with 

permission. 

 

Thesis Challenges 
There are two different problems faced while processing highly heterogeneous dataset. First, to 

obtain pure particles that belong to dominant structural conformation in the dataset. There are 



 25 

various cleaning and classification methods are available to overcome this challenge, but these 

methods are not as efficient for highly heterogeneous samples. 

                  Second, to obtain structural information of all existing conformation in the dataset., the 

existing classification approaches can provide few different conformations from datasets showing 

moderate heterogeneity but they fall short when trying to obtain many different states from highly 

heterogeneous datasets. 

 

Current available methods 
Even after performing a thorough cleaning/screening process, there will be a presence of some 

junk particles or particles belonging to remanent heterogeneity present in the dataset. The current 

method of the standard image processing pipeline to distinguish different 3D structures from a 

heterogeneous structural dataset is the 3D classification by Bayesian inference [40]. Using an 

initial volume as reference for the classification of particles, the particles belonging to different 

3D structures will be segregated, especially in cases showing massive heterogeneity, flexibility or 

cases where macromolecules shows a stable conformation but also some transient states, which 

are much less unlikely. These cases usually result in one dominant 3D class containing the majority 

of particles. This scenario is commonly termed as “attractor problem”. Though the heterogenous 

datasets consists of more conformations, the number of 3D classes are restricted. The restriction 

of number of 3D classes results in improper classification which “attracts” particles from other 

classes towards one class containing majority of particles in dataset [42]. 

Figure 2.3: 3D classification methods fails to classify heterogeneous particles based on structure 

conformation [42]. Image is used with permission. 

 

 In such cases, the final 3D structure of that predominate conformation is highly influenced 

by remanent heterogeneity, which affects the overall resolution of the 3D structure (Figure 2.3).  

In addition, the other minor conformations are very challenging to obtain and require high 

expertise in cryo-EM methodology. 
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 In Figure 2.3, it is observed that RELION 3D classification fails to perform an accurate 3D 

classification of a highly heterogenous sample. In this case, the sample is a mixture of immature 

50S bacterial ribosome subunit particles are classified with initial volumes as mature 50S 

ribosomal subunit. 

                 The classification can fail to provide (i) A single 3D class representing the predominant 

conformation in the heterogeneous dataset, which clearly is of low quality mainly because of the 

presence of particles from different conformation or states, and (ii) 3D classes representing other 

states that do not represent all existing conformation in the heterogeneous dataset. 

 

Proposed methods 
There are two approaches developed to overcome the two challenges indicated above during the 

image processing of a highly heterogeneous dataset. 

                The first method, called Direction Pruning, aims to achieve homogenous particles sets, 

free of remenant heterogeneities and artifacts so that the overall quality of the 3D map representing 

the predominant conformation will be improved. 

                 The second method, called Directional RANSAC, aims to achieve to obtain individual 

maps representing all minority class/ structure present in the heterogeneous dataset so that 

conformation change among the same molecule can be studied in detail. 
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Methods 
Scipion is a cryo-EM software platform mostly focused on Single Particle Analysis where many 

different image processing packages are integrated and can be used to create workflows. This 

software enables us to use different cryo-EM image processing packages at the same time without 

any compatibility issues.  

                   The novel methods developed through this master thesis are included in Scipion 

platform and belong to the Cryomethods package included in Scipion. The methods are developed 

in Python programming language using Pycharm IDE software. The source code for these methods 

is publicly available from Cryomethods package public repository[56]. 

 

Input conditions 
For both methods: Directional Pruning and Directional RANSAC, two forms of inputs are 

required.  

1) Input Particles: Particles images with alignment information are required 

for the approaches. The methods fail to analyse the particles without 

alignment information. 

2) Input Volume: An initial 3D reconstruction of the macromolecule is 

required for the algorithm to group particles with similar orientation and 

generate references for the 2D Classification step. 

 

Steps involved 
a. Grouping of particles 

The first and foremost step in the proposed directional methods is the grouping of 

particles with similar orientation (directional classification). Then, a 2D 

Classification task is performed over the different directional classes.  

Both methods use input parameters like angular distance and angular sampling, 

which are used to group the particles into the different directions. Angular sampling 

represents the number of different equi-spaced directions used to sample the 

projection sphere while angular distance represents the size (in degrees) of the solid 

angle used to group particles around each projection direction. The selection of 
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appropriate values for these parameters depend on the number of particles 

available. Usually, the particle population for different orientations can be 

estimated during 3D classification through the angular distribution. The angular 

distribution is obtained based on the angular information of particles used in the 

reconstruction. Thus, from a 3D reconstruction process, it is easy to identify the 

number of particles found at a particular angle. After grouping the particles, the 

particles are ready for the 2D Classification step. Henceforth groups are referred to 

as blocks. 

b. 2D Classification 

To perform the 2D Classification, another set of input parameter are required. 

(i) Classification type: This method can perform two different types 

of 2D Classification. The available methods are CL2D [38] and 

RELION 2D classification [40]. 

(ii) Number of classes: Total number of classes required per block. 

This parameter determines the number of 2D classes to be used 

in the 2D classification process run to sort out the particles of 

each directional class.  

(iii) Number of iterations: Total number of iterations to be performed 

for the 2D classifications inside each block. 

(iv) Number of particles: This parameter determines the minimum 

number of particles required for classification in each block. If 

the block has a lower number of particles than this value, the 

classification process is automatically skipped, and all the 

particles are present in that block are assumed grouped into a 

single class. Note that if there is not a sufficient number of 

particles present in a block, then the 2D classification process 

would fail. Hence it is essential to provide a correct number. A 

typical value for this parameter is 500-1000 particles. 
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Part 1: Directional Pruning 
This method aims to remove particles corresponding to remanent heterogeneities and false-positive 

particles present in heterogeneous datasets. 

A. Pruning 

After classifying the particles of each block, low populated classes in every block 

will be removed. To perform this task, another important input parameter called the 

threshold value is required. The low populated class can be identified based on the 

class population. The class population refers to the number of particles that belong 

to a 2D class. The classes with the class population less than the threshold value 

will be automatically removed along with the particles belonging to those classes. 

B. Output 

 Removing all the particles belonging to the low populated class in every direction, 

the homogeneity of the dataset is improved, then the output is generated containing 

only the good and homogeneous particles.  

 

 

Figure 3.1: A schematic representation of steps involved in Directional Pruning method. 

 

 



 30 

Part 2: Directional RANSAC 
The aim of this method to generate multiple volumes representing all different conformation 

present in the heterogeneous dataset 

A. Random selection 

In this step, 2D classes averages from every direction are randomly selected. The selection 

occurs in a way that only one class average is selected per direction. This selection 

guarantees that one class average representing every direction is present to generate 

volumes. Randomly selected class averages are used for reconstruction. 

B. Reconstruction 

A large number of random volumes are generated by the randomly selected directional 2D 

class averages. The number of random volumes to be reconstructed is determined by a user 

defined parameter 

C. Principal Component Analysis (PCA) 

PCA is performed on the generated random volumes to identify the underlying 

conformations presented in the dataset. This is an essential and most crucial step in 

Directional RANSAC. The PCA estimates a new coordinate system where the variability 

of the dataset (random volumes in this case) is maximized. PCA reduces the data 

dimensionality to lower form where variability can be estimated with reduced data losses. 

When converting 3D volumes to a lower form where the structural variability is estimated, 

the estimated variability is called Principal components. Principal components refer to 

underlying structural components. 

D. Cluster Analysis 

The random volume generated previously can be represented as data points in the principal 

components space. Then, the coordinated representing the random volumes in the PCA 

space are clustered based on their structural similarity, and volume from each cluster is 

generated. Each cluster is different from each other, so the generated representative 

volumes are also structurally different from each other. The essential parameters required 

to perform this task are:  

(i) Cluster methods: This method has two different cluster methods, namely K-means 

[59] and affinity propagation [60].  

(ii) Cluster centers: total number of cluster centers required during clustering analysis. 
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The total number of final volumes generated during this method corresponds to cluster 

centers. As the one volume from each cluster is generated 

E. Output 

The output containing structurally different volumes from the heterogeneous datasets is 

generated. 

Figure 3.2: A schematic representation of steps involved in Directional RANSAC method. 
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Results 
Three different massive heterogenous datasets were used for processing. Each method was 

developed and tested by using only two out of the three datasets. One of three datasets was 

unrefined and unpublished data whose structure information remains unknown. The other two 

datasets were refined and published. For Directional RANSAC, both refined and published 

datasets were used to compare the efficiency of the methods. For Directional Pruning, the 

unrefined and unpublished dataset and one of the refined and published dataset were used as it was 

available at the time of processing. 

 

Preprocessing of the datasets 
Ribosome I 

Ribosome I or 45S Yphc depleted ribosome cryo-EM experimental data was collected by Dr. 

Ortega’s laboratory that was shared. This dataset is composed by around 6303 movies which were 

converted into 6303 aligned micrographs generated after movie alignment using motioncorr [24]. 

These aligned micrographs were screened and corrected by CTF using CTFFIND [30]. Around 

200 micrographs were discarded after manual CTF screening. Around 898603 particles were 

picked across 5949 CTF screened micrographs through Xmipp particle picking method, a semi-

automatic approach particle picking [34]. RELION 2D classification was performed [40] to 

classify the dataset into 128 classes. Out of which, 22 good classes were selected for further 

processing. Then,10 Random initial volumes were generated from these 22 class averages by 

Xmipp RANSAC approach [44]. The best-ranked volume was selected as an initial volume. The 

particles belonging to the 22 selected classes and the initial volume were used as input for RELION 

3D classification [40]. These particles were classified into three 3D classes. The particles 

belonging to the majoritarian 3D class were selected as input for Directional Pruning and Direction 

RANSAC 

Spliceosome 

Spliceosome data was found to have a highly flexible component in its structure which makes the 

processing of this sample difficult. The complete dataset of the spliceosome was downloaded from 

EMPIAR official website (EMPIAR ID code: 10180).  This data has multiple EMDB entries 

(EMDB ID: 3682-3688), as its RNA structures and overall stability was studied in detail [57]. The 
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downloaded data contains extracted particles with orientation parameters.  CTF information and 

reconstructed volume at resolution 7.2 Å using 0.143 FSC criterion. 

Ribosome II 

This dataset is publicly available and corresponds to CryoEM particles images of L17-depleted 

50S ribosomal intermediates. Ribosomal particles images and the corresponding reconstructed 

volume for processing were downloaded from the official EMPIAR website (EMPIAR ID code: 

10076). The data available from EMPIAR consists of the particle stack along with CTF 

information but without alignment information. The processing was carried out exactly as 

mentioned on its corresponding published paper [58]. The paper has published several structural 

conformers (EMDB ID:8434,8440-8453, &8455-8457) obtained from the dataset. The paper 

mainly focuses on determining the possible ribosome assembly pathways using the obtained 

structural conformers. The published work contains five(A-E) main 3D classes. Out of the five 

classes, three(C-E) additional sub-classes were additionally sub-classified into a total of 12 3D 

classes.  One of the conformers (Class D) was selected randomly for processing by our methods. 

The particles from class D containing around 28,000 particles were selected as input. 

 

Directional Pruning 
As mentioned earlier, only two of the three massive heterogenous datasets were used to test each 

of our methods. For Directional Pruning, Ribosome I (unpublished data) and Spliceosome data 

(published data) were used for processing. Ribosome II was not processed as the dataset wasn’t 

pre-processed at the time of directional pruning testing. 

Hypothesis: Directional Pruning will improve 3D reconstruction quality by removing remanent 

heterogeneities or artefacts after 3D classification/3D refinement. 

Ribosome I Method Set-up 

A 3D class containing 342,069 particles and an initial volume from Xmipp RANSAC were 

selected as input particles and volume. The parameters for the Directional Pruning method were 

as follows: RELION 2D was selected as the method for directional classification. Two 2D classes 

were generated over 30 iterations. The minimum number of particles required for classification 

was selected as 1000, and the threshold value to remove particles based on the class population, 

was 0.25. The Directional Pruning process was carried out, and around 20,000 particles were 

removed as remanent particles. The output particles are referred to as pruned particles. 
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Spliceosome Method Set-up 

The downloaded particles and the reconstructed volume were selected as input particles and 

volume for the processing. The parameters of the Directional Pruning method were selected as 

follows, RELION 2D classification was selected as the directional classification method. The 

number of classes was selected as two and the number of classification iterations was 30. The 

minimum number of particles required for classifying the particles set at each direction in the 2D 

classification process was selected as 1000. To remove particles based on the obtained class 

distribution, 0.25 was selected as the threshold value. The Directional Pruning process was able to 

remove around 50,000 remanent particles from the dataset. Different types of tests/assessments 

are carried out to prove the efficiency of the pruned dataset: 

 

(1) 3D Refinement test 

(2) Random subset test 

(3) Particle sorting test 

 

3D refinement test 
RELION 3D auto-refine method was performed before (complete) and after (pruned) the 

Directional Pruning method with the same parameters. This test was mainly done to check in the 

improvement in the map quality after the particle pruning method. The obtained Gold-standard 

FSC curve was the metric used for checking the improvement in the map quality. As the FSC curve 

provides the correlation at every frequency. The FSC curve of the complete and pruned particles 

were compared.  

                    Figure 4.1 shows the FSC curves obtained by RELION auto-refine on Ribosome I 

dataset Though the correlation at every frequency is similar between both the input datasets( 

complete and pruned), the resolution of the pruned dataset was 5.88 Å which is slightly higher than 

the resolution obtained by the complete datasets that was 6.05 Å. Even though the number pruned 

particles were lower than the complete particles. 
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Figure 4.1 FSC curve comparison between after and before pruning for Ribosome I dataset. 

Figure 4.2 FSC curve comparison between before and after pruning for spliceosome dataset. 

 

Figure 4.2 shows that FSC curves obtained when processing by RELION auto-refine on the 

Spliceosome dataset. The resolution of complete particle reconstruction was 5.91 Å whereas for 

pruned particle reconstruction, it was 5.97 Å. Though the resolution obtained from the complete 

particles set was higher than the pruned particles, the FSC curves of both datassts were similar at 

every frequency 
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Random Subset  
This test was mainly done to show  

(i) The adverse effect on the 3D map quality when a large number of particles are removed 

from the dataset. 

(ii) Directional Pruning improves and retains the quality of 3D map even after removing a 

large number of particles. 

A random subset contains of randomly selected particles from the complete dataset. The number 

of randomly selected particles was selected to match number of pruned particles in this test. For 

this test, ten different subsets were generated. The RELION auto-refine was performed on all these 

ten subsets to validate the aims of the random subset test. 

                   Removing a large number of the particles from the dataset would generally affect the 

resolution. As the particles in these random subsets are randomly selected, sometimes, even good 

particles are removed. In the case of Directional Pruning only particles that where found different 

by the 2D classification approach for each direction are removed. In this scenario, the FSC curve 

of the Directional Pruning should be better when compared to the FSC of the random subset. 

                    Figure 4.3 & 4.4, it shows the FSC curves from 3D auto-refinement test performed on 

pruned particles (blue curve) and ten different random subsets. In Figure 4.3, the FSC curve of the 

Ribosome I pruned dataset was founded to be slightly better when compared to the FSC curves of 

the random subsets whereas in Figure 4.4, all FSC curves of the spliceosome datasets remains the 

same at every resolution. 

                    The differences obtained in the FSC analysis for the random subset test between the 

Ribosome I and the spliceosome datasets are mainly because of their origin. The Ribosome I 

dataset was a purely experimental dataset and its processing has been intermediately refined by 

expert users (unpublished datasets) whereas the Spliceosome dataset was already refined and 

published dataset. 
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Figure 4.3: Random subset test for Ribosome I dataset. 

Figure 4.4 Random subset for spliceosome dataset 
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Particle sorting test 
This test was mainly done to show that Directional Pruning method is as effective as other sorting 

and screening approaches in terms of removing the low-quality particles from datasets. 

Additionally, Directional Pruning removes heterogenous particles which makes it better when 

compared to other sorting and screening method. 

                      RELION sorting approach [36] was performed over the complete datasets and a 

subset of particles containing the same number of pruned datasets were selected according to its 

Z-score. This test is mainly done to compare two cleaning methods: RELION sorting and 

Directional Pruning under the same conditions. The comparison between these sets was carried 

out by performing 3D refinement. 

                      Figure 4.5 shows that the FSC curve of Directional Pruning is significantly better 

than the FSC curve of RELION sorting at all frequencies. This graph proves that the Directional 

Pruning approach was able to remove the artefacts and remanent heterogeneity particles and still 

manages to improve the FSC curve. 

                     Figure 4.6 shows that the FSC curve of RELION sorting and Directional Pruning 

method is the same along with all different frequencies. This graph shows that Directional Pruning 

is as efficient as RELION sort in terms of removing artefacts and remanent heterogeneities. 

Figure 4.5: Ribosome I sort test 
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Figure 4.6: Spliceosome sort test 

 

 

Alternate theory: 

Even though performing different tests to evaluate the efficiency of Directional Pruning by using 

two different datasets, the results obtained and shown from figures 4.1 to 4.6 remain inconclusive 

whether the proposed hypothesis and efficiency of the Directional Pruning method is satisfactory. 

                      The results are inconclusive because some figures show an improvement in the FSC 

curve, while for others we do not see this improvement. This difference could be caused by 

different origin of the dataset as both optimized and non-optimized datasets in terms of the image 

processing was used.  

                      Initially, the similarity of the FSC curves from the 3D auto-refine test bodes well 

with the proposed hypothesis and the efficiency of Directional Pruning as the resolution and the 

FSC curve were able to maintain despite of removing a large number of particles from the dataset. 

                      In terms of the results obtained from the particle sorting test, the figures showed 

similarity in the FSC curves between the sorting and pruning method. Though pruning method 

removed all insignificant particles whereas sorting methods removed only artefacts particles and 
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small quantity of homogenous particles. In such scenario, the FSC curve of Directional Pruning 

should show improvement over FSC curve of sorting method. 

                    This state of inconclusive results shaped us to design a new set of experiments whose 

aim was to understand the FSC curve similarity. Hence, another hypothesis was put forth to assess 

the efficiency of Directional Pruning and to understand in FSC curve similarity. 

                    The hypothesis is based on an algorithm used in most commonly used refinement 

techniques. The speculation is that the maximum likelihood approach automatically disregards the 

presence of the remanent heterogeneity artefacts/noise particles automatically when provided with 

a good reference volume. The maximum likelihood approach is famously used in the 3D 

refinement technique. To validate this hypothesis different experiments were carried out 

 

Control setup 
To validate the newly proposed hypothesis, two different sets of the experiment was designed. 

Set up 1: automatic pruning of a false-positive particle set by maximum likelihood approach 

Ribosome I or 45S Yphc depleted ribosome microscopic experimental data was used to validate 

the second proposed hypothesis. Over 100,000 noise and artefacts were manually picked across 

5000+ micrographs of Ribosome I dataset (Figure 4.7). Different percentage of artefacts or noise 

(insignificant) particles were added to the pruned dataset. The results are shown in Tables 4.1 & 

4.2. As can be seen from these tables, adding around 100,000 false-positive particles to the pruned 

dataset up to 30% adulteration could be achieved. A 3D-auto refinement test was performed on 

these datasets affected by different number (percentages) of false-positive particles starting from 

10%,15%, 20%,25% and 30%. For each percentage of adulteration, results from both noise and 

artefacts were compared with the 0% dataset containing only pruned particles without adding false-

positives. This experiment was carried using reference volume the final map obtained previously 

from Xmipp RANSAC approach while pre-processing of the Ribosome I dataset and low pass 

filtered to 60 Å, where the resolution information above 60 Åis removed. 
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Figure 4.7: Manual particle picking of artefacts (left) and noise (right) particles 

 

Table 4.1: Summarization of Noise particles result 

% of noise Noise particles Total No.of 

Particles 

3D auto-

refine(A) 

Final 

Resolution(A) 

0 - 334,105 7.41 5.97 

10 33,411 367,516 7.41 5.97 

15 50,116 384,221 7.41 5.97 

20 66,821 400,926 7.41 5.97 

25 83,526 417,631 7.41 5.97 

30 100232 434,337 7.41 5.97 

 
Table 4.2: Summarization of artefacts particles results 

% of artefacts Artefacts 

particles 

Total No.of 

Particles 

3D- auto 

refine(A) 

Final 

Resolution(A) 

0 - 334,105 7.41 5.97 

10 33,411 367,516 7.41 5.97 

15 50,116 384,221 7.41 5.97 

20 66,821 400,926 7.41 5.97 

25 83,526 417,631 7.41 5.97 
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30 100232 434,337 7.41 5.97 

Figure 4.8: 0% vs 10% adulteration of particles 

Figure 4.9: 0% vs 15% adulteration of particles 
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Figure 4.10: 0% vs 20% adulteration of particles 

Figure 4.11: 0% vs 25% adulteration of particles 
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Figure 4.12: 0% vs 30% adulteration of particles 

 

Figure 4.8-4.12 show that the similarity in the FSC curve remains the same irrespective of the 

percentage of particles adulteration. 

 

Set up 2: automatic pruning fails in the absence of good reference volume 

This experiment was mainly carried out to show the effect of the reference volume on automatic 

pruning by Maximum-Likelihood (ML) algorithm methods. According to the second proposed 

hypothesis, automatic pruning in ML works only when a good reference volume is provided. To 

test this part of the hypothesis, the initial volume obtained from Xmipp RANSAC approach while 

pre-processing of the Ribosome dataset was used. The initial volume was low pass filtered at two 

different resolution (60 Å &80 Å). 

                    First, two different volumes were compared with each other using pruned particles as 

the input particles for the 3D auto-refine test which is shown in Figure 4.13. The FSC curve of the 

reference volume low pass filtered at 60 Å shows slight improvement over the FSC curve of the 

reference volume low pass filtered at 80 Å.  
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Figure 4.13: Initial volume low pass filtered at 60 Å Vs 80 Å using pruned particles as input 

Figure 4.14: 0% vs 30% using Initial volume low pass filtered at 80 Å 
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Second, initial volume low pass filtered at 80 Å was used as input volume along with particle set 

composed by 30% noise, 30% artefacts, and 0% false positives added to the pruned particles 

were used as input particles. The 3D auto-refine test was performed on all these three different 

input sets. The obtained FSC curves shows the effectiveness of the initial volume as shown in 

Figure 4.14 

                   The results of the control setup experiments were satisfactory and prove that the 

second proposed hypothesis that ‘in presence of good reference volume disregards the presence of 

noise or artefact particles when the ML approach is used’ was found to be true 

 

Part 2: Directional RANSAC 
As mentioned earlier, only two of three massive heterogenous dataset was used for each method. 

For Directional Pruning, Ribosome II and Spliceosome data (Published data) were used for 

processing. Ribosome I was not processed as the dataset the structural information of experimental 

dataset was remain unknown at the time of processing. 

Hypothesis: Directional RANSAC will obtain individual maps representing all different minor 

classes present in a highly heterogeneous dataset. 

Spliceosome method set up 

Downloaded particles and volumes were selected as input particles and volumes. The parameters 

for directional RANSAC method were as follows, RELION 2D was selected as the method for 

directional classification. Eight 2D classes were generated over 30 iterations. The minimum 

number of particles required for classification was selected as 100 so 2D classification with these 

parameters will be performed for every direction. Five random volumes were generated and PCA 

was performed on the generated random volumes to obtain the principal components. The 

coordinates of the random volumes over the principal components were classified in 15 different 

clusters using K-means cluster analysis. From each cluster, one volume was generated, then, a 

total of 15 representative volumes were generated as output (Figure 4.15). 
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Figure 4.15: Spliceosome volume generated by Directional RANSAC 

 

Ribosome II method set-up 

A 3D class with 28,000 particles were selected. The parameters used were the same as in the 

spliceosome datasets except that in this case the number of selected classes per direction was two. 

The random volumes were projected and clustered into 5 clusters using the obtained principal 

components and K-means approach, giving rise to 5 different output volumes (Figure 4.16). 

Figure 4.16: 50S Ribosome intermediate volumes obtained from Directional RANSAC 
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There are two different assessments were performed to evaluate the efficiency of the Directional 

RANSAC 

(i) 3D classification test 

(ii) 3D auto-refinement test 

 

3D classification test 
This test was performed to compare the existing approach to classify the data into different 

structural conformers (RELION) and the new developed approach, Directional RANSAC. 

The 3D classification was performed using the same input particles and input volume as 

Directional RANSAC. The dataset was classified into ten 3D classes for the Spliceosome (Figure 

4.17) and five 3D classes for Ribosome II (Figure 4.18) were obtained. Figures 4.17& 4.18 shows 

how 3D classifications fails to obtain the 3D classes when compared to the structures generated 

by Directional RANSAC (Figure 4.15&4.16). 

 

Figure 4.17: Ten 3D classes of Spliceosome dataset obtained by RELION and obtained particle 

distribution for each class 

 



 49 

 

 
Figure 4.18: Five 3D classes of Ribosome II dataset obtained by RELION and obtained particle 

distribution for each class. 

 

3D auto-refinement test 
This test was mainly done to check whether the volume generated by directional RANSAC 

provides the same FSC curve when compared to initial volume which was used as input volume 

(original volume) for directional RANSAC approach. 
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The 3D auto-refine test was performed using 3 maps out of the fifteen and five output volumes 

generated by Directional RANSAC using the Spliceosome and Ribosome II dataset respectively. 

The volumes were selected randomly and used as input volumes for the 3D auto-refine test. Figure 

4.19 shows that the generated volumes were able to deliver the same FSC curve and resolution 

that of the original volume (OV in the figure).  

Figure 4.19: Comparison between Original initial volume (OV) vs Directional RANSAC volumes (DRV) 

for the Spliceosome dataset 
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Figure 4.20: Comparison between Original initial volume (OV) vs Directional RANSAC volumes (DRV) 

for the Ribosome II dataset 

 

On the other hand, Figure 4.20 shows that the FSC curve obtained when using the Directional 

RANSAC volumes as initial volumes significantly improves the FSC curve obtained by original 

volume. 

                       Directional RANSAC was successfully able to reconstruct multiple conformations 

present in the heterogeneous dataset. 
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Discussion 
Directional Pruning  
We propose a novel method, Directional Pruning which aims to obtain homogenous particles 

images from datasets affected by massive heterogeneity. Initially, three different types of tests, 

namely: 3D auto-refine test, random subset test, and particle sorting test were performed on two 

different datasets affected by massive heterogeneous and obtained from two different sources 

(experimental/unpublished and published datasets).          

                 These tests were performed to check the efficiency of the Directional Pruning method 

and validate our proposed hypothesis.  From the results obtained, in some cases, the Directional 

Pruning method was shows improvement while for other cases, the results were neutral.  

                 To clarify these results, another set of experiments called Control set-up were designed 

with a new hypothesis. The control set-up results were able to validate the second proposed 

hypothesis: “in the presence of a good reference volume Maximum-Likelihood refinement 

approaches disregards the presence of the noise or artefacts particles in the dataset”. 

In conclusion, the Directional Pruning method was found to be ineffective when two closely 

associated conditions are met: 

(i) The ML approach is used for 3D refinement  

(ii)  A good reference volume is provided 

Directional RANSAC 
We propose another novel method, Directional RANSAC, which aims to obtain all available 

structure conformations present in heterogeneous datasets, including minority classes. Two 

published datasets were used to test the method’s hypothesis.  

                  The Ribosome II dataset (published) was used particularly because the several 

structural conformers were identified. This point enables us to check whether directional RANSAC 

would be able to obtain different structure conformers.  

                  The Spliceosome dataset successfully generates 15 different structures, while its 

published paper was able to reconstruct only two different complete structures (EMDB ID: 3683 

& 3688) [57]. 

                  According to the published data, the Ribosome II dataset contains five main (A-E), 3D 

classes. Out of which three (C-E) 3D classes were sub-classified into 12 different 3D classes. One 
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of these 3D classes (Class D) was selected as input for Directional RANSAC. The published paper 

reported that Class D has five different structural conformers (EMDB ID: 8445-8449). Directional 

RANSAC was successfully able to reconstruct five different classes [58]. 

                  Two different tests, namely 3D classification and 3D auto-refinement tests were 

performed to check the efficiency of Directional RANSAC. The obtained results show that 

Directional RANSAC was able to reconstruct the complete structure of conformers present in these 

highly heterogenous datasets. Whereas 3D classification, the existing approach to obtain different 

structural conformers fails to provide more than one complete structure of the datasets. The 3D 

auto-refine test was performed using the generated RANSAC volumes as input volumes for the 

refinement process. In the case of the Spliceosome, the FSC curve of Directional RANSAC was 

the same as the one obtained when using original initial volume. In the case of the Ribosome II 

datasets, the FSC curve of the Directional RANSAC volume significantly improves over the one 

obtained by original volume.  

                Hence, Directional RANSAC was able to successfully reconstruct different structural 

volumes that can be used for refining the orientations of the single particles. 
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Concluding remarks 
Both proposed methods, Directional Pruning, and Directional RANSAC leaves many unanswered 

questions. In the case of the Directional Pruning, will the method be productive when using other 

3D refinement approaches like projection matching and Cryo-SPARC? In case of the Directional 

RANSAC, will the method provide the same results when purely experimental data is used? Were 

the generated volumes by Directional RANSAC similar to already published volumes? What are 

the limitations of directional RANSAC approach? 

                 All of the mentioned questions can be achieved by carrying out different experiments. 

Future work should focus on answering the mentioned question, Wide range of heterogenous 

datasets should be used to attest further the efficiency of both the developed methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 55 

Bibliography 
1. Marth JD. A unified vision of the building blocks of life. Nat Cell Biol. 2008;10(9):1015-

1016.  

2. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer 

Associates; 2000. The Molecular Composition of Cells. 

3. Breaker RR, Joyce GF. The expanding view of RNA and DNA function. Chem Biol. 

2014;21(9):1059-1065.  

4. Hvidsten TR, Laegreid A, Kryshtafovych A, Andersson G, Fidelis K, Komorowski J. A 

comprehensive analysis of the structure-function relationship in proteins based on local 

structure similarity. PLoS One. 2009;4(7):e6266. Published 2009 Jul 15.  

5. Shi D, Nannenga BL, Iadanza MG, Gonen T. Three-dimensional electron crystallography 

of protein microcrystals. Elife. 2013;2:e01345. Published 2013 Nov 19. 

doi:10.7554/eLife.01345 

6. Smyth MS, Martin JH. x ray crystallography. Mol Pathol. 2000;53(1):8-14.  

7. Berman HM, Coimbatore Narayanan B, Di Costanzo L, et al. Trendspotting in the Protein 

Data Bank. FEBS Lett. 2013;587(8):1036-1045.  

8. Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W. X-ray 

crystallography over the past decade for novel drug discovery - where are we heading 

next?. Expert Opin Drug Discov. 2015;10(9):975-989.  

9. Mlynárik V. Introduction to nuclear magnetic resonance. Anal Biochem. 2017;529:4-9.  

10. Müller SA, Aebi U, Engel A. What transmission electron microscopes can visualize now 

and in the future. J Struct Biol. 2008;163(3):235-245.  

11. Tizro P, Choi C, Khanlou N. Sample Preparation for Transmission Electron 

Microscopy. Methods Mol Biol. 2019;1897:417-424.  

12. Asadi J, Ferguson S, Raja H, et al. Enhanced imaging of lipid rich nanoparticles embedded 

in methylcellulose films for transmission electron microscopy using mixtures of heavy 

metals. Micron. 2017;99:40-48.  

13. Winey M, Meehl JB, O'Toole ET, Giddings TH Jr. Conventional transmission electron 

microscopy. Mol Biol Cell. 2014;25(3):319-323.  

14. Cheng Y. Single-particle cryo-EM-How did it get here and where will it go. Science. 

2018;361(6405):876-880.  



 56 

15. Carragher B, Cheng Y, Frost A, et al. Current outcomes when optimizing 'standard' sample 

preparation for single-particle cryo-EM. J Microsc. 2019;276(1):39-45.  

16. Wan W, Briggs JA. Cryo-Electron Tomography and Subtomogram Averaging. Methods 

Enzymol. 2016;579:329-367.  

17. Galaz-Montoya JG, Ludtke SJ. The advent of structural biology in situ by single particle 

cryo-electron tomography. Biophys Rep. 2017;3(1):17-35.  

18. Sigworth FJ. Principles of cryo-EM single-particle image processing. Microscopy (Oxf). 

2016;65(1):57-67.  

19. Lawson CL, Patwardhan A, Baker ML, et al. EMDataBank unified data resource for 

3DEM. Nucleic Acids Res. 2016;44(D1):D396-D403.  

20. Wang, Hongwei. “Cryo-electron microscopy for structural biology: current status and 

future perspectives.” Science China Life Sciences 58 (2015): 750-756. 

21. Bai XC, Fernandez IS, McMullan G, Scheres SH. Ribosome structures to near-atomic 

resolution from thirty thousand cryo-EM particles. Elife. 2013;2:e00461. Published 2013 

Feb 19.  

22. Scheres SH. Beam-induced motion correction for sub-megadalton cryo-EM 

particles. Elife. 2014;3:e03665. Published 2014 Aug 13.  

23. Brilot AF, Chen JZ, Cheng A, et al. Beam-induced motion of vitrified specimen on holey 

carbon film. J Struct Biol. 2012;177(3):630-637.  

24. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: 

anisotropic correction of beam-induced motion for improved cryo-electron 

microscopy. Nat Methods. 2017;14(4):331-332.  

25. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. While the 

revolution will not be crystallized, biochemistry reigns supreme. Protein Sci. 

2017;26(1):69-81.  

26. Bai XC, McMullan G, Scheres SH. How cryo-EM is revolutionizing structural 

biology. Trends Biochem Sci. 2015;40(1):49-57.  

27. Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol. 2016;193(1):1-

12.  



 57 

28. Scheres SH, Núñez-Ramírez R, Sorzano CO, Carazo JM, Marabini R. Image processing 

for electron microscopy single-particle analysis using XMIPP. Nat Protoc. 2008;3(6):977-

990.  

29. Zivanov J, Nakane T, Forsberg BO, et al. New tools for automated high-resolution cryo-

EM structure determination in RELION-3. Elife. 2018;7:e42166. Published 2018 Nov 9.  

30. Rohou A, Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron 

micrographs. J Struct Biol. 2015;192(2):216-221.  

31. Sanchez-Garcia R, Segura J, Maluenda D, Sorzano COS, Carazo JM. MicrographCleaner: 

A python package for cryo-EM micrograph cleaning using deep learning. J Struct Biol. 

2020;210(3):107498.  

32. Zhu Y, Carragher B, Glaeser RM, et al. Automatic particle selection: results of a 

comparative study. J Struct Biol. 2004;145(1-2):3-14.  

33. Sanchez-Garcia, R., Segura, J., Maluenda, D., Carazo, J. M. & Sorzano, C. O. S. (2018). 

IUCrJ 5, 854-865. 

34. Vargas J, Abrishami V, Marabini R, et al. Particle quality assessment and sorting for 

automatic and semiautomatic particle-picking techniques. J Struct Biol. 2013;183(3):342-

353.  

35. Bell JM, Chen M, Baldwin PR, Ludtke SJ. High resolution single particle refinement in 

EMAN2.1. Methods. 2016;100:25-34.  

36. Scheres SH. Semi-automated selection of cryo-EM particles in RELION-1.3. J Struct Biol. 

2015;189(2):114-122.  

37. Rosa-Trevín, Jose & Oton, Joaquin & Marabini, R & Zaldívar, Airen & Vargas, Javier & 

Carazo, J.M. & Sorzano, Carlos. (2013). Xmipp 3.0: An improved software suite for image 

processing in Electron Microscopy. Journal of structural biology. 184. 

10.1016/j.jsb.2013.09.015. 

38. Sorzano CO, Bilbao-Castro JR, Shkolnisky Y, et al. A clustering approach to 

multireference alignment of single-particle projections in electron microscopy. J Struct 

Biol. 2010;171(2):197-206.  

39. Scheres SH. Classification of structural heterogeneity by maximum-likelihood 

methods. Methods Enzymol. 2010;482:295-320.  



 58 

40. Scheres SH. Processing of Structurally Heterogeneous Cryo-EM Data in 

RELION. Methods Enzymol. 2016;579:125-157 

41. Zhou, Ye et al. “Unsupervised Particle Sorting for High-Resolution Single-Particle Cryo-

EM.” Inverse Problems 36.4 (2020): 044002. Crossref. Web. 

42. Gomez-Blanco J, Kaur S, Ortega J, Vargas J. A robust approach to ab initio cryo-electron 

microscopy initial volume determination. J Struct Biol. 2019;208(3):107397.  

43. Sorzano CO, Vargas J, de la Rosa-Trevín JM, et al. A statistical approach to the initial 

volume problem in Single Particle Analysis by Electron Microscopy. J Struct Biol. 

2015;189(3):213-219.  

44. Vargas J, Álvarez-Cabrera AL, Marabini R, Carazo JM, Sorzano CO. Efficient initial 

volume determination from electron microscopy images of single 

particles. Bioinformatics. 2014;30(20):2891-2898.  

45. Vargas, J., Melero, R., Gómez-Blanco, J. et al. Quantitative analysis of 3D alignment 

quality: its impact on soft-validation, particle pruning and homogeneity analysis. Sci 

Rep 7, 6307 (2017).  

46. Estrozi LF, Navaza J. Fast projection matching for cryo-electron microscopy image 

reconstruction. J Struct Biol. 2008;162(2):324-334.  

47. van Heel, M.; Schatz, M. (2005). "Fourier shell correlation threshold criteria". Journal of 

Structural Biology. 151 (3): 250–262.  

48. Böttcher, B.; Wynne, S.A.; Crowther, R.A. (1997). "Determination of the fold of the core 

protein of hepatitis B virus by electron microscopy". Nature. 386 (6620): 88–91.  

49. Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular 

Assemblies. New York: Oxford University Press. ISBN 0-19-518218-9. 

50. Burnley T, Palmer CM, Winn M. Recent developments in the CCP-EM software 

suite. Acta Crystallogr D Struct Biol. 2017;73(Pt 6):469-477.  

51. Serna M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of 

Heterogeneous Macromolecular Complexes. Front Mol Biosci. 2019;6:33. Published 2019 

May 15. doi:10.3389/fmolb.2019.00033 

52. Casañal A, Shakeel S, Passmore LA. Interpretation of medium resolution cryoEM maps of 

multi-protein complexes. Curr Opin Struct Biol. 2019;58:166-174.  



 59 

53. Tan YZ, Baldwin PR, Davis JH, et al. Addressing preferred specimen orientation in single-

particle cryo-EM through tilting. Nat Methods. 2017;14(8):793-796.  

54. Noble AJ, Wei H, Dandey VP, et al. Reducing effects of particle adsorption to the air-water 

interface in cryo-EM. Nat Methods. 2018;15(10):793-795.  

55. Drulyte I, Johnson RM, Hesketh EL, et al. Approaches to altering particle distributions in 

cryo-electron microscopy sample preparation. Acta Crystallogr D Struct Biol. 2018;74(Pt 

6):560-571.  

       

56. Source code: https://github.com/mcgill-femr/scipion-em-cryomethods 

57. Plaschka C, Lin PC, Nagai K. Structure of a pre-catalytic spliceosome. Nature. 

2017;546(7660):617-621 

58. Davis JH, Tan YZ, Carragher B, Potter CS, Lyumkis D, Williamson JR. Modular Assembly 

of the Bacterial Large Ribosomal Subunit. Cell. 2016;167(6):1610-1622.e15.  

59. Li, Youguo & Wu, Haiyan. (2012). A Clustering Method Based on K-Means Algorithm. 

Physics Procedia. 25. 1104-1109. 

60. L. Sun, R. Liu, J. Xu, S. Zhang and Y. Tian, "An Affinity Propagation Clustering Method 

Using Hybrid Kernel Function With LLE," in IEEE Access, vol. 6, pp. 68892-68909, 2018. 

 

 

 
 

                  

  

 


