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ABSTRACT

This project is about structural data analysis on musical scores. From a struc-

tural point of view, a score is a data object in which multi-dimensional internal

relations participate in abstract musical design. The purpose of a structural anal-

ysis is to describe aspects of the shape of a score. Treating the score initially as a

low-dimensional, discrete Cartesian system, we build higher-dimensional structure,

increasing the quantity and dimensionality of available information about the in-

ternal relations within the score. Since there are many ways of finding structure,

structural score analysis is framed as an open, descriptive exploration. Three par-

ticular constructions are described, illustrating the main idea (– polyphones, N-sets,

and Z-chains). Since the premise is to explore geometric aspects of a musical score,

these methods are mathematically general, and not particular to music.

Polyphones show how sets of temporal intervals form networks of containment and

overlap relations; an application is shown describing the “texture” of notes on a

score. N-sets involve the formation of maximal temporal intervals to describe re-

gions of content on a score. In an application to pitch-class, all temporally maximal

pitch-class sets (“PcNs”) are found. The set of PcNs form a polyphone (since they

have temporal relations of containment and overlap). Z-chains structure a sequence

of orderable terms into a set of recursively-oriented shapes. Applied to melody,

Z-chains show ways in which a low-dimensional musical representation generates

structure beyond the concatenation of its elements, sketching a complex architecture

of parallels, developments, crossings, and reversals.
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ABRÉGÉ

Ce projet concerne l’analyse structurelle de partitions de musique. Du point

de vue structurel, une partition est un ensemble de données gouvernées par des re-

lations internes multi-dimensionnelles qui forment ensemble une abstraction de la

musicalité. Le but d’une analyse structurelle est de décrire certains aspects de la

forme géométrique d’une partition. Considérant initialement la partition de musique

comme un système carésien de basse dimension, nous érigeons des structures de di-

mension supérieure, obtenant ainsi une connaissance plus riche des relations internes

de la partition. Puisqu’il y a un grand nombre d’approches possibles à la recherche

de structure, l’analyse structurelle de partitions est envisagée comme un processus

d’exploration libre et descriptif. Nous présentons ici trois concepts illustrant l’idée

d’analyse structurelle - les polyphones, N-ensembles, et Z-châınes. Comme notre

but est d’explorer la structure géométrique de la partition de musique, ces méthodes

sont mathématiques et générales; leurs applications possibles ne sont pas restreintes

au seul domaine de la musique. Les polyphones décrivent comment les ensembles

d’intervalles temporels forment des réseaux de relations d’inclusion et de chevauche-

ment; nous démontrons leur application en décrivant la “texture” formée par les

notes d’une partition. Les N-ensembles consistent en la formation d’intervalles tem-

porels maximaux cernant les différentes régions de contenu d’une partition. En une

application aux catégories de hauteur, les ensembles temporels maximaux correspon-

dant chacun à une ensemble harmonique sont trouvés (appelés “PcNs”). L’ensemble

des PcNs forme un polyphone, puisqu’il contient des relations temporelles d’inclusion
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et de chevauchement. Les Z-châınes représentent une structure qu’on peut appli-

quer à une séquence de termes ordonnables pour obtenir un ensemble de formes

orientées récursivement. Dans une application à la mélodie, les Z-châınes nous per-

mettent d’entrevoir de quelles façon une représentation musicale à faible dimension

peut générer une structure plus riche que la simple concaténation de ses éléments,

créant une architecture complexe de parallèles, développements, croisements, et ren-

versements.
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CHAPTER 1
Introduction

1.1 Inter-Disciplinary Context, Goals, and Commitments

This thesis presents research in computer science, with application to music

analysis: we have a commitment to study music – that is to attempt to observe it,

and describe it. The study of music is framed as an open, descriptive exploration.

We require no further motivation than a basic interest in observing music (–

as any scientist might be interested in making observations). It is often the case

that observations can be used in various ways, but we don’t require the motivation

of particular problems to be solved, and description as a main aim takes the place

of prediction, categorization, quantification, or generalization (though these scientific

and engineering modes are facilitated by having a description). We wish to develop

ways of thinking about musical scores that are general enough to apply to an en-

counter with any score, but that do not necessarily generalize from one score to the

next.

In particular, we develop (and implement) computational ways of thinking about

scores – we have a commitment to develop a way of thinking about music that is
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deeply and natively computational, which is to say formal and mathematical.1 Mu-

sical thought has developed a number of categories and methodologies for music

analysis, most of which are not computational (since they were developed in an en-

vironment without computers). By “not computational,” we mean that they cannot

be calculated without shorthand, numerical stand-ins for what are really semantic

and contextual phenomena.2

This study prioritizes the formation of a computational foundation for musical

study, rather than the importation of prior concepts into a medium where they can’t

be properly expressed. We contextualize with literature about prior music-analytic

concepts – not showing how we might replicate them or improve upon them, but

to illuminate the formal differences between the practices as they address the same

kinds of musical concerns.

Semantic and contextual phenomena belong in any musical study, but we adopt

a computational strategy of putting off using them, because the computational ex-

pression of semantic and contextual phenomena is a hard unsolved AI problem. In

1 This thesis is about non-statistical computing – and therefore about non-
statistical theories of music. We share an interest in “letting the data speak for
itself” with various nonparametric statistical models – but as statistical models,
these use computational methods, mathematical concepts, and music-theoretic as-
sumptions that are unrelated to ours, as well as different having goals (i.e. with
respect to prediction, generalization, summarization, quantification), and producing
kinds of results that are ontologically distinct.

2 I.e. “heuristic” parameters – whether “theorized” or induced from data
(“learned”). Even simple, intuitive musical-technical categories such as the phrase
are of this nature.
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the meantime, we can use some of the well-understood primary affordances of com-

putation (e.g. organizing data and performing arithmetic) to learn more about the

structure of musical scores. The hope is that since scores can be seen as being pri-

marily made of structure, approximate semantics will be more precise and more

flexible when more structural information is available.

The primary contribution of this thesis is a computer-scientific “structural” ap-

proach to data analysis invented for music, but mathematically general and probably

widely applicable. It is about the development of a computational theory and prac-

tice based on the need to look at a score as a complex shape (which is the underlying

hypothesis about how computation might be able to model some perceptually rele-

vant aspects of music). This project is about building, from simple computational

elements, ways of thinking about the structure of a score. It is a deeply computer-

scientific project, because it is not only about using computation to do things, but

about considering the kinds of knowledge that are implicated in the inputs and results

of computations, and developing particular ways in which we can use computation to

increase the quantity and dimensionality of information available in a data object (

– instead of learning from a set of data, we want to learn about a single data object).

3



1.2 Organization and Content of This Thesis

Chapters:

1. Introduction

2. Structural Analysis

3. Polyphones

4. N-sets and PcNs

5. Z-chains

6. Music and McLuhan’s Evolution of Media

Following this brief introduction, this thesis contains a conceptual, theoretical chap-

ter introducing the main idea of structural analysis, three technical middle chapters

(Chapters 3, 4, and 5), and a concluding chapter that positions the project of musical

AI with respect to a historical, cultural, ethical context.

Chapters 2 and 6 are written in a non-technical style, while the central chapters

contain formal mathematical definitions, enumerations and proofs of mathematical

and logical properties, pseudocode, and illustrations mostly consisting of annotated

scores on piano rolls and staff-notation.

All five of the main chapters contain contextualization with respect to prior

literature, with reviews of music-computational sub-areas appearing in Chapters 4

and 5, and a review of a computer-science sub-area in Chapter 3. In general a

“depth” approach to prior literature is preferred, consisting of a detailed, informative

comparison to a few related ideas – rather than trying to mention large numbers

of tangentially related publications, contrastive rather than contributive. We have

not been able to find any closely related literature. Mathematical and computer-

scientific concepts used are so fundamental as to be “common-property” and not tied
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to any particular publications (e.g. sets, sequences, graphs). Nonetheless, attention

is brought again and again, in different ways, to context.

Chapter 2 provides a conceptual foundation, motivation, and context for the

structural methods given in Chapters 3, 4, and 5. These structural methods (which

are examples or illustrations of the main idea) are offered as specific technical con-

tributions to computer science as well as to music analysis.

1.2.1 Illustrations

The structural methods offered in the central chapters are illustrated, mostly by

annotated scores. The purpose of these pictures is to give a visual intuition for the

shape of the mathematical structures, helping to clarify their meaning as structure.

The annotated scores are not semantic interpretations of a score, they are visual-

izations of structural properties – the images are the results of simple, deterministic,

and formally defined computations. Like all pictures, and like music, the illustra-

tions invite subjective additions: in the form of discursive interpretation as well as

in superstructural organization.

They also suggest analytic variations : while these are illustrations of mathe-

matically general concepts, aspects of the application of these general concepts are

necessarily specific and therefore defined through choices that could be made in many

different ways. The space of these kinds of analyses (on a single score) is indefinitely

big. It is usually not hard to invent an alternate view capturing a new detail.

The invitation to interpretation, superstructuring, and variation are part of the

openness of the structural sketches shown – they invite engagement and develop-

ment, rather than delivering a finished analytic picture. This is one primary purpose
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of these kinds of analyses and illustrations – to make structural information more

available to human intuition, in order to help us study music.

The illustrations are screenshots from a computer system implementing the

structure-finding algorithms in the thesis. The computer system has a domain-

specific language for interacting with scores, writing programs to (flexibly and re-

cursively) find structure in different ways, and visualizing the results as annotated

scores (and in other ways). The implementation and operation details of the system

are outside the scope of this thesis, but the illustrations provide secondary evidence

of the feasibility and existence of a usable application of the ideas described.

1.3 Statement of Contributions

A statement about the contributions of the author to the content of this thesis:

This work is based on 10 years of collaboration with Eliot Handelman. Dr.

Handelman is a source of initial ideas which (in this thesis) I elaborate, formalize,

analyze, apply, contextualize, express in writing. We collaborate on the computer

system which implements these ideas, and which generates the illustrations in this

thesis.

The practice of structural computing (as described in Chapter 2) originates with

Dr. Handelman, but the expression, elaboration, partial formalization, and contex-

tualization of the idea in Chapter 2 is mine.

Polyphones (discussed in Chapter 3 and applied again in chapters 4 and 5) are

my work – Dr. Handelman proposed only that polyphony might be addressed by the

relations of “hold” and “fold” – and the rest of the formalization, implementation,

application, analysis, and illustration of polyphones is mine.
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Dr. Handelman invented and implemented PcNs, as well as key-assertions

(Chapter 4). The generalization to N-sets, and all of the mathematical and musical

formalization and analysis is mine, as is the comparative discussion with respect to

existing music-computational literature.3

Likewise, Dr. Handelman invented and implemented Z-chains and Z-shapes

(Chapter 5) – I formalized, analyzed, applied, and contextualized them.4

The concluding chapter, discussing a broader cultural context for this project,

is my work (Chapter 6).

3 [HandelmanSigler2013] describes PcNs and key-assertions.

4 [HandelmanSigler+2012] describes the Z-chain algorithm and an application to
automatic orchestration.
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CHAPTER 2
Structural Analysis

2.1 The Score

This project is about data analysis on a particular kind of data object called a

score. A score is a symbolically notated representation of a musical work. We coin a

more general, data-analytic sense for the word score, divorcing the score data-object

from any commitments to be music-related.

A score is a data object in which the multi-dimensional relations between its

parts is of interest: its parts are internally structured, and cannot meaningfully be

decontextualized as a statistical population. Further, it is a data object that bears

analysis on its own, as a self-contained system, without reference to an external

population of related objects.

This attitude toward score analysis comes from an attitude toward music anal-

ysis: that it is insufficient (for musical understanding) to analyze a musical score

as a population – or even a sequence – of events; and that an analysis of a musical

score that measures or categorizes it in relation to a set of other scores is likewise

insufficient. Although aspects of the human musical experience are learned and con-

textually coded within the world of music and the world at large, we take the attitude

that there is a core of abstract musical design that is available in a single score.

Design, or appreciable internal structure, is not limited to music – it is featured in

all of the arts, including poetry, literature, theatre, film, the visual arts, architecture,
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and the design of clothing, shoes, cars, furniture, and everything else. Although

these works of art may have semantic, referential, or pragmatic aspects, they also

necessarily have an aspect of design, of abstract patterns and shapes of their internal

relations in whatever featural dimensions are available. Music is a good starting

point for the analysis of design, since the abstract core of design in music is readily

accessible without understanding linguistic semantics or how parts of the design

correspond to objects in the physical world.

Data objects that are not “designed” may also bear analysis as a score. Natural

images, sounds, and other phenomena seem (to our senses or to our thinking) to have

design, or appreciable internal structure. We seem to have a sense of “design,” and

observing the patterns, shapes, and contrasts of the internal structuration of things

seems to be a fundamental part of perception and cognition. These observations

occur for different sub-dimensions of visual, auditory, tactile (etc.) perceptions;

they occur spatially, temporally, and on abstract axes; and dimensions can be fused

at both low perceptual levels, and mid- and high cognitive levels to form multi-

dimensional or multi-modal experiences or concepts.1

This project is about looking at data from a structural point of view. It is

motivated by music, and illustrated with musical scores, but the mathematical and

data-analytic discussions are not domain specific.

1 Section 4 of this chapter is about this sense of design.
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2.1.1 The musical score

A musical score is a notated or encoded set of instructions for, or description of,

a piece of music.2 In many cases it is the direct output of music creation. In other

cases it is a (lossy) transcription from another medium. Many different notation

languages exist, including staff notation and various symbolic computer encodings.

The primary content of a musical score is a set of points (i.e. notes) each con-

sisting of a temporal interval and a set of features (e.g. pitch, loudness, instrumental

timbre). Some features of these notes might encode their relation to a mutual ab-

stract context (e.g. their places on a virtual temporal grid, or an index grouping

them into different “voices”). There could be any number of features available, but

typically there are few, sometimes limited to just pitch, or pitch and voice index.

The content of a score feature is typically simple: a quantity, a code, an abstract

pattern term, or a relative position, though more complex representations are not

ruled out.

A musical score is temporally oriented, in the sense that its Cartesian axes are

normally positioned with time running from left to right, because all of its data

points have well-defined and meaningful temporal position and extension.

2 Piano-roll visualizations of musical scores are shown in Figures 2–1–2–7.
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Most scores don’t include much detail about sound. While music is based on

affordances of the auditory system, a score represents music as design that is ab-

stractable from sound. What may be surprising is how low-dimensional and low-

resolution this abstraction is when compared with auditory perception, while still

being effective as music.3

A musical score is typically discretely valued, with low resolution. There are

usually 12 pitches available per octave, and only about 8 audible octaves. Likewise,

the rhythmic dimension usually contains only a small number of different values, with

a basis in multiplicative relationships, so that they tend to be highly distinguishable.

In contrast to the continuum of acoustic affordance, a musical score is written in

broad, bold strokes, well above perceptual thresholds for differentiation.

A musical score is noiseless because it is not a model or representation of some-

thing else.4 Every feature is deliberately placed in order to participate in the music.

While some notes may contribute more than others to the structure of a given inter-

pretation – while any one projection through the score might only contain a subset

of notes – for any note, there is some point of view from which it contributes to

musical structure.

3 This is not meant to be a controversial ontological statement. A score is effective
as music in whatever sense music can be encoded in a score, and evidently this
capacity is nontrivial.

4 A score might have mistakes in it, but this is not the same thing as noise, as
in data based on approximations or containing statistical effects. We work from
the premise that the data at hand is what is to be analyzed, and that it is not an
approximation.
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In data terms, a musical score is very small. The first movement of Beethoven’s

fifth symphony has about 10500 notes in it; Happy Birthday has significant structural

complexity over 21 notes. The complexity of music is not in the size of the data, but

in the intricacy of the interactions within it.

If we took a large number of scores at once, the size of the data would be much

bigger. But, for now, this is not the kind of analysis we’re considering. Each score is

a unique object, and is assumed to have a meaningful status as a single data object.

We ask: within the world of one piece of music, what are its parts and patterns, and

how do they interact? Questions about the comparison of different scores, or about

the interaction of people with scores, can only be addressed after we have come to

grips with the kind of analysis demanded by the individual score.

2.2 Structural Analysis

This project is about the structural analysis of a score. The structure of some-

thing is characterized by the relations between its parts. What the parts of something

are, and how they relate to one another – not as a population, but as a system – is

the topic of a structural analysis. There are many ways of dividing a score into parts,

but not all ways of dividing up a score are “structural.” For instance, if we take every

5th note of a score and call that one “part,” it’s unlikely that this is a coherent slice

of the score. The reason for this is that we have taken a knife arbitrarily to the score

without observing anything at all about it beforehand, rather than allowing the data

to split at its natural joints.
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2.2.1 Carving Data at Its Joints: Structure, Heuristics, and Structural
Relativity

The concept of “carving nature at its joints,” as a criterion for a successful

theory, is given by Socrates in Plato’s Phaedrus, and has more lately been taken

up as a slogan by the structuralist metaphysician Theodore Sider in his Writing

the Book of the World [Sider2011]. Sider argues that although different conceptual

systems may be able to form equally true theories, some concepts are objectively

better than others because they reflect the natural structure of reality. For instance,

while one conceptual frame has a concept called a car which can be driven in and

out of a garage, another way of framing the world is that there are two different

kinds of things called an in-car (a car in a garage) and an out-car (a car not in a

garage). When an in-car touches the threshold of the garage, it disappears and a

corresponding out-car appears outside of the garage, and vice versa.5 Although this

way of looking at things is logically workable, it doesn’t seem “natural,” because it

doesn’t carve reality at its joints. This is a toy example, and Sider’s real discussion

is about the ontology and logic of everything.

The metaphysical problem of discerning the natural structure of reality is a

tough call. It’s considerably easier to talk about natural structure in a data-analytic

context. Besides this significant restriction in scope, our view of natural structure

differs from Sider’s in that Sider thinks there is one most natural way in which

5 The in-car / out-car example was given in a lecture by Sider (“Is Metaphysics
about the Real World” https://www.youtube.com/watch?v=RKYZ8U-P5jA), and
is attributed to Eli Hirsch.
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reality is structured, while our thesis is that there are many different ways of carving

a data object at its joints (we call this a structural analysis). Furthermore, there

are ways of carving a data object that are purely structural, and other ways that

are heuristically assisted with a light touch, such that they are relatively natural

in comparison to more brutal, nonstructural methods. Heuristic analysis, broadly

defined as the injection of external data into the analysis of a data object, is strictly

necessary.6 Heuristics, the semantic level of data interpretation, are what allows

data to represent things. The scientific study of data, however, demands that we

take precautions against the fallacy of misplaced concreteness, in which theoretical

constructs or abstractions are taken to be completely descriptive, taking precedence

over actuality and open observation.7 A musical example would be to look at

scores from the point of view of seeking theoretical entities like keys, chords, etc.

While these concepts are themselves worthy of empirical investigation with respect

to scores, a data science that can only take this kind of a priori point of view on a

score is ungeneral and underpowerful.

6 A common understanding of the term “heuristic” is any intentionally non-
rigorous computational shortcut. The definition we offer is related, but with a
refinement designed to bring attention to the information content of the heuristic
method.

7 Whitehead’s “fallacy of misplaced concreteness” means “mistaking the abstract
for the concrete” [Whitehead1925, p.52], or “... neglecting the degree of abstraction
involved when an actual entity is considered merely so far as it exemplifies certain
categories of thought. There are aspects of actualities which are simply ignored so
long as we restrict thought to these categories.”[Whitehead1929, p.8].
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It may seem that any data process is a heuristic about how a data object might

be treated, in the sense that it is an external information-context applied to the

data object. We wish to make a more subtle distinction. Consider an analysis that

only uses relations such as <, >, and = ; these are ones that we take for granted

as mathematical primitives, and that work by comparing internal parts of the score.

We would propose that such a function is structural. In contrast, a heuristic involves

the injection of a semantic context against which the data is interpreted. As a simple

example, consider a function that includes a filter somewhere for values < 5. This

filter is a cue that in a context that is not inherent in the data object itself, 5 is a

cutoff for “big” versus “small” numbers.

Discernment about how heuristics are applied poses both methodological and

ontological distinctions. While a structural analysis can avoid becoming statistical

until a statistical analysis is explicitly desired, all but the most austerely mathemat-

ical of structural analyses use heuristics. For this reason, a mathematical interest in

structural data analysis leads to thinking about the degrees and kinds of heuristic

interference that inhere in a given structural analysis.

One way to manage the application of heuristics in a structural analysis is to

apply them as late as possible. If a structural analysis is applied first, then the

semantic power of a heuristic increases, while its ability to cut the data against the

grain decreases. Once a structural analysis has made an initial “natural” structura-

tion, then making a heuristic cut with respect to these structures means that the

heuristic is operating on higher-informational, more internally contextualized data,

and that any cuts are at a more structural (less atomistic) level.
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Another way to integrate heuristics into a structural methodology is to alternate

between structural analyses and heuristic reductions of the resulting structure-space.

This forms a cycle in which information is grown structurally, cut heuristically, and

then the remaining structural subspace is grown again in another structural pass.

This allows us to form higher-informational inner-contextual objects, and focus on

those that are of particular semantic (external-contextual) interest.

The idea that a structural analysis defines a natural, internally motivated cut

through a data object does not imply that such an analysis is objectively constructed,

such that it is not somebody’s idea about how to structure a score. In fact, there are

any number of ways to structure a score, and the structure that is found in a score

depends on the structural point of view taken.8 This is the principle of structural

relativity. Structural relativity implies that a structural analysis is never complete.

The meaning of an individual point in the data is also relative, since it can instantiate

different places in different structures at the same time.

“Structural relativity” is a phrase coined by the mathematical structuralist

Michael Resnik [Resnik1997]. Mathematical structuralism is a philosophy of math-

ematics in which mathematical objects are structures (systems of relations) rather

than real or ideal objects. From this point of view, e.g. integers are not things

8 “Any number of ways” means a massively combinatorial number of ways with
respect to a finite score size and resolution. Not only is it not feasible to enumerate
these because there are a lot of them, but we don’t even have a method for enu-
merating them, nor for evaluating them relative to their informativeness on a score
or semantic value relative to music – so the set of functions is currently an open
possibility space exemplified by a small number of invented methods.
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(or concepts) that happen to stand in certain relations to one another by virtue of

their relative magnitudes or their ordering; they are only the positions of these re-

lationships. The implications that Resnik gets from structural relativity are slightly

different than the ones we get, because he is working in a different conceptual domain

(and one less “concrete” than data analysis).

One difference is that for Resnik, there is no “fact of the matter” as to whether

the real-number two is equivalent to the natural-number two, because they are places

in different structures. Since, for Resnik, the number two doesn’t exist apart from

these structures, there is no coherent way of comparing places in different structures

(unless one structure is a part of the other).9 On the other hand, a score-analysis

begins with points that exist apart from structures, so we can assert that the same

point is a part of different structures – but notice that (as for Resnik) the structural

meaning of the point with relation to different structures is different ; it is only that

the places in the different structures happen to have the same reference.

Resnik argues for an ontology of mathematics in which “mathematical objects

are featureless, abstract positions in structures.” [Resnik1997, p.4]. This project

suggests an inverse, grounded version of structuralism, where musical objects have

features (i.e. pitch, duration, timbral variation, physical location, etc.), and it is pre-

cisely these features that allow them to be structured by structure-finding operations.

As Resnik says, a number is nothing but a position in a structure. A note by itself

9 Mathematical structuralism embraces a multiplicity of structures without talking
about which is best, or most natural (– differently from Sider).
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is something – it has features, and can be heard and have sensory qualities – but it

doesn’t have meaning from the point of view of musical structure.

Apart from this contextual difference, however, Resnik could be addressing the

structural relativity of score analysis: “In thinking about formulating a theory of

structures we must take into account a phenomenon I will call structural relativ-

ity: the structures we can discern and describe are a function of the background

devices we have available for depicting structures. This relativity arises whether we

think of patterns and structures as a kind of mould, format, or stencil for producing

instances, or as whatever remains invariant when we apply a certain kind of transfor-

mation, or as an equivalence class or type associated with some equivalence relation.

The structures we recognize will be relative to our devices for specifying forms, or

transformations or equivalence relations. Furthermore, by enriching or curtailing

these devices we will obtain different notions of structure, count different things as

having the same structure, and recognize different relationships between structures.”

[Resnik1997, p.250].

2.2.2 Characteristics of Structural Processing

We have characterized a structural analysis as one that carves the data at its

joints, and contrasted this with the tendency of heuristics to inject semantic “joints”

into the data, by relating objects to external standards.10 We’ve also contrasted

structural analysis with statistical analysis, because statistics treats populations of

10 The difference between “internal” and “external” to the data is not really a
binary distinction, since there are intermediates like cross-dimensional cuts (when
one dimension is used to cut another), and questions about whether something like
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objects, whereas structure treats relations between individual objects. Structure

is about relating datapoints, and ways of doing this non-heuristically include the

kinds of relations that we are willing to take as fundamental, including <, =, and

set-operations such as membership, union, intersection, set-difference, etc.

In this section we give more details about what kinds of techniques are typical

of structural analysis.

Typically, a structural analysis works bottom-up, linking simpler structures to-

gether into larger structures. While the resulting structures are hierarchical (a super-

structure made of substructures), a substructure may contribute to several different

superstructures, so that the set of superstructures is not constrained to partition the

score, or to interrelate hierarchically.

The structural analysis that links substructures into superstructures typically

admits a combinatorial set of relations, such that any data is describable in terms of

these relations (this is in contrast to a search or a parse, which seek a subset of the

total possibility space). This kind of structural analysis therefore covers the entire

score with (super)structures, and a score cannot fail to be structured by a structural

analysis (though it may be trivially structured).

A structural analysis is different from a search: a search locates a specified

schema, whereas a structural analysis locates all structures of a given class on a

“every fifth event” after all does have internal context, which may depend on the
nature of the data.
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score.11 A structural analysis is also not a powercut (a term coined by analogy to

powerset – n-grams are an example): a powercut locates all cuts of a given class,

whereas a subset of these may be the (unanalyzed) set of structures of a given class.

A structural analysis is different from a parse: it is not constrained to give a

single, hierarchically decomposable description of the entire score. Unlike a parse,

a structural analysis cannot fail, because it does not describe a language or have a

grammar.

Since a structural analysis can work on any data, this kind of analysis does not

distinguish between “good” and “bad” data (e.g. good-music vs. bad-music/fake-

music/non-music; or type-1-music vs. not-type-1-music), though its results may be

instrumental in heuristically making qualitative distinctions.

A structural analysis does not measure, classify or summarize the score, al-

though the structures it produces will afford measurements or summarizations. A

structural analysis does not simplify the score, it increases the amount of available

information by pointing out relations.

A structural analysis does not optimize any quantity. A structural analysis

does not make decisions. A structural analysis does not target a ground-truth. A

structural analysis cannot be wrong, or have an accuracy rating, because it is not

trying to guess anything. A structural analysis is typically deterministic.

11 A “schema” (which means “shape”) is one of a combinatorial set (or class) of
structure-descriptions.
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A structural analysis generates information – that can be used to heuristically

optimize, decide, or target, to quantify or classify, to search – or to generate still

more information.

2.3 Comparison with Non-Structural Processing

This section offers two case studies contrasting structural analysis with other,

related methodologies: music information dynamics, and structural information the-

ory. The purpose of these case studies is to aid intuition on what does and doesn’t

count as structural, in the sense that we’re trying to define it. No particular crit-

icism is made here about the merits of music information dynamics or structural

information theory, regardless of how we find them “non-structural” – we take them

as worthy foils.

2.3.1 Music Information Dynamics

Information theory is basically statistical and quantitative (e.g. the measures

of entropy and of mutual information), and not structural.12 It deals with topics

such as signal and noise, whereas a score has no noise, and a piece of music doesn’t

seem to have a particular “message” to be communicated. An information channel

is basically two-dimensional, offering a sequence of symbols, whereas a structural

12 Entropy is a measure of unpredictability, or a measure of the average (or “ex-
pected”) amount of “information” or surprisingness per data-unit; mutual informa-
tion is a measurement of the interdependence of two variables.
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analysis makes projections such that a sequence of events is represented in a higher

dimensionality.13

Since the beginning of information theory in the mid-twentieth-century, there

have been proposed applications for music. It has been noticed, for instance, that

music tends to be highly redundant : if music were considered as information, much

of its content would be repeated or inefficiently transmitted – music is highly com-

pressable. It’s clear, however, that without this redundancy, music isn’t effective.

Therefore it follows that some level of redundancy is necessary for music. Quanti-

fying this redundancy has sometimes been suggested as a music analytic measure

[Hiller+1966, Youngblood1958].

Another information theoretic concept, surprisal, has been proposed as a mea-

sure for surprisingness of musical events. The surprisal of an event is its negative

log probability (with respect to some probability distribution). This corresponds to

how “unlikely” something is, and therefore how “surprising.”

An interest in “surprise” in music theory can be traced to L.B. Meyer’s Emotion

and Meaning in Music [Meyer1956]. Meyer’s thesis is that emotion and meaning are

caused by setting up and fulfilling or violating expectations. These can occur as

pattern processes that are eventually discontinued, or as reference and deviation

with respect to cultural tropes.

13 I.e. each projection is lower-dimensional, but brings into existence new informa-
tional dimensions, increasing the total dimensionality of available information.
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Figure 2–8: (From David Huron, Sweet Anticipation: Music and the Psychology of
Expectation, published by The MIT Press. [Huron2006, p.115]). Plot of “informa-
tion” from various viewpoints in “Pop Goes the Weasel.” Information is measured
by the “probability” (i.e. corpus frequency) of each scale degree, scale degree pair,
interval, interval pair, and metric position, such that less frequent events convey
more information.
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Theorists after Meyer have attempted to systematize the concept of expectation,

but until recently these have been low-dimensional and local in scope – for exam-

ple, Narmour’s account of “implication” in three-note figures, applicable to longer

melodies through concatenation and super-structuring [Narmour1990], as well as

studies counting frequencies of notes, intervals, metric positions, etc., in a corpus

and attributing something like “unexpectedness” to less frequent items without con-

text, as in Figure 2–8, from [Huron2006].

Marcus Pearce’s IDyOM (“information dynamics of music”) system offers a

“predictive” model of melody [Pearce2005]. It calculates uncertainty and surprisal

for each event in a melody using a Markov model. The Markov model is built by

taking frequencies of occurrences in a corpus as a stand-in for probabilities, and

inducing a distribution over possible next terms for any melody prefix.

IDyOM uses multiple “viewpoints,” so that subdimensional projections through

a melody can be modeled: these include basic note features (e.g. pitch, duration,

accidental, voice, etc.), features requiring some local or global context with respect

to the note in question (e.g. interval from first note; place in the measure), features

requiring pre-analysis, like position in phrase and key-tonic, and Cartesian combina-

tions of these features.

IDyOM uses a variable-order Markov model in which multiple lengths of prefix

are combined. It also uses two different Markov models at once, one with a “long

term memory” of previously analyzed melodies, and another with a “short term

memory” pertaining just to the current score. The uncertainty of each prefix can

be computed with respect to the model (i.e. measuring the unpredictability of the
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next event), as well as the surprisal of each event (i.e. its unexpectedness given its

prefix).

The Markov model built by IDyOM is induced through memoization and sum-

marization of previously encountered data (i.e. “learned”). Subsequences that have

already been encountered will be counted as familiar and therefore less surprising.

Abstraction is made by considering subdimensions, so that a sequence can be rec-

ognized when it recurs if it is not completely identical, but only identical from a

subdimensional viewpoint (e.g. two sequences of notes with identical durations but

different notes, or a sequence of the same pitch-intervals but different pitches).

The memory model of music in IDyOM contrasts with structural analysis be-

cause structural analysis is based on the assumption that there are basic structural

properties in music that are available without reference to other music. An exam-

ple of a simple structural property is that some feature (e.g. pitch, loudness) is

increasing, decreasing, or staying the same over some timespan. Another structural

property could be that for a while only three different notes are used, but at some

point a fourth note is introduced. A structural analysis approaches the design of a

score from properties like these without reference to other scores, whereas IDyOM

aims to compute how like or unlike other “remembered” situations a given musical

position is, based on multidimensional sequence-matching.

Although IDyOM is multidimensional in constructing Markov models with vari-

able prefix length and multiple viewpoints, the analysis re-linearizes all of these into

a sequence of predictive measurements for moment-by-moment uncertainty and sur-

prisal. The result looks like a jagged line, unexpectedness over time: Figure 2–9
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Figure 2–9: From [Pearce2005, p.170]. Comparison of modeled entropy over time
with humans betting on the next note, for the melody of Chorale 151 from the
Riemenschneider edition of Bach’s chorales.
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shows such a chart, compared against humans playing a betting game to guess the

next note. The re-linearization is performed in order to generate a predictive model.

A descriptive model, by contrast, would not perform a dimensional reduction, but

would maintain a map of structures on the score.

In the IDyOM analysis, the operational model of “time” is one where each event

is part of a sequence, each linear prefix can be used to predict the next event, and

each next event is more or less surprising from the point of view of its prefix. In

contrast, the kind of structural analysis proposed in this essay uses a model of the

temporal axis that allows an event to be part of a structure (an appreciable shape

or pattern) that is not yet complete, in which only some of the preceding (and

succeeding) events may participate. Local shapes furthermore can be positioned as

taking place in larger scale structures that may be distributed over the score.

2.3.2 Structural Information Theory

Structural Information Theory is a theory of (primarily visual) perceptual orga-

nization. Structural information theory develops a systematic account of perceptual

regularities (– iteration, alternation, and symmetry) that are available in an image

[Leeuwenberg+2013]. The regularities in an image can be organized so as to deter-

mine a “simplest” way of seeing the image – which turns out to be how it most often

is seen.

In order to predict the simplest view of an image, the following analysis takes

place. A human analyst interprets the image (e.g. as an object or scene consist-

ing of several parts), and encodes geometric features of the image-as-interpreted as
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an alphabetic string. The image is interpreted several times, so that the interpre-

tations can be compared. Then each encoding is parsed into a tree of regularities

(iterations, alternations, symmetries), such that a complexity metric on the result-

ing parse is minimized (– the step of finding the simplest parse of a symbol-string is

computable). The interpretation with the least complex minimal-parse is predicted

to be the preferred interpretation (a prediction borne out by experimental results).14

Figure 2–10 shows an example of what is meant by “how” an image is seen:

there are several ways of interpreting the image (i.e. segmenting it into parts), with

some of them seeming simpler or more obvious than others – structural information

theory is a formalization that seeks to measure the perceptual simplicity of possible

interpretations, predicting which will be most obvious to viewers.

Figure 2–11 shows how the regularities (iteration, symmetry, and alternation)

are used to structure symbol strings; Figure 2–12 shows one symbol string with two

different structural parses.15

14 Structural information theory bears a relation to Algorithmic Information The-
ory, in which minimum-description-length encodings are also used to quantify com-
plexity; but structural information theory is based on the perceptual relevance of
particular regularities based on their empirical predictive power with respect to per-
ceptual tests.

15 We omit explanations about how to interpret an image as a symbol string, be-
cause this is specialized and intricate and doesn’t bear on the current discussion.
Details can be found in [Leeuwenberg+2013].
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Figure 2–10: Figure 1.11 from [Leeuwenberg+2013] ( c© Cambridge University Press).
Image A is interpreted in several different ways, of which B and C are the most
plausible and are about equally plausible. This is a very simple example; 3D scenes
with occlusions can also be represented.
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strings codes

iteration AAAAAA ← 6*(A)
ABABAB 3*(AB)

symmetry ABCCBA ← S[(A)(B)(C)]
ABCBA ← S[(A)(B),(C)]

ABCAB ← S[(AB),(C)]
ABCDAB ← S[(AB),(CD)]

alternation ABACAD ← <(A)>/<(B)(C)(D)>
ADBDCD ← <(A)(B)(C)>/<(D)>

ABCABD ← <(AB)>/<(C)(D)>
ACDBCD ← <(A)(B)>/<(CD)>

Figure 2–11: Figure copied from [Leeuwenberg+2013, p.110]. The caption reads “A
few symbol strings with codes to illustrate how the three kids of regularity (iteration,
symmetry, and alternation) are formally represented. The arrows point left to indi-
cate that a code represents just one pattern whereas a pattern can be represented
by various codes.”

String: a b a c d a c d a b a b a c d a c d a b
Code 1: ab 2*(acd) S[(a)(b),(a)] 2*(cda) b
Organization: ab(acd)(acd)(a)(b)(a)(b)(a)(cda)(cda)b
Code 2: 2*(<(a)> / <S[((b))((cd))]>)
Organization: (((a)(b))((a)(cd))((a)(cd))((a)(b)))(((a)(b))((a)(cd))((a)(cd))((a)(b)))

Figure 2–12: Figure copied from [Leeuwenberg+2013, p.99]. Two encodings of one
symbol string. We haven’t formally defined the complexity metric, but to give a
feeling for it: Code 1 has complexity measure of 14, “because it contains twelve
symbols and two chunks that contain neither one symbol nor one S-chunk, namely,
the chunks (acd) and (cda),” and Code 2 has a complexity measure of 8, “because it
contains four symbols and four chunks that contain neither one symbol nor one S-
chunk, namely, the chunks (cd), ((b)), ((cd)), and the repeat of the I[teration]-form.”
[Leeuwenberg+2013, p. 99]
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Structure, superstructure, and contradiction

Although structural information theory is a perceptual theory developed by

psychologists, and is not16 a computational methodology for image processing, it

offers a conceptual contrast to the information-theoretic, memory-based model of

data processing shown in IDyOM (and currently prevailing everywhere). It affords

comparison and contrast with structural analysis as we are attempting to define it,

as well as offering opportunity for a discussion of perception, a necessary question

when studying music.

The structural approach to information theory contrasts with the “learning” or

memory based approach in likelihood or Bayesian based methods, because it posits

that certain things are (or may be) obvious, salient, or relevant to the construction

of a perception, regardless of how often the particulars of the stimulus have been

encountered. In this way, structural information theory is similar to the structural

analysis that is the subject of this essay.

In structural information theory, the symbol-string representing the image is

parsed into a tree of regularities. The tree is a hierarchy of structures, with sub-

structures together forming superstructures. This is in contrast to the subdimen-

sional string-matching model of IDyOM, in which no superstructures are formed.

Substructure and superstructure are a part of the structural analysis we propose

– structures are often hierarchical (for example a set or a chain of pitch chains or

pitch-class sets). But a structural analysis (unlike a structural-information-theory

16 yet?
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analysis) is usually not hierarchical, since it contains many different structures that

do not have this relation.

A tree of regularities in structural information theory is constrained to be com-

plete and consistent. It is complete in the sense that it must describe the entire

image (or symbol string), and consistent in that it does not contain “contradictory”

interpretations of any part of the image. This contrasts with the structural analy-

sis we propose, because we focus on finding partial descriptions that describe some

structural relations, without trying to find subsets of these structural relations that

cover all points with no contradictions.

As a simple example, take the term pattern ABABCABC. The term pattern

has two iterations: ABAB and ABCABC, but these cannot both be used in a tree

of regularities, because they overlap and cannot be nested hierarchically. Structural

information will be lost when a decision has to be made to construct a tree that will

include only one of these regularities. In contrast to the decision process in structural

information theory, our analytic challenge is not to choose an interpretation, but to

organize the existence of multiple “contradictory” structures.

Our attitude toward “contradiction” in structure and perception is in contrast

to structural information theory, perhaps because of our different fields of study.

Structural information theory deals primarily with visual perception, where there is

a sense of veridicality – seeing things as they are versus illusions and misperceptions.

An image is typically seen as an object or scene. Objects and scenes are physical

things that have certain properties, and are represented by images that must be

interpreted to infer properties of the physical things. That’s the game of a certain
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kind of visual perception – but we don’t take it for granted that music perception

plays a similar game. Because there are no veridical objects in the musical domain

(and very often nothing is being represented), musical structure can be multiply

determined and can be heard as such.

In music (as in some other artforms, including some visual ones), where there is

no requirement of veridicality, there is value in obtaining more than one interpreta-

tion. Creativity can involve reinterpretation – the ability to perceive in a new way or

in several different ways, perhaps bringing to light less salient, “hidden” structures.

Therefore, while the structures we describe could be used to devise predictive tests

about how people most often interpret things, our position is that music listening is

a fundamentally more open act of perception, so we try to devise ways of computing

with many possibilities for interpretations.

When multiple interpretations are available in a stimulus, there is sometimes a

switching effect, where perceptual interpretation goes one way and then another, or

primarily different ways for different people. But even in cases where one interpre-

tation is much stronger than the other, structural cross-currents can be relevant to

(and sometimes central to) design and its interpretation.

A musical example is the opening measure of the Presto from the sonata in G

minor for solo violin by J.S. Bach, in which the notated meter suggests groups of two

notes, while the while the pitch-patterning suggests groups of three notes, and no

performance indication is given to resolve the ambiguity (Figure 2–13). According

to [Lester1999], no matter which way a violinist performs it, the other interpretation
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Figure 2–13: Presto from the sonata in G minor for solo violin by J.S. Bach. The 3/8
meter suggests groups of two notes (i.e. the measure is to be divided into 3 parts),
while the while the pitch-shapes suggest groups of three notes. Structural ambiguity
is part of the design of this score.

remains audible and is sometimes selected by other musicians (in an informal experi-

ment), “confirming that the metric ambiguity here is so deeply embedded that some

residue of it projects no matter how hard the violinist aims for a single version.”

Whichever way the passage is “heard,” (and it’s not certain that a decision is always

a perceptual imperative), the multiple metric affordances contribute to the effect of

the passage, and are fundamental to the design of the score.

Structure and (Perceptual) Simplicity

Structural information theory, like the structural analysis proposed in this essay,

is based on the availability of universal, simple structures.

Structural information theory (like the IDyOM model) is a predictive model

for perception of the data it analyses. Structural analysis is descriptive of scores,

and does not take any direct position on perception. Structures are more musically

useful, however, if they are available to perception.

Structural information theory offers a specific set of structural regularities for

vision (iteration, alternation, symmetry), that are empirically validated as being

important for visual perception. In contrast, we offer some examples of structures

for music analysis, but these are not meant to be a closed or fixed set, nor are they
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empirically validated with regards to perception. It is to be hoped, however, that

these are (sometimes) available to perception.

One basis for this hope is that structural analyses often have a quality of straight-

forwardness, simplicity, or obviousness. Structural information theory also values

simplicity as a criterion for salience but while they offer a predictive metric for

simplicity, we mention simplicity only as informal quality of being straightforward

and obvious. Part of this characteristic is accomplished by the external-context-

independence of structural analysis, which generally forces structural relations to

be made up of relatively local feature-comparisons – which are usually evident to

perception, and not open to much interpretation.

For instance, the following are structures which, when pointed out, are easy to

perceive: “this event happens during the timespan of this other event,” “this series

of events has a monotonic increase in this feature,” “this temporal span contains a

small set of kinds of events, and the temporal span is delimited by different kinds of

events.” These are “easy” to apprehend when pointed out, and tend to elicit little

inter-subjective or inter-contextual disagreement.

More complex structures are recursions of structures like these. They may be

less salient or easy to mentally or perceptually construct, and may be easier to “see”

than to “hear.” They may operate musically on a larger-scale expressive level, which

is qualitatively (i.e. semantically) distinct from a momentary perceptual level, but

yet which contains the same kinds of (“obvious”) structural relations, and thus is

part of the same fractal structural medium.
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Because of the straightforwardness of the structures, structure-finding algo-

rithms tend to be computationally straightforward as well, without need for advanced

algorithmic techniques. A score annotated with structures sometimes seems a “too”

obvious result. It seems that nothing has really been discovered; that nothing new

was revealed about the score. It’s easy enough to draw boxes around pitch-class sets,

or to trace lines over ascending melodic passages, and the computational setting of-

fers nothing more than a convenience in doing this. This is a good sign – that the

relational structures gathered are not obscure, and therefore have a chance of being

perceptually available.

We are not trying to discern mysterious properties of scores, we are trying to

capture obvious ones. Ones that as musical thinkers and perceivers, we find natural

to comprehend.

The complexity is not in finding the simple structures, but in organizing a large

multidimensional network of them. This is something that the perceiving mind does

only partially and impressionistically. What a structural analysis does is not to

predict what will be perceived or effective, but to make a map of (what may be)

perceptual affordances of the score.

2.4 The Structural Sense

Structural score analysis doesn’t directly address perception – but since the

phenomenon of music is based on perceptual affordances, ideas about perception

are necessary to motivate any analysis. This section provides such a motivation by
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describing a “sense” of design that is accessible through external sensory modalities

like vision, audition, and touch, as well as being available to abstract thought.17

2.4.1 Pattern and Shape: Whole and Parts

The sense of design has to do with the subjective apprehension of things like

pattern and shape – a perceptual organization level in which structural relations may

participate in the cognitive construction of a perceived scene. Pattern and shape are

more or less intuitive words for the subjective apperception of structure.18

Pattern and shape are qualitative in the sense that everything is that’s subjec-

tively apperceived, but we suppose that the underlying structural basis is firm – we

may expect individual differences in the saliencies of patterns and shapes (i.e. their

ready availability to perception), and in their semantic interpretation, but not in

their construction as such.

Shape and pattern are two aspects of the sense of design – these are not dif-

ferent senses, but duals. The duality has to do with whether a figure is taken as a

whole thing (made up of parts): a shape; or as a configuration of individual (but

interrelating) things: a pattern. The difference is subjective, conceptual, qualitative,

contextual, optional – but perhaps not structural.

17 The descriptions of perception here are neither empirically tested nor argued very
closely – no claims are made in this section: it is an informal conceptual background
about how structure might relate to human perception, cognition, and art.

18 “Apperception” is consciousness or reflective knowledge of perceptions.
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A sense of shape describes a relation of parts, in which the parts together form

something continuous at some level – a square, for example, has a configuration of

angles and sides, but it can be sensed as a shape: 2 , as can any of the typographical

glyphs. A shape (as sensed) may be more or less regular and more or less complex.

For a stimulus that is complex, the sense of shape may offer partial pictures at many

levels – an overall sketch, as well as specific details of shape in different regions.

A simple shape can be appreciated as a unity but a more general sense of shape

doesn’t demand closure, a view of the entirety, or a clear separation of one shape

from another.

The sense of pattern is active when parts do not seem to form something con-

tinuous, but are instead taken as a collection of independent (but interrelating)

things. A low-dimensional example is a term pattern: AABABBABC. Like a shape,

a pattern may be of variable regularity and complexity. It may have several levels of

organization or detail, and it may or may not be of fixed size or determinate identity.

Pattern and shape are inter-recursive: they can operate simultaneously at dif-

ferent levels of detail. Shapes can be made of smaller shapes and/or patterns, and

patterns of smaller patterns and/or shapes. For example, the square is made of a

pattern of lines and angles, which are themselves shapes. Likewise, a term pattern

can be taken as a sequence of abstract terms, or as a series of glyphs – a pattern of

shapes.

Pattern and shape can also operate simultaneously on the same level of struc-

tural resolution: the same structure can be seen as a shape or a pattern or both. A

shape can have a pattern, or a pattern can have a shape. For example, the following
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Figure 2–14: In this Penrose tiling, a pattern of shapes forms patterned super-shapes.
Patterns of tiny colored shapes (quadrilateral tiles) give rise to larger shapes (stars,
circles, flowers, coastlines), which are themselves patterned. “Zooming out” affords a
sense of higher-level shape or pattern (e.g. the framing on the right and left by pale
blue coastlines along with the individuated green flowers in between them), while
the details of the middle region with its similar colors recede into a sense of texture.
(Image c© Xah Lee. http://xahlee.info/math/algorithmic math art 2.html)

term patterns “have shape” if considered synoptically: ABBBCBBBA ABBAAAA

AAAABBA.

A shape is “really” a pattern of its parts, and a pattern is simultaneously a

shape: as dual perspectives, they are two ways of looking at the same thing.19

19 The interoperability between pattern and shape is why Structural Information
Theory is able to make predictions about the perception of geometric shapes by
analyzing abstract term patterns.
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Figure 2–14 shows a Penrose tiling, which has multiple levels of organization

available as pattern and shape. It is made of are quadrilateral tiles of nine different

colors and two different shapes. These are patterned in two-dimensional space. Some

parts of the pattern can be grouped into larger shapes: stars, circles, flowers, and

coastlines, which themselves afford pattern and shape on a higher level.

2.4.2 Seeing and Hearing Pattern and Shape

Shape and pattern are accessible in visual, tactile, and auditory perceptions.

Physical objects sometimes offer their shapes and patterns to both visual and tac-

tile perception. The physical stimuli that afford auditory shape and pattern are not

available to vision or touch. Auditory shape and pattern necessarily have a tem-

poral duration, while visual and tactile stimuli sometimes do. Auditory shapes and

patterns, however, are the same kinds of things as visual ones: the same sense of

pattern and shape is active through different perceptual modalities.

Pattern and shape are both common informal terms in talking about music.

Figures 2–1 to 2–7 show piano-roll visualizations of musical scores, in which pattern

and shape are apparent.

Looking at a score is not the same as hearing it. A score can be visualized and

seen, or sonified and heard – but are the same patterns and shapes available in both

experiences? Following a visual score while listening demonstrates that the resulting

experience is (at least) coherent from the point of view of observing patterns and

shapes. But this confounds the issue of what is available in music without visual

reinforcement.
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A visualization of a score is not a (quasi-linguistic) translation, or a description of

the score, it’s an inter-modal transduction, a projection of data onto new perceptual

axes (heuristically, but as directly as possible).20 That musical pitch goes “up”

and “down” is not a metaphor: up and down are not “real” only in reference to

spatial axes: they refer to quantitative orientations generally. If up and down mean

the “same” thing on different perceptual axes, the same shapes that are made of

ups and downs are also coherent when perceptual axes are swapped – though this

doesn’t mean they will be qualitatively similar or similarly salient.

A projection from one perceptual mode to another changes the low-level sen-

sory qualities, and thus the feeling, meaning, and expression. The phenomenon of

music is not available visually. The visible patterns and shapes may be “the same

ones” available to hearing – but they have different effects, and a different balance

of saliencies. But since patterns and shapes are available inter-modally, the obser-

vations made by looking at a drawing of a score can be used to think about musical

pattern and shape.

2.4.3 Time and Motion

Shape and pattern are observable in both temporal and non-temporal senses. A

mapping between spatial visual perception and temporal hearing preserves pattern

and shape – but not qualities or saliencies.

20 This is distinct from music writing (e.g. staff notation), which involves a deeper
kind of literacy.
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Figure 2–16: Frank Gehry: 8 Spruce Street, New York, and 888 W Bon-
neville Ave, Las Vegas. These buildings project an imaginary temporal axis
by depicting a flexible substance in motion. (Top image c© Ken Peterson
https://www.flickr.com/photos/kenpete/5529589586; bottom image c© D. Laird
https://www.flickr.com/photos/dottieg2007/6085551117. )
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Temporality is a property of a physical sensory medium. A sense of temporality

(or motion) is a quality of perceptual experience. Unlike pattern and shape (and

like other qualities), it is not directly transferable across perceptual axes – though

the perceptual affordances underlying it may involve pattern and shape, and these

affordances may have correlations across various axes (e.g. the kinds of shapes and

patterns that portray acceleration).

The subjective sense of temporality can involve a process of change, a sense

of going in some direction, or kinematic effects like bouncing, leaping, swooshing,

tumbling, galloping, swirling, spiraling, floating, crashing, coasting to a halt, gaining

momentum, belly flopping, dancing, gesticulating, sauntering, swaying, or falling to

pieces.

The feeling or idea that a dimensional axis is temporal, or that something is in

motion, can occur whether the physical medium is temporal or not.

Time and motion can be depicted in non-temporal media: Figure 2–15, by

M.C. Escher, depicts transformation as spatial “change.” A different way of showing

motion on a spatial axis through patterned shape is apparent in Marcel Duchamp’s

“Nude Descending a Staircase No. 2” (not shown). Figure 2–16 shows buildings

by Frank Gehry that project an imaginary temporal axis by depicting a flexible

substance in motion.

Qualitative motion in music includes progressions, transformations, narrative

sequences, grooving, rocking, dancing, and various other kinematics. Music also

can convey phenomena that are less temporal (notwithstanding the fact that these
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occur at temporal moments in the music), including shapes, symbols, rhetorical or

expressive statements, personalities, attitudes, atmospheres, and scenery.

The apparent sense of motion or temporality that is sometimes present in music

is correlated to physical time through the system of perceptual and cognitive affor-

dances that creates the musical experience – but it is not a direct result of the physical

temporality of music. Motion in music is a depiction of motion. It is qualitative,

subjective, and optional.

The view of temporality as a property, a quality, and something that is depicted,

helps to explain why pattern and shape are coherent when translated to or from the

physical temporal axis. It locates perceptual temporality as analyzable only with

respect to the specific affordances of the senses and the mind, and not as directly

resulting from either the physical medium or the particular patterns or shapes in

evidence.

2.4.4 Texture

Texture occurs when pattern elements are too small, too many, too disorga-

nized, or otherwise too undistinguished to be considered individually. A statistical

or aggregate quality can result, in which case a structural or pattern/shape analy-

sis somewhat misses the mark. But the boundary between structural and statistical

perceptual modes is not simple, and a texture may become a pattern or vice versa de-

pendent on context (e.g. when given more attention). A texture may have emergent

shape or occasional individuated elements that form patterns. A texture also may

depend on micro-patterns or micro-shapes in such a way that these are subliminal

but qualitatively active.
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In music, “texture” is often highly (structurally) organized and made of elements

well above the limits of perceptual differentiation. Texture is visible in piano-roll de-

pictions of scores (Figures 2–2–2–6).21 Texture in music refers to a general, imprecise

but definite, sense of how different elements are fitting together at one moment.22

For example, the elements may be close to each other in pitch, or some may be

very high and some very low. There may be only one note at a time, or several

independent voices, or a primary voice with a background. All voices may speak in

the same rhythm, or one faster than another, or some regular and others irregular,

or two voices may alternate moving and holding. Texture in music is designed –

patterned and shaped, and made of patterns and shapes. But yet it may be (partly)

qualitatively constituted of statistical or aggregate effects.

Texture is a liminal perceptual mode, characterized by imprecision and general-

ity, introspectable mostly out of the corner of the eye or ear, but producing definite

qualitative effects. It is a transitional mode of the sense of design (pattern and shape)

as it turns into something like color.

2.4.5 Color

Colors are characteristically qualities, or qualitative identities, as are instrumen-

tal timbres in music.

21 If the pictures were tapestries, what kinds of weaves would they have? If they
were braille, what would they present to the sense of touch?

22 I.e. a very short non-instantaneous timespan, e.g. on the order of 2 seconds
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Colors and timbres are orientable on different axes (redness, brightness), afford-

ing shading, gradation, and detail. But their underlying physical structure is hard

to directly introspect, and as a result discontinuities in color are often perceived as

unoriented contrasts, or differences.

Color can be patterned and shaped as part of a design, but since colors seem

to have an irreducible and unintrospectable qualitative identity, it isn’t normally

available as a “designed” element itself, but as a given material for use in design.

For example, there seems something “absolute” and given about blue, because we

can’t introspect it as a structure of metric properties of light (or describe it in any

other way).

Another kind of color in music is harmony – for example the qualitative sense

of a major triad in contrast to a minor triad. As in visual color perception, the

harmonic quality of tones is determined in relation to their participation in a context

with other tones. We know that visual color perception is contextual (i.e. relative)

because the subjective identification of a color depends on its surrounding colors

without our being able to introspect this process. Nonetheless, we have the sense

that our color perception is “absolute” because we identify red as red – an absolute

qualitative value. In contrast, most people don’t have the sense that their harmonic

pitch perception is absolute – the harmonic qualities of a score are invariant under
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transposition. A small minority of people have a sense that different pitches do have

different absolute values, as well as contextual values.23

While we have some sense of how color is constituted out of measurable prop-

erties of light, and harmony of combinations and contexts of pitches, both of these

phenomena display the opaqueness of the structure-semantics interface. This is the

mind-body problem that we inevitably arrive at, since we are in a Cartesian uni-

verse.24

2.4.6 Expression

All perception, at all structural levels, comes with quality, and therefore with a

mind-body problem. At a basic level, this is color, timbre, and harmony. At higher

23 People with absolute pitch may have more or less “absoluteness” depending on
how consistent the correlation is between their “absolute” sense and the physical sig-
nal. Absolute pitch is sometimes characterized as the ability to identify or reproduce
physical pitches without context. But when describing the musical experience, what
is more relevant is the sense of identity of the different pitches, since this offers a
new qualitative level with cognitive advantages and aesthetic potentialities. These
two characterizations are correlated, but may be present in different ratios.

24 The kind of structural analysis we describe is based on Cartesian geometry.
Descartes also posed the mind-body problem, (or “substance dualism”): mind and
body are two different kinds of things, and we don’t understand how they relate and
interact with one another.

Descartes observed the mind-body problem in color, proposing that it is a quality
that is modellable by physical shape ( – before Newton described color in terms of
physical properties) [Clarke2003, p.47].

Any structure-semantics interface (i.e. at which a quality or human-level meaning
is created) is an example of the mind-body problem. These interfaces are everywhere
when human consciousness is concerned; music has to do with a special class of them.
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levels, texture, pattern, and shape have characteristic qualities and can produce

qualitative effects such as moods and motion.

The highest qualitative level is that of expression. At this level, artifacts exist

that are arbitrarily structurally complex or simple, that may be technically inventive

(i.e. posing new mind-body problems), and that are contextually integrated into

an expanding world with no boundaries. This is the level of (human) meaning,

with all of its referential, resonant, linguistic, personal, cultural, and psycho-physical

complications. Expression (whether real or supposed) is the bodying forth of these

objects as actualized ideas. Expression may have its own purposes, e.g. aesthetic,

artistic, pragmatic, or educational.

Medium and quality, structure and expression, interpenetrate each other at all

levels. A structural analysis doesn’t explain the phenomenon of music, and also can’t

motivate its production. It is an algebraic descriptive language for the investigation

of musical artifacts at the level of the medium, the means of expression. It produces

a map not of music’s ideal territories, but of its real potentialities.
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CHAPTER 3
Polyphones

3.1 Introduction and Definitions

If a phone is a temporal unit of sound (e.g. a note), polyphony is a multiplicity

of phones. Melody, a sequence of phones, is a base case for polyphony; another base

case is a chord in which all notes start and end together. A score can contain any

number of notes not only sequentially or simultaneously, but in arbitrarily complex

configurations of temporal inclusion and overlap. Any such configuration of temporal

relations is called a polyphone. Polyphones generalize sequences and simultaneities.

They also generalize trees, by representing both inclusion and overlap.

Temporal (or geometrically one-dimensional) coincidence is a basic and natural

structural dimension. A potential non-musical application is sensor fusion, in which

data is obtained from a number of different sensors, and the problem is to get an

overall picture from the union of the sensors. In musical application, we need not

stop at polyphones of notes: we can treat any structure as a phone (if it can generate

a temporal interval), and then study the temporal relations between these.

To construct polyphones, each phone supplies its temporal interval as an (i, o)

pair of open endpoints (i for “in”, o for “out,” with i < o). These are points on

a timeline (or other dimensional line) in any measurement unit. Polyphones are

networks of temporal relations between phones ( – the absolute positions and lengths

of the phones are not used in constructing these relations).
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Monophones

The simplest relation between two (i, o) intervals is identity: the monophone

relation M(p, q)↔ ((pi = qi) ∧ (po = qo)).

Because this is an identity relation, in a graph setting (i.e. taking phones as a

set of nodes N and drawing edges p → q ∀(p, q) ∈ N s.t.M(p, q)), we obtain a set

of (bidirectional) cliques, where each member of a clique has identical polyphonic

relations to other phones on the score. It is therefore unambiguous to treat each

monophone clique as a single monophone node in a graph, so that each node refers

to a set of phones with the same (i, o).

Hold and Fold Relations

We define two relations on monophones p and q with open endpoints (pi, po) and

(qi, qo), corresponding to containment (H for “hold”) and overlap (F for “fold”):

H(p, q)↔ “q is contained in p” ↔ (pi ≤ qi) ∧ (qo ≤ po) ∧ (p(i,o) 6= q(i,o))

F (p, q)↔ “p overlaps with q (on p’s right)” ↔ (pi < qi) ∧ (po < qo) ∧ (qi < po)

At this level of generality, we have dealt with three of the four possible relations

(identity, containment, overlap); the fourth is the null, disjoint relation.1

1 Students of music écriture (in a widely practiced tradition dating from the 16th
century) learn to write polyphonic music using “species” of two-part counterpoint in
which all of these relations are covered: first species concerns temporal identity (note
against note), second and third species have hold relations (shorter notes contained in
longer notes), fourth species uses fold relations (overlapping notes), and fifth species
mixes all of the previous species.
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A higher degree of specificity would handle shared endpoints, as when (pi =

qi) ∧ (po > qo). These kinds of relations (which we return to briefly in Section 4 of

this chapter), still count as “polyphone” concerns, while questions of absolute and

proportional length do not.

Polyphone Graph

Any set of monophones M forms a graph where M are nodes and the edges

E = F ∪ H are defined by F = (∀(p, q) ∈ M ∗M such that F (p, q)), and H =

(∀(p, q) ∈ M ∗M such that H(p, q)). These edges are directed and typed either F

or H.

Any such graph on a set (or subset) of monophone nodes is a polyphone graph;

given a set of nodes, the full set of its edges is required in order to faithfully represent

the relations within the set. Therefore whenever we speak of a polyphone subgraph,

this means a subset of nodes, and all of the edges among them.

The polyphone graph is a sequential graph, in which nodes can be ordered by a

< relation: p < q ↔ (pi < qi) ∨ ((pi = qi) ∧ (po > qo)). This can also be represented

as ordering on (pi,−po). As a result, H(p, q) → (p < q) and F (p, q) → (p < q).

Therefore the polyphone graph is a directed acyclic graph, or dag. The relation < is

a defined node-order, so that we can refer to the “leftmost” (i.e. “least”) hold-child

of a node, or the “next” node in a graph. This sequentiality relation is also a looser

stand-in for the undefined adjacency relation (po = qi).

A polyphone graph consists of a sequence of its connected components, called

polyphones. Polyphones are separable by an instant of time that passes through the

body of no phone, though it may pass through the open endpoints. Equivalently, we
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can define the set of polyphones in a polyphone graph as a partition (i.e. a set of

maximal subsets) of monophones such that ∀X, Y ⊂M,∀x ∈ X, ∀y ∈ Y,¬F (x, y)∧

¬F (y, x) ∧ ¬H(x, y) ∧ ¬H(y, x). These polyphones form a sequence ordered by <,

since for different connected components X, Y of a polyphone graph, (x ∈ X < y ∈

Y )→ (∀x′ ∈ X, y′ ∈ Y, x′ < y′)

3.2 Visualizing Polyphones

We visualize polyphones by drawing (“abstract”) graphs, and by superimposing

graph drawings on musical notation.

Hold edges are drawn in blue, and are oriented downward. Only hold-edges

that are minimal-length paths between two nodes are drawn – i.e. we draw parent-

child relations but not grandparent-grandchild (etc.) relations. No information is

lost by doing this, because H(a, b) ∧ H(b, c) → H(a, c). Therefore these undrawn

hold-relations are implicit (and we must bear this in mind e.g. when thinking about

subgraph relations). We call these contextual subrelations “direct” and “indirect”

holds.

Graphs are read from left to right, with the sequence of hold-children appearing

in < order.

The graph of direct hold edges looks something like a sequence of trees (each

consisting of one root and zero or more children, grandchildren, etc.): the difference

is that these trees can overlap by sharing nodes – in particular, when two nodes

fold with one another, they may share (direct or indirect) hold children. One way

to think of this is that not only do the two folding nodes overlap one another, but

they are parts of trees (or subtrees) that fold, and the shared children are an aspect
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Figure 3–1: Polyphones. These polyphone components are hold trees, with no fold
edges. Node shape indicates monophone cardinality.
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Figure 3–2: Polyphones. Blue edges are hold relations, red edges are fold relations.
Hold trees that fold with one another may also share nodes (e.g. the top graph can
be divided into three overlapping hold-trees with roots 1, 8, and 11).
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Figure 3–3: Polyphones. Blue edges are hold relations, red and gold edges are
fold relations. Each red edge is the head of a fold family, with zero or more gold
edges appearing beneath it. A fold family is the set of fold edges between two hold
(sub)trees.

63



of this overlap. The graph of direct hold edges is a Hasse diagram on the nodes. A

polyphone component with no fold edges is simply a tree of hold edges.

Whether folds are present or not, the structure of holds in the graph makes

available many of the usual concepts for trees such as roots and leaves (– each hold-

“tree” has one root, and each root has a corresponding unambiguous set of leaves),

and accounting of depth and height for each node, based on its distance from the

root and leaves.

Fold edges are oriented from left to right, and drawn in red and gold. A fold

edge is drawn in gold if one of the two nodes also participates in a fold relation with

a hold-ancestor of the other node. F(a,b) is gold if ∃F (a, b′) s.t. H(b′, b) ∨ ∃F (a′, b)

s.t. H(a′, a). In this case we say that F (a, b′) or F (a′, b) is a superior fold edge to

F (a, b). If F (a, b) has no superior fold edge, it is the head of a fold-family, and is

drawn in red.

Fold edges can be partitioned into families, each consisting of a clique of red

“head” edges, and zero or more gold edges below it such that each of the gold edges is

inferior to at least one of the red edges. A fold family is the set of fold edges between

two or more hold-trees (or subtrees), with the red head-fold(s) appearing between

the roots of these trees. In the simplest case, a fold family between two (sub)trees

has one head fold between the roots of the trees or subtrees involved (drawn in red),

and zero or more other family members (drawn in gold), each going from one tree to

the other.

The graph of F edges is not hierarchical and doesn’t contain redundant edges.

The presence of cliques (i.e. subgraphs that would be complete if we considered

64



edges to be undirected) show one kind of fold “depth”. For example if we have

(F (p, q)∧F (q, r)∧F (p, r)), this implies that all three nodes are overlapping at some

moment.

Despite the conceptual and geometric simplicity of fold-cliques, the simplest

case of a fold-clique of size two (i.e. just an edge between two nodes) seems to be by

far the most common in the note-texture of the polyphonic style of Palestrina and

Victoria, as well as in the texturally simpler classical style (e.g. Mozart, Beethoven).

Fold-cliques of size three occur occasionally (i.e. three nodes and three edges) –

Figure 3–28 shows an example from Bach, who also uses them sparingly.

In defining how we will draw polyphones, we have characterized two secondary

properties of the edges – the “directness” of a hold, and the “superiority” of a fold.

In the case of holds, we can omit the subordinate edges, but for folds we can’t

do so without loss of information; in both cases the subrelations are not retained on

subgraphs, because they refer to contextual properties of the edges. These contextual

properties help to visualize and reason about the shape of polyphone graphs beyond

the logical union of individual (pairwise) relations.

Node shape is sometimes used to visualize monophone cardinality, with 1 =

circle, 2 = double-circle, 3 = triangle, 4 = box, 5 = pentagon, 6 = hexagon, 7 =

heptagon, 8 = octagon, and > 8 = double-octagon. Nodes may by labeled by index

(arbitrary integers in < order), or by other features of the structures represented by

the node.

Figures 3–1–3–3 show polyphone graph components. Figure 3–1 shows compo-

nents consisting each of a single hold-tree; Figure 3–2 shows components with holds
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and simple (head-only) fold families; Figure 3–3 shows polyphones with red and gold

fold edges.

3.2.1 Drawing Polyphones on Scores

One way to draw polyphones on scores is to draw colored hold and fold edges

from note to note. With moderately complex scores, these become hard to read

because edges may not be oriented in the vertical dimension if voice identity and/or

pitch is being represented in this dimension. We can disambiguate these orientations

with color, but this fails to organize them visually in a straightforward way. Mono-

phones are not necessarily spatially grouped, complicating the visual picture. An

example is shown in Figure 3–4.

In Figures 3–5, 3–7, 3–8, and 3–9, the scores are reorganized by redistributing the

notes onto staves to clarify the structure of the polyphones. The colors of the notes

represent their voice identity in the original score (information previously conveyed

by which staff they were on). Monophones are grouped together on the same staff,

and hold ancestors are located on a spatially higher staff than their descendants. On

the abstract graphs, red head-fold edges are typically depicted as horizontal, but to

avoid overlaps on the same staff, these form zig-zags on the permuted score (compare

Figures 3–5 and 3–6).

3.3 Logical Structure of Polyphones

We observe some lawful regularities in the structure of polyphones.

If F (p, q) is a head fold, then its family includes any folds F (pd, qd) where pd is p

or an H descendant of p, and qd is q or an H descendant of q. This is not a free-for-all

between descendants of p and q, but follows a few rules which significantly restrict
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the configuration of the family. The following four rules describe logical restrictions

on the edges participating in the family.

1. (Shared tree rule) If r is an H descendant of both p and q then r partici-

pates in a fold with neither p nor q. This is evident from the definitions of H and F .

We mention it as a rule because in visualizing or constructing fold families within

polyphone dags, it helps to remember that these nodes r can exist as a “middle”

tree shared between p and q which doesn’t participate in the fold family under head

F (p, q). This is illustrated in Figure 3–10.

H(p, r) ∧H(q, r)→ ¬F (p, r) ∧ ¬F (r, q)

Proof: follows from ¬(H(a, b) ∧ F (a, b)). 2

2. (Path rule) If pd folds with qd, then for any H ancestor pa of pd that is

not an H ancestor of qd, pa folds with qd. The symmetric case: if pd folds with qd,

then for any H ancestor qa of qd that is not an H ancestor of pd, pd folds with qa.

This rule describes the behavior of folding H paths, such that descendants pd of p

fold with q or its descendant qd only if the entire path from p to pd folds with q or

qd (and vice versa for the symmetric case). Illustration in Figure 3–11.

F (pd, qd) ∧H(pa, pd) ∧ ¬H(pa, qd)→ F (pa, qd)

Proof: We prove the equivalent statement

F (pd, qd) ∧H(pa, pd)→ H(pa, qd) ∨ F (pa, qd).

F (pd, qd)

pdi < qdi < pdo < qdo

H(pa, pd)

pai ≤ pdi < pdo ≤ pao
pai < qdi < pao

H(pa, qd) ∨ F (pa, qd)
2
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3. (Inner tree rule) The formally-stated inner tree rule is slightly obscure,

but the intuitive meaning of the rule is this: as a rule, the innermost nodes of the H

trees are involved in the fold family (i.e. the rightmost nodes of the tree on the left

and the leftmost nodes of the tree on the right) – in particular, innermost nodes to

the outside of any shared tree are involved in the fold family. The formal statement

of the inner tree rule characterizes the exceptional case where a non-innermost node

is involved:

Suppose pd and pc are siblings with an H parent p, with pc < pd, and p folds

with q. If pc folds with q and pd is not an H descendant of q, then pc folds with pd

and pd folds with q. (And similarly for the symmetric case.) Note that if pc folds

with pd, this fold is the head of a separate fold family (since neither is a descendant

of q). Figure 3–12 illustrates.

H(p, pc)∧H(p, pd)∧(pc < pd)∧¬H(pc, pd)∧F (p, q)∧F (pc, q)∧¬H(q, pd)→ F (pc, pd)∧

F (pd, q)

Proof:

We want to show F (pc, pd) ∧ F (pd, q), so we show

(pci < pdi ) ∧ (pco < pdo) ∧ (pdi < pco) ∧ (pdi < qi) ∧ (pdo < qo) ∧ (qi < pdo).

From (pc < pd) ∧ ¬H(pc, pd) we get (pci < pdi ) and (pco < pdo).
√√

From F (p, q) ∧H(p, pd) ∧ ¬H(q, pd) we get (pdi < qi) and (pdo < qo).
√√

From F (pc, q) we get (qi < pco), and since we have (pco < pdo) and (pdi < qi),
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we get (pdi < pco) and (qi < pdo).
√√

2

The proof of the inner tree rule doesn’t require H(p, pc), and in fact the rule holds

when H(p, pc) is replaced by F (pc, p) (i.e. removing H(p, pc) would necessitate adding

F (pc, p) by the path rule). However, since these rules are meant to be descriptive

of multiple F edges between two H trees, and with this replacement we would lose

that structure, we keep the H(p, pc) assumption.

4. (Clique middle rules) Suppose F (p, q) and F (q, r) and F (p, r) with p <

q < r:

a) If pd is an H descendant of p and also an H descendant of r, then pd is an H

descendant of q.

b) If pd is an H descendant of p and F (pd, r), then either F (pd, q) or H(q, pd). And

similarly the symmetric case.

c) If for some fourth node s, if F (p, s) and F (s, r), then either H(q, s) or H(s, q) or

F (q, s) or F (s, q) (– in the latter two cases, we obtain a four-clique). Shown in

Figure 3–13.

a) F (p, q) ∧ F (q, r) ∧ F (p, r) ∧ (p < q < r) ∧H(p, pd) ∧H(r, pd)→ H(q, pd)

b) F (p, q)∧F (q, r)∧F (p, r)∧ (p < q < r)∧H(p, pd)∧F (pd, r)→ F (pd, q)∨H(q, pd)

c) F (p, q) ∧ F (q, r) ∧ F (p, r) ∧ (p < q < r) ∧ F (p, s) ∧ F (s, r)→ H(q, s) ∨H(s, q) ∨

F (q, s) ∨ F (s, q)

Proof:
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a) We have (pi < qi < ri ≤ pdi < pdo ≤ po < qo < ro), therefore H(r, pd).

b) We have (pi < qi < ri < pdo), with (pi < pdi ). Therefore, we get either (pdi < qi),

in which case F (pd, q), or (q ≤ pdi ), in which case H(q, pd).

c) We have (pi < qi < ri), and (pi < si < ri) giving two cases (qi < si) and (si < qi).

Likewise, we have (po < qo < ro), and (po < so < ro), giving two cases (qo < so)

and (so < qo). The product of these 2 x 2 cases gives four cases:

i) (qi < si) ∧ (qo < so)→ ((si < qo)→ F (q, s))

ii) (qi < si) ∧ (so < qo)→ H(q, s)

iii) (si < qi) ∧ (qo < so)→ H(s, q)

iv) (si < qi) ∧ (so < qo)→ ((qi < so)→ F (s, q))

From F (p, q)∧F (p, s) we get (pi < qi < po < qo)∧(pi < si < po < so); therefore

(si < qo) ∧ (qi < so).

2

(a) (b) (c)

Figure 3–10: Shared “middle” trees. In (a), node 3 (and its descendants, if any) is a
shared tree under F(0,2). In (b), node 6 is a shared tree under F(4,5). In (c), 12 is
a shared tree under F(8,10).
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(a) (b) (c)

Figure 3–11: Path rule. In (a) F(3,4) requires F(2,4) and F(1,4). In (b) F(6,9)
requires F(6,8), F(5,9), and F(5,8). In (c) F(13,14) requires F(11,14), F(12,14), and
F(10,14). F(11,12) is not part of the fold family under F(10,14), since it only concerns
members of the H tree under 10, and not the H tree under 14.

(a) (b) (c)

Figure 3–12: Inner tree rule. (a) As a rule, the innermost nodes of the H trees are
involved in the fold family. (b) More precisely, innermost nodes to the outside of any
shared tree are involved in the fold family. (c) The formal statement of the inner
tree rule characterizes the exceptional case where a non-innermost node is involved –
here F(15,17). The rule requires F(15,16) and F(16,17) in this case. This exceptional
case involves the formation of an F clique of size 3 (but the clique edges are not all
head-folds).

Because of these logical restrictions, we see fold configurations in which paths

down from p and q participate, where descendants fold with a subset of the nodes

folded with by their ancestors (path rule). These paths are to the outside of any
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3–13: Clique middle rules. In (a), H(0,3) and H(2,3) requires H(1,3). In (b)
and (c) the H edge and the F edge on either side require that the middle node of
the fold clique has either an H or an F edge to the subordinate node (clique middle
rule b). (d) through (g) show the four cases of clique middle rule c, when F(p,s) and
F(s,r).

shared descendants of p and q (shared tree rule), but to the inside of any non-shared

descendants of p and q, and any paths not strictly to the inside are folding with their

inner siblings (inner tree rule).

3.4 Related Literature

3.4.1 Interval Temporal Logic

James Allen’s interval algebra [Allen1983] describes 13 temporal relations, shown

in Figure 3–14. These include equality (monophone relation), and six pairs of oppo-

site relations, (i.e. they could be thought of as six oriented relations).
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precedes meets overlaps
finished
by

contains
started
by

equals

preceded
by

met by
overlapped
by

finishes during starts

Figure 3–14: Allen’s 13 basic relations for temporal intervals.

Of these six, “precedes” and “meets” do not correspond to polyphone relations,

“overlaps” is equivalent to fold, and “finished by,” “contains” and “started by” cor-

respond to hold – with a shared starting point, no shared interval-boundary, or a

shared end-point.

This set of relations is higher-informational than the smaller set we have used

for polyphones. For some purposes, it may be necessary to augment polyphone hold-

edges with their shared boundaries. For instance, if we want to use a polyphone graph

to generate a corresponding set of (normalized) intervals, the options are either to

use shared-boundary information, or to adopt an arbitrary rule (e.g. placing all

hold-children strictly inside their parents). Despite this, we find it more convenient

to treat this additional information as an augmentation or sub-type, rather than

introduce more types of edges – one reason is that the subtypes of holds always

occur at predictable locations (i.e. rightmost and leftmost hold-children), so if we

are walking the graph, we always know when to check whether an endpoint is shared.

Allen’s interval algebra is used for interval temporal logic – to reason about sets

of intervals from partial knowledge. Given a set of intervals, the relation between

each may be known, unknown, or partially known as a disjunction of several of

the basic relations (e.g. “precedes or meets or overlaps”). Then deductions are
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made using logical operations (e.g. complements, converses, transitive inferences,

intersections, etc.), in order to propagate the constraints of the system and deduce

more information about the relations. A logical system can be represented as a

graph of constraints, but the particular shapes that these graphs can take, and how

these might correspond to the structure of a set of intervals, are not explored in the

literature.

The satisfiability of an interval temporal logic problem (i.e. whether it has a com-

pletion without contradictions) is NP complete. A number of tractable sub-algebras

have been identified, in which constraints on the form of the problem guarantee its

efficient solvability [Krokhin+2003].

Interval temporal logic is applicable whenever partial knowledge is available

about the temporal relations of events. A score, however, gives a complete account

of temporal relations among events. Polyphones, in contrast with interval temporal

logic, are not concerned with making logical deductions, but with describing the

shapes of graphs and subgraphs, and how subgraphs of different shapes can interrelate

to form larger shapes or patterns.

3.4.2 Interval graphs

An interval graph is a graph for which each node can be represented by a tem-

poral interval, and there is an edge between two nodes if and only if there is some

moment of time at which both intervals are active. Interval graphs are like poly-

phones in that they compare a graph structure to a corresponding set of temporal

intervals. However, the edges of an interval graph are untyped and undirected, and
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there is no monophone concept. An interval graph is therefore more abstract (infor-

mation lossy) in comparison with a corresponding interval set.

Interval graphs are well-studied, and there are many known characterizations:

for example, any graph that is chordal (all cycles are triangulated), and contains no

“asteroidal triple” is an interval graph [Golumbic1980]. An asteroidal triple consists

of three nodes such that between any two of them there exists a path that doesn’t

pass through any node adjacent to the third – the asteroidal triple and the cycle of

size > 3 represent minimal subgraphs that foil the linear dimension.

The linear characteristic of (connected) interval graphs also means that they can

be represented as a path of cliques [McKee+1999]. A clique-path through an interval

graph specifies a polyphone interpretation – each clique corresponds to the intervals

active at some moment in time.

[Fishburn1985] characterizes the family of interval sets that correspond to a sin-

gle interval graph – these are related by re-ordering. The family of interval orderings

shows how a given interval graph could be temporally specified in a combinatorial

number of ways (– an interval ordering, however, is as specific as a polyphone, since

an intersecting ordered pair could correspond to either a hold or a fold).

In general, the graph-theoretic concerns related to interval graphs seem to start

from a graph, and then make deductions about properties of either the families of

corresponding interval sets, or (more often), the graph itself. This is in contrast to

the concerns of polyphones, where we start with a set of intervals, and use graph

structure to visualize, organize, think, and compute about them.
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Interval graphs have been used in application to scheduling and resource assign-

ment, as well as ordering problems in genetics and archaeology. Generally speaking,

these applications use the interval graph to represent dependence constraints, and

then use the quasi-linear properties of the graph to generate feasible orderings. One

way that interval graphs have been used descriptively is in describing the structure of

food webs (i.e. overlapping ecological niches in which living beings eat one another)

[Cohen1977]. Interval graphs are used to characterize the shape of these interactions

– but ecological niches don’t have a natural temporal or physical ordering, so this kind

of information isn’t lost in the graph representation. The interval graph description

is used to help characterize an abstract dimensionality for niche interactions.

3.5 Observations with Polyphones

In this section, we show how polyphones can be used to make various kinds of

observations about the pattern and shape of texture on scores. Each observation

takes a low-dimensional projection of polyphonic structure and uses it to make a

sketch on the score.2

This projection phase is a complement to the structure-building process, since

it allows us to “see” simple facets of a structural picture which is too complex to

visualize at once, and also facilitates the recursion of structure-building from a low

dimensionality.

2 We give brief suggestions of what is to be observed in these sketches, but these
images are meant to afford a visual description, and detailed prose descriptions of
the visual shapes and patterns are not given.
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A basic method for making projections of polyphones is to compare different

polyphone subgraphs, by inventing summary functions that afford equivalence or

measurement relations. We show a few such functions – it’s easy to see how to

construct more, relating and distinguishing parts of the score from different points

of view.

3.5.1 Textural Sketches

In the first set of illustrations (Figures 3–15 to 3–17), the shape of each polyphone

is taken as the equivalence relation, with monophone cardinality abstracted away

such that monophones of any cardinality are equivalent. Since the graphs are dags

(directed and acyclic), this kind of isomorphism is straightforward to detect. Each

different polyphone shape is represented by a different color on a zoomed-out view of

the score. Figures 3–15 to 3–17 show three piano sonata movements by Beethoven,

from this point of view. The illustrations show how this low-resolution sketch of

polyphonic texture (showing only difference), gives a large-scale viewpoint on musical

pattern and shape. We can see sections or zones of colors, outlining an overall “form”

for the movements: contrast, repetition and variation, pattern processes, uniformity

and variety.

Figures 3–18 and 3–19 show the same kind of picture on two-part inventions by

J.S. Bach, along with a further equivalence distinction made between the permutation

of voices with respect to graph-shape – in these figures, the two equivalence relations

are related by inclusion, giving a simple dimensionalization of difference.

Figures 3–20 to 3–22 again show polyphone component isomorphisms, along with

a different kind of isomorphism on a different kind of polyphone subgraph. This time

83



we take hold-trees as subgraphs to be compared (– these can overlap). Rather than

taking simple isomorphism, we invent a looser relation by taking a reduced sequence

of hold-heights of the (direct) children of each tree-root.

The hold-height of a node is calculated as the length of the longest path from a

leaf up to the node. The sequence of hold-heights of the root’s children is reduced by

removing repetitions, so that if the sequence is (2 2 1 1 1) the comparison feature is

(2 1) (– and that tree is therefore isomorphic to another tree with sequence (2 1 1)

under this relation).

In the figures, the outer boxes show the color and number for the identity of

the top-level tree; the same colors are also used to color the roots of inner subtrees.

For example, in Figure 3–20, the red boxes have height-sequence (1), while the blue

boxes have height-sequence (2 1) – therefore the blue boxes contain a red note at

their beginning, which is the root of a subtree with height-sequence (1).

This hold-height-sequence isomorphism is a loose summary of tree-shape, tend-

ing to group together larger numbers of structures, showing a different level of detail.

The images also show how trees overlap to constitute polyphone components with

folds.

Figures 3–20, 3–21, and 3–22 also show differential treatment of polyphonic

isomorphism and patterning, corresponding roughly to a stylistic difference in mu-

sical texture. Although Figures 3–20 and 3–21 are fugues from the same collection,

Figure 3–20 (Bach, WTC Book I, Fugue 2) shows more isomorphism and tighter

pattern structure at the level of relatively simple polyphone components, while the

more flexible polyphony of Figure 3–21 (Bach, WTC Book I, Fugue 12) contains
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many polyphone components that are not comparable under the tight isomorphism,

but yields more to comparison and patterning under the looser isomorphism on

sub-components. Figure 3–22 (T. L. Victoria: “Date ei de fructu”), in an earlier

polyphonic style with an alternate set of procedures and values on pattern and dif-

ference, also affords more comparison under the looser isomorphism, but without

revealing obvious patterning.

Figures 3–23, 3–24, and 3–25 provide a visualization of fold structure on scores.

Notes involved with folds are colored per voice, and fold lines are drawn in red

and gold. The shapes thus produced show processes of repetition, variation, and

difference, tight and loose organization, chaining, clustering and sparseness, internal

counterpoints, and other details of shape made visible.

3.5.2 A Measure of Polyphonic “Complexity”

Just as there are many ways of inventing equivalence relations for polyphones,

there are also many ways of measuring them in order to compare aspects of their

size or complexity. For example, we could measure the depths of hold-trees, the

number of edges involved in a fold family, fold path, or fold clique, the cardinality

of a monophone, etc. In this subsection we propose another way of reasoning about

polyphonic “complexity,” by generalizing the concept of the voice.

The concept of voice is this: imagine that each structure can be sung by a voice

that can only sing one item at a time. In the most basic case, each phone (e.g. a

note) is sung by a voice, and as with human voices, trumpets, flutes, etc., the normal

situation is that one voice can sing one note at a time, but can sing any number of
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notes in sequence. The minimum number of voices needed to sing all of the phones

gives a basic complexity measure.

The basic notion of the voice is complicated by the fact that some instruments

can play more than one note at a time, and some groups of instruments or sounds

are timbrally similar enough that it’s interesting to consider them as one “voice”

(or part) in a score. Therefore the number of “voices” from the point of view of a

timbral or instrumental analysis may not correspond to the number of “phone voices”

– voices that can sing one phone at a time.

From a polyphonic point of view, we can generalize the notion of a voice singing

a phone at a time, so that a higher-level voice can sing a monophone at a time, and

a yet higher-level voice can sing a hold-tree at a time so long as none of the nodes in

the hold-tree are folding.

At the lowest level, the level of phones, we can ask how many phone-voices would

we need in order to sing the polyphone? If phones are notes, then this is the number

of human voices needed to sing the score: the maximum number of phones sounding

at one time.

At the next level up, with phones grouped into monophones (simultaneous

“chords”), we ask how many monophone-voices would we need in order to sing the

polyphone; or: what is the maximum number of monophones sounding at one time?

This is like having human voices that can sing a chord at a time, but only with a

monophonic rhythm. If, for instance, we have four phone voices, but they are always

singing together in pairs, then we will need two monophone voices – and this is true

even if the phones switch their pairings. In a situation without any folds, the number
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of monophone voices is just the maximum height of a hold-tree. When we have folds

in the graph, we can count the number of necessary monophone-voices by finding

the node with the maximum number of in-edges and adding one. (This method also

works for phone-voices, by summing the monophone cardinalities on the in-edges

plus the cardinality of the node.)

At the third level up, we group the monophones into hold-trees, asking how

many hold-voices would we need to sing the polyphone? If there are no folds in

the graph, then only one hold-voice is required. In the general case, the number of

hold-voices required corresponds to an optimal coloring of the fold-graph (i.e. such

that each node has a color and two folding nodes never share a color).

Hold-voices cannot sing folds, so a fold anywhere in polyphone will break the

graph into multiple trees to be sung by different voices. Here the size of a fold-family

between any two hold-trees (i.e. the number of gold edges) doesn’t make a difference,

since the two trees can be sung by two voices, no matter how intricately they overlap.

If a fold-clique of size three occurs, then we need at least three hold-voices. If

a no fold-clique of size three or greater occurs, then either two or three hold-voices

are needed. The case in which three are needed occurs when there’s an odd cycle in

the fold-graph.3

Figures 3–26, 3–27, and 3–28 show three graphs (all from the Ricercare a 6

from the Musical Offering by Bach), which are three-colored such that each color

3 [Olariu1991] gives a optimal, linear-time greedy algorithm to color interval
graphs.
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can be sung by a hold-voice. Figure 3–26, shows an odd cycle that requires a third

color; Figure 3–27 shows a larger graph component that also has a few odd cycles,

and 3–28 shows a 3-colored graph with 3-cliques (– in the general case we can’t

guarantee that a graph with 3-cliques is 3-colorable).

The number of phone-voices, monophone-voices, and hold-voices are three dif-

ferent ways of measuring the “complexity” of a polyphonic situation, in the sense

that they’re a rough measure of number of “independent” parts, for different ways

of defining independence. Figures 3–29 to 3–33 show these measures of complexity

or voice-independence on polyphone components of scores.

3.5.3 Hold-height and hold-depth “voices”

In Figures 3–34 – 3–37, polyphone structure is used to partition the notes of a

score into textural components in two complementary ways: by taking hold-depths

(i.e. distance from root) and hold-heights (i.e. distance from leaves) of each note.

These each give a partition into “voices” which can contain fold edges but not hold

edges.

This kind of partition offers a way of relating aspects of the texture that aren’t

related by the graph-edge relations, but are contextually related through their posi-

tions in the polyphonic structure. The “voices” are each represented by a color on

the score (we can imagine this also as instrumental or timbral color). Each voice has

its own pattern of occurrence and absence, projecting a rhythmic and pitch profile

that cuts across the voices and registers of the score.

Figures 3–38 and 3–39 show a variant of the same idea in which each height or

depth “voice” is made temporally continuous by allowing the next closest height or
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depth to stand in – for example, for the voice corresponding to depth 2, if no nodes

of depth 2 occur in the current subtree, then nodes of depth 1 (or 0) are used. The

result of this is an “orchestration” which is not a partition, but in which the voices

sometimes converge to sing in unison.

3.6 Future Work

This chapter introduced polyphone graphs as a way of visualizing and reasoning

about polyphonic relations on a score. There are many avenues available for future

research on the formal and graph-theoretic properties of these graphs, as well as

algorithmic techniques to be developed. Graph theoretic problems include coloring

methods and proofs of coloring properties, as well as methods and tractability proofs

for various kinds of subgraph isomorphisms (corresponding to polyphonic sub-score

isomorphisms).

We briefly touched on augmenting the graphs to include end-point coincidence.

In practice, it’s useful to have various graph-walking algorithms to propagate infor-

mation; one example is a walk that imitates a time-slice view of the score, so that

each “chord” or partial chord is addressed (– this requires end-point augmentation

or a simplifying assumption). Implicitly, we also associate data of any kind to the

nodes: quantities such as pitch-height, codes such as voice identities, and so on. We

have given a few sketches that integrate this data with polyphonic structure; these

kinds of techniques are an open field for invention. We have suggested a few tech-

niques for measuring and comparing polyphones and their subgraphs – there is room

here for expansion and experimentation as well.
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We have shown a few techniques for using polyphones to make sketches on scores

in order to show properties of texture and how they project elements of large-scale

form. These techniques are open to extension and innovation. We have shown how

polyphones can be used to informally make distinctions between different types of

texture, both between differing musical styles, and between sections of one score.

These distinctions could be made clearer, by exploring how polyphones could be

used to characterize different textural and stylistic procedures. Specific studies of

musical works or corpora would also be of value, for example making a taxonomy

or map of polyphonic types, or showing how polyphonic patterning projects formal

structure.

We noticed that fold-cliques of size three or greater are rare in the complex

polyphonic music we looked at, but it’s not clear why this is, what other stylistic

factors contribute to this, or whether they can be found in more abundance in other

corpora. In this chapter, we have limited our example application to note-texture,

but polyphones are applicable to any set of structures that project temporal intervals

(– in the next chapter, we will apply them to pitch-class sets). Applications to other

musical (and non-musical) structures offer themselves for study: for example, if we

take a multi-voice (or multi-instrumental) score, and divide each voice into phrases,

then the texture of overlap and inclusion of these utterances can be described poly-

phonically – and these kinds of polyphones may look very different from polyphones

of note-textures.
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CHAPTER 4
N-sets

4.1 Temporal (N-)sets

4.1.1 Temporal Sets

Temporal sets describe the content, in terms of discrete elements, of temporal

intervals on a score. Given a score that consists of a set of structures, any temporal

interval (ti, to) on that score generates a corresponding subset of score structures that

take place during (ti, to). This set, together with its generating interval (ti, to), is a

temporal set on the score.

Each structure on the score is tagged with a label corresponding to the result

of a function f of the structure’s feature-set. f is any summarizing function, used

to partition the structure set such that each subset S of the partition is defined

by si, sj ∈ S ↔ f(si) = f(sj). By tagging each structure with its tag f(si), we

obtain a reduction (or projection) of the score to a set of tags, each with a temporal

interval corresponding to that of the structure it summarizes. The tags are subject

to equality-checking, but need not be otherwise comparable.

f should be selected such that the tags are interestingly multi-incident – if all

structures have different tags or all tags are the same, then the analysis is trivial.

Two structures may have the same temporal interval and the same tag: e.g. if

the structures are notes tagged by their pitch-classes, then a simultaneous chord
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containing an octave contains two structures with the same temporal interval and

same tag.

Temporal sets on tagged structures afford identification of timespans with tag-

sets that are set-related to one another (e.g. equal, included, intersecting, disjoint),

or timespans that are set-related to sets of heuristic (e.g. semantic) interest.

4.1.2 Temporal N-Sets

If we suppose that structure onsets are of particular interest, and seek all

temporal-sets containing a unique subset of the structure-onsets on a score, the

result is a quadratic number of temporal sets – i.e. if there are m structure-onsets

on the score, then there are m+ (m− 1) + ...2 + 1 = m(m+ 1)/2 temporal sets with

unique structure-onset content.1

Temporal N-sets are a subset of these: intervals which are informative with re-

spect to a selected tag function of the score structures. N-sets are those temporal-sets

that are locally maximal with respect to their tag content: extending the temporal

interval of an N-set increases the cardinality of its set of tags.

Suppose we have a temporal set T on a score, where T is defined by the temporal

interval (ti, to): (ti ≤ to ∈ [t0, t1...tm] of ordered structure-onsets), and generates a

corresponding subset of tagged score-structures with tag-set of cardinality N (i.e.

there are a total of N different tags occurring in the time interval). Then T is

1 Using both structure endpoints for each structure, i.e. including sets of onsetless
“tails” of structures as interesting temporal sets, we have m′ = 2m endpoints to con-
sider. Including both endpoints requires only a trivial complication of the definitions,
properties, and algorithms as they are presented here.
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a temporal N -set if and only if it is locally maximal. T is locally maximal if the

temporal interval (ti−1, to) generates a temporal set with tag-set cardinality > N (or

if i = 0) and the temporal interval (ti, to+1) generates a temporal set with tag-set

cardinality > N (or if o = m). Since expanding the interval of an N-set gives a larger

set of tags, the interval of the N-set is locally maximal with respect to its tag-set.

On a score with m different structure-onsets and t different structure tags, there

are at most m ∗ t temporal N-sets (justification for this to be found in the next

section). N-sets are the most informative temporal sets because they express the

local boundaries of a given set of N tags. The events to the outside (i− 1 and o+ 1)

are known to break the set by containing tags not contained in (i, o).

Temporal N-sets give a view of what happens when, what doesn’t happen when,

and what things happen more or less “together.” From a global point of view,

this can give a picture of (musical) form – does the score have different sections,

marked by the presence and absence of particular structures? Are these obtained

through contrasts, or gradual transformations? Is there a thematic or textural com-

mon element running through the whole piece? Whereas a traditional account of

musical form consists of a single, hierarchical, top-down partition of the score into

temporal segments, a more flexible view is afforded by a multidimensional picture

with overlaps and contradictions included. N-set analyses of different structures (or

structure-reductions) need not be reconciled; and a single (non-trivial) N-set analysis

includes structured overlaps and inclusions.

The disposition of shapes and themes, and their relations, might give a discursive

or narrative sense of “what’s happening” in a score, where “what” are structurally
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identifiable musical objects or features. But the same process of identifying temporal

sets can be used on the lowest-level structures. Our primary application takes notes

as structures, summarized by their pitch-class, in order to build a sense of harmony

and tonality, or of atonal pitch-structure.2 This application is so central to music

that pitch-class (pc) N-sets have their own name: PcNs.

The notion of pitch-class sets is common in theory and analysis of atonal (e.g.

20th-Century) music – music without the traditional notions of tonality (keys) and

harmony (chords).3 The extension of pitch-class sets to PcNs – a systematic, ex-

haustive structural (and structurable) analysis of the pitch-class sets on a score – is

our innovation.

The remainder of this chapter provides algorithmic specification and analysis

(Section 2), discussion of structural properties (Section 3), and illustrative applica-

tions of PcNs to both atonal and tonal music analysis, with attention to related

music-theoretic and music-computational literature (Sections 4 and 5).

2 Pitch-class is pitch with octave equivalence (i.e. such that middle C and high
C have the same pitch-class: C). The common practice in Western music is to use
12 pitch classes, so this is taken as an assumed basis (which is generalizable). In
standard notation, each pitch class can be “spelled” in a number of different ways
(e.g. C] v.s. D[), but these share a piano key and a midi number (per octave), and
are considered to be the same pitch class. By convention, pitch classes are named
{0...11} with C = 0.

3 The music-theoretic concept of pitch-class sets is due to [Forte1964, Forte1973].
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4.2 PcN Definition and Algorithm

We discuss PcNs, with the understanding that the generalization to other tem-

poral N-sets is straightforward.

A pitch-class N-set, or PcN for short, is a maximal temporal interval on a score,

during which a specific set of N pitch classes occurs. Maximal means that both the

next and previous (onset) events in the score contain a pitch class outside the set, or

the next or previous events do not exist (i.e. at the beginning or end of the score).

The pitch classes just outside the interval which are not in the PcN set break the

PcN.

The score provides a sequence of time points at which one or more notes enter,

where each note has a pitch class. Under the current definition, PcNs are restricted

to include onsets, such that if we have two notes A and B with the same onset, and

A ends before B, we do not obtain a set including just the tail end of B. However,

if a third note C enters while the tail of B is still sounding, we do obtain the set of

B and C. It is possible to include both onsets and note-endings, but the restriction

simplifies matters and probably finds the most perceptually salient sets.

When several notes share an onset, they are found together in all sets in which

they appear, since no temporal cut can separate these notes into different sets. Al-

lowing chords to be divided arbitrarily would give an unwieldy combinatorial number

of sets. It is common, however, for music theorists carrying out pitch-class set anal-

yses by hand to select such divisions. We will approach this problem by using subset

matching on the set of PcNs obtained: in this way we stand a chance of finding

relevant relations between PcNs without generating a powerset in advance.
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The maximum cardinality of any PcN is 12 – or, more precisely, the cardinality of

the set of pitch classes on the entire score, which is at most 12 for the standard pitch-

system we’re assuming. In the general case for N-sets, the maximum cardinality is

the cardinality of the total set of tags. The N-set of maximum cardinality is trivially

the entire set of structures, with a temporal span equal to that of the score.

Figures 4–1 and 4–2 show all PcNs on a score. The first panel of Figure 4–1

shows the score with notes tagged and color-coded by pitch-class. The remaining

panels in both figures show PcNs of cardinalities 1–6 (there are a total of 6 pitch-

classes on this score).

If there are m structure-onsets on a score, then the number of PcNs on the score

can be upper-bounded at 12m; in the general case if there are m structure-onsets and

t different structure-tags on the score, then the number of N-sets is bounded at t∗m.

This is because there can be at most one N-set of a given cardinality N that starts

at each structure-onset. Given a cardinality N and a structure-onset where the N-set

should start, it takes time at most O(m) to determine where the N-set should end

(i.e. by stepping through subsequent structure-onsets until a set of size N is obtained

and the next step overshoots N). An N-set candidate discovered in this way has a

correct end-point given its starting point; but we do not know whether its starting

point is the “maximal” (i.e. earliest) one for the tag-set obtained. Supposing we had

already obtained N-sets of cardinality N for the all of the previous starting-points on

the score, we need only check that the current candidate is not temporally contained

in any of these previous N-sets, and since there are at most m N-sets of cardinality N

starting at an earlier time, this check takes O(m) time. Since O(m)+O(m) = O(m),
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it takes O(m) time to discover and verify the maximality of each N-set. Therefore

we will be able to find all of the N-sets on a score in O(t ∗m2) time.

Figure 4–3 shows this method (for PcNs), but with maximality-checking car-

ried out after the candidate-enumeration phase (which could be less efficient unless

cleverly organized).

It’s possible to optimize the algorithm (without improving the asymptotic run-

ning time) by noticing that we need not attempt to build a N-set starting on every

structure-onset; we can take advantage of the structure of breaks. Once we obtain

an N-set p with cardinality N and endpoints (pi, po) that breaks on some event po+1,

we know that any N-set of cardinality N starting after pi but not including po+1

will have the same tag-set as p, and therefore will not be maximal. Therefore, we

can begin by including po+1 in the next potential N-set, work backwards to find out

how many previous structures should be included (such that not more than N tags

are obtained), and then work forward from po+1 to find out how many subsequent

structures should be included (such that exactly N tags are obtained). If no N-set of

cardinality N is obtainable from po+1, we continue sequentially with po+2, and so on.

Although we look both backward and forward for each N-set, the total number

of steps taken to find one N-set is still linear (O(m)), and is only one more than the

number of steps taken by the forward-only search (i.e. since we seek to overshoot

the bounds of the N-set on both sides). This modification to the algorithm is more

efficient because it avoids having to start a search at every event, and also avoids

finding redundant non-maximal N-sets, so the verification step is no longer needed.

Pseudocode (for PcNs) is shown in Figures 4–4 and 4–5
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Find One PcN
Input:
• E: a sequence of events (e1, e2...em) such that each event

is a set of pitch-classes.
• N: an integer (0 < N < 12).
• S: a starting-point on E (i.e. es).

Method:
if |es| > N then return Null else

let loop index pcn set =
if index = m then

if |pcn set| = N then return (S,index,pcn set)
else return Null

else
let next union =

⋃
(pcn set, e(index+1)) in

if |pcn set| = N and |next union| > N
then return (S,index,pcn set)
else if |pcn set| < N and |next union| > N
then return Null
else if |next union| ≤ N
then loop (index + 1) next union

in
loop S es

Find All PcNs
Input:
• E: a sequence of events (e1, e2...em) such that each event

is a set of pitch-classes.
Method:

1. results = {(1,m,
⋃

E)};
total card = |

⋃
E|

2. for N = 1 to (total card - 1)
for S = 1 to m,

results ⇐ find one PcN(E, N, S)
3. For each result p = (pi, po, pset), if there exists some other

result q = (qi, qo, qset) such that pset = qset and qi < pi and
qo ≥ po then remove p from the result pool.

Figure 4–3: (Unoptimized) algorithm for finding all PcNs on a sequence. The loop

is a tail-recursive iteration, not a true recursion.
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Find One PcN (v.2)
Input:
• E: a sequence of events (e1, e2...em) such that each event

is a set of pitch-classes.
• N: an integer (0 < N < 12).
• S: a point on E (i.e. es) that will be in the resulting PcN.

Method:
if |es| > N then return Null else

let forward loop start index pcn set =
if index = m then

if |pcn set| = N then return (start,index,pcn set)
else return Null

else
let next union =

⋃
(pcn set, e(index+1)) in

if |pcn set| = N and |next union| > N
then return (start,index,pcn set)
else if |pcn set| < N and |next union| > N
then return Null
else if |next union| ≤ N
then forward loop start (index + 1) next union

in

let backward loop index pcn set =
if index = 1
then forward loop index S pcn set
else
let prev union =

⋃
(pcn set, e(index−1)) in

if |pcn set| ≤ N and | prev union| > N
then forward loop index S pcn set
else if | prev union| ≤ N
then backward loop (index - 1) prev union
else return Null

in

backward loop S es

Figure 4–4: Inner loops for optimization (Figure 4–5) of Figure 4–3. The forward and
backward loops are linear iterations written in tail-recursive style, not true recursive
functions.
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Find All PcNs (v.2)
Input:
• E: a sequence of events (e1, e2...em) such that each event

is a set of pitch-classes.
Method:

1. results = {(1,m,
⋃

E)};
total card = |

⋃
E|

2. let pcn end index (start,end,set) = end
3. let outer loop N S =

if S > m then return results else
let pcn = find one pcn v2(E, N, S) in %(call to

Figure 4–4)
results ⇐ pcn;
if pcn = Null then outer loop(N, (S+1))
else outer loop (N,(pcn end index(pcn) + 1))

4. for N = 1 to (total card - 1)
outer loop N 1

Figure 4–5: Optimization of Figure 4–3; likewise finds all PcNs on a sequence.

4.3 Structure of Sets of N-Sets

Running the N-set (or PcN) algorithm locates all maximal temporal sets on the

score. These have a structure of inclusion and overlap with one another, since any

one structure may participate in several N-sets. This section describes structural

properties of a natural set of N-sets obtained from one application of the N-set

algorithm (not a mixed set pulled from a union of structure-sets or tag functions).

We can visualize the structure of a natural set of N-sets as a polyphone, since

polyphones describe the structure of temporal overlap and inclusion of a set of tem-

poral intervals. Because of the way N-sets are defined, this polyphone has particular

structural properties:
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1. Monophones of cardinality 1: Monophones are sets of phones (polyphonic

atoms) that have the same temporal interval. Each monophone in the N-set poly-

phone contains just one N-set: by definition, it is impossible for two different N-sets

to have identical time intervals.

2. One top: The polyphone graph of N-sets contains just one connected com-

ponent, with a single root at the top. This is because there is an N-set that includes

all of the structures in the score, temporally including all of the other N-sets. This

corresponds to a “top” node of the polyphone, with hold -edges to all of the other

N-sets.

3. Meet N-sets: If two N-sets x and y fold (overlap) with one another, giving

a polyphone edge F (x, y), then their pivot (temporal intersection) is also an N-set

in the polyphone. The pivot interval is p = (yi, xo). Because of the construction of

x and y as maximal intervals, we know that xo+1 contains an element not in p, and

likewise that yi−1 contains an element not in p. Therefore p is a maximal interval for

its set.

4. Join N-sets: If two N-sets x and y fold with one another F (x, y), then there

is another N-set z in the polyphone such that tagset(z) =
⋃

(tagset(x), tagset(y)),

and there are polyphone edges H(z, x) and H(z, y) (i.e. x and y are temporally

included in z). However, we do not know whether zi = xi, nor whether zo = yo, since

it could be the case that tagset(xi−1) ⊆ tagset(y) or tagset(yo+1) ⊆ tagset(x). But

since we know that the set of z is obtainable at minimum by (xi, yo), we can infer by

construction that this interval or a temporal extension of it is an N-set with the set
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z. This rule also holds if xo+1 = yi (i.e. x and y don’t fold, but no structure occurs

between the end of x and the beginning of y).

5. Bottoms don’t fold: There are a set of bottom N-sets that are included in

other N-sets (i.e. with hold edges H(other, bottom)), but do not include any other

N-sets (i.e. ¬∃x : H(bottom, x)). These bottom N-sets do not participate in any fold

edges (¬∃x : F (bottom, x); ¬∃x : F (x, bottom)). Proof by contradiction: given two

bottom N-sets that fold, then by 3 above there is a meet N-set that is included in

both; therefore our givens are not bottom N-sets.

Figure 4–6 shows the polyphone of PcNs from Figures 4–1 and 4–2.

4.4 Analysis of Atonal Pitch-Structure

In this section we show how PcNs can be used in similar analyses to those done

by music theorists, contributing increased formality, flexibility, and the availability

of a large amount of organizable information.

While the pitch relations in tonal music are dominated by a system of chords

and keys, the pitches in atonal music may be organized in any number of ways.

One way that analysts can approach atonal music is to investigate the use of one

or several pitch-class sets on a piece. This has been a common practice since Allen

Forte’s introduction of the method in the 1970s.4 Forte’s essential contributions

include the concept of the unstructured set of pitch classes as a musical object and

a method for normalizing pitch-class sets (described in the next subsection).

4 [Forte1973], predated by the less well-known [Forte1964].
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PcNs are a method to locate a set of pitch-class sets on a score. Music analysts

usually find pitch-class sets “by hand,” by looking at and listening to the score. PcNs

offer the usual advantages of computation: convenience and scale. They also offer a

mathematical formality, guaranteeing a particular structural meaning for each iden-

tified temporal interval by omitting temporal intervals that do not have informative

boundaries, and by finding a complete set of informative intervals.

A pitch-class set analysis only begins by identifying pitch-class sets of interest

on a score, then a musical interpretation takes place, taking into account the musical

context of the pitch class sets, their relations to one another, etc. Illustrations in

this section show sets of PcNs organized by simple functions of pc-set relations and

temporal relations – interpretation is beyond our current scope.

Music analysts do not typically make any claims as to the completeness of their

pitch-class set analysis – in any case a musical analysis is always incomplete, and

there is no reason why a discursive interpretation of a musical score should include

“all” available information. However, with PcNs, it is possible to make definite

statements about a systematic accounting of pitch classes that is complete with

respect to certain formal conditions: though it is possible to obtain other pitch-

class sets (e.g. by slicing chords in different ways), PcNs show all locally maximal,

temporally compact pitch-class sets on a score. In this sense, PcNs offer a more

formal approach than the traditional method. In case of an aesthetic or interpretive

selection of pitch-class sets, PcNs show a formal background against which these can

be positioned – or from which they can be selected.
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Finding pitch-class sets by hand is time-consuming; a computational method-

ology for finding, organizing, and displaying these reduces the manual labor that

precedes a music-analytic discussion; it also affords a quick look at a piece of music

to get a sense of how its pitch organization operates, even if no in-depth interpreta-

tion results from this, and this rapidity allows impressionistic observation of a larger

number of scores.

Since PcNs make pitch-class sets computationally available, these can be made

a part of a larger computational analytic process or system, and corpora of these

structures (and structures of these structures) can be subject to searching, counting,

comparison, and other data analyses.

4.4.1 Forte-normalization

Forte’s normalization scheme affords the identification of different pitch-class

sets that are the same under transposition (i.e. geometric translation modulo 12),

for example {0; 1; 3} and {5; 6; 8} and {0; 2; 11} have the same normal form. Since

pitch perception is typically relative, pitch-class sets with the same normal form

sound very similar, and each normal form can be related to a harmonic “quality.”

Tonal harmonic units, such as triads, seventh chords, and scales, can be specified by

pitch-class sets; Forte’s system is a natural generalization of this.

Forte’s original normalization scheme also identifies different sets that are the

same under transposition and/or inversion (i.e. geometric reflection): for example

{0; 1; 3} and {0; 2; 3}. However, this normalization is too strong for some applica-

tions, since the inversionally related forms do not sound as similar as the transposi-

tionally related forms: for example minor and major triads are inversionally related.
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A commonly used variant of Forte’s method therefore keeps inversions separate, and

only uses transpositional normalization.

The Forte-normal form without inversional invariance of a pitch-class set can be

obtained by finding the transposition of the set that includes 0 and has the minimum

possible interval between 0 and the largest number in the set. For example, the

set {4; 8; 9; 11} has transpositions {{2; 3; 5; 10}; {1; 6; 10; 11}; {2; 6; 7; 9}; {0; 1; 3; 8};

{4; 8; 9; 11}; {0; 4; 5; 7}; {3; 7; 8; 10}; {1; 5; 6; 8}; {3; 4; 6; 11}; {1; 2; 4; 9}; {0; 5; 9; 10};

{0; 2; 7; 11}}; we select {0; 4; 5; 7} as the normal form.

The Forte-normal form with inversional invariance of a set can be obtained by

finding the Forte-normal form of the set (as above) and the Forte-normal form of

the set’s inversion (as above), and selecting the one of these that is most “tightly

packed” to the left, with smaller intervals first. For example, the Forte-normal form

(no inversion) of {2; 6; 9} is {0; 4; 7} and the Forte-normal form of the inversion of

{2; 6; 9} is {0; 3; 7}. Since {0; 3; 7} has the smaller interval to the left, it is the

normal form (with inversion) of the set.

A pitch class set can be fully specified by a Forte-normal form, a transposition

number, and an indication whether an inversion is required to get from the normal

form back to the original set: a set is either in “inverted” (I) or “prime” (P ) form

compared to its normalization. Our convention is as follows: if the set is not inverted,

then simply transpose each pitch-class in the normalized set by the transposition

number to get the original set. If the set is inverted, then transpose the normalized

inversion by the transposition number. For example, to decode the normalization
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({0; 3; 7}, trans = 2, inv = I): begin by taking the normalized inversion of {0; 3; 7},

which is {0; 4; 7}. Then transpose this by 2 to obtain {2; 6; 9}.

4.4.2 Stockhausen: Klavierstück III

This subsection shows PcNs close-up on a small score, and the next subsection

shows a more zoomed-out view on a larger one.

As a first example of an atonal PcN analysis, we take Stockhausen’s Klavierstück

III. This score is selected because it is very short, and because David Lewin’s pitch-

class set analysis of it [Lewin2007] provides a point of departure.5 This is a difficult

piece, however, and a pitch-class set analysis of it does not yield obvious through-

going structure.

Lewin selects the normalized set {0; 1; 2; 3; 6} and identifies some of the instances

of it on the score, where instances are allowed to skip some notes. These selected

sets are shown in Figure 4–7. Many of Lewin’s {0; 1; 2; 3; 6} sets will not show up

as PcNs, because they contain one, two, or three extra notes. To find these kinds of

sets, we can ask which PcNs are a superset of {0; 1; 2; 3; 6} (i.e. where the subset is

a Forte-normal form that can occur in the superset in any transposition/inversion).

The result of the Forte-superset function is an account of how the subset can

be found in the superset: by inverting and transposing the subset, and by adding

extra notes. In some cases, there are several ways of doing this. For example, given

5 Lewin’s discussion goes in many directions beyond identification of pitch-class
sets. Rather than engaging with Lewin’s full analysis, we only take his initial set
analysis as an example of what such an analysis might look like.
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the subset {0;1;2} and the superset {0; 1; 2; 3}, there are two instances of the subset

within the superset: ({0, 1, 2}, trans=0, inv=P , extra={3}), and ({0, 1, 2}, trans=1,

inv=P , extra={11}). The extra notes are normalized with respect to the transpo-

sition, to facilitate comparisons. For example, in the Klavierstück, when looking at

different sets from the point of view of whether they are supersets of {0, 1, 2, 3, 6},

we obtain two different PcNs analyzed as ({0; 1; 2; 3; 6}, trans=4, inv=I,extra={7})

and ({0; 1; 2; 3; 6}, trans=11, inv=I,extra={7}). Since they have the same inver-

sional identity and the same normalized extra notes, we can infer that the supersets

themselves are transpositionally related.

Figures 4–8 to 4–10 show all of the PcN sets and supersets with one or two extra

notes for {0; 1; 2; 3; 6}. These include some sets not appearing in Lewin’s analysis

(– he makes no claim to exhaustivity, since he selected a particular subset of pitch-

class sets based on his interpretation of the score; it may nonetheless be of interest to

observe what he omitted, since part of his narrative was about following the incidence

of a particular pitch-class set). Since the score is covered by plus-two supersets, we

haven’t shown plus-three supersets (which include some of Lewin’s sets). The sets,

plus-one, and plus-two supersets together form a sort of “heat map” of the incidence

of the set on the score.

In Figures 4–11 to 4–13, we carry out the same “heat map” process for several

pitch-class sets on the score – in particular, all of the pitch-class sets of cardinality 3–

7 that show up at least twice on the score (with no extra notes). The figures show an

abstract of locations of sets and plus-one and plus-two supersets. These figures show

that PcNs make available many different points of view, such that many alternatives
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to Lewin’s starting set are available. We make no claims about the relative salience or

theoretic interest of all of these different sets; but we offer an efficient and systematic

computational method for finding these kinds of structures, such that a large amount

of organized pitch-class set information is available for further analytic consideration.

The heat-maps for different sets in Figures 4–11 to 4–13 are related to one

another by temporal as well as abstract set-theoretic overlap and inclusion relations.

For example, all of the pitch-class sets shown in Figure 4–11 are subsets of {0;1;2;3;6}

(Lewin’s set), which is shown at the bottom of that figure. Therefore we can take

this figure not as a set of alternative points of view, but as one picture of how some

of the fragments of Lewin’s set appear on the score.

Polyphones of PcNs offer a means of relating different pitch-class sets with re-

spect to their interaction on the score. A simple way that PcNs are related is by

being (temporally) included in one another. Figure 4–14 shows excerpts from the

polyphone (holds only; folds not shown) of PcNs on the score; red nodes are normal-

ized {0,1,2,3,6} sets, other colored nodes are those that appear in a hold-relation to

these sets more than once on the score. This shows us a bit of the pitch-class-set

context surrounding the set of interest. The purpose of this figure is to briefly show

that we not only have used PcNs to find pitch-class sets on the score, but that their

polyphonic relations on the score are also available.
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[m.5]

score: 9e28t9|8e5324|(87)|6|54t|2(3e)|(859)|(1t)45| ...

P: [8] 9e28t9|8e t|2( e)|(859)|( t)

p: [5i] 8t9|8e5 t| ( e)|(859)|( t)

p6: [11i] e5324 4 |2(3e)|( 5 )

P6: [2] 5324|(8 ) 4 |2(3 )|(85 )

p9: [2i] 2 |(87)|6|5

P8: [4] 4|( 7)|6|54t

[m.10] [m.15]

score cont: |(1t)45|637|4(e8t)0|9(714)853|6e43|2(1t)|8|709|e

P8: [4] 45|6 7|4( t)

p8: [1i] (1 )45|6 7|4 ; (714) 5 |6

P9: [5] 5|6 7| (e8 ) ; (7 )85 |6e

P1: [9] 3 | (e t)0|9

P2: [10] (e t)0| ( 14)

p6: [11i] 53| e43|2

p5: [10i] 43|2(1t)

Pe: [7] (1t)|8|7 9|

p2: [7i] (1t)| |70 |e

Figure 4–7: Lewin’s selection of {0;1;2;3;6} sets from Stockhausen’s Klavierstück III
(copied from [Lewin2007]). The top and middle rows represent the score with num-
bers as pitch-classes (t = 10 and e = 11); parentheses enclose simultaneous onsets.
Notations in square brackets give the transposition and inversion with relation to
the normal form – e.g. Lewin’s “P” is ({0; 1; 2; 3; 6}, trans=8, inv=P ), notated as
[8]; Lewin’s (lowercase) “p” is ({0; 1; 2; 3; 6}, trans=5, inv=I), notated as [5i].
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4.4.3 Stravinsky: Augurs of Spring

Allen Forte’s The Harmonic Structure of the Rite of Spring is a detailed account

of the most important pitch-class sets on that score and how they relate to each other,

structuring harmonic and melodic material. This is not a book that one would read

– it’s a book that demands that its reader have a few scores of The Rite of Spring

(both the orchestral score and piano reduction), some colored pencils, and a piano.

Or, a computer system that can find pitch-class sets, organize and display them from

different perspectives, and play them back.

PcNs generate a large number of these kinds of points of view, which can be

interactively explored – but this document is constrained (like Forte’s book) to show

a small amount of static information. It’s hard to generate a small number of low-

dimensional projections that effectively summarize the amount of structural infor-

mation generated by a PcN analysis on a score, and so the flexible, programmable

context is an essential aspect of the medium – rather than generating an analytic

picture, PcNs are part of an environment for exploration.

PcNs could be used to follow Forte’s text, or to script a curated tour through

some of his main points, or to produce a new curated analysis of any score. They

can also be used more casually to take a quick, impressionistic look at a score in

order to see generalities about its organization.

The illustrations in this section offer zoomed-out, informal impressions that

nonetheless give intuition into harmonic and formal aspects of this score, showing

the utility of pitch-class sets and PcNs. We show a few pictures of The Augurs of

Spring, the second movement of the Rite. Each panel of Figures 4–15–4–18 shows
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all of the PcNs for a given Forte-normalized set, with the transpositions of the prime

form in blue and transpositions of the inverted form in green. Twelve different

sets are shown, out of a total of 185 such pictures generated for pitch-class sets of

cardinality 3–8.

In Figure 4–15, observe that PcNs with the same set seem to cluster in temporal

zones, designating formal sections by their harmonic material. In Figure 4–16, we

can see the “evolution” of a pitch-class set (i.e. the use of three similar sets) over

part of the score (mm. ∼120–150). Figures 4–17 and 4–18 show a few other sets,

showing partial coincidences of related sets.

Figures 4–19, 4–20, and 4–21 show some of the same sets as the previous

figures, this time differentiated by their non-normalized pitch-class set. This gives

a view of how each set is being used: often one version of the set is predominant,

but there is one section in particular which is less harmonically static, using multiple

versions of the same sets in close proximity.

From this brief, impressionistic point of view, we can surmise that the disposition

of pitch-class sets on the Augurs of Spring is structure-bearing, and that the repeti-

tion and emphasis of pitch-class sets predicts that they strongly inform qualitative

harmonic character and contrast of different sections.

The Rite of Spring is an atonal work, in the technical sense that it does not

use the system of harmony and keys used in tonal music. A casual glance at PcNs

in a score can quickly show whether or not a score is tonal. For comparison with

the PcN organization of the Augurs of Spring, we show a few pictures of two tonal

scores: Mozart’s String Quartet Op. 90 (mvt. I), and Verklärte Nacht by Schoenberg
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(Figures 4–22–4–27). Although tonal scores often contain some differentiable zones of

pitch-class sets, they are also covered or almost covered by a few specific sets related

to the major and minor keys. Another approach to key-related sets is discussed in

the next section.

Flexibility of PcNs

Forte’s analysis of the Rite of Spring, like most other pitch-class set analyses,

does not strictly employ temporal sets as we have defined them (i.e. all of the pitch-

classes with onsets during a particular timespan). For instance, Forte separates

out melodic lines in the different instrumental parts. Because the PcN or N-set

algorithm is part of a programmable analysis environment, it can be run on different

subscores, and we can use different approaches to finding pitch-class sets on a score.

For example, we can run the PcN algorithm separately on the different voices (or

groups of voices), and compare the results. Figure 4–28 shows three different sets of

PcNs on three different instruments on a section of the Augurs of Spring.

In the PcN algorithm as described above, if a long note is sustaining it will be

included in all sets occurring during its duration. Supposing we want to include

onsets only, so that a long pedal tone doesn’t get included in all harmonies: instead

of altering the PcN algorithm itself, we simply have to define the structures upon

which the algorithm is being run as the onsets of the notes rather than their entire

durations.

Another way of making PcNs is to break a score into subscores (e.g. with a

heuristic such as splitting at long-enough rests), and perform the PcN algorithm on
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each section separately so that e.g. if a voice plays “ABC (long rest) DEF”, we won’t

obtain a segment “C (long rest) D” as a PcN.

While the function of PcNs on all of the notes in the score is a useful harmonic

sketch, this is just one application of N-sets – a general structuring method. The

contextual flexibility of N-sets (and the principle of structural relativity) means that

their work is never done.

4.5 Tonal Pitch-Structure: Key Assertions6

Tonality is a complex and flexible musical phenomenon in which pitch-classes

take on particular, asymmetric relations to one another within a dynamic musical

context. A key is a particular set of such relations.

Furthermore, a key involves a distinction between pitch-classes that are “in” the

key, and those that are not. This distinction is not straightforward, however, since

music in a given key can “alter” its notes, “borrow” from or “tonicize” other keys, or

“ornament” with out-of-key notes, while still being considered (music-theoretically

and arguably cognitively) to be in the given key.

Key induction – determining the keys of a score – is a much-researched topic,

since it is first step toward a more detailed harmonic and formal analysis, as well

as being of interest in music cognition and having practical applications (e.g. music

transcription).

In this section, we give an overview of how PcNs can be used to gain detailed

information about the keys of a tonal score. This is done through a heuristic reduction

6 Part of this section is adapted and expanded from [HandelmanSigler2013].
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of the set of PcNs to a subset of pitch-class sets hypothesized to be informative about

the semantic notion of key. The particular set of pitch-class sets we take to be of

interest is one hypothesis among potentially many – for instance another analysis

might focus on particular harmonic progressions rather than diatonic key areas. The

purpose of this section is to show what it looks like when we start with a structural

analysis (PcNs), and push these toward a more traditional music-theoretic view.

This affords a comparison with an existing literature of computational methods for

locating key areas on a score and a discussion of the mathematical and empirical

assumptions inherent in different kinds of computational analysis.

4.5.1 Key-Asserting PcNs

In this experiment, we define a set of “key-asserting” PcNs based on set-theoretic

relations to the diatonic sets. We define the major and minor keys by their pitch-

class sets. C or 0 major is {0,2,4,5,7,9,11}, and C or 0 minor is {0,2,3,5,7,8,11}.7

The other 11 major and 11 minor keys are transpositions (translations) modulo 12.

If a pitch-class set is a subset of exactly one key, then it “asserts” that key. If a

pitch-class set is a subset of exactly two keys, it asserts the intersection of those keys:

7 The major set is unproblematically defined, but minor keys are more complex.
The set we have selected for this definition, called “harmonic minor,” was selected
for its maximal intervallic differentiation from the major set. The “natural” minor
(and other “modes” or rotations of the major set) are not distinguished from the
major by pitch-class sets, so any set-based assertion of a “major” key subsumes
these possibilities, which require a different structural approach to be distinguished.
The ascending upper tetrachord of the “melodic” minor is likewise a subset of the
major set.
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a double-key assertion. There are also triple-key (etc.) assertions, as well as other

set-theoretic relations describing e.g. intersection or superset relations to keys, but

for this study we use only single and double assertions, making a (heuristic) selection

of PcNs that are the most unambiguously telling about diatonic key areas, rather

than creating a key-related label for every PcN.

Starting from the major and minor generating sets above, there are 39 (normal-

ized) single-key asserting sets (12 for each major and 27 for each minor key), and 23

double-key asserting sets.

We add to these the set of pitch-class sets that are subsets of the minor set

plus the major sixth, in such a way that the set cannot be interpreted as a plus-one

superset of a subset of any other key – there are 6 such sets for each minor key (–

this helps cover parts of the “melodic” version of the minor scale.)

Tables showing all of these sets are in the appendix to this chapter. There are

a total of 351 normalized pitch class sets; 283 of these are not key-asserting under

this model.

Double-key assertions

Double-key pitch-class sets are defined as being a subset of exactly two keys.

There are not a Cartesian number of double-keys, because not all intersections are

only included in two keys. There are five intersections that yield double-keys – (0

maj, 9 min), (0 maj, 0 min), (0 min, 9 min), (0 maj, 5 maj), and (0 min, 4 min).

Each of these has a dual – except (0 maj, 0 min) which is its own dual – so that 0

major can also be paired with 7 major and 3 major, and 0 min can also be paired

with 3 minor, 3 major, and 8 major.
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These relations have music-theoretic names: (0 maj, 0 min) is parallel ma-

jor/minor; (0 maj, 9 min) is relative major/minor, (0 maj,5 maj) is the (major)

subdominant/dominant. (0 min, 3 min) is the parallel minor of the relative major,

and its dual is the relative minor of the parallel major. (0 min, 4 min) is the relative

minor of the dominant, its dual is the relative minor of the subdominant. Minor

subdominants and dominants are not double keys.

Figure 4–29 compares the double-keys with Schoenberg’s “regions” [Schoenberg1969].

Double-keys involving the major are identical to Schoenberg’s closest regions of ma-

jor, but double-keys in minor are different from Schoenberg’s closest regions of minor:

Schoenberg selects the minor dominant and subdominant, which are not double-keys,

but not the minor keys on the minor and major mediants and submediants, which

are double-keys. From this we can conclude only that the minor dominant and sub-

dominant are closely related but fully distinguishable from the tonic minor, and that

the sub/mediant minor keys may be theoretically (or “functionally”) less related,

but share a unique pitch-class intersection.

4.5.2 Structure of Key-Asserting PcNs

Once we find all PcNs on a score, it’s trivial to label each one that asserts a

single or double key. For this analysis, these will be the only PcNs used. Figure 4–30

shows key-asserting PcNs of four different keys on a score.

Each key-asserting PcN can tell us something about what key area or intersec-

tion of keys we are in from a pitch-class set-theoretic point of view. This does not

directly correspond to any music-theoretic or cognitive notion of key, because it is

comparatively much too sensitive to detail, giving new key labels to brief digressions
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E e G* g B[ b[

A a* C c* E[ e[

D d F* f A[ a[
D[

G e E c]* C]

c* C* a A* f]* F]

f* F d D
B[

Figure 4–29: Schoenberg’s regions of the major and minor keys, with the reference
key in green and the most closely related keys in yellow. Double-key relations are
starred. Figures copied from [Schoenberg1969], p.20 and p.30 (stars added).

that would normally be taken as ornaments, borrowings from other related keys,

“passing” keys, or tonicizations (brief, inconclusive, formally subordinate excursions

into other keys). Figure 4–31 shows a sequence of brief key areas, giving a tonal

description that is more detailed than a typical key-labeling.

We do not make it a priority to heuristically reduce the set of PcNs to represent

the smoother, more summarized analytic level that is required by the typical defini-

tion of “key” – instead we examine the relations between these diatonic assertions,

and what they show on scores. We would like to be able to structure sets of PcNs into

higher-level configurations, in order to obtain a more global, contextual perspective

on how key asserting PcNs may behave together to form the outlines and the details

of tonality. Since PcNs have time intervals that overlap and are included in each

other, they can be structured polyphonically.
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A polyphonic analysis of the set of single-key PcNs shows the following. A PcN

from one key may only be included (polyphone hold) in another PcN in the same

key. This is evident by construction, since given PcNs X and Y and a key-set K, if

X ⊂ Y and Y ⊆ K, then X ⊂ K.

Therefore, if we reduce the polyphone graph to hold edges only, we obtain a

sequence of connected components where each component refers to one key. Since

hold graphs are rooted trees, each of these connected components has a top PcN

which contains all of the others. These top key PcNs are useful for summarization,

significantly reducing the number of PcNs needed to describe key.

Figure 4–32: Bach: Fugue No. 2 from WTC I (excerpt). Overlapping and included
PcNs asserting C minor. The “cis” (“compact integer set”) of each is its pitch-class
content. The largest, with set {0, 2, 3, 5, 7, 8, 11}, includes all of the others.

Figure 4–32 shows a hold tree of key PcNs: asserting segments in the same key

overlapping and included in one another, and all included in a top PcN.

Included PcNs within one of these one-key hold trees may fold (overlap) with

one another. But two top PcNs that are subsets of the same key sets never fold

169



with one another. This is because if two PcNs from the same key set fold with one

another, then there is a third PcN in the same key which includes them both (by

the “Join N-set” rule in Section 3 above).

Top PcNs in different keys may fold with one another (– they may be the heads

of fold families connecting their respective hold-trees).

Including the minor key plus-major-sixth PcNs in this analysis of the polyphonic

structure of single-key assertions does not change these inferences.

Now consider the polyphones of double-key PcNs on a score. The polyphones

of double-key assertions has the same structure as the polyphone of key assertions,

with an intersection of keys standing in for a key. Therefore, we can obtain a set of

double-key top PcNs, and proceed with those.

Double-key tops may be included in zero, one, or two single-key tops on the

score. Included double-keys imply a “region” of the superordinate key(s). They

do not provide new information about which key we are in, but they provide even

more fine-grained detail about what “part” of the superordinate single-key is being

expressed. Figure 4–33 shows double-key assertions within single-key assertions.

While this is of interest for a more detailed harmonic analysis, we do not pursue it

further here.

Double-key PcNs that are not included in a single-key PcN can contribute to an

analysis of key by offering information about events that are not covered by single-key

assertions. Figure 4–34 illustrates.

We can reduce the total graph of key-asserting PcNs to a graph of tops (i.e. with

no hold-edges). On the score, this translates into a set of temporal segments that

170



F
ig

u
re

4–
33

:
D

ou
b
le

-k
ey

as
se

rt
io

n
s

w
it

h
in

si
n
gl

e-
ke

y
as

se
rt

io
n
s,

gi
v
in

g
d
et

ai
l

ab
ou

t
ke

y
“r

eg
io

n
s.

”
E

x
ce

rp
ts

fr
om

B
ee

th
ov

en
,

S
tr

in
g

Q
u
ar

te
t

N
o.

16
,

M
v
t.

4.

171



F
ig

u
re

4–
34

:
T

op
si

n
gl

e
an

d
d
ou

b
le

ke
y

as
se

rt
io

n
s

at
th

e
b

eg
in

n
in

g
of

F
u
gu

e
N

o.
7

in
E
[

m
a
jo

r
fr

om
W

T
C

I
(B

ac
h
).

T
h
e

op
en

in
g

se
gm

en
t

is
in

th
e

d
ou

b
le

-k
ey

(i
n
te

rs
ec

ti
on

)
of

E
[

m
a
jo

r
an

d
A
[

m
a
jo

r,
an

d
is

n
ot

d
es

cr
ib

ed
b
y

an
y

si
n
gl

e-
ke

y
as

se
rt

io
n
.

172



are sometimes overlapping, sometimes abutting, and sometimes have gaps between

them, but are never contained in one another. Each segment is labeled with a single

or double key label, summarizing its pitch-class content with respect to inclusion in

the sets defined for the keys.

Coverage and Correctness

Figure 4–35 shows segments that are not covered by key assertions. For tonal

music, a great majority of a score is covered by key assertions.8 For uncovered

moments, one approach would be to develop further key-assertion-style labels (triple-

keys etc.) to obtain greater coverage; but it seems that a contextual analysis relating

these segments to surrounding keys would be more straightforward.

Since key assertions are structurally defined as PcNs with pitch-class sets that

are subsets of the defined pitch-class set for a diatonic key, they are always “correct”

in terms of the given diatonic definition. In some cases, however, the diatonic key-

assertion label is different from the music-theoretic (usually harmonic) analysis. An

alternative or augmentation to key-assertions might consider the location of triads

(and other chords) in PcNs, in order to capture this point of view.

8 A corpus of 83 string quartet movements (152175 notes) by Mozart was found
to be 97.25% covered by single-key assertions and 99.17% by single- and double-
key assertions together. A more chromatic tonal corpus of 52 piano pieces (206720
notes) by Liszt was 87.79% covered by single keys and 94.59% covered by both. For
comparison, Stravinsky’s Rite of Spring, an atonal work (35572 notes) is 56.48%
covered by single-key assertions and 71.32% covered by single and double assertions.
Schoenberg’s atonal Opus 33a (761 notes) is 65.44% covered by single-key assertions
and 84.01% covered by both.
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When a diminished seventh chord is followed by a major triad, the diminished

seventh chord is usually considered to be a borrowing from the parallel minor. The

diminished seventh chord is a symmetric chord that occurs in four minor keys, and so

by itself does not assert any key. Therefore its context determines the key assertion

– Figure 4–36 shows an instance where the diminished seventh chord’s preceding

diatonic context puts it in A minor, while a harmonic analysis would put it in C

minor.

Figure 4–37 shows “overlabeling” of keys, where the temporal zone intersecting

two diatonic keys produces a subset of a third (unnecessary and incorrect) key. In this

case, the key-assertion at the intersection doesn’t contain it’s own tonic note. Some

of the key-asserting sets as defined don’t express their key very well – a refinement

of the heuristic labeling of key-asserting sets might could ensure that certain tones,

intervals, or triads are present. Or, a reduction of the labeling of “top” key assertions

could leave out those that are completely covered by stronger assertions on their left

and right.

Subordinate Key-Assertions and a Heuristic for “Overall Key”

Only the top key-assertions for each key – those not included in other key-

assertions with the same label – are needed to see which key is where on the score.

We have not used the subordinate PcNs so far in our key analysis. But having

several subordinate asserting segments could mean that a key is better established,

or more certain. For example, a long PcN might be ambiguous for most of its extent,

becoming a key-assertion only towards the end. Subordinate segments show that the

key is asserted and re-asserted during the extent of the top PcN.
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Key-Profile Derivation Errors /120
Krumhansel-Kessler Psychological test data 12
Bellman-Budge Chord freq., 18th-19th C. 9
Temperley-KP Scale deg. freq., 17th-20th C. 8
Aarden-Essen Scale deg. freq., Ger. folk song 6
Sapp-Simple Theoretical model 4

Figure 4–38: Performance of key-profiles for guessing overall key in WTC I and II and
Chopin’s Preludes Op.28 [Sapp2011]. The key assertion method does just as well as
the “Sapp-Simple” key profile. Key profiles are from [Krumhansl1990, Bellman2005,
Temperley2007, Aarden2003, Sapp2011]

The total number of key assertions in each key is a heuristic for guessing the

“overall” key of a piece: it turns out that the key with the maximum number of key-

assertions, including subordinate PcNs, is often key of the piece. This heuristic gives

a correct result on 97.9% of the pieces in the Well Tempered Clavier, Books I and II

combined; and 88.4% correct on the corpus of Chopin’s Preludes and Nocturnes.

Another obvious heuristic for guessing the overall key is to take the key covering

the largest number of events in the piece. The results using this heuristic are much

worse, with 91.7% correct on the Bach corpus, and 83.7% correct on the Chopin

corpus. Since counting key-assertions in each key is a better heuristic than the

reasonable heuristic of counting number of events in each key, this is evidence that

included assertions may not be redundant, and that they seem to have some bearing

on the importance of different keys within a piece.

Counting key assertions also does well compared to key-profile methods for

guessing the key of a piece (described in more detail below). Correlating formu-

lated key-profile histograms with a histogram of the pitch-class content of a piece

by duration, [Sapp2011] compares five sets of key-profile histograms for overall-key
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guessing. The test corpus includes both books of the Well-Tempered Clavier as well

as Chopin’s Preludes Op. 28: a total of 120 pieces. The results are shown in Table

2. Of the five key-profile sets, one is based on psychological data, three on music

data, and one on a simple theoretical model. The theoretical model performs best

out of the five, with 4/120 incorrect. The method of counting asserted segments does

just as well as the correlation method with the simple profiles, also getting 4/120

incorrect on this test corpus.

4.5.3 Literature Review and Comparison with Key-Induction Methods

Current methods for key induction tend to divide the problem into two parts:

deciding on a (single) key to describe a musical segment, and deciding how to segment

a score into different key areas – key mapping.

Deciding the key of a musical segment

A variety of mechanisms for deciding the key of a musical segment have been

designed using theoretical models [Chai+2005, Chew2006], analysis of music data

[Temperley2002] or the results of psychological testing [Krumhansl1990, Noland+2006].

It turns out that despite their differences, these operate on some of the same funda-

mental principles.

A model of key based on psychological data is developed in [Krumhansl1990].

The model consists of a set of histograms representing the perceived stability of each

chromatic scale degree in the major and minor keys. The histograms are called key-

profiles, and the key of a musical segment can be decided by finding the key-profile

which is most similar (i.e. most proximate) to the (weighted) pitch-class content

of the segment. While histogram key-profiles can be obtained by other methods
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(theoretical models, data analysis); the essential concept for us is the measure of

similarity or proximity from the pitch-class content of a target musical segment to

each of the key-profiles, with the decision procedure of taking the closest.

In [Temperley2002], A Bayesian approach to data analysis is used to build a

model for key. Each chromatic scale degree is assigned a probability Pi of occurring

in a major or minor key segment, based on its frequency of occurrence in the relevant

key in a labeled corpus.9 The probability of the scale degree not occurring in a given

segment is taken to be (1−Pi). Given the set of pitch-classes in an unlabeled segment,

a likelihood score for each key is determined by taking the product of the probabilities

Pi for chromatic scale degrees in the set and (1 − Pi) for each of the scale degrees

not in the set. The key with the highest likelihood score is chosen as the key of the

segment. While this takes into account absent as well as present pitch classes, the

paradigm is essentially similar to the key-profile method described above – maximal

statistical similarity of the pitch-class content of a segment to one of a set of model

distributions.

An example of a theoretical model, [Chew2006] designs a geometric model of

tonal space in which pitches, triads, and keys are represented by points on an array

of spirals (shown in Figure 4–39). The model first places pitch-classes on a spiral

which sets them in a “spatial” relation to one another, in which more theoretically

9 Since the keys are assumed to be identical under rotation – as they also are in
[Krumhansl1990] described above as well as in the key-assertion method, the scale
degree representation (i.e. pitch-classes normalized relative to key) is equivalent to
the pitch-class representation.
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“related” pitch classes are closer together. Then, major and minor triads are defined

as triangular planes with their vertices at the three pitch classes of the triad. A

weighted center for each triangle is defined, based on the theoretic importance of

the three pitches in the triad. Finally, keys are defined as triangular planes between

the three most theoretically important triads of the key (tonic, subdominant, and

dominant), and a central point is defined to represent the key, based on the relative

theoretic importance of the triads.

Segments of music are represented geometrically by taking the convex combina-

tion of pitch-points weighted by their durations (or metric weights) – the “center-of-

effect” of the segment. The key-finding method is simply to find the geometrically

closest key-representing point to the center-of-effect.

This model is superficially different from the last two models discussed, offering

a visualization of a “space” of pitch-classes, triads, and keys – but it is similar to the

other models, because the points assigned to each key have some set of distances to

the points assigned to each pitch; the center-of-effect for a segment likewise has a set

of distances to the pitch-points (this is how the center of effect is calculated). If we

made histograms of these distances and used the right similarity metric, we would

have the same algorithm as in [Krumhansl1990] (with differently defined histograms).

These key-induction methods are differently derived and implemented, but they

all treat key in an essentially similar way. They treat key as a distribution of pitch-

classes, with different in-key notes having different weight of importance, and with
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Figure 4–39: Figure from [Chew2006]. (Reproduced with permission. Copyright,
INFORMS, http://www.informs.org.) The first panel shows pitch classes represented
as points on a spiral; in the second panel, triads are represented as points on the
triangular plane between three pitch classes and a second spiral is drawn connecting
these points; in the third panel, keys are represented as points on the triangular
plane between three triads (the tonic, dominant, and subdominant triads), and a
third spiral is drawn connecting the keys.

some of out-of-key notes expected or tolerated. Key-induction, for these computa-

tional methods, means finding the key distribution from a pre-defined set that most

closely matches a distribution found in a musical segment.

Comparison with PcNs

Like the methods above, PcNs operate in the reduced space of pitch-class con-

tent. But unlike the above, PcNs use exact, set-theoretic relations to establish a

correspondence to key, rather than comparisons with distributions. One advantage

to this is that the step of summarizing the relation of the segment to a key does not

require the loss of information, since none of the content has to be smoothed away
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as accidentals are treated as “noise.” The relation between the pitch-class content

of a musical segment and the keys-as-pitch-class-sets is maintained as a concrete set-

theoretic relation, suitable as a foundation for building further structural relations,

while bearing useful heuristic information.

The statistical models in the literature are designed to work for any pitch-class

set: no matter how atonal a segment is, there must be some closest key(s); and

furthermore a measure of the “distance” should be available. On the other hand,

while it’s possible to state the set-theoretic relations of inclusion or intersection

between any pitch-class set and the keys-as-pitch-class-sets, we propose to consider

primarily the PcNs that have simple such-relations: those that are included in just

one or two keys. We are proposing, therefore, to proceed without a key-decider that

works on any pitch-class set. It may be, after all, that a very “distant” recognition of

a key by a statistical model is not really tonal in a music-theoretic or cognitive sense,

and that a heuristic distance-limit should be set, in order to detect the absence of

key. In these areas, statistical methods may hazard a guess, whereas PcNs will tell

us that the segment can’t be summarized using the simplest set-theoretic relations.

With tonal music, in any case, the problem is generally not to detect atonality,

but to provide a map of the keys of a score, guessing a segmentation as well as a

key-label for each segment.

Literature on key-mapping

The methods described above select a (single) key for a musical segment; these

can be used together with algorithms that decide on a mapping (i.e. segmentation)

of a score into different key areas.
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One such method is to decide on a probability (or, equivalently, a penalty) for

changing keys, and then use dynamic programming to find the most likely sequence

of keys for a sequence of segments in a piece of music. The piece therefore must be

pre-segmented, resulting in a low-resolution key-map.

Dynamic programming can be visualized as an efficient way of finding the least-

cost path from the beginning to the end of a piece, where the cost for assigning a seg-

ment to a key is based on how well the segment fits the model of the key, plus an addi-

tional cost for changing keys between consecutive segments. Dynamic programming

is used in [Temperley2002]; it is also the same algorithm used by researchers designing

“hidden Markov models” (HMMs) for key induction [Chai+2005, Noland+2006].10

A more flexible approach to key-mapping is described in [Chew2006]. Unlike the

dynamic programming method, this “Argus” method can construct segmentations

at any point in the music. The geometric model described in [Chew2006] is used as

the key-selection method, although another method could be substituted.

The Argus method works by looking at the centers-of-effect of segments before

and after a potential key-boundary. The idea is that there will be very different

10 In this context dynamic programming is often called “the Viterbi algorithm.”
Hidden Markov models, as [Noland+2006] points out, are ill-suited for key induction,
since the principle behind the model being “hidden” is that it should be induced
algorithmically. Suppose we take the keys as “hidden states” that generate the
pitch-class set data. If we use expectation-maximization to try to induce models for
these states, we may end up with hidden states that match the data well, but do not
correspond to the notion of keys.
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centers-of-effect before and after a key-boundary. When charted over time, consider-

ing each successive note as a potential boundary, the distance between the centers-of-

effect will grow for a while as the boundary approaches, and then start to decrease.

The (large) peak will be a good estimate for the boundary. Settings for threshold

peak-height (distance between centers-of-effect) and size of window will determine

sensitivity to local key-change.

Formalizing sensitivity to key change

The above methods for key mapping have a few things in common. First, they all

model key-change as a boundary, whereas music-theoretic discussions of key-change

emphasize a common method of modulation where an intermediate pivot segment is

analyzed simultaneously in two keys, providing a transition between them – resulting

in overlapping key segments. Since PcNs overlap with each other, we obtain over-

lapping labeled segments (though sometimes with larger overlap than the typical

modulatory pivot). As well, PcNs have a natural size, based on where the pitch-

class set is broken on the score. This obviates the need to predetermine a universal

segment-size, or to use a heuristic threshold to find good boundaries, or to simply

take all possible sizes.

Another similarity between the simple segmentation method and the argus

method is that sensitivity to key-change is modeled by two constants: segment size,

and key-change probability/penalty or threshold peak height. Settings for these con-

stants can be determined in relation to an evaluation corpus of hand-labeled music.

However, even an optimal constant setting will usually result in “errors” in rate-of-

modulation with respect to the test corpus: this parameter of (human) key-labeling
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just isn’t suited to being modelled by an inflexible constant, because sensitivity to

key-change is dependent both on musical context (including rhythm, harmony, form,

etc.) and on subjective difference (how someone “hears” or conceives of key).

In the literature under review, where human-labeled data is used, there is no

discussion of the problem of sensitivity to key change, and no mention of whether the

expert-labelers were instructed to adhere to a particular notion of key which tries to

formalize what counts as a key change.

Given the contextual factors, modelling the parameter of human sensitivity to

key-change is not immediately an option within the framework of pitch-class con-

tent. An algorithm’s sensitivity to key-change can nonetheless be formalized. This

is important because if the output of an algorithm is to be useful as a structural

building block for a more complete analysis, it must behave consistently.

It is possible to formalize the parameter of sensitivity to key-change in two simple

ways, by either minimizing the parameter, or maximizing it. Minimizing sensitivity

to key-change is equivalent to applying a key-decision model to a whole piece as

one “segment” with no key-changes recognized (as in [Krumhansl1990, Sapp2011]).

Maximizing sensitivity would mean that all key areas, no matter how small and

unimportant, are recognized.

The PcN key-assertion method maximizes sensitivity to key-change. As well

as being more formal and parsimonious (no “magic number” parameters) than a

constant setting for sensitivity to key-change, maximizing sensitivity preserves a

maximal amount of information about key areas large and small. This information
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can be used in later stages of analysis, which could include using more musical context

to model the more complex sensitivity to key-change shown by human labelers.

Differing goals

It’s impossible to decide how well the PcN method performs in comparison with

the statistical methods for key induction. The difference in the methodology arises

because the problem statement and the goal for each is defined in a different way.

The statistical modellers are trying to build a heuristic model that imitates or

approximates semantically-labeled data. In this model, the judgments of people are

a “ground truth” or a target – comparative data for empirical validation and/or the

data from which the model is inferred.

The PcN method, in contrast, tries to build a detailed analytic picture of how

pitch-class sets on a score are related to the pitch-class sets of keys – in a more

fine-grained way than people would ordinarily describe key. The formality and de-

terminacy of the method are a priority, since the PcNs are designed to be part of a

larger structural analysis.

We do not deny that semantic interpretation might be the most interesting

problem. But the semantic gap marks a current limitation of computation – we can’t

compute semantics, we can only guess at them using rules of thumb. The statistical

methodology takes a low-informational stab at a semantic category. Rather than

tackling a semantic distinction right off the bat, our general structural program is to

avoid decisions for as long as possible, and work on building information. Therefore,

we make an approach to key that doesn’t heuristically target musical perceptions
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or music-theoretic conceptions, but one that nonetheless generates information that

can be used to address semantic-level concerns.

One More Approach to Key Mapping

Figure 4–40: Figure from [Sapp2011]. Triangular“keyscape” drawings: the score (for
each of two movements) runs along the base of the triangle. The color of each point
on the triangle is determined by the guessed key of the segment beneath it, such that
the “overall” key is at the apex, the key of the first half of the piece is found halfway
up the left side and the key of the second half of the piece is halfway up the right
side, and so on.

Another approach to key-mapping is proposed by [Sapp2011], who proposes not

to decide where one key ends and the next begins, but instead guesses keys (using

the histogram method) for all possible segmentations (i.e. all temporal pitch-class

sets on the score). The result is a triangular map of keys called a keyscape, with the

score running along the base, the “overall” key at the apex, the key of the first half

of the piece found halfway up the left side and the key of the second half of the piece

found halfway up the right side, and so on (shown in Figure 4–40).

This study was not performed using labeled key data (it includes a comparative

study on different key-profile histograms). The problem of modelling the sensitivity
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to key change of human labelers is avoided because labeled data is not used, and also

because all possibilities are mapped. This is another way of formalizing sensitivity

to key change by refusing to parametrize it.11

The triangular keyscape method almost seems structural, because it is high-

informational, taking all possibilities without a heuristic decision process (– the tri-

angular segmentation method itself, not the statistical key-guessing method applied

to the segments). It also gives a polyphonic, multi-scale analysis, placing local key

areas within more global ones.

But part of structural analysis is finding “natural” (structural) places to cut

data, (i.e. cuts that are based on properties of the data itself), and this analysis

simply cuts everywhere – an example of a “powercut” (i.e. n-grams).

The triangular keyscape method therefore contrasts with PcNs: the triangular

method uses all of the temporal sets on the score; PcNs take a structurally de-

fined subset of these. Key-assertions make a further heuristic reduction.12 While

structural analysis tends to be high-informational in comparison with heuristic and

statistical methods based on decisions and classifications, it does not generally op-

erate by taking all possibilities. The triangular method finds all temporal sets and

11 [Martorell+2016] extend the method given in [Sapp2011] to “class-scapes” rather
than keyscapes – they use the triangular method to find the pitch-class sets for all
segments on the score (i.e. they omit the heuristic key-guessing step in order to
afford a pc-set analysis rather than a tonal analysis).

12 Key-assertions are a structurally defined heuristic cut – heuristic because the
key sets are defined heuristically (i.e. selected by hand), but structural because the
principle defining single and double key assertions is set-theoretic, not metric.
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uses a statistical method to guess their relation to a key; the PcN method finds those

temporal sets that are both informative in relation to their temporal interval, and

have a particular formal relation to a pitch-class set of interest. While the triangular

method offers polyphonic relations of overlap and inclusions between its sets, the

shape of this polyphone is regular and predetermined, whereas the polyphonic shape

of PcNs bears structural information about the score.

4.5.4 More Key-Assertion Illustrations

In this section, we show diatonic sketches on scores given by key-asserting PcNs,

showing different kinds of formal overviews and transitional processes. These heuris-

tic labelings of PcNs, giving a detailed picture of the diatonic areas covered, are just

one way among potentially many for reasoning about the key-relatedness of PcNs.

The PcN approach offers a set of overlapping and included segments (here reduced

to overlapping key-referencing segments), displaying the natural boundaries between

pitch-class sets on the score.

Figure 4–41 shows a string quartet movement by Mozart and Figures 4–42 –

4–45 show scores by Bach, giving a variety of relatively simple tonal overviews.

Figures 4–46 and 4–47 from Bruckner, and 4–48 and 4–49 from Chopin show some

more intricate and less traditional tonal patterning. Figure 4–50 shows zoomed-out

sketches of some of Bach’s Goldberg Variations, which share a common broad tonal

schema; key-asserting PcNs offer a an overview of some of the variety and complexity

available within this schema from a diatonic point of view.
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4.6 Future Work

We defined N-sets as a systematic method for structuring temporal co-locations

of items on a score. While polyphones give precise temporal relations, N-sets offer

a looser sense of what occurs “together” within a temporal interval. A polyphonic

set of temporal intervals are selected for their informativeness, with their (natural)

boundaries determined by difference, or set exclusion.

We showed an application to pitch-class sets, producing “PcNs” – future work

would explore other musical (and non-musical) applications, such as the incidence of

instrumental sounds on a score, or the locations of different melodic shapes.

We briefly discussed ways of obtaining PcNs on subscores, such as taking each

instrumental voice separately, or segmenting by phrase. The analytic challenges and

opportunities afforded by crossing PcNs with other dimensions (such as rhythm or

timbre), offer an open field for research.

We aimed to show the potential utility of PcNs in investigating tonal and atonal

works, but the construction of any single careful, detailed analysis was beyond our

scope. An in-depth discussion of the PcNs in a score and their participation in the

story of the music would be a possible avenue for an analytic music theorist. An

alternative, quantitative approach to investigating PcNs might also be of interest –

quantitative and statistical approaches to pitch-class sets on a score are discussed in

[Martorell+2016, Huovinen+2008]).

Statistical approaches to subset relations are given in [Martorell+2016, Huovinen+2008];

we showed how polyphones offer a structural view of the temporal relations of these
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sets, mapping relationships between subsets and supersets as well as folding tran-

sitions. Polyphonic analysis could assist in giving contextual meaning to PcNs, for

example mapping forms and procedures such as subkey areas, modulations, and types

of harmonic progressions, and assisting in making contextual or structured selections

of PcNs. Polyphonic pitch-class set analyses and methods are a domain requiring

further development.

We developed set-theoretic heuristics to investigate the relation of pitch-class

sets to key-related sets – our key-assertions are just one of many possible approaches

to key. For example, using triads or tetrachords as a basis would give a different

view of harmony. Similar methods could also be developed for sets associated with

other kinds of tonality or atonality, or to induce productive supersets and subsets

over a score.

PcNs could also be suitable as a basis for heuristic musical applications such as

pitch-spelling, in which a process decides for each note whether to “spell” it using

a sharp or a flat (or neither) – in particular the inferences available about diatonic

and harmonic regions and the transitions between them would suggest ways of con-

structing normative or smooth spellings.
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Figure 4–50: Key-asserting PcNs give diatonic sketches of some of the Goldberg
variations by Bach (in order reading left to right on each line: the Aria, and variations
7, 11, 12, 14, 16, 26, 27, 29, and 30). These have roughly the same tonal outline,
with alternations of D major and G major (purple and orange) in the first half (with
borrowings from C major – red) , and E minor (light blue) and G major in the second
half (again with C major borrowings). The harmonic tonic at th beginning of the
score is G major, but often the diatonic key of the dominant D major is confirmed
before the tonic key (i.e. some variations start with purple, other with orange).
These sketches give a rough overview of the the variations are treated differently
with respect to the density of diatonic shifting and the presence of different tertiary
key areas (e.g. pink for A minor, dark red for A major, green for F major, yellow for
B[ major, blue for E major), within the same broad tonal outline.
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Appendix:
Tables of Key-Asserting Pitch-Class Sets

N 0 (C) Major 0 (C) Minor
4 {11; 7; 5; 4} {11; 8; 7; 5} {11; 8; 7; 2} {11; 8; 7; 0} {11; 8; 3; 0}
{11; 9; 7; 5} {11; 7; 5; 3} {11; 7; 3; 2} {11; 5; 3; 0} {11; 3; 2; 0}

5 {11; 9; 7; 5; 4} {11; 8; 7; 5; 3} {11; 8; 7; 5; 2} {11; 8; 7; 5; 0}
{11; 9; 7; 5; 2} {11; 8; 7; 3; 2} {11; 8; 7; 3; 0} {11; 8; 7; 2; 0}
{11; 9; 7; 5; 0} {11; 8; 5; 3; 0} {11; 8; 3; 2; 0}
{11; 7; 5; 4; 2} {11; 7; 5; 3; 2} {11; 7; 5; 3; 0}
{11; 7; 5; 4; 0} {11; 7; 3; 2; 0} {11; 5; 3; 2; 0}

6 {11; 9; 7; 5; 4; 2} {11; 8; 7; 5; 3; 2} {11; 8; 7; 5; 3; 0}
{11; 9; 7; 5; 4; 0} {11; 8; 7; 5; 2; 0} {11; 8; 7; 3; 2; 0}
{11; 9; 7; 5; 2; 0} {11; 8; 5; 3; 2; 0}
{11; 7; 5; 4; 2; 0} {11; 7; 5; 3; 2; 0}

7 {11; 9; 7; 5; 4; 2; 0} {11; 8; 7; 5; 3; 2; 0}

Figure 4–51: Key-asserting pitch class sets for C major {0; 2; 4; 5; 7, 9; 11} and C
minor {0; 2; 3; 5; 7; 8; 11}. A key-asserting set is one that is a subset of exactly one
of the 24 pitch-class-sets representing the keys.

{11; 9; 8; 7; 3; 2}
{11; 9; 8; 7; 5; 3}
{11; 9; 8; 7; 3; 2; 0}
{11; 9; 8; 7; 5; 3; 0}
{11; 9; 8; 7; 5; 3; 2}
{11; 9; 8; 7; 5; 3; 2; 0}

Figure 4–52: Minor-key plus-major-sixth assertion sets for 0 (C) minor. The major
sixth in 0 minor is 9. These sets are selected such that they cannot be construed as
a subset of another key plus an extra pitch-class.
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Maj 0 / Min 9
(dual: Min 0 / Maj 3)

{11; 5; 4}
{11; 5; 4; 0}
{11; 5; 4; 2}
{11; 9; 5; 0}
{11; 9; 5; 4}
{11; 5; 4; 2; 0}
{11; 9; 5; 2; 0}
{11; 9; 5; 4; 0}
{11; 9; 5; 4; 2}
{11; 9; 5; 4; 2; 0}

Maj 0 / Min 0
(dual: same)

{11; 7; 5}
{11; 7; 5; 0}
{11; 7; 5; 2}
{11; 7; 5; 2; 0}

Min 0 / Min 9
(dual: Min 0 / Min 3)

{11; 8; 0}
{11; 8; 2; 0}
{11; 8; 5; 0}
{11; 8; 5; 2; 0}

Maj 0 / Maj 5
(dual: Maj 0 / Maj 7)

{7; 5; 4; 2; 0}
{9; 7; 5; 4; 0}
{9; 7; 5; 4; 2; 0}

Min 0 / Min 4
(dual: Min 0 / Min 8)

{11; 3; 0}
{11; 7; 3; 0}

Figure 4–53: Double-key asserting pitch class sets involving 0 (C) major and 0 minor.
These sets are in the intersection of exactly two keys. The duals involve duplication
of normalized sets, but the duals show the full set of keys that have productive
intersections with 0 major and minor.
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CHAPTER 5
Z-chains

5.1 Introduction

The structures in this chapter (Z-chains and Z-shapes) operate on melodies or

sequential (monophonic) subscores. Their purpose is to take low -dimensional data

and increase its apparent dimensionality. The intuition is that although we can

picture a melody as a pitch-time line, we can also find internal processes and parallels

that cut through the superficial linearity of the medium.

With Z-chains, we are trying to illustrate a way of thinking and of computing.

Z-chains are perhaps the clearest illustration of the structural-analysis concept in this

thesis. The algorithm works bottom-up, taking local shapes and linking them to form

supershapes. Shapes and supershapes are built using low-dimensional projections,

but rather than taking these as low-informational summaries, we keep the structures

and their labels on the score as a new set of descriptive dimensions, with the melody

as their intersection. We have complexified the picture. This doesn’t give us any

answers about the melody, but it gives us more ways of thinking about its parts.

Section 5.2 of this chapter reviews the literature on computational melodic analy-

sis. Section 5.3 introduces Z-chains, providing an algorithmic definition, illustrations,

and a comparison with a method from the literature. Section 5.4 discusses technical

extensions to the Z-chain concept, and analyses properties of a natural Z-chain set.
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In section 5.5 we introduce Z-shapes, a more “local” and somewhat simpler (and

perhaps more intuitive) derivative of Z-chains. Section 5.6 is a summary and con-

clusion, tying back in with the existing literature and proposing future directions.

5.2 Review of the Literature

This section reviews the literature on the computational analysis of melody. A

few main sub-areas are covered: contour analysis, melodic similarity, segmentation,

tree-structuring, and prediction.

Contour analysis is conceptually closest to the Z-chain approach, since it is

concerned with the shape of the melody in pitch-time “space.” The literature on

similarity is considerably more voluminous than the other topics, partially because

of an annual competition that generates a lot of interest.1 While the study of

melodic similarity has its own discussion here, we find that it’s a concept that turns

up repeatedly with regard to the other categories – where, for example, a contour

analysis or a tree-structuring is used to construct a notion of similarity, or similarity

is used to construct a segmentation.

Descriptive methodology is most apparent in the literature on contour, while

segmentation and tree-structuring are “structural” in the sense of looking at a score

1 The Music Information Retrieval conference (ISMIR) issued a challenge task to
produce a program that imitated the similarity judgments of a panel of experts. This
challenge was run 9 times between 2005 and 2015.
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in terms of its parts and their relations. The similarity concept involves the measure-

ment of a notional distance between (sub)scores, without necessarily saying anything

else about them (the methods for obtaining a measurement may or may not be de-

scriptive). Likewise, the goal of “predicting” what comes next in a melody may not

be based on description.

The literature here is drawn from a few different academic fields. The earliest

(non-computational) work on melodic contour was done by ethnomusicologists, who

considered songs as cultural artifacts. Some of the later work on melodic contour was

done by music theorists studying works of modern art. Much of the work on parsing

and segmenting is also done by music theorists, often with interest in European art

music from the extended classical period (roughly 16th to early 20th Centuries), but

also making use of the available folk-song corpora which are more extensive, reliable,

and easier to work with than existing classical corpora. While musicologists focus on

musical culture and music theorists are trained to produce technical interpretations

of artworks, music information retrievalists use computation as their primary mode

of investigation, and are interested in how to work with music (corpora) as data. The

(computational) study of music has also been strongly influenced by the cognitive

revolution of the late 20th Century, as well as the quantitative methodologies of

recent scientific scholarship including the AI training and testing methodology of

“ground truth.”

5.2.1 Contour

“Contour” is the musicological term for the abstraction of relative pitch-height

in melody. The concept was alive for ethnomusicologists by the early 20th Century.
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By the 1960s and 70s, approaches were generally typological, describing melodies as

sequences of small shapes such as level, rising, falling, undulating, two-plane, and

scalar, or as more global shapes: rising wave, falling line, arch-shaped, undulating

around a central pitch. At this stage, classification was not computational, and relied

on hand annotation by musicologists.2

An early systematization, [Adams1976] considers the first, last, highest and

lowest notes, categorizing melodic segments by the relative heights of these. A further

set of measurements are proposed, such as the height of the first pitch as a percentage

of the total range, the number of beats between the first pitch and highest pitch, etc.

The goal is to provide a typology for melodic descriptions, where means and ranges

of different values can be considered. An application is given, comparing songs from

two different Native American tribes.

In the 1980s and 90s, music theorists worked to further systematize and gener-

alize the study of melodic contour initiated by ethnomusicologists. [Friedmann1985]

works with sequences of orientations (up and down, but not be),3 and normalized

pitch contours, (such that the lowest pitch is 0, the second-lowest is 1, etc.) The ap-

plication is to transformational relations (e.g. inversion, rotation) between melodic

fragments (segmented by hand) in atonal music by Schoenberg.

In [Morris1987], a melody is described by a 2-d matrix of orientations (up, down,

and be). The Schoenberg “school set” of transformations (retrograde, inversion, and

2 A review of this kind of work is found in [Adams1976].

3 Be is a name for the orientation = or “same.”
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retrograde-inversion – but not rotation) are definitive of contour equivalence classes;

a combinatorial analysis for small n is undertaken. The application here is also to

Schoenberg.

[Marvin+1987] provides a similarity measure for orientation matrices based on

proportions of shared values, and a similarity measure for normalized pitch con-

tours based on subsequence matching. Applications are to the music of Schoenberg’s

students, Berg and Webern.4

[Morris1993] gives an algorithm to generate nested summaries of a melodic con-

tour, with local maxima and minima at each level providing points of salience. The

result is a detailed and visually informative sketch. Since this method is somewhat

similar to the Z-chain concept, we make a more detailed comparison below (Sec-

tion 5.3.4).

[Huron1996] summarizes the contour of a folk song or folk-song phrase by its first

and final pitches, along with an average of all the pitches in between. This provides

a classification of 9 basic 3-point contours, which are used for a quantitative study

on the Essen collection of German folk songs, showing which contour types are more

common, and that there is no evident correlation between the song contour and the

contours of its phrases.

4 Schoenberg’s own published discussions of melodic contour consist of pitch-time
“graphs” of melodies by Bach, Haydn, Mozart and Beethoven, so that their over-
all shape can be seen; there is no classification, measurement, or transformational
analysis [Schoenberg1967].
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[Quinn1997] uses a similarity measure on “averages” of sets of orientation ma-

trices to determine “fuzzy” set membership for melodies ( – the application is to

segments from a piece by Steve Reich – a composer characterized by postmodern

minimal formalism).5

[Schmuckler1999] uses Fourier analysis to estimate long-range and local contour

oscillations in melody. These are used in an experimental to check the correlation of

a similarity measure with the judgment of test subjects.

[Juhasz+2009] samples each melody at equidistant temporal points, and applies

a self-organizing map6 to organize the contours of folk songs by geometric similarity.

Clustering relations within and between regional folk-song corpora are shown.

This brief survey shows a conceptual evolution from description, through al-

gebraic systematization and formal transformation relations, toward an increasing

interest in similarity with less focus on descriptive methods. The Z-chain method

is primarily descriptive, and differs from many of the methods mentioned above

in that it makes available a set of overlapping and interleaving partial (recursive)

descriptions, offering many facets rather than a summary.

5 “Fuzzy” set membership is determined by a measure of “how close” an item is
to a definition for a set, along with a parameter saying how close an item has to be
to be “in” the set.

6 A dimensionality-reducing unsupervised neural net – the dimensionality reduc-
tion allows high-dimensional data to be visualized on a low-dimensional plane of
summarized similarity.
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5.2.2 Similarity

One of the main topics of current melody research is the definition and detection

of similarity. Similarity is sometimes framed as a subgoal in service of another

application: e.g. retrieval and classification, studying how folk songs vary over time

and by region, or the articulation of a score into similar and contrasting parts in

order to better understand its structure. Similarity recognition is often stated as an

explicit analytic goal, with the premise that understanding similarity is an essential

part of understanding music.

The conceptual basis contains a few key ideas. The two basic ways of thinking

about similarity are measuring a distance between (projections of) two items, and

finding projections under which the two items are identical or contain identical parts.

The ways of measuring tend to be general and standard (with the projection

techniques being more specific to music): Supposing the melody is represented

by a contour plot, two such plots can be compared using standard measurement

techniques such as correlation distance, city-block distance, or euclidean distance

[Jannsen+2015]. If the melody is represented by a symbol string, standard techniques

include edit distances [Rolland2001, Jannsen+2015, Grachten+2005, Marsden2012],

substring matching [Risk+2015, Silva+2016], and alignment optimization techniques

including dynamic programming methods [Kranenburg2010] and dynamic time warp-

ing [Juhasz+2009, Gulati+2015, Silva+2015].

Similarity can also be measured by comparing global features of the melody

[Eerola2007, Kranenburg+2013]. [Kranenburg+2013] tests 88 global features such

as “average melodic interval,” “amount of stepwise motion,” “fraction of melodic
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intervals that are an ascending major sixth” (etc.), and computes which features

are most discriminative for different tune families – but ultimately concludes that

“local” (sequence-based) comparisons are more useful for estimating similarity than

are global features.

Projections and Abstractions

[Cambouropoulos2001] gives a review of some of the basic decisions to be made

in representing a melody as a sequence of pitches or pitch-intervals, with or with-

out durations or duration-ratios. This includes normalizing with respect to chro-

matic or diatonic intervals.7 [Gulati+2015] uses a tetrachord normalization, while

[Kim+2000] experiments with different normalizations, simplifying contours to have

3, 5, or 7 types of intervals.

To make sequence-processing techniques more powerful and less dependent on

individual choice of representation, many methods make use of multiple representa-

tions (or “viewpoints”) [Conklin+2001]. These can be used as individual, parallel

sequences, or in different tuple combinations. Some viewpoints don’t include all notes

of the melody, e.g. by focusing on specific meter places, such as quarter-note beats.

These kinds of features can be used as meter-based reductions, or to further spec-

ify the alignment of segments with respect to meter. [Lartillot2004, Lartillot2005,

Lartillot+2007] builds suffix trees with mixed specificity, showing how segments can

7 I.e. equidistant intervals, or intervals within an asymmetric musical scale such
as the major scale.
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be repeated with respect to different subsets of viewpoint features. Multiple view-

points are used for classification of folk-songs [Goienetxea+2016, Conklin+2011],

prediction [Pearce2005, Cherla+2014], and motivic analysis [Conklin2010].8

Apart from defining initial representations for sequences, further abstraction

techniques can be used to compare melodic segments. One common example is

the problem of finding similarity between a simpler melodic segment and an “or-

namented” or elaborated variation. [Ganguli+2016] takes the approach of “time

averaging” – essentially smoothing or blurring the contour to accentuate the most

important pitches. [Gulati+2016] includes a complexity weighting factor in the sim-

ilarity measurement, so that high-complexity segments can be more easily matched

to low-complexity segments. [Risk+2015] uses meter information to guess which

notes are the most salient, and give a higher similarity weighting to to matching

strong-beats. [Cambouropoulos2000b] addresses elaborations by allowing a single

melodic interval to match with a sequence of intervals with the same sum (“fill-

ing and thinning”); [Pikrakis+2006] abstracts away repetitions and neighbor-notes,

while [Cambouropoulos2000b, Adiloglu+2006, Knopke+2009, Buteau+2000] allow

matches that are invariant under retrograde and inversion.

Other kinds of abstractions and analyses have been proposed as the basis for

similarity measurements (– in general, it seems that almost any kind of interpretation

8 A motive is a brief melodic (or musical) idea; typically one that is repeated and
varied in a score. A motivic analysis is a discussion of a score focused on motives
(e.g. identifying, relating, interpreting them).
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could be used as the basis of a similarity comparison). [Valero+2002] uses meter in-

formation to (deterministically) structure pitches as a tree, rather than a sequence. A

tree-edit distance is used to measure similarity. [Tojo+2013, Matsubara+2014] make

a different kind of parametrically controlled tree structures (based on [LerdahlJackendoff1983],

and discussed below), and develop a similarity measurement for these trees based on

edits and elaborations. [Grachten+2005] parses a melody using Narmour’s “impli-

cation/realization” model ([Narmour1990]). In this model, three-note local shapes

are categorized and labeled. The result of the parse is a sequence of symbols, each

covering a segment of the melodic pitch-sequence. Similarity is then measured using

an edit distance on the symbol-sequence.

Motive Significance

Since there are a powerset of possible subscores, in many applications an over-

abundance of possible motives (repeated or varied ideas) are found. In order to make

the analysis more tractable and more informative, it’s often desirable to be able to

highlight the most interesting or significant motives.

Some notions of significance are “a priori” (– the motive is a “good” paradigm;

significance is based on the characteristics of the motive itself), and others are “a

posteriori” (– the motive occurs in a score or corpus in a way that suggests its

importance) [Cambouropoulos2000b].

“A priori” significance involves a description of what is “motive-like,” including

concepts of temporal compactness [Meredith+2002] and reference to (other) Gestalt

principles such as figure/ground [Lartillot2004], immediate repetition [Cambouropoulos2003],
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and an analysis of the redundancy inherent in embeddedness (subset relations)

[Lartillot+2007].

“A posteriori” significance can be conceived in a few different ways, including

coverage, typicality, distinctiveness, and surprisingness.

A simple means of obtaining a “significant” set is to make a greedy cover

of a score [Meredith2016]. This corresponds with the principles of favoring those

paradigms which are longer, more frequent, and less overlapping [Cambouropoulos+2000,

Cambouropoulos2003, Adiloglu+2006]. [Silva+2015] defines significant excerpts as

those that occur most frequently in a song, using these to identify different versions

of the same song.

“A posteriori” methods can also be used on a corpus. [Knopke+2009] uses

simple counting techniques to determine which motives are “common” in a corpus.

[Conklin+2001] builds a zeroth- and first-order Markov model of a corpus, and judges

significance of each motive found in contrast to how likely it is to be generated by the

model – a motive that occurs more often than “expected” by the model is more sig-

nificant. [Goienetxea+2016] likewise uses a zeroth-order Markov model to determine

the “interestingness” (surprisingness) of motives in a corpus, and then determines

“similarity” of two scores based on the summed “interest” of their common motives.

[Conklin2008, Conklin+2011] use “anticorpora” – a motive that appears more

often in corpus (or opus) A than in a comparison corpus (or opus) B is considered

to be distinctive for A. [Gulati+2016b] uses topic-modelling techniques to determine

characteristic melodic segments for different rāgas, based on the frequency of their

presence (and absence) in a corpus.
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[Juhasz+2009] describes and compares the kinds of contours that are “typical”

of 22 different folk-song cultures by plotting their occurrence on a self-organizing

map, and observing where clusters occur.

Similarity and Compression

The concept of compression comes up a few times in the literature on similarity

measurement. [Cilibrasi+2004] uses bzip2 string compression on MIDI files to calcu-

late “distances” between pairs of scores: the bzip2 algorithm derives a compression-

dictionary for each score, and then the distance between two scores can be conceived

as a function of the amount each score can be compressed using the dictionary of

the other.

Another take on compression occurs in [Meredith+2002, Meredith2016]. A ge-

ometric approach is given, in which note-onsets are represented as points in a 2-d

space, and (exact) repetitions are detected as subsets of points that are invariant un-

der translation (– this method works on non-monophonic scores). In order to measure

similarity, a greedy covering of geometric shapes is used as a dictionary to “compress”

a score (by describing it as shapes * translators), and compression using the shapes

from a different score predicts similarity of the scores (– the greedy covering acts an

estimation of “significance” of shapes, and the “compression” algorithm quantifies

the overlap in significant shapes). In [Loubouin+2016], this geometric compression

method is compared with general purpose compression algorithms, and while tradi-

tional compressors compress more, the geometric compression method makes better

predictions of human similarity judgments.
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[Pearce+2017] discusses compression, and offers another way to measure relative

information content between pairs of scores. The IDyOM model (a multi-viewpoint,

variable-order Markov model, described in Chapter 2 of this thesis) is used to “learn”

a model from one piece of music, and then use the model to express the shared

information content (and therefore similarity) in terms of the summed surprisingness

of the second piece with respect to the model.

Classification and Organization

Methods are used to classify or categorize motives, or to otherwise organize their

relatedness. In this literature, the classification is often by nearness or clustering of

similarity measurement – a one-dimensional, non-metric, heuristic quantity. Non-

metric means that the triangle inequality doesn’t hold: i.e. if melody A and melody

B are each one similarity unit away from melody C, we can’t be sure that A and B

are no more than two similarity units away from each other.

A simple approach: [Risk+2015] offers retrieval of related tunes ranked by sim-

ilarity to the query.

[Cilibrasi+2004] uses a randomized method to build “phylogeny” trees, which

branch to show similarity and difference. [Crawford+2001, Buteau+2000] show pro-

gressive similarity, illustrating how a motive can “evolve” over the course of a piece

of music.

In order to induce categories from pairwise similarity measurements on a set of

melodic segments, a network similarity threshold can be determined that maximizes

a function of similarity among pairs in the same group, while minimizing similarity

between groups [Cambouropoulos+2000, Gulati+2016b]. Similarly, [Pinto2012] uses
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a spectral method to induce a clustering on a matrix of pairwise similarity measure-

ments.

Another approach to clustering is to define a set of representative paradigms

(either automatically or by hand), and then to relate each motive found to the clos-

est representative [Silva+2015, Kranenburg2010]. [Gulati+2016, Goienetxea+2016]

train on a set of labeled data, and then take the labels of the k-nearest-neighbors as

a classification for a new item.

The use of self-organizing maps [Juhasz+2009] to cluster and relate melodic

contour is not clustering by a similarity measurement, but by the higher-dimensional

contour vectors.

[Wattenberg2002] generates “arc diagrams,” visualizing (exactly) repeated sub-

sequences connected by translucent arcs over a timeline. Arcs on multiple scales are

used to construct a visual sketch of motive organization on the score.

Ground Truth and Evaluation

Much of the literature refers the concept of “similarity” to a set of human-labeled

data, which is used to design and test the algorithms. In particular, the MIREX

challenge is a benchmark for many researchers, who try to achieve the ground-truth

of similarity as labeled by human experts.

[Kranenburg2010] designs a multi-dimensional similarity labeling scheme, having

experts evaluate the similarity of folk-songs from several points of view; [Eerola2007,

Schmuckler1999] likewise ask humans for their judgments, but framed as an ex-

perimental psychology procedure rather than a request for an “expert” opinion.

218



[Mullensiefen+2007] runs a psychology experiment for “expert” listeners (musicology

students), testing the results against several similarity measurements.

While most researchers aim to maximize the correspondence of their results to

their ground truth target, [Risk+2015] finds that unexpected results suggest areas

of interest for further musicological study.

[Buteau+2000] suggests that mathematical definitions of similarity carry more

definite meaning than heuristic approximations to human intuitions.

[Marsden2012] interrogates the practice of using human similarity labels, point-

ing out that declaring how similar two melodies are is a subjective and creative

human act – and one that is somewhat musically unnatural. He points out that

there are many ways of thinking about musical similarity – this is evidenced in e.g.

[Mullensiefen+2007], where many dimensions and points-of-view are considered, but

all with the goal of finding the best way to crush all considerations into a single di-

mension. [Marsden2012] proposes that the complexity, contextuality, and creativity

of musical interpretation don’t benefit by dimension-crushing analyses.

5.2.3 Segmentation

Segmenting a melody is a goal in some of the literature: the melody is split into

phrases (and sometimes further into subphrases) such that phrases don’t overlap.9

9 Common music theoretic concepts such as elision and pivot (both involving over-
lap) are not handled by this paradigm. An alternative model, grouping, is compared
in [Lartillot2004].
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The local boundary detection model [Cambouropoulos2001b] works by using

heuristic rules (concerning similarity and proximity) to estimate the discontinuity

between each pair of notes in a melody. Local peaks in discontinuity are considered

to be local boundaries, with the strength of discontinuity indicating the strength (or

hierarchical position) of the boundary.

Many of the melodic similarity researchers cite segmentation as a potential use

of similarity detection. [Cambouropoulos2006] uses repetition (similar melodic sub-

sequences) to determine boundaries, with the idea that a motive, heard as a melodic

unit, starts a segment, in “parallel” with its repetitions. Results are compared with

the local boundary detection model. [Ahlbäck2007] develops a segmentation scheme

with an emphasis on similarity and metrical parallelism, and secondary principles

including (dis)continuity and symmetry.

[Temperley2001] segments by preferring to segment at a long duration or pause,

to have phrases close to a given length, and to have phrases that begin at metrically

parallel places. Dynamic programming is used to optimize a set of boundaries.

[Bod2001] uses a data-based approach, modelling the phrase boundaries in the

Essen corpus of German folk songs (which are given in the database). A Markov

grammar technique is used to estimate the likelihood (i.e. frequency-in-corpus) that

a given suffix is followed by a phrase boundary, along with a factor for total phrase

length.

The IDyOM model has also been used to produce a segmentation [Pearce+2010],

by hypothesizing that boundaries could occur at points of “expectancy violation” (i.e.

high surprisal according to the Markov model).
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The main idea of much of this research is that there may be normative or

obvious points at which to segment a melody. Although these papers are by musical

thinkers and not psychologists, there is an emphasis in their writing on cognition

and perception, rather than creative, cultural, and musical-contextual (e.g. song

text, performance indication) treatment. However, [Thom+2002] demonstrates with

an experiment that segmentation is “ambiguous” – i.e. that there is not one obvious

answer agreed upon by musicians. Some of the tunes tested are from the Essen

corpus.10 The phrase marks in the Essen corpus don’t show how a continuous tune

is segmented, but show how performance gestures and textual phrases help to create

the musical picture – all of which are a product of a specific musical culture. Using

a model of this corpus as a stand-in for a cognitive model is therefore conceptually

slippery.

5.2.4 Tree Structuring

As in the segmentation literature, the methods for parsing a melody into a tree

structure tend to conceptualize a perceptual or cognitive basis for this operation,

inspired by the Chomskyan zeitgeist as well as by the nested music-analytic structure

proposed in the early 20th Century by Heinrich Schenker.

[LerdahlJackendoff1983] (A Generative Theory of Tonal Music, known as “GTTM”),

co-authored by a music theorist and a linguist, offers a (non-computational) system of

rules for parsing a score into a binary tree in which each split is weighted to the right

10 A casual attempt to guess where the phrase marks are in a few songs from the
Essen corpus suggested to Dr. Handelman and me that these aren’t obvious.
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or left, indicating which side is “stronger.” There are necessary “well-formedness”

rules, as well as “preference” rules which need not be fulfilled, but can help make

decisions. The preference rules may conflict and so many interpretations are possi-

ble according to this method (– helping to account for the variety of opinions and

interpretations of how a score could be parsed). Because of this ambiguity, the large

number of rules, and the informality of many of the terms in the book, the system

has been the subject of less computational research than its popularity among music

theorists would predict.

One group, however, has succeeded in formalizing and parametrizing many of the

preference rules, automatically generating trees for melodies [Hamanaka+2005] and

automatically tuning the parameters [Hamanaka+2007]. The software can also be

used interactively [Hamanaka+2009] to build custom interpretations. [Groves2016]

uses a corpus of melodies parsed into trees by humans (according to the GTTM

method) to induce a probabilistic context-free grammar.

[Gilbert+2007] offers a method of parsing a melody into tree structures by using

probabilistic (i.e. weighted) context-free grammar rules for melodic shapes with

meter information (e.g. describing passing and neighbor notes). Since there may be

more than one possible parse, the weightings express the “probability” of different

parses. [Marsden2001] uses a more extensive set of grammatical rules to parse a

melody into a graph of elaborations. These graphs can also be used to modify or

generate melodies.
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5.2.5 Prediction

Another kind of approach to melodic analysis is prediction. While many similar-

ity projects try to “predict” which melodies are most similar (to human judgment),

prediction models try to predict the music directly (e.g. given the beginning of a

score, how will it continue).

One example of this is the IDyOM Markov model ([Pearce2005] described in

Chapter 2). Other projects build models based on similar conceptual premises of

memory-based prediction, but use different algorithms to implement these models.

For example, [Cherla+2014, Cherla+2015, Boulanger-Lewandowski+2012] build dif-

ferent kinds of neural networks. While the IDyOM project is based on the music-

perception concept of expectation, and judges its success by how the results match

up with human predictions of the music the neural-net projects judge their success

on their ability to predict new scores.11 One way of thinking about this is that

in the IDyOM concept, a “surprising” melodic moment is expected to surprise peo-

ple, but in the neural-net model, a “surprising” melodic moment means that there’s

something the neural-net model hasn’t accounted for – and in an ideal model this

would be minimized.

What these models have in common is that they build predictors that use

“known” music to predict how “unknown” music will go. While they have long-

11 The perceptual-expectation concept is also invoked by [Grachten+2005], who
use Narmour’s descriptions of short-term melodic expectations to parse a melody
into symbols – but the symbols are not used here to model expectation, but to make
similarity judgments using an edit distance on the symbol string.
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and short-term memories, the structure as described is one of linear entailment, that

X having happened predicts that Y will happen – their descriptions are of correla-

tions that recur in a corpus, rather than of the shapes or stories of individual pieces.

The common language of this kind of procedure is that the musical data is being

“modelled,” but it’s unclear in what sense a “model” of a score can result – i.e. this

is not a descriptive method, but a statistical one.

5.2.6 Contrast with Z-chains

The methods to be described in this chapter contrast with much of the existing

research in a few different ways. While Z-chains and Z-shapes (like any descrip-

tion) can be used to say something about similarity, the immediate interest of a

Z-chain analysis is in describing the shape of one melody, without concern for other

melodies (– neither from a similarity point of view, nor from the point of view as

a context of memory with which to predict things about the melody). Many of the

projects for similarity detection, segmentation, and tree-structuring try to imitate a

labeled ground-truth of human interpretation, while Z-chains involve deterministic

geometric descriptions. Segmentation and tree-structuring both propose a hierar-

chical structure for melody, while Z-chains show shapes and processes that overlap,

cutting across one another from different points of view. Much of the literature tries

to compare, segment, structure, or predict the melody without first describing par-

ticular shapes (or processes, patterns, events, etc. Taxonomies have been avoided

since the mid 20th Century). Z-chains and Z-shapes give an algebraic description

language for a geometric typology that’s pervasive in all data.
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5.3 Z-chains12

5.3.1 Algorithmic description

Z-chains provide an analysis of (melodic) “contour” or shape, entirely based

on orientation. Z-chains are a structural analysis on a sequence of totally orderable

terms – terms that generate the orientation relations {<,>,=}, called up, down, and

be. Without loss of generality, such a sequence can be represented by a sequence of

integers. A chain is a (sub)sequence in one orientation, and a Z-chain is, recursively,

a chain of chains or chain of Z-chains, in which the lower-level chains or Z-chains all

have the same orientation.

In music, orientation is available on pitch, duration, loudness, cardinality, etc.,

and on constructed or heuristic measurements like density or dissonance. These

parameters don’t necessarily give a sequence, but we assume that one has been gen-

erated from the score in advance of a Z-chain analysis.

Our primary application will be to melodic pitch, with this example standing in

for the general principle. With orientation on pitch, abstracting away absolute pitch,

Z-chains address the up-and-downness – the zigzagginess – of a melody.

A chain is a consecutive subsequence in one orientation – it is therefore the

simplest orientation shape. We use the chain as a structural base-case. We hypoth-

esize the musical importance (or basic-ness) of chains in one orientation, delimited

by changes in orientation (– as we have seen, orientation or contour is a common

12 Say it American style: Zee-chains. Z stands for zig-zag.
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projection of melody in the literature). This corresponds to the basic notion of mu-

sical pitch “going up and down,” and can be generalized to “getting more or less x”

for arbitrary x.

The recursive step is motivated in the same way, with the additional notion that

local musical structures (e.g. chains) can be chained like-to-like, across temporal gaps

(in which other material intervenes). The perceptual salience and coherence of these

higher-order chains varies, but even when they are distant and disparate enough to

be “non-obvious,” they can highlight large-scale structures that tell a different kind

of musical story.

The chaining algorithm finds all (maximal) chains in a sequence. Pseudocode

is given in Figure 5–1. In one pass through a sequence, the chaining algorithm finds

all contiguous subsequences that just go up, or just go down, or consist just of be

(repetition).13 Any sequence of orderable terms is exhaustively composed of chains

overlapping at their endpoints; these intersections are called pivots.

We take the sets of chains in each of the three orientations as three separate “di-

mensions,” in the sense that the chains are partitioned by orientation and processed

separately in the recursion step – chains in the same orientation are parallels. In

the recursion, the idea is to take similar things together, rather than taking things

13 More formally: given a sequence (t1, t2...tn) and a function F such that
{F (t1), F (t2)...F (tn)} are linearly orderable, a chain is is a consecutive subsequence
c = (ti, ti+1, ti+2...ti+j) such that ∀tk ∈ c,
F (tk) < F (tk+1)↔ F (tk+1) < F (tk+2) ∧
F (tk) > F (tk+1)↔ F (tk+1) > F (tk+2) ∧
F (tk) = F (tk+1)↔ F (tk+1) = F (tk+2).
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together because they are sequentially conjunct (e.g. as in n-grams). The principle

of the recursion therefore will be to chain like to like.

Given a sequence of chains in one orientation, run the chaining algorithm again.

Since the initial chaining orientation relation may not be well defined on chains, a

new orientation relation must be defined for the recursive process – the Z-relation.

Possibilities include top (i.e. max), bottom (min), span (top minus bottom), and

cardinality. This relation will be retained for the rest of the recursion.14 The

recursive algorithm is the Z-chain algorithm (– pseudocode in Figure 5–2).

The result of the first recursion step (running the chaining algorithm on a se-

quence of chains of the same orientation) is a set of second-order Z-chains, with

second-order orientations – e.g. a Z-chain down-up in feature top is a sequence of

chains down with respective top terms going up. The chain of top terms going up is

a second-order superchain. The base chains could also be called first-order Z-chains,

and the terms in the initial sequence could be thought of as zeroth-order Z-chains.

In keeping with the principle of “chaining like to like,” the second-order Z-chains

are again partitioned by orientation and the chaining algorithm is run again. Since

each iteration of the chaining algorithm takes a sequence of structures and chains

some of them together to form higher-order structures, fewer structures are obtained

at each successive step. When only one Z-chain remains in some orientation – a

14 Mixed-relation Z-chains are also possible.
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top-order or highest-order Z-chain – that branch of the process naturally terminates.

The number of iterations to find all Z-chains in a sequence is quadratic.15

5.3.2 Illustrations

To get an intuition for what Z-chains look like and what kind of shapes they can

show, we take a look at “Happy Birthday,” a short and familiar melody (Figure 5–3).

Each staff in the figure shows a highest-order Z-chain on the melody, in Z-relation

top-pitch (shown in red and orange, with beams above the staff) or bottom-pitch

(in blues, with beams below the staff). Here are a few observations about “Happy

Birthday” using Z-chains.

The first four staves of Figure 5–3 show Z-chains with base orientation up.

The first staff, up-up-up in top-pitch, shows how the opening four-note figure of

the melody, a Z-chain up-up, is subsequently continued and expanded, with a longer

superchain (two chains are followed by three), and a higher top-pitch. The third staff

shows a Z-chain on bottom-pitch, containing the same set of base chains as those in

staff 1. The Z-chain is of second-order, with a super-orientation be. The bottoms of

these chains form a grounded and stable counterpoint to the bouncing motion of the

tops. In the second half of the tune, the bottoms climb up (staff 4) while the tops

15 Proof that the Z-chain algorithm (pseudocode in Figure 5–2) is quadratic: The
chaining algorithm takes linear time since it runs in one pass, marking changes of
direction. Therefore, if the Z-chain algorithm runs the chaining algorithm a linear
number of times, then the Z-chain algorithm is quadratic. Each time the chaining
algorithm runs on a sequence with length n > 1, the number of output chains is < n.
Since the number of things to be chained decreases each time the chaining algorithm
runs, it can run at most n times before the Z-chain algorithm terminates.
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CHAINING ALGORITHM:
Input:
• S: sequence of terms (t1, t2...tn) of any type (type term).
• F: function of type (term -> integer)

Method:
1. define get ori(x,y) {

if x < y then up
else if x > y then dn
else be}

2. let chains found = empty list();
let current chain = [t1;t2];
let current ori = get ori(F (t1), F (t2));

3. for i = 3 to n do:
let new ori = get ori(F (current chain.last), F (ti));
if new ori = current ori
then concatenate ti onto current chain
else
(concatenate current chain onto found chains;
current chain := [current chain.last; ti];
current ori := new ori)

done;
4. concatenate current chain onto found chains;

return found chains
Output: A sequence of chains C = (c1, c2, ...cn) such that:

1. ∀ck ∈ C, ∃i such that ck = (ti, ti+1, ti+2...ti+j) – each chain
is a consecutive subsequence of S.

2. Each chain has a single orientation with respect to the
function F:
∀ck ∈ C, ∀ti, ti+1, ti+2 ∈ ck,
F (ti) < F (ti+1)↔ F (ti+1) < F (ti+2) ∧
F (ti) > F (ti+1)↔ F (ti+1) > F (ti+2) ∧
F (ti) = F (ti+1)↔ F (ti+1) = F (ti+2)

3. Chains are of maximal length – extending the subsequence
in either direction does not produce a valid chain.

Figure 5–1: Chain finding algorithm (pseudocode).
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Z-CHAIN ALGORITHM
Input:
• S: sequence of terms (t1, t2...tn) of any type (as term).
• F: function of type (term -> integer)

• Z(F): function of type
((term -> integer) -> sequence -> integer) – we
use the same F as above. W.l.o.g this can be a (recur-
sive) function on Z-chains (as structured sequences). Ex-
ample functions: top (i.e. max), bottom (min), span (max
- min), cardinality.

Method:
1. Run chaining algorithm (S,F) – returns a sequence of

chains C.
2. Partition C by orientation (preserving sequence order for

each subsequence), obtain C<, C>, C=.
3. For each Cori,

(a) if |Cori| ≤ 1, save contents of Cori for output as a
top-level Z-chain; branch terminates.

(b) else if |Cori| > 1,
i. run chaining algorithm (Cori, Z(F )) – returns

a sequence Z of Z-chains (i.e. chains of chains...).
ii. Recurse to step 2 with Z as C.

Output: Set of top-level Z-chains.

Figure 5–2: Z-chain finding algorithm (pseudocode).
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Figure 5–3: Z-chains in “Happy Birthday” (originally “Good Morning to All” by
Mildred Hill).
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descend (the final second order Z-chain in staff 2 is synchronized with the Z-chain

in staff 4), giving a second-order converging counterpoint. All of the chains up in

“Happy Birthday” have the same length (two notes).

The bottom four staves of the figure show Z-chains with base orientation down.

Staff 5 shows the same supershape as staff 1, from another perspective. From the

point of view of chains down, the chain lengths are growing in synchronization with

the top-pitch supershape. Staff 6 shows how this synchronization is continued with

the second-order top-pitch descent in the second part of the tune. In staff 6: while

the predominating top-pitch motion in the second half of the piece is different from

that in the first part, there is nonetheless a parallel. In fact the first second-order

Z-chain here is an exact transposition of the last two chains of the piece. Staves 7

and 8 show the bottom-pitches from the point of view of chains down, showing that

the be superchain from the beginning is reflected at the end of the tune. Together,

the Z-chains on chains down cover all of the notes except the first – unlike the chains

up, which are gapped.

Z-chains can be arbitrarily big, working over large-scale forms as well as on

short melodies. Figures 5–4, 5–5, and 5–6 show some large Z-chains on the Presto

for solo violin by J.S. Bach. Oriented structure is sketched as parallels on multiple

larger-scale levels, sometimes with long gaps between parallel instances. These can

show partial formal parallels and resonances; the gaps signify a zone of absence of

the relevant orientation.

Figure 5–7 shows a different way of looking at Z-chains on the Presto. A subset

of Z-chains creates a compact contour-sketch on tops and bottoms of chains. Compact
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Z-chains are those which do not skip chains in their own base-orientation.16 In the

figure, superchains at all recursive levels are drawn with dotted lines – red for top-up;

orange for top-down; dark blue for bottom-up, light blue for bottom-up, and black

for be. The number of superchains present on top or bottom at any given time shows

the depth of the compact Z-chains at that point – if there is only one contour line,

it is second-order (i.e. one level of superchain), further tracings show higher-orders

of compact Z-chains.

5.3.3 What are Z-chains?

Each Z-chain is a partial motion-sketch for the melody. Z-chains are a way of

taking a sequence apart to find subsequences that each afford a recursively simple

point of view. These subsequences don’t partition the sequence, since each term

can play multiple roles in a complex, multidimensional shape. While the principles

that build Z-chains include contiguity, hierarchicality, and parallelism, the total set

of Z-chains foils these principles to provide a dimensionally deep, intricate picture

which is nonetheless made of simple, well-defined components.

Z-chains aren’t attributes or measurements of a melody, they are parts of a

melody – not independent, atomic parts, but dependent, interactive parts showing

ways in which a melody is not partitionable – ways in which a sequence has structure

beyond the concatenation of its elements – because it contains lines of force which

cross one another. It is composed not of units, but of dimensions, or rather directions

in motion.

16 Compactness is formalized and generalized later in this chapter.
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Figure 5–8: Morris’ contour reduction algorithm on “Happy Birthday”

Z-chains illustrate one way in which a sequence of numbers is structurally multi-

dimensional. Musically speaking, the pitch-time Cartesian grid, here reduced to the

“1.5-D” pitch-event sequence, is sufficient to denote but not to describe a melody –

the sequence is not two-dimensional, a concatenation of magnitudes fluctuating over

time: it’s an architecture of parallels, developments, recollections, and reversals.

5.3.4 Z-chains and Morris’ Contour Reduction Algorithm

Most previous work on melodic contour is very different from Z-chains; there

is one method, however, that is superficially similar enough to make a suitable foil.

Morris’ contour reduction algorithm [Morris1993] works by taking the local maxima

and minima of the melody, then recursing to take the maxima of the maxima and

minima of the minima. The result gives multiple hierarchical levels, with each level

summarizing the previous one. Figure 5–8 shows the result on “Happy Birthday.”

At each level (most often taken at the highest level), Morris’ reduced contour

can be normalized to afford comparison with other contours. This is done by taking

the union of the maxima and minima, and normalizing these starting at zero for

the lowest note and using successive integers. In “Happy Birthday,” taking the
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highest level, we get the first note, the central high note, and the last note, giving

a normalized contour of < 0, 2, 1 >. If we took the second-highest level in “Happy

Birthday,” offering a bit more specificity, we would add the fourth note of the tune,

giving a normalized contour of < 0, 1, 2, 1 >. Taking the lowest level of reduced

contour, we would end up with almost all of the notes in the tune.

We discuss a few points of comparison between Morris’ contour reductions and

Z-chains. While Morris’s algorithm and Z-chains both concern maxima and minima,

the methods turn out to be essentially different, with neither method reducible to a

special case of the other.

Morris’ result gives several nested levels of contour, each smoother and describing

less structure than the last. The goal seems to be to reduce a complex structure (the

melody) get a kind of “big picture” top-down sketch. Information is deliberately

removed at each level, in order to obtain a simpler summary. In contrast, Z-chains

are less smooth and more zig-zaggy at each higher level, describing more and more

structure. Z-chains start with simplicity (the chains) and work toward complexity,

increasing the amount of available information – a bottom-up approach to describing

structure, resulting in a fractal view where the inside counts.

Z-chains describe recursive orientation, in which e.g. a third-order Z-chain is

a chain of second-order Z-chains. Morris contours are not recursive (although his

algorithm is) – “reduced contours” are given in the form < 0, 2, 1, 3 >, which can be

read as “first go up, then go down but not as far down as where we started, then

go up even higher than before” – this is sequential and linear, describing one level

of zig-zagging at a time. A simultaneous reading of Morris contours on different
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hierarchical levels still does not produce a recursive structure; it produces a linear

structure in which some zig-zagginess at lower levels is abstracted away at higher

levels.

The structures Morris obtains at each level are hierarchically nested in one

another. While each Z-chain is a hierarchical structure, the total set of Z-chains

are related to each other in a non-hierarchical and complex way. Whereas finding

“parallels” (i.e. matching reduced contours) within a piece with Morris’ algorithm

requires pre-segmentation of the piece, Z-chains, since they work bottom-up, find

parallels anywhere in the piece without pre-processing, also finding different sets of

parallels that would “conflict” if we assumed a segmentation model. Furthermore

Z-chains not only find parallels, but recursively structure the relations between these

by chaining them together into higher-order Z-chains.

In sum, Morris offers a method for obtaining a fixed, simplified, linear per-

spective on a contour, to facilitate identification of different contours through their

reductions. Z-chains provide a non-linear set of structured perspectives as partial mo-

tion sketches, not reducing to a single “answer,” but instead increasing the amount

of information available about the structural relations within a melody.

5.4 Structure of Z-chains and Z-chain sets

5.4.1 Gaps and compactness

Gappedness

Z-chains of any order > 1 may be gapped with respect to the original sequence

– they can skip elements. For example, on the sequence (1,3,5,2,1,3,4), we get chains

up (1,3,5) and (1,3,4), chain down (5,2,1) and second-order Z-chain in top up-down
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((1,3,5),(1,3,4)). The second-order Z-chain skips the 2 because it doesn’t participate

in a chain in the orientation up. Any number of elements may be skipped by this

process. In particular, a Z-chain skips the inside of any chain or Z-chain in any

opposing orientation.

Gaps in Z-chains also bear orientation information about the sequence. For

example, it’s possible to find a Z-chain up-up-up at the beginning of a long sequence

and again at the end; these chain together with an arbitrarily long gap. The gap in

the Z-chain asserts a negative property of the sequence, since no Z-chain up-up-up

can occur in the gap.

Compactness

Compactness is defined as a property of Z-chains in partial (i.e. dimensional)

opposition to gappedness. More compact Z-chains can facilitate a tidier local analysis

(at the expense of long-range parallels) and are generally easier to reason about.

A Z-chain that doesn’t skip any elements is zero-order compact. A Z-chain that

doesn’t skip any chains in its own base orientation is first-order compact, and so

on. For example, turn once again to Figure 5–3, the Z-chains on “Happy Birthday.”

Staff 1 shows a Z-chain that is not zero-order compact, because it skips some notes.

However, since the gaps do not contain any chains-up (the relevant base orientation),

the Z-chain is 1-compact. The Z-chain in Staff 2 is not 0-compact, because it skips

some notes. It also skips a chain-up (the 8th and 9th notes of the tune, boxed in

Staff 1 as a chain up) – therefore it is not 1-compact. It doesn’t skip any Z-chains

up-down, so it’s 2-compact.
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Lower-order compactness is stricter than higher-order compactness, allowing less

skipping and gapping, and therefore describing simpler and more local structure. If

a Z-chain is 2-compact it’s therefore also 3-compact, but saying it’s 2-compact is

more descriptive. Figure 5–9 shows a 3-compact 4th-order Z-chain with relevantly

oriented 2nd-order Z-chains in the gap. Figure 5–10 shows a 1-compact 3rd-order

Z-chain up-be-up – while a few notes are skipped (because they are on the inside of

chains down), no chains up are skipped.

Since this definition of compactness only counts skipped elements in its own

sub-orientation, it’s possible for a 1-compact Z-chain to nonetheless contain a large

gap (e.g. as in Figure 5–11). It’s also possible to formulate an “all-dimensional”

definition of compactness, where no Z-chains of the relevant order in any orientation

can be skipped.

Figure 5–9: A 3-compact 4th-order Z-chain (down-down-down-down) with relevantly
oriented 2nd-order Z-chains (down-down) in the gap.
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Figure 5–10: A 1-compact 3rd-order Z-chain (up-be-up) – no chains up are skipped.

Figure 5–11: A 1-compact Z-chain with a gap – there are no be-chains (i.e. repeated
notes) in the gap.

The basic Z-chain algorithm as described above finds all and only Z-chains that

are (n-1)-compact – which is as loose as it can get without skipping Z-chains in the

relevant (n-1) orientation, (which would lead to a combinatorial number of structures

with a more complex set of interactions).
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Forcing Compactness

A Z-chain of order n that’s not (n-2)-compact can be easily broken into a set

of (n-2)-compact Z-chains of orders n and (n− 1). This can be done by walking the

superchain of (n-1)-order Z-chains and checking whether any (n-2)-order Z-chains fall

into the gap between any consecutive pair – if so, snip the superchain at that point

– for example, it’s easy to see how to break the superchain in Figure 5–9, giving a

2-compact 3rd-order Z-chain on each side of the gap. Using this principle, Z-chains

can be broken to guarantee any order of compactness. In the figure, the 3rd-order

Z-chain on the left is already 1-compact, while the one on the left would have to

be broken again to achieve 1-compactness. It’s also possible to specify a minimum

compactness requirement at the generation stage, running the Z-chain algorithm with

a constraint allowing only compact chaining. This can be done by keeping track of

indices for each recursive generation, and making sure that indices at the prescribed

level are compact (i.e. no indices are skipped). Pseudocode is shown in Figure 5–12.

Figure 5–7 (discussed above), shows a cover of 1-compact Z-chains giving a

more “linear” sketch of motion throughout a score; Section 4 below is about using

1-compact Z-chains again to discover local schematic shapes.

5.4.2 Pivots and intersection

Running the Z-chain algorithm for a single Z-relation (e.g. top pitch, bottom

pitch, chain length, or chain span) gives a set of Z-chains in different orientations.
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N-COMPACT Z-CHAIN ALGORITHM
Input:
• S: sequence of terms (t1, t2...tn) of any type (as term).
• F: function of type (term -> integer)

• Z(F): function of type
((term -> integer) -> sequence -> integer)

• N : integer compactness constraint
Method:

1. Run chaining algorithm (S,F) – returns a sequence of
chains C1.

2. Partition Ci by orientation (preserving sequence order for
each subsequence), obtain {Ci

<, C
i
>, C

i
=}.

3. For each Ci
ori

(a) Index the chains in order, so Ci
ori = (ciori1 , c

i
ori2

...)
(b) if N ≥ (i - 1), partition Ci

ori such that each part
contains a compact sequence of cNo chains. Compact
means that the sequence of cNo chains in the partition
is indexed (co

N
(k), co

N
(k+1), co

N
(k+2)...) for some k.

Since all incoming Z-chains are guaranteed to be N-
compact, this partition is always possible.
Obtain partitions {Ci

oria, C
i
orib...}

4. For each Ci
orij,

(a) if |Ci
orij| ≤ 1, save contents of Cori

i
j for output as a

top-level N-compact Z-chain; branch terminates.
(b) else if |Ci

orij| > 1,
i. run chaining algorithm (Ci

orij, Z(F )), returns
a sequence Zi+1 of (i+1)-order-Z-chains.

ii. Recurse to step 2 with Z(i+1) as Ci.
Output: Set of top-level N-compact Z-chains. Since the output
Z-chains are indexed at each level, it’s easy to test them for
M-compactness.

Figure 5–12: Pseudocode for a version of the Z-chain algorithm that guarantees N-
compactness, and indexes Z-chains at all levels such that it’s easy to test them for
M-compactness (for any M).
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Figure 5–13: Two Z-chains sharing (n-1) order orientation (here up-be) may pivot
with one another on that (n-1) order Z-chain. The red-beamed supershape is a Z-
chain up-be-up, and the orange supershape is up-be-down. The second purple beam
is the shared Z-chain up-be.

In this section we discuss some of the ways Z-chains relate to each other temporally,

and how they may share structure.17

1) Z-chains of higher order contain Z-chains of lower order in their sub-orientations

– e.g. Z-chains up-dn-up contain Z-chains up-dn; therefore they also contain chains

up. This is evident from their construction, since higher-order Z-chains are built out

of lower-order Z-chains.

2) Z-chains of the same (n-1) orientation pivot on Z-chains of that (n-1) orienta-

tion – so a Z-chain up-dn-up pivoting with a Z-chain up-dn-dn has a Z-chain up-dn

as the second-order pivot. This statement characterizes any two n-order Z-chains

sharing (n-1) orientation that fold (i.e. overlap) with one another.

17 Since Z-chains have gaps, a simple application of polyphonic analysis (as dis-
cussed in Chapter 2) is insufficient to describe the temporal relations of these struc-
tures (though projections of each Z-chains to a temporal interval or set of temporal
intervals affords polyphone treatment).
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Figure 5–14: Interleaving Z-chains that fold but don’t pivot.

All first-order pivots (endpoints of first-order chains) appear in the intersection

of two different oriented chains. Likewise second-order pivots (end-chains of second-

order Z-chains) appear in two different second-order chains, and so on. This is evident

from the way Z-chains are constructed. An example is shown in Figure 5–13
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3) It’s possible for two Z-chains to fold but not pivot – they can overlap tempo-

rally, but not share any elements. This is because a Z-chain may contain gaps, and

parts of Z-chains may fall into each others’ gaps such that no elements are shared.

Illustrations in Figure 5–14. It’s also possible for a Z-chain to be temporally included

in another, but not share any structure, the smaller falling in a gap of the longer

Z-chain; e.g. as in Figure 5–9.

4) Different parts of large, gapped Z-chains can simultaneously pivot and inter-

leave in different ways, giving a complex picture which is not easily summarized (e.g.

as in Figure 5–15). Reasoning about Z-chains using polyphones (temporal identity,

overlap and inclusion relations), is therefore not completely straightforward.

We can take advantage of the fact that gapped Z-chains are made of compact

Z-chains, treating each Z-chain therefore as a sequence of temporal intervals corre-

sponding to a sequence of compact lower-order Z-chains. We can obtain a polyphony

(i.e. a sequence of polyphones) between two or more Z-chains much as we would

obtain a polyphony between two or more voices each singing a sequence of notes.

This analysis can be simplified if we know in advance that the Z-chains be-

ing compared share a base orientation to some higher recursive level. In this case,

the dimension of the base orientation can act as a temporal ground on which the

polyphony occurs, i.e. so that we only pay attention to gaps (skipped Z-chains)

in this dimension. So if the shared recursive orientation is of order m, then we can

consider m-compact Z-chains to be compact for our purposes, rather than 1-compact

Z-chains. This is the case in Figure 5–15. In the figure, the first 3rd-order Z-chains
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of each of the 4th-order Z-chains are 2-compact, and so in the shared 2nd-order ori-

entation dimension (down-up), they constitute a compact interval. Therefore if these

two 3rd-order Z-chains fold given the underlying ground-dimension of down-up, then

they must fold on a pivot (not falling into each other’s gaps), since they are compact

in this dimension. This also follows from point 2 above.

5) Suppose an alternation only of chains up and chains down, and using top or

bottom pitch as the Z-relation. Then, since the chains up and down share maximal

and minimal pivots, their higher-order Z-chains have the same higher-order orienta-

tions (though they may have other structural differences, e.g. compactness). This

property holds at all recursive levels (i.e. if there is no be-superchain at a given

level). It is not guaranteed wherever be-chains disturb the alternation, or when the

Z-relation doesn’t obtain equally to both sides of the pivot, as with chain length or

chain span. Some data naturally has the property of only alternating chains up and

down; otherwise it’s possible to reduce be-chains to a single point to give a simplified,

two-orientation Z-chain picture. The phenomenon of shared supershape on opposite

subshapes was evident in our analysis of “Happy Birthday;” in Figure 5–16 it is

shown on a larger scale.
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5.5 Z-shapes

5.5.1 Definition and Algorithm

In this section, intersections of 1-compact Z-chains are used to locate Z-shapes

as compact sequences of base chains in one orientation, characterized by supershapes

(of any recursive depth) on both top and bottom: a schematic two-sided “contrapun-

tal” shape. Z-shapes are defined as conjunctions (intersections, synchronizations)

of Z-chains in different Z-relations on the same base-chains.18 In contrast to the

structural building paradigm of Z-chains, with increasingly large structures, finding

intersections of such structures tends to generate smaller structures.

Taking the base-chain intersection of two Z-chains results often in a shape that

is not characterized by the supershapes of the Z-chains, but is contextually defined

by these. For example if two Z-chains intersect on a single chain, their intersection is

not expressive of their recursive Z-orientations; likewise if two third-order Z-chains

overlap on just two base-chains, it’s impossible for the third-order superchains to be

fully expressed. In these cases the superchains refer to the context of the intersection,

but don’t describe its shape. Although contextually defined schemas may have some

utility, we will avoid complications and abstractions by ensuring that the intersection

is characterized by the superchains. To do this, we accept an intersection only if it

contains at least two subchains from each level of each Z-chain.

18 Intersections of Z-chains in any combination and number of Z-relations are pos-
sible; here we use top and bottom.
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To obtain Z-shapes, we first compute the sets of 1-compact Z-chains on top and

bottom pitches, and then find the intersections of their cartesian product according

to a rule which ensures that the recursive orientation (“Z-orientation”) of both Z-

chains is fully expressed.19 Pseudocode is given in Figures 5–17 and 5–18 Since

the Z-chains are 1-compact, the resulting intersection subsequence of base-chains is

consecutive.

5.5.2 “Motivic” analysis

Z-shapes are smaller and more specific than Z-chains, providing a concentrated

description of local shape. These can be used for something like a “motivic” analysis.

A motive (i.e. “motif”) is a short musical fragment that is used several times

within a score, possibly varied or transformed. There is no definitive notion of

what counts as a motive, or of what counts as a variation, leaving an open field for

creativity in both composition and analysis.

One way to approach computational motivic analysis is as a search for repetition

of sequences (with or without gaps), allowing for specific transformations and/or for

“error” (i.e. limited arbitrary difference – “similarity”).20 This kind of approach

begins with a score as a plot of unanalyzable points, and tries to find repetitions of

arbitrary (and often unanalyzed) shapes. Z-shapes afford another point of view.

19 Since many of the compact Z-chains don’t intersect at all, the size of the cartesian
product is effectively reduced.

20 E.g. [Conklin2010, Buteau+2008, Lartillot2004, Cambouropoulos+2000,
Quinn1997]
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one sided schematic intersection
Input:
• base chain set
• z chain

Method:
if z chain is a base chain (a 1-st order Z)
then

(if z chain ∈ base chain set

then return z chain

else return Null)
else

1. for child zchain in z chain do

one sided schematic intersection (base chain set,

child zchain)

2. count remaining (non-Null) child zchains:
if > 2 then return a version of z chain with same
z-orientation and remaining child zchains

else return Null

Output: A Z-chain that:
• expresses the same z-orientation as the input z chain (i.e.

has the same depth)
• is a subtree of (or equal to) the input z chain

• contains only base-chains from the input
base chain subset

• is the maximal such Z-chain, or if no such Z-chain exists,
Null

Figure 5–17: Pseudocode. This function takes a set of base chains and a Z-chain,
and returns the maximal subsequence of the Z-chain intersecting with the base-chain
set, such that the same Z-orientation is expressed, or else Null if there is no such
subsequence. The recursion expresses a tree-iteration bottom-up on the Z-chain, so
it terminates naturally when it reaches the top of the tree.
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two sided schematic intersection
Input:
top z: a 1-compact Z-chain on top pitch
bot z: a 1-compact Z-chain on bottom pitch

Method:
let top inter = one sided schematic intersection

(base chains(bot z),top z);

let bot inter = one sided schematic intersection

(base chains(top inter),bot z);
if top inter = Null or bot inter = Null then

return Null

else

if base chains(top inter) = base chains(bot inter)

then return (top inter,bot inter)

else

two sided schematic intersection(top inter,bot inter)

Output:
Well-formed top and bottom Z-chains such that they contain the
same set of base-chains, or Null.

Figure 5–18: Pseudocode. This function takes two Z-chains and finds their mu-
tual intersection, such that both express their Z-orientation (i.e a “Z-shape”). The
recursion is linear in the number of base chains (and converges quickly).
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If we start by obtaining a set of Z-shapes, then we can look at a score not as a

plot of points, but as a plot of shapes which already have a structural identity, and

each of which can be further analyzed. Z-shapes are a way of identifying small-scale

universal (pervasive) shapes, instead of moving directly from the universal point (a

“note”) to the particular shapes or subsequences that characterize a particular score.

The smallest and simplest Z-shapes are defined by second-order Z-chains on top

and bottom. These small Z-shapes are pervasive (as are base chains and second-order

Z-chains), covering any sequence that has more than one chain in each orientation. A

sequence consisting of one chain doesn’t have any second order chains, and therefore

no Z-shapes; a sequence consisting of one first-order pivot (e.g. a chain up and then

a chain down) likewise doesn’t have any second order shape. But any sequence with

(at least) second-order Z-chains necessarily is covered by Z-shapes, since second-

order Z-chains always have a productive intersection, with top and bottom Z-chains

forming a sequence of quadrilaterals with either parallel, convergent, or divergent

supershapes.

Z-shapes of higher order Z-chains have more complex shapes than quadrilaterals,

with recursive orientations on top and/or bottom. These orientations need not be of

the same order, and need not be synchronized in their subshapes.

Before showing some pictures of Z-shapes as motivic cells, methods are described

to further relate and differentiate these cells, as each schematic Z-shape definition

admits of an open number of varied realizations.
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5.5.3 Relations on Z-shapes

A set of Z-shapes with the same schematic definition are “the same” with respect

to this definition (and this kind of sameness is, furthermore, easy to hear), but they

may otherwise differ. Unlike a simple point, each of these small shapes bears further

analysis, and they can be identified or differentiated one from another from any

number of points of view.

One way of analyzing shapes is to use a normalization, measurement, or other

summary function to compare different instances of a schematic shape. These kinds

of functions can be freely invented. The function can then be used as an equivalence

relation, to partition the shapes into subsets – i.e. for a function f , each subset S is

such that s1, s2 ∈ S ↔ f(s1) = f(s2). Since shapes may be the same in some ways

and different in others, different functions offer different partitions – different points

of view.

For instance, we could identify subsets of shapes that are made up of the same

sequence (or set, or normalized sequence...) of durations. Or we could count the

number of chains in each shape: a shape with schema (top: down-down, bot: down-

down) can be fulfilled by a minimum of two chains, but it can also be arbitrarily

long.

In many of the illustrations that follow, shapes have been related by their se-

quence of diatonically normalized intervals – if two shapes have the same kinds of

intervals from note to note as seen from the perspective of a major or natural minor

scale, then they are labeled with the same number (and color) – the number itself
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bears no information.21 If a shape is not matched with any other – if it is in a subset

on its own – it is labeled with -1, so that shapes that are repeated are easier to see.

5.5.4 Illustrations

Figure 5–19 shows three sets of Z-shapes on the Presto for solo violin by J.S.

Bach. These drawings on the score give an idea of how Z-shapes can show repetition,

variation, and zones of occurrence and non-occurrence.

Figure 5–20 shows a close up of three Z-shapes at the end of the Presto, giving

more detail on how different Z-shapes interact. The same passage is described from

different oriented points of view. The top panel shows that the chain of similar shapes

in orange is related to what came immediately before.22 The second panel shows how

the chain of similar shapes in green (covering the same territory as orange above) is

related to another chain of purple shapes that come soon after it – but these purple

shapes don’t have a counterpart in the first panel. The two chains of green and purple

shapes both are terminated by a different version of the shape, showing a technique of

more gradual chain-breaking rather than sudden contrast. The bottom panel shows

that the chains of smaller shapes in the second panel are included in larger oriented

shapes. These larger shapes show a longer-scale, higher-order orientation, but are

more specific and not universal (ubiquitous, as the small shapes are).

21 More precisely, this normalization takes minor and major seconds to be identical,
minor and major thirds, minor and major sixths, minor and major sevenths, and
fourths, fifths, and tritones.

22 The term chain here has the same underlying meaning as in pitch chain and
Z-chain – a consecutive sequence linked by an aspect of sameness.
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Figures 5–21 and 5–22, show how small schematic shapes that often overlap

or concatenate can form larger group repetitions. A motivic analysis could identify

groups (e.g. temporal sets or n-grams) of Z-shapes as motivic. Figure 5–21 shows

three shapes on Fugue No. 11 from Book I of the Well Tempered Clavier by Bach. A

fugue is a musical form with several distinct voices, in which an initial short melody

(the subject of the fugue) recurs several times throughout the piece. Z-shapes were

taken on each of the three voices independently, and then a union of these was made,

so that each panel shows the relevant shape in all voices.

The first panel gives a clear view of how one fragment of the subject recurs the

same way 10 times; at measure 15 recurs overlapping with itself (in “stretto”)23 , but

for the remainder of the piece it is absent. The second panel shows another shape

that occurs twice (in forms 0 and 1) as part of the subject. Form 1 is only present

for the first five instances of the subject; some of the other forms of this shape are in

a position to be variations of the original. The original 0 form in the second panel

occurs a few times after the 15 instances of the subject found in the fist panel, and

further variations of this part of the subject are present right up until the end of the

piece. The third panel shows further versions of identity and variation within parts

of the subject. Figure 5–22 shows three different trigrams of shapes, which include

some of the shapes from the previous figure.

23 A canon is a repetition that overlaps with itself. A stretto is a canon of several
voices with a characteristically short interval between onsets of the different voices.
It’s common to have a stretto in a fugue.
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Figure 5–23 shows a 10-gram in canon in a mass movement by Victoria (Veni

Sponsa Christe). These melodies are quite different variations of one another, but

the sequence of small shapes is the same. N-grams of this length in canon are very

rare in this corpus, suggesting that it’s specific and improbable enough not to be

an entirely “accidental” structure. Figure 5–24 shows some bigrams and trigrams

on the same score. Some of these n-grams are included in the 10-gram canon from

the previous figure, and parts of the canon are involved in imitation with the other

voices. Although all of these n-grams are different from one another in terms of the

diatonic normalization, their proximity and distribution (i.e. local specificity) on the

score indicate that their similarity is not accidental – these are instances of inexact

imitation.

Figure 5–25 shows 2-grams on an excerpt from Beethoven’s Grosse Fuge for

string quartet, showing incidence, variation, and patterning of a few motivic frag-

ments.

Figures 5–26, 5–27, and 5–28 show all Z-shapes per phrase on a few German

folk tunes from the Essen corpus. Three panels show Z-shapes on base chains up,

down, and be. Some phrases are uncovered when they consist only of a first-order

pivot (a chain down followed by a chain up); phrases consisting of only three chains

(e.g. up, down, up) also have the middle chain uncovered. Z-shapes on these figures

afford description of the shapes of these phrases, as well as patterning and contrast

from phrase to phrase.
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Figures 5–29 and 5–30 show Z-shapes on excerpts from J.S. Bach’s Suites for solo

cello. These pieces contain large Z-shapes, showing passages with deeply patterned

orientation shapes.

5.6 Future Work

Z-chains and Z-shapes are structures on sequences of orderable terms. While

we showed an application to melodic pitch, many other musical (and non-musical)

applications are possible. For example, future work could construct Z-chains of note

loudness, duration, or the cardinalities, densities or other numerical properties of

other kinds of structures.

On pitch chains, we primarily worked with top and bottom pitches, but other

Z-relations such as chain length or span can also be used, and these can be intersected

to form different kinds of Z-shapes.

The description of shape made here is one of many possible ways of looking at

melodic shape – a different analysis could be made starting from a basis of first-order

pivots, or second-order Z-shapes, or first-order chains that can be broken to show

different kinds of parallels. The bigger picture of what we’ve suggested with Z-chains

is a general method for making an overlapping, interleaving, covering set of algebraic

shape-elements.

We’ve suggested with a few sketches how Z-chains and Z-shapes can be used to

look at scores; a detailed analysis of a score was beyond our scope, as was a corpus

study. Future work might ask such questions as: Can the kinds and structures

of Z-chains occurring on a score be used to characterize different kinds of stylistic

261



procedures? Can the Z-shapes on phrases of the Essen corpus suggest a set of phrase-

types?

Future work could try to characterize or quantify the regularity, depth, and

patterning of Z-chains and Z-shapes. Studies could be made into pivots and higher-

order pivots, or orientation opposites, or the incidence of “one-sided” passages, where

e.g. chains up by themselves cover entire segments. Contrapuntal texture could be

studied by examining the polyphony of Z-chains and Z-shapes occurring in different

voices.

We’ve suggested that the polyphone concept can be used on projections of Z-

chains to temporal intervals (or sequences of temporal intervals). A kind of fractal

polyphony suggests itself by the union of these possibilities (i.e. a polyphony where

intervals have gaps on multiple hierarchical levels); the working out of this kind of

geometry may be the subject of future research.
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Figure 5–26: Two-sided Z-shapes on Essen tunes (1st of 3). Three panels per tune,
for three base-chain orientations.
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Figure 5–27: Two-sided Z-shapes on Essen tunes (2nd of 3). Three panels per tune,
for three base-chain orientations.
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Figure 5–28: Two-sided Z-shapes on Essen tunes (3rd of 3). Three panels per tune,
for three base-chain orientations.
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CHAPTER 6
Music and McLuhan’s Evolution of Media

This concluding chapter is about a place and role for computing in the world – AI

in general, with attention to music computing in particular. It’s also an introduction

to Marshall McLuhan’s theory of media. McLuhan’s media theory is an analysis of

cultural psychology, premised on the observation that the material and intellectual

technical possibilities available to individuals are a primary force driving cultural

evolution. McLuhan’s observations are used in this essay to inspire a picture of

a world in which computation participates in an active art culture, offering new

technical means through which to observe, enjoy, interact with, and create meaningful

objects.

Section 1 explains McLuhan’s division between two pseudo-sensory modalities,

the visual (or linear), and the auditory-tactile (or simultaneous), and traces their

historical incidence in media technology. Section 2 outlines some of the particular

effects on music of the historical evolution of media. Sections 3 and 4 deal with the

effects of media technology on the practices of art and of science, with attention to

musical issues and our current (and immediate future) media age.

Section 5 positions the specific technical contributions from the previous chap-

ters with respect to McLuhan’s analysis, as part of the general transformation of

media from “linearity” toward “simultaneity.” This section functions as a summa-

rizing conclusion for the main content of the thesis, re-linking the three structuring
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methods described in Chapters 3, 4, and 5 and relating them to the conceptual

background of Chapter 2.

Finally, Section 6 explores how computational technology creates a new envi-

ronment through which works of art from past ages (historical art) can continue to

generate meaning and knowledge.

6.1 Media: Extensions of Our Senses

Media are environments that alter patterns of perception and sen-

sibility.1

The basic premise in Marshall McLuhan’s media theory is that media and tech-

nology are extensions of our bodies and our senses. Just as they extend our capa-

bilities, they mediate our experiences and perceptions. As a result, they form an

extended environmental body and sensorium, as transparent to us in its influence

as our natural senses. These environments are not containers but processes through

which we perceive, think, and exist. McLuhan seems close to Merleau-Ponty’s the-

sis that all consciousness is perceptual consciousness (which is not to say that all

consciousness is mediated by external sensing organs).2 The balance of the senses

mediates consciousness, and alteration of our technological environment alters the

balance of the senses.

1 Marshall McLuhan Unbound [MMU], Vol. 3, p.23. Quotations from McLuhan
are in this special font.

2 [Merleau-Ponty1945]
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In the broadest outline, McLuhan contrasts the “auditory-tactile” modality of

pre-literate culture with the “visual” orientation of literacy, beginning with writing

and accelerating through the invention of the printing press and the ensuing mechani-

cal age. With electric media starting from the telegraph, we enter into a post-literate,

auditory-tactile epoch.

McLuhan’s sensory terminology (auditory-tactile vs. visual) can be difficult to

intuit at first, since these don’t always correspond to the use of our physical senses

– electric media such as the telegraph-newspaper and the internet are auditory-

tactile, forming a mosaic of unrelated fragments from various places and times. As a

rule, visual orientation is associated with literacy, linearity, and analysis, while the

auditory-tactile mode is characterized by simultaneity and integration.

When new forms of media are invented, the balance of the senses is altered,

along with cultural and personal consciousness. The major transitions from audi-

tory/simultaneous to visual/linear and back to auditory/simultaneous are only the

major shifts in a constantly evolving media landscape. These major transitions

are gradual, accumulating over hundreds of years. And the opposite or alternative

modality is always available in some measure.

What I am saying is that new media may at first appear as mere

codes of transmission for older achievement and established patterns of

thought. But nobody could make the mistake of supposing that phonetic

writing merely made it possible for the Greeks to set down in visual
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order what they had thought and known before writing. In the same way

printing made literature possible. It did not merely encode literature.3

McLuhan elaborates a set of tendencies of visual literacy or linearity. These in-

clude centralization of power (with extension of organizational bureaucracy), emer-

gence of the individual (as well as the author, perspective, and self -expression),

fragmentation and analysis (starting with the analysis of visually abstracted speech,

and including the analytic methods of science and statistics).

McLuhan traces the beginnings of literate culture from the birth of Greek philos-

ophy and democracy, through Roman organization, to medieval scholasticism. Lin-

earity is dramatically accelerated with the invention of print, heralding the mechan-

ical age. With the printing press, the remnant of the verbal contained in manuscript

3 [MMU] Vol. 17, p.17.
McLuhan distinguishes the affordances and tendencies of “oral literature” (a con-
tradiction in terms for him), manuscript culture, and print, as well as the changes
brought by the typewriter. Manuscript culture sustained an oral procedure of dispu-
tation (scholasticism); the accessibility of the printed book introduced new notions of
reading, expression and authorship – creating a different form (“literature”), rather
than merely containing the old forms of linguistic expression ([McLuhan1964)] Ch.18:
“The Printed Word: Architect of Nationalism”).
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culture is overturned, and new notions of interchangeability and modularity are in-

vented, leading to the assembly line and specialism.4 A culture of even more cen-

tralization and standardization is developed; in writing this is symbolized by the

development of spelling, punctuation, and the dictionary. Around this time, the

individual and the public are born, and perspective is initiated in the technique of

painting – perspective in painting, seen by print-natives as natural and realistic, in

fact had to be invented, and arose relatively lately in the long history of art. In the

20th Century, as we began the transition out of the visual age, what was still natural

to the populace became old-guard to the artists.

Electronic media reverse the visual tendencies of linearity and specialization by

reintroducing simultaneity. McLuhan’s descriptions of the telegraph and of xerogra-

phy are anticipations of the internet. With the telegraph news, we at once receive

information from around the globe, without a unifying editorial perspective. In con-

trast to the mass-produced book, xerography allows private, specialized, on-demand

publication. The electronic form of information service permits not only

decentralizing of organizations but a wide diversity of products without

additional expenditure.5

4 The verbal in the manuscript is partially reflected in the oral culture surround-
ing it and its resistance to silent reading, but also in the sculptural plasticity of
the lettering of the illuminated manuscript itself. The manner of linguistic expres-
sion tended toward compression, allegorical and aphoristic, demanding interlocution,
whereas print began to “spell out” and expand meaning. [McLuhan1964)]

5 [MMU] Vol. 5, p.13.
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With electric media, all places, times, and people become accessible everywhere,

simultaneously – McLuhan coined the phrase “global village.” It’s easy to see that

our current forms of electronic communication, commerce, and manufacturing are an

acceleration of the tendencies already visible when McLuhan wrote in the 1960s and

70s. Such an instantaneous network of communication is the mind-body

unity of each of us.”6

With electric simultaneity, the balance of our senses is no longer tuned to linear-

ity in the same way. If products of literate culture like specialism and the traditional

divisions of the arts and sciences, successive analysis, classifiable data, statistics,

cause and effect, the linear concept of history, of producer vs consumer, figure vs

ground, are “obsolesced” by the fusion caused by the simultaneity of electric media,

it is not to say that they can no longer be used, only that they are no longer the

whole picture: they are now contained in a larger world.

The electronic age finds it both natural and necessary to be aware

of every kind of situation from many points of view simultaneously. ...

This insistence on an inclusive image or consciousness is strikingly at

variance with the exclusive and specialist focus of the literary mind.”7

6 [MMU] Vol. 6, p.6.

7 [MMU] Vol. 1, p.21.
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6.2 Music in a Visual Age

In an oral, tribal, “auditory-tactile” culture, music is oral, physical, unifying –

as is everything else. The beginning of writing brings the mind-body split of the

physical externalization of thought, a (further) binding of time.

Writing affords written music, and the separation of music from the physical

and temporal. The “parts” in oral music are like people making music together,

superimposed or parallel, simultaneously present. With music writing, the temporal

“cross-section” becomes apparent and dissonance and consonance are recognized in

a new way (see the early history of written polyphonic music). Music writing leads

to the abstraction of music from poetry, dance, and performance. [P]rinted scores

would seem to have made possible the maximal freedom of expression

of ‘pure music.’ The visual, printed form permitted the release of the

formal aspects of sound from the oral and verbal ground of music.8

New conscious control of musical materials afforded by music literacy leads to

choral and then purely instrumental works of increasing complexity (– the unwritten

symphony is unthinkable). Written and printed music-theoretic treatises solidify

aspects of the practice further into the domain of consciousness – we can think of

these books not as encoding “rules” of practice, but as unifying ways of thinking

about certain aspects of musical practice, while leaving other aspects unexamined

8 [MMU] Vol. 15, p.14. While oral music cultures continued in many areas of the
world, in this essay we will follow the “literate” Western thread.
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and therefore open to “illiterate” sensate intuition. Where literacy creates the “mind-

body” divide, it also creates the “conscious-unconscious” divide.

As words and letters become objects in relation to one another and subject to

analysis, so do notes, scales, and chords. But it’s no surprise that a high degree

of literacy and technical knowledge is not sufficient to create art of any import,

especially not art in a natively auditory-tactile medium. Music as an auditory-tactile

affordance of the human sensorium relies on senses like pattern, shape, and motion,

which have never been resolved (fixed) into a literate/conscious analysis – perhaps

they can’t be. Musical works of any interest are those in which pattern, shape, and

motion are kept alive (in contrast to mere musical “écriture” – “competent,” literate

musical writing that somehow seems uninspired, or doesn’t seem to “say” anything).

Pattern, shape, and motion have always been in the domain of the illiterate – even

pre-verbal – senses. It seems, for example, that Bach could not explain what he was

really up to, even to his most talented children.

For the amateur and professional musician, literacy and print had the effect

of reifying concepts of note, chord, various idiomatic and quasi-grammatical ideas,

the opus, and the composer. This is parallel to the reification of the letter, word,

grammar and punctuation, the book and the author.

In the scientific era, we observe further linear principles used in (computa-

tional) music analysis. These include the basic Cartesian principles used to build the

structures in this thesis, as well as other linear concepts such hierarchical parses of

segments or harmonic progressions, the idea of creating music out of “re-combinable”
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bits of other music, classification into genres or types, and analytics based on sta-

tistical properties.9 In Section 5 of this chapter, we will explore what it might

look like when these linear tendencies are reversed by the continued development of

electric simultaneity – a change that doesn’t involve stopping linear thinking, but

accelerating it to the point that its opposite is produced.

One of the most obvious areas of change in the arts of our time has

not only been the dropping of representation, but the dropping of the

story line. In poetry, in the novel, in the movie, narrative continuity

has yielded to thematic variation. Such variation in place of story line

or melodic line has always been the norm in native societies. It is now

becoming the norm in our own society and for the same reason, namely

that we are becoming a non-visual society.10

Where literate culture released music from poetry, song, and dance, the popular

culture of music in the electric age is deeply involved with these, as well as with other

media such as film. Instead of musical specialism (absolute music as just music), we

get musical relationship and the musical structuring of an otherwise poetic, physical,

social, visual, and/or narrative experience.

9 Classical statistics is a “linear” analysis because it supposes individuals in pop-
ulations, as opposed to a (“mass”) simultaneity of interrelations.

10 [MMU] Vol. 4, p.16.
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6.3 Electric Art and the Public

The electric age not only demands new ways of thinking about music, but a

whole new formation of the arts in general, within which music, new and old, will

operate. According to McLuhan, the shift into the electric causes several major shifts

in the function of art.

McLuhan observes the shift of art from “anti-environment” to environment.

Anti-environments (traditionally art, science, philosophy, etc.) are environmental

contents which function to allow us to encounter our environment, which is other-

wise invisible to us: Art and education become new forms of experience,

new environments, rather than new anti-environments. ... Under elec-

tric conditions the content tends ... toward becoming environmental

itself. This was the paradox that Malraux found in The Museum With-

out Walls, and that Glenn Gould finds in recorded music. Music in

the concert hall had been an anti-environment. The same music when

recorded is “music without halls,” as it were.11

Malraux’s concern in The Museum Without Walls has to do with the repro-

ducibility and familiarity of a simultaneity of art from all eras and areas. The

simultaneity has dramatically increased since Malraux wrote in the 1940s. We are

confronted with the universal accessibility of all music, including the ability to add

new music at will to this aggregate. Furthermore, works of music no longer stand in

relation just to other works of music, but they appear alongside everything else on

11 [MMU] Vol.4, p.12.
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the internet, without the boundaries that defined the earlier media – so what used

to be “a piece of music” is now “content,” an element of the omnipresent internet

environment.

McLuhan theorizes the changing role of the audience. The print-tech “public”

is an environment made up of individuals with varying points of view, versus the

electric-tech “mass” as the content of the electric environment, and consisting of

individuals “involved in depth in one another and involved in the creative

process of the art or educational situation that is presented to them.

Art and education were presented to the public as consumer packages

for their instruction and education. The members of the mass audience

are immediately involved in art and education as participants and co-

creators rather than as consumers.”12

The concept of the audience as the “content” is evident in the current phase of

the internet. Involvement is of great relevance; applications that “autonomously”

generate music work on a production-consumption model, whereas apps that facil-

itate interaction and co-creation are ascendant in the electric age. So far, some of

the most publicly important aspects of music computation have been precisely those

that allow people to create – applications for audio editing and transformation, score

typesetting, and signal processing. Applications that involve interaction at the mu-

sical level offer another kind of metacreative setting.

12 [MMU] Vol. 4, p.12.
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McLuhan notices the changing nature of “the individual.” From the beginning

of print culture, we have a notion of the producing artist as an individual with a

particular perspective to express, versus a consuming public. We can observe that we

are no longer in an age of “the great individual” – a mythic figure of the Beethoven

type is anachronistic. On the other hand, “individuality” has been spread out to

everyone.13

[A] paradoxical aspect of this change is that when music becomes

environmental by electric means, it becomes more and more the concern

of the private individual. By the same token and complementary to the

same paradox, the pre-electric music of the concert hall (the music when

there was a public instead of a mass audience) was a corporate ritual

13 Lewis H. Lapham writes in his (1994) introduction to Understanding Media
[McLuhan1964)]: “Just as the advent of print placed the means of communication in
the hands of a good many people previously presumed silent (prompting an excited
rush of words from, among others, Rabelais, Cervantes, and Shakespeare) so also
the broad dissemination of the electronic media invites correspondence from a good
many more people presumed illiterate.”

Russell’s A History of Western Philosophy [Russell1945] has the notion of the
“individual” in philosophical thought (and surrounding political and cultural trends)
as one of its throughgoing themes (– see especially especially Ch. XII, “Philosophical
Liberalism”). Russell makes the point that the scientific method, though it seems
largely unconcerned with the subjectivity of the individual, depends on the modern
individualistic (Protestant, post-Gutenberg) position that the authority of Aristotle
and the Church are not as cogent the evidence of the senses. He also points out
the fragmenting of individualism from the subversion of early “liberal” nationalism
(and its aesthetic continuation in romanticism) with its “heroic” individual leaders,
toward Marxism.
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for the group rather than the individual. This paradox extends to all

electric technology. ... The age of the mass audience is thus far more

individualistic than the preceding age of the public.14

Mechanized specialism permitted high virtuosity in the shaping of

the art object, but such objects were denied any real role in the social

life. They were classified as “art” and made peripheral to society and

to individual consciousness alike. ... [A]rt as a classified activity dis-

solves with the advent of electric circuitry. The art object is replaced by

participation in the art process.15

These days “everyone” can make music, just as they can have their own web

presence in any expressive capacity. But the universalization of production is mis-

leading if we think we are headed for a democratic paradise. While participation in

art is now accessible to all, this is facilitated by “programmed” environments. In

effect, the power of production has been lifted to a higher level of creation.

Today it is not the idle rich but the busy rich who are hastening to

acquire squatters’ rights all along the art frontiers. Why? Why should

the top brass of industry and bureaucracy invade the penurious domain

of the solitary artists? Perhaps because technology has itself begun to

approach the mystery of the creative process? Because technology has

plunged us collectively into the uncharted primitive terrors of individual

14 [MMU] Vol. 4 p.13.

15 [MMU] Vol. 20, pp.13–14.
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artistic intuition? Has technology adopted as its province the entire

human psyche and the earth which it inhabits? Are there sufficient

signs that technological man is prepared to manipulate, as his matter,

both earth and spirit? Have the ancient boundaries between art and

nature been erased? 16 The artist leaves the Ivory Tower for the Control

Tower, and abandons the shaping of art objects in order to program the

environment itself as a work of art.17

While “everyone” becomes involved with making (what used to be called) art

(and what now is sometimes called “content”), the specialists are now “programmers”

generating the environment – this itself is an environmental and artistic task. We

might think of the internet media networks and the smartphone as being the “great

works of art” of the past few years, as these are our current environment; and their

creators are the major architects of our age.

Musical metacreation, or the “AI” pursuit of music, will have to be about musical

environments not for consumption but for participation, exploration, and co-creation.

On the other hand, we can even imagine “users” (content-creators or content-beings)

specifying their works in a “meta” fashion, so that they can be contextually re-

realized or so that a “piece” becomes a whole region of musical space that visitors

can enter into and explore. In this case, environmental music programming gets an

extra meta-level.

16 [MMU] Vol. 13, p.10.

17 [MMU] Vol. 20 p.14.

288



[T]he poetic process has become the subject, plot and action of works

of art. No more divisions of form and content, meaning and experi-

ence.18

6.4 Electric Science and Education

For McLuhan, art and science have functioned as anti-environments that allow

us to encounter our environment – like a fish in water, most of the time we are not

aware of the effect of media on our sensibilities. But in the electric age, our environ-

ment is a sphere of simultaneous information and communication which functions as

a extension of our nervous system. To create an anti-environment for such

electric technology would seem to require a technological extension of

consciousness itself.19

This calls for a kind of artificial intelligence that helps us navigate and structure

the information environment – but it must be the kind of AI that is highly interactive

and promotes open exploration and probing of the environment. For example, a mu-

sical AI shouldn’t (just) generate music, or answer questions about music, it should

be a means of (creatively) exploring the history and potential of musical possibility.

In this vision, we treat AI as a means not just of musical expression or creation, but

as a means of scientific or educational probing, of actively improving our human mu-

sical abilities and understanding – extending our musical consciousness. In general,

the goals of this kind of AI might be to facilitate virtual exploration, rather than

18 [MMU] Vol. 16, p.9.

19 [MMU] Vol. 4 p.8.
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more “linear” paradigms like classification, prediction, quantitative optimization,

and goal-achievement.

By programming our environment, McLuhan predicts that we can turn our en-

vironment into a probe, launching an “age of experimenters.” Internet search is a

primitive experiment, but McLuhan predicts a shift from “matching” to “making”

– away from a search for the template of truth, and toward “faking as a legiti-

mate feature of human consciousness.”20 Matching refers to outer fact, while

making outers inner fact – naturally making seems the more essential musical act.

Making refers not only to an act of generation, but also to the notion that receptive

communication is a creative, interpretive act.

With electric simultaneity, McLuhan predicts the closing of the gap between

literary and scientific sectors. We move from fact to artifact, from rationality to

integration and application, from analysis to probing and grasping. Under these

conditions, prediction and evaluation are merely substitutes for obser-

vation.21

6.5 Structural Analysis and Simultaneity

6.5.1 Linearity and its Acceleration

McLuhan predicts that in the computational age, the practice of data analysis

proceeds from the linear toward the simultaneous. This happens by acceleration of

linear media. An example of the acceleration process is the way that the Internet

20 [MMU] Vol. 12, p.8.

21 [MMU] Vol. 16, p.9.
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accelerates the telegraph, which accelerates the printing press, which accelerates

writing. Each successive stage has more simultaneity than the previous, but the

earlier technologies are not superseded, nor are they simply contained in the newer

media – they are consumed to produce the acceleration.

The way a computer works and the way programs are written are based on

“linear” technology – but their acceleration has produced a cultural environment of

increasingly deep simultaneity. Computational acceleration of data analysis produces

the current state of AI – deep learning deepens data-dimensionality by accelerating

statistical analysis. Structural analysis as we have described it also deepens the

dimensionality of data by accelerating different kinds of linear analysis.

The kind of structural analysis we have described is based on linear and “literate”

thought. Approaching music through the score (as data object) is a literate and

linear-scientific point-of-view.22 The structures we build are based on basic Cartesian

geometric concepts, and formed from linear comparative relations such as < and =.

We use visualizations prominently in our methodology.

22 One direction from the literature of the score toward more simultaneity is toward
sound – where we notice that “notes” as “letters” don’t begin to capture the actual
variety of our phonemes, accents, and expressions. But we have continued to discuss
scores as musical expressions discrete enough to get something of a medium-time-
scale view (a level on which “music” occurs, as distinct and abstractable from sonic
perception), and yet open enough to afford experimental elaboration. Since the
linear-analytic view of the score is convenient, we continue to use it – just as we use
“letters” and “writing” (typing) in the electric age: the simultaneity of information
in the current age depends on the “letter.”
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The visual sense, alone of our senses, creates the forms of space

and time that are uniform, continuous and connected. Euclidean space

is the prerogative of visual and literate man. With the advent of electric

circuitry and the instant movement of information, Euclidean space

recedes and the non-Euclidean geometries emerge. Lewis Carroll, the

Oxford mathematician, was perfectly aware of this change in our world

when he took Alice through the looking glass in to the world where each

object creates its own space and conditions. To the visual or Euclidean

man, objects do not create time and space. They are merely fitted into

time and space. The idea of the world as an environment that is more or

less fixed, is very much the product of literacy and visual assumptions.23

6.5.2 Structural Dimensionality

From a music-analytic point of view, our hypothesis is that the informational

concept of simultaneity is naturally present and effective in music (as an auditory-

tactile artform), and therefore we are motivated to explore ways in which the struc-

ture of a musical score can be described as non-linear and non-hierarchical.

Polyphones describe geometric situations that are neither sequential nor hierar-

chical, but polyphonic – consisting of temporal inclusions and overlaps. A polyphonic

situation is not much higher-dimensional than a tree, but by describing a relational

23 [MMU] Vol. 4, p.15. “Cartesian” space is like “Euclidean” space with coordi-
nates – more “literate,” and affording more acceleration.
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dimensionality just beyond hierarchicality, it opens up a larger, more general and

more flexible space of organizational possibilities.

The shape of a tree is generally understood and widely used, and the non-

hierarchical temporal relation (overlap) is also easy to understand. Polyphones con-

tribute formal descriptions and visualizations of the combination of these. By under-

standing the shape of polyphones, we increase our ability to observe non-hierarchical

temporal organization.

Polyphones are a description of simultaneity as found (from a temporal-dimensional

point of view) in the musical score – i.e. where and how do the (temporal) simultane-

ities of things occur, and in what way can a picture of the set of these simultaneities

be organized.

The shapes formed by the graph of pairwise such relations among a set of tempo-

ral intervals are descriptive of the polyphonic “textures” among the notes of a musical

score. Polyphones can also be used to describe relational structures among any other

constructions or demarcations of temporal intervals, such as sets of segments describ-

ing melodic, harmonic, rhythmic, phrasal, or timbral content – a polyphone graph

can be generated among sets of segments of the same structural type, or among

different types.

N-sets are another non-sequential, non-hierarchical way of addressing the tem-

poral configuration of structures on a score. Whereas polyphones are specific about

the relations of temporal intervals, N-sets take a more aggregate approach, finding

larger timespans on a score that contain sets of (kinds of) structures, that can be

thought of as occurring more or less “together” within the larger timespan. We can
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see this as a looser (but still formal) definition of “simultaneity,” giving a different

kind of structural description.

The boundaries and content-description of N-sets are defined by the set of struc-

tures inside (rather than e.g. a statistical measure) in order to maintain structural

specificity – though statistical methods can be used to take measurements of the

content of each N-set.

N-sets take a sequence of sets and produce a polyphonic set of sets (superset-

unions) – in doing so they take a low-dimensional projection of the score and produce

a geometrically higher-dimensional superstructure. The set of N-sets obtained has a

polyphonic organization, because N-sets have both inclusion and overlap relations.24

Like polyphones, N-sets are applicable in various ways on any set of score structures

that have temporal extent.

Z-chains, like N-sets, are a means of taking a low-dimensional projection (a

sequence of orderable terms) and producing a higher-dimensional shape: a fractally-

polyphonic set of recursively oriented hierarchical structures.

The temporal interactions of Z-chains are more complex than polyphony because

Z-chains can be represented not as taking up temporal intervals, but recursively

structured, gapped sequences of temporal intervals. Z-chains are therefore more

difficult to reason about. But they are the result of a basic fact about musical

24 And the polyphonic shape of a set of N-sets is descriptive of their structure in a
way that the polyphonic shape of a “triangular” powercut is not (since we know its
shape in advance of seeing the score).

294



structure: that it can be discontinuous. Z-chains structure parallels across temporal

discontinuity.

One way of looking at Z-chains “polyphonically” (in order to structure aspects

of their simultaneity) would be to take polyphonic projections at different structural

levels (e.g. make one analysis by treating second-order Z-chains as temporal intervals,

etc.).

Another approach to dealing with the complexity of a Z-chain picture is to

analyze and restrict the “gappedness” of Z-chains ( – we showed one way of doing

this structurally, rather than e.g. using a measurement for the maximum gap-length).

Z-shapes use simultaneities of Z-chains to produce more detailed shapes by using a

simple method of identifying temporal relations of interest without analyzing the

total (fractal-)polyphonic situation.

Each of the structuring algorithms presented can produce a complete combi-

natorial number of structural descriptions (i.e. no description is invalid as in a

grammatical parse, or ignored as in a dictionary search), and operates by linking

local structures into superstructures. These structuring algorithms are illustrative

examples of an open-ended class of such methods.

These kinds of structuring algorithms are general in the sense that they can be

used on any number of projections of a score, based on different featural dimensions.

Such projections may themselves be produced by structuring algorithms (– or by

any other method). The kinds of projections required e.g. for N-sets and Z-chains

function using low-dimensional relations : N-sets require an equivalence relation on

input structures, and Z-chains an ordering relation. There is an open number of
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such equivalence relations (and these may be based on structural properties, or may

include heuristic semantics, e.g. injecting knowledge about diatonic scales as in

key-assertions and diatonic equivalence classes for Z-shapes).

The total analytic map is therefore very open and flexible, containing any num-

ber of iterations and branchings of constructions and projections – this is structural

relativity.25

Understanding is neither a point of view nor a value judgment ...ef-

fects as causes that relate modes of dynamic perception. They are nei-

ther definitions of concepts nor expressions of opinion, since all pat-

terns of perception merge and metamorphose in the very act of explo-

ration and discovery. They avoid value judgments, and serve as guides

to insight and comprehension through re-cognition of the dynamic struc-

tures that occur in all processes. In replaying such patterns we are not

taking any side but many sides, also the inside.26

6.5.3 Rhizomatic Geometry and Map-Making

In A Thousand Plateaus, Deleuze and Guattari describe two pseudo-sensory,

information-analytic modes similar to McLuhan’s – they describe striated (i.e. lin-

ear, analytic) space, versus smooth space (with an open number of dimensions),

corresponding to “optic” versus “haptic” sensory modes [DeleuzeGuattari1980].

25 [Resnik1997] (– discussed in Chapter 2).

26 [MMU] Vol.3, p.30.
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Deleuze and Guattari describe the geometry available in smooth space as being

“rhizomatic” (contrasted with the hierarchical “tree” or “root”).27 In a rhizome,

anything can (and “must”) be connected to everything else.28 A rhizome consists

of a multiplicity of entities, types, and relations – a growing multiplicity.

The “dimensionality” of a multiplicity is (n− 1), signifying an unfinished, open

dimensionality (– there is always another way of looking at things). The one dimen-

sion that is never attained (the −1) is the dimension of Unity. In the case of a score

analysis, this means that we can take the score apart and put it back together in any

number of different ways, making observations and discoveries about its structure,

but we cannot expect to find any dimension that somehow makes sense of or explains

the entirety.

Deleuze and Guattari contrast two methods for analysis: the map and the trac-

ing. The map is rhizomatic in form, while a tracing is a linearization or dimensional

reduction of a rhizome. The map is an open-ended analytic process (or field of poten-

tial), whereas a tracing is an analysis. Chomsky’s grammatical trees are given as an

example of a tracing – they are tracings not just because they are low-dimensional,

but because they proceed from a sense of “unity” (the root of the tree is the sentence

S), and enforce a grammatical shape.

Make a map, not a tracing. ... What distinguishes the map from the

tracing is that it is entirely oriented toward an experimentation in contact

27 The rhizome is a conceptual geometry, rather than a mathematically formal one.

28 [DeleuzeGuattari1980, p.7]
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with the real. ... It fosters connections between fields ... The map is

open and connectable in all of its dimensions; it is detachable, reversible,

susceptible to constant modification. ... A map has multiple entryways,

as opposed to the tracing, which always comes back ‘to the same.’ The

map has to do with performance, whereas the tracing always involves an

alleged ‘competence.’... 29

The map is a virtual place on which connections are traced. A tracing is a picture

of a selected aspect of the map (or of the rhizome that it maps).

Deleuze and Guattari say that we should “make a map.” While we have de-

scribed an open, rhizomatic dimensionality of constructions and projections (trac-

ings), we don’t know how to make them into a map.

Have we not, however, reverted to a simple dualism by contrasting maps

to tracings, as good and bad sides? Is it not of the essence of the map

to be traceable? Is it not of the essence of the rhizome to intersect roots

and sometimes merge with them? Does not a map contain phenomena of

redundancy that are already like tracings of its own? Does not a multiplic-

ity have strata upon which unifications and totalizations, massifications,

mimetic mechanisms, signifying power takeovers, and subjective attribu-

tions take root? ... It is a question of method: the tracing should

always be put back on the map.30

29 [DeleuzeGuattari1980, p.12]

30 [DeleuzeGuattari1980, p.13]
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Here is what it might mean to put the tracing back on the map: suppose that

a tracing is a low-dimensional summary of (for example) a score. One way that a

summary is useful is as a generalization which can be used to categorize or compare

the score with other scores, or to make a decision or prediction about the score. We

might be able to represent this kind of summary abstractly as a code, or a sequence,

tree, or graph of terms – this is the tracing. We could think of using the tracing

to annotate or comment on the score as a way of putting the tracing back on “the

map.” This method means the addition of information to the score, rather than

abstracting the tracing from it.

The “map” is not a high-dimensional object, it’s an activity: the process of

discovering and relating aspects of structure. The map is the principle that affords

tracings.

In practice, we can’t access or represent the simultaneity of information all at

once – McLuhan’s simultaneity doesn’t imply that we can e.g. see all of the internet

at once, only that we can see any part of it at any time, and therefore relate any set

of parts of it in any way we can think of.31

Using linear information methods, or tracings, we relate to the global, simultane-

ous information environment. When the tracing is put back on the map, it becomes

31 This is also what the philosopher Markus Gabriel means when he says “the
world does not exist” – the world (for Gabriel) is not a thing, it’s a simultaneity of
ontological perspectives [SteinbauerGabriel2016].
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part of the sphere of simultaneously available information. The “map” correspond-

ing to a score is the virtual (i.e. potential) structural linking of any information that

it can generate, as situated on the score itself.

The score itself, as the initial, unanalyzed data-object, functions as what Deleuze

and Guattari call a “body without organs.” If we think of a body with organs, this

is conceived as a hierarchical, functional, fixed structure. A body without organs, by

contrast, can be organized in a rhizome of different ways.

A body without organs is not an empty body stripped of organs, but a

body upon which that which serves as organs ... is distributed accord-

ing to crowd phenomena, in Brownian motion, in the form of molecular

multiplicities. The desert is populous. Thus the body without organs is

opposed less to organs as such than to the organization of the organs in-

sofar as it composes an organism. The body without organs is not a dead

body but a living body all the more alive and teeming once it has blown

apart the organism and its organization. ... The full body without organs

is a body populated by multiplicities.32

6.5.4 Music-Analytic Tracings

The “map” of a score is a high-dimensional virtual “space” in which “all” trac-

ings are representable and interrelatable. Because of the principle of structural rel-

ativity, this is a space with an open number of informational dimensions. The only

32 [DeleuzeGuattari1980, p.30]
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way we know how to visualize (or otherwise represent) any part of it is to make

projections into a low dimensionality (tracings).

The kinds of analytic visualizations shown in this thesis are tracings showing a

low-dimensional picture of structures selected and organized through low-dimensional

comparisons. Using a few simple structuring algorithms, we very quickly ended up

with more tracings than we could begin to show.

The tracings in this thesis are visualizations ; another medium for observing

tracings is sonification. For example, if we start with a score with a small number

of note-features (e.g. pitch and timing, and maybe voice identity), we can maintain

these features without alteration, and add new sonic features such as instrumental

timbre, loudness, or articulation. This adds an analytic layer to a musical realization

of the score.33

These kinds of sonifications are in some sense “performances” of scores. One

approach to computational performance is to sound like an (expressive or natural)

human (physical) performance (e.g. the approaches found in [Kirke+2012]), while

the contrasting approach of structural sonification is based on making structural

tracings of the score into the musical medium. A similar idea was expressed by

Adorno:

33 In [HandelmanSigler+2012] we sonified a selection of Z-chains using different
instrumental timbres to create orchestrations, and in [HandelmanSigler2014] we took
N-sets on pitch-class and rhythm-class, made projections through subsets of these to
determine loudness and articulation (i.e. smooth vs detached notes).
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...structural instrumentation would be to use every timbre and above all

the mode of orchestration to make real all the structural elements that

are indispensable to the articulation of the musical meaning: a procedure,

then, that does not cloak music in orchestral garb, as the critics would

say, but that translates its own articulation into that of sound. The

principle of structural instrumentation is not one of a color calculus but

of compositional clarity. ... Instead of treating the instrumentation as

one parameter among others to which it is only abstractly related, the

composition should develop the instrumentation from the meaning of the

musical events. In that way it would become an authentic parameter, a

concrete function of the music. The music would be the beneficiary of

this treatment of instrumentation, since it would be one of the means

of objectification music has needed ever since it ceased to lie cocooned

inside the traditional formal scheme. ... every other treatment of the

orchestral palette is just playing around.34

The habitual contemplation of the media of communication as art

forms necessarily invokes the principle that the instruments of research

are also art forms, magically distorting and controlling the objects of

investigation.35

34 [Adorno1999, p.212]

35 [MMU] Vol.15, p.15
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McLuhan was perhaps thinking of the distorting and controlling power of the

instruments of investigating e.g. physics. In this case we are wistful about perhaps

never “really” knowing the outside world except through the distortions of our senses

and our instruments. But music is a thing of an essentially different nature: an inner

world. It’s inherently subjective – at the limit, it’s like a secondary consciousness.

In this case, “magically distorting and controlling the objects of investigation” may

be just what is desired.

6.6 Music and History

We have touched on the implications of electric media for art and science. Here

we examine how the electric age conceives of history in a different way from the linear

age, and how we might approach historical music through metacreative probes.

The modern world abridges all historical times as readily as it re-

duces space. Everywhere and every age have become here and now.

History has been abolished by our new media. If prehistoric man is

simply preliterate man living in a timeless world of seasonal recurrence,

may not posthistoric man find himself in a similar situation? May not

the upshot of our technology be the awakening from the historically con-

ditioned nightmare of the past into a timeless present? Historic man

may turn out to have been literate man. An episode.36

We have seen that all of music history (short history though it is) is simultane-

ously available. However, historical music seems to lose its cultural importance, as

36 [MMU] Vol. 6, p.7.
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“classical music” audiences decline and we witness the obsolescence of the orchestra.

We may be living in a “museum without walls,” but to the wider culture, “literate”

music is museum music. While there’s little danger of the archive of scores and

recordings being lost, we have already lost the technique and understanding of the

great age of literate music. It is not, therefore, correct to say that every age of music

is here and now. This state of affairs still lies in the desired future of metacreative

musicology.

We will examine the kind of relationship we might have with the older music,

if we can “approach tradition through the door of technological aware-

ness.”37 But McLuhan cautions us about what might happen when we pursue

“linear” goals as a means of encountering the older music.

“Information overload leads to pattern recognition.” This dictum falls

under McLuhan’s general principle that a process accelerated beyond a certain limit

tends to reverse itself (“metamorphosis by chiasmus”). For example, “musical infor-

mation” (i.e. music as such) has a certain meaning in the sense that encountering

it produces a certain kind of experience. However, when we are taking a “big data”

approach to music, it’s impossible to generate the relevant musical meaning or expe-

rience. The same applies to language, images, etc. If we reach a point of information

overload, we can no longer encounter music as music, but as “data” – leading to

“pattern recognition.” The ... visual [thinker], ... will naturally assume as

a metaphor of any art form, that of a receptacle. Once this basis has

37 [McLuhan+1967, p.55]
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been established, it is difficult to resist the need to use the receptacle

as a waste basket. ... junking the classics by classification. Categories

numb perception.38

Naturally, there’s no real way to understand music except as music, so we must

reverse the reversal and approach music on its own terms if any understanding is

to be obtained. This shows why McLuhan thinks we must extend “consciousness

itself” in order to make sense of the overwhelming information environment; it is

this extension that would allow the second reversal.

Up until the advent of electro-magnetism the Western world had

merely externalized and exchanged the products of thought and experi-

ence. We are quite unprepared for the much higher-educational demands

of the present situation in which we must share the actual process of

thought and experience of all mankind. But this new necessity not only

compels us to inspect our own processes of thought and perception more

carefully than in any previous age, but it urges us to the most earnest

inquiry into all past art, literature and culture in order to benefit from

all past discoveries about the processes of insight. ... Instead of merely

establishing a perspective for past cultures, our tendency today is to re-

construct entire past cultures from within. ... the total reconstruction

38 [MMU] Vol. 12, pp.11–15.
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procedure is less visual than empathetic. It is a structure of simultane-

ous and organic inter-relationships.39

The vision is that we can approach the lost past of literate music technique

through expanded music-technological consciousness. Naturally it will never be “the

same” – it may be that we will have to drop some of our attachment to historical

authenticity and veneration of composers-as-authors in order to revive some of their

discoveries.

In the electric age, we see that sampling, mashups, and remixes are common mu-

sical practices, legitimizing creative appropriation and musical material as common

property. In the metacreative future, we can expect to see reworkings that probe

the classics, not only by sampling and signal processing, but through transformation

of pattern, shape, harmony, and other inner-dimensions, as well as new works and

spaces that use techniques and processes abstracted from earlier music. These works

could be at once musical and music-educational in a technical as well as a historical

sense.

As we have already seen, the concepts of “individual” composer and of “historical

time” are obsolesced in the electric age – still available for consideration, but now

within a sphere of electric simultaneity. In “The Death of the Author,” Barthes says

that the author as expressive individual has receded in favor of language and writing

itself, and the simultaneity of potentials in its reading – we can no longer rely upon

39 [MMU] Vol.7 pp.14–15.
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the unifying perspective of the person and the intentions of the author.40 In fact, as

Foucault points out in “What is an Author?,” the very notion of a work or body of

work entails authorial assumptions.41 So reliance on authorship for e.g. definition

of a “style” opens up problems discussed by Barthes and Foucault: the supposed

unity of expression, technique, and intention of an author is, after all, not certain.

Foucault discusses the differences in cultural notions of authorship between the

arts and sciences in the manuscript and print ages: in the earlier age, literary narra-

tives were often anonymous, while scientific texts relied on “authority”; in the print

age, the literary author was valorized while “scientific discourses began to be received

for themselves, in the anonymity of an established or always redemonstrable truth.”

In the age of art-science fusion, can we anticipate another change? Will we start to

think of musical techniques not as individual styles of expression, but as technologies

for creation?

But in the same essay, Foucault cautions: “It would be pure romanticism...to

imagine a culture in which the fictive [or music] would operate in an absolutely free

state, in which fiction [or music] would be put at the disposal of everyone and would

develop without passing through something like a necessary or constraining figure.”42

Therefore we back off from an ultimate “formalism,” knowing that a semantic, cul-

tural, and contextual level is always in effect. Whereas we can conceive of music as

40 [Barthes1968]

41 [Foucault1979]

42 [Foucault1979]
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an open material, individual culture-creators (or meta-creators) will continue to in-

novate and drive the larger culture onward. As we develop new technological ways of

navigating musical possibility space, map-making may be based on human meaning

and value.

The promise of posthistoricity, of “seasonal recurrence” is that the older artists

can continue to contribute. “The great work of art belongs to history,” wrote Mal-

raux, “but it does not belong to history alone.”43 This is Malraux’s notion in

Metamorphosis of the Gods : that art cannot be limited to characterization by its

historical location, nor does it endure because it is timelessly eternal, but rather that

it transcends time through constant resuscitation, metamorphosis, and transforma-

tion in meaning.44 “Metamorphosis is not an accident, it is the very law of life of

the work of art. ... and what the great work of art sustains is not a monologue,

however authoritative, but an invincible dialogue.”45

6.7 Conclusion

McLuhan’s celebrated aphorism The Medium is the Message means that

the form of communication [is] the basic art situation, which is more

significant than the information or idea ‘transmitted.’ 46 This is because

43 [Malraux1951], [Allan2013].

44 [Allan2013].

45 [Malraux1957], [Allan2013].

46 [MMU] Vol. 15 p.6.
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media extend our senses; they form a process-environment through which we en-

counter the world. For example, the expressive potential of language is more fun-

damental than any particular thing we might say to one another. For McLuhan,

language was our first technology for letting go of the environment in or-

der to grasp it in new ways.47 As we develop new media, what at first seem to

be containers for the old media (writing as encoded speech, “horseless carriages,” TV

as “movie-in-the-home,” etc.) ultimately turn out to be nothing of the kind. Compu-

tation, then, is not a “tool” for (among other things) analyzing and producing music.

Computation, like language, extends consciousness. As a virtual environment, mu-

sical metacreative technology will function to extend human musical consciousness,

expanding our musical understanding and ability.

It is even possible that understanding of the musical sense will be of broader

utility in AI. Music has the distinction of being a meaning- and experience-bearing

structural medium that can operate without reference to external knowledge e.g.

about objects in the world, human motivations, etc. Therefore we have a chance of

building an abstract semantic technology before AI research solves the hard general

problem of human meaning. This technology could be applied to many areas of

design, perception, and organization. “All the arts aspire to the condition of

music,” said Walter Pater, and under conditions of instant information

47 [MMU] Vol. 11, p.2.
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the only possible rationale or means of order involves us in the musical

structuring of experience.48

48 [MMU] Vol. 5, p.5.
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[Gulati+2016b] Gulati, Sankalp, Joan Serra, Vignesh Ishwar, Sertan Şentürk, and
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[Mullensiefen+2007] Müllensiefen, Daniel, and Klaus Frieler. “Modelling experts’
notions of melodic similarity.” Musicae Scientiae, 11.1 suppl., 183–210. 2007.

[Narmour1990] Narmour, Eugene. The Analysis and Cognition of Basic Melodic
Structures: The Implication-Realization Model. University of Chicago Press. 1990.

[Noland+2006] Noland, Katy and Mark Sandler. “Key Estimation Using a Hidden
Markov Model.” ISMIR. 2006.

[Olariu1991] Olariu, Stephan. “An optimal greedy heuristic to color interval graphs.”
Information Processing Letters. 37, 21-25. 1991.

[Pearce2005] Pearce, Marcus Thomas. The Construction and Evaluaion of Statistical
Models of Melodic Structure in Music Perception and Composition. PhD Thesis:
Department of Computing, City University, London. 2005.

[Pearce+2010] Pearce, Marcus T., Daniel Müllensiefen, and Geraint A. Wiggins.
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