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ABSTRACT 

Air-Assisted Solvent Extraction (AASX) is a novel concept that uses a solvent-coated 

bubble to contact the organic and aqueous phases. The advantages over conventional 

solvent extraction (SX) are high solvent to aqueous contact area with reduced solvent 

volume and ease of phase separation due to the buoyancy imparted by the air core. This 

opens the way to treat dilute solutions «1 g/L), such as effluents. 

The novel contribution in this thesis is the production of solvent-coated bubbles by 

exploiting foaming properties ofkerosene-based solvents. 

The basic set-up is a chamber to generate foam which is injected through a capillary 

(orifice diameter 2.5 mm) to produce solvent-coated bubbles (ca. 4.4 mm) which release 

into the aqueous phase. This generates a solvent specific surface area of ca. 3000 cm-l, 

equivalent to solvent drop lets of ca. 20 /lm. Demonstrating the process on dilute Cu 

solutions (down to 25 mg/L), high aqueous / organic ratios (ca. 75: 1) and extractions are 

achieved. The solvent readily disengages to accumulate at the surface of the aqueous 

solution. 

The LIX family of extractants imparts sorne foaming to kerosene based solvents but 

D2EHP A does not. An extensive experimental pro gram determined that 1.5 ppm silicone 

oil provided the necessary foaming action without affecting extraction or stripping 

efficiency, greatly expanding the range of solvents that can be used in AASX. 

To complement the foam study, films on bubbles blown in solvent were examined by 

interferometry (film thickness) and infra-red spectroscopy (film composition). A "bound" 

solvent layer was identified with an initial thickness of ca. 2 - 4 /lm, comparable to that 

determined indirectly (by counting bubbles in an AASX trial and measuring solvent 

consumption). The film composition appeared to be independent of film thickness as it 

decreased with time. 



Il 

As a start to scaling up, the single bubble generation system was adapted by installing up 

to 8 horizontal capillaries. The bubbles generated were ca. 3.4 mm. Trials showed the 

multi-bubble set up was a simple replication of the individual bubble case. Preliminary 

analysis ofkinetic data shows a fit to a first-order mode!. 



iii 

RÉSUMÉ 

L'extraction par solvant assistée par air (AASX) est un nouveau concept utilisant des 

bulles enduites de solvant afin de contacter les phases organique et aqueuse. Les 

avantages sur l'extraction par solvant conventionnelle (SX) sont la grande zone de 

contact solvant-phase aqueuse avec un volume réduit de solvant et une facilité de 

séparation des phases due à la flottabilité causée par le noyau d'air. Ceci permet de traiter 

des solutions diluées «1 g/L), tels des effluents. 

La nouvelle contribution de cette thèse est la production de bulles enduites de solvant en 

exploitant les propriétés moussantes des solvants à base de kérosène. 

L'installation de base se compose d'un caisson où est généré la mousse injectée à travers 

un capillaire (diamètre d'orifice de 2.5 mm) pour produire des bulles enduites de solvant 

(ca. 4.4 mm) qui sont relâchées dans la phase aqueuse. Ceci génère une aire de surface 

spécifique du solvant de ca. 3000 cm-1 équivalant à des gouttes de solvant de ca. 20 )lm. 

En démontrant le procédé pour des solutions diluées de Cu (jusqu'à 25 mg/L), des ratios 

phase aqueuse/organique élevés (ca. 75:1) et des extractions sont obtenus. Le solvant se 

désengage facilement pour s'accumuler à la surface de la solution aqueuse. 

La famille d'extractants LIX donne du moussant aux solvants à base de kérosène, ce qui 

n'est pas le cas du D2EHPA. Un programme expérimental extensif a déterminé que 1.5 

ppm d'huile de silicone produisait l'action moussante nécessaire, élargissant grandement 

la plage de solvants pouvant être utilisés en AASX. 

Afin de compléter l'étude de mousse, les films à la surface de bulles soufflées dans le 

solvant ont été examinés par interférométrie (épaisseur du film) et spectroscopie infra

rouge (composition du film). Une couche de solvant "lié" a été identifiée avec une 

épaisseur initialle de ca. 2-4 )lm, comparable à celle déterminée indirectement (en 

comptant les bulles lors d'un essai de AASX et en mesurant la consommation de 
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solvant). La composition du film semble indépendante de l'épaisseur du film qui elle 

diminue avec le temps. 

Afin d'initier une étude à plus grande échelle, le système de génération de bulles simples 

a été adapté en installant jusqu'à 8 capillaires horizontaux. Les bulles ainsi générées 

étaient de ca. 3.4 mm. Les essais ont démontré que l'installation multi-bulles était une 

réplique simple du cas des bulles individuelles. L'analyse préliminaire des données 

cinétiques démontre un ajustement à un modèle de premier ordre. 
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CONTRIBUTION OF AUTHORS 

This thesis was prepared in accordance with article C of the guidelines Conceming 

Thesis Preparation of Mc Gill University. This article reads as follows: 

1. Candidates have the option of including, as part of the thesis, the text of one or more 

papers submitted, or to be submitted, for publication, or the clearly-duplicated text (not 

the reprints) of one or more published papers. These texts must conform to the 

"Guidelines for Thesis Preparation" with respect to font size, line spacing and margin 

sizes and must be bound together as an integral part of the thesis. (Reprints of published 

papers can be included in the appendices at the end of the thesis.) 

2. The thesis must be more than a collection of manuscripts. AlI components must be 

integrated into a cohesive unit with a logical progression from one chapter to the next. In 

order to ensure that the thesis has continuity, connecting texts that provide logical bridges 

proceeding and following each manuscript are mandatory. 

3. The thesis must conform to aIl other requirements of the "Guidelines for Thesis 

Preparation" in addition to the manuscripts. The thesis must include the following: a table 

of contents; a brief abstract in both English and French; an introduction which clearly 

states the rational and objectives of the research; a comprehensive review of the literature 

(in addition to that covered in the introduction to each paper); a final conclusion and 

summary; a thorough bibliography; Appendix containing an ethics certificate in the case 

of research involving human or animal subjects, microorganisms, living cells, other 

biohazards and/or radioactive material. 

4. As manuscripts for publication are frequently very concise documents, where 

appropriate, additional material must be provided (e.g., in appendices) in sufficient detail 

to allow a clear and precise judgement to be made of the importance and originality of the 

research reported in the thesis. 
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5. In general, when co-authored papers are included in a thesis the candidate must have 

made a substantial contribution to aH papers included in the thesis. In addition, the 

candidate is required to make an explicit statement in the thesis as to who contributed to 

such work and to what extent. This statement should appear in a single section entitled 

"Contributions of Authors" as a preface to the thesis. The supervisor must attest to the 

accuracy of this statement at the doctoral oral defense. Since the task of the examiners is 

made more difficult in these cases, it is in the candidate's interest to clearly specify the 

responsibilities of aIl the authors of the co-authored papers. 

The following are the co-authored manuscripts used in preparation of this thesis. 

Manuscript 1 comprises Chapter 3, and manuscript 4, 5 and 6 make Chapters 5, 6 and 7, 

respectively. The manuscripts have been published, accepted for publication or submitted 

as indicated. 
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CHAPTER 1 - Introduction 1 

CHAPTERl 

Introduction 

Solvent extraction can be defined as separation of one or more solutes from a 

mixture by mass transfer between immiscible phases in which at least one phase is an 

organic liquid (Ritcey and Ashbrook, 1978). During the first half of the 20th century, 

solvent extraction found application in organic chemistry to separate or purify substances 

(Cox and Rydberg, 2004). In these studies, it was found that sorne organics, e.g. weak 

acids, could complex metal ions in the aqueous phase, enabling them to transfer to an 

organic phase. 

Uranium extraction in the Manhattan Project during World War II could be cited 

as the first large scale solvent extraction plant in extractive metallurgy. Later, solvent 

extraction processes started to be used as a separation and purification process for other 

metals, notably copper, with the Ranchers Bluebird and Bagdad solvent extraction (SX) 

plant opening in the late '60s (Sole et al., 2005). Today, 30% of the world's copper is 

produced using solvent extraction. 

Nowan established process, solvent extraction, nonetheless, is only applicable to 

concentrated solutions (> 500 mg/L) (Kentish and Stevens, 2001). Solvent losses, capital 

cost, phase disengagement difficulties and the large solvent inventory needed are among 
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the disadvantages of SX when applied to di lute solutions. AIso, occasional crud 

formation at the aqueous/organic interface can be an additional limitation (Kentish and 

Stevens 2001; Ritcey and Ashbrook, 1978). The interest was to extend SX to dilute 

streams, such as acid mine drainage which led to the subject at this thesis: Air-Assisted 

Solvent Extraction. 

The Air-Assisted Solvent Extraction (AASX) concept was introduced by Chen et 

al. (2003). The idea was to take advantage of the thermodynamically favourable 

spreading of solvent at an air/water interface (i.e., bubb1e surface) to provide high contact 

area with reduced organic volume. With the dispersed organic phase having an air core 

rapid phase disengagement would also be favoured. These properties are favourable to 

treating dilute solutions 

Organic coated-bubbles have been used in other applications in extractive 

metallurgy, notably to promote collection ofhydrophobic particles (such as coal, ink and 

bitumen). Coated bubbles were created by various methods including vapour deposition 

and use of an atomizer (Wallwork et al., 2003; Gomez et al., 2001; Peng and Li, 1991). In 

this thesis a novel coating method based on solvent foaming properties is used. 

F oam is encountered in many industrial processes, from cosmetics to oil and 

mineraI recovery. Surface active reagents (surfactants) are required to induce foaming 

(Bikerman, 1953). A limited number of studies on foaming properties of nonaqueous 

systems have been reported (Schmidt, 1996; Schramm, 1994; Ross, 1984; Owen et al., 

1967). Polymethylsiloxanes were found to be good foam stabilizers. A method to assess 

foam properties is described based on the Ross and Suzin method (Nishioka et al. 1996). 
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Since the nature of the coating is a fundamental consideration, thin film 

measurements are inc1uded in the thesis. There are various techniques to determine film 

thickness such as stylus profilometry, interferometry, ellipsometry, spectrophotometry 

and X-ray microanalysis. Film thickness measurement with transmitted light 

interferometry is employed here as introduced to study soap films (Huibers and Shah, 

1997). 

The subject of this thesis is Air-Assisted Solvent Extraction using kerosene-based 

solvents. The thesis extends from basic properties of foaming and solvent films to 

extraction studies (on Cu and Zn) using single and multi-bubble generation units. 

1.1. Objectives of Thesis 

The thesis aims to introduce fundamental aspects of the Air-Assisted Solvent 

Extraction (AASX) process, and demonstrate its applicability to metal recovery from 

dilute streams. 

The specific objectives are: 

1- To show the applicability of the AASX process to dilute metal solutions using 

Cu and Zn as examples. 

11- To study foaming properties ofkerosene-based solvents. 

111- To apply thin layer thickness measurement techniques to the solvent coating. 

IV- To explore sorne methods to produce swarms of coated bubbles for industrial 

application of the process. 
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1.2. Structure of Thesis 

The thesis consists of seven chapters. Four ofthem are in the style of a manuscript 

so inevitably sorne repetition occurs. 

Chapter 1: The introduction, objectives and the structure of the thesis are given. 

Chapter 2: This is a brief literature review providing background information on: acid 

mine drainage as an example dilute solution, solvent extraction principles, and 

foaming properties of organic liquids. 

Chapter 3: The Air-Assisted Solvent Extraction concept is introduced. This chapter was 

published as, 

"Tarkan H.M., Finch, J. A., 2005. Air-assisted solvent extraction: towards a novel 

extraction process. MineraIs Engineering, 18, 83-88" 

Chapter 4: Investigations on foaming properties of kerosene-based solvents are covered. 

This chapter was pub li shed as, 

"Tarkan H. M., Finch, J. A., 2005. Foaming properties of solvents for use in air

assisted solvent extraction. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 264, 126-132" 
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Chapter 5: This discusses the measurement of solvent layer thickness on a bubble. This 

chapter was published as, 

"Tarkan, H. M., Gelinas, S., Finch, J. A., 2006. Measurement of thickness and 

composition of a solvent film on a bubble. Journal of Colloid and Interface 

Science, 297, 732-737" 

Chapter 6: A multi-bubble unit for AASX process is introduced. This chapter entitled 

"Multi-bubble production in the air-assisted solvent extraction pro cess" by H. M. 

Tarkan and J. A. Finch, has been submitted for presentation at XXIII International 

Mineral Processing Congress, Istanbul, Turkey, September 2006. 

Chapter 7: Overall conclusions and suggested future work are given. 

Appendix A: This is a summary paper on AASX designed to introduce the concept to the 

"environmental community". It was published in a conference proceedings as, 

"Tarkan H.M., Finch, J. A., 2005. Air-assisted solvent extraction: potential 

application to effluent streams. In: Securing the future, International Conference 

on Mining and the Environment Metals and Energy Recovery, June 27-July 1, 

2005, Skellefteâ, Sweden, pp. 937-944" 

Appendix B: Structure of sorne reagents. 
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CHAPTER2 

Background Material 

In this chapter, sorne background material is given on a variety oftopics pertinent 

to the thesis and judged of importance to follow the later chapters. The topics introduced 

are: acid mine drainage and its treatment; general aspects of solvent extraction such as 

equipment selection and application in waste water treatment; an introduction to the Air

Assisted Solvent Extraction (AASX) concept, and finally a brief review of surface and 

foam properties relevant to the AASX process. 

2.1. Acid Mine Drainage 

2.1.1. Origin 

Chemical reaction between water, oxygen and sulphur bearing metallic mineraIs, 

particularly iron sulphides, produces acid mine drainage (AMD). This oxidation process 

could occur chemically or biologically. In the latter, Thiobacillus ferrooxidans is the most 

important bacterium, obtaining its energy for growth from the oxidation of reduced 

sulphur compounds and ferrous iron (Evangelou, 1995). The effect of bacteria could be 

direct or indirect. The reactions for both mechanisms are given below (Younger et. al., 

2002). 
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• Direct Mechanism 

4 FeS2 + 1502 + 2H2O 
bacteria 

) 2 Fe2(S04)3 + 2 H2S04 (2.1) 

• Indirect Mechanism 

4 FeS04 + 1502 + 2 H2S04 
bacteria 

) 2 Fe2(S04)3 + 2 H20 (2.2) 

bacteria 
) 2 H2S04 (2.3) 2 SO + 3 O2 + 2 H20 

The ferric ions contribute further oxidation, making iron sulphides (especially 

pyrite and pyrrhotite) particularly important in acid generation. The other sulphide 

mineraIs also pro duce acid drainage, but are less effective, and may better be considered 

as leached by the acid. 

Composition of acid mine drainage depends on the source. Table 2.1 shows sorne 

examples. 

2.1.2. Treatment Methods 

Treatment of AMD can be separated into active and passive. Passive treatment 

involves wet lands and other naturally occurring systems. Sorne active treatment methods 

are given in Table 2.2. 

The most commonly applied treatment is neutralization with alkali and 

precipitation of metal hydroxides. The pH is raised using lime stone, lime (calcium 

hydroxide) or occasionally sodium hydroxide and typically flocculants are added to aid 

settling. Unrestricted use, however, is limited due to the volume of sludge produced, 
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which requires disposaI and maintenance to avoid pH excursions and resolubilization. 

Various engineered options are used (Ritcey, 1989). 

Table 2.1. Composition of AMD for selected ore types (mg/L) (Ritcey, 1989) 

Uranium Gold Iron Copper Cu-Pb-Zn Cu-Ni Cu-Mo 

pH 2.3 7.6 6.4 3.8 2.0-7.9 7.5 7.7 

Aluminum 10 0.6 -- -- -- -- --

Calcium 52 240 -- -- 120 -- --

Cobalt 416 -- -- -- -- 0.01 0.004 

Copper 3.6 0.24 0.1 83 76 0.15 0.02 

Iron 30-3,200 3.6 1.3 0.08-48 8.5-3,200 1.2 0.21 

Lead 0.7 -- 0.1 0.006 0.02-90 0.1 

Uranium 67 -- --

Zinc 11 0.06 0.01-91 0.04-1.600 0.01 0.13 

AlI treatment methods have disadvantages. For example, high-energy 

requirements (membrane and reverse osmosis), capital cost (electrochemical extraction) 

and high cost of sorbing agents (sorption and ion-exchange). Many methods ofbiological 

/ biochemical extraction have been tested at the laboratory scale. Solvent extraction has 

been suggested (Ritcey, 1989). 
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Table 2.2. General characteristics of sorne active treatment processes (Brown et al., 2002) 

Treatment Purity of Degree of Nature of Complexity 

Method 
Selectivity 

Product Neutralization Sludge ofProcess 

Variable 

pH Modification 
Mostly 

Not pure Good stability and 
Simple to 

Non-selective complex 
density 

Highly Concentr. 
Ion Exchange Very pure None Complex 

selective solution 

Biology-based Partially 
Pure Reasonable 

Sulphide Simple to 

treatment selective sludge complex 

Other sorption Partially 
Not pure Sorne Labile sludge Simple 

methods selective 

Electro-chemical Highly Concentr. 
Pure None Complex 

treatment selective solution 

2.2. Solvent Extraction 

2.2.1. General Aspects 

Solvent extraction (or liquid-liquid extraction) is one of the most widely used 

processes for the recovery of metal ions such as copper, uranium and zinc. It is a 

technique for concentrating metals in aqueous solution by transfer via an organic phase. 

A principal advantage is selectivity, which results in high purity oftarget metal. 

Solvent extraction is an equilibrium process, which can be described by an 

equation such as, 

M+E ~ME (2.4) 

where M and E stand for metal and organic, respectively. 
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A general process flow-sheet is shown in Figure 2.1. When a metal-containing 

aqueous phase is contacted with an organic phase the metal will distribute between the 

two phases. Normally, a metal ion exists in aqueous solution as a hydrated ion, with little 

or no tendency to transfer to an organic phase. In order to achieve the transfer the charge 

on the metal ion requires neutralization and sorne or aH its water of hydration has to be 

replaced by another species. 

The nature of the metal species to be extracted is, therefore, of fundamental 

importance and it is logical to classify extraction systems on this basis (Ritcey and 

Ashbrook, 1978), namely: 

(i) System involving compound formation (chemical reaction between metal ion 

and component (extractant) of organic phase) 

(ii) System involving ion association (physical attractive force between oppositely 

charged metal ion and extractant species) 

(iii) System involving solvation of the metal ion (based on the power of oxygen 

containing extractants to solvate inorganic molecules or complexes into organic phase) 

Solvent (organic part) consists of extractant, diluent and modifier. For systems 

involving compound formation, extractants can be divided into two major groups, acidic 

extractants and chelating extractants. Among the acidic, organic derivates of phosphoric 

acids (e.g. D2EHPA) and carboxylic acids are the most important. The LIX, KELEX and 

ACORGA type extractants are classified as chelating extractants. Extractants involving 

ion association are limited to amines and quatemary ammonium compounds. Extractants 

involving solvation are divided into two groups: organic reagents containing oxygen 
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bonded to carbon (ethers, ketones), and oxygen or sulphur bonded to phosphorus (TBP, 

TOPO; CYANEX 471). The structures of sorne extractants are given in Appendix B. 

Depleted 
leachate 

Stripped 
orgamc 

Depleted 
aqueous 

Ore 

-, Leach 1 

.. 1 Extraction 1 

Aqueous 
scrub 
liquor 

-' Stripping 1 

1 Winning 1 

Metal 

Aqueous 
leachate 

Loaded 
orgamc 

Scrub ~ Impurities 

Loaded 
aqueous 

Figure 2.1. General flow sheet of Solvent Extraction/Electrowinning (Godfrey and 

Slater, 1994) 

Diluents are organic liquids in which the extractant and modifier are dissolved to 

form solvent. They are used to decrease the viscosity of extractant, provide a suitable 

concentration of extractant and improve dispersion (i.e., control coalescence) properties 

of the solvent. The selection criteria for diluents are as follows (Ritcey and Ashbrook, 

1978): 
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• Low toxicity 

• Environmental applicability 

• Low priee 

• Good rheological properties 

• High flash point 

• Low vapour pressure 

• Low water solubility 

Modifiers have several roles: assisting phase disengagement; overcommg 

formation of a third phase that can occur in sorne cases; influencing mass transfer; and, 

reducing entrainment (Ritcey and Ashbrook, 1978). 

2.2.2. Equipment 

Equipment used for solvent extraction divide into two main groups, column and 

mixer-settler, the latter being more common. Mixer-settlers for metallurgical applications 

are c1assified as horizontal (Figure 2.2) and vertical. They have the disadvantage of 

requiring agitation energy for solvent dispersion and having a large footprint. In addition, 

maintenance is difficult when corrosive and partic1e-Iaden liquids are processed 

(Thornton, 1992; Doungdeethaveeratana and Sohn, 1998). 
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Heavy 
phase 

in Stage 1 

Light 
phase 

T ~ StageN 

~ ~.:: -~=--tll 

15 

Light phase out Heavy phase out 

Figure 2.2. Horizontal mixer-settler (Thomton, 1992) 

Columns (pulsed and spray (Figure 2.3)) have the simplest construction with few 

moving parts and have been used in treatment of liquid effluents (Doungdeethaveeratana 

and Sohn, 1998). The two phases flow countercurrent in a vertical vessel. It has the 

disadvantage of high backmixing that decreases the extraction efficiency (Godfrey and 

Slater, 1994; Doungdeethaveeratana and Sohn, 1998). 

2.2.3. Solvent Extraction in Waste Water Treatment 

The SX process is principally used for large-scale operations where the 

concentration of contaminants is high. Solute concentration ranges for sorne separation 

technologies are given in Figure 2.4. The challenge is to extend solvent extraction to the 

concentration ranges encountered in effluents such as AMD. 
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Figure 2.3. (a) Pulsed column (Reprinted with permission from Godfrey and Slater 

(1994), John Wiley & Sons Limited) (b) Spray column (Thomton, 1992) 

16 

A factor favouring use of solvent extraction in combination with electrowinning 

(SXlEW) is the ability to recover metal in saleable form, helping to offset the cost of 

treatment. On the negative side, the capital outlay for SX equipment can be high and 

large volumes of organic are required. Loss of reagents, which contaminate effluents, is 

another drawback of solvent extraction in wastewater treatment (Reed, 1998). 

As examples of the use of SX in effluent treatment, Reinhardt (1975) described a 

process to recover zinc from drainage water by DEHPA and Ortega and Gutierrez (1980) 

studied the recovery of mercury by solvent extraction from reactor fuels. 
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Figure 2.4. Solute concentration ranges for separation techniques (Reprinted with 

permission from Kentish and Stevens (2001), Elsevier) 

In order to use solvent extraction in waste treatment, Ritcey and Ashbrook (1978) 

suggested the following: 

i) Use ofbiodegradable extractants 

ii) Minimize entrainment and physicallosses 

iii) Development of improved solvent removal and recovery methods 

Air-Assisted Solvent Extraction addresses the last two items. 
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2.3. Air-Assisted Solvent Extraction 

The basis of this concept is the use of a solvent-coated bubble. A high specific 

surface area of organic can be created using Httle solvent and the buoyancy provided by 

the air core assists phase separation. When compared to classical solvent extraction 

processes, the advantages of Air-Assisted Solvent Extraction (AASX) are the small 

amount of solvent required with consequent lower effluent contamination, and lower 

capital and operating costs as the mixing and separation stages are combined in a single 

unit. The idea germinated from the various "oil assisted flotation" processes (Laskowski, 

1992). 

The use of an organic coated bubble in flotation appears to have been first 

broached by Taggart (1927). He suggested that an oil film would spread on bubbles and 

the oil-coated bubbles should act as efficient collectors for hydrophobic particles. This 

ide a was pursued for ultrafine coal flotation by Misra and Anazia (1987). They found that 

the attachment time for an oil-free bubble on coal of 88 ms was reduced to 5 ms for an 

oil-encapsulated bubble. Wang et al. (1988) and Peng and Li (1991) studied the approach 

for selective coal flotation. They found that collector consumption could be reduced 

without loss of coal recovery. Bitumen particle recovery offers a similar opportunity, as 

recently demonstrated by Su et al. (2005) and Wallwork et al. (2003). These studies 

showed, respectively, that oil-coated bubbles reduced induction time and increased 

recovery. 

In de-inking waste paper, Maiolo and Pelton (1998) found enhanced carbon black 

(i.e., ink particles) removal with bubbles coated with silicone oil. Gomez et al. (2001) 

confirmed this in continuous testing at a de-inking plant. 
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In sulphide mineraI flotation, Liu et al. (2002) adapted the concept to try to reduce 

undesired recovery of gangue partic1es and reduce collector consumption. In this version, 

a flotation collector was dissolved in kerosene which was mixed with air and passed 

through a porous frit to produce a "reactive oily bubble". 

The oily bubble concept bears some similarity to its proposed use in solvent 

extraction, the coating now being to extract metal ions not mineraIs. In this context, the 

process could be c1assed as ion flotation (Doyle, 2003). Also, it has some similarities 

with the solvent sublation technique (proposed by Sebba (1962) as an option for ion 

flotation (1962)), which is a non-foaming adsorptive bubble separation method for 

removing organics (i.e., hydrophobic materials) from wastewater by transferring to an oil 

layer on the water surface (Karger, 1972). The Air-Assisted Solvent Extraction concept 

was first described by Chen et al. (2003). 

2.4. Sorne Surface Properties Relevant to AASX 

Formation of a solvent-coated bubble is an exercise in controlling interfacial 

properties. Sorne background therefore is required into the following areas: surface 

tension, spreading and foaming. 

2.4.1. Surface Tension 

The force acting on the surface of a liquid tending to minimize its area is the 

surface tension. The molecules at the surface do not have a uniform environment in aH 

directions; they have a net attraction to molecules in the bulk of the liquid, thus tending to 

minimize the surface area which gives rise to the force (Figure 2.5). Surface tension of a 
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liquid can be measured by a variety of techniques (Davies and Rideal, 1963) such as du 

Nuoy ring, drop-weight, Wilhelmy plate, sessile drop and capillary rise. 

Surface 

Figure 2.5. Illustration of origin of surface tension: Environment of atoms at surface is 

different from those in the bulk. 

The Wilhelmy plate method is one of the most widely used. When a thin plate is 

attached to the arm of a balance, the additional pull on the plate when it becomes partly 

immersed is equal to the product of the perimeter and the surface tension. Given suitable 

surface characteristics, so that the plate is completely wetted by one liquid, the method 

may also be used to measure interfacial tension (Adams on, 1990; Davies and Rideal, 

1963). 

2.4.2. Spreading Coefficient 

If a column of a pure liquid is separated to form two surfaces, the energy of 

cohesion ofthis liquid, Wc, is converted to surface energy, 

(2.5) 
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where, rlg is surface tension of liquid. 

When two different liquids (a and b), insoluble in each other, are separated along 

an interface, the work of adhesion (WA) to be overcome in this separation is given by 

(Dupre 1867): 

(2.6) 

where, ra and r b are surface tension of each liquid and rab is interfacial tension 

between the two liquids. 

Harkins (1952) extended this approach to the spreading of one insoluble liquid 

over another liquid (or solid), introducing a spreading coefficient, defined as: 

(2.7) 

which has to be positive for spontaneous spreading to occur. In the case of two liquids, 

we can write; 

(2.8) 

If Eq 2.8 is derived for the organic/air/water system, the stability of a thin organic 

film coating on a bubble is controlled thermodynamically by the spreading coefficient, Sc 

(Adamson, 1990): 
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(2.9) 

Figure 2.6 shows a practical example of oil spreading on agas bubble in residual 

oil extraction. 

Figure 2.6. Gas (air)-Oil-Water interface showing oil coating agas bubble (Reprinted 

with permission from Grattoni et al. (2003), Elsevier). 

2.5. Foaming Properties 

A foam is a network of gas bubbles separated by thin liquid films (Figure 2.7). 

Foams occur in a variety of industrial process from personal care products to oil and 

mineraI recovery. 

Pure liquids, regardless of surface tension, Ya/w, tend not to foam. The formation of 

foam generally requires addition of a foaming agent, i.e., a surface active agent 

(surfactant). These surfactants adsorb at the air - solvent interface (i.e., bubble surface) 



CHAPTER 2 - Background Material 23 

due to their combined lyophilic / lyophobic structure (Figures 2.8)1. One consequence is a 

reduction in surface tension. However, it is not the decrease in surface tension per se that 

matters but the fact that surface tension differences (gradients) can occur, which give rise 

to a force (Gibbs-Marangoni effect) opposing film drainage (Schmidt 1996). A second 

consequence is that the concentration of surfactant at the surface can also change film 

rheological properties, increasing viscosity which impedes drainage (Schramm and 

Wassmuth, 1994). 

'filin Film 
Region 

(Liquîd Ph .. , 

Plmeav60rder 

Figure 2.7. Schematic representative of a foam system (Reprinted with permission from 

Schramm and Wassmuth (1994), American Chemical Society). 

Most literature on foams focuses on aqueous systems (Edwards and Wasan, 1996; 

Khristov et al., 1981; Vrij, 1964; Bikerman, 1953). Although there are sorne differences 

between aqueous and nonaqueous systems (such as the surface tension of water being 

1 In the ease of water as solvent the equivalent terms are hydrophilie / hydrophobie. 
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much higher than for nonaqueous liquids), the same basic foam theories can be applied to 

both (Schmidt, 1996). 

Head group 
(lyophilic) 

Hydrocarbon 
(lyophobic) 

~ 
(a) (b) 

Figure 2.8. General structure of surfactant (a) and orientation at a bubble surface (b) 

2.5.1. Foam Stability Measurement 

Foam measurements can be divided into two groups: dynamic and static. The 

former represent the equilibrium point of formation and breaking of foams. In static 

foams, formation is zero; once foam is produced, the air is shut off and it is allowed to 

collapse. The latter is usually reserved for highly stable foams (Nishioka, 1996). Just 

dynamic measurements are considered. 

Bikerman (1953), presuming that steady-state foam volume is independent of 

container shape, suggested a column to measure the foaminess (L) defined as, 

V 
L=

U 
(2.10) 

where V is the steady-state volume of foam (cm3
) and U is the air-flow rate (cm3/min). 

Later Watkins (1973) found that the shape of container could affect the volume of foam 
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at steady-state. He defined the loss of air from the top of the foam as kA (cm3 /min) , where 

A is the area of cylinder and found that the foam volume, V, changes with time, t, 

according to, 

V=Udt-kAdt 

or 

dV =U-kA 
dt 

(2.11 ) 

(2.12) 

At equilibrium, from the definition of dynamic foam stability, there is no change 

in foam volume (dV/dt = 0), therefore; 

U=kA (2.13) 

But, Eq. 2.12 introduces two other possibilities, 

U > kA; V ---+ infinity 

U < kA; V ---+ zero 

In order to ensure that Eq 2.13 was met, Watkins suggested using a conical 

shaped apparatus (where the volume and the area of foam change together) to measure 

the foaminess. The angle of co ne was selected as 60° based on reproducibility of 

measurement (Figure 2.9). 
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As calculated from Figure 2.9, for 60° cone, 

Ar = 1.047(hf + 1.732r)2 (2.14) 

where hl is the steady-state height of foam and r is the radius at the base of the truncated 

cone. At equilibrium, 

U = kAf = 1.047k(hf + 1.732r)2 (2.15) 

The parameter, k, however, is not a characteristic property to evaluate foam 

properties, such as the L, proposed by Bikerman. 

Ross and Suzin (1985) determined a way to analyze dynamic foams using the 

cone-shaped container. The L can be written for a conical system as, 

L 

v= jUdt=Œ (2.16) 
o 

Considering the geometry of the apparatus, V can be re-written as, 

v=( 1 JA3/2_(hoAo) 
(3n") 1/ 2 f 3 

(2.17) 
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Figure 2.9. The conical foam meter 

and, from Eq. 2.16 and 2.17, 

A~/2=mU+c 

( )

112 

where m = ~(31Z)1I2 and c = hoAo ; 

., . 

coarsetype 

frit 

27 

h 

(2.18) 

Ross and Suzin (1985) found that the plot of A~/2 against U gave two regimes: 

one linear, i.e., air retention time (bubble life) is independent of flow conditions, and one 

exponential, where the flow conditions affect the bubble life. 
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2.5.2. Nonaqueous Foams 

Perhaps the most important physical difference between aqueous and nonaqueous 

systems is the surface tension. Because of hydrogen bonding, water surface tension is 

high and, therefore, surfactants can easily reduce the surface tension. 

The surface tension ofnonaqueous systems is already low, and further lowering is 

difticult. Three groups of surfactants have been found to lower the surface tension: 

hydrocarbons, tluoroalkyls and polymethylsiloxanes (silicone oils) (Schmidt, 1996). 

Sorne hydrocarbon surfactants can reduce the surface tension of nonaqueous 

solvents, such as lauryl sulfonic acid in the case of mineraI oil, benzene and heptane, and 

sorbitan monolaurate (Span 20) for mineraI oil (Ross, 1984; McBain and Perry, 1940). 

Most can not pro duce stable foams in low viscosity nonaqueous liquids due to a weak 

Gibbs-Marangoni effect, and many hydrocarbon surfactants cannot lower the surface 

tension of nonaqueous solvents due to moieties being too soluble in organic media. 

Fluoroalkyl-type surfactants (CF3[CFz]n) can reduce the surface tension of 

nonaqueous liquids more than any other agents (Jarvis and Zisman, 1959; Sholberg et. 

al., 1953) and produce very stable foams (Netherly, 1971). The ability to lower surface 

tension (increase adsorption) increases with an increase in tluorine/hydrogen atomic 

ratio. Fluorad FC-740, a nonionic tluorocarbon surfactant, can decrease the surface 

tension ofkerosene, diesel fuels and xylene and produce stable foams (Schmidt, 1996). 

Siloxane surfactants (silicone oil, for the structure see Appendix B) were tirst 

introduced in 1954 for producing polyurethane foams (Snow and Stevens, 1999). Below 

their solubility limit, they can produce relatively more stable nonaqueous foams than 

hydrocarbon surfactants. The key properties in producing stable foam using silicone oil 
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appear to be the Gibbs-Marangoni effect (Owen et. al., 1967), and an increase in viscosity 

(Schmidt, 1996; Kendrick et. al., 1967). 
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CHAPTER3 

The Concept * 

3.1. Abstract 

The Air-Assisted Solvent Extraction (AASX) concept uses a solvent-coated 

bubble to contact the organic and aqueous phases. Compared to conventional solvent 

extraction, a high contact area can be created using less solvent and the natural buoyancy 

provided by the air core promotes phase separation. A method of producing coated 

bubbles exploiting foaming properties of kerosene-based solvent is introduced. Coating 

thickness is estimated at ca. 3 !lm on a 4.4 mm diameter bubble giving a specific surface 

area of ca. 3000 cm-l, equivalent to a solvent droplet of ca. 20 !lm. Such a droplet would 

have very poor phase separation properties. In extraction tests (500 mglL Cu solution), 

high aqueous/organic ratios could be used (e.g., 75: 1) while phase separation remained 

excellent. This shows the potential for AASX to treat large volume, low concentration 

streams such as acid mine drainage. 

• This chapter was published as: "Tarkan H. M., Finch, J. A., 2005. Air-assisted solvent 
extraction: towards a novel extraction process. MineraIs Engineering, 18, 83-88" 
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3.2. Introduction 

Large volumes of di lute metal bearing effluents are generated in the metal 

extraction and processing industries. An important example is acid mine drainage 

(AMD), produced when sulphide mineraIs are exposed to oxygen and water in the 

presence of certain microorganisms (Younger et al., 2002; Kuyucak, 2002; Feng et al., 

2000; Demopoulos, 1998; Machemer and Wildeman, 1992). It is one of the major 

environmental challenges facing the mining industry. In Canada, collection and treatment 

of existing and potential AMD generating sites as estimated at over $3 billion (Tremblay 

and Hogan, 2001) and in the US the treatment cost is $1 million/day (Evangelou, 1995). 

A variety oftreatment options have been proposed (Table 3.1). Lime treatment to 

neutralize and precipitate metals as hydroxides is the most common. The volume of toxic 

sludge requiring disposaI and maintenance against pH excursions, however, restricts 

continued use. As with all challenges, the need to treat AMD has driven innovation 

(Younger et al., 2002; Matis and Lazaridis, 2002; Dibrov, 1998; Gazea et al., 1996). The 

Mc Gill group has focused on techniques that incorporate metal recovery. Selective 

precipitation (Rao and Finch, 1992) and adsorption (EI-Ammouri et al., 2000; Gelinas et 

al., 2000) from solution and selective leach/recovery options on sludge (Calzado et al., 

2005; Gelinas et al., 2002; Felsher et al., 2000) have been considered. A current 

innovative approach being explored is a version of solvent extraction, which is the 

subject ofthis communication. 

Solvent extraction is widely used in primary metal extraction, notably for Cu and 

U (Rao et al., 2000; Doungdeethaveeratana and Sohn, 1998; Bullock and King, 1975; 

Flett et al., 1973). Solvent extraction has been included as an option to treat wastewater 
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(liquid-liquid extraction, Table 3.1). For example, Reinhardt (1975) described a process 

to recover zinc from drainage water in rayon manufacture and Ortega and Gutierrez 

(1980) suggested a process to recover mercury from nitric acid wastes. At a growing 

number of mine sites solvent extraction/electrowinning (SXlEW) is used to recover Cu 

from drainage waters and pregnant liquor from engineered leach systems. The main 

difficulties are applying the process to di lute solutions (largely because of the need to 

keep the aqueous/organic (A/O) ratio ~ 1 to provide satisfactory phase disengagement 

which offers no concentration enrichment), loss of reagents and the capital outlay 

(Kentish and Stevens, 2001; Ritcey and Ashbrook, 1978). 

The need is to treat large volumes cheaply. In the mineraIs industry this was 

solved when flotation was introduced at the tum of the last century. If solvent could be 

carried as a thin layer on bubbles this could provide a high specific surface area with high 

A/O ratio while maintaining rapid phase disengagement due to buoyancy provided by the 

air core. This combination may open the way to adapting solvent extraction to dilute 

streams. This concept was termed "Air-Assisted Solvent Extraction" (AASX) by Chen et 

al. (2003). 

The concept has its origin in the periodic attempts to use oil to argument flotation 

("oil assisted flotation" (Laskowski, 1992)). Of course a connection with oil goes back to 

the earliest days of flotation (Crabtree and Vincent, 1962) but specifically we are 

targeting an oil-coated bubble. Taggart (1927) suggested that an oil film spread on a 

bubble would enhance collection of hydrophobic particles by forming compact 

gas/oil/solid agglomerates. 
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Table 3.1. Comparison of active water treatment methods (Reed, 1998) 

Process Chemical/Energy Metal Major Major 
Input Reclamation Advantages Disadvanta&es 

Precipitant, 
WeIl established, High chemical 

Chemical flocculant, acid 
Metal sludge low effluent dosages, several 

precipitation base; mixing and 
concentrations unit operations 

fluid handling 
WeIl established; Energy intensive; 

Electrolytic Sol id metal 
direct recovery of high capital costs; 

Electrical power solid metal; no reduced efficiency 
recovery scrap 

chemical at dilute 
consumption concentrations 

Chemical 
regeneration 

Regenerated Concentrated Highly selective, requirements, 
Ion-exchange solutions; fluid soluble metal effectiveness adsorbent expense; 

handling stream <100 mgIL prone to fouling in 
mixed waste 
streams 

Metal 
Simple metal Selectivity, 

Disposable 
Replacement 

immobilizes 
rem ove process; recurring cost of 

adsorbent; fluid low adsorbent new adsorbent, 
adsorbents 

handling 
on solid 

cost; effective disposaI cost of 
adsorbent 

<100mg/L spent adsorbent 

Extractant for 
Selective; 

liquid-supported 
Concentrated continuous 

Membrane 
Membranes soluble metal concentrated 

membrane; fluid 
stream metal solution 

durability, fouling 
handling 

recycle 
Organic Selective; 

Capital costs; 
solvent/water Concentrated continuous Liquid-liquid 
contact: loading soluble metal concentrated 

solvent emissions 
extraction to air/water; solvent 

and stripping in stream metal solution 
disposaI 

mixer and settlers recycle 

This idea was pursued for fine coal flotation by Misra and Anazia (1987) who 

found the induction time for a bubble was greatly reduced when encapsulated in oil. 

Wang et al. (1988) and Peng and Li (1991) investigated the approach for selective coal 

flotation finding that collector consumption could be reduced without loss ofrecovery. In 

processing recycled paper, Maiolo and Pelton (1998), found enhanced ink removal with 

bubbles coated with silicone oil. Gomez et al. (2001) confirmed this in continuous testing 
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at a de-inking plant. For sulphide mineraI flotation, Liu et al. (2002) adapted the concept 

to try to reduce undesired activation of gangue particles. Flotation collector was mixed 

with kerosene to pro duce a "reactive oily bubble". 

The application in solvent extraction is to recovery metal ions. Chen et al. (2003) 

first described the Air-Assisted Solvent Extraction concept. They showed that spreading 

of a kerosene-based solvent over a bubble was thermodynamically favored. 

ExperimentalIy, coating was achieved by carefully passing air through a thin plug of 

solvent replenished from a reservoir. 

AASX appears to offer potential for treating large dilute volumes. There is the 

prospect of obtaining high aqueous/organic ratio without the attendant problem of phase 

separation (entrainment of organic in the aqueous phase and vice versa), which keeps the 

recommended ratio close to 1: 1. Sorne aspects of Air-Assisted Solvent Extraction are 

explored in this communication. 

3.3. Materials and Procedure 

3.3.1. Materials 

Reagent grade CuS04.5H20 was used to prepare aqueous solutions. The solvent 

comprised the chelating type extractant LIX 973N (Cognis) diluted in kerosene. The 

chemical composition of the extractant is given in Table 3.2. The density ofLIX 973N is 

0.950 g/cm3
• AlI chemicals were used as received. Density and surface tension of 

example solvents, measured using Wilhelmy Plate Method (Kruss Tensiometer K 12), are 

given in Table 3.3. A typical LIX/kerosene ratio in conventional SX is 1 :9. The surface 
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tension of kerosene alone given in the literature is 25.22 mN/m and interfacial tension 

with water is 20.38 mN/m (Chen et al., 2003). 

Table 3.2. Chemical composition of extractant (Material Safety Data Sheet of LIX 973N) 

Extractant X(%) Y(%) Pet. Distill. (%) Alcohols (%) Nonylphenol (%) 

LIX 973N <46 <18 >30 -- <6 

X: Benzaldehyde, 2-Hydroxy-5-Nonyl Oxime; Y: 5-T-Nonyl-2-Hydroxyacetophenone, 

Oxime 

Table 3.3. Surface tension and density of example solvents 

Surface Tension Density 
LIXlkerosene Ratio 

(g/cm3
) (mN/m) 

1:9 26.4 0.815 

3:1 27.8 0.912 

3.3.2. Procedure 

For extraction tests the objective was to inject a single stream of solvent-coated 

bubbles into a column containing the aqueous phase (Figure 3.1). This was achieved by 

placing solvent in A and bubbling through air (4 cm3/min for all experiments) to produce 

foam. Foaming was easier the higher the LIXlkerosene ratio. The foam passed through 

the capillary (diameter, 2.5 mm) and bubbles were released at the orifice. In this fashion 

the bubble carried a thin coating of solvent into the aqueous phase. Fresh solvent input 

(C) was regulated by an autoburette (radiometer, Copenhagen ABU 91). The air readily 

disengaged at the surface of the solution to pro duce a layer of solvent (D). Provided fresh 

solvent was introduced below the foam no solvent droplets were released. 
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Figure 3.1. Experimental set-up 

Solvent extraction is pH sensitive. Trying to keep pH constant (with NaOH to 

counter the release of H+ ions) caused local precipitation of copper. Therefore, buffered 

solutions were prepared from 0.2 M NaOH, 0.04 M acetic acid, 0.04 M phosphoric acid 

and 0.04 M borie acid (Dean, 1992). AH experiments were made at pH 2.l 0 using 1: 1 

LIX 973N/kerosene ratio with 150 mL aqueous solution of 500 mgIL Cu. One mL 

samples of solution were taken by syringe to analyze for Cu using atomic absorption 

spectroscopy. 
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3.4. Results and Discussion 

3.4.1. Demonstration of Coating 

One way to demonstrate coating is to measure the rise velocity compared to air 

bubbles alone. Velocities were measured in a square cross-section (10 cm x 10 cm) by 

150 cm Plexiglas column using a stopwatch over a 1 m rise. In each experiment 625 

particles1 were counted. The results are given in Figure 3.2. The volume equivalent 

diameter of the coated bubble and air bubble alone, measured by collecting a known 

number in a graduated cylinder, were 4.4 and 4.6 mm, respectively. 

250 r-------------------------------------------------------, 
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;g 
;::l 150 

CO 
c..., 
o 
!:1 

1100 

50 
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Air Bubble Alone 

Coated Bubble 
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Velocity, cm/s 

Figure 3.2. Velocity of coated bubbles and air bubbles alone 

As evident in Figure 3.2, the coated bubble rises more slowly, reflecting the 

solvent load. The distribution appears to be wider than for the bubble alone, suggesting a 

spread in coating thickness. The velo city of the air bubble alone corresponds to the 

1 Partic1es = bubbles alone, coated bubbles or solvent drop lets (aIl produced from the same capillary). 
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literature (Clift et al., 1978). For reference, the diameter and the velocity of solvent 

droplet produced at the same orifice were 0.54 cm and 13 cm/s, respectively. 

The stability of a thin organic film on a bubble is govemed thermodynamically by 

the spreading coefficient, Sc (Adamson, 1990). The appropriate form in the AASX case is 

(3.1) 

where y is interfacial tension and subscripts a, 0, and w refer to air, organic and water. 

If Sc < 0 coating occurs spontaneously. Using the data in Table 3.3, Sc is found to 

be negative, which means formation of a stable solvent coating on a bubble is favored. 

Chen et al. (2003) made the same observation. 

3.4.2. Coating Thickness 

The average thickness of coating was estimated at ca. 3 !lm by measuring solvent 

consumption for a known number of bubbles. Hughes and Kuipa (1996) estimated the 

reaction zone thickness around a solvent drop let for a chelating type extractant to be ca. 

1.3 x 10-3 !lm and Neuman et al. (1993) reported a value between 7-40 x 10-3 !lm. The 

coating thickness achieved on the bubble appears to carry sufficient solvent. 

In principle, an estimate of the mass of solvent carried per bubble (hence 

providing an estimate of average coating thickness) could be made from the decrease in 

rise velocity (Figure 3.2). In the literature, although there are many velocity equations for 

rising or settling particles, none correspond to the current situation: no rising particle 

equation fitted the data. 
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3.4.3. Comparison with Solvent Droplets 

In separate experiments solvent-coated bubbles (AASX) and solvent droplets (4.4 

mm and 5.4 mm, respectively) were passed through the 150 mL, 500 mg/L Cu solution. 

Extraction was compared on the basis of cumulative surface area and volume of solvent. 

To allow for the difference in retention time (rise velo city of droplet was ca. 13 cm/s; of 

solvent coated bubble, ca. 22.5 cmls) columns of different diameters were used giving 

heights of 7.4 cm (drop let) and 12.8 cm (coated bubble). The AASX tests were done 

three times and showed good repeatability (Figure 3.3). 

In terms of surface area (Figure 3.3a), the degree of extraction by the droplet 

exceeded that of the solvent-coated bubble. This suggests that sorne extractant molecules 

in the bulk of the droplet can be accessed, perhaps exchanging with Cu-Ioaded molecules 

at the surface. 

Figure 3.3b reveals the significantly higher consumption (volume) in the case of 

solvent drop lets for the same extent of extraction, sorne 70 mL at ca. 25% extraction 

compared to ca. 1 mL in the AASX test. That is, an A/O ratio of sorne 2: 1 in the former 

case and 150: 1 in the AASX case. This means the resulting Cu content in the organic 

phase in the AASX experiment is significantly increased, revealing the concentration 

enrichment capability. 

The comparison is unfair in the sense that the large drop lets employed are not the 

practice. The data do permit calculation of the size of drop let required to equal the 

specific area of the solvent in the AASX. At the same 25% extraction the surface area of 

solvent in AASX is ca. 3000 cm2 thus, knowing the corresponding volume is ca. 1 mL, 

the specific surface area is ca. 3000 cm- l
. To match requires a 20 ~m drop let, a size 
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difficult to generate and obviously one with po or disengagement properties. The 

disengagement issue is illustrated next. 
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Figure 3.3. Comparison of extraction by solvent droplet and solvent coated bubble 

(AASX) on the basis of cumulative surface area (a) and cumulative volume (b). (The bars 

represent the range of three experiments) 
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3.4.4. Disengagement 

Air-Assisted Solvent Extraction was compared to a conventional "shaking" test. 

For both experiments the same A/O ratio, 75:1, was used representing a possible 

condition for AASX. Figure 3.4 illustrates the two systems: Figure 3.4a) the shaker test 

after 12 hours of settling still showing entrainment of solvent in the aqueous phase (about 

24 hours was needed to complete the disengagement), and Figure 3.4b) the AASX test 

where excellent phase separation is evident which occurs essentially immediately. Figure 

3.4a) illustrates the problem with high A/O ratio in the conventional process: fine 

drop lets form that disengage slowly, exacerbated as they load with Cu (in this case) 

which drives down the buoyancy force. For dilute aqueous solutions this buoyancy force 

is already restricted and in the current case the use of a high LIXlkerosene ratio (1: 1), by 

increasing solvent density (Table 3.2), further exacerbates the problem. These concerns 

do not apply to AASX. 

Figure 3.4. (a) Disengagement in 

conventional SX shake test (after 12 

hours) 

Figure 3.4. (b) Disengagement in AASX 

(instantaneous) (Note, object close to solvent 

layer is a coated bubble.) 
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The shake test was made for two times, 2.5 and 5 min. The result was extraction 

of 80.1 % and 81.4%, respectively, suggesting the equilibrium distribution had been 

reached. Extraction in AASX reached 40% by the time 2 mL solvent had been 

introduced. We can anticipate that the figure may be increased by additional bubble 

retention time (only ca. 0.5 sin this test). 

The results do seem to confirm the potential of AASX to treat low concentration 

solutions by offering significant concentration enrichment while preserving ease of phase 

separation. A future paper will focus on its application to dilute solutions (e.g., < 100 

mg/L). The key to producing the coated bubble is the foaming of solvents. This property, 

how to produce and control it, will also be pursued in a subsequent paper. 

3.5. Conclusions 

1. Air-Assisted Solvent Extraction (AASX) is proposed to overcome sorne 

drawbacks of conventional solvent extraction for treating dilute (e.g., effluent) 

streams by providing high aqueous/organic (AlO) ratio, and consequently high 

concentration enrichment, while maintaining ease of phase separation. 

2. The foaming properties of solvents can be used to generate coated bubbles. 

3. Solvent-coated bubbles of diameter 4.4 mm produced a coating thickness of ca. 

3j.lm and a specific surface area of solvent of ca. 3000 cm-r, which would require 

solvent drop lets of ca. 20 j.lm to match. 

4. Using the same 75:1 A/O ratio, a conventional shake test took sorne 24 hours for 

the phases to disengage, while in AASX disengagement was essentially 

instantaneous. 
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CHAPTER4 

Foaming Properties * 

4.1. Abstract 

The Air-Assisted Solvent Extraction (AASX) concept uses a solvent-coated 

bubble to contact the organic and aqueous phases. Compared to conventional solvent 

extraction, a high contact area can be created using less solvent and the buoyancy 

provided by the air core promotes phase separation. Solvent-coated bubbles are produced 

by forming a foam. The foam is injected through a capillary and a solvent-coated bubble 

is produced at the orifice and released into the aqueous solution. To control foam 

properties, the effect of sorne surfactant additives is investigated. Silicone oil is found to 

have a strong foaming action with kerosene-based solvents. The volume of foam 

produced was increased substantially without affecting extraction or stripping of copper 

(with LIX reagents) or zinc (with D2EHPA). 

• This chapter was published as: "Tarkan H. M., Finch, J. A., 2005. Foaming properties of 
solvents for use in air-assisted solvent extraction. Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, 264, 126-132" 
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4.2. Introduction 

Solvent extraction (or liquid-liquid extraction) is widely used to purify metals 

from pregnant leach solutions (Owusu, 1999; Ritcey and Ashbrook, 1978; Flett, 1973). 

Air-Assisted Solvent Extraction (AASX) differs from conventional solvent extraction 

(SX) by introducing the solvent as a thin layer (a few !lm) on a bubble (Tarkan and 

Finch, 2005; Chen et al., 2003). It offers the potential ofhigh aqueous/organic ratio while 

maintaining excellent phase separation, introducing the possibility of treating dilute 

solutions «1 g/L): AASX becomes a concentration process while retaining the 

purification capability of SX. Tarkan and Finch (2005) found a convenient way to coat 

bubbles was to produce a solvent foam. Once formed the foam is injected into the 

aqueous phase through a capillary to pro duce a stream of coated bubbles. Solvent foam 

properties are, therefore, of interest. 

Foams occur in many industries from mineraI flotation to cosmetics production 

and oil and food processing. They form in a variety of gas-liquid (slurry) systems 

whenever gas bubbles arrive faster than the liquid between bubbles can drain (Schramm 

et al., 1994). In pure liquids, this is difficult to achieve, i.e., sorne additives - surfactants 

- are required (Bikerman, 1953). 

F oam consists of thin lamella films, Plateau borders where three lamella meet, 

and vertices where four Plateau borders me et. The amount of liquid present in the Plateau 

and vertex parts of foam is much larger than in the lamella. The amount of liquid in foam 

has been investigated by a series of researchers (Neethling et al., 2003; Neethling et al., 

2000; Malysa, 1999; Lemlich and Shih, 1971; Rubin et al., 1967). 



CHAPTER 4 - F oaming Properties 55 

The liquid content in a foam should control solvent coating thickness on the 

bubble. The height of foam is one of the parameters which controls the liquid content 

(Malysa, 1999): the greater the height of the foam, the longer the draining time and the 

drier the foam. The liquid content of the foam affects the shape of bubble: the base of a 

foam consists of bubbles roughly the size and shape of those entering the foam layer and 

the foam is "wet", while in the upper part, the foam consists of larger polyhedral bubbles 

and the foam is "dry". 

Most investigations on foam have focused on aqueous rather than the organic 

foams required in AASX. Theories of foam stability cover similar ground for both 

aqueous and nonaqueous liquids, stressing factors such as surface tension and surface 

viscosity. However, there are important differences. For instance, the surface tension of 

water, 72.8 mN/m at 20°C (Adamson, 1990), is high because of hydrogen bonding 

between water molecules, and is easily reduced by surface active agents (surfactants). In 

contrast, the surface tension of typical kerosene-based solvents is already low and it is 

hard to decrease further. There are three types of surfactants known to decrease the 

surface tension of organic liquids, which offers a starting point, namely: hydrocarbons, 

polymethylsiloxanes and fluoroalkyls (Schmidt, 1996). 

Sorne hydrocarbon surfactants can modify surface properties of nonaqueous 

liquids, e.g., reduce surface tension and produce stable foams (Schmidt, 1996; McBain et 

al., 1940). Sorbitan monolaurate (Span 20) is known to decrease the surface tension of 

sorne nonaqueous solvents (Ross, 1984). 

Polymethylsiloxanes (e.g. silicone oil, polydimethylsiloxane) are strong surface 

active agents in organic media. They are used, for example, in controlling polyurethane 
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foams, and their properties have mainly been investigated in that area (Hill, 1999; Snow 

and Stevens, 1999; Kanner and Prokai, 1971). Silicone oil can increase surface viscosity 

and reduce drainage, thus stabilizing foam (Owen et al., 1967). The equilibrium surface 

tension is low, about 21 mN/m (at room temperature) (Kendrick et al., 1967). The amount 

of silicone oil used to increase the foaming properties of organics is important, because 

above a certain concentration (associated with the solubility limit) they behave as foam 

breakers (Takamitsu et al., 1999; Kulkarni et al., 1996; Schwarz, 1970). 

In AASX a requirement is that bubbles disengage from the organic layer which 

forms on the surface of the aqueous phase after extraction, i.e., the foam should not be 

too persistent. Fluoroalkyl type surfactants are very surface active and are reported to 

produce stable foams (Netherly, 1971); therefore, they were not considered. Mineral 

flotation frothers, on the other hand, are designed to produce non-persistent foams 1
. Two 

candidates, (MP-99 and F-I00 from Minerec (now Flottec)) were selected based on low 

solubility in water, suggesting they would be suitable for organics (i.e., solvents). 

4.3. Dynamic Foam Stability Measurement 

Bikerman (1953) proposed a unit of foaminess, I, for dynamic (i.e., gas IS 

flowing) foams as follows: 

(4.1) 

where U and V are air flow rate (cm3/min) and foam volume (cm\ respectively. 

'In flotation the term froth is generally used: there is sorne attempt to reserve "froth" for cases where solids 
are present as in flotation and "foam" for 2-phase only systems (Neethling et al., 2003). 
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U sing this measure, several dynamic foam stability studies have been performed 

(Ross and Suzin, 1985; Ross and Suzin, 1975; Watkins, 1973). The shape of the 

container, however, affects the reproducibility and to overcome this problem the use of a 

conical "foam meter" was recommended (Nishioka et al., 1996; Watkins, 1973). 

The technique of Ross and Suzin (1985) is used here (Figure 4.1). Results were 

evaluated using the foam area produced, Aj. 

2 Af = 1.047(hf + 1.732r) (4.2) 

Ross and Suzin (1985) used the parameter A/2 to give units of volume and noted 

that A/2 vs air flow rate (V) gave two distinct regimes (Figure 4.2): at low flow rates the 

relationship is linear (region A) indicating gas retention time (bubble life) is independent 

of V (i.e., the slope is constant); at higher flow rates (region B), bubble life decreases as V 

increases (although shown as linear the trend is exponential when taken to higher V (Ross 

and Suzin, 1985)). 
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level of liquid 

Figure 4.1. The conical foam meter 
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Figure 4.2. The finding of Ross and Suzin (1985) finding (Reprinted with permission 

from Ross and Suzin (1985), American Chemical Society) 
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4.4. Experimental 

4.4.1. Materials 

The solvents were prepared from chelating type extractants, LIX 622, LIX 860, 

LIX 973N, LIX 984, (received from Cognis) and an acidic extractant, Di (2-Ethylexhyl) 

phosphate, (D2EHP A, received from SIGMA) diluted in kerosene. Sorne features of the 

solvents are given in Tables 4.1 and 4.2. Surface tension was measured using Wilhelmy 

Plate Method (Kruss Tensiometer K 12). Reagent grade CuS04.5H20 and ZnS04.7H20 

were used to prepare aqueous solutions for extraction experiments. The foaming agents 

were sorbitan monolaurate (Span 20, SIGMA), silicone oil (SIGMA) and the flotation 

frothers F-lOO and MP-99 (Minerec (now Flottee)). AH were used as received. 

Table 4.1. Chemical composition ofLIX extractants (MSDS)l 

LIX X(%) Y(%) Pet. Distill. (%) Alcohols (%) Nonylphenol (%) 

973N <46 <18 >30 -- <6 

984 <33 <30 >31 -- <6 

622 <65 -- >11 <20 <4 

860 <65 <31 -- -- <4 

X: Benzaldehyde, 2-Hydroxy-5-Nonyl OXlme; Y: 5-T-Nonyl-2-Hydroxyacetophenone, OXlme 

lThe exact composition is proprietary information. 

Table 4.2. Surface tension (mN/m) of selected solvents 

Extractant/kerosene Ratio LIX 622 LIX 973N LIX 984 LIX 860 D2EHPA 

1:9 26.2 26.4 26.3 26.2 25.6 

3:1 27.1 27.8 27.5 27.2 26.8 
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4.4.2. Dynamic Foam Stability 

The dynamic foam stability was measured using the foam meter (Figure 4.1) with 

dimensions: r = 1 cm; rf = 5 cm; h = 1.7 cm; hF 7 cm. In all experiments the same 

amount of liquid (17.5 mL) at three air flow rates (4, 10, 15 cm3/min) was used. The 

height of the foam for each experiment was measured after steady state was reached (~ 5 

min), and Afwas calculated (Equation 4.2). From repeat experiments, the pooled estimate 

of standard deviation on hfwas 0.058 cm. 

4.4.3. Conventional and Air-Assisted Solvent Extraction 

The surfactants used to increase foaming properties should not change the 

extraction and stripping properties of the solvents. Therefore complementary 

conventional (shaking test) and AASX experiments were carried out, using surfactants 

chosen according to the foaming results. 

In the AASX experiments, metal ion concentration (in the aqueous phase) was 

500 mg/L. The set-up was a 5 cm diameter column (Figure 4.3), described in detail in a 

previous study (Tarkan and Finch, 2005). The air flow rate was 4 cm3/min. First, the 

foam is produced at location "A", then injected through a 2.5 mm capillary and the 

coated bubble is produced at orifice "B". Fresh solvent input (C) is regulated by an 

auto burette (radiometer, Copenhagen ABU 91). The bubbles collect at "D" and break to 

leave a solvent layer. 

Conventional SX experiments, both extraction and stripping, were conducted in a 

60 mL separatory funnel with 40 mL solution at 1: 1 Aqueous/Organic ratio. The initial 

metal ion concentration was 4 g/L. The extraction and stripping time was 20 s. The strip 
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solution was based on standard Cognis quality control tests (Cognis Blue Line Technical 

Bulletin, 2002). Analysis for copper and zinc was by atomic absorption spectroscopy 

(Perkin Elmer 3110). 

4.5. Foaming Properties 

4.5.1. LIX Extractants 

4.5.1.1. Solvent Alone 

LIX reagents provide some foaming properties. Figure 4.4 shows an increase in 

LIXlkerosene ratio tends to increase the foam area produced. Drainage rate is a function 

of the viscosity of the liquid in the foam channels (Neethling et al., 2000; Malysa, 1999): 

the higher the LIX/kerosene ratio, the more viscous the solvent (Ritcey and Ashbrook, 

1978) which probably accounts for the increase in foaming. It is evident that LIX 860 has 

the poorest foaming properties of the tested reagents and contains no petroleum distillate 

(Table 4.1), which may be the difference. 

The results of experiments carried out on kerosene with and without nonylphenol 

(Table 4.3) show that foaming properties of LIX reagents are apparently related to the 

presence of this component. The nonylphenol concentration was 5% (v/v), corresponding 

to its approximate content in LIX reagents (Table 4.1). The possible foaming effect of 

petroleum distillate could not be tested readily as the exact composition is not known 

(proprietary information). 
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Figure 4.3. AASX experimental column (Tarkan and Finch, 2005) 

LIX 973N and LIX 622 were chosen for experiments on the effect of air flow rate. 

The results (Figure 4.5) show that the higher the air flow rate, the more foam was 

produced. If the data in Figure 4.5 are evaluated according to Ross and Suzin (1985), they 

appear to faU in region B, where bubble life is dependent on air-flow rate. 
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Figure 4.4. Foaming properties ofsome LIX solvents (air flow rate = 15 cm3/min) 

Table 4.3. Comparison of foaming properties of kerosene with nonylphenol and LIX 

reagents 

Air Flow Rate, cm3/min 

Reagent 4 10 15 

Af3/2 

Kerosene 6.5 7.5 9.5 

Kerosene + Nonylphenol (5%v/v) 16.9 22.9 29.0 

Kerosene + LIXI 14.4-16.1 19.2-25.9 24.4-33.0 

Ifor the range of LIX reagents 

4.5.1.2. Solvents with Surfactant 

In these experiments LIX 622 and LIX 973N 1: 1 with kerosene were the solvents. 
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a) Flotation Frothers and Span 20 

The results for frothers (Figure 4.6) show that while they may function well in 

water over this range of concentration, they have no effect on foaming properties of the 

two solvents. Likewise, Table 4.4 shows that Span 20 does not affect the foaming 

properties of the solvents (if anything foaming is decreased). 
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Figure 4.5. Effect of air flow rate on foaming properties for two LIX extractants at three 

LIXlkerosene ratios 

Table 4.4. Effect of Span 20 on foaming properties 

Solvent 
Afj

/
L

, cm" 

Air Flow Rate, cm3/min without Span 20 with Span 20 

4 15.2 12.5 

LIX973N 10 22.9 18.8 

15 32.1 27.3 

4 15.9 11.9 

LIX 622 10 26.9 18.2 

15 33.0 25.0 
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Figure 4.6. Effect of flotation frothers on foaming properties 

b) Silicone Oil 

65 

10 

The results (Figure 4.7) show the foam area increases significantly for both 

solvents to a maximum at 3 ppm silicone oil, when foaming starts to decrease. This 

decrease may correspond to exceeding the solubility limit of silicone oil in kerosene 

(Schmidt, 1996). The same trend was obtained at 4 and 10 cm3/min air flow rate. 

As a step towards revealing the mechanism, surface tension measurements were 

carried out. The results (Figure 4.8) show surface tension corresponds to the trend in 

Figure 4.7: silicone oil initially decreases the surface tension rapidly, but further increases 

in concentration above ca. 1 ppm have little impact. 



CHAPTER 4 - F oaming Properties 66 

110 

90 
,-.... 

"" E 
u 

70 '-' 
~ 
'"'2,.... 

<C 
50 -x-UX 973 

-UX622 

30 
0 2 4 6 8 10 12 14 

Silicone oi1 concentration, ppm 

Figure 4.7. Effect of silicone oil on solvent foaming properties (air flow rate = 15 

cm3/min) 

28 

-ê 27 
~ 

-x-UX 973 

-UX622 
s:r 26 
0 

• .-< 
<Zl 
~ 25 Q) 

E-< 
c.H 
!:l 24 

ifJ. 

23 

0 2 4 6 8 10 12 14 

Silicone oil concentration, ppm 

Figure 4.8. Effect of silicone oil on solvent surface tension 

4.5.2. D2EHP A Extractant 

Silicone oil appears to provide suitable foaming properties. It was tried with 

D2EHP Alkerosene as this solvent did not have sufficient foaming capacity to support 
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AASX. The D2EHP A/kerosene ratio was 1:9 and the silicone oïl concentration was 1.5 

ppm. 

The results (Figure 4.9) show the weak foaming property of the solvent alone is 

significantly increased by the addition of silicone oil. 
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Figure 4.9. Effect of silicone oïl on foaming properties of D2EHP A/kerosene solvent. 

4.6. Extraction/Stripping 

Whïle silicone oïl was found to be an effective foaming agent for kerosene-based 

solvents, it is imperative that the surfactant not degrade the extraction and stripping 

properties of the solvent. This was assessed using conventional and Air-Assisted Solvent 

Extraction tests. 
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4.6.1. LIX Extractants 

Using 1: 1 LIX/kerosene solvent, conventional (shaking test) solvent extraction 

experiments were performed with LIX 973N and LIX 622. In each experiment the pH 

was 2.1. The results are given in Table 4.5. Stripping experiments were carried out with 

the loaded solvents from the extraction experiments. The results are given in Table 4.6. 

Table 4.5. Extraction experiments (initial [Cu] = 4 g/L) 

Silicone Oil Concentration, ppm 

Solvent 0 1.5 3 6 

Remaining Cu in solution, mg/L 

LIX 973N 480 475 470 469 

LIX 622 496 513 500 494 

Table 4.6. Stripping experiments 

Silicone Oil Concentration, ppm 

Solvent 0 1.5 3 6 

Stripped Cu in solution, mg/L 

LIX 973N 2505 2634 2670 2616 

LIX 622 2456 2443 2526 2576 

As seen in the Tables, silicone oil did not affect the extraction and stripping 

performance of either LIX reagent. 

AASX experiments, with and without silicone oil (1.5 ppm), were performed with 

1: 1 LIX 973N/kerosene. Figure 4.10 shows that silicone oil does not affect extraction. It 

was noted that the height of foam that could be produced in chamber A (Figure 4.3) was 

greater in presence of silicone oil, and that errant droplet occurrence was reduced. 
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Figure 4.10. Effect of silicone oil on AASX with 1: 1 LIX 973N/kerosene ratio 

Silicone oil increased the flexibility in the use of LIX/kerosene solvent. Rather 

than the 1: 1 ratio favored to pro duce adequate foarning with the solvent alone, the use of 

silicone oil meant any ratio could be used. This increase in range of application of AASX 

is well illustrated next, in the case of D2EHP A. 

4.6.2. D2EHP A Extractant 

Experiments with D2EHP A were carried out on zinc, for which this extractant is 

commonly used (Owusu, 1998; Ritcey and Ashbrook, 1978). Both in conventional SX 

and AASX, the D2EHPA/kerosene ratio was 1 :9, extraction pH was 2.3 and silicone oil 

concentration was 1.5 ppm. As seen from Table 4.7, silicone oil did not affect the 

extraction and stripping performance of the solvent. 
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Table 4.7. Conventional SX (extraction and stripping) experiments with D2EHPA 

Solvent 
Zn Concentration, mg/L 

Extracted Stripped 

D2EHP A alone 2374 1958 

With silicone oil 2316 1899 

AASX results are given in Figure 4.11. It is evident that without silicone oil, there 

was no extraction as there was no foaming. The silicone oil addition makes 

D2EHP Nkerosene solvent applicable for the AASX process. 
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Figure 4.11. Effect of silicone oil on AASX with 1:9 D2EHPA/kerosene ratio (Note: 

time, rather than consumption is used as there was no solvent consumption without 

silicone oil) 

The evidence indicates that silicone oil renders kerosene-based solvent amenable 

to AASX. These silicone oil modified solvents will be employed in moving to the next 

stage: production of "swarms" of solvent-coated bubbles. 
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4.7. Conclusions 

The following itemized conclusions are drawn from this study on controlling 

foaming properties for the Air-Assisted Solvent Extraction (AASX) process. 

1. Flotation frothers and a hydrocarbon reagent (Span 20) did not influence foaming 

properties of two solvents, LIX 973N and LIX 622 1: 1 with kerosene. 

2. Silicone oil up to 3 ppm did increase foam stability, which correlated with a sharp 

decrease in solvent surface tension. 

3. D2EHP A/kerosene solvent initially showed insufficient foaming for AASX but 

addition of silicone oil corrected this. 

4. Silicone oil did not change the extraction/stripping properties of the solvents. 

5. Silicone oil has expanded the range of solvents applicable to AASX. 
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CHAPTER5 

Film Properties * 

5.1. Abstract 

Solvent-coated air bubbles in the Air-Assisted Solvent Extraction (AASX) 

process achieve the dual role of high solvent specifie surface area and ease of phase 

separation. The properties and thickness of the solvent film control the process. As an 

approach to the study of the layer interferometry (in the UV-vis region) and FT-IR 

spectroscopy were used to measure the time dependent thickness and chemical 

composition, respectively, of a film formed by blowing an air bubble in kerosene-based 

solvents. The film was stabilized by the presence of 1.5 ppm silicone oil, as employed in 

AASX. The film appears to comprise two layers; an outer layer of almost constant 

thickness and an inner layer which decreased in thickness with time. The latter is 

considered relevant to AASX. Generally, the initial thickness was ~ 3 !lm which 

decreased over several minutes to a final rupture thickness of ~ 500 nm. The initial 

* This chapter was published as, as: "Tarkan, H. M., Gelinas, S., Finch, J. A., 2006. Measurement 
of thickness and composition of a solvent film on a bubble. Journal of Colloid and Interface 
Science, 297, 732-737" 
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thickness is ofthe order determined indirectly. The chemical composition of the layer did 

not change with time. 

5.2. Introduction 

Solvent extraction (SX) is widely used in primary metal extraction, notably for 

Cu, Ni, Co and U (Ritcey and Ashbrook, 1978; Bullock and King, 1975; Flett et al., 

1973). It is included as an option to treat wastewater (Reed, 1998), which typically has 

10w metal concentrations. One difficulty applying SX to dilute solutions «1 g/L) is the 

need to keep the aqueous/organic ratio ~ 1 to provide satisfactory phase disengagement 

which limits concentration enrichment (Kentish and Stevens, 2001; Ritcey and Ashbrook, 

1978). 

Air-Assisted Solvent Extraction (AASX) differs from conventional solvent 

extraction by introducing the solvent as a thin layer on a bubble. The concept was first 

demonstrated in the case of kerosene-based solvent (Tarkan and Finch, 2005a; Chen et 

al., 2003). It offers the potential of high aqueous/organic ratio while maintaining 

excellent phase separation, introducing the possibility of treating dilute solutions: AASX 

becomes a concentration process while retaining the selectivity of Sx. Tarkan and Finch 

(2005a) found a convenient way to coat bubbles was from a solvent foam. Once formed, 

the foam is injected through a capillary to pro duce a stream of solvent-coated bubbles. 

The foam properties of kerosene-based solvents were shown to be readily controlled by 

silicone oil (Tarkan and Finch 2005b). By measuring solvent consumption for a known 

number of bubbles of known size, the coating (film) thickness was estimated as 3 ~m 
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(Tarkan and Finch, 2005a). The thickness is an important parameter to control and 

optimize the process. 

The technical application of thin films is increasingly accompanied by 

deve10pment of film characterization techniques (Piegari and Masetti, 1985; Dyson, 

1958). Infra-red analysis is used here to investigate film composition and interferometry 

is used to estimate film thickness. 

Film thickness measurement with reflected light interferometry has been weIl 

established (Hecht, 2002; Lyklema et al., 1965; Princen and Mason, 1965). More 

recently, transmission techniques in the UV-visible region have been used specifically for 

soap bubble films (Sarma and Chattopadhyay, 2001; Chattopadhyay, 1999; Huibers and 

Shah, 1997) and films formed by blowing air bubbles in frother1 solutions (Gélinas et al., 

2005). 

In both, the interference pattern showed a film composed of two layers: an outer 

"free" water layer and an inner "bound" layer. The outer layer remained roughly constant 

in thickness over the bubble lifetime, apparently due to a balance of gravity-driven 

drainage and restoring flow driven by the Marangoni effect. The inner layer reflected 

structural effects imposed on the water by the polar groupes) of the adsorbed surfactants. 

The thickness of this layer diminished with time to a critical rupture thickness that 

defined the film lifetime. 

The techniques were adapted to the CUITent application: thickness and 

composition of the solvent layer on an air bubble blown in kerosene-based solvents. 

lprothers are a class of surfactants, typically alcohols, polyglycols and polyglycol ethers, used in 
flotation to retard bubble coalescence. 



CHAPTER 5 - Film Properties 

5.3. Experimental Section 

5.3.1. Materials 

79 

The chelating extractants (UX 973N and UX 622 from Cognis) kerosene (Fisher 

Scientific) and silicone oil (SIGMA) were used to form the solvents investigated. The 

chemical composition of the extractants is given in Table 5.1. Unless otherwise stated, 

the solvent contained 1.5 ppm silicone oil, an amount determined previously to maximize 

solvent foaming properties (Tarkan and Finch, 2005b). 

Table 5.1. Chemical composition of LIX extractants (MSDS) 

LIX X(%) Y(%) Pet. Distill. (%) Alcohols (%) Nonylphenol (%) 

973N <46 <18 >30 -- <6 

622 <65 -- >11 <20 <4 

X: Benzaldehyde, 2-Hydroxy-5-Nonyl Oxime; Y: 5-T-Nonyl-2-Hydroxyacetophenone, 

Oxime 

5.3.2. Methods 

a) Bubble cel! 

A schematic of the spectroscopy cell is shown in Figure 5.1. The custom-made 

glass cell houses a central bubble pedestal and two sapphire discs (033 mm) mounted on 

wall ports as transmission windows. Removing the glass lid allows easy access for bubble 

generation. The accessory is placed inside the sample chamber of either a Bruker FT-IR 

spectrophotometer (wavenumber range 4500-1500 cm-1
) or a Genesys 10 Scanning 

Thermoelectron UV -Visible spectrophotometer (wavelength range 1100-190 nm) for 

spectra recording. In the UV-Visible study the wavelength scan speed was approximately 
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900 mn/min, and the nominal resolution of the IR spectra was 4 cm-Jo An empty cell was 

used to record background spectra. 

r-
a 
u T 
~ 

J.-. 2.2 cm ....j 
l 

Figure 5.1. Schematic ofbubble holder 

b) Bubble generation 

About 0.5 mL of solvent was placed onto the bubble holder and a single bubble 

was blown manually using a disposable plastic pipette. Bubbles of 0 ~20 mm were 

created (for both UV-vis and FT-IR), a size appropriate for the probe beam to travel 

through the center of the bubble. The experiments were performed at room temperature 

(21-25°C), without humidity control. 

c) Layer thickness calculation 

The film thickness (D) is determined from the interference pattern generated in 

the UV-vis region according to Equation 5.1 (Huibers and Shah, 1997), 
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D=(2vr1 (5.la) 

v=[n(A1 ) _ n(A2 )]1 N 
A A cyc 

1 2 

(5.lb) 

where Ncyc is the number of cycles between wavelengths ).,1 and ).,2, n is the refractive 

index of the film material (determined using a Fisher Abbe Model benchtop refractometer 

(Fisher Scientific)). To measure the layer thickness, at least a single maximum and a 

minimum (half a cycle) in the spectrum are necessary, although theoretically, the 

minimum thickness can be measured using a single maximum (D = AI 4n) (Hui bers and 

Shah, 1997). 

In the case of kerosene (n = 1.44 (Speight, 2001)), the minimum thickness that 

can be measured by the UV-vis instrument used here (where Amin = 190 nm) is, 

respectively, 33 and 40 nm for the single maximum and half cycle cases. For the present 

study, the thickness calculations used two maxima. 

5.4. Results and Discussion 

5.4.1. Layer Thickness: UV-visible study 

5.4.1.1. Interpreting Interference Patterns 

a) Example patterns 

Figure 5.2 shows a typical evolution of spectra over a period of 10 minutes. 

Initially (ca. 5 S)2 only a high frequency pattern is seen. At 2 min a lower frequency 

2 This is the estimated time after bubble formation when the first readings (UV-vis or IR) could be made. 
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pattern becomes evident which decreases in frequency with time (5, 10 min). The high 

frequency pattern remains essentially constant. 
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Figure 5.2. Interference pattern for 1:3 LIX973N/kerosene bubble as a function of time 

after formation 

This behavior is similar to that observed for soap and frother bubble films. 

Interpreting in the same way, the high frequency pattern is associated with an outer "free" 

layer and the lower frequency pattern with an inner "bound" layer. The free layer remains 

roughly constant with time (again, attributed to a balance of gravit y and Marangoni effect 

driven flows) with a calculated thickness of 6-8 ~m, interestingly similar to that 
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determined for the soap and frother films (Gelinas et al., 2005; Sarma and 

Chattopadhyay, 2001). 

The outer layer is not considered of direct concern in the present context. The 

AASX process involves injecting a solvent-coated bubble into water, not air, therefore a 

free solvent layer is unlikely to form. Consequently attention will focus on the low 

frequency pattern, i.e., the bound layer. 

b) Samp/e thickness ca/cu/ations 

Figure 5.3 shows how the low frequency pattern is constructed using the result in 

Figure 5.2 for 5 min. This fitting procedure is suggested by Sarma and Chattopadhyay 

(2001). The refractive index was determined for each solvent tested with the results given 

in Table 5.2. 
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Figure 5.3. Example interference pattern: 1:3 LIXlkerosene at 5 min after bubble 

generation 
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Table 5.2. The refractive index of solvents 

Solvent Refractive Index Solvent Refractive Index 

Water l 1.333 1 Kerosene 1.437 

1:9 LIX973N/kerosene 1.443 1 :9 LIX622/kerosene 1.442 

1:3 LIX973N/kerosene 1.452 1:3 LIX622/kerosene 1.450 

1: 1 LIX973N/kerosene 1.468 1 : 1 LIX622/kerosene 1.464 
1 Value corresponds to the hterature (LI de, 1994) 

Table 5.3 gives the results of selecting a variety of combinations of maxima and 

corresponding number of cycles. The mean is 761 nm with a standard deviation of 30.7 

nm, i.e., a relative standard deviation of ca. 4% which is taken as the measure of 

precision. Subsequently, thickness calculations used the two maxima-based procedure. 

Applying this, the thickness of the film in Figure 5.2 is calculated to decline from > 4100 

nm at 5 s to 1180 nm at 2 min, 760 nm at 5 min and 450 nm at 10 min. 

5.4.1.2. Effect of Variables 

a) Silicone ail and extractants 

The importance of silicone oil was clearly revealed when trying to compare the 

layer thickness of kerosene alone and with silicone oil. In the former, a bubble could not 

be generated but bubbles were readily blown with 1.5 ppm silicone oil present, giving an 

initial thickness of ca. 2100 nm and lifetimes greater than 5 min. 

Previous work had shown that LIX extractants imparted sorne foaming properties 

to kerosene (Tarkan and Finch, 2005b). A bubble could be blown using 1: 1 LIX 

973N/kerosene with no silicone oil, giving an initial thickness of ca. 300 nm and a film 
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lifetime of ca. 1. 5 min. For ratios less than 1: 1 without silicone oil the film was too thin 

to produce two maxima, indicating a thickness less than 150 nm. 

Table 5.3. Sample calculations for layer thickness 

Cycle* Number of Cycles, Ncyc .Al .A2 Layer Thickness (D), nm 

A-B 690 1029 721 

B-C 1 525 690 756 

C-D 429 525 807 

A-C 525 1029 738 
2 

B-D 429 690 781 

A-D 3 429 1029 760 

Mean ± Standard Deviation 761 ± 30.7 

* Letters refer to Figure 5.3. 

Compared to silicone oil, therefore, the extractants produced limited films, 

confirming the need for silicone oil. Consequently, from here on aU solvents, inc1uding 

reference to "kerosene alone", contain 1.5 ppm silicone oil. 

b) Solvent Composition 

The effect of solvent composition was investigated using two extractants (LIX 

973N and LIX 622) at three LIX/kerosene ratios (1:9, 1:3 and 1:1). The results as a 

function oftime are given in Figure 5.4. 
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Figure 5.4. Solvent layer thickness with time as a function of solvent composition. (a) 

LIX973N/kerosene and (b) LIX622/kerosene 

The general features show an initial (5 s) solvent thickness ca. 2-4 !lm, which 

decreases sharply over the first 2 minutes and thereafter decreasing slowly. With LIX 

present the bubbles remained stable up to at least 10 minutes reaching a thickness < 1 !lm 

and in sorne cases < 500 nm. The result for kerosene alone could be followed only to 5 

min as the thickness became too thin to meet the two maxima criteria. The LIX 
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extractants do therefore enhance the film ln addition to the silicone oil. The same 

observation was made with regard to foaming properties (Tarkan and Finch, 2005b). 

Compared to bubbles generated in frother solutions (Gelinas et al., 2005) the films here 

are much more stable. 

Comparing the two LIX types, the LIX973N gave higher initial thickness and the 

LIX 622 a slower rate of decrease, most notable when comparing the two at 1: 1 

LIXlkerosene. The origin of difference must lie in the chemical composition but for these 

commercial products, there is sorne variability (Table 5.1). There is, however, little 

difference in foaming properties between the two solvents (Tarkan and Finch, 2005b). 

Future work will use extractants with better defined chemistries. 

c) Comparison with indirect estimation of film thickness 

An indirect estimate of film thickness had been made previously by counting 

bubbles of known size (4.4 mm diameter) in an AASX set-up and measuring solvent 

consumption (Tarkan and Finch, 2005a). For 1: 1 LIX973N/kerosene the calculation gave 

around 3 /lm. This corresponds to the initial thickness determined here, despite the 

differences between the two experimental systems. This lends credence to the present set

up providing a reasonable simulation of the fundamental requirement of AASX, solvent 

coating of a bubble. 
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5.4.2. Composition: FT -IR Studies 

The study was carried out using 1: 1 LIX 622/kerosene, 1 :9 and 1: 1 

LIX973N/kerosene and kerosene alone. The measurements were made as soon as the 

bubble was generated (~ 5 s) (Figure 5.5) and in the case of 1:1 LIX 973N/kerosene, over 

time (Figure 5.6). 

All solvents show the same peaks, a cluster between 2850 and 2950 cm-l, which 

corresponds to the CH2 and CH3 groups of kerosene (Bellamy, 1978). In the presence of 

LIX extractants, there is a peak at 3357 cm-1 (Figure 5.5). 

With time (Figure 5.6) the peak heights diminish. Taking the peak height at 3357 

cm-1 as indicative of concentration of extractant and the peak at 2923 cm-1 as indicative of 

concentration of kerosene (the CH2 and CH3 groups contribution from extractant is 

negligible) the ratios are roughly constant ((a) 9.0, (b) 9.5, (c) 7.4, and (d) 11.8). This 

indicates that composition does not change with time. A constant composition is an 

advantage for the AASX process as the solvent-coated bubble can be expected to perform 

consistently regardless of film thickness. 
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Figure 5.5. FT-IR spectra after ~ 5 s for: (a) kerosene alone, (b) 1:9 LIX973N/kerosene, 

(c) 1: 1 LIX973N/kerosene, (d) 1: 1 LIX622/kerosene 

Consideration was given to locating silicone oil in the spectra. The combination 

of low concentration, overlapping of the hydrocarbon groups with those of kerosene and 

noise in the characteristic range for silicone oil (1500-700 cm-1
) (Taranekar et al., 2002) 

precluded unambiguous identification. Silicone oil probably stabilizes the film by 

combination of viscosity and surface tension effects, as discussed with regard to its 

impact on foaming (Tarkan and Finch, 2005b), but the film study throws no new light on 

the mechanism. 
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Figure 5.6. FT-IR spectra as a function of time for 1: 1 LIX973N/kerosene (a= 1 min, b=3 

min, c=4 min, d=6 min after bubble generation) 

5.5. Conclusions 

Bubbles were formed in LIXlkerosene solvents to study film thickness by 

interferometry and film composition by infra-red spectroscopy. The work was conducted 

to explore aspects of the Air-Assisted Solvent Extraction (AASX) process which employs 

solvent-coated bubbles. The following observations were made. 

1. Stable bubble films were formed only in the presence of silicone oil (1.5 ppm), as 

required to promote solvent foams in the AASX process. 



CHAPTER 5 - Film Properties 91 

2. The film compnses two layers, an outer layer, which remams constant in 

thickness and an inner layer, which decreases in thickness with time. The inner 

layer is considered relevant to the AASX process. 

3. For LIXlkerosene solvents, the thickness was initially ca. 2-4 !lm decreasing over 

10 minutes to « 1 !lm. The initial thickness corresponds to prior indirect 

estimates of the coating thickness. 

4. The chemical composition was invariant with time. 
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CHAPTER6 

Scaling Up* 

6.1. Abstract 

The Air-Assisted Solvent Extraction (AASX) concept uses a solvent-coated 

bubble to contact the organic and aqueous phases. Compared to conventional solvent 

extraction, a high contact area can be created using less solvent and the buoyancy 

provided by the air core promotes phase separation. A solvent-coated bubble is generated 

by forming a foam which is extruded through an orifice. As steps towards generating 

bubble swarms, orifice properties (material, diameter and orientation) were explored. 

Preliminary results for a multi-bubble unit based on the findings are given. 

6.2. Introduction 

Solvent extraction is widely used in primary metal extraction, notably for Cu and 

U (Ritcey and Ashbrook, 1978; Bullock and King, 1975; Flett et al., 1973). Solvent 

extraction has been included as an option to treat wastewater (Reed, 1998), where metal 

* This chapter has been submitted for presentation at XXIII International Mineral Processing 
Congress, September 2006, as: "Tarkan, H. M., Finch, J. A., Multi-bubble production in the air
assisted solvent extraction process" 
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concentrations are relatively low. A major limitation applying the process to di lute 

solutions is the need to keep the aqueous/organic (A/O) ratio ~ 1 to provide satisfactory 

phase disengagement. Other factors inc1ude loss of organic and the capital outlay 

(Kentish and Stevens, 2001; Ritcey and Ashbrook, 1978). 

Air-Assisted Solvent Extraction (AASX) differs from conventional solvent 

extraction (SX) by introducing the solvent as a thin layer (ca. 2-4 !-lm) on a bubble. The 

concept was first demonstrated in the case of kerosene-based solvent (Tarkan and Finch, 

2005a; Chen et al., 2003). It offers the potential of high A/O ratio (»1:1) while 

maintaining excellent phase separation (Tarkan and Finch, 2005a). AASX introduces the 

possibility oftreating di lute solutions «1 g/L). 

Tarkan and Finch (2005a) found one way to coat bubbles consistently was from a 

solvent foam. Once formed, the foam is injected through a capillary to produce a stream 

of coated bubbles. To control the foaming properties a range of additives was tried 

(Tarkan and Finch, 2005b). Silicone oïl was identified as suited to controlling the 

foaming properties of kerosene-based solvents without affecting their extraction and 

stripping properties. The optimum silicone oïl concentration was 1.5 ppm. This role of 

silicone oil was further demonstrated in thin film studies on bubbles blown in solvent 

(Tarkan et al., 2005) 

The set-up to date, shown in Figure 6.1, produces a single stream of bubbles. The 

aqueous solution is held in column "A", inside diameter 5 cm. Solvent foam is produced 

in chamber "B" connected to "A" by capillary "C", internaI (orifice) diameter 2.5 mm 

and external diameter 7.5 mm. Air (typically 4 mL/min) is introduced via "D" to form the 

foam which passes through the capillary. The bubbles generated are ca. 4.4 mm in 
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diameter, and the solvent coating, from a combination of direct (Tarkan et al., 2005) and 

indirect (Tarkan and Finch, 2005a) measurements, is ca. 2-4 Ilm thick. The solvent is 

replenished via "E". The obvious need is to scale-up to bubble swarms. 

Figure 6.1. AASX experimental column producing a single stream of solvent-coated 

bubbles (Tarkan and Finch, 2005a) 

In the literature, there are sorne reports on generating oil-coated bubble swarms 

including using a glass frit (Liu et al., 2002), an atomizer (Gomez et al., 2001; Maiolo 

and Pelton, 1998; Misra and Anazia, 1987) and vapour deposition (Wallwork et al., 2003; 

Peng and Li, 1991). 

Sorne trials using glass frit were conducted but it was difficult to conclude that 

bubbles were consistently coated and difficult to prevent errant solvent droplet formation. 

Similar difficulties were envisaged using the other techniques. As a first step, therefore, a 
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design based on replicating the successful single bubble generator was considered; 

referred to as a "multi-bubble unit". As part ofthis exercise, orifice dimensions, material 

(glass vs. Teflon) and orientation (capillary vertical to horizontal) were examined. The 

findings are outlined under "Exploratory Tests". Based on these findings a multi-bubble 

unit was constructed and tested on di lute (50 - 500 mg/L) copper sulphate solutions. 

6.3. Exploratory Tests 

6.3.1. Orifice Size 

The 2.5 mm orifice (of the single bubble generator) in vertical capillary 

orientation produces bubbles ca. 4.4 mm and a solvent specifie surface area of ca. 3000 

cm-1 (Tarkan and Finch, 2005a). Smaller bubbles would give potentially higher solvent 

specifie surface area. It became apparent that to control coated bubble production free of 

errant drop lets, the orifice size of capillary "c" had to be changed in tandem with the 

chamber "B" diameter. The balance is approximately as follows: to control bubble 

production and avoid solvent droplet formation, the line velo city in "c" should be less 

than ca. 1.4 cm/s, and to produce foam (in chamber "B") the superficial air velocity 

should be greater than 0.033 cm/s. The design of "B" and "C" must respect these criteria. 

Rather than pursue these aspects, the current dimensions were retained. 

6.3.2. Material 

The material of construction is of interest to commercialize AASX. Specifically in 

the case of capillary "C", two materials, Teflon and glass, were tested to give a wide 
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range in critical surface tension of wetting, Yc (Ye for glass = 170 mN/m and for Teflon = 

18 mN/m) (Zisman, 1964). 

Despite the large difference between water surface tension, 72.8 mN/m (Le., as 

exerted by the solvent-free bubble) and solvent surface tension, ca. 26 mN/m (Tarkan and 

Finch, 2005a) (i.e., as exerted by the solvent-coated bubble), it was evident that both free 

and solvent-coated bubbles spread easily over the Teflon surface (Figure 6.2) producing 

large bubbles while in the case of glass they did not. A tentative conclusion is that for the 

capillary a material with a high critical surface tension of wetting (and probably a knife 

edge) is required. This will be pursued in later studies. For the CUITent work, glass was 

again used. 

Figure 6.2. Spreading of solvent-coated bubble on Teflon capillary set at 10° to the 

horizontal to show the spreading effect (inside and outside diameter of orifice 1 and 7 

mm, respectively) 
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6.3.3. Orifice Orientation 

The size of bubble at low air flow rate is determined by a balance of buoyancy 

and capillary (attachment) forces (Park et al., 1977). As the orientation of the capillary is 

changed, the attachment forces will be effective on only part of the perimeter and the 

buoyancy force needed to detach the bubble will be lower (Datta et al., 1950). Therefore, 

the bubble diameter will be smaller. 

Two identical glass capillaries, one vertical and one horizontal, were compared. 

The volume equivalent diameters of bubble, measured by collecting a known number in a 

graduated cylinder, were 4.4 and 3.4 mm, respectively. The horizontal capillary 

arrangement otherwise performed the same; errant droplets were avoided and control of 

bubble frequency could still be exercised. The horizontal arrangement also opened the 

way for a compact, multi-bubble unit. 

6.4. Design of Multi-Bubble Unit 

Using the above findings, a custom-made glass multi-bubble unit was constructed. 

As seen from Figure 6.3a, the capillaries were inserted horizontally around the perimeter 

of column "A". This made for a more compact geometry than attempting multiple 

vertical injection sites from the bottom. The set-up otherwise is basically a replication of 

the single bubble unit. Units with up to eight injection site units have been built (Figure 

6.3b). 

The column "A" is 5.6 cm diameter by 33 cm high. In the 4-capillary case (Figure 

6.3a), the capillaries are situated 2 cm above the column base and project 2 cm in from 

the wall. By operating one or two opposing capillaries, 1- and 2-unit cases are inc1uded. 
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In the 8-capillary case (Figure 6.3b), a second array of 4 capillaries is set 3.5 cm above 

the base of the co1umn at an angle to the first set and projecting 1 cm in from the column 

wall. All the capillaries are identical, 2.5 mm inside and 7.5 mm outside diameter. The 

air-flow rate to each chamber, where foam is produced ("B" in Figure 6.3a), is controlled 

by individual air-flow meters. Coated bubble generation is identical to the single bubble 

case. 

Figure 6.3. (a) A 4-injection site multi-bubble unit (general view) 

Compared to the previous attempts to produce coated-bubble swarms mentioned 

in the "introduction", the advantage here is that the bubbles are created in a controlled 

manner at a known rate and size, with reproducible coatings. 
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Figure 6.3. (b) An 8-injection site multi-bubble unit (top view) 

6.5. Demonstration Tests 

6.5.1. Reagents and Procedure 

101 

Solvent was prepared from a chelating type extractant, LIX 973N (received from 

Cognis), diluted in kerosene. Reagent grade CuS04.5H20 (Fischer) was used to prepare 

the aqueous solutions. The foaming agent was 1.5 ppm silicone oil (SIGMA) and was 

used in aH solvents prepared. The reagents were used as received. 

Analysis for copper was by atomic absorption spectroscopy (Perkin Elmer Model 

3110). Aqueous solutions were prepared by buffering at pH 2.1 with 0.2 M NaOH, 0.04 

M acetic acid, 0.04 M phosphoric acid and 0.04 M boric acid (Dean, 1992). In each 



CHAPTER 6 - Scaling Up 102 

experiment, the solution volume was 500 mL, and the air-flow rate 4 mL/min to each 

generator. 

6.5.2. Effect of N umber of Orifices 

One, 2, 4 and 8 orifices were tested using a 1:4 LIX/kerosene solvent and an 

initial Cu concentration of 100 mg/L. The results are given in Figure 6.4. 

As seen, Cu extraction for a given time increased with increase in number of 

orifices. This reflects the increase in total solvent consumption, which for the 1, 2, 4 and 

8 orifices at 30 min was 0.9, 2, 3.4 and 7.1 mL, respectively. The corresponding aqueous 

to organic ratios (A/O), included in the Figure, decrease by approximately half for each 

consecutive case. This supports that the multi-bubble unit is functioning as a simple 

multiple of the single bubble case. 

30 
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Figure 6.4. Effect of number of orifices on extraction of Cu ("Error bar" is the range of 3 

replicates at each time for the 4-capillary case.) 
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6.5.3. Kinetic Analysis 

The first order kinetic model (Equation 6.1) was used to analyze the results in 

Figure 6.4, 

[MJ = [Mo} exp (-kt) (6.1) 

where t is time, Mo the initial copper concentration, Mt the copper concentration at time t 

and k is the reaction rate constant. The linear regression fit for each number of orifices is 

given in Figure 6.5. 
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Figure 6.5. First-order kinetic model app1ied to multi-bubble unit data in Figure 6.4 

The first order kinetic model fits the AASX data weIl, at least up to the 4-capillary 

case. The manual 8-capillary experiments were taxing, which may account for the poorer 

fit. However, there is also a significant change in concentration over the 30 min in this 

case and therefore potentially a change in rate controlling step. 



CHAPTER 6 - Scaling Up 104 

Figure 6.6 shows the experimental relationship between k and number of orifices. 

The linear trend again supports that the multi-bubble unit is a successful replication of the 

single bubble unit. This type of analysis will be needed in scaling up the AASX process. 
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Figure 6.6. Effect of number of orifices on kinetic rate constant 

6.5.4. Organic and Aqueous Phase Properties 

The multi-bubble unit was also used to re-explore sorne properties of the system. 

Using this set-up shortens the test period, permitting variables - LIX/kerosene ratio and 

initial Cu concentration in this case - to be explored more conveniently. 

6.5.4.1. LIXlkerosene Ratio 

Previous extraction tests using LIX had been limited to 1: 1 ratio with kerosene 

(Tarkan and Finch, 2005a) but use of silicone oil has extended the range. This is 

illustrated in Figure 6.7, where two LIX/kerosene ratios (1:1 and 1:4) were tested using 

the 4-orifice set-up. The initial Cu concentrations were 100 and 500 mg/L. 



CHAPTER 6 - Scaling Up 105 

30 

25 
?J. 
;:f 20 

U 
"1j 15 

110 
5 

o 
o 

o 100 ppm; 1: 1 LIXlKerosene ratio - 500 ppm; 1: 1 LIXlKerosene ratio 

<> 100 ppm; 1:4 LIXlKerosene ratio + 500 ppm; 1:4 LIXlKerosene ratio 

10 20 
Time, min 

30 

Figure 6.7. Effect of LIXlkerosene ratio on Cu extraction. 

40 

The solvent type did not have an effect. This probably reflects the short retention 

time of the bubble « Is) in the current set-up which prevents taking advantage ofhigher 

LIX concentrations. A re-designed column "A" to increase bubble retention time may 

enable full loading of the solvent to be approached and permit exploitation of high 

LIXlkerosene ratio. There is a practical constraint, however; while the high viscosity of 

1: 1 LIXlkerosene ratio is not a factor in AASX, it does pose an issue in stripping. 

6.5.4.2. Initial Cu Concentration 

Using the 4-orifice design and LIX/kerosene ratio 1 :4, the effect of initial Cu 

concentration (50, 100,250 and 500 mg/L) was investigated. 
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Figure 6.8. Effect of initial Cu concentration 

The results indicated that the higher the Cu concentration, the higher the 

extraction (Figure 6.8). This means that the process is not truly first-order at least over 

this dilute concentration range. The observation needs to be pursued to select design 

parameters for scale-up. A future communication will address kinetic and mass transfer 

studies. 

6.6. Conclusions 

1. A multi-bubble unit was designed for the Air-Assisted Solvent Extraction 

(AAS X) pro cess by replicating the single bubble unit. 

2. A compact multi-bubble set-up was made possible by employing horizontal 

capillaries. Units comprising up to 8 capillaries were built. With an orifice of 2.5 

mm diameter, the horizontal capillary gave bubbles 3.4 mm diameter, smaller 

than the vertical arrangement (4.4 mm). 



CHAPTER 6 - Scaling Up 107 

3. Demonstration tests showed that the multi-bubble unit functioned as a simple 

multiple of the single bubble case. 

4. The multi-bubble unit is a step towards scaling up the AASX process. In the 

meantime, it provides a more convenient set-up to explore design and operating 

variables than the single bubble version. 
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CHAPTER 7 

Conclusions, Contributions, and Future Work 

7.1. Conclusions 

7.1.1. The Concept 
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Air-Assisted Solvent Extraction (AAS X) is proposed to overcome sorne drawbacks of 

conventional solvent extraction for treating di lute streams by providing for high 

aqueous/organic ratios (AlO) (up to 75:1 was used), and consequently high concentration 

enrichment, while maintaining ease of phase separation (essentially instantaneous). The 

foaming properties of solvents can be used to generate coated bubbles. Solvent-coated 

bubbles of diameter 4.4 mm produced a calculated coating thickness of ca. 3 )lm and a 

specific surface area of solvent of ca. 3000 cm-l, which would require solvent droplets of 

ca. 20 )lm to match. 

7.1.2. Foaming Properties 

Two flotation frothers (MP-99 and F -100 from Flottee) and a hydroearbon reagent (Span 

20) did not influence foaming properties of LIX 973N and LIX 622 1: 1 with kerosene. 

Silicone oil up to 3 ppm did increase foam stability, which correlated with a sharp 

decrease in solvent surface tension. 
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D2EHP Alkerosene solvent initially showed insufficient foaming for AASX but addition 

of silicone oil corrected this. Silicone oil did not change the extraction/stripping 

properties of the solvents. Therefore, silicone oil has expanded the range of solvents 

applicable to AASX. 

7.1.3. Film Properties 

Bubbles were formed in LIXlkerosene solvents to study film thickness by interferometry 

and film composition by infra-red spectroscopy. The work was conducted to explore 

fundamental aspects of the Air-Assisted Solvent Extraction (AASX) process. Stable 

bubble films were formed only in the presence of silicone oil (l.5 ppm), as required to 

promote solvent foams. The film comprised two layers, an outer layer, which remained 

constant in thickness, and an inner layer, which decreased in thickness with time. The 

inner layer is considered relevant to the AASX process. For LIX/kerosene solvents, the 

thickness was initially ca. 2-4 /lm decreasing over 10 minutes to « 1 /lm. The initial 

thickness corresponded to the prior indirect estimates of the coating thickness (ca. 3 /lm). 

The chemical composition was invariant with time. 

7.1.4. Scaling Up 

A multi-bubble unit was designed for the Air-Assisted Solvent Extraction (AASX) 

process by replicating the single bubble unit. A compact set-up was made possible by 

employing horizontal capillaries. With an orifice of 2.5 mm diameter, these gave smaller 

bubbles (3.4 mm diameter) than the vertical arrangement (4.4 mm). Demonstration tests 

showed that the multi-bubble unit did function as a simple multiple of the single bubble 
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case. The multi-bubble unit provides a more convenient set-up to explore design and 

operating variables than the single bubble version. It may provide a route to scaling up 

the AASX process. 

7.2. Contributions to Knowledge 

1. The Air-Assisted Solvent Extraction concept was expanded by the novel 

suggestion to exploit the foaming properties of solvents, considered a safer 

method than some proposed oil-coating techniques, such as vapour deposition. 

2. Silicone oil was identified as a promising modifier to pro duce foam with 

kerosene-based solvents without affecting extraction or stripping properties. 

3. The layer thickness measurement by interferometry was applied for the first time 

to a non-aqueous system. 

4. A design of a multi-bubble unit based on replication of the single bubble version 

was successfully tested. 

7.3. Suggestions for Future Work 

1. In this study, kerosene, which is an aliphatic reagent, was used as diluent. The 

Air-Assisted Solvent Extraction (AASX) process was prompted as a means to 

treat dilute solutions such as acid mine drainage, which might contain bacteria 

that can degrade kerosene. Therefore, aromatic diluents should be investigated for 

use inAASX. 

2. To further explore the mechanism offoaming and the properties of the thin film, a 

solvent with a weIl defined composition should be investigated. 
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3. The advantage of producing solvent-coated bubbles from foam should be 

considered for other process, such as the flotation of naturally hydrophobie 

partic1es, e.g. ink, bitumen, coal. 

4. The single and multi-bubble units could serve as a basis for kinetic and mass 

transfer studies. No such studies relevant to a coating of reactive material on an 

air core were found in the literature. 
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APPENDIXA 

AASX: Potential Application to Effluent Streams * 

A.1. Abstract 

Solvent extraction is one of the most widely used processes for the selective 

recovery of metal ions such as copper, uranium and zinc in hydrometallurgical 

applications. The main technical drawbacks are the energy to disperse the organic and 

create high contact are a, time for phase separation, limitation to quite concentrated 

solutions (>1 g/L) and loss of reagents (which can pose environmental risk). The air-

assisted solvent extraction (AASX) concept uses a solvent-coated bubble to contact the 

organic and aqueous phases. Compared to conventional solvent extraction, a high contact 

area can be created using less solvent and the buoyancy provided by the air core 

promotes phase separation. The intended application is for large volume, low 

concentration streams such as acid mine drainage to recover valuable metal ions. Solvent-

coated bubbles are produced by first forming a foam. In these proof-of-concept 

experiments, the foam is injected through a capillary and a stream of solvent-coated 

• It was published in conference proceedings as: "Tarkan H.M., Finch, J. A., 2005. Air-assisted 
solvent extraction: potential application to effluent streams. In: Securing the future, International 
Conference on Mining and the Environment Metals and Energy Recovery, June 27-July 1,2005, 
Skelleftea, Sweden, pp. 937-944" 
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bubbles is produced at the orifice and released into the aqueous solution. To control foam 

properties, silicone oil is found to be suitable for kerosene-based solvents. On a bubble 

size of 4.4 mm the coating thickness is estimated at 3 /lm, equivalent to a solvent specific 

surface area of ca 3000 cm-l, corresponding to solvent droplets of ca. 20 /lm. Phase 

separation is sharp, and the air disengages easily to leave a solvent layer. Extraction tests 

on dilute Cu and Zn solutions illustrate the process. 

A.2. Introduction 

Large volumes of dilute metal bearing effluents are generated in the metal 

extraction and processing industries. An important example is acid mine drainage 

(AMD) , produced when sulphide mineraIs are exposed to oxygen and water in the 

presence of certain microorganisms (Y ounger et al., 2002; Kuyucak, 2002; Feng et al., 

2000; Demopoulos, 1998; Machemer and Wildeman, 1992). It is one of the major 

environmental challenges facing the mining industry. In Canada, collection and treatment 

of existing and potential AMD generating sites is estimated at over $(C) 3 billion 

(Tremblay and Hogan, 2001). The Mc Gill group has focused on treatment techniques that 

incorporate metal recovery. Selective precipitation (Rao and Finch, 1992) and adsorption 

(EI-Ammouri et al., 2000; Gelinas et al., 2000) from solution and selective leach/recovery 

options on sludge (Calzado et al., 2005; Gelinas et al., 2002; Felsher et al., 2000) have 

been considered. 

Solvent extraction is widely used in primary metal extraction, notably for Cu and 

U (Rao et al., 2000; Ritcey and Ashbrook, 1978; Bullock and King, 1975; Flett et al., 

1973). Solvent extraction has been inc1uded as an option to treat wastewater (Reed, 
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1998). The main difficulties in this application are: the need to keep the aqueous/organic 

(A/O) ratio ~ 1 to provide satisfactory phase disengagement (which means high solvent 

volumes and limited concentration enrichment), loss of reagents (also a potential 

environment concem) and the capital outlay (Kentish and Stevens, 2001; Ritcey and 

Ashbrook, 1978). 

Air-Assisted Solvent Extraction (AASX) differs from conventional solvent 

extraction (SX) by introducing the solvent as a thin layer (a few /lm) on a bubble. The 

concept was demonstrated in the case of kerosene-based solvent (Tarkan and Finch, 

2005a; Chen et al., 2003). It offers the potential of high A/O ratio - up to 75: 1 (Tarkan 

and Finch, 2005a) - while maintaining excellent phase separation. AASX becomes a 

concentration process introducing the possibility oftreating di lute solutions «1 g/L). 

Tarkan and Finch (2005a and b) found a convenient way to coat bubbles was from 

a solvent foam. Once formed the foam is injected through a capillary to produce a stream 

of coated bubbles. To control the foaming properties a range of additives was tried 

(Tarkan and Finch, 2005b). Polymethylsiloxanes (e.g., silicone oil, polydimethylsiloxane) 

are strong surface active agents in organic media. They are used, for example, in 

controlling polyurethane foams (Hill, 1999; Snow and Stevens, 1999; Kanner and Prokai, 

1971). Silicone oil was identified as being suitable in the case ofkerosene-based solvent. 

The foaming action increases with silicone oil to a certain concentration (associated with 

the solubility limit) above which it behaves as a foam breaker (Kulkarni et al., 1996; 

Schwarz, 1970). In the present case, optimum concentration was ca. 1.5 ppm. 

In this paper, the AASX concept is described and sorne operational parameters are 

investigated in the case of extraction of Cu with LIX 973N and Zn with D2EHP A. 
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A.3. Experimental Part 

A.3.1. Materials 
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The solvents were prepared from a chelating type extractant, LIX 973N, (received 

from Cognis) and an acidic extractant, Di (2-Ethylexhyl) phosphate, (D2EHPA, received 

from SIGMA) diluted in kerosene. Reagent grade CuS04.5H20 and ZnS04.7H20 

(Fischer) were used to prepare aqueous solutions for extraction experiments. The foaming 

agent was silicone oil (SIGMA). An reagents were used as received. 

A.3.2. Foaming Properties 

Dynamic foam stability was measured using the Ross and Suzin (1985) "foam 

meter" method (Figure A.l) with dimensions: r = 1 cm; rf= 5 cm; h = 1.7 cm; hf= 7 cm. 

In an experiments the same amount of liquid (17 .5 mL) at three air flow rates (4, 10, 15 

cm3/min) was used. The height of the foam for each experiment was measured after 

steady state was reached (~ 5 min), and the foam area, Afwas calculated (Equation A.l). 

(A.l) 

A.3.3. Extraction (AAS X) 

The set-up is shown in Figure A.2. The aqueous solution (150 mL) was held in 

the 5 cm diameter by 30 cm high column "A" (unless otherwise stated). Solvent foam 

was produced in column "B" (1.5 by 7.5 cm) situated below and connected to "A" by 

capillary "C", internaI (orifice) diameter 2.5 mm and external diameter 7.5 mm. Air (4 

cm3/min) was introduced via "D" to form the foam which passed through the capillary. 
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The bubbles produced, roughly 124/min, were ca. 4.4 mm. The solvent were replenished 

via "E" regulated by an autoburette (radiometer, Copenhagen ABU 91). Analysis for 

copper and zinc was by atomic absorption spectroscopy (Perkin Elmer 3110). 

A.4. ResuUs and Discussion 

A.4.1. Foaming Properties 

The foam area produced by LIX 973N/kerosene (1: 1) and D2EHP A/kerosene 

(l :9) alone and with silicone oil (1.5 ppm) is given Figure A.3. The results show the foam 

area increases significantly when using silicone oil. 

A.4.2. Extraction 

A.4.2.1. Effect of Silicone Oil 

Extraction experiments were performed on solutions of 500 mg/L copper using 

LIX 973N and of500 mglL zinc using D2EHPA. 

In the case of copper, the experiments were performed with 1: 1 LIX 

973N/kerosene ratio at pH = 2.10. Figure A.4 shows that silicone oil did not affect the 

extraction properties. 

At the end of the experiment ca. 1.6 mL had been used, i.e., the A/O ratio is 

~90:1. This would not be achievable in a conventional mixer settler due to poor phase 

separation. Knowing the consumption and counting the number of 4.4 mm bubbles 

involved an average coating thickness of ~ 3 !lm was estimated. The corresponding 

specifie surface area of solvent is ca. 3000 cm- l
. The size of solvent drop let required to 
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equal this specifie surface area is ca. 20 /lm, a size difficult to generate and one with poor 

disengagement properties. 
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Figure A.1. The foam meter (based on Ross 
and Suzin (1985)) 
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Figure A.2. AASX experimental column (Tarkan 
and Finch, 2005). Bubble diameter is 4.4 mm . 
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Figure A.3. Effect of silicone oil (1.5 ppm) on foam area for the two solvents 
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For the experiments on zinc, the D2EHPA/kerosene ratio was 1 :9, and the 

extraction pH was 2.3. It is evident (Figure A.5) that without silicone oil, there was no 

extraction beeause foaming was insufficient to generate a coated bubble. The silicone oil 

addition to D2EHP Alkerosene makes this extractant applicable to the AASX process. 

In general, silicone oil extends the range in extractantlkerosene ratio and type of 

extractant amenable to AASX. 

40 
o Without Silicone Oil 

'$- 30 
:::f 

• With Silicone Oil i 
U • "0 20 
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Solvent consumption, mL 

Figure A.4. Effect of silicone oil (1.5 ppm) on AASX with LIX973N 

A.4.2.2. Effeet of Solution Height and Initial Metal Concentration 

To study the effect of solution height (or retention time of coated bubble), 

experiments using the same volume of aqueous solution (150 mL) were carried out in 

three different columns with diameters of 5, 3.1 and 2.2 cm, giving heights of 7.5, 19.8 

and 39.5 cm, respectively. The coated bubble mean rise velocity was measured at 22.5 

cm/s (Tarkan and Finch, 2005a) and, accordingly, the bubble retention times were 
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calculated. The organic was 1: 1 LIX973N/kerosene with 1.5 ppm silicone oil. The initial 

concentrations of aqueous solution were 500, 100, 50 and 25 mg/L Cu. 
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Figure A.5. Effect of silicone oil (1.5 ppm) on AASX with D2EHPA (Time, rather than 

consumption is used as there was no solvent consumption, i.e., process was inoperable, 

without silicone oil) 

As seen in Figure A.6 the height of solution is important for the lower 

concentrations. At the highest initial copper concentration (500 mg/L), the solvent layer 

appears to load quickly « 0.5 s); for the other cases the layer needs more time to load. 

The extraction remains limited (max. ca 30%) not so much by solution height as 

number of bubbles (this is a single stream) and leve1 of agitation. A design for multiple 

bubble injection is being developed which addresses both limitations. 
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Approximate bubble retention time, s 
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Figure A.6. Effect of solution height (bubble retenti on time) on AASX 

A.5. Conclusions 

1. Air-Assisted Solvent Extraction (AASX) is introduced as a possible process to 

recover metal from dilute streams by providing for high aqueous/organic ratio 

(AIO up to 75:1) while maintaining ease of phase separation. 

2. Silicone oil promotes foaming and has expanded the range of extractants that can 

be used in AASX. 

3. The solvent-coating thickness was estimated as 3 /-lm. 

4. The bubble retention time and the initial metal ion concentration are important 

design parameters for AASX. 
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APPENDIXB 

Structure of Sorne Reagents 

NOR OH 

Figure B.l. Structure ofLIX 65N 

Figure B.2. Structure of D2EHP A 
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Figure B.S. Structure oftri-n-butyl phosphate (TBP) 
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Figure B.6. Structure of tri-oct yI phosphine sulphide (TOPO) 

Figure B.7. Structure ofCyanex 471 

Figure B.8. Structure of silicone polyrner 
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Figure B.9. Polysiloxane surfactant rnolecule in water 
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