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Abstract 

A mining complex is a fully integrated logistics network that represents the transportation and 

transformation of material from the source, open-pit and underground mines, to the customers 

and/or the spot market. Mining enterprises around the world aim to create a strategic mine plan for 

each of their assets that maximizes the value generated for a company and its stakeholders. 

Simultaneous stochastic optimization is used to generate a production schedule that defines the 

extraction sequence, stockpiling, processing, blending, capital investment and waste management 

decisions under supply uncertainty. The optimization approach exploits synergies within the 

mining complex by considering the contribution of each interconnected component in a single 

mathematical formulation. These components may include multiple mines, processors, stockpiles, 

waste facilities, and methods of transportation. In this thesis, a study of simultaneous stochastic 

optimization is completed in two operating gold mining complexes focusing primarily on the 

integration of waste management and capital investment decisions under supply uncertainty. The 

appropriate timing of each capital investment can highly influence the net present value of an 

operation due to the large up-front costs, making it a necessity to properly time these investments. 

In addition, there are several benefits of integrating waste management into the production 

scheduling process including a conceptual understanding of material uncertainty, smaller 

environmental footprints, lower operating costs, and lower capital costs.  

The first application presents the simultaneous stochastic optimization of a gold mining complex 

focusing on waste management, particularly the uncertain aspects of acid generating waste. 

Typically, when optimizing the production schedule, the primary focus is to deliver valuable 

products to the market. However, this tends to ignore the environmental and economic impact of 

simplifying waste management requirements, including the storage and disposal of waste material. 

Stricter regulations and engineering requirements are transforming past mining practices to 

develop more sustainable operations. These transformations increase the financial cost of waste 

management and identify the requirement to integrate waste management into the production 

schedule. Additionally, misrepresenting the material uncertainty and variability associated with 

the amount of waste produced can impact, both, the stakeholders and the profitability of a mining 

complex. In this case study, a simultaneous stochastic optimization approach is applied to generate 

a long-term production schedule that considers waste management. The resulting schedule leads 

to a 6% increase in the net present value when compared to a conventional approach, while 
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minimizing the likelihood of deviating from production targets and ensuring permit constraints are 

satisfied.  

Second, an innovative strategic mine planning approach is applied to a multi-mine and multi-

process gold mining complex that simultaneously considers feasible capital investment 

alternatives and capacity management decisions that a mining enterprise may undertake. The 

simultaneous stochastic optimization framework determines the extraction sequence, stockpiling, 

processing stream, blending, waste management and capital investment decisions in a single 

mathematical model. A production schedule branches and adapts to uncertainty based on the 

likelihood of purchasing a feasible investment alternative that may increase mill throughput, acid 

consumption, and tailings capacity. Additionally, the mining rate is determined simultaneously by 

selecting the number of trucks and shovels required to maximize the value of the operation. The 

mining complex contains several sources – two open-pit gold mines and externally sourced ore 

material – stockpiles, waste dumps, tailings and three different processing streams. The 

simultaneous optimization framework integrates the blending of sulphates, carbonates, and organic 

carbon at the autoclave for refractory ore while managing acid consumption. The resulting 

production schedule indicates an increase in net present value as the optimization model adapts to 

uncertainty and manages the technical risk of capital investment decisions. 
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Résumé 

Un complexe minier est un réseau logistique intégré représentant le transport et la transformation 

de matériel partant d’une source (mine à ciel ouvert ou mine souterraine) allant jusqu’aux clients 

et/ou au marché au comptant. Les entreprises minières du monde entier créent un plan à long terme 

visant à maximiser valeur de leurs actifs pour leurs parties-prenantes. L’optimisation stochastique 

simultanée génère un horaire de production définissant la séquence d’extraction, le stockage du 

minerai, le traitement, le mélange de minerai, les investissements en capital, et la gestion des 

résidus miniers tout en prenant en compte l’incertitude géologique du gisement. Cette approche 

prend avantage des synergies qui existent dans un complexe minier en combinant la contribution 

de chaque composante interconnectée en une seule formulation mathématique. Les composantes 

peuvent inclure plusieurs mines, installations de traitement de minerai, stockages de minerai, 

haldes à stériles, et modes de transport. Dans cette thèse, une étude d’optimisation stochastique 

simultanée est appliquée à deux complexes miniers d’or avec un accent sur la gestion de résidus 

miniers et les investissements en capital sous incertitude. L’échéancier des investissements en 

capital peuvent influencer la valeur nette actuelle d’une exploitation minière due aux coûts initiaux 

élevés. De plus, l’intégration de la gestion des résidus miniers au processus de planification peut 

améliorer la compréhension conceptuelle de l’incertitude présente dans les matériaux miniers, 

réduire l’empreinte écologique de l’entreprise, réduire les coûts opérationnels, et réduire les coûts 

en capitaux. 

Dans la première application, l’optimisation stochastique simultanée d’un complexe minier d’or, 

avec un accent particulier sur la gestion de résidus miniers et son potentiel de génération d’acide, 

est examinée. Généralement, l’optimisation de la séquence d’extraction vise à livrer des produits 

valables aux clients et au marché au comptant. Toutefois, ceci ignore les impacts 

environnementaux et économiques associés à la simplification des exigences de la gestion des 

résidus miniers, telles que l’entreposage et l’élimination du matériel. La réglementation et les 

exigences techniques de plus en plus strictes requièrent un changement des pratiques minières 

traditionnelles, poussant l’industrie à développer des exploitations durables. Ces changements 

augmentent le coût associé à la gestion des résidus miniers et souligne le besoin d’incorporer cet 

aspect au processus de planification minière. De plus, mal représenter l’incertitude et la variabilité 

associée au contenu et au montant de résidus produits peut avoir un impact sur les parties-prenantes 

ainsi que sur la marge de profits d’un complexe minier. Cette étude de cas applique l’optimisation 
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stochastique simultanée afin de produire une séquence d’extraction à long terme qui prend en 

compte la gestion des résidus miniers. La séquence qui en résulte démontre qu’un gain de 6% en 

terme de valeur nette actuelle est possible lorsque nous comparons cette méthode à la méthode 

traditionnelle, tout en réduisant la probabilité de manquer les objectifs de production de 

l’exploitation et s’assurant que les contraintes misent en place par les permis d’opération soient 

satisfaites. 

Dans la deuxième application, une approche innovatrice à la planification minière à long terme, 

qui prend en compte les alternatives viables d’investissements en capital ainsi que les décisions de 

gestions de capacité qui devront se faire au cours de l’exploitation, est appliquée à un complexe 

minier d’or composé de plusieurs mines et installations de traitements de minerai. Cette approche 

définit les décisions à prendre en termes de séquence d’extraction, stockage de minerai, 

installations de minerai à utiliser, gestion de résidus miniers, et investissements en capital. Une 

séquence d’extraction peut se bifurquer et s’adapter à l’incertitude du gisement selon la probabilité 

d’achat d’une alternative viable d’investissement en capital qui pourrait augmenter la capacité 

d’une installation de traitement de minerai, la consomption d’acide, et/ou la capacité de la digue à 

résidus. De plus, le taux d’extraction est déterminé de manière simultanée puisque le model permet 

de choisir le nombre de camions et de pelles requises afin de maximiser la valeur de l’exploitation. 

Le complexe minier inclut plusieurs sources – deux mines d’or à ciel ouvert ainsi que du matériel 

provenant d’une source externe – aires de stockages, haldes à stériles, digues à résidus, et trois 

différentes installations de traitement de minerai. Le modèle d’optimisation simultanée incorpore 

le mélange de sulfates, carbonates, et de carbone organique du minerai réfractaire à l’autoclave 

tout en contrôlant l’utilisation d’acide. La séquence d’extraction qui en résulte démontre qu’une 

augmentation de la valeur nette actuelle est possible puisque le model s’adapte à l’incertitude et 

gère la risque technique associé aux investissements en capital. 
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1. Introduction and literature review 

A mining complex is an integrated logistics network designed to extract materials from in-situ 

mineral reserves and transform them into valuable products that generate a profit for a mining 

enterprise and its stakeholders (Pimentel et al. 2010; Montiel and Dimitrakopoulos 2015; 

Goodfellow and Dimitrakopoulos 2016). The projects undertaken by a mining enterprise require 

large capital investments and careful planning to successfully operate a mining complex. 

Uncertainty in terms of the supply of material from the mines, commodity pricing, technical and 

environmental issues cause challenges in forecasting the projected value of a mining complex, 

inherently making mining operations risky ventures to undertake. In particular, supply uncertainty 

and local variability are the primary reasons for not meeting production targets and can also lead 

to environmental consequences. Several studies including those undertaken by Baker and Giacomo 

(1998) show that the major reason for not meeting production targets is misunderstanding the 

reserves/resources due to uncertain material supply, out of 48 Australasian mining projects 13 of 

them had 20% more and 9 had 20% less then the projected reserves. Similarly, in a World Bank 

survey undertaken in Canada and the US, Vallee (2000) shows evidence of significant deviations 

between the published ore reserve estimate and the realized outcome for the first year of operations 

further stressing the need to account for supply uncertainty. Nearly 73% of the mining projects in 

this study were closed prematurely due to problems in their ore reserve estimates. Since these 

publications were released, several studies have discussed the topic (Dimitrakopoulos 2011). 

These failures highlight the importance of understanding the geological representation of the 

deposit and the expected material supply demonstrating most projects fail for this reason, not 

market price, late delivery, equipment uncertainty, etc. These are some of the critical reasons that 

recent advancements have taken place in the simultaneous stochastic optimization of mining 

complexes, which will be discussed in depth throughout this thesis.  

Simultaneous stochastic optimization generates a production schedule for an industrial mining 

complex, which includes all the components that are required to generate valuable products from 

mineral reserves. These components may include multiple mines, external sources, stockpiles, 

autoclaves, oxide mills, refractory ore mills, waste facilities, ports, and various transportation 

mechanisms (Hoerger et al 1999; Whittle 2007; Pimentel et al. 2010). Mathematically, a mining 

complex is formulated to model both the linear and non-linear transformation of materials that 



2 

occur between the source, underground and open-pit mines, and the final products that are 

delivered to the commodity market or disposed of as waste (Montiel and Dimitrakopoulos 2015; 

2017; 2018;Goodfellow and Dimitrakopoulos 2016; 2017). The primary objective of modelling a 

mining complex in this manner is to simultaneously determine the annual long-term production 

schedule including the extraction sequence, stockpiling, processing, waste management, blending 

and capital investment decisions that will maximize the net present value (NPV) of a mining 

project, while satisfying a set of operational and environmental constraints and managing technical 

risk. Stochastic simulations of the raw material supply are integrated into the optimization allowing 

the optimizer to directly manage supply uncertainty and variability. Optimizing all components of 

the mining complex simultaneously improves the operations ability to capture synergies between 

the different components that help manage risk and increase project value. This coined the term, 

‘strategic mine planning’ and since the early 1990s it has become a clear advantage to holistically 

consider several component of the mining complex during the optimization process (Hoerger et 

al. 1999).   

The remainder of this chapter will cover fundamental literature in strategic mine planning 

including early advancements in global optimization, geostatistical simulation methods for 

quantifying supply uncertainty, and the simultaneous stochastic optimization framework. 

 Deterministic global optimization approaches in a mining complex  

The conventional approach for determining a single mine’s long-term production schedule 

assumes an exact understanding of geological boundaries and their grade distribution as well as 

deterministic or fixed mining costs and recoveries that are used for evaluating the NPV of an 

operation. Conventional approaches in open-pit mine planning locally optimize various 

components of a mine using a sequential framework that first determines the optimal cut-off grade 

(Lane 1964). Then, Lerchs-Grossman (1965) algorithm is employed to determine the ultimate pit 

limit by maximizing the cumulative discounted cashflow of each mine individually. Pushbacks or 

phases are defined within the ultimate pit limit using a similar process that accounts for feasible 

mining widths (Hustrulid and Kutcha 2006). Finally, within each pushback an annual production 

schedule is defined. The main drawback of this approach remains in the use of deterministic inputs 

and parameters which vary significantly in reality, further discussed in Section 1.2, and the 

downfall of independently optimizing the various components of the mining complex, which will 

be addressed in this section. Each critical business decision is optimized locally, or independently, 
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disregarding the behaviour of downstream (or upstream) decisions and supply uncertainty. For 

example, a production schedule for a mining complex often involves several mines that are each 

optimized independently of other mines, however, there may be opportunities to blend materials 

and evaluate the available synergies by optimizing them together. Then the metallurgical group 

optimizes several mineral processing aspects on its own accord, tuning the processors demand and 

quality requirements but, disregarding the ability to change the production schedule to gain further 

value. For example, blending materials of different qualities can improve the recovery at certain 

processing facilities and potentially lead to higher profitability. Afterwards the transportation of 

products to the market is optimized based on the expected supply of products from each processing 

facility and the market demand.  Capital expenditure planning is also a critical strategic mine 

planning decision and can lead to expansions of the mining and processing capacities through the 

acquisition of equipment and the construction of new facilities. Capital investment decisions are 

optimized locally through various testing strategies and sensitivity analysis. The schedule must be 

repetitively reoptimized to consider each capital investment, making for an exhaustive evaluation 

process. A waste management plan is also assembled to sequence waste placement, ensuring future 

reclamation and environmental constraints are not violated.  The conventional optimization 

process is completed in a step-wise framework where the interconnectivity between these 

components are not actively considered, ensuing a sub-optimal decision-making process for the 

mining complex. These are several drawbacks of conventional mine planning which, highlight the 

advantage of optimizing all the components in a mining complex simultaneously. 

Newmont’s Nevada Operations recognized that independently optimizing each mine and their 

components limited their ability to maximize the value of their assets (Hoerger et al. 1999).  

Several operations, in the Carlin Trend, could share processing capacities, mining capacities, and 

blend materials of various qualities providing opportunities to capture major synergies between 

these operations. Although, there was a desire to model each of their assets using a simultaneous 

approach they could not fully solve the extremely large multifaceted problem, even to this day. 

Hoerger et al. (1999) describes the development of a mixed integer linear program that 

simultaneously optimizes the mining of multiple pits with several material types and the processing 

of ores through multiple plants in the Carlin Trend area. The model aims to maximize the NPV of 

the mining complex by determining the optimal flow of materials from the mine sources, i.e. 

pushbacks and underground mine subdivisions, to stockpiles and then from stockpiles to 
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processing plants. Costs for each of the allowable material movements are directly incorporated 

into the optimization model, detailed in the work of Urbaez and Dagdelen (1999). However, there 

are several limitations of this model: i) mining blocks are grouped into pushbacks that are 

predefined based on their metallurgical properties, reducing the granularity of the problem and 

potentially leading to infeasible mine plans; ii)  Hoerger et al. (1999) discusses the need to 

incorporate the timing of capital expenditures, although, it has not been directly integrated into the 

optimization process itself; iii) it assumes there is a fixed annual production schedule describing 

the precedence relationships; iv) can not deal with non-linearities in stockpile destinations and 

operational modes; and finally v) the method ignores supply uncertainty and variability in material 

sources. However, the approach described is completed in a single optimization formulation unlike 

the step-wise approach described subsequently. 

Similarly, Whittle (2007) identifies the need to jointly optimize several components of a mining 

complex including multiple pits and underground mines, stockpiles, blending elements and 

processing routes substantially increasing the challenge of solving the long-term production 

schedule. The global asset optimisation framework commences by using a pre-determined 

grouping of nested pit-shell, for each asset, that satisfy the stripping ratio and are prioritized based 

on economic value (Whittle 2014). Then, mining blocks are aggregated into panels that are 

grouped on similar grade attributes, a priori, and segregated into grade bands.  All becoming a 

fixed production schedule. Aggregating and pre-determining the pushbacks and ultimate pit limits 

reduces the number of decision variables that must be considered throughout the optimization 

process, simplifying the approach. Panels and underground sequences are scheduled together to 

find an overarching mine plan that will satisfy processing and blending constraints. In addition, 

the method can model more advanced material transformations including the throughput and 

recovery relationship for each type of ore at each processor and jointly determines the optimal cut-

off grade during the optimization process. The solution approach begins by repeatedly creating 

random feasible extraction sequences followed by a linear solver that determines the downstream 

components, i.e. processing, blending and transportation decisions (Whittle 2010; 2014). Although 

global considerations are made, the method is locally or independently optimizing certain parts of 

the mine production schedule and eliminating the ability to capture synergies between different 

components. For example, locally optimizing the cut-off grade decisions to maximize the 

utilization of the processing plants may lead to more metal production in a gold mine but, 
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frequently a higher NPV can be generated by not maximizing throughput at one or more 

destinations and instead focusing on maximizing the cashflows and integrating the cut-off into the 

optimization process. Additionally, several shortcuts are taken including independently 

determining the ultimate pit limits and pushbacks, manually creating panels, and allowing for 

fractional extraction of mining blocks. The limitations of panels include allowing for fractional 

extraction which, assumes the average contribution of all the blocks within a panel will be obtained 

even if a fraction of the panel is extracted in an operating period. In addition, panels represent 

benches in a phase and must be mined completely before progressing to the next one (top to 

bottom. Therefore, a bench-by-bench extraction of each phase is commenced leading to worse case 

mining. Each of these shortcuts are taken because the computational requirements to formulate a 

single mathematical program is extremely large and challenging in a reasonable amount of time. 

Granted, the advancements addressed by Whittle (2007) and Whittle (2010; 2014) provide a 

commercialized framework that considers substantially more interconnectivities than a 

conventional optimization approach. 

Stone et al. (2007) present BHP’s mine planning tool Blasor. Developed by the BHP Billiton 

Technology division, the MIP formulation maximizes NPV over the life of operation by 

sequencing multiple pits and determining the ultimate pit limits using a commercial solver. 

Spatially connected blocks with similar material properties are aggregated to reduce the number 

of integer decision variables in the mathematical programming model. In addition, the materials 

are not classified as ore or waste a priori, as the optimizer makes decisions on how to blend the 

material extracted from the pits to produce marketable ore. Material in the pits are assigned to bins 

based on chemistry. After blocks are aggregated, the optimization tool generates the optimal 

extraction sequence and ultimate pit limits. Then, mining phase design is performed on each pit 

independently and panels are generated based on the intersection of a mining phase and bench. 

Panels are represented as the total tonnage of each attribute in each bin. The optimal extraction 

sequence of the panels is calculated in the same way as the aggregates. The process is used to 

minimize the compromise made by constructing mineable phases and to prevent “rat-holing”. 

Blasor was specifically designed to jointly optimize eleven pits and blending requirements at the 

Yandi Joint Venture in the Pilbara region, which is more challenging to solve than the sequential 

approach used to generate the ultimate pit limit for a single mine due the interdependency of 

blended materials. Zuckerberg et al. (2007) extend the use of Blasor to consider waste handling, 
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in particular, in-pit dumping, for operations where space available outside the pit limits may be 

limited. This may also be required at some operations due to other environmental requirements. 

The Blasor-InPitDumping (BlasorIPD) model simultaneously decides the extraction sequence for 

each mine and the location where waste material can will be placed, while satisfying blending and 

capacity constraints. BlasorIPD works similar to the standard version of Blasor but, considers the 

movement of waste from the mine to the haulage network and from the road to either a final waste 

dump or in-pit waste location by tracking the previously extracted blocks and available locations 

for dumping waste material. The optimization formulation ensures that material will not be 

dumped in-pit if there is ore beneath the dumping location and the in-pit dumping will not violate 

the waste repose slope constraints.  

Integrating waste management into the production scheduling process is a critical measure for 

successful open-pit mining operations. Ben-Awuah and Askari-Nasab (2013) attempt to integrate 

waste management into the long-term production schedule for oil sand mining operations. In oil 

sand operations, inpit and expit dykes are created to store the tailings produced during the 

extraction of bitumen products. The aim of the model is to determine the optimal extraction 

sequence of ore, dyke and waste material that maximizes the NPV and minimizes the cost of 

constructing dyke material storage areas. Major limitation of the model is it uses the pre-

determined ultimate pit limits and groups block into aggregates; however, it does allow for the 

sequencing of in-pit tailings while considering the required amount of dyke construction for 

tailings disposal and the costs incurred. Fu et al. (2019) develop a more in depth approach of waste 

management, where not only the quantities are described but the exact placement of waste material 

is optimized directly in the optimization framework. This overcomes past frameworks that given 

a production schedule, a waste dump schedule is then optimized subsequently to determine the 

optimal destination for waste dump disposal leading to a sub-optimal mine plan. However, the 

optimization framework assumes a block-based economic value and allows for the fractional 

extraction of mining blocks. Fractional extraction is allowed based on the continuous variables  

𝑥𝑏,𝑖,𝑚,𝑡, 𝑥𝑏,𝑖,𝑠,𝑛𝑠,𝑡,, and 𝑥𝑏,𝑖,𝑒,𝑑,𝑡  which are used in the formulation and represent the amount of 

material extracted from the mine and sent to the mill 𝑚, dump 𝑑, stockpile 𝑠 from block 𝑏 in period 

𝑡. Different proportions of a block can be sent to several destinations as long as the whole block is 

mined; this is a long-recognized limit for strategic mine planning optimization, as it misrepresents 

mining selectivity, thus generating overoptimistic results. Lastly, the approach is used on a very 
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small instance that considers only 4 periods and 1688 mining blocks in 24 minutes and generally 

long-term production scheduling for large operation is completed with greater than 1 million 

block-based decisions, making it a slow decision-making process.  

These global optimization approaches attempt to jointly optimize many components of the mining 

complex, but it is clear there are still a variety of performance inhibiting short-cuts that are either 

taken to speed up the optimization process or that have not been successfully integrated into the 

optimization framework. In addition, the integration of supply uncertainty into the optimization 

framework is infeasible and there is no way to hedge the risk of highly variable and uncertain 

material within each mine. There also has been minimal effort to incorporate capital expenditures 

directly into the optimization model. 

 Modelling supply uncertainty and spatial variability 

The uncertainty and spatial variability of the mineral deposit, or the material supply, is the largest 

contributor of risk in a mining complex (Baker and Giacomo 1998; Vallee 2000). Therefore, the 

uncertainty and spatial variability must be quantified and managed when determining the 

production schedule, as it directly influences the cashflows and profitability of a mining enterprise 

(Ravenscroft 1992; Dowd 1994; 1997;Dimitrakopoulos et al. 2002). 

Orebody models are used to represent the available supply of material when optimizing a mining 

complex. These models represent the spatial distribution of the quality and quantity of material 

available for extraction at each mine. Stochastic simulations can be generated that reproduce the 

critical statistics, variogram and histogram models, including the spatial variability, mean and 

variance of the mineral deposit by generating a number of equally-probable stochastic orebody 

models. These simulations can be used to measure the impact of supply uncertainty by using 

transfer functions to simulate the flow of material through the mining complex and, then, observe 

the resulting impact on the key performance indicators (Dimitrakopoulos et al. 2002). 

Traditionally, estimated orebody models are used to represent the supply of material to the mining 

complex. Estimation approaches find the average of the possible grade values in a certain location, 

but they tend to smooth the local variability of the material properties (Journel and Huijbregts 

1978; David 1988). For example, if the characteristics of kriging are considered (Isaaks and 

Srivastava 1989; Goovaerts 1997; Rossi and Deutsch 2014), naturally low-grades are 

overestimated and high grades are underestimated misrepresenting the proportions of material that 
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exist within a mineral deposit. Consequently, the average input of the material supply may not 

provide an average assessment of the long-term production schedule in the presence of supply 

uncertainty. The risk of meeting the expected production targets using a production schedule 

generated from an estimated orebody model has been demonstrated in the work of several 

researchers (Ravenscroft 1992; Dowd 1994; Dimitrakopoulos et al. 2002). 

Supply uncertainty arises from imperfect knowledge of mineral deposits largely due to the sparse 

amount of geological information available and the modelling techniques used to quantify the 

materials available for extraction and subsequently processing (Goovaerts 1997; Godoy 2002). 

Geological information is gathered through exploration campaigns (i.e. diamond and reverse 

circulation drilling, trenching, and geophysical techniques) and this data is used to characterize a 

model of the orebodies. Simulations of the pertinent material properties are generated and spatially 

represented in an orebody model as a block. The orebody models and all the corresponding blocks 

are used as input into the subsequent simultaneous stochastic optimization frameworks to manage 

supply uncertainty directly during the optimization. The remainder of this section explains the 

foundations of simulation methods and explores several common simulation approaches. 

 Sequentially simulating univariate and multivariate mineral deposits 

There are a number of simulation methods that can be used for different purposes including 

simulating continuous and discrete variables (Journel and Huijbregts 1978; David 1988; Journel 

and Alabert 1989; Goovaerts 1997; Boucher and Dimitrakopoulos 2009; Remy et al. 2009; Rossi 

and Deutsch 2014). Each simulation method must be able to reproduce the model statistics this 

means the: (i) data values; (ii) histogram; and (iii) spatial correlation of the original data (Goovaerts 

1997). The most common class of simulations algorithms are known as sequential simulation 

algorithms. These models use a conditional cumulative distribution function (ccdf) which is 

modeled and sampled at each node (𝑛 ∈ 𝑁) visited along a random sequence and conditional to, 

both, the original data points and the simulated values in the distribution. Isaaks (1991) uses 

different random paths for visiting each node to reduce the likelihood of creating artificial 

continuity and retrieving similar simulations by taking the same path during each simulation.   

Sequential Gaussian simulation (SGS) is based on the multiGaussian random field model. The 

Gaussian framework is used because all conditional distributions are Gaussian and kriging 

provides the estimated Gaussian mean and variance (Rossi and Deutsch 2014). This simulation 
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approach is most common in the mining industry and is integrated into a range of commercial 

mining packages for geologists. A summarized description of the SGS algorithm follows: 

1) Apply a normal score transform to the sample data to obtain the Gaussian distribution 

2) Compute and model the variogram, covariance, or correlogram for the normalized model 

3) Define a random path that visits each node of the grid representing the deposit 

4) Estimate using simple or ordinary kriging of the normalized value at the selected node 

using the sample data and previously simulated grid nodes to estimate the normal local 

conditional distribution 

5) Simulate the value by sampling the estimated normal local conditional distribution 

6) Add the simulated value to the conditioning data for nodes to be simulated later and move 

to the next node 

7) Repeat the process until all nodes are simulated 

8) Back-transform the Gaussian values to the original data space  

9) Validate the results by checking the reproduction of the data 

A limitation of using SGS is the values show less connectivity due to the maximum entropy 

property associated with a Gaussian distribution, meaning it provides a highly ‘disorganized’ 

spatial arrangement. In addition, SGS can be computationally expensive requiring a significant 

amount of time to create a set of realizations for a large deposit (Luo 1998).  

Davis (1987) introduces a conditional simulation technique performed using lower-upper (LU) 

triangular decomposition which uses vector processing capabilities. Drawbacks still exist in terms 

of the amount of memory required (Luo 1998) but, the simulation and conditioning are performed 

together and can be applied to an arbitrary covariance structure speeding up the process. Luo 

(1998) proves the decomposition algorithm is equivalent to SGS and then develops a generalized 

sequential gaussian simulation (GSGS) method. GSGS overcomes many of the limitations of SGS 

as it takes advantage of the large and dense set of nodes that are required to be simulated and 

considers sharing neighborhood searches and kriging operations at adjacent nodes, overcoming 

the node-by-node sequential process in SGS. Equivalent to SGS, GSGS is a sequential process but 

instead of going node by node it is performed group by group. For definitions sake, N is the total 
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number of nodes to be simulated and v is the number of the nodes in the neighbourhood. 

Dimitrakopoulos and Luo (2004) explore how to size the neighbourhood of the GSGS method 

noting that if the group size of the neighbourhood v=1 then the approach is equivalent to SGS 

where as if v=N then it is identical to the LU decomposition method. In order to optimize, a balance 

must be found between computational efficiency and the precision of the results. This is 

accomplished by using the screen-effect approximation loss; the mean square difference between 

the simulated value using the information.  

Godoy (2002) demonstrates a sequential conditional simulation method direct block simulation 

(DBSIM). The method overcomes many of the computational limitations of SGS for simulating 

continuous attributes by directly simulating at block support instead of point support, discarding 

the internal points of simulated blocks reducing memory allocation and simulating using groups 

as in GSGS. Stochastic optimizers require multiple realizations of the supply uncertainty and large 

deposits can have millions of nodes that require simulation. By simulating at block support the 

DBSIM algorithm eliminates the need for reblocking to a selective mining unit which is required 

as input for stochastic optimization (Dimitrakopoulos and Ramazan 2004; Leite and 

Dimitrakopoulos 2014; Montiel and Dimitrakopoulos 2015; 2018;Goodfellow and 

Dimitrakopoulos 2016; 2017). 

Geological phenomena frequently have multiple attributes of interest. The additional information 

obtained by sampling and simulating multiple attributes is vital for maximizing the value of a 

mining complex. For example, the impact of integrating secondary elements, managing deleterious 

elements or minimizing the impact of hazardous waste. In order to integrate these attributes into 

the optimization model, the simulation process must be able to jointly consider all the attributes 

and model their correlations. The more information that is available regarding the supply of 

material the closer the mining complex can perform to reality. A class of simulation methods, 

known as multivariate, are used to simulate multiple variables of interest while preserving any 

spatial cross-correlations (Journel and Huijbregts 1978; David 1988). David (1988) first used PCA 

(primary component analysis) to co-simulate correlated variables, however, the number of 

variogram and cross-variograms models that were required was large. Desbarats and 

Dimitrakopoulos (2000) apply the minimum/maximum autocorrelation factors (MAF) to simulate 

multi-variate orebodies by: (i) decorrelating the attributes of interest; (ii) independently simulating 

these attributes; (iii) and then back transforming simulated values to the correlated space. 
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Eliminating the need to model cross-variograms or simulate each attribute using a series of 

univariate simulations. Furthermore, Boucher and Dimitrakopoulos (2009; 2012) average point 

support scale values, similar to the DBSIM algorithm, to jointly simulate multivariate datasets 

directly at block support using a multistage process. The method termed DBMAFSIM performs a 

linear transformation to the original multivariate vector into a new set of independent MAF to 

reproduce the statistics of multiple spatially correlated attributes. For example, consider a 

stationary and ergodic non gaussian vector of 𝑘 random functions  𝑍(𝑢) = {𝑍1(𝑢), . . . , 𝑍𝑘(𝑢)} at 

each location 𝑢 and measured at point support scale. A normal score transformation is performed 

on the vector to move to Gaussian space, 𝑌(𝑢) = { 𝜙1(𝑍
1(𝑢)), . . . , 𝜙𝑘(𝑍

𝑘(𝑢))}. MAF are defined 

as a random field, 𝑀(𝑢) = {𝑀1(𝑢), . . . , 𝑀𝑘(𝑢)} where the k RFs are independent and obtained 

from vector 𝑌(𝑢) using the coefficient matrix 𝐴: 

 𝑀(𝑢) = 𝐴𝑇𝑌(𝑢) [1] 

The MAF, 𝑀(𝑢) are linear combinations of the multiGaussian vector 𝑌(𝑢).  The derivation of A 

is equivalent of performing two successive PCA decompositions. This is all completed at block 

support, however, similar to DBSIM these can be upscaled directly to block support. After, the 

variables to be jointly simulated are transformed and the MAF are simulated independently. Then, 

direct simulation at the block support scale (V) with MAF is based on the up-scaled vector  

 
𝑍𝑣(𝑥) =

1

𝑁
∑𝜙−1(𝐴−𝑇𝑀(𝑢))

𝑁

 
[2] 

Jointly simulating multi-variate mineral deposits improves the ability to properly understand the 

behaviour of secondary elements in a multi-element deposit, such as, a copper-gold porphyry 

deposit (Goodfellow et al. 2012; Kumar and Dimitrakopoulos 2019). In addition, the geochemical 

properties of hazardous contaminants that may lead to acid mine drainage are often caused by the 

presence of attributes that can be simulated. Simulating these attributes, specifically carbon and 

sulphur grades associated with the mineralization of carbonates and sulphides, is useful for 

modelling the quantities of acid generators that could violate the environmental constraints in a 

mining complex (Dold 2008; Kumral and Dimitrakopoulos 2008). There have also been various 

case studies where material uncertainty plays a critical role in blending operations, for example, 
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iron ore quality requirements and gold autoclaving operations (Spleit and Dimitrakopoulos 2017; 

Montiel and Dimitrakopoulos 2018; Vallejo and Dimitrakopoulos 2018).  

 Multi-point and high-order simulation methods for simulating spatially 

complex non-linear and non-Gaussian geological phenomena 

The previous geostatistical simulation techniques are based on the reproduction of second-order 

statistics, which satisfy the requirements for modelling multiGaussian random functions. 

However, there are limitations when simulating non-linear and non-Gaussian geological 

phenomena that have complex non-linear spatial patterns (Guardiano and Srivastava 1993; Journel 

1997; 2002). These geological formations are often found in mineral deposits, as they are shaped 

based on natural means of deposition or other geological processes, and there are opportunities to 

use the data retrieved through production and exploration sampling to infer high order statistics 

and continuities. Therefore, multi-point simulation frameworks have been presented to simulate 

both continuous and categorical random functions that can spatially reproduce these structures, 

unlike traditional two-point statistical methods (Guardiano and Srivastava 1993; Strebelle 2002; 

Journel 2003; 2005;Zhang et al. 2006; Remy et al. 2009). 

Multi-point statistical frameworks have been used by the oil and gas industry for decades to 

reproduce curvilinear structures, i.e. sand channels in clastic reservoirs (Strebelle 2002). Moving 

away from the traditional random field simulation frameworks, multi-point methods extract 

patterns from a training image (TI) a geological representation of the attribute of interest and its 

spatial data distribution to simulate categorical (Strebelle 2002; Zhang et al. 2006; Strebelle and 

Cavelius 2014; Mariethoz and Caers 2015) and continuous variables (Guardiano and Srivastava 

1993; Zhang et al. 2006; de Iaco and Maggio 2011; Mariethoz and Caers 2015). Each TI does not 

necessarily carry any locally accurate information on the geological phenomena but instead 

reflects the critical spatial structures and geological behaviours of the simulated attributes. 

Training images can be generated using various object based algorithms, simulated realizations of 

an analogous field, or a geologists inference of the specific shapes (Strebelle 2002).  In mining, 

examples include the use of dense grade control data to generate training images which act as 

supplemental data that honours the geological behaviour and works in tandem with the exploration 

data while simulating the deposit (Osterholt and Dimitrakopoulos 2007). There are several 

algorithms that use TIs including ENESIM (Guardiano and Srivastava 1993), SNESIM (Strebelle 
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2002; Strebelle and Cavelius 2014), FILTERSIM (Zhang et al. 2006), Direct Sampling (Mariethoz 

and Renard 2010), WAVESIM (Chatterjee and Dimitrakopoulos 2012) and IMPALA (Mariethoz 

and Caers 2015). 

A major limitation of using a TI is they are computationally expensive to produce, particularly for 

jointly simulating multivariate deposits, and the data required to build accurate models is 

frequently unavailable. Moreover, multi-point methods derived from training images are 

occasionally unable to reproduce the statistics of the exploration data due to the heavy focus on TI 

patterns, resulting in simulations that reproduce the training image but, not necessarily the statistics 

of the hard exploration drill hole data. These shortcomings become more interpretable when 

observing the behaviour in the dense data sets of mining operations where there are certain 

challenges including reproducing the statistics of particular areas due to widely spaced drilling and 

reproducing the variability of hard data due to overfitting on spatial behaviour of the TI (Osterholt 

and Dimitrakopoulos 2007; Goodfellow et al. 2012). The previous approaches replace the two-

point variogram model with a TI to account for spatial connectivity or high-order dependencies in 

the geological models. 

Dimitrakopoulos et al. (2010) introduce a high-order simulation (HOSIM) method to reproduce 

non-linear and non-Gaussian high-order geostatistics using spatial cumulants, a spatial 

connectivity measure, as an alternative approach to reproduce the complex non-linear and non-

Gaussian geological features. The mathematical definitions of non-Gaussian spatial random 

functions and their high-order statistics are presented including the use of anisotropic experimental 

cumulant calculations using spatial templates. Cumulants by definition are a combination of 

statistical moments and are derived from the logarithm of the moment generating function. The 

work presented goes over the definition of spatial cumulants and an understanding of the 

relationship between the cumulant characteristics and in-situ behaviour of the geological process. 

Then, Mustapha and Dimitrakopoulos (2010) present a stochastic HOSIM method that uses high-

order Legendre polynomials to approximate the conditional distribution.  The coefficients of the 

Legendre polynomials are calculated from the cumulants population. This provides a framework 

that reproduces the spatial statistics of multiple points as an ensemble and generates more accurate 

realizations of complex geological patterns and the distribution of categorical variables. The 

training image is only used to complement the simulation when there is insufficient data available.  
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Minniakhmetov and Dimitrakopoulos (2017) extend this framework to jointly simulate 

multivariate deposits and categorical data. Similarly, a data driven high-order simulation that 

approximates high-order spatial indicator moments was developed (Minniakhmetov and 

Dimitrakopoulos 2017). The high-order spatial moments proved that higher-order statistics are 

connected with lower-orders based on boundary conditions. Therefore, a recursive B-spline 

approximation algorithm could be used to reproduce the high-order statistics from the hard data to 

improve computational issues with Legendre polynomials. The data-driven approach can simulate 

without a training image and still reproduce the high-order statistics of hard data. Additionally, 

there is the option to simulate using a training image for sparse datasets. de Carvahlo et al. (2017) 

extend the work of Minniakhmetov and Dimitrakopoulos (2017) by directly simulating at block-

support, which minimizes the memory requirements and improves the efficiency of simulating at 

point support by considering neighbourhoods as explained in Godoy (2002) and Boucher and 

Dimitrakopoulos (2009; 2012). 

Applications of high order and multi-point statistic methods are observed in several mining case 

studies. Minniakhmetov et al. (2018) test a HOSIM approach using Legendre-like orthogonal 

splines in a gold deposit. Three different systems of functions for HOSIM are compared to the 

sequential gaussian simulation, Legendre like splines and Legendre polynomials using order 10 

and 20. The HOSIM using Legendre like splines shows stable reproduction of spatially connected 

structures, whereas the polynomial approach is less connected. The HOSIM with Legendre like 

splines demonstrates the advantages of HOSIM by improving the reproduction of the spatial 

distribution of grades and the continuity of high grades. Vallejo and Dimitrakopoulos (2018) 

simulate the boundaries of geological domains using WAVESIM, an algorithm developed by 

Chatterjee et al. (2012), overcoming the limitations of SNESIM and FILTERSIM. WAVESIM 

begins by classifying a pattern database and then the prototypes of the classes are calculated. These 

prototypes are compared with the conditional data event and the class with the highest similarity 

is assigned. A Monte-Carlo type sampling approach is commenced on the cumulative probability 

density function to determine the class of the central node. Furthermore, de Freitas Silva (2016) 

perform a similar application of simulating the boundaries of the geological zones of a nickel-

laterite deposit using an unwrinkling process and then jointly simulating the attributes of interest 

using DBMAFSIM within the simulated domains, providing a framework that is capable of 

quantifying geological uncertainty and spatial variability. Finally, de Carvahlo et al. (2017) 
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generates high-order simulations using Legendre-like splines at block support for a gold deposit. 

A case study is completed which reports that the simulation approach increases the connectivity 

of high grades and reproduces the complex behaviour of the mineral deposit. The final outcome 

results in a noticeably different optimal mine extraction sequence. 

Multi-point and high order simulation frameworks provide methods to reproduce non-Gaussian 

and non-linear spatial patterns, such as, the connectivity of high-grades in a mineral deposit. This 

can aid the simultaneous stochastic optimization process by creating more realistic realizations of 

the deposit that better guide the optimizer and lead to more informed decisions. Multi-point and 

high-order frameworks overcome the limitations of the entropy spatial disorder of more traditional 

multiGaussain approaches that use two-point statistics. In addition, the simulation of categorical 

attributes, i.e. boundaries and volumes, may be able to assist in waste management. These 

categorical simulations could be used as a tool for mapping the uncertainty of waste material and 

improve the ability to integrate waste management into the simultaneous optimization framework. 

For example, the lithologies of overburden, till, and the host rock of acid generating waste 

materials could be simulated to assist with reclamation and satisfy permitting constraints. 

 Strategic mine planning with uncertainty 

The previous sections address the limitations of using an estimated orebody model and the risk of 

misguiding the optimization process due to the smooth representation of a mineral deposit. In 

addition, several examples identified the importance of jointly optimizing a number of components 

in the mining complex to take advantage of available synergies. This section showcases the 

importance of directly managing the risk of uncertain material supply when generating the optimal 

mine production schedule, which can be accomplished by generating a set of equally probable 

stochastic simulations of the mineral deposit and using them as input into the optimization.  

 Managing risk in strategic mine planning 

An early approach for managing supply uncertainty is tackled by generating a conventional 

production schedule for a group of simulated orebody scenarios. The production schedule is 

evaluated to determine the maximum-upside and minimum-downside of each production schedule 

by testing the performance of the scenarios that were not used to generate the initial production 

schedule (Dimitrakopoulos et al. 2007). This is repeated for all scenarios and a final design is 

selected based on satisfying the minimum acceptable return and maximizing the upside potential.  



16 

The evaluation approach quantifies the risk of meeting production targets and the selection of the 

optimal design aims to minimize the amount of risk and variability of the production schedule.  

This approach does not generate a mine plan that jointly manages the uncertainty of all the 

scenarios, likely leading to sub-optimal designs. Another limitation is the exhaustive approach 

requires a large amount of time to generate a production schedule for each scenario. Therefore, 

considerations for optimizing the mine production schedule while jointly considering each of the 

simulated scenarios could lead to improved performance.  

Godoy (2002) develops an alternative method for assessing grade uncertainty by deriving an 

optimal schedule for each simulated scenario. In the first stage the stable solution domain is defined 

by determining all feasible extraction rates for mining two products, ore and waste. The stable 

solution domain is generated by considering the worst case (bench-by-bench) and best case (pit-

shell-by-pit-shell) mining. The worst and best case scenarios are defined for each simulations and 

the stable solution domain is the area all the simulations share. Using the stable solution domain, 

a mathematical programming formulation determines the optimum mining rate over the life of an 

asset. The value must be within the stable solution domain. These rates are then used to create an 

extraction sequence for several orebody simulation, generating each schedule separately. A 

simulated annealing optimization approach is then used to minimize deviations from the optimal 

ore and waste production targets using the previously defined extraction sequences. The result is 

a single production schedule that aims to minimize deviations from the optimized processing 

capacity, while respecting the mining rate. This approach is applied at the Fimiston open-pit gold 

mine and compared to the base case schedule generated with a single estimated orebody model.  

The comparison with the base case production schedule shows the approach increases the projects 

NPV by approximately 28% and substantially reduces the risk of deviating from production targets 

(Godoy and Dimitrakopoulos 2004). In addition, a risk analysis was performed on the base case 

production schedule to test the performance based on the simulated outcomes, which resulted in 

11% less NPV then the initial economic analysis (Godoy 2002). This demonstrates the 

overestimation of metal quantities due to the effects of smoothing in an estimated orebody model. 

Although the method integrates uncertainty into the optimization process it remains a stepwise 

procedure that can not consider the available synergies between components. 

Del Castillo et al. (2015) uses the notion of the stable solution domain to provide an optimal annual 

extraction rate, jointly optimizing the utilization of the mining fleet and creating a purchasing 
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schedule that helps eliminate unnecessary capital expenditures. The optimal solution in this study 

refers to the production schedule that maximizes the NPV within the stable solution domain. In 

the objective function, the costs of adding new equipment to increase production capacity and the 

ownership cost for parking equipment are considered. The method leads to a 40% reduction in 

equipment purchases over the first seven years of the mine life. A limitation of the method is no 

extraction sequence is created, therefore, the mining rate obtained must be used subsequently to 

generate a new mine production schedule. 

Dimitrakopoulos and Ramazan (2004) use a set of stochastic orebody simulations to calculate the 

probability of a block containing grades above relevant cut-offs or within a given range. The 

mixed-integer program (MIP) aims to maximize the probability of meeting ore tonnage and grade 

targets, while deferring blocks of lower probability to later periods. This concept is termed an 

orebody risk discount rate or geological discount rate in future work. The probabilistic approach 

also generates feasible mining patterns by adding equipment accessibility and mobility constraints 

smoothing the mineability of the production schedule. These scheduling constraints prevent the 

optimizer from hand picking high probability blocks leading to an erratic and infeasible production 

schedule. The MIP is applied at a Nickel-Laterite deposit where there is a feasible extraction 

sequence in terms of mineability and decreased risk of meeting the forecasted ore production by 

6%. The main limitation of these probabilistic approaches is the probability does not directly 

account for the joint uncertainty of groups of blocks in the optimization problem and remains a 

block-based approach.  

Stochastic integer programming (SIP) can be used to optimize problems under uncertainty and 

find a solution that is ideal under all circumstances, ensuring feasibility while managing or hedging 

the associated risk (Birge and Louveaux 2011). Ramazan and Dimitrakopoulos (2005; 2013) and 

Dimitrakopoulos and Ramazan (2008) implement a two-stage SIP with recourse generating a 

production schedule that maximizes the expected NPV of the mineral deposit and minimizes the 

deviations from production targets including ore tonnage, grade and quality. The first stage 

decisions are the mining decision variables and the second stage recourse variables measure the 

resulting deviations from production targets due to uncertainty, which are a result of the first stage 

decisions. The optimization framework forces the optimizer to balance the trade off between 

managing the uncertainty of meeting production targets and maximizing the expected NPV (Albor 

and Dimitrakopoulos 2009; Dimitrakopoulos 2011; Ramazan and Dimitrakopoulos 2013; Leite 
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and Dimitrakopoulos 2014). This overcomes substantial limitations of the maximum-upside and 

minimum-downside approach. In addition, the NPV increases in the various studies.  

Leite and Dimitrakopoulos (2014) test the two-stage SIP approach addressing the impact of 

adjusting the geological discount rate and probability cut-offs, introduced in the work described 

previously (Dimitrakopoulos and Ramazan 2004; 2008;Ramazan 2006; Ramazan and 

Dimitrakopoulos 2013). The production schedule appears to be insensitive to changes in the 

geological discount rate, which is applied to the penalty cost for deviating from production targets. 

A probability cut-off is used to classify blocks as ore or waste. This is done by determining the 

number of simulated grade values that are greater than the cut-off and dividing it by the number 

of scenarios. Then a probability cut-off is used to define whether a block is considered ore or waste 

during the optimization. Although, all blocks should ideally be described as binary decision 

variables the time required to solve the solution can be quite large and using linear decision 

variables can improve the solution time while, maintaining the optimality of the solution (Ramazan 

and Dimitrakopoulos 2005; 2013). Therefore, ore blocks are forced to be binary decisions and 

waste blocks are allowed to be linear leading to a feasible production schedule.  The probability 

cut-off reduces the number of binary decisions as a pre-processing step and speeds up the 

optimization process by using less binary variables. The authors test the SIP formulation in a 

copper deposit where the resulting outcome increases the expected NPV by 29% while managing 

the uncertainty of ore and total mine production over the operating life. This improvement 

overcame the results of the conventional mine production schedule that had less than a 5% chance 

of reaching the desired ore production by accounting for uncertainty directly in the optimization 

framework. This case study showcases the value of the stochastic solution that outperforms any 

conventionally produced production schedule by accounting for uncertainty and managing the risk 

of meeting production targets. 

Managing supply uncertainty in the quantity and quality of ore is critical for achieving desirable 

material to deliver to the market. Benndorf and Dimitrakopoulos (2013) demonstrate the use of a 

two-stage SIP to manage blending constraints in a multi-element iron ore deposit. The method 

integrates the use of a geological discount rate, while generating practical mining shapes using the 

approach described in the work of Dimitrakopoulos and Ramazan (2004). The optimization 

approach manages the blend of iron, silica, alumina, LOI, and phosphorous limits at the Yandi 

Central 1 deposit in Western Australia. The SIP uses a set of equally probable stochastic orebody 
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models as input. The production schedule generated with the SIP is compared with the output from 

Blasor, BHP’s mine planning tool, and an estimated orebody model. The stochastic approach 

directly considers the uncertain ore blending properties and minimizes the risk of deviating from 

blending production targets throughout the optimization process. The SIP results in a production 

schedule that can increase the project value and better manage the risk of deviating from blending 

targets. 

Menabde et al (2007) present a mixed integer programming formulation that is generalized to 

include a group of conditional orebody simulations and variable cut-off grade decisions in the 

optimization approach. The MIP does not contain recourse variables that directly manage 

uncertainty and instead the framework ensures that production targets are achieved using the 

average outcome of the simulations. The method optimizes cut-off grade decisions by dividing the 

range of grades into a number of pre-defined bins and the cut-off grade is optimized in each period 

to maximize the NPV. The percentage of ore in each aggregate at each cut-off grade and in every 

scenario is a pre-processed result along with its relative value. Therefore, the cut-off grade is 

mainly effective for discriminating ore and waste for a single destination and attribute. Adding 

several different processors would drastically increase the dimensionality of the problem. In 

addition, blocks are averaged into panel and fractional extraction is permitted. The averaging of 

grades over panels and allowance of fractional extraction over different periods causes problems 

due to the effects of averaging. For instance, the lower grades in the pre-defined panel may be 

heavily weighted on one side and the fraction extracted may be taking this lower grade portion due 

to the mining sequence. Therefore, the average expected grade from that panel in the earlier period 

will be lower than expected and is not properly informing the optimizer of its true characteristics. 

Another limitation is the MIP formulation constrains the average outcome of the production 

targets, which is misleading if there is variability in the material being mined.  

Riméle et al. (2018) develops a two-stage SIP formulation that can incorporate uncertainty and 

consider in-pit dumping for both tailings and waste materials, while simultaneously determining 

the extraction sequence and destination policy. This approach overcomes the deterministic 

limitations of  BlasorIPD that was discussed previously. The goal of this approach is to reduce the 

size of waste dumps and stockpiles by considering placement of waste directly within the pit limits. 

Transportation and rehabilitation costs decrease along with environmental damages contributing 

to a higher NPV. In each period, a top and bottom strip are considered to delineate the available 
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in-pit storage during the optimization. The delineated area represents the space available for in-pit 

storage. In-pit storage variables are first stage decisions that show whether a strip is available for 

storage, the bottom strip, or the top strip. A strip can only be filled with material if it is available 

for storage and the quantity is capacitated. There is also a limitation on the amount of tailings and 

stockpiled material that can be stored ex-pit. The framework is applied on a low-dipping iron ore 

deposit where tailings and waste are successfully stored in-pit. A large reduction in rehandling 

costs are obtained by minimizing the rehandle for the reclamation process. 

Multistage stochastic programming models provide an approach that can adapt to uncertainty, 

particularly geological uncertainty (Boland et al. 2008) and can evolve to include the randomness 

of equipment longevity or uncertain demand in different industries (Ahmed et al. 2003). Boland et 

al. (2008) use a multistage stochastic programming approach without recourse to yield a number 

of different production schedules in response to geological uncertainty. A set of stochastic 

geological simulations are used as input into a mixed integer multistage stochastic programming 

approach, where future decisions are dependent on the geological properties of the material 

previously mined. As the production schedule is optimized and if there are significant differences 

between the grades of simulated orebody scenarios the solution is allowed to change the processing 

and mining decision variables between scenarios. However, if there is no large difference in the 

scenarios before some time period non-anticipativity constraints are enforced. Non-anticipativity 

constraints ensure that if it is not possible to distinguish between two groups of scenarios then the 

same decisions must be undertaken in those scenarios. The problem here is these decisions directly 

relate to the geological uncertainty, which is highly variable. Therefore, decisions will vary 

drastically and the optimization process will end up overfitting the mine production schedule to a 

single production schedule for each scenario. A predetermined differentiator 𝛼 checks the 

difference in grade between scenarios and determines whether non-anticipativity constraints are 

applied. The method is capable of handling multiple geological simulation of the supply 

uncertainty and shows the ability to allow processing and mining decisions to adapt to these 

uncertain attributes. However, the major limitation of this approach is it ends up generating a 

production schedule for each scenario and by doing so it is able to precisely control the production 

rates. This leads to a production schedule that is best fit for a scenario and if any different outcome 

occurs it is not robust enough to handle these types of changes leading to an over optimistic vision 

of the potential project value. The reason the overfitting leads to a problem in generating a strategic 
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mine production schedule is addressed in the following descriptive example: the physical mine 

design in the second year of production is conditional to the extraction sequence in the first year 

and once a plan has commenced it becomes infeasible to mine the second year of extraction in any 

of the scenarios that differ in action from the first year of the initial plan. As a result, once the first 

decision is made the sequence is guided by this decision and the multistage framework that is 

suggested no longer becomes feasible due to the previous extraction sequence decision. This 

limitation is overcome in the subsequent section in the work of Del Castillo and Dimitrakopoulos 

(2019).  

Groeneveld and Topal (2011) attempt to evaluate the flexibility of mine designs under uncertainty 

by using a mixed integer programming model and Monte Carlo type simulations. Stochastic 

parameters (price, capital expenditures, equipment utilization, etc.) are simulated using a Monte 

Carlo approach providing a given state of the world and than are optimized using the mixed integer 

program. Each scenario is being optimized individually and using the group of optimized scenarios 

they expect to be able to determine the flexibility that provides the best risk profile based on the 

options most frequently visited. Several limitations of this model are quickly observed including 

the inability to incorporate geological uncertainty, the oversimplification of the Monte Carlo 

simulation techniques used, no production schedule is produced, and many more. In essence, this 

method simply provides a risk analysis of potential outcomes and assumes the design chosen 

strictly based on the frequency of occurrence is the ‘optimal’ option. Groeneveld et al. (2012) 

expand on this model by creating a hybrid model that fixes the initial periods for choosing different 

design options and reopens them up. Providing a more realistic approach that only allows the 

design to actively adjust after a number of periods allowing for appropriate lead times. 

Additionally, the model described as robust considers numerous states at once and generates one 

design that best satisfy a range of simulated price and cost conditions. 

There are suggestions that SIP formulations are not computationally feasible when there are a large 

number of blocks (hundreds of thousands to millions) that must be scheduled. This has been 

overcome in the subsequent contributions to this thesis by applying a SIP in two large real-world 

applications where the number of blocks used for scheduling is over 2.3 million. Mai, Topal and 

Erten (2018) suggest an alternative aggregation approach to reduce the problem size using a 

TopCone algorithm (TCA) instead of panel aggregation as a preprocessing step. The blocks are 

clustered into a number of TopCones, predefining the quantity and shape of each TopCone and 
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eliminating the need for pushback design due to their shape. The linear programming approach for 

clustering TopCones aims to group blocks with positive and negative economic values into clusters 

that are positive in value. The minimization problem reduces the number of connections between 

nodes, so the size of clusters is minimal, and the previous conditions are satisfied.  A major 

limitation of TCA is that if the TopCones become too large the model may become infeasible to 

solve towards the bottom of the pit due to incremental value that could be achieved by smaller 

cones, which is not feasible due to the size of the cone. An advantage here is they do not assume 

fractional extraction and their shape is advantageous as the approach can lead to an ultimate pit 

limit by determining the optimal extraction of TopCones.  

Mai et al. (2018) generate an open pit production schedule by combining the TCA with a SIP 

framework. The combined approach requires a three step process (i) the geological simulations are 

averaged to generate an E-type orebody model (ii) an E-type model is used to solve the TCA 

algorithm and the simulated values are reinput into the TopCones (iii) the stochastic values of the 

TopCones are used as input into the SIP production scheduling algorithm that is solved using 

CPLEX, which is now possible due to the significant reduction in the number of integer variables. 

Similar to previous work (Dimitrakopoulos and Ramazan 2008; Ramazan and Dimitrakopoulos 

2013), the SIP formulation aims to maximize the NPV and minimize deviations from production 

targets. This resulting production schedule leads to a 2.28% increase in NPV due to the 

management of technical risk in the optimization formulation. However, limitations of this method 

still exist similar to panels where the flexibility to change the extraction sequence is limited and 

the top cones are generated based on E-type model that is not representative of the simulations as 

a group but, rather their averaged value. Aggregation approaches continue to limit the ability to 

generate additional value as they limit the flexibility of the optimization algorithm being applied. 

This highlights the need to continue building faster heuristic solving methods, described 

subsequently, to overcome the requirement of reducing the size of the optimization problem.   

 Simultaneous stochastic optimization 

Simultaneous stochastic optimization delivers an approach that can optimize all the components 

of a mining complex in a single optimization model (Montiel and Dimitrakopoulos 2015; 2017; 

2018;Goodfellow and Dimitrakopoulos 2016; 2017). These components may include open-pit and 

underground mines, stockpiles, leach pads, autoclaves, oxide mills, waste dumps, tailings 
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facilities, and various methods of transportation (Pimentel et al. 2010). The two-stage SIP 

formulation with fixed recourse provides a framework that maximizes the NPV, while managing 

technical risks and is a major extension of the work previously described by Ramazan and 

Dimitrakopoulos. Moving away from the conventional sequential mine-to-mill optimization 

approach, the simultaneous stochastic optimization framework generates a long-term production 

schedule that considers the influence of all the components in the mining complex from the source, 

open-pit and underground mines, to the customers and spot market. The holistic approach provides 

opportunities to identify and capitalize on synergies between the different components and 

determine the optimal decisions that account for the interconnectivity of a mining complex. These 

opportunities arise due to the change in notion from earlier conventional approaches that consider 

the economic value of a block determined a priori to the new approach that directly maximizes the 

profit generated from selling valuable products. The change in the optimization formulation allows 

for stockpiling, blending, destination policy and capital expenditure decisions to be directly 

integrated into the optimization resulting in additional value from the available synergies in the 

mining complex. The production schedule generated using a simultaneous stochastic optimizer 

increases the NPV and improves the ability to satisfy production targets by searching for 

combinations of decisions that extract valuable minerals from in-situ mineral reserves and 

transform them into saleable products. A production schedule defines the resulting extraction 

sequence, destination policy, blending, stockpiling, processing and capital expenditure decisions. 

Montiel and Dimitrakopoulos (2013) take a mining complex in Chile, Escondida Norte, and 

perform a stochastic optimization using a simulated annealing approach. The simulated annealing 

approach does not simultaneously optimize the entire complex but integrates a number of critical 

decisions into the production scheduling approach. The optimization changes the extraction 

sequence of several ore types to minimize deviations from production targets and ore quality 

requirements then, models the flow of material that can be transferred to multiple processing 

streams. A destination policy checks each block to see if it has an invariable material type in all 

the simulations. If it does then a destination is assigned, however if the material type varies over 

simulations the scheduler assigns only a period to the block and sends it to the appropriate 

destinations. The solution performs best if it starts from an initial mining sequence and decreases 

deviations from production targets. A case study is commenced at Escondida Norte which reduces 

deviations from 20% to 5% for the processing and grade targets. Although, the objective function 
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does not explicitly maximize NPV it still increases the value of the mining complex by 4% when 

compared to a conventional production schedule.  

Montiel and Dimitrakopoulos (2015; 2017; 2018) continue to extend this framework into a two-

stage SIP that maximizes NPV and minimizes deviations from mining and metallurgical 

processing targets by simultaneously optimizing the extraction sequence, destination policy, 

operating modes and transportation system alternatives. The NPV is driven by maximizing the 

value of the products sold and minimizing the costs incurred at each component in the mining 

complex. This overcomes the limitations of focusing on the economic value of the block. The 

solving approach considers three different types of perturbation mechanisms within a mining 

complex, which will be accepted based on the simulated annealing framework (Metropolis et al. 

1953; Kirkpatrick et al. 1983). A simulated annealing framework for optimizing a mine production 

schedule was first introduced by Godoy (2002). Here, the first level block-based perturbations 

modify the period of extraction, destination of each mining block and the reclamation from 

stockpiles. The destination is chosen based on the overall profitability of a block at each destination 

in all the simulated scenarios. Operating alternatives are randomly selected to see if they lead to 

an increase in objective function by reducing the deviations from production targets, increasing 

the NPV or a combination of both. For example, the operating alternatives at the processing facility 

may consider different grinding sizes, such as, coarse or fine by changing the operating mode of 

the comminution process. The alternative results in different costs, throughputs and recoveries. 

Last the transportation alternative perturbations are explored by randomly changing the proportion 

of material sent between different transportation mechanisms, such as, trucks or pipe 

transportation. Integrating several operating and transporting alternatives into the optimization 

framework demonstrates the ability to consider the interactions of several components in the 

mining complex, while determining the extraction sequence. Operating and transportation 

alternatives can be incorporated in the optimization model by focusing on the value of the products 

sold instead of the conventional approach that considers the economic value of the block. These 

decisions optimized together ultimately improve the NPV of the mining complex and lead to a 

higher probability of meeting production targets when compared to the locally optimized 

conventional approaches. This is demonstrated at Newmont’s Twin Creek operations where the 

simultaneous stochastic optimization framework increases the NPV by 6% and improves the 

management of autoclave blending constraints (Montiel and Dimitrakopoulos 2018). The 
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improved blending strategy generated using the simultaneous stochastic optimization approach 

ensures the autoclave throughput can be utilized without violating the constraint on acid 

consumption, therefore, a larger difference in NPV is likely to be achieved as the material 

variability and uncertainty is not accounted for in the deterministic production schedule created 

for Twin Creeks.   

Goodfellow and Dimitrakopoulos (2016; 2017) also propose a two-stage SIP for simultaneously 

optimizing the production schedule of a mining complex with uncertainty. Large real-life mining 

complexes can be solved where the number of blocks in the geological model can be in the order 

of millions with a mine life of 25 years or more. The first-stage decision variables are based on the 

optimization of each mines extraction sequence and destination policy and the second-stage 

recourse decisions change the downstream processing decisions. A metaheuristic solution 

approach is used to solve the large non-linear problem, to ensure stockpiling and blending 

considerations can be integrated into the simultaneous stochastic optimization of a mining 

complex. The optimization model defines three types of decision variables; i) scenario independent 

binary extraction sequence variables that define the period each block is mined; ii) scenario 

independent binary destination decision variables which define the destination of each cluster 

membership, defined subsequently; and iii) continuous processing stream variables that define the 

proportion of material sent from one location to another.  The optimization approach is generalized 

to consider the extraction of mineral reserves and the transformation of this material into different 

products through blending and processing, by considering two attribute types. Primary attributes 

are additive variables that originate at the source and flow through the mining complex to generate 

valuable products. Examples include tonnage, metal quantity and volumes. Hereditary attributes 

are variables that represent important aspects of the optimization model expressed as function of 

primary attributes, however, they are not necessarily passed between the different components. 

Some examples include costs, energy consumption, feed material chemistry and recovery. The 

flexibility of the simultaneous optimization framework allows for the integration of non-linear 

relationships through the use of hereditary attributes, which have generally been ignored in 

existing models because of the challenges associated with non-linear optimization. This limitation 

is overcome by the use of smart metaheuristics discussed subsequently. 

Goodfellow and Dimitrakopoulos (2016) also develop a robust destination policy framework that 

can be used in multi-variate mineral deposits. Similar to the binning methodology proposed by 



26 

Menabde et al. (2007), clusters are generated by assigning blocks, using k-means++ clustering 

algorithm (Arthur and Vassilvitskii 2007), to a membership based on the properties of interest. 

The membership for each block is scenario dependent due the local variability of the simulated 

grades and is determined in a pre-processing step. The number of clusters is a user defined 

parameter, where more clusters leads to a higher degree of flexibility for the optimizer and can 

potentially lead to overfitting as the number of clusters approaches the number of blocks in the 

optimization model. The overarching destination policy is scenario independent leading to one 

policy that can be used for operational guidance. This works well with multivariate deposits as the 

dimensionality of the clustering algorithm permits a higher degree of freedom in terms of 

managing deleterious elements or contaminants that are jointly simulated in the orebody model. A 

limitation of the approach is the interpretability of the clustering decisions becomes challenging to 

visualize at higher dimensions as the boundaries can become highly complex. This means the 

method requires a mathematical formulation to determine the cluster each block is a member of at 

the operational level and it can not simply be described as high, medium, and low grade based on 

linear cut-offs. These cut-offs are not desirable due to the impact of secondary products and 

deleterious elements that are not based on a single grade. However, the clustering approach allows 

the destination policy decisions to be determined during the optimization process, which 

overcomes major limitations of conventional methods that pre-determine the cut-off using Lane’s 

cut-off grade optimization approach (Lane 1964; Lane et al. 1984; Rendu 2014).  

Furthermore, three metaheuristics are tested and combined to assess the speed and quality of the 

simultaneous stochastic optimization framework (Goodfellow and Dimitrakopoulos 2016). It was 

found that particle swarm optimization (PSO) and differential evolution (DE) metaheuristics when 

applied in the optimization of a mining complex were not suitable for determining an optimal 

extraction sequence as these approaches were sensitive to initial sequences and destination policies 

determined by the population. The PSO and DE algorithms required a large amount of 

computational time to normalize the extraction sequence and enforce slope constraints, however, 

they appeared to work well for optimizing the downstream destination policies and processing 

stream decisions because they could change both sets of the interconnected decisions 

simultaneously. Goodfellow and Dimitrakopoulos (2016) compare the traditional simulated 

annealing framework with two alternatives: (i) simulating annealing with downstream PSO and 

(ii) simulating annealing with downstream DE (Metropolis et al. 1953; Kirkpatrick et al. 1983; 
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Geman and Geman 1984; Kennedy and Eberhart 1995; Price et al. 2005). The two optimization 

techniques are tested in a copper-gold mining complex to demonstrate the advantage of the new 

optimization approaches when compared to the traditional simulated annealing framework. Based 

on the performance comparisons it can be seen that both methods are capable of improving the 

average NPV of the mining complex. The production schedule obtained in the copper-gold mining 

complex using simulating annealing with PSO and DE is compared to the basic simulating 

annealing algorithm and results in a 1.91% and a 2.57% increase in NPV with the requirement of 

2.4 and 2.9 times longer computing time, respectively. 

Goodfellow and Dimitrakopoulos (2017) further demonstrate the criticality of focusing on the 

value of the products sold and integrating supply uncertainty into the simultaneous optimization 

framework in two mining complexes. A nickel-laterite mining complex with multiple stockpiles 

and strict blending constraints is optimized and the results highlight that ignoring uncertainty can 

lead to a sub-optimal destination policy that can severely impact material quality requirements. 

The approach is also tested on a copper-gold mining complex, where the non-linear grade-recovery 

relationship for copper and gold grades are integrated into the simultaneous optimization process 

to highlight the importance of maximizing recovery through blending. This advancement is 

possible as the optimization model now focuses on the value of products sold and the 

homogenization of materials can now be calculated at the different processes. In the past, non-

linear recoveries could only be calculated at the block level, which assumes that each block is 

processed independently. However, there are often several material sources that supply material 

to the processing and stockpiling destinations, therefore, a block-based approach is not ideal for 

understanding the mixing of materials throughout the mining complex. The recovery should 

instead be examined at the location where the material is being blended or mixed in the processing 

stream.   

Another challenge in the mining industry is determining the optimal time to invest in large capital 

investments and even more so determining the optimal mining rate to deliver a life-of-mine 

production schedule. Quite commonly, a fixed deterministic value is tested and evaluated until a 

mining and processing rate performs well using conventional methods. Predetermining the mining 

rate prior to the optimization is likely to lead to a locally optimal solution, limited by a schedule 

that does not consider increasing or decreasing capacity. Hence, the strong relationship between 
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capacities their operating costs and the overall mining complex performance must be considered 

together in a simultaneous framework to obtain favourable results.  

Goodfellow (2014) and Goodfellow and Dimitrakopoulos (2015) integrate capital investment 

decisions that can either increase or decrease capacities into the optimization. The method 

considers the cost of investments in the objective function by including capital expenditures in the 

cashflow model and linking the unitary increase or decrease in capacity to the accompanying 

capacity constraints. Using the generalized two-stage stochastic integer formulation described 

previously (Goodfellow and Dimitrakopoulos 2016),  the first stage decisions are modified to 

include each mines extraction sequence, destination policy, and now capital expenditures. The 

first-stage decisions are decided prior to revealing uncertainty; then, the second-stage recourse 

variables adapt to uncertainty by adjusting the processing stream decisions and managing 

deviations from production targets. The capacity decisions are able to be increased or decreased 

by a unitary amount depending on the number of capital investments undertaken. A new 

investment decision variable defines how many capital expenditure options are exercised in each 

period. In addition, realistic lead times and equipment life are considered so feasible purchase 

plans can be developed. The method is then tested on a copper mining complex that considers 

changes to the production schedule by increasing or decreasing the mining rate through the 

acquisition of shovels and trucks leading to a 5.7% higher NPV than the deterministic equivalent 

design. An advantage of this method is that the target production rates are being decided during 

the production scheduling process capturing opportunities to contract and extract capacities to gain 

further value. This overcomes limitations of the sequential approach that predetermines the rates 

prior to determining the production schedule. 

Farmer (2016) simultaneously determines the processing and mining capacities during the life-of-

mine production schedule using the method previously described (Goodfellow 2014; Goodfellow 

and Dimitrakopoulos 2015). The optimization simultaneously considers the sizing of a processing 

facility, which highly influences the optimal mining rate. This provides a method that can balance 

the amount of load and haul equipment with the corresponding processing capacity, while 

determining the extraction sequence, destination policy, stockpiling, and processing decisions. 

Additionally, there are considerations of project financing within the revenue calculation, in this 

case a streaming contract was considered under price uncertainty. The resulting production 
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schedule attempted to produce higher grade metal during high price periods and lower cost low-

grade material during lower price periods leading to a 12% increase in NPV.  

Kumar and Dimitrakopoulos (2019) integrate uncertainty in geo-metallurgical variables alongside 

grade and material type uncertainty. Two non-additive geo-metallurgical properties are considered 

in the optimization approach; the simulated semi-autogenous power index and bond work index. 

The material hardness is then calculated using the geo-metallurgical properties to define the 12 

different material types used in the optimization process. Specific geo-metallurgical targets are 

introduced to maximize the utilization of the processing facilities. The integrative approach is 

tested at a large copper-gold mining complex and indicates a higher chance of satisfying 

production targets particularly the ratio of hard/soft material entering the three processing 

destinations. This increases the NPV by 19.3% when compared to a conventionally produced mine 

production schedule, which is primarily due to higher metal production achieved through the 

simultaneous optimization. 

Kizikale and Dimitrakopoulos (2014) present a distributed dynamic programming framework that 

determines the production rates of multiple mines under financial uncertainty. The iterative method 

assumes that each mine’s extraction rate is a function of the simulated prices and the other mines’ 

extraction rates. The individual mines are solved independently and then an iterative approach is 

used until the iterations converge satisfying the global optimization of multiple mines. 

Unfortunately, the method is not capable of producing a production schedule and does not account 

for supply uncertainty, but it is able to understand the interactions between the different mines 

under financial uncertainty and confirm they do not react proportionally. 

Zhang and Dimitrakopoulos (2017) develop a decomposition method to optimize a multi-mine 

mining complex. The decomposition approach optimizes the upstream mine production schedule 

and the downstream transportation of materials simultaneously to maximize the NPV, under both 

supply and market uncertainty. Typically, when optimizing the downstream components of a 

mining complex the production schedule is treated as fixed and the goal is to maximize the 

utilization of each processor and transportation method, while simultaneously maximizing the 

NPV. Depending on the complexity of the mining complex, there may be many material 

transformations and non-linear relationships between the input and output of each component in 

the mining complex, making it difficult to simultaneously schedule the extraction sequence and 
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downstream components. In their work, a dynamic-material-value-based decomposition approach 

is developed to synchronize the upstream and downstream optimization of a mining complex 

through iterations. This leads to a solution that first solves the extraction of material from the mine 

(mine production scheduling (MPS)) and then the tonnage of each material type produced are sent 

to the downstream optimization approach that transports and transform material into a valuable 

material (material flow planning (MFP)) which, then sends the updated value of the material back 

to the MPS model that solves the extraction sequence. When the amounts of purchasing and selling 

of each material type in each period equals zero then the optimization approach has converged and 

an optimal solution for the upstream and downstream components has been found. Zhang and 

Dimitrakopoulos (2018) also formulate a two-stage non-linear SIP to optimize a mining complex 

under both geological and market uncertainty, while simultaneously integrating forward sales 

contracts. An effective and efficient heuristic is designed to manage the throughput and head-grade 

dependent recovery in a processing facility. The approach provides a method for evaluating 

whether a forward contract should be undertaken by observing one of the following: (i) contract 

should be taken if the best-and worst case NPV increases; (ii) a contract should not be taken if the 

best and worst case NPV decreases; (iii) a contract may be taken if it is reduces the worst case but 

decreases the expected NPV. 

Contributions leading to the simultaneous stochastic optimization of mining complexes have 

drastically improved the strategic mine planning framework over the past two decades. The two-

stage SIP approaches explained allows robust production schedules to be created that manage 

uncertainty, while providing mining enterprises the ability to quantify and manage technical risk 

associated with their assets and achieve a higher NPV. However, a limitation with these 

approaches is the policies and production schedules produced are fixed or static and they do not 

consider opportunities to consider feasible alternatives. 

Del Castillo and Dimitrakopoulos (2019) use the simultaneous stochastic optimization framework 

to develop an adaptive optimization approach that considers feasible investment alternatives over 

the long-term production schedule of a mining complex. These investments change the production 

capacity of different components within the mining complex resulting in large changes to the 

production schedule. The approach expands on the previous work proposed by Goodfellow and 

Dimitrakopoulos (2016; 2017) by integrating a branching mechanism that chooses the opportune 

time to undertake an investment and whether the production schedule should branch, resulting in 
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a number of feasible alternatives. This is accomplished by allowing the optimizer to consider the 

probability of purchasing an investment alternative in different groups of simulated orebody 

scenarios, which represent the supply uncertainty of the mines. When the decision is 

counterbalancing, where one large representative group of scenarios invest and another large 

representative group does not, the production schedule branches into alternative mine plans. The 

innovative approach overcomes the limitations of the previously described multistage SIP (Boland 

et al. (2008)) as each of these alternatives are fully optimized based on the investment undertaken, 

however, the decisions made prior to the investment can not be changed once branching occurs. 

This prevents the optimization framework from anticipating investment decisions and changing 

the decisions made prior to the investment choice, as the investment decision remains uncertain 

until it is executed. Each alternative mine plan is optimized fully leading to a production schedule 

that can be actively followed and depending on whether the investment is undertaken a continuous 

sequence is available. Overfitting the production schedule to a scenario is eliminated by ensuring 

there are a minimum number of scenarios within each branch and only allowing the production 

schedule to branch when a certain percentage of scenarios choose to invest. This is based on the 

representativity parameter 𝑅. Three different outcomes are possible based on probability of 

investing in each feasible investment alternative: 

1. If the probability of investing in a capital expenditure is less than the representative 

parameter, then the investment is not taken. 

2. If the probability of investing in a capital expenditure is greater or equal to the 

representative parameter and less than 1 –  𝑅 then branching of the production schedule 

occurs. 

3. Lastly, if the probability of investing in a capital expenditure is greater than or equal to 1 −

 𝑅 than the investment are taken over all scenarios and there is no branching. 

Non-anticipativity constraints are also used to ensure that in each branch of the production 

schedule all the decision variables are equal over the scenarios until branching occurs. The method 

is applied on a multi-mine copper mining complex and considers the purchase of trucks and 

shovels and a secondary crusher for increasing the mining and processing capacity, respectively. 

When comparing the solution with the results from the initial two-stage stochastic integer 

programming approach a $170 million increase in NPV is observed. Del Castillo (2018) further 
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expands this model to integrate operational alternatives including drill and blast pattern designs 

and grind size factoring the trade-off between throughput and recovery at a copper-gold deposit. 

The end result entails a 10.5% increase in NPV of the mining complex. 

 Smarter solving algorithms 

The simultaneous stochastic optimization approaches discussed previously are computationally 

expensive to solve as the number of integer variables are in the order of billions when integrating 

uncertainty into the suggested framework. Montiel and Dimitrakopoulos (2017) use a heuristic 

method to generate life-of-mine production schedules that can consider operational alternatives 

and geological uncertainty. The heuristic iteratively improves the solution by swapping the periods 

of blocks within the extraction sequence and switching the destination of those blocks. 

Lamghari and Dimitrakopoulos (2012) develop a metaheuristic based on the Tabu search 

algorithm and apply it to an open-pit mine production optimisation process. They suggest two 

diversification strategies to explore the large feasible solution domain. First, a long-term memory 

approach is used to remember where different blocks have been scheduled in the search history 

and moving them to the least frequented periods. The second approach uses a variable 

neighbourhood search algorithm. Based on the test results of 10 practical case studies the Tabu 

search combined with variable neighbourhood modification produces similar results as the long-

term memory strategy. However, as the applications grow the variable neighbourhood applications 

is not nearly as effective as the long-term memory strategy.  

Two variants of the variable neighbourhood descent algorithm have been applied to the two-stage 

stochastic integer formulation and later tested on large-scale applications to improve the efficiency 

of achieving good solutions (Lamghari et al. 2014). Both methods decompose the solution to a set 

of smaller sub-problems. The first variant solves the problem exactly, whereas, the second method 

sub-problems are solved using a greedy heuristic. The exact method slightly outperforms the 

greedy heuristic in solution quality; however, the greedy heuristic is nearly twice as fast. This 

method still requires an initial mining sequence, but it can substantially improve the initial solution 

in a reasonable amount of time. These methods substantially improve the solving time of stochastic 

optimization framework and have allowed the development of more complex models like 

described in Goodfellow and Dimitrakopoulos (2016) and Montiel and Dimitrakopoulos (2015). 

Additionally, there have been various applications of heuristic optimization approaches that aim 
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to optimize larger problems in faster times achieving near optimal results these methods need to 

continue to be developed for stochastic frameworks and enhance the ability to simultaneously 

optimized detailed models under uncertainty (Asad and Dimitrakopoulos 2013b; Gilani and 

Sattarvand 2016; Sari and Kumral 2016) Lastly, a newer hyper heuristic approach is described by 

Lamghari and Dimitrakopoulos (2018) that provides a learning mechanism that can select or 

generate heuristics to solve computationally challenging problems, including the optimization of 

a mining complex, using reinforcement learning and Tabu search. This method helps determine 

the heuristic method when given a particular problem as some search strategies perform far better 

on one case compared to another. Therefore, it is desirable to be able to switch between and 

determine the heuristic approach that best suits the problem at hand.  This is being addressed in 

future work by using smart artificial intelligence and machine learning frameworks that are able 

to choose the best heuristic approach to apply to the problem at hand.  

 Goal and objectives 

The goal of this thesis is to investigate simultaneous stochastic optimization through major 

applications and further develop the method by integrating waste management and capital 

investment decisions to generate a feasible long-term production schedule in a mining 

complex. The following set of objectives are to be addressed:  

1. Review the technical literature related to strategic mine planning including conventional and 

stochastic approaches that maximize the value of a mining complex and the methods required 

to generate conditional orebody simulations that are used to evaluate the response of 

uncertainty in a mine production schedule and manage supply uncertainty. 

2. Apply a simultaneous stochastic optimization approach to a gold mining complex that manages 

the uncertain production of acid generating waste. Furthermore, address the requirement to 

quantify material uncertainty and variability of waste as a mining product.  

3. Apply an adaptive simultaneous stochastic optimization to a large multi-mine and multi-

process gold mining complex that adapts to uncertainty by branching the solution based on a 

set of feasible investment alternatives. 

4. Summarize the main contributions and conclusions of the research completed and provide 

suggestions for future research. 
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  Thesis outline 

Chapter 1 presents a technical literature review on strategic mine planning focusing on the 

significance of an integrative optimization approach that accounts for the global impact of each 

decision within the mining complex.  In addition, methods for simulating supply uncertainty using 

stochastic orebody simulations are described. These aspects are discussed including the integration 

of the current state-of-the-art simultaneous stochastic optimizers. Lastly, the goals and objectives 

are provided. 

Chapter 2 presents an innovative application of a simultaneous stochastic optimization framework 

that demonstrates the ability to manage the production of acid generating waste directly in the 

optimization formulation. The gold mining complex considered includes a large deposit with 2.3 

million blocks and a 25-year mine life. The production schedule generated with the simultaneous 

stochastic optimization framework is compared with a conventional mine production schedule and 

identifies the underlying uncertainty of waste production. 

Chapter 3 presents a major case study in a multi mine and multi process gold mining complex, 

where an adaptive simultaneous stochastic optimization approach strategically considers 

investment alternatives in mining equipment, process plant upgrades and the tailings management 

area. The production schedule branches on feasible investments providing alternative mine plans 

and the mining rate is determined directly in the optimization formulation. 

Chapter 4 reviews the conclusions obtained from these applications and explains the value of 

simultaneous stochastic optimization frameworks, while considering suggestions for future 

research. 

2. Simultaneous stochastic optimization of an open-pit gold mining complex 

with waste management 

 Introduction 

A mining complex is an integrative logistic network that represents the extraction, transportation 

and transformation of materials between their sources, open-pit and underground mines, and final 

products delivered to the commodity market (Pimentel et al. 2010; Montiel and Dimitrakopoulos 

2015; Goodfellow and Dimitrakopoulos 2016; 2017). New technological advancements in 

strategic mine planning and optimization simultaneously consider all the components of a mining 
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complex, including multiple mines, processors, stockpiles, and waste facilities, in a single 

optimization framework with uncertain raw material supply (Montiel and Dimitrakopoulos 2015; 

Goodfellow and Dimitrakopoulos 2017). These advancements provide an integrative approach that 

can be adapted to accurately consider waste as a mining product and manage the uncertain quantity 

and quality of waste produced, thus minimize potential environmental impacts and assist 

rehabilitation. The simultaneous stochastic optimization approach is used to generate the 

extraction sequence, cut-off grade, stockpiling, processing, and waste management decisions that 

maximize the value of the mining complex, while managing risk. Waste management decisions 

are a fundamental aspect of strategic mine planning; however, they are frequently simplified when 

optimizing the long-term production schedule and are managed subsequently. In this work, a 

simultaneous stochastic optimization approach is applied to a gold mining complex that actively 

manages the uncertain production of acid generating waste when generating the production 

schedule. 

There have been several applications of simultaneous stochastic optimization that focus on 

delivering the appropriate quality and quantity of valuable products to the market, but do not 

consider the gross impact of generating waste (Saliba and Dimitrakopoulos 2018; Kumar and 

Dimitrakopoulos 2019; Del Castillo and Dimitrakopoulos 2019). In strategic mine planning, waste 

management  is typically simplified by considering a single unconstrained waste dump destination 

(Albor and Dimitrakopoulos 2009; Leite and Dimitrakopoulos 2014). Additionally, the uncertainty 

and local variability of waste’s chemical composition is ignored. These simplifications can lead to 

deviations from production targets, such as, exceeding the permitting constraints at the waste dump 

destinations and misrepresenting the amount of each waste product produced due to its uncertain 

properties. Violating permitting constraints and mismanaging waste production can lead to 

detrimental effects on the environment (Adibee et al. 2013; Jain and Das 2017), emphasizing the 

importance of integrating waste management into the long-term production schedule.   

Waste management is integrated into the simultaneous stochastic optimization approach by first, 

simulating equally probable stochastic orebody models to identify the underlying uncertainty and 

variability of the different material types. Second, each component of the mining complex is 

optimized simultaneously to capture any synergies that may exist (Hoerger, Hoffman, et al. 1999; 

Whittle 2007; 2010). The uncertainty and variability of the geochemical properties in the mined 

material can lead to challenges in managing waste production. For example, the oxidation of 
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sulphide materials in a gold deposit can lead to acid mine drainage when exposed to air and water 

(Johnson and Hallberg 2005; Akcil and Koldas 2006; Simate and Ndlovu 2014). Acid mine 

drainage may also contain dissolved heavy metals, which can have adverse effects on the 

surrounding environment. The composition of sulphides and carbonates is highly uncertain and 

deterministic methods for estimating these properties may result in substantial material 

misclassification. Estimated models smooth the representation of the grades and all the pertinent 

properties within the mineral deposit misrepresenting the proportions of material by under and 

overrepresenting the extreme and average grades of the deposit, respectively (Rossi and Deutsch 

2014). The smoothing effect directly impacts the ability to properly predict the geochemical 

behaviour of waste material extracted. This includes the classification of acid generating material, 

for example, by evaluating the ratio of neutralization (NP) and acid potential (AP) in a gold deposit 

(Pedretti et al. 2017). Therefore, strategic plans must be developed that integrate waste 

management and uncertainty into the mine production schedule to alleviate the cost of remediation, 

long-term site monitoring, and further environmental impacts (Gray 1997; Johnson and Hallberg 

2005). Costs and environmental impacts can be minimized by decreasing the production of acid 

generating waste rock, reducing surface disturbance and satisfying permit constraints. 

Opportunities to minimize the cost of rehabilitation and long-term monitoring can be achieved by 

decreasing the size of waste dumps and ensuring there is an appropriate amount of material to 

encapsulate acid generating waste. For instance, modelling the haulage costs of transporting waste 

material to the appropriate destination and considering the impact of rehandling material to confine 

waste dumps during the reclamation process can help reduce costs (Fu et al. 2019).  

Several applications of waste management in long-term production scheduling have been 

developed to address the overproduction and misallocation of waste. Rimélé and Dimitrakopoulos 

(Rimélé et al. 2018) and Zuckerberg et al. (2007) each propose a model that opens in-pit waste 

dump and tailings disposal areas to minimize the footprint of expit waste. Fu et al. (Fu et al. 2019) 

and Badiozamani and Askari-Nasab (Badiozamani and Askari-Nasab 2014) define mixed integer 

programs that simultaneously optimize the open-pit production schedule while considering waste 

disposal, however, these models consider substantially smaller optimization problems and do not 

account for uncertainty. Each of these methods expand on past research (Ben-Awuah and Askari-

Nasab 2013; Li et al. 2016) that independently optimize the waste dump schedule after pre-

determining the extraction sequence, leading to sub-optimal solutions. Several case studies 
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successfully apply blending quality constraints on processing material at iron ore and autoclave 

operations using stockpiles (Benndorf and Dimitrakopoulos 2013; Montiel 2014). However, the 

blending and layering of waste rock material to mitigate or prevent the migration of contaminants 

into the surrounding environment should also be considered in the production schedule 

optimization (Mehling Environmental Management 1998). 

The work presented is an innovative application of the simultaneous stochastic optimization 

formulation proposed by Goodfellow and Dimitrakopoulos (2016), demonstrating the ability to 

manage the production of acid generating waste directly in the optimization framework. The gold 

mining complex considered includes a large deposit with 2.3 million blocks, a 25-year mine life 

and acid generating waste. In the following sections, the simultaneous stochastic optimization 

approach is first outlined. Subsequently, a case study at the above-mentioned gold deposit 

demonstrates the integration of waste management under uncertainty into the simultaneous 

stochastic optimization framework and includes comparisons to a conventional mine production 

schedule and related waste management. Lastly, the conclusion and recommendations for future 

work are presented. 

 Simultaneous stochastic optimization of a gold mining complex 

 Two-stage stochastic optimization model 

An application of the simultaneous stochastic optimization method detailed in Goodfellow and 

Dimitrakopoulos (2016) is applied to a case study that focuses on waste management and cut-off 

grade optimization. Stochastic mathematical programming techniques provide the means to 

incorporate various sources of uncertainty into the optimization of the mine production schedule. 

The model aims to define the extraction sequence, destination policy, and processing stream 

decisions while simultaneously managing the targets and capacities at waste, processing, and 

stockpile facilities. This is successfully implemented by focusing on the value of the products sold. 

The desired output from the simultaneous stochastic optimization is an optimized and feasible 

production schedule.  

A binary decision variable 𝑥𝑏,𝑡  is equal to one if block 𝑏 is mined in period 𝑡 and zero otherwise. 

Predecessors and successors for each block are calculated in a preprocessing step. Before mining 

any block 𝑏 the set of predecessors 𝕆𝑏 must be extracted in the same period or earlier. 

Additionally, a robust destination policy determines the operational cut-off grades required to 
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maximize the value of the mine. Discretized grade bins are created, similar to the approach 

proposed by Menabde et al. (2007), and blocks are categorized into groups based on their grade in 

each simulation. A binary decision variable 𝑧𝑔,𝑗,𝑡 controls the destination policy for the bin or 

group (𝑔 ∈  𝔾) of material that is sent to a destination 𝑗 ∈  𝒪(𝑔) in each period t. Groups are 

generated using k-means++ clustering algorithm to define the boundaries of the bins. Blocks may 

be sent to different destinations across various scenarios but are optimized using a scenario 

independent destination policy that assigns membership to the group 𝑔 for each block 𝑏 in scenario 

𝑠, determined a priori.  

Materials in the model are described as any product that is generated from the mine or created by 

blending, separation or processing. Each of these materials contain multiple attributes that pertain 

to a specific property of the material. These attributes are categorically separated into primary 

(𝑝 ∈ ℙ) and hereditary (ℎ ∈ ℍ) attributes. Primary attributes are additive and can be sent from 

one location to another in the mining complex. Hereditary attributes are parts of the model that 

may be of interest at specific locations and help facilitate the inclusion of non-linearities into the 

mathematical programming model. The mining complex (𝒞) may be composed of several mines 

or external sources (𝑚 ∈ ℳ), stockpiles (𝒮), waste facilities (𝒲), processors (𝒫) and other 

destinations (𝒟). Geological uncertainty is considered by simulating attributes for each block, 𝑏 ∈

𝔹𝑚, each scenario 𝑠 ∈  𝕊 has equal probability of occurring. For each location 𝑖 ∈ 𝒮 ∪𝒲 ∪𝒫 ∪

𝒟  in the mining complex, materials and their attributes are sent to and received from a distinct set 

of locations. ℐ(𝑖) and 𝒪(𝑖) represent the set of locations that 𝑖 can receive and send material to, 

respectively. The stockpiling decision variables 𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1] define the proportion of material 

sent from stockpile 𝑖 ∈ 𝒮 to location 𝑗 ∈ 𝒫 in period 𝑡 and scenario 𝑠.  Lastly, the value of a 

primary or hereditary attribute is denoted as 𝑣𝑝,𝑖,𝑡,𝑠  and 𝑣ℎ,𝑖,𝑡,𝑠, respectively, for each location 𝑖 in 

period  𝑡 ∈ 𝕋, and scenario s. 

Revenues and expenditures are incurred throughout the mining complex and these attributes are 

directly incorporated into the objective function by calculating a discounted value 𝑝ℎ,𝑖,𝑡 =
𝑝ℎ,𝑖,1

(1+𝑑)𝑡
 , 

where 𝑑 is the discount rate utilized. Typically, the discounted expenses are more specifically 

broken down into mining (𝑀𝐶ℎ,𝑖,𝑡), processing (𝑃𝐶ℎ,𝑖,𝑡) and rehandling (𝑅𝐻ℎ,𝑖,𝑡) categories for 

each hereditary attribute ℎ, location 𝑖, and period 𝑡. To formulate the stochastic integer program 
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deviation variables 𝑑ℎ,𝑖,𝑡,𝑠
+  and 𝑑ℎ,𝑖,𝑡,𝑠

−  are introduced and their respective penalty 𝑐ℎ,𝑖,𝑡
+  and 𝑐ℎ,𝑖,𝑡

−  for 

managing deviations from production targets. Waste management applications require a penalty 

for overproducing waste (𝑊𝑃ℎ,𝑖,𝑡) and for exceeding the stockpile capacity (𝑆𝑃ℎ,𝑖,𝑡). The waste 

management considerations are an extension to the original model, which inform the optimizer of 

the impact waste has on the mining complex. A geological discount rate (𝑑𝑔𝑒𝑜) is applied to the 

cost of deviation to defer the riskiest material to later periods, 𝑐ℎ,𝑖,𝑡
+ =

𝑐ℎ,𝑖,1
+

(1+𝑑𝑔𝑒𝑜)
𝑡. 

 Objective function  

𝑀𝑎𝑥
1

|𝑆|
∑∑

{
 
 

 
 

∑∑𝑝ℎ,𝑖,𝑡𝑣ℎ,𝑖,𝑡,𝑠
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𝑃𝑎𝑟𝑡 𝐼

− ∑ ∑𝑀𝐶ℎ,𝑖,𝑡𝑣ℎ,𝑖,𝑡,𝑠
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𝑃𝑎𝑟𝑡 𝐼𝐼

𝑡∈𝕋𝑠∈𝑆

−∑∑𝑃𝐶ℎ,𝑖,𝑡𝑣ℎ,𝑖,𝑡,𝑠
ℎ𝜖ℍ𝑖∈𝒫⏟            

𝑃𝑎𝑟𝑡 𝐼𝐼𝐼

−∑∑𝑅𝐻ℎ,𝑖,𝑡𝑣ℎ,𝑖,𝑡,𝑠
ℎ𝜖ℍ𝑖∈𝒮⏟            
𝑃𝑎𝑟𝑡 𝐼𝑉

−∑∑𝑊𝑃ℎ,𝑖,𝑡𝑑ℎ,𝑖,𝑡,𝑠
+

ℎ𝜖ℍ𝑖∈𝒲⏟            
𝑃𝑎𝑟𝑡 𝑉

−∑∑𝑆𝑃ℎ,𝑖,𝑡𝑑ℎ,𝑖,𝑡,𝑠
+

ℎ𝜖ℍ𝑖∈𝒮⏟            
𝑃𝑎𝑟𝑡 𝑉𝐼

−∑∑(𝑐ℎ,𝑖,𝑡
+ 𝑑ℎ,𝑖,𝑡,𝑠

+

ℎ𝜖ℍ
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[3] 

The objective function (Eq. 3) of the mathematical model maximizes the net present value (NPV) 

that is generated by producing a set of marketable materials (Stage I) and minimizes the risk of 

failing to meet production targets and environmental requirements (Stage II). Part I maximizes the 

profits generated from the different products produced. Part II, III, and IV aim to minimize the 

cost of mining, processing, and rehandling, respectively. Part IV and V minimize the deviations 

from waste and stockpile facility capacities, while Part VII minimizes deviations from additional 

production targets over the life-of-mine. 

 Constraints 

Mining complexes can have multiple waste facilities. These facilities can only accept certain 

material types based on their geochemical properties. For instance, the quantity of potentially acid-

generating waste material must be reduced to minimize the size of collection dykes and long-term 

monitoring wells; these are expensive to install, maintain, and monitor. Furthermore, there is an 
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annual waste production limit due to environmental permitting constraints. The capacity 

constraints are managed to satisfy the operational capabilities of the mine by calculating the 

deviations from the upper (𝑈ℎ,𝑖,𝑡) and lower  (𝐿ℎ,𝑖,𝑡) limits and penalizing the deviations in the 

objective function. Similarly, stockpiles are bound by the available space in the run-of-mine 

stockpiling facility. Stockpiles are designed to store valuable material preventing ore gaps at the 

process plant or when excess ore material is available the lower grade material is stockpiled for 

use in a later period. This considers the time value of money. Capacity constraints are demonstrated 

as follows:  

 𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡   ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒟 ∪ℳ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 [4] 

 𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡   ∀ℎ ∈ ℍ, 𝑖 ∈ 𝒮 ∪ 𝒟 ∪ℳ, 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 [5] 

Additionally, a mining and processing target are managed by measuring the deviations from 

production targets (Eq. 4 and Eq. 5) to properly utilize the available equipment. 

Operationally, multiple stockpiles for different material types may be desired to prevent mixing of 

high and low-grade material. The ability to increase selectivity of the material sent from the 

stockpile to the mill is improved substantially and minimizes the impact of homogenizing different 

grade ore material. Higher-grade stockpiles are likely to be built-up and depleted faster than low-

grade stockpiles which may accumulate material until the mine reaches an ore gap or end of life. 

When considering multiple stockpiles, an additional constraint (Eq. 6) is used in conjunction with 

the stockpile capacity to force the optimizer to split the material between all destinations based on 

the grade received in each period. A global attribute calculates the grade (𝐺𝑖,𝑡,𝑠) of the low-grade 

(𝒮𝐿𝐺) and high-grade stockpiles (𝒮𝐻𝐺) and penalizes the objective function when the grade within 

the low-grade stockpile exceeds that of the higher-grade stockpile: 

𝐺𝑖,𝑡,𝑠 − 𝐺𝑗,𝑡,𝑠 ≥ 0   ∀ 𝑖 ∈ 𝒮𝐻𝐺 , 𝑗 ∈ 𝒮𝐿𝐺 , 𝑡 ∈ 𝕋, 𝑠 ∈ 𝕊 [6] 

Lastly, a destination policy constraint ensures that a bin or group can only be sent to one destination 

within the mining complex: 

∑ 𝑧𝑔,𝑗,𝑡 = 1   ∀𝑔 ∈ 𝔾, 𝑡 ∈ 𝕋

𝑗∈𝒪(𝑔)

 [7] 
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 Applying a metaheuristic solution method 

Mine production scheduling is inherently challenging to solve for a mining complex due to the 

large number of decision variables that must be considered during the simultaneous optimization. 

Commercially available solvers for conventional optimization that consider a single estimated 

model substantially reduce the complexity as they require a single input to the optimizer. 

Comparatively, the stochastic methods used in this research substantially increase the challenge of 

solving the optimization problem and require a heuristic solving method. Goodfellow and 

Dimitrakopoulos (2016; 2017) and Lamghari et al. (2014) explain various heuristic techniques. In 

this work, a combination of multi-neighbourhood simulated annealing with adaptive 

neighbourhood search is used, and it is described in Appendix A1. 

 Application at a gold mining complex 

 Overview of the gold mining complex 

The proposed simultaneous stochastic optimization method is tested in an open-pit gold mining 

complex comprised of a large open pit mine that supplies material to multiple stockpiles, waste 

dumps, and an ore processing facility. The objective of the simultaneous stochastic optimization 

approach is to maximize the NPV of the mining complex, while managing the uncertain production 

of acid generating waste.  Figure 1 describes the configuration of the mining complex that the 

mathematical model considers and restricts the allowable flow of materials to either the waste 

dumps, stockpiles, or processing facilities based on the material characteristics, while managing 

the related risk. The orebody is directly simulated at block support with an efficient method for 

quantifying the uncertainty and variability of a large deposit (Godoy 2002). In addition, material 

uncertainty is considered by simulating carbon and sulphur grades to determine the neutralization 

potential (NP) and acid potential (AP), respectively. The AP is based on the content of sulphates 

derived from pyrite and, similarly the NP, is related to the quantity of carbonates in the gold 

deposit. The carbonates act as buffer and reduce the likelihood of producing acid mine drainage 

(Lawrence and Scheske 1997). The net producing ratio (NPR) is a classifier that defines the 

material type. The mine contains three main material types; overburden, non-acid generating rock 

(NAG), and potentially acid-generating rock (PAG). These three materials must be sent to 

stockpiles and waste facilities that accept them. Industry standard practice assumes a 𝑁𝑃𝑅 =
𝑁𝑃

𝐴𝑃
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greater than two is required to prevent acid mine drainage and, if less than one the material is likely 

to produce acid mine drainage (Table 1). 

The NPR classification between 1 and 2 is uncertain and a cut-off is defined based on the 

operation’s risk tolerance. In this case, a NPR of 1.5 is used as the defining boundary between 

NAG and PAG material based on the mine’s current policy. Existing stockpile grades are simulated 

to quantify the geological risk of material that is used for blending and future processing (2014). 

Monte Carlo simulation methods are used to simulate existing stockpiles based on historical data 

from dump locations, which are provided by grade control and the fleet management system. 

However, infill drilling is a more common approach for simulating the stockpile before 

reclamation (Dirkx and Dimitrakopoulos 2017). Typically, the expected grade of material to be 

mined from an existing stockpile is assumed to be the average grade of the stockpile (Groeneveld 

and Topal 2011). This is unrealistic as stockpiles are heterogeneous in nature and are constantly 

being mixed, making simulations more practical. 

  

 

Figure 1. Material flow diagram at a gold mining complex 
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Table 1. Material classification 

NPR Classification 

>  2 NAG 

≤  1 PAG 

>  1 𝐴𝑁𝐷 ≤ 2 Uncertain 

 

PAG material must be segregated from NAG when stored at stockpiles and waste dumps. 

Separating the two material types allows the operation to efficiently control the production of 

contaminants and their migration into the surrounding environment, reducing the extensive 

requirement for long-term monitoring and reclamation. NAG and PAG are further separated into 

two sub-materials, barren and mineralized, depending if the grade is below or above 0.1 g/t, 

respectively. This reduces the number of decisions required during the optimization process as 

barren materials are sent to the appropriate waste facility.  

The base mining cost accounts for sending material from the pit to the NAG waste dump facility 

and additional costs are incurred for a longer hauling distance to the PAG waste dump, stockpile, 

and processing facility. Furthermore, an incremental mining cost is included to account for the 

increasing cost of mining deeper into the pit. The costs parameters in Table 2 were scaled for 

confidentiality purposes. Table 3 summarizes the targets for each component of the mining 

complex including the stockpiles, processors, and waste facilities. Table 4 denotes two scheduling 

constraints used to create smooth mineable schedules. The objective function incurs a penalty if 

the blocks within a distance of 60 m are not mined in the same period. Furthermore, penalties are 

imposed if the mine is operating on two benches that are separated by more than 120 m. These 

constraints lead to a feasible mining schedule. An overview of smoothing and sink rate penalty 

strategies can be found in past literature (Caccetta and Hill 2003; Dimitrakopoulos and Ramazan 

2004). In addition, grade differential constraint measures the difference in grade being sent to the 

high-grade and low-grade stockpile further explanation can be found in Section 2.2.3. 
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Table 2. Economic parameters 

Parameter Units Value 

Economic Discount Rate % 10 

Geological Discount Rate % 15 

Gold Price USD $ 1200 

Exchange Rate  USD/CAD 1.25 

Base Mining Cost  $/t 2.15 

Incremental Mining Cost $/bench 0.03 

Additional PAG Waste Mining Cost $/t 0.02 

Additional NAG Waste Mining Cost $/t 0.00 

Additional Processor Mining Cost $/t 0.04 

Additional Stockpile Mining Cost $/t 0.04 

Processing Cost  $/t 7.59 

Rehandle Cost $/t 0.45 

 

Table 3. Capacity constraints 

Description of constraint 

Lower, 

upper 

bound (Mt) 

Penalty 

($/t) 

Mine capacitya,b 125, 156 10 

High-Grade Stockpile capacitya -, 3 5 

Processing capacitya,b 26, 28 18 

PAG waste dump capacitya -, 27 10 

a scaled capacities for confidentiality purposes 

b lower bound is not enforced in period 15-25 
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 Table 4. Scheduling constraints 

Description of constraint 

Distance 

(m) 

Penalty 

($/deviation) 

Smoothness 60 12000 

Max sink rate 120 12000 

 

Lastly, the mine consists of 2.3 million blocks with dimensions of 20x10x12 m3. Geological 

uncertainty is considered by constructing twenty-five equally probable simulations that consider 

gold, carbon, and sulphur grades. Albor and Dimitrakopoulos (2009), and Montiel and 

Dimitrakopoulos (2017) demonstrate that 10-15 simulations generate stable production schedules, 

due to the related support-scale effects. 

 Risk analysis  

A base case mine production schedule was generated at the mine site using Hexagon’s MSSO and 

a single estimated orebody model to create a conventional mine plan. The parameters and 

constraints used for generating this schedule are described in Table 3 and 4. Conventional 

approaches aim to strictly maximize NPV in the objective function and use hard constraints during 

optimization. The base case production schedule is used alongside the mine’s cut-off grade policy 

to perform a risk analysis and assess the limitations of using an estimated orebody model with a 

conventional optimization approach. For the risk analysis, scheduled blocks in each period are sent 

to the destination based on their cut-off grade, material type and scheduled period determined in 

the conventional production schedule. The risk analysis tests the robustness of the current life-of-

mine production schedule and cut-off grade policy. The high and medium-grade ore are sent 

directly to the processing facility; low-grade NAG and low-grade PAG are stockpiled or sent to 

the mill if the processing capacity is not satisfied; and the remaining waste material is sent to either 

the NAG, PAG, or overburden waste facility. The risk analysis, then, shows the performance of a 

conventional mine production schedule given the quantification of grade uncertainty associated 

with each material type, thus assessing the probability of meeting the forecasted production targets. 

Material uncertainty and variability is evident when assessing the NP and AP of the blocks within 

the deposit. In Figure 2, the simulations show variance in the number of blocks that report to each 
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classification when comparing them to the base case model. Whereas the stochastic model shows 

a higher likelihood of PAG material that must be appropriately handled to reduce the risk of acid-

mine drainage. 

  

Figure 2. Material classification of acid generators 

The flat topography and numerous bodies of water in the region make potentially acid generating 

waste rock placement critical as space is limited and run-off must either return to the pit or 

collection ditches. The environmental footprint must be minimized due to the sensitivity of the 

surrounding watershed. In addition, federal environmental regulations protect migratory birds 

during nesting season, which runs from mid-March to August and prevents the operation from 

extending the waste dump during this time (Canada 2017). This forces the operation to increase 

the elevation of the waste dump and limits the annual waste dump expansions due to the 

geotechnical constraints associated with stability.  

The P10, P50, and P90 in the following figures represent a 10%, 50%, and 90% probability of 

having values below this amount. In Figure 3c, it is obvious that the base case tends to 

underestimate the amount of PAG waste material by approximately 12% on an annual basis. This 

leads to over a 90% chance of violations to the permissible waste dump expansion in periods 3 to 

8. In addition, Figure 3a demonstrates that when using the mines current fixed cut-off grade policy 

there is an extremely high probability of not satisfying the processor in more than 15 periods. 

Geological simulations reproduce the local variability of the deposit and are used as a tool to show 

the limitations of estimated orebody models. The effects of smoothing misrepresent the proportion 
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of material that exist in the deposit severely affecting the expected grade-tonnage relationship of 

material attributes at different grades. Since the cut-off grade decisions are determined prior to the 

optimization process this can result in highly unrealistic forecasts, similar to those observed in 

Figure 3. Reinforcing the requirement to include geological uncertainty and determine the cut-off 

grade policy within the simultaneous optimization to follow. As discussed earlier, an 

understanding of this common phenomenon is frequently considered for ore material types but 

neglected for those elements that pertain to waste production. The base case underestimates the 

quantities of PAG rock due to the smoothing of sulphur and carbon grades in the estimated model 

that directly result in the misclassification of material.  Additionally, after the first three periods of 

production, the mine is no longer achieving the forecasted gold production (Figure 3d) in the 

estimated model leading to an 18% decrease of gold produced and a 20% decrease in the NPV 

(Figure 3e). The large reduction in NPV is mainly due to large ore deficit at the processor. This 

shortage directly influences the expected ounce profile over the life of mine. 
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Figure 3. Risk analysis of base case: (a) processing capacity; (b) mine tonnage; (c) PAG tonnage; 

(d) recovered gold; and (e) cumulative discounted cashflow 
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 Simultaneous stochastic optimization 

A simultaneous stochastic optimization approach is applied to overcome many of the limitations 

of the conventional production schedule assessed in Section 2.3.2. The optimization process 

considers the impact of uncertain attributes and simultaneously optimizes waste management, cut-

off grade, stockpiling and processing decisions while determining the production schedule. Figure 

4 shows major visual differences between the production schedule produced in the base case and 

those produced in the simultaneous optimization process. In period 10, the base case schedule 

shows mining occurring primarily in the west compared to the stochastic schedule which mines 

deeper into the pit and more towards the east. Then, looking at the north-south cross-section on 

the lower portion of the figure it is visible that the base case schedule mines bench-by-bench 

compared to the more aggressive stochastic schedule. These significant differences are a result of 

the simultaneous optimizer attempting to minimize the deviations from production targets while 

bringing the most valuable products forward in the mine life.  

 

Figure 4. Comparison of the large differences between base case (conventional) and 

simultaneously optimized stochastic production schedule: (a) base case schedule – plan view 

period 10; (b) stochastic schedule – plan view period 10; (c) base case schedule – N-S cross 

section; and (d) stochastic schedule – N-S cross section 
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The base case in Section 2.3.2 is the P-50 performance of the conventional mine production 

schedule using the geological simulations. Earlier, it was determined that the base case schedule 

was unable to satisfy the processing stream due to the use of a predetermined cut-off grade policy. 

The predetermined cut-off grades fail to consider the effects of uncertainty. Therefore, leading to 

a sub-optimal production schedule that is poorly informed. 

Figure 5 demonstrates that the new production schedule has a high likelihood of satisfying the 

processor in all periods until the end of the mine life. This is obtained by using a dynamic cut-off 

grade policy that is determined during the simultaneous optimization. Cut-off grades are reduced 

to ensure the processing stream is satisfied, yielding a higher throughput. Figure 6 shows the 

variable cut-off grade throughout the life-of-mine compared to mine’s current fixed cut-off grade 

decisions. Long-term stockpiling is strategically planned and is only required during periods 5, 7, 

11, 13, 18, and 19 instead of all periods in the base case schedule. The working life of the processor 

is also decreased by 2 periods. Considering waste management during the optimization process 

reduces the size of the pit significantly, resulting in more than a 30% decrease in the annual 

material movement (Figure 5b).  The mining rates decrease due to a lower stripping ratio shrinking 

the environmental footprint and the total amount of waste to be managed by each facility.  
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Figure 5. Results from the simultaneous stochastic optimization: (a) processor capacity; (b) mine 

tonnage; (c) PAG tonnage; (d) recovered gold; and (e) cumulative discounted cashflow 

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25

T
o
n
n
a
g
e

Period

Processor Capacity Stochastic

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25

T
o
n
n
a
g
e

Period

Mine Tonnage Stochastic

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25

T
o
n
n
a
g
e

Period

PAG Tonnage Stochastic

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25

N
P

V

Period

Cumulative Recovered Gold 
Stochastic

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25

N
P

V

Period

Cumulative Discounted Cashflow 
Stochastic 



52 

 

 

Figure 6. Cut-off grade optimization 

Additionally, the problems associated with overproducing PAG waste and breaching the permit 

guidelines are now controlled and satisfied over all periods (Figure 5c). This is achieved by 

integrating waste management into the optimization and considering the potential effect of 

adjusting the cut-off grades in terms of waste production. A lower cut-off grade indicates some 

material that would have been considered waste is now sent to the processor, further reducing the 

quantity of waste produced, and ensuring that the processor capacity is fully satisfied. The higher 

throughput in combination with lower cut-off grade leads to a similar ounce profile observed in 

Figure 5d. Where Figure 5e indicates a 6% increase in the NPV of the project. This outcome is 

partially due to the consequences of discounting and producing more gold in earlier periods. 
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addition, the probability of contamination is reduced with less reactive material exposed while also 

increasing the NPV.  

 

Figure 7. Cumulative waste production over life-of-mine 

It should be noted that the mining complex requires 57.5 million block-based extraction sequence 

decisions, 4,500 destination policy decisions and 1000 stockpiling decisions to be determined in a 

single optimization run.    

 Conclusions 

An innovative application of the simultaneous stochastic optimization of a mining complex aims 

to integrate waste management at a gold mining complex. The contribution considers waste as a 

mining product and the importance of quantifying material uncertainty and variability. PAG waste 

rock must be managed to satisfy permitting constraints, minimize surface disturbance, and prevent 

the production of harmful contaminants. The forecasts generated from the simultaneous stochastic 

optimization approach balance the requirements of the processing facility and waste management 

by simultaneously optimizing the cut-off grade policy and considering uncertainty. Comparing the 

results with the base case production schedule it is evident there are large improvements in the 

ability to satisfy environmental, permitting, and processing targets. A controlled extraction rate of 

PAG waste material is successfully obtained by holistically considering waste management, cut-

off grade, processing stream, and stockpiling decisions during the production scheduling process. 
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The new production schedule reduces the total amount of waste produced. Therefore, a lower 

mining rate is required to satisfy these targets. Although less material is mined and lower grades 

are sent to the processing facility, a similar amount of metal is produced over the life of mine. The 

change in mining rate lowers mining costs and equipment expenditures, resulting in a 6% increase 

in the NPV. Future work should consider complex and integrative waste management approaches. 

For example, controlling water infiltration by layering and co-disposal opportunities (Aubertin et 

al. 2016; Antonaki et al. 2018). Material uncertainty is a critical component in understanding waste 

management and requires further data such as simulated boundaries of overburden material to 

manage the risk associated with material supply to ongoing projects within the mining complex. 

3. Adaptive simultaneous stochastic optimization of a mining complex: A 

case study 

 Introduction 

Mining operation are capital-intensive ventures that require smart decisions to strategically time 

each investment and sustainably produce valuable products. The simultaneous stochastic 

optimization approach generates an optimal production schedule for a mining complex, using a 

single mathematical formulation (Montiel and Dimitrakopoulos 2015; 2017; 2018;Goodfellow and 

Dimitrakopoulos 2016; 2017;Del Castillo and Dimitrakopoulos 2019). The optimized production 

schedule defines the extraction sequence, stockpiling, processing stream, blending, waste 

management and capital investment decisions that maximize the net present value (NPV). These 

decisions are obtained by considering the interactions throughout the entire mining complex that 

may consist of open pit and underground mines, several processing facilities, crushers, stockpiles, 

and waste destinations (Pimentel et al. 2010). The stochastic approach also manages technical risk 

during the optimization by integrating a set of stochastic geostatistical simulations of the in-situ 

material supply, which reproduce the uncertainty and local variability of the material sourced from 

the mines.  Selecting the appropriate time to undertake a capital investment during the life of mine 

is challenging due to a combination of supply uncertainty, high upfront costs and prolonged 

payback periods for each investment. Nevertheless, investments in shovels, trucks, crushers, 

process plant upgrades, and waste facilities are critical for maximizing the NPV of the long-term 

production schedule.  



55 

The uncertain aspects of mine planning and forecasting, which arise from supply uncertainty, 

indicate there is large risk of undertaking capital investments (Ravenscroft 1992; Dowd 1994; 

Groeneveld and Topal 2011; Groeneveld et al. 2012; Asad and Dimitrakopoulos 2013a; Del 

Castillo and Dimitrakopoulos 2014). In particular, supply uncertainty makes it challenging to 

produce an optimized production schedule with an investment plan that will satisfy the various 

futures that may unfold. The optimal investment decision for one future outcome may be very 

different from another scenario. This generates an interest in developing strategic mine plans that 

can adapt to uncertainty, by considering feasible investment alternatives that directly impact the 

production rate of certain components in the mining complex and manage technical risk.  

Del Castillo and Dimitrakopoulos (2019) present an adaptive simultaneous stochastic optimization 

approach that considers a number of feasible investment alternatives and determines the optimal 

time to branch the production schedule to manage the potential risk of supply uncertainty. A set of 

orebody simulations are generated for each mine to quantify supply uncertainty. Then, an adaptive 

approach considers the probability of undertaking an investment in different groups of scenarios. 

If the decision is counterbalancing, where a representative group of simulations takes on an 

investment and another representative group does not, the production schedule splits or branches 

into alternative mine plans based on these investments. Each of these branching alternatives are 

fully optimized based on the investment that is undertaken, however, decisions made prior to the 

investment can not be changed once branching occurs. This prevents the optimization model from 

anticipating the investment decision and changing the previous decisions that were made prior to 

choosing to invest, as the future investment choice remains uncertain until it is executed. The 

adaptive optimization approach integrates non-anticipativity constraints into the optimization 

formulation, similar to the long-term multistage stochastic optimization approach proposed by 

Boland et al. (2008). Non-anticipativity constraints ensure that the same decisions are taken unless 

there is an investment alternative that branches the mine production schedule. If branching occurs, 

the resulting mine plan of each branch should be distinguishably different based on the investment 

choice. Otherwise, the non-anticipativity constraints should be enforced and the same decision is 

taken over all the simulated scenarios of the mine. The single production schedule generated with 

feasible investment alternatives provides an advanced method for determining the optimal time to 

invest and identifies the risk of investing in new equipment, plant improvements, and other 

infrastructure purchases (Dixit and Pindyck 1994). Evaluating feasible alternatives and the 
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resulting mine plan creates opportunities to delay, pre-plan or undertake sizeable capital 

investments (De Neufville and Scholtes 2011).  

Boland et al. (2008) use non-anticipativity constraints to ensure when scenarios are similar equal 

actions are taken across these scenarios. These simulated orebody scenarios are differentiated 

based on metal grades, which ends up overfitting the production schedule to generate one mine 

plan for each simulated scenario. In strategic mine planning, the operational flexibility this method 

allows does not exist. For example, the physical mine design in the second year of production is 

conditional to the extraction sequence in the first year and once a plan has commenced it becomes 

infeasible to mine the second year of extraction in any of the scenarios that differ in action from 

the first year of the initial plan. As a result, a decision must be made on how to execute the mine 

plan ahead of time. Similarly multistage frameworks have been applied to strategically time the 

purchase of capital investments and expand the production capacity in other industries (Ahmed et 

al. 2003; Li et al. 2008; Singh et al. 2009; Gupta and Grossmann 2017), which remain impractical 

for mine planning and design purposes. Multistage frameworks lead to production schedules with 

one plan per a scenario, which is optimistic in the ability to change capacities and is the major 

limitation of multistage approaches. The adaptive approach described herein branches based on 

investment alternatives that change the operational capabilities of the mining complex and all of 

the associated mine planning decisions. In addition, there must be a representative number of 

scenarios in each group to produce stable results that are replicable using another group of 

simulations overcoming the limitation of overfitting. Furthermore, when considering the execution 

of the long-term production schedule, operations can not proceed without fixed guidance for the 

current year of production. Groeneveld et al. (2012) suggest fixing the initial periods of the mine 

production schedule, to address this limitation, ensuring that operations have the appropriate 

production guidance and lead time to consider different mining and plant options for the future.  

The adaptive simultaneous stochastic optimization approach manages technical risk and delivers 

a mine production schedule that can identify synergies between different components of the mining 

complex. For example, in a Nevada type gold mining complex, the metal recovery of refractory 

ore is influenced by the composition of sulfates and carbonates in the material that is delivered to 

an autoclave processing facility (Thomas and Pearson 2016; Montiel and Dimitrakopoulos 2018). 

Blending the material from several sources in the mining complex to maximize recovery may lead 

to a higher NPV over the operating life and captures value that is unidentifiable using traditional 
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sequential optimization methods (Gershon 1983; Whittle 1999; Hustrulid and Kutcha 2006). 

Additionally, waste management considerations such as the production of acid generating waste 

and tailings can be integrated into the optimization to minimize environmental detriments and 

ensure permitting constraints are satisfied (Saliba and Dimitrakopoulos 2018; Levinson and 

Dimitrakopoulos 2019). These advancements are achieved by maximizing the value of the 

products sold (Montiel and Dimitrakopoulos 2015; Goodfellow and Dimitrakopoulos 2017), 

instead of the traditional approach that considers the economic value of a block determined a priori 

and sequentially optimizes the extraction sequence, cut-off grade and transportation of materials 

downstream (Hustrulid and Kutcha 2006).  

Furthermore, the proceeding case study strategically determines the optimal production rate during 

the mine production scheduling process using an adaptive simultaneous stochastic optimization. 

Several frameworks directly integrate investments into the optimization to achieve a certain level 

of production and increase the value of the operation (Groeneveld and Topal 2011; Groeneveld et 

al. 2012; Goodfellow 2014). These integrative frameworks allows the optimizer to decide the most 

suitable time to invest in capital investment overcoming limitations of defining the optimal mining 

and processing rates prior to optimizing the production schedule (Godoy and Dimitrakopoulos 

2004; Del Castillo and Dimitrakopoulos 2014). 

This work presents a major case study in a multi-mine and multi-process gold mining complex, 

where an adaptive simultaneous stochastic optimization approach strategically considers 

investment alternatives in mining equipment, process plant upgrades and the tailings management 

area. In the following sections, the adaptive simultaneous stochastic optimization approach is 

outlined, followed by a comprehensive case study at a gold mining complex containing two open-

pit mines, twelve material types, twelve stockpiles, three external sources (including an 

underground mine) and three processing stream alternatives. Subsequently, the conclusions and 

future work are presented.    

 Method 

This section summarizes the method used for the adaptive simultaneous stochastic optimization 

approach proposed by Del Castillo and Dimitrakopoulos (2019), which allows the production 

schedule to branch on a set of feasible investment alternatives. 
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 Definitions and notation 

A mining complex is designed to include a set of open-pit and underground mines (ℳ), stockpiles 

(𝒮), processors (𝒫), and waste facilities (𝒲) (Montiel and Dimitrakopoulos 2015; 2017; 

2018;Goodfellow and Dimitrakopoulos 2016; 2017). There can be many material types that are 

either extracted from the mine or generated through blending and processing. Each material has a 

set of attributes which can be transferred through the mining complex (i.e. mass, metal content, 

etc.). Attributes are further divided into two sub-categories; primary attributes that define the 

composition of the material passed between various locations in the mining complex; and 

hereditary attributes which are a derived through linear and non-linear expressions. Hereditary 

attributes track important information in the model including the costs incurred at different 

locations, revenues from the various processing streams, and metal grade. Two variables 𝑣𝑝,𝑖,𝑡,𝑠 

and 𝑣ℎ,𝑖,𝑡,𝑠 quantify the value of primary (𝑝 ∈ ℙ) and hereditary (ℎ ∈ ℍ) attributes at each location  

𝑖 ∈ ℳ ∪ 𝒮 ∪ 𝒫 ∪𝒲 in period 𝑡 ∈ 𝕋 under scenario 𝑠 ∈ 𝕊, respectively. Hereditary attributes 

allow both non-linear and linear functions to be incorporated into the model and are a function of 

the primary attributes, 𝑓ℎ(𝑝, 𝑖, 𝑘) for each primary attribute 𝑝 ∈ ℙ at location 𝑖 ∈ ℳ ∪ 𝒮 ∪ 𝒫 ∪𝒲 

and considering each available capital investment 𝑘 ∈ 𝕂. The primary source of material for the 

mining complex is obtained by extracting a set of mining blocks 𝑏 ∈ 𝐵𝑚  from mine 𝑚 ∈ ℳ. 

Every block 𝑏 has a set of simulated primary attributes 𝛽𝑝,𝑏,𝑠, which are inputs into the optimization 

model (Boucher and Dimitrakopoulos 2012). The recovery of each attribute 𝑝 at location 𝑖 ∈ 𝒫 in 

each scenario 𝑠 is defined as 𝑟𝑝,𝑖,𝑡,𝑠 and are calculated using a non-linear recovery function 

(Goodfellow 2014; Farmer 2016; Del Castillo 2018). 

 Decision variables 

Considering a life-of-mine of 𝕋 time periods, the adaptive simultaneous stochastic optimization 

approach aims to maximize the NPV of the mining complex and minimize deviations from the 

annual production targets. This is accomplished by simultaneously determining the optimal 

decisions for four decision variables: (i) the mining block extraction sequence; (ii) destination 

policy; (iii) processing stream decisions; and (iv) capital investment plan. The method uses a set 

of binary decision variables 𝑥𝑏,𝑡,𝑠 that denote whether a block 𝑏 is extracted in period 𝑡, in 

simulation 𝑠. The destination policy is then defined by discretizing the range of metal grades into 

a set of bins to determine the cut-off grade policy during the optimization process (Menabde et al. 
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2007). Bins or groups 𝑔 ∈ 𝒢 are defined using k-means++ clustering algorithm for the primary 

block attributes 𝛽𝑝′,𝑏,𝑠 ∀𝑝
′ ⊆ ℙ, 𝑏 ∈ 𝔹𝑚, 𝑚 ∈ ℳ, 𝑠 ∈ 𝕊 of each material type (Goodfellow and 

Dimitrakopoulos 2016). The destination policy decision variable 𝑧𝑔,𝑗,𝑡,𝑠 ∈ {0,1} determines if the 

blocks in group g are sent to destination 𝑗 ∈ 𝑂(𝑔) in period 𝑡, where 𝑂(𝑔) is the set of locations 

where the group of materials can be delivered in scenario s. After the material reaches the first set 

of destinations, based on the extraction sequence decisions, the downstream material flow is 

controlled by the processing stream decision variables 𝑦𝑖,𝑗,𝑡,𝑠 ∈ [0,1]. The processing stream 

variable defines the portion of product that is sent from destination 𝑖 ∈ 𝒮 ∪ 𝒫 to destination 𝑗 ∈

𝑂(𝑖) ⊆  𝒮 ∪ 𝒫  in period 𝑡 ∈ 𝕋 and scenario 𝑠 ∈ 𝕊. Lastly, the capital investment decision variable 

𝜔𝑘,𝑠,𝑡 defines if a capital investment 𝑘 𝜖 𝐾 is executed in period 𝑡 ∈ 𝕋 and scenario 𝑠 ∈ 𝕊. 

Subsequently explained in Section 2.3. 

 Branching the production schedule 

Two different sets are used to describe the different types of investments branching (𝐾∗) and non-

branching (𝐾=), where 𝐾∗ ∪ 𝐾= = 𝐾. Branching alternatives are large capital investments 

decisions that are only purchased once during the life of the mining complex. For example, 

purchasing large crushers or constructing a new tailings facility. The non-branching investments 

may occur multiple times over the planning horizon, for instance truck and shovel purchases. The 

decision tree outlines the optimal timing of the branching investments and a new node 𝑛 is created 

for each branching decision; this is defined as a stage. An optimized mine plan is produced for 

each branch that is created. The representativity measure 𝑅 ∈ (0 , 0.5) is a user defined parameter, 

which is used to describe the confidence interval for branching. The representativity measure 

outlines the probability required to invest over all scenarios, branch the production schedule, or 

not invest in each capital investment (Eq. 8). 

 

 

{
 
 

 
 
𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑖𝑛 𝑘∗ < 𝑅  →   𝑑𝑜 𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑠𝑡 𝑖𝑛 𝑘∗ 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝜔

𝑖𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑖𝑛 𝑘∗ ∈ [𝑅, 1 − 𝑅]   →   𝑏𝑟𝑎𝑛𝑐ℎ 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝜔

𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑛𝑔 𝑖𝑛 𝑘∗ > 1 − 𝑅  →   𝑖𝑛𝑣𝑒𝑠𝑡 𝑖𝑛 𝑘∗ 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝜔

 [8] 
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The branching mechanism is described in the subsequent steps: 

1. Calculate the probability of investing in all alternatives 𝑘∗ ∈ 𝐾∗ in each time period 𝑡. 

2. If there are a representative number of scenarios that choose to purchase the investment 

alternative, within an allotted time window, the solution branches and a new stage is 

created. Although, if the probability of investing is less than the threshold then the 

optimization will not branch, and the investment is not purchased. On the contrary, if the 

probability is greater than (1 − 𝑅) there is no branching and the investment is made over 

all scenarios. This is mathematically described in Eq. 8. 

3. Given there are 𝕊𝑛 ⊆ 𝕊 scenarios that belong to the root, these scenarios are partitioned 

into 𝕊𝑛1 and 𝕊𝑛2 when branching occurs. Therefore, when combined all the simulations 

from each branch are at the root (𝕊𝑛1 ∪ 𝕊𝑛2 = 𝕊𝑛) and when the simulations are 

partitioned each simulation can only report to one of the two partitions (𝕊𝑛1 ∩ 𝕊𝑛2 = ∅). 

A time window, 𝑡𝜔 = {𝑡 − 𝜔, 𝑡 + 𝜔}, is used to stabilize the solution as often there may be a 

representative number of scenarios between one or two consecutive periods making it more 

desirable to invest in one of those two years rather than completely ignoring the investment 

opportunity. 𝜔 is set as an integer value that allows the model to expand the time window of the 

branching mechanism. The branching or new stage will begin during the floor of the expected time 

period of investment 𝑘∗ and is denoted as 𝑡∗. Lastly, 𝑁 defines the minimum number of scenarios 

in a branch required to allow for further branching in periods 𝑡 + 1 ∈ 𝕋.  

 Capital investments 

Capital investments are critical decisions that require a lead time (𝜏𝑘) to assemble or construct. 

For each investment alternative 𝑘 ∈ 𝐾 there is a life expectancy (𝜆𝑘) and a unitary increase in 

capacity (𝜅𝑘,ℎ) that comes at a discounted purchase cost (𝑝𝑘,𝑡
𝐾 ) for each period 𝑡 ∈ 𝕋. The 

periodicity (𝜓𝑘) of the investment decisions is also incorporated into the optimization model to 

simplify the optimization process and ensure a practical plan. The number of investments 

undertaken is denoted by  𝜎𝑘,𝑡,𝑠 for each investment 𝑘 ∈ 𝐾 in period 𝑡 ∈ 𝕋 and scenario 𝑠 ∈ 𝕊. 
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 Objective function and constraints 

 

max
1

‖𝕊‖
∑∑

{
 
 

 
 

∑ ∑𝑝ℎ,𝑡𝑣ℎ,𝑖,𝑡,𝑠
ℎ𝜖𝐻𝑖∈ℳ∪𝒮∪𝒫∪𝒲⏟                

 

𝑃𝑟𝑜𝑓𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑥
𝑷𝒂𝒓𝒕 𝑰

− ∑𝑝𝑡𝑟𝑢𝑐𝑘,𝑡𝜎𝑡𝑟𝑢𝑐𝑘,𝑡,𝑠
𝑘𝜖𝐾⏟            

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑇𝑟𝑢𝑐𝑘 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠
𝑷𝒂𝒓𝒕 𝑰𝑰

𝑡∈𝕋𝑠∈𝕊

− ∑𝑝𝑠ℎ𝑜𝑣𝑒𝑙,𝑡𝜎𝑠ℎ𝑜𝑣𝑒𝑙,𝑡,𝑠
𝑘𝜖𝐾⏟            
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑆ℎ𝑜𝑣𝑒𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠

𝑷𝒂𝒓𝒕 𝑰𝑰𝑰

− ∑𝑝𝑘∗,𝑡
𝐾∗ 𝜎 𝑘∗,𝑡,𝑠

𝑘𝜖𝐾⏟        
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑂𝑛𝑒 𝑇𝑖𝑚𝑒 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠

𝑷𝒂𝒓𝒕 𝑰𝑽

− ∑ ∑(𝑐ℎ,𝑡
+ 𝑑ℎ,𝑖,𝑡,𝑠

+ +

ℎ𝜖𝐻𝑖∈ℳ∪𝒮∪𝒫∪𝒲

𝑐ℎ,𝑡
− 𝑑ℎ,𝑖,𝑡,𝑠

− )
⏟                        

 

𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠 𝑓𝑜𝑟 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠
𝑷𝒂𝒓𝒕 𝑽 }

 
 

 
 

  

[9] 

The objective function (Eq 2) maximizes the expected profit obtained by summing the revenues 

generated from the metal produced and subtracting the various costs, for example, transportation, 

mining, processing and refining costs (Part I). In addition, the objective aims to minimize the costs 

of investing in trucks and shovels (Part II & III), and one-time capital investments (Part IV). Part 

V minimizes the deviation from production targets, actively managing uncertainty. The adaptive 

optimization approach will only purchase investments when they lead to an increase in overall 

profitability and/or improve the capability to meet production targets in the mining complex. 

Integrating the feasible investment alternatives into the optimization model changes the standard 

formulation of capacity constraints, from static lower (𝐿ℎ,𝑖,𝑡) and upper (𝑈ℎ,𝑖,𝑡) bounds, to 

dynamically changing capacities that are determined during the optimization. The capacities 

reflect changes in the corresponding investment decisions 𝜔𝑘,𝑠,𝑡. 𝜅𝑘,ℎ represents the unitary 

increase in production capacity:  

 

𝑣ℎ,𝑖,𝑡,𝑠 − 𝑑ℎ,𝑖,𝑡,𝑠
+ ≤ 𝑈ℎ,𝑖,𝑡 + ∑ ∑ 𝜅𝑘,ℎ ∙ 𝜔𝑘,𝑠,𝑡′

𝑡−𝜏𝑘

𝑡′=𝑡−𝜆𝑘−𝜏𝑘 𝑘 𝜖 𝐾;  𝑡 > 𝜏𝑘

 [10] 
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𝑣ℎ,𝑖,𝑡,𝑠 + 𝑑ℎ,𝑖,𝑡,𝑠
− ≥ 𝐿ℎ,𝑖,𝑡 + ∑ ∑ 𝜅𝑘,ℎ ∙ 𝜔𝑘,𝑠,𝑡′

𝑡−𝜏𝑘

𝑡′=𝑡−𝜆𝑘−𝜏𝑘 𝑘 𝜖 𝐾;  𝑡 > 𝜏𝑘

 [11] 

∀ ℎ 𝜖 𝐻, 𝑖 ∈ ℳ ∪ 𝒮 ∪ 𝒫 ∪𝒲, 𝑡 𝜖 𝕋, 𝑠 𝜖 𝕊 

 𝑑ℎ,𝑖,𝑡,𝑠
+ , 𝑑ℎ,𝑖,𝑡,𝑠

− ≥  0 [12] 

When investments are activated the capacity expansions and contractions can be explored allowing 

for changes to the extraction rate, processing capacity, and storage of waste materials.  

In addition, non-anticipativity constraints ensure that all scenarios within the same branch must 

undertake the same decisions. The problem is initialized with the solution from a two-stage 

stochastic integer program and then non-anticaptivity constraints are enforced for the first period. 

Subsequently, the mechanism for branching iteratively solves a series of sub-problems to 

determine the optimal period to invest. The non-anticipativity constraints are then dynamically 

enforced over an iteratively increasing time frame 𝑇𝛼 when a branching investment is undertaken. 

For example, once the first branching period is established non-anticipativity constraints become 

active for all periods up to 𝑡∗, the period a branching investment is undertaken. This ensures that 

the optimization framework will not change earlier decisions in anticipation of the investments 

made in future periods. A binary variable 𝑢𝑘∗,𝑡
𝑛  equals one when the design branches over option 

𝑘∗ 𝜖 𝐾∗ in node n in period 𝑡 𝜖 𝕋 and otherwise zero.  Therefore, the variable 𝐴 determines whether 

the non-anticipativity constraints are activated (0) or not (1) for a given partition of scenarios in a 

single branch:  

 
𝐴 = ⌈

∑ 𝑢𝑘∗,𝑡
𝑛

𝑘∗𝜖𝐾∗

|𝐾∗|
⌉ = {0,1} [13] 

hen there is no branching all decision variables must be the same for all scenarios. However, when 

branching occurs the scenarios partition 𝕊𝑛1 = {𝑠;𝑤𝑘∗,𝑡∗,𝑠 = 1, ∀𝑠 ∈ 𝕊𝑛}, 𝕊𝑛2 = 𝕊𝑛\𝕊𝑛1. 

Examples of the non-anticipativity constraints are below: 

 (1 − 𝐴)(𝑥𝑏,(𝑡+1),𝑠 − 𝑥𝑏,(𝑡+1),𝑠′) = 0,      ∀𝑡 ∈ 𝑇
∝; 𝑏 ∈ 𝑀 [14] 

 (1 − 𝐴)(𝑧𝑔,𝑗,(𝑡+1),𝑠 − 𝑧𝑔,𝑗,(𝑡+1),𝑠′) = 0,      ∀𝑡 ∈ 𝑇
∝; 𝑔 ∈ 𝐺;  𝑗 ∈ ℳ ∪ 𝒮 ∪ 𝒫 ∪𝒲       [15] 

 (1 − 𝐴)(𝑤𝑘,(𝑡+1),𝑠 − 𝑤𝑘,(𝑡+1),𝑠′) = 0,      ∀𝑡 ∈ 𝑇
∝; 𝑘 ∈ 𝐾 [16] 
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The destination policy, extraction sequence, and capital investment decisions are the same for all 

scenarios within each branch of the decision tree. Lastly, in order to ensure stochastic solution 

stability there must be a minimum number of simulated scenarios in each partition. 

 Solution method 

A multi-neighbourhood simulated annealing metaheuristic is used to solve the optimization model. 

Metaheuristics are required as the number of decision variables are in the order of hundreds of 

millions when considering multi-mine long term production schedule. The metaheuristic used in 

this work explores a neighbourhood or class of perturbations that are used to change decision 

variables and achieve near optimal solutions in a short period of time (Montiel and 

Dimitrakopoulos 2015; 2017;Goodfellow and Dimitrakopoulos 2016; 2017). Del Castillo (2018) 

introduces perturbations that change capital investment decisions including adding or removing 

multiple investments in a period and swapping two investments between periods. The simulated 

annealing algorithm then uses an acceptance probability to determine whether the new solution is 

accepted or rejected to further explore the solution space (Kirkpatrick et al. 1983). The modified 

simulated annealing approach, used in the subsequent case study, updates the probability of 

choosing a neighbourhood depending on its ability to improve the objective function (Goodfellow 

and Dimitrakopoulos 2016). 

 Case study at a gold mining complex 

The adaptive simultaneous stochastic optimization approach is applied to a gold mining complex 

that consists of two large open-pit mines with twelve different material types. These materials can 

be transported to a number of destinations; an autoclave processing facility, oxide mill, oxide 

leach, twelve stockpiles (one for each material type), waste facility, and a tailings management 

area. Each mine contains a mixture of sulphide ores, which must be pretreated at the autoclave 

before processing, and oxide ores that can be sent to the oxide processor or oxide leach. The mining 

complex, including each of its component, and the allowable material routing are presented in 

Figure 8. Sulphide materials, a refractory ore type, can be extracted from either of the open-pit 

mines and sent to the autoclave, stockpile or waste dump facility. Stockpiles are separated for each 

material type to provide accessibility to materials of certain chemistry compositions, shown in 
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Table 5. Externally sourced material is used to supplement the ore feed that is produced from the 

two open-pit mines and sent to the autoclave to help meet blending requirements. The optimizer 

seeks opportunities to increase value and more effectively blend materials to obtain a satisfactory 

product quality for effectively running the autoclave. Sulphide or refractory ores must be blended 

to achieve the permissible operating criterion for the autoclave, by controlling the grades of 

sulphide sulphur (SS), carbonates (CO3), organic carbon (OC), and the SS/CO3 ratio. Therefore, 

these deleterious attributes must be managed within the optimization framework to ensure 

blending requirements will be meet. A constraint is added to the model to maintain the grade of 

SS and CO3 from 3.8-4.2% and 4.5-6.5%, respectively. The deviations from these targets are 

penalized in the objective function to manage the risk similar to all the other production targets. 

Acid is used to pre-treat the ore by neutralizing CO3 and ensuring the appropriate SS/CO3 ratio 

(0.8-1.2) is entering the autoclave circuit. This becomes critical as there is variability in the 

material received from the different sources and often there are not enough materials with the 

desired qualities readily available. There is a maximum amount of acid (38,400 t) that can be used 

on an annual basis which introduces a constraint in the optimization process. The autoclave’s target 

production is 2.5 Mt/y. Oxide materials can either report to the oxide mill, leach, or stockpile 

destinations and there are no constraints on the blending requirements for the oxide ore material. 

The oxide mill has a production target of 1.4 Mt/y and the leach pad is not constrained. After 

processing, the volume of mine tailings that are generated from the processing facilities are 

continuously examined to ensure there is a large enough containment area to continue mining, 

which then introduces a constraint on the available tailings capacity. Stockpiling facilities are used 

as intermediate locations to assist with blending and can be extracted from throughout the mine 

life. Lastly, any material that does not positively contribute to the NPV of the mining complex is 

sent to the corresponding waste dump facility.  
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Table 5. Material classification for blending and material routing 

 

 

 

Figure 8. Mining complex and allowable material routing 

 

Material Chemistry 

Type CO3 SS OC Oxide 

1 Med-Low Low - - 

2 Med-Low High - - 

3 Low Med - - 

4 Low Low - - 

5 Low Med-High - - 

6 High - - - 

7 Med-High Low - - 

8 Low High - - 

9 Very High - - - 

10 High - Med-High - 

11 - - High - 

12 - - - High 
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In this case study, there are three one-time feasible investment alternatives considered throughout 

the optimization process to test the adaptive optimization approach. First, the annual autoclave 

processing throughput may be expanded by investing in two additional positive displacement 

piston-diaphragm pumps (Eichhorn et al. 2014). Second, an investment in the process plant 

autoclave circuit is evaluated to increase the allowable acid consumption and manage blending. 

Third, an investment alternative that considers the construction of a new tailings storage area 

increases the life-of-mine by allowing for the processors to continue operating. The pump 

installation increases throughput at the autoclave by 25% which allows for more refractory ore to 

be processed. The capital cost of this expansion is minimal, however, the cost of implementation 

and loss of production during the pump installation is also considered in the capital investment 

decision, resulting in a $1M investment. Acid is ordered annually to satisfy production 

requirements, but storage areas and adaptations to the autoclave pre-treatment circuit are required 

to safely utilize the additional acid. The expected investment is $0.2M. The most significant 

investment decision is related to the addition of a new tailings containment area which is expected 

to cost $200M to construct completely. The new tailings area results in a 33% increase in tailings 

storage for the mining complex. Once any of the three investments are purchased, they can be 

continuously used for the remainder of the mine life. Additionally, these three capital investment 

decisions can potentially allow the production schedule to branch. In this case study, a 

representativity measure 𝑅 = 0.3 is used based on the acceptable risk of investing in capital at this 

mining operation. Therefore, the production schedule branches when a representative number of 

scenarios, between 30 and 70 %, invest in one of these three feasible alternatives. The scenarios 

are then split, and further branching considerations are assessed in future periods. Further details 

on the parameters considered for each of the capital investments are described in Table 6. 

. 
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Table 6. Parameters and cost of capital investments 

Parameters 

Non-branching Branching Expansions 

Shovel Truck Tailings Autoclave Acid 

Lead Time (years) 2 2 3 2 3 

Capital Cost (M$) 6.7 1.1 200 1 0.2 

Life of Equipment (years) 7 7 13 13 13 

Periodicity of Decision (years) 3 3 13 13 13 

Increase in Capacity Feed for 5 trucks/unit 0.93 Mt/unit 5.75 MCM 925 kt 9.6 kt 

 

The mine initially begins with 45 haul trucks and 9 shovels that have two years remaining in their 

productive life before salvaging. The model dynamically considers the purchase of trucks and 

shovels throughout the thirteen-year production schedule. Truck and shovel purchases define the 

annual mine production rate. The cost per truck and shovel is $1.1M and $6.7M, respectively, 

which is accounted for in the annual cashflows. Allowing for the optimizer to decide on the 

appropriate time to invest in trucks and shovels throughout the mine life. The mining operation 

has an aging fleet and it is planning to replace the originally purchased haul trucks with a new 

fleet. The ability to consider the purchase of new equipment during the optimization provides an 

opportunity to re-establish the optimal mining rate to satisfy the processor requirements and 

maximize the value of the operation. The trucks and shovels have a corresponding lead time of 

two years to provide a suitable amount of time for purchasing equipment from the manufacturer, 

shipping, and on-site assembly. In addition, they have an expected equipment life of seven years 

and a purchase can be made every three years stabilizing the production rate.  

 Base case mine production schedule 

A base case mine production schedule is defined herein using a simultaneous stochastic 

optimization approach that considers capital investment decisions within the optimization 

framework while managing uncertainty, however, branching is not considered. The base case mine 

production schedule can choose to invest in trucks, shovels, and the available expansions, but it 

can not branch and adapt to uncertainty by considering alternatives; it must either choose to invest 

or not invest. This is different then the adaptive simultaneous stochastic optimization that can be 
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used to evaluate different alternatives and their corresponding value, as there is a fixed production 

schedule that must be executed in one way, which does not consider the value of having alternative 

options to manage uncertainty to a greater extent. The results from the base case mine production 

schedule are compared with the adaptive branching approach that considers feasible capital 

investment alternatives. Each method uses a set of multi-variate stochastic simulation of  the 

orebody for each open-pit as input into the optimization model (Boucher and Dimitrakopoulos 

2012; Rossi and Deutsch 2014). The external sources are simulated based on historical data 

associated with variability in the supply and quality of material received from other mines in the 

region. The variability and uncertainty of the material sources are accounted for directly in the 

optimization framework, unlike conventional frameworks that use a single estimated orebody 

model as input (Hustrulid and Kutcha 2006). Lastly, the open-pit mines have a block size of 30 m 

x 30 m x 20 m, representing the selective mining unit and contain 296k and 172k blocks in Mine 

1 and Mine 2, respectively. The results from the base case production schedule including the 

extraction sequence, capital investments, stockpiling, blending, mining rate and processing 

decisions follow.  

Figure 9 defines the base case mining rate alongside the truck and shovel investment decisions. 

Noticeably the amount of equipment that is required is decreasing as the mine life proceeds and as 

the older equipment is approaching the end of its operational life. An opportunity arises to operate 

the two mines at a lower mining rate. Although a lower mining rate is utilized, the ability to satisfy 

the autoclave processor (Figure 10a) and oxide mill (Appendix A1) is fulfilled and a resulting NPV 

of $3.65B is achieved in the 50th percentile (P-50). The base case mine production schedule invests 

in both the expansion of the tailings management area and the additional acid storage facility. The 

investment in additional pumps do not contribute an increase in the mining complex’s NPV when 

accounting for all scenarios, consequently the pumps are not purchased. The blending constraints 

are satisfied, between the upper (UB) and lower bounds (LB), in most periods through the 

utilization of stockpiles and other available material (Figure 10b, Figure 10c). However, during 

the first period, the blending constraints are unachievable as the material that can be extracted 

during that period does not have the appropriate properties to meet the blending requirements. As 

the production schedule proceeds, stockpiles are established to help with blending in future 

periods. The operational costs of stockpiling these materials are integrated into the optimization to 
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ensure that the stockpiling decisions contribute to the profitability of the mining complex and help 

manage the supply uncertainty. 

 

Figure 9. The mining rate and shovel/truck purchase plan for the base case production schedule 

with no branching 

Lastly, the base case production schedule invests in a tailings expansion in period 7. This 

investment increases the storage capacity and becomes available in period 10 (Figure 11). The 

increased tailings storage prolongs the mine life by three periods and allows for 1-2 more years of 

gold production if the duration of this schedule was increased. This results in an additional $0.7B 

in discounted cashflows generated. Waste management considerations, such as tailings disposal, 

are important to optimize directly in the mine production scheduling process in order to generate 

feasible life of mine designs. Additionally, the processor upgrade that allows for additional acid 

consumption was purchased in period 3 allowing for 20% increase in additional acid consumption 

in subsequent periods (Figure 12) This controls the blending requirements at the autoclave 

processing stream. 
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Figure 10. Base case autoclave throughput and blending: (a) no expansion taken in the 

optimization for additional throughput; (b) blending of SS; (c) blending of CO3; and (d) 

maintaining the SS/CO3 ratio for ideal operating conditions 
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Figure 11. Tailings production over the long-term production schedule and the available capacity 

expanded in period 10 

 

Figure 12. Annual acid consumption with additional capacity obtained in period 6 

 Adapting to supply uncertainty in a gold mining complex 

The previously mentioned results will be compared with the adaptive stochastic optimization that 

considers branching on feasible investment alternatives. During the adaptive simultaneous 

stochastic optimization groups of scenarios are optimized to determine if there is a beneficial time 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13

V
o

lu
m

e
 (

M
C

M
)

Period

Tailings Volume

Base Case - P10 Base Case - P50 Base Case - P90 Base Case - Capacity

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

T
o

n
n

a
g

e
 (

k
t)

Period

Acid Consumption

Base Case - P10 Base Case - P50 Base Case - P90 Base Case - Target



72 

to invest in any of the one-time capital investments alternatives described previously. The 

scenarios that lead to a branching decision are separated based on those that invest and those that 

choose not to invest in the time window. The scenarios that choose not to invest maintain the 

ability to invest in the capital investment in future periods, while the scenarios that invest lock-in 

that decision for that period activating the non-anticipativity constraints. The scenarios are grouped 

into separate branches and optimized to produce a feasible alternative for both investing and not 

investing in the solution. A representative number (over 30%) of scenarios must undertake the 

same decision for the solution to consider branching or investing in these alternatives, which 

reduces the number of branches and prevents overfitting the decision tree to each scenario. It is 

important to note that the scenarios in each branch all undertake the same decisions until a new 

branching decision is made. 

Based on the available capital investments, it was first determined that the additional acid capacity 

was a suitable investment for greater than 70% of the scenarios leading to a non-branching 

investment decision. The first investment helped improve the ability to meet the quality 

requirements of the autoclave. After considering all the simulated scenarios (geostatistical 

simulations of each open-pit mine and an uncertain external source) and the branching mechanisms 

criterion, the first branching decision is undertaken allowing for the expansion of the autoclave 

throughput by installing two additional positive displacement pumps. This separates the number 

of scenarios into a group of 115 scenarios in branch 1 (B1) that invest and 205 scenarios in branch 

2 (B2) that do not invest. After the branching occurs, the optimizer also decides to invest in the 

additional tailings capacity in more than 70% of the scenarios, for both branches, preventing 

further growth of the scenario tree. The resulting feasible alternatives both produce a higher NPV 

then the base case production schedule achieving a value of $3.89B and $4.66B in B1 and B2, 

respectively (Figure 13). This accounts for a 6.4% and 27.5% increase in NPV when comparing 

the P-50 of each alternative to the base case production schedule. Each of the branches or feasible 

alternatives perform better than the base case production schedule, however, this may not always 

be the case as there could be a group of scenarios that underperforms the base case production 

schedule. The method prevents overfitting by ensuring a number of scenarios do not become too 

few within each branch and that there is a significant difference in the number of scenarios that 

either invest or maintain the same operating conditions, hence the representativity parameter which 

ensures between 30-70% of the scenarios will be split and not a small group of outliers. This 
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substantially reduces the number of branches and ensures feasible stable solutions. The changes in 

the investment decisions result in a very different response in the production scheduling process, 

as shown in Figure 14, when comparing the N-S cross sections. First observing, the solution is the 

exact same until branching occurs and then noticing the schedules change dramatically to take 

advantage of the new capital investments. There are a number of similarities between the base case 

and B2 in terms of depth and extents of the mine. However, in B1 there is a large portion of the 

mine that is no longer extracted in the north, when compared to the other two mine plans. This 

entails there is some high material variability and uncertainty in this section of the mine that leads 

to large changes in the resulting mine plan. 

 

Figure 13. A comparison of the resulting NPVs from the adaptive branching and non-branching 

base case production schedule 
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Figure 14. N-S cross section of mine production schedule Mine 1: a) base case (top left); b) 

branch 1 (top right); and c) branch 2 (bottom left) 

B1 invests in the autoclave expansion (Figure 15), which can be fully utilized in period six, and 

has the lowest mining rate over the long-term production schedule. A comparison of the mining 

rates are reviewed in Figure 16, where the resulting production rates directly correlate to the 

amounts of trucks and shovels purchased. The autoclave expansion results in lower grade 

refractory ore material being processed and a higher throughput being used at the autoclave. Over 

the long-term production schedule, there is a 9% reduction in the number of gold ounces produced 

over the life of mine when compared with the P-50 of the base case scenario (Figure 17). However, 

the reduction in mining costs due to the lower mining rate overcomes the loss in revenue and 

results in a higher NPV. The lower mining rate is feasible as the throughput outweighs the grade 

of material through the autoclave changing the selectivity between ore and waste material. Lower 

utilization of the oxide processing facilities also decreased the operating costs. In B1, the optimizer 

has a challenging time meeting the blending constraints and is unable to provide the appropriate 

material to attain the blending targets, making the acid investment a critical decision for ensuring 

there is a suitable SS/CO3 ratio. These indicators are shown in Appendix A2. 
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Figure 15. Autoclave throughput and targets: a) B1; and b) B2 with investments 

 

Figure 16: A comparison of the mining rates required to satisfy each production schedule 
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B2 performs quite differently and instead increases the size of the truck and shovel fleet, which 

results in a higher extraction rate and ensures that higher-grade refractory ore is being sent to the 

processor. The oxide processing streams are utilized far more in B2 than in B1 and their target 

production is maintained during most periods. A higher stripping ratio is required to move the 

additional waste between periods five and nine (Figure 18), which is the reason for the additional 

truck and shovel requirements. Increasing the selectivity, between ore and waste, results in a 

substantially higher NPV, which B1 was unable to achieve even with the autoclave capacity 

expansion. The larger contribution in NPV is primarily due to the accessibility to oxide materials 

in the different groups of simulations and the uncertainty and variability in the gold, SS, CO3, and 

OC grades. Here the adaptive approach is able to take advantage of understanding the inherent 

variability of the mineral deposits and identifies there is an important investigation to commence. 

This includes more information with regards to the mineralization of oxide materials and stricter 

guidelines in terms of the quality of material received from external sources before deciding on 

the autoclave expansion. B2 produces 10% more gold by fully utilizing all the processing stream 

capacities and better satisfying the blending constraints. The increased utilization of the oxide 

leach and mill contribute significantly more gold ounces. 

 

Figure 17. Comparison of the total recovered gold over the long-term production schedule 
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Figure 18. Total waste production over long-term production schedule 

Both of the feasible alternatives B1 and B2 invest in the additional tailings containment area in 

period seven and receive the additional capacity in period ten, similar to the base case. Although, 

B1 produces less gold it still produces a similar volume of tailings due to the additional throughput 

at the autoclave processor (Figure 19). Had the tailings expansion not been considered during the 

optimization process, processing would have been required to stop in period ten and a loss of $1B 

and $1.3B of additional cashflow would be lost in B1 and B2, respectively. This would be a larger 

loss than the resulting $0.7B in the base case production schedule. The potential loss highlights 

the importance of simultaneously optimizing the entire mining complex to further understand the 

intrinsic value of each investment decision.  
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Figure 19. Total tailings production with investment decisions 

 Conclusions 

The simultaneous stochastic optimization of a gold mining complex is presented using an adaptive 

method that integrates feasible capital investment alternatives. The framework capitalizes on 

synergies and adapts to uncertainty resulting in a 6.4% and 27.5% increase in NPV in B1 and B2, 

respectively, while satisfying a wide array of production targets and managing supply uncertainty. 

Investments in trucks and shovel define a new mining rate that minimizes capital expenditures and 

satisfies each processors capacity. Additionally, an investment in a tailings facility expansion and 

additional acid consumption increase the life of the mining complex and manage variable material 

quality at the autoclave processor. Integrating tailings management into the optimization process 

increases the NPV by 0.7B in the base case production schedule and leads to an additional $1B 

and $1.3B in B1 and B2, respectively. This emphasizes the importance of considering waste and 

tailings management in the optimization process to capitalize on the available synergies. The 

optimizer chooses to branch the production schedule when the autoclave expansion is considered 

and identifies uncertainty and local variability associated with the supply of oxide and refractory 

ores sent to each processor. This leads to different mine plans and operating requirements for the 

processing streams and mining equipment, which is dependent on whether the investment 

alternative is purchased. The feasible investment alternatives provide a high-level insight on the 

appropriate attributes to investigate including highly variable areas of the deposit and large 
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differences in the quantity of oxide materials being mined. The optimized production schedule 

does not branch for the first three years and provides the appropriate lead time to evaluate each 

alternative decision and gather the required information to make an informed final production 

schedule. 

If either of the feasible alternatives are executed, the expected NPV increases substantially. The 

base case and adaptive approaches capitalize on the synergies that exist between the different 

components of the mining complex helping to manage the challenging blending constraints and 

determine the appropriate size of the mining fleet directly in the optimization. The results from 

this case study emphasize the importance of modelling the entire mining complex in a single 

optimization process. In addition, the branching mechanism and adaptive ability of the optimizer 

provides a method to easily evaluate several feasible alternatives and further understand the 

variability and uncertainty associated with the mining complex.  

4. Conclusions 

The simultaneous stochastic optimization framework is presented through innovative applications 

that strategically generate a production schedule in two gold mining complexes. These applications 

showcase the ability to integrate waste management and capital investment decisions directly into 

a single optimization formulation that maximizes the NPV based on the value of the products sold 

and manages technical risk. The resulting production schedule simultaneously determines the 

extraction sequence of multiple mines, stockpiling, processing, destination policy, waste 

management, and capital investment decisions, while managing uncertain raw material supply.  

The first work, explained in Chapter 2, demonstrates the importance of quantifying uncertainty of 

both ore and waste using a set of stochastic orebody simulations to reproduce the uncertainty and 

variability of the raw material supply. Overcoming the limitations of previous methods, which 

primarily focus on satisfying the processing stream requirements, this approach considers the 

implications of acid generating waste on the long-term production schedule at an operating mining 

complex. The uncertain production of acid generating waste requires management to satisfy 

permitting constraints and minimize disruptions to the environment through contamination and 

surface disturbance due to regulations issued by the government that help protect important natural 

resources. The results generated using the simultaneous stochastic optimization framework are 

compared with a base case production schedule that uses as an estimated orebody model as input 
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and a pre-determined cut-off grade policy. The base case production schedule is tested using the 

set of stochastic orebody simulations and it is determined that the schedule generated has 50% 

probability of producing 18% less gold then expected. In addition, the schedule is highly likely to 

produce 12% more acid generating waste than originally expected. This identifies that the 

deterministic production schedule is highly likely to cause substantial challenges throughout the 

remaining mine life. The production schedule generated using the simultaneous stochastic 

optimization approach balances the requirements of the processing facility and waste management 

by simultaneously optimizing the cut-off grade policy and managing technical risk during the 

optimization. The production schedule reduces the total amount of waste produced and utilizes 

lower mining rate, while still satisfying the other production targets. The large change in mining 

rate lowers mining costs and equipment expenditures resulting in a 6% increase in the NPV.  

The second application, discussed in Chapter 3, presents an adaptive approach to the simultaneous 

stochastic optimization framework that considers branching the production schedule on a number 

of feasible investment alternatives. Similar, to the first application the two-stage SIP aims to 

maximize the value of products sold and minimize risk of deviating from production targets as a 

result of supply uncertainty. The adaptive nature of the method applied allows the production 

schedule to branch when an investment decision is undertaken and there is polar behaviour 

between groups of scenarios, where one large group of scenarios chooses to invest and another 

large group of scenarios does invest in the same time period. The branching mechanism splits the 

production schedule based on these decisions. This approach provides a number of feasible 

investment alternatives that can be switched between depending on how new information unfolds 

and provides a strategy evaluating different investments and the underlying uncertainty of 

undertaking different capital investments. In addition, the branching mechanism identifies areas 

of the production schedule that should be investigated due to supply uncertainty, providing an 

understanding of the most uncertain components in the mine plan. The framework capitalizes on 

synergies and adapts to uncertainty resulting in a 6.4% and 27.5% increase in NPV in B1 and B2 

when compared to a two-stage SIP with capital investments, respectively. Investments in trucks 

and shovels define a new mining rate that minimizes capital expenditures and satisfies each 

processors capacity. Additionally, an investment in a tailings facility expansion and additional acid 

consumption increase the life of the mining complex and manage variable material quality at the 

autoclave processor. The integration of tailings management into the optimization increases the 
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NPV by $0.7B in the base case production schedule and leads to an additional $1B and $1.3B in 

B1 and B2, respectively. The adaptive simultaneous stochastic optimization framework considers 

aspects of waste management including the expansion of the tailing management area and stresses 

the need to integrate waste management into the long-term production schedule for determining 

the appropriate size and location for tailings placement. The optimizer chooses to branch the 

production schedule when the autoclave expansion is considered and identifies uncertainty and 

local variability associated with the supply of oxide and refractory ores sent to each processor. 

This leads to a number of feasible alternatives with different operating requirements for the 

processing streams and mining equipment that are dependent on whether the investment alternative 

is purchased. The feasible alternatives provide a high-level insight on the appropriate attributes to 

investigate including highly variable areas of the deposit and large differences in the quantity of 

oxide materials being mined. The optimized production schedule does not branch for the first three 

years and provides the appropriate lead time to evaluate each alternative decision and gather the 

required information to make an informed final production schedule. 

Both of these studies indicate the importance of considering the entire mining complex during the 

optimization process, while managing and quantifying supply uncertainty. The ability to capitalize 

on synergies and manage technical risk leads to schedules that are highly probable to outperform 

the production schedules generated using conventional mine planning approaches. In addition, the 

adaptive simultaneous stochastic optimization approach provides an innovative approach to test 

several feasible alternatives and further understand the variability and uncertainty associated with 

the mining complex.  

Future work in simultaneous stochastic optimization should consider complex and integrative 

waste management approaches, for example, controlling water infiltration by layering and co-

disposal opportunities (Aubertin et al. 2016; Antonaki et al. 2018). Through the work discussed 

herein, there are relevant observations that suggest material uncertainty is a critical component in 

understanding waste management and requires further understanding of the material boundaries 

and zones in a mining complex. The simulation of domain boundaries related to overburden, till, 

and acid generating material in a mineral deposit should help generate reclamation strategies that 

minimize long-term costs by reducing further material handling in future periods. In addition, 

research in choosing the fastest algorithms for solving the optimization problem using artificial 

intelligence and machine learning techniques will help lead to faster solution times and improve 



82 

the ability to rapidly test a number of capital investment alternatives, while rapidly solving the 

production schedule for a multi-mine and process mining complex. 
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Appendix A: Multi-neighbourhood simulated annealing with adaptive 

neighbourhood search 

The multi-neighbourhood simulated annealing with adaptive neighbourhood search is the 

metaheuristic technique used to solve the simultaneous stochastic optimization of a mining 

complex and is detailed by Goodfellow and Dimitrakopoulos (2016). The solution approach 

requires an initial feasible solution and is generated based on a greedy algorithm that attempts to 

maximize the objective function and satisfy slope constraints. The initial solution is then optimized 

by a set of perturbations to generate a new solution. Based on the simulated annealing framework 

the probability of acceptance (P) is given by following formula: 

 

𝑃(𝑔(Φ), 𝑔(Φ′), 𝑇) =  {

1, 𝑖𝑓 𝑔(Φ) ≤ 𝑔(Φ′)

exp (−
|𝑔(𝛷′) − 𝑔(𝛷)|

𝑇
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [17] 

Suppose the solution vector Φ has an objective value of 𝑔(Φ). Then the multi-neighbourhood 

simulated annealing algorithm randomly selects a neighbourhood that corresponds to a specific 

change in the long-term production schedule by modifying: (i) the extraction sequence (𝑥 ∈ Φ), 

(ii) destination policy (𝑧 ∈ Φ) or (iii) processing stream and stockpiling decisions (𝑦 ∈ Φ). The 

new solution Φ′ is either accepted or rejected based on Eq. 17 and an initial temperature 𝑇. After 

a number of iterations, the temperature is decreased by a cooling factor 𝑘 ∈ [0,1]. The difference 

between this approach and the standard simulated annealing framework is that instead of using a 

single temperature 𝑇 the optimizer uses a parameter 𝛿 ∈ [0,1] that represents the probability of 

accepting a non-improving solution. Based on the parameter 𝛿 a temperature is retrieved from a 

cumulative probability distribution function that is updated based on the feedback from non-

improving perturbations and instead of applying the cooling factor on 𝑘 it is applied to 𝛿. Some 

examples of the perturbations that modify the initial solution include (i) swapping the periods of 

different blocks, (ii) changing the destination of a group of materials, or (iii) changing the 

proportion of materials sent from the stockpiles. These mechanisms allow the solution space to be 

explored and the adaptive neighbourhood search helps guide the optimizer to choose 

neighbourhoods that have a higher probability of improving the solution.  
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Appendix B: Additional results 

B1 – Base case results 
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B2 – Simultaneous stochastic optimization results with branching B1 
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B3 – Simultaneous stochastic optimization results with branching B2 
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